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Editorial on the Research Topic

DNA Methylation Dynamics and Human Diseases

DNA methylation is a biological process that adds methyl groups to DNA molecules. It regulates
chromatin architecture and transcription, and plays essential roles in a wide range of biological processes
(Li et al., 2013; Li et al., 2018; Roy et al., 2021). Accumulating evidence shows that the dysregulation of
DNA methylation is involved in the development of many life-threatening diseases, including cancers,
cardiovascular diseases (Pepin et al., 2019; Heery and Schaefer, 2021; Pepin et al., 2021; Dillinger et al.,
2022; Rosselló-Tortella et al., 2022). This Research Topic aims to elucidate the correlation between DNA
methylation and human diseases, with the hope to deepen our understanding of the underlyingmolecular
mechanisms of DNA methylation in human diseases and pave the way to the development of new
strategies or methods for disease prevention, diagnosis, and therapy. In total, there are 9 original research
articles that have been published in this Research Topic.

In this Research Topic, we received articles in the fields of cancer biology, cardiac biology and
covid research. Adding methyl groups to the C-5 position of cytosine, 5-methylcytosine, is the
main type of DNAmethylation (Choi et al., 2021), whose dysregulation has been reported to play
roles in many types of cancer. To understand the 5-methylcytosine in cancer, one of the primary
cause of death worldwide (Siegel et al., 2020), Liu et al. developed a 5-methylcytosine score
system and evaluated tumor mutation burden, immune check-point inhibitor response, and the
clinical prognosis of individual tumors using the score based on the 5-methylcytosine profile of
1,374 lung adenocarcinoma samples. Besides, by analyzing 5-methylcytosine and gene
expression profiles from 860 clear cell renal cell carcinoma (ccRCC), Xu et al. found
LINC00861 was the potentially intervening target of immunotherapy for prostate cancer
patients and was significantly associated with the expression of PD-1 and CTLA4. Li et al.
developed predictive diagnostic and prognostic models by using machine-learning and Cox
regression approaches based on pancreatic adenocarcinoma (PAAD) datasets. To take the
advantage of the third-generation sequencing technique, Zhang et al. collected two pairs of
tumor tissues and adjacent normal tissues from hepatocellular carcinoma (HCC) surgical
samples, and then conducted Nanopore sequencing. Zhang et al. identified four potential
tumor suppressor genes (KCNIP4, CACNA1C, PACRG, and ST6GALNAC3) by the integrative
analysis of 5-methycytosine and 6-methyladenine profiling. Their study provided a new solution
for epigenetic regulation research and therapy of HCC. LncRNAs have been shown to have high
tissue- and disease-specific expression patterns, which endows them the potential in therapy
(Wapinski and Chang, 2011; Jiang et al., 2016; Jiang et al., 2019). Zhao et al. focused on lncRNAs
differentially expressed in only one and multiple cancer types, and identified 29 lncRNAs as
diagnostic biomarkers for ccRCC, the kidney renal papillary cell carcinoma (KIRP), and pan-
cancer.
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Dysregulated regulation of miRNAs has been shown to
contribute to the pathogenesis of cardiovascular diseases (Shao
et al., 2015; Dong et al., 2020; Qiu et al., 2020; Yang et al., 2020).
To investigate the interaction between miR-29b and DNA
methylation in cardiovascular diseases, Wu et al. collected
heart tissue samples from 17 patients with congenital heart
disease (CHD). The authors found an inversely correlation
between miR-19a and DNA methyltransferases (DNMT) in
the patients. Further exploration in hypomethylated zebrafish
showed that miR-29b inhibitor relieved the deformity of
hypomethylated zebrafish and restored the DNA methylation
patterns in cardiomyocytes, resulting in increased proliferation
and renormalization of gene expression, suggesting a mutual
regulation between miR-29b and DNMTs in cardiomyocytes and
supporting the miRNA-based therapy in cardiomyocytes.

Coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has become
a global public health crisis. To explore the roles of 5-
Hydroxymethylcytosine in COVID-19, Chen et al. developed a
machine learning model based on genome-wide 5-
Hydroxymethylcytosine profiles in plasma cell-free DNA
(cfDNA) from 53 healthy volunteers, 66 patients with
moderate COVID-19, 99 patients with severe COVID-19, and
38 patients with critical COVID-19. They found 5-
Hydroxymethylcytosine detected in cfDNA could be used as
early warning markers for the disease progression and
myocardial injury of COVID-19.

In summary, by taking the advantage of the state-of-the-art
high-throughput sequencing technologies, the authors showed
the function role of DNA methylation in various types of cancer,

as well as in cardiovascular disease and COVID-19. We would
like to thank all authors for their paper published in this Research
Topic. These studies made significant contributions in the field,
extending our understanding of the roles of DNA methylation in
human disease and will facilitate further advancement.
Nevertheless, studies investigating the dynamic changes of
DNA methylation of human diseases and the potential of
DNMT in disease therapeutics are still lacking, which might
be the directions of future efforts in this Research Topic. In
addition, the rapid development of sequencing technologies, such
as nanopore DNA sequencing, will accelerate our research and
discovery in this field.
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Molecular Characterization of the
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5-methylcytosine-Related Regulators
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Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China, 6Department of Breast Surgery, Affiliated Cancer
Hospital and Institute of Guangzhou Medical University, Guangzhou, China

Background: DNA methylation is an important epigenetic modification, among which 5-
methylcytosine methylation (5mC) is generally associated with tumorigenesis.
Nonetheless, the potential roles of 5mC regulators in the tumor microenvironment
(TME) remain unclear.

Methods: The 5mC modification patterns of 1,374 lung adenocarcinoma samples were
analyzed systematically. The correlation between the 5mC modification and tumor
microenvironment cell infiltration was further assessed. The 5mCscore was developed
to evaluate tumor mutation burden, immune check-point inhibitor response, and the
clinical prognosis of individual tumors.

Results: Three 5mC modification patterns were established based on the clinical
characteristics of 21 5mC regulators. According to the differential expression of 5mC
regulators, three distinct 5mC gene cluster were also identified, which showed distinct
TME immune cell infiltration patterns and clinical prognoses. The 5mCscore was
constructed to evaluate the tumor mutation burden, immune check-point inhibitor
response, and prognosis characteristics. We found that patients with a low 5mCscore
had significant immune cell infiltration and increased clinical benefit.
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Conclusion: This study indicated that the 5mC modification is involved in regulating TME
infiltration remodeling. Targeting 5mC modification regulators might be a novel strategy to
treat lung cancer.

Keywords: lung adenocarcinoma, 5mC, tumour microenvironment, immunotherapy, mutation burden

INTRODUCTION

Lung cancer is the primary cause of cancer-related deaths
worldwide (Siegel et al., 2020) (NSCLC), accounting
approximately for 85% of newly diagnosed lung cancer cases,
is classified into lung adenocarcinoma (LUAD) and lung
squamous carcinoma (LUSC) (Curran et al., 2011). For
unresectable advanced NSCLC, a combination of radiotherapy
and chemotherapy has been the most common first-line
treatment (Yoda et al., 2019), and impressive clinical success
has been observed using targeted therapies (Treat, 2005; Yuan
et al., 2019; Alexander et al., 2020). Unfortunately, most NSCLC
patients will suffer the relapse within 1 year (Fountzilas et al.,
2021). Thus, understanding the mechanism and identifying novel
targets to treat NSCLC remain an urgent clinical need.

Immunotherapies represent a promising advance in cancer
treatment (Lussier et al., 2021). The immune checkpoint
inhibitors (ICI), including programmed death-ligand 1 (PD-
L1), programmed cell death 1 (PD-1), and cytotoxic
T-lymphocyte antigen-4 (CTLA-4), combined with
chemoradiotherapy, have been approved or are being widely
evaluated in clinical trials (Grant et al., 2021). However,
targeting PD-1 or PD-L1 has demonstrated durable efficacy
only in a subset of patients with NSCLC (Jazieh et al., 2021).
Thus, it is important to determine the underlying mechanisms
with the aim of improving the curative effect.

DNA methylation is an epigenetic modification that is
associated with regulating cell differentiation and tissue
development (Smith and Meissner, 2013; Slieker et al.,
2015). Dysregulation of DNA methylation patterns are
important characteristics of several diseases, including
cancers (Li et al., 2013; Božić et al., 2021; Cristall et al.,
2021; Miyakuni et al., 2021). 5-Methylcytosine (5mC), a
type of DNA methylation, was firstly reported by Wyatt,
(1951). DNA 5mC methylation is the classic epigenetic
process, which is controlled by “writers” (DNA
methyltransferases), “erasers” (DNA methyltransferases),
and “readers” (Ito et al., 2011; Du et al., 2015; Lio et al.,
2020). With the discovery of 5mC regulators, recent studies
suggested that DNA cytosine modifications may act as
epigenetic markers in tumorigenesis (Wu and Zhang, 2010;
Cavalcante et al., 2020; Jiang, 2020; Mo et al., 2020) and can
regulate tumor microenvironment (TME) infiltrating cells
(Chen et al., 2020; Zhao et al., 2021; Onodera et al., 2021).
However, the comprehensive roles of TME cell infiltration
directed by 5mC regulators in NSCLC remain unclear.

In this study, we evaluated 5mC methylation patterns
comprehensively by analyzing genomic information of 1374
LUAD samples, and correlated the 5mC methylation pattern
with the characteristics of TME cell infiltration. We identified

three 5mC methylation patterns, and revealed that 5mC
methylation mediation of TME cell infiltration characteristics
was closely associated with the immune response phenotype,
indicating the 5mC methylation played an important role in
modifying TME characteristics. Furthermore, the 5mCscore
could be applied as a promising biomarker to predict immune
response and clinical outcome in NSCLC.

MATERIALS AND METHODS

Dataset Acquisition and Processing
Supplementary Figure S1 shows the workflow of the this study.
mRNA expression with clinical and survival information were
downloaded from Gene Expression Omnibus (GEO) and GDC
data portal. Patients without clinical survival information were
excluded. Five eligible lung adenocarcinoma cohorts
(GSE19188, GSE31210, GSE37745, GSE50081, and TCGA-
LUAD [lung adenocarcinoma data from The Cancer genome
Atlas (TGCA)]) were included for further analysis
(Supplementary Table S1). For background correction and
normalization, the Robust Multichip Average algorithm was
used to uniformly process the raw. CEL files of the four GEO
datasets (Gautier et al., 2004). Next, a GEO meta-cohort were
created by merging the GEO datasets using the R sva package
(Leek et al., 2012).

Twenty-one 5mc regulators, including three writers (DNA
methyltransferase 1 (DNMT1), DNA methyltransferase 3 Alpha
(DNMT3A), DNA methyltransferase 3 beta (DNMT3B)), three
erasers (tet methylcytosine dioxygenase 1 (TET1), tet
methylcytosine dioxygenase 2 (TET2), tet methylcytosine
dioxygenase 3 (TET3)), and 15 readers (methyl-cpg binding
domain protein 1 (MBD1), methyl-cpg binding domain
protein 2 (MBD2), methyl-cpg binding domain protein 3
(MBD3), methyl-cpg binding domain protein 4 (MBD4),
methyl-cpg binding protein 2 (MECP2), nei like dna
glycosylase 1 (NEIL1), nth like dna glycosylase 1 (NTHL1),
single-strand-selective monofunctional uracil-dna glycosylase 1
(SMUG1), thymine dna glycosylase (TDG), ubiquitin like with
phd and ring finger domains 1 (UHRF1), ubiquitin like with phd
and ring finger domains 2 (UHRF2), uracil dna glycosylase
(UNG), zinc finger and btb domain containing 33 (ZBTB33),
zinc finger and btb domain containing 34 (ZBTB34), zinc finger
and btb domain containing 4 (ZBTB4)) (Chen et al., 2020), and
23 tumor immune related cells from published studies (Zhang
et al., 2020a; Zhao et al., 2021), were included for analysis. The
transcriptomics data, single nucleotide variant (SNV), copy
number variation (CNV), and 5mC phenotypic data were
collected using the UCSC Xena database (https://xenabrowser.
net) and the GDC data portal.
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Unsupervised Clustering of 21 5mC
Regulators
To identify 5mC regulator-mediated modification sub-clusters,
unsupervised consensus clustering was used to cluster tumor
samples into sub-clusters based on the expression levels of the
21 5mC regulators. To ensure the stability of the clusters, the
parameters of clustering were as follows: number of repetitions �
1,000 bootstraps, clustering algorithm � k-means method,
pFeature � 1.0, pItem � 0.8. The cluster with the most
significant survival difference was included for further analysis.

Gene Set Variation Analysis and Functional
Annotation
To explore the biological behavior among the different 5mC
modification patterns, their pathway scores were evaluated using
gene set variation analysis (GSVA) using the R GSVA package
(Hänzelmann et al., 2013), with the “c2. cp.kegg.v7.4. symbols”
gene set as the background. Differential pathways were further
screened using p < 0.05 in the R package limma.

Estimation of the Tumor Microenvironment
To identify the TME cell infiltration in LUAD samples, the
relative abundances of immune cells were quantified using the
single-sample gene-set enrichment analysis (ssGSEA) algorithm.
According to the method revealed by Charoentong et al. (2017b),
various kinds of immune cells, including regulatory T cells,
activated CD8+ T cells, dendritic cells, and B cells, were
evaluated. The relative abundance of TME infiltrating cells in
clinical samples was represented by the enrichment scores.

Differentially Expressed Genes
To identify 5mC-related differentially expressed genes (DEGs),
based on the expression levels of 21 5mC regulators, three distinct
5mC modification patterns were identified in the patients with
LUAD. The empirical Bayesian approach of R package limma
package was used for the difference analysis (Ritchie et al., 2015),
which screened out 324 DEGs, 246 DEGs and 144 DEGs
according to p < 0.001, p < 0.0005 and p < 0.0001. p < 0.0005
was most suitable for subsequent analysis.

Construction of 5mC Gene Signatures
Considering the heterogeneity and complexity of tumors, and
according to the method used by Zhang J. et al. (2020), the
5mCscore was developed to quantify the modification pattern of
individual patients with LUAD based on the identified DEGs. A
univariate Cox regression model was used for the prognostic
analysis of each gene in the 5mC signatures. We obtained 103
genes related to prognosis from among the 246 DEGs, and then
principal component analysis (PCA) was performed, scored as
PCi1 and PCi2. This approach had advantage of focusing the
score on the set with the largest block of well correlated (or
anticorrelated) genes in the set, while down-weighting
contributions from genes that do not track with other set
members. The 5mC score of each patient was calculated as
follows:

5mCscore � PCi1 + PCi2

Evaluation of Immune-Checkpoint Inhibitor
Genomic and Clinical Information
To explore the application of the 5mC score to predict immune-
checkpoint inhibitor (ICI) efficacy, the expression data and
clinical annotations of the immunotherapeutic cohort of
atezolizumab (IMvigor210 cohort) were downloaded from the
website based on the Creative Commons 3.0 License (http://
research-pub.Gene.com/imvigor210corebiologies) (Mariathasan
et al., 2018).

Statistical Analysis
Correlation coefficients between the expression of 5mC
regulators and the TME immune infiltration cells was
conducted using the Spearman method and distance
correlation analysis. The Wilcoxon test was used to analyze
the difference between two groups. The Kruskal–Wallis test
and one-way analysis of variance (ANOVA) were used to
analyze difference among three or more groups. The log-rank
test and the Kaplan–Meier (KM)method were applied to evaluate
the survival time. A statistical two-sided p value < 0.05 was
considered as having significance. All data processing in this
study was done using R 3.6.1 software.

RESULTS

Genetic Variation and Expression Analysis
of 5mC Methylation Regulators
According to the map described in Figure 1A, in this study,
21 5 mC methylation regulators (writers: DNMT1, DNMT3A
and DNMT3B; erasers: TET1, TET2, TET3; readers: MBD1,
MBD2, MBD3, MBD4, MECP2, NEIL1, NTHL1, SMUG1,
TDG, UHRF1, UHRF2, UNG, ZBTB33, ZBTB38, and ZBTB4)
were identified (Supplementary Table S2). To determine genetic
alternations, we firstly evaluated the SNV variation frequency of
the genes encoding the 21 5mCmethylation regulators. As shown
in Figure 1B, Among 561 LUAD samples, 21.39% of 5mC
regulators had mutations. The main mutation type was
missense_mutation. However, the mutation frequency of
individual regulators only ranged from 0 to 4%. The CNV
frequency of the 5 mC regulators showed that MECP2,
SMUG1, DNMT3B, ZBTB33, and NTHL1 had distinct CNV
amplification, with frequencies of 11.71, 6.13, 5.58, 4.68, and
4.68%, respectively. MBD3, UHRF1, MBD1, UHRF2, and TDG
had a CNV deletion, with frequencies of 6.30, 5.40, 5.58, 5.23, and
4.86%, respectively (Figure 1C and Supplementary Table S3).
The distribution analysis of CNV alterations on 23 chromosomes
showed that their distribution among the 21 5mC regulators was
scattered and unorganized (Figure 1D). Survival analysis
indicated that high expression of DNMT3B, MDB2, MDB3,
SMUG1, TDG, HURF1, UNG, and ZBTB38 were associated
with poor survival of LUAD (p < 0.05); while, high expression
of MDB4, MECP2, NEIL1, TET2, UHRF2, and ZBTB4 were
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associated with better survival of LUAD (p < 0.05,
Supplementary Figure S2 and Supplementary Table S4).

Identification of 5mC Methylation-Related
Phenotypes
To determine the roles of interaction among 5 mC methylation
regulators in LUAD, correlation analysis among the 21 5 mC
regulators was performed, which showed that there was a strong
positive correlation among most of the regulators
(Supplementary Figure S3A and Supplementary Table S5).
The prognostic values of the 21 5 mC regulators in LUAD
were evaluated using a univariate Cox regression model
(Supplementary Figure S3B). As shown in Figure 2A, MDB4,
MECP2, NEIL1, TET2, ZBTB4, and ZBTB33 were favorable
factors for overall survival (OS), while DNMT1, DNMT3A,
DNMT3B, TET1, TET3, SMUG1, TDG, UHRF1, UHRF2, UNG,
and ZBTB38 were risk factors for OS. Significant negative
correlations were obtained for UHRF1 and DNMT1, TDG and
DNMT3A, TDG and UNG, MECP2 and ZBTB33, MECP2 and
TET2, and TET2 and UHRF2 (p < 0.001). On the other hand,

several erasers and readers also showed significant negative
correlations: NTHL1 and TET2, NTHL1 and TET3, and
MBD3 and TET2 (p < 0.001) (Supplementary Tables S6–7).
Using unsupervised clustering analysis, three distinct 5mC
modification patterns were identified based on the expression
of 21 5mC regulators (Supplementary Figure S4). Prognostic
analysis of the three 5mC modification clusters revealed a
particularly prominent survival advantage for the 5mC cluster-
B modification pattern (Figure 2B and Supplementary Table S8;
p � 0.001). The results showed that cross-talk among the 5mC
modification regulators might be involved in the formation of the
5mC modification and in the characteristics of TME cell
infiltration.

Tumor Microenvironment Cell Infiltration
Characteristics in the 5mC Methylation
Clusters
To identify the potential function of the differentially expressed
5mC regulators, cluster analysis was first performed. As shown
in Figure 2C, the 21 5mC regulators had a distinct distribution

FIGURE 1 | Genetic landscape and expression analysis of 5mC regulators in LUAD. (A) Schematic diagram of 5mC DNA methylation mediated by 21 5mC
regulators. (B) Themutation frequency of 21 5mC regulators in the TCGA-LUAD cohort. The column indicates individual patients. The upper barplot shows the TMB, The
number on the right indicates the mutation frequency. The right barplot shows the percentage of mutation type in each regulator. The stacked barplot shows the fraction
of conversions. (C) The CNV variation frequency of 5mC regulators in the TCGA-LUAD cohort. The height of the column indicates the alteration frequency of the
regulators. The green dot is the deletion frequency; The red dot is the amplification frequency. (D) The locations of CNV alterations of 5mC regulators in the TCGA-LUAD
cohort. CNV, copy number variation; 5mC, 5-methylcytosine; LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; TMB, tumor mutation burden.
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among the three 5mC clusters. Gene ontology (GO) analysis was
performed to identify the biological process (BP), cellular
component (CC), and molecular function (MF) of the
regulators. The aberrantly expressed 5mC regulators were
mainly enriched for GO terms related to regulation of
mitotic nuclear division, chromosome segregation, and
nuclear division (BP); chromosomal region, condensed
chromosome/centromeric region, and kinetochore (CC); and
ATPase activity, DNA helicase activity, and helicase activity
(MF) (Figure 2D). To further identify the potential behaviors,
GSVA enrichment analysis was performed, as shown in
Supplementary Table S9. To further exlpore unsupervised
consensus clustering of all tumor samples for the molecular
classification of LUAD. The optimal number of clusters was
determined by the K value. After assessing relative changes in
the area under the cumulative distribution function curve and
consensus matrix heatmap, we selected a three-cluster solution
(K � 3), which showed no appreciable increase in the area under

the cumulative distribution function curve (Supplementary
Figure S4). 5mC cluster A was markedly enriched in damage
repair-related pathways, such as base excision repair, DNA
replication, spliceosome, and RNA polymerase. 5mC cluster
B was prominently related to immune activation-related
pathways, such as the JAK-STAT signaling pathway, the
T cell receptor signaling pathway, and the calcium signaling
pathway. 5mC cluster C was mostly associated with
carcinogenic activation and damage repair pathways, such as,
the p53 signaling pathway, basal transcription factors,
spliceosome, RNA degradation, DNA replication, base
excision repair, homologous recombination, DNA replication,
and mismatch repair (Figures 3A–C). Based on the expression
levels of these 21 5mC regulators, the three 5mC modification
patterns could be partially differentiated using PCA
(Figure 3D). TME cell infiltration analysis showed 5mC
cluster B was associated with activated B cells, activated
dendritic cells, mast cells, natural killer T cells, and

FIGURE 2 | Prognostic and biological characteristics of 5mCmodification patterns in LUAD. (A) The interaction among 5mC regulators in the TCGA-LUAD cohort.
The circle size indicates the effect of each regulator on prognosis. Green dots indicate favorable factors for prognosis; Purple dots indicate risk factor for prognosis. The
lines linking regulators indicate their interactions, and thickness show the correlation strength between the regulators. Negative correlations are marked in blue and
positive correlation in red. (B) Survival analyses of 5mC modification patterns in the TCGA-LUAD cohort, including 500 cases in 5mC cluster A (n � 139), 5mC
cluster B (n � 187), and 5mC cluster C (n � 174) (p < 0.0001, Log-rank test). (C) Cluster analysis of 21 5mC regulators among the three 5mC modification patterns. (D)
Gene ontology (GO) analysis of 21 5mC regulators among the three 5mC modification patterns.
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FIGURE 3 | GSVA enrichment analysis and TME cell infiltration characteristics of 5mC modification patterns. (A–C) The states of biological pathways among the
three 5mC modification patterns enriched by GSVA analysis The general biological processes are shown as a heatmap, red represents activated pathways and blue
represents inactivated pathways. (A) 5 mC cluster A vs 5mC cluster B; (B) 5mC cluster B vs 5mC cluster C; (B) 5 mC cluster A vs 5mC cluster C. (D) Principal
component analysis of the 5mC modification patterns. (E) The abundance of TME infiltrating cells in the 5mC modification patterns (*p < 0.05; **p < 0.01; ***p <
0.001; ns means not significant).
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FIGURE 4 |Construction of 5mC gene signatures. (A) Unsupervised clustering of overlapping 5mC phenotype-related genes in the TCGA-LUAD cohort to classify
patients into different genomic subtypes, termed as 5mC gene cluster (A–C), respectively. The gene clusters, 5mC clusters, tumor stage, survival status, sex, and age
were used as patient annotations. (B) Overall survival of patients with the three 5mC modification genomic clusters in the TCGA-LUAD cohort, including 504 cases in
5mC gene cluster A (n � 191), 5mC gene cluster B (n � 135), and 5mC gene cluster C (n � 17) (p < 0.0001, Log-rank test). (C) The expression of 21 5mC regulators
in the three gene clusters (*p < 0.05; **p < 0.01; ***p < 0.001; ns means not significant). (D) Alluvial diagram showing the changes in 5mC clusters, 5mC gene cluster,
5mCscore, and survival. (E) Correlations between the 5mCscore and the known gene signatures in the TCGA-LUAD cohort using Spearman analysis. Negative
correlations are marked in blue and positive correlation in red. (F) Differences in the 5mCscore among three gene clusters in the TCGA-LUAD cohort (***p < 0.001,
Kruskal-Wallis test). (G) Differences in the 5mCscore among three the 5mC modification patterns in the TCGA-LUAD cohort (***p < 0.001, Kruskal-Wallis test).
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neutrophils (Figure 3E and Supplementary Table S10, p <
0.001). 5mC cluster C was remarkably rich in immune cell
infiltration including myeloid-derived suppressor cells
(MDSCs), regulatory T cells, type 1 T helper cells, type 2 T
helper cells, and type 17 T helper cell (Figure 3E and
Supplementary Table S10, p < 0.001). Prognosis analysis
showed that patients with different 5mC modification
patterns also had a matching survival advantage (Figure 2B,
p � 0.001). Based on the above results, cluster A, characterized
by innate immune cell infiltration, was defined as an immune-
excluded phenotype; cluster B, characterized by adaptive
immune cell infiltration and immune activation, was defined
as an immune-inflamed phenotype; and cluster C, characterized
by the inhibition of immunity, was defined as an immune-desert
phenotype.

Identification of 5mC Methylation Gene
Signature
To further identify the potential function of each m5C
modification pattern, we determined 246 m5C phenotype-
related DEGs (Supplementary Table S11). GO analysis
showed that the 246 DEGs were associated with cell cycle,
RNA transport, spliceosome, DNA replication, base excision,
and human T-cell leukemia virus 1 infection (Supplementary
Figure S5A and Supplementary Table S12). Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis indicated that the 5mC
gene clusters were involved in DNA transcription and translation
(Supplementary Figure S5B and Supplementary Table S13). To
further determine the potential regulation mechanism,
unsupervised clustering analyses was performed to identify the

FIGURE 5 | Prognostic and genetic characteristics between high and low 5mCscore groups. (A) Survival analysis of the 5mCscore in the TCGA-LUAD cohort (p <
0.0001, Log-rank test). (B) Survival analysis of the 5mCscore in the GEO-meta cohort (p < 0.0001, Log-rank test). (C) Sex proportion between the high- and low-
5mCscore groups. (D) The 5mCscore difference between females and males. (E) Age proportion between the high- and low-5mCscore groups. (F) The 5mCscore
difference between age (≤65) and age (>65). (G) Smoking status proportion between the high- and low-5mCscore groups. (H) The 5mCscore difference between
smoking status (ever) and smoking status (never). (I) Clinical stage status proportion between the high- and low-5mCscore groups. (J) The 5mCscore difference
between stage I and stage II. (K) The 5mCscore difference between genetic mutations (−) and genetic mutations (+). (L) Genetic mutations status proportion between
high- and low-5mCscore groups.
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genomic subtypes based on the 103 prognostic genes from the
246 5mC phenotype-related DEGs. The results showed that three
distinct 5 mC genomic phenotypes (5mC gene Cluster A–C)

could be identified (Figure 4A and Supplementary Table
S5C–J). These results indicated that the 5mC methylation
modification patterns did exist in LUAD and three distinct

FIGURE 6 | Characteristics of 5mCscore in the TCGA molecular subtypes and tumor somatic mutations. (A,B) Waterfall plot of tumor somatic mutations
established by those with a high 5mCscore (A) and a low 5mCscore (B). Each column represents individual patients. The upper barplot shows the TMB, the number on
the right indicates the mutation frequency in each gene. The right barplot shows the proportion of each variant type. (C) Tumor somatic mutation between high
5mCscore and low 5mCscore groups. (D) PD-L1 expression difference between high 5mCscore and low 5mCscore groups. (E) The correlation analysis between
tumor somatic mutation and the 5mCscore. (F) The correlation analysis between PD-L1 expression and the 5mCscore. (G) Survival analysis of tumor somatic mutations
in the TCGA-LUAD cohort (p < 0.0001, Log-rank test). (H) Survival analyses for patients stratified by both the 5mCscore and the tumor somatic mutation burden using
Kaplan–Meier curves (p < 0.0001, Log-rank test).

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7793679

Liu et al. 5mC in Lung Cancer

15

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


5mC gene clusters were characterized by different signature
genes. Cluster analysis showed that 178 of 504 patients with
LUAD were clustered in 5mC gene cluster C, which was
associated with better prognosis. Patients with LUAD with
5mC gene cluster B (n � 135) had poorer prognosis. 5mC
gene cluster A, with 191 patients clustered, had an
intermediate prognosis (Figure 4B, p < 0.001). The expression
levels of the 5mC regulators among the 5mC gene clusters were
distinctly different (Figure 4C).

Clinical Characteristics of 5mCscore
Phenotypes
To better explore the pattern of 5mC modification in individual
patients, based on the 5mC phenotype-related genes
(Supplementary Table S14), the 5mCscore was used to
quantify the 5mC modification patterns of individual patients
with LUAD. An alluvial diagram was applied to clarify the
attributed changes of the LUAD patients. As shown in
Figure 4D, the 5mC modification patterns clusters were
almost consistent with the 5mC gene clusters, i.e., the 5mC
gene cluster B group patients mainly had a low 5mCscore,
which was associated with poor survival. To determine the
roles of 5mC-related phenotypes in immune regulation,
correlation analysis showed that the 5mCscore was associated
positively with most TME infiltrating cells (Figure 4E). The

Kruskal–Wallis test revealed there was a significant difference
in the 5mCscore among the 5mC gene clusters. 5mC gene cluster
C showed the highest median 5mCscore, while 5mC gene cluster
B had the lowest median 5mCscore, which indicated that a high
5mCscore was closely associated with immune activation-related
signatures, whereas a low 5mCscore was associated with immune
inactivation-related signatures (Figure 4F, p < 0.001). More
importantly, compared with the other clusters, 5mC
modification cluster C presented the lowest median 5mCscore,
and 5mC modification cluster B showed the highest 5mCscore
(Figure 4G, p < 0.001). These results indicated that a high
5mCscore correlated significantly with immune-activation and
the 5mCscore could be used to identify the 5mC modification
patterns in LUAD, and further assess the characteristics of TME
cell infiltration of individual tumors.

To further validate the value of the 5mCscore, patients in the
TCGA cohort were divided into low or high 5mCscore groups.
Prognosis analysis showed that patients with a high 5mCscore
showed a better survival benefit (Figure 5A, p < 0.001). Four GEO
datasets (GSE19188, GSE31210, GSE37745, and GSE50081,
Supplementary Table S1) were integrated into one meta-
cohort. Survival analysis in the GEO meta-cohort also
identified that a high 5mCscore was linked to a better clinical
outcome (Figure 5B, p < 0.001). These results indicated that the
5mCscore could act as an independent prognostic biomarker to
evaluate patient outcomes. To explore the effect of clinical
characteristics on the 5mCscore, the subgroups of clinical

FIGURE 7 | The role of the 5mCscore in anti-PD-L1 immunotherapy. (A) The proportion of patients with a response to ICI in the low or high 5mCscore groups.
Responder/Nonresponder: 26%/74% in the low 5mCscore groups and 8%/92% in the high 5mCscore groups. (B) 5mCscore differences between responders and
nonresponders. (C) IC infiltration proportion between high 5mCscore and low 5mCscore groups. (D) 5mCscore differences between different IC subgroups. (E) Immune
phenotype proportion between high 5mCscore and low 5mCscore groups. (F) 5mCscore differences among the immune-desert phenotype, immune-excluded
phenotype, and immune-inflamed phenotype. (G) Survival analyses for low (n � 291) and high (n � 57) 5mCscore patient groups in the anti-PD-L1 immunotherapy cohort
using Kaplan–Meier curves (IMvigor210 cohort; p � 0.015, Log-rank test). CR, complete response; IC, immune cell; ICI, immune check-point inhibitor; PD, progressive
disease; PR, partial response; SD, stable disease.
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characteristics were further analyzed. A significant distribution
difference of a high 5mCscore was observed for gender (59% in
female vs 41% in male, p � 0.0054; Figures 5C,D), smoking status
(41% vs 67% for ever smoking, P � 5e-05; Figures 5G,H), stage
I–II (83% vs 54% for stage I, p � 3.8e-08; Figures 5I,J), and genetic
mutations (63% vs 41% for EGFR mutations, p � 0.00019; 25% vs
42% in EGFR/KRAS/ALK mutations, p < 0.001; Figures 5K-L).
However, there were no 5mCscore differences between age (≤65)
and age (>65) (Figures 5E,F, p � 0.6). To assess the value of
clinical characteristics, patients in the TCGA-LUAD cohort were
further stratified by age (≤65/> 65), sex (female/male), T stage
(T1–2/T3–4), N stage (N0–1/N2–3), M stage (M0/M1), and
clinical stage (I–II/III–IV). We found that the clinical
characteristics, particularly T1–2, N0–1, M0, and I–II clinical
stages, could be clearly divided into high- and low-risk subgroups
(Supplementary Figure S6). These results indicated that multiple
clinical characteristics can have an effect on the 5mCscore, which
led to the heterogeneity of 5mC regulators in LUAD.

