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The visual system consists of hierarchically organized distinct anatomical areas 
functionally specialized for processing different aspects of a visual object (Felleman & 
Van Essen, 1991). These visual areas are interconnected through ascending feedforward 
projections, descending feedback projections, and projections from neural structures 
at the same hierarchical level (Lamme et al., 1998). Accumulating evidence from 
anatomical, functional and theoretical studies suggests that these three projections play 
fundamentally different roles in perception. However, their distinct functional roles in 
visual processing are still subject to debate (Lamme & Roelfsema, 2000).

The focus of this Research Topic is the roles of feedforward and feedback projections in 
vision. Even though the notions of feedforward, feedback, and reentrant processing are widely 
accepted, it has been found difficult to distinguish their individual roles on the basis of a 
single criterion. We welcome empirical contributions, theoretical contributions and reviews 
that fit into any one (or a combination) of the following domains: 1) their functional roles for 
perception of specific features of a visual object 2) their contributions to the distinct modes 
of visual processing (e.g., pre-attentive vs. attentive, conscious vs. unconscious) 3) recent 
techniques/methodologies to identify distinct functional roles of feedforward and feedback 
projections and corresponding neural signatures. We believe that the current Research Topic 
will not only provide recent information about feedforward/feedback processes in vision but 
also contribute to the understanding fundamental principles of cortical processing in general.
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Hierarchical processing is key to understanding vision. The visual system consists of hierarchi-
cally organized distinct anatomical areas functionally specialized for processing different aspects
of a visual object (Felleman and Van Essen, 1991). These visual areas are interconnected through
ascending feedforward projections, descending feedback projections, and projections from neural
structures at the same hierarchical level (Lamme et al., 1998). Even though accumulating evidence
suggests that these three projections play fundamentally different roles in perception, their distinct
functional roles in visual processing are still subject to debate (Lamme and Roelfsema, 2000). The
focus of this Research Topic was the roles of feedforward and feedback projections in vision. In
fact, our motivation to edit this Research Topic was threefold: (i) to provide current views on the
functional roles of feedforward and feedback projections for the perception of specific visual fea-
tures, (ii) to invite recent views on how these functional roles contribute to the distinct modes of
visual processing, (iii) to provide recent methodological views to identify distinct functional roles of
feedforward and feedback projections and corresponding neural signatures. As summarized below,
these aims are largely achieved thanks to fourteen contributions to this issue.

Feedforward and Feedback Projections for Different Aspects of a

Visual Object

The cortical areas and the way they connect with each other lead to distinct pathways func-
tionally specialized for processing different aspects of a visual object (Van Essen and Gallant,
1994). For example, the ventral processing stream has been associated with object recognition
and identification. Romeo and Supèr (2014) have constructed a feedforward spiking hierarchi-
cal model for simulating IT cortex along the ventral stream. The simulation results indicate
that figure-ground segregation occurs at an earlier level of processing relative to the level at
which shape selection takes place. Wyatte et al. (2014) propose that object recognition requires
more than feedforward processing. By reviewing a number of studies, they first differentiate
two types of additional processing along the ventral stream: (i) early, short-distance (local)
recurrent processes, and (ii) late, long-distance feedback processes related to attention. They
further propose that early local recurrent feedback plays a functionally distinct role in attention-
independent stimulus disambiguation, since it facilitates object recognition well before the onset
of any attentional influences. Wutz and Melcher (2014) provide a review on temporal window
for object recognition and individuation. They propose that mid-level vision adopts a tempo-
ral window whose duration is short enough for picking out separate objects (without apprecia-
ble smearing of their retinal images when they move), while simultaneously being long enough
to integrate sufficient sensory information for accurate detection. Based on psychophysical and
neurophysiological data, they suggest that phase synchronization plays a key role in this process
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by coordinating feedforward and feedback involved in complex
and dynamic visual scenes. Several studies in this collection
emphasize the role of feedback projections at different levels of
processing within the ventral stream. Layton et al. (2014) pro-
pose a dynamic hierarchical model which can effectively perform
figure-ground segregation in visual scenes with multiple objects.
Their results indicate that the inhibitory feedback sharpens the
population activity in the “lower stage” and that the dynamic
balancing of feedforward signals with specific feedback mecha-
nisms is crucial to identifying figural region. Furthermore, Lay-
her et al. (2014) describe a model architecture to investigate
the role of feedback mechanisms in learning new categories of
visual objects.They basically use two types of feedback mech-
anisms to achieve seamless and automatic acquisition of cat-
egory representation by an unsupervised learning mechanism
integrated into a recurrent network architecture. Hence, they not
only address the classic stability/plasticity dilemma but also eluci-
date how the predictive power of feedback mechanisms together
with the feedforward sweep realize associative memory. Contour
integration has been considered to be another crucial stage of
visual object recognition. By varying the inter-element proper-
ties in a perceptual fading paradigm, Strother and Alferov (2014)
focus on the individual roles of bottom-up feedforward and top-
down feedback processing in such integration. In agreement
with previous reports, their findings highlight the importance of
feedforward processes in primary visual cortex (V1) and shape-
related feedback from higher-tier visual cortical areas for contour
integration.

Roles of Feedforward and Feedback

Projections in Different Modes of Visual

Processing

Accumulating evidence from modeling and experimental stud-
ies indicates that feedforward and feedback projections play
important roles in different modes of visual processing and
attention. However, their distinct contributions are still con-
troversial. Khorsand et al. (2015) set the stage for feedforward
and feedback contributions to the exogenous attentional selec-
tion. Bottom-up exogenous attention has been considered to rely
only on feedforward processing of the external inputs. How-
ever, Khorsand et al. (2015) review recent experimental and
theoretical studies supporting the view that stimulus depen-
dent processing involves feedback connections and signals run-
ning in top-down direction of the hierarchy as well. Their
review raises an important conceptual issue and provides an
account of feedforward and feedback contributions to exoge-
nous attentional shifts. In another study, Rensink (2014) iden-
tifies different levels of processing for iconic memory by using
a modified visual search paradigm. Besides feedforward process-
ing, he highlights the importance of two types of feedback pro-
jections (due to horizontal connections within a level as well
as links between different levels) for iconic memory. He further
characterizes “iconic,” “preattentive,” and “attentive” representa-
tions within this framework. As briefly mentioned above, based

on the literature about visual object recognition, Wyatte et al.
(2014) dissociate the late top-down processing originating from
frontoparietal areas from early recurrent local projections within
the ventral processing stream. They also review some studies
emphasizing that this late top-down processing to striate cortex
provides attentional support for salient or behaviorally-relevant
features.

Explaining Various Visual Phenomena by

Feedforward and Feedback Processes

The notions of feedforward and feedback processing have been
extensively used to explain various visual phenomena. Di Lollo
et al. (2014) hypothesizes that reentrant (feedback) processing
gives the best account for a form of visual masking called object
substitution masking (OSM). On the other hand, Põder et al.
(2014) presents the contrasting view that reentrant processing
is not necessary to explain OSM and that the attentional gat-
ing model is the simplest and most reasonable explanation for
OSM results. Silverstein (2015) takes an interesting approach to
examine the roles of feedforward and feedback processes in visual
backward masking. Using a biophysical model of V1 and V2, he
explains visual processing in terms of interacting cortical attrac-
tors. The simulation results indicate that both feedforward and
feedback processes predict several aspects of backward masking.
Additionally, Petro et al. (2014) focus on the functional role of
cortical feedback projections on V1. By reviewing the most cur-
rent theory and experimental data, they discuss how top-down
feedback signals conveying information from higher-processing
stages (e.g., prediction, reward, memory and behavioral context)
are involved in shaping sensory processing in V1 and hence,
explain recent experimental findings along this direction.

A contrasting view is provided by Clarke et al. (2014),
who argue against the usefulness of making feedforward and
feedback distinctions for explaining experimental results. They
tested three existing models with different local/global and feed-
back/feedforward characteristics to see whether they can account
for some recent findings on visual crowding. All three models
failed to predict the results even qualitatively. Clarke et al. (2014)
discuss these model failures within the context of a broader view
and suggest that the dichotomies such as feedforward/feedback
and local/global may not be useful for scientists designing exper-
iments to understand vision. Bachmann (2014) argues another
interesting point. He basically posits that experimental findings
that have been proposed to support models of specific top-down
re-entrant processing could equally support those with a generic,
non-specific feedback loop.

Taken together, the research topic presents a timely addition
to the field of vision research and to understanding the func-
tional principles of brain in general. It provides an update on
the roles of feedforward and feedback projections in several but
not all types of visual processing. For example, an update about
the roles of feedforward and feedback projections in motion pro-
cessing (mostly carried out by the dorsal pathway) is missing.
The advent of optogenetics and neuroimaging has provided
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additional remarkable investigative tools. How these recent tech-
niques will contribute to the prevailing arguments of feedfor-
ward and feedback projections in vision is still open. We hope
this issue will inspire the readers and act as a catalyst for future
work on the issues of feedforward and feedback processes in
vision.
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The ability to recognize a shape is linked to figure-ground (FG) organization. Cell
preferences appear to be correlated across contrast-polarity reversals and mirror reversals
of polygon displays, but not so much across FG reversals. Here we present a network
structure which explains both shape-coding by simulated IT cells and suppression of
responses to FG reversed stimuli. In our model FG segregation is achieved before shape
discrimination, which is itself evidenced by the difference in spiking onsets of a pair
of output cells. The studied example also includes feature extraction and illustrates a
classification of binary images depending on the dominance of vertical or horizontal
borders.

Keywords: spiking model, feed-forward, shape, classifiers, IT

INTRODUCTION
Neurons in the inferior temporal cortex (IT) have been linked
to visual shape representation and object recognition (Rolls
et al., 1977; Logothetis et al., 1995; DiCarlo and Maunsell, 2000;
Riesenhuber and Poggio, 2000; Rollenhagen and Olson, 2000).
Lesions in this area result in visual agnosia (Farah, 1990). fMRI
studies in humans show how objects activate this part of the cor-
tex and how restricted spots of it are driven by specific classes
of stimuli (Desimone, 1991; Malach et al., 1995; Tanaka, 1996).
Individual IT cells discriminate, in particular, the shape or color
of the stimulus or both parameters (Desimone et al., 1985).
Their selective responses are maintained across changes in the
size or location on the retina. Actually, in Baylis and Driver’s
paper (Baylis and Driver, 2001), the visual shape preferences of
IT neurons of monkeys were also invariant under two stimulus
transformations. The stimuli were different polygon displays and
the correlated transforms consisted of either a change in the con-
trast polarity between the figure and the background or a mirror
image. That form of invariance or symmetry is often referred to
as “generalization” and its degree of exactness is typically subject
to some amount of elasticity.

The exact computational process by which the IT region repre-
sents shape remains controversial (Peterson et al., 1991). A central
mechanism herein is figure-ground (FG) segmentation, or the
segregation of visual information into objects and their surround-
ing regions (Rubin, 1958). If this task were performed by the
brain solely through the contours distinguishing the input dis-
plays, then generalization under FG reversal would be expected
as well. However, it was absent from Baylis and Driver’s results
(Baylis and Driver, 2001). Thus, shape coding is not exclusively
based on the processing of contour features. For explaining such
results, some type of segregation has to be included.

Similarly, psychological findings on human visual shape judg-
ments indicate that one-sided assignment of edges plays a crucial
role (Baylis and Driver, 1995a,b; Nakayama et al., 1995; Rubin,

2001). Such an assignment means that the border is “owned” by
the side which is imagined “in front,” and regarded as “figure.”
Since the dividing curve is the same, the background shares the
same informative contour as the original figure, and has its “pro-
file” embedded. Even so, humans typically rate a mirror image of a
figure as more similar to the original than the background in iso-
lation (Hoffman and Richards, 1984). Likewise, IT cell responses
generalize more strongly across mirror imaging than across FG
reversal. That is, they are activated by shape components only
after FG assignment (Baylis and Driver, 1995c, see also Hulleman
et al., 2005). Apparently, the shape of an object is then coded after
the perception of it as a separate entity (however, this issue was
contended for a long time and other alternatives were offered, e.g.,
by Peterson et al., 1991).

We have already favored the idea that the visual system uses
one-sided edge assignment to figures (Supèr et al., 2010). In
fact, we developed a spiking model which by means of surround
inhibition gave FG responses. We concluded that feed-forward
connections contribute to the neural mechanisms underlying FG
organization, namely, that the phenomenon arises from the com-
putations that happen in earlier stages. Feedback merely controls
FG segregation by influencing the neural firing patterns of feed-
forward projecting neurons (Supèr and Romeo, 2011). Motivated
by all the above observations, we have constructed a network
structure, based on our previous work, which explains both the
suppression of responses to FG reversed stimuli and the possibil-
ity of achieving shape selectivity for the other transformations.

In summary, when an IT cell is selective to a certain shape, the
fact that this shape is presented as figure or as ground does matter.
We shall be upholding the hypothesis that FG segregation takes
place before feature extraction and further processing (alternative
hypotheses admitted that shape recognition was possible before
FG relationships were determined—Peterson et al., 1991). The
present work includes these specific elements: (1) A proposed
mechanism for figure segregation: local excitation and global
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inhibition leading to rebound spiking on regions of smallest area,
already introduced by Supèr et al. (2010), and (2) An additional
structure for extracting and processing features which, if applied
to the considered image type, classifies shapes by vertical|hori-
zontal edge dominance and reproduces the observed weakening
in the response when the shape goes into the background.

MATERIALS AND METHODS
Our network consists of five areas made of Izhikevich’s neurons
(Izhikevich, 2003, 2007). The dynamics of that neural model is
explained in the Supplementary Material. Of the five areas form-
ing the network, areas 1–4 are divided into two feature channels
labeled by F, and in areas 3 and 4 each channel is further divided
into 4 sub-channels associated with the 4 employed receptive
fields labeled by j. Area 5 consists of two cells, indicated by i, for
classification (see Figure 1, middle).

The shapes used as stimuli are polygons made of straight frame
edges at the top, bottom and along one side, and a “profile” line—
possibly but not necessarily curved—on the other side (Baylis
and Driver, 2001). When that profile runs between mid-points
of opposed frame sides, the total length of the present borders is
the same for the original and for the three transformations (see
Figure 2).

A combination of local excitation and global inhibition on area
2 is meant to cause the rebound spiking effects described in Supèr
et al. (2010). In area 1 the images are accurately represented, as the
two-channel input is mapped onto this layer. Only the neurons
at the locations of white regions are firing spikes, while those on
black regions are quiescent.

Neurons in area 2 receive spiking input from area 1. Each
cell gets retinotopic excitatory input and global inhibitory input.
For the channel receiving the region of smallest area, the spatial

FIGURE 1 | Top: Approximate location of V1, V2, V4, and IT in a macaque
brain. Middle: Structure of the studied network, made of five areas. Areas 1–4
are divided into two “feature” channels which, for areas 3 and 4, are further
divided into 4 sub-channels associated with each of the employed receptive

fields fj , 1 ≤ j ≤ 4. Area 5 consists of two neurons. Squares indicate arrays
and circles single cells. Bottom: An example of feature extraction from a
binary array by application of filtering fields (process from area 2 to area 3).
The top row show the activated sites when every field is applied.
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FIGURE 2 | Chosen images and their mirror-reversals,

contrast-reversals, and figure-ground reversals. Note that within each
row, the total length of the existing borders for every image is the

same. The two originals have inner size n = 64 without margins, outer
size N = 76 including margins, and an equal area ratio of 0.42 without
frame, 0.30 including frame.

FIGURE 3 | Network responses on area 5 for the image sets of Figure 2,

employing the w5i weights quoted in the text. Times are given in ms and
potentials in mV. For figure-ground reversal the responses are suppressed

while, for the other three cases, the firing order of cells 1 and 2 on area 5
signals the pertinence to one of two possible object categories (second and
third columns).

pattern of spiking activity reproduces the excitatory input pattern.
On the contrary, for the channel receiving the region of largest
area, the spatial activity pattern is the reversal of the input pattern,
signaling the complementary region. That change is explained by
rebound spiking after a strong inhibition in the smallest region.
For neurons on the largest region, global inhibition is partly
compensated by retinotopic excitation. However, for cells on the
smallest region, that inhibition is the only input and gives rise to a

strong a rapid hyperpolarization which provokes rebound spiking
of these cells.

The new parts are added “on top” of the previous struc-
ture. In area 3, features are extracted by applying a non-linear
function—in fact, a step function with given threshold—to con-
volutions of spike maps and filters (see Figure 1, bottom). The
signals produced by application of the different filter types are fed
into separate sub-channels. Area 4 collects spatial integrations of
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FIGURE 4 | Spike counts for the example of Figure 2. Each plot corresponds to an image set and an area 5 cell. In every case there are fewer spikes for
FG-reversal.

FIGURE 5 | Firing onset times—i.e., first spike times—for the example of Figure 2. Each plot is associated with an image set and an area 5 cell. In every
set the spiking starts later when FG-reversal is applied.

the obtained detections within each sub-channel. Finally, area 5,
which contains several output units, receives combinations of area
4 signals, including, in principle, all channels and sub-channels.
Hypothetically there are as many output units as categories for
classification (in our particular example, 2).

The numerical values of our inputs are set by the following
rules:

I1F = w1TF, F = 1, 2

I2F = w2eS1F − |w2i|S1F1, S1F ≡ 1

N2

∑
k,l

(S1F)kl, F = 1, 2

I3Fj = w3 �(S2F ∗ fj − 1), F = 1, 2, 1 ≤ j ≤ 4

I4Fj = w4S3Fj, S3Fj ≡ 1

N2

∑
k,l

(S3Fj)kl, F = 1, 2, 1 ≤ j ≤ 4

I5i =
2∑

F = 1

4∑
j = 1

w5iFjS4Fj, i = 1, 2.

TF , F = 1, 2, stand for original stimulus (F = 1) and its contrast-
reversed version (F = 2). Since the inhibitory weight w2i is
negative, we have written it as w2i = −|w2i|. Concerning the
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inputs themselves, I1F , I2F , F = 1, 2 and I3Fj, F = 1, 2, 1 ≤ j ≤ 4,
are N × N matrices; I4Fj, F = 1, 2, 1 ≤ j ≤ 4, and I5i, i = 1, 2,
are scalars. An analogous convention is employed to indicate the
binary (0,1) spike maps: S1F denotes the spike map produced by
the potentials on area 1 channel F, and so on. Thus, S1F , S2F ,
F = 1, 2, and S3Fj, F = 1, 2, 1 ≤ j ≤ 4, are N × N matrices, while
S4Fj, F = 1, 2, 1 ≤ j ≤ 4, are scalars. For I = 1, 2, every w5i can be
regarded as a matrix of two rows, labeled by F, and four columns,
labeled by j. The 1 symbol indicates an N × N matrix whose coef-
ficients are all them equal to one. Array convolution product is
denoted by the “∗” symbol, and � indicates the step function
�(x) = 1 if x = 0 and 0 otherwise. The feature-selective fj filters
are given by:

f1 =
(−1

1

)
f2 = ( − 1 1) f3 =

(
1

−1

)
f4 = (1 − 1)

FIGURE 6 | Spiking area ratios for the figural parts. The numbers
indicate the ratio between spiking area and total area. For contrast and
FG-reversal in F = 1 channel the figure is segregated after “rebound
spiking.” Moreover, in the case of FG-reversal the involved area ratio is the
largest one.

In the studied set-up we adopt w1 = 10, w2e = 400, w2i = −750,
w3 = 500, w4 = 5.0, all of them in µA. The considered images
(Figure 2) are squares of side n = 64 pixels when margins are not
included. As margins are 6 pixels wide, N = 76 pixels. The num-
ber of white pixels is the same in the two original images, and they
yield an area ratio of 0.42 without frame, or 0.30 including frame.

The ability to classify will depend on the particular form of
the w5 matrices. On area 5, cell i = 1|2 has to show preference for
image 1|2. The question can be addressed by considering the role
of the j indices, initially labeling the applied filters. For cell 1, lim-
itation to vertical contrast takes place by setting non-zero values
in even columns only. Analogously, horizontal contrast for cell 2
is obtained by adopting non-zero values just in the odd columns.
Figure 7 illustrates that the strongest signal from FG-reversal goes
through F = 2, related to the second row of w5i. Because this
signal should yield the weakest output, the remaining non-zero
coefficients in the second rows have to be smaller than those in
the first rows. A solution meeting this requirement in terms of
only two non-zero constants A, B is

w51 =
(

0 A 0 A

0 B 0 B

)
, w52 =

(
A 0 A 0

B 0 B 0

)

with B smaller than A. In practice, satisfactory performance is
obtained for A = 100 µA, B = 5 µA.

In agreement with Baylis and Driver’s results (Baylis and
Driver, 2001) and our previous proposals, FG discrimination is
achieved already in area 2, long before shape recognition, and
rests on one-sided edge assignment to figures. The shape-selective
responses of area 5, identified as IT, depend mainly on the w5i

matrices, which—hypothetically—would consist of a group of
learned weights. Shape-coding is evidenced by the difference in
spiking onsets for the output units. Cells in V4 code diagnostic
boundary features at specific locations, already ascribed to the
object figure, which represent through their population response
the complete shape. This matches with the findings by Patsupathy
and Connor (2002).

RESULTS
The described model processes sets of figures consisting of origi-
nal, mirror-reversed, contrast-reversed, and FG-reversed versions

FIGURE 7 | Spiking rates, in number of spikes per second, for the area 2 potentials V21 and V22 at a point inside the “figural” region of the first image

in Figure 2. These values were obtained after a 100 ms simulation. In the case of FG-reversal, the spiking for “feature 1” is less frequent than for “feature 2.”
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FIGURE 8 | Potentials on area 5 for the first image set of Figure 2 and its own rotated version. Cell 1 and cell 2 responses are interchanged.

FIGURE 9 | Spike counts for the images of Figure 8. Cell 1 and cell 2 counts are interchanged.

of the original one. Depending on the lengths of horizontal and
vertical borders, the different activity of the output units classifies
the elements of these sets. In addition, responses are similar for
original, mirror-reversed and contrast-reversed transformations
of the same image, and significantly decrease for the FG-reverse
version.

Results of running the network with our particular matri-
ces are shown in Figure 3. On area 5, cell 1 spikes earlier than

cell 2 for image 1 and cell 2 spikes sooner than cell 1 for
image 2. Since the non-zero columns of matrices w51|w52 cor-
respond to vertical|horizontal contrast features, the employed
solution is valid for any case in which the predominance of ver-
tical|horizontal borders can be a distinctive criterion. Moreover,
within each image set, responses to FG-reversed images are the
lowest because row 2 (which weights the inputs from “F = 2”
channel) has smaller coefficients than row 1 (which multiplies
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FIGURE 10 | Firing onset times for the images of Figure 8. Cell 1 and cell 2 times are interchanged.

FIGURE 11 | Rows 1–4: network responses on area 5 for a circle disconnected from a hypothetical frame. Rows 5–8: responses for a circle connected to
the frame by the mid-points of opposed sides (preserving the border length, as required).

the “F = 1” channel signals). Indeed the spike counts shown in
Figure 4 indicate that there are fewer spikes for the FG-reversal
of every image. Furthermore, the produced spike bursts start
later when applying FG-reversal, as can be seen in Figure 5. On
the whole, firing onset times are a better criterion than spike
counts.

The applied mechanism may be understood in terms of spik-
ing area ratios for figural parts because, in the end, the number
of spikes relative to the total area has a decisive contribution to
the excitation-inhibition balance. For the case of contrast and FG-
reversal in F = 1 channel, the figural part is not segregated until
“rebound spiking” takes place on area 2 (rebound spiking occurs
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after a strong inhibition, even in the absence of excitation—see
Izhikevich, 2003, 2007 or Supèr et al., 2010). For FG-reversal the
involved area is the largest (see Figure 6) and the resulting inhi-
bition, which is proportional to the spiking area, turns out to be
somewhat stronger (Figure 7).

Because our criterion rests on differences in length between
vertical and horizontal borders, the system distinguishes an image
from its own rotated version, as can be seen in Figures 8–10.
Predictably, for area 4, responses in sub-channels with even and
odd indices are interchanged, and for area 5, the 1 and 2 cell
responses are swapped as well.

In the considered image realm profiles should run between
mid-points in opposite frame sides (see lower part of Figure
1 in Baylis and Driver, 2001) in order to preserve the total
length of all the boundaries. Going out of this image class we
can imagine the case of a disconnected circle. Then, the weak-
est signal is the “contrast reversed” one, while the “FG-reversed”
version produces a higher response (see Figure 11, upper part)
caused by the existence of a longer boundary. For this exam-
ple the third transformation must be simply ignored, because it
just amounts to the reversal of an unconnected frame, while the
only reasonable analog to FG-reversal is now the contrast reversal
itself. Examination of the numerical output reveals that it starts
spiking marginally later than the original and mirror-reversal (by
1.25 ms) and with fewer spikes (7 instead of 11). Thus, the result
is not inconsistent. When the circular shape is connected to the
frame and the overall area ratio correctly set, normal working is
restored (Figure 11, lower part).

DISCUSSION
We have been able to design a network structure which mod-
els the suppression of responses to FG reversed stimuli, and
shows the possibility of producing selective outputs that general-
ize across mirror reversed and contrast reversed stimuli. Although
the model was not meant for complex images and had no pre-
tence to describe state-of-the-art knowledge on IT processing,
it is quite coherent as its outcome fits our previous findings,
was constructed using similar values to our forerunning model
(Supèr et al., 2010; Supèr and Romeo, 2011) and yields invariance
in the pattern of responses across a variety of stimuli and their
transformations.

An essential ingredient was the dual pathway for the given fig-
ure and its own contrast-reversed version, which represents the
existence of two input preferences (Supèr et al., 2010). Although
the incoming signals for these two channels are different, the spik-
ing parts in area 2 eventually highlight a single region, identified
as “figure.” Despite the space coincidence, the strengths of these
signals may still vary, showing a sizable difference for the FG-
reversal case. Later, the obtained figural part undergoes a multiple
feature extraction process. Spatially-averaged results of that fea-
ture detection procedure are then fed into cells mimicking IT
neurons. By virtue of the devised scheme, which benefits from the
linear character of the I5i inputs, our IT cells are in fact selective
for two image categories. The nature of the performed selection is
determined by the weight choice.

A correspondence between model architecture and visual sys-
tem can be depicted as follows: The first area transforms the input

into a spiking train like the Ganglion cell area of the retina, the
second area then would be V1, assuming that the LGN (lateral
geniculate nucleus) merely relays sensory information. Areas 3–4
may be assimilated to connections occurring both in V2 and in
V4, while area 5 would be analogous to IT.

The remarked dependency on orientation can be viewed as the
consequence of “experience” (contained in the values of the w5i

weights) that causes the system to perform holistic processing. In
the case of the rotated image, the features or components are pro-
cessed in the same way as in the original (by V4 neurons). If there
were edge detectors for enough different orientations and all their
outputs could be integrated in a rotationally-invariant fashion,
responses for an image and its own rotated version ought to be
equal. In our case the limited “experience” implicit in the weights
does not suffice for obtaining this symmetry. An implication is
that in our model both sorts of information are explicitly encoded
as suggested by Schwaninger et al. (2002).

Another consequence would be that our memory of a category
has a specific orientation, the usual one in the type of stimu-
lus processed. A well-known example of this affirmation is the
Thatcher illusion, where the eyes and mouth of a face are turned
upside down (see Thompson, 1980). When the whole image is
subsequently inverted the grotesque appearance vanishes. In the
context of our model implications, the component representa-
tions would then be normal and thus could be matched with the
output of the holistic process.

At least for polygons of the studied type, our model bears
out the view offered by Baylis and Driver (2001) and provides
a computational scheme explaining their observations. FG dis-
crimination is achieved in an area which becomes active before
shape selection takes place, and is based on one-sided edge assign-
ments. Such a mechanism, which accounts for the observed
generalization, operates by a purely feed-forward process.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fpsyg.
2014.00481/abstract
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Standard models of the visual object recognition pathway hold that a largely feedforward
process from the retina through inferotemporal cortex leads to object identification.
A subsequent feedback process originating in frontoparietal areas through reciprocal
connections to striate cortex provides attentional support to salient or behaviorally-relevant
features. Here, we review mounting evidence that feedback signals also originate within
extrastriate regions and begin during the initial feedforward process. This feedback
process is temporally dissociable from attention and provides important functions such
as grouping, associational reinforcement, and filling-in of features. Local feedback signals
operating concurrently with feedforward processing are important for object identification
in noisy real-world situations, particularly when objects are partially occluded, unclear, or
otherwise ambiguous. Altogether, the dissociation of early and late feedback processes
presented here expands on current models of object identification, and suggests a dual
role for descending feedback projections.

Keywords: object recognition, feedback, top–down attention, illusory contours, amodal completion

INTRODUCTION
Visual object recognition has traditionally been described as a
largely feedforward process that operates independently of and
prior to top–down signals that reflect strategic processing or
attentional effects. This standard model of object recognition
is supported by research that spans multiple levels of analy-
sis, including single- and multi-unit recording, computational
modeling, and behavioral experiments, all of which have been dis-
cussed in detail in recent reviews (e.g., Serre et al., 2007; DiCarlo
et al., 2012). Feedback projections, nearly equal in density to feed-
forward neurons throughout the ventral visual stream (Felleman
and Van Essen, 1991; Sporns and Zwi, 2004), are commonly
thought to subserve slower, attention-mediated processing that
happens after recognition processes are complete, but not the
core object recognition processing itself (Hochstein and Ahissar,
2002).

The proposal advanced in this paper is that these local,
recurrent feedback connections also provide an avenue for
rapid top–down signals that influence object recognition-related
processing as it is being carried out—well before the slower
attention-mediated processes. The theory is inspired by the
pioneering work of Dehaene et al. (2006) and Lamme (2003,
2006) in identifying the neural correlates of consciousness.
Both of these researchers’ theories dissociate between local
recurrent processing and top–down signals from frontopari-
etal areas in terms of the effects that they have on awareness.
The present work draws a similar distinction between top–
down, attention-mediated processing, and local recurrent pro-
cessing between hierarchically adjacent areas within the ventral
stream.

We support this distinction by first providing evidence that
there are two temporally dissociable processes operating on these
feedback projections; and second by presenting results show-
ing an important functional role for the earlier, local recurrent
processing.

EVIDENCE FOR A TEMPORAL DISSOCIATION OF LOCAL
RECURRENT AND TOP–DOWN PROCESSING
Top–down attention is known to be a consciously generated, exec-
utive signal originating in frontal and parietal areas (Thompson
et al., 2005; Bressler et al., 2008). Signals reflecting these strategic
processes do not manifest in early visual areas until 150–170 ms
after stimulus onset at the earliest, with most reported effects
occurring within the range of 200–300 ms (Mehta et al., 2000a,b;
Martinez et al., 2001; Noesselt et al., 2002). The relatively long
latency of attentional effects in early visual areas is thought to
arise from top–down signals that target late stages of the ven-
tral stream and then progress backward toward V1 (Buffalo et al.,
2010). Local recurrent processing can also be thought of as a
top–down process, except that the signal originates from within
the ventral stream itself, as opposed to frontal or parietal areas.
Local recurrent processing is completely involuntary and does
not require conscious execution, evidenced by its observation
in recordings from anesthetized animals (Roland et al., 2006;
Roland, 2010) and is simply a consequence of signal propaga-
tion through recurrent corticocortical connectivity. Specifically,
as soon as a given area responds, signals are routed both to
higher-level and lower-level connected areas. Feedback to imme-
diately lower levels occurs with very short latencies—as quickly
as 10 ms after the initial feedforward responses (Hupé et al.,
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2001; Pascual-Leone and Walsh, 2001)—and thus could plau-
sibly be underway after initial feedforward IT neural responses
(ca. 80–100 ms) but before the completion of the categorization
process (ca. 150 ms).

Recent research using methods that temporarily interfere with
cortical processing have revealed strong evidence that recurrent
feedback circuits are engaged during the first 80–150 ms of visual
processing. One line of evidence comes from experiments that
use transcranial magnetic stimulation (TMS) to temporarily pre-
vent a targeted brain area from responding. In a recent study,
Koivisto et al. (2011) used fMRI-localized TMS to selectively
inactivate V1/V2 while subjects categorized images according to
whether they contained an animal. The authors found that apply-
ing TMS to V1/V2 with stimulus onset asynchronies (SOAs) of
90–210 ms impaired categorization performance and subjective
perception of stimuli. Camprodon et al. (2010) observed simi-
lar results with TMS applied over V1 only, but found that there
were actually two windows of impairment with SOAs of 100 and
220 ms. Earlier work from Corthout et al. also found an early
window of activity with an SOA of around 100 ms during which
applying TMS over V1 impairs letter recognition (Corthout et al.,
1999a,b). Collectively, these experiments show that disruption
of processing in early visual areas around 100 ms after stim-
ulus presentation impairs visual recognition. Importantly, this
time window occurs after the earliest contributions of IT neu-
rons, opening up the possibility that the impairment is due to
the disruption of feedback to lower-level areas in influencing
the quality of object representations. Furthermore, several of
these studies found a second, later time window around 200 ms
during which TMS also impaired recognition. This later time
window coincides with the latency of spatial attention-mediated
processing (Mehta et al., 2000a,b; Martinez et al., 2001; Noesselt
et al., 2002; Buffalo et al., 2010), providing a temporal disso-
ciation from the rapid recurrent processing effects that are of
interest here.

Visual backward masking experiments have also identified a
similar time window for recurrent processing around 100 ms after
stimulus onset (Fahrenfort et al., 2007, 2008; Boehler et al., 2008).
In backward masking experiments, a first stimulus (the target) is
followed by a second stimulus (the mask) at a particular latency.
At very short latencies, backward masking can impair recogni-
tion of the target and in some cases, prevent it from reaching
awareness (Macknik and Livingstone, 1998). While the effect of
backward masking was initially accounted for with a feedfor-
ward explanation (Breitmeyer and Ganz, 1976), modern theories
of backward masking emphasize recurrent processing between
higher-level and lower-level areas (Enns and Di Lollo, 2000;
Lamme and Roelfsema, 2000; Wyatte et al., 2012a). Specifically,
if information about a target stimulus being processed in higher-
level areas is fed back down to lower areas, but a masking stimulus
is simultaneously being processed at that lower level, there will be
a fundamental mismatch in the information being processed at
each level (Lamme and Roelfsema, 2000). This mismatch causes
a decoupling in the functional connectivity (i.e., co-activation)
between the visual areas involved in processing the stimulus,
which has the psychological effect of greatly reduced perceptual
visibility (Dehaene et al., 2001; Haynes et al., 2005).

Boehler et al. (2008) combined a backward masking paradigm
with magnetoencephalography (MEG) recording to determine
the time course of recurrent feedback to V1 during a recogni-
tion task. On trials where subjects correctly recognized the target
stimulus (i.e., no impairment from the mask), there was modula-
tion of the V1 MEG signal from 100 to 120 ms. This modulation
occurred soon after (ca. 27 ms) the initial V1 signals and almost
immediately after (ca. 11 ms) extrastriate generated signals, in
strong accordance with being driven by rapid recurrent feed-
back from extrastriate areas to V1. Again, these rapid recurrent
processing effects were dissociable from slower attentional modu-
lation, which manifested 250–300 ms after stimulus presentation
and only when subjects attended to the same region of the dis-
play that the target appeared in. In contrast, modulation from
rapid recurrent processing occurred regardless of where sub-
jects directed attention. Similar results have been demonstrated
when combining backward masking with electroencephalography
(EEG) recording with both rapid recurrent and slower attentional
modulation, but with less emphasis on the specific neural gener-
ators of effects given the relatively poor spatial resolution of EEG
(Fahrenfort et al., 2007, 2008).

Together, TMS and backward masking experiments provide
strong support for the idea that recurrent visual processing
engages striate and extrastriate areas around 100 ms after stimulus
onset during visual recognition tasks. This local rapid recurrent
processing is dissociable from attention-mediated or strategic
processing both in terms of where the signals originate (within
the ventral stream vs. frontal and parietal areas) and in terms
of their relative time courses (ca. 100 ms vs. 150–170 ms at the
earliest). Attention has long been known to modulate early EEG
responses such as the P1 (first positive deflection, ca. 100 ms) and
N1 (first negative deflection, ca. 150–200 ms) (Luck et al., 1990a;
Hillyard and Anllo-Vento, 1998). Given the data reviewed here, it
seems plausible that the P1 indexes recurrent feedback generated
within the ventral stream while the N1 reflects the first influences
of frontal and parietal attentional signals that progress backwards
through visual areas toward V1 (Buffalo et al., 2010; see also Luck
et al., 1990b).

While TMS impairment around 100 ms is consistent with
the disruption of recurrent processing, it cannot rule out the
possibility that the TMS is actually disrupting delayed feed-
forward responses. Specifically, low-level image properties such
as local contrast can affect the temporal order of feedforward
spikes, with lower contrast image regions exhibiting delay rela-
tive to more salient image regions (VanRullen and Thorpe, 2001,
2002). However, the information content of these regions is much
lower than the salient regions that exhibit fast responses and
thus it is unlikely that disrupting their contribution to object
recognition processing will negatively impact recognition ability
for relatively unambiguous images. More importantly, backward
masking experiments that target impairment of recurrent pro-
cessing provide additional constraints in interpreting TMS effects.
Finally, 90–110 ms post stimulus onset is hypothesized to be the
time at which peak feedback signals arrive at V1 from extrastriate
areas (Roland et al., 2006; Roland, 2010).

Overall, it seems clear that recurrent processing operates
within the established time course of object recognition, which

Frontiers in Psychology | Perception Science July 2014 | Volume 5 | Article 674 | 17

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Wyatte et al. Early feedback facilitates object recognition

spans the first 150 ms of visual processing. The data reviewed
in this section are summarized in Table 1 with a rough sketch
of overall feedforward and feedback events shown in Figure 1.
Having established support for the idea that recurrent feedback
occurs rapidly beginning around 100 after stimulus presentation,
this paper now turns to discussion of its function.

EVIDENCE FOR A DISTINCT FUNCTIONAL ROLE FOR LOCAL
RECURRENT SIGNALS
There is considerable evidence that local recurrent processing
is important when stimuli are degraded, partial, or otherwise
ambiguous, and we hypothesize that this is one important func-
tional role for the dissociated process described in the previous
section. The basic logic behind this proposal is that degrad-
ing a stimulus has been shown to weaken the initial responses

in object-selective areas (Sclar et al., 1990; Kovacs et al., 1995;
Nielsen et al., 2006; Williford and Maunsell, 2006), but recur-
rent processing over time can strengthen responses back to near
undegraded levels and preserve selectivity via top–down rein-
forcement. Consistent with this idea, object-selective responses in
IT cortex remain intact when stimuli are occluded, but take signif-
icantly more time to manifest than when stimuli are unoccluded
(around an extra 50 ms on average, Kovacs et al., 1995; Nielsen
et al., 2006).

Single-unit recordings that use reversible cooling to tem-
porarily inactivate a particular brain area provide further sup-
port for our hypothesis. Hupé et al. (1998) applied cooling to
area V5/MT, a visual area in the superior temporal sulcus of
the monkey brain that sends feedback projections to areas V1,
V2, and V3. Recordings from V1 through V3 indicated that

Table 1 | Summary of data that suggest a temporal dissociation of local recurrent and top–down attentional processing.

Reference Milliseconds after Stimulus Onset Comments

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

Koivisto et al., 2011
TMS over human V1. Scene categorization
impairment at indicated times

Corthout et al., 1999a
TMS over human V1. Letter recognition
impairment at indicated times

Corthout et al., 1999b
TMS over human V1. Letter recognition
impairment at indicated times

Camprodon et al., 2010
TMS over human V1. Scene categorization
impairment at indicated times

Boehler et al., 2008
MEG in human subjects. Effects of masking
over V1 at indicated times

Fahrenfort et al., 2007
EEG in human subjects. Effect of masking
over occipital channels at indicated times

Fahrenfort et al., 2008
EEG in human subjects. Effect of masking
over occipital channels at indicated times

Martinez et al., 2001
EEG/fMRI in human subjects. V1 modulation
with attention at indicated times

Noesselt et al., 2002
EEG/MEG/fMRI in human subjects. V1
modulation with attention at indicated times

Mehta et al., 2000a, 2000b
LFP in awake behaving monkey. V1
modulation with attention at indicated times

Putative feedforward Proposed local recurrent Putative attentional

FIGURE 1 | Proposed time course of feedforward and feedback events

during early visual processing. Top row: Feedforward-dominant latencies,
which are well-documented in the literature (e.g., Nowak and Bullier, 1997).
Light pink shading refers to earliest reported latencies, likely corresponding to
the depicted areas’ first spikes, while darker pink shading corresponds
ongoing feedforward responses. Bottom row: Areas are shaded orange
when they are known to be receiving recurrent feedback. Most reports of

recurrent feedback to V1 center around an absolute latency of 100 ms after
stimulus presentation, with some reports being slightly faster. Common
methods used to detect feedback (coarse application of TMS, MEG, EEG) do
not have the spatial resolution to distinguish between feedback to V1 and
extrastriate areas, but the view taken here is that feedback originates in
immediately adjacent areas, and thus those areas that fire earliest during the
feedforward dominant phase will also be the first to receive feedback.
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responses to moving bar stimuli were vastly weakened (fewer
spikes observed per second) when V5/MT was inactive compared
to control experiments in which it was active. This attenua-
tion of lower-level responses was most dramatic in low salience
conditions, such as when the bar had a very low contrast, a
point that will be discussed in further detail later in this section.
These results suggest that when higher-level visual areas are
active, they provide additional excitatory input to lower levels.
Similar effects have been shown for other recurrent circuits in
other mammalian species such as those involving middle supra-
sylvian (MS) cortex and V1 (Galuske et al., 2002) as well as
V2 and V1 (Sandell and Schiller, 1982; Mignard and Malpeli,
1991), suggesting that top–down amplification is a highly generic
mechanism that occurs between any two recurrently connected
areas.

Top–down amplification promotes visual awareness (Lamme,
2003, 2006; Dehaene et al., 2006), and some data indicate that
amplification is a simple contrast gain operation, as some have
suggested is implemented by attention (e.g., Reynolds et al., 2000;
Reynolds and Heeger, 2009). However, there is mounting evi-
dence that recurrent amplification also plays an important func-
tional role in visual object recognition when stimuli are degraded
or ambiguous, by promoting a complex grouping and “filling-in”
process.

Wyatte et al. (2012a) degraded visual object stimuli using
visual occlusion and contrast degradation and used backward
masking to control whether recurrent processing mechanisms
were available (Enns and Di Lollo, 2000; Lamme and Roelfsema,
2000). When relatively clear stimuli were masked using a rel-
atively long latency 100 ms SOA pattern mask, there was little
impairment in recognition performance. However, when heav-
ily occluded or low contrast stimuli were masked, the mask
had a much larger effect, suggesting that recurrent process-
ing was crucial in resolving object identity in these conditions.
Simulations using a computational model of object recognition
that included recurrent feedback between hierarchically adja-
cent layers (O’Reilly et al., 2013) showed that responses in both
lower layers (corresponding to striate/extrastriate regions) and
upper layers (corresponding to IT cortex) strengthened over time
when objects were occluded. Backward masking selectively inter-
fered with this strengthening process, which was crucial when
stimulus signals were weak due to degradation. Furthermore,
the strengthening dynamic was found to be specifically due to
recurrent feedback—purely feedforward versions of the model
exhibited asymptotic response levels across areas.

One possibility for the mechanism underlying these recogni-
tion performance differences is a grouping and “filling-in” process
similar to what is observed in the figure-ground literature in V1
(Figure 2A), but repeated between higher levels of the visual hier-
archy. As an illustration, consider a population of IT neurons that
respond to bicycle stimuli (Figures 2B,C). If a bicycle stimulus is
occluded and only the wheels are visible, some members of this
population will become active (specifically, those corresponding
to wheel-like features), but the selective response across the full
population will be unavailable. The partial responses, however,
will be propagated back to earlier visual areas, which will drive
neurons that are sensitive to visual features that are known to

co-occur with bicycle wheels, such as a bicycle’s frame, handle-
bars, and saddle. Importantly these responses occur in the absence
of these features in the actual stimulus. These “illusory” responses
in turn provide new driving potential to IT neurons, ultimately
evoking the selective response corresponding to the unoccluded
stimulus across the full IT population responsive to bicycles. The
IT response is “object complete,” meaning that there is little-
to-no difference between the response to the partially occluded
object and the complete object—the brain has filled in the missing
information.

Computationally, recurrent processing’s amplification effect
is capable of supporting a grouping or surface-based encoding.
The most convincing demonstrations of these computations are
found in the figure-ground processing literature, where the term
“contextual modulation” is used to describe them (Zipser et al.,
1996; Lamme et al., 1998). In contextual modulation, neurons
with non-overlapping receptive fields such as those found in V1
are capable of modulating and reinforcing each other by virtue
shared connections through higher levels in the visual hierarchy
where receptive fields do tend to overlap. This extra modulation
has the effect of grouping together figural elements of a dis-
play and enhancing their activity relative to background elements
effectively spreading activation throughout the figure interior
and “filling” it in as a perceptually salient surface (Figure 2A).
The models suggest that contextual modulation is driven by
recurrent feedback, because lesions of feedback from extrastri-
ate and dorsal structures to V1 obliterate the surface filling effect.
They further illustrate that the timing of contextual modulation
to area V1 would be on the order of 80–100 ms after stim-
ulus presentation, coinciding with the known time course of
feedback to striate areas during visual processing. Finally, contex-
tual modulation is dissociable from slower top–down attentional
effects, not just with respect to time course but also because
its surface filling computations are retained even when atten-
tion is deployed away from the target stimulus (Poort et al.,
2012).

There are two phenomena in the experimental literature that
support the grouping and filling-in roles of recurrent processing
during object recognition. The first is the perception of illu-
sory contours, such as in displays containing Kanizsa shapes
(Figure 3). V1 neurons have been shown to respond to the illu-
sory contours that compose Kanizsa shapes, such as the edges of
the illusory square in Figure 3. Multi-unit recordings have indi-
cated that these responses occur beginning around 100 ms after
stimulus presentation, which is shortly after the V1 responses to a
physical contour with the same orientation and location, suggest-
ing a role for feedback in their encoding (Lee and Nguyen, 2001;
Seghier and Vuilleumier, 2006). Specifically, recurrent feedback
from extrastriate areas could support the perception of illusory
contours in the Kanizsa illusion by grouping similarly oriented
contours at the V1 level that fall within the shape’s receptive
field; this would cause the shape to be perceived as perceptually
salient surface similar to the way texture-defined shapes are per-
ceived (Figure 3B). As such, a recent experiment has indicated
that global contour information emerges in V1 responses shortly
after the first V4 responses, implicating recurrent feedback in this
grouping process (Chen et al., 2014).
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FIGURE 2 | Illustration of recurrent processing’s filling-in computations

during figure-ground processing and object recognition. (A) Processing
of an orientation-defined square stimulus results in enhancement of the
figural elements compared to the background elements. This enhancement
comes in the form of recurrent feedback that groups together common
image elements and spreads activation throughout the interior of the square,
effectively “filling” it in as a perceptually salient surface. FGM, Figure Ground
Modulation, i.e., difference between figure and background responses.
Adapted from Lamme et al. (1998) and Poort et al. (2012). (B,C) The same

feedback-based “filling-in” principle can be applied to object recognition
processing when stimuli are occluded. When object features are occluded,
only a partial representation is elicited by the first feedforward responses.
However, recurrent feedback (e.g., between IT and extrastriate areas)
propagates these partial responses back to early visual areas, driving neurons
that respond to co-occurring features that might be occluded in the physical
stimulus. This recurrent processing between hierarchically adjacent visual
areas can effectively “fill in” the occluded features in the object
representation.

FIGURE 3 | Illusory contour perception in Kanizsa shapes

(Kanizsa, 1979). (A) Traditional and more complex Kanizsa shapes
that evoke strong illusory contour percepts. Complex shapes
courtesy of Steven Lehar (http://cns-alumni.bu.edu/∼slehar/Lehar.html).
(B) Perception of illusory contours has been suggested to arise

by virtue of recurrent feedback from extrastriate areas to V1.
Specifically, feedback from an extrastriate neuron drives neurons
that code similarly oriented contours that fall within its receptive
field, spreading activation across the gap in the Kanizsa shape.
Adapted from Lee (2003).

The second supportive phenomenon is an actual object com-
pletion effect, which has gained support from fMRI studies that
show little-to-no difference in the activation levels of occluded
and unoccluded stimuli in object-selective regions of cortex

(Lerner et al., 2002). Intact activation, however, could simply
reflect increased gain of the encoded object fragments without
a more complex completion process. To differentiate between
these two possibilities, one can use an fMRI adaptation paradigm,
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which depends on neural mechanisms that decrease response
levels for repeated stimuli that are perceived as the same. This
method gives an experimenter an index of how perceptually sim-
ilar two experimental conditions are. For example, Kourtzi and
Kanwisher (2001) presented observers with images that contained
occluding bars either in front of or behind target objects (in
which case, the targets were effectively unoccluded). The experi-
ment measured the hemodynamic response in the lateral occipital
cortex (LOC), which has been strongly suggested as the human
homolog of IT cortex in monkey (Grill-Spector et al., 2001; Orban
et al., 2004). The results indicated that there was no significant
change in hemodynamic response when subjects were presented
with two identical objects in sequence, as well as when sub-
jects were presented with occluded and unoccluded versions of
an object in sequence. Thus, at the level of LOC, there is little
difference in the way that unoccluded and occluded versions of
the same object are represented. More recent techniques such as
representational similarity (Kriegeskorte et al., 2008a,b) or decod-
ing analyses (Tang et al., in press) might further illuminate how
occluded objects are represented in various regions of cortex.

While the perception of illusory contours has been linked to
recurrent feedback (Lee, 2003), this explanation has not been
has explored as extensively in the object completion litera-
ture, likely due to most studies using relatively coarse measures
like fMRI (e.g., the aforementioned studies that rely on fMRI
adaptation). Computationally, illusory contour perception and
object completion could be implemented by the same mecha-
nism, whereby higher-level neurons with overlapping receptive
fields feed responses back to lower-level neurons in the absence
of the visual information itself and produce the perception of
illusory object features. According to this view, when operat-
ing between extrastriate levels and V1, the mechanism produces
illusory contours; when operating between IT cortex and extras-
triate areas, it produces more complex illusory object features.
There is some support for this idea in the literature. For example,
Rauschenberger et al. (2006) demonstrated object completion
effects in LOC as well as in extrastriate areas when stimuli were
presented for longer durations, suggesting that there is a “tem-
poral unfolding” of object completion from higher levels of the
ventral stream to lower-level areas.

However, illusory contour stimuli evoke a perceptually salient
completion phenomenon, whereas the filling-in of objects does
not. These processes have been distinguished in the literature as
“modal” and “amodal” completion, respectively (Johnson and
Olshausen, 2005; Seghier and Vuilleumier, 2006). Modal com-
pletion has been shown to elicit illusory responses in V1 (Lee
and Nguyen, 2001), supporting the idea that whatever represen-
tation is present in V1 is what we “perceive” (Bullier, 2001). It
is unclear whether amodal completion processing also reaches
back to the level of V1. Some studies indicate that V1 repre-
sents completed shapes (Rauschenberger et al., 2006), whereas
others show that the complete representation is only present in
extrastriate and higher-level areas (Weigelt et al., 2007). More
recently, Emmanouil and Ro (2014) showed that object com-
pletion can occur rapidly and without visual awareness, further
supporting the dissociation of object completion from top–down
attention.

If our proposal is correct, the time course of object completion
effects should agree with the time course of recurrent processing
as described above. Some studies show object completion effects
beginning to manifest over temporal and parietal sites (as indexed
by EEG scalp recordings) around 130 ms at the earliest and con-
tinuing to evolve until around 200 ms into processing (Johnson
and Olshausen, 2005; Chen et al., 2009). These data are consis-
tent with the explanation of object completion rapidly engaging
recurrent processing with striate and extrastriate areas, assuming
the 50 ms delay typically observed when the brain is processing
occluded object stimuli (Kovacs et al., 1995; Nielsen et al., 2006).

However, other studies have suggested a much later time
course for object completion effects, beginning around 200 ms
and completing around 400 ms (Doniger et al., 2000; Sehatpour
et al., 2006, 2008). One consistent characteristic of these lat-
ter studies is that they use fragmented line drawings of objects,
whereas studies that associate an early time course with object
completion have used photorealistic images of objects. It is
unclear whether this late temporal correlate of object comple-
tion is due to relatively slow, attention-mediated processing, or
due to a fundamentally different type of processing. For example,
photorealistic occlusion might recruit the surface-coded compu-
tations associated with recurrent processing since there are explic-
itly depicted depth planes (an occluder and an object) whereas
resolving contour fragmentation might rely on a completely dif-
ferent computation since depth planes are less well-defined in line
drawings. Furthermore, the studies that associate the later time
course with object completion have not used a paradigm such as
response adaptation that crucially allows inference about whether
an unoccluded and occluded object are represented similarly.

In summary, it seems clear that recurrent processing pro-
motes signal amplification between reciprocally connected brain
regions. There is substantial evidence that this is not a simple
multiplicative gain operation, but a considerably more complex
grouping or surface-based computation that spreads activation
between related object features. This idea has been well-studied
in the literature on illusory contour perception and the data sup-
port the explanation that illusory contour perception is due to V1
neurons receiving recurrent feedback from extrastriate regions.
The same idea can be applied to object completion effects in IT
cortex, predicting that they are due to feedback-rectified signals
from extrastriate regions. This recurrent processing-based expla-
nation has received little attention in the literature, but is generally
supported by the timing of object completion effects.

SUMMARY AND FUTURE RESEARCH
Over the last 5–10 years, evidence has accumulated that local
recurrent signals are an integral part of early visual processing.
TMS studies have indicated that recurrent processing engages
striate and extrastriate areas during visual recognition tasks in as
little as 100 ms (Camprodon et al., 2010; Koivisto et al., 2011) and
theories of backward masking have provided additional accor-
dant timing data as well as suggested a general theory of how
corticocortical interactions support visual perception (Fahrenfort
et al., 2007, 2008; Boehler et al., 2008). Surprisingly though, rel-
atively little work has focused on synthesizing these ideas with
theories of visual object recognition, which is commonly held
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to be primarily a feedforward process (DiCarlo et al., 2012).
Instead, theories of recurrent processing have focused on the role
of interactions between brain areas in promoting visual awareness
(Lamme, 2003, 2006; Dehaene et al., 2006). Object perception has
long been known to benefit from top–down signals that reflect
attention or strategic processing, but its time course has been con-
sidered to be too slow to support the initial rapid recognition
processes (Hochstein and Ahissar, 2002; VanRullen, 2007).

This paper has attempted to map out the time course of
feedforward- and feedback-based events during the first 150 ms
of visual processing and establish the function that rapid recur-
rent processing between brain areas plays within this time
frame. Specifically, we propose the following overall process:
A feedforward-dominant wave of activation flows up to IT in
the first 80–100 ms after stimulus presentation, quickly evok-
ing object-selective responses, while, simultaneously, activation
is also feeding backward through this pathway. In the following
20 ms (an absolute latency of 100–120 ms), prefrontal areas that
support the actual object categorization decision receive their first
feedforward responses from IT neurons, while simultaneously,
recurrent feedback from extrastriate areas has had sufficient time
to more fully engage V1 populations. Recurrent feedback to V1
amplifies neurons’ initial responses by grouping the responses
to similar object features and enhancing them relative to other
responses (Zipser et al., 1996; Lamme et al., 1998; Poort et al.,
2012). In some cases, these grouping computations can cause the
perception of illusory contours and surfaces (Lee and Nguyen,
2001; Seghier and Vuilleumier, 2006), but they also seem to be
important when objects are degraded in order to rectify signals
(Hupé et al., 1998). At an absolute latency of 120–140 ms after the
initial stimulus presentation, the now extensive recurrent process-
ing between IT and extrastriate areas can cause the representation
of more complex illusory features that support object completion,
by propagating these illusory responses back toward IT popula-
tions. We have recently developed a biologically-based compu-
tational model that exhibits just these dynamics (O’Reilly et al.,
2013), and can provide a platform for integrating the various data
cited here, while generating further testable predictions.

It is unlikely that object completion in IT cortex is a sole
function of rectified responses from extrastriate areas being
propagated forward in the range of 120–140 ms (or 170–190 ms,
assuming the 50 ms delay observed when the brain processes
occluded object stimuli; see Kovacs et al., 1995; Nielsen et al.,
2006). Object completion likely also benefits from the first
recurrent responses from prefrontal areas that arrive shortly
after this time frame. This feedback from prefrontal areas could
reflect top–down predictions that constrain the space of potential
object representations in IT cortex (Bar et al., 2006; Kveraga
et al., 2007), which might also have the effect of filling in visual
information when it is missing from the physical stimulus. It is
also plausible that lateral interactions within IT cortex itself could
support object completion by enforcing statistical co-occurrences
and mutual exclusions between object features (Akrami et al.,
2009; Daelli and Treves, 2010). It would not be surprising if a
combination of rectified feedforward responses, feedback from
prefrontal areas, and lateral interactions within IT cortex itself
support object completion by bringing the brain as a whole into

an attractor that combines bottom–up sensory information with
top–down task demands and appropriate local constraints (e.g.,
Spivey, 2008). Future research that uses sophisticated techniques
to rapidly and systematically disable feedforward, recurrent and
lateral connectivity (e.g., optogenetics, Deisseroth, 2011) might
be necessary to disentangle the relative contributions of each
of these influences. Nevertheless, any contribution to object
completion from local recurrent processes is supportive of the
distinct functional role in resolving degraded or ambiguous
stimuli proposed here.

One remaining question concerns whether recurrent process-
ing is necessary for recognizing relatively unambiguous stimuli.
“Core object recognition” (DiCarlo et al., 2012) of stimuli that
vary in terms of their spatial position, scale, pose, and illumina-
tion can be rapidly decoded from the first IT responses (Hung
et al., 2005). Early IT responses are also known to exhibit invari-
ance to limited clutter (Missal et al., 1997; Zoccolan et al., 2005),
suggesting that the bulk of object recognition is solved by a largely
feedforward process. Importantly, these data are not fundamen-
tally incompatible with the theory proposed here. Feedback acts
on immediately lower areas with latencies as short as 10 ms
(Hupé et al., 2001; Pascual-Leone and Walsh, 2001) and might
be important for the Winner-Take-All (WTA) or “max” com-
putations (Riesenhuber and Poggio, 1999; Wyatte et al., 2012b;
O’Reilly et al., 2013) that have been suggested to contribute to
core object recognition. Our theory has focused on recurrent
processing under challenging object recognition conditions such
as when stimuli are occluded or otherwise degraded. However,
more substantial variability in the spatial properties of inputs
might also benefit from recurrent processing. A variant of the
“animal/no animal” recognition task used in many studies has
shown that increasing target viewing distance in the stimulus
causes backward masking to have a greater effect (Serre et al.,
2007, supporting information), implicating recurrent process-
ing for robust recognition under these conditions (Wyatte et al.,
2012a). Further research with stimuli whose spatial properties can
be manipulated parametrically (DiCarlo et al., 2012; Cadieu et al.,
2013) combined with methods like TMS and backward masking
will be necessary to determine the exact conditions under which
recurrent processing is necessary.

If the theory proposed here is true, the standard description
of object recognition as a feedforward process is somewhat mis-
leading. Simply put, there is always ongoing brain activity that
must be combined with new incoming sensory information, so
that the notion of a strictly “feedforward sweep” is fundamentally
ill-conceived (Arieli et al., 1996; Tsodyks et al., 1999). Ongoing
activity could be used to establish moment-to-moment con-
straints that effectively guide coherent perception via recurrent
processing mechanisms. While the seminal research on object
recognition often focused on simple spike counts of anesthetized
animals to map out the receptive field characteristics of neu-
rons throughout the ventral stream in a well-controlled manner,
future research should emphasize more complex corticocorti-
cal interactions in the awake, behaving brain to determine how
neural interactions involving feedforward, lateral, and recurrent
processing mechanisms combine to give rise to the visual system’s
robust perceptual abilities even in difficult stimulus conditions.
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One of the main tasks of vision is to individuate and recognize specific objects. Unlike
the detection of basic features, object individuation is strictly limited in capacity. Previous
studies of capacity, in terms of subitizing ranges or visual working memory, have
emphasized spatial limits in the number of objects that can be apprehended simultaneously.
Here, we present psychophysical and electrophysiological evidence that capacity limits
depend instead on time. Contrary to what is commonly assumed, subitizing, the
reading-out a small set of individual objects, is not an instantaneous process. Instead,
individuation capacity increases in steps within the lifetime of visual persistence of the
stimulus, suggesting that visual capacity limitations arise as a result of the narrow
window of feedforward processing. We characterize this temporal window as coordinating
individuation and integration of sensory information over a brief interval of around 100 ms.
Neural signatures of integration windows are revealed in reset alpha oscillations shortly
after stimulus onset within generators in parietal areas. Our findings suggest that short-
lived alpha phase synchronization (≈1 cycle) is key for individuation and integration of visual
transients on rapid time scales (<100 ms). Within this time frame intermediate-level vision
provides an equilibrium between the competing needs to individuate invariant objects,
integrate information about those objects over time, and remain sensitive to dynamic
changes in sensory input. We discuss theoretical and practical implications of temporal
windows in visual processing, how they create a fundamental capacity limit, and their role
in constraining the real-time dynamics of visual processing.

Keywords: visual capacity, temporal window, oscillatory phase synchrony, individuation, integration

INTRODUCTION – VIRTUAL CONTINUITY AND STABILITY OF
PERCEPTUAL SPACE AND TIME
The perception system is faced with the task of transforming
continuous sensory input into discrete objects and events. It
is critical for survival that the perceptual system is sensitive
and quickly responsive to changes in the input over time in
order, for example, to detect and interpret signals regarding
object or self-motion. However, a primary goal of perceptual
systems is also to uncover stability in the identity and loca-
tion of spatiotemporal objects and to integrate information over
extended periods of time in order to understand complex phe-
nomena such as biological motion (Neri et al., 1998) or events
(Hasson et al., 2008; Lerner et al., 2011; Zacks and Magliano,
2011). Information must be integrated over time to recover the
regularities in the world and to use this perception of order to
make predictions about the near future (Nastase et al., 2014).
Thus, vision in real-time requires a balance combining informa-
tion over time (in order to integrate motion signals or to keep
track of the same spatiotemporal object) and sensitivity to new
information.