The Potential of the 5mCscore to Predict the
Response to anti-PD-L1 Immunotherapy
The above analyses demonstrated the impact of 5mCscore
regulators on the TME, as well as on the prognosis in
patients with LUAD. The genetic characteristics of the
patients in different 5mCscore groups were further explored.
As shown in Figures 6A,B and Supplementary Table S15, the
somatic mutation landscapes in the high and low 5mCscore
groups had a distinct difference. The mutation frequency was
77.35% in the high 5mCscore group and 94.89% in the low
5mCscore group. Specifically, except for KRAS, TP53 (18% vs
58%), TTN (20% vs 53%), MUC16 (28% vs 45%), and RYR2
(22% vs 40%) had important differences between the high and
low 5mCscore groups (Figure 6B). Besides, patients with a low
5mCscore showed a significantly higher tumor mutation burden
(TMB) and PD-L1 expression than patients with a high
5mCscore (Figures 6C,D and Supplementary Table S16).
5mC gene cluster C showed lower PD-L1 expression and a
lower TMB than 5mC gene cluster B. Correlation analysis
further identified that the TMB and PD-L1 expression were
related negatively with the 5 mCscore (Figures 6E,F, p < 0.001).
These results revealed a significant association between the
5mCscore and the TMB and PD-L1 expression. These factors
are important parameters in the assessment of immunotherapy
outcomes. However, the survival analysis associated with the
TMB found that there was no difference between the high and
low TMB groups (Figure 6G, p � 0.082). Next, the crosstalk
between the 5mCscore and TMB in terms of patient survival was
investigated. The high 5mCscore and high TMB group had
better survival than the low 5mCscore and high TMB group.
The low 5mCscore and low TMB group was associated with
poorer survival relative to those with a high 5mCscore and low
TMB (Figure 6H, p < 0.001).

To explore the potential roles of the 5mCscore in clinical
immune therapy of lung cancer, we investigated whether the
5mCscore could predict patients’ response to PD-L1
(atezolizumab) therapy based on the PD-L1 immunotherapy

cohort (IMvigor210). Compared with those with a high
5mCscore, patients with a low 5mCscore had significant
therapeutic advantages and clinical responses to anti-PD-L1
immunotherapy (Figures 7A,B and Supplementary Figure
S7A−B, p � 0.0015). The low 5mCscore group had a higher
immune cells 2 (IC2) score (38% vs 16%) and a lower tumor cells
2+ (TC2+) score (77% vs 96%) than the high 5mCscore group,
5mCscore was significantly associated with the enrollment ICs
and suppression of TCs (Figures 7C,D and Supplementary
Figure S7C−D). These results identified that the 5mCscore
played a non-negligible role in regulating TME immune cell
infiltration. We further investigated different immune
phenotypes among the high and low 5mCscore groups and
found that a higher 5mCscore was markedly associated with
exclusion and desert immune phenotypes, in which an
antitumor effect is difficult to exert using ICI therapy
(Figures 7E,F). Patients with a low 5mCscore exhibited
significant clinical benefits and a markedly prolonged
survival (Figure 7G, p � 0.015). These results clarified that
5mC modification patterns are significantly associated with
immune phenotypes and PD-L1 expression, and that the
5mCscore could be a prominent biomarker to predict the
response to ICI therapy.

DISCUSSION

DNA 5mC methylation is a dynamic and reversible post-
transcriptional modification regulated by 5mC related
regulators (Mayer et al., 2000; Oswald et al., 2000; Wu
et al., 2020). Recent research highlighted the biological
importance of 5mC modification on immune cell
infiltration and tumor suppression (Schübeler, 2015; Dor
and Cedar, 2018; Weng et al., 2021). However, most studies
focused only on a single TME cell type or one 5mC related
regulator, and the comprehensive roles of 5mC regulators on
TME infiltration characteristics are not fully elaborated. Thus,
further clarification of the potential roles of 5mC modification
patterns in the infiltration of TME cells will raise our
awareness of the effects of the heterogeneity and
complexity of the TME on the response to ICI therapy and
provide a novel biomarkers to evaluate the ICI response and
predict prognosis.

Herein, three distinct 5mC methylation modification
patterns were identified based on 21 5mC regulators. The
patterns had significantly distinct TME cell infiltration
characteristics. Based on the identified 246 5mC phenotype-
related DEGs, three genomic clusters of 5mC-related genes were
further identified, which were also validated for their association
with transcription modification and immune infiltration.
Recent studies had shown that DNA methylation can be
involved in the maintenance and reinforcement of T cell
exhaustion gene signatures (Pauken et al., 2016; Gate et al.,
2018). In murine antigen-specific CD8 T cells, DNMT3A-
mediated methylation impaired T cell expansion and led to
immune cell exhaustion under treatment with anti-PD-1 via
repression the expression of key genes (Ghoneim et al., 2017).
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By contrast, in the context of T cell exhaustion, the involvement
of DNA methylation in the reprogramming of the T cells has
also been reported (Araki et al., 2013), such as demethylation of
the PD1 promoter resulting in permanent CD8+T cell
exhaustion. Uhrf1-mediated tnf-α gene methylation
controlled proinflammatory macrophages in experimental
colitis resembling inflammatory bowel disease (Qi et al.,
2019). In breast cancer, ZBTB33 subcellular partitioning
functionally linked LC3A/B, the tumor microenvironment,
and cancer survival (Singhal et al., 2021). These results
indicated that the 5mC modification is intimately involved in
shaping TME landscapes.

Epigenetic alterations are associated extensively with the
immune response and tumore evasion. A DNA methylation
signature (the EPIMMUNE signature) has been identified as
an epigenetic biomarker of the response to ICI. The
multicenter and retrospective analysis revealed that the
EPIMMUNE signature could predict the response to anti-PD-
1 treatment in non-small-cell lung cancer (Seremet et al., 2016).
In metastatic melanoma treated with CTLA-4 blockers,
responders and non-responders to ICI had a differential DNA
methylation pattern (Chida et al., 2021). To better understand the
individual heterogeneity of TME-meditated 5mC modification
patterns, the 5mCscore was established to assess the 5mC
modification pattern of individuals with LUAD. 5mC gene
cluster C, characterized by an immune inflamed phenotype,
exhibited a higher 5mCscore, and 5mC gene cluster B,
characterized by an immune excluded phenotype, had a lower
5mCscore. These results revealed the 5mCscore was a useful
biomarker to comprehensively assess individual tumor 5mC
modification patterns, which could be used to evaluate TME
immune cell infiltration patterns. Prognosis analyses also
identified that the 5mCscore was an independent prognostic
biomarker in LUAD.

Alterations in 5mC regulatory genes might also be associated
with variations in LUAD. In this study, we identified twenty
driver genes, including TP53, TTN,MUC16, RYR2, and CSMD3.
Moreover, variations in KRAS were associated significantly with
alterations in 5mC regulatory genes. As an oncogene, KRAS
mutations were reported frequently in a variety of tumors,
including colorectal cancer (Prior et al., 2012), pancreatic
cancer (Arner et al., 2019), and bladder cancer (Santha et al.,
2020). Recent studies identified that KRAS might have a critical
role in the immunoregulation of NSCLC (Li et al., 2021; Wang
et al., 2021). Our data also revealed that the 5mCscore had a
markedly negative correlation with PD-L1 expression and the
TMB. The 5mCscore integrating the TMB could be the more
effective biomarker to predict ICI response. We also identified the
predictive value of the 5mCscore in the IMvigor210 cohort. The
5mCscore between non-responders and responders was
significantly different. These results provided new insights to
clarify different tumor immune phenotypes and improve the
clinical response to ICI therapy.

CONCLUSION

In summary, we comprehensively analyzed the potential
mechanisms of 5mC methylation modification during the
regulation of the TME. 5mC modification patterns
contributed to the heterogeneity and complexity of the
TME in LUAD, which was significantly associated with
TMB, PD-L1 expression, and immune phenotypes.
5mCscore could act as a biomarker to predict a patient’s
response to ICI therapy.
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The tumor microenvironment (TME) affects the biologic malignancy of clear cell renal cell
carcinoma (ccRCC). The influence of the 5-methylcytosine (m5C) epigenetic modification
on the TME is unknown. We comprehensively assessed m5C modification patterns of 860
ccRCC samples (training, testing, and real-world validation cohorts) based on 17m5C
regulators and systematically integrated the modification patterns with TME cell-infiltrating
characterizations. Our results identified distinct m5C modification clusters with gradual
levels of immune cell infiltration. The distinct m5C modification patterns differ in
clinicopathological features, genetic heterogeneity, patient prognosis, and treatment
responses of ccRCC. An elevated m5C score, characterized by malignant biologic
processes of tumor cells and suppression of immunity response, implies an immune-
desert TME phenotype and is associated with dismal prognosis of ccRCC. Activation of
exhausted T cells and effective immune infiltration were observed in the low m5C score
cluster, reflecting a noninflamed and immune-excluded TME phenotype with favorable
survival and better responses to immunotherapy. Together, these findings provide insights
into the regulation mechanisms of DNA m5C methylation modification patterns on the
tumor immunemicroenvironment. Comprehensive assessment of tumor m5Cmodification
patterns may enhance our understanding of TME cell-infiltrating characterizations and help
establish precision immunotherapy strategies for individual ccRCC patients.

Edited by:
Chunjie Jiang,

University of Pennsylvania,
United States

Reviewed by:
Youyang Shi,

Shanghai University of Traditional
Chinese Medicine, China

Anli Zhang,
University of Texas Southwestern

Medical Center, United States
Huiyu Li,

University of Texas Southwestern
Medical Center, United States in
collaboration with reviewer AZ.

*Correspondence:
Shiyin Wei

yjweishiyin@163.com
Yuanyuan Qu

quyy1987@163.com
Hailiang Zhang

zhanghl918@163.com
Dingwei Ye

dwyelie@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Pathology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 08 September 2021
Accepted: 01 November 2021
Published: 08 December 2021

Citation:
Xu W, Zhu W, Tian X, Liu W, Wu Y,

Anwaier A, Su J, Wei S, Qu Y, Zhang H
and Ye D (2021) Integrative 5-

Methylcytosine Modification
Immunologically Reprograms Tumor
Microenvironment Characterizations
and Phenotypes of Clear Cell Renal

Cell Carcinoma.
Front. Cell Dev. Biol. 9:772436.
doi: 10.3389/fcell.2021.772436

Abbreviations: ccRCC, clear cell renal cell carcinoma; CI, confidence interval; CNV, copy numbers variation; CPTAC, Clinical
Proteomic Tumor Analysis Consortium; DEGs, differentially expressed genes; FUSCC, Fudan University Shanghai Cancer
Center; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; HE, hematoxylin-eosin; HR, hazard ratio; ICTs,
immune checkpoint therapies; ICGC, International Cancer Genome Consortium; IHC, immunohistochemistry; RCC, renal cell
carcinoma; ROC, receiver operating characteristic curve; SNP, single nucleotide polypeptides; TCGA, The Cancer Genome
Atlas; TME, tumor microenvironment.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7724361

ORIGINAL RESEARCH
published: 08 December 2021
doi: 10.3389/fcell.2021.772436

21

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.772436&domain=pdf&date_stamp=2021-12-08
https://www.frontiersin.org/articles/10.3389/fcell.2021.772436/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.772436/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.772436/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.772436/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.772436/full
https://www.frontiersin.org/articles/10.3389/fcell.2021.772436/full
http://creativecommons.org/licenses/by/4.0/
mailto:yjweishiyin@163.com
mailto:quyy1987@163.com
mailto:zhanghl918@163.com
mailto:dwyelie@163.com
https://doi.org/10.3389/fcell.2021.772436
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.772436


Keywords: clear cell renal cell carcinoma, 5-methylcytosine, tumor microenvironment, renal cell carcinoma (RCC)
clear cell renal cell carcinoma (CCRCC), immune checkpoint therapies, prognosis, machine learning algorithm

INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignancy of
the urinary system, accounting for approximately 3.8% of all
newly diagnosed cancers. The incidence of RCC is increasing by
1.1% each year (Siegel et al., 2020). Clear cell RCC (ccRCC),
which originates from proximal tubule epithelial cells, is the most
common histology type of RCC, accounting for approximately
80% of all RCC cases (Capitanio and Montorsi, 2016; Linehan
and Ricketts, 2019). The Von Hippel–Lindau (VHL) gene is
frequently mutated in ccRCC, and mutations in BAP1,
PBRM1, SETD2, and PIK3CA are also commonly observed in
ccRCC. Studies show that mutations in these genes influence the
prognosis and treatment response of ccRCC patients (Clark et al.,
2019; Linehan and Ricketts, 2019). The standard first-line
treatment strategy for metastatic or advanced ccRCC mainly
involves tyrosine kinase inhibitors, such as sunitinib and
sorafenib, that target vascular endothelial growth factor
receptors. Over the past few decades, rapid progress has been
made in immunotherapy as a new treatment strategy for cancer
(Xu et al., 2019; Braun et al., 2020; Motzer et al., 2020).

DNA methylation is one of the most researched epigenetic
modifications and is linked to the development of human
malignancies (Qian et al., 2020). The main type of DNA
methylation is the presence of an additional methyl group on
the 5 position of cytosine (5-methylcytosine, m5C) (Choi et al.,
2021). The m5C modification was the first discovered epigenetic
marker and plays an important role in regulating the
transcriptome profiles and carcinogenesis process of solid
tumors, which often harbor aberrant DNA methylation
(Martisova et al., 2021). The m5C modification is frequently
found in large clusters called CpG islands, which are present
in gene-promoter regions and suppress gene transcription (Chen
et al., 2019; Palei et al., 2020). A series of enzymes, called writers,
readers, and erasers, is responsible for adding, recognizing, and
removing the m5C modifications, respectively (Rausch et al.,
2020). Some tumor-suppressor genes are silenced as a
consequence of hypermethylation in the promoter regions.
Therefore, DNA methylation represents a potential signature
and promising treatment target for human malignancies.
Investigation of m5C epigenetic modifications and their
regulation of gene expression may, thus, provide insights into
the mechanisms underlying cancer development.

The 5-methylcytidine modification occurs on both DNA and
RNA. The major epigenetic mark in mammalian DNA is m5C,
which is associated with carcinogenesis and tumorigenesis of
various cancers (Greenberg and Bourc’his, 2019). The phenotype
of tumor microenvironment (TME) is dynamically regulated by
cell signaling transduction and epigenetic drivers, which are
critical factors influencing the efficacy of immunotherapy and
both extrinsic and intrinsic resistance pathways. DNA
methyltransferase enzymes (DNMTs) methylate CpG islands
in gene promoters, and aberrant expression or activity of

DNMTs can lead to tumorigenesis and aggressive progression
(Zhang et al., 2018). Additionally, upregulated DNMT1 is shown
to be necessary for maintaining cancer stemness and is associated
with poor clinical outcome of cancers. DNMT1 is also shown to
regulate the inhibitory function of Foxp3+ T-regulated cells
(Piperi et al., 2008; Wang et al., 2013; Zagorac et al., 2016).
Therefore, comprehensively exploring the biological activities of
epigenetic drivers in tumor phenotypes and TME is important
(Xu et al., 2021a).

In this study, we examine the potential influence of DNAm5C
regulators on the clinical malignant characteristics and TME of
ccRCC. We first constructed m5C clusters using large-scale
samples and algorithms and evaluated the relationship of m5C
clusters with immune cell infiltration, the DNA variation
landscape, and immunotherapy in ccRCC.

MATERIALS AND METHODS

Sample Collection and Data Preprocessing
Gene expression, copy number variants, tumor somatic
mutations, and matched clinical information of ccRCC from
The Cancer Genome Atlas (TCGA) cohort were obtained.
Gene expression data of 93 ccRCC tumors from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) were
obtained at https://proteomics.cancer.gov/programs/cptac.
In addition, RNA-seq and clinical data of 91 ccRCC patients
from the RECA-EU cohort were available from the
International Cancer Genome Consortium (ICGC, https://dcc.
icgc.org/) database and included in this study. Patients without
overall survival information were removed from further analysis.
In addition, 232 ccRCC samples with proteomics sequencing data
with available clinical and pathologic electronic records were
enrolled from our institute, Fudan University Shanghai Cancer
Center (FUSCC, Shanghai, China). In total, 860 ccRCC tumor
samples were included for analysis. Batch effects from
nonbiological technical biases were corrected using the
“ComBat” algorithm of sva package and the fragments per
kilobase of transcript per million values were transformed into
transcripts per kilobase million values.

Unsupervised Clustering for 17m5C
Regulators
A total of 17 m5C regulators were extracted from the integrated
gene expression profiles to identify different m5C modification
patterns. The 17 m5C regulators included three writers (DNMT1,
DNMT3A, and DNMT3B), three erasers (TET1, TET2, and TET3),
one regulating factor (DNMT3L), and 10 readers (MECP2,MBD1,
MBD2, MBD3, MBD4, UHRF1, UHRF2, ZBTB4, ZBTB38, and
ZFP57). The “ConsensusClusterPlus” R package was used to
classify patients for further analysis, and 1000 times repetitions
were conducted to ensure the stability of the classification
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(Wilkerson and Hayes, 2010). Overall survival was compared
between patients with different m5C modification patterns.

Gene Set Variation Analysis (GSVA) and
TME Cell Infiltration Estimation
GSVA, a commonly employed method for estimating the
variation in pathways (Hänzelmann et al., 2013), was used to
evaluate the potential biological differences between the m5C
modification patterns using the “GSVA” R package. To estimate
the TME cell infiltration, we applied the single-sample gene set
enrichment analysis algorithm to evaluate the relative
abundance of immune cells in the ccRCC TME. The
reference gene sets for quantifying the immune cells were
obtained from a previous study (Charoentong et al., 2017),
and the examined immune cells included mast cells, monocyte,
macrophage, activated CD4+ T cells, and other types of
immune cells. Immune cell abundance was compared
between m5C modification patterns, and the prognostic
significance of each immune cell was also evaluated based
on the overall survival information.

Differential Gene Expression Analysis and
Functional Enrichment Analysis
To explore the potential biological differences between m5C
modification patterns, the limma package was used to identify
differentially expressed genes (DEGs), and the threshold value
was set as p < .05, |logFC|≥3 (Ritchie et al., 2015). Functional
enrichment analyses were carried out to explore the potential
functions of the DEGs. The expression profiles of DEGs were
extracted, and unsupervised clustering was applied again to
identify the subgroups; the subgroups were defined as m5C
gene clusters.

Identifying m5C Score as the m5C Gene
Signature
A scoring system was constructed to evaluate the m5C
modification patterns, and we termed it as m5C score.
Univariate Cox regression was used to evaluate the prognostic
value for each gene, and the genes with prognostic significance
were extracted for further analysis. Random forest analysis and
principal component analysis were used to construct the m5C
relevant gene signature. Both principal components 1 and 2 were
enrolled to calculate the signature scores, and the m5C score was
defined as follows: m5C · score � ∑(PC2i+PC2i).

Copy Number Variant Analysis,
Immunotherapy Response Prediction, and
IC50 Evaluation
To explore potential associations between copy number variants
and m5C score, Genomic Identification of Significant Targets in
Cancer (version 2.0) was used to identify significantly amplified
or deleted regions using TCGA copy number data (Beroukhim
et al., 2007; Mermel et al., 2011). Q ≤ 0.05 was defined as

significant, and the confidence interval was set to 0.95. Tumor
immune dysfunction and exclusion (TIDE) was used to estimate
the immunotherapy response based on the expression profiles
(Jiang et al., 2018). Thus, the associations between m5C score and
immunotherapy response were evaluated. The pRRophetic
package was used to predict the half-maximal inhibitory
concentration (IC50) of chemotherapy drugs in the high and
low m5C score groups.

Immunohistochemistry (IHC)
IHC was performed to evaluate the expression levels of Ki-67
(ab15580; Abcam), CD4 (RMA-0620, Maxim, China), CD8
(RMA-0514, Maxim, China), Glut-1 (ab115730; Abcam), PD-
L1 (ab205921; Abcam), CXCL13 (ab246518; Abcam), TGF-β
(ab189778; Abcam), FASN (ab99359; Abcam), CK (Kit-0009,
Maxim, China), and FoxP3 (98,377, CST) following previously
described procedures (Xu et al., 2021a; Xu et al., 2021b). Opal
multispectral was implemented to identify differential immune cell
infiltration and PD-L1 expression in different groups on a
multispectral imaging system (Vectra® Polaris™, Shanghai, China).

Statistical Analysis
A Wilcox test was used to compare differences between two
groups. The Kaplan–Meier method was used to conduct survival
analysis, and the cutoff value was defined via the survminer
package. A log-rank test was used to detect the significance. The
receiver operating characteristic curve (ROC) was drawn to
evaluate the predictive ability for immunotherapy response.

RESULTS

The Overall Depiction of Genetic Variation
of m5C Regulators in ccRCC
A total of 17 m5C regulators including three writers, three erasers,
one regulating factor, and 10 readers were manually identified in
this study. The dynamic reversible process of m5C DNA
methylation mediated by regulators as well as their potential
biological functions for ccRCC are summarized in Figure 1A. We
detected significant differences in the expressions of m5C
regulators between ccRCC and para-cancer tissues (p < .05)
(Figure 1B). Analysis of CNV frequency indicated that CNV
alterations were prevalent in the 17 m5C regulators, and half of
the m5C regulators more frequently showed copy number
amplification compared with copy number loss (Figure 1C).
Besides this, in DNA variation profiles, we found 19
experienced samples of m5C regulators with a frequency of
5.65% among 336 ccRCC samples from TCGA (Figure 1D).
The location of CNV alterations of the m5C regulators on
chromosomes is shown in Figure 1E. Notably, ccRCC samples
could be distinguished from normal samples completely based on
the expression pattern of these m5C regulators (Figure 1F). These
findings suggest a high degree of m5C modification–mediated
intertumoral heterogeneity of genetic and expressional alteration
landscape between ccRCC and adjacent normal samples,
suggesting that the aberrant expression of m5C regulators may
play an essential role in ccRCC malignancy.
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FIGURE 1 | The overall depiction of genetic variations of m5C regulators in ccRCC. (A) The dynamic reversible process of m5C DNA methylation mediated by
regulators as well as their potential biological functions for ccRCC are summarized. (B)Comparison of the expression levels of 17 m5C regulators in 530 ccRCC samples
and >12,000 para-cancer tissues. (C) Copy number variations (CNVs) of the 17 m5C regulators in ccRCC from TCGA cohort. (D) Somatic variant landscape of the
17 m5C regulators in ccRCC from TCGA cohort. (E) The location of CNV alterations of m5C regulators on chromosomes. (F) Principal component analysis of
ccRCC samples from the TCGA cohort based on the expression of the 17 m5C regulators.
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Machine Learning Algorithms Identify m5C
Modification Patterns Mediated by the
Regulators
Three data sets (both proteome and transcriptome) with
available survival and clinicopathological information
(TCGA, CPTAC, and RECA-EU) were included in one meta-
cohort. Figure 2A shows the comprehensive landscape of the
interaction of the 17 m5C regulators, interaction network, and
the prognostic implications for ccRCC patients. The results
identified TET2, MBD1, MBD2, MECP2, ZBTB4, ZBTB38,
and UHRF2 as protumorigenesis indicators for ccRCC, and

MBD3, UHRF1, and DNMT3B were identified as significant
favorable factors for ccRCC. We also found that expression of
the m5C regulators in the same functional category exhibited
remarkable correlations, and a marked association was
displayed among writers, regulators, erasers, and readers. For
instance, whether ccRCC tumors with a high writer gene
expression exhibit a high eraser gene expression normally
depended on the different writer and eraser genes. However,
we found that tumors with high expression of the m5C reader
gene ZFP57 showed low expression of some reader genes
(ZBTB4, UHRF2, MBD3, and MBD2) although the high
expression of other reader genes was not affected. These

FIGURE 2 | Machine learning algorithms identify m5C modification patterns mediated by the regulators. (A) Comprehensive landscape of the interactions of the
17 m5C regulators, interaction network, and the prognostic implications for ccRCC patients. (B) Unsupervised clustering based on expression of 17 m5C regulators. (C)
Overall survival curves of ccRCC patients in the two m5C modification pattern clusters.
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results imply that a cross-talk among the genes encoding m5C
writers, readers, regulators, and erasers could play essential roles
in the malignancy of different m5C modification patterns and
tumor immune microenvironment characterization among
individual ccRCC samples.

We next used the ConsensusClusterPlus R package to identify
ccRCC patients with qualitatively different m5C modification
patterns based on the transcriptional expression of 17 m5C
regulators. Two distinct modification patterns were classified
using unsupervised clustering: m5C cluster A (including 271
cases) and m5C cluster B (354 cases) (Figure 2B). Survival
analysis of patients in the two clusters revealed that patients
with the m5C cluster A modification pattern showed improved
survival compared with patients with the m5C cluster B pattern
(Figure 2C).

Evaluation of TME Characterizations and
Immune Contexture Proportion in Distinct
m5C Modification Patterns
To investigate the clinical differences and biological processes
between the two distinct m5C modification patterns, we
constructed a clustering heat map showing differentially
expressed m5C regulators and clinical information, including
age, sex, stage, and survival status in the two m5C
modification patterns (Supplementary Figure S1). GSVA
enrichment analysis indicated that m5C clusters mainly differ
in heterochromatin, peptidyl modification pathways, and
microRNA post-transcriptional regulation (Figure 3A). The
ccRCC samples in m5C cluster A showed prominent
upregulation in E2F1, miR-147B, miR-3910, miR-4261, miR-

FIGURE 3 | TME characterizations and infiltrating immune cells in the two m5C modification patterns. (A) GSVA results of the two m5C modification patterns. (B)
Estimation of immune cell infiltration in the two m5C modification patterns. (C) Univariate regression analysis of various types of immune cells.
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3689-3p, miR-4719, PBXIP1, and ZNF184 targeted regulation
and downregulation in peptidyl modification processes, such as
histone binding, peptide amino acid modification, protein
autoubiquitination, ubiquitin-like protein ligase, and
transferase activities (Supplementary Figure S2A).

We next examined immune cell infiltration to assess
differences in the immune context of the TME between m5C
modification patterns. m5C cluster A was remarkably rich in
innate immune cell infiltration and the active immune response
process with a high abundance of activated CD4 T cells,
immature B cells, regulatory T cells, Tfh cells, dendritic cells,
eosinophils, macrophages, mast cells, natural killer cells, and
neutrophils (Figure 3B). The results from GSVA analyses
demonstrate that the m5C cluster A modification pattern,
which predicts favorable clinical outcome, was significantly

associated with antitumor immune responses. Therefore, we
hypothesized that the peptidyl modification inactivation in
m5C cluster A may be involved in the antitumor effects of
immune cell infiltration related to this cluster.

We further assessed the prognostic implications of immune
cell infiltration in ccRCC (Figure 3C). Univariate Cox analysis
indicated that T follicular helper cells (p � .022), immature B cells
(p � .013), mast cells (p � .006), type 17 T helper cells (p � .036),
and activated CD8 T cells (p � .036) could serve as independent
prognostic protective factors in ccRCC, andMDSC (p < .001) was
a remarkable risk indicator for 616 ccRCC patients from the
TCGA and CPTAC cohorts (Figure 3C). When
clinicopathological factors were analyzed, we found no
significant differences in the pathology types and genetic
variations between the patients in the two m5C modification

FIGURE 4 | Identification and prognostic implications of m5C genotype signatures. (A) Random forest results for selecting the most important DEGs. (B)
Unsupervised clustering based on the expression of selected DEGs. (C) Overall survival curves of ccRCC cases in the indicated subgroups. (D) Expression levels of
17 m5C regulators in the indicated subgroups.
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FIGURE 5 | Functional annotations of m5C genotype signatures. (A) Functional enrichment results of the DEGs. (B) Integrative heat map including DEG expression,
gender, age, clinical stage, and survival status in the two m5C modification pattern groups.
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pattern groups, which suggests that DNA m5C methylation
modification did not influence clinical and pathologic features
of tumors (Supplementary Figure S2B–G).

Identification and Functional Annotations of
m5C Genotype Signatures
To further explore the biological consequences of the distinct m5C
modification patterns, we then investigated the genetic constitution of
individual m5C clusters patterns and identified 180m5C
phenotype–related DEGs using the Limma package of R software.
Random forest analysis was performed to determine the most
important m5C gene signatures in identifying m5C modification
patterns (Figure 4A). To investigate the regulation mechanism of
DNAm5Cmodifications on ccRCC,we then performed unsupervised
clustering analyses based on the obtained 180m5C phenotype–related
signatures to classify patients into different genotypes. Consistent with
the clustering of m5C modification patterns, the unsupervised
clustering algorithm also revealed two distinct m5C modification
genomic subtypes, named as m5C gene clusters A and B
(Figure 4B). Kaplan–Meier analysis of ccRCC cases in the
combined discovery TCGA and test CPTAC cohorts revealed that
patients in the m5C gene cluster B group (n � 247) showed
significantly poor survival compared with cases in m5C gene
cluster A (n � 369) (Figure 4C). Prominent differences in the
expression of m5C regulators between the distinct m5C gene
clusters were confirmed using unpaired t test, and the results were
in accordance with the results of DNAm5Cmethylationmodification
patterns (Figure 4D). These results revealed the presence of distinct
m5C methylation modification patterns in ccRCC and showed that
these patterns could distinguish aggressiveness in ccRCC.

Next, the clusterProfiler package was used to perform GO and
KEGG functional enrichment analysis for the m5C DEGs. The
biological processes, cellular components, and molecular functions
with significant enrichment are summarized in Figure 5A. Enriched
terms in biological processes were related to m5C modification,
neutrophil activation–related immune response, and response to
hypoxia, which provided a basis that m5C modification may play
an important role in the immune regulation of the ccRCC TME
(Figure 5A). We further found that ccRCC samples in m5C gene
cluster B showed advanced clinical stages and exhibited higher
mortality (Figure 5B). Older patients were concentrated in the
m5C gene cluster B, and the distinct genotype clusters were
characterized by different m5C signature genes.

Generation and Validation of the m5C Score
Model
The above findings demonstrate that the m5C methylation
modification plays a key regulatory role in reshaping different
TME landscapes. Nevertheless, these results were determined on
the patient population and might not provide accurate
information on survivorship based on m5C modification
patterns in individual ccRCC patients. Considering the
individual intratumor heterogeneity of m5C methylation and
using the phenotype-related genes, we establish a scoring
system for easy quantification of the m5C modification

patterns for individual ccRCC patients and named this system
m5C score. The alluvial diagram was applied to visualize the
alterations of individual patients (Figure 6A). The m5C score
clusters prominently classified the patients into two prognostic
groups (good and poor) and enabled stratification of patients in
both the discovery TCGA and validation real-world FUSCC
cohorts. Survival analysis indicated that high m5C score was
significantly correlated with poor overall survival (HR � 0.3 with
95% CI from 0.22 to 0.41, p < .0001) in 516 patients with ccRCC
from TCGA (Figure 6B) and correlated with worse overall
survival in 266 patients with ccRCC from FUSCC (Figure 6C).

Relation of m5C Modification with
Clinicopathological Features and Tumor
Somatic Mutation
We next investigated the relationship of m5C score with clinical
and pathologic characteristics in ccRCC patients from the
training, testing, and validation cohorts. Consistent with its
prognostic value, the m5C score significantly increased with
advancing clinical stages and aggressive ISUP grade and
reached the highest level at stage IV or grade 4 (Figures
7A,B). There was no difference in age between the two
clusters. The proportion of males in the high m5C score group
was markedly higher than that of females, which is consistent
with the result that male patients have a worse prognosis than
female patients with ccRCC (Figures 7C,D).

To reveal the role of the m5C score phenotype in the
comprehensive molecular landscape of ccRCC, we examined
tumor somatic mutation and evaluated DNA variation in the
m5C score clusters. Patients with mutation in PBRM1, a gene
frequently mutated in ccRCC, showed a prominently lower m5C
score compared with patients with wild-type PBRM1 (Figure 7E).
The m5C score did not show a significant association with tumor
mutation burden in patients with ccRCC (Figure 7F).

We next evaluated the differences in the DNA variation
landscape in the two m5C score clusters. The top 20 frequently
mutated genes in them5C score clusters are shown inFigure 7G,H.
VHL (mutation frequency, 40%), BAP1 (13%), SETD2 (13%), TTN
(13%), and MTOR (11%) were the five most frequently mutated
genes in them5C scorehigh group (Figure 7G), whereasVHL (24%),
PBRM1 (19%),TTN (15%), SETD2 (7%), andMTOR (6%) were the
five most frequently mutated genes in the m5C scorelow group
(Figure 7H). Thus, we speculate that the significantly higher
mutation frequency of BAP1 in the high m5C score group may
contribute to the poor prognosis for ccRCC patients and the low
mutation frequency of PBRM1 may reduce immunotherapy
efficiency for ccRCC patients. Copy number variant features are
depicted in Figure 7I,J. In addition to the common mutation site
located in 5q35.3, copy number variant in m5C scorehigh samples
were generally located in 3q25.33, 2q10.53, and 9p12.3 loci.

Characteristics of TME and Immune Cell
Distribution in m5C-Related Phenotypes
To define the role of m5C-related phenotypes in regulation of the
TME, we first investigated cancer-related pathways
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characterizing m5C gene clusters based on training and testing
cohorts. As shown in Figure 8A, TGF-β signaling, oxidative
phosphorylation, and fatty acid metabolism were significantly
downregulated in ccRCC samples in the m5C scorehigh group
compared with the m5C scorelow group, whereas pathways
involved in protumorigenesis responses of the TME, such as
hypoxia, glycolysis, epithelial-mesenchymal translation, and IL6-
JAK/STAT3 signaling, were markedly upregulated in the m5C
scorehigh group. We next evaluated the immune cell infiltration in
the TME inm5C-related phenotype clusters. The results indicated
that CD4+ T cell memory resting, mast cell resting, and monocyte
and NK cell infiltration significantly correlated with a high
m5C score, whereas plasma cell, M0 macrophage, Treg cell,
and neutrophil infiltration were significantly associated with
low m5C score in ccRCC patients (Figure 8B). To evaluate the
regulatory role of m5C score in TME, we explored the
expression of chemokine, cytokine, and immune
checkpoints in m5C score clusters (Figure 8C). We found
the expression levels of immune checkpoint factors were
significantly different in the m5C scorehigh group, suggesting
that the high m5C score cluster may indicate an immune-
suppressive microenvironment.

Influence of m5C Modification Patterns on
Chemotherapy and Immunotherapy
Response
Immunotherapies, including anti-immune checkpoints, are
revolutionizing the field of cancer therapy. RCC is resistant to
traditional cytotoxic chemotherapy but can be responsive to
immunotherapy. Therefore, we investigated whether the m5C
modification signature could predict the responses to
chemotherapy and ICTs in the combined ccRCC cohorts (n �
860, TCGA, CPTAC, and FUSCC). Evaluation of the ICC50 of
cisplatin showed that the low m5C score group was significantly
correlated with a higher IC50 value, which indicates that the low
m5C score group may be less sensitive to cisplatin (Figure 9A).
However, no significant differences were observed in predicting
IC50 values of gemcitabine between the m5Cmodification groups

(Figure 9B). The TIDE algorithm was used to predict
intratumoral heterogeneity and responsiveness to
immunotherapy. The findings indicate that a higher m5C score
was significantly correlated with an elevated TIDE score,
suggesting that the high m5C score group may show a reduced
response to immunotherapy, such as PD-1 and PD-L1 blockade
(Figure 9C). The ROC curve showed a relatively stable ability for
predicting the immunotherapy response of m5C score with an
AUC of 0.676 (Figure 9D).

TME Characterization in the m5C
Modification Phenotypes
To further test the stability of m5C score model, we applied the
m5C score signature established in the real-world FUSCC
proteomics cohort and evaluated TME characteristics by IHC
staining analysis of 30 consecutive ccRCC tissue sections. IHC
staining revealed significantly decreased CD8, PD-L1, and
GLUT-1 expression and elevated FoxP3, CXCL13, and FASN
expression and Ki-67 staining in tumors from the FUSCC cohort
(p < .05) in the m5C scorehigh group (Figure 10), suggesting
immune-suppressive characteristics of the TME. Furthermore,
we found a significantly decreased number of infiltrated CD4+

T cells and CD8+FoxP3+ Treg cells and downregulated PD-L1
expression in the immune-cold m5C scorehigh group using opal
multimarker IHC staining (Figure 10). In general, the data from
multiomics bioinformatics to the real world demonstrate that
lower m5C score predicts better responses to immunotherapy for
ccRCC patients.

DISCUSSION

Increasing evidence demonstrates that malignant biological
behaviors of cancer cells are tightly regulated by the TME and
genetic variations (Mehdi and Rabbani, 2021). DNA methylation
plays an essential role in modulating the transcriptional
regulation of genes and subsequent cell functions, including
the infiltration and functional differentiation of immune cells

FIGURE 6 | Generation and validation of the m5C score model. (A) Sanky diagram of the various clusters. (B) Overall survival curve of ccRCC patients from TCGA
cohort stratified by m5C score. (C) Overall survival curve of 233 ccRCC patients from FUSCC cohort stratified by m5C score.
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FIGURE 7 | Relation of m5C modification with clinicopathological features and tumor somatic mutation. (A–F) Associations of m5C score with stage, grade, age,
gender, PBRM1 mutation status, and TMB in TCGA cohort. (G–H) Landscapes of somatic variants of high and low m5C score groups in TCGA cohort. (I–J) Copy
number variants of high and low m5C score groups in TCGA cohort.
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participating in protumor and antitumor immune responses
(Saleh et al., 2020; Mehdi and Rabbani, 2021; Smiline Girija,
2021). Previous studies mainly focus on tumor-infiltrated

lymphocytes or single signatures, and the influence of DNA
m5C epigenetic regulators on the TME was not
comprehensively elucidated. Therefore, the overall

FIGURE 8 | Characteristics of TME and immune cell distribution in m5C-related phenotypes. (A) GSVA results of high and low m5C score groups based on
expression profiles from CPTAC and TCGA cohorts. (B) Estimation of immune cell infiltration in high and low m5C score groups. (C) Expression levels of chemokines,
cytokines, and immune checkpoints between high and low m5C score groups.
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characteristics and implications of m5C modification patterns on
the tumor immune microenvironment in ccRCC warrant
further study.

In the current study, we used transcriptome data of 17 DNA
methylation regulators and identified two distinct m5C
methylation modification patterns that are associated with
remarkable differences in molecular and clinical characteristics
of TME in large-scale ccRCC samples in training, testing, and
validation real-world cohorts. The m5C scorehigh cluster was
characterized by poor prognosis and activation of innate
immunity and metabolism, corresponding to the immune-
desert phenotype. The m5C scorelow cluster was characterized
by the activation of antitumor immunity, corresponding to the
immune-excluded phenotype. IHC analysis revealed that the
immune-excluded phenotype showed the presence of
abundant immune cell infiltrations retained in the parenchyma
in ccRCC samples rather than being located in the stroma
(Gajewski et al., 2013). This is consistent with our previous
findings that, even in occasional cases of nested tertiary

lymphatic structures in the immune-excluded phenotype,
tumor-infiltrating lymphocytes rarely appear in the stromal
component of ccRCC samples (Xu et al., 2021a). Moreover,
the immune-desert phenotype, the m5C scorehigh cluster,
prominently correlates with progressive malignancy, immune
tolerance, and lack of T cell–mediated immune responses
(Kim and Chen, 2016), guiding effectiveness of immune
checkpoint therapy strategies for ccRCC patients.

Research has identified molecular features underlying the
initiation and progression of ccRCC. VHL gene inactivation
and copy number variation are shown to be involved in
promoting the initiation and lethality of ccRCC (D’Avella
et al., 2020). The development of sequencing technologies
enables determination of the comprehensive DNA mutation
landscape and intratumor heterogeneity in the carcinogenesis
process (Wettersten et al., 2015; Young et al., 2018; Clark et al.,
2019). These findings are extremely important contributions to
the categorization and treatment guidance of ccRCC. However,
DNA variation, tumor epigenomics, and TME characterizations

FIGURE 9 | Influence of m5Cmodification patterns on chemotherapy and immunotherapy response. (A–B) IC50 value for cisplatin and gemcitabine in low and high
m5C score groups. (C) TIDE prediction score of low and high m5C score groups. (D) ROC curve for evaluating the ability of m5C score to predict immunotherapy
response.
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of ccRCC remain unclear. Here, we find significantly decreased
mutation frequency of VHL (40% vs. 24%) and BAP1 (13% vs.
4%) and an elevated mutation frequency of PBRM1 (11%. vs 19%)
in the high m5C score cluster compared with the low m5C
modification pattern. Currently, screening for germline
mutations in BAP1 and PBRM1 is recommended as these
genes may serve as promising targets to predict clinical
outcomes and ICT treatment responses (Miao et al., 2018;
Gallan et al., 2021; Jonasch et al., 2021). Therefore, we
speculate that the significantly higher proportion of BAP1
mutation in the m5C scorehigh cluster contributes to the poor
prognosis for ccRCC patients, and the low proportion of PBRM1
mutations in the immune-desert phenotype may reflect reduced
immunotherapy efficiency of ccRCC patients.

DNA methylation has an important impact on tumor
initiation and progression because of its critical role in
transcriptional regulation (Bates, 2020). An overall decrease in
methylated CpG content is typically observed in tumors, and this
leads to genome instability and oncogene activation. CpG
hypermethylation in the promoter region of specific genes is a
hallmark of many tumors (Paz et al., 2003; Bai et al., 2021). DNA
methylations have been identified in genes involved in immune
modulation, inflammation, cell differentiation, and metabolic
and development processes (Serena et al., 2020). Here, we
show that m5C methylation modification patterns may
function to reshape different metabolism processes and the
immune TME landscape, and our results suggest that m5C
modification may mediate the therapeutic efficacy of ICTs.
The m5C score together with integrated signatures, including
tumor mutation load, PD-L1 expression, T cell infiltration, and
immune TME based on multiomics large-scale samples data,
may represent an effective predictive treatment strategy. In

clinical practice, the m5C score can be used to comprehensively
assess the m5C methylation modification patterns as well as
distinct immune cell infiltration of the TME within
individuals, allowing for determination of the genetic
landscape and immunophenotypes and effective clinical
treatment of ccRCC.

CONCLUSION

In summary, this work reveals the general regulation mechanisms
of DNA m5C methylation modification patterns on the tumor
immunemicroenvironment. Them5Cmodification patterns have
marked influences on intratumoral heterogeneity and the
complexity of the individual TME. Comprehensive assessment
of tumor m5C modification patterns enhances our understanding
of TME cell-infiltrating characterizations and helps establish
precision immunotherapy strategies for individual ccRCC
patients.

MAIN FINDINGS

This work reveals the general regulation mechanisms of DNA
m5C methylation modification patterns on the tumor immune
microenvironment. The different m5C modification patterns
have marked influences on intratumoral heterogeneity and
complexity of the individual TME. Comprehensive assessment
of tumor m5C modification patterns may enhance our
understanding of TME cell-infiltrating characterizations and
help establish precision immunotherapy strategies for
individual ccRCC patients.

FIGURE 10 | TME characterization in the m5Cmodification phenotypes. TME characterization assessment between high and lowm5C score groups based on IHC
staining (CD4, CD8, FoxP3, PD-L1, GLUT-1, CXCL13, TGF-β, FASN, Ki-67) and opal multimarkers IHC staining (DAPI, CK, CD4, CD8, FoxP3, PD-L1).
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5-Hydroxymethylcytosine Signatures
in Circulating Cell-Free DNA as Early
Warning Biomarkers for COVID-19
Progression and Myocardial Injury
Hang-yu Chen1,7†, Xiao-xiao Li1†, Chao Li 1†, Hai-chuan Zhu3†, Hong-yan Hou4, Bo Zhang4,
Li-ming Cheng4, Hui Hu5, Zhong-xin Lu5, Jia-xing Liu3, Ze-ruo Yang6, Lei Zhang6, Nuo Xu6,
Long Chen7, Chuan He8, Chao-ran Dong2*, Qing-gang Ge1* and Jian Lin1,7*

1Department of Pharmacy and Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China, 2Institute of
Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 3Institute of Biology
and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China, 4Department of
Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
5Department of Medical Laboratory, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China, 6Yang Sheng Tang Natural Medicine Research Institute, Hangzhou, China, 7Synthetic and Functional
Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Innovation Center for Genomics, Peking
University, Beijing, China, 8Department of Chemistry, Department of Biochemistry and Molecular Biology, Howard Hughes
Medical Institute, The University of Chicago, Chicago, IL, United States

Background: The symptoms of coronavirus disease 2019 (COVID-19) range from
moderate to critical conditions, leading to death in some patients, and the early
warning indicators of the COVID-19 progression and the occurrence of its serious
complications such as myocardial injury are limited.

Methods: We carried out a multi-center, prospective cohort study in three hospitals in
Wuhan. Genome-wide 5-hydroxymethylcytosine (5hmC) profiles in plasma cell-free DNA
(cfDNA) was used to identify risk factors for COVID-19 pneumonia and develop a machine
learning model using samples from 53 healthy volunteers, 66 patients with moderate
COVID-19, 99 patients with severe COVID-19, and 38 patients with critical COVID-19.

Results: Our warning model demonstrated that an area under the curve (AUC) for 5hmC
warningmoderate patients developed into severe status was 0.81 (95%CI 0.77–0.85) and
for severe patients developed into critical status was 0.92 (95% CI 0.89–0.96). We further
built a warning model on patients with and without myocardial injury with the AUC of 0.89
(95% CI 0.84–0.95).

Conclusion: This is the first study showing the utility of 5hmC as an accurate early warning
marker for disease progression and myocardial injury in patients with COVID-19. Our
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results show that phosphodiesterase 4D and ten-eleven translocation 2 may be important
markers in the progression of COVID-19 disease.

Keywords: COVID-19, 5hmC, myocardial injury, machine learning, PDE4D

INTRODUCTION

The pandemic of coronavirus disease 2019 (COVID-19), caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) infection, has become a global public health crisis (Pollard
et al., 2020). According to the World Health Organization
(WHO) latest numbers on July 21, 2021, over 192.8 million
confirmed cases of COVID-19 and more than 4.0 million
deaths worldwide. The clinical spectrum of COVID-19
pneumonia ranges from asymptomatic infection to critically ill
cases (McArthur et al., 2020). Critical patients with a higher
mortality rate suffered from organ failure, including
cerebrovascular accident (CVA), myocardial injury (MI), and
thrombotic events (Wang et al., 2020). MI has been the most
reported cardiovascular complication with a significant risk of in-
hospital mortality rate (51.2%) compared with those without MI
(4.5%) (Bonow et al., 2020). These findings suggest that early
identification of patients with COVID-19 at risk of critical illness
could improve their outcomes. Recently, several studies
demonstrated that the higher levels of inflammatory markers
such as C-reactive protein (CRP) (Wang, 2020), ferritin (Lin et al.,
2020), D-dimer (Zhang et al., 2020), high neutrophil-to-
lymphocyte ratio (NLR) (Kong et al., 2020), and blood
proteomic and metabolomic biomarkers (Wu D. et al., 2020;
Shen et al., 2020) could be used to distinguish between moderate
and severe cases. Unfortunately, so far there are no reliable
indicators available to warn the COVID-19 progression and
the occurrence of serious complications such as MI.

5-Hydroxymethylcytosine (5hmC) is an abundant epigenetic
marker associated with gene expression and involves a wide range
of biological processes ranging from development to pathogenesis
(Han et al., 2016). It is derived from 5mC by ten-eleven
translocation (TET) protein family and displays a tissue-
specific mass distribution (Tan and Shi, 2012). Our laboratory
and others have demonstrated that the 5hmC signatures from
cell-free DNA (cfDNA) could serve as epigenetic biomarkers for
several human diseases such as cancer, neurodegenerative
disorders, and coronary heart disease (Szulwach et al., 2011; Li
et al., 2017; Dong et al., 2020). These characteristics indicate that
5hmC may have potential value in COVID-19 warning and
discovery of target therapy.

In this study, we performed 5hmC-Seal, a sensitive chemical
labeling-based sequencing technology (Song et al., 2011; Dong
et al., 2020) that allows rapid and reliable sequencing of
whole-genome 5hmC in cfDNA from plasma of 256 patients
with (n � 203) and without (n � 53) COVID-19 diagnosis. We
found 5hmC characteristics detected in cfDNA could be used
as early warning markers for the disease progression and MI
of COVID-19.

MATERIALS AND METHODS

Data and Sample Source
We carried out a multi-center, prospective cohort study in three
hospitals in Wuhan. FromMarch to April 2020, we consecutively
enrolled 203 patients aged at least 18 years and diagnosed with
COVID-19 within 48 h after their hospitalization. Patients were
classified into three groups according to the disease severity
defined by the National Health Commission of the People’s
Republic of China (Table 1) (National Health Commission,
2020). Five-milliliter discarded plasma samples were collected
from each patient as they were entering into the study cohort, and
the results of clinical tests nearby were recorded. The plasma
cfDNA was extracted using the Quick-cfDNA Serum and Plasma
Kit (ZYMO) and then stored at −80°C. Each patient was
prospectively followed up until hospital discharge or death.
Complications during the first 28-day follow-up were
evaluated and recorded: 1) MI, based on symptoms (if
described), electrocardiogram/echocardiography (if any), and
troponin I (TnI) (≥0.4 ng/ml) (Dong et al., 2020); 2)
gastrointestinal injury (GS), defined as occurrence of
gastrointestinal haemorrhage, gastroparesis, and severe/acute
pancreatitis; 3) sepsis-induced coagulopathy (SIC), defined as
blood platelet <150*109/L. The occurrence of all-cause death
during the whole follow-up was confirmed by home page and
final discussion in medical records. The Ethical Review Board of
the Peking University Third Hospital approved the study
protocol in March 2020 (IRB00006761-M2020083). On the
basis of the consideration of discarded samples used, together
with a complete set of information security system established,
the informed consent of participants was exempted.

Study Design
We performed a prospective cohort study using 5hmCmarkers to
distinguish patients with COVID-19 from healthy people and
warn the disease progression and MI. The 256 samples were
divided into four groups: healthy people [n � 53, aged 35 (IQR
29–40) years], moderate patients (n � 66), severe patients (n �
99), and critical patients (n � 38). 5hmC libraries for all samples
were constructed with high-efficiency 5hmC-Seal technology, as
previously described (Song et al., 2011). All 5hmC libraries were
sequenced using Illumina Next500. Meanwhile, in data
processing, we split patients with COVID-19 into a training
cohort and a validation cohort. The objective of the first part
of the study was to screen candidate genes with differential 5hmC
modifications in these four groups from the training cohort. The
objective of the second part of the study was to warn disease
progression andMI using the model developed in the first part, in
the validation cohort (Figure 1).
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5hmC Library Construction, Sequencing,
and Mapping
Briefly, because of the highly sensitive nature of the chemical
labeling method, the input cfDNA can be as low as 1–10 ng.
Paired-end 39–base pair (bp) high-throughput sequencing was
performed on the NextSeq 500 platform. FASTQC (version
0.11.5) was used to assess the sequence quality. Raw reads
were aligned to the human genome (version hg19) with
bowtie2 (version 2.2.9) (Langmead and Salzberg, 2012) and
further filtered with SAMtools (version 1.3.1) (Li et al., 2009)
to retain unique non-duplicate matches to the genome. Pair-end
reads were extended and converted into bedGraph format
normalized to the total number of aligned reads using
BEDTools (version 2.19.1) (Quinlan, 2014) and then converted
to bigwig format using bedGraphToBigWig from the UCSC
Genome Browser for visualization in the Integrated Genomics
Viewer. Potential hMRs were identified using MACS (version
1.4.2), and the parameters used were macs 14-p 1e-3-f BAM-g hs
(Consortium et al., 2007). Peak calls were merged using
BEDTools merge, and only those peak regions that appeared
in more than 10 samples and less than 1,000 bp were retained.
Blacklisted genomic regions that tend to show artifact signals,
according to ENCODE, were also filtered.

Feature Selection, Model Training, and
Validation
Patients with COVID-19 were randomly divided into training
and validation cohorts with a 3:2 ratio; using train_test_split in
scikit-learn (version 0.22.1) package in Python (version 3.6.10),
the logistic regression CV (LR) model was chosen to establish
warning models. In the training cohort, we identified

differentially 5hMc-enriched regions (DhMRs) using DESeq2
package (version 1.30.0) in R (version 3.5.0), with the filtering
threshold (p-value< 0.01 and |log2FoldChange| ≥ 0.5). To avoid
overfitting, five rounds of 10-fold cross-validation was performed.
The details are as follows: The training cohort was randomly
divided into fivefolds, four of which were selected as the training
subset, and the remaining one was the test subset. Then,
we performed 100 repeats to further filtered using the
recursive feature elimination algorithm (RFECV) in scikit-
learn [parameters used: estimator � LogisticRegressionCV
(class_weight � “balanced”, cv � 2, max_iter � 1,000), scoring �
“accuracy”]. Meanwhile, 10-fold cross-validation was repeated
100 times in each round, and the final markers observed in at least
three rounds were used to build the final warning model in the
training cohort. Next, we trained the logistic regression CVmodel
(LR) with the features selected from DhMRs (parameter used:
maxiter � 100, method � “lbfgs”). Finally, the trained LR model
was used to warn the progression and MI for patients with
COVID-19 in the validation cohort. Receiver operating
characteristic (ROC) analysis was used to evaluate model
performance.

Clinical Indicators Prediction Model
Construction
For clinical data, continuous variables are presented as mean
(SD), and categorical variables are presented as count
(percentages). To understand the relationship between
categorical/continuous variables and treatment outcome,
Kruskal–Wallis test by ranks and χ2 test were used,
respectively. A two-sided p-value of < 0.05 was considered to
be statistically significant. The warning power of clinical data was

TABLE 1 | Statistical characteristics of baseline indicators in patients with COVID-19.

Total (n = 203) Moderate (n = 66) Severe (n = 99) Critical (n = 38) p-value

Age, years 65 (54–73) 58 (37–67) 67 (57–77) 67 (56–73) ***
—

§
≥65 years 74 (68–81) 72 (67–83) 77 (69–81) 72 (68–74) —

Gender, female/male 98/105 40/26 43/56 15/23 —

Obesity (BMI ≥30) 4 of (22) 0 of 0 3 of 21 1 of 1
Hypertension 84 16 47 21
Coronary heart disease 18 2 6 10
Heart failure 12 1 4 7
Chronic liver disease 13 0 4 9
Immunodeficiency 9 1 2 6
Stroke history 12 2 3 7
Diabetes 47 7 16 24
Asthma, moderate severe 3 0 1 2
COPD 14 0 6 8
CKD 15 1 2 12
Cancer 8 0 1 7
Smoke history, naïve/ex-smoker/smoker 119/14/18 18/2/3 75/9/6 26/3/9

an (§), median (p25-p75), mean ± SD.
bp-value: Moderate-Severe: *, Severe-Critical: #, Moderate-Critical: §.
c*p < 0.05, **p < 0.01, and ***p < 0.001.
COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease.
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estimated by generalized linear model function in R-base and
pROC package (version 1.15.3) in R (version 3.6.2).

Exploring Functional Relevance of the
5hmC Markers
We used the ChIPseeker R Package (version 1.20.0) (Yu
et al., 2015) to annotate the DhMRs, and the genes closest to
the marker regions were used for the following functional
analyses. The Gene Ontology (GO) enrichment analysis
(Biological Process) was done by the ClueGO (version 2.5.5)
and CluePedia (version 1.5.5) plug-in from Cytoscape software
(version 3.7.2). We used the following parameters: medium
network specificity, Bonferroni step down pV correction, and
two-sided hypergeometric test.

GEO Datasets
For published RNA sequencing (RNA-seq) dataset, GSE150728
(Wilk et al., 2020) and GSE151879 (Chen et al., 2020), we

downloaded the normalized expression values directly from
Gene Expression Omnibus (GEO) database.

Statistical Analysis
Statistical analysis in Table 1 was conducted in GraphPad Prism
5. We used two-tailed t-tests (paired or unpaired depending on
the experiments) for normally distributed data. We used the
percentile method to calculate 95% CIs, and p-value < 0.05 was
considered statistically significant.

RESULTS

Sample Collected and Clinical Sample
Characteristic
Table 1 shows the baseline characteristics of the patients. Of
the 203 patients with COVID-19 (105 males and 98 females, the
median age was 65 years), 66 patients were diagnosed with
moderate symptoms, 99 patients with severe symptoms, and

FIGURE 1 | Overview of study design. A total of 203 cfDNA samples were collected at the time of diagnosis from patients with COVID-19. 5hmC libraries for all
samples were constructed with high-efficiency hmC-Seal technology. cfDNA is ligated with Illumina adapter and labeled with biotin on 5hmC for pull-down with
streptavidin beads. The final library is completed by direct PCR from streptavidin beads. Next, high-throughput sequencing was performed on the NextSeq 500 platform.
A logistic regression model was trained by the training cohort was used to warn COVID-19 progression and myocardial injury in the validation cohort.
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38 patients with critical symptoms. Those severe to critical ones
had a heavy burden of comorbidities such as hypertension,
diabetes, and coronary heart disease. The levels of lymphocyte
count (1.1×109/L) and neutrophil count (3.62×109/L) at the time
of hospital admission were in the lower limit. In this study,
compared with patients with moderate COVID-19, those severe
to critical patients showed elder age, active cellular immunity
(lower lymphocyte but higher CD3+CD19−level), and increased
inflammatory response [higher neutrophil and interleukin-6 (IL-
6) level)] at the baseline (Table 2). In addition, there were more
likely to have poor outcomes presented as more extended
mechanical ventilation, more days of hospital, stay, and even
death. During the first 28-day follow-up, MI, SIC, and GS
occurred in 40, 10, and 9 patients, respectively. A total of 14
patients died in the hospital, with the median time of 28 (8, 32)
days from entering into cohort to death occurring.

The Landscape of 5hmC Profile Between
the Healthy Sample and Patients with
COVID-19
According to the clinical presentation, the patients with COVID-
19 were classified into three disease groups (Figure 1; Table 1).
First, we perform quality control (QC) analysis for 5hmC-Seal
data in four groups and each sample such as the unique mapping
rate and number of unique reads (Supplementary Figure S1A-F,
Supplementary Table S1). Then, we identified the 5hmC-
enriched peaks among the four groups and found that the
groups of patients with COVID-19 enriched more peaks than
the healthy control group. This was more manifest in the critical
group, which showed the highest 5-hmC in different genomic
characteristic regions, such as promoters and exon (Figure 2A).

In addition, we found that the groups of patients with COVID-19
have more peaks enriched in the enhancers (Supplementary
Figure S1). Next, we conducted differential analysis (|
log2FoldChange| ≥ 0.5, p < 0.01) and observed 10,585 DhMRs
(differentially 5hmC enriched regions), including upregulated
(n � 7,801) and downregulated (n � 2,784) regions in the
patients with COVID-19 compared with the healthy group
(Figure 2B, Supplementary Table S2). We clustered the top
200 DhMRs (190 up and 10 down) detected by hierarchical
clustering method. The results showed that the COVID-19
groups were well separated from the healthy people group.
Meanwhile, moderate, severe, and critical groups tended to
differentiate from each other (Figure 2C).

Next, we did GO biological pathway analysis to explore the
function pathway of signature 5hmC genes in patients with
COVID-19. The result showed that genes with upregulated
5hmC signal were enriched in neutrophil cells mediated
immune response pathway, such as neutrophil activation
(Figure 2D); meanwhile, the hubs of the GO functional
interaction networks showed that these 5hmC-associated
differential genes (n � 52), including phosphodiesterase 4D
(PDE4D), CD14 molecule (CD14), and mitogen-activated
protein kinase kinase kinase 4 (MAP4K4) participated in
regulating neutrophil activation pathway (Figure 2E). The
pathway enrichment in the patients with COVID-19 was
consistent with the previous studies, which reported the higher
level of neutrophil-to-lymphocyte is associated with severe
COVID-19 (Kong et al., 2020). Furthermore, the
downregulated gene enriched pathways included cell
development signaling pathways (Figure 2F). Strikingly,
consistent with our findings, 5hmC-enriched genes involved
with immune response signaling pathways had higher mRNA

TABLE 2 | Statistical characteristics of clinical indicators in patients with COVID-19.