A simple example of this challenge for a perceptual system is the
task of crossing a busy street. Perceiving and predicting the motion
of vehicles requires combining information over 100s of millisec-
onds or even seconds, often including the combination of motion
information across occlusion or changes in retinal position caused
by eye movements. On the one hand, combining information over
a longer time period would likely lead to the best possible estimate

of all of the features of the oncoming cars. Nonetheless, the visual
system must also provide a good enough estimate of the current
location of each vehicle in order to support action. Thus, the
perceptual system must optimally balance the competing needs
of speed and information: more time yields better information
but slows down the ability of the organism to react rapidly to the
current state of affairs. It seems likely that the brain provides a
compromise by utilizing a hierarchy of different temporal integra-
tion windows (Pöppel, 1997, 2009; Hasson et al., 2008; Melcher
and Colby, 2008; Holcombe, 2009; Lerner et al., 2011; Masquelier
et al., 2011) and by alternating periods of feedforward sampling
of new information with feedback/re-entrant processes (Di Lollo
et al., 2000; Lamme and Roelfsema, 2000) that create a perceptual
synthesis of the disparate sensory information into coherent, stable
spatio-temporal entities like objects. Indeed, converging evidence
suggests that temporal limits on visual processing can be broadly
divided into two groups of perceptual mechanisms (Holcombe,
2009). A fast group comprises processes of feedforward feature
detection and works on the scale of some 10s of milliseconds. The
second group of visual mechanisms is much slower, taking more
than at least 100 ms and operates on more high-level properties,
like objects that have been selected and individuated.

Here we consider evidence regarding how the temporal win-
dow of object individuation might bridge the gap between fast
feedforward sampling of information and slower object-based
computations. We start with a selective review of the relevant
literature on object individuation, its capacity limits and temporal
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limits in visual perception. Then, we describe a methodology to
experimentally reduce the effective visual persistence of a visual
display in order to more closely map out the time course of object
individuation processes. We review our recent behavioral studies
using this method to show the unfolding of object individuation
and working memory over time. Then we present and discuss
magnetencephalography (MEG) evidence regarding the neural
correlates of this process, including the possibility that neural syn-
chronization patterns can provide useful information about the
nature of integration and individuation. Finally, we discuss the
implications of these findings for capacity limits in visual cogni-
tion, their relationship with natural vision and oscillatory brain
dynamics, and point out some open questions and directions for
future research.

INDIVIDUATION MEASURES VISUO-SPATIAL OBJECT
PROCESSING
INDIVIDUATION: AN INTERMEDIATE STEP BETWEEN SAMPLING
FEATURES AND OBJECTS
Although sensory information seems to extend continuously into
perceptual space and time, the content of cognitive operations con-
sists of coherent scenes containing a limited number of discrete
and invariant objects in any particular instance (Treisman and
Gelade, 1980; Tipper et al., 1990; Kahneman et al., 1992; Baylis and
Driver, 1993; Scholl et al., 2001). Such parsing of the sensory envi-
ronment into elemental perceptual units (Spelke, 1988) provides
a link between sensation and cognition that couples perception
to the external world, free from an infinite regress of referring to
semantic categories (Pylyshyn, 2001). Reading-out objects from
feedforward sensory input is called individuation and involves
selecting features from a crowded scene, binding them into a uni-
tary spatiotemporal entity and segregating this perceptual unit
from other individuals in the image (Treisman and Gelade, 1980;
Xu and Chun, 2009). The output of this intermediate-level visual
analysis is a stable object-based reference frame in which the dif-
ferent features of a specific location in the scene can be bound
together.

Object representations at this stage are suggested to be coarse
and contain only minimal feature information. In fact such indi-
vidual entities do not necessarily provide information about object
identity, but can be regarded as a spatio-temporal placeholder
of the object in focus until feedback processes fill in content.
Several theoretical, psychophysical and neuroimaging studies
have emphasized the computational importance and necessity
of such incremental object representations in intermediate-
level vision, with these entities described as visual indexes
(Pylyshyn, 1989), proto objects (Rensink, 2000), or object-files
(Kahneman et al., 1992; Xu and Chun, 2009). In its essence an
object can be defined as an entity whose recent spatio-temporal
history can be reviewed and therefore still can be referred to
as the same entity despite of changes in its location over time
(Kahneman et al., 1992).

Individuation is an intermediate step in object processing
between bottom-up feature detection and the recognition of stable
and coherent objects. Object representations at this level of pro-
cessing are commonly measured with an enumeration task that
solely requires knowing whether an object is an individual rather

than its identity (which is usually measured with change detec-
tion and interpreted as the content of visual working memory).
In this review we will map the temporal dynamics of visual object
processing as a cascade from (a) sampling a visual signal over (b)
a temporal window of ca. 100 ms duration during which a scene
is segmented and individuated into (c) stable object-based rep-
resentations. Our main result characterizes a brief time window
of persisting sensory information after stimulus onset that lim-
its object individuation and accounts for capacity limits in visual
object processing.

CAPACITY LIMITS IN INDIVIDUATION AND VISUAL MEMORY
Although human cognition is remarkably powerful, its online
workspace, working memory, appears to be highly limited in the
number of informational units it processes (Miller, 1956; Luck
and Vogel, 1997; Cowan, 2000). It is interesting to note that this
capacity is linked to cognitive abilities in general. For example,
inter-individual variability in measures of fluid intelligence and
capacity estimates are highly correlated (Engle et al., 1999; Cowan
et al., 2005; Fukuda et al., 2010b) and reduced capacity is often
found in patients with neuropsychiatric disorders (Karatekin and
Asarnow, 1998; Lee et al., 2010).

Recent evidence suggests that two distinct mechanisms, object
individuation and identification, work together in creating these
visual object capacity limitations (Xu and Chun, 2009). Individua-
tion appears to be the initial bottleneck in visual object processing
from an unlimited in capacity, but fragile, purely bottom-up
and in parallel computed sensory representation (iconic mem-
ory: Sperling, 1960, 1963; Neisser, 1967) to such a capacity limited,
durable and cognitively structured visual store (visual short-term
memory: Sperling, 1960, 1963; Phillips and Baddeley, 1971). A
subset of these individuated objects are elaborated subsequently
during object identification. It is at this stage that identity infor-
mation becomes available to the observer and the content of the
object can be consolidated into durable and reportable repre-
sentations in visual working memory (Xu and Chun, 2009). As
individuation precedes identification, the capacity of the latter has
its upper bound in the limit of the former (Melcher and Piazza,
2011; Dempere-Marco et al., 2012; Figure 1 middle panel). In
fact on a single-subject level, estimates of individuation capac-
ity commonly exceed visual memory limits and the two measures
tend to be highly correlated (Piazza et al., 2011; Figure 1 right
panel).

It has long been noted that individuation is limited in capacity:
we can quickly and effortlessly perceive that there are exactly two
items but not that there are exactly eight items (Jevons, 1871; com-
pare Figure 1 left panel upper row with lower row). Enumeration
is equally quick, accurate and effortless within a narrow range of
one to four objects. Such small numbers of items are supposedly
simultaneously apprehended by a qualitatively distinct mecha-
nism known as “subitizing” (Kaufman et al., 1949). Performance
for set-sizes exceeding this range, as measured by reaction time
and accuracy, deteriorates with every additional item to be enu-
merated (Figure 1 middle panel). This suggests that visual object
capacity limits are grounded in this “subitizing” phenomenon and
that visual processing beyond this limit has to rely on imprecise
estimation or serial and time-consuming counting that requires
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FIGURE 1 | Capacity limits in visuo-spatial object processing. Left panel:

typical stimuli within experiments on visuo-spatial object processing
(individuation, visual memory). Individuation for up to four objects (upper
panels) is accurate and fast. Visuo-spatial object processing above this limit
requires successive perceptual steps (counting, lower panels). Middle panel:

visuo-spatial object processing (individuation, visual memory) as a function of

set-size. Both tasks show a limit of up to four objects. The inflection point of
the sigmoid curve fit to the psychophysical data can be used to estimate
individual capacity limits. Right panel: single-subject correlation between
individuation and visual memory capacity. Limits in visuo-spatial object
processing correlate across subjects and individuation usually exceed visual
memory limits (Figures adapted with permission from Piazza et al., 2011).

successive perceptual steps. In contrast, “subitizing” is thought to
measure visuo-spatial object processing within one single feed-
forward processing iteration (for review, see Melcher and Piazza,
2011; Piazza et al., 2011).

THEORIES ABOUT OBJECT PROCESSING CAPACITY LIMITS
In light of its importance for cognitive and perceptual func-
tioning, the search for the root of this capacity limitation is
fundamental to the study of visual cognition. There are a num-
ber of competing theories for why “subitizing,” and individuation
in general, is limited to sets of only about three or four items
(for review, see Piazza et al., 2011). These theories start with the
idea that capacity measures the number of objects individuated
“immediately” (Kaufman et al., 1949), as reflected in the root of
the word “subitizing” (subitus). This capacity is characterized in
terms of spatial metaphors such as an index, pointer, or slots.
Capacity is thus typically thought of as a limit in spatial res-
olution, rather than temporal limits. Because of the apparent
automaticity and immediateness of processing, several theories
assumed an ad hoc, direct and continuous indexing between
external coordinates and object-files (Pylyshyn, 1989), like focal
slots waiting to be filled in with content (Luck and Vogel, 1997;
Fukuda et al., 2010a). Since performance tends to deteriorate
after around four items (although this does depend on individ-
uals and task), it was proposed that there were four indexes or
slots.

Starting with the idea that subitizing is an all-or-none, uniform
process might, however, neglect the possibility that capacity is
related to the temporal period during which individuation occurs.
Individuation is a computationally complex task. Ullman (1984)
has characterized vision in terms of serial tasks that involves
indexing of salient items, marking previously indexed locations
and multiple shifts of the processing focus. In fact, execution of
such complex coding in real-time would seem likely to require

the implementation of a specialized routine set-up as a series
of elemental operations (Roelfsema et al., 2000). As reviewed in
the following section, temporal aspects of visual perception have
been studied extensively and show that visual processing is not
“immediate” (Kaufman et al., 1949) but always occurs over time.
This raises the question of whether these temporal factors, rather
than or in addition to spatial factors, might underlie capacity
limits.

In terms of time, object individuation is a process that must, as
described above, balance between the need for speed and the aim of
integrating information over time about salient objects in order to
recognize, remember and respond to their properties. This trade-
off is apparent in the case of computer vision systems for robotics,
in which an exact, metric representation of the environment is
computationally expensive and typically too slow to guide behav-
ior in real-time. Computer systems used to drive cars, for example,
do not represent in detail the entire visual scene (Bertozzi et al.,
2000) because such a complete, metric model cannot be updated
in real-time. In the case of the human visual system, one strategy
to deal with this trade-off is to individuate and integrate informa-
tion about a small number of potentially important items within
each perceptual cycle.

TEMPORAL RESOLUTION OF VISUO-SPATIAL OBJECT
PROCESSING
VISUO-TEMPORAL LIMITS BETWEEN FEATURE DETECTION AND
OBJECT-BASED COMPUTATIONS
Temporal resolution refers to the precision of a measurement with
respect to time. Estimates of the temporal resolution of vision
come from a variety of different tasks but can be divided into two
groups of temporal limits: a fast group that operates on the order of
10s of milliseconds and a slower group of visual mechanisms tak-
ing more than 100 ms (Holcombe, 2009). The fast temporal limits
are usually explained by temporal integration of low-level visual
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features (like in the case of flicker fusion or integration masking;
Crozier and Wolf, 1941; Kietzman and Sutton, 1968; Scheerer,
1973a,b; Di Lollo and Wilson, 1978; Coltheart, 1980; Enns and
Di Lollo, 2000; Breitmeyer and Öğmen, 2006). In contrast, slower
temporal limits are usually associated with high-level processing
in an object-based frame of reference like in the case of feature
conjunctions across space (color-shape: Holcombe and Cavanagh,
2001; or orientation-location: Motoyoshi and Nishida, 2001) or
consolidation of objects in visual working memory (Gegenfurt-
ner and Sperling, 1993; Vogel et al., 2006). Unlike the temporal
blurring of basic image features, temporal processing limits for
this slower group have been suggested to depend on selective
attention (Holcombe, 2009). Together these two groups of pro-
cesses act in concert to create a coherent perceptual impression in
time.

Here, we try to combine these two frameworks, tempo-
ral resolution and attentional selection. As reviewed above,
object individuation appears to be the basic set-up process for
object-based representations, introducing selectivity in process-
ing individual properties of a scene. Consistent with this idea
recent evidence suggests that “subitizing” and individuation in
general, rather than being a pre-attentive indexing mechanism
(Trick and Pylyshyn, 1994), requires selective attention (Egeth
et al., 2008; Olivers and Watson, 2008; Railo et al., 2008). We show
that individuation is limited by temporal integration of sensory
information over time and how visual capacity limits arise nat-
urally as a consequence of this integration window. We argue
that intermediate-level vision bridges the gap between fast feature
detection and slower object-based computations, and that this
depends on a temporal integration window that is used to struc-
ture and stabilize individual perceptual elements within a sampled
sensory image.

TEMPORAL INTEGRATION OF SENSORY PERSISTENCE
Following stimulus onset a briefly presented visual display per-
sists perceptually for a limited temporal window of 80–120 ms
(Haber and Standing, 1970; Coltheart, 1980; Di Lollo, 1980).
This persisting window acts like a low-pass filter on dynamic
aspects of real-time vision, limiting the temporal resolution
of perceiving each single visual event. When a second stim-
ulus is presented in rapid succession to a first stimulus, the
associated features of both stimulus onsets are partly inte-
grated into a single percept. Such short-lived sensory integration
intervals have been described to influence visual perception
(Scheerer, 1973a; Enns and Di Lollo, 2000; Breitmeyer and
Öğmen, 2006), visual memory (Di Lollo, 1980), and rapid per-
ceptual decision-making (Scharnowski et al., 2009; Rüter et al.,
2012).

Important insights into the temporal dynamics of sensory inte-
gration have been achieved through the study of visual masking:
the reduction of the visibility of one stimulus, called the target,
by another stimulus shown before and/or after it, called the mask
(Enns and Di Lollo, 2000; Breitmeyer and Öğmen, 2006). It is
classically explained in terms of a two-factor theory: integration
and interruption masking (Scheerer, 1973a,b). Interruption mask-
ing limits more high-level feedback processing after perceptual
analysis of the target has largely finished. Integration masking,

however, results from short-lived temporal collapsing of feedfor-
ward sensory signals, as a consequence of the imprecise temporal
resolution of the visual system. Integration of sensory persistence
between rapid successive stimuli reduces the time to access the
sensory trace of each single stimulus. Hence integration masking
degrades visual performance by fractionating the sensory persis-
tence of the target display and limiting its effective presentation
time. Integration masking is very effectively implemented with
a specific forward masking technique that makes it possible to
quantitatively change the duration of sensory persistence and the
degree of temporal integration by varying the onset asynchrony
between the first and second display (Di Lollo, 1980; Wutz et al.,
2012; Figure 2).

Mask and target elements share the same physical properties,
in order to equate stimulus energy from both visual events. The
only physical difference between mask and target constitutes their
temporal onset asynchrony. Temporal integration of mask and tar-
get features occurs for stimulus onset asynchronies (SOAs) shorter
than around 100 ms, because of smearing of sensory persistence
triggered at each onset. For SOAs exceeding this critical time frame,
mask and target persistence segregate in time and the sensory trace
of the target display can be read-out. In this way, varying the SOA
within this integration masking sequence controls the effective
presentation time of a visual display by fractionating its sensory
trace. We designed this technique to map the temporal dynamics
of successive perceptual processes involved in object processing
with identical visual stimuli only varying task demands: from
basic detection to subsequent individuation and finally identifi-
cation and consolidation of objects in visual working memory
(Figure 3).

INTEGRATION WINDOWS LIMIT INDIVIDUATION CAPACITY
INDIVIDUATION CAPACITY INCREASES UNIT BY UNIT WITHIN THE
SENSORY WINDOW
Individuation stabilizes visual perception by computing objects.
This process is thought to operate within a single glance and is
strictly limited in capacity to a small set of around four objects.
We tested whether visual object capacity is indeed reached at the
very moment a stimulus enters the visual field or instead accu-
mulates with longer viewing time by fractionating a single glance
into smaller units. We used an integration masking paradigm (see
Figure 2) in order to vary the time to access the sensory trace
of the to be individuated items and measured individuation per-
formance for different set-sizes. Contrary to what is commonly
found in “subitizing” tasks, which has consistently shown highly
accurate performance up to around four objects across a wide
range of studies (see Figure 1), fractionating the sensory per-
sistence of the stimulus with integration masking dramatically
reduces individuation capacity. This suggests that reading-out a
small set of individual and stable objects is not an instantaneous
process (Figure 3) but rather evolves over time.

Individuation capacity increases in steps within the lifetime
of sensory persistence of the stimulus (Figure 3; Wutz et al.,
2012). Within integration masking, SOA between mask and target
directly reflects effective target persistence and time to read-out
individual objects. Temporal integration of visual signals is com-
plete and target information is completely inaccessible if there is
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FIGURE 2 | Integration masking sequence. The visual stimuli within this
integration masking sequence, a random-line noise mask and the target
elements (“X”), are rendered physically indistinguishable (i.e., equal
luminance, equal mean line length and width, random spatial position of
lines), enforcing integration of physical features via mask-target similarity
(Blalock, 2013). Mask and target events also offset together at the same time
(gray square at about 60 ms on above scale), so that temporal onset
asynchrony between visual stimuli (SOA; 50 ms above) constitutes the only
physical difference between mask (green square at 0 ms) and target events
(blue square at 50 ms). Temporal integration of mask and target features (red,

dashed line) occurs for SOAs shorter than around 100 ms, since masking
triggered at mask onset continues for this quasi-constant period of sensory
persistence (green, dashed line). With longer SOAs the sensory trace
triggered at target onset (blue, dashed line) successively segregates from
masking persistence and the therein-contained target information can be
read-out for an increasingly longer interval. The maximum time window
available for target read-out spans the entire effective target persistence (i.e.,
without integration from preceding masking persistence) of around 100 ms
(see Wutz et al., 2012, 2014; Wutz and Melcher, 2013 for details on the
masking sequence).

common stimulus onset (SOA = 0 ms). With increasing SOA,
visual signals segregate in time and the read-out of each single
sensory trace increases correspondingly. The slopes of individ-
uation across read-out time, however, co-vary with the number
of individual objects to be processed. Whereas one object is suf-
ficiently stable within 25 ms, two objects require 50 ms to be
individuated. Individuation capacity for four objects, which is
the average visuo-spatial capacity limit (Figure 1), is asymptot-
ically reached after around 100 ms (Figure 3 left panel; Wutz
et al., 2012). Limiting the effective presentation time with inte-
gration masking reveals that processing speed and object capacity
interact, rather than a uniform individuation improvement across
the “subitizing range” with less temporal limitations. Consistent
with this result, interactions between perceptual speed and object
selection have also been reported for multiple object tracking
(Holcombe and Chen, 2013).

Incremental individuation of objects within a stimulus’ sensory
persistence suggests that this temporary integration buffer is func-
tionally critical for object processing. Such an integration interval
might reflect the need to equilibrate read-out of invariant and sta-
ble perceptual form and almost simultaneously integrate changes
in sensory input into a continuous stream of visual impressions.
Sensory images that remain stationary within the first 100 ms after

sampling are successively segmented and structured into objects
within its sensory persistence. Consequently, visuo-spatial object
capacity limitations arise as a result of the narrow integration
window bandwidth (Figure 3).

The speed of stable information accrual, however, is partic-
ularly crucial in case of fast changes in the sampled sensory
image (<100 ms). When the sensory signal changes faster than
the integration window (<100 ms; change, motion, short SOA
masking sequence) individuation capacity is reduced as a func-
tion of the rate of sensory change, stabilizing only a subset
of objects. This drop in visuo-spatial object processing with
higher temporal processing demands balances the needs for per-
ceptual stability in space and continuity in time. One object
can already be stabilized in some 10s of milliseconds. In this
way at least one object can be selected and further tracked for
speeds drawing near the upper temporal limit of visual process-
ing (Kietzman and Sutton, 1968). Structuring an entire scene into
multiple objects, however, requires processing over an interval
of around 100 ms. We argue that vision uses the time window
of sensory persistence following stimulus onset to balance the
opposing needs of individuating stable objects and maintaining
the temporal resolution necessary to track rapidly changing
events.
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FIGURE 3 | Visuo-spatial object processing under conditions of

integration masking. Left panel: enumeration performance for one, two, and
four objects as a function of stimulus onset asynchrony (SOA). Individuation
capacity increases in steps as a function of SOA and hence less integration
masking. One object can be individuated after 25 ms, two objects require
50 ms and the full-set of four objects (the average visuo-spatial capacity limit)
are only stabilized within the entire lifetime of sensory persistence (100 ms).

Right panel: detection is faster and visual memory slower than individuation.
The onset of four visual stimuli can be reliably detected with as little as 25 ms
between mask and target onsets. Individuation of four objects, however,
increases in steps for up to 100 ms as a function of SOA. Visual memory for
four objects that requires identity integration with individuated object-files
remains stable and low across SOAs (Figures adapted with permission from
Wutz et al., 2012 and Wutz and Melcher, 2013).

SAMPLING FEATURES IS FASTER, WHILE VISUAL MEMORY IS SLOWER
THAN INDIVIDUATION
Temporal buffering of input signals does not necessarily imply
that sampling of new information is inhibited completely within
this integration interval. In fact, merely detecting a second event
requires as little as 25 ms between event onsets (Figure 3 right
panel). Despite this remarkable processing speed, the informa-
tional content of such fast feedforward sampling is considered to
be virtually unlimited in capacity (Wundt, 1899; Sperling, 1960)
and can already involve higher-level visual areas, allowing for rapid
scene categorization of natural images (Thorpe et al., 1996; Li et al.,
2002), basic image grouping (Field et al., 1993; Roelfsema et al.,
2000), visual analysis of scene semantics (but not scene syntax, Vö
and Wolfe, 2012; Võ and Wolfe, 2013) or computation of global
summary statistics of the raw sensory image. For example, the
average size of a set of objects can be computed even when the
display changes continuously (Albrecht and Scholl, 2010). Thus
certain global properties of the sensory image can be read-out
during fast sampling, serving as a layout for visual analysis (“the
gist”; Rensink, 2000).

Without translation into a perceptually invariant and stable
representation, however, information about individual elements
within the sensory image is easily over-written by subsequent
input (Wundt, 1899; Sperling, 1960, 1963; Breitmeyer and Öğmen,
2006). Hence, selectivity in spatio-temporal processing does not
arise from a failure to sample the sensory image, but reflects sub-
sequent structuring and stabilization of individual perceptual ele-
ments (Wutz and Melcher, 2013). Accordingly, individuation (but
not basic bottom-up detection) of multiple perceptual elements
evokes a set-size specific modulation of the N2pc EEG-component
that is commonly assumed to index attentional selection (Mazza
and Caramazza, 2011).

This coupling of the spatio-temporal coordinates of the sen-
sory signal to a specific object representation enables identity
integration between rapidly sampled content and slowly com-
puted structure. Consequently, visual memory for an entire

array of individual elements that requires binding of identity
to location remains low throughout the integration bandwidth
(Figure 3 right panel; Wutz and Melcher, 2013). Consistent with
the idea that individuation precedes identification, visual work-
ing memory performance rises gradually to asymptote under
the influence of backward masking (Gegenfurtner and Sperling,
1993; Vogel et al., 2006). In contrast to the forward mask-
ing paradigm described above, backward masking is thought
to reflect a disruption of processing after feedforward percep-
tual analysis is already completed (Scheerer, 1973a,b) but before
consolidating information into visual working memory. This
distinction in object processing stages between individuation
and identification of objects is further fostered by task-specific
activation patterns in parietal areas (Xu and Chun, 2006; Xu,
2007). Within such a “neural object-file” framework multi-
ple visual objects are selected and individuated in an initial
feedforward operation involving the inferior intra-parietal sul-
cus (IPS) and only subsequently identified and maintained in
visual working memory (within superior IPS; Xu and Chun,
2009).

Step-wise, feedforward individuation of only a limited number
of objects within a temporal buffer limits the temporal dynam-
ics of vision. In real-time processing, however, delayed feedback
systems (like the visual system; Felleman and Van Essen, 1991)
exhibit asymptotic unstable behavior when confronted with sig-
nals with different latencies that have to be combined (Sandberg,
1963). Temporal buffering provides a solution to this problem
by synchronizing convergent input streams. In this way, feed-
back processing, like identification, operates upon the outcome
of the whole temporal buffer to ensure spatio-temporally coher-
ent vision. This provides a possible solution to the problem of how
to carve continuous sensory input into coherent objects, despite
the presence of feedback loops. Temporal windows allow for the
read-out of individual elements but also the integration of sensory
flux into a dynamic stream of visual impressions (Öğmen, 1993;
Wutz and Melcher, 2013).
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NEURAL MECHANISMS: ALPHA PHASE SYNCHRONIZES
INDIVIDUATION AND INTEGRATION
It has been suggested that implementation of integration win-
dows within perceptual processing might involve brain oscillations
(Varela et al., 1981; Pöppel and Logothetis, 1986; Dehaene,
1993). Numerous studies have shown that the temporal rela-
tion between sensory stimuli and neural oscillations can alter
the perceptual outcome. For example, psychophysical threshold
estimates have been shown to vary with the phase of ongo-
ing oscillatory activity (Busch et al., 2009; Mathewson et al.,
2009) and recent evidence suggests even a causal link between
the two (Neuling et al., 2012). Moreover, perceived simultane-
ity and sequentiality of apparent motion percepts depend on the
phase of the occipital alpha rhythm (Varela et al., 1981; Gho
and Varela, 1988). Such periodic fluctuations have previously
been described as rhythmic background sampling of the sen-
sory surrounding (VanRullen et al., 2007; Busch and VanRullen,
2010). These results suggest that oscillations impose a “per-
ceptual frame” on feedforward processing such that integration
and individuation of sensory signals depends on its periodic
phase.

One key characteristic of brain oscillations is robust phase syn-
chronization to transient input (Buzsáki and Draguhn, 2004).
In addition to effects of ongoing oscillations prior to stim-
ulus onset, stimulus evoked synchronization patterns might
reveal how phase information influences perceptual integra-
tion. In this view, external stimulation results in a “reset” of
functionally relevant oscillatory patterns such that their phase
synchronization is locked to stimulus onset. Resets might in
particular occur in response to transient sensory change, like
saccadic eye movements or real-world transitions (i.e., stimu-
lus onset). In fact, evoked responses to successfully detected
and entirely missed stimuli differ extensively (Busch et al.,
2009) and alpha phase-locking accounts for individual differ-
ences in a rapid visual discrimination task (Hanslmayr et al.,
2005). Likewise, reset cyclic patterns in visual task perfor-
mance have been reported in response to sudden flash events
(Landau and Fries, 2012) or auditory sounds (Romei et al.,
2012). Moreover, electro-cortical stimulation studies demon-
strated a causal link between phase resets and perceptual per-
formance by showing that repetitive transcranial magnetic stim-
ulation (TMS) at 10 Hz synchronizes natural alpha oscillations
(Thut et al., 2011) and biases spatial selection in visual tasks
(Romei et al., 2010, 2011).

In support for the idea of a link between phase synchroniza-
tion and temporal integration windows, we have demonstrated
that the perceptual outcome of integration masking depends on
short-lived alpha phase synchrony over parietal sensors mea-
sured with MEG (Wutz et al., 2014). We contrasted trials in
which observers accurately individuated low set-sizes of target
items (up to 3) from masking persistence with trials in which
mask and target elements integrated in time and individua-
tion failed (see Figure 2). Correct individuation is accompanied
by a reset selectively synchronizing alpha oscillations within
a temporal window of around 100 ms (so for approximately
one alpha cycle) shortly after onset of the masking sequence
(Figure 4).

It is important to note that alpha phase synchrony reset by the
masking sequence only distinguishes between individuation and
integration of visual transients on rapid time scales (<100 ms;
short SOA trials). Segregating sensory changes exceeding this crit-
ical time frame (long SOA trials) instead depends on slower beta
power modulations prior to stimulus onset (Wutz et al., 2014). The
time course of the alpha phase synchrony reset (≈100 ms; ≈one
alpha cycle) is consistent with the perceptual effects of integration
masking (Enns and Di Lollo, 2000; Breitmeyer and Öğmen, 2006;
Wutz et al., 2012). These results suggest that short-lived alpha syn-
chronization is in particular key for perceptual processing of fast
sensory changes. Precise phase coding within this integration cycle
(through e.g., eigenfrequency damped oscillations; Buzsáki and
Draguhn, 2004) in response to sensory transitions might balance
individuation of perceptual elements and integration of sensory
flux to guarantee spatio-temporal coherent perceptual outcomes.

IMPLICATIONS AND FUTURE DIRECTIONS
THE MAGIC WINDOW: TIME AND CAPACITY LIMITS
Following Miller’s (1956) seminal paper discussing the “magic
number” of 5–7 objects, the nature of these capacity limits has
been a matter of intensive debate. Although a review of this exten-
sive literature is beyond the scope here (for review see Cowan,
2000), it is important to note that the role of time in capacity
limits has been almost neglected in any of the major theories.
As described above, limits in the capacity of object individua-
tion can be explained by the limited duration of visual persistence
and the cycle of feedforward and feedback processing: in other
words, temporal, rather than spatial, bandwidth. One advantage
of a temporal window explanation of capacity is that capacity lim-
its emerge naturally out of the rate of object individuation within
this window of persistence, without the need to posit any ad hoc
mechanisms.

In terms of neural implementations, the MEG evidence
reported here, as well as related neuroimaging studies (Todd
and Marois, 2004; Knops et al., 2014) suggest that neurons in
posterior parietal cortex (PPC) may be involved in the individ-
uation of objects. Specifically, capacity limits may reflect the
spatial and temporal nature of attentional priority (saliency)
maps in PPC (Melcher and Piazza, 2011; Franconeri et al., 2013;
Knops et al., 2014). Unlike the priority maps in early visual areas
(Zhang et al., 2012), attention priority maps in parietal cortex are
thought to integrate bottom-up and top-down saliency estimates
for objects over time (Bogler et al., 2011), allowing for object
information to be accumulated and maintained (Mirpour et al.,
2009; van Koningsbruggen et al., 2010). The results reviewed here
emphasize the temporal aspects of the individuation process in
determining attentional priority and capacity.

INTERACTION WITH NATURAL VISION: RETINOTOPY AND VISUAL
STABILITY
A fundamental challenge for the perception of coherent spatiotem-
poral objects is that objects move and so do our sensory receptors.
In retinotopic space, object motion would be expected to create
smear within the image plane along the motion path and blurry
object representations (the so-called “moving ghost problem”;
Öğmen and Herzog, 2010). Whereas motion smear can be reduced
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FIGURE 4 | Individuation and integration of visual signals depends

on short-lived alpha phase synchrony shortly after stimulus onset.

Phase synchrony [measured with inter-trial coherence (ITC); Makeig
et al., 2004; also called phase-locking factor (PLF); Tallon-Baudry et al.,
1996] is higher within correctly individuated trials compared to incorrect
integration. Phase synchronization in response to the masking sequence
is short-lived (∼100 ms; lower panel) and selective for alpha oscillations
(8–12 Hz; left panel). Neural generators of this effect are located in

mostly left-hemispheric parietal areas (peak difference: left inferior
parietal; localized using a linear constrained minimum variance (LCMV)
beamformer algorithm; Van Veen et al., 1997). In particular, phase
synchrony distinguishes between individuation and integration only for
short SOA trials, in which temporal integration of rapid transients
occurs; but not for long SOA trials, in which sensory changes exceed
the critical integration time frame (Figure adapted with permission from
Wutz et al., 2014).

by mechanisms similar to meta-contrast masking (Chen et al.,
1995; Purushothaman et al., 1998), the read-out of moving objects
would still result in fuzzy perceptual form computations. In order
to avoid such “ghost-like” appearances the visual system might
rely on motion segmentation when computing non-retinotopic
representations (Öğmen and Herzog, 2010). This development
of non-retinotopic representations necessitates integration over a
temporal interval on the order of 100–150 ms (Öğmen et al., 2006;
Öğmen and Herzog, 2010; Otto et al., 2010). Temporal integration
of feature persistence over this temporal interval has also been
implicated in the use of spatial cues for motion direction in natu-
ral images (a“motion streak”; Geisler, 1999). In general, perceptual
mechanisms responsible for motion and clear, un-smeared objects
share functional characteristics and are capable of analyzing form
and motion concurrently (Ramachandran et al., 1974; Burr, 1980;
Burr et al., 1986), fostering the close link between object form and
motion perception, and temporal integration over an interval of
ca. 100 ms of image persistence.

The temporal window of individuation reviewed here might
serve as a buffer to translate fast retinotopic representations
into stable, but slower non-retinotopic (including spatiotopic,

frame-based or object-based: Melcher, 2008; Lin and He, 2012)
representations that are of particular importance when objects
move or change quickly. Perceiving an object as an individ-
ual within a crowded scene requires the observer to represent
an object’s spatiotemporal coordinates distinct from the back-
ground and from other individuals in the image. Such a structured
perceptual representation contains information about sensory
input that is invariant to its absolute retinotopic coordinates
and gives rise to non-retinotopic form. Static input remains
long enough on a well-defined location in the image, so that
its associated features can be firmly attached to this location
and capacity limits arise as a function of individuated loca-
tions within the image persistence. In case of fast changes in
the image plane, however, only a subset of locations can be
selected and individuated into non-retinotopic representations.
In this way the need for higher temporal resolution balances
with limits in the computation of stable non-retinotopic indi-
viduals in each single instance. Such an equilibrium might
be essential in mediating between stable object and dynamic
motion perception with minimal motion smear in the image
plane.
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Likewise, eye and head movements create a change in the retinal
input and thus, potentially, a source of confusion when integrating
information over time (for a discussion of the similarity between
the effects of object and eye motion, see: Ağaoğlu et al., 2012). Typ-
ically, stable eye fixation periods last on the order of 150–300 ms
in reading and natural viewing tasks (for review see Rayner, 1998).
The external world seems stable despite these dramatic spatio-
temporal disruptions in sensory information, perhaps relying on
non-retinotopic object representations (Melcher and Colby, 2008;
Burr and Morrone, 2011; Melcher, 2011).

We speculate that the visual system might deal with the prob-
lems of object and self-motion in a similar way, involving at least
two stages of processing (see also Otto et al., 2010). At the first
stage, relatively brief visual integration windows, such as those in
visual masking studied here, combine information in a retino-
topic manner over a time course that allows for feedforward
processing. This time window is used to successively individu-
ate spatio-temporal elements and hence stabilize sensory input. It
is not coincidental, then, that the most brief eye fixations found
in reading and natural viewing and intermediate-level visual inte-
gration windows would be of similar minimum durations since
the goal of each new fixation is to sample part of the visual scene
in order to individuate the most relevant objects. It would not
make sense to move the eye before all of the information is sam-
pled up to the level of object individuation, or to “mis-align” this
integration window so that the saccade occurs right in the middle
(integrating information during individuation from two different
spatial locations). Moreover, the complete cycle of feedforward
and feedback processing would tend to exhaust all of the useful
information available from the fovea, making long fixation dura-
tions inefficient unless the information of the retina was dynamic
or difficult to resolve.

At the second stage, however, information about the same
object should be combined over time, over a longer time win-
dow and a non-retinotopic spatial reference frame. Accurate
perception of object motion relies on non-retinotopic form com-
putation (Öğmen et al., 2006). Likewise, there are a growing
number of examples of spatiotopic perceptual effects across eye
movements (for review, see Melcher and Colby, 2008; Burr and
Morrone, 2011; Melcher, 2011) and there is converging evidence
that this involves time scales of several hundred milliseconds
(Zimmermann et al., 2013a,b). Overall, these studies suggest that
there are both relatively brief, retinotopic integration windows and
longer, spatiotopic windows.

One clear hypothesis from this idea is that retinotopic tempo-
ral integration windows should be reset by saccades and aligned
to new eye fixations. As described above, it would be problematic
if the basic object individuation process combined information
from different spatial locations due to a saccadic eye movement
changing retinal position during the integration window. Some
evidence for a reset in the window of object individuation comes
from studies of masking. Visual persistence, as measured by the
missing dot task (Di Lollo, 1980), does not continue across sac-
cades (Bridgeman and Mayer, 1983; Jonides et al., 1983) and
masking can be disrupted by the intention to make a saccade
(De Pisapia et al., 2010). On the other hand, the much longer
temporal integration windows involved in apparent motion, over

100s of milliseconds, do not seem to be disrupted by saccades
(Fracasso et al., 2010; Melcher and Fracasso, 2012). Further stud-
ies are needed to precisely define the relationship between fixation
onset and the temporal windows of object individuation. The
exact timing of temporal integration windows relative to eye
movements might play a critical role for the impression of visual
stability on rapid time scales. Such fast, feedforward computa-
tions might still involve retinotopic coordinates and therefore
require saccadic remapping. However, much of the impres-
sion of visual stability might involve longer time windows that
are not entirely retinotopic and thus do not require saccadic
remapping.

NEURAL SYNCHRONIZATION COORDINATES FEEDFORWARD AND
FEEDBACK OBJECT PROCESSING
We have reported that the short-lived alpha phase synchroniza-
tion reset by stimulus onset predicts perceptual performance on an
integration task. Time- and frequency characteristics of this effect
(100 ms at 10 Hz) point to an alpha phase reset involved in feedfor-
ward individuation of objects. This is in line with classical findings
identifying partly reset alpha oscillations in event-related poten-
tial (ERP) signatures (especially in the N1 component, Makeig
et al., 2002). The functional role of alpha oscillations in per-
ception and cognition are debated. Recent advances, however,
have associated alpha phase information with the selection and
recognition of object representations (for review see Palva and
Palva, 2007). In support of this view, but in contrast to spa-
tial or numerical limits in object segmentation, we propose an
account based on temporal bandwidth in which phase-locking
couples external signals to alpha integration cycles. Processing lim-
its might then arise as a result of feedforward encoding within one
synchronized cycle. A temporal window model based on neural
synchronization patterns has several interesting functional char-
acteristics that could coordinate feedforward and feedback object
processing.

Synchronous coupling to oscillatory dynamics can structure
processing into cyclic time windows for coherent integration of
convergent inputs that arrive with different latencies (Buzsáki
and Draguhn, 2004). In this way alpha oscillatory cycles might
reflect temporal reference frames as elementary building blocks
in feedforward processing. In fact, alpha cycles have been pre-
viously discussed as segmenting input into discrete snapshots of
∼100 ms (VanRullen and Koch, 2003). In line with this view illu-
sory motion reversals in the continuous wagon wheel illusion are
most prominent at wheel-motion frequencies around 10 Hz and
are correlated with alpha band amplitude in the ongoing EEG trace
(VanRullen et al., 2005, 2006).

VanRullen and Koch (2003) also suggested a possible way
to read-out object information within such a temporal win-
dow that might involve coupled networks of nested oscillatory
sub-cycles (coding individual content) within slow-wave carriers
(defining the temporal reference frame). Such neural networks
are capable of representing individual information by means of
frequency-division multiplexing (Lisman and Idiart, 1995). Espe-
cially, phase-amplitude coupling between α- and γ-frequency
bands could prioritize the selection of multiple visual objects
(Jensen et al., 2012, 2014). In this view the selection of individual
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items might be regulated via timed release of inhibition within one
alpha cycle (Van Rullen and Thorpe, 2001; Klimesch et al., 2007;
Jensen et al., 2012). Indeed, neural network dynamics of individ-
uation can be modeled based on inhibition between competing
items in a saliency map (Knops et al., 2014). Whereas multiplex
coding is a well-established principle of neural function (O’Keefe
and Recce, 1993; Kayser et al., 2009; Siegel et al., 2009), future work
is needed to determine its functional significance for human visual
cognition. Our results support the view that oscillatory synchro-
nization might represent multiplexed phase coding and suggest
that object capacity limits can arise, not only by the read-out speed
of individual elements, but also from the bandwidth of the carrier
function.

Importantly, integration windows can help to coordinate
visual processing dynamically, because phase synchronization
occurs in response to internal or external changes in input (via
phase resetting; Buzsáki and Draguhn, 2004; Buzsáki, 2006;
for review see Thut et al., 2012). In this way, brief phase syn-
chronization might contribute to the rapid coordination of
distributed neuronal populations (like the retinotopically orga-
nized areas along the visual hierarchy; von der Malsburg, 1981;
von der Malsburg and Schneider, 1986; Singer and Gray, 1995;
Fries, 2005). This might be important in order to cope with the
combinatorial complexity of crowded visual scenes that contain
individual elements that can consist of a nearly infinite number
of feature combinations and can appear at any given moment
in time or spatial location. This flexibility in combining arbi-
trarily complex features over space and time would seem to
require neural network communication. In line with this view,
phase synchronization has been hypothesized to sub-serve cross-
modal integration or feature binding and to gate the information
flow between local neuronal ensembles (Singer, 1999; Salinas and
Sejnowski, 2001). Consistent with this idea, phase synchrony
between distributed processing sites has been demonstrated to
predispose visual perception (Hipp et al., 2011), route selective
attention (Siegel et al., 2008; for review see Womelsdorf and
Fries, 2007), predict individual working memory capacity (Palva
et al., 2010) and reflect higher-level temporal processing limits
(Gross et al., 2004).

Our results reveal wide spread synchronization patterns in
parietal cortices locked to stimulus onset already at the level of
object segmentation. We argue that vision makes use of phase syn-
chronization as a temporal reference frame in which distributed
processing can be orchestrated and aligned to input transitions.
Reset synchronization patterns might therefore coordinate feed-
forward and feedback mechanisms involved in encoding complex
and dynamic visual scenes with nearly real-time speeds. In this
framework, temporal windows might reflect a neural strategy for
coherent perception of objects in space and time.

CONCLUSION
As described above, there is accumulating psychophysical and
electrophysiological evidence for an intermediate-level temporal
window involved in the individuation of a small number of rele-
vant objects in a scene. Individuation capacity increases in steps
within the lifetime of visual persistence of the stimulus, suggest-
ing that visual capacity limitations arise as a result of the narrow

temporal window of sensory persistence. In contrast to the main
theories based on spatial slots or finite spatial resources, these
findings suggest that time is the critical factor in the emergence of
capacity limits. In this way, capacity limits can be seen as a result of
the need of the visual system to coordinate feedforward and feed-
back processes. The cycle of feedforward and feedback processing
reflects a compromise between the competing needs of a percep-
tual system to integrate information over extended periods of time
(to get a better estimate of stable object and event properties) and
sensitivity to changes in the environment.
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Determining whether a region belongs to the interior or exterior of a shape (figure-ground
segregation) is a core competency of the primate brain, yet the underlying mechanisms
are not well understood. Many models assume that figure-ground segregation occurs
by assembling progressively more complex representations through feedforward
connections, with feedback playing only a modulatory role. We present a dynamical model
of figure-ground segregation in the primate ventral stream wherein feedback plays a
crucial role in disambiguating a figure’s interior and exterior. We introduce a processing
strategy whereby jitter in RF center locations and variation in RF sizes is exploited
to enhance and suppress neural activity inside and outside of figures, respectively.
Feedforward projections emanate from units that model cells in V4 known to respond
to the curvature of boundary contours (curved contour cells), and feedback projections
from units predicted to exist in IT that strategically group neurons with different RF sizes
and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond
when centered on a figure dynamically balance feedforward (bottom-up) information and
feedback from higher visual areas. The activation is enhanced when an interior portion of a
figure is in the RF via feedback from units that detect closure in the boundary contours of
a figure. Our model produces maximal activity along the medial axis of well-known figures
with and without concavities, and inside algorithmically generated shapes. Our results
suggest that the dynamic balancing of feedforward signals with the specific feedback
mechanisms proposed by the model is crucial for figure-ground segregation.

Keywords: V4, figure-ground segregation, medial axis transform, ventral stream, feedforward, feedback

INTRODUCTION
Figure-ground segregation refers to the process by which the
visual system parses the complex array of luminance that appears
on the retina into perceptually grouped foreground objects (fig-
ures) and backgrounds (ground). To distinguish between figures
and their background, the visual system must perform two com-
plementary processes—detecting defining borders and integrat-
ing parts into wholes. How the visual system represents visual
figures with respect to these two processes, and the underlying
mechanisms, are largely unknown. Emerging neurophysiological
and psychophysical evidence suggests that the visual system may
rely on multiple parallel “solutions” to segment the visual scene
into figures and backgrounds.

One solution likely involves the border-ownership assignment
of local edge representations. Figures necessarily share a visual
border of an adjacent background region, and border-ownership
refers to the association of the border with the figure rather than
the ground. Populations of edge-sensitive neurons in primate
visual areas V1, V2, and V4 have been shown to exhibit sensi-
tivity to border-ownership: neurons respond with a higher firing
rate when the figure to which the edge in the receptive field (RF)
is attached appears on the preferred side (Zhou et al., 2000). If the

figure is on the other side of the edge, then the firing rate of the
neuron will decrease and another neuron will exhibit enhanced
activity. Neural models have suggested that border-ownership
selectivity may arise through feedback from neurons with larger
RFs in higher visual areas (Kelly and Grossberg, 2000; Craft et al.,
2007; Jehee et al., 2007; Layton et al., 2012), through feedforward
processing alone (Supèr et al., 2010), or through horizontal con-
nections within V2 (Zhaoping, 2005). Border-ownership signals
require no more than 25 ms from the presentation of the figure
to emerge (Zhou et al., 2000), which constrains the set of possi-
ble mechanisms. In early visual areas, feedback connections have
the fastest conduction velocities (∼3.8 m/s) that are consider-
ably faster than those of horizontal connections (∼0.3 m/s; Girard
et al., 2001). Feedback connections are likely involved in border-
ownership because they span large cortical areas with minimal
delay, unlike horizontal connections.

Another solution likely involves an enhancement of neural
activity to the interior surface of the figure compared to the
exterior (interior enhancement). When Lamme and colleagues
centered the interior of a texture-defined square within the RF
of neurons in early visual areas of monkey, the neurons exhib-
ited an enhanced firing rate compared to when the monkeys were
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presented a uniform texture (Figure 1A; Lamme, 1995; Zipser
et al., 1996). The interior enhancement effect persists when the
edges of the square are 8–10◦ and the modulation occurs after an
80–100 ms latency from the onset of the stimulus, which suggests
feedback from neurons with larger RFs may be involved. A tem-
poral analysis indicates that neural activity relating to the edges
of the figure emerge first, following a short latency, then inte-
rior enhancement occurs in the “late component” of the response
(Lamme et al., 1999; Lamme and Roelfsema, 2000). A neuron that
shows interior enhancement continues to fire at an elevated rate
when the RF is centered at different positions within the texture-
defined figure, and the firing rate drops precipitously when the RF
is centered on the background (Lee et al., 1998; Friedman et al.,
2003). Neurons in V2 demonstrate a greater degree of interior
enhancement compared to those in V1 (50% vs. 30%; Marcus
and Van Essen, 2002), and the magnitude of interior enhance-
ment response is greatest in V4 (50% greater than in V1; Poort
et al., 2012).

Our understanding of the mechanisms underlying interior
enhancement of figures is poor. Given that interior enhancement

has only been demonstrated in primary visual cortex, occurs with
figures many times larger than the classical RF, and is associated
with the late component of the neural response, we wondered if
higher visual areas may underlie the effect. That is, we hypothesize
that interior enhancement first occurs in higher visual areas and
propagates via feedback to early visual areas. Neurons in higher
visual areas have larger RF sizes and are ideally suited to deter-
mine whether a region belongs to the interior or exterior of a
figure. Recurrent connections and multiple feedback loops with
early visual areas may explain the late onset latency of interior
enhancement.

If higher visual areas mediate the effect, what are neurons with
limited RF sizes in early visual cortex that demonstrate interior
enhancement signaling about the interior of a figure? We pro-
pose that interior enhancement is a means to code the figure
with respect to its medial axis (Burbeck and Pizer, 1995; Kovács
et al., 1998; Pizer et al., 1998). The medial axis (“skeleton”) of a
figure defines the set of points along the interior that run equidis-
tant to points along the boundaries (Figure 1B). It is a compact
representation of the shape. The “late component” response of

FIGURE 1 | (A) A neuron in primate V1 demonstrates an increased firing rate
(interior enhancement) when the RF is centered on the interior of a figure
compared to a background. Left: A square figure defined by the convergence
of lines with two different orientations. The black circle at the center of the
square depicts the classical RF of the V1 neuron. Right: A homogeneous
background. Bottom: The response of the V1 neuron is greater when the RF
is centered on the square figure than the homogenous background. Interior
enhancement in the neuron’s response occurs, despite the fact that the
classical RF is positioned far from the orientation-defined boundary of the
square and the visual pattern in the RF is the same in the figure and
background displays. Figure reproduced from Roelfsema et al. (2002).
(B) A teardrop figure (top) and its medial axis superimposed (bottom). Medial
axes are computed using the built-in function in Mathematica and thickened
for clear visibility. (C) A minimal bar stimulus activates a number of neurons

in cortex, with displaced RF centers and variable RF sizes (jitter). (D) A
population of neurons with jittered RF positions and sizes can detect the
medial axis of a figure. Units 1–2 respond strongly when their on-surround,
annulus-shaped RFs are centered on certain points along the medial axis of
the teardrop figure. The response is driven by contact between the annulus
and the boundary contours, defined by luminance contrast (black). The
response is weak when the RF is not centered along the medial axis (3) or
the RF size of a unit centered along the medial axis is too small (4) or large
compared to the boundary. (E) On-surround units may falsely respond
outside of a figure due to the presence of a boundary contour in the RF
(blue). Feedback from units with large RFs, which provide a measure of the
closure of the figure boundary, can enhance the activity of units whose RFs
are centered on the interior of a figure (orange) and suppress due to the
background (blue).
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neurons in the primate ventral stream that is characteristic of
interior enhancement (Lee et al., 1998) has also been associated
with a response to the medial axis of shapes, particularly in infer-
otemporal cortex (IT; Hung et al., 2012). In humans, fMRI BOLD
signals related to the medial axis first emerge in areas V3 and
beyond in the ventral stream (Lescroart and Biederman, 2013),
which indicates that higher visual areas are important for detect-
ing the medial axis. Medial selectivity in higher visual areas and
the late onset of the modulation in early cortical areas suggest that
interior enhancement is not a solely feedforward phenomenon.
Psychophysical evidence demonstrates that humans exhibit a
heightened sensitivity to the medial axis of shapes (Wang and
Burbeck, 1998). Julesz and colleagues presented humans with an
array of randomly oriented Gabor patches, except for those that
collectively composed the boundary of shapes, such as ellipses,
cardioids, and triangles (Kovács et al., 1998). Subjects performed
a differential contrast detection task of a Gabor pattern that lay
some distance on the interior of the shape boundary, and thresh-
old performance was mapped out. The contrast sensitivity of
subjects was greatest along the medial axis and the spatial profile
of thresholds matched the medial axis representations at different
spatial scales. These results indicate that the visual system is par-
ticularly sensitive to a figure’s medial axis. The medial axis plays
an important role in the Core theory of Pizer and colleagues that
posits that the visual system represents a figure with respect to
its boundary, middle, and width at multiple spatial scales (Pizer
et al., 1998). As explained below, the central innovation of the
present work is to show that medial representations at multiple
spatial scales hold a key to figure-ground segregation, when com-
bined with RF jitter and cooperative-competitive dynamics across
neurons in multiple areas of the primate visual system.

If neurons that exhibit interior enhancement code the medial
axis of a figure, how do these neurons integrate information about
the boundary, given that the classical RF size of a single neuron is
fixed and the distance between the medial axis and the bound-
ary may vary? Not many models address the variability in RF
sizes in areas of cortex. Contrary to the classical view that a min-
imal stimulus, such as a small bar, activates neurons with small
non-overlapping RFs early in cortex, the neurons that respond to
the stimulus occupy a small patch of cortex known as the corti-
cal “point spread” (Das and Gilbert, 1995). Neurons within the
“point spread” tend to be spatially close in cortex, but possess a
diverse range of RF centers and sizes (Figure 1C; Gilbert et al.,
1996). We use the term jitter to refer to the displacement of RF
centers and variation in RF sizes among nearby neurons in cor-
tex. Within and across visual areas along the ventral stream, RF
size and jitter grows proportionately with eccentricity (Gattass
et al., 1981, 1988; Bakin et al., 2000). Our model proposes that
one of the functions of the naturally occurring jitter in the visual
system is to locally “probe” for the medial axis of figures. The acti-
vation of some, but not all, neurons with displaced RF centers and
sizes within a small patch of cortex provides detailed information
about where the medial axis is likely positioned and its spatial
extent (Figure 1D). Neurons with a single RF size may not be able
to signal the presence of the medial axis of a figure in general.

Our model solves a crucial problem through feedback and the
recruitment of neurons with multiple RF sizes that compute a

scale-sensitive estimate of the medial axis of a figure. Although
a pair of equidistant contours may locally appear within the RF,
the contours may not belong to a figure (Figure 1E). The con-
tours may be incomplete fragments or lie outside of a perceived
figure, in which case neurons that demonstrate interior enhance-
ment do not fire (Lee et al., 1998). The visual system appears
particularly sensitive to the Gestalt closure of a figure’s bound-
ary contours, whether they are continuous or fragmented (Elder
and Zucker, 1993; Kovács and Julesz, 1993; Gerhardstein et al.,
2004; Mathes and Fahle, 2007). We propose that neurons in IT
cortex that respond to configurations of contours provide a mea-
sure of a figure’s closure (Brincat and Connor, 2004, 2006). In our
model, signals that emerge from units that collect evidence about
a figure’s closure send feedback to suppress the activity of units
that codes the medial axis when their RFs are centered outside of
figures (see blue unit, Figure 1E).

Here we introduce a neural model, called the teardrop model,
to investigate the hypothesis that interior enhancement occurs
in higher visual areas and underlies the effect observed in the
primary visual cortex. The model is a multi-level network, con-
sisting of cooperative/competitive interactions at each stage. In
the context of figure-ground segregation, models that implement
cooperative and competitive dynamics identify a global solution
in the large space of possible interpretations (Edelman, 1987;
Grossberg, 1994). Units in the teardrop model capitalize on jitter
to reinforce the representation of the global figure and suppress
other interpretations. We use areas (e.g., V1, V4, etc.) when
referring to model layers, analogous to the areas in primate cor-
tex that we believe carry out similar functions and dynamics.
To focus on fundamental figure-ground mechanisms, the retina,
LGN, and V1 are simplified and lumped together in a prelimi-
nary model stage that generates an edge map of figures in the
visual display, as is thought to occur in early visual areas. The
model has stages corresponding to areas V4, posterior IT (PIT),
and anterior IT (AIT). Our model is consistent with physiolog-
ical evidence that IT sends extensive feedback projections to V4
(Gattass et al., 1988; Piñon et al., 1998). As will be explained
below, neurons analogous to those in IT may combine figure
representations at multiple spatial scales and propagate informa-
tion back to neurons that estimate the position of the medial
axis.

The mechanisms in the teardrop model bring together aspects
of the visual system to support figure-ground segregation in a
method not described before. Our model consists of three main
propositions. (1) Neurons that show an enhanced response to
the interior of a figure signal the figure’s medial axis (Figure 1B).
(2) The visual system detects the figure’s medial axis by recruit-
ing neurons with jittered RF sizes and positions (Figure 1D). (3)
Feedback from higher visual areas is necessary to constrain neu-
ral responses to the interior of figures (Figure 1E). Model convex
cells (model PIT) exhibit enhanced responses to the interior of a
figure after the following sequence of operations:

• Start with a V1 complex cell-like edge representation of the
boundary contours.

• Detect curved contours by grouping the edge segment output
of the complex cells (Figure 2A).
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FIGURE 2 | Overview of the teardrop model stages. Network layers are
labeled (e.g., V4, PIT, etc.) according to where the computations are
proposed to take place in the primate visual system. The input to the
model is a preprocessed edge map of the visual display, similar to the
output of V1 complex cells. (A) The first model stage contains cells
selective to curved contours (curved contour cells). When a curved
segment enters the RF (bottom panel), curved contour cells group the
piecewise linear spatial pattern of complex cell outputs (middle panel) to
approximate a curved segment (top panel). The dashed ellipse signifies
the curved contour cell RF, which hereafter is represented by a curved
segment embedded inside a solid ellipse. (B) Convex cells in model PIT
receive input from curved contour cells in an on-surround/annular spatial
arrangement. Convex cells respond optimally to circles (bottom panel),
because curved contour cell responses to the circular boundary contours

perfectly coincide with the annular receptive field of the convex cell (top
panel). Convex cells respond to points along the medial axis of a figure
because the units receive input from equidistant curved contour signals
about the boundary. (C) Model AIT cells are called teardrop cells and
respond to an ordered (by scale) collection of convex cell outputs along a
medial axis segment. The “x” marks the visuotopic position of the
teardrop cell RF. Teardrop cells that share the same RF position also
receive input from the convex cell whose RF center is marked by the
“x.” (D) The shown teardrop cell groups convex cells with RF sizes
increasing with distance from the base of the arrow and estimates the
medial axis of the corner input. Teardrop cells are hereafter depicted by
the teardrop outline. (E) In our simulations, teardrop cells whose RFs are
positioned at a single visuotopic location have one of eight integration
directions, indicated by the white outlined arrows.

• Estimate points along the medial axis of the figure using convex
cells (Figure 2B).

• Detect closure in boundary contour segments by integrating
points along the medial axis via teardrop cells (Figures 2C–E).

Teardrop cells are an ordered (by scale) collection of convex cell
outputs along a medial axis segment.

• Suppress activity in convex cells to concave regions of the figure
(Figure 4).
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• Suppress activity in convex cells on the exterior of the figure
using teardrop cells (Figure 5).

To our knowledge, the model created by Roelfsema and colleagues
is the only existing investigation of the mechanisms underly-
ing interior enhancement of a figure on a background. The
model, however, is restricted to simple texture-defined squares
and does not consider more complex shapes and visual scenes
(Roelfsema et al., 2002). Our model is capable of performing
figure-ground segregation in scenes with any number of fig-
ures, whose boundaries form simple closed curves or incomplete
fragments thereof. We test our model on images of natural
scenes and parametrically generated shapes with varying numbers
and degrees of concavities. Our model also addresses response
enhancement to a figure’s interior in line-drawing or represen-
tations of figures whose boundary contours are not continuous.
We do not address perceptual grouping that occurs behind occlu-
sion. Several properties emerge through the dynamics of our
model that are consistent with physiological data, such as the

size-invariant response properties of IT neurons (Appendix 1
in Supplementary Material; Ito et al., 1995; Logothetis et al.,
1995).

MATERIALS AND METHODS
The aim of the present study is to have a better understanding of
how interior enhancement occurs in the primate visual system.
We use the model to test the hypothesis that dynamical feedfor-
ward and feedback interactions with higher visual areas in the
ventral stream give rise to interior enhancement. Our model con-
sists of three network layers that we believe correspond to primate
visual areas V4, posterior inferotemporal cortex (PIT), and ante-
rior inferotemporal cortex (AIT). We find these areas candidates
for the computations carried out by the model based on evidence
referenced below. Properties of model curved contour and con-
vex cells are based on known physiology in corresponding areas,
and those of teardrop cells are proposed. The proposed model
is schematized in Figure 2 and the model stages are depicted in
Figure 3.

FIGURE 3 | Architecture of the proposed model of figure-ground

segregation. Convex cells in the model demonstrate interior
enhancement when their RFs are centered along the medial axis of a
figure. Preprocessed edge maps of each visual display serve as input to
the model. The input contains the edges of potential figures and roughly
corresponds to the output of complex cells in primate V1. In the first
model layer, curved contour cells detect the curvature of edges in the
visual display. Curved contour cells project to convex cells in the second
model layer, which possess on-surround, annulus-shaped RFs. Convex
cells respond when the boundary contours of a figure enter the
parameter of the circle depicting the RF. These units are ideally suited

for detecting points along the medial axis of a figure. A central claim of
the model is that the visual system exploits jitter in the RF size and
position to perform figure-ground segregation. Teardrop cells group
signals from convex cells with different RF sizes and positions to detect
closure in the boundary of a figure and the medial axis. Feedback from
teardrop cells (pathway ∗∗, teardrop cell feedback circuit) enhances the
activity of convex cells centered along the medial axis of a figure
(interior enhancement), and suppresses activity elsewhere. In the convex
cell recurrent circuit (pathway ∗), convex cells with large RFs send
recurrent feedback to convex cells with smaller RFs to suppress
responses to regions outside of figures (concavities).
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MODEL V4: CURVED CONTOUR CELLS
The inputs to the model are preprocessed edge maps, which
approximate the output of complex cells in primary visual cortex
(V1). We refer to the result of complex cells rather than simple
cells because the edge maps are contrast polarity insensitive. The
first layer of our model corresponds to area V4 in primate cor-
tex (Figure 2A). We simulate the dynamics of cells sensitive to the
curvature (curved contour cells). The behavior of model curved
contour cells is similar to that of populations of V4 neurons,
which, unlike those in V1 and V2, demonstrate far greater selec-
tivity for curved contours (Pasupathy and Connor, 1999, 2001,
2002) and conjunctions of bars (Hegde and Van Essen, 2006;
Yau et al., 2012) at multiple spatial scales (Mineault et al., 2013).
Model curved contour cells respond optimally when a contour,
such as a curved segment or corner, enters the RF that matches the
unit’s RF size and preferred curvature sensitivity (Figure 2A). At
each visuotopic position, we simulate curved contour units tuned
to eight arcs about a circle. We construct curved contour units
with seven different RF sizes.