Total (n = 203) Moderate (n = 66) Severe (n = 99) Critical (n = 38) p-value

NEUT#, ×109/L 3.62 (3.05–6.95) 3.425 (2.83–5.41) 4.62 (3.01–6.48) 8.05 (4.79–11.86) *
###
§§§

LYMPH#, ×109/L 1.10 (0.57–1.51) 1.44 (1.14–1.83) 0.81 (0.53–1.35) 0.69 (0.37–1.22) ***
§§§

PLT, ×109/L 194 (146.25–247.5) 202.5 (169–254.75) 181 (141–239.25) 194.5 (136.25–260)
(CD3+CD19−) #,/ul 283 (77.19–708) 73.24 (67.12–84.75) 478.5 (222.25–901.5) 403.5 (192.75–597.75) ***

§§§
(CD3+CD4+) # 41.8 (33.41–48.44) 39.04 (33.12–47.53) 46.84 (46.12–48.69) 44.19 (34.14–49.89)
(CD3+CD8+) # 23.89 (18.91–30.59) 24.8 (19.99–32.58) 19.34 (13.45–24.27) 21.34 (17.85–29.08)
IL-6, pg/ml 9.44 (2.26–28.7) 2.92 (1.50–8.59) 11.99 (3.18–27.07) 29.54 (15.09–56.56) **

§§
TnI, pg/ml 0.02 (0.01–2.5) 0.005 (0.0017–0.01) 0.03 (0.01–7.60) 0.03 (0.012–0.065) ***

§§§
INR 1.02 (0.97–1.12) 0.99 (0.95–1.05) 1.02 (0.97–1.12) 1.12 (0.125–1.215) *

##
§§§

Mechanical ventilation 45 0 25 20
If yes, mechanical ventilation, hours 494 (392–696) NA 456 (254–684) 504 (360–696) §§§
Hospital length of stay, days 26 (17–36) 20.5 (11–29) 31 (21–41) 26.5 (22–39) ***

§§§
Survival/non-survival 184/15 66/0 90/8 28/7
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FIGURE 2 | The landscape of 5hmC in circulating cell-free DNA of patients with COVID-19. (A) Genome-wide 5hmC distribution in different genomic features
grouped by patients with COVID-19 (**p < 0.01). (B) Volcano plot (patients with COVID-19 vs. healthy control). Significantly altered hMRs [abs (log2FoldChange) ≥0.5;
p-value <0.01] are highlighted in red (up) or green (down) using the COVID-19 groups as the reference. Black dots represent the hMRs that are not differences. (C)
Heatmap of 203 patients with COVID-19 and 53 healthy control based on top 200 DhMRs (|log2FoldChange| ≥ 0.5 and p < 0.01). (D–F) GO enrichment analysis
and function exploration of 5hmC markers using Cytoscape software (p < 0.01). GO enrichment with 5hmC increase (D) or decrease (F) in patients with COVID-19. (E)
GO enrichment and Gene-Concept Network. hMRs, 5 hMc-enriched regions; DhMRs, differentially 5hMc-enriched regions.
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expression levels in neutrophils of patients with COVID-19 from
the small conditional RNA-seq dataset (GSE150728); see
Supplementary Figure S2A. In addition, CD14
(Supplementary Figure S2B) and MAP4K4 (Supplementary

Figure S2C) were highly enriched in hydroxymethylation for
patients with COVID-19 (p � 0.00033 and 0.044), and the levels
of hydroxymethylation increased gradually in groups moderate,
severe, and critical patients and MI. All these results suggest that

FIGURE 3 | 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as a novel early warning biomarker for COVID-19 progression. (A) Heatmap of
validation cohort based on 15 DhMRs-associated genes selected in the warning model. (B) Receiver operating characteristic (ROC) curve of the warning model with
DhMRs in training and validation cohorts for COVID-19 progression. (C) ROC curve of the prediction model with clinical indicators in patients with COVID-19. (D)
Mortality ratio in severe patients and critical patients. (E) Principal component analysis plot of normalized 5hmC reads from 27 severe patients and 26 critical
patients. (F) Volcano plot (critical patients vs. severe patients). Significantly altered hMRs [abs (log2FoldChange) ≥ 0.5; p-value < 0.01] are highlighted in red (up) or blue
(down) using the critical patients group as the reference (n � 8,756). Black dots represent the hMRs that are not differences. (G) Heatmap of DhMRs-associated genes
selected for use in the warning model in the validation cohort. (H) ROC curve of the warning model with DhMRs in training and validation cohorts for COVID-19
progression. (I) ROC curve of the warning model with clinical indicators in COVID-19 progression. hMRs, 5hMc-enriched regions; DhMRs, differentially 5hMc-enriched
regions.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 7812677

Chen et al. 5hmC’s Role in COVID-19 Progression

43

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


differentially regulated 5hmC modified genes may have the
potential to distinguish patients with COVID-19 from healthy
people, and a unique combination of 5hmC modified genes
would warn the disease progress.

5hmC as Early Warning Biomarkers for
COVID-19 Progression
We further analyzed whether 5hmC characteristics detected in
cfDNA could be used as early biomarkers for COVID-19
progression. First, we investigated whether the candidate
DhMRs were associated with the severity of the disease. A
total of 132 patients with COVID-19 (66 with moderate and
66 with severe) were randomly divided into training (n � 78) and
validation cohorts (n � 54). Using the RFECV based on the
logistic regression CV estimator, we reduced the number of
DhMRs (15 DhMRs, |log2FoldChange| ≥ 0.5, p < 0.01,
Supplementary Table S3) in the training cohort, which
achieved the best cross-validation score. We found the
15 DhMRs (Supplementary Table S9), selected by the LR
model in the training cohort, that could distinguish severe
patients from moderate patients in the training
(Supplementary Figure S3A) and validation cohorts
(Figure 3A). Fifteen DhMRs could effectively warn moderate
patients and severe patients in the training cohort [area under the
curve (AUC) � 0.94, 95% CI: 0.91–0.99] and the validation cohort
(AUC � 0.81, 95% CI: 0.77–0.85); see Figure 3B. Recent studies
demonstrated that uncontrolled inflammation contributes to
disease severity in COVID-19 (Wu C. et al., 2020). By
developing and validating our model, we also confirmed that
certain inflammatory markers such as IL-6, D-dimer, NLR, and
lactate dehydrogenase (LDH) could be used as predictors of
COVID-19 disease severity. Notably, the combination of IL-6,
D-dimer, NLR, and LDH as a warning indicator of disease
progression achieved an AUC of 0.72 (95% CI: 0.65–0.78),
which is lower than the 5 hmC indicators (Figure 3C).

A total of 18.7% (38 cases) of patients with COVID-19 rapidly
developed a critical illness and had a higher mortality rate than
severe illness (Figure 3D). Therefore, the warning of patients who
become critically ill has clear significance for the early treatment
of COVID-19. To investigate whether the candidate DhMRs were
associated with critical patients, we randomly separated 38 severe
patients and 38 critical patients into training (n � 53) and
validation cohorts (n � 23). Then, we examined the difference
in 5hmC regions between severe and critical patients in the
training cohort. Principal component analysis (PCA) based on
top variance genes showed that severe patients could separate
from the critical patients based on the 5hmC patterns
(Figure 3E). Meanwhile, we conducted differential analysis (|
log2FoldChange| ≥ 0.5, p < 0.01) and observed 8,756 DhMRs,
including upregulated (n � 7,442) and downregulated (n � 1,314)
regions in severe compared to critical patients (Figure 3F and
Supplementary Table S4). Using the RFECV based on the
logistic regression CV estimator, we further reduced the
number of top 200 DhMRs from the training cohort to 10
DhMRs (Supplementary Table S10), which achieved the best
cross-validation score. In the validation cohort, 10 DhMRs

differentiated severe patients from critical patients in the
training (Supplementary Figure S3D) and validation cohorts
(Figure 3G). The AUC value of this model for warning severe
patients and critical patients was 0.92 (95% CI: 0.89 to 0.96,
Figure 3H), which was much higher than the clinical indicators
showed, such as LDH (AUC � 0.79, 95% CI: 0.74–0.84), IL-6
(AUC � 0.62, 95% CI: 0.57–0.68), D-dimer (AUC � 0.62, 95% CI:
0.56–0.68), and NLR (AUC � 0.77, 95% CI: 0.72–0.83); see
Figure 3I. These results implied that the 5hmC-based
biomarkers of circulating cfDNA were highly indicating of
COVID-19 progression. Gene functional enrichment analysis
showed that upregulated 5hmC modified genes in the severe
and critical patients were mainly enriched in neutrophil
degranulation, neutrophil-mediated immunity, and neutrophil
activation involved in immune response (see Supplementary
Figures S3B and S3C), which are associated with development
and progression of acute respiratory distress syndrome (ARDS)
(Wu C. et al., 2020). Interestingly, PDE4D was one of the warning
biomarkers that might indicate moderate to severe illness and
severe to critical illness and mediate cell chemotaxis signaling
pathways to affect the neutrophil-related immune system in
critical patients (Supplementary Figure S3E).

5hmC as Warning Biomarkers for
Myocardial Injury
In our studies, about 19.7% (40 cases) of patients with COVID-19
had MI who required ICU admission and ended up with a higher
mortality rate than those without MI (Supplementary Figure S4A).
Although the pathogenesis and biomarkers of COVID-19 have been
reported, few studies addressed complications of COVID-19,
especially MI. A total of 40 MI patients and 40 patients without
MI were randomly selected from severe and critical patients and
utilized in the warning model. Eighty patients were randomly
divided into training (n � 49) and validation cohorts (n � 31).
We observed MI patients separated from the without MI patients
based on the DhMRs (Figure 4A). Meanwhile, we identified the
5hmC-enriched peaks in MI patients and found that MI patients
enrich less peaks than without MI patients in different genomic
characteristic regions, such as promoters and exon (Supplementary
Figure S4B). Similarly, we identified 3,068 DhMRs (Figure 4B)
from the training set and generated a warning model using 12
DhMRs (Supplementary Table S11) from all DhMRs (|
log2FoldChange| ≥0.5, p-value < 0.01, Supplementary Table S5)
was able to effectively differentiate MI patients in the training cohort
(Supplementary Figure S4C) and the validation cohort (Figure 4C).
In the validation group, the AUC value of this model for early
warning the patients whom potentially at risk of MI was 0.89 (95%
CI: 0.84 to 0.95, Figure 4D). This indicates that DhMRs could be
early warning signs for complications of COVID-19. Besides that, we
found that the 5hmC characteristics from cfDNA could be separated
from other complications, such as GS and SIC (Supplementary
Figures S4D and S4E, Supplementary Table S6 and S7), and
separate between the non-survival patients and survival patients
(Supplementary Figure S4F, Supplementary Table S8). These
results suggest that the 5hmC is a potential tool for the warning
of COVID-19 progression and its complications.
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FIGURE 4 | 5-Hydroxymethylcytosine signatures as early warning biomarkers for myocardial injury. (A) Principal component analysis (PCA) using normalized read
counts from patients with myocardial injury (MI) and those without MI (unMI). (B) Volcano plot of hMRs (MI patients vs. unMI patients). (C)Heatmaps of 12 5hmCmarkers
with myocardial injury patients, levels, sex, and age information labeled in the validation cohort. Hierarchical clustering was performed across DhMRs-associated genes
and samples. (D) ROC curve of the warning model with DhMRs in training and validation cohorts for myocardial injury. (E,F) Venn diagram indicating overlap and
specificity of increase (E) or decrease (F) in myocardial injury patients from 5hmC-seq and RNA-seq (GSE151879) dataset. (G,H) The expression data are from the
GSE151879 dataset. Each dot represents one healthy person or myocardial injury patients; error bars represent mean values. Statistically significant p values are
indicated with asterisks (**p < 0.01 and ****p < 0.0001, by t-test). (I) GO enrichment and Gene-Concept Network with overlapping genes in myocardial injury patients.

(Continued )
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Potential Associations Between 5hmC
Markers and Myocardial Injury in patients
with COVID-19
To explore the correlation of DhMRs and tissue-specific genes, we
initially evaluated the tissue-specific transcriptome profiles of
heart tissue from autopsies of healthy and patients with COVID-
19, and human embryonic stem cell (hESC)–derived
cardiomyocytes in GSE151879 datasets. Comparison between
our 5hmC-seq and RNA-seq data, we found that, in addition
to the unique genes between three groups, there are 75 and 14
overlapping genes in upregulated genes and downregulated
genes, respectively (Figures 4E,F). In particular, we found a
common gene, PDE4D, in all three warning models, and
PDE4D are highly expressed in the heart tissue from patients
with COVID-19, especially in hESC-derived cardiomyocytes
(Figures 4G,H). Recent studies showed that uncontrolled
inflammation contributes to the disease severity (Del Valle
et al., 2020). Our study found the 5hmC modified genes of
critical patients enriched in neutrophil-mediated immunity
pathways consistent with previous research indicating that the
neutrophil elastase inhibitor (Sivelestat) is a promising
therapeutic option in COVID-19 with ARDS (Sahebnasagh
et al., 2020). To investigate whether there are other targets for
the MI or patients with a high risk of death, we examined the
pathway enrichment in 75 overlapping genes. We found several
immune-related signaling pathways, including chemokine
activity, neutrophil chemotaxis, and CD4-positive, alpha-beta
T cell activation pathways (Figure 4I). Among them, PDE4D
plays an important role in the immune signaling pathway and
influences the immune system by activating chemokines and
mediating neutrophil chemotaxis (Figure 4I). Interestingly, we
found that the 5hmC modification level of PDE4D, a drug target
for chronic obstructive pulmonary disease (COPD) (Yuan et al.,
2016), was significantly increased in the death group and MI
group (Figure 4J). In addition, hydroxymethylation levels were
significantly reduced inMI patients (Supplementary figure S4B),
and the TET2 enzyme, which can catalyze the conversion of 5-
methylcytosine (5mC) to 5hmC, had a lower 5hmC level in the
death group and MI patients’ group (Figure 4K).

DISCUSSION

Recent studies have reported that 5hmC plays a critical role in
gene expression regulation and is also a novel tool to identify
biomarkers for disease diagnosis and prognosis (Cui et al., 2020).
In this study, we profiled genome-wide 5hmC in cfDNA from
blood plasma, investigated its association with COVID-19 disease
progression, and identified the prognostic factors associated with
disease progression, MI, and mortality risk. Our primary analysis

found the patients’ groups enrich more peaks than the healthy
group, and 5hmC marker genes differed by clinical characteristics
of patients at diagnosis. We have identified COVID-19–associated
5hmC signature peaks enriched in the gene bodies and promoter
regions (Figure 2A). The COVID-19–associated 5hmC signature
gene was enriched in the neutrophil migration pathway, consistent
with the previous studies that reported neutrophils and neutrophil
extracellular traps drive necroinflammation in COVID-19 (Tomar
et al., 2020).

Moreover, we developed a machine learning model based on
5hmC data from patients with COVID-19 at different disease
severity classes (moderate, severe, and critical) to warn the disease
progression. The 5hmC indicators model improved accuracy
compared to the clinical markers such as LDH, IL-6, D-dimer,
and NLR (Figures 3B,C,H,I). Overall, these findings suggest the
profiled genome-wide 5hmC in cfDNA from blood plasma can be
regarded as an early warning of critical illness in COVID-19.
Immune phenotyping based on the LDH, IL-6, D-dimer, and
NLR is a well-established marker in predicting disease severity
and ICU-mortality outcomes in patients with COVID-19 (Yan
et al., 2020). However, few studies were focused on the
complications, diagnosis, and warning. COVID-19 is regarded
as a systemic disease involving multiple systems, including
cardiovascular, respiratory, gastrointestinal, and immune system
(Iddir et al., 2020; Liu et al., 2020). Our results confirmed that
patients who suffer fromMI had higher mortality (Supplementary
figure S4A), and 5hmC was a potential warning biomarkers of
occurring MI in the COVID-19 (Figure 4C).

Our research tried to expand the application of 5hmC
markers in the disease, especially for exploring the potential
therapeutic targets (Supplementary figure S3E). There are two
primary reasons that we think this strategy is reliable. First, Cui
et al. performed the 5hmC-Seal and RNA-seq in 19 human
tissues derived from 10 organ systems and found that gene-
level 5hmC modifications can reflect the gene expression
status in different human tissues (Cui et al., 2020). This
indicates that 5hmC level is associated with gene expression,
consistent with previous studies. Second, several targets used
for COVID-19 treatment were also found in our results,
including TET2 (Zhang et al., 2021) and neutrophil-
mediated immunity pathway (Sahebnasagh et al., 2020). In
addition, for the MI, the 12 5hmC-enriched regions (hMRs)
were able to differentiate and predict effectively. Interestingly,
in a previous study, MAP4K4 (from the 12hMRs) has been to
promote cardiac muscle cell death (Virbasius and Czech, 2016).
Moreover, MAP4K4 carried a higher 5hmC modification,
which positively regulated the gene transcription. MAP4K4
is a key kinase in the mating pathway and is involved in many
aspects of cell functions and pathological processes (Yue et al.,
2014; Gao et al., 2016). Several studies found MAP4K4 as a
therapeutic target in cancer (Gao et al., 2016). Thus, whether

FIGURE 4 | The node size is proportional to the p-value calculated from the network (p < 0.05 and p < 0.01). (J,K) Boxplots of PDE4D and TET2 grouped by healthy
people, patients with COVID-19, myocardial injury (MI), and death. Log2 transformation of TMM normalized 5hmC enrichment values were plotted, and Wilcoxon t-test
was used. 5hmC, 5-hydroxymethylcytosine; hMRs, 5hMc-enriched regions; DhMRs, differentially 5hMc-enriched regions; PDE4D, phosphodiesterase 4D; TET2, ten-
eleven translocation 2.
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the MAP4K4 is a potential therapeutic target for MI needs
further study.

We found a potential target for the COVID-19 besides the
known targets, such as the PDE4D. In our study, PDE4D was one
of the 10 DhMRs that warn severe to critical illness and may
mediate cell chemotaxis signaling pathways to affect the
neutrophil-related immune system (Supplementary figure S3E).
We speculated that the PDE4D could be a potential drug
therapeutic target of COVID-19, especially for critical patients.
GSE151879 data showed that PDE4D was highly expressed in the
heart tissues of patients with COVID-19, especially in hESC-
derived cardiomyocytes. It also implicated that PDE4D might
play an important role in the immune system, for influencing
the immune system by activating chemokines and mediating
neutrophil chemotaxis (Figure 4I). In addition, TET2 had a
lower 5hmC level in the death group and MI patients’ group
(Figure 4K), and vitamin C restoring TET2 function could provide
therapy for patients with COVID-19. Recent studies consistently
demonstrated that a high dose of intravenous vitamin C could
improve outcomes and reduce mortality for patients with COVID-
19 (Zhang et al., 2021).We believe that the combination of PDE4D
inhibitor and vitamin C is a potential drug combination for the
treatment of COVID-19, especially in severely ill patients.

This cohort study has several limitations. First, the number of
cases was small, and small cases were used in the machine
learning model generation, but our study was the first study
using 5hmC as warning biomarkers in patients with COVID-19
and the exploratory study found the relevant targets may have
some far-reaching significance. Second, although some clinical
information is missing, it does not involve important variables.
For example, we used the TnI instead of the electrocardiogram
and/or echocardiography for the MI diagnosis. Third, all of the
targets should be confirmed by further validation. In current
pandemic, we believe that showing this important discovery in
advance maybe attract more attention to understanding this new
disease. Of course, we are already working on validation studies.

CONCLUSION

In conclusion, we identified potential 5hmC markers for patients
with COVID-19. This is the first study using 5hmC as early
warning biomarkers in patients with COVID-19, and we showed
that 5hmC has advanced advantages for COVID-19 progression
and MI warning.
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DNA methylation is a widespread epigenetic signal in human genome. With Nanopore
technology, differential methylation modifications including 5-methylcytosine (5mC) and 6-
methyladenine (6mA) can be identified. 5mC is the most important modification in
mammals, although 6mA may also function in growth and development as well as in
pathogenesis. While the role of 5mC at CpG islands in promoter regions associated with
transcriptional regulation has been well studied, but the relationship between 6mA and
transcription is still unclear. Thus, we collected two pairs of tumor tissues and adjacent
normal tissues from hepatocellular carcinoma (HCC) surgical samples for Nanopore
sequencing and transcriptome sequencing. It was found that 2,373 genes had both
5mC and 6mA, along with up- and down-regulated methylation sites. These genes were
regarded as unstable methylation genes. Compared with 6mA, 5mC had more inclined
distribution of unstable methylation sites. Chi-square test showed that the levels of 5mC
were consistent with both up- and down-regulated genes, but 6mA was not significant.
Moreover, the top three unstable methylation genes, TBC1D3H, CSMD1, and ROBO2,
were all related to cancer. Transcriptome and survival analyses revealed four potential
tumor suppressor genes including KCNIP4, CACNA1C, PACRG, and ST6GALNAC3. In
this study, we firstly proposed to combine 5mC and 6mA methylation sites to explore
functional genes, and further research found top of these unstable methylation genes
might be functional and some of them could serve as potential tumor suppressor genes.
Our study provided a new solution for epigenetic regulation research and therapy of HCC.

Keywords: 5-methylcytosine, N6-adenine methylation, nanopore sequencing, hepatocellular carcinoma, unstable
methylation genes
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1 INTRODUCTION

Hepatocellular carcinoma (HCC) is a common malignant
tumor and also the fourth leading cause of cancer-related
death worldwide (Kole et al., 2020; Sung et al., 2021).
Although the exact etiologies of HCC remain unclear, both
acute and chronic infections with hepatitis B virus (HBV) and
hepatitis C virus (HCV) can be the major causes. Hepatitis can
lead to liver cirrhosis and HCC (Ringelhan et al., 2017). Some
HCC patients may benefit from current treatment strategies
including radiofrequency ablation, surgery, liver
transplantation, and immunotherapy (Kole et al., 2020).
Traditionally, genetic instability is regarded as one of the
most common events in HCC. Recent studies have revealed
that HCC can be triggered by epigenetic modifications (Sceusi
et al., 2011).

In mammal genomes, cytosine DNA methylation (5-
methylcytosine, 5mC) is a widespread form of methylation
and can function by directly regulating the occurrence and
development of cancers (Mo et al., 2020; Lowe et al., 2021). In
HCC, 5mC is closely associated with survival rates and prognosis
(Hlady et al., 2019; Mo et al., 2020). Recent evidence has
accumulated that the regulation of 5mC-mediated gene
silencing usually operate via CpG islands methylation, while
most CpG islands associated with gene promoters are rarely
methylated (de Mendoza et al., 2019). It is inferred that gene
body 5mC also positively influences gene expression, which is
targeted by DNMT3 in PWWP domain, and the PWWP domain
also attracts an active transcription factor H3K36me3 (Baubec
et al., 2015; Morselli et al., 2015). Thus, gene body 5mC may
prime for active transcription but are not predictive. The 5mC
derived from cell-free DNA can be markers in HCC (Hlady et al.,
2019), reveals potential advantages of methylation to the
development of liquid biopsy.

N6-adenine methylation (6mA), initially a marker of DNA
modification in prokaryotes, has been identified in eukaryotes,
especially in mammalian and plant genomes. 6mA plays a role in
growth, development, and tumor progression (Zhou et al., 2018).
The whole 6mA modification map in human has been obtained
via SMRT sequencing, confirming that 6mA is widespread in
nuclear genome and mitochondrial genome (Xiao et al., 2018).
Further studies have shown the amount of 6mA is extremely low
in eukaryote, while the modification of 6mA in mammals is
mainly concentrated on the mitochondrial DNA (Kawarada et al.,
2017). However, the small number of sites does not mean they are
not functional. For example, in c-kit gene, a single 5mC
methylation site is enough to affect the binding of the
transcription factor GATA-1 to the gene body and regulate
the normal development of hematopoietic system (Yang et al.,
2020). During the development of mouse trophoblast stem cells,
the 6mA-mediated repression of stress-induced DNA double
helix destabilization-SATB1 interactions is essential for gene
regulation. 6mA can balance the boundaries between
euchromatin and heterochromatin (Li et al., 2020), and
knockdown of 6mA methyltransferase also affects
transcriptome-wide fluctuation of gene expression (Luo et al.,
2018). Thus, there are connections between DNA modification

and gene expression, although the specific regulatory
mechanisms are still uncertain.

Differential methylation can be identified by using long-
sequencing nanopore technology. We selected methylation
sites that are different between tumor and adjacent normal
tissues. Chi-square test revealed that the levels of 5mC were
significantly correlated with gene transcription, but 6mA didn’t
show much relevance. In HCC, 2,373 genes had both 5mC and
6mA, with up- and down-regulated methylation sites. We
considered these genes as unstable methylation genes. Since
5mC and 6mA can influence gene expressions, unstable
methylation genes with top amount of methylation sites were
selected. Based on transcriptome information, we found eleven
genes in top 100 unstable methylation genes could affect the
prognosis of patients and four of them could be potential tumor
suppressor genes.

2 MATERIALS AND METHODS

2.1 Patients and Samples
As sequencing samples, two pairs of tumor tissues and adjacent
normal tissues were collected from HCC surgical samples at the
Cancer Hospital of Chinese Academy of Medical Sciences. The
specimens were immediately stored at −80°C. The tumor tissues
comprised >80% malignant cells, and the normal tissues
comprised a mixture of normal epithelial cells and stromal
cells. The constructed Nanopore sequencing library and RNA
library were same as in our previous research (Zhuo et al., 2021).
All the patients signed informed consent forms, and the research
was approved by the Ethics Committee of Beijing Hospital.

2.2 Nanopore Sequencing and Illumina
Sequencing
For Nanopore sequencing, DNA in tissues was extracted by using
MagAttract HMWDNA kit (Qiagen). The double-stranded DNA
was quantified by Nanodrop 2000 and Qubit dsDNA HS analysis
kits (Thermo Fisher Scientific). AMPure XP (Beckman Coulter)
and Qubit®3.0 fluorometer (Life Technologies) were used to
purify and concentrate DNA. The Nanopore sequencing
platform was GridION, R9.4.1 chip (ONT). After the quality
of chip was checked in accordance with the manufacturer’s
instructions, samples were sequenced. MinKNOW (v3.5.10)
and Guppy (v3.2.6) software were used to collect raw
electronic signals and convert the files to FASTQ format.

For Illumina sequencing, the DynabeadsTM mRNA
Purification Kit (Invitrogen) was used to extract mRNA from
total RNA. Ribo-Zero Gold Kits were utilized to remove rRNA.
According to the instructions of the NEB-Next Ultra Directional
RNA Library Prep Kit for Illumina (NEB, Ispawich, USA),
different index tags were selected. The constructed libraries
were sequenced using Illumina with 150 bp paired-end reads.

2.3 Methylation Calling for Nanopore Reads
For 5mC, Minimap2 (Li, 2018) was used to align sequencing
reads to human genome (GRCh37). Nanopolish call-methylation
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(Simpson et al., 2017) was used to determine the methylation
status of CpG site. The “-s” option in Nanopolish script was used
to split group into individual sites.

For 6mA, we aligned data by using the re-squiggle
algorithm in Tombo (version 1.4) (https://nanoporetech.
github.io/tombo/). The alternative DNA models were
available in Tombo and the 6mA model was used. The
method identified 6mA methylation sites better than the
canonical expected levels, which signal matches a specific
alternative base expected signal levels.

After the methylation signal scores of each genome sites
were obtained, we removed sites with all zero scores. The
scores ranged from 0 to 1, in which 0 means completely
unmethylated and 1 means completely methylated. Only
sites whose methylation score changed by greater than 2
folds were considered. When scores in part of tissues were
zero, the sites with scores greater than 0.6 in the remaining
tissues were defined as different sites. The sites with
significantly different scores were regarded as unstable
methylation sites. We used Bedtools intersect (Quinlan and
Hall, 2010) to annotate genes corresponding to unstable
methylation sites. The distribution of methylation sites in
genome was drawn by package CMplot (Yin et al., 2021) in
R language. The methylation intersection map used
VennDetail-Shiny (http://hurlab.med.und.edu:3838/
VennDetail/).

In order to verify the accuracy of methylation sites,
Megalodon (https://github.com/nanoporetech/megalodon)
was applied to reanalyze the sequencing data based on the
previous studies (Yuen et al., 2021). The intersection of two
data sets from different methods was obtained. The
methylation model was downloaded from Rerio (https://
github.com/nanoporetech/rerio) as recommended “res_dna_
r941_min_modbases-all-context_v001”. In order to verify the
accuracy of methylation analysis, the PCR amplified fragments
of top unstable methylation genes and tumor suppressor genes
were performed on Nanopore (Supplementary Figure S1),
and the sequencing data were analyzed parallelly. The
sequences generated by PCR amplification did not have any
methylation sites (Supplementary Figure S2) which proved
the reliability of our data processes.

2.4 Differential Gene Expression
FastQC (Andrews, 2010) was used to evaluated the quality of
sequencing data, which revealed some reads mixed with
adapters. In order to filter reads, we used Trimmomatic
(Bolger et al., 2014). The software dropped reads less than
28 nt, and the average quality was less than 15 through a four-
base sliding window. After the data was qualified, the reads
were mapped to genome by STAR (Dobin et al., 2013). For
each gene, we chose featureCounts (Liao et al., 2014) to
quantify read counts. The parameter
“requireBothEndsMapped” and “isPairedEnd” were set
TRUE. By DGEList and rpkm function in package edgeR
(Robinson et al., 2010), we calculated the normalized
expression levels of genes. We chose genes with fold-change
greater than 2 as differential expressed genes.

2.5 Functional Enrichment Analysis and
Survival Analysis
The R package ClusterProfiler (Wu et al., 2021) was used to
analyse gene set enrichment. It queried the latest online
database to perform functional analysis and allowed the
output up-to-date. The pathways were drawn by using
ggplot2 (Wickham, 2016).

For survival analysis, we used TCGA liver cancer (LIHC) in
UCSC Xena (Goldman et al., 2020) with overall survival to get
Kaplan-Meier plots of unstable methylation genes. The “p-value <
0.05” genes in survival analysis were selected.

3 RESULT

3.1 The Distribution of Methylation Sites in
Genome
After obtaining tumor and adjacent normal tissues, we
constructed sequencing libraries and developed analysis
pipeline (Figure 1). Output of sequencing data showed the
wide distribution of 5mC and 6mA sites in the genome
(Figure 2). Except for centromere region which full of
repetitive sequences affect detection, both 5mC and 6mA
were widely distributed in the genome. For the comparison of
the methylation signals between HCC tumor and adjacent
normal liver tissues, we extracted 5mC and 6mA sites that
were significantly different and compared the methylation
transition of these sites and their genes (Figure 3). Since the
change of a single site may affect gene expression (Yang et al.,
2020), we recalled all the sites with methylation score
changed at the gene level. The filtered up-regulated or
down-regulated sites were the methylation signals with
scores changed by more than two folds. For genes that
might be affected, the amount of 5mC changed was
significantly higher than that of 6mA (Figures 3A,B).
Notably, there were 2,373 genes having both own 5mC and

FIGURE 1 | Bioinformatics analysis pipeline of our study.
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FIGURE 2 | The distribution of methylation sites. (A) The 5mC unstable methylation sites in genome. The gap regions belong to genome centromere region. (B) The
6mA unstable methylation sites in genome.
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6mA, with up- and down-regulated methylation sites
(Supplementary File S1). These genes were considered as
unstable methylation genes in HCC.

Further analysis showed that 77.08% of these unstable
methylation genes belonged to protein-coding genes, which
was much higher than 42.23% of protein coding genes in
genome. While 28.92% of pseudogenes were found in genome,
the proportion of 5mC and 6mA changed was only 2.36%
(Figure 3C). Thus, genes with unstable methylation were
more likely to be protein-coding genes, and these unstable
methylation genes might have regulatory functions in
transcription and translation. In addition, the Pearson
correlation coefficient between the number of up-regulated
and down-regulated sites in 6mA was 0.83, while the
correlation coefficient in 5mC was only 0.16 (Figure 3D). It
demonstrates the distribution of 5mCwasmore specific thanmA.

In addition, 45.47% of these unstable methylation genes had
altered transcriptome suggesting the methylation in 5mC site was
more specific than 6mA.

3.2 Relationship Between Methylation and
Transcription
After acquiring the sequencing data, we focused on transcriptome
(Figure 4A) and found the differentially expressed genes were
indeed enriched in pathways related to liver cancer (Figure 4B).
Furthermore, Chi-square test was used to explore whether 5mC,
6mA were related to differentially expressed genes. It showed that
the amount of differentially expressed genes was highly correlated
with 5mC-modifications instead of 6mA which is also consistent
with the correlation of up- and down-regulated sites in
Figure 3D. In HCC, 1,470 genes had specifically up-regulated

FIGURE 3 | The statistics of 5mC and 6mA methylation changed sites. (A,B) The intersection number of genes with 5mC and 6mA, up- and down-regulated
methylation sites. (C) The gene types of unstable methylation genes. The orange column represented unstable methylation genes, and the blue column represented
genes in human genome. (D) The Pearson correlation coefficient between the number of up-regulated and down-regulated sites in 5mC and 6mA. It is only 0.16 for 5mC
but 0.83 for 6mA.
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6mA sites. The amount of the specific down-regulated 6mA genes
was 1,811. Totally, there were 1,417 differentially expressed genes.
After classification, Chi-square test indicated that the specifically
regulated 5mC genes instead of 6mA were significantly associated
with differentially expressed genes (Figure 4C). Similarly, the
significant difference of 5mC was also observed with the p-value

of 3.265e-04 (Figure 4C). The results indicated that in HCC
patients, 5mC methylation plays more important role than 6mA
in differential transcription.

While genes possess both up and downregulated methylation
signals, it is worth to note that whether more methylation signals
have more influence on differentially expressed genes, such as

FIGURE 4 | The association between differentially expressed genes and methylation related genes. (A) Heatmap of two pairs transcriptome sequencing data. (B)
The enriched pathways of differentially expressed genes in HCC. They were closely associated with HCC. (C) The number of 5mC, 6mA genes and differentially
expressed genes. The Chi-square test indicated that 5mC were significantly associated with differentially expressed genes, but 6mA were not. (D) The number of genes
both own 5mC or 6mA up and down methylation sites, as well as differentially expressed genes. The Chi-square test also indicated that 5mC were more related
with gene transcription than 6mA.
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genes with more upregulated methylation sites tend to be low-
expressed in transcriptome. Thus, we counted 2,901 genes with
5mC up and downregulated methylation signals and 1,206 genes
with 6mA (Figure 4D). Chi-square test also demonstrated that
the levels of 5mC were consistent with both up and
downregulated genes, but 6mA was not significant. Although
the relationship between the level of 5mC and the mRNA was not
linear, the influence of 5mC on transcription is more remarkable
than 6mA. It revealed that DNA methylation on the 5mC plays a
more important role than 6mA in transcriptional regulation.

3.3 Unstable Methylation Genes and Their
Relationships With Survival
DNA methylation accumulation and the epigenotype formation
on the genomemay occur in the early stages of carcinogenesis and
can predict the future cancer type (Kaneda et al., 2014).

Therefore, genes with more accumulated methylation changed
sites may play roles in the occurence and development of cancer.
In order to explore HCC-related unstable methylation genes, we
combined HCC transcriptome data and TCGA survival analysis.

In HCC, the genes at top list of unstable methylation sites are
TBC1D3H, CSMD1 and ROBO2. TBC1D3H belongs to TBC1
domain family, which can act as a GTPase activating protein for
RAB5 (Itoh et al., 2006; UniProt, 2021). Its dysregulation can lead
to tumorigenesis (Jian et al., 2020). Other proteins with TBC1
domain also function in cancer; for instance, TBC1 domain
family member 23 can interact with Ras-related protein Rab-
11A to promote poor prognosis in lung cancer (Zhang et al.,
2021). The second unstable methylation gene is CSMD1.
Deregulation of CSMD1 can link inflammation to
carcinogenesis via activating NF-κB pathway. The process
subsequently leads to the upregulation of c-Myc and
epithelial-mesenchymal transition markers (Chen et al., 2019).

FIGURE 5 | Survival analysis of tumor suppressor genes. All of these genes were associated with overall survival.
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It has also been reported that combined identification of
ARID1A, SENP3, and CSMD1 are effective prognostic
biomarkers for HCC patients (Zhao et al., 2021). The third
gene RoBo2 can suppress cancer development through TGF-β
signalling and stroma activation (Pinho et al., 2018). The evidence
showed that the top unstable methylation genes are involved in
the occurrence and development of cancer.

Survival analysis of top 100 unstable methylation genes was
performed. As shown by the Kaplan-Meier plot (p-value<0.05),
11 genes were significantly associated with overall survival of
patients (Supplementary File S1). Downregulation of tumor
suppressor genes function importantly in cancer formation
and progression, which involves alteration of epigenetic
modifications in genome-wide (Davenport et al., 2021).
Combined with transcriptome, six genes could be regarded as
tumor suppressor genes (Figure 5). Among them, CTNNA3 was
reported as a tumor suppressor in HCC before (He et al., 2016)
and the same as DLG2 in osteosarcoma (Shao et al., 2019). The
other four identified genes were KCNIP4, CACNA1C, PACRG,
and ST6GALNAC3 (Figure 5). For KCNIP4, its related pathways
were regulation of Wnt-mediated β-catenin signaling and target
gene transcription (Kitagawa et al., 2007), in which the elevated
Wnt-mediated β-catenin signaling could enhance the
proliferation of liver cells in HCC (Wang et al., 2019).
CACNA1C could be a prognostic predictor in ovarian cancer
(Chang and Dong, 2021), and its overall survival was equally
significant in HCC (Figure 5B). Abnormal promoter methylation
of PACRG (Agirre et al., 2006), and ST6GALNAC3 (Haldrup
et al., 2018) were associated with downregulation of gene
expression in cancers. However, methylation was not limited
to gene promoter. We found the unstable methylation sites in
their gene body also changed markedly. Therefore, some of the
unstable methylation genes may also serve as tumor suppressor
genes, providing new ideas for mining tumor-related genes in
future.

4 DISCUSSION

Compared with the well elucidated mechanism of 5mC on
transcriptional regulation, other DNA methylation
modification remains uncertain. It has been reported that
6mA is complementary to 5mC as an epigenomic mark in rice
(Zhou et al., 2018). Thus, we analyzed Nanopore sequencing data
to observe whether there is a clearly transcriptional regulatory
mechanism for 5mC and 6mA. Our study found that 6mA had
less influence on gene expression than 5mC. The Pearson
correlation coefficient of the number of up and downregulated
sites of 5mC was 0.16, and that of 6mA was 0.83. The distribution
of 5mC up and downregulated sites was more inclined and the
distribution of 6mA was more “uniform”. There were 2,373
unstable methylation genes having both 5mC and 6mA, with
up and downregulated methylation sites. The expressions of 1371
genes were different in tumor tissues and adjacent normal tissues.
The statistics for 1371 genes did not prove obviously
complementarity. It might be due to the species different. The
number of genes with 5mC showed significant correlation with

the number of differentially expressed genes, although such
correlation was not linear. Meanwhile, 6mA had less effect on
transcription, which requires further studies.

These 2,373 genes were regarded as unstable methylation
genes, and their expressions were related to the number of up
and downregulated methylation sites within them. In order to
explore HCC related genes, we combined the transcriptome and
survival data of TCGA liver cancer. Among the top 100 unstable
methylation genes, we found eleven genes significantly affected
the prognosis, and four of them can be defined as tumor
suppressor genes. Normally, tumor suppressor genes can
inhibit tumor cell proliferation and development. A typical
tumor suppressor gene often occurs genetic alterations or
epigenetic abnormality that reduce gene expression (Guo et al.,
2010). While they are expressed at low level or inactivated in
tumors, cell growth may lose control and facilitate tumor
progression. Decreased expression of tumor suppressor gene
also correlates with poor prognosis and reduced survival.
Thus, the newly found tumor suppressor genes in this study
can be prognostic predictor in HCC.

The top three unstable methylation genes in HCC are
TBC1D3H, CSMD1, and ROBO2, which are closely related to
the occurrence and development of HCC. TBC1D3H possesses
TBC1 domain, and the proteins of this family were reported to
regulate GTPase activation, which is related to tumorigenesis.
CSMD1 is involved in such well-known tumor pathways as NF-
κB pathway and epithelial-mesenchymal transition pathway.
ROBO2 can suppress cancer development. Thus, genes with
more unstable methylation sites in HCC are closely related to
tumors. For the four newly discovered tumor suppressor genes,
i.e., KCNIP4, CACNA1C, PACRG, and ST6GALNAC3, previous
studies have proved their regulatory effect in tumors. These four
genes were firstly considered to be tumor suppressor genes
through methylation site screening. DNA methylation plays a
critical interaction between tumor and immune cells. Tumor cells
can escape immune restriction by various epigenetic mechanisms
including DNA methylation (Cao and Yan, 2020). The top
unstable methylation genes in HCC could be the
pharmaceutical candidates like epigenetic regulators. The
repair of aberrant methylation may trigger antitumor immune
responses and further improve immunological surveillance. The
targeting agents of unstable methylation genes will have major
impacts in tumor-related treatment.
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Integrative Analysis of
5-Hydroxymethylcytosine and
Transcriptional Profiling Identified
5hmC-Modified lncRNA Panel as
Non-Invasive Biomarkers for
Diagnosis and Prognosis of
Pancreatic Cancer
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Guoquan Cao1*
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Pancreatic adenocarcinoma (PAAD) is the fourth leading cause of cancer-related deaths
worldwide. 5-Hydroxymethylcytosine (5hmC)-mediated epigenetic regulation has been
reported to be involved in cancer pathobiology and has emerged to be promising
biomarkers for cancer diagnosis and prognosis. However, 5hmC alterations at long
non-coding RNA (lncRNA) genes and their clinical significance remained unknown. In
this study, we performed the genome-wide investigation of lncRNA-associated plasma
cfDNA 5hmC changes in PAAD by plotting 5hmC reads against lncRNA genes, and
identified six PAAD-specific lncRNAs with abnormal 5hmC modifications compared with
healthy individuals. Then we applied machine-learning and Cox regression approaches to
develop predictive diagnostic (5hLRS) and prognostic (5hLPS) models using the 5hmC-
modified lncRNAs. The 5hLRS demonstrated excellent performance in discriminating
PAAD from healthy controls with an area under the curve (AUC) of 0.833 in the training
cohort and 0.719 in the independent testing cohort. The 5hLPS also effectively divides
PAAD patients into high-risk and low-risk groups with significantly different clinical
outcomes in the training cohort (log-rank test p = 0.04) and independent testing
cohort (log-rank test p = 0.0035). Functional analysis based on competitive
endogenous RNA (ceRNA) and enrichment analysis suggested that these differentially
regulated 5hmCmodified lncRNAs were associated with angiogenesis, circulatory system
process, leukocyte differentiation and metal ion homeostasis that are known important
events in the development and progression of PAAD. In conclusion, our study indicated the
potential clinical utility of 5hmC profiles at lncRNA loci as valuable biomarkers for non-
invasive diagnosis and prognostication of cancers.

Keywords: 5-hydroxymethylcytosine, pancreatic cancer, machining learning, long non-coding RNA, non-invasive
biomarker

Edited by:
Chunjie Jiang,

University of Pennsylvania,
United States

Reviewed by:
Jie Zhang,

Tongji University, China
Hao Lin,

University of Electronic Science and
Technology of China, China

*Correspondence:
Mingxi Zhu

hy0206175@hainmc.edu.cn
Meihao Wang

wzwmh@wmu.edu.cn
Guoquan Cao

caoguoquan@wmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Pathology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 30 December 2021
Accepted: 07 February 2022
Published: 25 March 2022

Citation:
Li S, Wang Y, Wen C, Zhu M, Wang M
and Cao G (2022) Integrative Analysis

of 5-Hydroxymethylcytosine and
Transcriptional Profiling Identified

5hmC-Modified lncRNA Panel as Non-
Invasive Biomarkers for Diagnosis and

Prognosis of Pancreatic Cancer.
Front. Cell Dev. Biol. 10:845641.
doi: 10.3389/fcell.2022.845641

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8456411

ORIGINAL RESEARCH
published: 25 March 2022

doi: 10.3389/fcell.2022.845641

59

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.845641&domain=pdf&date_stamp=2022-03-25
https://www.frontiersin.org/articles/10.3389/fcell.2022.845641/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.845641/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.845641/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.845641/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.845641/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.845641/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.845641/full
http://creativecommons.org/licenses/by/4.0/
mailto:hy0206175@hainmc.edu.cn
mailto:wzwmh@wmu.edu.cn
mailto:caoguoquan@wmu.edu.cn
https://doi.org/10.3389/fcell.2022.845641
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.845641


INTRODUCTION

Pancreatic adenocarcinoma (PAAD) is the fourth leading cause
of cancer-related deaths worldwide (Siegel et al., 2020). The lack
of early-stage diagnostics has hindered the development of
therapeutics that can slow down or reverse PAAD (Moutinho-
Ribeiro et al., 2017; Sohal et al., 2017). Carbohydrate antigen 19–9
(CA19-9) is the biomarker currently used for PAAD diagnosis
(Poruk et al., 2013). However, CA19-9 has a pooled sensitivity of
75.4% (95% CI: 73.4–77.4%) and a specificity of 77.6% (95% CI:
75.4–79.7%) for differentiation between malignant and non-
malignant forms of cancer (Zhang et al., 2015). Moreover, the
specificity of distinction between PAAD and CP often does not
exceed 60% (Schultz et al., 2014), which has prompted a search
for alternative biomarkers.

Circulating cell-free DNA (cfDNA) originates from cell death
in different tissues, which has attracted massive interest as a non-
invasive biomarker for cancer detection (Wan et al., 2017).
Tumor cells release small nucleic acid fragments into the
blood via multiple mechanisms, allowing cancer-associated
genetic alterations to be detected (Diaz and Bardelli, 2014;
Wan et al., 2017). Non-invasive biomarkers offer substantial
advantages over tissue biopsy as their easily accessible
characteristics make them ideal candidates for cancer
diagnosis and progression monitoring (Xu et al., 2017).

5-methylcytosine (5mC) modifications potentially
characterized various health conditions (Lehmann-Werman
et al., 2016; Guo et al., 2017). Nonetheless, there has been no
investigation to identify and sequence alternative modifications
in circulating cfDNA because the DNA samples are low-input. 5-
Hydroxymethylcytosine (5hmC) is a novel identified epigenetic
mark generated from 5mC by the ten-eleven translocation
proteins (Tahiliani et al., 2009). Increasing evidence showed
that low levels of 5hmC are observed in many tumors
frequently compared to corresponding normal tissues (Jin
et al., 2011). 5hmC is a stable intermediate of cytosine
demethylation. Active gene modification was associated with
the levels of 5hmC accumulation in promoters, gene bodies
and gene regulatory elements (Han et al., 2016). 5hmC
modifications play a curial role in cell development,
differentiation, maturation and self-renewal (Wang et al.,
2014). These characteristics suggested 5hmC signaling changes
in cfDNA may have potential values in cancer diagnosis and
progression monitoring using highly robust and sensitive 5hmC
sequencing technologies (Song et al., 2017).

Long non-coding RNA (lncRNA) expression is the most
pervasive transcriptional change in cancer, which is
demonstrated by the recent genome-wide characterization
of the human cancer transcriptome (Marchese et al., 2017;
Zhou et al., 2019a; Bao et al., 2020; Zhou et al., 2021b).
Multiple studies have shown that lncRNAs play a critical
role in the mechanism of occurrence, evolution, invasion and
metastasis of pancreatic cancer (Fu et al., 2017; Zhang et al.,
2020; Tang et al., 2021). Several studies have indicated the
impact of lncRNAs on the prognosis of pancreatic cancer
(Huang et al., 2016; Zhou et al., 2016). There is increasing
evidence that lncRNA expression could also be regulated by

epigenetic DNA modifications, such as DNA methylation,
histone modifications and 5hmC modification (Guttman
et al., 2009; White et al., 2014; Yan et al., 2015). Epigenetic
DNA modifications in lncRNA genes have been revealed to be
valuable non-invasive biomarkers for cancer diagnosis,
prognosis and surveillance (Hu et al., 2017; Zhou et al.,
2021a).

In the present study, we performed machine learning-based
integrative analysis of 5-hydroxymethylcytosine and
transcriptional profiling to identify plasma-derived lncRNAs
with PAAD-specific abnormal 5hmC modifications and
conducted a two-phase discovery-validation experiment to
explore the clinical potential of 5hmC-modified lncRNAs as
non-invasive biomarkers for diagnosis and prognosis of
pancreatic cancer.

MATERIALS AND METHODS

Sample Datasets
A total of 130 publicly available genome-wide nano-hmC-Seal
profiles from plasma cfDNA samples were used in this study,
including 34 PAAD patients and 96 healthy individuals from
Sequence Read Archive (SRA, SRP080977) of the National Center
for Biotechnology Information (NCBI) (Li et al., 2017). Clinical
and transcriptomic data (RNA-Seq, v.2019-07-20) of 182 PAAD
cases, including 176 primary tumors and four solid tissue normal,
generated by The Cancer Genome Atlas (TCGA) were
downloaded from UCSC Xena (https://xena.ucsc.edu/). In
addition, stem-loop expression (miRNA, v.2019.7.20) of 183
PAAD cases, including 1881 miRNAs, was also obtained from
UCSC Xena. Detailed information on the study population is
shown in Table 1. The workflow diagram of the study design is
shown in Figure 1

Data Preprocessing and Mapping of
5hmC-Modified lncRNAs
Read sequences were extracted in FASTQ files using the SRA
toolkit (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=
software, version 2.9.2), and then were aligned to the human
genome GRCh37 using Bowtie2 (version 2.3.4.2) with default
parameters (Langmead and Salzberg, 2012). To convert and sort
the alignment SAM files into BAM files, SAMtools (version 1.9)
was used to generate the files (Li et al., 2009). The picard-2.18.4
was used to retain unique non-duplicate matches to the genome
(http://broadinstitute.github.io/picard/). The released version of
the lncRNA reference gene annotation file (GRCh38 version 34)
was downloaded from the GENCODE database (https://www.
gencodegenes.org/). LiftOver was used to transfer the mapping
information from the GRCh38 version of the lncRNA reference
gene annotation file to the GRCh37 version. Genes encoding
lncRNAs were extracted based on GRCh37 annotation. Read
counts of 5hmC-modified lncRNAs were calculated using the
fragment counts in each RefSeq lncRNA obtained by BEDtools
(version 2.27.1) (Quinlan and Hall, 2010). The read counts were
converted into Transcripts Per kilobase of 5hmC in lncRNA per
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million mapped reads. Finally, 5hmC profiles of 16,827 lncRNAs
were obtained for further analysis.

Machining Learning-Based Establishment
of a Non-Invasive Diagnostic Model Based
on 5hmc Modified lncRNAs
The 5hmC profiles of lncRNAs were compared between PAAD
and healthy control samples. The lncRNAs with differential
5hmC modification were identified using the DESeq2 package
(version 1.22.2) (Love et al., 2014) with a |log2foldchange|>0.58
and false discovery rate adjusted p < 0.05, and were selected as
PAAD-specific 5hmC-modified lncRNAs. Then a 5hmC-
modified lncRNA-based risk scoring model (termed 5hLDS)
was constructed using the elastic net regularization on a
multivariable logistic regression approaches to distinguish
between PAAD and healthy individuals. The 5hLDS was
trained with 10-fold cross-validation and optimized using a
ROC curve for a grid of parameter values for α and λ (α
range, 0.05 to 1.00 with a length = 10; λ range: from 10–1 to
5*10–1 with a 0.1 increment), and this selection process was
repeated 20 times. Finally, the 5hLDS was established based on
PAAD-specific 5hmC-modified lncRNA markers. The 5hLDS

range was 0–1.0 and represented a final probability of PAAD for
each sample. The 5hLDS was established using the “trainControl”
and “train” functions from the Caret (version 6.0–86) R package.

Functional Analysis of PAAD-Specific
5hmC-Modified lncRNA Markers
Pearson correlation coefficient was used to measure the
expression relevance among PAAD-specific 5hmC-
modified lncRNA markers, miRNAs and mRNAs in the
TCGA cohort. Human experimentally validated miRNA-
mRNA interactions were downloaded from ENCORI
(https://starbase.sysu.edu.cn/index.php), the updated
version of the StarBase database providing the most
comprehensive network of miRNA-mRNA interactions
supported by CLIP-Seq data sets (Li et al., 2014). The
collected data contain 9,664 experimentally validated
miRNA-mRNA interactions, including 276 miRNAs and
14,837 mRNAs. Finally, PAAD-specific 5hmC-modified
lncRNA marker-related competitive endogenous RNA
(ceRNA) networks were constructed based on ceRNA
mechanism as follows: 1) there was a significantly high
negative co-expression relationship (p < 0.05 and r < -0.2)

TABLE 1 | Baseline clinical and pathological characteristics of the study population.

Cohorts Sample type Number (%) Platform Data source

Li’s cohort Pancreatic Cancer 130 nano-hmC-Seal-seq SRP080977
34

Healthy 96
TCGA-PAAD 180 RNA-seq TCGA

Primary Tumor 176
Solid Tissue Normal 4

FIGURE 1 | Workflow diagram of the study design. A two-phase discovery-validation study was conducted. The 5hmC-modified lncRNA-based predictive and
prognostic models for PAAD were developed using the machine-learning methods in the training cohort and validated in the independent testing cohort. PAAD,
Pancreatic adenocarcinoma; lncRNA, long non-coding RNAs; 5hmC, 5-Hydroxymethylcytosine.
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between miRNA and mRNA, and between miRNA and
lncRNAs; 2) there was significantly high positive co-
expression relationship (p < 0.05 and r > 0.4) between
mRNA and lncRNAs; 3) there were experimentally
validated miRNA-mRNA interactions; This ceRNA
network was visualized using the Cytoscape software
(version 3.8.2). Functional enrichment analysis of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) for mRNAs in the ceRNA network was
performed with Metascape (Zhou et al., 2019b).

Statistical Analysis
A diagnostic model was developed using the machining
learning approach, and a prognostic model was developed
using the Cox regression model. The diagnostic model was
evaluated with cross-validation and ROC methods. The
conventional univariate Cox proportional hazards
regression model for overall survival data was
implemented to identify variables associated with overall
survival. Significant factors in univariate analysis were
further subjected to a multivariate Cox regression analysis.
Hazard ratios (HR) and corresponding 95% confidence
interval (CI) were calculated in the Cox models. The
optimal risk cut-off value of the prognostic model was
calculated using the R package “survminer”. The PAAD
patients were stratified into high- and low-risk groups
according to the risk cut-off. Kaplan-Meier curve analysis

and Log-rank test were performed to visualize and compare
the survival difference between the two risk groups. A
Multivariate Cox regression model was used to examine
whether the prognostic model remained significant after
adjusting clinical variables. Statistical significance was
performed for categorical variables using the Wilcoxon
signed-rank test for two-group comparisons unless
otherwise specified in the figure legend. All statistical
analysis was conducted in R software, version 3.6.1.

RESULTS

Identification of Altered Plasma 5hmC
Modifications in lncRNAs Genes Involved in
PAAD
To examine the 5hmC modification of lncRNAs genes in
PAAD, we compared the 5hmC profiles of lncRNAs between
PAAD (n = 34) and healthy (n = 96) samples and found a
total of six lncRNAs that showed differential 5hmC
modification patterns (Figure 2A). Among six lncRNAs,
five lncRNAs (RP11-262A16.1, IGF2-AS1, AC108462.1,
RP11-714M23.2 and RP3-470B24.5) showed increasing
5hmC modification and one lncRNAs (LINC00486)
showed decreasing 5hmC modification in PAAD
compared to healthy samples (Figure 2B). These six

FIGURE 2 | Identification of PAAD-specific 5hmC-modified lncRNAs. (A) Volcano plot visualizing the intersections of 5hmC-modified up- and down-enriched
lncRNAs in PAAD samples compared with healthy controls. (B) Boxplots showing 5hmCmodification levels of lncRNAs between PAAD and healthy samples. Statistical
significance was determined using the Student’s t-test. (C) Heatmap of unsupervised hierarchical clustering of PAAD-specific 5hmC modification levels in lncRNAs.
PAAD, Pancreatic adenocarcinoma; lncRNA, long non-coding RNAs; 5hmC, 5-Hydroxymethylcytosine.
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lncRNAs with abnormal 5hmCmodifications were defined as
5hmC-modified lncRNAs. As shown in Figure 2C, the 5hmC
levels of six 5hmC-modified lncRNAs were significantly
different and revealed clinical potential as diagnostic
biomarkers in distinguishing PAAD from healthy controls
(Figure 2C).

Development and Validation of a
Plasma-Derived Diagnostic Model Based
on 5hmC-Modified lncRNAs
To further evaluate the potential of differentially regulated
5hmC modified lncRNAs as diagnostic biomarkers for
PAAD, we conducted a discovery-validation study, in
which 130 plasma cfDNA samples were split randomly
into equally sized training cohort and testing cohort,
respectively. We estimated the contribution of each
differentially regulated 5hmC modified lncRNAs to disease
diagnosis using the 5hmC-modified levels as the contributed

score in the training and testing cohorts. As shown in
Figures 3A,B, each of the differentially regulated 5hmC
modified lncRNAs exhibited a diagnostic performance
AUC of 0.62–0.745 in the training cohort and 0.58 to
0.741, respectively.

Then, we developed a machining learning-based non-invasive
diagnostic model based on six 5hmCmodified lncRNAs using the
elastic net regularization on a multivariable logistic regression
approach (termed 5hLDS) in the training cohort. Using the ten-
cross-validation, the 5hLDS could discriminate PAAD from
healthy individuals with an overall AUC of 0.833 (95% CI
0.709-0.958) (Figure 3C). Then the 5hLDS was validated in
the independent testing cohort and yielded a classification
performance AUC of 0.719 (95% CI 0.563-0.875) for PAAD
detection (Figure 3D). At a disease risk cut-off of 0.5, the 5hLDS
achieved 81.54% (95% CI 69.97%-90.08%) and 78.46% (95% CI
66.51%-87.69%) of accuracy to distinguish PAAD patients from
healthy individuals in the training cohort and testing cohort,
respectively. These results demonstrated AUC improvement

FIGURE 3 | Development and independent validation of a plasma-derived diagnostic model (5hLDS) based on 5hmC-modified lncRNAs. ROC curve and AUC
value of each PAAD-specific 5hmC-modified lncRNA for cancer diagnosis in the training cohort (A) and testing cohort (B). ROC curve and AUC value of the 5hLDS for
cancer diagnosis in the training cohort (C) and testing cohort (D). AUC, Area under the ROC curve; PAAD, Pancreatic adenocarcinoma; p5hmC-score, PAAD 5hmC-
LncRNA diagnosis score. PAAD, pancreatic adenocarcinoma.
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FIGURE 4 | Association between the 5hLD-score and disease outcome. (A) Boxplots showing the distribution of expression levels of lncRNAs between PAAD
patients and healthy controls. Statistical significance was determined using Wilcoxon signed-rank test. (B) Metaplot of univariate analysis of 5hmC-modified lncRNA
between high-expression and low-expression group. (C). Kaplan-Meier survival curves of each PAAD-specific lncRNA between high-expression and low-expression
groups. PAAD, pancreatic adenocarcinoma.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2022 | Volume 10 | Article 8456416

Li et al. 5hmC-Modified lncRNA Panel in PAAD

64

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


when incorporated six differentially regulated 5hmC modified
lncRNAs into the diagnostic model.

Association Between 5hmC-Modified
lncRNAs and Prognosis
We further examined whether expression levels of 5hmC-
modified lncRNAs were dysregulated in PAAD compared to
controls. Expression profiles of 5hmC-modified lncRNAs were
obtained from TCGA and were compared between PAAD
primary tumors and normal solid tissues. Two of six 5hmC-
modified lncRNAs exhibited differential expression patterns
between PAAD primary tumors and normal solid tissues. As
shown in Figure 4A, lncRNAs RP3-470B24.5 and RP11-
262A16.1 revealed significant or marginally significant
downregulated expression levels in PAAD compared to
normal solid tissues. Furthermore, three of six 5hmC-
modified lncRNAs showed significant association
correlation between expression levels and OS, including
RP11-262A16.1 (HR = 0.377, 95% CI 0.165–0.865, p =
0.021), RP11-714M23.2 (HR = 2.190, 95% CI 1.163–4.125,
p = 0.015) and RP3-470B24.5 (HR = 0.51, 95% CI
0.307–0.848, p = 0.009) (Figure 4B). Kaplan-Meier survival
analysis showed that PAAD patients with high expression of
RP3-470B24.5 and RP11-262A16.1 have significant improved
OS compared to those with low expression (log-rank test p <
0.0082 for RP3-470B24.5 and p < 0.017 for RP11-262A16.1),

while PAAD patients with high expression of RP11-714M23.2
tended to have poor OS compared to those with low expression
(log-rank test p < 0.013) (Figure 4C). These results
demonstrated the potential of three 5hmC-modified
lncRNAs as prognostic biomarkers.

5hmC-Modified lncRNAs-Based Prognostic
Prediction Model for PAAD
We developed a 5hmC-modified lncRNAs-based prognostic
risk score model (5hLPS) for the prognostication of PAAD
using the linear combination of the expression of three
5hmC-modified lncRNAs and weighted by relative
coefficients in the multivariate Cox regression as follows:
5hLPS = (-0.24378700) × expression value of RP11-262A16.1
+ 0.02015193 × expression value of RP11-714M23.2 +
(-1.97034856) × expression value of RP3-470B24.5. Then
we also conducted a discovery-validation study by splitting
PAAD samples from TCGA into equally sized training (n =
88) and testing (n = 88) cohort. The optimal risk cut-off value
of the 5hLPS stratified 88 patients of the training cohort into
the high-risk group (n = 62) and low-risk group (n = 26) with
significantly different OS. As shown in Figure 5A, patients in
the high-risk group had significantly shorter OS time than
those in the low-risk group (log-rank test p = 0.04). When
validated in the testing cohort, the 5hLPS separated the 88
patients of the testing cohort into high-risk (n = 68) and low-

FIGURE 5 | Development and independent validation of 5hmC-modified lncRNAs-based prognostic prediction model (5hLPS). Kaplan-Meier survival curves of
patients between the high-risk and low-risk groups in training cohort (A) and testing cohort (B). Forest plot of HR deriving from multivariate Cox regression analysis of
5hLPS with other clinical characteristics in training cohort (C) and testing cohort (D). HR, Hazard ratios.
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risk groups (n = 20). The median survival time in the low-risk
group was significantly better than that in the high-risk group
(log-rank test p = 0.0035) (Figure 5B). The univariate Cox
analysis also showed that the 5hLPS has a significant
association with OS both in the training (HR = 2.4, 95%
CI: 1.0–5.7, p < 0.05) and testing (HR = 3.6, 95% CI: 1.4–9.2,
p < 0.01) cohorts. To further examine whether the 5hLPS was
independent of other clinical and pathological factors. We

performed multivariable Cox proportional hazards analysis,
including individual clinical variables with the 5hLPS in each
cohort. As shown in Figure 5C, in the training cohort, the
5hLPS (HR = 2.49, 95% CI 1.05–5.9, p < 0.039) and age (HR =
1.04, 95% CI 1.01–1.1, p = 0.006) were significantly associated
with OS in the multivariate analysis. In the testing cohort,
only the 5hLPS maintained a significant association with OS
(HR = 3.75, 95% CI: 1.48–9.5, p = 0.005) (Figure 5D). These

FIGURE 6 | Functional characterization of PAAD-specific 5hmC-modified lncRNAs. (A) PAAD-specific 5hmC-modified lncRNA-associated ceRNA network. Blue
balls represent mRNAs; red balls represent lncRNA; green balls represent miRNA. Blue edges indicate lncRNA-miRNA-mRNA negative interactions; pink edges indicate
lncRNA-miRNA-mRNA positive interactions. The size of the shapes represents the degrees that are involved. The bigger the shape, the higher the degree. (B) Bar graph
of enriched terms acrossmRNA gene lists, length by -log10(P-value). Network graph of the enriched term (left pannel) colored by cluster-ID, where nodes that share
the same cluster-ID are typically close to each other; and enriched p-value (right panel) colored by p-value, where terms containing more genes tend to have a more
significant p-value. miRNA, microRNA; lncRNA, long non-coding RNA; ceRNA, competitive endogenous RNA; PAAD, pancreatic adenocarcinoma.
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results suggested that 5hLPS is an independent predictive
factor for patients with PAAD.

Functional Characterization of
5hmC-Modified lncRNA Markers
To explore the functional roles of 5hmC-modified lncRNAs, we
constructed a 5hmC-modified lncRNA marker-associated
ceRNA network which included 5,604 interactions among
358 mRNAs, three lncRNAs and 22 miRNAs
(Supplementary File S1), as shown in Figure 6A. Then we
performed pathway functional enrichment analysis for 358
mRNAs in this ceRNA via Metascape to infer potential
functional roles of 5hmC-modified lncRNA markers. As
shown in Figure 6B, 5hmC-modified lncRNA marker-
associated mRNAs were significantly enriched in
angiogenesis, circulatory system process, leukocyte
differentiation, and metal ion homeostasis, which are known
important events in the development and progression of the
development and progression of PAAD.

DISCUSSION

Pancreatic adenocarcinoma (PAAD) has an inferior
prognosis and remains a lethal malignancy (Schizas et al.,
2020). Recent studies suggest that aberrant expression of
lncRNA drives the initiation and progression of
malignancies (Bhan et al., 2017). Liquid biopsies provide a
non-invasive approach to detect tumors (Shen et al., 2018)
and a novel Nano-hmC-Seal technology to generate the
genome-wide profiles of 5hmC in cfDNA from blood
plasma for multiple cancer types (Li et al., 2017). Whether
plasma-derived 5hmC-modified lncRNA is a conclusive
biomarker for distinguishing the type of cancer and
diagnosing cancer is unclear. In this study, we explored
the potential application of the plasma-derived 5hmC
modification level in lncRNA being used as an alternative
biomarker for PAAD diagnosis and monitoring.