MODEL PIT: CONVEX CELLS
Curved contour cells in model V4 project to the second model
layer, which corresponds to primate area PIT (Figure 2B). The
purpose of model units in this network layer is to detect points
along the medial axis or “skeleton” of figures. As shown in
Figure 1D, units that integrate their curved contour inputs in
an on-surround fashion, in the shape of an annulus, are ideally
suited for detecting the medial axis because they receive bottom-
up feedforward signals from the boundary contours when their
RFs are centered on the figure. However, units with a single RF
size are not sufficient for detecting the medial axis in general.
Figure 1B shows that in the case of a teardrop shape, the distance
changes between points along the medial axis and the bound-
ary. Therefore, units with a single RF size are not sufficient for
signaling the location of a figure’s medial axis. A subset of units
with different RF sizes can detect the medial axis, as indicated in
Figure 1D by the active units. We call units that detect the medial
axis convex cells (Figure 2B).

Convex cells simulate a number of properties from known
neurophysiology and are consistent with findings from psy-
chophysical experiments. Humans demonstrate a bias to judge
symmetric, convex regions as figure, and asymmetric, concave
regions as the background (Peterson and Salvagio, 2008; Kim
and Feldman, 2009). Two dimensional shapes are more rapidly
detected (Elder and Zucker, 1993) with higher accuracy (Kovács
and Julesz, 1993; Mathes and Fahle, 2007) in humans, even at
a young age (Gerhardstein et al., 2004), when the collection of
boundary contours form a continuous closed curve, as opposed to
when constituent contours possess different curvatures and ori-
entations that do not align with the overall shape of the figure.
These findings are consistent with the possibility that the visual
system contains mechanisms that afford sensitivity to convexity
and closure (Wagemans et al., 2012). Neurons in PIT appear to
integrate multiple curved contour segments when they appear at
particular orientations and positions within the RF (Brincat and
Connor, 2004, 2006). For example, a neuron in PIT may optimally
respond to a crescent shape because a number of curved segments

that form the boundary contours appear together in appropriate
positions in the RF (Brincat and Connor, 2004). The annulus has
been shown to be an optimal stimulus for many neurons in inter-
mediary areas of the ventral stream (Pollen et al., 2002; Hegde
and Van Essen, 2006). An annular RF affords sensitivity to the
figure-ground Gestalt properties of convexity and closure.

MODEL AIT: TEARDROP CELLS
Units in the third model layer, model AIT, receive feedforward
input from convex cells (Figure 2C). The purpose of units in the
third network layer is to collect evidence about the presence of a
continuous medial axis that spans the interior of a figure. While
convex cells detect probable points along a figure’s medial axis,
more is needed to detect its full extent. Units in model AIT spa-
tially integrate signals from convex cells. Recall that the collection
of convex cells with a single RF size is in general insufficient for
detecting the medial axis of a shape (Figure 1D). Therefore, units
in model AIT integrate convex cells with different RF positions
and sizes (Figure 2C). For example, the active units shown in
Figure 1D collectively signal the medial axis of the teardrop shape.

To integrate signals from convex cells that have different RF
sizes and positions, units in model AIT have RFs elongated in a
particular spatial direction (integration direction). For example,
the unit in model AIT that groups the set of convex cell units
depicted in Figure 2D is elongated in the vertical direction, and
therefore has a vertical integration direction. Hence, AIT units
respond to the output of convex cells, ordered by scale along a
common axis. In our simulations, we used eight integration direc-
tions at every location in the visual field (Figure 2E). The use
of integration directions capitalizes on the jitter in RF size and
position found in cortex. We found that units in model AIT that
group feedforward signals from convex cells whose RF sizes lin-
early increase along the integration direction were sufficient for
detecting the medial axis in the displays we consider. Therefore,
we call units in model AIT teardrop cells.

We define the position of a teardrop cell’s RF to coincide with
the RF center of the largest convex cell that sends feedforward
input. For example, the “x” marks the position of the teardrop
cell depicted in Figure 2C. Teardrop cells with different integra-
tion directions at the same RF position share a common input
from the largest convex cell that falls within the RF.

The behavior of teardrop cells is consistent with properties of
cells found in area AIT of primate cortex. Teardrop cells exploit
the jitter in RF size and position of neurons in the visual system.
Teardrop cells have large RF sizes, by virtue of their integration
of convex cell inputs from different sized RFs. Their RF size is at
least as large as the largest convex cell unit that provides input. So
long as the figure remains within the RF, a teardrop unit yields a
response to the medial axis of a figure, irrespective of its retinal
size. No attempt was made to quantitatively fit the neurophys-
iological properties of AIT neurons because we focused on the
core figure-ground mechanisms. We selected a set of teardrop cells
in our simulations with eight integration directions, correspond-
ing to the horizontal, vertical, and diagonal directions. We found
this set was sufficient to yield qualitative matches to the medial
axis sensitivity of neurons. Similar to AIT neurons, teardrop cells
demonstrate size invariance in their responses (Figure A1).
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CONVEX CELL RECURRENT CIRCUIT
Although the feedforward model architecture will correctly detect
the medial axis of a figure, false positive candidates may emerge
in figures with concavities. Figures 4A,B shows in black a figure
with a concavity called the C-shape. Its medial axis is superim-
posed in white. The RFs of active convex cell units with three
different size RFs are shown. The set of the smallest active con-
vex cell units that are shown (“S1” and “S2”) signals the medial
axis of the C-shape to teardrop cells (Figure 4A). However, a
set of convex cell units with larger RFs (“S3”) signals the pres-
ence of a false medial axis that spans the C-shape concavity,
outside of the figure (Figure 4B). We propose that recurrent feed-
back connections between convex cell units suppress responses
when they are due to a false medial axis outside the figure. The
recurrent connections among convex cells are asymmetric: units
only receive feedback from others with larger RF sizes. We are
not aware of physiological evidence demonstrating asymmetric
“coarse to fine” connectivity among cells with different RF sizes,
although the idea has been used in existing theory (Grossberg,
1994). Figure 4C shows a neural circuit that implements the
convex cell recurrent mechanism. An analysis of the convex cell
RF organization is shown in (Figure A2).

TEARDROP CELL FEEDBACK CIRCUIT
When one or more teardrop cells with different integration direc-
tions that share a common RF position is active, it may be because
their RFs are positioned on the figure’s medial axis. Figure 5A
schematically depicts the collection of teardrop cells that have
different integration directions whose RFs are positioned on a
triangle figure. Because each teardrop cell has the medial axis
within the RF (gray line), the units are active (orange). The fact
that all three teardrop cells are active provides evidence that they
are positioned on the interior of a figure. If sufficiently many
teardrop cells are active, they send feedback to enhance the activ-
ity of the convex cells from which they received feedforward input
(Figure 5C). The feedback results in an interior enhancement
signal in convex cells centered on the interior of the figure.

Consider the case when few of the teardrop cells that share the
same RF position are active. In the example depicted in Figure 5B,
only one teardrop cell would be active nearby the top-right cor-
ner of the triangle because a large segment of the medial axis is
in the RF. The other two teardrop cells with the same RF posi-
tion (blue) are inactive because they are not positioned along
the medial axis of the figure. If too few teardrop cells are active,
the model sends inhibitory feedback to suppress the activity of

FIGURE 4 | The convex cell recurrent circuit suppresses responses

outside of figures in concave regions. (A) The medial axis of the
C-shape is superimposed on the figure in white. Units with small RF
sizes (S1 and S2) detect points along the medial axis. (B) Without
feedback, units (S3) may incorrectly detect a medial axis within the
concave region of the C-shape display. Ambiguity about the correct
location of the medial axis is resolved in the model through feedback
from large RF units (S4), which respond to the closure of the figure’s
boundary. (C) Proposed neural circuit for the model’s convex cell
recurrent feedback mechanism. Curved contour cells project to a convex

cell with a large RF (C1) and to an inhibitory interneuron (I1) in the same
layer as a convex cell with a smaller RF (C2). The convex cell with the
large RF (C1) projects to another inhibitory interneuron (I2) that receives
an inhibitory connection from I1. I2 has an inhibitory connection to the
convex cell with the smaller RF (C2). When the curved contour cell and
convex cell with the larger RF (C1) are both active, the inhibitory signals
that act on C2 cancel out, which results an enhanced response in C2.
When the curved contour cell is inactive but C1 is active, as may occur
when the concavity in the C-shape appears within the RF, feedback from
C1 to the interneuron I2 results in suppression of C2.
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FIGURE 5 | The teardrop cell feedback circuit enhances convex cell

activity along the medial axis of a figure. (A) Left panel: Three
teardrop cells are shown (outlined by the dashed ellipses) that group
convex cells with jittered RF sizes and positions along integration
directions that coincide with the medial axis of the triangle figure. Right
panel: Feedback from the active teardrop cells (orange) enhances the
convex cell centered on the medial axis. (B) Left panel: Only the
bottom left teardrop cell is active because a large segment of the
medial passes within its RF. The medial axis does not enter the RF of
the other two teardrop cells, so they are inactive. Right panel: The
convex cell shown is inhibited because two of the three teardrop cells
are inactive. (C,D) The teardrop cell feedback circuit mechanism. (C)

The teardrop cells in (A) share a common RF position, defined by the
convex cell with the largest RF size from which they receive
feedforward input (thick orange circle in the center). All three teardrop
cells are active. Due to the good agreement in the activation of the
teardrop cells that share the same RF position, feedback to convex
cells in the same position that have the same sized or smaller RFs is
enhanced. The feedback results in interior enhancement in convex cells
with small RF sizes compared to the figure. (D) Only one of three
teardrop cells in (B) is active, so it is unlikely that there is true medial
axis in the RFs. Feedback from teardrop cells to the convex cells in
the same position is inhibitory, which suppresses activity away from
the medial axis.

the convex cells from which they received feedforward input
(Figure 5D). This prevents convex cells with RFs centered out-
side of the figure from demonstrating interior enhancement. In
summary, the activity of convex cells on the interior of the figure
is enhanced, while the activity of convex cells outside the figure is
suppressed.

Convex cells represent the units in our model that demonstrate
an enhanced response to the interior of a figure. Our model pre-
dicts that these cells that exhibit interior enhancement are aligned
with the medial axis. We simulated convex cells with seven differ-
ent RF sizes. Units with different RF sizes that share a common
RF center compete in a contrast-enhancing recurrent network.
Cross-scale competition sharpens the network’s sensitivity to the
position of the medial axis. Activity of units that do not receive
input from boundary contours on either side of the RF will be
suppressed.

VISUAL DISPLAYS
We sought to test the model’s capabilities by simulating
parametrically varying versions of figures (Figure 6) that

resemble those used in electrophysiological studies of figure-
ground segregation (Zipser et al., 1996; Zhou et al., 2000).
We tested the model on rectangular (Figure 6A), square tex-
ture (Figure 6B), cross (Figure 6C), C-shape (Figure 6D), and
randomly generated block shapes with varying complexities
(Figures 6E–G). Concave regions tend to be part of the back-
ground rather than the figure and pose a challenge to mod-
els of figure-ground segregation. The C-shape and random
block displays test the model’s ability to avoid these regions
when responding to the figure. We produced 500 low (LC),
medium (MC), and high (HC) complexity random block dis-
plays, and 100 of each type are depicted in Figures 6E–G,
respectively.

We parametrically varied the aspect ratio of the rectangular
displays in the range 1/8 to 8, yielding 64 shapes. The aspect ratio
of the C-shape was adjusted in equally spaced increments in the
range 1/4 to 4 and the C-shape was 1–6 px thick to yield 96 shapes.
We generated 36 crosses (6 thicknesses × 6 sizes) and square-
texture displays (6 texture element displacements × 6 element
sizes).
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FIGURE 6 | Visual displays used in simulations to test the model.

Five hundred of each type of visual display depicted in (E,F) were
parametrically generated. Only 100 are shown. (A) Rectangles. (B)

Square textures. (C) Crosses. (D) C-shapes. (E–G) Algorithmically
generated random block displays with low (E), medium (F), and high
(G) complexity.

The random block displays were generated using a modified
version of a random block generation algorithm (Sakai et al.,
2012). The block algorithm begins with a base rectangle and iter-
atively adds an adjacent block to a random location along the
rectangle boundary. In the iteration following the addition of a
block, locations bordering either the rectangle or newly added
block may be randomly selected for the next block addition. We
generated LC, MC, and HC random block displays by adding 4,
16, and 32 blocks, respectively. Greater numbers of blocks afford
greater complexity due to the increased irregularity in the figure
boundaries. We constructed 500 unique blocks of each type in
each condition.

FIGURE-GROUND INDICES
To quantify model performance across the visual display sets, we
define several indices that assess figure-ground responses in the
model. Larger index scores indicate better performance. The In-
Out-Index (IOI) provides a measure of how much convex cell
activity is distributed on the interior of the figure compared to
the background:

IOI = AFigure − AGround

AFigure + AGround
(1)

In Equation (1), AFigure and AGround refer to the mean unit activity
inside the figure and ground regions, respectively.

We define two additional indices to assess the spatial distribu-
tion of model unit activation in each visual display. Equation (2)
defines the medial axis index (MAI), which measures the ratio of
unit activity distributed within 1 pixel of the medial axis of the
figure (AMedial), as computed Mathematica, to the mean activ-
ity on the complementary portion of the interior of the surface
(AInterior). Greater MAI scores indicate a greater proportion of the
model activation due to the figure is distributed along the medial
axis.

MAI = AMedial − AInterior

AMedial + AInterior
(2)

Equation (3) defines the boundary index (BI), which measures
the ratio between the activity distributed within 1 pixel of the
boundary of the figure (ABoundary) and the activity garnered to
the interior and exterior of the figure (AElsewhere). Greater BI
scores indicate that much of the model activation is concentrated
around the boundary of the figure.

BI = ABoundary − AElsewhere

ABoundary + AElsewhere
(3)

RESULTS
A central focus of the model is to better understand interior
enhancement and the signaling of the medial axis of a figure
by neurons in the primate visual system. We performed simula-
tions of the model to investigate whether mechanisms in higher
visual areas yield interior enhancement, which may underlie
the effect observed in primary visual cortex. In Section Interior
Enhancement and Medial Axis Sensitivity to Exemplar Figures,
we examine medial axis detection and interior enhancement in
exemplar visual displays. In Section Spatio-Temporal Dynamics,
we focus on the spatio-temporal response of convex cells to show
that these units do in fact exhibit interior enhancement, similar
to units in primary visual cortex. In Section The Role of Feedback
in Interior Enhancement and Figure-Ground Segregation, we
describe performance of the model on larger numbers of visual
displays, including parametrically generated figures, and analyze
the role feedback has on enhanced interior responses. Appendix 3
in Supplementary Material contains the model equations.

INTERIOR ENHANCEMENT AND MEDIAL AXIS SENSITIVITY TO
EXEMPLAR FIGURES
To summarize the model dynamics and behavior, we often plot
the activity of convex cells as a measure of the estimated location
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of the medial axis (e.g., Figure 7). To readout the detected loca-
tion of the medial axis from the model dynamics, we consider the
spatial position of the maximally active convex cell. We do not
claim that the brain decodes neural signals to locate the medial
axis using maximum likelihood. This approach provides a simple
way to readout activity across the network.

Figure 7 depicts the activity of convex cells (top panels), which
signal the medial axis, and teardrop cells (bottom panels), which
signal interior enhancement. The inputs in each simulation are

exemplar figures from the parametrically generated sets of visual
displays shown in Figure 6. Figure 7A shows the model response
to a square. Convex cells with a RF size of 4 yield the greatest
activity compared to units with other RF sizes. The activity peak
is concentrated at the center of the square. Convex cells with a
RF size of 4 yield a MAI score of 0.91, which indicates that a
high proportion of the neural activity to the figure interior is dis-
tributed along the medial axis. It is also the case that convex cells
with smaller RFs yield activity peaks on the medial axis, along the

FIGURE 7 | Model simulations of exemplar figures (A–D). The most active
convex cells (top rows of panels) signal the position of the figure’s medial
axis. The medial axis, as computed by Mathematica, for each figure is shown
for comparison in the column to the left of the model dynamics. The degree
of interior enhancement of convex cells due to feedback from teardrop cells
is shown in the bottom rows of panels. Columns from left to right show the
activity of small to large RF sizes, respectively, which are provided along the
top row. The relative size of the RFs, compared to the visual displays, is
depicted by the annuli at the top. The boundary of the simulated figures is
outlined in black. The response of the most active convex cell is plotted on
the leftmost column for each RF size, labeled 1–7 from small to large. The
dashed green arrow and lines indicate the RF size of the most active convex

cell. Note that in (B), the most active convex cells have RFs centered on the
medial axis of the C-shape rather than inside the concavity. While convex
cells respond when their RFs are centered along points of the medial axis,
teardrop cells collect evidence about the closure of the figure’s boundary
contours within the RF. Teardrop cells do this by grouping in different
directions the signals from convex cells with jittered RF sizes and positions.
Integrating information about the closure of the figure’s boundary over an
extended region affords a robust response to the interior of a figure, when
the RF is positioned along the medial axis. Teardrop cells send feedback to
convex cells to enhance their activity if the RF is centered on the medial axis
of the figure, or suppress otherwise. Blue indicates suppression and
orange/red indicates an interior enhancement signal.
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diagonals of the square. The smaller the RF size, the closer the
activity peaks are to the corners.

The activity of convex cells with size 5 RFs and larger is sup-
pressed, due to inhibition from teardrop cells. Recall that the
teardrop feedback circuit suppresses convex cell activity when
RFs are not positioned on the medial axis of the figure. Convex
cells with large RF sizes compared to the square yield broad and
weak distributions of activity. The activity is not constrained to
the medial axis of the square, and is therefore suppressed. The
high concentration of teardrop cell activity at the center of the
square in units with size 4 RFs indicates that interior enhance-
ment occurs in convex cells whose RFs are centered on the square.
Teardrop cells facilitate an augmented response in convex cells to
the figure through feedback.

Figure 7B depicts the model response to a C-shape display.
The C-shape represents an important test for models of figure-
ground segregation because the concave region is locally similar
to the C-shape interior. The greatest convex cell activity is gar-
nered by size 3 units whose RFs are centered along the medial
of the C-shape (MAI = 0.67). Therefore, the model correctly
performs figure-ground segregation because the peak is located
inside the C-shape rather than inside the concavity. The teardrop
feedback circuit alone does not result in correct figure-ground
assignment because both the interior of the C-shape and the con-
cavity are considered in the model as candidates where a medial
axis may be located. The convex cell recurrent circuit is an impor-
tant component of the model that allows it to correctly identify
the medial axis of the C-shape. Size 4 teardrop cells yield the max-
imal activity, which signals interior enhancement to convex cells.

Feedback from teardrop cells does not completely abolish
activity due to the concavity, which is consistent with the recent
psychophysical finding that figure-ground percepts may reverse
when the shape of the concavity is manipulated (Kim and
Feldman, 2009). Adjustments to the curvature or junctions of the
C-shape may change whether convex cell populations inside the
C-shape or the concavity are more active.

Figure 7C depicts the model response to a cross. As shown in
the left panel, the distribution of the maximally activity convex
cells with different RF sizes is bimodal. The peaks garnered by
units with smaller and larger RF sizes correspond to a response to
the medial axis along the arms and center of the cross, respectively
(MAI = 0.74). Units with size 6 RFs produce a strong response to
the center of the cross due to feedback signals from teardrop cells
(bottom panel), yielding interior enhancement. As shown in the
bottom panels, teardrop cell activity is weak outside of the cross,
which results in suppression of convex cells whose RFs are cen-
tered there. There is facilitation at the interior—particularly in
units whose RF sizes are comparable in the length to the arms of
the cross (RF sizes 5 and 6). The secondary activity peak produced
by convex cells with size 3 RFs occurs due to the convex cell recur-
rent circuit. Convex cells with large RFs, comparable in size to the
cross send feedback signals to enhance the response of units with
smaller RFs, comparable in size to the width of the arm of the
cross (size 3). The enhancement in the smaller RF units occurs
because the small and large RF convex cells share common inputs
from curved contour cells that respond to the distal parts of the
arms.

Figure 7D shows the model response to the square texture dis-
play, which tests performance when there are multiple texture
elements with various sizes and displacements. The largest con-
vex cell activity peak occurs in units with size 3 RFs (MAI = 0.83).
There are four distinct activity peaks that are located at the center
of each of the squares. A smaller secondary activity peak occurs
in units with size 7 RFs because the RFs are sufficiently large to
group the square elements across the center gap. Teardrop cells
are most active at the center of the squares, which yields interior
enhancement in the convex cells.

Figure 8A shows the activity of convex cells (top panels) and
teardrop cells (bottom panels) with different RF sizes to a natural
image of peppers taken from the Berkeley Segmentation Dataset.
We wanted to test the model’s figure-ground performance and
ability to detect the medial axis in a more complex scene. The
activity of convex cells with small RF sizes is distributed close
to boundary contours. The peak convex cell activity occurs in
units with size 5 and 6 RFs, near the center of the peppers.
Teardrop cells are mostly quiescent, except for units with size 5
and 6 RFs, and clusters of activity coincide with the medial axis of
the peppers. Therefore, feedback from teardrop cells facilitates an
enhanced response in convex cells centered along the medial axis
of the peppers. Teardrop activity diminishes in units with larger
RF sizes, which indicates that the RF size is too large to integrate
fine details of the scene.

In Figure 8B, we show results of a simulation of a bar that is
thinner than the width of the smallest convex cell RF. We wanted
to test model performance on a limiting case of when the figure
has an infinitesimal width. Only convex cells with small RF sizes
centered nearby the bar are active. The activity of units with larger
RF sizes centered farther from the bar is greatly reduced. The spa-
tial distribution of convex cell activity remains close to the bar
and does not spread far away. The response of teardrop cells fol-
lows a similar trend: units with small RFs are active nearby the
bar, and the response is lower in units with larger RFs. Convex
cells with large RF sizes are not sufficiently active to overcome the
suppression from teardrop feedback and are completely inhibited.
This indicates that the model does the best job it can to identify a
medial axis of an extremely thin figure.

We primarily tested model performance on figures with right
angles, such as the C-shape and block visual displays; however,
performance remained good on figures with curved contours.
Consider the crescent shape shown in Figure 8C that approxi-
mates the C-shape. Convex cells whose RFs are centered along the
medial axis produce the greatest response. Suppression of con-
vex cell responses outside of the figure is greater in the crescent
shape simulation, compared to the C-shape (Figure 7B). The cur-
vature of the crescent boundary contours more closely matches
the preferred sensitivity of the curved contour units than the
right angles in the C-shape. This suggests interior enhancement
in the C-shape would improve if model V4 included populations
neurons sensitive to conjunctions of bars (Hegde and Van Essen,
2006).

SPATIO-TEMPORAL DYNAMICS
We sought to investigate whether the temporal dynamics of con-
vex cells are similar to those of neurons in V1 that show interior
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FIGURE 8 | Model simulation of images of a natural scene and a

thin bar. The most active convex cells (top rows of panels) signal the
position of the figure’s medial axis. The degree of interior enhancement
of convex cells due to feedback from teardrop cells is shown in the
bottom rows of panels. (A) Simulation of an image of peppers from
the Berkeley Segmentation Dataset (right). Convex cells with size 6 RFs
(dashed green arrow) yield the maximal response in the center of the
pepper figures. (B) Simulation of a bar, which is thinner than the
smallest convex cell RF. The most active convex cells are distributed

closely to the bar, as the model does it best it can to detect the
medial axis, and activity drops of precipitously with distance from the
bar. (C) C-shape and crescent figures yield similar medial axis and
interior enhancement in convex cells. The C-shape and crescent figures
have comparable sizes, but the crescent boundaries are curved. The
green dashed line and arrow indicate the RF size of the most active
convex cell. Convex cell responses to the concave region diminished
compared to the C-shape simulation (Figure 7B), indicating an improved
response gain to the interior of the figure.

enhancement (Figure 1A). Following the paradigm of Lamme
et al. (1999), we presented the model with a textured scene with
(Figure 9A; left panel) or without (Figure 9A; center panel) a
square figure. The right panel of Figure 9A shows the temporal
dynamics of a convex cell with a RF size of 4 whose RF was cen-
tered on the square when it was present. Similar to the V1 neuron
responses, the convex cell demonstrates an enhanced response
when the figure was present. Similar to the single-cell data, most
of the modulation occurs later, following the peak response. The
convex cell also demonstrates some interior enhancement prior to
the peak response, unlike the neural data. We suspect that this is
due to the lack of conduction delays in our model. Feedback from
teardrop cells arrives instantaneously, yet in vivo there would be a
delay for the signal to propagate and act on the target population
of neurons. This could shift the onset of the interior enhancement
beyond the peak response.

The results shown in Figures 7, 8 suggest that feedback from
teardrop cells plays an important role in enhanced responses
along the medial axis. Signals from teardrop cells often suppress

convex cell activity not along the medial axis, even elsewhere
within the interior of the figure. We wanted to better under-
stand the role of feedback in the temporal dynamics of interior
enhancement. Figure 9B plots the temporal response of con-
vex cells whose RFs are centered on the medial axis (top left
panel) and on the concavity (bottom left panel). To investigate
the importance of feedback, we selectively lesioned different feed-
back connections in the model. Consistent with the results shown
in Figure 7B, the response along the medial axis is larger than
within the concavity when feedback is intact (Figure 9B; top cen-
ter panel). When feedback is completely abolished, the ordinal
relationship between the concavity and medial axis responses
reverses: the convex cell activity is slightly larger in the concav-
ity than on the medial axis (Figure 9B; bottom center panel).
This would indicate an incorrect figure-ground assignment by
the model, and shows that feedback is responsible for enhanc-
ing activity within the C-shape interior. The dynamics in the
Convex-Only and Teardrop-Only Feedback conditions are shown
in the right panels. In both cases, the individual types of feedback
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FIGURE 9 | Spatio-temporal dynamics of the model. (A) Convex cells
demonstrate interior enhancement similar to single cells in primate area
V1 (compare with Figure 1A). We presented the model with a textured
display that either contained a square figure (left panel) or just the
background (middle panel). The square subtended the same size as that
simulated in Figure 7A. The dynamics of the convex cell whose RF is
centered on the square when it was present are shown on the right
panel. The response of the convex cell is larger in the presence of the
figure (black curve) than when just the background was present (gray
curve). (B) Interior enhancement along the medial axis of a figure occurs
due to feedback in the model. We presented the C-shape used in
Figure 7B and plotted the dynamics of convex cells whose RFs were

centered on the medial axis (Medial; black curves) or on the concavity
(Concavity ; gray curves). The response is enhanced to the medial axis
compared to the concavity when feedback connections in the model are
not lesioned. This indicates that feedback plays an important role in
enhancing convex cell activity to the medial axis and suppressing
activation to the background. Our model contains two types of feedback
connections: the convex cell recurrent circuit and the teardrop cell
feedback circuit. We considered the dynamics of the model when all
feedback is intact (Feedback-Intact condition) and when all feedback was
lesioned (No-Feedback condition). We also considered the effect each type
of feedback connection had on model behavior through selective lesions
(Convex-Only Feedback condition and Teardrop-Only Feedback condition).

connections yield an increased response to the medial axis relative
to the concavity, but the degree of the modulation is less in either
case than when both feedback connections are intact.

THE ROLE OF FEEDBACK IN INTERIOR ENHANCEMENT AND
FIGURE-GROUND SEGREGATION
The results in Figure 9 prompted us to quantify the role of
feedback on interior enhancement for a broader range of visual
displays. Figure 10 shows model performance as assessed by the
IOI, MAI, and BI on the LC, MC, and HC random block dis-
plays. The block displays test the model’s ability to detect the
interior of complicated figures despite the presence of many local
concavities along the irregular boundaries. The relative response
to the figure compared to the background, as measured by the

IOI, was greatest in Feedback-Intact condition (red), and lowest
in the No-Feedback condition (green). The action of the con-
vex cell recurrent circuit alone (Convex-Only Feedback condition,
yellow) only slightly improved performance compared to the No-
Feedback condition. However, the teardrop cell feedback circuit
(Teardrop-Only Feedback condition) alone resulted in substan-
tially improved selectivity to the interior of the figure compared
to the background (blue). The absence of lesions (red) improved
the relative response to the figure by a margin that often exceeded
the combined individual gains obtained from single lesions. The
Convex-Only Feedback condition scored the highest BI on the
HC random block displays, which indicates a shift in the con-
vex cell activity toward the boundary of the figure compared
to the Feedback-Intact condition. The Teardrop-Only Feedback
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FIGURE 10 | Feedback greatly improves figure-ground segregation.

Performance is expressed with respect to the IOI, MAI, and BI. The in-out
index (IOI) assesses the proportion of convex cell responses are due to the
figure rather than the background. The medial axis index (MAI) measures
how concentrated convex cell responses are on the medial axis of the figure.
The boundary index (BI) assesses how proportions of convex cell responses
occur near the boundary of the figure, compared to other regions in the
display. Performance in the low-complexity (A), medium-complexity (B), and
high-complexity (C) block sets is expressed with respect to the IOI, MAI, and
BI. All performance indices are normalized such that 1 indicates the best
performance and 0 the worst. Each bar represents the mean index score
across the entire visual display set, and the error bars correspond to ±1
standard deviation. The indices are computed based on convex cell activity.

Simulations are performed on the low (LC), medium (MC), and high (HC)
complexity random block displays (Figures 6E–G). We assessed model
performance when feedback from the convex cell recurrent circuit was
lesioned (blue, Teardrop-Only Feedback condition), when feedback from
teardrop cells was lesioned (yellow, Convex-Only Feedback condition), when
both types of feedback were lesioned (orange, No-Feedback condition), and
when all feedback was intact (red, Feedback-Intact condition). Convex cell
responses were most concentrated on the interior of the figure (IOI) in the
Feedback-Intact condition, and performance was the worst in the
No-Feedback condition. Lesioning feedback from teardrop cells resulted in
the greatest decrease in performance. For the HC display set, which contains
figures with irregular boundaries and concavities, the Convex-Only Feedback
condition yielded the best figure-ground performance.

condition yielded a high MAI score, which indicates that the feed-
back mechanism contributes to an increased sensitivity of convex
cells to the medial axis of the figure.

For the LC random block displays, the Feedback-Intact con-
dition garnered the largest BI scores (red). However, for the
HC random block displays, the Convex-Only Feedback condi-
tion (yellow) yielded the highest BI score. Given that the IOI
scores for the Convex-Only Feedback condition remained roughly
constant irrespective of the input complexity, the increased BI
scores indicate that the convex cell recurrent feedback circuit dis-
tributed activity closer to the boundary contours, yet still within
the interior of the figure.

To quantify how feedback affects the sensitivity of convex cells
to the medial axis of the figure, we computed the kurtosis for
the distribution of the convex cells yielding the maximal activ-
ity with different RF sizes (e.g., Figure 7, left column). Often used
in statistics, the kurtosis assesses how modal or “peaked” a dis-
tribution appears. For the distribution of maximal convex cell
activity, the measure provides a diagnostic to assess how effec-
tively feedback enhances the units with an appropriate RF size
to code the medial axis. A large kurtosis indicates that most of
convex cells that are active have a common RF size (Figure 11,
lower-right panel). A high concentration of activity in units with
a single RF size indicates a high degree of confidence in the medial

axis response. A low kurtosis indicates that the energy in convex
cell responses is more evenly distributed among units with dif-
ferent RF sizes (Figure 11, top-right panel). A broad distribution
indicates a lack of confidence in the medial axis response.

In the majority of the visual display sets we tested (6/7), the
Feedback-Intact condition yielded the greatest kurtosis, which
suggests that feedback increases the confidence and selectivity
of convex cell responses to the medial axis of the figure. The
Teardrop-Only Feedback condition generally yielded the next
greatest kurtosis. The Convex-Only Feedback condition alone
often did not yield a much larger kurtosis than in the No-
Feedback condition. This indicates the convex cell recurrent cir-
cuit, as presently configured, did not increase the concentration
of activity along the medial axis. From Figure 10, as the complex-
ity of the block sets increased, the MAI decreased while the BI
increased in the Convex-Only Feedback condition. Given the low
kurtosis values, this suggests that convex cell feedback disperses
activity more evenly within the figure surface.

In summary, the considerably greater kurtosis in the Feedback-
Intact and Teardrop-Only Feedback condition conditions com-
pared to the No-Feedback condition suggest that feedback plays a
crucial role in increasing the response gain to the medial axis of a
figure. Feedback also increased the confidence of model responses
about the location of the medial axis.
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FIGURE 11 | Feedback improves the model’s sensitivity to the medial

axis of the figure. For each visual display set, the kurtosis of the
distribution of the most active convex cells with different RF sizes is
plotted. An example of a low kurtosis distribution of most active convex
cells with different RF sizes is shown on the top-right panel. The
bottom-right panel shows a distribution with a high kurtosis. We compared
performance when feedback from the convex cell recurrent circuit was
lesioned (blue, Teardrop-Only Feedback condition), when feedback from

teardrop cells was lesioned (yellow, Convex-Only Feedback condition),
when both types of feedback were lesioned (orange, No-Feedback
condition), and when all feedback was intact (red, Feedback-Intact
condition). A high concentration of activity in units with a single RF size
indicates a high degree of confidence in the medial axis response. A low
kurtosis indicates that the energy in convex cell responses is more
evenly distributed among units with different RF sizes. Performance was
best in the Feedback-Intact and Teardrop-Only Feedback conditions.

DISCUSSION
We presented the teardrop model of figure-ground segregation in
the primate ventral stream that explains why neurons demon-
strate enhanced activity when their RFs are centered on the
interior of a figure compared to the background. Our results sup-
port the possibility that interior enhancement arises as the result
of dynamical interactions between higher visual areas. The pro-
posed model makes the major theoretical prediction that interior
enhancement originates in convex cells and the effect propagates
via feedback to cells in earlier visual areas (Lamme, 1995; Lee
et al., 1998). More specifically, we predict that cells in area PIT
demonstrate interior enhancement prior to those in V1 due to
recurrent interactions and feedback from teardrop cells. We also
predict that teardrop cells that exploit jitter in convex cell RFs play
an important role in modulating the interior enhancement effect.
Our model is based on the following three propositions.

Proposition 1: Neurons that demonstrate an enhanced
response to the interior of a figure signal the presence of the
medial axis. Indeed, the responses of IT neurons support a rep-
resentation of figures using its medial axis representation (Hung
et al., 2012). The “late component” response of neuron in ven-
tral areas not only is associated with interior enhancement, but
also to the medial axis of shapes (Hung et al., 2012). Neurons
in V1 that demonstrate interior enhancement show elevated
responses at the center of texture-defined figures during the “late
component” stage, which is consistent with medial axis cod-
ing (Lee et al., 1998). Our simulation results show that model
convex cells demonstrate enhanced activity along the medial
axis of figures due to dynamical cooperative/competitive inter-
actions between higher visual areas. We propose that feedback

signals from convex cells to earlier visual areas may form the
basis of the interior enhancement effect observed in V1 neurons.
The mechanisms in the present model explain how responses in
small RF units are constrained to the medial axis of a figure,
which affords a parsimonious and efficient representation of a
figure.

Proposition 2: There is a purpose for neurons with differ-
ent RF sizes in areas in the visual system, aside from potentially
detecting and representing figures of different sizes. The exis-
tence of neurons with multiple RF sizes in areas throughout the
visual system is well known, yet their role is not clear. We claim
that jitter in RF size and position serves a crucial role in figure-
ground segregation. In our model, teardrop cells demonstrate the
advantages that the visual system may garner by exploiting jit-
ter. Grouping of signals from units with different RF sizes and
positions by teardrop cells not only leads to a robust detection of
a figure’s medial axis, but it affords sensitivity to the closure of
the figure’s boundary contours. The closure of a figure’s bound-
ary contours facilitates its detection and the visual system more
rapidly detects closed rather than open figures (Elder and Zucker,
1993; Mathes and Fahle, 2007; Wagemans et al., 2012). Sensitivity
to closure underlies how the model successfully performs figure-
ground segregation in the case of partially concave figures, such
as the C-shape.

Proposition 3: Feedback plays a crucial role in yielding
enhanced responses to the interior of figures. Our simulations
show how interior enhancement occurs in convex cells due to
feedback signals from teardrop cells. When we lesioned feed-
back connections in the model, convex cell activity was less
concentrated along the medial axis, and across the population,
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there was more “false positive” activation outside the interior
of the figure. The action of the teardrop feedback circuit in the
model is consistent with existing models (Supèr and Romeo,
2011) and single-cell data (Supèr and Lamme, 2007) that indicate
that feedback enhances the response to the figure and suppresses
responses to the background.

TEARDROP CELL RFs
In the model teardrop cells group signals from convex cells with
jittered RF sizes and positions. In simulations, we assume for
simplicity that teardrop cells integrate the signals from convex
cells in equally spaced positions along each integration direction.
The integration directions extended equally in all radial directions
(i.e., isotropic). It is unclear how the visual system would perform
the grouping, but that neurons analogous to teardrop cells likely
group signals in irregular directions with variable spacing. A con-
sequence of only considering isotropic teardrop cells is that they
yield optimal responses to shapes with certain aspect ratios. The
response of a teardrop cell to a square (Figure 7A) is more con-
centrated at the center of a square than it would be to an elongated
rectangle. We found that varying the aspect ratio of figures did
not qualitatively impact figure-ground segregation performance,
but it yielded broader, less punctate teardrop activation along the
medial axis. Note that this is simply an artifact of making simpli-
fying assumptions for the purposes of simulation. The variability
of RF configurations in cortex would be expected to yield compa-
rable responses to figures, irrespective of the aspect ratio. Cortical
magnification likely impacts the distribution of RF sizes of convex
cells grouped by teardrop cells. An extension of the present model
could investigate how these factors impact interior enhancement
signals.

REPRESENTATION OF CONCAVITIES
When interpreting the model results for the C-shape, we assume
that the concavity is part of the background rather than the
foreground. That is, boundaries separating the C-shape and the
concavity are grouped with the C-shape rather than the concav-
ity. However, Kim and Feldman found that manipulations to the
salience and shape of the concave region might locally reverse
border-ownership along different parts of the C-shape boundary,
which is inconsistent a globally concave percept of the “negative
part” (Kim and Feldman, 2009). Consistent with the possibility
that local border-ownership signals may differ from the global
interpretation, a substantial number of model convex cells with
small RF sizes were active within the “negative part.” “Votes” for
the presence of a medial axis from the population of convex cells
whose RF is centered on the interior of the C-Shape are at odds
with those from the competing population whose RFs are cen-
tered on the concavity. In the model, the convex cell recurrent
circuit enhanced the response of convex cells whose RFs are cen-
tered on the C-shape medial axis and suppressed those centered
on the concavity. Perhaps the local reversals in border-ownership
stem from reversals in the winning populations of convex cells
with small RFs. The size and shape of the C-shape “negative
part” may modulate the strength of the convex cell recurrent
circuit and impact the likelihood that one of the populations
win out.

MEDIAL AXIS CODING
Populations of neurons in IT maintain a selective response when
3D rotations of the same figure are presented, which has led to
the hypothesis that IT neurons may code shape with respect to a
3D interpretation rather than a set of 2D image features (Janssen
et al., 2000; Yamane et al., 2008; Hung et al., 2012). Tuning to
the medial axis in IT may similarly occur in 3D (Hung et al.,
2012), though presently available evidence is limited. While 3D
shape and medial axis tuning makes ecological sense, present data
also support coding of 2D figures. IT neurons are well known to
exhibit selectivity to line drawing displays and 2D projections of
3D shapes (Logothetis et al., 1995), as well as invariance to pla-
nar transformations of planar figures (Ito et al., 1995). Together,
these data support the joint coding of 2D and 3D shape in IT cor-
tex, though the primacy of one representation over the other is
unclear. For example, Yamane and colleagues found robust tuning
in IT neurons to shapes over a range of low-level image manipula-
tions, such as shading, but tuning specificity declined when depth
cues were removed (Yamane et al., 2008). On the other hand,
Kovacs and colleagues found consistent tuning to 2D caricatures
of 3D shapes (Kovács et al., 2003). The mechanisms in our model
are agnostic to the issue of 2D vs. 3D coding in IT. The aim of the
present paper was to test the core mechanisms of the model, so
we focused on simple 2D figures. Modules for binocular disparity,
shading, and other depth cues may be integrated into the model
to test for 3D selectivity. However, this is outside the scope of the
present paper.

MODEL LIMITATIONS
The manner in which teardrop cells combine their inputs likely
differs from that of neurons in cortex that respond to the medial
axis of figures. In particular, the distribution of RF sizes in each
integration direction is unknown, and additional physiological
work is required to determine whether regularity exists in how
neurons in integrate their inputs. Cortical magnification and
eccentricity further complicate the picture. An on-surround RF
organization also likely represents a significant simplification of
the great diversity of RF shapes in cortex.

We did not directly model inhibitory feedforward inputs,
although recurrent competition and feedback may afford func-
tionally similar behavior. Others have proposed that inhibitory
RF surrounds emerge through feedback, rather than feedforward
processes (Hupé et al., 1998). Our model only employs units
with convex on-surround RF organizations. Yet, V4 and PIT are
functionally diverse areas (Brincat and Connor, 2006; Hegde and
Van Essen, 2006), and neurons analogous to teardrop cells in
cortex may group their inputs in both convex and concave con-
figurations, which could increase the specificity of figure-ground
responses. Our simulations demonstrate that the on-surround
RFs are sufficient to detect the medial axis and obtain enhanced
responses to the interior of figures.

COMPARISON WITH OTHER MODELS
Our model is not the first to propose that the medial axis of a fig-
ure provides a means for the visual system to represent surfaces.
The medial axis serves as an attractor in the Bayesian model of
Froyen and colleagues for border-ownership signals such that they
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are directed toward the interior of a figure (Froyen et al., 2010).
Pizer and colleagues developed the Core theory in which a fig-
ure is decomposed by the visual system in terms of the boundary,
width, and medial axis (Pizer et al., 1998). Unlike existing models,
ours is the first to propose that interior enhancement represents
the mechanism by which the visual system codes a figural surface
with respect to its medial axis.

Another crucial difference is that our model presupposes the
recruitment of units in higher visual areas (e.g., PIT, AIT) to
determine the medial axis of a figure. A recent computational
study has proposed that the visual system only requires areas
V1 and V2 to determine the medial axis of a figure (Hatori
and Sakai, 2014). Border-ownership signals are first determined
among units in model V2, and then the medial axis is resolved
through synchronous feedback to area V1. That is, the medial
axis computation depends on border-ownership signals, unlike
in our model. While populations of neurons involved in coding
border-ownership may interact with those in our model in higher
visual areas, we demonstrated that the medial axis computation
need not depend on border-ownership. An elevated response
occurs along the medial axis in the model of Hatori and Sakai
(2014) because feedback signals from border-ownership units
at boundary contours to either side arrive simultaneously and
constructively interfere. It is unclear how the border-ownership
signals would be synchronized across cortex, though oscillation
is one potential mechanism. However, the existence of coherent
oscillations in the context of image feature representations has not
been proven and remains controversial (for a discussion see Craft
et al., 2007). Moreover, the model of Hatori and Sakai (2014) uses
units with a single spatial scale, so it unclear how the model would
determine the medial axis for figures much larger than the RF
sizes of V1 and V2 units. By contrast, cooperative and competitive
dynamics between units with multiple jittered RF sizes are funda-
mental in our mdoel for estimating the medial axis. Because units
with multiple RFs are at the crux of our model, the model results
are robust to figures that have a range of sizes (see Appendix 1 in
Supplementary Material).

Whereas the balancing of feedforward and feedback signals is
critical in the present model, other models have exclusively used
feedforward connections. Supèr and colleagues have presented a
spiking three level network that uses a combination of excitatory
inputs and surround inhibition between model layer connections
to determine border-ownership and perform figure-ground seg-
regation (Supèr et al., 2010). The model of Sakai and Nishimura
also performs border-ownership assignment using asymmetric
feedforward surround modulation: units signal a preferred side-
of-figure response when the figure falls within facilitatory rather
than the inhibitory subfield of the RF (Sakai and Nishimura,
2006). While surround modulation likely plays a crucial role
in figure-ground segregation (Walker et al., 1999), we believe
feedforward processing alone is too rapid to account for the
delayed interior enhancement latency. The effect does not occur
in primary visual cortex until ∼80–100 ms following the onset
of the figure (Lee et al., 1998), yet surround modulation only
requires ∼7 ms, an order of magnitude faster (Knierim and Van
Essen, 1992). In early cortical areas, feedforward signals propagate
at ∼2.24 m/s (Girard et al., 2001). For example, this means that a

feedforward signal only requires ∼9 ms to travel from V2 to V4.
Recurrent processing and feedback loops with higher visual areas
require additional time and may account for the difference in the
latency.

CONCLUSIONS
The enhanced response to the interior of a figure by neurons in
primary visual cortex may provide insight into how the visual sys-
tem performs figure-ground segregation. We presented a model
that tests the possibility that interior enhancement arises through
dynamical feedforward and feedback interactions between higher
visual areas. Our results support the idea that interior enhance-
ment arises in higher visual areas along the medial axis of a figure,
and the resulting signals may modulate the activity of neurons in
primary visual cortex through feedback. We showed that jitter in
RF size and position provides an efficient means for the visual
system to determine the medial axis of a figure.
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APPENDIX

FIGURE A1 | Teardrop cells demonstrate the size invariance property.

The size of the square is labeled “1” to “6,” from smallest to largest,
respectively. The activity of a convex cell (orange) and a teardrop cell (blue)
is plotted when the six squares of different sizes were presented within the

RF. The teardrop cell activity only changes modestly when squares of
different sizes are presented (size invariance), whereas the convex cell only
responds when the square reaches a certain size. The activity of each cell is
normalized separately to convey differences in the response properties.

FIGURE A2 | Figure-ground and medial axis detection performance

decrease when the orientation of convex cell inputs are scrambled.

The figure-ground performance (y axis) is plotted when the orientation
of the indicated number (0–7) of convex cell inputs (x axis) are randomly
scrambled. Performance is expressed relative to index scores garnered
when convex cells group their inputs from curved contour cells in the
shape of an annulus (depicted on bottom-left). Simulations were run 20
times on the 500 high complexity (HC) block displays and averaged for

each number of scrambled inputs. On a given run, a number of convex
cell inputs in random positions of the RF were replaced with other
curved contour cells with possibly different orientations (45◦
increments). Error bars correspond to ±1 standard deviation. The best
figure-ground and medial axis performance was achieved when convex
cells had an annulus-shape RF organization. Convex cell activity was
distributed closer to the boundary, away from the medial axis, when
inputs were scrambled.
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The categorization of real world objects is often reflected in the similarity of their
visual appearances. Such categories of objects do not necessarily form disjunct sets of
objects, neither semantically nor visually. The relationship between categories can often
be described in terms of a hierarchical structure. For instance, tigers and leopards build
two separate mammalian categories, both of which are subcategories of the category
Felidae. In the last decades, the unsupervised learning of categories of visual input
stimuli has been addressed by numerous approaches in machine learning as well as
in computational neuroscience. However, the question of what kind of mechanisms
might be involved in the process of subcategory learning, or category refinement,
remains a topic of active investigation. We propose a recurrent computational network
architecture for the unsupervised learning of categorial and subcategorial visual input
representations. During learning, the connection strengths of bottom-up weights from
input to higher-level category representations are adapted according to the input activity
distribution. In a similar manner, top-down weights learn to encode the characteristics of
a specific stimulus category. Feedforward and feedback learning in combination realize
an associative memory mechanism, enabling the selective top-down propagation of a
category’s feedback weight distribution. We suggest that the difference between the
expected input encoded in the projective field of a category node and the current
input pattern controls the amplification of feedforward-driven representations. Large
enough differences trigger the recruitment of new representational resources and the
establishment of additional (sub-) category representations. We demonstrate the temporal
evolution of such learning and show how the proposed combination of an associative
memory with a modulatory feedback integration successfully establishes category and
subcategory representations.

Keywords: neural model, category learning, subcategory learning, unsupervised learning, feedforward and

feedback processing

1. INTRODUCTION
Stimuli presented in isolation cause cortical responses by feeding
a representation defined by the feature arrangement that is con-
tained in the current scene. The strength of the response depends
on its contrast but is influenced by the local context in which it
is embedded. Such (local) context information is integrated and
thus made available at a neural site via lateral intra-cortical inter-
actions, preferentially through long-range associative interactions
in the superficial layers of cortex (Self et al., 2012). Larger context
is integrated through the hierarchical processing of inputs over
several stages of the cortical hierarchy where feature specificity of
the neurons becomes more and more specific, integrating over
an increasingly more widespread space-feature domain (Markov
and Kennedy, 2013). At earlier stages, the result of such fea-
ture integration is made available via top-down feedback to
merge feature representations of higher levels with spatially more

localized responses from initial filtering. Such convergence of
feedforward and feedback streams of activation has recently been
demonstrated to occur at the level of individual cortical columns
(Mountcastle, 1997; Larkum, 2013).

Feedback signals tend to modulate the responses of acti-
vations at the earlier representations of raw feature presence
(Larkum et al., 2004; Self et al., 2013). Modulating interactions
are a common principle of neuronal interaction, which have
been observed at different levels of cortical processing, subserv-
ing different cognitive computational functions, such as atten-
tion, figure-ground segregation, or grouping (Roelfsema et al.,
2007; Poort et al., 2012). However, the precise functional role of
feedback signals along downstream pathways is largely unclear
and a topic of intense research investigation. Specific theoretical
frameworks have been proposed that receive support by recent
experimental investigations (Markov and Kennedy, 2013). One
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such theoretical framework proposes that feedforward sensory
activations are amplified by matching feedback such that those
cells yield enhanced activations in a competition of cells, that
have received a competitive advantage via modulating feedback
(biased competition; Girard and Bullier, 1989; Desimone, 1998).
Another framework considers the role of feedback as a predic-
tive signal in which a template is activated that predicts the
expected input given the evidence derived from current bottom-
up input signals. The interaction of feedforward and feedback
signals reduces the residual discrepancy between the different sig-
nal streams (Ullman, 1995; Rao and Ballard, 1999; Bastos et al.,
2012). Overall, the literal difference between these model frame-
works lies in the different roles feedback exerts on the bottom-up
driven representations, although under certain conditions the two
frameworks yield two variants of the same generic principles
(Spratling, 2008, 2014).

In this work, we investigate learning and adaptation mech-
anisms in hierarchical cortical systems to develop a functional
account for the role of feedback mechanisms. More specifically,
we address the role hierarchical feedback may play in the online
learning of visual representations. The study builds upon our
previous modeling of a generic cortical architecture at the level
of cortical columns. Model areas are defined by regular grids of
interconnected columns, which are combined to define cortical
subsystems, each composed of distributed networks of intercon-
nected areas. Each model column is described at a mesoscopic
level considering a compartmental structure that subdivides a
cortical site into an input stage of specific signal filters, as well
as superficial and deep layers as columnar compartments. Within
this framework, feeding input signals drive the activity of columns
and their lateral interactions. Feedback signals are thought to
act in a modulating fashion so that responses at higher level
cortical stages alone cannot generate activations in earlier rep-
resentations (thus implementing a no-strong-loops principle;
Crick and Koch, 1998). However, we demonstrate that interac-
tion between different groups of cells allows to segregate the
feedback signal strength that modulates the feedforward input
activation such that the strength of feedback could be traced to
serve as a signature how the expectations or predictions con-
verge to the activation distribution of the driving input. The
feature specificity of neurons in a cortical column is estab-
lished through a learning mechanism that evaluates correlative
activation in a scheme of modified Hebbian weight adaptation
(Grossberg, 1988). During learning the connection strengths of
bottom-up weights (to propagate converging driving input sig-
nals) are adapted. The applied learning scheme imposes a con-
straint such that the weights conserve their total energies so
that variable input that is distributed over a population of neu-
rons in columns does not lead to any bias in the incremental
input segmentation. Thus, segmentations are allowed to build
different and partly overlapping categorical patterns in which
the total energy of the bottom-up input weights is normalized.
The recurrent feedback from higher level representations gen-
erates a prediction, which consists of a pattern of the expected
input activation, that drives the receiving representation of a
column best. For that reason, the modulatory top-down feed-
back connections are here learned by using a slightly different

weight adaptation mechanism. The feedback weights define a
top-down projective field, which represents the expected average
input activity distribution of the cell. Taken together, feedforward
learning enables the generation of prototypical form pattern rep-
resentations, whereas feedback weights encode the characteristics
of the category a stimulus is currently assigned to by the visual
system. Thus, feedback and feedforward learning in combina-
tion realize an online associative memory mechanism, allowing
the separation of an input stimulus and an according prototyp-
ical representation (see Carpenter, 1989). Using a modulation
mechanism, the differences between an input pattern and an
internal category representation are amplified in the input sig-
nal, yielding category building, consolidation, or refinement. The
framework thus defines an important building block for the auto-
matic incremental learning of visual categories (at different stages
in the visual hierarchy). The compartmental structure and the
neuronal interactions allow to stabilize the learning to prevent
oscillatory learning as well as effects of overshadowing exist-
ing representations, connoted as the plasticity-stability dilemma
(Grossberg, 1988). Using simple form patterns as input stimuli,
we demonstrate that the model allows to automatically distin-
guish and refine the encoding of overlapping patterns and to
trigger the learning of new categories when the input patterns
differ significantly.

2. GENERIC MODEL ARCHITECTURE
2.1. OVERVIEW OF THE MODEL COMPONENTS AND FUNCTIONAL

ARCHITECTURE
The function of the proposed network architecture has been dis-
cussed in the previous section in order to motivate key aspects
of automatic acquisition of shape and object representations and
how underlying cortical structural principles and mechanisms
might contribute to its realization. In this section we present
formal model mechanisms as as a sketch of how the process-
ing might be implemented dynamically. The basic structure of
the generic model architecture is defined by three layers, each of
which consisting of sheets of mutually interconnected computa-
tional elements (see Figure 1). These layers in the model roughly
correspond to areas in cortex. Henceforth, we will address these
stages by calling them layers or areas, given the particular con-
text in the text. In the three layer architecture, the input layer is
sketched like a simple replica of the input field fed by the current
stimulus. The inclusion of such an explicit layer implicitly states
that it may represent the result of some complex preprocessing
that transforms the raw input into activity distributions referring
to certain feature dimensions represented in a distributed fash-
ion in (visual) cortex. As the same structure and composition of
abstract columns can be replicated and more fine-tuned at differ-
ent levels of cortex-like processing, we suggest that the outlined
model architecture is generic in its structure and function. The
computational elements in layers two and three both consist of an
abstract model representation of cortical columns. Each of such
columnar units itself is organized in a cascade of three process-
ing stages: (I) input filtering, (II) activity modulation, and (III)
pool normalization (details of the functional properties are dis-
cussed in, e.g., Neumann and Sepp, 1999; Bouecke et al., 2011;
Brosch and Neumann, 2014a,b). These cascade stages roughly
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A

B

FIGURE 1 | Model architecture. (A) shows the overall structure of the
proposed model, which is composed of interconnected cortical columns,
subdivided into a compartmental structure of three processing layers. The first
layer propagates input activities s to the second layer, where they are
combined with a residual signal derived from feedback activities emitted from
layer 3 and the current activity gu (u). After normalization, layer 3 category cells
perform a correlation of the current layer 2 activities and their respective
synaptic input weights. The cell with the strongest activation gv (v) is then
selected by a winner-take-all (WTA) mechanism for weight adaptation and

activity propagation. In principle all of the model layers consist of a three-stage
processing cascade as illustrated in (B). The cascade comprises an initial input
filtering (stage I), the modulation of the activity (stage II) and a final pool
normalization (stage III). Re-entrant feedback from higher level areas is
incorporated in stage II where the current activity is modulated by (1 + netFB).
This kind of feedback integration is essential, since it results in an asymmetry
of the roles the feedforward and the feedback signal play in the signal
processing. As illustrated in the table on the right-hand side of (B), without the
presence of a feedforward signal, a feedback signal cannot evoke any activity.

correspond to the division of cortical areas, with their six layers
(Lui et al., 2011), considering the layer of terminating bottom-up
input, as well as the superficial and the deep layers of cortex (Self
et al., 2013). Each of these stages is represented by a model neuron
that itself is a single-compartment dynamic element with gradual
activation dynamics representing the average potential of a group
of mutually coupled neurons. A firing-rate function g( · ) con-
verts the potentials into an output activation. Feedforward and
feedback signal streams are combined at the level of individual
columns (Larkum, 2013; see Brosch and Neumann, 2014a for a
model implementation). In the proposed architecture, the second
layer combines the input multiplicatively with a residual signal
that is derived from the current input pattern and a feedback sig-
nal emitted from the successive layer 3 which is biased by a tonic

activity level (Eckhorn, 1999; Neumann and Sepp, 1999). Thus,
the feedforward signal gates the re-entrant top-down signal so
that the gain of existing activity can be increased by matching
feedback signals. Feedback signals alone, however, cannot gener-
ate any activation for void bottom-up signal input. The feedback
signal is generated here by a residual template, which contains
the difference between the expected input (of the winning cate-
gory node) and the current bottom-up input signal. As long as
the difference does not vanish, the feedback mechanism leads to
an increase in the activity gain of the current input. This mecha-
nism deviates from the scheme described in e.g., (Bouecke et al.,
2011), where the top-down signal is used instead of the residual
signal. However, the dynamic properties of the non-linear circuit
are retained.
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Apart from the rather detailed network structure for generat-
ing an activation dynamic, the bidirectionally coupled network
architecture is capable to adapt its connection weights, and is
thus able to learn new category and subcategory representations
as well as the expected average input distributions that have
been established to drive a specific target category representation.
In layer 3 of the generic architecture, category and subcategory
representations are established using Hebbian learning mecha-
nisms. Here, two complementary synaptic weight distributions
are learned, each serving a different purpose within the proposed
network. The feedforward synaptic weights are intended to build
the category and subcategory representations during training,
whereas the feedback weights are used to propagate an internal
representation of the currently best matching category back to
layer 2. This allows the estimation of the difference between the
current input and the category assigned to the input after the
feedforward sweep. Thus, layer 2 cells are able to combine the
input with the derived difference signal and potentially evoke
the activation of a different category/subcategory cell at the level
of layer 3.

We split our presentation of the detailed model components
into two major parts. First, we describe the activation dynam-
ics, i.e., the formal definition of the generation of activities in
each model computational element along the structure outlined
in the previous paragraph. The activations are dependent on the
input, the weightings of the spatial couplings for the input, and
the current state, or activation of a model neuron. We empha-
size how the incorporation of top-down feedback signal pathways
can achieve rich and stable computations in such a network
architecture. Second, in order to automatically acquire behav-
iorally relevant feature and category representations, the system
can learn by adapting the weightings of the connection patterns
between the model areas. We describe the weight, or learning,
dynamics separately by focusing on the formal description of
the weight adaptation and their key functionality. We finally link
activation and learning dynamics to emphasize the capability

of such building blocks for autonomous learning in cortical
architectures.

In essence, category and subcategory learning is enabled using
two complementary core mechanisms. First, an associative mem-
ory is realized through the combination of an instar with an
outstar learning scheme (compare Carpenter, 1989; see Figure 2).
This allows the assignment of a given input to the currently best
matching internal representation, as well as the propagation of the
corresponding feedback pattern to re-enter at an earlier process-
ing layer. Second, the differences between an input signal and the
pattern associated with the best matching internal representation
of the input define the modulatory signal to enhance the gain of
the bottom-up feedforward signal.

In the following, we first describe the overall properties of the
three-stage processing cascade, which forms the generic building
block for all of the model layers.

2.2. ACTIVATION DYNAMICS
2.2.1. Three-stage processing cascade
The first stage of the model cascade performs a linear filtering
of the input. To model the response r of a cell, we calculate the
weighted sum on the input to a cell, as defined by

r =
N∑

j = 1

Kj · sj, (1)

with N the number of input cells with activities s, which are mod-
ulated by the weight distribution K. Within the proposed model,
the filtering step either results in the propagation of the impulse
response to a given input (for layer 2 cells) or K corresponds to
a weight distribution derived from the input statistics (for layer 3
cells, see Section 2.3.1).

At the second stage of the cascade, responses from the previ-
ous filtering are modulated by re-entrant input from higher-level
model areas. Modulation is thereby performed in a way, such that

FIGURE 2 | Network plasticity. Model layer 3 cells establish categorial
and subcategorial representations using Hebbian learning in combination
with a modulatory feedback mechanism. As shown on the left-hand side,
they realize an associative memory by combining instar and outstar
learning schemes. The afferent connections weights win are used to
select the best matching representation to a given input. The weights

projecting away from the cell wout are incorporated in the top-down
feedback to layer 2 cells. For a given stimulus, only the cell with the
highest activation is selected for weight adaptation. On the right-hand
side, exemplary weight matrices are shown after several training steps.
The matrices were obtained during the simulation of Experiment 1 (see
Section 3.1).
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only existing activities in an input signal can be amplified (and
thus activities cannot emerge solely provoked by a feedback sig-
nal). With r being the unmodulated driving signal and netFB being
the strength of the feedback signal, the modulated response of a
cell is given by

rFB ∝ r · (1 + netFB). (2)

This kind of feedback incorporation assures that if r = 0 no sig-
nal is generated as output, independent of the strength of the
feedback netFB. On the other hand, the input signal r is left
unchanged in the absence of any feedback signal (i.e., netFB = 0,
see Figure 1B).

Prior to the final stage of the processing cascade, we apply a
transfer function to convert the responses into a cell activation
level. For simplicity we employ a linear transfer function at layer 2
of the proposed model, whereas at layer 3, a non-linear sigmoidal
transfer function is used.

At the final stage of the processing cascade, activity normaliza-
tion through divisive mutual inhibition within a pool of neurons
(shunting inhibition) is applied. In its dynamic formulation, the
rate change of the a signal rnorm

j depends on the current activa-
tion level rj and the amount of inhibitory input activation in the
pool qj

ṙnorm
j = −αr · rnorm

j + βr · rj − rnorm
j · qj (3)

q̇j = −qj + ·∑M
k = 1 rk · �

pool
jk , (4)

with M denoting the size of the incorporated population in the

neighborhood of location j and the weighting function �
pool
jk . The

constant βr controls the scale of the normalized signal, αr denotes
the passive decay rate.

In the following, we first describe the forward sweep through-
out the proposed model layers. After the functional differences
between the different model layers have been described in detail,
we will emphasize the feedback connections and their role for the
task of category and in particular subcategory learning.