In this study, by redefining 5hmC sequencing reads to
lncRNA genes, 5hmC alterations of lncRNAs were
characterized in PAAD. Several altered 5hmC modifications
were distributed at lncRNAs in patients with PAAD compared
with healthy subjects. Herein, these differentially regulated
5hmC modified lncRNAs were considered as PAAD-specific
markers. We trained machine-learning algorithms with 10-fold
cross-validation using the differentially regulated 5hmC
modified lncRNAs as features (termed 5hLDS), and evaluated
the prediction performance in the training and testing cohorts.
The 5hLDS achieved superior diagnostic performance in
distinguishing PAAD from healthy controls both in the
training and testing cohorts.

Further exploring of expression relevance of the 5hmC-
modified lncRNAs in PAAD identified two of six 5hmC-
modified lncRNAs that were dysregulated expression in
PAAD compared to normal tissues, suggesting that these
5hmC modifications changes might lead to dysregulated

lncRNAs expression that involved in the development of
PAAD. Furthermore, we further investigated the effect of
expression of 5hmC-modified lncRNAs on survival and
found that 5hmC-modified lncRNAs were also able to
make a distinction between each PAAD patient into
distinct groups with better or worse survival outcomes.
These results also support the idea that 5hmC-modified
lncRNAs can serve as potential biomarkers for the
prognosis of PAAD patients. Therefore, we trained a
regression model with Cox analysis using the differentially
regulated 5hmC modified lncRNAs as features (termed
5hLPS), and evaluated the prognostic performance in the
training and testing cohorts. The 5hLPS exhibited superior
performance in classifying the patients into two groups with
significantly different overall survival independent of clinical
variables.

Although many lncRNAs have been discovered and
recorded in a vast amount of literature, only a few have
been well-functionally studied and characterized. It has
been reported that lncRNAs can act as ceRNA for miRNA
and emerge as important regulators involved in diverse
biological and physiopathological contexts. Among six
5hmC-modified lncRNAs identified in this study, lncRNA
IGF2-AS1 is expressed in antisense to the insulin-like growth
factor 2 (IGF2) gene and is imprinted and paternally
expressed (Vu et al., 2003). Many studies suggested that
transcripts from IGF2-AS1 are produced in tumors and
may suppress cell growth (Unger et al., 2017; Kasprzak
and Adamek, 2019; Contractor et al., 2020). Another
5hmC-modified lncRNAs, LINC00486, has been reported
to be a hot spot of breakpoints and has a high
rearrangement rate in non-small cell lung cancer cells
(Wang et al., 2018). A recent study also found that
LINC00486 may act as a tumor suppressor gene and its
overexpression can inhibit the proliferation and promote
the apoptosis of breast cancer tissues by suppressing miR-
182–5p expression (Yuan et al., 2020). To further gain a novel
functional insight for 5hmC-modified lncRNAs, we
construed a 5hmC-modified lncRNAs-associated ceRNA
network according to the ceRNA hypothesis and found
that mRNA in this ceRNA network were involved in the
known crucial event in the development and progression of
PAAD, such as angiogenesis, circulatory system process,
leukocyte differentiation and metal ion homeostasis.

The present study still had its limitations. First, this study did
not obtain significant clinical variables of 5hmC-modified
lncRNAs, such as follow-up time. Further independent
validation studies should be performed to help address
problems such as the potential selection bias for model
construction. Secondly, the regulatory mechanism of 5hmC
and lncRNA genes remains unclear due to the lack of paired
5hmC profiles and lncRNAs expression profiles. Finally, although
the 5hmC-modified lncRNAs have been validated in expression
levels from the TCGA cohort, further validation is required in
other retrospective or prospective cohorts to demonstrate the
generalizability of 5hmC-modified lncRNA for PAAD diagnosis
and prognosis.
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CONCLUSION

This study characterized the genome-wide pattern of lncRNA-
associated plasma cfDNA 5hmC changes in PAAD, and
demonstrated potential roles for 5hmC in the transcriptional
regulation of lncRNAs contributing to the development and
progression of PAAD. Finally, we identified and validated 5hmC-
modified lncRNA panels for the diagnosis and prognosis of PAAD
with high and robust performance, which presented potential
clinical utility of 5hmC-modified lncRNAs as valuable biomarkers
for non-invasive diagnosis and prognostication of cancers.
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miR-29b-3p Inhibitor Alleviates
Hypomethylation-Related Aberrations
Through a Feedback Loop Between
miR-29b-3p and DNA Methylation in
Cardiomyocytes
Fang Wu1,2,3†, Qian Yang1,2†, Yaping Mi2, Feng Wang1,2, Ke Cai2, Yawen Zhang1,2,
Youhua Wang4, Xu Wang5, Yonghao Gui1,2* and Qiang Li1*

1Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control,
NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s
Medical Center, Shanghai, China, 2Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of
Fudan University, National Children’sMedical Center, Shanghai, China, 3Department of Neonatology, Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai, China, 4Department of Cardiology, Longhua Hospital, Shanghai
University of Traditional Chinese Medicine, Shanghai, China, 5Cancer Institute, Fudan University Shanghai Cancer Center,
Shanghai, China

As a member of the miR-29 family, miR-29b regulates global DNA methylation through
target DNA methyltransferases (DNMTs) and acts as both a target and a key effector in
DNA methylation. In this study, we found that miR-29b-3p expression was inversely
correlated with DNMT expression in the heart tissues of patients with congenital heart
disease (CHD), but whether it interacts with DNMTs in cardiomyocytes remains unknown.
Further results revealed a feedback loop between miR-29b-3p and DNMTs in
cardiomyocytes. Moreover, miR-29b-3p inhibitor relieved the deformity of
hypomethylated zebrafish and restored the DNA methylation patterns in
cardiomyocytes, resulting in increased proliferation and renormalization of gene
expression. These results suggest mutual regulation between miR-29b-3p and DNMTs
in cardiomyocytes and support the epigenetic normalization of miRNA-based therapy in
cardiomyocytes.

Keywords: DNA methylation, miR-29b-3p, DNA methyltransferases, congenital heart disease, zebrafish,
proliferation

INTRODUCTION

Dynamic DNA methylation orchestrates cardiomyocyte development, postnatal maturation and
cardiovascular diseases (CVDs) (Gilsbach, et al., 2014). Various studies have suggested that DNA
methylation aberrations contribute to the development of CVDs, such as congenital heart disease
(CHD), atherosclerosis, hypertension, and cardiac hypertrophy (Fernández-Sanlés, et al., 2017;
Zhong, et al., 2016). The global DNA methylation of heart tissues in patients with tetralogy of Fallot
(TOF) is lower than that of control tissues, while the NKX2.5, HAND1, RXRA and TBX5 promoters
were present under high methylation conditions (Sheng, et al., 2013; Sheng, et al., 2014; Sheng, et al.,
2012). The global DNA methylation level decreased in patients with ischemic cardiac disease,
atherosclerosis or essential hypertension, while the methylation level of the estrogen receptor (ER)-α
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or 11 β-hydroxysteroid dehydrogenase 2 (11βHSD2) promoter
increased (Friso, et al., 2008; Huang, et al., 2009; Smolarek, et al.,
2010; Ying, 2000). These studies revealed that DNA methylation
in the global genome and specific genes present their own specific
methylation patterns in CVDs. DNA methyltransferases
(DNMTs), including DNMT1, DNMT3A and DNMT3B,
participate in the process of DNA methylation, where DNMT1
functions in the maintenance of DNAmethylation andDNMT3A
andDNMT3Bmediate de novoDNAmethylation (Rideout, et al.,
2001). DNMT siRNA disrupted the assembly of sarcomeres and
reduced the beating frequency, contraction movement, field
action potential amplitude and cytosolic calcium signal of
cardiomyocytes (Fang, et al., 2016).

An increasing number of studies have focused on the role of
miRNAs, which contain 21–25 nucleotides. They regulate
posttranscriptional gene expression through mRNA cleavage
and degradation or translational inhibition, which depends on
the degree of complementarity between miRNA and target
mRNA sequence (Kasinski and Slack 2011). Aberrant miRNA
expression patterns have been reported in various CVDs,
including cardiac hypertrophy, fibrosis, heart failure,
arrhythmia, atherosclerosis and TOF (Bruneau 2008; Liu and
Olson 2010). A number of clinical studies have also shown that
the miR-29 family plays a role in the occurrence and development
of CHD. Among 21 patients with TOF, the expression patterns of
18 miRNAs were significantly different, and the expression of
miR-29c, which belongs to the miR-29c family, was
downregulated (Zhang, et al., 2013a). Maternal blood tests of
30 CHD fetuses showed that miR-29c is significantly elevated in
pregnant women with fetal VSD, ASD, and TOF (Nagy, et al.,
2019; Zhu, et al., 2013). In patients with persistent atrial
fibrillation (AF) after rheumatic heart disease, miR-29b-1-5p
and miR-29b-2-5p interact with 24 downregulated circRNAs
to participate in the remodeling of heart structure in patients
with AF (Hu, et al., 2019). It has been reported that miRNA
expression patterns are often disrupted by aberrant DNA
methylation in many diseases. Many miRNAs were
downregulated or upregulated by DNA hypermethylation or
hypomethylation, respectively. Saito et al. (Saito, et al., 2006)
first found that miR-127 upregulation was associated with its
DNA methylation status. It has been reported that CpG island
hypermethylation occurs in the miR-124a (Lujambio, et al.,
2007), miR-34 (Chen, et al., 2012; Suzuki, et al., 2010) and
miR-9 families (Roman-Gomez, et al., 2009), which is related
to the transcriptional inactivation of these miRNAs in human
tumors. It has been widely reported that hypermethylation of
specific CpG islands in gene promoter regions is a common
mechanism of miRNA silencing.

miRNAs are novel regulators of DNA methylation and act by
targeting methylation-related proteins, including DNMTs,
MBD2, MBD4 and MeCP2 (Wang, et al., 2017). miR-101
inhibited the expression of DNMT3A, resulting in a decrease
in global DNAmethylation in lung cancer (Yan, et al., 2014). The
expression of DNMT3A and DNMT3B was high in lung cancer,
and the expression of the miR-29 family was negatively correlated
with them. Further study showed that the miR-29 family directly
targets the 3′ untranslated regions (3′UTRs) of DNMT3A and

DNMT 3B (Fabbri, et al., 2007). The expression of miR-17–92 was
decreased in patients with idiopathic pulmonary fibrosis (IPF),
while the expression of DNMT1 increased. Further study
identified that several miRNAs from the miR-17–92 cluster
targeted the DNMT1 gene (Dakhlallah, et al., 2013). It was
shown that miR-212 repressed the expression of MeCP2 in
gastric cancer (Wada, et al., 2010) and miR-373 suppressed
the expression of MBD2 in hilar cholangiocarcinoma (Chen,
et al., 2011).

miRNAs regulate DNA methylation by modulating
methylation-related proteins and expand strategies based on
this to treat diseases with aberrant DNA methylation. The
miR-29 family, the most widely studied epigenetic factor,
reverted aberrant methylation by targeting DNMT3A and
DNMT3B (Garzon, et al., 2009; Morita, et al., 2013; Qiu, et al.,
2018; Zhang, et al., 2018b) in leukemia, in porcine early embryo
development or in lung cancer cells, while the interaction between
miR-29b-3p and DNMTs in CHD remains unknown. Our
previous results showed that in patients with CHD, DNMT1,
DNMT3A and DNMT3B showed a statistically significant
negative correlation with miR-29b-3p expression. In this study,
it was also revealed that there was a feedback loop between miR-
29b-3p and DNMTs in cardiomyocytes. It is worth continuing to
explore whether upregulation of DNMT by suppressing miR-
29b-3p expression is sufficient to induce effective DNA
hypermethylation in cardiomyocytes. Therefore, in the present
study, we will explore the interaction between miR-29b-3p and
DNA methylation and the efficacy of miRNA in the treatment of
hypomethylated zebrafish and cardiomyocytes.

MATERIALS AND METHODS

Patients With CHD
Heart tissues were obtained from 17 patients with CHD (mean
age: 24.5 ± 22.0 months; 47.1% female and 52.9% male) between
2014 and 2016 from the Children’s Hospital of Fudan University,
Shanghai, China. The residual tissues were trimmed from the
right ventricular outflow tract (RVOT) during surgery and
immediately stored in liquid nitrogen. The Ethics Committee
of Children’s Hospital of Fudan University approved this study.

RNA Extraction and Quantitative RT-PCR
Analysis
Total RNAwas isolated from frozen heart tissues, cardiomyocytes
or zebrafish using TRIzol reagent (Invitrogen, Carlsbad, CA)
according to the manufacturer’s protocol. Reverse transcription
was conducted with the PrimeScript RT reagent kit (TaKaRa,
Shiga, Japan). RNA expression was quantified with SYBR Premix
Ex Taq™ (TaKaRa, Shiga, Japan). The primer sequences are listed
in Supplementary Table S4. MiRNAs were reverse-transcribed
by the miRcute Plus miRNA First-Strand cDNA Synthesis Kit
(TIANGEN, Beijing, China) and quantified by the miRcute Plus
miRNA qPCR Detection Kit (TIANGEN, Beijing, China) with
specific primers (TIANGEN, Beijing, China). The relative
miRNA and mRNA quantification were determined using the
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comparative CT method and were normalized against U6 for
miRNA or β-actin for mRNA.

Bioinformatics Analysis
The prediction of TF binding sites was performed via TFSEARCH
(http://www.cbrc.jp/research/db/TFSEARCH.html). The CpG
enrichment regions were analyzed, and the BSP primers were
designed by the online MethPrimer software (http://www.
urogene.org/methprimer/index1.html). The primers for
targeted bisulfite sequencing (MethylTarget) were designed
using the online primer3 software (http://primer3.ut.ee/). The
TargetScan and PicTar algorithms were used to predict the target
genes of miR-29b-3p.

Cell Culture
The HL1 cell line was provided by Professor Duan Ma (Fudan
University, Shanghai, China). The HEK293 cell line was
purchased from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China). Both cell lines were cultured in
Dulbecco’s modified Eagle medium (DMEM, Gibco, Waltham,
MA) containing 10% FBS with 1% penicillin-streptomycin.
Cells were cultured in a humid environment with 5% CO2

and at 37°C.

Plasmid Constructs
The promoter regions of the hsa-miR-29b-1 and hsa-miR-29b-2
genes were amplified and inserted into the KpnI and SacI sites of
the pGL3-promoter vector (Promega, Madison, Wisconsin) to
generate the pGL3-hsa-miR-29b-1/2-promoter plasmid. The
primers for PCR amplification are listed in Supplementary
Table S5. The DNMT3A and DNMT3B 3′UTRs from human/
rat/mouse genomic DNA were cloned into XhoI and NotI sites
downstream of Renilla luciferase in the psiCHECK-2 vector
(Promega, Madison, Wisconsin), while the firefly luciferase
gene was used as an internal control. Mutation of the
DNMT3A and DNMT3B 3′ UTRs was performed using the
Fast Mutagenesis System (TransGen Biotech, Beijing, China).
The PCR primers are listed in Supplementary Table S6.

Transfection and Luciferase Assay
HEK293T cells plated in 96-well plates were transfected with
100 ng of pGL3-basic, pGL3-promoter, pGL3-hsa-miR-29b-1/2-
promoter (unmethylated), or mpGL3-hsa-miR-29b-1/2-
promoter (methylated) plasmid. The pGL3-basic vector
without the promoter sequences was used as a negative
control. The pRL-TK plasmid (Promega, Madison, Wisconsin)
containing the Renilla luciferase gene was cotransfected with the
above plasmid to standardize the luciferase activity.

HL1 cells were cotransfected with psiCHECK-2 vector
(100 ng) containing the 3′UTR of DNMT3A or DNMT3B (WT
or MUT) and miRNA mimic (20 pmol) in 96-well plates. The
four groups were psiCHECK-2-DNMT3A/3B-WT + miR-NC
mimic, psiCHECK-2-DNMT3A/3B-WT + miR-29b-3p mimic,
psiCHECK-2-DNMT3A/3B-MUT + miR-NC mimic and
psiCHECK-2-DNMT3A/3B-MUT + miR-29b-3p mimic. All
transfections were performed with Lipofectamine 3000
transfection reagent (Invitrogen, Carlsbad, CA).

Luciferase analysis was performed 24 h later by a dual-
luciferase reporter assay (Promega, Madison, Wisconsin)
according to the manufacturer’s instructions. After lysis in
passive lysis buffer at room temperature for 15 min, the
relative Renilla luciferase activity of cultured cells was obtained
after normalization to firefly luciferase gene activity through
reaction with Luciferase Assay Reagent II and Stop & Glo
Reagent.

BSP and Cloning-Based Sequencing
DNA was subjected to bisulfite modification by the EpiTect
bisulfite kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol. The BSP primers for the promoter
regions of the miR-29b-3p gene were designed by the online
MethPrimer software (http://www.urogene.org/methprimer/)
(Supplementary Table S7). The purified PCR products were
used to ligate the pMD™18-T vector (TaKaRa, Shiga, Japan) and
were then transformed into DH5α competent cells (TIANGEN,
Beijing, China). After 12 h of incubation at 37°C, blue/white and
ampicillin selection was performed. Ten different positive clones
were randomly selected for sequencing. The BSP sequencing data
were analyzed by BIQ Analyzer software (Max Planck Institute
for Informatics, Saarbrücken, Germany).

CpG Methyltransferase (M. SssI) Treatment
M. SssI (New England BioLabs, Beverly, MA) was incubated with
1 µg of pGL3-hsa-miR-29b-1/2-promoter plasmid in 20 µl of 1X
NEBuffer 2, 10 mM MgCl2, 1 mM dithiothreitol, and 160 µM
S-adenosylmethionine for 3 h at 37°C.

Targeted Bisulfite Sequencing
MethylTarget performed by Genesky Biotechnologies Inc.
(Shanghai, China) was used to detect the miR-29 methylation
density. The primers used for miR-29 are shown in
Supplementary Table S8. A detailed description of the
MethylTarget assay was reported previously (Zhang, et al., 2020).

Western Blot Analysis
Total protein was extracted using RIPA lysis buffer (Beyotime,
Shanghai, China) and protease inhibitor cocktail (Thermo Fisher
Scientific, Waltham, MA). The protein concentration was
determined by a Pierce BCA protein assay kit (Thermo Fisher
Scientific, Waltham, MA). Anti-DNMT1, anti-DNMT3A, anti-
DNMT3B, and anti-β-actin antibodies and HRP-labeled goat
anti-rabbit IgG secondary antibodies were purchased from Cell
Signaling Technology (Danvers, MA) and Abcam (Cambridge,
MA), respectively. ECL reagents (Merck Millipore, Darmstadt,
Germany) were used to visualize specific protein bands.

Cell Proliferation Assay
Cell viability was measured by the CCK-8 assay (Dojindo
Laboratories, Kumamoto, Japan). At 24, 48, and 72 h, the
CCK-8 solution was prepared with medium to a concentration
of 10%, 100 µl of the mixed solution was added to each 96-well
plate, and the operation was protected from light. The plates were
incubated at 37°C for 2.5 h, and the absorbance at 450 nm was
then measured.
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EdU Incorporation Assay
The EdU incorporation assay was performed according to the
manufacturer’s protocol (Life Technologies, Waltham, MA). The
cell proliferation rate was calculated as the proportion of
nucleated cells incorporated into EdU to the total number of
cells by randomly selecting 10 high-power fields per well.

Zebrafish Embryology and Microinjection
Zebrafish breeding, embryo collection and maintenance were
carried out in accordance with recognized standard operating
procedures. The injection concentration of miRNA inhibitor was
5 μM, and that of 5-azacytidine was 25 µM. At the 1–4 cell stage,
3 nl of miRNA inhibitor or 5-azacytidine was injected into the
yolk of each zebrafish embryo. A Leica M205 FA digital camera
was used to photograph the embryos, and Adobe Photoshop CS5
software was used to process the digital images.

5-Azacytidine and 5-aza-29-Deoxycytidine
(Decitabine) Working Solution
5-azacytidine powder (Sigma-Aldrich, St. Louis, MO) was
dissolved in an appropriate amount of DMEM (cardiomyocyte
treatment) or blue egg water (zebrafish embryo treatment). The
concentration of the stock solution was 500 μM. The working
solution was diluted to 25 µM. Five milligrams of decitabine
powder (Sigma-Aldrich, St. Louis, MO) was dissolved in 1 ml
of DMSO. The working solution was diluted to 20 µM. The stock
solutions were stored at −80°C.

General Morphology Score System
The generalmorphology score (GMS) system is used as a quantitative
assessment method to evaluate the development of zebrafish
embryos, which displays the development scores of zebrafish
embryos at 24 hpf, 48 hpf and up to 72 hpf, with different scores
assigned to specific developmental endpoints (Hermsen, et al., 2011).
It included evaluation indicators such as tail detachment, somite
formation, eye development, heartbeat and blood flow speed. The full
score was 7 at 24 hpf, 12 at 48 hpf and 15 at 72 hpf.

Shortening Fraction Quantification
The maximum systolic and diastolic frames of the video were
saved as JPEGs, and the width of the maximum systolic and
diastolic hearts of the ventricles was measured from the image by
ImageJ. The ventricular shortening fraction (%) was calculated as
follows: ×100 (diastolic width-systolic width)/(diastolic width)%.

Statistical Analysis
Statistical analysis was carried out by Stata. Values are expressed as the
means ± SEM. Spearman’s rank correlation was used to examine the
correlation between two continuous variables. One-way analysis of
variance (ANOVA) was used to analyze differences among multiple
groups. Two-wayANOVAwas used to evaluate the expression ofmiR-
29b-3p at different time points after 5-azacytidine or decitabine
treatment and the effects of miR-29b-3p and time variables on the
proliferation ofHL1 cells treatedwith 5-azacytidine. Student’s t-test was
used to determine the statistical significance. Significance was defined
as follows: *p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

RESULTS

Negative Correlation Between the
Expression of DNMTs and miR-29b-3p in
Patients With CHD
To determine whether a correlation exists between the expression
of DNMTs and miR-29b-3p in patients with CHD, we analyzed
the qPCR data from 17 patients with CHD (Supplementary
Tables S1, S2). DNMT1, DNMT3A and DNMT3B showed a
statistically significant negative correlation with the expression of
miR-29b-3p (r = −0.5137, p = 0.0349; r = −0.5123, p = 0.0355; and
r = −0.6012, p = 0.0107, respectively) (Figures 1A–C).

Transcriptional Regulatory Activity of the
miR-29b-1 and miR-29b-2 Gene Promoters
As there was a negative correlation between DNMT and miR-
29b-3p expression in patients with CHD, we further performed
experiments to explore whether mutual regulation existed
between them. We first detected the DNA methylation status
of the miR-29b gene promoter and analyzed its correlation to
miR-29b-3p expression in patients with CHD. Hsa-miR-29b-3p
is the mature form of premiR-29b-1 and premiR-29b-2. The gene
encoding premiR-29b-1 is located on Chr. 7q32.3, while the gene
encoding premiR-29b-2 is located on Chr. 1q32.2. A fragment
from −1,530 bp to +165 bp relative to the transcription start site
(TSS) of the miR-29b-1 gene was shown to have promoter activity
and include binding sites for transcription factors Gli, Myc and
NF-κB (Mott, et al., 2010). Based on the information analyzed by
MethPrimer software, we found a CpG-enriched area from
−873 bp to +158 bp relative to the TSS of the miR-29b-1
gene, which contained 20 CpG units (Figures 2A,B,
Supplementary Figure S1A). The promoter region of the
miR-29b-2 gene has rarely been reported, so we focused on
the fragment from −2000 bp to +200 bp relative to the TSS of
the miR-29b-2 gene. With the online MethPrimer software, we
found a CpG-enriched area containing 9 CpG units, which was
located in the −1495 bp to −1077 bp region relative to the TSS of
the miR-29b-2 gene (Figures 2C,D, Supplementary Figure S1B).

To identify the transcriptional regulatory activity of the two
fragments, the −873 bp to +158 bp region of the miR-29b-1 gene
and the −1495 bp to −1077 bp region of the miR-29b-2 gene were
cloned into the pGL3-promoter plasmid. The relative luciferase
activities of the pGL3-miR-29b-1-promoter and pGL3-miR-29b-
2-promoter increased by 3.1 times and 2.2 times, respectively,
compared with that of the pGL3-promoter (Figures 2E,F). The
pGL3-basic plasmid was the negative control.

Negative Correlation Between miR-29b-3p
Expression and its Promoter Methylation
Status in Patients With CHD
To explore the relationship between miR-29b-3p expression and
its promoter methylation status in patients with CHD, we
performed Spearman’s correlation tests by Stata. The
methylation status of the promoter regions of the miR-29b-1
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gene and miR-29b-2 gene was measured in heart tissues obtained
from eight patients with CHD by bisulfite sequencing PCR (BSP)
sequencing (Figures 3A,B). Three pairs of primers were designed
tomeasure the methylation levels of themiR-29b-1 promoter (P1:
−597 bp ~ −257 bp, P2: −226 bp ~ +108 bp and P3: +103 bp ~

+403 bp) (Figure 2B), and 1 pair of primers was designed to
measure the methylation levels of the miR-29b-2 promoter (P1:
−1407 bp ~ −1173 bp) (Figure 2D).

As shown in Figure 3C a significant negative correlation
was observed between miR-29b-3p expression and the

FIGURE 1 | Correlations between the mRNA expression of DNMTs and miR-29b-3p in patients with CHD. (A) The correlation between DNMT1 and miR-29b-3p
expression (r = −0.5137, p = 0.0349). (B) The correlation between DNMT3A and miR-29b-3p expression (r = −0.5123, p = 0.0355). (C) The correlation between
DNMT3B and miR-29b-3p expression (r = −0.6012, p = 0.0107). Spearman’s correlation tests were used.

FIGURE 2 | Transcriptional regulatory activity of themiR-29b-1 andmiR-29b-2 gene promoters. (A) The location of the CpG sites in the promoter region of themiR-
29b-1 gene (−873 bp to +158 bp). (B) The distribution of the CpG sites and three pairs of primers designed for bisulfite sequencing PCR in the promoter region of the
miR-29b-1 gene. (C) The location of the CpG sites in the promoter region of the miR-29b-2 gene (−1495 bp to −1077 bp). (D) The distribution of the CpG sites and the
primers designed for bisulfite sequencing PCR in the promoter region of the miR-29b-2 gene. (E) The effect of the −873 bp to +158 bp region on the regulation of
miR-29b-1 gene promoter transcriptional activity. (F) The effect of the −1407 bp to -1173 bp region on the regulation of miR-29b-2 gene promoter transcriptional activity
(***p < 0.001).
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methylation status of the miR-29b-1 gene (r = −0.7074, p =
0.0497, and N = 8). The association between miR-29b-3p
expression and the methylation status of the miR-29b-2
gene was negative but not significant (r = −0.4895, p =
0.2182, and N = 8) (Figure 3D).

We further analyzed the association between miR-29b-3p
expression and the methylation status of each CpG unit. No
significant correlations were observed between miR-29b-3p
expression and the methylation status of each CpG site located
in the miR-29b-1 gene. The associations between miR-29b-3p

FIGURE 3 | Association of miR-29b-3p expression with its methylation status in eight patients with CHD. (A andB)Methylation status of the promoter region of the
miR-29b-1 gene and miR-29b-2 gene. The black and white circles represent methylated and unmethylated CpG dinucleotides, respectively. (C) Correlations between
miR-29b-3p expression and the methylation status of the miR-29b-1 gene (r = −0.7074, p = 0.0497, and N = 8). (D) Correlations between miR-29b-3p expression and
the methylation status of the miR-29b-2 gene (r = −0.4895, p = 0.2182, and N = 8). (E)Correlations between miR-29b-3p expression and the methylation status of
CpG 7 located in the miR-29b-2 gene (r = −0.7236, p = 0.0425, and N = 8). (F) Correlations between miR-29b-3p expression and the methylation status of CpG 8
located in the miR-29b-2 gene (r = −0.7124, p = 0.0474, and N = 8). Spearman’s correlation tests were used.
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expression and the methylation status of CpG 7 and CpG eight
located in the miR-29b-2 gene were statistically significant (r =
−0.7236, p = 0.0425; r = −0.7124, p = 0.0474) (Figures 3E,F).

Promoter Hypermethylation Decreased the
Expression of miR-29b-3p
To explore the impact of methylation on the transcriptional
regulatory activity of the two fragments in the miR-29b-1 and
miR-29b-2 gene promoters, the pGL3-miR-29b-1-promoter
plasmid and pGL3-miR-29b-2-promoter plasmid were
methylated by M. SssI methylase. Before M. SssI treatment,
the total methylation levels of the 20 inserted CpG units and 9
CpG units were 4.5 and 7.8%, respectively (Figures 4A,B). After
M. SssI treatment, the overall methylation status was 96.5 and
95.5%, respectively (Figures 4C,D). Methylated pGL3-miR-29b-
1/2-promoter plasmids (mpGL3-miR-29b-1/2-promoter) or
unmethylated pGL3-miR-29b-1/2-promoter plasmids were

then transfected into HEK293T cells and assayed for dual-
luciferase activities. The relative luciferase activity of the
mpGL3-miR-29b-1 promoter decreased 58-fold compared with
that of the pGL3-miR-29b-1 promoter, while the relative
luciferase activity of the mpGL3-miR-29b-2 promoter
decreased nearly 20-fold compared with that of the pGL3-
miR-29b-2 promoter (Figures 4E,F).

Gene Hypomethylation Increased the
Expression of miR-29b-3p
To explore the role of hypomethylation in the regulation of miR-
29b-3p expression in vitro, we treated HL1 cells with 5-
azacytidine or decitabine, which functions as a potent DNA
methyltransferase inhibitor. The results showed that the mir-
29b gene was hypomethylated in HL1 cells treated with 5-
azacytidine or decitabine, as analyzed by the MethylTarget
assay (Figures 5A,B). Moreover, the expression of miR-29b-3p

FIGURE 4 | The effect of promoter hypermethylation on the expression of miR-29b-3p. (A and B) The methylation levels of the pGL3-miR-29b-1 promoter and
pGL3-miR-29b-2 promoter before M. SssI treatment. For each plasmid, the methylation status of CpG units is shown for ten clones. Black and white circles indicate the
methylated and unmethylated CpG units, respectively. (C andD) The methylation levels of the pGL3-miR-29b-1 promoter and pGL3-miR-29b-2 promoter after M. SssI
treatment. (E) The effect of methylation on the transcriptional activity of the −873 bp to +158 bp region of the miR-29b-1 gene. (F) The effect of methylation on the
transcriptional activity of the −1407 bp to −1173 bp region of the miR-29b-2 gene. (ns not significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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in the 5-azacytidine or decitabine-treated groups was higher than
that in the control group at different time points, and the highest
expression level was detected at 48 h (Figure 5C).

miR-29b-3p Directly Targeted the 39UTRs of
DNMT3A and DNMT3B
We identified that DNA methylation regulated the expression
of miR-29b-3p, and further study aimed to explore the
regulatory effect of miR-29b-3p on the expression of
DNMTs. miR-29b-3p and DNMTs are highly conserved in
humans, rats, mice and zebrafish (Supplementary Figure
S2). We used bioinformatic tools (PicTar and TargetScan
algorithms) to predict the targets of miR-29b-3p, and
DNMT3A and 3B were the putative targets of miR-29b-3p,
while the 3′UTR of DNMT1 showed no complementary
binding site with miR-29b-3p (Figures 6A,B).

To ascertain the function of miR-29b-3p on DNMT3A and
DNMT3B, a fragment containing the 3′UTRs of DNMT3A of
DNMT3B was spliced to the 3′-end of the synthetic Renilla
luciferase reporter gene in the psiCHECK™-2 vector. HL1 cells
were cotransfected with miR-29b-3p mimic and psiCHECK™-
2-DNMT3A-3′UTR plasmid or psiCHECK™-2-DNMT3B-
3′UTR plasmid and cultured for 48 h. The results showed
that miR-29b-3p mimic inhibited the relative luciferase
activity of the psiCHECK™-2-DNMT3A-3′UTR plasmid and
psiCHECK™-2-DNMT3B-3′UTR plasmid. We further
mutated the 3′UTRs of DNMT3A and DNMT3B and
cotransfected them with miR-29b-3p mimic into HL1 cells.
The inhibitory effect of the miR-29b-3p mimic on relative
luciferase activity was abrogated after cotransfection with the
psiCHECK™-2-DNMT3A-3′UTR-MUT plasmid and
psiCHECK™-2-DNMT3B-3′UTR-MUT plasmid (Figures
6C,D). The mRNA expression of DNMTs in HL1 cells
transfected with the miR-29b-3p mimic decreased, while the

expression increased in the miR-29b-3p inhibitor group
(Figure 6E). Furthermore, the protein expression of DNMTs
was significantly altered by the miR-29b-3p mimic and its
inhibitor (Figures 6F,G).

miR-29b-3p Inhibitor Relieved the
Aberration of Zebrafish Embryos Treated
With 5-azacytidine
On the one hand, miR-29b-3p regulates DNA methylation by
targetingDNMTs; on the other hand, the miR-29b gene promoter
can be hypermethylated or hypomethylated due to its
transcriptional ability. Understanding the crosstalk between
miR-29b-3p and DNA methylation may promote the
discovery of novel therapeutic targets.

To evaluate the impact of the miR-29b-3p inhibitor on the
overall development of hypomethylated zebrafish embryos, we
assessed their survival, malformation rate and general
morphology score by coinjecting 5-azacytidine and miR-29b-
3p inhibitor into the yolk of zebrafish embryos at the 1–4-cell
stage. The miR-29b-3p expression in zebrafish embryos injected
with 5-azacytidine and/or miR-29b-3p inhibitor is shown in
Supplementary Figure S3A. The mRNA and protein
expression of DNMTs in zebrafish injected with 5-azacytidine
and/or miR-29b-3p inhibitor is shown in Supplementary
Figures S3B–D. The results showed that 5-azacytidine
exposure led to an increased mortality rate and deformity rate
in a time-dependent manner, while coinjection with themiR-29b-
3p inhibitor partially reduced the mortality and deformity rates
(Figure 7D). General development assessed by the GMS system
was significantly delayed by 5-azacytidine exposure (Yang, et al.,
2019). The miR-29b-3p inhibitor partially promoted the
developmental status at 48 h postfertilization (hpf) and 72 hpf
(Figures 7G–I). Zebrafish embryos coinjected with 5-azacytidine

FIGURE 5 | Identification of miR-29b methylation level and mRNA expression after exposure to 5-azacytidine or decitabine. (A andB) The methylation level of miR-
29b-1 and miR-29b-2 in additional samples from the control (n = 3), 5-Aza (n = 5) and decitabine (n = 3) groups analyzed by targeted bisulfite sequencing. (C)miR-29b-
3p expression in HL1 cells after exposure to 5-azacytidine at 25 µM or decitabine at 20 µM. p-values were calculated by one-way ANOVA. ns not significant; *p < 0.05;
**p < 0.01; ***p < 0.001; and ****p < 0.0001.
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FIGURE 6 | The effect of miR-29b-3p on the expression of DNMTs. (A and B) The predicted binding site of miR-29b-3p in the 3′ untranslated regions of DNMT3A
and DNMT3B. (C andD) The relative luciferase activity of HL1 cells cotransfected with miR-29b-3pmimic or NCmimic and plasmid containing DNMT3A or 3B wild-type
or mutated 3′UTRs. (miR-29b-3pmimic + psiCHECK™-2-DNMT3A/3B-3′UTR vs. NCmimic + psiCHECK™-2-DNMT3A/3B-3′UTR, ***p < 0.001; miR-29b-3pmimic +
psiCHECK™-2-DNMT3A/3B-3′UTR-MUT vs. NC mimic + psiCHECK™-2-DNMT3A/3B-3′UTR-MUT, p = ns). (E) mRNA expression of DNMTs in HL1 cells
transfected with miR-29b-3p mimic or its inhibitor (miR-29b-3p mimic vs. NC, *p < 0.05, miR-29b-3p inhibitor vs. NC inhibitor, ***p < 0.001). (F) Protein expression of
DNMTs in HL1 cells transfected with miR-29b-3p mimic or its inhibitor. (G) Relative quantification of DNMT proteins (ns not significant, *p < 0.05, **p < 0.01 and ***p <
0.001).
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and NC inhibitor exhibited obvious deformities, including body
curvature, yolk sac edema and blood congestion at the cardiac
inflow tract at 48 hpf, while coinjection with miR-29b-3p inhibitor
relieved the degree of deformity. Representative images of the
overview are shown in Supplementary Figure S4.

5-Azacytidine exposure induced a decrease in heart rate and
fractional shortening (Yang, et al., 2019). The heart rate of zebrafish
embryos coinjected with miR-29b-3p inhibitor displayed no
significant difference from that of the control group (Figure 7E).
The fractional shortening was 15.7 ± 5.8% at 48 hpf and 20.4 ± 6.5%
at 72 hpf in the NC inhibitor group, which showed no significant

differences from those of the miR-29b-3p inhibitor group (18.9 ±
7.3% at 48 hpf and 23.7 ± 6.2% at 72 hpf) (Figure 7F).

miR-29b-3p Inhibitor Increased the
Proliferation of Hypomethylated
Cardiomyocytes
Our previous study showed that a miR-29b-3p inhibitor
significantly promoted HL1 cell proliferation (Yang, et al., 2020)
(Figures 8A,D). After treatment with 5-azacytidine, the
proliferation ability of cardiomyocytes decreased as the

FIGURE 7 | The impact of miR-29b-3p inhibitor on the overall development of hypomethylated zebrafish embryos. (A) miR-29b-3p inhibitor partially reduced the
mortality and deformity rates of zebrafish that resulted from 5-azacytidine exposure (n > 100). (B–D) The zebrafish general development score of the miR-29b-3p
inhibitor group was significantly better than that of the NC inhibitor group at 48 hpf and 72 hpf (n > 50). (E and F) The heart rate and fractional shortening of zebrafish
embryos coinjected with 5-azacytidine and miR-29b-3p inhibitor displayed no significant difference from those of the 5-azacytidine and NC inhibitor groups (n
= 20).
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FIGURE 8 | The proliferation ability of hypomethylated cardiomyocytes transfected with miR-29b-3p inhibitor. (A–C) Cell proliferation ability detected by a CCK-8
assay at 24, 48 and 72 h (D–F) The cell proliferation ability detected by an EdU incorporation assay at 24, 48 and 72 h. (G) Representative images of HL1 cells stained
with EdU andHoechst (0 μM, 5 μM, and 25 µM represent 3 concentrations of 5-azacytidine; miR-29b-3p inhibitor vs. NC inhibitor, ns not significant, *p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001).
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concentration increased (Yang, et al., 2019) (Figures 8A–C). Next,
we further evaluated the effect of the miR-29b-3p inhibitor on the
proliferation of hypomethylated cardiomyocytes in vitro. The
mRNA and protein expression of DNMTs in HL1 cells treated
with 5-azacytidine or decitabine or transfected with miR-29b-3p
inhibitor is shown in Supplementary Figure S5. The proliferation
ability of hypomethylated cardiomyocytes transfected with miR-
29b-3p inhibitor or NC inhibitor was detected by CCK-8 and EdU
incorporation assays. The proliferation ability of cardiomyocytes
exposed to 5-azacytidine at 5 µM was increased after transfection
with miR-29b-3p inhibitor compared with that in the control
group at 24 h (ns), 48 h (p < 0.05) and 72 h (p < 0.0001)
(Figure 8B). The proliferation ability of cardiomyocytes exposed
to 5-azacytidine at 25 µM was significantly increased after
transfection with miR-29b-3p inhibitor compared with that in
the control group at 24, 48 and 72 h (p < 0.0001) (Figure 8C). The
EdU assay results also showed that the miR-29b-3p inhibitor
promoted hypomethylated HL1 cell proliferation (Figures
8D–F). Representative images of the EdU assay are shown in
Figure 8G.

Effect of miR-29b-3p Inhibitor on the Gene
Expression of Hypomethylated
Cardiomyocytes
We found that global hypomethylation resulted in increased
expression of 2 genes and decreased expression of 20 genes
among 45 candidate genes (Yang, et al., 2019). Here, we
analyzed the effect of a miR-29b-3p inhibitor on the
expression of heart-related genes in hypomethylated
cardiomyocytes. The results showed that the expression of
FGF10, TNNT2, SSB, MYH6 and ERBB3 was decreased in
hypomethylated cardiomyocytes (Yang, et al., 2019). was
upregulated when transfected with miR-29b-3p inhibitor
(Supplementary Table S3).

DISCUSSION

In this study, we found that the expression of miR-29b-3p was
negatively correlated with the expression of DNMTs in CHD
patients. Further results revealed that there was a feedback
loop between miR-29b-3p and DNMTs in cardiomyocytes.
The reduction in miR-29b-3p expression alleviated the
deformity of hypomethylated zebrafish and increased the
proliferation and renormalization of gene expression by
activating DNMT-dependent DNA methylation in
cardiomyocytes.

The miR-29 family is a classic effector of epi-miRNAs,
which regulate DNA methylation and demethylation
(Garzon, et al., 2009; Zhang, et al., 2013b). In our
experiments, the expression of DNMT1 in HL1 cells treated
with miR-29b-3p mimic were downregulated, similar to the
results found for DNMT3A and DNMT3B. The results were
consistent with those observed in K562, MV4-11, and Kasumi-
1 cells (Garzon, et al., 2009) and in the GC-1 germ cell line

(Meunier, et al., 2012). Garzon, R et al. confirmed that miR-29
indirectly downregulates DNMT1 by directly targeting its
transactivator Sp1, a zinc finger transcription factor
(Garzon, et al., 2009). Compared with DNMT3A and
DNMT3B, DNMT1 does not show a complementary binding
site with miR-29b-3p and is thus not be directly targeted by
miR-29b. Garzon, R et al. confirmed that miR-29 indirectly
downregulates DNMT1 by directly targeting its transactivator
Sp1, a zinc finger transcription factor. Our data suggested that
miR-29b-3p directly targeted the 3′UTRs of DNMT3A and
DNMT3B while indirectly regulating the expression of
DNMT1.

Promoter hypermethylation is usually associated with gene
silencing, and the higher the methylation of the gene promoter is,
the lower the gene expression. Our study suggested that miR-29b-
3p expression was negatively related to the methylation status of
CpG 7 and CpG 8 located in the miR-29b-2 gene. Several key
transcription factors (TFs), including C/EBP, SRF, Nrf2 andHES-
1, were predicted to bind to CpG 7 and CpG 8. The
hypermethylation of CpG 7 and CpG 8 may block the binding
of TFs to the promoter of the miR-29b-2 gene, resulting in
reduced expression of miR-29b-3p. Aberrant DNA
methylation may also disrupt the expression of TFs that are
essential to the transcription of miRNA, indirectly leading to
decreased expression of miRNA. Altered methylation of miRNA-
encoding genes may also contribute to aberrant miRNA
expression.

The negative correlation between miR-29s and DNMTs has
been explored in many diseases, such as cholangiocarcinoma
(Cao, et al., 2021), osteoarthritis (Dou, et al., 2020), and
leukemia (Qiu, et al., 2018). The enforced expression of
miR-29s regulated downstream genes mediated by DNMT3B
(Cao, et al., 2021; Qiu, et al., 2018). DNMT3B regulates the
miR-29b/PTHLH/CDK4/RUNX2 axis by inducing
hypermethylation of specific CpG sites in the miR-29b
promoter region, preventing chondrocyte loss due to
osteoarthritis (Dou, et al., 2020). Similar to the “DNMT-
miR-29” epigenetic circuit, negative feedback regulatory
loops between “DNMT1-miR-148/152” in esophageal
squamous cell carcinoma and “DNMT1-miR-126” in breast
cancer have been reported (Liu, et al., 2015; Zhao, et al., 2011).
The feedback loop between miR-29b-3p and DNMTs
represents a new level of complexity in gene regulation.
Exogenous miR-29b-3p inhibitor increased the expression
of DNMTs, which in turn resulted in a decreased expression
of endogenous miR-29b-3p. In our study, an exogenous miR-
29b-3p inhibitor relieved the degree of demethylated zebrafish
deformity, including body curvature, yolk sac edema and
blood congestion at the cardiac inflow tract. Furthermore,
the miR-29b-3p inhibitor promoted the proliferation and
renormalized the gene expression of hypomethylated
cardiomyocytes. These findings illustrate the regulatory role
of miR-29 in the normalization of disease epigenetics and
provide a theoretical basis for the development of miRNA-
based therapeutic strategies.

Epigenetic changes are often reversible, which makes
miRNAs attractive in the development of new treatment
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approaches. Many miRNAs act as biomarkers and prognostic
factors for diseases, while only a few are available as
therapeutic strategies. This phenomenon may occur for
several reasons: one of these reasons may be the absence of
pathways to certain physiological organs or tissues (Gallas,
et al., 2013; Gavrilov and Saltzman 2012; Pereira, et al., 2017).
In our study, a miR-29b-3p inhibitor relieved the deformity of
demethylated zebrafish but had no significant effect on heart
rate or fractional shortening. However, miR-29b-3p inhibitor
increased the proliferation of hypomethylated
cardiomyocytes, and this finding is consistent with some
research results. Ginkgolide B inhibits hypoxic H9c2 cell
apoptosis through miR-29-based inhibition (Ren, et al.,
2020). In the ischemia/reperfusion (I/R) injury under PM2.5
exposure, the lncRNA PEAMIR can inactivate the PI3K(p85a)/
Akt/GSK3b/p53 cascade pathway that mediates inflammation
and apoptosis by downregulating miR-29b-3p (Pei, et al.,
2020). The lncRNA TUG1 inhibits apoptosis in H9c2 cells
treated with LPS by downregulating miR-29b (Zhang, et al.,
2018a). The ineffectivity of the treatment on the cardiovascular
system of zebrafish may be due to the injection method, which
lacks transmission to specific physiological organs and tissues,
resulting in insufficient cellular uptake and processing.
Therefore, it is necessary to solve the problem of low cell
uptake and processing efficiency. In addition, it is worth noting
that some research results are contrary to ours and the above-
described studies. In vivo experiments of rats induced by
endotoxin, doxorubicin or ischemia-reperfusion showed that
the upregulation of miR-29b can reduce cardiomyocyte
apoptosis, whereas the inhibition of miR-29b exerts the
opposite effect (Jing, et al., 2018; Li, et al., 2021; Li, et al.,
2020). We speculate that the inconsistent results may be due to
different cell types, different experimental models, different
expression levels of target mRNA, different degree of cell
injury, different stages of tissue development and different
doses of miRNA mimic or inhibitor.

Several results from the present study could be serve as
motivation for future study. First, the correlations between
miR-29b-3p expression and the total methylation level of the
miR-29b-2 gene or the methylation status of each CpG site
located in the miR-29b-1 gene in patients with CHD were not
clear in our study. This may be due to the small sample size,
which we will expand to further analyze the relationship
between miR-29b-3p expression and the total methylation
level of the miR-29b-2 gene. Second, several TFs, including C/
EBP, SRF, Nrf2 and HES-1, were predicted to bind to
differentially methylated CpG sites located in the miR-29b-
2 gene promoter, and further experiments will focus on the
specific regulatory mechanism. Third, mutations in any
DNMT can cause embryonic lethality in mice (Li, et al.,
1992; Okano, et al., 1999). To investigate the specific
impact of miRNAs on heart development, a heart-targeted
miRNA delivery system needs to be developed for in-depth
research.

CONCLUSION

These results suggest mutual regulation between miR-29b-3p
and DNMTs in cardiomyocytes and provide evidence that
miRNA-based therapy can normalize the epigenome of
cardiomyocytes.
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Purpose: Epigenetic RNA modification regulates gene expression post-transcriptionally.
The aim of this study was to construct a prognostic risk model for lung adenocarcinoma
(LUAD) using long non-coding RNAs (lncRNAs) related to m5C RNA methylation.

Method: The lncRNAs regulated by m5C methyltransferase were identified in TCGA-
LUAD dataset using Pearson correlation analysis (coefficient > 0.4), and clustered using
non-negative matrix decomposition. The co-expressing gene modules were identified by
WGCNA and functionally annotated. The prognostically relevant lncRNAs were screened
by LASSO regression and a risk model was constructed. LINC00628 was silenced in the
NCI-H460 and NCI-H1299 cell lines using siRNA constructs, and migration and invasion
were assessed by the Transwell and wound healing assays respectively.

Results: We identified 185 m5C methyltransferase-related lncRNAs in LUAD, of which 16
were significantly associatedwith overall survival. The lncRNAswere grouped into two clusters
on the basis of m5C pattern, and were associated with significant differences in overall and
disease-free survival. GSVA revealed a close relationship among m5C score, ribosomes,
endolysosomes and lymphocyte migration. Using LASSO regression, we constructed a
prognostic signature consisting of LINC00628, LINC02147, and MIR34AHG. The m5C-
lncRNA signature score was closely related to overall survival, and the accuracy of the
predictive model was verified by the receiver operating characteristic curve and decision curve
analysis. Knocking down LINC00628 in NCI-H460 and NCI-H1299 cells significantly reduced
their migration and invasion compared to that of control cells.

Conclusion: We constructed a prognostic risk model of LUAD using three lncRNAs
regulated by m5C methyltransferase, which has potential clinical value.

Keywords: TCGA-LUAD, M5C methylation, long non-coding RNA, tumor microenvironment remodeling, cell
migration
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INTRODUCTION

Each year, 1.8 million people are diagnosed with lung cancer
worldwide and about 1.6 million eventually die, indicating a
very high mortality rate. Lung cancer is associated with the
highest morbidity and mortality rates in China as well, with
more than 800,000 new cases every year (Bray et al., 2018).
Despite advances in radical surgery, radiotherapy,
chemotherapy, targeted therapy, immunotherapy etc., local
recurrence and distant metastasis still cannot be achieved
(Bray et al., 2018). Lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma are the most common types of non-
small cell lung carcinoma (NSCLC), of which LUAD accounts
for about 70% of all NSCLC cases (Siegel et al., 2020), and is
associated with high mortality and recurrence rates (Li et al.,
2014). Given the limited understanding of the
pathophysiology of LUAD, there is a paucity of effective
prognostic indicators (Müller et al., 2016). Although
therapies targeting EGFR, TP53, AKT1, KRAS, and PTEN,
which frequently undergo mutations and copy number
changes in LUAD, have been widely applied in patients
with advanced lung cancer (Brose et al., 2002; Bean et al.,
2007; Bleeker et al., 2008; Jin et al., 2010), their clinical
potential is still limited (Murayama et al., 2016; Schneider
et al., 2016). Therefore, there is an urgent need to identify
more effective therapeutic targets in order to improve patient
outcomes. At present, with the development of high-
throughput sequencing and next-generation sequencing, we
can get the human genome by gene chip 19000 protein-coding
genes of somatic mutation data and copy number
amplification; this gives us a more comprehensive
understanding of the pathogenesis of lung adenocarcinoma,
development disease-related biomarkers provide technical
support (Bejjani and Shaffer, 2008).

Epigenetic modifications, including DNA and RNA
methylation, genomic imprinting, gene silencing and non-
coding RNA activities, regulate gene expression at the
transcriptional level (Kaliman, 2019), and are thus involved in
multiple pathological processes, including tumorigenesis
(Kanwal et al., 2015). Studies show that N6-methyladenine
(m6A) and 5-methylcytosine (m5C) RNA methylation play
crucial roles in tumor development and progression (He et al.,
2019; Ma et al., 2019). High-throughput sequencing has revealed
that RNA m5C methylation can modify the sequences of both
coding and non-coding RNAs (Chellamuthu and Gray, 2020).
The methyltransferase complex that catalyzes DNA/RNA
methylation consists of a methyltransferase (“writer”), a
methylase demethylase (“eraser”), and an m5C binding protein
(“reader ”) (Nombela et al., 2021). There is evidence that the
expression levels of m5C-related genes are correlated to the
prognosis of lung and pancreatic cancers, indicating that m5C
methylation influences tumor growth (Pan et al., 2021; Yu et al.,
2021).

Long non-coding RNAs (lncRNAs) are more than 200
nucleotides in length (Qian et al., 2019), and are involved
in epigenetic processes such as gene silencing, histone
processing, transcriptional regulation and transcriptional

interference. Several lncRNAs have been identified in
recent years that are involved tumor formation and
progression (Bridges et al., 2021). In addition, methylation-
related genes affect tumor cell proliferation by regulating the
methylation level of specific lncRNAs. For instance, the
methyltransferase METTL14 promotes breast tumor
development by regulating LINC00942 and its downstream
targets (Sun et al., 2020). Nevertheless, little is known
regarding the correlation between non-coding RNAs and
m5C methylation in LUAD.

In the present study, we used computational biology to
identify the lncRNAs regulated by m5C methyltransferase in
LUAD, and analyzed the biological functions and pathways
associated with the prognostically relevant lncRNAs.

METHODS

Data Collection
The clinical and transcriptomic data of 576 LUAD patients were
obtained from TCGA (https://cancergenome.nih.gov/). The
clinical data included gender, survival status, survival time,
tumor stage and TNM stage.

Negative Matrix Factorization Clustering of
m5C-lncRNA Gene Set
Thirteenm5C-related genes encoding for lncRNAs were retrieved
from literature mining, including NOP2, NSUN2, NSUN3,
NSUN4, NSUN5, NSUN7, TRDMT1, TET1, TET2, TET3,
ALKBH1, YBX1, and ALYREF (Archer et al., 2016; Blanco
et al., 2016; Müller et al., 2016; Cheng et al., 2018; García
et al., 2018; Li et al., 2018; Chen et al., 2019; Gao et al., 2019;
Janin et al., 2019; Carella et al., 2020; Mei et al., 2020; Sato et al.,
2020). After excluding those with median absolute difference
<0.5, the correlation of the remaining candidate genes with
overall survival was analyzed by the Cox regression model
using the “survival” package. The genes with an absolute
median >0.5 and p < 0.05 were used for NMF dimensionality
reduction using the “NMF” package in R (Gaujoux and Seoighe,
2010).

Weighted Gene Co-expression Network
Analysis
A weighted co-expression network was constructed using the
WGCNA package in R (Langfelder and Horvath, 2008).
PickSoftThreshold was applied to calculate the optimal
value of the adjacent function weighting parameter, which
was then used as a soft threshold for subsequent network
construction. Following construction of a weighted adjacency
matrix, the modules of related genes were identified based on
hierarchical clustering of the dissimilarity measure (1-TOM)
of the topological overlap matrix (Ravasz et al., 2002). The
significance of the modules and the mean gene significance
within each module were calculated. Finally, the correlation
between the co-expression modules and the expression
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patterns of the resulting subtypes of NMF clustering were
calculated.

Functional Enrichment
The co-expressed module genes were functionally
annotated by the GO enrichment analysis and KEGG

signaling pathway analysis using the “cluster profile” (Wu
et al., 2021).

Construction of m5C lncRNA Risk Model
The genes significantly associated with the overall survival of
LUAD patients were identified by univariate Cox regression

FIGURE 1 | (A)Univariate Cox regression analysis of 16 lncRNAs and overall survival. (B)Consensusmap of NMF clustering. (C)Consensus clustering parameters.
(D) Overall and disease-free survival of C1, C2 and C3 clusters.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8855683

Bai and Sun M5C-Related lncRNA Lung Adenocarcinoma

87

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 2 | (A) Hierarchical clustering tree. Each leaf represents a gene and each branch represents a co-expression module. (B) Twenty-seven co-expression
modules were included. (C–E): Significantly enriched biological processes, molecular functions and cellular components in C1, C2, and C3 groups.
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analysis (p < 0.05) using the LASSO regression algorithm and
a risk score model was constructed (Tibshirani, 1997).

GSVA
GSVA was used to assess the correlation of different gene set
scores with m5C methyltransferase-related scores.

Immune Infiltration Analysis
The relative proportion of immune-infiltrating cells in the two
risk groups was analyzed using the CIBERSORT (Newman
et al., 2019; Steen et al., 2020), EPIC (Racle et al., 2017),
quanTIseq (Finotello et al., 2019), MCPcounter (Becht et al.,
2016), XCELL (Aran et al., 2017), and 和TIMER (Li et al.,
2016) algorithms. The differences in immune responses were
visualized through heat maps.

Cell Culture
NCI-H460 and NCI-H1299 cell lines were provided by the
Shanghai Cell Bank of the Chinese Academy of Sciences. The
cells were cultured in DMEM supplemented with 10% fetal
bovine serum at 37°C in a 5% CO2 incubator. The cells were
seeded in a 6-well culture plate at the density of 4 × 105 cells per
well and cultured overnight for subsequent experiments.

Cell Transduction
NCI-H460 and NCI-H1299 cells in the logarithmic growth
phase were harvested, seeded in 6-well plates, and transduced
with lentiviruses expressing si-NC, si1-LINC00628 or si2-
LINC00628 at the multiplicity of infection of 10. After 24 h
of culture, 2 μL polybrene was added to a final concentration of
5 μg/ml for 1–2 weeks, and the medium was changed every

FIGURE 3 | (A) GSVA of m5C RNA methylation dataset and enriched functions in C1, C2, and C3. (B) The survival curve of the LINC02147, LINC00628, and
MIR34AHG.
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8–12 h. The stably transduced cells expressing GFP were
detected 72–96 later under a fluorescence microscope, and
expanded further.

RT-PCR
LINC00628 silencing in the transduced cells was analyzed by RT-
PCR using the following primers: Forward—5′-
CAGTGGGGAACTCTGACTCG-3′ and Reverse—5′-
GTGCCTGGTGCTCTCTTACC-3′.

Wound Healing and Transwell Assays
The in vitromigration of the control and LINC00628-knockdown
cell lines were determined by the wound healing and Transwell
assays respectively.

RESULTS

Identification of M5C-Related lncRNA
Molecular Subtypes in LUAD Based on NMF
Classification
We identified 185 M5C-related lncRNAs with Pearson
correlation coefficients greater than 0.4 (Supplementary
Table S1), of which 16 were significantly associated with
LUAD prognosis (p < 0.05; Figure 1A). NMF clustering
was then performed on these lncRNA-related genes with 50
iterations, which identified nine clusters. The number of
collections (k) was 2–10, and the minimum sample of each
group was set to 10. According to cophenetic, dispersion and

FIGURE 4 | Risk score distribution and survival status in the training, validation and total TCGA-LUAD sets. The survival status, risk score, gene expression level in
the risk score and follow-up time of each sample are shown.
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silhouette, we selected the ideal clustering group as 3 (Figures
1B,C). The grouping details are shown in Supplementary
Table S2. The molecular subtypes of lncRNAs based on m5C
methylation patterns was associated with significant
differences in overall and disease-free survival (Figure 1D;
log-rank p < 0.05).

Biological Characteristics of the
lncRNA-Related Genes
WCGNA of the lncRNA-related genes revealed 27 co-expression
modules with β value set to 3, and genes in the smallestmodule set to
30 (Figure 2A). The C1 cluster had the strongest correlation with the
yellow module (Figure 2B; Cor = 0.2). Functional annotation of the
top 20 genes most closely related to C1 in the yellow module
indicated that these genes are associated with ribosomal subunits
(Figure 2C). The C2 cluster was strongly correlated with the black-
gray module (Figure 2B; Cor = 0.28), and the top 20 genes were
enriched in lysosome-related functions (Figure 2D). The C3 cluster
showed significant correlation with the salmon color module
(Figure 2B; Cor = 0.3), and was mainly associated with

lymphocyte regulation (Figure 2E). To directly demonstrate the
relationship between m5C and the biological function of each
expression pattern signature, we performed GSVA for each gene
set and obtained the scores for m5C methyltransferase. As shown in
Figure 3A, m5C RNA methyltransferase, ribosome subunits,
lysosomes, and lymphocyte migration were closely associated.

Construction of a LUAD Predictive Model
Based on lncRNA-Related Predictive Genes
TCGA-LUAD cohort was randomly divided into the training and
validation sets. Briefly, the data samples were sorted in the
ascending order by ID and random numbers were assigned to
each sample using SPSS. Both sets were similar in terms of age,
clinical-stage, follow-up time and survival, as well as the gene
expression profiles (Supplementary Table S3). LASSO regression
was used to construct the predictive model by incorporating the
16 prognostic genes and overall survival rates. LINC00628,
LINC02147, and MIR34AHG were identified as the
independent prognostic factors and used for the final
predictive risk model. The risk score for each sample was

FIGURE 5 | (A) Clinical phenotypes of patients in the two risk groups. (B) Immune infiltration in the high- and low-risk groups. (C) Immune checkpoint expression
levels in the two risk score groups.
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calculated as 0.45 * exp LINC00628—2.67*expLINC02147—0.30
* exp MIR34AHG. The survival curves for each independent
prognostic factor are shown in Figure 3B. The patients in the
training and validation sets were classified into the high- and low-
risk groups based on the risk scores, which showed significant
differences in survival in both sets (Figure 4; p < 0.05).

Correlation of Risk Scores With Immune
Checkpoints and Immune Infiltration
The LUAD patients were divided into high- and low-risk
groups according to the median risk score, and their clinical
characteristics are summarized in Figure 5A. Immune cell
infiltration was assessed using CIBERSORT, EPIC,
quanTIseq, MCPcounter, XCELL and TIMER programs. As
shown in the heatmap in Figure 5B, the proportion of
infiltrating macrophages was lower in the high-risk group.
In addition, the infiltration levels of CD8+ T cells and M1/M2

macrophages were also significantly different between the two
risk groups, as were the expression levels of immune
checkpoints such as CTAL4 and CD276. This finding
suggests that risk scores can be used as immunotherapy
biomarkers for LUAD (Figure 5C).

LINC006328 Regulates Migration of LUAD
Cells
To further determine the biological significance of LINC00628 in
LUAD, the gene was silenced in the NCI-H460 and NCI-H1299
cell lines using two specific siRNA constructs. The LINC006328-
knockdown cells showed significantly reduced invasion (p < 0.05;
Figures 6A,B) and migration (p < 0.05; Figures 6C,D) rates
compared to the control groups in the Transwell and wound
healing assays respectively. Thus, LINC00628 likely functions as
an oncogene in LUAD and promotes tumor cell migration and
invasion.

FIGURE 6 | (A,B) Transwell assay of si1-LINC00628 and si2- LINC00628 groups. (C,D)Wound healing assay of si1-LINC00628 and si2-LINC00628 groups. *p <
0.5, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance.
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DISCUSSION

Although surgery, radiotherapy and chemotherapy have prolonged
the survival of LUAD patients, the prognosis is far from satisfactory.
Early diagnostic markers for LUAD are lacking due to incomplete
understanding of its pathological basis. Therefore, it is crucial to
explore the genetic and epigenetic factors involved in LUAD in order
to identify novel therapeutic targets and diagnostic biomarkers (Sung
et al., 2021).

RNA methylation is a critical epigenetic modification involved in
post-transcriptional gene regulation, and includes m6A, m1A, m5C,
m7G, and other types. Methylation of the fifth cytosine (m5C) is
particularly widespread (Traube and Carell, 2017; Mongan et al.,
2019; Xie et al., 2020), and participates in various physiological and
pathological processes (Li et al., 2017; Zhao et al., 2017; Bohnsack
et al., 2019). The m5C modification in tRNA and rRNA regulates
translation and the quality of ribosome biosynthesis respectively. In
addition, methylation of 5C in mRNA affects its structure, stability
and translation.