2.2.2. Model layer 1/2
Layer 1 and layer 2 follow a pairwise connection scheme, such that
each input cell in layer 1 is only connected to exactly one cell in
layer 2 (see Figure 1). At the level of layer 2, the linear filtering step
described in Equation (1) is equal to an identity function. Thus,
the response of a layer 2 cell is defined by the following equation:

u̇j = −αu · uj + βu · sj − uj · qj, (5)

where sj denotes the output of a layer 1 cell, uj describes the layer
2 cell response which relates to the membrane potential of real
cells (j denoting the cell position). The constant αu denotes the
passive decay rate, whereas βu describes the input scaling fac-
tor. The potentials are converted into an activation level, or firing
rate, by the transfer function gu(uj) (see Brosch and Neumann,
2014a for a formal specification and analysis). Here, we employ
a linear transfer function with rectification such that no negative
responses occur,

gu(uj) = [
uj
]+

, (6)

with [u]+ = max(u, 0). The competitive interaction against a
pool of cells to accomplish activity normalization is defined as

q̇j = −qj +
N∑

k = 1

gu(uk) · �
pool
jk , (7)

with N denoting the size of the incorporated population in the

neighborhood of location j, weighted by �
pool
jk . Without the incor-

poration of any feedback signals, layer 2 cells solely perform an
activity normalization on the output activities s of layer 1 and
propagate the result to layer 3.

2.2.3. Model layer 3
Layer 2 and layer 3 cells form a complete bipartite connection
graph with connections in both directions (see Figure 1), with
corresponding synaptic coupling strengths win for feedforward
and wout for feedback connections. The output of layer 2 gu(u)
is filtered by the feedforward weights win

ji to generate the strength
of the response vi of a layer 3 cell, which finally enters a competi-
tion with the surrounding pool activation (u denoting the field of
input activities represented as a vector), as defined by:

v̇i = −αv · vi + βv ·
N∑

j = 1

gu(uj) · win
ji − vi · qi, (8)

with the passive decay rate αv and the input scaling factor βv.
The response is then converted into an activity level using the
non-linear sigmoidal transfer function gv with the parameters κlog

(steepness) and μlog (mean response level),

gv(vi) = 1

1 + eκlog·(μlog−vi)
. (9)

As in layer 2, the final competition for activity normaliza-
tion is defined by a non-linear competition of target activity
and the integrated activation over a pool of neurons, which is
determined by

q̇i = −qi +
M∑

k = 1

gv(vk) · �
pool
ik , (10)

with M denoting the number of cells in layer 3 and the weighting

function �
pool
ik .

2.3. NETWORK PLASTICITY
In the previous part we have briefly introduced the formal
description that covers the activation dynamics of the model
mechanisms in the suggested generic architecture. As already
mentioned, the architecture consists of three layers that roughly
correspond to model areas of visual cortex. As outlined in
Figure 1, the first area represents the input, that can be the raw
responses of preprocessing the input directly (like in the early
stages of the visual hierarchy, e.g., V1 and V2) or the output
responses from a cascade of already more sophisticated pro-
cessing to build intermediate level representations (like in the
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higher stages of the visual hierarchy, e.g., V3 and V4). The sec-
ond and third model areas in the model layout are connected
bidirectionally representing feedforward and feedback sweeps of
signal propagation in cortex (Lamme and Roelfsema, 2000). We
have already explained how the two counterstream signal flows
converge to build representations of integrated bottom-up evi-
dences (from signal processing) and top-down predictions or
expectations (generated by higher level stages of category repre-
sentations). In this part we equip the network architecture with
mechanisms of adapting the connections to learn representations
in specific input weights. We suggest here that learning occurs
along the feedforward as well as the feedback pathways (an outline
of the learning architecture is shown in Figure 2). The function-
ality behind such a, again generic, principle is that feedforward
connections learn weighting profiles that increase the probabil-
ity for an input activation pattern to generate amplified responses
in the recipient unit. Likewise, learning of feedback connections
is intended to build up a representation in which source node
activations (at the higher-level stage of the architecture) will gen-
erate a distribution of (pre-) activations as the expected average
activity at the input stage that drives the node. The expectation is
thus represented in the top-down connection weights (see Layher
et al., 2014 for a model learning architecture that follows the same
generic principles). Here, we develop a mechanism with a slightly
different emphasis. The network aims to develop categories and
also (later) to advance the automatic establishment of subcate-
gories driven by significant local deviations of the already existing
category representation. Therefore, the signal that is carried by
the top-down feedback connections needs to be transformed into
a residual signal such that the difference from the expected activa-
tion pattern is registered. We suggest that such residual patterns
are generated at the neuronal activation pattern, instead of the
weighting pattern.

In the following, we present the formal descriptions of the
mechanisms used for the weight adaptation. We also briefly sketch
how these relate to achieve the target representations for the
desired bottom-up and top-down processing. The adaptation of
the connection weights, for both feedforward and feedback, can
be considered for individual neuronal sites in layer 3: The recep-
tive field, or fan-in structure, is defined for connections along
the bottom-up signal transmission that converge on a target neu-
ron, u → v. The projective field, or fan-out structure, on the other
hand, is defined for connections along the reverse direction that
spread out from the target neuron back to the previous stage,
v → u (compare Carpenter and Grossberg, 1987b; Lehky and
Sejnowski, 1988 for discussions of the underlying function of such
connection principles). The activity dependent adaptation rules
of such connection weights, namely feedforward, win and feed-
back wout weights, are governed by modified versions of Hebbian
correlation learning principles (Hebb, 1949). These modifications
lead to stability and proven convergence properties and it can be
shown that the learning rules optimize some target functionals.

The target neurons at layer 3 (with the adaptable fan-in and
fan-out connections) are considered here to represent categories
in a classification or recognition mechanism. For simplicity, we
consider learning by weight adaptation that is allowed only for
the category node that is maximally activated, as in many other

related learning paradigms (e.g., Kohonen, 1982; Carpenter and
Grossberg, 2003). Such a model neuron is selected by a simple
maximum selection operation, or winner-take-all (WTA) mech-
anism (Grossberg, 1973) and the weight adaptation is triggered
subsequently,

�(gv(vk)) =
⎧⎨
⎩

1 if k = arg max
i = 1...M

gv(vi)

0 otherwise.
(11)

It should be noted that the WTA selection is chosen here for sim-
plicity. As an alternative, one could use a softmax mechanism as
well (e.g., Roelfsema and van Ooyen, 2005), without changing
the overall functionality of the approach. The specific learning
rules for feedforward and feedback connections are presented
below.

The learning of the feedforward weights win, as well as the
feedback weights wout is realized using Hebbian learning princi-
ples, which are described in the following.

2.3.1. Learning of feedforward connections
We utilize a variant of Hebbian correlation learning which pre-
vents the changes of connection weights to grow without bounds.
The stabilization is here achieved by a forgetting term that reduces
the weight proportionally to the postsynaptic cell activation. The
weight change for the receptive fields is formally defined by

ẇin
jk = �(gv(vk)) · ηin · gv(vk) · (gu(uj) − gv(vk) · win

jk ). (12)

The r.h.s. of the equation is defined by the switch �( · ) to
enable/disable neurons for adaptation of their weights and a
learning rate ηin. The extended Hebbian correlation term is

defined by gv(vk) ·
(

gu(uj) − gv(vk) · win
jk

)
. In other words, the

learning is gated by the activation of the postsynaptic neuron.
Here, the Hebbian term gu(uj) · gv(vk) is combined with the for-

getting term gv(vk)2 · win
jk to balance the temporal change and

bound the growth of the cell’s synaptic input weights. It has been
demonstrated that such a learning mechanism extracts the first
Eigenvector of the input distribution (Oja, 1982, 1992). Another
property of the Oja learning rule is of even more interest here:
The learning of the bottom-up feedforward weights approaches
a fan-in connection pattern in which the weight energy is con-
served (Dayan and Abbott, 2005). The fan-in weight vector win

k is

adapted over time to reach equilibrium, such that limt→∞ ẇin
k =

vk · u − γ v2
k · win

k = 0 (with γ as a positive constant value that
scales the balancing component). The equilibrium weight energy
is then

‖win
k ‖2 = 1

γ
. (13)

Assuming γ = 1 we get a unit length for the input weights to
single category nodes. This, in turn, prevents input activation
distributions to bias the output activity at the category represen-
tation, given that the input activity distribution is normalized as
well. The latter property is achieved by the normalization stage
of the pool interaction defined in the activations dynamics of the
network stages above.
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2.3.2. Learning feedback connections
Again, we utilize a stabilized Hebbian weight adaptation formal-
ism. In its dynamic formulation, the weight changes for projective
fields is formally defined by

ẇout
kj = �(gv(vk)) · ηout · gv(vk) · (gu(uj) − wout

jk ). (14)

As for the adaptation of the receptive field, or fan-in, weights
(Equation 12) we utilize the switch �( · ) to enable/disable weight
adaptation and a learning rate ηout for the projective, or fan-
out, weights. The extended Hebbian term is here defined by

gv(vk) ·
(

gu(uj) − wout
jk

)
. The learning is gated by the activation

of the neuron that represents the category, which is presynap-
tic to the projective field considering the representation gener-
ated for the top-down feedback connections. Unlike the learning
rule discussed in Equation (12), the forgetting term to balance
the temporal change is controlled by the weight only. Such a
weight adaptation mechanism defined in Equation (14) has been
suggested for gated steepest descent learning in long-term mem-
ory formation, e.g., in Adaptive Resonance, or ART networks
(Grossberg, 2013b). The adaptation of the fan-out weight vec-
tor wout

k over time reaches equilibrium, such that limt→∞ ẇout
k =

vk · u − γ vk · wout
k = 0 (with γ as a positive constant value that

scales the balancing component). The equilibrium weight energy
is then

wout
k = 1

γ
u. (15)

Assuming γ = 1 we achieve a projective field, or fan-out, pat-
tern for the connection weights corresponding to the (average)
expected input activation represented in u. Activation of a cate-
gory node, thus, biases the receiving postsynaptic model neurons
according to the predicted pattern the category expects to receive
for its best tuning input. Feedback learning may also utilize the
learning rule of Oja as for learning the feedforward connections
described above. In this case the weight distribution of the pro-
jective field would converge to the first Eigenvalue of the expected
input, instead of its mean. We have tested this and observed sim-
ilar network performance. The latter implementation argues in
favor of symmetric learning mechanisms for bottom-up and top-
down connection weights. We decided to use a version in which
the feedback projections approach the expected average input
activation that represents the tuning of the individual categories,
as in Equation (15).

2.4. FEEDBACK FOR SUBCATEGORY LEARNING
The mechanisms presented so far contributed to the feedfor-
ward as well as a generic feedback sweep of the model. The
feedback sketched so far generically considered the modulatory
influence a feedback signal has on any feedforward input rep-
resentation. The mechanism emphasized the symmetry breaking
property in which bottom-up signals gate the activity generation
(at stage 2 of the processing cascade described in Section 2.2.1)
which can be selectively amplified by the presence of matching
feedback signals. Here, without incorporating the feedback from
layer 3, the learning rules defined in Section 2.3 would success-
fully learn representations of input categories, but without the

potential of further refining them on a subcategorial level. As
stated earlier, the feedback allows the estimation of the differ-
ence between the current input and the category assigned to the
input after the feedforward sweep. Thus, layer 2 cells are able to
combine the input with the derived difference signal. If the differ-
ence and the modulation strength after the feedback sweep is large
enough, learning is potentially triggered such that an associated
new subcategory is built using a so far unused layer 3 cell. The
enhancement of the layer 2 responses by modulating feedback
changes (Equation 5) to

u̇j = −αu · uj + βu · sj · (1 + λ · res
templ
j ) − uj · qj, (16)

where res
templ
j denotes the residual signal derived from the feed-

back netFB
j of the best matching category cell [selected by

�(gv(vk))] and the current activity gu(uj). λ is controlling the

influence of res
templ
j on uj and thus is crucial for the extent of the

difference between a modulated input and a category assigned in

the feedforward sweep. The residual signal res
templ
j is defined by

res
templ
j =

[
gu(uj) − netFB

j

]+
=
[

gu(uj) − �(gv(vk)) · wout
kj

]+
,

(17)

with [x]+ = max (0, x) denoting a rectification operation limit-

ing res
templ
j to positive values. A closer look at the presented model

dynamics may help us to reveal the potential roles that feedback
plays in the context of category learning. According to Equation
(17), the feedback signal acts as a predictive coding scheme,
since netFB

j expresses what the model expects how an input of
a given category looks like on average. On the other hand, the

expression sj ·
(

1 + λ · res
templ
j

)
in Equation (16) realizes a biased

competition mechanism, favoring input components, which are

in accordance with the residual signal res
templ
j . In essence, this kind

of feedback incorporation results in an amplification of the differ-
ences between the currently best matching internal representation
and the input. During learning, the difference between a category
representation and individual instances of the category increases
with the number of stimuli of the same category. If the effect of
this difference on the input is large enough, a new subcategory
representation is established.

3. RESULTS
In the following, we demonstrate the capabilities of the proposed
model in learning category and subcategory representations using
two categories of artificial input stimuli. As shown in Figure 3,
category A contains four variations of a pictographical face.
Category B is composed of four squares inclosing an either ver-
tically or horizontally oriented bar at different positions. Without
the loss of generality, we used very simplified stimuli to keep the
computational complexity and in particular the necessary pre-
processing steps as simple as possible. This allows us to keep the
focus strictly on the role which feedback might play in the task
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FIGURE 3 | Input stimuli. Two different categories of stimuli were used
as input to the model, each with a set of subcategories. Category A is
composed of four pictographical images of a face, only differing in the
shape of their mouth. Category B consists of four variations of a square

inclosing an either vertically or horizontally oriented bar at different
positions. The bottom row shows the intra-category union and
intersection for both categories, pointing out the differences and
similarities in each category.

of category and subcategory learning. The stimuli were generated
with the dimensions of 100 × 100 px with intensity values rang-
ing from 0 to 1. The number of input units in layer 1 thus is always
100 · 100 = 10000 units. As mentioned in Section 2, the cells in
layer 1 and those in layer 2 follow a pairwise connection scheme,
so that layer 2 consists of the equivalent number of 10000 units.
The number of layer 3 cells differs from experiment to experi-
ment. Note that in all experiments, there remained at least one
unused layer 3 cell after training, which was never selected for
weight adaptation. Thus, the number of units in layer 3 never was
a limitation to the establishment of a new category or subcate-
gory representation. During training, Gaussian noise with mean
μ = 0 and a standard deviation of σ = 0.05 was added on each
of the input stimuli, with values clipped to the range of [0, 1]. If
not stated otherwise, we used learning rates of μout = μin = 2−4

and a feedback gain factor of λ = 25. These values were found to
be a suitable balance between the learning speed and the influ-
ence of the feedback. The parameters of the logistic function as
defined in Equation (9) were set to μlog = 700 and κlog = 0.0075,
such that the transfer function results in a mean activation level
of gv(700) = 0.5 when roughly half of the input energy of one of
the used stimuli is present in the input signal. The weights win

and wout of the category cells at model layer 3 were initialized
with random values drawn from a normal distribution with mean
μ = 0.75 and a standard deviation of σ = 0.1, allowing empty
category cells at layer 3 to be activated by just a small number of
active input cells.

For the ease of computational complexity, we simulate
the dynamics described in Section 2 using the correspond-
ing steady-state equations. An in depth analysis of the acti-
vation dynamics can be found in Brosch and Neumann
(2014a). Within the simulations, one (training) step—or
iteration—corresponds to the presentation of one input stim-
ulus, consisting of one feedforward and one feedback sweep
through the model. Activities of the layer 3 cells are evalu-
ated after the feedforward and after the feedback sweep and
both trigger the adaptation of a categorial and/or subcategorial
representation.

In total, we performed four experiments, each highlighting
on a different aspect of the proposed model and learning mech-
anisms. In the first experiment, we show in principle how the
model successfully learns a representation of a category of visual
input stimuli and decomposes the category into subcategories.
The second experiment is intended to demonstrate the invariance
of the proposed learning mechanism to the order in which the
stimuli are presented. Experiment 3 focuses on the importance of
the feedback signal for the task of subcategory learning by con-
trasting Experiment 2 with a nearly identical experimental setup.
The sole difference to Experiment 2 is that the incorporation of
feedback is suppressed by setting the feedback gain parameter λ

to λ = 0. In the last experiment we demonstrate how the model
generalizes across the number of categories present in the input
data and show how it successfully establishes representations for
two categories of visual input and their subcategories.

All simulations were carried out using Mathworks Matlab
R2014a.

3.1. EXPERIMENT 1
We trained the proposed model using the rectangular stimuli of
category B as shown in Figure 3. The stimuli were presented in
epochs of four blocks of sorted stimuli, each block containing
100 instances of one of the four rectangle variations. At model
layer 3, six cells were used during the training. To slow down
the weight adaptation process and highlight on the establish-
ment of new subcategory representations, we used a learning
rate of μout = μin = 2−5, set μlog to 800 and initialized win and
wout with random values drawn from a normal distribution with
μ = 0.5 and σ = 0.1. The activities of the layer 3 cells after the
feedforward and the feedback sweep are shown in Figure 4 along
with the corresponding weights win and wout after several training
steps. Over the first training steps, the model develops a combined
representation of the first and the second rectangular shape con-
taining information about the surrounding rectangle, as well as
portions of information about the interior of the two shapes. After
200 training steps, the effect of the learning mechanism starts
to be twofold. After the feedforward sweep, the overall category
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FIGURE 4 | Experiment 1. The model was trained using four rectangular
shapes (see Figure 3, category B) as input stimuli. Stimuli were presented in
sorted blocks. Six category cells (color-coded) were initialized with random
weights. The first row shows exemplary input configurations s, along with
the corresponding residual signal restempl and the input signal u after
feedback modulation. In the second row, the activities of the six category
cells before the feedback sweep are shown. As can be seen, before the
feedback is effective on the input, only one cell (encoded in red) responds to

all input configurations. This cell represents the overall category cell. The
second row shows the activities after the feedback sweep. In the last row
the corresponding category cell weights are displayed framed by colors
according to the activity plots. It can be seen, that in the beginning all inputs
are learned into one category cell. After about 200 training steps, the effect
of the feedback is high enough to trigger the learning of a new subcategory
representation. This process repeats several times, until each subcategory is
represented by an own category cell.
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representation is adapted to the current input stimulus. On the
contrary, after the feedback sweep a subcategorial representation
is learned by recruiting an additional layer 3 cell. The effect of the
feedback signal now is large enough to suppress the outer rectan-
gular shape and highlight on the differences between the overall
category representation and the current input stimulus. This pro-
cess continues until all of the four input variations are represented
in an own subcategory cell. After learning, the feedforward sweep
always results in a high activation level gv(vi) of the overall cate-
gory cell that represents the generic shape (refer to the second row
of Figure 4). After the feedback sweep, however, the subcategory
cell representing the specifics of the particular input stimulus is
the one with the highest activation level.

3.2. EXPERIMENT 2
In the second experiment, the proposed model was trained using
the pictographical faces of category A (see Figure 3) as input.
Stimuli now were presented in random order. As in Experiment 1,
six category cells at model layer 3 were used. All training parame-
ters were set to their default values (see Section 3). Figure 5 shows
how category and subcategory cell representations are learned
during the simulation. Again, the residual signal restempl increases
with the distinctiveness of the already established category rep-
resentation and thus the effect of the feedback signal increases.
Already after 21 training examples, the difference between the
current input and the existing category cell is high enough to yield
a modulation of the input effective-enough to evoke the estab-
lishment of a new subcategory. This process repeats several times,
since after 127 learning iterations all of the variations of cate-
gory A are represented in an own subcategory cell. Altogether,
the model successfully learns category and subcategory repre-
sentations, even though the stimuli are presented in random
order.

3.3. EXPERIMENT 3
In a third experiment we conducted a simulation equivalent to the
one in the second experiment, but now with disabling the feed-
back signal by setting λ = 0 (see Figure 6). As expected, without
the feedback signal no subcategory representations are established
and just one overall category representation is learned.

3.4. EXPERIMENT 4
For the last experiment we used both categories A and B shown in
Figure 3 as input stimuli. The parameters were equivalent to those
described in Experiment 1 but now twelve category cells at layer
3 were initialized. Since the differences between the two types
of stimuli (circular and rectangular) are already large enough
before the feedback takes place, the model establishes two over-
all category representations and successively builds subcategories
to these two categories. Figure 7 shows the weights of the estab-
lished two category, as well as the respective four subcategory cells
after 1000 learning steps.

4. DISCUSSION
In this work we proposed a hierarchical architecture of cortical
feedforward and feedback processing that builds upon previous
work on the modeling of recurrent cortical dynamics (Neumann
et al., 2007; Brosch and Neumann, 2014a). Here, we particularly

focused on the issue how in such networks feature or category
representations could be automatically acquired by unsupervised
learning mechanisms, which are seamlessly integrated in the
recurrent architecture. The core computational elements assumed
are cortical model columns that are abstractly described by a
three-stage cascade of processing steps. The same elements have
been utilized as generic mechanisms in models of form and
motion processing, figure-ground segregation, as well as mod-
eling biological motion perception that fuses segregated form
and motion pathways (Neumann and Sepp, 1999; Bayerl and
Neumann, 2004; Raudies et al., 2011; Layher et al., 2014). As
a specific model feature, we have emphasized the role of feed-
back that modulates feedforward driving inputs such that their
gain is increased dependent on the degree of correlation between
feedforward and feedback signal activation. In conjunction with
subsequent pool normalization the modulatory feedback sweeps
realize a way of biased competition (Girard and Bullier, 1989;
Desimone, 1998; Roelfsema et al., 2002; Reynolds and Heeger,
2009). The model now incorporates learning mechanisms to
automatically build feature/category representations that are gen-
erated by the connection weights through adaptation.1 Such
learning allows to build representations that adapt their specificity
to the statistics of the sensory input patterns.

4.1. SUMMARY OF CONTRIBUTIONS
The main contributions of the work presented in the paper are
twofold. First, the investigated learning mechanisms occur in the
feedforward as well as in the feedback connections. These are
driven by bottom-up sensory input and top-down feedback sig-
nals to re-enter processing at earlier stages. The latter contain
context information that allows to embed local sensory input sig-
nals into a larger behavioral context and predictions generated
thereof. All this is in the spirit of multi-layer learning networks
as discussed in Hinton (2007). In that sense feedforward con-
nections will learn the specific configuration of an (average)
appearance of an input feature pattern that the learned cate-
gory is selectively tuned to. Considering static shape and form
input the underlying structural principles are based on the corti-
cal architecture of the ventral pathway with mutual interactions
between such distributed representations in different cortical
areas (Markov et al., 2014). The feedback connections, on the
other hand, also learn by adjusting their weights in order to
improve the predicted input pattern that maximally excites the
feature/category representation. Second, the top-down feedback
learning mechanism combines the modulatory feedback (Girard
and Bullier, 1989; De Pasquale and Sherman, 2013) with the con-
cept of top-down predictors that tend to minimize the residual

1We make the distinction here between feature and category representation in
order to emphasize the different locality of representations that are established
at different layers in a hierarchical network architecture. With increasing inte-
gration sizes of cells at different levels more information from previous stages
is integrated. The zones of lateral integration are more localized at earlier
stages, thus, we refer to the learning of feature representations. At later stages
the convergence zones may range over the full spatial input domain and,
therefore, the representations already cover categories that could be shape or
motion related.
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FIGURE 5 | Experiment 2. In the second experiment, we trained the model
using four variations of pictographical faces (see Figure 3, category A). In
contrast to Experiment 1, stimuli were presented in random order. The
display of the results is organized as in Figure 4. In addition, colored triangles

indicate the points in time, when a category or subcategory cell was selected
for weight adaptation the first time. Although the stimuli were presented in
random order, the model successfully separates the input stimuli into
subcategories.
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FIGURE 6 | Experiment 3. The simulation was performed with the
same setup as in Experiment 2. Only the feedback gain parameter
λ was adjusted to λ = 0, disabling any influence of the feedback
on the learning. As expected, the activation levels gv (vi ) before

(second row) and after (third row) the feedback sweep are
identical. Without the feedback modulation, no subcategory
representations are learned and only one overall category
representation is established.

error between feedforward sensory signals and the top-down pat-
tern (Rao and Ballard, 1999; Bastos et al., 2012). The idea behind
this concept is that weights will be increased when the predicted
pattern and the current input differ. The amount of this gain
increase depends on the residual difference between these two
patterns. The model defines the basis for more principled inves-
tigations how cortical sub-networks that are involved in different
tasks might be established. In own previous work (Layher et al.,
2014), distributed representations of spatio-temporal patterns in
the cortical form and motion pathway were learned for artic-
ulated or biological motion perception (Johansson, 1973; Giese
and Poggio, 2003). Here, sequence-selective representations were
established by learning representations of convergent feedforward
responses from form and motion representations. Also top-down
weights are learned in which the projective field reaches the two

separate pathways of form and motion. The principles proposed
in this work now allow to further develop the understanding of
how such complex distributed representations can be learned and
how average categories are learned together with subcategories for
components that deviated significantly from the average category
representation.

4.2. RELATION TO PREVIOUS MODELS OF CORTICAL LEARNING OF
REPRESENTATIONS

Learning of feedforward networks has been investigated inten-
sively before. Most importantly, the connection weights in multi-
layer networks have been trained by using backpropagation to
minimize the residual error of expected output given a spe-
cific input pattern (Lehky and Sejnowski, 1988, 1990; LeCun
et al., 1989). Such approaches require a teacher signal that
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FIGURE 7 | Experiment 4. Both stimulus categories shown in Figure 3 were
used as input to the model. The distributions of the input weights win are
shown after 1000 training steps for twelve category cells at model layer 3.

The model successfully established representations for all input variations of
both classes and two overall category representations, one for each input
category.

determines the desired target output. The assumption of a super-
visor involved in each teaching trial is biologically unrealistic in
general. For that reason, a mechanism that is based on rein-
forcement learning (Sutton and Barto, 1981; Doya, 2007) has
been suggested that combines an unspecific global reward-based
reinforcement signal with an attentional signal that is backpropa-
gated from the output layer to allow weight adaptation at those
units that have been involved in the stimulus-response map-
ping in the previous processing of the input signals (Roelfsema
and van Ooyen, 2005). Also, learning in hierarchical multi-
stage architectures for object recognition has been investigated.
Approaches range from random sampling of the input pattern
space (Riesenhuber and Poggio, 1999; Serre et al., 2007; Mutch
and Lowe, 2008; Serre and Poggio, 2010) to clustering techniques
to arrive at sparse representations of the input via additional
constraints on the connection weight patterns (Aharon et al.,
2006) or auto-encoding that minimizes the reconstruction error
of the input (LeCun et al., 1998). Recently, learning in multi-layer
networks, so-called deep hierarchical networks (Bengio, 2009),
has received renewed interest to build networks with high clas-
sification rate performance (LeCun et al., 1990; Hinton et al.,
2006). Representations in such networks are learned in a sequen-
tial manner by learning the connection weight between pairs of
layers, starting from the initial sensory-related level. Once learn-
ing converges, the next level connection weights are learned.
This procedures is recurrently applied until all connections have
been determined. The learning mechanisms are based on gradient
descent type, for example, realizing stage-by-stage backpropaga-
tion learning. Unlike these proposals, the network mechanism
here incorporates bidirectional learning of weights along the feed-
forward as well as the feedback path. The weight adaptation is
based on variants of Hebbian correlation learning. These variants
stabilize the growth properties of the input and output weight
vectors to the computational elements (model columns) in the
architecture. As a consequence, the representations built in the

connection patterns have specific interpretations: Along the feed-
forward path we assume an Oja learning scheme (Oja, 1982,
1992). As a result, the fan-in (or receptive field) weight energy of
the total input connections from the previous layer neurons tends
to be normalized for feedforward signal filtering. This ensures
that different input patterns balance their input weights such they
enter any subsequent competition or selection step in an unbi-
ased fashion. Concerning feedback learning, connection weight
patterns along the recurrent projection (corresponding to the
projective field of a feature or category, Lehky and Sejnowski,
1990) approach the average expected input. In other words, the
driving category representation generates a prediction pattern
that covers the expected input activation that tends to match the
tuning of the representation (Grossberg, 1980).

The proposed architecture is influenced by the conception
of adaptive resonance theory (or ART; Grossberg, 1980, 1987;
Carpenter, 1989). In a nutshell, learning in ART is organized in
stages of feedforward and a feedback sweep processing. During
feedforward processing the input signal is weighted by the con-
nection pattern, or filter, between nodes in the feature represen-
tation and the category layer. These weightings are initialized by
some random values. One category will gain a maximal input
from the feature representation activated though the input signal,
similar to the feedforward sweep in other networks (Rumelhart
and Zipser, 1985), and also in the model proposed in this paper.
Similarly, the self-organization of feature maps has also been
approached by means of connection weight adaptation in hier-
archically organized networks, establishing competitive processes
for automatic map formation (von der Malsburg, 1973; Kohonen,
1982). The category that is maximally activated will subsequently
suppress all other category representations by recurrent lateral
center-surround competition. With supra-linear firing-rate func-
tions such a competitive stage leads to a winner-take-all strategy
(Grossberg, 1973). The weightings along the feedforward path
can be adjusted to approach the (average) signal features. The
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feedback connections fed by the winning category node (the pro-
jective field) are then allowed to adapt their weights as well so
that they approach the input activation distribution. In other
words, the feedback connections learn the input that maximally
drives the currently activated category node to maintain a match
between the input and the expectation the category has about its
input patterns it is tuned to (resonance condition). If, instead,
any momentary input feature pattern maximally drives a cate-
gory with a top-down expectation pattern that does not match
the input, then a mismatch occurs and the combined bottom-up
and top-down expectation patterns annihilate. In order to now
select another existing category or recruit a new category item,
a reset wave is triggered that instantaneously shuts off the win-
ning category that was activated maximally but has a mismatching
representation in its projection field. This allows the top-down
weights of a newly selected category to adjust in order to now
better match the input that is coherent with the expected pat-
tern represented by the active category representation (for recent
comprehensive summaries and overviews of the ART principle,
see Grossberg, 2013a,b). Discrete implementations of ART net-
works for pattern recognition have been described for binary as
well as continuous input pattern representations (Carpenter and
Grossberg, 1987a,b). A more specific reference to possible bio-
physical mechanisms underlying the recurrent interaction and
learning has been described in Carpenter and Grossberg (1990),
while Molenaar and Raijmakers (1997) presented a continuous
time network implementation.

Several other network architectures use feedback connections
that can be adapted through a learning process, e.g., (Elman,
1990; Hinton et al., 2006; Hinton, 2007; Lazar et al., 2009; Rolfe
and LeCun, 2013). While Elman (1990) maps temporal feature
history into an explicit representation through recurrences, a
more recent approach by Lazar et al. (2009) utilizes a reservoir
of connected neurons in a large pool to learn representations
of temporal patterns. A read-out mechanism maps the inter-
nal state trajectories onto units through reduction of state-space
dimension and clustering of activities. This recurrent network
architecture with spiking model neurons emphasizes different
mechanisms in the learning of connections weights, namely a
simplified version of spike-timing dependent plasticity (STDP;
Gerstner et al., 1996; Bi and Poo, 2001; Caporale and Dan, 2008)
as unsupervised weight adaptation mechanism connecting exci-
tatory cells in the pool, a synaptic scaling mechanisms through
weight normalization, and an intrinsic plasticity mechanism for
firing threshold adaptation. Our approach makes use of similar
mechanism in the learning procedure. Here, we are concerned
with networks of gradual activation dynamics, which motivates
utilizing standard Hebbian correlation learning instead of the
STDP rule. Weight normalization occurs implicitly in our adap-
tation mechanisms by utilizing modified Hebbian learning. In
particular, as discussed in Section 2.3, the bottom-up learning of
receptive field weights for individual category nodes approaches
a weight energy (Equations 12 and 13). The intrinsic plasticity
in our scheme is accomplished through the normalization acti-
vations, or firing rates, by the pool of cells in a neighborhood
defined in the space-feature domain (compare Equations 5 and
6, Brosch and Neumann, 2014a). The model of Rolfe and LeCun

(2013) stresses the importance of acquisition of representations
of categories and subcategories, like in our model. Their network
realizes properties of deep networks establishing sparse represen-
tations of subcategories, like auto-encoder networks using binary
state neuronal elements (Hinton and Salakhutdinov, 2006), and
recurrently combine (hidden) representations and their predic-
tions (Hinton et al., 2006) (see Hinton, 2007 for a review).
Synaptic scaling (see a recent review in Tetzlaff et al., 2012) is
addressed here from the perspective of how the receptive and
projective fields learn a particular target activity distribution.
In the architecture proposed by Rolfe and LeCun (2013) two
types of units emerge that define parts and categories. The time
course of the serial learning mechanism suggests that the network
first establishes component representations mainly driven by the
input. Later and with a slow learning efficacy, categories emerge
that combine those units that belong to the category (while those
they do not belong to are inhibited). Our proposed network
architecture shares the idea of building hierarchical object repre-
sentations. The acquisition of categories and subcategory, or part,
representations operates oppositely: Categories are established as
new representations recruiting free capacities from the long-term
memory node reservoir in model layer 3 when the current input
is significantly dissimilar in comparison to already existing cate-
gories. The deviations from a larger category then lead to learning
subcategories and these are linked to their category representation
by the temporal signature of the activation. Thus, the proposed
model may start with only coarse-grained category knowledge,
which is subsequently refined when more detailed information is
available during the course of interacting with the environment.

While in these approaches the feedback connections serve to
incorporate activations over time, feedback in ART architectures
is intended to solve the stability-plasticity dilemma. The latter
summarizes the necessity that an adaptive system needs to acquire
or adapt to new evidence (or knowledge) and, at the same time, to
keep those previously acquired representations stable (to prevent
catastrophic forgetting). Our proposal differs from these previ-
ous model developments in several respects. In our architecture
we build upon an abstract though biophysically plausible model
of processing in cortical columns. The interaction between signal
activations in bottom-up and top-down sweeps is based on mod-
ulatory feedback that enhances those sensory signal activation
patterns which match the top-down template of activation that
is re-entered at earlier stages of processing along the hierarchy.
Thus, instead of a similarity calculation between signal patterns, a
biologically plausible gain adjustment is assumed (Sherman and
Guillery, 1998). The modulation signal we use for the amplifica-
tion of the input signals is calculated by the difference between
the current input signal and the top-down expectation pat-
tern. This effectively combines the key mechanisms underlying
the two current main theories of the role of feedback in cor-
tex: top-down modulation and biased competition is assumed
for the enhancement of the input gain. Here, the modulation
strength is controlled by the difference between bottom-up and
top-down signal, or the residual between these two activation pat-
terns. Steering the amount of weight adaptation by the difference
between signal and expectation template incorporates the flavor
of predictive coding approaches (Rao and Ballard, 1999; Rauss
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et al., 2011; Bastos et al., 2012). The logic behind this strategy is
that the relative enhancement is reduced monotonically the more
the top-down prediction signal approaches the bottom-up signal.
As a consequence, the update of the weights will more quickly
converge since both, feedforward and feedback, signal remain
approximately constant and the weighting pattern approaches
the prediction template. Consequently, no external reset mech-
anism is required that explicitly detects a mismatch discrepancies
by a threshold vigilance parameter, as in ART models. In our
proposal, the feedback modulatory dynamics and the learning
mechanisms automatically tune the average matching activation
of the responding category and also select the category or feature
representation. Furthermore, and potentially of even more inter-
est is the automatic establishment of categorical representations
that capture the average of the input patterns that can drive the
corresponding nodes in the columnar architecture. At the same
time, subcategory representations are established that represent
the significant differences in the detailed feature configurations
that differ from the average case. This has been demonstrated in
example cases (Section 3) in which, for example, faces are dis-
tinguished from non-faces at the categorical level. Smiling facial
appearances or faces where the eyes are closed are then also auto-
matically assigned to the average category by learning. However,
to distinguish the appearance differences new subcategories are
automatically established and learned. This selectivity is realized
by two core mechanisms. First, the realization of an associative
memory through the combination of an instar with an outstar
learning scheme (see Carpenter, 1989), which allows the assign-
ment of a given input to the currently best matching internal
representation, as well as the corresponding feedback pattern.
Second, the modulatory amplification of the differences between
an input signal and the feedback pattern associated with the best
matching internal representation of the input. If the amplifica-
tion after the feedback sweep is effective enough, the correlation
between the modulated input and an empty category cell will be
higher than to the category representation the input was assigned
to in the feedforward sweep. Thus, learning will be triggered for
the so far unused category cell and a new subcategory will be
built.

The computational mechanisms of activation and weight
dynamics support principles that have been predicted to min-
imize the computational efforts of visual systems to success-
fully deal with the complexity problem of perception (Tsotsos,
1988, 2005). The hierarchical organization of representations in
model areas, the receptive field properties of model columns,
the hierarchical pooling of spatially separated input representa-
tions, and the top-down feedback together with unsupervised
learning are structural principles that enable the visual sys-
tem to successfully cope with complex input stimuli that are
behaviorally relevant. The presented model is able to build the
underlying distributed representations at low, intermediate, and
higher levels in the cortical hierarchy by means of key cortical
principles.

4.3. FEEDBACK—MODULATORS AND PREDICTORS
The hierarchical model architecture proposed here is composed
of multiple model areas each of which is represented by a

three-stage columnar cascade model. The cascade consists of
input filtering, activity modulation of filter outputs by re-entrant
signals, and competitive center-surround interaction of target
cells against a pool of cells. The latter stage yields an activity nor-
malization for generating net output responses. Together with the
gain enhancement generated by input modulation via re-entrant
signals the network interactions achieve a biased competition
response characteristics (Desimone, 1998; Reynolds and Heeger,
2009; Carandini and Heeger, 2012). The proposed architecture
can be interpreted as an abstracted compartment representation
of the layered architecture of cortical areas (Self et al., 2012). The
interplay between the normalization of activities and the selective
enhancement of activities via feedback establishes the dynam-
ics of cortical processing. Activity normalization at the output
stage is computed by a mechanism of shunting inhibition, like
the non-linear divisive mechanisms proposed in Carandini and
Heeger (1994); Carandini et al. (1999); Kouh and Poggio (2008);
Carandini and Heeger (2012) (see Brosch and Neumann, 2014a
for a formal analysis of the computational properties). Feedback
signals generated at higher-level cortical stages or parallel pro-
cessing pathways provide context information that is re-entered
at the current stage of the processing hierarchy (Grossberg, 1980;
Edelman, 1993). While the presence of feedback connections
is a well-established principle of cortical signal processing and
integration, the exact role of how such feedback signals are re-
entered at the earlier stages is a controversial topic of ongoing
investigation. We adopt here two principles from the two major
frameworks of the functionality of feedback, namely modula-
tory feedback to bias subsequent competitive mechanisms and
predictive coding.

How feedback signals interact and combine with signals deliv-
ered in the driving feedforward stream is yet unresolved. Two
major conceptual ideas have been developed, each receiving sup-
port by experimental evidence (Markov and Kennedy, 2013). In
a nutshell, biased competition suggests that signals in the feedfor-
ward pathway are enhanced by top-down templates (represented
by activity distributions) such that they receive a competitive
advantage in subsequent mutually competitive processes. As a
result, feature responses that receive feedback have a higher gain
which, in turn, leads to stronger suppression of activities that
were not enhanced (Girard and Bullier, 1989; Desimone, 1998;
Roelfsema et al., 2002; Reynolds and Heeger, 2009). In predic-
tive coding the goal of computation is to reduce the residual
error between the feedforward signal and the (top-down) tem-
plates generated at a stage that generates an expectation about
the most compatible input. This idea is based upon predictor-
corrector mechanisms in optimization (Ullman, 1995; Rao and
Ballard, 1999; Bastos et al., 2012). As a consequence the state
trajectory of such systems and their activations are different:
While in biased competition the activations of the representa-
tions that match the predictions will increase, they will decrease in
the predictive coding framework. Interestingly, Spratling (2008)
has shown that these two approaches are functionally equivalent
when the feedback in the biased competition is additive. Here, we
utilize multiplicative feedback based on the linking mechanism
suggested by Eckhorn et al. (1990); Eckhorn (1999) to account
for activity synchronization in networks of spiking neurons and
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further evidence that signal amplifications occur at the level of
cortical pyramidal cells (Larkum, 2013) (see a model description
in Brosch and Neumann, 2014b that accounts for these findings).
An influential paper by Crick and Koch (1998) provided strong
support for modulatory top-down connections based on theoret-
ical grounds. In the model framework proposed here we adopt the
framework of modulatory feedback (thus, biased competition).
The feedback signals represent context-sensitive templates and are
gated by feedforward driving input signals. In such a modulating
feedback driven gain control mechanism spatial detail is gen-
erated by feature-driven low-level processes and representations
and subsequently associated with coarse-grained context infor-
mation which is provided by intermediate and higher-levels of
cortical computation (Lamme and Roelfsema, 2000; Roelfsema
et al., 2002; Roelfsema, 2006). In order to control the weight
adaptation for learning, the strength of feedback is calculated by
the difference between the feedforward signal and the predic-
tive template that is delivered along the top-down connections.
Such a difference represents the residual between the two counter
stream representations (Ullman, 1995). In a nutshell, the idea
is that the amount of feedback is regulated by the deviation
between the two convergent streams (like in predictive coding).
The re-entrant combination is, however, based on multiplica-
tive gain enhancement. The strength of the excitatory feedback
will vanish when the input is perfectly predicted by the top-
down template. In that case, the feedforward signal representation
will not be further enhanced. In Bastos et al. (2012) the corti-
cal circuits are present in different compartments of a cortical
area (compare Self et al., 2013 for a discussion of the possible
roles of input layer and superficial and deep layer compart-
ments in cortical area V1). Our suggested mechanism can be
realized assuming subtractive interaction between driving feed-
forward cells and feedback signals, potentially in the superficial
layer compartment. The resulting residual activations can then
activate cells in columns via the apical dendrites of pyramidal
cells (located either in the superficial or deep layer compart-
ments; Larkum et al., 2004). In Brosch and Neumann (2014b)
a firing-rate model of pyramidal cell interaction has been devel-
oped that explains such interactions at the level of the columnar
architecture adopted here. All these feedforward and feedback
interactions combine with learning mechanisms for the feed-
forward and the feedback connections. The equations supposed
to define the weight changes lead to stable convergent weight
changes. In the feedforward connection pattern the fan-in, or
receptive field, weights to a unit approach a defined weight
energy, or length, of the connection coefficients. This is desir-
able since after a representation accomplished in the weights has
been settled, the activation level is not biased by the weights
but is determined by the signal input and its changed gain
through feedback interaction. In the feedback connection pat-
tern the fan-out, or projective field, weights from a unit approach
the (average) activity the representation is tuned to. Thus, the
expected input is represented which can be activated as top-down
template to instantiate the expected input signal or feature con-
figuration. This leads to resonances in cases where the top-down
expectation is retrieved from already established knowledge. In
cases of mismatches new feature/category representations can

be automatically recruited to establish new knowledge in the
learning cortical architecture.

4.4. MODEL LIMITATIONS AND EXTENSIONS
The proposed model architecture emphasized the computational
role of feedforward and feedback mechanisms in order to gener-
ate interactive states, or resonances, in a hierarchically organized
model system. The re-entrant feedback is assumed to be modula-
tory such that bottom-up feedforward signals gate the recurrent
feedback activations. The interactive processing is combined with
a learning mechanism that allows to adjust connection weights
along the feedforward as well as the feedback pathways. We have
demonstrated the general functionality by using simple shapes
that are kept under full control during the design process. Also
we employed only a pair of interacting cortical model areas, each
composed as a sheet of columnar units with lateral interactions.
In addition, a separate input layer that represents the stimu-
lus was incorporated. The proposed model architecture may be
investigated along several lines of questions.

In its current form, the proposed model architecture separately
evaluates the activities of layer 3 category and subcategory cells
before and after the modulation of the residual feedback on the
input signal. This results in an activity pattern in which only an
overall category cell or a subcategory cell can be active at a time. It
would be interesting to integrate an additional mechanism which
prevents such fluctuations and keeps both the overall category
and the subcategory cell active in parallel.

Deep hierarchies have been proposed to accomplish the build-
up of rich composite feature representations at different stages
of hierarchically organized networks for solving detection and
recognition tasks (LeCun et al., 1998; Hinton, 2007; Bengio,
2009). A natural extension of the simplified architecture stud-
ied in this paper is to add further model cortical areas and train
the feedforward and feedback connection weights at each level.
We expect that such an extended architecture allows the con-
struction of multi-level representations of pattern compositions
over several stages in a hierarchy. Such an approach should pro-
vide the generic structure to automatically build representations
of fragments of input stimuli in which recognition is combined
with segmenting inputs using the learned top-down templates
(Ullman et al., 2002; Ullman, 2007).

The proposed scheme currently utilizes simple input patterns
to build categories and associated subcategories to make explicit
the variations that deviate from the average category represen-
tations. It would be interesting to study the responses for more
realistic shape patterns presented as gray level inputs that pro-
vide the input to the network architecture. Also in this case, it
would be interesting to study the multi-level steps necessary for
the proposed model cortical architecture to accomplish the cate-
gory learning under even more realistic input representations. In
a technical instance of processing Borenstein and Ullman (2008)
proposed an image segmentation scheme based on bottom-up
signal driven processing that is combined with top-down process-
ing to utilize knowledge for improved segmentation. Although
the focus there is mainly on the improvement of image process-
ing, the approach might serve as an inspiration for modeling
as well. We suggest that the potential power of the network
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architecture proposed in this work lies in the automatic learning
of templates for feedback expectation (at low and intermediate
levels of representation; Hinton, 2007) that could be evaluated in
terms of their information content for visual classification tasks
(Ullman et al., 2002).
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Contour integration is a fundamental form of perceptual organization. We introduce a new
method of studying the mechanisms responsible for contour integration. This method
capitalizes on the perceptual persistence of contours under conditions of impending
camouflage. Observers viewed arrays of randomly arranged line segments upon which
circular contours comprised of similar line segments were superimposed via abrupt onset.
Crucially, these contours remained visible for up to a few seconds following onset, but
eventually disappeared due to the camouflaging effects of surrounding background line
segments. Our main finding was that the duration of contour visibility depended on
the distance and degree of co-alignment between adjacent contour segments such that
relatively dense smooth contours persisted longest. The stimulus-related effects reported
here parallel similar results from contour detection studies, and complement previous
reported top–down influences on contour persistence (Strother et al., 2011). We propose
that persistent contour visibility reflects the sustained activity of recurrent processing loops
within and between visual cortical areas involved in contour integration and other important
stages of visual object recognition.

Keywords: contour integration, form perception, perceptual organization, perceptual grouping, association field,

collinearity, perceptual hysteresis, visual persistence

INTRODUCTION
The perceptual binding of spatially local edge information into
global contours, or contour integration, is a crucial stage of visual
object recognition. Contour integration is subject to both bottom–
up and top–down influences that depend on stimulus regularities,
expectations, task demands, and other factors (Hess and Field,
1999; Gilbert and Li, 2013). Much of the psychophysical work
on contour integration in human vision involves measuring the
detectability of contours embedded in highly camouflage back-
grounds. Here we introduce a new method of studying contour
integration and its underlying mechanisms. This method is com-
plementary to traditional contour detection methods, and relies on
the perceptual decay of a contour under conditions of impending
camouflage.

Regan (1986) noted that a highly camouflaged shape (e.g.,
the outline of a bird) made visible by motion does not disap-
pear immediately after it stops moving1. Indeed, several studies
of this phenomenon have since shown that outlines of recog-
nizable objects and simple shapes persist perceptually for up to
several seconds, and furthermore, this persistence of global form
is accompanied by persistent neural activity in V1 and higher-
tier visual cortical areas (Ferber et al., 2003; Large et al., 2005;
Strother et al., 2011, 2012). These findings demonstrate a unique
type of perceptual hysteresis, which we refer to here as contour
persistence. Contour persistence is distinct from other varieties
of visual persistence, both in terms of the stimulus conditions

1https://sites.google.com/site/visualformpersists/

under which it occurs and also its duration. Contour persistence
occurs following the offset of a perceptual segmentation cue (e.g.,
onset or motion) rather than the physical removal of the contour
itself or any of the elements comprising the contour. This makes
contour persistence distinct from “visible persistence” phenomena
(Coltheart, 1980a,b) in which a stimulus continues to be perceived
following its physical offset. Contour persistence also differs from
other types of visual persistence in terms of its relatively long
duration—contour persistence typically lasts >1 s, whereas other
visual persistence phenomena typically last <1 s.

Here we measured the duration of contour persistence using
a contour fading paradigm in which a circular contour com-
prised of line segments abruptly onset against a background of
randomly oriented line segments2. We found that such con-
tours did not disappear immediately following onset, but instead
became camouflaged over the course of a few seconds, as in the
earlier demonstration (Regan’s bird). Our main goal was to mea-
sure the duration of contour persistence as a function of known
determinants of contour binding strength (contour smoothness,
density, and closure). Complementary to psychophysical studies
of contour integration (e.g., Field et al., 1993; Pettet, 1999; Bex
et al., 2001; Ledgeway et al., 2005; May and Hess, 2007, 2008;
Dakin and Baruch, 2009; Marotti et al., 2012), we used con-
tours comprised of elements that were either co-aligned and
tangent to the contour (snake contours), co-radial (co-parallel
and perpendicular to the contour; ladder contours), or randomly

2https://sites.google.com/site/strothertoronto/
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oriented (jagged contours). The first question of interest in
our study was whether or not local orientation influences the
duration of contour persistence. There is substantial evidence
of an association field (Field et al., 1993) mechanism in visual
cortex that enables contour detection of visual elements (e.g.,
line segments, wavelets) camouflaged within an array of simi-
lar elements. The association field consists of neural units tuned
to specific orientation, which facilitate the activity of other
neural units tuned to similar orientations but at different loca-
tions within the visual field, and thus facilitate contour binding
and detection. We wondered whether or not local orientation
might play a similar role in persistent contour integration. If
so, it is possible that the association field maintains a persistent
representation of a contour, and thus exhibits visual memory
(Magnussen, 2000), either due to the reverberation of feedfor-
ward and feedback signals within the neural association field
itself, or by virtue of feedback from higher tier visual cortical
areas.

We performed additional experiments to examine the effects
of relative density and closure contour persistence, both of
which have been studied using detection paradigms (Smits et al.,
1985; Kovács and Julesz, 1993; Tversky et al., 2004; Mathes
and Fahle, 2007), but have not previously been manipulated
in studies of contour persistence. We reasoned that if more
strongly bound contours persisted longer than less strongly
bound contours, this would demonstrate a stimulus-driven
influence on the duration of contour persistence. Finally, we
performed a control experiment to determine whether or not
our results could be accounted for by eye movements. We
discuss our results in terms of a recurrent process of feed-
forward contour integration in primary visual cortex (V1)
and shape-related feedback from higher-tier visual cortical
areas.

MATERIALS AND METHODS
SUBJECTS
All observers had normal or corrected-to-normal vision. Ten
observers participated in Experiment 1. Six new observers par-
ticipated in Experiment 2 and Experiment 3a. Two new observers
(and one observer from the previous experiments) participated
in a final control experiment (Experiment 3b) which employed
eye-tracking. All observers provided informed consent and were
recruited in accordance to University of Western Ontario ethics
guidelines.

STIMULI AND PROCEDURE
All experiments employed stimuli comprised of short line seg-
ments (Figure 12). Trials began with the appearance of a
‘background’ array of randomly oriented dark line segments
(∼0.3◦ × 0.03◦) positioned randomly (overlap allowed) within
a lighter 10◦ × 10◦ square aperture on an otherwise dark dis-
play. A blue fixation cross (∼0.3◦ × 0.3◦) was always present in
the center of the aperture during the experiments. Shortly (2 s)
after the appearance of the background array, a circle or semi-
circle comprised of line segments identical to those comprising
the background appeared against the background and remained
until the end of the trial (total trial duration was always 8 s).

We used snake circles comprised of co-circular elements (i.e.,
smooth contours), ladder circles comprised of co-radial (rotated
90◦ from co-circular), and jagged circles comprised of randomly
oriented elements (random orientations were generated trial to
trial). The absolute positions of each of the elements along a circle
or semi-circle were equivalent across all three stimulus types and
conditions.

Observers were instructed to maintain fixation throughout
the experiment and, on each trial, to press a button when the
circle (or semi-circle) was no longer visible; this served as a
measure of response time (RT). At the end of each trial a new
background array appeared and the sequence was repeated. The
appearance of a new background on each trial completely replaced
that of the previous trial (novel background elements were gen-
erated on every trial). Individual trials ended either with the
button press or after 6 s if no button was pressed. Observers
were told not to press the button if they never saw the target
or if any portion of it never became fully camouflaged (i.e., did
not disappear), which occurred on less than 2% of trials for all
observers. Observers were always given at least 25 practice trials,
the results of which were not included in our analyses. Individ-
ual observers completed at least 100 trials in each experiment.
Pilot studies for each observer confirmed that circular contours
that disappeared were never detectable were it not for the onset
cue (i.e., observers could not see the contours when the contour
was superimposed against the background in the absence of an
onset cue).

In Experiment 1 we were primarily interested in whether or
not the duration of continued contour visibility depended on
inter-element alignment: smooth (“snake”) co-radial (“ladder”)
or jagged circles. We also varied the size of the circles and the
proximity of the elements making up each circle (circle density),
and also the density of the background elements (background den-
sity). We used three circle densities: line segments covered ∼33, 25,
or 20% of a given circle’s circumference. Backgrounds consisted
of 2250, 3000, or 3750 elements per 10◦ × 10◦ area. Examples
of maximally dense or sparse contour-background pairings are
shown in Figure 2 (contour and background elements are shown
in different colors to make the contour elements visible; all were
the same color in the experiments).

The purpose of varying circle and background density in this
experiment was mainly to reduce the predictability of the location
of the circle elements (we explore these variables further in Exper-
iment 2). By increasing the variability in the density of the circles
relative to that of the background we hoped to increase the overall
variability in the latencies of individuals’ button presses. Indi-
vidual observers thus completed at least 33 trials per alignment
condition.

In Experiment 2 we further investigated prospective effects
of circle and background densities and circle size using smooth
(snake) circles and jagged circles. We were particularly interested
in comparing the magnitude of durations for these two alignment
conditions to that of the relative densities of the circles and back-
grounds. We again used three circles sizes; for each circle size (radii
of 1.5, 3, and 4.5◦), dense circles were comprised of 10, 20, and
30 line segments (respectively), and for sparse circles the number
of line segments was halved. We also used sparse (500 elements)
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FIGURE 1 |The top three panels illustrate the contour fading

paradigm. When a circle comprised of discrete elements appears (top
left panel) against a background of similar elements it remains visible (top
middle panel) for up to several seconds but eventually becomes
camouflaged (top right panel), and it is perceived to have disappeared

even though the circle is still physically present. Note that the circle is
darkened in the left two panels to illustrate its perceptibility rather than
an actual difference in luminance between circle elements and
background elements. The three inter-element alignment conditions used
in Experiment 1 are also shown (bottom).

and dense (1500 elements) backgrounds (per 10◦ × 10◦ area, as in
Experiment 1); the condition pairings are illustrated in Figure 2.

In Experiment 3a we tested whether or not the effects observed
in Experiment 2 could be observed for non-closed contours (semi-
circles created from 0.5 × the circumference of the circles used in
Experiment 2) by re-testing the same subjects (from Experiment 2)
and manipulating a subset of the parameters used in Experiment 2.
The location of the arcs in Experiment 3a varied between the upper
and lower visual hemifield, and ±2◦ from fixation (thus resulting
in greater position uncertainty than in the previous experiments).
We ran fewer observers in Experiments 2 and 3a than we did in
Experiment 1, but we collected at least twice the amount of data
per subject. The primary motivation for this experiment was to
test whether or not closure would act as a cue above and beyond
inter-element alignment. Finally, in Experiment 3b, we used an
eye-tracker (Eyelink; SR Research Ltd., Toronto, ON, Canada) to
monitor the eye movements of three observers in a partial repli-
cation of Experiment 2. We allowed circle size to vary from 2.7 to
4.5◦ visual angle; the circles were either smooth (snakes) or jagged
(100 trials of each condition), and relative density was held con-
stant (sparse circles on sparse background, as described earlier in
this section).

RESULTS
EXPERIMENT 1
The goal of the first experiment was to test for an effect of
inter-element alignment on the duration of persistent contour

visibility. Mean RTs were greatest for smooth contours (2724 ms),
followed by co-radial contours (2424 ms) and jagged contours
(2407 ms). For all remaining statistical analyses RTs were log-
transformed to reduce positive skew. Log RTs for the three
alignment types are shown in Figure 3.

Preliminary repeated measures analyses of variance (ANOVAs)
showed no significant main effects or interactions of circle size,
circle density, or background density (possibly due to the low
number of trials for each condition; we explore these variables
further in the next experiment) on log RT, although the interac-
tion of alignment type and circle density approached statistical
significance [F(1,9) = 3.5, p = 0.09]. A subsequent repeated mea-
sures ANOVA based on the three alignment conditions (smooth,
c-radial, jagged) showed a highly significant effect of alignment
[F(1,9) = 13.9, p < 0.005]. Post hoc analyses (paired sam-
ples t-tests, one-tailed) showed significant differences between all
three conditions: smooth > co-radial [t(9) = 3.38, p < 0.01];
smooth > jagged [t(9) = 3.73, p < 0.01]; co-radial > jagged
[t(9) = 2.06, p < .05]. The smooth contours thus evinced a
∼300 ms increase in RT relative to co-radial and jagged con-
tours. Although the difference between co-radial and jagged
contours was also statistically significant (co-radial > jagged),
this difference was relatively small (∼15 ms) compared to the
smooth > co-radial and smooth > jagged differences, and less
consistent across subjects (Figure 3; two subjects showed either
no difference or greater RTs for jagged versus so-radial con-
tours).
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FIGURE 2 | Circles of different three densities appeared against

backgrounds of three different densities; two of extremes for each

shown here. Non-smooth circles were identical to those shown except
that the orientation of each element was random. The circles shown here
are darkened for purpose of illustration only; all line segments were of
equal luminance during the experiment (see Materials and Methods).

EXPERIMENT 2
As in Experiment 1, all analyses were conducted on log RTs.
Figure 4 shows that smooth circles remained visible longer than
jagged circles, and the smooth > jagged log RT trend is apparent
across all pairings of circle size, circle density, and background
density (except possibly for sparse circles paired with dense back-
grounds, shown in the lower right of Figure 4). A repeated
measures ANOVA yielded statistically significant main effects for
all factors except circle size: alignment [F(1,5) = 13.2, p < 0.05];
circle density [F(1,5) = 18.4, p < 0.01]; and background density
[F(1,5) = 22.2, p < 0.01]; although there appears to be a trend
in Figure 4 of decreased log RT with increasing circle size (for
smooth circles), this was not significant [F(1,5) = 2.0, p = 0.19],
which means that the effect of alignment was largely scale invariant
within 4.5◦ from fixation.

Two-way interactions between alignment and density were also
statistically significant: alignment × circle density [F(1,5) = 11.7,
p < 0.05]; and alignment × background density [F(1,5) = 9.5,
p < 0.05]. These interactions are apparent in Figure 4 in that
the effect of alignment (smooth > jagged) on log RT was greatest
for dense circles and sparse backgrounds. No significant density
interaction (circle density × background density) was observed
[F(1,5) = 0.1, p = 0.73]. A three-way interaction between these
variables (alignment × circle density × background density) was
also significant [F(1,5) = 18.2, p < 0.01]. Paired-samples t-tests

FIGURE 3 | Results from Experiment 1. Mean log RTs (black dots) for the
three inter-element alignment conditions. Snake circles remained visible
the longest, followed by ladder and jagged circles (error bars are 95%
confidence intervals). Gray dashed lines show results for individual
observers, all of whom showed a similar trend for snake versus ladder and
jagged contours; not all subjects showed ladder > jagged log RTs.

confirmed that smooth > jagged log RTs across all combina-
tions of circle and background density [t(5) = 2.8–4.1, always
p < 0.05, two-tailed], except for sparse circles and dense back-
grounds [t(5) = 2.3, p = 0.07], which approached statistical
significance. Thus, while effect of alignment (smooth versus
jagged) varied with the relative density of the circle and back-
ground elements, jagged circles always tended to disappear more
quickly than smooth circles. In short, the results shown in Figure 4
indicate the greatest log RTs for dense smooth circles superimposed
on sparse backgrounds.

EXPERIMENT 3a
This experiment was a partial replication of Experiment 2 (same
observers) in which we sought to replicate the smooth > jagged
log RT result for non-closed contours (semi-circles). Figure 5A
shows mean log RTs corresponding to circles (solid bars) and semi-
circles (dots with error bars) obtained in Experiment 3a. The same
smooth > jagged log RT trend was observed in all three cases. A
repeated measures ANOVA showed a main effect of inter-element
alignment [smooth > jagged; F(1,5) = 7.7, p < 0.01]; a main
effect of closure (with circles persisting longer than semi-circles)
approached significance [F(1,5 = 2.9, p = 0.09], and there were
no significant interactions. This means that the smooth > jagged
effect shown in Figures 3 and 4 is not limited to closed contours.

EXPERIMENT 3b
The purpose of this experiment was to determine whether or
not the greater persistence of smooth (snake) contours versus
jagged contours could be explained by differences in eye move-
ments. Our logic was as follows: if differences in eye movements
explains our results, then equating for eye movements between
our two conditions—smooth and jagged—should result in equiv-
alent contour persistence durations. Figure 5B shows similar
contour persistence durations (smooth duration > jagged dura-
tion) for the data based on all 200 trials (100 smooth, 100 jagged).
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FIGURE 4 | Results from Experiment 2. As in Experiment 1, smooth
snake contours always remained visible longer than jagged contours. This
effect was observed to be greatest for dense circles, and weakest for
sparse circles paired with relatively dense backgrounds (lower right). The
three circles sizes are indicated in ◦ visual angle along the x-axis. Dots
indicate mean log RT for the intermediate circle size (3◦). Error bars are
95% confidence intervals.

For all three subjects, discarding trials during which gaze shifted
beyond 1.5◦ from fixation, resulted in the exclusion of >25%
of the original data. Nevertheless, as is clear in Figure 5B,
this filtering of the original trials had no effect on the pattern
of results, namely that smooth contours consistently persisted

longer than jagged contours. The results in the dashed box in
Figure 5B are based on the filtered data, and results from the
original data are shown to the left of each box. The slopes of the
lines connecting the black dots (smooth) and gray dots (jagged)
are similar for all within-subject pairings. This means that the
smooth > jagged duration result is not due to the effects of eye
movements toward the circular contours used in each condition.
Even when eye movements were restricted to within 1.5◦ from the
fixation cross, and did not impinge on even the smallest circle used
in the experiment (radius = 2.7◦), the influence of inter-element
alignment on contour persistence was the same (Figure 5B). Addi-
tional eye movement results reported in Supplementary Material
(Figure S1).

DISCUSSION
We used a new perceptual fading paradigm to study persistent
contour integration under conditions of impending camou-
flage. In Experiments 1 and 2, we found that the duration
of contour persistence was influenced by stimulus properties
known to influence contour salience in traditional contour detec-
tion paradigms, namely inter-element distance and co-alignment
(Smits et al., 1985; Field et al., 1993; Geisler et al., 2001; Elder
and Goldberg, 2002). Given major differences between our con-
tour fading paradigm and detection paradigms typically used
to study contour integration, this was not an inevitable result.
For instance, the contours used in our study were undetectable
were it not for the onset cue, and thus synchronous onset alone
could have resulted in persistence (Wong et al., 2009), without
the additional influence of inter-element alignment. Further-
more, the results observed here cannot be fully accounted for
by differences in eye movements for smooth versus non-smooth
contours (Experiment 3b). The persistent visibility of highly cam-
ouflaged contours observed in our study is consistent with a
recurrent processing loop in which high-tier neural representa-
tions global form interact with low-level neural mechanisms that
bind local edges into global contours. Given the absence of con-
tour persistence when contour elements are physically removed
(Ferber et al., 2003; Wong et al., 2009; Strother et al., 2012), it
is highly plausible that feedforward responses in primary visual

FIGURE 5 | Results from Experiments 3a and 3b. In (A), contour
persistence (mean log RT) was greater for smooth circles and
semi-circles as compared to jagged circles and semi-circles. Error
bars are 95% confidence intervals. In (B), contour persistence was

greater for smooth versus jagged contours, even when trials with
eye movements that deviated beyond 1.5◦ from fixation were
omitted (the latter are shown in the dashed box with the eye
symbol above).
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cortex provide a neural basis upon which all feedback effects are
exerted.

CONTOUR PERSISTENCE AND THE ‘ASSOCIATION FIELD’
It has long been recognized that the sensation produced by a
visual stimulus can persist after its offset, and the term “visual
persistence” has been used to denote many different examples of
short-term perceptual memory. Coltheart (1980a,b) used “visible
persistence” to refer to cases when a visual stimulus continues
to be perceived after its offset, and to distinguish these cases
from “iconic memory” (Sperling, 1960), which is not accom-
panied by persistent perception of a physically absent stimulus.
In contrast to both visible persistence and iconic memory, con-
tour persistence occurs in the absence of physical removal (offset)
of the contour. Indeed, several previous studies showed that
global contours do not persist when the elements comprising
the contour are removed (Ferber et al., 2003; Large et al., 2005;
Wong et al., 2009; Strother et al., 2011, 2012). That is, contour
persistence reflects the sustained perceptual organization of ele-
ments after an initial binding cue (onset in this case) has ended,
rather than the sustained perceptual representation of a visual
stimulus that has physically disappeared. Furthermore, contour
persistence typically lasts considerably longer than iconic memory
and other types of short-term visual memory (which are usually
<1 s).

The results of the present study showed clear influences of
physical properties of a contour on the duration of its percep-
tual persistence under camouflaging conditions. Experiment 1
showed that smooth contours showed the greatest degree of per-
sistent contour visibility. When elements were equally co-aligned
but perpendicular to the tangent of the circular global contour
(the co-radial condition), the facilitative effect of inter-element
alignment on contour persistence was reduced (Figure 3). Ran-
domizing the orientations of contour elements in the jagged
condition had a similar (but slightly greater) effect, and showed
the weakest degree of persistence of the three contour conditions
used in Experiment 1. The difference in duration of contour per-
sistence for snake and jagged contours (smooth > jagged) was
replicated in Experiment 2, and shown to be modulated by inter-
element distance, such that decreasing the inter-element distances
of the contour elements relative to the background elements
decreased or eliminated the smooth > jagged effect (Figure 4).
Experiment 3a showed that similar effects of co-alignment and
density are not limited to closed circular contours (Figure 5),
although an additional facilitative effect of closure is neverthe-
less a possibility—circular arcs (semi-circles) did not persist as
long in general, but this trend was not statistically significant.
While it is well-known that for curved contours comprised of
discrete oriented elements, smooth contours are easier to detect
than jagged contours, this study is the first to show that increas-
ing contour density and smoothness facilitate contour persistence
under conditions of extreme camouflage. Previous studies have
recognition-related effects on the duration of visual persistence
(Ferber et al., 2005; Ferber and Emrich, 2007; Emrich et al., 2008;
Strother et al., 2011), but none of these systematically manipulated
contour properties in a manner consistent with detection studies
of contour integration. The results of the present study are thus an

important step toward identifying common mechanisms involved
in contour integration and contour persistence, and the relation-
ship of these mechanisms to feedforward and feedback processes
in human vision.

Hebb (1949) proposed that short-term memory consists in
the persistent reverberation of activity in neuronal assemblies. A
plausible explanation of the results of the present study is that
contour persistence reflects persistent reverberation of an asso-
ciation field mechanism in visual cortex (Field et al., 1993). The
association field is a neuronal assembly consisting of cells with
similar orientation preferences and receptive fields at different reti-
nal locations. These cells exhibit mutually facilitative interactions,
and the more similar adjacent cells are in receptive field loca-
tion and orientation preference, the stronger the facilitation. This
mechanism thus shows greater mutual facilitation with increas-
ing edge co-alignment. It is plausible that an association field
mechanism is responsible, at least in part, for both the initial
perception and persistence of global contours in the present study.
This would be consistent with the effects of inter-element distance
and co-alignment on the duration of persistence reported here,
which parallel similar effects on the detectability of contours (e.g.,
Field et al., 1993; Bex et al., 2001; Ledgeway et al., 2005; Marotti
et al., 2012).

FEEDFORWARD AND FEEDBACK INFLUENCES
Our findings are consistent with the view that neural mechanisms
in higher-tier visual cortical areas represent hypotheses about low-
level visual input, and in doing so, reinforce inferences (e.g., about
shape) via feedback to lower level visual cortical mechanisms to
facilitate efficient extraction and encoding of visual features (Engel
et al., 2001; Murray et al., 2002; Cardin et al., 2011). There is grow-
ing consensus that top–down feedback plays an integral role in
contour integration (Gilbert and Li, 2013), but the precise nature
of the effects of this feedback is not known. One possibility is
that feedforward contour integration processes are accompanied
by feedback processes that serve to disambiguate and enhance
the salience of global contour by suppressing background noise
(Strother et al., 2012; Chen et al., 2014). In this framework, extras-
triate feedback could serve to modulate the responses of neurons
in primary visual cortex (V1). More specifically, the responses of
neurons stimulated by background elements would be suppressed
and the responses of neurons stimulated by contour elements
would be facilitated by extrastriate feedback in addition to facil-
itation by an association field within V1. The crucial result of
this feedback would be the facilitation of inter-element binding
within the contour and the suppression of background noise, and
ultimately, the perceptual segmentation of the contour from its
surroundings.

In addition to the facilitation of contour binding by an associ-
ation field in V1, extrastriate feedback may also play an important
role, not only in contextually modulating the responses of indi-
vidual V1 neurons (Zipser et al., 1996; Lamme et al., 1998), but
also in temporarily sustaining the joint activity of neurons in the
association field. It is worth noting that the duration of contour
persistence in the jagged condition (Figure 4) was surprisingly
long, even when the density of these jagged contours was simi-
lar to that of the background. This surprising effect highlights the
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importance of synchronous onset in the persistence of global form
(Wong et al., 2009), and role of temporal synchrony as a power-
ful binding cue in contour integration (Usher and Donnelly, 1998;
Beaudot, 2002), and even higher stages of the visual object
recognition process (Singer and Kreiman, 2014). The fact that
synchronous neuronal firing is a common feature of neural net-
work models of contour integration and other types of perceptual
organization (Sporns et al., 1991; Yen and Finkel, 1998), it is con-
ceivable that the synchronous onset of elements comprising a
contour could result in the persistent activity of visual cortical
neurons irrespective of contour smoothness. This prediction is
consistent with findings that global contours are represented in
shape-selective cortex irrespective of the local features (Altmann
et al., 2003; Kourtzi et al., 2003).

Taken together with the results of previous studies (Strother
et al., 2011, 2012), the results reported here lead us to pro-
pose that contour persistence reflects sustained feedforward and
feedback visual processing. Some of this processing involves
the binding of local visual elements into global form, which
involves feedforward processing in visual cortex as well as feed-
back processing, both within and between visual cortical areas
(Chen et al., 2014). Our results show that this complex circuit
exhibits short-term memory, as evidenced by the persistence
of a contour under conditions of impending camouflage. It is
not clear whether the persistent contour integration reported
here is due to hysteresis intrinsic to mechanisms in visual cor-
tex alone—for example, sustained neural reverberation within
the association field—or involves neural reverberation at a larger
cortical scale, such as a recurrent processing loop between shape-
selective neural mechanisms in extrastriate visual cortex (Kourtzi
and Connor, 2011), and those in earlier visual cortical areas (e.g.,
V1). For instance, feedforward activity in V1 could be subse-
quently modulated by interactions within the association field,
which may serve to enhance the perceptual salience of a contour
relative to its background (Gilbert and Li, 2013). Additionally,
shape-related feedback from V4 and higher-tier areas could exert
an additional influence on the responses of V1 neurons, by
facilitating the responses of those corresponding to contour ele-
ments, and by inhibiting the responses of neurons responding
to background elements (Chen et al., 2014). Persistent contour
integration could therefore reflect hysteresis in both types of
mechanisms. Persistent contour integration could also involve
sustained neural activity in more anterior cortical areas that
play a top–down role in visual memory (Curtis and D’Esposito,
2003).

It is worth noting that our proposed feedforward-feedback
account is not the only possible explanation for our results.
An alternative account could predict greater persistence for
smooth contours without the need for recurrent processing loops.
For instance, contour onset could elicit transient activity in
orientation-selective neurons, and during this initial surge of
neural activity (which could occur within <100 ms), contour inte-
gration mechanisms (e.g., the association field) could enhance the
representation of contour elements and their configuration, which
could be transferred to a higher tier cortical area. Once transferred,
it is possible that this high-tier representation no longer receives
input from earlier visual areas (e.g., after the initial ∼100 ms surge

of activity), and thus decays. While this is possible, it is not clear
why this initial higher-tier representation should be stronger for
smooth versus jagged contours since local orientation information
is thought to be less important than global form in high-tier corti-
cal representations of contour shape (Altmann et al., 2003; Kourtzi
et al., 2003). Moreover, results from fMRI studies of contour per-
sistence show an effect of familiarity on persistent neural activity
in early visual areas, including V1 (Strother et al., 2011). Addi-
tionally, persistent neural activity in V1 was subsequently shown
to be limited to the retinal location of the contour elements, and
also to correspond to the duration of contour visibility (Strother
et al., 2012). It should nevertheless be acknowledged that persis-
tent neural activity in early visual areas, such as V1, could be
epiphenomenal rather than evidence of a recurrent feedback loop
between visual cortical areas. Further studies are necessary to test
whether perceptual decay of a camouflage contour corresponds to
persistent shape representation in high-tier visual cortical areas,
earlier visual areas such as V1, or the persistent activation of a
recurrent processing loop between several areas.

To conclude, the results reported here were obtained using a
novel psychophysical method, and show that the neural mech-
anisms responsible for contour integration exhibit short-term
memory, the duration of which is sensitive to the spatial prop-
erties of visual elements comprising the contour. Future studies
could employ a more continuous range of element orientations
and test for a possible within-observer correlation between con-
tour detection performance and contour persistence. If observed,
a correlation would strengthen the link between contour persis-
tence and its neural basis in the association field. Additional studies
could also employ neurophysiological measures to assess the con-
current operation of feedforward and feedback processes during
persistent contour integration.
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
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abstract

Figure S1 | Gaze position results from a control experiments with three

subjects (S1, S2, S3). To obtain the results of Figure 5B, trials were excluded
when gaze position deviated >1.5◦ from the fixation cross at the center of the
screen. This means that the resultant data did not include trials for which the
observer shifted his or her gaze to the actual contour (which occurred for <5%
of trials for each observer). The smallest dashed circle indicates a distance of
1.5◦ from the fixation cross (distance used for filtering trials); the largest dashed
circle indicates size of largest circle (4.5◦); and the intermediate-sized dashed
circle above indicates the size of the smallest contour circle used in the
experiment.
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In order to deal with a large amount of information carried by visual inputs entering
the brain at any given point in time, the brain swiftly uses the same inputs to
enhance processing in one part of visual field at the expense of the others. These
processes, collectively called bottom-up attentional selection, are assumed to solely rely
on feedforward processing of the external inputs, as it is implied by the nomenclature.
Nevertheless, evidence from recent experimental and modeling studies points to the role
of feedback in bottom-up attention. Here, we review behavioral and neural evidence that
feedback inputs are important for the formation of signals that could guide attentional
selection based on exogenous inputs. Moreover, we review results from a modeling study
elucidating mechanisms underlying the emergence of these signals in successive layers
of neural populations and how they depend on feedback from higher visual areas. We
use these results to interpret and discuss more recent findings that can further unravel
feedforward and feedback neural mechanisms underlying bottom-up attention. We argue
that while it is descriptively useful to separate feedforward and feedback processes
underlying bottom-up attention, these processes cannot be mechanistically separated into
two successive stages as they occur at almost the same time and affect neural activity
within the same brain areas using similar neural mechanisms. Therefore, understanding
the interaction and integration of feedforward and feedback inputs is crucial for better
understanding of bottom-up attention.

Keywords: saliency map, saliency computation, top-down attention, computational modeling, feedforward,
feedback, lateral interaction, NMDA

INTRODUCTION
Bottom-up, saliency-driven attentional selection is the mecha-
nism through which the brain uses exogenous signals to allocate
its limited computational resources to further process a part of
visual space or an object. Early investigations into bottom-up
attention showed that this form of attention is fast and invol-
untary, and purely relies on external inputs that impinge on
the retina at a given time (Treisman, 1985; Braun and Julesz,
1998). Therefore, early on, vision scientists hypothesized that
bottom-up attention should rely only on parallel, feedforward
processes (Treisman and Gelade, 1980; Treisman and Gormican,
1988; Nakayama and Mackeben, 1989). Accordingly, various com-
putational models of attention adopted a similar architecture for
bottom-up visual processing (Koch and Ullman, 1985; Wolfe,
1994; Itti and Koch, 2001). More specifically, these models assume
that bottom-up attention relies on feedforward processes and
computations that terminates in the formation of the saliency (or
priority) map, a feature-independent topographical map that rep-
resents the visual salience of the entire visual field and can guide
covert attention. Nonetheless, all of these models also assume that
feedback is involved at some point in visual processing, but this

occurs late in processing and only due to top-down signals in tasks
which involve top-down attention (e.g., conjunction search, or the
search for a target distinguished from other stimuli by more than
one feature).

There are a few aspects of bottom-up attentional processes
that explain how the hypothesis for the purely feedforward nature
of bottom-up attention was originated and why it is still influ-
encing the field, despite more recent contradictory evidence.
Specifically, in comparison to top-down attention, bottom-up
attention is fast and is relatively unaffected by aspects of the
visual stimulus, such as the number of targets on the screen
(Treisman and Sato, 1990) or the presence or absence of visual
cues (Nakayama and Mackeben, 1989). The relative indepen-
dence of bottom-up attention from the number of targets is
taken as evidence that during bottom-up selection, exogenous
signals should be processed in a parallel instead of a serial fash-
ion. Combining this behavioral evidence with the presumption
that feedback and recurrent processes are slower than feedfor-
ward processes, and that parallel processing excludes feedback,
made it appear less likely that bottom-up attention relies on
feedback.
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However, a number of recent experimental and modeling
studies have challenged most of the rather intuitive reasoning
mentioned above. On the one hand, there is recent experimental
evidence that top-down signals (via inputs to higher cortical areas
representing saliency or to lower-level visual areas) can not only
alter the previously established behavioral signatures of bottom-
up attention (Joseph et al., 1997; Krummenacher et al., 2001;
Einhäuser et al., 2008) but also its neural signature (Burrows
and Moore, 2009). On the other hand, more recent models of
visions have tried to incorporate top-down effects into bottom-up
attention in order to design more efficient models of vision that
can match human performance in different visual tasks (Oliva
et al., 2003; Navalpakkam and Itti, 2005, 2006; see Borji and Itti,
2013 for a review). Importantly, results from a recent biophys-
ically plausible computational model of bottom-up attention,
which is mainly concerned with underlying neurophysiological
mechanisms, demonstrate that recurrent and feedback inputs do
not slow down the saliency computations necessary for bottom-
up attention, and instead enhance them (Soltani and Koch, 2010).

Here, we review recent studies that challenge the idea that
bottom-up attention solely relies on feedforward processes. More-
over, findings in these studies suggest that mechanistically one
cannot separate the feedforward and feedback processes into two
successive stages as they occur concurrently and within the same
brain areas by using similar neural mechanisms. Therefore, we
propose that while thinking in terms of separate feedforward and
feedback processes was or maybe is still useful for explaining
some behavioral observations, this approach is neither fruitful
nor constructive for interpreting the neural data and revealing
the neural mechanisms underlying bottom-up attention. Instead,
we suggest that understanding the interaction and integration
of feedforward and feedback inputs is crucial for understanding
bottom-up attention.

EXPERIMENTAL EVIDENCE FOR THE ROLE OF FEEDBACK
Despite its intuitive appeal, even early studies of attention yielded
behavioral evidence against the hypothesis that bottom-up atten-
tion relies solely on feedforward processes. This evidence includes,
but is not limited to, asymmetries between the search time when
targets and distracters are switched (Treisman, 1985), and the
impairment of visual search in the presence of a concurrent visual
task for the least salient (but not the most salient) target (Braun,
1994). However, these findings were used to argue for parallel
versus serial attentional processes and to separate visual processes
to “preattentive” (i.e., processes that precede top-down attention
and so do not require it) and attentive processes (i.e., processes
that require top-down attention; Treisman, 1985; Braun, 1994).
That is, instead of assuming a function for feedback in bottom-up
attention, they equated feedback processes with the involvement
of top-down attention.

The first clear evidence for the role of top-down signals (and
therefore feedback) in bottom-up attention comes from a study
by Joseph et al. (1997) where they showed that even a visual
search for popout targets (which is traditionally considered as
a preattentive process) can be impaired in the presence of a
demanding central task. Specifically, the authors showed that the
performance for detection of an oddball target (defined by a

simple feature such as orientation) was greatly impaired when
the subjects were simultaneously engaged in reporting a white
letter in a stream of black letters. This impairment in performance
was alleviated as the lag between the demanding central task and
oddball detection was increased, indicating that the impairment
was not due to interference between responses in the two tasks.
Interestingly, the subjects did not become slower in oddball
detection as the number of distracters was increased, a hallmark of
parallel processing in visual search tasks. These behavioral results
demonstrate that top-down signals are important even for the
oddball detection task, which was considered to only rely on
preattentive processes, as the shift of such signals to other part
of space changes the bottom-up characteristics of performance in
the task.

There is other experimental evidence that indicates bottom-up
saliency computations are strongly modulated by top-down sig-
nals. Some of this evidence is based on inter-trial effects in visual
search tasks where the reaction time (RT) for detection of popout
targets is influenced by the feature that defined the target on
the preceding trial (Maljkovic and Nakayama, 1994; Found and
Müller, 1996; Krummenacher et al., 2001, 2010; Mortier et al.,
2005). For example, Krummenacher et al. (2001) showed that RT
for popout targets was shorter when the feature defining the target
on trial “n” was the same as the feature defining the target on trial
“n-1.” Because these effects are task-dependent and can survive an
inter-trial time interval of a few seconds, it is unlikely that they are
caused by activity-dependent changes in the feedforward pathway
such as short-term synaptic plasticity which are mostly dominated
by depression rather than facilitation (which itself is only promi-
nent on a timescale of a few hundreds milliseconds; Zucker and
Regehr, 2002). Overall, these inter-trial effects indicate that not
only feedback but also memory can influence bottom-up saliency
computations (Krummenacher et al., 2010).

One of the most successful models of bottom-up attention,
the saliency model of Itti et al. (1998), assumes the existence
of a unique saliency map that represents the visual salience of
the entire visual field by integrating saliency across individual
features. In order to calculate the most salient locations, the model
relies on series of successive computations that separately enhance
contrast between neighboring locations for different features of
the stimulus such as intensity, orientation, color, motion, etc. This
gives rise to the formation of the so-called conspicuity maps for
each visual feature which are then further processed and com-
bined to form a single saliency map that has no feature selectivity.
This saliency map is proposed to be instantiated in superior
colliculus (Kustov and Robinson, 1996), pulvinar (Shipp, 2004),
V4 (Mazer and Gallant, 2003), lateral intraparietal cortex (LIP;
Gottlieb et al., 1998), or the frontal eye field (FEF; Thompson
and Bichot, 2005). Finally, this model assumes that top-down
effects could happen via changes at different stages of saliency
computations (Itti and Koch, 2001; Navalpakkam and Itti, 2005).
Alternatively but not exclusively, top-down effects could directly
influence bottom-up attention after the completion of saliency
computations (Ahissar and Hochstein, 1997).

There is evidence from viewing (eye movement) behavior that
top-down signals can interact with bottom-up saliency signals.
In one study, Einhäuser et al. (2008) used a visual search task

Frontiers in Psychology | Perception Science March 2015 | Volume 6 | Article 155 | 87

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Khorsand et al. Feedforward and feedback inputs and bottom-up attention

(using images with manipulated saliency, e.g., by imposing a
gradient in contrast across them) to show that task demands
can override saliency-driven signals which otherwise bias eye
movements. These top-down effects on eye movements could be
due to adjustments of weighting of different features involved in
saliency computations or direct influence of task demands after
bottom-up saliency computations are performed (the so-called
weak versus strong top-down effects), or a combination of the
two. For example, measuring webpage viewing during different
tasks, Betz et al. (2010) argued that the influence of task on
viewing behavior could not be merely explained by reweighing
of features. Whereas effects of task demands on viewing behavior
are present in both of these studies, the exact locus and relative
contribution of top-down signals to bottom-up processes could
depend on the task (e.g., visual search versus information gath-
ering from texts). Moreover, it is more biophysically plausible
(in terms of existing feedback connections and neural circuitry)
that top-down signals and task demands exerts their effects on
bottom-up attention via modulating the saliency computations
as they progress, rather than overriding the final computations.

Overall, these behavioral results demonstrate that bottom-up
saliency computations (e.g., detecting an oddball) are strongly
modulated by feedback signals and processes that include working
memory. Moreover, they provide an alternative way to interpret
the aforementioned asymmetries in the detection of a salient
object, or, the dichotomy between preattentive and attentive
processes. That is, the detection of any target (salient on non-
salient) requires some amount of feedback from higher visual
areas; however, the necessary amount of feedback depends on the
configuration of targets and distracters (see below).

Despite earlier behavioral evidence for the role of top-down
signals in bottom-up attention, the corresponding neural evi-
dence has been demonstrated only recently (Burrows and Moore,
2009). More specifically, Burrows and Moore (2009) examined
the representation of salience in area V4, as previous attempts at
finding these signals in lower visual areas were equivocal (Hegdé
and Felleman, 2003), and moreover, examined the effects of top-
down signals on this representation. In order to distinguish pure
salience signals from signals that merely reflect a contrast between
the center and surround (such as orientation contrast reported by
Knierim and van Essen, 1992), the authors measured the response
of V4 neurons to different types of stimuli (singleton, color
and orientation popout, combined popout, and conjunction),
for which the target has different levels of saliency. Interestingly,
they found that V4 neurons carry pure saliency signals reflected
in their differential firing responses to popout and conjunction
stimuli. Next, they measured the response to the same stimuli
while a monkey prepared a saccade to a location far from a
neuron’s receptive field. Interestingly, they found that saccade
preparation eliminated the saliency signals observed in V4. Later,
our computational modeling showed that these observations can
be explained by alterations of feedback from neurons in a putative
saliency map due to saccade preparation (Soltani and Koch,
2010). Overall, these results demonstrate that the most basic
computations underlying bottom-up attention, which enable the
brain to discriminate between salient and non-salient objects, are
strongly modulated by top-down signals.

MODELING EVIDENCE FOR THE ROLE OF FEEDBACK
Most computational models of bottom-up attention rely on
feedforward processes as the main source of computations dur-
ing visual search tasks (Koch and Ullman, 1985; Treisman and
Gormican, 1988; Wolfe, 1994; Itti and Koch, 2001). Whereas some
of these models were constructed keeping neural substrates in
mind, they lack enough detail to be able to elucidate biophysical
mechanisms or constraints underlying bottom-up attention. As
described below, some of these biophysical constraints are the
main reasons why feedforward processes are not sufficient to
adequately account for the behavioral and neural signatures of
bottom-up attention.

In a recent study, Soltani and Koch (2010) constructed a
detailed, biophysically plausible computational model to examine
neural mechanisms and constraints underlying the formation of
saliency signals. The model network consisted of populations of
spiking model neurons representing primary visual areas (V1,
V2, and V4) and a higher visual area representing the saliency
(or priority) map, a topographical map that represents the visual
salience of the entire visual field. Similar to the saliency model of
Itti et al. (1998), Soltani and Koch (2010) assumed that the neural
population in the saliency map integrates the output of neural
populations in V4 with different features selectivity. Therefore,
the saliency signals in visual areas V1–V4 were feature-dependent
whereas this signal was feature-independent in the saliency map.
The input to the model was generated by filtering stimuli used in
Burrows and Moore’s (2009) study based on response properties
of neurons in LGN and V1. Using this model, the authors studied
both the formation of saliency signals in successive populations
of neurons (which mimic visual areas V1–V4) and how these
signals are modulated by the feedback from a putative saliency
map (assumed to be instantiated in the LIP or FEF).

The results from this computational study challenge the idea
that bottom-up, exogenous attention solely relies on feedforward
processing at various levels. Firstly, this study provides evidence
that saliency processing relies heavily on recurrent connections
(so it is not solely feedforward) with slow synaptic dynamics
operating via NMDA receptors. However, the involvement of
NDMA-mediated currents does not slow down the emergence of
saliency signals. More specifically, the onsets of saliency signals
in successive layers of the network were delayed by only a few
milliseconds (and were advanced for some stimuli), while the
strength of signals greatly increased. Secondly, as shown exper-
imentally and computationally, recurrent reverberation through
NMDA is crucial for working memory (Wang, 1999; Tsukada
et al., 2005; Wang et al., 2013) and decision making (Wang, 2002).
Therefore, an equally important role for reverberation through
NMDA in saliency computations makes these computations more
similar to cognitive processes that are not considered feedforward,
such as working memory and decision making. Thirdly, this study
demonstrates that whereas saliency signals do increase across
successive layers of neurons, they could be significantly improved
by feedback from higher visual areas that represent the saliency
map.

But how is it that recurrent and feedback inputs do not slow
down saliency computations in the model? The formation of
saliency signals relies heavily on slow recurrent inputs (dominated
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by NMDA receptors), but at the same time these signals propagate
through successive layers of the network via fast AMPA currents.
Computation at successive layers with slow synapses reduces noise
and enhances signals such that higher visual areas carry the
saliency signals earlier than the lower visual areas. Consequently,
feedback from the higher visual areas via fast AMPA synapses can
enhance the saliency signals in the lower visual areas. Importantly,
all these results depend on the presence of cortical noise. In the
absence of noise, saliency computations could be accomplished
merely by AMPA currents and do not require successive layers of
neural populations (as in the saliency model of Itti et al., 1998).

Another important aspect of modeling results is that due
to noise and basic mechanisms for saliency computations (i.e.,
center-surround computations via lateral interaction) the optimal
architecture for these computations is for them to process visual
inputs in separate populations of neurons selective for individual
features. This feature could explain the inter-trial effects similarly
to the parallel coactivation model of Krummenacher et al. (2001).
In that model, the feature of the target on the preceding trial could
deploy top-down attention to enhance processing in population
selective to that feature, therefore, decreasing RT for the “same”
versus “different” trials. In our model, the saliency signals in a
population selective to the repeated feature could be enhanced
due to feedback signals (caused by working memory of previously
selected target), while the same feedback increases noise in the
non-repeated population and results in a slower RT. Despite
this advantage for separate processing of various features, future
studies are required to explore the role of neural populations with
mixed selectivity in saliency computations.

In the aforementioned model, only feedback from neurons
in the saliency map to those in early visual areas was consid-
ered. However, we propose a more general form of feedback
that also includes feedback between visual areas (from the next
layer/population) as well as top-down signals from other cortical
areas to the saliency map(s) (Figure 1). Moreover, because the
projections that mediate feedback are active whenever the presy-
naptic neurons are active, independently of the task demands,
the feedback is always present (unless top-down signals sup-
press these activities at their origin) and exerts their effects on
visual processes. Considering the short delays in transmission of
visual signals across brain areas, separating bottom-up attentional
processes into feedforward and feedback components could be
mechanistically impossible.

There are high-level models of bottom-up attention that
address the influence of top-down signals on bottom-up attention
in general (see Borji and Itti, 2013 for a review) or for improving
object recognition (Oliva et al., 2003; Navalpakkam and Itti, 2005,
2006). In some of these models, top-down effects are simulated
via multiplicative gain modulations of bottom-up computations
(Navalpakkam and Itti, 2006) or as an abstract term (contextual
priors) in computing the posterior probability of an object being
present (Oliva et al., 2003). However, in most computational
models of visual attention that strive to predict the pattern of
eye movements in real time, the distinction between top-down
and bottom-up processes are not clear (Borji and Itti, 2013).
Importantly, the main result of those modeling works is that top-
down signals are crucial to achieve performance that matches

human visual performance and can accurately predict eye move-
ments. However, because of the high-level nature of these models,
computations performed by these models are not constrained
and so are not biophysically plausible. Therefore, these models
do not elucidate biophysical constraints underlying bottom-up
attention that could reveal the role of feedback on bottom-up
attention. Perhaps, the lack of distinction between bottom-up and
top-down processes in more advanced models of visual attention
is an indication that one cannot separate these processes based on
behavior alone.

MORE EVIDENCE FOR THE ROLE OF FEEDBACK: SPEED OF
FEEDFORWARD, RECURRENT, AND FEEDBACK PROCESSES
As described above, one of the reasons for assuming that bottom-
up attention relies on feedforward processes is because feedback
and recurrent inputs are not fast enough, e.g., by considering
the time it takes for the visual signals to travel from lower to
higher visual areas and back. Nevertheless, as shown by the recent
modeling work, even recurrent inputs through slow NMDA
synapses do not impede the emergence of saliency signals in
successive layers of neural populations, and feedback can enhance
those signals (Soltani and Koch, 2010). Interestingly, compatible
with the model’s assumptions and predictions, there is growing
neurophysiological evidence that feedback and recurrent inputs
actually do contribute to bottom-up attention (see below).

As shown by computational models with different levels of
detail, saliency computations heavily rely on center-surround
computations (Itti and Koch, 2001). One prevalent form of
center-surround computations recorded neurophysiologically is
the surround suppression (i.e., suppression of response by stimuli
outside the classical RF (CRF); Cavanaugh et al., 2002). Surround
suppression is observed even in the primary visual cortex as well
as retinal ganglion (Kruger et al., 1975) and LGN cells (Levick
et al., 1972), and has been assumed to be instantiated by horizon-
tal connections from neighboring neurons with similar selectivity.
However, by analyzing the timing of surround suppression and
how it depends on the distance of the stimuli outside the CRF,
Bair et al. (2003) found not only that the latency of suppression
depends on its strength but also that this suppression could arrive
faster than the excitatory CRF response and does not depend on
the distance of the surround stimuli. To explain these results,
Bair et al. (2003) suggested that in addition to recurrent inputs,
surround suppression in V1 might be strongly influenced by
feedback from higher visual areas (e.g., V2) with a larger RF. In
another experiment, Hupe et al. (1998) found that feedback from
higher visual areas (area V5) is crucial for surround suppression
within early visual areas (V1, V2, and V3). More specifically, the
authors showed that inactivation of V5 greatly reduces surround
suppression in V3 neurons. These findings corroborate the idea
that even the simplest form of saliency computations depends on
feedback which could enhance the speed of computations within
the same layer simply because feedback connections are faster
than horizontal connections by an order of magnitude (Bringuier
et al., 1999; Girard et al., 2001).

While feedforward connections are faster than horizontal
connections, it is known that feedforward and feedback
connections are equally fast (about 3.5 m/s) and have latencies
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FIGURE 1 | Schematic of the network architecture and different types
of neural processes (feedforward, recurrent, feedback, and top-down)
involved in bottom-up attention (saliency computations). Saliency
computations start with the process of external inputs that fall on the
retina. Feedforward processing of the inputs, in separate pathways
selective to different visual features (color, orientation, etc.), in successive
layers of neural populations (from V1 to V4) enhances the signals that could
guide attentional selection. However, this enhancement requires
interactions between neighboring neurons via recurrent excitatory and
inhibitory inputs. Because the saliency signals become stronger in

successive layers, feedback from the next layer/area in the visual hierarchy
could further enhance the signals. Ultimately, outputs of different pathways
are combined to instantiate the saliency/priority map(s) (possibly in area
LIP and/or FEF) that represents the visual salience of the entire visual field
and can determine the next attended location. Feedback from the saliency/
priority map(s) to lower visual areas could further enhance the saliency
signals. Moreover, top-down signals from other cortical areas such as
dlPFC could exert top-down effects and task demands on saliency
computations. The inset shows a cartoon of macaque’s brain with relevant
areas highlighted.

as short as 1.5 ms (Girard et al., 2001). Therefore, feedback
processing can be as fast as feedforward processing, but with
the advantage that higher visual areas carry larger saliency
signals as shown experimentally and computationally (Hegdé
and Felleman, 2003; Burrows and Moore, 2009; Soltani and
Koch, 2010; Bogler et al., 2011; Melloni et al., 2012; see below).
Interestingly, the difference in the response latency in different
visual areas can be very small, while the represented signals can
be very different at different time points. For example, Bisley et al.
(2004) showed that the visual response in LIP could emerge as
quickly as 40 ms, which matches the latency of the visual response
in the primary visual cortex. This could happen by bypassing

successive processing of visual information (Schmolesky et al.,
1998), and indicates that signals from salient targets may emerge
in higher visual areas very quickly.

CONTRIBUTION OF DIFFERENT BRAIN AREAS TO SALIENCY
COMPUTATIONS
Whereas early studies that investigated the neural representation
of bottom-up attention found saliency signals in early visual areas
such as V1 (Knierim and van Essen, 1992), later studies showed
that distinct saliency signals are only present in higher visual areas
(Hegdé and Felleman, 2003; Burrows and Moore, 2009; Betz et al.,
2013). As mentioned earlier, electrophysiological studies were able
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to distinguish pure salience signals from signals that merely reflect
a contrast between the center and surround by measuring the
response of neurons to different types of stimuli for which the
target has different levels of saliency (Hegdé and Felleman, 2003;
Burrows and Moore, 2009).

Using a similar approach, recent fMRI studies indicate that
saliency signals emerge gradually over successive brain areas. For
example, an attempt to identify how saliency signals progress
through the brain demonstrated that while activity in early visual
areas is correlated with the graded saliency in natural images,
activity in higher visual areas (such as anterior intraparietal sulcus
and the FEF) is correlated with the signal associated with the
most salient location in the visual field (Bogler et al., 2011).
The latter observation supports the idea that a winner-take-all
mechanism results in selection of the most salient location only
in higher visual areas. Another recent study showed the gradual
emergence of bottom-up signals in early visual areas (Melloni
et al., 2012). Specifically, considering a “TSO-DSC” stimulus
(a stimulus that contains a target that was singleton in orientation
but also contains a highly salient distractor in a task-irrelevant
dimension) as a conjunction stimulus, the patterns of activation
across successive visual areas are similar to the results from the
computational model of Soltani and Koch (2010). That is, only
in V4, the response to both types of popout is larger than the
response to the conjunction stimulus. Finally, compatible with
what Burrows and Moore (2009) reported, an fMRI study found
that in the presence of a demanding central task, saliency signals
(in the form of orientation popout) are only present in higher
visual areas (V3 and V4) and not in V1 (Bogler et al., 2013).

Despite strong neural evidence for the instantiation of saliency
map in higher cortical area, it has been argued that the saliency
map could be represented by V1 neurons (Li, 2002). The support
for this proposal has been mainly based on behavioral data, but a
recent fMRI study has provided some neural evidence for saliency
signals (in the absence of awareness) in V1–V4 and not higher
cortical areas (Zhang et al., 2012). However, using stimuli for
which saliency and luminance contrast were uncorrelated, a more
recent study showed that most BOLD activity in early visual areas
(V1–V3) is dominated by contrast-dependent processes and does
not comprise contrast invariance which is necessary for saliency
representation (Betz et al., 2013).

Moreover, instantiation of saliency map in early visual areas
is not very feasible and imposes serious constraints for saliency
computations and the observed effects of top-down signals.
Firstly, area V1 is not well-equipped for performing saliency
computations. For example, V1 neurons lack certain feature selec-
tivity and therefore, saliency computations in V1 imply that those
features cannot contribute to saliency and bottom-up attention.
Secondly, saliency computations (center-surround computations,
pooling of signals over different features) eliminate some of the
information presents in V1 and therefore, limiting information
processing that higher visual area can perform on the output
of V1. Thirdly, feedback projections to V1 are not very strong
and this significantly limits the effects of top-down signals on
saliency computations. Finally, our computational results show
that saliency computations require successive processing of visual
information over multiple layers and cannot be replaced by

a stronger interaction within one layer of neural population
(Soltani and Koch, 2010). For these reasons, we think that instan-
tiation of a real saliency map in V1 is not plausible.

As mentioned earlier, the observed asymmetries in popout
detection reveal the importance of feedback in bottom-up atten-
tion. For example, the finding of Schiller and Lee that lesions
of V4 differentially affect detection of the most and least salient
targets (Schiller and Lee, 1991; which was used by Braun, 1994
as evidence for different attentional strategies) could indicate that
detection of any target requires feedback. More specifically, in the
case of detecting the least salient target, feedback from higher
visual areas is required to suppress the activity in most parts
of the visual space, a process that could be easily interrupted
by V4 lesions. On the other hand, detection of the most salient
target requires only feedback that enhances activity in the target
location, a process that could be only mildly disrupted by V4
lesions.

Whereas we mainly discussed the modulation of bottom-up
attention by top-down signals via their effects on early visual
areas, there is experimental evidence that even activity in the puta-
tive saliency map is modulated by top-down signals (Thompson
et al., 2005; Ipata et al., 2006; Suzuki and Gottlieb, 2013). In
one study Thompson et al. (2005) showed that during a popout
search task, where target and distractor colors switched unpre-
dictably, monkeys made more erroneous saccades to distracters
on the first trial after the switch. Importantly, presaccadic neural
activity in the FEF was informative about the selected stimulus
independently of whether the stimulus was a popout target or
one of many distracters. Moreover, the signal conveyed by FEF
neurons was correlated with the probability that a given target
would be selected, indicative of this area to instantiate the saliency
map. In another study Ipata et al. (2006) trained a monkey to
ignore the presentation of a popout distracter during a visual
search task, while they recorded from LIP neurons. They found
that on trials where the monkey ignored the distracter, the LIP
response to the salient distracter was smaller than the response
to a non-salient distracter. Recently, Suzuki and Gottlieb (2013)
compared the ability of LIP and dorsolateral prefrontal cortex
(dlPFC) in suppressing distracters using a memory saccade task
where a salient distracter was flashed at variable delays and
locations during the memory delay. Interestingly, they found that
not only dlPFC neurons showed stronger distractor suppression
than LIP neurons, but also reversible inactivation of dlPFC gave
rise to larger increases in distractibility than inactivation of LIP.
Overall, these results show that even the activity of neurons in
the putative saliency map is modulated by top-down signals and
moreover, these signals strongly contribute to performance in
attention tasks.

Considering strong projections from areas representing the
putative saliency map (LIP/FEF) to lower cortical areas (Blatt
et al., 1990; Schall et al., 1995) and the fact that this feedback
is present as long as the former areas are acitve (in both correct
and incorrect trials), one can predict specific effects of activity
in the saliency map on neural processes in lower visual areas.
Interestingly, the modeling results described above indicate that
the main reason for a concurrent task (or even saccade planning as
in Burrows and Moore) interfering with bottom-up computations
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is the influence of the concurrent task on the activity in the
saliency map (LIP or FEF). This happens because the bump
of activity from planning a saccade suppresses neural activity
in most parts of the saliency map except the saccade location,
interrupting and altering feedback from neurons in those parts of
the map. The behavioral results for detecting two popout targets
at various distances show that the RT redundancy gain (short-
ening of RT when popout is defined by two features compared
to when it is defined by one feature) decreases as the distance
between the two targets increases (Krummenacher et al., 2002).
This may be explained by the fact that two bumps of activity in
the saliency map interact weakly if they are too far from each
other (or alternatively due to interactions in early visual areas,
which is less likely due to weaker interactions between neurons
selective to different features in these areas). On the other hand,
at short distances these bumps compete (with higher probability
of winning for the faster detected (more salient) target) resulting
in an increase in feedback based on the most salient location and
therefore higher RT gains. Future experiments are needed to study
the effects of inter-trial variability of neural responses in higher
cortical areas on bottom-up attentional processes in lower visual
areas.

SIMILARITIES BETWEEN BOTTOM-UP AND TOP-DOWN
ATTENTION
Considering that top-down attention likely involves feedback
inputs, examining similarities between bottom-up and top-down
attention can further shed light on the role of feedback in bottom-
up attention. These include similarities in: the timing of bottom-
up and top-down attentional signals in different brain areas;
neural substrates of bottom-up and top-down attention; and
involved neurotransmitters.

Importantly, a few studies have examined the timing of
bottom-up and top-down attentional signals in different brain
areas. In one study, Buschman and Miller (2007) found earlier
bottom-up signals in LIP than in lateral prefrontal cortex and
the FEF whereas FEF neurons detected conjunction targets before
LIP neurons. Other studies, however, point to a more complicated
formation of attentional signals in prefrontal and parietal cortices.
For example, a recent study by Katsuki and Constantinidis (2012)
showed that neurons in dlPFC and posterior parietal cortex signal
bottom-up attention around the same time. Interestingly, there
is evidence that top-down attentional enhancements of activity
within visual cortices are larger and earlier in higher areas (V4)
compared to lower areas (V1), indicative of a “backward” propa-
gation of modulatory signals (Mehta et al., 2000a,b; Buffalo et al.,
2010). Moreover, the laminar source of attentional modulations
in primary visual cortices supports the idea that feedback from the
next visual area in the hierarchy is the origin of these modulations
(Mehta et al., 2000a,b). This is compatible with the finding that
during top-down attention, the FEF neurons exhibit attentional
modulation about 50 ms before V4 neurons (Gregoriou et al.,
2009). These observed trends of neural modulations resemble
successive processing of bottom-up attentional signals, and earlier
emergence of saliency signals in higher visual areas.

Interestingly, even the timing of top-down attentional signals
could be similar between the lower and higher visual areas.

A recent study found that signals related to object-based attention
can be detected in primary visual areas and the FEF at the same
time (by simultaneous recording from V1 and the FEF), and that
the interaction between these areas determines the dynamics of
target selection (Pooresmaeili et al., 2014). These observations
challenge the feedforward assumption behind the formation of
bottom-up attentional signals and point to the role of reciprocal
interactions within lower and higher visual/cortical areas. An
interesting aspect of the observed neural response in the FEF
(which was not present in V1) was an increase in the differential
response to target and distracter over time, indicative of a winner-
take-all process in the FEF. Comparing recordings from V1 and
the FEF, which seem to reside on the opposite sides of visual hier-
archy for visual attention, shows that while the visual response in
V1 occurs earlier than in the FEF, the selection signal occurs at the
same time in both of these areas (Khayat et al., 2009). However,
the modulation index of neuronal response in area V1 was much
smaller than the one in the FEF indicating more enhanced signals
in the latter area. Interestingly, Khayat et al. (2009) also found
that on error trials FEF activity precedes V1 activity and therefore
imposes its erroneous decision. These results show the important
role of ever-present feedback from higher cortical areas in object-
based attention.

Another piece of evidence supporting similarities between
neural substrates underlying bottom-up and top-down attention
comes from two separate experiments measuring the effects of
FEF microstimulation on information processing in other visual
areas. Considering the FEF as a higher visual area that controls
top-down attention, one would assume that its microstimulation
would enhance visual signals in lower visual areas that show
attentional modulations, independently of bottom-up driven sig-
nals in the latter areas. However, using different methods for
measuring signals (single cell recordings and fMRI), two separate
experiments found that induced enhancements of visual signals
depended on the already present bottom-up signals. In one study,
Moore and Armstrong (2003) found an increase in spiking activ-
ity in V4 only when a target was present in the V4 RF, and this
enhancement was larger in the presence of a competing distracter.
In another study, in which changes in fMRI BOLD responses
throughout visual cortex were measured, Ekstrom and Roelfsema
(2008) found that the effect of FEF microstimulation on posterior
visual areas (such as V4) depends on the stimulus contrast and
the presence of distracters. These results demonstrate that even
artificially simulated top-down effects are not independent of
bottom-up saliency signals, which renders the distinction between
feedforward and feedback processes even more unnecessary.

The modeling results also predicted that saliency computa-
tions should rely on excitatory and inhibitory recurrent inputs
within each layer of neural populations and the excitatory recur-
rent input should be dominated by NMDA receptors (and not
AMPA receptors), in order to integrate saliency signals in the
presence of cortical noise (Soltani and Koch, 2010). There is
recent experimental evidence supporting this prediction. In one
study, Self et al. (2012) used different drugs to measure the
contribution of AMPA and NMDA receptors to figure-ground
modulations (the increased activity of neurons representing the
figure compared with the background) in V1. They found that
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AMPA currents mainly contribute to feedforward processing and
not to the figure-ground modulations, whereas NMDA blockade
reduces figure-ground modulations. Another recent study showed
that NMDA, and not AMPA, receptors contribute to the reduc-
tion of variance and noise correlation due to attention (Herrero
et al., 2013). Both these results corroborate the modeling results
that NMDA receptors are crucial for saliency computations and
bottom-up attention.

Interestingly, NMDA receptors are modulated by dopamine
(Cepeda et al., 1998; Seamans et al., 2001), the main neurotrans-
mitter for signaling reward that also influences working memory
(Williams and Goldman-Rakic, 1995) and can alter visual pro-
cesses on a long timescale (Bao et al., 2001). However, in the
absence of strong dopaminergic projections to primary visual
cortex (Lewis and Melchitzky, 2001), most dopamine-dependent
modulations of visual processing may occur via dopamine effects
on prefrontal activity and resulting modulated feedback. For
example, recent studies found that dopamine effects on the FEF
activity can enhance the visual response in V4 neurons (Noudoost
and Moore, 2011) and contribute to adaptive target selection
(Soltani et al., 2013) via specific types of receptors. Considering
the effects of dopamine on working memory and the fact that
top-down attention requires some forms of working memory,
one might regard dopamine as the primary neuromodulator
for top-down attention. However, one needs to exercise caution
because of the aforementioned evidence for the role of feedback
in bottom-up attention suggesting that dopamine could have a
significant role in bottom-up attention.

In summary, the role of NMDA in saliency computations
highlights shared neural substrates for bottom-up attention and
cognitive processes that are not considered feedforward (such as
working memory and decision making). Moreover, the strong
effects of neuromodulators on NMDA receptors indicates how
various neuromodulators could affect bottom-up attention via
their effects on higher visual areas that provide feedback to early
visual areas, or by directly altering saliency computations.

The aforementioned similarities between bottom-up and top-
down attentional processes removes a clear distinction between
neural substrates of bottom-up and top-down attention based on
the location of a given area in the visual hierarchy, and point to a
stronger role of feedback in bottom-up attention. Moreover, sim-
ilarities between bottom-up and top-down attention, which are
originally assumed to rely on feedforward and feedback inputs,
respectively, indicate that both these inputs are important for
both types of attention. These observations signify that the main
dichotomy of visual attention should be disregarded in the search
of more unified models of attention.

Recently, Awh et al. (2012) have elegantly challenged the
bottom-up and top-down dichotomy and instead proposed a
framework that relies on a priority map that integrates multiple
selection mechanisms and biases including: current goals, selec-
tion history, and physical salience. Specifically, they summarized
experimental evidence supporting the idea that both recent his-
tory of attentional deployment as well as the reward history can
bias visual selection independently of the current goals (top-down
signals) or stimulus salience (bottom-up signals). Interestingly,
the main argument of Awh et al. (2012) for the failure of atten-

tional dichotomy is unexplained selection biases due to lingering
effects of past experience, either selection history and reward
history. However, the only feasible mechanism for the effects
of past experience on attentional selection could be synaptic
plasticity, if one wants to truly separate mechanisms underlying
these effects from those serving the influence of top-down signals
(due to some sustained activity in some higher cortical areas).
Because of different timescales of selection history and reward
history, their effects should rely on short-term and long-term
synaptic plasticity, respectively. This has important implications
for the effects of neuromodulators on bottom-up attention.

DISCUSSION AND FUTURE DIRECTIONS
We have reviewed the experimental and modeling evidence for the
role of feedback in bottom-up attention. From a behavioral point
of view, there is evidence that top-down signals are necessary
for observing characteristics of bottom-up attentional processes
such as the very fast detection of oddball targets. From a neu-
ronal point of view, signals reflecting the saliency of an object
can be diminished when top-down signals are interrupted, for
example during saccade preparation. From a computational point
of view, bottom-up, saliency computations can be enhanced by
feedback from higher visual areas that represent the saliency map.
Considering this evidence, it may be logical to replace bottom-
up attention with salience-dependent attention, as the former
term implies a specific direction for information processing which
is not compatible with most experimental or computational
results.

As suggested by Awh et al. (2012), some of the experimental
findings reviewed here can be considered as the lingering effects of
past experience on attentional selection (due to recent history of
attentional deployment). This includes inter-trial effects on per-
formance and RT (e.g., work of Krummenacher and colleagues).
On the other hand, effects of reward history on attentional
selection are not discussed here but are of great importance for
understanding attentional processes. Both their and our proposals
challenge the bottom-up versus top-down dichotomy, but point
to different mechanisms that could account for unexplained
observations. More specifically, Awh et al. (2012) point to the role
of short-term and long-term synaptic plasticity in the feedfor-
ward pathways to explain some of the observed selection biases.
In contrast, we assign an important role for feedback between
successive stages of saliency computations and from the saliency
map(s) to lower visual areas, as well as interaction and integration
of top-down and bottom-up signals within the saliency map(s).
While these mechanisms are not exclusive, future work is needed
to clarify the specific role and relative contribution of them in
attentional selection.

Overall, the reviewed findings indicate that in order to reveal
the neural substrates of attentional processes, the focus should be
shifted toward understanding biophysical mechanisms through
which the necessary computations could be performed, and
whether a specific brain area has the proper neural type and
connectivity to perform those computations. Therefore, even
though the results described above reduce the role of unidi-
rectional, hierarchal computations (i.e., from lower to higher
visual areas) and minimize the distinction between feedforward
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and feedback inputs in bottom-up attention, one should not
ignore the anatomical and biophysical constraints underlying
these computations. For example, whereas successive processing
across visual hierarchy can be bypassed, area V4 still sends more
projections to higher visual areas (such as the FEF) than area V1
(Schall et al., 1995). On the other hand, the projections from the
FEF to area V4 mostly target pyramidal neurons in primary visual
areas (Anderson et al., 2011). The observed lack of projections
to inhibitory neurons limits mechanisms through which feedback
projections could exert modulatory effects, instead of just driving
the recipient areas. Understanding the implications of these and
other constraints on feedforward and feedback processing could
provide valuable insight into understanding bottom-up attention
in particular and vision in general.

There are still many unanswered questions about the role
of feedback in bottom-up, exogenous attention. Firstly, while
the benefit of feedback from a higher visual area representing
the saliency map has been established, there is need for further
research that investigates the effects of feedback between each
successive layers/areas using detailed computational models. Sec-
ondly, the saliency signals are observed in many brain areas (FEF,
LIP, superior colliculus, dlPFC), all of which provide feedback to
early visual areas. This indicates that there should be interaction
between these signals in order to deploy attention to a unique
location; understanding this interaction is crucial for understand-
ing bottom-up attention. Interestingly, some of these areas con-
tribute to top-down attention, which requires working memory,
and it is important to see how saliency and working memory
signals interact and integrate within the saliency/priority maps.
Thirdly, all primary visual areas receive feedback from higher
visual areas representing the saliency map. Future computational
work is needed to elucidate the relative contribution of feedback
to a specific brain area (e.g., V1 in comparison to V4). Overall,
considering the complexity of behavioral and neural data, more
detailed computational models are needed to study interaction
and integration of feedforward and feedback inputs in order to
provide a more coherent account of bottom-up attention and its
underlying neural mechanisms.

As experimental methods for manipulations and simultane-
ous measurements of neural activity improve, there is a greater
need for more extensive and detailed computational models to
interpret the outcome data and provide predictions for future
experiments. Future experiments with simultaneous recording of
neural activity should allow us to study the relationship between
feature selectivity (tuning) and saliency signals for individual
neurons. Computational models are needed to explain such rela-
tionships and how different neural types contribute to bottom-
up attention. Similarly, drug manipulations of various brain areas
provide another opportunity for computational modeling to con-
tribute, considering the large number of involved receptors and
contradictory possible outcomes (e.g., Disney et al., 2007; Herrero
et al., 2008).
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Human vision briefly retains a trace of a stimulus after it disappears. This trace—iconic
memory—is often believed to be a surrogate for the original stimulus, a representational
structure that can be used as if the original stimulus were still present. To investigate
its nature, a flicker-search paradigm was developed that relied upon a full scan (rather
than partial report) of its contents. Results show that for visual search it can indeed act
as a surrogate, with little cost for alternating between visible and iconic representations.
However, the duration over which it can be used depends on the type of task: some tasks
can use iconic memory for at least 240 ms, others for only about 190 ms, while others for
no more than about 120 ms. The existence of these different limits suggests that iconic
memory may have multiple layers, each corresponding to a particular level of the visual
hierarchy. In this view, the inability to use a layer of iconic memory may reflect an inability
to maintain feedback connections to the corresponding representation.

Keywords: iconic memory, feedback connections, visual search, visual attention, visual memory

INTRODUCTION
It has long been known that human vision retains a brief trace
of any stimulus it encounters (see e.g., Loftus and Irwin, 1998).
This trace, often referred to as iconic memory, has been a focus of
investigation for several decades (e.g., Sperling, 1960; Coltheart,
1980; Ruff et al., 2007; Sligte et al., 2010). It is sometimes consid-
ered to be a “visual echo” that can act as a surrogate, i.e., that as
long as it lasts, its contents can be used in much the same way
as if the stimulus were still visible. But there is little consensus
as to what—if any—function iconic memory may have (see e.g.,
Pashler, 1998). On one hand, it has sometimes been considered
a simple side effect, with potentially deleterious effects on per-
ception (Haber, 1983). On the other, it could potentially increase
the amount of information that could be extracted from a brief
presentation (Haber, 1971).

Iconic memory has most often been studied via partial report,
in which observers are briefly shown an array of a dozen or so
items and then asked to report a subset that is cued after the array
disappears (Sperling, 1960; Averbach and Coriell, 1961). Various
studies have also examined the extent to which iconic represen-
tations can be used in memorization and recognition tasks (e.g.,
Loftus et al., 1992; Keysers et al., 2005) as well as change detection
(e.g., Becker et al., 2000; Sligte et al., 2010). All assume that iconic
memory is equally available to any visual process. But is this really
so? Or might it be used to different extents by different processes?

To investigate this, a flicker search paradigm was developed
(Figure 1). This is a variant of visual search, where the observer
must determine as quickly as possible the presence or absence
of a given target among a set of non-target items (or distrac-
tors) in a display; different visual operations can be tested by
different choices of target and distractors (e.g., Treisman and
Gormican, 1988; Wolfe and Horowitz, 2004). In flicker search,
observers search displays that are visible only intermittently: after
a fixed time (the display duration, or on-time), the display is
blanked for some fixed interval [the interstimulus interval (ISI),

or off-time], this cycle then repeated until the observer responds
or times out. (To enable maximal use of iconic memory, no
masks are present.) For many kinds of search task, the time
needed to respond is proportional to the set size (the number
of items in the display), likely reflecting the application of an
attentional mechanism (Treisman and Gormican, 1988; Wolfe and
Horowitz, 2004). If this mechanism is sufficiently slow, search
will require the scan of the blank intervals1. The question then
is whether the speed of search through a blank interval (i.e.,
iconic memory) is the same as through the representation that
gave rise to it. This can be answered by comparing performance
when iconic memory is used for different fractions of the display
cycle.

Such a“full scan”technique removes several potential problems
of partial report, such as complications due to memory consolida-
tion and transfer; it also reduces the likelihood of observers using
different strategies (cf. Estes and Taylor, 1964). Consequently, it
may provide a more precise estimate of iconic properties. Impor-
tantly for the issue at hand, it also allows a wide variety of tasks to
be examined using the same general framework.

1If the start of search after display onset is stochastic, and the variance of this is suffi-
cient, random sampling will ensure that the fraction of on- or off-time encountered
will on average be that in the display cycle. To help with this, observers were dropped
from the analysis if search was over before the first display cycle was complete—i.e.,
before a full testing of the first iconic representation could be made. The criterion
used was that search should be slow enough to allow the complete testing of 10
items (the maximum present) duration a single display cycle at the slowest cadence
(320 ms). Note that this does not assume an item-by-item scan of the display; atten-
tion could be allocated to the items in parallel. On the basis of this criterion, two
observers were removed: one from Experiment 1A, and one from Experiment 3C.
More severe criteria did not significantly change the overall pattern of results.

For even the fastest search encountered here (c. 50 ms/item in Experiment 1A), a
scan of both visual and iconic representations was essentially complete for displays
containing only six items. Importantly, cadence affected only the slopes and not the
shapes of the response-time curves (Figures 1 and 4). This provides evidence that
the timing assumptions underlying this technique are reasonably accurate for the
conditions examined here.
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FIGURE 1 | Experiment 1A: detection of orientation. (A) General setup.
Target is a vertical line; distractors are lines tilted ± 30◦. Displays “flickered”
until subject responded, or 5 s elapsed. (B) Response times and error rates
as a function of set size for the three cadences. (C) Data recast as slopes.
Slope for base cadence (23.0 ms/item) is unaffected by either an increase in
off-time (22.1 ms/item) or an increase in on-time (24.4 ms/item). Note that

since these are target-present slopes from a presumably self-terminating
search, the search speed itself is obtained by multiplying by a factor of about
2. The resultant speeds are about 50 ms/item, similar to those found
elsewhere. (D) Data recast as baselines. Values for the base cadence
(564 ms) are not significantly affected by an increase in off-time (576 ms) or
on-time (580 ms). Error bars indicate standard error of the mean.

In what follows, it will be shown that this approach can indeed
work, and provides converging evidence that iconic memory can
act as a surrogate for a stimulus that has suddenly disappeared. But
it will also be shown that iconic memory is available to different
tasks for different amounts of time, with these limits clustering
into a few groups, each likely corresponding to a particular level of
the visual hierarchy. As such, it will be argued that this approach
can shed considerable light on the nature of the various levels of
the visual hierarchy, and on the nature of the feedforward and
feedback2 connections between them.

GENERAL METHOD
Unless otherwise specified, each experimental condition used
three timing patterns, or cadences: a base cadence of 80/120 (80 ms
on; 120 ms off), and two longer cadences of 80/240 and 200/120,
created by increasing the off- and on-times respectively by 120 ms.
Each condition tested 12 observers, with order of cadence counter-
balanced. Observers were seated 57 cm from the monitor. Displays
subtended 11.5◦ × 8.5◦ in visual angle, and contained 2, 6, or 10
items, with spacing controlled to keep item density constant. For

2The term “re-entry” generally denotes a particular type of feedback, viz., that in
which density of back connections is similar to or exceeds the density of forward
connections, and for which the mapping of back connections is not haphazard, but
has a mapping similar to that of the feedforward connections. In the context here,
“re-entry” and “feedback” will be considered synonymous.

detection conditions, the target was present on a randomly selected
half of trials; otherwise, the target was always present in each dis-
play. Items were ∼1◦ in extent, the exact size depending on the
condition tested.

Lighting level was sufficient to allow color to be easily seen (i.e.,
above the mesopic range). A cathode-ray tube (CRT) display was
used for all conditions. Blank fields and display backgrounds were
both medium gray, resulting in a continual flickering of the items
on a static background. All items were black, apart from those
in the contrast polarity condition. The appearance of a gray field
after the disappearance of an item therefore corresponded to an
increase rather than a decrease of phosphor activation, ensuring
that phosphor persistence could not significantly affect the results.

All experimental conditions were run on a Macintosh com-
puter using VSearch software (Enns et al., 1990). Observers were
instructed to maintain fixation during each trial, to detect the
target as quickly as possible, and to keep error rates below
5%. Responses were given via one of two response keys. All
observers completed four sets of 60 trials in each condition. Per-
formance was measured in terms of reaction times (RTs) that were
averaged for each observer; these were then recast into search
speed (average target-present slope3) and baseline (estimated time

3Slopes for each observer were calculated by determining mean response time for
each set size, and calculating a least-squares fit through these points. Analysis used
repeated-measures ANOVAs, and paired, two-tailed t-tests. Target-present slopes
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needed for a single item in the display). A trial timed out—
and was considered an incorrect response—if more than 5 s was
needed.

EXPERIMENT 1
This experiment examined whether iconic memory can support
visual search for a simple feature. The target was a black vertical
line 0.8◦ long; distractors (non-targets) were similar lines ori-
ented ± 30◦ to the vertical (Figure 1A). Observers were asked to
detect the presence or absence of the target.

Condition 1A examined detection for the three cadences of
80/120, 200/120, and 80/240. Search of this kind typically has
target-present slopes of 15–30 ms/item in a static display (cf.
Treisman and Gormican, 1988). Search here was similar: RTs
showed a strong effect of set size [F(2,10) = 22.8; p < 0.0001],
with an average slope of 23.2 ms/item (Figure 1B). However,
no significant effect of cadence was found [F(2,10) = 0.711;
p > 0.5], nor any significant interaction between set size and
cadence [F(4,10) = 1.29; p > 0.3]. Cadence had no sig-
nificant effect on either slopes [F(2,10) = 0.151; p > 0.8;
Figure 1C], or baselines [F(2,10) = 0.47; p > 0.6; Figure 1D].
Error rates were much the same for all cadences, indicat-
ing that no speed-accuracy trade-offs occurred. As such, these
results indicate that the information in iconic memory can
survive without serious degradation for at least 240 ms, consis-
tent with conclusions obtained elsewhere (e.g., Sperling, 1960;
Graziano and Sigman, 2008). And the lack of effect of dif-
ferent cadences—essentially, different switching rates—indicates
little cost of switching between visual and iconic representa-
tions.

As a test of whether the memory being used actually is iconic
memory, Condition 1B compared performance for the 80/240
cadence against two others: a 80/0 cadence (i.e., a display that
remained on), and a 80/320 cadence (in which the blank interval
was 320 ms). Paired t-tests showed that slopes and baselines for
80/240 and 80/0 conditions were virtually identical (p > 0.9 and
p > 0.5, respectively), both with a slope of 20.5 ms, indicating that
the flicker had little effect. Extending the blank duration to 320 ms
showed a similar lack of effect (p > 0.2 and p > 0.9, respectively).
However, slopes for the 80/240 and 80/320 conditions were 20.5
and 25.2 ms/item respectively, suggesting a slight degradation for
the longer blank; indeed, a more detailed analysis4 indicates that

were used; target-absent slopes either followed the same pattern or showed no
strong effects. Error rates in the target-absent condition were generally low (below
2%) and did not vary much over different conditions. Errors for target-present
conditions either followed the pattern of the slopes or showed no strong effects,
indicating that speed-accuracy trade-off was not a factor.
4Usable memory duration u can be calculated in the following way. The total usable
time in each alteration is taken to be the duration of the visible component plus
the usable duration of the iconic component. Assuming the usable duration in the
80/120 and 200/120 cadences is 120 ms or more, and that speed is the same for visible
and iconic inputs (both assumptions supported by the results of Experiment 1),
search speed can be estimated by averaging the slopes of the two short-ISI cadences
to get slope sV, corresponding to search through a visible representation. The usable
fraction f over a complete display cycle is sV/sL, where sL is the slope of the long-ISI
cadence. For a long-ISI condition with on-time of 80 ms and display cycle ( = on-
time + off-time) of D ms, f is also (80+u)/D; rewriting, u = Df – 80 = D(sV/sL) –
80. The standard error of the mean of u can be determined from this formula, via
the standard errors of the slopes.

performance is a function of on-time plus a usable duration (u) of
246 ± 57 ms.

Taken together, these results are consistent with other find-
ings showing that the information in iconic memory can survive
without serious degradation for several 100 ms (e.g., Sperling,
1960; Graziano and Sigman, 2008). The speed of search was
much the same throughout, not only supporting the proposal
that attentional selection and iconic memory involve common
representations (Ruff et al., 2007), but indicating that the iconic
representation can be used as easily and effectively as the one used
in “regular” vision, with the switch between visible and iconic
representations requiring little or no time.

EXPERIMENT 2
To examine the extent to which iconic memory can be used for
other tasks, Experiment 2 examined its involvement in change
detection. Based on the difficulty of detecting change in the
absence of attention (i.e., change blindness), it has been pro-
posed that most unattended structure is detailed but volatile,
with iconic memory being the quickly dissipating remnant of
this representation after the stimulus disappears (Rensink et al.,
1997; Rensink, 2000a). Subsequent work (Becker et al., 2000)
supported this proposal, indicating that the cueing of iconic
memory can guide attention, and thereby facilitate change
detection.

Experiment 2 used the same set sizes and much the same items
as in Experiment 1A. The same cadences were also used, so that
any interference from the flickering displays would be about the
same. However, each display now contained approximately equal
numbers of vertical lines and lines tilted counterclockwise by 30◦.
The target was now the item that changed its orientation by 30◦
between displays (Figure 2A).

As before, set size had a strong effect on RT [F(2,11) = 172.1;
p < 0.0001; Figure 2B]. But there was now a significant
effect of cadence [F(2,11) = 27.4; p < 0.0001] and a signifi-
cant interaction between set size and cadence [F(4,11) = 24.5;
p < 0.0001]. In particular, cadence had a strong effect on
slopes [F(2,11) = 33.0; p < 0.0001; Figure 2C], which were
higher with increased off-time (p < 0.001). However, there
was no effect with increased on-time (p > 0.2), again indi-
cating that the different rates of switching between visual and
iconic representations had little effect. Baselines (Figure 2D)
were not reliably affected [F(2,11) = 1.31; p > 0.2). (In
general, baselines were never reliably different in all the con-
ditions that follow, and so are omitted from subsequent
analyses.)

Interpreting slopes in terms of the number of items held across
the blank interval (Rensink, 2000b), a strong effect of cadence
was again evident [F(2,11) = 20.1; p < 0.0001]. However, the
opposite pattern now occurred: hold did not differ significantly
with greater off-time (p > 0.05), but increased with greater on-
time (p < 0.005). This is consistent with the proposal that under
these conditions the speed of change detection is largely governed
by the loading of information into visual short-term memory
(vSTM) and its subsequent comparison (Rensink, 2000b). It also
suggests that these operations take place largely during on-times
alone, being largely unable to use iconic memory. Indeed, a more
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FIGURE 2 | Experiment 2: detection of orientation change. (A) Stimuli
used. ∼50% of lines in each display are vertical, and 50% are tilted by 30◦
counterclockwise. Target is the item that changes between vertical and tilted;
distractors are those items that maintain a constant orientation. (B) Response
times and error rates as a function of set size for the three cadences. (C) Data
recast as slopes. Slope for base cadence (47.3 ms/item) is strongly affected

by an increase in off-time (83.0 ms/item) but not by an increase in on-time
(53.7 ms/item). (D) Data recast as baselines. Values for the 80/240 and
200/120 cadences have been subtracted by 120 ms to equate the time of first
appearance of the changed item. Baseline for base cadence (645 ms) is not
significantly affected by an increase in off-time (615 ms) or on-time (641 ms).
Error bars indicate standard error of the mean.

detailed analysis of the slopes shows that performance is a func-
tion of on-time plus a usable duration of u = 115 ± 18 ms.
[Note that if usable duration started from stimulus onset, the sim-
ilar speeds for the 80/120 and 200/120 cadences would require a
value of at least 320 ms. But then there would be similar speeds
for the 80/240 and 200/120 cadences, which was not the case
(p < 0.0001). Thus, usable duration apparently begins at stimulus
offset.]

For the detection of both orientation and contrast changes, the
loading of information into vSTM is proportional to the dura-
tion of the display plus ∼110 ms (Rensink, 2000b, Figure 6).
Since the ISI in those conditions was 120 ms, this indicates
that usable duration u is not the “worth” of iconic mem-
ory (Loftus et al., 1992), but an actual time limit. Once this
limit is exceeded, iconic memory simply cannot be used for
change detection, even though the results of Experiment 1
indicate that it still exists, and contains potentially usable
information.

EXPERIMENT 3
To explore the generality of the limited usability found in
Experiment 2, Experiment 3 investigated other kinds of items
and kinds of change (Figure 3). Conditions were otherwise
much the same. In Condition 3A, items were rectangular
outlines 0.4◦ × 1.2◦, with targets changing orientation 90◦

between vertical and horizontal (Figure 3A). As in Experi-
ment 2, slopes depended strongly on cadence [F(2,11) = 14.4;
p < 0.0001], with search slowing reliably for increased off-
time (p < 0.001) but not increased on-time (p > 0.05).
Usable duration u was 117 ± 27 ms, much the same as
before.

Condition 3B examined change in location. Here, the target
jumped back and forth 1.2◦ each alternation, with distrac-
tors remaining stationary. Slopes again depended on cadence
[F(2,10) = 12.7; p < 0.0002], with search slowing for increased
off-time (p < 0.0002) but not increased on-time (p > 0.3). Usable
duration u was 123 ± 34 ms, similar to previous values.

Condition 3C looked at shape change, with the target alternat-
ing between a circle and a square. Although more difficult than
the other conditions, similar results were found: slope depended
on cadence [F(2,11) = 9.9; p < 0.001], with search slowing for
increased off-time (p < 0.01) but not increased on-time (p > 0.9).
Usable duration u was 139 ± 37 ms, comparable to previous values.

Finally, condition 3D examined changes in contrast polar-
ity (black vs. white). Slopes again depended on cadence
[F(2,11) = 8.8; p < 0.002]. Search slowed down with increased
off-time (p < 0.05), and tended to speed up with increased on-
time, although statistical reliability was marginal (p = 0.06). [This
latter effect has been found elsewhere, where it was taken to
indicate a grouping process—based on polarity—that takes place
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FIGURE 3 | Experiment 3: detection of different kinds of feature

change. (A) Changing orientation. Slope for base cadence (38.7 ms/item)
is strongly affected by an increase in off-time (69.7 ms/item) but not an
increase in on-time (47.0 ms/item). (B) Changing location. Slope for
base cadence (33.1 ms/item) is strongly affected by an increase in
off-time (56.1 ms/item) but not an increase in on-time (38.0 ms/item).

(C) Changing shape. Slope for base cadence (69.4 ms/item) is strongly
affected by an increase in off-time (101.9 ms/item) but not an increase in
on-time (70.2 ms/item). (D) Changing polarity. Slope for the base cadence
(43.2 ms/item) is significantly affected by an increase in off-time
(55.7 ms/item), but marginally affected by an increase in on-time
(37.6 ms/item). Error bars indicate standard error of the mean.

over several 100 ms (Rensink, 2000b).] Comparing the 80/240
and 200/120 cadences (which equates time per alternation) shows
search to be reliably faster with greater on-time (p < 0.005); rela-
tive speeds yield u = 137 ± 34 ms, similar to the values for other
kinds of change. In summary, then, all change detection tasks
appeared to show the same kind of behavior, with the same usable
duration of about 120 ms.

EXPERIMENT 4
Experiment 4 investigated why the usability of iconic memory
might be limited for some tasks but not others. To determine if task
difficulty was important, Condition 4A gave observers a simple
detection task (as in Experiment 1), with the target defined by a
horizontal bar only slightly higher than those of the distractors.
Speeds were now comparable to several of those in Experiments
2 and 3 (Figure 4A). However, cadence did not have much of an
effect [F(2,11) = 0.28; p > 0.7], indicating that difficulty per se
was not the critical factor.

To determine if usable duration might be different if a report
is required of the target, Condition 4B used much the same items
as in Condition 4A, but with half being black and half white;
observers were asked to identify the contrast of the target rather
than detect it (Figure 4B). Dependence on cadence now reap-
peared [F(2,11) = 4.0; p < 0.05], with search slowing for increased
off-time (p < 0.01) but not increased on-time (p > 0.3). Usable
duration u was 202 ± 29 ms, less than the 240 ms (or higher) limit
of a static detection task, but greater than the values for a change
detection task.

To determine if this value might have somehow been due to
the mixed polarity of the items, Condition 4C tested report of the
orientation of a T-shaped target (left or right) among L-shaped dis-
tractors; all items were black (Figure 4C). Search again depended
on cadence [F(2,11) = 10.3; p < 0.001], slowing for increased

off-time (p < 0.002) but not increased on-time (p > 0.5). Usable
duration u was 181 ± 26 ms, similar to that for Condition 4B.

Finally, to examine whether the key factor in Conditions
4B and 4C might have been the existence of multiple kinds
of target, Condition 4D asked observers to detect (but not
report on) a T-shaped target among L-shaped distractors, with
all items—targets as well as distractors—in any of four ori-
entations (Figure 4D). Dependence on cadence now vanished
[F(2,11) = 0.49; p > 0.6], indicating that multiplicity was not
important.

Taken together, then, the results above suggest that the criti-
cal factor determining the extent to which iconic memory can be
used is not the difficulty of the task or the kinds of items involved,
but something about the task itself. A common element of change
detection and report—but not static detection—is the need for
an item to be individuated, i.e., treated as a particular individual
at a particular location (Smith, 1998; Pylyshyn, 2003). In change
detection, for example, an item that is initially seen (and stored in
vSTM) must be re-identified as the same item in the subsequent
presentation. Likewise in report, an item detected on the basis of
some given feature must be identified as such by whatever pro-
cess underlies the subsequent report. Such individuated items are
believed to play a key role in many visual processes (Ullman, 1984).

GENERAL DISCUSSION
The results above indicate that for all visual search tasks, iconic
memory can act as a surrogate for about 120 ms: during this time
it can be used as easily and effectively as if the original stimulus
were present. Results also show that for some—but not all—tasks,
it is available for much longer. The key factor is not the difficulty
of the task or the type of feature involved; instead, it appears to be
the extent to which the task relies on individuation. Three groups
of limits were encountered: for change detection, ∼120 ms; for
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FIGURE 4 | Experiment 4: different tasks. (A) Detection of offset
horizontal line. Slope for base cadence (45.6 ms/item) is unaffected by an
increase in off-time (47.6 ms/item) or on-time (44.7 ms/item). (B) Report
of contrast polarity of offset horizontal line. Slope for base cadence
(66.6 ms/item) is reliably affected by an increase in off-time
(78.0 ms/item) but not an increase in on-time (71.1 ms/item). (C) Report

of orientation of T-shaped item. Slope for base cadence (40.8 ms/item) is
affected by an increase in off-time (50.7 ms/item) but not an increase in
on-time (42.0 ms/item). (D) Detection of T-shaped item. Slope for base
cadence (30.0 ms/item) is unaffected by an increase in off-time
(30.5 ms/item) or on-time (28.2 ms/item). Error bars indicate standard
error of the mean.

report, 190 ms; for static detection, at least 240 ms. The existence
of these groups suggests that iconic memory is not a monolithic
structure, but involves several (spatially organized) layers, drawn
upon by different tasks to different extents.

Traditionally, iconic memory is taken as having two com-
ponents: the first a high-density, retinotopic visible persistence
existing up to 200 ms from stimulus onset (exact value depend-
ing on lighting level), and the second a longer-lasting infor-
mational persistence that is more abstract and mediated more
centrally (Coltheart, 1980; Loftus and Irwin, 1998). Since visi-
ble persistence can last on the order of a 100 ms under some
conditions (Coltheart, 1980), it may be part of the fastest-
decaying layer. However, access to the other layers lasts much
longer; as such, they would likely involve only informational
persistence.

What might these layers correspond to? One possibility involves
re-entrant connections from higher level visual areas to lower
level ones. Complex static patterns can be detected by neurons
in areas such as temporal cortex; cells here have a considerable
degree of spatial invariance, responding to much of the visual
field (e.g., Felleman and Van Essen, 1991). But to individuate an
item—to see it as a particular individual at a particular location—
requires linking these spatially invariant representations to lower
level retinotopic ones. This can be done, for example, by corre-
lating downward, spatially diffuse signals from higher levels with
upward, spatially precise ones from striate cortex (Di Lollo et al.,
2000; Tsotsos, 2011).

Results from several lines of research are consistent with
this general view. Massive numbers of re-entrant connections
exist between the cortical areas involved in visual perception
(e.g., Felleman and Van Essen, 1991; Bullier, 2004). Such
connections can explain phenomena such as common-onset

masking (Di Lollo et al., 2000) and context effects in recognition
(Weisstein and Harris, 1974); indeed, they are believed to be
involved in a large variety of visual processes (Fukushima et al.,
1991; Tsotsos, 2011). As such, the representation of an item—a
visual object—is distributed over several levels, with its represen-
tation at these levels “knit” together by feedforward and feedback
circuits (e.g., Rensink, 2000a, 2002).

Looked at in this way, the different layers of iconic memory
could correspond to the memory traces at these different levels
(cf. Keysers et al., 2005; Ruff et al., 2007). After a stimulus dis-
appears, representations at the various levels—or at least, their
connections—begin to decay, with different time constants at each
level. Given that durations are generally longer at higher visual
areas (Keysers et al., 2005), the more detailed representations at
lower levels would likely be the first to go. If so, the layer accessible
for only 120 ms would likely correspond to the lower level rep-
resentations. (Visible persistence may be part of this.) Given that
this layer is needed for change detection, it would likely contain
relatively precise spatial information, needed to ensure continu-
ity of representation over time (Rensink, 2000a, 2013). Meanwhile,
layers that are usable for longer durations might reflect higher level
representations, which are more abstract and have poorer spatial
localization.

Such as multi-layer theory of iconic memory could explain the
usable durations for the different kinds of task as follows:

(a) Static detection (≥240 ms). Information carried by the feedfor-
ward “wave” created by the appearance of an item reaches high
levels relatively quickly. After a brief time (c. 100 ms), access
to high-precision spatial information in the low iconic layers
begins to degrade. But since detection does not require precise
spatial information, it can still be “driven” by the information
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at the higher layers of iconic memory for several 100 ms longer.
This can explain many classic partial report results, which
require only a report of a stimulus (generally, a letter) at some
coarsely specified location, but not its precise position. Note
that although absolute position is eventually lost at higher lev-
els, precise relative positions could still be maintained. For
example, the targets in Condition 4A differed from the dis-
tractors by only a small shift in the position of a horizontal
bar; this information remained available for at least 240 ms.
Consistent with this, partial report studies suggest that shape
information in iconic memory can remain fairly accurate for
over 300 ms (Gegenfurtner and Sperling, 1993; Graziano and
Sigman, 2008).

(b) Change detection (c. 120 ms). The relatively short usable dura-
tion (120 ms) for change detection could reflect the need for
precise spatial location, which is required for item continu-
ity (Rensink, 2000a, 2013). An important issue is whether
this duration reflects the decay of the contents of the low-
level representation, or just the connections to it. Studies based
on exogenous cues indicate that positional information does
not degrade greatly for at least 300 ms (Graziano and Sig-
man, 2008). And since exogenous cues can make use of—and
transmit—the location of these cues, it would appear that feed-
forward connections can be maintained, at least for spatial
information of moderate resolution. In contrast, the process
of establishing a feedback connection to lower levels needs spa-
tial information that is very precise (Di Lollo et al., 2000); such
connections might therefore fail relatively quickly.

(c) Report (c. 190 ms). For the report tasks of Conditions 4B and
4C, usable duration is greater than that for change detection
but less than that for static detection. At least two explana-
tions are possible. First, it may be that detection proceeds as
usual, but a subsequent individuation stage is needed to report
the associated properties of the detected item; usable dura-
tion would then reflect the relative amount of time needed for
each of these stages. Consistent with this, slopes of the report
tasks were 10–20 ms/item greater than those of their detection
equivalents (Figure 4), suggesting the involvement of an addi-
tional processing stage. Alternatively, individuation may only
need to be partial—i.e., the representation of the target item
need only be linked back to a level where its location can be
readily distinguished from those of the others. If so, feedback
connections may only be established with a mid-level layer,
which may endure somewhat longer than those at lower levels.

Relation to other work
Among other things, the proposal here is consistent with results on
attentional capture and apparent motion that show a visual con-
tinuity for 100 ms after the disappearance of an item (e.g., Yantis
and Gibson, 1994). It is also consistent with findings of partial
report experiments that (i) when a mask is shown after stimu-
lus disappearance, identification errors arise only if the mask is
shown within 150 ms or so of stimulus onset, while localization
errors can be induced even if the mask is presented much later,
and (ii) if a mask is not used, localization errors begin soon after
stimulus disappearance, while identification errors remain low
(Mewhort et al., 1981). These patterns can be explained by the

existence of a durable array (or “buffer”) of fairly complex but
poorly localized information at higher levels, along with a rela-
tively fast decay of their connections to spatial locations at lower
ones.

The proposal of multiple layers of iconic memory is also sim-
ilar in some ways to the proposal of multiple systems of visual
memory (e.g., Sligte et al., 2010). There is general agreement with
the idea of detailed, volatile representations at the lower levels,
along with a single detailed, longer-lasting representation (corre-
sponding to a visual object) held in vSTM (cf. Rensink, 2000a,
2002). Multiple-systems experiments are based on the use of posi-
tional cues with delays of several seconds. Since this is beyond
the lifetime of “classic” iconic memory, they are likely concerned
with longer-lasting—and likely more limited—representations.
The exact nature of this memory is not completely understood;
indeed, the existence of a distinct “fragile” vSTM is still contro-
versial (see e.g., Makovski, 2012). But if multiple systems do exist,
they could be higher level counterparts of the layers proposed
here.

Iconic memory, feedback connections, and visual attention
The theory of iconic memory described here also has implications
for the role of feedback processes in human vision. Anatomi-
cal and physiological studies indicate that human vision relies
upon two main types of feedback connections (e.g., Bullier,
2004). The first are horizontal connections of adjacent cells at
the same level of the processing stream; these converge quickly
and can potentially support rapid local computation of consid-
erable complexity, such as determination of local shape. Given
the durability of high-accuracy (local) shape representation in
iconic memory (Mewhort et al., 1981), such connections appear
to be relatively long-lasting. Longer-range connections can also
exist between corresponding locations in representations at the
same level of the visual hierarchy (e.g., representations of color
and orientation). The second type of connection involves vertical
links between corresponding cells at different levels. As discussed
above, the memory at each of these levels—and in the connections
between them—may be the basis of the iconic layers proposed
here.

It has been proposed that “the representation of any item in this
form of storage [iconic memory] is achieved by creating a tempo-
rary file of information about the item” (Coltheart, 1983, p. 291),
with relatively complex structure (such as characters) created in
parallel across the visual field, but susceptible to overwriting by
the subsequent appearance of other structures (Mewhort et al.,
1981; Coltheart, 1983). This is similar to the proposal of proto-
objects (Rensink and Enns, 1998), which are relatively complex
structures of limited extent formed rapidly and in parallel in the
(near-) absence of attention; these too are temporary, either fading
away within a few 100 ms, or being overwritten by the repre-
sentation of a new item that appears at their location (Rensink
et al., 1997). Fast-acting horizontal connections could explain
why the within-item binding needed for proto-objects can be
achieved using so little time and so little attention. They could
also explain why considerable binding exists in iconic memory
(Landman et al., 2003), even in its lowest layers (Experiments 1
and 4A).
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Meanwhile, vertical connections could be the basis of larger-
scale representations. Feedforward and feedback links likely
connect corresponding locations at different levels in a fairly
dense way (e.g., Di Lollo et al., 2000). Such links could enable
retinotopic representations at low-levels (e.g., in striate cortex) to
connect to spatiotopic representations at high ones (e.g., in tem-
poral cortex) via a series of stages in which position is increasingly
less tied to retinal location (e.g., Tsotsos, 2011). And attention
might act by establishing long-range feedforward-feedback loops
to represent a coherent visual object, resulting in a representa-
tion distributed across the various levels, their contents linked
via circuits connecting contents at the same (relative) spatial
location (Rensink, 2000a, 2002; Lamme, 2003; Sligte et al., 2010;
Tsotsos, 2011).

Characterizing “iconic,” “preattentive,” and “attentive” repre-
sentations in this way can account for why performance on iconic
and visible representations is so similar (Experiment 1), why selec-
tive attention and readout from iconic memory involve common
neural mechanisms (e.g., Ruff et al., 2007), and why there is little
cost for switching between the two (Experiments 1 and 4A). Said
simply, there is no separate “iconic” memory system: the layers of
iconic memory are just the traces of the representations through
which normal visual perception proceeds (see also Keysers et al.,
2005; Ruff et al., 2007).

In this view, iconic memory—or at least, informational
persistence—has a clear purpose: to help establish and main-
tain links between the various spatially organized representations
of an item. Given the decreasing precision of representations with
increasing level, processes based on a feedforward sweep of infor-
mation could continue to use such information even after the
contents at the lower levels have faded. However, processes relying
on feedback from higher levels would not always have access to the
more detailed (but volatile) representations at lower ones; when
this happens, the process must wait for the contents of these to be
re-instantiated.

The extent to which this proposal adequately captures the oper-
ation of the visual system is unclear. But to the degree that it
is relevant, the “usability logic” developed here could provide a
useful way to investigate the various feedforward and feedback
mechanisms involved.
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Object-substitution masking (OSM) occurs when a target stimulus and a surrounding mask
are displayed briefly together, and the display then continues with the mask alone. Target
identification is accurate when the stimuli co-terminate but is progressively impaired as
the duration of the trailing mask is increased. In reentrant accounts, OSM is said to arise
from iterative exchanges between brain regions connected by two-way pathways. In an
alternative account, OSM is explained on the basis of exclusively feed-forward processes,
without recourse to reentry. Here I show that the feed-forward account runs afoul of the
extant phenomenological, behavioral, brain-imaging, and electrophysiological evidence.
Further, the feed-forward assumption that masking occurs when attention finds a degraded
target is shown to be entirely ad hoc. In contrast, the evidence is uniformly consistent with
a reentrant-processing account of OSM.
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Visual masking refers to an impairment in the perception of a
briefly presented object (the target) by the presentation of a sec-
ond object (the mask) in close spatiotemporal proximity. The
present work is concerned with a form of masking known as object-
substitution masking (OSM) that occurs when a brief simultaneous
display of the target and the mask continues with a display of the
mask alone (Di Lollo et al., 2000).

Figure 1 illustrates the basic OSM paradigm. The display
sequence begins with a brief presentation of a variable number
of rings, each with a gap in one of the four cardinal orientations.
Observers indicate the orientation of the gap in the target ring,
which is singled out by four surrounding small dots that act as
both cue and mask. After a brief exposure, all elements in the
display are turned off except for the four dosts which remain on
view for a variable period of up to several hundred ms. When
the target and the mask terminate together (i.e., when there is
no trailing display of the four dots alone) the target is identified
accurately. Masking develops rapidly, however, as the duration of
the trailing four-dot mask is increased up to about 200 ms (see
Figure 2).

Early theoretical accounts of OSM were couched in terms of
reentrant processes that take place after an initial feed-forward
sweep (Di Lollo et al., 2000; Lleras and Moore, 2003). More
recently, an exclusively feed-forward account has been proposed
by Põder (2013). That account is examined and questioned in the
present work.

A REENTRANT ACCOUNT OF OSM
In the conventional OSM paradigm (see Figure 1) the target and
the mask have a common onset; therefore, no unique onset tran-
sient is generated by the mask. This rules out onset transients as a
source of masking (e.g., Breitmeyer and Ganz, 1976; see Di Lollo
et al., 2000, for a more detailed account of the role of transient

responses in OSM). Rather, OSM is thought to be mediated by
reentrant signals between brain regions connected by two-way
pathways.

In the feed-forward sweep, the neural activity triggered by the
initial display ascends to higher brain regions, where it activates a
large number of perceptual hypotheses that are in some way com-
patible with the sensory input. The perceptual hypotheses then
descend to lower levels, where they attempt to match themselves
to the pattern of ongoing activity through a process of correla-
tion. Matches that yield low correlations are discarded, whereas
the hypothesis that yields the highest correlation is confirmed and
eventually leads to conscious awareness (Mumford, 1991, 1992;
Grossberg, 1995; Di Lollo et al., 2000).

Masking occurs when a mismatch arises between the reentrant
signals and the ongoing activity at the lower level. At short dura-
tions of the trailing mask, the reentrant signals find a pattern
of ongoing low-level activity that, although decayed, is of rela-
tively uniform strength. Notably, the brief additional display of
the four dots causes the low-level representation of the mask to be
only slightly stronger than that of the target. In this case, little or
no masking occurs because the similarity between the reentrant
hypothesis and the low-level representation allows for an adequate
correlation. This leads to confirmation of that perceptual hypoth-
esis, and to relatively accurate target identification, as illustrated
by the short-mask-duration points in Figure 2.

In contrast, at long durations of the trailing mask, the reentrant
signals find a pattern of ongoing low-level activity of non-uniform
strength. To wit, the representation of the target has decayed,
but the mask remains at full strength because of the continued
external input. This mismatch reduces the correlation with the
reentrant hypothesis, which consists of a representation of the
target and the mask at uniform strength. The ensuing low corre-
lation causes the current perceptual hypothesis to be discarded,
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FIGURE 1 | Display sequence in a conventional OSM paradigm.

FIGURE 2 | Mean percentage of correct identifications of the

orientation of the gap in the target ring, using the paradigm illustrated

in Figure 1. Redrawn from Figure 4 in Di Lollo et al. (2000).

and a new “mask-alone” hypothesis to be generated, with con-
sequent impairment of target identification, as illustrated by the
long-duration points in Figure 2.

PÕDER’S FEED-FORWARD ACCOUNT OF OSM
A simpler, strictly feed-forward account has been proposed by
Põder (2013). The account is based on two assumptions. First, the
continued presence of the mask after the offset of the initial display
is held to add noise at the target’s internal representation, causing
its signal-to-noise (S/N) ratio to be reduced. Because of temporal
integration, the noise continues to grow while the mask remains on
view. For this reason, the reduction in S/N ratio is said to be pro-
portional to the exposure duration of the trailing mask. Second,
masking is assumed to occur when attention is deployed to the

target location. Upon its deployment, attention finds a degraded
representation of the target due to reduced S/N ratio, and accuracy
of target identification is impaired correspondingly.

The two assumptions were embodied in a computational
model (Põder, 2013) that provided an excellent fit for the OSM
data reported by Di Lollo et al. (2000; see present Figure 2).
This buttressed the claim that OSM can be explained in strictly
feed-forward terms, without recourse to reentry.

Põder’s (2013) assumptions are examined in the remainder of
this article. The assumption that the trailing mask reduces the
target’s S/N ratio is shown to run afoul of the phenomenologi-
cal, behavioral, brain-imaging, and electrophysiological evidence.
Further, the assumption that masking occurs when attention finds
a degraded target is shown to be ad hoc.

ASSUMPTION OF REDUCED TARGET S/N RATIO
Põder’s (2013) account of how the noise generated by the extended
presentation of the four-dot mask may affect the target’s inter-
nal representation does not draw a distinction between sensory
noise and non-specific internal “system” noise. In what follows,
I endeavor to show that externally generated noise stemming
from the prolonged exposure of the four-dot-mask is inad-
equate as a determinant of OSM. Furthermore, an account
based on non-specific internally generated noise is just as inad-
equate1.

Non-specific “internal” or “system” noise is often used to intro-
duce an element of variability in models such as the Computer
Model of Object Substitution (CMOS); (Di Lollo et al., 2000). It
has never been used as a masking agent (either forward, simultane-
ous, or backward) in any form of masking (metacontrast, pattern,
camouflage, conceptual, etc.) in the vast masking literature. Mask-
ing by non-specific noise is certainly not listed in Breitmeyer’s
(1984) definitive treatise on masking (Breitmeyer and Öğmen,
2006). More important, it is not mentioned explicitly in Põder’s
(2013) Attentional Gating Theory (AGT). To be sure, the claim
that internal noise may be a determinant of OSM could be a bold,
imaginative step, as long as strong logical and empirical documen-
tation were provided to justify it. As it is, such a claim is ad hoc
and not part of the AGT as stated in Põder (2013).

PHENOMENOLOGICAL EVIDENCE
On Põder’s (2013) assumption that the internal representation of
the target is degraded because of reduced S/N ratio, one could rea-
sonably expect some distortive effects of the noise to be evidenced
in the appearance of the target. In fact, what is seen is a blank area
demarcated by the four-dot mask. A compelling description has
been provided by Neill et al. (2002, p. 683) as follows:

... in our own experiments the general notion of object substitution is
consistent with the phenomenal experience of the masked target: not
only does the space inside the dots appear blank, but there is a strong
subjective impression of the contours of a square connecting the dots.
Furthermore, there is a subjective impression of enhanced brightness of
the area within the square, very similar to the brightness enhancement
that occurs within illusory contours or subjective contours resulting

1I thank an anonymous reviewer for suggesting the possibility that OSM may arise
from internal noise.
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from long-duration inducing elements (Coren, 1972; Kanizsa, 1976;
Petry and Meyer, 1987; Purghe and Coren, 1992).

Such a phenomenological appearance is far from that of
a degraded target postulated in Põder’s account. On such an
account, additional processes need to be invoked to explain why
the reduced S/N ratio causes the target to disappear without a
trace instead of appearing merely as degraded. Rather, this phe-
nomenology is precisely what is expected on the basis of OSM:
at long-durations of the trailing mask, a mismatch arises between
the ongoing pattern of activity at the lower level (four dots alone)
and the reentrant perceptual hypothesis (target surrounded by
four dots). The mismatch causes that perceptual hypothesis to
be discarded and replaced by a new hypothesis consisting of four
dots demarcating a blank square area, and that’s what is eventually
perceived.

BEHAVIORAL EVIDENCE
Results inconsistent with the claim that the four-dot mask degrades
the target by adding noise to its internal representation have been
reported by Lleras and Moore (2003). They showed that OSM
was fully in evidence even when the four dots were not physically
present around the target after its offset. Rather, what was neces-
sary was the presence of the trailing mask in a location next to the
target, under conditions of apparent motion that supported the
perception of the target morphing into the mask. Increased noise
at the target location can hardly be regarded as a critical deter-
minant of OSM in Lleras and Moore’s study, simply because the
target was unobscured by the trailing four-dot mask. Further evi-
dence that OSM occurs when the mask is presented in a location
other than that of the target has been reported by Jiang and Chun
(2001) and by Guest et al. (2011).

Põder’s assumption that the four dots add noise to the target is
also questioned by the results of Bouvier and Treisman (2010) who
found that a target’s low-level features can be detected accurately
even when OSM prevents identification of the target’s configura-
tion. If, as Põder asserts, a critical factor in OSM were the increased
visual noise at the target’s location, what needs to be asked is why
the noise spared the target’s low-level features but not its config-
uration. The likely answer is that OSM interferes with reentrant
signaling, leaving the low-level features in the feed-forward sweep
largely intact. Evidence consistent with the findings of Bouvier and
Treisman has been reported by Guest et al. (2011), and by Binsted
et al. (2007) who found that OSM occurs after the physical features
of the target have been processed.

More behavioral evidence inconsistent with Põder’s claim that
the principal role of the mask is to add noise to the target’s repre-
sentation has been reported by Jannati et al. (2013). In Experiment
1 of that study, the mask was a solid ring surrounding the tar-
get. In Experiment 3, the mask consisted of four small dots, as
seen in Figure 1. On Põder’s hypothesis, the sizeable contours
of the ring should have generated substantially more noise than
the sparse contours of the four dots. The strength of masking,
therefore, should have been greater in Experiment 1 than in Exper-
iment 3. In fact, the results revealed the opposite pattern, at least
numerically.

Another aspect of Jannati et al.’s (2013) study is inconsistent
with a key assumption in Põder’s account. Namely, that the

amount of noise added to the target is proportional to the mask’s
exposure duration. In the study of Jannati et al. (2013) the dis-
play sequence began with a brief combined presentation of target
and mask, continued with a blank inter-stimulus interval (ISI) of
variable duration, and ended with a brief re-presentation of the
mask alone. The important point is that, because the duration of
the trailing mask was fixed, the amount of noise supposedly added
to the target should also have been fixed. This should have given
rise to a correspondingly fixed level of OSM. Instead, the results
revealed a non-monotonic U-shaped function of accuracy over
ISI, as predicted in Di Lollo et al.’s (2000) reentrant-processing
account.

ELECTROPHYSIOLOGICAL AND BRAIN-IMAGING EVIDENCE
The electrophysiological and brain-imaging evidence is uniformly
supportive of a reentrant-processing account of OSM. To wit, there
is broad agreement that OSM interferes with the reentrant sweep
while leaving the feed-forward sweep largely unaffected.

Especially relevant to a comparison of reentrant and feed-
forward accounts of OSM are two ERP experiments by Woodman
and Luck (2003). Experiment 1 employed a search display in which
the target was singled out by four dots that either co-terminated
with the target or remained on the screen alone for 600 ms after
target offset. Two results are directly relevant to the present pur-
pose. First, accuracy of target identification was impaired when
the offset of the four-dot mask was delayed (a conventional OSM
effect). Second, the target-elicited N2pc (an ERP component said
to index target localization, as distinct from target consolidation)
was the same in the delayed as in the co-termination conditions.
Namely, unlike identification accuracy, the N2pc was unaffected
by OSM. This strongly suggested that OSM interfered with later
processes of target consolidation, while leaving earlier processes
of target localization essentially unaffected. As pointedly noted by
Woodman and Luck (2003, p. 608): “The finding of lateralized
response to the target (i.e., the N2pc) indicates that on both trial
types, the brain was able to determine which side of the array
contained the target, which implies that the target was detected by
the visual system even though the observers could not accurately
report it.”

Põder’s noise-based hypothesis was further disconfirmed in
Woodman and Luck’s (2003) Experiment 2 in which the four-dot
mask always co-terminated with the target. The critical manipula-
tion was whether or not the target was embedded in visual noise.
An important procedural detail was that the strength of the noise
was adjusted so that it produced the same degree of behavioral
impairment as the delayed-offset mask in Experiment 1.

The results were unambiguous: the N2pc was fully in evidence
when the target was unencumbered by visual noise, but was totally
absent when the target was embedded in noise. This finding rules
out the option that in the delayed-mask-offset condition in Exper-
iment 1 target identification was impaired by visual noise. Had
visual noise caused that impairment, it should also have eliminated
the N2pc, as it did in Experiment 2. Rather, this pattern of results is
consistent with the idea that target identification in Experiment 1
was impaired because the extended four-dot mask interfered with
the reentrant signaling. From a reentrant perspective, no suitable
perceptual hypotheses could be generated in Experiment 2 when
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the target was embedded in noise. Whatever perceptual hypothe-
ses were generated consisted largely of visual noise, and that’s what
was eventually perceived.

From a broader perspective, it is fitting to ask whether, in prin-
ciple, four small dots displayed outside the spatial confines of the
target can produce sufficient noise to prevent target identification.
Or, for that matter, whether they can introduce any manifest noise
at all. Experiment 2 of Woodman and Luck (2003) offers impor-
tant evidence in this respect. In order to match the impairment
produced by the extended mask in Experiment 1, the noise mask
in Experiment 2 required 23 dots placed directly on top of the tar-
get. This raises a further question regarding Põder’s noise-based
account of OSM. What needs to be asked is by what means four
small dots that remain on view around the target can produce an
amount of noise equivalent to that produced by 23 dots placed
directly on the target itself. This equivalence cannot be accepted
uncritically as stated: it is in need of empirical verification. Simi-
larly, the validity of the claim that four small dots placed as much
as 40 min arc away from the target (Di Lollo et al., 2000) can pro-
duce sufficient noise to prevent target identification cannot merely
be assumed: it needs to be empirically verified.

The idea that OSM interferes with the reentrant sweep while
leaving the feed-forward sweep essentially intact is supported by
a number of other ERP studies (e.g., Reiss and Hoffman, 2007;
Harris et al., 2013). That idea is also buttressed by a functional
magnetic-resonance adaptation study by Carlson et al. (2007).
Contrary to the hypothesis of increased visual noise at the tar-
get’s location, that study revealed no effect of OSM in early visual
areas. In contrast, powerful effects of OSM were in evidence at
higher cortical regions. Further brain-imaging evidence support-
ive of the reentrant account of OSM has been reported in an fMRI
study by Weidner et al. (2006).

I hasten to note that the evidence listed in the foregoing is
not – nor was it intended to be – exhaustive. Rather, the intent was
to cite examples of phenomenological, behavioral, electrophys-
iological, and brain-imaging evidence inconsistent with Põder’s
(2013) claim that a critical factor in OSM is the degradation of the
internal representation of the target by visual noise generated by
the four-dot mask.

ASSUMPTION OF THE ROLE OF ATTENTION IN OSM
According to Põder (2013), OSM occurs when attention is
deployed to the target’s location and finds a representation
degraded by visual noise. What is not specified is the mechanism
presumed to be involved in the attentional processing.

Attention has been described as a limited resource (Norman
and Bobrow, 1975; Lavie and Tsal, 1994), a filter (Broadbent, 1958),
a spotlight (Posner et al., 1980), a zoom lens (Eriksen and St. James,
1986), and a glue (Treisman and Gelade, 1980). A major drawback
of these metaphors is that they do not specify what underlying
mechanisms mediate the purported function. As pointedly noted
by Chun et al. (2011, p. 74): “Attention has become a catch-all
term for how the brain controls its own information process-
ing....” So, when Põder (2013) invokes “attention” to explain OSM,
one is left wondering just what it is that he means. To be useful,
accounts of OSM – or, for that matter, accounts of any other
phenomenon – should endeavor to make explicit the mechanisms

underlying such a nebulous and ill-defined concept as “attention.”
It is time to recognize that the indiscriminate use of attention as
an explanatory panacea can be an impediment to communication
and understanding.

Come to think of it, the function performed by “attention”
in Põder’s account of OSM is a more vague – though in some
ways equivalent – incarnation of the function performed by reen-
try in the OSM account of Di Lollo et al. (2000). In the former
account, OSM is said to occur when attention is deployed to the
target location and finds an item that has been degraded beyond
recognition. In the latter, OSM is said to occur when the reentrant
signals arrive on their return and find an item that does not match
any of the perceptual hypotheses. From a comparison of Põder’s
use of “attention” and Di Lollo et al. (2000) use of “reentry” there
appears to be a good deal of commonality in the two accounts
of OSM.

CONCLUDING COMMENTS: OF QUANTITATIVE MODELS
Having reviewed the pertinent empirical evidence, we now turn to
the quantitative models of OSM: the CMOS proposed by Di Lollo
et al. (2000) and the AGT proposed by Põder (2013). CMOS pro-
vides an excellent fit to the empirical data illustrated in Figure 2;
AGT provides an even better fit.

Not to cut too fine a point, it can be confidently stated that both
models are misguided. This is because the data that they purport to
model (see Figure 2) are now known to be vitiated by a confound-
ing. The reasoning is as follows: OSM is defined as the difference
in the level of performance observed when the mask co-terminates
with the target minus the level of performance observed when the
mask continues to be on view after target offset. By that criterion,
the functions in Figure 2 indicate that the magnitude of OSM
varies with the size of the search display: OSM is maximal at set
size 16, and absent at set size 1.

What vitiates the data in Figure 2 is a response ceiling imposed
by the 100% limit of the response scale. When that response ceil-
ing is removed by making the task more difficult, as was done
by Argyropoulos et al. (2013; see also Jannati et al., 2013), the
functions turn out to be parallel across set sizes. This means that,
although the level of performance varies as a function of set size,
the magnitude of OSM does not. The invariance of OSM with set
size obviously invalidates both the CMOS and the AGT models.
Importantly, however, invariance of OSM across set sizes in no
way impugns reentry as the underlying mechanism, witness the
experimental evidence adduced in the present article.
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In his recent comment, Di Lollo (2014)
criticizes my proposal (Põder, 2013)
that the attentional gating model
(Reeves and Sperling, 1986; Sperling and
Weichselgartner, 1995) might be the most
simple and reasonable explanation for
the results of object substitution masking
(OSM) experiments. He argues that OSM
cannot be explained without a reentrant
hypotheses-testing mechanism (as pro-
posed in Di Lollo et al., 2000). A closer
look at his arguments reveals that they are
partly based on an inaccurate interpre-
tation of my study, and partly, on some
highly problematic assumptions about
visual processing.

The goal of my study (Põder, 2013)
was to understand the mechanisms behind
the results of a typical OSM experiment
with varied duration of masker and set-
size. There were two main points in my
study that are relevant in the present con-
text. First, I analyzed the computational
model (CMOS) proposed by Di Lollo et al.
(2000) and found it to be identical with
the attentional gating model, which has no
direct relationship with any kind of “reen-
trant processing.” Second, I proposed an
improved mechanism of attention to be
combined with this model (or other pos-
sible masking models). I have never pro-
posed or tested any new model of masking.

Di Lollo (2014) seems to have a rather
subjective view of my study. He criticizes
something named Põder’s feed-forward
account (or model) of OSM, which is sup-
posedly based on two assumptions: reduc-
tion of signal to noise ratio (SNR) as a
result of integrated noise from the masker,
and delayed deployment of attention. Both

assumptions are declared to be wrong or at
least unjustified.

As I mentioned, I have not built a
new model of OSM but just reinterpreted
Di Lollo et al.’s (2000) CMOS. Therefore,
these assumptions can only be the assump-
tions underlying CMOS, and actually, they
are. I believe that CMOS was a reason-
ably good model for OSM experiments
and that its main assumptions cannot be
fundamentally wrong. However, Di Lollo
(2014) missed some possibly important
details. In CMOS, SNR was reduced not
only because of accumulating “noise” from
the masker but also because of decay of the
target signal. Neither Di Lollo et al. (2000)
nor Põder (2013) supposed that SNR is
proportional (or inversely proportional)
to the duration of the masker.

The model that was tested in my study
tried to explain the set-size effects bet-
ter than the simple attention deployment
mechanism used in CMOS. My model
assumes that the set-size effect is caused
by an initial stage of divided attention. In
this model masking per se is independent
of set-size. A similar idea about the invari-
ance of masking to set-size was indepen-
dently discovered by Argyropoulos et al.
(2013). My model with divided attention
goes a bit further and proposes a plausi-
ble explanation for the observed set size
effects.

Having explained away the set-size
effect, a simple masking effect remains. In
my study (Põder, 2013), I did not attempt
to reveal its exact mechanisms. I indi-
cated that the combination of the decay
of the target signal, integration of the
masker signal, and a delayed attention as

implemented in CMOS (Di Lollo et al.,
2000) might do the job. However, there are
many other possibilities. After the removal
of the burden to explain set-size effects,
the classic models of masking (Weisstein,
1968; Bridgeman, 1971; Francis, 1997) that
were analyzed in Francis and Hermens
(2002) become fully applicable for OSM
(note that the unsatisfactory modeling
of attention/set-size effects was the main
problem with these models; Di Lollo et al.,
2002). Of course, Di Lollo’s reentrant
hypotheses-testing idea can be included
in the candidate list too, as well as
Bachmann’s (1994) non-specific amplifi-
cation idea. Hopefully, future studies will
be able to discriminate between these
models.

Although the set-size effect has been
quite convincingly separated from the
masking effect, some role of attention in
OSM is still not excluded. In a recent
study, Pilling et al. (2014) found a modest
effect of spatial pre-cueing in one out of
the five experiments. Up to now, nobody
has explained away the position uncer-
tainty and pre-cueing effects reported in
earlier studies (Enns and Di Lollo, 1997;
Neill et al., 2002; Tata and Giaschi, 2004;
Luiga and Bachmann, 2007). If attention
is still important then the models of mask-
ing developed by Smith et al. (Smith and
Wolfgang, 2004; Smith et al., 2009) or by
Bridgeman (2007) may be considered.

Di Lollo (2014) mainly argues against
a CMOS-like masking account, but appar-
ently supposes that any kind of essen-
tially feed-forward model cannot explain
masking with a sparse trailing masker.
The majority of his arguments are based
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on a quite strange view on the visual
system. Di Lollo (2014) seems to ignore
the hierarchical nature of visual process-
ing and assume that all the masking-
related processes should occur at some
low-level retinotopic layer. Therefore, only
retinotopic picture-level noise, integra-
tion, and masking are possible. The real
visual system consists of at least 4–5 (pos-
sibly more) processing levels (e.g., DeYoe
and van Essen, 1988; Riesenhuber and
Poggio, 1999). The target and masker sig-
nals are processed and temporally and spa-
tially integrated throughout this hierarchy.
Thus, the “noise” from irrelevant stimuli
may interact with relevant signals at any
level of processing. The higher levels are
increasingly invariant to spatial positions
and combine all visual features including
motion. It is therefore not surprising at
all that the dots far from the target, or
a masker that was retinotopically moved
away from the target location (Lleras and
Moore, 2003), can still interact at higher
object recognition levels. Note that the
higher-level masking does not need any-
thing like sending perceptual hypotheses
back to the lower levels.

A large part of Di Lollo’s (2014) cri-
tique is directed against using SNR in the
models of OSM (although the idea itself
was introduced by Di Lollo et al., 2000).
Di Lollo (2014) argues that a noisy rep-
resentation of visual objects is not con-
sistent with the phenomenal experience
of not seeing them as noisy pictures;
and with clearly different effects of the
external pixel noise compared to four-
dot masker. His arguments apparently
challenge some points of traditional psy-
chophysics. In usual psychophysical mod-
els (e.g., Macmillan and Creelman, 2005),
noise is a random trial-by-trial variabil-
ity of internal representations that causes
incorrect perceptual decisions. This noise
can make a letter A look like a letter B,
or like a chicken, or like a blank screen,
in some trials. We can manipulate this
noise (or SNR) by varying stimulus con-
trast, size, or exposure duration, present-
ing distractors, or forward or backward
maskers, pre-cueing attention, simultane-
ous eye movements, etc., besides adding
external pixel noise. There is no reason
to suppose that the decision-level noise
should be visible and look like noise within
a single image.

New studies have forced Di Lollo
and colleagues to make some changes
to their theory. The original account of
OSM (Di Lollo et al., 2000) was heav-
ily based on both reentrant hypotheses
testing and deployment of attention. The
Argyropoulos et al. (2013) results indi-
cated that something is wrong with this
theory. The simplest way out was to leave
out attention. However, attention had a
key role in CMOS and in the predictions
related to the Di Lollo et al. (2000) theory.
Jannati et al. (2013) found an innovative
solution. Nominally, they removed atten-
tion but attributed its properties to “reen-
trant processing.” In the original model
(Di Lollo et al., 2000), the reentrant pro-
cessing was supposed to be perpetual gen-
eration and testing perceptual hypotheses
with periodicity of about 13 ms. In their
new account (Jannati et al., 2013), the
reentrance “arrives” at about 80–120 ms
after stimulus onset, a typical delay of
focusing spatial attention (e.g., Cheal and
Lyon, 1991). Overall, their revised theory
still follows the attentional gating logic of
CMOS. At the same time, they claim that
their experiment falsifies the attentional
gating account of OSM. A closer look at
their arguments reveals that their descrip-
tion of the “attentional gating model” does
not contain attention at all. It is not sur-
prising that such a model cannot fit any
(old or new) experimental results.

In conclusion, I would describe the
present situation as follows. The atten-
tional gating idea effectively explained the
effects of attention and simplified the
problem of OSM tremendously. Now, one
may take a single target stimulus with a
common-onset masker and present them
at a fixed position of the visual field,
with full attention available, and try to
observe OSM. There is a chance that Di
Lollo (or somebody else) can demonstrate
the action of reentrant hypotheses-testing
mechanism in that simple experiment. It
would be an interesting and surprising (at
least for me) finding. But it would not con-
tradict my attentional gating account of
OSM experiments with set-size variation.
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In human perception studies, visual backward masking has been used to understand the
temporal dynamics of subliminal vs. conscious perception. When a brief target stimulus
is followed by a masking stimulus after a short interval of <100 ms, performance on
the target is impaired when the target and mask are in close spatial proximity. While
the psychophysical properties of backward masking have been studied extensively, there
is still debate on the underlying cortical dynamics. One prevailing theory suggests that
the impairment of target performance due to the mask is the result of lateral inhibition
between the target and mask in feedforward processing. Another prevailing theory
suggests that this impairment is due to the interruption of feedback processing of the
target by the mask. This computational study demonstrates that both aspects of these
theories may be correct. Using a biophysical model of V1 and V2, visual processing
was modeled as interacting neocortical attractors, which must propagate up the visual
stream. If an activating target attractor in V1 is quiesced enough with lateral inhibition
from a mask, or not reinforced by recurrent feedback, it is more likely to burn out before
becoming fully active and progressing through V2 and beyond. Results are presented
which simulate metacontrast backward masking with an increasing stimulus interval and
with the presence and absence of feedback activity. This showed that recurrent feedback
diminishes backward masking effects and can make conscious perception more likely. One
model configuration presented a metacontrast noise mask in the same hypercolumns
as the target, and produced type-A masking. A second model configuration presented
a target line with two parallel adjacent masking lines, and produced type-B masking.
Future work should examine how the model extends to more complex spatial mask
configurations.

Keywords: backward masking, visual cortex, feedback projections, conscious processing, neural attractor

dynamics

INTRODUCTION
Visual backward masking is a classic technique used to examine
differences between conscious and unconscious visual processing
(Breitmeyer and Ogmen, 2006). It is employed by presenting a
target image followed closely in time by a mask image. The tar-
get image exposure is typically very short, often around 20 or
16.7 ms, but may be limited by monitor refresh rates. The mask
typically has longer exposure, often at least 50 ms, but sometimes
up to hundreds of milliseconds. The time from the start of the
target exposure to the time of the start of the mask is experi-
mentally varied, and this is commonly known as the stimulus
onset asynchrony (SOA). While there are many experimental vari-
ations, target and mask exposure times often remain fixed while
the SOA is varied. When the SOA is 20–60 ms, a face target is
sometimes not consciously perceived (Rolls, 2004). The measured
response from recognizing a masked target has been characterized
as type-A and type-B masking. In type-A masking, the masking
effect monotonically decreases with increasing SOA. This is often

associated with a stronger masking stimulus. In type-B masking,
the masking effect is weaker at low SOAs, becomes stronger at
some point with SOAs less than 100 ms and then diminishes again
with increasing SOA, with a response curve sometimes referred to
as a U-shaped function (Breitmeyer and Ganz, 1976). Different
types of masks are possible. Pattern masking occurs when the
mask shares some features with the target or is superimposed.
Metacontrast masking occurs when the mask features are non-
overlapping with the target, but some features may be in close
spatial proximity. Masks may also be different forms of noise, and
might also be a flash of light (Breitmeyer and Ogmen, 2000).

There are two broad classes of conceptual models for explain-
ing backward masking. One states that visual sensory information
is stored in a visual sensory buffer (or iconic memory) for pro-
cessing, but can be interrupted by a mask (Sperling, 1963; Di
Lollo, 1980). The other states that information propagates in
dual channels (such as parvocellular and magnocellular path-
ways), with one faster and more transient and the other slower
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and more sustained. When the target and mask are presented to
both channels, the fast transient activity of the mask suppresses
the slow sustained activity of the target through inter-channel
inhibition. The psychophysics of masking have been character-
ized, although individual differences have been observed in stable
masking functions (Albrecht and Mattler, 2012). Less understood
are the underlying cortical dynamics, which are still deeper in
debate (Macknick and Martinez-Conde, 2007). There are several
prevailing theories on the mechanisms of backward masking and
visual masking in general. One view states that this is primarily
caused by feedforward lateral inhibition (Macknick, 2006). The
mask spatiotemporally interferes with the target through inhibi-
tion, preventing further processing. Another view asserts that the
mask interferes with feedback processing from higher areas, pre-
venting the discrimination between the figure and background
which makes visual awareness possible (Lamme and Roelfsema,
2000; Super et al., 2001; Lamme et al., 2002).

Several computational models have been developed over time
and at different levels of abstraction, a subset of which will be
discussed here. Earlier models focused more on the temporal
aspects of the masking function, with later models incorporating
some spatial aspects as well (Francis, 1997, 2009; Hermens et al.,
2008). The retino-cortical dynamics (RECOD) model (Ogmen,
1993) is a dual-channel approach which incorporates neural
representations as well as feedforward dynamics and feedback
inhibition. It utilizes transient-on-sustained inhibition to explain
some backward masking properties (Breitmeyer and Ogmen,
2000). The Boundary Contour System (BCS) originally devel-
oped by Grossberg and Mingolla (1985) and extended by Francis
(1997) can reproduce many aspects of metacontrast masking.
It uses model neurons, can spatially represent two orientation
preferences and includes elements of lateral inhibition and feed-
back. Bugmann and Taylor (2005) also developed a detailed
neural model with feedforward and lateral connections, which
was able to produce U-shaped masking functions. Spatial aspects
of backward masking have also been explored by modeling the
shine-through effect (Herzog et al., 2001). When a vernier target
with two adjacent and offset vertical lines is masked by a grating
with five straight lines, target perception is impaired. However, if
masked with a grating of seven or more straight lines, the vernier
target is more easily perceived, and “shines through” the grat-
ing. The 3D-LAMINART (Grossberg, 1997; Francis, 2009) and
WCTM (Herzog et al., 2003) computational models have been
able to reproduce some but not all aspects of these phenomena
(Rüter et al., 2011). 3D-LAMINART is a general purpose visual
model that utilizes binocular vision to perceive the vernier target.
WCTM is a simpler two-layer model which uses lateral inhibition
to suppress repeating patterns such as lines.

This study seeks to model the cortical dynamics of meta-
contrast backward masking at a biophysically detailed level, to
investigate the roles of feedforward, feedback and lateral connec-
tions, specifically in the context of interacting neural attractor
networks (Hopfield, 1982; Amit, 1989; Hertz et al., 1991). This
spiking neural attractor model is conceptually related to the sen-
sory store model or iconic memory, because a neural attractor is a
recurrent store of activity for associative processing. Among exist-
ing neural models (Francis, 1997, 2009; Bugmann and Taylor,

2005) the work presented here is perhaps the most biophysically
detailed cortical model to date used to simulate the temporal
aspects of backward masking. The spatial aspects are currently
limited to abstract metacontrast representations where the target
and mask are represented in close proximity in common hyper-
columns or as parallel lines, although this could be extended
with biophysical feature detectors (Rehn et al., 2011). A neural
attractor in this case is considered an activated stored memory
pattern, which is a neural assembly of sparse and distributed
pyramidal cells recurrently connected with excitatory synapses.
When a stored memory pattern (or attractor memory) is par-
tially stimulated, it can become fully active across the distributed
representation through recurrent excitation. Over time, it adapts
and burns out, due to short-term synaptic plasticity and calcium
dynamics, both of which can have near-second time constants.
Many attractor memories can co-exist in the same neural pop-
ulation, and may mutually exclude each other when activated,
through lateral and di-synaptic inhibition. These neural attractor
memories can also activate each other associatively when over-
lapping and be nested and hierarchical as well. In the case of
primary visual cortex, these attractor memories can represent
features as grouped orientation preferences. It is hypothesized
that targets consist of a set of feature detectors in individual
visual areas, each with an associated patch-level attractor mem-
ory, containing minicolumns that are themselves small-world
networks and mini-attractors. These patch-level (i.e., V1 or V2)
attractor memories are interconnected across visual areas, acti-
vating regional-level attractors through feedforward and feedback
projections. With feedforward activity, attractor activations prop-
agate up the ventral stream (Kravits et al., 2013) as a traveling
wave (Sato et al., 2012), while feedback activity provides com-
petitive reinforcement from previous perceptual memories, or
resolves ambiguity and expectation partially on the regional level
(Wyatte et al., 2014). Eventually, this traveling wave is postulated
to reach the pre-frontal cortex for global-level attractor activa-
tion or “ignition” for conscious access (Dehaene and Changeux,
2011). The model in this study hypothesizes that regional-level
attractor memories exist across V1 and V2 and is limited to those
areas. When a patch-level attractor memory is stimulated, it takes
time for recurrence to fully activate it, sometimes up to 50 ms.
During this time, it can be more vulnerable to interference such as
a metacontrast noise mask, which may produce a monotonically
decreasing masking function as the attractor builds and becomes
more stable. If two competing attractor memories are activated
as a target and mask, the interference between them can build
as the attractors build, depending on spatial overlap or proximal
contours. With spatial overlap, it is hypothesized that activation
is more likely to transition to the masking attractor memory,
if the target is not reinforced by feedback. In common-offset
masking where the target and mask are presented simultane-
ously, transitions to the masking attractor memory can also occur
(Enns and Di Lollo, 2000). Proximal contours during mask-
ing may also interfere with target attractor activation via lateral
inhibition.

Evidence suggests that the latency of projections between V1
and V2 is about 10 ms in both directions (Nowak and Bullier,
1997; Girard et al., 2001), while horizontal propagation has been
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found to be significantly slower (Sugihara et al., 2011). This sug-
gests that, considering the synaptic integration delays in V2, feed-
back to V1 may arrive before lateral processing is complete. Thus,
this feedback may also be a factor in how that lateral processing
completes. Both excitation and inhibition have been identified in
both feedforward and feedback projections in rat primary visual
cortex, although feedback inhibition appears to be less (Shao and
Burkhalter, 1996). If feedback recurrently excites currently acti-
vated features, the target feature attractors will be enhanced, and
be more likely to become fully active and propagate. However,
if excitatory feedback were to activate attractor memories for
features not present in the target, the target attractor could be
inhibited through competition. Alternatively, if feedback inhibits
other feature attractors through di-synaptic inhibition, then the
target attractor will be enhanced through lower competition or
suppressed noise, or at least would not be diminished.

MATERIALS AND METHODS
A biophysical model was constructed of early visual cortex,
with two different instantiations. The first instantiation (called
model 1) entailed using an abstract target and metacontrast noise
mask in close spatial proximity. The second instantiation (called
model 2) entailed using a single vertical line for the target and
two adjacent parallel lines for the mask, with the intention of a
more specific spatial representation. The models represent a sub-
set of the ventral stream of primate visual cortex and includes the
lateral geniculate nucleus (LGN), areas V1 and V2 and the pro-
jections between them. While projections between the LGN and
V1 layer 4 are feedforward only, V1 and V2 are bidirectionally
connected. The LGN is represented as a grid of 256 locations in
model 1 and 648 locations in model 2, each containing a stack
of 10 relay cells, acting as on-center cells. Stimuli presented to
the LGN are not actual images, but are abstract representations.
Off-center cells were not included. Each LGN location projects
to pyramidal cells in one minicolumn of V1 layer 4 and sur-
rounding interneurons (small basket cells), which in turn inhibit
pyramidal cells in surrounding minicolumns within the same
hypercolumn. The neocortical patches of V1 and V2 represent a
square matrix of hypercolumns, each containing internal mini-
columns. In model 1, the 4 mm2 patch of cortex is composed
of 4 × 4 hypercolumns, subsampled with 16 minicolumns each.
In model 2, the 20 mm2 patch of cortex is composed of 9 × 9
hypercolumns, subsampled with eight minicolumns each. The
structure is similar to Silverstein and Lansner (2011), with the
addition of a regular spiking non-pyramidal (RSNP) interneu-
ron into the neocortical microcircuit (Lundqvist et al., 2006), a
more complete layer 4 and the addition of layer 5. Di-synaptic
inhibition and competition from RSNP interneurons occurred
when attractor memories had intersecting hypercolumns, which
occurred in model 1 but not model 2. The microcircuit of V1
is illustrated in Figure 1. The minicolumns are also subsampled,
and contain pyramidal cells and interneurons for layers 2/3, 4, and
5. Each layer contains 20 pyramidal cells, two basket cells, and two
interneurons allocated per minicolumn, although the basket cells
physically reside outside the minicolumn. V1 layer 4 is known to
largely contain spiny stellate cells, but pyramidal cells are used in
their place for simplicity. While V1 and V2 are known to have

FIGURE 1 | Microcircuit of layer 2/3, 4, and 5 of V1. Shows two
minicolumns part of an arbitrary attractor memory pattern X (one of N total)
in two different hypercolumns and a minicolumn outside of pattern X.
Lateral inhibition from basket cells occurs within the hypercolumn between
pattern X and other minicolumns. Long-range connections exist between
pyramidal cells in minicolumns of the same memory pattern. Long-range
di-synaptic inhibition can occur via RSNP interneurons when attractor
memories have common hypercolumns. A percentage refers to the
probability that a pre-synaptic population is connected to a post-synaptic
population.

different structure, they are both thought to have hypercolumns
(Ts’O et al., 2009) and the same structure was used for both here.
The V1 model represents interblobs (or interpatches) for orien-
tation as hypercolumns, but does not include blobs (or patches)
for color. It is also monocular, so does not include binocular
stripes. Orientation preferences are represented in minicolumns.
In model 1, these orientations remain abstract and are not tuned
to particular feature preferences. However, randomly selected
minicolumns in different hypercolumns are connected in stored
memory patterns, representing linked orientation preferences for
feature detection. While abstract, it is meant to generally repre-
sent features. In model 2, minicolumns have vertical orientation
preferences for the more specific representation of line detection.
V2 is known to have thin, pale and thick stripes, and the model
represents the pale stripes only, which are known to also project
to V4 and on along the ventral stream. Feed-forward projection
streams from V1 interblobs to V2 pale stripes have been identi-
fied in Macaque (Sincich and Horton, 2005; Federer et al., 2013).
These include projections from layer 2/3 and 4 of V1 interblobs to
layer 2/3 and 4 of V2 pale stripes (Federer et al., 2013). Feedback
projections from V2 originate from layer 2/3 and 6 and target
layers 1, 2/3, and 5 of V1 (Sincich and Horton, 2005). A subset
of these projections have been implemented, as can be seen in
Figure 2.
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FIGURE 2 | Projections between LGN, V1, and V2 in the model.

Between V1 and V2, the model has feed-forward projections
from V1 layer 4 to V2 layer 4 in addition to weaker projections
from V1 layer 2/3 to V2 layer 2/3. Feed-back projections from V2
are predominantly from layer 4 to V1 layer 5, but also include
layer 4 to V1 layer 2/3, which are about 10% of the strength. While
anatomical data suggests most V2 feedback originates in layer 3,
layer 4 is used for simplicity, considering dendrites from layer 3
pyramidal cells are likely to drop down into layer 4, where early
activations are likely to occur after target presentation. The laten-
cies of all projections between V1 and V2 projections are set to
10 ms, based on the findings mentioned earlier.

The model contained four different types of cells, which
included spiking pyramidal cells, basket cells, RSNP interneu-
rons and relay cells, all of which utilized the Hodgkin-Huxley
formalism. The equations and parameters for these neurons are
included in the Appendix. The pyramidal cells contained com-
partments for the soma, initial segment, basal dendrite, and apical
dendrite, while the rest contained compartments for the soma,
initial segment, and dendrite. With calcium dynamics, the pyra-
midal cells were adapting, the RSNP interneurons were weakly
adapting, and the rest were not. The pyramidal cells and RSNP
interneurons had Kainate/AMPA, NMDA, and GABAA channels,
while the basket cells had Kainate/AMPA and GABAA channels.
All synaptic channels had synaptic depression. However, the relay
cells were stimulated only through a time-activated noise source
applied to an alpha channel on the soma, and only projected to
Kainate/AMPA and NMDA channels on V1 layer 4 pyramidal
cells. All but the relay cells received 300 Hz of background Poisson
noise and produced a positive bias.

In model 1, each area had a total of 18 stored attractor mem-
ories. Each attractor memory was created by randomly choosing
one minicolumn from 10 of the 16 hypercolumns, an example
of which can be seen in Figure 3A. The minicolumn sampling
was restricted to prevent a minicolumn from being chosen in

more than one memory pattern, making the memories sparse
and orthogonal. In model 2, each area had a total of 72 stored
attractor memories, each containing nine minicolumns across
the 81 hypercolumns, and organized as vertical lines. Once the
minicolumns in an attractor memory were selected, long-range
connections were created between them within the patch, which
included both excitatory and inhibitory synapses. If a pairwise
connection probability determined that two minicolumns in a
stored memory pattern are to be connected, a pyramidal cell
in the source minicolumn was randomly chosen to originate
the axon. In the destination minicolumn, pyramidals received
synapses with a 25% probability, and di-synaptic interneurons
received synapses on surrounding minicolumns. All excitatory
synapses had the same conductance, as did all the inhibitory
(di-synaptic) synapses. For projections, attractor memories were
connected across areas, similar to the descriptions in Szalisznyo
et al. (2013). To connect two attractor memories in two differ-
ent areas, the minicolumns of the memory pattern in the source
area projected axons to the minicolumns of the memory pattern
in the destination area. These pattern projections were not all-to-
all since it was assumed that projections are only a cue to activate
a remote attractor memory that would necessarily have further
local representations. Thus, four minicolumns in the correspond-
ing attractor memory were selected on the destination side to
receive the axons of the pattern projection.

BACKWARD MASKING SIMULATION
To present a target or mask stimulus to the model, 4 LGN loca-
tions, each with 10 relay cells in the LGN patch were stimulated,
activating 40 relay cells in total. The target stimulus appears to
the model as four dots in the grid and is sparse, representing 40%
of the full target. The length of the target stimulation was always
20 ms and the length of the mask stimulation was 60 ms in model
1 and 50 ms in model 2. It was assumed that LGN relay cells fire
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FIGURE 3 | Neocortical patches of V1 for two model configurations.

Within hypercolumns (1/2 mm in diameter) are minicolumns shown as
small red circles and basket cells shown as blue asterisks. Example
stored attractor memories are illustrated as black lines, which connect
single minicolumns (via internal pyramidal cells) in independent
hypercolumns, with a uniform connection probability. Only several of many
connections of these attractor memories are illustrated. In a backward
masking trial, minicolumns at orange circles are stimulated as the target
and blue stars are stimulated as the mask, both via the LGN. (A) Shows

the model 1 configuration with 16 hypercolumns, each containing
16 minicolumns. Stored attractor memories are 10 random minicolumns in
separate hypercolumns across the patch. Mask stimulation occurs in the
same hypercolumns as target stimulation. (B) Shows the model 2
configuration with 81 hypercolumns, each containing 8 minicolumns. The
stored attractor memories contain 9 minicolumns each and are organized
as vertical lines across hypercolumns. The target is activated as the
middle vertical line and the mask is activated as the two adjacent parallel
lines two hypercolumns away.

at about 50 Hz, which meant each relay cell in a presented tar-
get stimulation would fire once over 20 ms and each relay cell
included in the mask stimulation would fire three times over a
60 ms stimulation. These cell firings were uniformly distributed
over the stimulation intervals. The relay cells in turn project to
and stimulate minicolumns in V1, as can be seen in Figure 3. In
the case of a target, the minicolumns are part of a stored mem-
ory pattern representing a feature detector, distributed across
hypercolumns. In the case of a metacontrast noise mask, they
are minicolumns selected from different attractor memories other
than the target, which corresponds to parts of uncorrelated fea-
tures. In the case of competing metacontrast line masks, the
selected minicolumns were from a single attractor memories as
the target was.

In model 1 as seen in Figure 3A, both the target and mask were
presented as stimulated minicolumns in common hypercolumns
for spatial proximity, which would roughly correspond to a visual
angle of within about 10 min. Simulations were performed on
model 2 with modifications for additional spatial context, to use
lines in one dimension for both the target and mask, similar to
stimuli presented in Growney et al. (1977). As seen in Figure 3B,
the target was presented as a single, straight broken vertical line,
and the mask was presented as two broken vertical parallel lines,
flanking both sizes of the target and equidistant from it. The patch
size was changed from model 1 to 9 × 9 hypercolumns to accom-
modate the short lines, with eight minicolumns per hypercolumn.
The feature detectors, as attractor memories, where modified
(from random assembly) to assemble selected minicolumns (as
orientation preferences) vertically, along each column of hyper-
columns in the 9 × 9 matrix. Each of the eight minicolumns in
every hypercolumn was used in a single independent, vertically

oriented feature detector, creating a total of 72 attractor mem-
ory patterns. These feature detectors were spatially redundant, but
implemented so that an individual corresponding target or mask
feature detector was activated for only one SOA interval during
a trial run, which consisted of multiple sliding SOA intervals.
This was done because the attractor memories did not completely
recover from adaptation between the selective SOAs tested dur-
ing each cortical second of each trial run, so couldn’t be reused
during a following SOA interval. Lateral inhibition in model 1
was within the hypercolumn only, but was changed to extend
beyond the hypercolumn horizontally in model 2, for competi-
tion between the vertical target and mask lines. Lateral inhibition
beyond the hypercolumn had a reduced basket-pyramidal synap-
tic connection probability of 50% one hypercolumn away, 25%
two hypercolumns away and 0% outside of this. Simulations were
performed with the mask 1, 2, and 3 hypercolumns away, which
roughly corresponds to a fovea visual field arc of 10–20, 20–30,
and 30–40 min. respectively.

For each model, five different individuals were simulated by
generating 5 different neural sets, connection matrices and pro-
jections for the LGN, V1, and V2. Each of these individual
instantiations was simulated for five trials with different seeds, for
a total of 25 trials per trial set. Each trial consisted of presenting
the target alone, the mask alone, and both target and mask with a
sliding SOA of 20, 40, 60, 80, 100, and 120 ms. Feature attractors
can become fully activated in Layer 2/3 and/or 5 of V1 and/or V2.

It is assumed that for the possibility of conscious perception,
the linked attractor memory patterns must become fully active
in layer 2/3 of both V1 and V2, indicating regional activation.
To determine if this occurred, layer 2/3 of V1 and V2 were ana-
lyzed on each trial. For the attractor pattern to be considered fully
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activated or complete in each area, pyramidal cells in 7 of the
10 minicolumns in the memory pattern were assumed to require
at least 10 spikes during the SOA trial, indicating substantial
recurrent activity within the attractor memory.

The models were implemented using the CORTSIM library
(manuscript forthcoming) that was written using the native Hoc
and Mod languages of the parallel NEURON simulator, ver-
sion 7.3 (Carnevale and Hines, 2006) and run on a Cray XC30
system. Construction of the model geometry, synaptic connection
matrices and analysis of the spiking output from the NEURON
simulation were done in Matlab. There were 25 trials in each trial
set, which ran both with and without feedback connections, on
both model 1 and model 2. Model 1 had a total of 39,424 neurons
and each trial took about 4 min. to run on 256 cores. Model 2 had
a total of 99,792 neurons and each trial took about 5 min. to run
on 648 cores.

RESULTS
Both lateral inhibition in V1 and V2 and feedback from V2 were
factors in the backward masking effects observed in the mod-
els. When the target and mask presentations were close in time
and space, they mutually inhibited each other, first in V1 layer 4
and later in layer 2/3 and 5. As the SOA increased, the target pat-
tern was more likely to become a fully activated attractor before
the mask stimulus could begin to interfere via basket cells and
di-synaptic inhibition. Feedback from V2 could reinforce the tar-
get attractor and be a factor in achieving full activation locally in
V1 and regionally in both V1 and V2, if arrival was early enough,
before the mask stimulus arrived to compete.

The round-trip signaling latency of a target attractor in V1
feeding forward to V2 and feeding back to V1 is a minimum of
about 25–40 ms, given a 10 ms latency of excitatory projections
in each direction and synaptic integration at a single hop in V2.

FIGURE 4 | Simulation of model 1 showing spiking activity during a

backward masking trial with feedback projections in place. The SOA
was increased with a different target/mask presentation each second. The
stimulated LGN target cells on the bottom are illustrated as red while the
stimulated masking cells are black. In other areas, spiking pyramidal cells
part of the target memory are illustrated as red while other pyramidals
outside of the target memory are black. The pyramidal cells are within

minicolumns, which can be seen when activated as red lines if in a target
pattern and black lines if not. Each layer contains 256 minicolumns with 20
pyramidal cells, 32 basket cells, and 32 other interneurons. Spiking basket
cells are shown in the figure as blue and spiking interneurons are
magenta. Full activation of target patterns (where all 10 minicolumns can
be seen as red lines) in both V1 and V2 can be seen in this trial at SOA
intervals of 80, 100, and 120 ms.
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More robust feedback from V2 to V1 can take longer, once an
attractor activates in V2. Other feedback can occur via secondary
excitatory activity and pattern completion from other layers, but
this can take longer, even more than 50 ms. The reason for this is
not just the synaptic integration times of secondary, tertiary and
greater hops, but the longer latencies of horizontal connections.
From model 1 results, an example backward masking trial with
feedback in place is shown in Figure 4. Results varied between
trials from individual connection matrices and trial seed, but here
full activation of the target pattern in layers 2/3 of V1 and V2 can
be seen with an SOA of 80 ms and greater, with near activation
at an SOA of 60 ms. This activation was due to competition in
V1 layer 4 between the target and mask (red and black lines in
area V1L4), allowing activity to propagate to V2. Following this,
the recurrent feedback from V2 reinforced and sustained the acti-
vated target. Figure 5 shows this behavior as aggregated spiking

activity on a different example, comparing trials with and without
feedback connections.

Depending on the level of stimulus response and dynamics,
some attractor memories did regionally complete in both V1
layer 2/3 and V2 layer 2/3 without feedback projections, but
this activity was less likely than with feedback projections in
place. Both excitatory and inhibitory feedback (via di-synaptic
inhibition) from V2 contributed to enhancing the target attrac-
tor by increasing the likelihood of full activation of the target
pattern.

Full target pattern activation usually took 25–50 ms or longer,
depending on local connectivity and conduction strengths.
Reinforcement of memory attractors from recurrent feedback
sometimes needed to occur before a masking stimulus arrived, or
the target attractor would be quiesced. Figure 6 shows aggregate
results of two simulations for model 1, each consisting of 25 trials

FIGURE 5 | Example of model 1 spiking activity in V1 layer 2/3

during two trials. Shown are the target attractor and noise mask
during backward masking trials, one with and one without feedback
connections. Feedback activity reinforces and sustains the target

attractor in the presence of the mask. Target stimulation starts at
100 ms, the SOA was 100 ms and the spikes were summed in 50 ms
bins. (A) Without feedback from V2 to V1. (B) With feedback from V2
to V1.

FIGURE 6 | Model 1 with noise masks showing aggregate percentage of

targets completed in V1, V2, and both V1 and V2 with an increasing

SOA. The target and noise mask stimulation occurred in the same
hypercolumn. Activity is shown with feedback connections (w fb) from V2 to
V1 and without feedback connections (wo fb). The behavior represents
type-A and type-B masking effects. Activation of both V1 and V2 represents

activation across visual areas, which is assumed to be necessary for signal
propagation up the visual stream to achieve conscious perception. (A)

Illustrates aspects of a type-B masking with stimulation of four points for the
target and noise mask. (B) Illustrates aspects of type-A masking with
stimulation of four points for the target and five points for the noise mask,
representing a higher masking salience.
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with feedback connections and 25 trials without. This demon-
strated aspects of a type-B masking, as well as type-A masking
at a higher noise salience, achieved by increasing the number of
stimulated minicolumns in the noise mask from 4 to 5. With the
presence of feedback connections, the masking effect was signif-
icantly reduced. The feedback connections also appeared to aid
target pattern completion, and made the target attractor more sta-
ble. With the model 1 configuration and simulation assumptions,
this shows that both lateral inhibition and recurrent feedback are
factors in perception during metacontrast backward masking.

The model 2 configuration with the spatial line representa-
tions exhibited a type-B masking behavior or U-shaped function.
Results can be seen in Figure 7, which shows simulations with
the target and mask separated by a spatial distance of 1 and 3
hypercolumns. Results for each were aggregated across two sets
of 25 trials, one with and one without feedback projections. The
masking effects decreased with spatial distance, similar to psy-
chophysical findings in Growney et al. (1977). Regional activity
in layer 2/3 across both V1 and V2 produced type-B masking, as
did analyzing activity in V2 alone. Feedback also diminished the
masking effect on V2 alone, likely from boosted and recurrent
feedforward activity from V1. However, when analyzing activity
in V1 alone, activity appeared more monotonic when feedback is
present.

DISCUSSION
The simulations showed that lateral, feedforward and feedback
activity within V1 and V2 are all factors in activating and recog-
nizing target patterns, in the presence of masks. Feedforward with
feedback activity can also provide target reinforcement before
lateral processing completes. This suggests that feedback process-
ing reduces masking effects and correspondingly that masking
effects may increase without the presence of feedback projections.
This process of iterative reinforcement may occur among pairs of
areas along the ventral stream. For example, V1 and V4 are also
recurrently connected, and because of longer projection lengths,

likely provides feedback with longer latencies. However, should
higher level feature detectors be trained through experience or
expectation to activate or reinforce an alternative lower repre-
sentation, feedback interference could cause masking effects to
increase on partial or ambiguous target stimuli. There is ongoing
debate on the role of feedback processing on observed properties
of backward masking (Di Lollo et al., 2002; Francis and Hermens,
2002; Põder et al., 2014), with object substitution in particular.
The results here suggest there is a role, which might be more
highlighted by contrasting expected sparse target recognition with
ambiguous or conflicting (either primed or trained) higher level
representations. On object substitution as defined by Di Lollo
et al. (2000), feedback interference from larger set-sizes and dis-
tractors could be computationally explored with extensions to
the existing model, by biasing or weakly stimulating higher-level
attractor memories.

This study utilized a biophysical model, with equations for
representing neural and synaptic properties, as well as micro-
circuits and network connectivity, from which characterized
backward masking behaviors might emerge. Previous work
has defined quantitative mathematical descriptions of backward
masking behaviors from the top down. Quantitative mathemat-
ical methods known as efficient masking, mask blocking and
target blocking have been described by Francis (2000) to account
for type-B masking effects in metacontrast masking. Efficient
masking refers to greater efficiency when masking at later SOAs
when the target stimulus is weaker. The presented model did
capture aspects of this behavior, because as the target attractor
adapted through calcium dynamics and synaptic depression, lat-
eral inhibition from the mask was more efficient at suppressing
it. Mask blocking occurs if the target signal can block a weaker
masking signal. This was observed as well, particularly at short
SOAs. It may also have been a contributing factor to a sometimes
observed target strength increase at an SOA of 40 ms, as seen in
Figure 6A. A stimulated minicolumn in a target attractor mem-
ory is itself a small-world network and mini-attractor, which is

FIGURE 7 | Model 2 with spatial lines showing aggregate

percentage of targets completed in V1, V2, and both V1 and V2

with increasing SOA. Activity with feedback connections (w fb)
from V2 to V1 and without feedback connections (wo fb). A vertical

line target is masked with adjacent parallel lines on each side. (A)

Target and mask lines were separated by three hypercolumns
horizontally. (B) Target and mask lines were separated by one
hypercolumn horizontally.
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more resilient to inhibition during stimulation and early acti-
vation. This resilience could be one explanation for sometimes
observed higher target visibility during common-onset mask-
ing (Enns and Di Lollo, 2000), because the effective inhibition
from the mask during target stimulation is lost, reducing the
effective mask exposure length. Target blocking occurs when the
mask is so strong, that the target signal cannot produce a per-
cept. In the models, this can occur when lateral inhibition is high
enough that not even the minicolumns can become recurrently
active. Without active minicolumns, patch-level attractors cannot
activate and complete.

Among computational models for backward masking, The
BCS (Francis, 1997) and Bugmann and Taylor (2005) also used
detailed neural representations. The BCS represents a complex
hierarchy of feature detectors along the visual ventral stream
with abstract non-spiking neurons, representing functional clas-
sifications of cells, including simple cells with two orientation
preferences, as well as complex and hypercomplex cells. The
BCS has been able to reproduce a broad range of psychophysical
phenomena, including backward masking. It also has recurrent
feedback and resonance with erosion, which may be a more
abstract representation of distributed neural attractors and asso-
ciated adaptation and dwell times. The spiking neural attractor
model presented here is at a lower level of abstraction, repre-
senting various neural types, with functional activity and micro-
circuits determined by cell behavior and distributed synaptic
connectivity. Functionally, it represents V1 and V2 and cannot yet
reproduce the same level of behaviors as the BCS can. However,
it likely has closer correspondence to spiking activity observed
in electrophysiological studies of early visual cortex. It also has
the potential of representing a large number of feature detectors
for complex spatial representations, by scaling up the number of
neurons and training the feature detectors as sparse, distributed
neural codes. Bugmann and Taylor (2005) also developed a neu-
ral model for backward masking composed of a 5-level hierarchy
of integrate-and-fire pyramidal cells. After initial stimulation of
the LGN, each level extending across V1 and V2 received feedfor-
ward input. It did not have inhibitory neurons or feedback except
for self-connections at the highest level, but was able to reproduce
a U-shaped behavior response under some conditions, using this
simplified model.

More biophysically detailed models can provide some unique
advantages. They can allow for the exploration of some neu-
ral effects and relationships which cannot be easily investigated
in electrophysiology experiments. The role of microcircuits in
behavior can be investigated, as well as the effects of psychotropic
drugs. For instance, the existence of synaptic channels in the
models could enable the simulation of drug effects such as ben-
zodiazepine on backward masking. Benzodiazepines have been
found to slow down cortical processing and extend the attentional
blink and other visual processing, both experimentally (Giersch
and Herzog, 2004) and in computation models (Silverstein and
Lansner, 2011). Thus, it could be predicted that benziodiazepines
and other GABA agonists, which slow down cortical processing
and feedback, would also increase the temporal window and SOA
lengths when backward masking occurs. They may also amplify
the depth of the masking function in type-B masking.

However, biophysically detailed neural models such as pre-
sented here have limitations and require a considerable amount of
assumptions. These models can be very computationally intensive
and may require parameter tuning. While some neural network
parameters can be obtained from the literature, not all are well
characterized, but the expectation is that biological plausibility
constrains the hypotheses and parameter values enough that
some evidence is gained on how the neural circuits might work.
Some model assumptions were necessary, due to the limited
electrophysiological data on primates and humans. In partic-
ular, the conductance strengths and ratios of excitatory and
inhibitory feedforward and especially feedback projections are
not well understood yet. This could be investigated further by
computationally by varying the conductance strengths and excita-
tory/inhibitory ratios of these projections and observing changes
in the masking function. Cell, synaptic and microcircuit param-
eters defined in the Appendix are based on experimental electro-
physiology, but are simplified. In the models presented, not all
neocortical layers and projections were represented in V1 and V2.
Layer 6 was not implemented. Nor were there feedback connec-
tions between layer 2/3 and layer 5. In addition, because there
were no areas represented downstream of V2, layer 5 of V2 did
not have higher level feedback. To compensate for this, V2 layer 4
to layer 5 and V2 layer 4 to layer 2/3 conductance was boosted to
provide a higher activity level. But regardless, the recurrent feed-
back did reduce the effects of backward masking, by making full
target attractor activation more likely. A competing mask was also
used with model 1, with slightly different results. At low SOAs, the
target was usually quiesced as well, but at higher SOAs it was likely
that both the target and competing mask would become active.
However, target activity would be truncated after the compet-
ing metacontrast mask became active. This could be investigated
further, as well as the effects of masks with partially overlap-
ping features with the target. Such masks might have the effect of
diminishing the masking effect, because the target attractor would
receive more stimulation.

One weakness of the existing models is the limited spatial
representation of feature detectors. Including biophysical fea-
ture detectors for various orientation preferences and contours
is a challenging problem and an area for future work. Model 2
included spatial representations for lines as a step towards that
goal. Extensions of the line representations may be applicable for
computational investigations of the shine-through paradigm as
discussed earlier, which is primarily based on the use of vertical
lines. Model 1 often produced type-A masking, perhaps because
the metacontrast noise mask was strong and in close spatial prox-
imity. However, when the mask was weaker, it did sometimes
produce aspects of type-B masking as well. Model 2 produced
type-B masking under more parameter regimes, which may have
occurred because the stimulated mask minicolumns were spa-
tially farther away than in the model 1 configuration and therefore
the lateral inhibition was weaker. When observing activity in V1
independently, type-A masking was more often produced. Yet,
observing V2 alone more often demonstrated type-B masking
behavior, as did co-activation of both V1 and V2. This may indi-
cate type-B masking is a property of propagating attractor activity
between V1 and V2. If so, stronger masks as used in model 1
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may cause type-A masking overall because V1 is more strongly
affected, causing highly diminished feedforward activity for prop-
agation to V2. Weaker masks may allow more complex dynamics
between V1 and V2, resulting in the emergence of type-B mask-
ing. Part of the U-shaped function may have occurred because of
activity in layer 4, where the memory pattern long-range connec-
tions are weaker due to reduced lateral connectivity. This meant
that activated minicolumns in layer 4 had shorter dwell times, and
were more vulnerable sooner when the mask was presented.

It was also observed that lags in the inhibitory responses from
the target and mask presentation during short SOAs can affect tar-
get salience. Adding a 3 ms delay on basket to pyramidal synapses
made target pattern completion at short SOAs more likely. Lags in
inhibitory populations can occur, because interneurons such as
martinotti cells have facilitating synapses (Krishnamurthy et al.,
2012) and gap junctions in basket cells can leak excitatory poten-
tials to other basket cells. This might be a factor in common-onset
masking (Enns and Di Lollo, 2000), since inhibitory populations
can be largely silent before the common-onset stimulus.
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APPENDIX
CELL MODELS
The single cell models were described previously in Silverstein
and Lansner (2011), where the implementation of the Hodgkin
Huxley formalism (1952) was based on Ekeberg et al. (1991).
With the membrane potential V and the Nernst potential Ei
for i ε {Na, K, Ca, Kca} and given Ohm’s law: Ii = gi(V − Ei)
combined with Kirchoff ’s laws, yields:

Im = Cm
dV

dt
+ gNA (V, t) (V − ENa) + gK (V, t) (V − EK)

+gCa (V, t) (V − ECa) + gKCa (V, t)
(
V − EKCa

)+ gL (V − EL)

where gL is a constant leak conductance. The dynamic conduc-
tance gi(V, t) can be expressed with a gating model for individual
ion channels. For modeling the for Na+ and K+ ion channel
dynamics, Hodgkin and Huxley framework was employed.

Im = Cm
dV

dt
+ gNam3h (V − ENa) + gK n4 (V − EK) + gL(V − EL)

where gi with i ε {Na, K} is the maximal conductance when a
channel is open, and gating variable m is Na+ channel activa-
tion, n is K+ channel activation h and is Na+ channel inactivation.
The gating variables can be expressed as the following differential
equations:

dm

dt
= ∝m (1 − m) − βmm with αm

A(V − B)

1 − e(B−V)/C

and βm
A(B − V)

1 − e(V−B)/C

dh

dt
= ∝h (1 − h) − βhh with αh

A(B − V)

1 − e(V−B)/C

and βh
A

1 + e(B−V)/C

dn

dt
= ∝n (1 − n) − βnn with αn

A(V − B)

1 − e(B−V)/C

and βn
A(B − V)

1 − e(V−B)/C

A, B and C are parameters and independently specified for ∝ and
β of each channel. Ca2+ is treated differently, because Ca2+ pools
are assumed to be inside the cell near the cell membrane and can
activate Ca2+ gated K+ channels to achieve hyperpolarization.
Using q to represent Ca2+ activation, a relation similar to the Na+
channel activation (m) holds:

dq

dt
= ∝q

(
1 − q

)− βqq with αq
A(V − B)

1 − e(B−V)/C

and βq
A(B − V)

1 − e(V−B)/C

with the Ca2+ current into the cell being ICa = gCaq5 (V − ECa).
Channel equation parameters used in the simulations are speci-
fied in Table A1.

If we denote Ca2+ entering the cell as entering the CaAP pool,
then the change in concentration of [CaAP] is equivalent to the
rate of ions entering the pool and less the ions leaving the pool:

d [CaAP]

dt
= ϕAPq5 (V − ECa) − δAP [CaAP] ,

where ϕAP is the rate of Ca2+ influx and δAP is the rate of decay.
The concentration [CaAP] will activate Ca2+ gated K+channels
inside the cell membrane with the following current:

IKCa = gKCa
(V − EK) [CaAP]

Table A1 | Hodgkin-Huxley and NMDA ion channel parameters based

on equations from Ekeberg et al. (1991) and values from Fransén and

Lansner (1998).

Na+ Na+ K+ Ca2+ NMDA

M H N q p

α A (mV−1 ms−1) 0.58 0.232 0.058 0.232 2.03 ms−1

B (mV) −50 −50 −50 10 –
C (mV) 1 1 0.8 11 17

β A (mV−1 ms−1) 0.174 1.16 (ms−1) 0.0145 0.0029 0.029 ms−1

B (mV) −59 −46 −40 10 –
C (mV) 20 2 0.4 0.5 17

Table A2 | Neuron parameters.

Parameter Pyramidal Basket RSNP Unit

Eleak −64 −65 −65 mV
ENa 50 50 50 mV
ECa 150 150 150 mV
EK −80 −80 −80 mV
ECA(NMDA) 20 20 20 mV
Cm 0.01 0.01 0.01 μF/mm2

gm 0.74 0.44 0.74 μS/mm2

gna soma 150 150 150 μS/mm2

gk soma 250 ± 2% 1000 ± 2% 1000 ± 2% μS/mm2

gna initial segment 2500 2500 2500 μS/mm2

gk initial segment 83 5010 5010 μS/mm2

Cahh influx rate 1.00 1.00 1.00 mV −1ms−1mm−2

Cahh decay rate 6.3 9 30 s−1

CaNMDA influx rate 3.0 – 0.01 s−1mV −1μS−1

CaNMDA decay rate
(soma)

1 – 3 s−1

CaNMDA decay rate
(dend)

2 – – s−1

gk (Ca) 2.9 0.15 0.29 pS / mM
soma diameter ±
stdev

21 ± 2.1 7 ± 0.7 7 ± 0.7 μm

Total
compartments

4 3 3

Dendritic area (rel.
soma)

4 4 4

Initial seg area (rel.
soma)

0.1 0.1 0.1
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Table A3 | Parameters for synaptic dynamics.

Pre-Post Type Cdur sec τnraisesec τdecay sec Erev mV Dfast Dslow τ recms τ recms Eslow mV

Pyr-Pyr Kainate/AMPA 0.0 0.0 0.006 0 0.78 0.98 634 9200 –

Pyr-Pyr NMDA 0.02 0.005 0.150 0 0.78 – 634 – 0.020

Pyr-Basket Kainate/AMPA 0.0 0.0 0.006 0 0.78 0.98 634 9200 –

Basket-Pyr GABAA 0.0 0.0 0.006 −85 0.94 – 1900 – –

Pyr-Rsnp Kainate/AMPA 0.0 0.0 0.006 0 0.75 0.98 575 9200

Pyr-Rsnp NMDA 0.02 0.005 0.150 0 0.75 – 575 – 0.020

Noise Kainate/AMPA 0.0 0.0 0.01 0 – – – – –

Table A4 | V1 and V2 neuron counts.

layer Neuron No. in minicolumn No. in model 1 hyercolumn No. in model 2 hypercolumn Model 1 total Model 2 total

L 2/3 pyramidal 20 320 160 5120 12960

L 2/3 basket – 32 16 512 1296

L 2/3 rsnp 2 32 16 512 1296

L 4 pyramidal 20 320 160 5120 12960

L 4 lg. basket – 32 16 512 1296

L 4 sm. basket 2 32 16 512 1296

L 5 pyramidal 20 320 160 5120 12960

L 5 basket – 32 16 512 1296

L5 rsnp 2 32 16 512 1296

After an increased neural firing rate, calcium buildup in the cell
will cause hyperpolarization and a reduction in the firing rate.
Table A2 specifies neuron parameters and calcium dynamics. The
[CaAP] pool flux rates originate from either Ca2+ membrane
channels (hh) or NMDA channels (NMDA).

SYNAPTIC EQUATIONS
For implementing the synaptic coupling, neurotransmitter gated
ionotropic synapses were modeled, where the channels conduct
ionic current produced by a voltage driving force and channel
conductance. AMPA and GABAA currents are governed by:

Isyn = (
Esyn − V

)
Gsyns 0 ≤ s ≤ 1

Where s is the level of synaptic activation, with 1 being the most
active. All synapses are consolidating and saturating as defined by
Lytton (1996) and depressing as defined by Varela et al. (1997).
Every synaptic spike results in neurotransmitter release for dura-
tion Cdur when it binds to receptors with binding rate ∝ and
unbinding rate β. Saturation occurs because any spike following
another spike by less than Cdur extends neurotransmitter release
for another Cdur interval. Wsum is the sum of all synaptic weights
currently active within Cdur . After each spike and during Cdur ,
Wsum is incremented by the synaptic weight Wsyn and after Cdur ,
Wsum is decremented by Wsyn. Consolidation occurs by summing
across synaptic activations into state variables Ron and Roff , which
have the following dynamics:

dRon

dt
= WsumRinf − Ron

Rtau

dRoff

dt
= −βRoff Rinf = ∝

∝ +β

The consolidated level of synaptic activation is represented by
s = Ron + Roff . For synaptic depression, Wsyn is decreased dur-
ing Cdur according to recent short-term pre-synaptic activity with:
Wsyn = Wsyndfastdslow, where depression variable di = diDi after a
spike occurs, which then decays to 1 with di = 1 − (1 − di)e−t/τi .
NMDA synapses are similar to AMPA and GABAA but with addi-
tional dynamics for the Mg2+ block. Parameters for synaptic
dynamics are specified in Table A3.

INMDA = (ENMDA − V) GNMDAps 0 ≤ s ≤ 1 0 ≤ p ≤ 1

Where p is the voltage gated variable for the Mg2+ block with the
following dynamics:

dp

dt
= ∝p

(
1 − p

)− βpp with αp = A∝e
V
C βp = Ae−V/C

The parameters A and C are independently specified in Table A1
for ∝ and β of channel p. All neurons but the LGN relay cells
receive noise input from an excitatory synapse driven by a 300 Hz
Poisson process. The pyramidal cell has the noise synapse on the
apical dendrite and the basket and RSNP cells have it on the basal
dendrite. The noise synapse is identical to the AMPA synapse but
without synaptic depression, and a decay time constant of 10 ms.
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NETWORK MODEL
The network architecture is organized into interconnected
patches for LGN, V1 and V2, with some differences between mod-
els 1 and 2. The fixed neuron counts for patches V1 and V2 can be
found in Table A4. Within patches V1 and V2, individual mini-
columns span across layers 2/3, 4, and 5. Local populations of
pyramidal cells in each of these layers are interconnected with
local populations in the other layers, with the pre-synaptic to
post-synaptic connection probabilities listed in Table A5. These
probabilities were partially determined by tuning for plausible
attractor activity levels in individual layers when stimulated with
targets.

Between patches V1 and V2 are feedforward and feed-
back memory pattern projections, which can be excitatory or
inhibitory. Excitatory projections connect a subset of mini-
columns within two individual attractor memories across two

Table A5 | Synaptic connection probabilities between pyramidal cells

in the different layers within the minicolumns.

src. layer dst. layer conn. prob. conn. prob.

model 1 (%) model 2 (%)

V1L4 V1L2/3 13 8

V1L4 V1L5 26 16

V1L5 V1L2/3 6 3

V2L4 V2L2/3 13 12

V2L4 V2L5 34 21

V2L5 V2L23 6 3

regions. Inhibitory projections connect one attractor memory to
other attractor memories in common hypercolumns that also
receive an excitatory projection from the originating attractor
memory, potentially inhibiting these other attractor memories
through di-synaptic inhibition. The expected synaptic counts in
projections between pairs of attractor memories and opposing
attractor memories (within common hypercolumns) are listed in
Table A6. The excitatory synaptic counts were tuned to provide
plausible activity transfer from stimulated attractor memories.
The inhibitory synaptic counts were generally assumed to be
about 20% of excitatory synaptic counts for feedforward pro-
jections and about 40–60% of excitatory synaptic counts for
feedback projections.

Table A6 | Expected approximate feedforward (ff) and feedback (fb)

projection synapse counts between attractor memories.

proj. src. proj. dst. dir. exc. syn. inh. syn. exc. syn. inh. syn.

model 1 model 1 model 2 model 2

V1L4 V2L4 ff 560 112 800 160

V1L2/3 V2L2/3 ff 100 20 100 20

V2L2/3 V1L2/3 fb 32 16 32 14

V2L4 V1L2/3 fb 32 16 32 14

V2L4 V1L5 fb 256 128 256 102

V2L4 V2L5 fb 512 256 512 205

Includes both excitatory (exc) synapses on pyramidal cells and inhibitory (inh)

synapses on RSNP interneurons. The V2L4 to V2L5 projection partially compen-

sates for the lack of feedback to V2 from higher areas.
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Closing the structure-function divide is more challenging in the brain than in any other
organ (Lichtman and Denk, 2011). For example, in early visual cortex, feedback projections
to V1 can be quantified (e.g., Budd, 1998) but the understanding of feedback function is
comparatively rudimentary (Muckli and Petro, 2013). Focusing on the function of feedback,
we discuss how textbook descriptions mask the complexity of V1 responses, and how
feedback and local activity reflects not only sensory processing but internal brain states.

Keywords:V1, feedback, fMRI, vision, electrophsyiology

IS V1 (SOMETIMES) AT THE TOP OF THE HIERARCHY?
The era of Mountcastle, Hubel and Wiesel had “profound phys-
iological implications” for the study of cortical processing (see
Kandel,2014). Hubel and Wiesel (1959) characterized the response
properties of visual cortical neurons in columns: V1 neurons
respond to their selective stimulus (e.g., a line of a certain orien-
tation), and are embedded in a cortical architecture that exposes
a functional map of columnar orientation preference and ocular
dominance. These milestone findings furnished the (still current)
textbook accounts of V1, which are dedicated to the feedfor-
ward cascade of processing and biased to neuronal spiking as
recorded in electrophysiology. However, owing to increasingly
sophisticated methodologies to assess functional responses, such
as high-resolution magnetic resonance imaging or optogenet-
ics combined with electrophysiology, this feedforward model of
V1 can be updated to incorporate the rich response properties
conferred by cortical feedback.

Neurons in early visual areas do not act as linear feature detec-
tors when faced with complex inputs such as natural scenes,
emphasizing the contribution of response modulation beyond the
classical receptive field (Kayser et al., 2004). For example, non-
linear receptive field models using natural stimuli predict V1
activity more optimally than a model fit using grating stimuli
(David et al., 2004); V1 responses to bars embedded in a natural
scene are reduced compared to bars on a uniform background
(MacEvoy et al., 2008); and during natural scene viewing, the sur-
round, local field potential (LFP) and spike history contribute to
V1 spiking almost as much as the classical receptive field (Haslinger
et al., 2012). Furthermore, V1 neurons are active even during
occlusion (Sugita, 1999; Lee and Nguyen, 2001), revealing that
non-stimulus-driven inputs allow early neurons to respond even
to stimuli which are inferred but not directly presented to the
retina. Early visual neurons therefore do not only transform retinal

signals, but integrate top–down and lateral inputs, which convey
prediction, memory, attention, reward, task, expectation, loco-
motion, learning, and behavioral context. Such higher processing
is fed back (monosynaptically or otherwise) to V1 from cortical
and subcortical sources (Muckli and Petro, 2013). Understanding
the function of feedback has implications not only for vision, but
for structural and dynamic networks for cognition and behavior
(Harris and Mrsic-Flogel, 2013). Indeed, Gilbert and Li (2013)
suggest that each cortical neuron is a “microcosm of the brain as
a whole, with synapses carrying information originating from far
flung brain regions.” Top–down influences modulate feedforward
(classical) receptive fields and also many of the contextual inter-
actions performed by intrinsic V1 neurons. Here, we discuss some
effects of top–down inputs to V1, culminating in the tempting
speculation that V1 is misplaced as merely the earliest, sensory
stage of the visual cortical hierarchy.

NON-GENICULATE INPUT TO V1 – INTERNAL PROCESSING
Aptly, the visual brain is classically studied by presenting it with
visual stimuli, revealing extrinsically driven receptive fields in
V1. However: (1) sensory areas are neither monomodal (e.g.
Vetter et al., 2014) nor immune to higher processes; (2) feedback
and lateral inputs outnumber feedforward inputs and (3) the
brain is now more commonly referred to as a parallel rather than
serial processor (Singer, 2013). Much can therefore be learned
about intrinsically driven “response fields” in V1 (Muckli, 2010),
and there is abundant evidence that V1 is involved in process-
ing distinct from the classical feedforward activation that defines
its position as the first cortical stage of vision. The reciprocal
nature of the visual system suggests that in fact, in an inversion
of sensory processing, visual scenes can be back-projected to V1
(Harth et al., 1987). If so, intuitively this “internal vision” would
be accessible in V1 during sleep or mental processing, i.e., when
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there is no feedforward input. It is possible to study internal pro-
cessing by examining V1 in the absence of feedforward activation,
such as in visual occlusion (Smith and Muckli, 2010) or illusion
(Lee and Nguyen, 2001; Muckli et al., 2005; Murray et al., 2006;
Weigelt et al., 2007; Maus et al., 2010; Kok and de Lange, 2014),
in the blind (e.g., Amedi et al., 2004), blindfolded (Vetter et al.,
2014) or sleeping (Horikawa et al., 2013), and during working
memory, (Harrison and Tong, 2009), imagery (Albers et al., 2013)
and expectation (Kok et al., 2014). During eyes-closed, resting
state functional magnetic resonance imaging (fMRI), hyperactive
V1 has been observed in individuals with posttraumatic stress
disorder who score highly on scales for re-experiencing (Zhu
et al., 2014). In addition to feedback from higher visual areas,
such as during occlusion or illusion, top–down influences sig-
nal behavioral context so that V1 neurons respond adaptively to
the functional state of the brain (Gilbert and Li, 2013). We dis-
cuss higher processing that can be read out in V1, and suggest
that not only is V1 activity linked to higher vision, but to brain
states such as attention or expectation (that are determined by net-
work interactions, Park and Friston, 2013) and tasks (Petro et al.,
2013).

PREDICTION
A great deal is established about which external inputs make
visual neurons spike. In contrast, less is known about the inputs
which do not directly signal feedforward information transmis-
sion. One eminent theory is that feedback is actively involved
in the analysis of feedforward signaling. Feedback may perform
hypothesis-testing by transmitting Bayesian priors generated from
memory or internal models down the visual hierarchy (e.g. Lee
and Mumford, 2003). For example, one candidate mechanism
for perceptual inference is that of predictive coding, in which
descending predictions arising from deep pyramidal cells are com-
pared to incoming sensory signals, and the computed mismatch
(prediction error) is transferred in the feedforward stream of the
superficial pyramidal cells up to the next higher cortical level to
update internal models (reviewed in detail Friston, 2005; Clark,
2013). Several models in which neurons engage in probabilistic
processing in order to infer the causes of their inputs have been
proposed (e.g., Rao and Ballard, 1999; George and Hawkins, 2009;
Lochmann and Deneve, 2011; Dura-Bernal et al., 2012), posing
a challenge to feedforward theories of vision. The role of inter-
nal models in mediating predictive processing has been suggested
by data from ferret V1, where, over development, spontaneous
activity becomes increasingly similar to the activation induced by
natural scenes (Berkes et al., 2011). This indicates that intrinsic
(spontaneous) activity is akin to the responses that were previ-
ously experienced. Furthermore, when the visual flow of grating
stimuli is selectively de-coupled to the rate at which a mouse
runs on a ball, neurons in layer II/III of V1 signal the mismatch
between actual visual flow feedback and that predicted by locomo-
tion (Keller et al., 2012), which could be the putative error signal
in V1. Visual evoked potentials in mouse V1 have been shown
to be specific to previously learned spatiotemporal sequences of
grating stimuli, and are even predictive of individual sequence
elements during omissions (Gavornik and Bear, 2014). Further-
more, there are experimental observations indicating cortical

prediction in human V1. Using fMRI,Alink et al. (2010), measured
a reduction in blood oxygen level dependent (BOLD) signal to
spatiotemporally predictable stimulation. This reduction is con-
sistent with the suppression of predictable inputs in lower levels
by feedback from higher areas (in this instance, V5; Vetter et al.,
2013). Such observations are tailored to the assumptions made
by predictive coding, and it is known that the hemodynamic sig-
nal is sensitive to top–down afferents to V1 (Logothetis, 2008;
Muckli, 2010). However, relating theoretical models with empir-
ical data will require more invasive strategies. Techniques such
as optogenetic fMRI (ofMRI, which permits the study of neu-
ronal function whilst measuring brain activity, Lee et al., 2010)
promise to shed light on how to extrapolate from the macroscopic
level of the BOLD signal to the microscopic level of neurons pre-
scribed in the predictive coding framework, during testable visual
stimulation.

Theories of cortical prediction are elegant, biologically conceiv-
able and mathematically valid, however, they remain data-modest
in early visual cortex. We identify at least two key areas that
require substantiation: (1) How are predictions and errors imple-
mented by V1 neurons? Models of prediction are constrained
by anatomy (cortical laminae, feedback/feedforward projections,
cell subtype, e.g. local GABAergic inhibitory interneurons and
long-range glutamatergic excitatory neurons, and synaptic phys-
iology), but it remains theoretical to what extent or how V1
neurons implement prediction in their ion channels, membrane
voltage, and synapses (see Fiorillo, 2008). Furthermore, (2) how
does the abstract language spoken by higher areas translate to
the detailed language of V1 neurons? V1 projects upwards a fine-
grained representation, which becomes increasingly invariant as
it advances the hierarchy, but it is unclear how abstract repre-
sentations are transmitted back down the hierarchy. If feedback
contains probabilities or predictions of sensory inputs, and V1
assimilates these with the actual sensory inputs, then V1 is best
conceptualized as an interactive hierarchical loop and not as a
“first pass analysis” (Lee et al., 1998). How sensory inputs, which
signal detail, are combined with internal templates, which may
signal predicted means or variances of sensory details, needs to
be tested further. A candidate for the integration of feedforward
and feedback signals is back-propagation-activated calcium sig-
naling (BAC; Larkum, 2013). The anatomical substrate of this
“BAC” mechanism is the layer I tuft dendrites of the pyrami-
dal cells which reside in layer V. Vast feedback inputs arrive to
these tuft dendrites, triggering Ca2+ spikes proximal to the api-
cal dendrites. The consequence of these dendritic Ca2+ spikes
is that feedback inputs may dictate the firing of the pyramidal
neuron far more than was previously thought. Via this Ca2+
spiking mechanism, the response to feedforward somatic input
(or sensory signals) is strengthened if it matches the contextual
inputs or internal predictions to the tuft dendrites, e.g., it can con-
vert a single somatic output spike into a 10 ms burst containing
2–4 spikes. The discovery of this associative mechanism illumi-
nates one “crowning mystery” of cortex, that is, layer I (Hubel,
1982).

Observations of BAC firing impose constraints on models of
how pyramidal neurons accomplish predictive coding. During
BAC signaling, the predictable information is amplified. However,
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under rules of predictive coding, feedback acts to suppress activ-
ity in the preceding area of cortex. The common detail between
predictive coding and BAC signalling is apparent in the laminar
organization of predictive coding: deep layer 5 pyramidal neurons
are the “prediction units,” the same as is described in mecha-
nisms of BAC signaling. However, BAC signaling suggests that
predictable inputs are amplified within a single neuron, whereas
predictive coding may engage computations within columnar cir-
cuitry for an overall effect to silence predictable inputs to an area.
Therefore, although predictive coding and BAC overlap insofar as
deep pyramidal neurons signal predictions, it remains to be seen
how these amplified predictions within a layer 5 neuron contribute
within a column (or area) to suppress prediction error in layer 2/3
(the “prediction error units” in predictive coding) before residual
errors are sent up the hierarchy. Preparations which can measure
dendritic signaling will contribute to resolving this question, and
more generally are an exciting prospect for future explorations
of V1 neurons which receive only feedback inputs, i.e., during
occlusion or expectation (prior to stimulation).

MEMORY
Given the fine-grained and retinotopic nature of V1, it is a can-
didate region for the maintenance of high-resolution information
during working memory or reactivation during episodic mem-
ory. Spatially specific working memory representations in V1 have
been demonstrated by the successful decoding of grating stimuli
during a retention period in the cortical location of their original
representation (Pratte and Tong, 2014). The information main-
tained in working memory that is represented in V1 reflects the
relevance of items, and this can be causally interrupted using
transcranial magnetic stimulation (TMS) (Zokaei et al., 2014). In
a memory-color paradigm, successful cross-classification of V1
activity patterns between colored hues and gray scale objects asso-
ciated with those hues, was interpreted as the result of the feedback
of prior knowledge to V1 (Bannert and Bartels, 2013). The capac-
ity of visual memory for object details is great (Brady et al., 2008);
these details may be stored as early as V1 and reactivated by feed-
back, contingent on behavioral demands. The reactivation of V1
may be related to top–down influences from the hippocampus for
successful memory consolidation during sleep. Firing sequences
evoked during awake experience are replayed in both V1 and the
hippocampus during sleep phases in the mouse (Ji and Wilson,
2007). Furthermore, human hippocampus activity covaries with
early visual activity, which predicts the information that sub-
jects retrieve from memory (Bosch et al., 2014). The hippocampus
exerts top–down effects on early vision during scene extrapolation
(Chadwick et al., 2013), prompting new theories of hippocampal
memory whereby it constructs the “world beyond the immedi-
ate sensorium” (Maguire and Mullally, 2013). The recruitment
of V1 by the hippocampus to construct the world would appear
functional, given that V1 depicts the visual environment with the
highest resolution.

REWARD
V1 was not classically thought to play an essential role in reward
processing. However, a number of studies indicate that reward
modulates the representation of features in V1. V1 neurons in

the rat have been shown to signal value (Shuler and Bear, 2006),
and more recent calcium-imaging data from mouse V1 reveals
that the association between stimulus and reward alters response
amplitude in stimulus-specific assemblies (Goltstein et al., 2013).
Neurons in macaque V1 that signal value also exhibit strong
attentional effects (Stǎnişor et al., 2013) and future studies will
clarify the role of feedback in this overlap. Cholinergic input to
V1 from the basal forebrain of the rat modulates specifically the
learning of reward timing, but not the expression of previously
learned cue-reward intervals (Chubykin et al., 2013). In human
early visual cortex, value is encoded across populations of neurons,
in which response profiles are sharpened (Serences and Saproo,
2010). Anticipatory activity in V1 may in some instances be driven
by dopaminergic input directly from the ventral tegmental area
(Phillipson et al., 1987; Tan, 2009) or indirectly from the prefrontal
cortex (Noudoost and Moore, 2011). Anticipatory haemodynamic
signals in V1 are found even without feedforward stimulation
(Sirotin and Das, 2009). Such baseline shifts point to the “dark
matter” of the brain, that is, much can be learned from the
substantial energy consumption of neurons even during resting
states (Shoham et al., 2006; Raichle, 2011). In an elegant design to
exclude the effects of anticipation (as well as attention and expec-
tation), it was shown that the effects of dopaminergic reward
on V1 can decrease its activity (Arsenault et al., 2013). Further
experiments will elucidate if this decrease equates to a sharpened
representation of rewarding stimuli, and more generally, the role
of cholinergic, dopaminergic, and feedback mechanisms in reward
effects in V1.

VISION FOR ACTION AND VISUAL PERCEPTION
Feedback to V1 has a role in how we perceive and interact with
the visual world. For example, reciprocal feedback from pari-
etal portions of the dorsal stream to early visual areas is likely
involved in visuospatial processing, although the function of these
networks remains to be fully elucidated. The dorsal stream is acti-
vated during reaching and grasping, and Ban et al. (2013) offer
the thought-provoking idea that early visual cortex interacts with
other sensory modalities (e.g. tactile or motor), as an implicit rep-
resentation of an occluded object in visual cortex could facilitate
the touching or grasping of the occluded portion of the object.
In addition, top–down input, likely from auditory cortex or asso-
ciation areas, leads to categorical activation in early visual cortex
(Vetter et al., 2014) during natural sound processing in blindfolded
subjects. Such activity in visual cortex could be biased by higher
areas to the feature content or localisation of content in a visual
scene, or, with motor guidance, aid in visually orienting to the
source of auditory signals. Motor inputs related to locomotion are
sufficient to drive V1 activity; Keller et al. (2012) observed motor-
related activity in mouse V1, without any visual input. V1 neurons
responded when the mouse was running on a ball during com-
plete darkness, and this activity was comparable to that evoked
by visual stimulation with gratings. Further studies will clarify the
involvement of cortical feedback in visuo-motor processing and
the sensory guidance of movement, and the recruitment of V1 in
these processes.

The ventral visual stream is concerned with detailed form rep-
resentation, and the importance of feedback in the ventral stream
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or “recurrent occipitotemporal network” (Kravitz et al., 2013) is
linked to the retinotopic organization of V1. For example, objects
presented in the periphery trigger feedback to foveal V1 where
object detail is processed (Williams et al., 2008), and interrupt-
ing this feedback using TMS at a relatively late time interval
impairs peripheral object perception (Chambers et al., 2013). In
contrast, feedback related to scene processing is back-projected to
the periphery of V1 (Smith and Muckli, 2010). A causal role of
recurrent processing in the ventral stream suggests that late acti-
vation in V1 contributes to scene categorization (Koivisto et al.,
2011). During face processing, feedback (putatively from tem-
poral cortex) task-dependently biases retinotopic sub-regions of
V1 responding to certain features (Petro et al., 2013). Perceptual
expectation can enhance the representation of stimuli in V1 whilst
at the same time suppressing V1 (Kok et al., 2012), in line with
predictive coding theories of dampening predicted inputs. Within
both dorsal and ventral streams, recurrent feedback loops might
be critical for conscious processing (Lamme and Roelfsema, 2000;
Dehaene and Changeux, 2011).

Effects of feedback to V1 on visual perception have also been
studied more invasively, contributing to the mechanistic under-
standing of feedback. Enhanced visual discrimination is seen in
awake behaving mice after optogenetically activating choliner-
gic neurons projecting to V1 from the basal forebrain (Pinto
et al., 2013), with a probable role in attentional function. Dur-
ing scene processing, population codes in mouse V1 become
increasingly sparse compared to viewing control scenes lacking
statistical regularities (Froudarakis et al., 2014). This encoding
by a smaller set of neurons only when the scenes were not
phase-scrambled fits with theories of back-projected predictions
suppressing feedforward processing, or could be related to micro-
circuits within V1. The study of Berkes et al. (2011) mentioned
previously hints that the cortex utilizes a strategy of decreased
processing for experienced or expected signals. In ferret V1, it
was found that across development spontaneous activity begins
to reflect the activity evoked by natural scenes, and therefore
prior expectations. This increasing similarity between evoked and
spontaneous activity reveals that the cortex updates its internal
model with experience, with predictive coding theories suggest-
ing that these internal models are used to generate predictions
of sensory input, which can supress activity at early cortical lev-
els. Intra-areal, inhibitory interneurons can also modulate visual
perception. By optogenetically targeting parvalbumin-positive
interneurons in V1, Lee et al. (2012) revealed that these neurons
are involved in sharpening feature selectivity and in perceptual
orientation discrimination. Parvalbumin neurons are targeted by
feedback, and top–down connections putatively control inhibitory
activity as dictated by behavioral demands (possibly by inhibit-
ing predictable inputs). In neuropathophsyiology, N-methyl-
D-aspartate (NMDA) receptor hypofunction on parvalbumin
neurons interferes with gamma oscillations, which is linked to
schizophrenia and depression (Gonzalez-Burgos and Lewis, 2012;
Phillips and Silverstein, 2013). Attenuated visual illusion effects
observed in schizophrenia might relate to an interruption of
top–down predictions (see Notredame et al., 2014). These pre-
dictions are maintained in healthy populations who experience
the illusions.

Of the aforementioned studies, the data on visual perception
are conceivably related to predictions from higher cortical visual
areas. This predictive processing may be temporally discernible
from that of attention, and have sources in independent regions
from those that allocate attention. In contrast, it is less intuitive to
associate feedback with prediction during vision for action, with-
out knowing more about the cortico-cortical connections crossing
domains from motor to visual. However, prediction is assumed
to be a general function of the cortex and motor actions are
often highly repetitive and structured (and therefore predictable).
Anatomical connections reveal that it is essential to include the
contribution of subcortical pathways and the cerebellum in pre-
dictive feedback during sensorimotor processing. For example,
the cerebellum is involved in generating predictions of the sen-
sory consequences of actions (Kawato and Wolpert, 1998), which
may also be represented in V1. The cerebellum is also involved in
predictions of perception (Roth et al., 2013), suggesting that, like
cortex, the cerebellum’s role in prediction is unspecific to any one
processing domain. It remains unknown how V1 and the cerebel-
lum interact during perception, and what role feedback has in this
processing.

A NEW LANDSCAPE OF V1
For several years, neuroscience has yielded abundant data on the
intricate workings of V1. Yet, this unique cortical area remains, in
many ways, a mystery. The gain of modern experimentation is that,
with advancing imaging and recording techniques, we can under-
stand the (cellular) mechanics of V1. The reward for venturing
“under the hood,” will be to learn if theoretical concepts of cortical
feedback can be realized in corresponding biological substrates.
Hence, decades after the revolutionary work of Hubel and Wiesel
(1959), there are continued efforts to understand V1. For exam-
ple, it was found that in the macaque, the majority of feedback to
V1 arises from V2, where axons arborize in supragranular layers I
and II, and infragranular layer V (Rockland and Virga, 1989), and
more recently it has been shown that these axons fed back from
V2 to V1 differ in their bouton morphology (axons forming bou-
ton clusters or studded continuously with boutons in layer I, or
forming en passant boutons in layers III and V) and postsynaptic
density size (Anderson and Martin, 2009). Rodent models of V1
lend themselves to innovative invasive approaches, allowing coun-
tercurrent visual processing streams to be studied on the cellular
level. For example, using subcellular Channelrhodopsin-2-assisted
circuit mapping and patch clamp recordings, Yang et al. (2013)
showed that depolarizing feedback input is balanced between
parvalbumin interneurons and pyramidal neurons in layer II/III
of mouse V1. This balance is in contrast to feedforward path-
ways (which provide substantially more depolarizing input to
layer II/III parvalbumin neurons than to excitatory pyramidal
cells) and therefore has implications for pathway-specific excita-
tion/inhibition. In mouse layer V, feedback input to tuft dendrites
leads to NMDA spikes which (by supporting calcium spikes, which
are “tremendously explosive”) are thought to be critical for the
integration of top–down inputs in cortex (Larkum et al., 2009;
Larkum, 2013). Furthermore, it becomes increasingly clear that
we must “reach beyond the classical receptive field” (Angelucci
and Bullier, 2003) because feedback inputs bestow the full range
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of center and surround receptive field properties to V1 neurons
(in combination with feedforward and lateral inputs; Angelucci
and Bressloff, 2006). For example, in the macaque, surround sup-
pression in V1 is reduced when feedback is eliminated (Nassi et al.,
2013), feedback augments V1 responses to collinear contours in
the owl monkey (Shmuel et al., 2005), and during pattern motion
processing, feedback modulates subthreshold influences beyond
the classical receptive field, facilitating global constructs from local
features represented in V1 (Schmidt et al., 2011). Moreover, the
spatiotemporal receptive fields in layer II/III of macaque V1 may
be best characterized by their intracortical inputs and not by their
visual inputs (Yeh et al., 2009).

Markov et al. (2014) suggest that actually we have only a rudi-
mentary understanding of connectional rules of feedback and
feedforward projections. Indeed, there are thought to be two
systems of feedback and feedforward projections: supragranu-
lar and infragranular (Markov and Kennedy, 2013), and future
investigations will enlighten how these pathways constrain mod-
els of cortical information processing in more detail (e.g., Bastos
et al., 2012). Studies of neuronal synchrony suggest gamma-band
phase coherence is restricted to supragranular and beta-band to
infragranular layers (see Buffalo et al., 2011; Xing et al., 2012).
Top–down input in the beta or alpha band to deep layers modu-
lates gamma activity (associated with bottom–up processing) in
more superficial layers (see Spaak et al., 2012; Bastos et al., 2014,
bioRxiv). In monkey V1, distinct multiunit profiles in layers cor-
responding to feedforward and feedback processing can be seen
during the perception of figure-ground segregation (Self et al.,
2013). Laminar analysis of V1 in humans, using fMRI with mul-
tivoxel pattern analysis (MVPA), shows that contextual feedback
arrives to the superficial layers of cortex (Muckli, OHBM con-
ference abstract, 2014). MVPA scrutinizes information in the
multivariate pattern of activity across an array of voxels, to dis-
criminate between stimuli or states that are potentially neglected
by conventional analysis involving spatial averaging (Kriegeskorte
and Bandettini, 2008). The spectrally symmetric encoding mod-
els (Gourtzelidis et al., 2005; Thirion et al., 2006; Dumoulin and
Wandell, 2008; Jerde et al., 2008; Kay et al., 2008; Mitchell et al.,
2008; Naselaris et al., 2009; Schönwiesner and Zatorre, 2009) can
explicitly quantify the information contained in individual voxels
(Naselaris et al., 2011), thus providing insights about the preferred
features coded by a given voxel. Aiding in our understanding
of visual cortex, these techniques have thus far been optimized
within the feedforward framework. With a clearer understanding
of their advantages and limitations, these approaches combined
with layer-resolution fMRI have the potential to unveil a wealth
of information about the functional role of feedback activity in
V1 (Muckli, OHBM conference abstract, 2014; Morgan et al.,
OHBM conference abstract, 2014). Layer-resolution fMRI can also
be combined with pharmacological intervention to assess lam-
inar differences during tasks that are dependent on top–down
processing. For example, texture discrimination, which relies
on recurrent processing, is impaired subsequent to ketamine
administration (Meuwese et al., 2013). Ketamine blocks NMDA
receptors which are implicated in feedback processing due to
their higher concentration in supragranular layers (Rosier et al.,
1993), their modulatory function (Collingridge and Bliss, 1987)

and their contribution to figure-ground segregation (Self et al.,
2012).

CONCLUSION
V1 is one of the best studied cortical areas in terms of its robust
stimulus-response relationship. This fine-grained, feedforward
propagation of the visual world is V1’s principle function. How-
ever, increasing evidence reveals a more complex and comprehen-
sive account of V1: through intrinsic and feedback connections,
V1 neurons are also capable of complex visual (scene analysis)
and non-visual (cognitive) responses. One function of feedback
may be to flexibly “set the system” according to present behav-
ioral requirements, i.e., distribute top–down influences even to
the earliest sensory areas. We have highlighted some higher-order
processes that can be read-out from V1. During active vision, feed-
back may transmit Bayesian inferences of forthcoming inputs to
V1, to facilitate perception. Feedback may also sharpen the rep-
resentation of rewarding stimuli in V1. During sleep, V1 might
be involved in the higher-order replay of experienced events, for
memory consolidation. With growing capabilities to study the
brain at molecular, cellular, systems, behavioral and cognitive lev-
els, one hopes that future developments will clarify the role of V1
neurons as adaptive responders, and elucidate how internal brain
states regulate sensory processing in V1.
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Experimentalists tend to classify models of visual perception as being either local or
global, and involving either feedforward or feedback processing. We argue that these
distinctions are not as helpful as they might appear, and we illustrate these issues by
analyzing models of visual crowding as an example. Recent studies have argued that
crowding cannot be explained by purely local processing, but that instead, global factors
such as perceptual grouping are crucial. Theories of perceptual grouping, in turn, often
invoke feedback connections as a way to account for their global properties. We examined
three types of crowding models that are representative of global processing models,
and two of which employ feedback processing: a model based on Fourier filtering, a
feedback neural network, and a specific feedback neural architecture that explicitly models
perceptual grouping. Simulations demonstrate that crucial empirical findings are not
accounted for by any of the models. We conclude that empirical investigations that reject
a local or feedforward architecture offer almost no constraints for model construction,
as there are an uncountable number of global and feedback systems. We propose that
the identification of a system as being local or global and feedforward or feedback is
less important than the identification of a system’s computational details. Only the latter
information can provide constraints on model development and promote quantitative
explanations of complex phenomena.

Keywords: feed-forward, hierarchical models, feedback, object recognition, scene processing

1. INTRODUCTION
A common approach to understanding vision is to identify
whether a particular aspect of visual perception involves “local”
or “global” processing. Local processing suggests that the infor-
mation needed for some behavioral task is determined pre-
dominately by information that is spatially close to the target
stimulus. Global processing suggests that information process-
ing is influenced by elements that may be distant from the target.
Distinguishing between visual processing as being local or global
has long been an important aspect of the Gestalt approach to per-
ception (see the review by Wagemans et al., 2012). The local vs.
global distinction also plays an important role in characterizing
the flow of information in visual cortex (e.g., Altmann et al., 2003)
and identifying the order of processing for natural scenes (e.g.,
Rasche and Koch, 2002; Cesarei and Loftus, 2011).

Likewise, many investigations try to identify whether visual
processing involves “feedforward” or “feedback” processing. In a
feedforward system the information flows in one direction, while
in a feedback system the information flowing back and forth
within and between areas can alter the processing at a given cor-
tical location. In neuroanatomical studies, feedback processing
is sometimes referred to as recurrent processing or re-entrant
processing (especially when it involves information from higher

cortical areas projecting to lower visual areas). Since feedforward
processing tends to be easier to model, interpret, and compute
than feedback processing, it is often the starting point for compu-
tational and neurophysiological theories and serves as a standard
comparison for subsequent studies that explore feedback effects.
For example, Hubel and Wiesel (1962) proposed a local feedfor-
ward model that accounted for the properties of simple and com-
plex cell receptive fields, and subsequent studies then proposed
the existence of non-classical receptive fields by demonstrating
effects of feedback or global processing (e.g., Von der Heydt et al.,
1984; DeAngelis et al., 1994; Freeman et al., 2001; Harrison et al.,
2007). Likewise, a popular theory of visual processing proposed
that both a rapid feedforward sweep and a slower recurrent pro-
cess is involved in different behavioral tasks to different degrees
(Lamme and Roelfsema, 2000; Lamme, 2006), and many studies
have explored whether particular phenomena depend on one or
the other processing approach. Examples include Altmann et al.
(2003) reporting evidence for feedback processing in an fMRI
study of perceptual organization; Enns and Di Lollo (2000) argu-
ing that some forms of visual masking require re-entrant signals
that represent objects; Juan and Walsh (2003) using TMS to argue
that the representation of information in area V1 is influenced
by feedback from other areas; and Keil et al. (2009) reaching a

www.frontiersin.org October 2014 | Volume 5 | Article 1193 | 136

http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01193/abstract
http://community.frontiersin.org/people/u/138666
http://community.frontiersin.org/people/u/17422
http://community.frontiersin.org/people/u/11659
mailto:aaron.clarke@epfl.ch
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Clarke et al. Local, global, feedforward, and feedback

similar conclusion for emotionally arousing stimuli using an ERP
study.

Experimental vision science is full of many other examples
of investigations into local vs. global and feedforward vs. feed-
back processing, and we generally agree with their methods and
conclusions. However, we are less convinced that these charac-
terizations are especially useful for developing models of visual
perception that might account for observed behavioral phenom-
ena, and we suspect that the benefits of the local vs. global
and feedforward vs. feedback dichotomies have been somewhat
overstated. The seeming appeal of investigations that distinguish
between local vs. global and feedforward vs. feedback processing
may derive from a misunderstanding about the general prop-
erties of complex systems. Figure 1A schematizes one way of
conceptualizing model space. The solid wavy line separates local
models from global models while the dashed line separates feed-
forward models from feedback models. Under such a model
space, identifying whether a system requires local or global pro-
cessing divides the possible number of models nearly in half.
Likewise identifying whether a system requires feedforward or
feedback processing again divides the number of possible models
in half. If the model space were as dichotomous as in Figure 1A,
then investigations about the local vs. global or feedforward vs.
feedback nature of visual processing would be very beneficial to
modelers.

However, the characterization in Figure 1A cannot be correct
because there must necessarily be fewer feedforward and local
systems than feedback or global systems (e.g., every feedforward
system can be augmented with multiple types of feedback), so the
model space depicted in Figure 1B is closer to reality. Here the
local models are characterized by a thin red line and the feed-
forward models are characterized by a thin dashed green line.
The class of local and feedforward models is the small intersec-
tion of these lines, while global and feedback models correspond
to almost everything else. If this perspective of the model space
is correct, then scientists gain a lot of information by knowing
a system uses local (Weisstein, 1968) or feedforward processing
(VanRullen et al., 2001), but they gain very little information by
knowing the model uses global and feedback processing.

Global &
Feedforward

Global &
Feedback

Local &
Feedforward

Local &
Feedback

Feedforward

Global &
Feedback

Local 

Local &
Feedforward

A B

FIGURE 1 | Two possible spaces of models that vary as local or global

and feedforward or feedback. (A) Different model types are divided into
roughly equal sized regions. (B) Models with local or feedforward attributes
correspond to lines in the space. All remaining models use global and
feedback processing.

Our argument is not that distinctions between local and global
or feedforward and feedback processing provide no information
about the properties of the visual system; but if Figure 1B is cor-
rect, then such distinctions will not generally provide sufficient
constraints to promote model development for the identified
effects. While this limitation may already be clear to many mod-
elers, it seems that some experimentalists do not fully understand
that such distinctions provide very little guidance for model
development. Part of the problem is the underlying textbook
assumption that there is one standard feedforward model and
another standard feedback model, which implies that all we have
to do is perform an experiment to see which type of model bet-
ter describes task performance. It is indeed true that there are
successful and popular feedforward and feedback models. The
feedforward model of Riesenhuber and Poggio (1999), for exam-
ple, has been used successfully for things like fast-feedforward
object recognition or scene classification (e.g., Hung et al., 2005;
Serre et al., 2005, 2007a,b; Poggio et al., 2013). Similarly, the feed-
back model of Grossberg (e.g., Grossberg and Mingolla, 1985) has
spawned a multitude of subsequent publications (e.g., Grossberg
and Todorovic, 1988; Grossberg and Rudd, 1989; Grossberg, 1990;
Francis et al., 1994; Francis and Grossberg, 1995; Dresp and
Grossberg, 1997; Grossberg, 2003; Grossberg and Howe, 2003;
Grossberg and Yazdanbakhsh, 2003; Grossberg et al., 2011; Foley
et al., 2012). Clearly there is an important role for both types
of model architectures. However, the success of these models is
not simply because of their feedforward or feedback architec-
ture. Even these “popular” models involve parameter variations
and additional stages from one paper to the next that make
them suitable for modeling one experimental data set, but not
another. Moreover, there exists a broad continuum of models
that are designed to model various phenomena and include var-
ious amounts of feedforward and feedback processing, or local
and global processing, and that are all different. In this sense,
there is not really a “standard” model for the visual system. Even
V1 receptive field models are vast and varied, including such
models as Gabors (Gabor, 1946; Jones and Palmer, 1987), bal-
anced Gabors (Cope et al., 2008, 2009), difference of Gaussians
(Sceniak et al., 1999), oriented difference of Gaussians (Blakeslee
and McCourt, 2004; Blakeslee et al., 2005), the log-Gaussian in
the Fourier domain (Field, 1987), and many more, all of which
produce similar, but distinctly different effects when applied to
natural images and lab illusions. Moreover, V1 receptive fields
comprise just the first step in a model of visual cortex. Thus,
no “standard” models exists for either feedforward or for feed-
back architectures, and similarly for a local or a more global
connection architecture. Simply specifying one or the other type
of architecture is not helpful for many modeling projects. To
demonstrate our point, we consider empirical data from stud-
ies of visual crowding that show a clear non-local effect, and that
likely require feedback mechanisms to enable perceptual group-
ing. We then describe the properties of three plausible models:
one that can be considered to be feedforward and global, one that
can be considered to be feedback and global, and one that can be
considered to be feedback and global with a clear interpretation
of perceptual grouping. We show through computer simulations
that none of these models can account for the empirical findings

Frontiers in Psychology | Perception Science October 2014 | Volume 5 | Article 1193 | 137

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Clarke et al. Local, global, feedforward, and feedback

that motivated them. This result suggests that we need to stop
focusing on unhelpful dichotomies such as local vs. global and
feedforward vs. feedback and instead should explore other prop-
erties of visual perception that help identify robust computational
principles.

2. VISUAL CROWDING AS AN EXAMPLE
In visual crowding the discrimination of a target stimulus is
impaired by the presence of neighboring elements. Crowding is
ubiquitous in human environments. Even while you read these
words, the letters appearing in the periphery of your visual
field are crowded and largely unintelligible. Crowding can even
be life-threatening in driving situations where a pedestrian can
become unidentifiable by standing amongst other elements in the
visual scene (Whitney and Levi, 2011). Moreover, visual crowd-
ing has been used to investigate many other aspects of percep-
tual and cognitive processing including visual acuity (Atkinson
et al., 1988), neural competition (Keysers and Perrett, 2002), and
awareness (Wallis and Bex, 2011).

The most popular models of crowding are local and feed-
forward models in which deteriorated target processing is due
to information about the target being pooled with informa-
tion about the flankers (e.g., Parkes et al., 2001). Although such
pooling mechanisms are the default interpretation of crowd-
ing effects, recent studies have suggested that crowding involves
global (rather than local) and feedback (rather than feedforward)
processing (Malania et al., 2007; Levi and Carney, 2009; Sayim
et al., 2010; Livne and Sagi, 2011; Manassi et al., 2012, 2013).
Figure 2 schematizes eleven different types of stimuli where the
task is always to identify the offset direction of a central tar-
get vernier. Figure 2A shows human vernier offset discrimination
threshold elevations (relative to a no-flanker case), where larger
threshold elevations indicate more crowding (from Manassi et al.,
2012). The stimuli used are depicted on the far left-hand side of
the figure. In all cases, the vernier is flanked by two vertical lines
whose length matches the vertical extent of the vernier. The data

in Figure 2A indicate that the different flanker types do not pro-
duce equivalent crowding despite the identical neighboring lines.
Although the flanking lines alone or with an “X” produce sub-
stantial crowding, there is very little crowding when the very same
lines are part of a larger structure. A “local” mechanism, such as
pooling, would predict similar (or stronger) crowding with the
additional contours in the rectangle configurations. The observed
decrease in crowding suggests that the phenomenon cannot be
explained by local interactions between stimuli.

Figure 2B shows human vernier thresholds (Malania et al.,
2007) that have also been used to argue for feedback processing.
Different experimental conditions varied the lengths of the flank-
ing lines (shorter than, equal to, or longer than the vernier) and
the number of flanking lines (0, 2, or 16). For the equal-length
flankers, an increase in the number of flankers leads to stronger
crowding, while for the short- and long-flanker lines, an increase
in the number of flankers either reduced crowding or produced
essentially no change. The argument for feedback processing has
two parts. First, the data for the different conditions in Figure 2B
suggest that crowding is strongest when the target vernier per-
ceptually groups with the flankers (e.g., 16 equal-length flankers)
and it is weakest when the target is perceptually segmented from
the flankers (e.g., 16 short or long flankers). A sense of these
grouping effects can be gained by looking at the schematized
stimuli at the far right of Figure 2B. Second, perceptual group-
ing seems to require systems with feedback processing (e.g.,
Grossberg and Mingolla, 1985; Herzog et al., 2003; Craft et al.,
2007; Hermens et al., 2008; Francis, 2009; Kogo et al., 2010). In
particular, as Manassi et al. (2013) noted, the properties of crowd-
ing seem to defy low-level feedforward models based on stimulus
energy or similar concepts (although they did not attempt to
model their results). In their experiments they had subjects per-
form Vernier offset discrimination tasks and showed that when
holding local information constant, global stimulus informa-
tion still influenced thresholds. Thus, local information must
have been propagated globally. Further experiments showed that
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FIGURE 2 | Human data where higher values indicate stronger

crowding. (A) Threshold elevations for the stimuli shown on the left.
Fixation was 3.88◦ to the left of the Vernier target, which was 84 arc min
tall. Even though all conditions include vertical flanking lines on either side
of the target vernier, there are dramatic differences in crowding. Such
findings indicate global rather than local effects for crowding mechanisms.

(B) Thresholds for the stimuli shown on the right. Here fixation was
centered on the Vernier target. Varying the length and number of flanking
lines shows that crowding increases when the target vernier groups with
the flankers (as in the equal length condition). Such grouping effects
indicate feedback processing. The plots are based on data from Manassi
et al. (2012) and Malania et al. (2007).
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this local-to-global information propagation takes time, implying
feedback and recurrent processing.

Since the crowding data in Figure 2 indicate a role for global
rather than local and feedback rather than feedforward process-
ing, we wanted to use this knowledge to help develop a model
of visual processing that accounted for crowding. Several models
for crowding exist in the literature (e.g., Wilkinson et al., 1997;
Balas et al., 2009; Greenwood et al., 2009; Van den Berg et al.,
2010; Freeman and Simoncelli, 2011). Our intent here is not to
classify these models as feedforward/feedback or local/global, and
see how well they work, but rather to examine some clear exam-
ples of models using various amounts of feedforward/feedback
and local/global processing and demonstrate the utility (or
lack thereof) of knowing that a phenomena requires feedfor-
ward/feedback or local/global processing for modeling behavioral
results. As the following sections demonstrate, we found this
knowledge to be inadequate, and we believe that the modeling
challenges here reflect issues that also apply to other phenomena
and modeling efforts. Although it is possible that we happened to
simulate models that are poor fits for the phenomena, we deliber-
ately investigated models that have successfully modeled similar
stimuli and phenomena, so we believed that they might also be
able to account for the empirically observed crowding effects.

3. A FEEDFORWARD GLOBAL MODEL: FOURIER ANALYSIS
Researchers have suggested that it is useful to describe visual pro-
cessing in terms of Fourier components (Campbell and Robson,
1968; De Valois et al., 1982). Luminance values at different (x, y)
coordinates in the pixel plane can be converted to weights for
different sine wave frequencies’ amplitudes and phases. In prin-
ciple, such a transformation does not lose any information, so
if the luminance image contains information about the offset
direction of a vernier, then so does the Fourier representation.
However, such information can become degraded or lost when
important frequencies or phases are filtered out of the representa-
tion. Such filtering can be justified on neurophysiological grounds
(Campbell and Robson, 1968; De Valois et al., 1982) or be chosen
to explain perceptual phenomena. For example, multi-scale fil-
tering can explain a variety of brightness illusions (Blakeslee and
McCourt, 1999, 2001, 2004; Blakeslee et al., 2005).

Fourier decomposition can be considered to be a feedforward
process, with a bank of filters that are tuned to different fre-
quencies, orientations, and phases (Fourier, 1822), and such an
interpretation is a common first-approximation to cortical visual
processing (Campbell and Robson, 1968). On the other hand,
Fourier analysis is decidedly global rather than local in the sense
that the weights assigned to different frequencies are based on the
pattern of luminance values across the entire image plane (Rasche
and Koch, 2002; Cesarei and Loftus, 2011). It is also global in
the sense that a filter that suppresses some frequencies will influ-
ence representations of luminance values across the entire image
plane when the frequency weights are converted back to an image
representation.

We developed a model that applies a Fourier analysis to the
image, filters out a subset of spatial frequencies, applies a Fourier
synthesis to construct a filtered version of the image, and then
compares the output with a template for discriminating right-

from left-offset verniers. The difference between template match-
ing results for the left- and right-offset verniers are subtracted
and the difference is then inverted and linearly scaled to the
range of the human data. Model details are provided in the
Supplementary Material. To try to match the empirical data, we
examined various filtering schemes, including high-pass filtering,
band-pass filtering, and low-pass filtering. Figure 3 shows a rep-
resentative selection of results for the stimuli used to produce the
data in Figure 2. Even though they all allow for global processing,
many of these frequency filtering functions produce results that
differ dramatically from the human data. Within each filtering
scheme we identified the filter parameters that yielded the small-
est sum of squared residuals between the model and human data
from Figure 2 by exhaustive, brute-force search over the entire
parameter space. Figure 3C, shows the best fit overall, which was
obtained with a band-pass filter.

This best filter mask for the data used in Figure 3C does a rea-
sonably good job at reproducing the human data from Figure 2B,
but it does a poor job reproducing the human data shown in
Figure 2A. Although the model roughly follows the pattern of the
data for the two-line flanker and rectangle conditions, it predicts
very little threshold elevation (and even threshold improvement)
for the conditions with an “X” superimposed over the flanker
regions. These predictions do not match the empirical data. The
other filter functions also fail to reproduce the human data for
these flanker conditions.

Moreover, the best filter is fragile in that small changes in
bandwidth and/or center frequency lead to very different model
predictions. This fragility is demonstrated in Figure 4, which
shows model performance for band pass filters that are only
slightly different from the filter that produces the best fit to the
empirical data in Figure 2B. This behavior is surprising since
Fourier models generally tend to fail gracefully with small devi-
ations from the optimal filter parameters. The wildly varying
model behavior suggests that the good fit exhibited in Figure 3C
reflects over-fitting rather than a mechanistic explanation of the
behavior. Overall, the model fails to account for the human data
in a robust way. Such a failure occurs even though the model is
inherently global in terms of processing, and thus satisfies one
of the requirements seemingly needed to account for crowd-
ing effects. We cannot definitively claim that all Fourier-type
models cannot account for crowding effects, but it seems that a
good model does not easily appear simply because it has global
processing.

4. A FEEDBACK MODEL: WILSON-COWAN NEURAL
NETWORK

We next considered a model that derives its key properties from
the recurrent nature of information processing in a cooperative-
competitive neural network. Variations of this kind of model
have successfully accounted for visual masking data (Hermens
et al., 2008) using stimuli very similar to those in Figure 2. The
model first convolves the input image with an on-center, off-
surround receptive field mimicking processing by the LGN. Next,
the input activations are fed into both an excitatory and an
inhibitory layer of neurons. Each layer convolves the input acti-
vations with a Gaussian blurring function and propagates activity
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FIGURE 3 | Simulation results using a Fourier model for the stimuli that

produced the data presented in Figure 2. Model results are plotted for
representative low-pass filters (A,B), band-pass filters (C,D), and high-pass
filters (E,F). Black and white insets show which frequencies were passed
(white areas) and which frequencies were suppressed (black areas) in Fourier
space (with lower frequencies in the center and higher frequencies near the

edges). The top row of subplots shows the best performance obtainable
(using brute-force exhaustive search for the smallest sum of squared
residuals against the human data) with each filter type. The bottom row
shows results for filtering functions selected from different parts of the space
- illustrating the variability of results obtainable with each filter type. The best
overall performance we could obtain with this model is shown in (C).
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FIGURE 4 | Predicted behavior of the Fourier model for filters that slightly differ from the optimal band pass filter (shown in the upper left graph).

Small changes in the band pass filter’s center frequency and/or bandwidth lead to dramatic changes in the model’s behavior.

over space with increasing time. The layers are reciprocally con-
nected such that the excitatory units excite the inhibitory units
and the inhibitory units inhibit the excitatory units. Details of the
model, its filters, and its parameters can be found in Hermens
et al. (2008) and Panis and Hermens (2014). Although the fil-
ters are local, the strength of activity at any given pixel location
partly depends on the global pattern of activity across the net-
work because of the feedback connections. When played out over
time in a backward masking situation with stimuli similar to those
in Figure 2, Hermens et al. (2008) showed that masking strength
decreased as the number of flanking elements increased. More
generally, the feedback in the network functions somewhat like
a discontinuity detector by enhancing discontinuities and sup-
pressing regularities. Panis and Hermens (2014) showed similar
behavior for stimuli that produce crowding.

Since the model includes lateral feedback that promotes
global processing, it satisfies the requirements identified above
as “necessary” to explain crowding’s effects. Moreover, the mod-
els parameters were previously optimized for one stimulus, and
then the model was validated by applying it to novel stim-
uli without further parameter optimization (Hermens et al.,
2008). Thus, we would expect that any additional stimulus
conditions that we apply this model to should require no fur-
ther parameter optimization. We analyzed the model’s behav-
ior in response to the stimuli used to generate the findings

in Figure 2 but found that the model performs poorly over-
all (Figure 5). In particular, the model produces virtually no
difference between any of the conditions shown in Figure 5A.
Figure 5B shows that the model also fails to reproduce the
human data plotted in Figure 2B. Here, the model produces
no substantial differences between the different flanker length
conditions, it produces no crowding for the case where there
are two flanking lines (thresholds are the same as in the un-
flanked case), and model thresholds always go up as an increasing
function of the number of flankers (contrary to the human
data).

Even though the model has previously accounted for percep-
tual effects with similar kinds of stimuli and has strong feedback
and global effects, the model simulations reported here do not
account for the crowding effects in Figure 2. We cannot claim
that the model architecture is fully rejected, as different filters and
parameters may produce different model behaviors. Nevertheless,
it is clear that global and feedback processing by themselves do not
sufficiently constrain model properties relative to the observed
crowding effects.

5. A FEEDBACK MODEL WITH PERCEPTUAL GROUPING:
LAMINART NEURAL NETWORK

The previous simulations indicate that a model needs addi-
tional constraints beyond just feedback and global processing.
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We next consider a model that has many additional constraints,
the LAMINART model that has been proposed by Grossberg
and colleagues (Raizada and Grossberg, 2001). The model is
very complex and involves neural signals that interact across
retinotopic coordinates, across laminar layers within a cortical
area, and across cortical areas V1, V2, and V4. Various forms of
the model account for neurophysiological and behavioral data
related to depth perception (Grossberg, 1990; Grossberg and
Howe, 2003), brightness perception (Grossberg and Todorovic,
1988), illusory contours (Grossberg and Mingolla, 1985), back-
ward masking (Francis, 1997), and many other effects (Grossberg,
2003; Grossberg and Yazdanbakhsh, 2003). In particular, model
simulations in Francis (2009) used stimuli very similar to those in
Figure 2 to successfully account for a variety of backward mask-
ing effects. An integral part of the model explanations involved a
form of perceptual grouping, which was indicated by the pres-
ence of illusory contours connecting elements within a group.
Consistent with the ideas derived from Figure 2, these model
grouping processes use feedback to generate global effects.

The model proposes separate processing streams for bound-
ary and surface information. Grouping effects mostly occur in
the boundary system through formation of illusory contours that
connect nearly collinearly oriented edges, and Figures 6A,B show
simulation results for two of the stimulus conditions in Figure 2A.
When the flankers are two lines, the model generates bound-
ary signals that represent each stimulus line (Area V2, Layer 2/3)
and these boundary signals constrain brightness signals that pass
from the LGN to Area V4. As a result, the Area V4 representa-
tion is essentially veridical relative to the original stimulus. As
described in the Supplementary Material, the model signals are
connected to human performance with a template matching pro-
cess that tries to distinguish between verniers shifted to the left or
right. Crowding effects occur because the vernier template (whose
width is five times the spacing between stimulus elements) inte-
grates information from both the flankers and the vernier target,
thereby reducing the signal-to-noise ratio for vernier discrim-
ination. In this way, the model matches the empirical finding
that two flanking lines can produce crowding. Figure 7A shows

A B

FIGURE 5 | Results obtained using the model of Hermens et al.

(2008) on the stimuli shown in Figure 2. Compared with the human
data plotted in Figure 2 this model does a poor job at capturing

human performance, despite using feedback signals that propagate
information globally. Parts A and B of this figure correspond to parts A

and B of Figure 2.

A B C D

FIGURE 6 | Simulation results for the LAMINART model of visual

perception. The bottom row indicates the activity of LGN cells and
largely reflects the stimulus. The middle row schematizes the
activity of orientation-sensitive neurons (dark gray to black indicates
activity of a horizontally-tuned cell, light gray to white indicates

activity of a vertically tuned cell). The top row schematizes the
activity of neurons that represent surfaces with perceived
brightness. Judgments of target offset are based on the top row
activities. (A–D) demonstrate the model’s behavior for several
different types of flankers.
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A B

FIGURE 7 | Simulation results for the LAMINART model of visual

perception. The dashed line indicates discrimination for the target vernier by
itself. Vernier discrimination is plotted in reverse for easy comparison with the

threshold measures reported in Figure 2. Overall, the model behavior does
not agree with the empirical data. Parts A and B of this figure correspond to
parts A and B of Figure 2.

vernier discriminability (plotted in reverse for comparison with
the threshold data) for this simulation, and it indicates that it is
harder to identify a vernier with two flankers than to identify a
vernier by itself (the dashed line).

Figure 6B shows the model’s behavior when the flanking ele-
ments are rectangles. Although the local information is similar
to that in the case of two flanking lines, the Area V2, Layer 2/3
cells respond quite differently by producing illusory contours that
connect the two rectangles and the target vernier. Nevertheless,
at the V4 filling-in stage, the perceptual representation is nearly
veridical, and crowding occurs because the flanking elements
again interfere with the vernier template matching calculations.
Although the model has perceptual grouping, it incorrectly pro-
duces strong crowding where the empirical data indicate only
weak crowding effects. These effects are indicated in Figure 7A,
where the rectangle flankers condition indicates worse vernier
discrimination than does the two equal-length flankers condi-
tion. Using flankers with an “X” produces the same pattern as
for the conditions without an “X,” and the rectangles provide
the strongest masking. The data in Figure 2A shows the opposite
pattern for the rectangles.

Similar properties exist for the stimuli producing the find-
ings in Figure 2B. Figures 6C,D show the model’s behavior in
response to sixteen equal and short flankers. Consistent with
the arguments about grouping described above, in the equal-
length case the model generates illusory contours that connect the
flankers with the target, thereby collectively grouping the flankers
and target together. At the filling-in stage, all of the elements
are represented and there is strong crowding. Also consistent
with the above arguments, grouping is different for the short
flankers (similar behavior would occur for the long flankers),
such that the flanking elements are connected by illusory con-
tours but the target remains separate. However, such grouping
does not lead to a release from crowding in the model. At the
Area V4 filling-in stage the flanking elements still interfere with
the vernier discrimination process, even though the boundaries
indicate that the flankers and target are part of different percep-
tual groups. Figure 7B shows that the LAMINART model does

not do a good job of matching the behavioral data in Figure 2B.
This failure occurs even though the model includes feedback, has
global effects, and contains grouping mechanisms that seem to
operate much as recommended. Our claim is not that the model
can be fully rejected by this failure, but we want to emphasize
that a model with feedback, global processing, and mechanisms
for perceptual grouping is not necessarily able to account for the
observed human data.

6. WHAT CONSTRAINTS DOES A MODEL NEED?
The model simulations of crowding demonstrate that identifica-
tion of global vs. local and feedback vs. feedforward processing
does not necessarily promote the development of models that can
account for human performance. We suspect the same kind of
conclusion applies to models for many other visual phenomena.
Although quantitative models of visual perception that account
for visual processing often do include feedback and global pro-
cessing (e.g., Bridgeman, 1971; Grossberg and Mingolla, 1985;
Francis, 1997; Roelfsema, 2006; Craft et al., 2007; Kogo et al.,
2010), this inclusion is often because such mechanisms provide
specific computational properties that are needed to produce a
functional visual system. The failure of the models discussed here
relative to their success for other phenomena (e.g., backward
masking) encourages a consideration of what kinds of constraints
are useful for model development. It is unlikely that there is one
single answer to this question, but we are willing to propose some
ideas.

6.1. GLOBAL vs. LOCAL IS ABOUT INFORMATION REPRESENTATION
All models of visual processing involve encoding and represent-
ing information about the stimulus, and such a representation
changes at various model stages so that some information is
explicitly represented, other information is only implicitly rep-
resented, and some information is absent. A local model is one
where the encoding of information about a certain position in
visual space is modified only by information at nearby positions
in space. In the case of crowding, the argument against local pro-
cessing is that explicit or implicit information about the target
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vernier appears to be affected by stimulus characteristics that are
spatially far away in an unexpected way (e.g., two flanking squares
produce less crowding than two flanking lines).

Even when the argument for non-local effects is convincing, it
does not specify exactly how information about the target should
be represented in a global-effects model. The crowding models
described here include different types of information represen-
tation and different types of global effects. The Fourier model
transforms spatial information into spectra and then applies a fil-
tering step that loses some information about the target (as well
as information about the flankers). The Wilson-Cowan model
represents visual information in spatial (retinotopic) coordinates
and introduces global effects via recurrent lateral inhibition. The
LAMINART model also represents information in spatial coordi-
nates, and it generates global effects via long-range illusory con-
tours that connect spatially disparate boundaries, which can alter
the boundary representations of the target. In practice, none of
these global mechanisms produce crowding effects that emulate
the behavioral data, at least in the instantiations considered here.

It seems to us that the global vs. local processing issue is some-
thing of a “red herring” that ignores deeper questions about the
representation of visual information. A model must encode visual
information in a way that allows for local or global processing,
and identification of this encoding and its representation is the
real model challenge. For example, in the LAMINART model, the
information at the V4 surface stage provides a representation of
information that (for the stimuli considered here) is essentially
the same as the stimulus. Although there are groupings among
boundaries, they do not modify the representation of visual infor-
mation that is involved in the vernier offset judgment. What
appears to be needed is for the boundary groupings to segment
the visual information so that the target is represented sepa-
rately from the flankers. In this way, the target’s offset could be
discriminated with less interference from background elements.
Francis (2009) described how such segmentation can occur for
some visual masking situations that encode information about
the target at the V4 surface representations in a different depth
plane than information about the flankers. Such segmentation
promotes good discrimination of the vernier offset. Foley et al.
(2012) demonstrated that attentional effects could also produce
similar segmentations in crowding conditions.

6.2. FEEDFORWARD vs. FEEDBACK IS ABOUT MODEL FUNCTION
Many of the discussions about feedforward vs. feedback process-
ing seem predicated on the notion that if information is available
at a model stage, then it can be used for a relevant task. For exam-
ple, if binocular disparity information is available at V1, then
it can be used for making depth discriminations at this stage.
However, this attitude does not consider the many ways that feed-
back processing can influence information processing. In general,
feedback processing tends to produce one of five robust model
functions.

1. Completion: Excitatory feedback can “fill-in” missing infor-
mation and thereby make explicit information that is implic-
itly represented by other aspects of an input pattern. One

example of such completion is the generation of illusory con-
tours in the LAMINART model, where the model explicitly
represents “missing” contours that are justified by the co-
occurrence of appropriate contours that are physically present.
Another example of such completion is in the convergence of
a Hopfield (1982) network to states with active neurons that
were not directly excited by the input but are justified by their
association with other active neurons.

2. Competition: A combination of excitatory and inhibitory
feedback can enhance differences in neural activity and, in
extreme forms, generate winner-take-all behavior in a network
of neurons (Grossberg, 1973). Such networks can suppress
noisy or irrelevant information and enhance the representa-
tion of other information in the system. For example, Wilson
et al. (1992) proposed a competitive neural network to explain
vector summation in motion perception, where units tuned
to a particular motion direction inhibit units tuned to the
orthogonal motion direction.

3. Preservation: Excitatory feedback can allow signals to persist
well beyond the physical offset of a stimulus (e.g., Öğmen,
1993; Francis et al., 1994). Inhibitory feedback can also play
a role in preservation of information by suppressing incom-
ing signals that might alter the current pattern (Francis, 1997,
2000). A combination of excitatory and inhibitory linear feed-
back can also preserve pattern representations even with large
changes in overall intensity (Grossberg, 1973). Grossberg et al.
(2011), for example, used preservation to extend flickering
stimuli long enough through time to allow their temporally
integrated signals to generate smooth motion percepts.

4. Uniformization: Some types of non-linear feedback can
diminish differences in neural activity and lead to uniform
activity (Grossberg, 1973). Such information-losing feedback
is not commonly used in neural models.

5. Comparison: Appropriately structured excitatory and
inhibitory feedback can generate a signal that indicates the
degree to which two neural activity patterns differ. Such
signals are helpful for larger architectures that need to detect
changes or stabilize learning (e.g., Grossberg, 1980; Sutton
and Barto, 1998; Di Lollo et al., 2000).

These different functions often require rather different feed-
back mechanisms that involve the distribution of excitatory and
inhibitory relations, the relative strength of feedback and feed-
forward signals, and the form of signal transformation between
neurons. Thus, model development requires a characterization
of function in order to be able to properly implement feedback.
Characterizing model function is, of course, very challenging and
generally requires some kind of over-arching theoretical frame-
work to guide the computational goals of the model. For example,
a model of crowding that theorizes a role for perceptual group-
ing needs to indicate how elements in a scene are identified as
being “grouped,” explain the mechanisms by which such distinc-
tions are generated, and characterize how such representations
influence target processing and decision making. A focus on
such functional details may reveal that a certain form of feed-
back processing is critical for the model to reproduce the human
behavior (Raizada and Grossberg, 2001), or it may reveal that the
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feedforward vs. feedback distinction is not as relevant as it first
appeared (e.g., Francis and Hermens, 2002; Poder, 2013).

7. CONCLUSIONS
If the starting point of theorizing is that visual processing involves
local interactions in a feedforward system, then it makes sense
that investigations should explore whether such systems are suffi-
cient to account for a given phenomenon. However, the modeling
efforts presented here suggest that clear evidence of a role for
global and feedback processing does not sufficiently constrain a
model. At best, such investigations are only the starting point
for model development, and further considerations are required
concerning the details of information representation and model
function. It might be easier to initiate theorizing by assuming
global and feedback processing and then look for other more
informative constraints such as task optimality, or perceptual
completion.

AUTHOR CONTRIBUTIONS
Aaron M. Clarke coded the simulations for the Fourier and
Wilson-Cowan models. Gregory Francis coded the simulations
for the LAMINART model. All authors contributed to the text.

ACKNOWLEDGMENTS
Aaron Clarke was funded by the Swiss National Science
Foundation (SNF) project “Basics of visual processing: what
crowds in crowding?” (Project number: 320030_135741).
For Greg Francis, the research leading to these results has
received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement n◦ 604102
(HBP).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fpsyg.
2014.01193/abstract

REFERENCES
Altmann, C. F., Bulthoff, H. H., and Kourtzi, Z. (2003). Perceptual organisation

of local elements into global shapes in the human visual cortex. Curr. Biol. 13,
342–349. doi: 10.1016/S0960-9822(03)00052-6

Atkinson, J., Anker, S., Evans, C., Hall, R., and Pimm-Smith, E. (1988). Visual
acuity testing of young children with the cambridge crowding cards at
3 and 6 m. Acta Ophthalmol. 66, 505–508. doi: 10.1111/j.1755-3768.1988.
tb04371.x

Balas, B., Nakano, L., and Rosenholtz, R. (2009). A summary-statistic repre-
sentation in peripheral vision explains visual crowding. J. Vis. 9, 13. doi:
10.1167/9.12.13

Blakeslee, B., and McCourt, M. E. (1999). A multiscale spatial filtering account of
the white effect, simultaneous brightness contrast and grating induction. Vision
Res. 39, 4361–4377. doi: 10.1016/S0042-6989(99)00119-4

Blakeslee, B., and McCourt, M. E. (2001). A multiscale spatial filtering account
of the wertheimer-benary effect and the corrugated mondrian. Vision Res. 41,
2487–2502. doi: 10.1016/S0042-6989(01)00138-9

Blakeslee, B., and McCourt, M. E. (2004). A unified theory of brightness con-
trast and assimilation incorporating oriented multiscale spatial filtering and
contrast normalization. Vision Res. 44, 2483–2503. doi: 10.1016/j.visres.2004.
05.015

Blakeslee, B., Pasieka, W., and McCourt, M. E. (2005). Oriented multiscale spa-
tial filtering and contrast normalization: a parsimonious model of brightness

induction in a continuum of stimuli including White, Howe and simultane-
ous brightness contrast. Vision Res. 45, 607–615. doi: 10.1016/j.visres.2004.
09.027

Bridgeman, B. (1971). Metacontrast and lateral inhibition. Psychol. Rev. 78,
528–539. doi: 10.1037/h0031782

Campbell, F. W., and Robson, J. G. (1968). Application of fourier analysis to the
visibility of gratings. J. Physiol. 197, 551–566.

Cesarei, A. D., and Loftus, G. R. (2011). Global and local vision in natural scene
identification. Psychon. Bull. Rev. 18, 840–847. doi: 10.3758/s13423-011-0133-6

Cope, D., Blakeslee, B., and McCourt, M. E. (2008). Structural theorems for simple
cell receptive fields. J. Vis. 8:802. doi: 10.1167/8.6.802

Cope, D., Blakeslee, B., and McCourt, M. E. (2009). Simple cell response prop-
erties imply receptive field structure: balanced gabor and/or bandlimited
field functions. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26, 2067–2092. doi:
10.1364/JOSAA.26.002067

Craft, E., Schuetze, H., Niebur, E., and von der Heydt, R. (2007). A neural
model of figure-ground organization. J. Neurophysiol. 97, 4310–4326. doi:
10.1152/jn.00203.2007

DeAngelis, G. C., Ohzawa, I., and Freeman, R. D. (1994). Length and width tuning
of neurons in the cat’s primary visual cortex. J. Neurophysiol. 71, 347–374.

De Valois, R. L., Albrecht, D. G., and Thorell, L. G. (1982). Spatial frequency
selectivity of cells in macaque visual cortex. Vision Res. 22, 545–559. doi:
10.1016/0042-6989(82)90113-4

Di Lollo, V., Enns, J. T., and Rensink, R. A. (2000). Competition for conscious-
ness among visual events: the psychophysics of reentrant visual processes. J. Exp.
Psychol. Gen. 129, 481–507. doi: 10.1037/0096-3445.129.4.481

Dresp, B., and Grossberg, S. (1997). Contour integration across polarities and
spatial gaps: from local contrast filtering to global grouping. Vision Res. 37,
913–924. doi: 10.1016/S0042-6989(96)00227-1

Enns, J. T., and Di Lollo, V. (2000). What’s new in visual masking? Trends Cogn. Sci.
4, 345–352. doi: 10.1016/S1364-6613(00)01520-5

Field, D. J. (1987). Relations between the statistics of natural images and the
response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394. doi:
10.1364/JOSAA.4.002379

Foley, N., Grossberg, S., and Mingolla, E. (2012). Neural dynamics of
object-based multifocal visual spatial attention and priming: object cue-
ing, useful-field-of-view, and crowding. Cogn. Psychol. 65, 77–117. doi:
10.1016/j.cogpsych.2012.02.001

Fourier, J. B. J. (1822). La Théorie Analytique Do La Chaleur. Paris: Firmin Didot.
Francis, G. (1997). Cortical dynamics of lateral inhibition: metacontrast masking.

Psychol. Rev. 104, 572. doi: 10.1037/0033-295X.104.3.572
Francis, G. (2000). Quantitative theories of metacontrast masking. Psychol. Rev.

107, 768. doi: 10.1037/0033-295X.107.4.768
Francis, G. (2009). Cortical dynamics of figure-ground segmentation: shine-

through. Vision Res. 49, 140–163. doi: 10.1016/j.visres.2008.10.002
Francis, G., and Grossberg, S. (1995). Cortical Dynamics of Boundary Segmentation

and Reset: Persistence, Afterimages, and Residual Traces. Technical Report, Boston
University Center for Adaptive Systems and Department of Cognitive and
Neural Systems.

Francis, G., Grossberg, S., and Mingolla, E. (1994). Cortical dynamics of feature
binding and reset: control of visual persistence. Vision Res. 34, 1089–1104. doi:
10.1016/0042-6989(94)90012-4

Francis, G., and Hermens, F. (2002). Comment on: competition for consciousness
among visual events: The psychophysics of reentrant visual processes, by di lollo,
enns and rensink (2000). J. Exp. Psychol. Gen. 131, 590–593. doi: 10.1037/0096-
3445.131.4.590

Freeman, J., and Simoncelli, E. P. (2011). Metamers of the ventral stream. Nat.
Neurosci. 14, 1195–1201. doi: 10.1038/nn.2889

Freeman, R. D., Ohzawa, I., and Walker, G. (2001). Beyond the classical receptive
field in the visual cortex. Prog. Brain Res. 134, 157–170. doi: 10.1016/S0079-
6123(01)34012-8

Gabor, D. (1946). Theory of communication. J. Inst. Electr. Eng. 93, 429–457.
Greenwood, J. A., Bex, P. J., and Dakin, S. C. (2009). Positional averaging explains

crowding with letter-like stimuli. Proc. Natl. Acad. Sci. U.S.A. 106, 13130–13135.
doi: 10.1073/pnas.0901352106

Grossberg, S. (1973). Contour enhancement, short term emory, and constancies in
reverberating neural networks. Stud. Appl. Math. 52, 213–257.

Grossberg, S. (1980). How does a brain build a cognitive code? Psychol. Rev. 87,
1–51. doi: 10.1037/0033-295X.87.1.1

Frontiers in Psychology | Perception Science October 2014 | Volume 5 | Article 1193 | 145

http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01193/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01193/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01193/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01193/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01193/abstract
http://www.frontiersin.org/journal/10.3389/fpsyg.2014.01193/abstract
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Clarke et al. Local, global, feedforward, and feedback

Grossberg, S. (1990). Neural facades: visual representations of static and mov-
ing form-and-color-and-depth. Mind Lang. 5, 411–456. doi: 10.1111/j.1468-
0017.1990.tb00171.x

Grossberg, S. (2003). Laminar cortical dynamics of visual form perception. Neural
Netw. 16, 925–931. doi: 10.1016/S0893-6080(03)00097-2

Grossberg, S., and Howe, P. D. (2003). A laminar cortical model of stereop-
sis and three-dimensional surface perception. Vision Res. 43, 801–829. doi:
10.1016/S0042-6989(03)00011-7

Grossberg, S., Léveillé, J., and Versace, M. (2011). How do object reference
frames and motion vector decomposition emerge in laminar cortical cir-
cuits? Atten. Percept. Psychophys. 73, 1147–1170. doi: 10.3758/s13414-011-
0095-9

Grossberg, S., and Mingolla, E. (1985). Neural dynamics of form perception:
boundary completion, illusory figures, and neon color spreading. Psychol. Rev.
92, 173–211. doi: 10.1037/0033-295X.92.2.173

Grossberg, S., and Rudd, M. E. (1989). A neural architecture for visual motion per-
ception: group and element apparent motion. Neural Netw. 2, 421–450. doi:
10.1016/0893-6080(89)90042-7

Grossberg, S., and Todorovic, D. (1988). Neural dynamics of 1-d and 2-d bright-
ness perception: a unified model of classical and recent phenomena. Percept.
Psychophys. 43, 241–277. doi: 10.3758/BF03207869

Grossberg, S., and Yazdanbakhsh, A. (2003). Laminar cortical dynamics of 3-d
surface stratification, transparency, and neon spreading. J. Vis. 3, 247. doi:
10.1167/3.9.247

Harrison, L. M., Stephan, K. E., Rees, G., and Friston, K. J. (2007). Extra-classical
receptive field effects measured in striate cortex with fmri. Neuroimage 34,
1199–1208. doi: 10.1016/j.neuroimage.2006.10.017

Hermens, F., Luksys, G., Gerstner, W., Herzog, M. H., and Ernst, U. (2008).
Modeling spatial and temporal aspects of visual backward masking. Psychol. Rev.
115, 83–100. doi: 10.1037/0033-295X.115.1.83

Herzog, M. H., Ernst, U. A., Etzold, A., and Eurich, C. W. (2003). Local interac-
tions in neural networks explain global effects in gestalt processing and masking.
Neural Comput. 15, 2091–2113. doi: 10.1162/089976603322297304

Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-
lective computational abilities. Proc. Natl. Acad. Sci. U.S.A 79, 2554–2558. doi:
10.1073/pnas.79.8.2554

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.

Hung, C. P., Kreiman, G., Poggio, T., and DiCarlo, J. J. (2005). Fast readout of
object identity from macaque inferior temporal cortex. Science 310, 863–866.
doi: 10.1126/science.1117593

Jones, J., and Palmer, L. (1987). An evaluation of the two-dimensional gabor fil-
ter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58,
1233–1258.

Juan, C.-H., and Walsh, V. (2003). Feedback to V1: a reverse hierarchy in vision.
Exp. Brain Res. 150, 259–263. doi: 10.1007/s00221-003-1478-5

Keil, A., Sabatinelli, D., Ding, M., Lang, P. J., Ihssen, N., and Heim, S. (2009).
Re-entrant projections modulate visual cortex in affective perception: evi-
dence from granger causality analysis. Hum. Brain Mapp. 30, 532–540. doi:
10.1002/hbm.20521

Keysers, C., and Perrett, D. I. (2002). Visual masking and {RSVP} reveal neu-
ral competition. Trends Cogn. Sci. 6, 120–125. doi: 10.1016/S1364-6613(00)
01852-0

Kogo, N., Strecha, C., Gool, L. V., and Wagemans, J. (2010). Surface construction by
a 2-d differentiation-integration process: a neurocomputational model for per-
ceived border ownership, depth, and lightness in kanizsa figures. Psychol. Rev.
117, 406–439. doi: 10.1037/a0019076

Lamme, V. A. F. (2006). Towards a true neural stance on consciousness. Trends
Cogn. Sci. 10, 494–501. doi: 10.1016/j.tics.2006.09.001

Lamme, V. A. F., and Roelfsema, P. R. (2000). The distinct modes of vision offered
by feedforward and recurrent processing. Trends Neurosci. 23, 571–579. doi:
10.1016/S0166-2236(00)01657-X

Levi, D. M., and Carney, T. (2009). Crowding in peripheral vision: why bigger is
better. Curr. Biol. 19, 1988–1993. doi: 10.1016/j.cub.2009.09.056

Levi, D. M., Klein, S. A., and Aitsebaomo, A. (1985). Vernier acuity, crowd-
ing and cortical magnification. Vision Res. 25, 963–977. doi: 10.1016/0042-
6989(85)90207-X

Livne, T., and Sagi, D. (2011). Multiple levels of orientation anisotropy in crowding
with gabor flankers. J. Vis. 11, 1–10. doi: 10.1167/11.13.18

Malania, M., Herzog, M. H., and Westheimer, G. (2007). Grouping of contextual
elements that affect vernier thresholds. J. Vis. 7, 1–7. doi: 10.1167/7.2.1

Manassi, M., Sayim, B., and Herzog, M. H. (2012). Grouping, pooling, and when
bigger is better in visual crowding. J. Vis. 12, 1–14. doi: 10.1167/12.10.13

Manassi, M., Sayim, B., and Herzog, M. H. (2013). When crowding of crowding
leads to uncrowding. J. Vis. 13, 1–10. doi: 10.1167/13.13.10
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Over the last decades many researchers
have used concepts like “feedback,” “reen-
trance,” “backpropagation,” “top–down
(modulation),” or “reverse hierarchy” to
specify the mechanisms that underlie var-
ious visual phenomena (e.g., Di Lollo
et al., 2000; Lamme and Roelfsema, 2000;
Pascual-Leone and Walsh, 2001; Supèr
et al., 2001; Ro et al., 2003; Ahissar
and Hochstein, 2004; Bar et al., 2006;
Fahrenfort et al., 2007; Koivisto, 2012).
An incomplete list of these phenomena
includes visual (object substitution) mask-
ing, shape discrimination, illusory con-
tours, illusory motion, priming effects,
etc. Empirical evidence or theoretical
argumentation in favor of the suggested
mechanismic explanations mainly consists
in finding or postulating an association
between a temporally delayed, secondary
activition of lower level neural units with
correct reports of target stimuli, even
though the higher level neural units in
the processing hierarchy were already acti-
vated earlier. On that basis, feedforward
processing has been argued to be insuf-
ficient for target perception. However, in
most of the studies the relative tempo-
ral order of activity at different levels
alone is taken as proof of reentrant mod-
ulation without precisely measuring the
neural sources of this top–down effect. In
principle, it is equally possible that the
source of the higher level activity from
which the top–down signals are sent back
to earlier feature-encoding neural units
(i) is specifically linked to those features
by virtue of constituting the higher level
nodes associated with specific attributes

of the target stimulus (thus mediating
feature-binding for object integration) or
(ii) is not specifically linked in this man-
ner. In the latter case, the source of top–
down modulation may be the result of the
arousal or alerting boost triggered by the
target stimulus via feedforward collateral
activation of subcortical reticulo-thalamic
units, which in turn is followed by the
cortical spread of the thalamocortical acti-
vation, including the downpropagation of
the non-specific wave of modulation to
the early cortical areas. The non-specific
system functions include arousal, atten-
tional modulation, intercortical synchro-
nization of neural activity, bringing the
preconsciously processed specific content
to awareness, “event-holding” the content
in working memory, and alerting subjects
to newly appearing objects and changes
(Magoun, 1958; Purpura, 1970; Purpura
and Schiff, 1997; Jones, 2001; Llinás and
Ribary, 2001; Van der Werf et al., 2002;
Ribary, 2005; Schiff et al., 2013; Saalmann,
2014). This non-specific system (NSP) tar-
gets layer-1 apical dendrites of the layer-5
and -6 pyramidal neurons. But since NSP-
modulation is directed at the cortical neu-
rons with specific representational func-
tions, its function may go unacknowledged
because the cortical units, when activated
by NSP-modulation, can produce content-
specific subjective effects misleading us to
believe that the entire process has been
specific throughout.

The focus of the present paper will be
on the experimental-behavioral and neu-
robiological evidence in comparing the
two processing modes, (i) and (ii), with

arguments from computational modeling
left for some other occasion.

It is known that reticulo-thalamic,
intralaminar and other matrix cells of
the NSP project more heavily to lat-
eral and frontal cortical areas and less
so to the primary visual areas. (Even
when rare examples of direct intralaminar-
thalamic input to V1 were documented,
these afferents were found to be much
sparser than the more frontal ones—Miller
and Benevento, 1979.) Moreover, this
more rostrally directed thalamo-cortical
flow can cause cortical responses as fast
as or even faster than the afferent vol-
leys through the specific geniculo-cortical
pathways ignite primary visual cortical
responses strongly enough (Kennedy and
Baleydier, 1977; Kaufman and Rosenquist,
1985; Herkenham, 1986; Cruikshank et al.,
2012; Liang et al., 2013; Saalmann, 2014).
Thus, the primary cortical areas receive
NSP-modulation not directly, but via the
higher level cortical neurons that project
onto apical parts of the layer-5 pyrami-
dal neurons in the lower cortical areas.
Consequently, as illustrated in Figure 1,
we have two principal modes through
which lower level neural units L responsi-
ble for encoding sensory features of per-
ceptual objects receive top–down input
from higher levels H: (i) from the spe-
cific nodes in H that were previously
activated by L in a cortical feedforward
manner and that now send reentrant sig-
nals back to L (here the feedforward-
reentrant loop pertains to the specific
sensory-perceptual attributes constituting
a perceptual object LH); and (ii) from the
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FIGURE 1 | Two alternative modes (i, ii) of top–down effects within the hierarchical

perceptual processing system featuring specific low level neural units L, higher level specific

nodes H, and a generic non-specific activation G boosted by the non-specific thalamocortical

afference from NSP.

generic nodes G that were activated by
the boost of the NSP directed at the
more frontal and mid-level cortical neu-
rons that now send their downpropagat-
ing wave to the lower level visual areas,
including L.

When analyzing the experimental data
from most of the studies that propose
specific top–down linkages (i), there is no
direct evidence that would invalidate the
alternative, non-specific theory of down-
propagation (ii). The specificity of visual
experiences is due to the fact that the NSP-
modulation arrives at specific early units
L and may not be due to the specificity
of the higher level from where this mod-
ulation arrives. Although the direct input
from NSP to L may be weak, the top–
down input from higher levels H/G driven
by NSP may be strong enough to empha-
size the specificity of the visual experience
encoded in L. The pending task should
be to try disentangle these two expla-
nations experimentally. The experiments
should ascertain whether the two modes
of top–down modulation are incompat-
ible or mutually complementary. In the
latter case—how the two types of down-
propagation are specifically combined and
what relative roles each of them has? It
is also possible that the standard views
of reentrance (e.g., Di Lollo et al., 2000;
Lamme and Roelfsema, 2000) may be valid
in some empirical instances, difficult to
ascertain in some other cases, and incom-
patible with the neurophysiological reali-
ties of processing in different experiments.
Let me comment on some examples of

typical experiments aimed at supporting
the standard views of reentrance listed
below and see whether version (i) should
be exclusively preferred or whether ver-
sions (i) and (ii) both are compatible with
the experimental results.

1. In typical object substitution mask-
ing (OSM) a target stimulus (e.g., a
Landolt C) is presented together with
four dots that surround the target.
When after a very brief delay the tar-
get is switched off, the four dots either
are also switched off or remain dis-
played for varing duration acting as
a post-mask (the simultaneous onset,
asynchronous offset condition.) The
delayed-offset condition leads to strong
masking but in the simultaneous-offset
condition masking is weak. The classic
theory of OSM (Di Lollo et al., 2000,
but see Põder, 2013) explains this by
a reentrant model (a variety of model
i) according to which target-activated
units at level H activated by the target
send reentrant signals back to level L in
order to test whether levels H and L are
consistent in representing the target. If
mismatch is registered (e.g., when tar-
get signals do not arrive anymore and
mask signals arrive instead), the iter-
ative feedforward-reentrant cycles are
interrupted and new iterative “hypoth-
esis testing” begins for the new object—
the mask. Because cycles of reentrance
are necessary for registration of the
stimulus in awareness, the target is not
consciously perceived when reentrant

testing is prematurely interrupted by
the stronger top–down mask signal.
However, when mask’s offset is syn-
chronous with that of the target, the
target-plus-mask is a composite object
that provides both level L and H con-
tents; hence, the target can be extracted
from the composite representation that
is maintained through the feedword-
reentrant cycles. Let us see how the
model (ii) works for OSM. Presentation
of target evokes specific signaling along
L-H vertical axis and also a collater-
ally ignited boost of NSP modulation.
(NSP is necessary for awareness of the
specific contents represented by L and
H.) When asynchroneous-offset mask
remains in view and target signals do
not arrive anymore, the top–down acti-
vation G that was initiated fast at higher
levels, but takes time to become active
at lower levels “finds” mask related
activity in L, but the target related
activity has decayed already realtive to
the mask activity, because the target
was switched off earlier. Although the
level G activity is non-specific, when
its downpropagating generic influence
reaches L it helps emphasize mask
features because level L units them-
selves are specific. The mask-object rep-
resentation becomes consciously per-
ceived instead of target. Thus, mod-
els (i) and (ii) both are usable. At
this point one may ask why not fol-
low Ockham’s rule and take the sim-
pler one (i), i.e., the one with fewer
hypotheses? However, the G units are
important because neurobiological evi-
dence has overwhelmingly shown that
NSP is necessary for awareness of
the specific contents represented by
L and H.

2. In Lamme et al. (2000) monkeys were
trained to discriminate visual targets.
V1 responses began to differentiate the
“seen” from the “unseen” trials after
125 ms. In subsequent studies occipital
ERPs in humans differentiated visibil-
ity of masked targets after 109–141 ms
or peaked at about 160 ms (Fahrenfort
et al., 2007, 2008). Again, a variety of
model (i) was used for explaining the
results because specifically the tempo-
rally late target related activity at level
L (which followed earlier time epochs
sufficient for level H to have become
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active in target processing) were asso-
ciated with correct discrimination. And
again, model (ii) can explain these
empirical results: the late part of neural
activity at L which is enhanced in trials
where target is successfully discrimi-
nated may be modulated by the top–
down process G passed down through
levels H (or even bypassing stimulus-
specific level H units either via direct
fibers or level H units different from the
stimulus-related ones).

3. Temporal precedence of high-level
MEG activity which discriminated cor-
rect and incorrect target processing
over low level activity in the study by
Bar et al. (2006) was also interpreted
as a variety of model (i). However,
if activity of G at frontal sites fluctu-
ates (fluctuation of the thalamocortical
NSP activity is a norm rather than
an exception) and dictates whether
the top–down modulation is stronger
or weaker, these experimental results
can be interpreted also according to
model (ii).

4. Ro et al. (2003) utilized transcra-
nial magnetic stimulation (TMS) in a
metacontrast masking paradigm and
showed that TMS of visual cortex, when
timed to produce visual suppression
of an annulus (a metacontrast mask),
induced recovery of a target disc which
was imperceptible when TMS was not
used. Moreover, TMS suppression of
an annulus was more pronounced
when a disk preceded it than when
an annulus was presented alone. The
authors assume that when the later
activity, supposedly reflecting the reen-
trant effects is suppressed then tar-
get perceptibility can be reinstated.
They argue that a prior visual stimu-
lus can influence subsequent percep-
tion at early stages of visual encod-
ing via feedback projections, support-
ing model (i). Alternatively, model (ii)
can also be applied. It is known that
a preceding brief stimulus (e.g., target)
speeds up perception of the follow-
ing stimulus (e.g., mask) (Bachmann,
1989; Scharlau, 2007). When target
disc was presented before mask it may
have speeded up masking annulus pro-
cessing by presetting NSP modulation
for its signals. This in turn may have
optimized the effective processing delay

so as to coincide with the maximal TMS
effect.

5. Up to now, both models appear to be
equally applicable, but model (ii) pro-
vides an explanation of the results of
an elegant experiment carried out by
Wu et al. (2009) that model (i) can-
not as readily provide. Capitalizing on
the motion-induced blindness (MIB)
phenomenon (Bonneh et al., 2001),
where a static visual target-object con-
tinuously presented on a rotating back-
ground periodically disappears from
awareness, they showed that a flashed
stimulus that caused reappearance in
awareness of the target was perceived
after the reappearance of the target in
consciousness. (The temporal value of
reversal was about 100 ms, which is
the value assumed to characterize the
full cycle of reentrance based visual
processing for awareness.) The tem-
poral advantage of updating the con-
scious representation from the preex-
isting unconscious representation of
the invisible static target was explained
by a version of model (i), invok-
ing reentry of neural signals after the
first feed-forward sweep for a stimu-
lus to be consciously perceived. Thus,
MIB, by blocking reentry signals, pre-
vents awareness. In Bachmann and Aru
(2009) we pointed out some inconsis-
tencies of this explanation and offered
an explanation in terms of model (ii).
When an object fades from awareness
by MIB, its L and H level activity
will be sustained because cortical spe-
cific signals are constantly present, but
now it is dissociated from NSP-activity.
When the flashed object is presented,
the L/H process for representation of
the flash occurs in parallel with a boost
of the NSP-process igniting G. G leads
to binding of the already present pre-
conscious L/H-activity of the target
with global consciousness-level repre-
sentation. This process takes little time,
because there is no need for build-up of
the content-specific L/H representation
of the target; consequently, its rapid
reappearance in consciousness. The
flashed object appears in consciousness
not as fast, because its correspond-
ing coherent L/H-representation must
be built up, which takes time. The G
that services target awareness has L/H

content of the target ready on the “wait-
ing list” but the G process has to wait as
a “dummy process” until the L/H con-
tents of the flashed object are ready to be
modulated.

It appears that experiments have difficulty
in distinguishing between the two models.
This raises the question whether a compu-
tational/mathematical argument could be
developed that allows to test different pre-
dictions about experimental data on the
basis of the two models. Sadly, space does
not allow me to dwell into this important
perspective which must be dealt with in
future research.

CONCLUSION
In this opinion paper I argued for the view
that in the majority of the standard exper-
imental studies set to support the model
of top–down processing featuring exclu-
sively the specific system components also
the combined non-specific/specific model
seems equally valid.
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