LncRNAs consist of more than 200 nucleotides and were
initially considered “junk sequences” with no specific
biological functions. However, recent studies show that
lncRNAs are widely expressed in human cells and are
associated with tumor development. In fact, several lncRNAs
have been identified as potential prognostic markers and
therapeutic targets for multiple tumors (Nandwani et al.,
2021). In addition to post-transcriptional regulation of
protein-coding RNAs, the lncRNAs can also bind to proteins
and molecular scaffolds and affect tumor growth through in situ
regulation and molecular convergence (Kopp and Mendell, 2018;
Nandwani et al., 2021). In the present study, we used
computational biology to identify lncRNAs that are regulated
by m5C methyltransferase, and determined their prognostic
relevance in LUAD. Bioinformatics analysis further indicated
that the m5C scores of these lncRNAs were correlated with
ribosome subunit, cytosolic ribosome, cytoplasmic translation,
endolysosome and lymphocyte migration.

We identified 185 lncRNAs related to genes encoding m5C
methyltransferase, of which 16 were prognostically relevant,
including LINC00628 that was significantly correlated with
multiple m5C methyltransferases. Therefore, we hypothesized
that LINC00628 is regulated by m5C methylation during LUAD
progression. Indeed, knocking down LINC00628 in two LIAD
cell lines significantly reduced their migration and invasion rates
in vitro, which is suggestive of an oncogenic role in LUAD.
However, studies show that LINC00628 can function as an
oncogene or tumor suppressor in different cancers (Zhang

et al., 2016; He et al., 2018). For example, overexpression of
LINC00628 inhibited the proliferation and migration of
osteosarcoma cells (He et al., 2018), whereas its knockdown in
gastric cells had a similar inhibitory effect (Zhang et al., 2016).
Consistent with our results, Xu et al. found that LINC00628
promoted LUAD progression by targeting the LAMA3 promoter
region (Xu et al., 2019). In addition, we also identified LNC02147
as a protective factor in LUAD.

However, a major limitation of our study is that our findings
are based on bioinformatics analysis, and will have to be validated
on cross-cohort samples. In addition, the mechanisms underlying
the function of m5C-related lncRNAs in LUAD also need to be
explored.

CONCLUSION

We identified prognostically relevant LUAD-related lncRNAs
that are regulated by m5C methyltransferase, and constructed
a predictive model based on these lncRNAs. Our findings provide
a basis for further research on the role of m5C modification
in LUAD.
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DNA repair mechanisms have been proven to be essential for cells, and abnormalities in
DNA repair could cause various diseases, such as cancer. However, the diversity and
complexity of DNA repair mechanisms obscure the functions of DNA repair in cancers. In
addition, the relationships between DNA repair, the tumor mutational burden (TMB), and
immune infiltration are still ambiguous. In the present study, we evaluated the prognostic
values of various types of DNA repair mechanisms and found that double-strand break
repair through single-strand annealing (SSA) and nonhomologous end-joining (NHEJ) was
the most prognostic DNA repair processes in gastric cancer (GC) patients. Based on the
activity of these two approaches and expression profiles, we constructed a HR-LR model,
which could accurately divide patients into high-risk and low-risk groups with different
probabilities of survival and recurrence. Similarly, we also constructed a cancer-normal
model to estimate whether an individual had GC or normal health status. The prognostic
value of the HR-LR model and the accuracy of the cancer-normal model were validated in
several independent datasets. Notably, low-risk samples, which had higher SSA and
NHEJ activities, hadmore somatic mutations and less immune infiltration. Furthermore, the
analysis found that low-risk samples had higher and lower methylation levels in CpG
islands (CGIs) and open sea regions respectively, and had higher expression levels of
programmed death-ligand 1 (PD-L1) and lower methylation levels in the promoter of the
gene encoding PD-L1. Moreover, low-risk samples were characterized primarily by higher
levels of CD4+ memory T cells, CD8+ naive T cells, and CD8+ TEM cells than those in high-
risk samples. Finally, we proposed a decision tree and nomogram to help predict the
clinical outcome of an individual. These results provide an improved understanding of the
complexity of DNA repair, the TMB, and immune infiltration in GC, and present an accurate
prognostic model for use in GC patients.

Keywords: gastric cancer, DNA repair, tumor mutational burden, immune infiltration, DNA methylation, prognostic
model

Edited by:
Chunjie Jiang,

University of Pennsylvania,
United States

Reviewed by:
Hong Chen,

University of Texas MD Anderson
Cancer Center, United States

Juan Chen,
Hefei University of Technology, China

Wei Jiang,
Nanjing University of Aeronautics and

Astronautics, China

*Correspondence:
Songbin Fu

fusb@ems.hrbmu.edu.cn
Mengdi Cai

caimengdi@ems.hrbmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Pathology,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 15 March 2022
Accepted: 18 April 2022
Published: 17 May 2022

Citation:
Wang L, Lu J, Song Y, Bai J, Sun W,
Yu J, Cai M and Fu S (2022) Analysis of

DNA Repair-Related Prognostic
Function and Mechanism in

Gastric Cancer.
Front. Cell Dev. Biol. 10:897096.
doi: 10.3389/fcell.2022.897096

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8970961

ORIGINAL RESEARCH
published: 17 May 2022

doi: 10.3389/fcell.2022.897096

96

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.897096&domain=pdf&date_stamp=2022-05-17
https://www.frontiersin.org/articles/10.3389/fcell.2022.897096/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.897096/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.897096/full
http://creativecommons.org/licenses/by/4.0/
mailto:fusb@ems.hrbmu.edu.cn
mailto:caimengdi@ems.hrbmu.edu.cn
https://doi.org/10.3389/fcell.2022.897096
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.897096


INTRODUCTION

Gastric cancer (GC) is the sixth most prevalent cancer in the
world and the third leading cause of cancer-related deaths (Bray
et al., 2018). Despite remarkable progress in diagnostic and
therapeutic methods, GC remains a refractory malignancy. In
recent years, significant progress has been made in
understanding cancer-associated molecular genetics as a
result of the development of molecular biology methods.
Several studies have found that mutations in the genome
play an indispensable role in genomic maintenance and
evolution. Furthermore, studies have demonstrated that when
DNA repair mechanisms are disrupted or deregulated this may
increase rates of mutagenesis and genomic instability and
thereby mediate cancer progression (Bouwman and Jonkers,
2012; Wolters and Schumacher, 2013). The main DNA repair
mechanisms include direct repair, base excision repair, and
double-strand break repair, among which DNA double-
strand break (DSB) repair plays a crucial role in maintaining
genomic integrity (Gillyard and Davis, 2021). In addition, DSB
affects the prognosis of cancer by preventing disadvantageous
mutations (Stok et al., 2021). However, it remains unknown
whether DSB is valuable for predicting the clinical outcomes of
GC patients.

The tumor mutational burden (TMB) refers to the number of
somatic mutations per DNA megabase in tumor cells. TMB is
considered as the primary driver of antitumor adaptive immune
responses and serves as a positive predictive biomarker for immune
checkpoint inhibitors (Castle et al., 2012). Recently, various studies
have illustrated that the genomic instability resulting from the
inadequacy of DNA repair mechanisms is associated with high
TMBs. Preclinical studies identified that tumor cells with higher
TMB could produce more neoantigens, which are more easily
recognized by T cells, and thus activate stronger immune killing
activity (Parikh et al., 2019; Klempner et al., 2020). However, there
are some limitations to the use of the TMB as a biomarker for
clinical utilization. This is mainly because heterogeneity among
intratumoral neoantigens may also be important for
immunotherapy response (McGranahan et al., 2016).
Furthermore, it is also important to acknowledge that the cut-
off values of TMB lack standardization and consistency because
they are defined differently across studies, testing platforms, and
patient populations (Gibney et al., 2016). Thus, the development of
predictive biomarkers is urgently needed to benefit patients. In this
situation, an increasing number of oncologists have begun to focus
their studies on PD-L1 expression of tumor cells and found that
PD-L1 positivity has emerged as a major predictive marker
(Borghaei et al., 2015; Larkin et al., 2015). However, the
accuracy is not satisfactory based on PD-L1 as a single molecule
for GC patients (Patel and Kurzrock, 2015). This is mainly because
the expression of PD-L1 is also affected by other factors. For
example, its expression is associated with global hypomethylation
(Emran et al., 2019). To improve clinical outcomes in GC, it is
essential to explore emerging biomarkers through a comprehensive
multifaceted analysis involving DNA repair mechanisms, tumor-
infiltrating lymphocytes, TMB, mutational signatures, immune
microenvironments of tumors, and immune checkpoints.

In the present study, we constructed a HR-LR model to
improve the performance of the prognosis of overall survival
and recurrence of GC patients by integrating the DNA repair-
related GO processes from the MsigDB database and the clinical
data from TCGA stomach adenocarcinoma (GC) patients.
Moreover, we estimated the expression level of PD-L1 as an
immune checkpoint and methylation level of CpG sites in the
PD-L1 promoter region, TMB, and the systemic immune status.
To a certain extent, attempting to exploit a novel model based on
DNA repair mechanisms will significantly help select GC patients
who would benefit from predictions of clinical outcomes and
improve the accuracy of prognostic assessments.

MATERIALS AND METHODS

Transcriptomic, Genomic, and Clinical
Datasets of the Cancer Genome Atlas
Cohort
Transcriptional profiles of cancer and normal tissues of patients
with GC were obtained from stomach adenocarcinoma (STAD)
patients of The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov), including 375 cancer samples and 32 normal samples
(Table 1). For cancer or normal samples, genes with FPKM
expression values of 0 in >70% of samples were removed, and the
remaining 0 values were imputed with K-Nearest Neighbors.
Then, expression values were log2 transformed for subsequent
analysis.

Mutational data of GC patients was also downloaded from the
TCGA database. After removing the synonymous variants, we
calculated the tumormutational burden (TMB), which was defined
as the number of somatic mutations per megabase of interrogated
genomic sequence. Mutation profiles were analyzed and visualized
by the R package “maftools” (Mayakonda et al., 2018).

We obtained clinical information of GC patients from the
TCGA database, including survival state, survival time,
recurrence state, recurrence time, disease stage, therapeutic
response, age, gender, and other clinical characteristics.

DNA Repair Related GO Terms and
Pathways
The genes of GO terms and pathways related to DNA repair
mechanism were downloaded from the Molecular Signatures
Database (MsigDB) (Liberzon et al., 2015). Based on the
transcriptional data of these genes in the TCGA cohort, we
calculated the score of each GO term or pathway using a
single-sample gene set enrichment analysis (ssGSEA). A
univariate Cox proportional-hazards regression model was
used to evaluate the prognostic significance of each GO term
or pathway in GC by R package “survival”. Taken the results of
DNA repair-related GO terms, KEGG pathways, and Reactome
pathways, double-strand break repair through single-strand
annealing (SSA) or nonhomologous end-joining (NHEJ) were
the most prognostic approaches. The result was validated in
GSE66254 (GPL570) dataset.
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The ssGSEA score of SSA or NHEJ GO term in normal
samples and good or poor outcome samples were also
calculated by the ssGSEA algorithm. Those samples that lived
more than 1 year were defined as good outcome samples while
dead samples in 1 year were defined as poor outcome samples.

Construction of HR-LR Model
We proposed a computational method to establish the HR-LR
model, which involved three steps. First, we randomly divided the
STAD TCGA cohort into training and test sets, including 242 and
106 samples, respectively (Table 1). The HR-LR model was
established based on the training set. Second, we selected those
genes with significant associations with a score of SSA and NHEJ
GO terms as the DNA repair-related marker genes (|R| > 0.4, BH-
FDR < 0.001). In total, we obtained 37 positive genes and 39
negative genes. Third, an SSA-NHEJ score was defined by the T
statistic of a two-sided t-test for each tumor sample by comparing
the expression values of the 37 positively correlated genes with the
expression values of the 39 negatively correlated genes (Table 2
and Supplementary Table S1).

The median SSA-NHEJ score of training samples was defined
as the cutoff (cutoff = 3.46). An SSA-NHEJ score >3.46
represented that those 37 positive genes were overexpressed
while the 39 negative genes were underexpressed. An SSA-
NHEJ score <3.46 meant the opposite. As SSA and NHEJ GO
terms were protective factors in GC, patients with higher SSA-
NHEJ scores were considered with a better outcome. Therefore,
the samples were divided into high-risk and low-risk groups, with

low and high SSA-NHEJ scores, respectively. The survival
hypothesis was validated in training, test sets of the TCGA
cohort, and other GEO cohorts. In addition, we found that
those high-risk samples were more likely to be recurrent,
compared with those low-risk samples.

Construction of Cancer-Normal Model
The model was established exactly like the HR-LR model.
However, the cutoff was changed. Using the R package
“pROC” (Robin et al., 2011), we selected 0.008 as the cutoff.
Samples with SSA-NHEJ score ≥0.008 were predicted as tumor
samples while other samples were predicted as normal
samples.

Transcriptomic and Clinical Datasets of
GEO Validation Cohorts
The independent validation datasets were downloaded from the
Gene Expression Omnibus database, including nine datasets. The
detailed information is shown in Table 1. We chose six datasets
with expression profiles and survival information to validate our
HR-LR model, including GSE62254, GSE26253, GSE84437,
GSE26899, GSE15460, and GSE13861. For validation of GC
recurrence, we selected four datasets with recurrence
information, including GSE62254, GSE26253, GSE13861, and
GSE26899. Finally, we chose the datasets with cancer and normal
samples to validate the cancer-normal model, including
GSE13861, GSE13911, GSE33335, and GSE66229.

TABLE 1 | Patient cohorts from TCGA and GEO databases.

Cohort Cancer samples Normal samples Recurrence GPL

TCGA 375a (242 training +106 test) 32 rb -
GSE62254 300 - R GPL570
GSE26253 432 - R GPL8432
GSE84437 433 - - GPL6947
GSE26899 96 - R GPL6947
GSE15460 248c - - GPL570
GSE13861 65 25 r GPL6884
GSE13911 38 31 - GPL570
GSE33335 25 25 - GPL5175
GSE66229 300 (GSE62254) 100 - GPL570

aIn total, we obtained 375 cancer and 32 normal samples from TCGA, database. Screening samples with survival data and deleting those samples died in 10 days, we finally obtained 348
samples. Then we selected 242 samples as the training set randomly while the remaining 106 samples were as the test set.
b
“r” in the table represented the datasets with recurrence information.

cThe dataset GSE15460 included GSE15455, GSE15456, GSE15459, GSE15537, GSE22183, GSE34942 datasets. Deleting those cell line datasets and the datasets sequenced by
GPL96, we finally obtained 248 samples, including GSE15459 and GSE34942.

TABLE 2 | Positive and negative genes used in the HR-LR model and Cancer-Normal model.

Gene symbols

Positive genes BRIP1, CDC45, CDC7, CDCA2, CENPK, CLSPN, DDIAS, DLGAP5, DTL, E2F7, EZH2, FANCA, HELLS, HIST1H2AH,
KIF11, KIF15, KIF18A, KIF23, KIF2C, KNTC1, LMNB1, MCM10, MND1, NCAPG, ORC1, PCNA, PLK4, POLE2, POLQ,
POLR3G, RAD51AP1, RAD54L, RFC4, RRM2, TYMS, UHRF1, XRCC2

Negative genes ADCY5, APOD, C15orf59, C16orf89, C1QTNF2, C1QTNF7, CGNL1, CRYAB, DAAM2, DACT3, DCN, ELN, FAM110B,
FMOD, GHR, GREM2, GSTM5, HSPA2, HSPB8, KCNK3, LRRN4CL, MFAP4, NDNF, NEGR1, NFATC4, PDE2A,
PPP1R14A, PPP1R3C, SAMD11, SCN4B, SCUBE2, SLC22A17, SMARCD3, SRPX, TCEAL7, TMEM100, TMOD1,
TNFAIP8L3, ZCCHC24
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Generation of ImmuneScore, StromalScore,
EstimateScore, and
MicroenvironmentScore
For each patient sample, ImmuneScore, StromalScore,
EstimateScore, and MicroenvironmentScore were generated by
R package “estimate” (Yoshihara et al., 2013) and R package
“xCell” (Aran et al., 2017). The higher the respective score, the
larger the ratio of the corresponding component in the tumor
microenvironment (TME). The infiltration of immune and
stromal cell types in an individual sample was evaluated by R
package “xCell”.

Calculation of DNA Hyper- and
Hypomethylation Scores in Tumor Samples
DNA methylation dataset of STAD patients detected by
Illumina Infinium HumanMethylation450 BeadChip array
was also downloaded from the TCGA data portal. After
selecting the promoter CpG islands (CGIs) and open sea
regional clusters on the genome, we calculated the aberrant
hypermethylation (over CGI probes) and hypomethylation
(over open sea probes) values for each tumor sample
compared with normal samples according to one of the
previous studies (Yang et al., 2015). The scores of hyper- and
hypomethylation were calculated as follows: 1) all genome CpG
sites were classified into different regional classes, then CGI and
open sea regions were selected to be grouped into regional
clusters by boundedClusterMaker in R-package bumphunter
(maximum cluster width of 1500bp and maximum gap of 500bp
between any two neighboring regional classes), respectively; 2)
the methylation in each cluster was defined as the mean beta
value of the sites within the cluster; 3) for each cluster in a
certain cancer sample, the relative methylation was calculated as
the beta value of this cluster in single cancer sample subtracting
the mean value and further dividing the standard value of beta
value of this cluster in all normal samples; 4) since, cluster
regions in promoter CGIs and open sea usually show
hypermethylated and hypomethylated in cancer samples, we
calculated the hyper- and hypomethylation for a cancer sample
as the mean of positive and negative relative methylation value
in all region clusters, respectively.

Survival Analysis
Kaplan–Meier survival plots and log-rank tests were used to
evaluate the survival differences between groups of patients. The
univariate Cox proportional-hazards regression model and
multivariate Cox proportional-hazards regression model were
used to evaluate the prognostic significance of factors. This
process was performed using the R package “survival”.

Decision Tree
Combining the HR-LR model and patient stage information, a
decision tree was established to predict the single sample into
low-risk, moderate-risk, and high-risk groups. The relationship
between predicted results and the sample real tags was plotted as a
Sankey diagram, using the R package “networkD3”.

Nomogram Plot
A nomogram was built with SSA-NHEJ score and other clinical
features to quantify the risk assessment for the individual patient,
using the R package “rms” (Zhang and Kattan, 2017).

RESULTS

The Single-Strand Annealing and
Nonhomologous End-Joining DNA Repair
Approaches ere Identified as the Primary
Predictive Factors for Overall Survival in
Gastric Cancer Patients
On the basis of the expression profiles of the TCGA STAD cohort
and the gene lists extracted from the MSigDB, we calculated the
performance score (ssGSEA score) for each DNA repair-related
GO term, KEGG pathway, and Reactome pathway
(Supplementary Table S2). The univariate Cox coefficient and
significance of each GO term and pathway were determined.
Summarizing the results, we found that DSB repair was the most
effective prognostic factor (Supplementary Figures S1A–C).
Among the DSB repair mechanisms, SSA and NHEJ were
found to be the primary predictive factors for outcomes in the
TCGA STAD cohort (Figure 1A). Because DNA repair
mechanisms are described in more detail by GO terms, we
then selected “double-strand break repair via single-strand
annealing,” “positive regulation of double-strand break repair
via nonhomologous end joining,” and “regulation of double-
strand break repair via nonhomologous end joining,” for
subsequent analysis (HR = 0.009, 0.002, and 0.004,
respectively; p = 8.01e−03, 1.05e−02 and 4.33e−02,
respectively). Kaplan–Meier survival plots showed that patients
with higher ssGSEA scores have better outcomes (Figure 1B; log-
rank p = 4.3e−04, 4.35e−02, and 9.98e−03, respectively). These
results were validated in the independent GSE62254 dataset
(Figure 1C). This dataset was selected because there are
relatively more genes corresponding to the three
abovementioned GO terms in data from the GPL570 platform.

To examine the performance of these three prognostic DNA
repair-related GO terms, we then compared their ssGSEA scores
between three groups from the TCGA cohort, namely, normal
samples, good-outcome samples, and poor-outcome samples.
Here, we defined the good-outcome samples as those patients
who had a survival time of greater than 1 year, while those
patients who died within 1 year were regarded as poor-
outcome samples. The results showed that the ssGSEA scores
of SSA and NHEJ were the lowest in normal samples (Figure 1D).
This suggests that the SSA and NHEJ repair patterns have higher
activity in cancer cells in comparison with normal cells, which
may be caused by the fact that more DNA replication and more
errors occur in cancer cells. On the other hand, among cancer
samples, good-outcome samples had significantly higher ssGSEA
scores in comparison with poor-outcome samples (Figure 1D).
This result was consistent with the result of univariate Cox
regression as shown in Figure 1A. Because repair by SSA and
NHEJ could lead to an accumulation of mutations, we then
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calculated the TMB for each cancer sample and compared the
TMBs of samples with high and low ssGSEA scores. As was
expected, samples with higher ssGSEA scores had significantly
higher TMBs (p = 1.75e−05, 2.77e−08, and 8.47e−11 for SSA,
NHEJ, and NHEJ2, respectively; Figure 1E).

Combining these results, we suggest that the SSA and NHEJ
repair mechanisms were enhanced when normal cells were
converted into cancer cells and that those patients with
stronger SSA and NHEJ repair mechanisms had more
mutations, which may have resulted in the production of
more new antigens, and thus finally had better outcomes.

The HR-LR Model Is a Highly Effective
Prognostic Factor for Gastric Cancer
Patients
We developed the HR-LRmodel in three steps, as described in the
Materials and Methods section. Using the HR-LR model, we

calculated the SSA-NHEJ score for each sample in the training
and test sets. Kaplan–Meier survival plots were generated and
log-rank tests were executed for samples with high- and low-
SSA-NHEJ scores (with the median score as the cut-off) in the
training set (n = 242). As a result, we found that samples with
higher SSA-NHEJ scores had better clinical outcomes (log-rank
p = 5.06e−03; Figure 2A). Then, we validated the predictive effect
of the SSA-NHEJ score in the test set (n = 106, log-rank p =
4.07e−02; Figure 2B). The cut-off remained unchanged in the
test set.

To characterize the functions of genes in the HR-LR model, a
functional statistical analysis was performed on them. Among the
37 positively correlated genes, 8, 15, and 20 genes were associated
with DSB repair, DNA repair, and cancer hallmarks, respectively.
Of the 39 negatively correlated genes, 12 were associated with
cancer hallmarks (Figure 2C, Table 2, and Supplementary Table
S1). Furthermore, we have listed the associated cancer hallmarks
in detail in Figure 2D, including several well-known examples

FIGURE 1 | SSA and NHEJ DNA repair approaches are primary protection factors for overall survival in GC patients. (A) The prognostic value of SSA and NHEJ
DNA repair process evaluated by univariate Cox proportional-hazards regression model. (B,C) Samples with higher ssGSEA scores of SSA or NHEJ have better clinical
outcomes in the TCGA cohort and GSE62254 dataset. (D) ssGESA scores of SSA and NHEJ processes increase first and then decline in normal, good outcome, and
poor outcome samples. (E) Samples with a higher ssGSEA score of SSA or NHEJ are with more somatic mutations.
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such as DNA repair, apoptosis, hypoxia, glycolysis, the
epithelial–mesenchymal transition, the p53 pathway, and
KRAS signaling (Supplementary Table S1). These results
suggested that these 76 genes were associated with not only
DNA repair by SSA and NHEJ but also significant biological
mechanisms in the body and, thus, ultimately affected the
development of GC and clinical outcomes in patients.

Comparing the performance of the SSA and NHEJ GO terms,
we found that high-risk samples had significantly lower ssGSEA
scores in both the training set and the test set (Figure 2E).
Furthermore, we found that high-risk samples had significantly
lower TMB or fewer somatic mutations (Figure 2F). These results
were consistent with previous studies, as samples with higher
TMBs had better outcomes owing to the generation of more new
antigens (Parikh et al., 2019; Klempner et al., 2020). Analyzing the
clinical features of samples, we found that high-risk samples had
more deaths, higher disease stages, and poor responses to therapy
(Figure 2G). The probability of patients achieving complete
response was significantly correlated with the SSA-NHEJ score
(Figure 2H; Pearson correlation coefficient r = 0.63, p = 0.049).

To validate the prognostic effect of the SSA-NHEJ score, we
first performed a multivariate Cox regression modeling analysis
involving the SSA-NHEJ score, age, gender, disease stage and
grade, lymph node count, and family history of stomach cancer.
The results showed that the SSA-NHEJ score was the most

effective prognostic factor (HR = 0.50 and p = 0.002 for low-
risk samples), which indicated that the SSA-NHEJ score was an
independent prognostic factor for GC patients (Figure 3A).In
addition, patients with stage IV disease and older ages were found
to have poor outcomes. To investigate the applicability of the HR-
LR model and validate its prognostic effect, we collected several
independent datasets involving GC patients from the GEO
database (Table 1). Using the expression of genes in the HR-
LR model and the cut-off derived from the TCGA training set in
each GEO dataset, we calculated the SSA-NHEJ score for each
sample and further divided the samples into high-risk and low-
risk groups. The results showed that in six independent GEO
datasets from different GEO platforms the HR-LR model had a
significant prognostic effect (Figure 3B). These results confirmed
the prognostic value of the HR-LRmodel and established that this
model could be applied in different datasets, including RNA-Seq
data and microarray data from different platforms.

The HR-LR Model Can Also Predict
Recurrence in Gastric Cancer Patients
As the HR-LRmodel had a robust prognostic effect with regard to
overall survival in GC patients, we then tested its predictive effect
on recurrence in GC patients. Integrating the training and test
sets, we found that the HR-LR model could divide samples into

FIGURE 2 | Using HR-LR model to predict survival risk of samples. (A) Top panel shows the expression profile of the SSA and NHEJ-related marker genes in the
TCGA training set. The middle panel shows the score of each training sample by the HR-LR model. The bottom panel represents the Kaplan–Meier survival plot of high-
risk and low-risk samples in the training set. (B) Expression profile, sample score, and Kaplan–Meier survival plot for TCGA test samples. (C) The statistic of 76 marker
genes. (D)Marker genes related to cancer hallmarks. (E) Low-risk samples are with significantly higher SSA and NHEJ ssGSEA scores in training and test sets. (F)
Low-risk samples have significantly more somatic mutations. (G) Low-risk samples are with more alive, low stage, and complete response samples. (H) Correlation of
SSA-NHEJ score with complete response. Samples were divided into ten groups according to their scores. Samples with higher scores are with a higher probability of
complete response.
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FIGURE 3 | The prognostic effect of the HR-LR model. (A) Multivariate Cox proportional-hazards regression result of SSA-NHEJ score and other clinical
characteristics. (B) Validation of the prognostic effect of the SSA-NHEJ score in six GEO cohorts. n represents the number of samples in each GEO dataset.

FIGURE 4 | The predictive ability of SSA-NHEJ score for recurrence of GC patients. (A) New Tumor Event probability of patients in TCGA cohort. (B) Multivariate
Cox proportional-hazards regression result for recurrence prognosis of the SSA-NHEJ score and other clinical characteristics. (C–F)Recurrence probability of patients in
four GEO cohorts.
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high recurrence risk and low recurrence risk groups in the TCGA
cohort (Figure 4A; log-rank p = 1.11e−03, Cox p = 1.55e−03).
Multivariate Cox regression modeling analysis showed that the
SSA-NHEJ score was a prognostic factor for recurrence of GC
that was independent of clinical features (Figure 4B; HR = 0.45
and Cox p = 0.019 for low-risk samples). In addition, the
prognostic effect of the HR-LR model with regard to
recurrence was also validated in four other GEO datasets
(Figures 4C–F; log-rank p = 6.53e−04, 1.33e−02, 2.52e−02 and
1.32e−01 and Cox p = 2.82e−06, 3.15e−03, 4.01e−03 and

8.26e−02 for the GSE62254, GSE26253, GSE13861, and
GSE26899 datasets, respectively).

Low-Risk Samples Had Higher TMBs
We utilized the maftools package to visualize the results on the
basis of somatic mutation data from the TCGA STAD cohort.
These somatic mutations included point mutations and
insertions/deletions. An oncoplot plot showed that missense
mutations occupied an absolute position among total
mutations and that the number of mutations in low-risk

FIGURE 5 |Mutation information of high-risk samples and low-risk samples. (A,B) Statistic of variant classification and mutation type of samples with high-risk (top
panel) and low-risk (bottom panel) survival. (C) Driver mutation genes in high-risk and low-risk samples (top and bottom panel respectively). (D) Mutational signatures
were identified in high-risk and low-risk samples, respectively. The plot title indicates the best match against validated COSMIC signatures (left and right panel
respectively).
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samples was higher than that in high-risk samples (Figure 5A).
Then, a transition and transversion plot was used to classify
single-nucleotide variants into six categories (i.e., T > G, T > C, T
>A, C > T, C >G, and C >A; Figure 5B). Moreover, it was found
that C > T had the highest frequency among single-nucleotide
variants in both low-risk and high-risk samples.

Cancer driver genes could provide an advantage for the
selective growth of cancer cells. Therefore, we applied the
OncodriveCLUST algorithm in the TCGA STAD cohort,
which detected a majority of the activating mutations and
identified seven well-known oncogenes as significantly mutated
in 348 samples (false discovery rate <0.01). MYCT1, RHOA,
JAK1, and FBXW7 were identified in high-risk samples. Likewise,
we identified FAM26E, C7orf50, and PAX2 in low-risk samples
(Figure 5C). Whereas the Oncodrive algorithm was more
advantageous in terms of sensitivity in identifying oncogenes
with mutational hotspots, in contrast, the Oncodrive algorithm
underperformed in identifying potential tumor suppressor genes
(Mayakonda et al., 2018). In consequence, we did not identify
potential tumor suppressor genes, such as TP53.

As cancer progresses, a characteristic mutational pattern may
be left behind at various points in time, which may reveal its
underlying mutagenic process (Alexandrov et al., 2013).
Therefore, we further analyzed mutational signatures on the
STAD TCGA cohort by performing signature enrichment. In
total, we identified six and eight signatures in high-risk and low-
risk samples, respectively (Figure 5D). Interestingly, we identified
the common signature associated with DNA mismatch repair in
both types of samples was associated with high numbers of small
(shorter than 3bp) insertions and deletions at mono/
polynucleotide repeats. The deficiency in base excision repair
due to inactivating mutations in NTHL1 was specific to the
mutational signature of high-risk samples and primarily
caused predominantly C > G mutations. This may be due to
the generation of abasic sites after removal of uracil by base
excision repair. In addition, polymerase epsilon exonuclease
domain mutations were specific to the mutational signature of
low-risk samples and exhibited strand bias for C >Amutations in
the TpCpT context and T > G mutations in the TpTpT context.
The mutational process underlying this signature was altered
activity of the error-prone polymerase POLE. It has been
proposed that the presence of large numbers of this signature
was associated with recurrent POLE somatic mutations. The
observations from signature enrichment suggest that DNA
mismatch repair mechanisms play a crucial role in the
development of malignant tumors, in accordance with
previous reports (Belfield et al., 2018; McCarthy et al., 2019).

Low-Risk Samples Were Associated With
Less Immune Cell Infiltration
To further clarify the intrinsic biological differences between
high-risk and low-risk samples, the ESTIMATE algorithm was
used for the estimation of stromal cells and immune cells in
malignant tumors by calculating the corresponding scores. A
higher immune score or stromal score represents a larger amount
of immune or stromal components in the tumor

microenvironment. To investigate correlations between the
stromal score, immune score, and ESTIMATE score and the
SSA-NHEJ score, Pearson’s correlation coefficient were used to
measure the strength of the respective correlations. The results
indicated that the stromal score, immune score, and ESTIMATE
score were negatively correlated with the SSA-NHEJ score and
decreased significantly with an increase in the SSA-NHEJ score
(Figures 6A–C). We then determined the differences in the
immune score, stromal score, and ESTIMATE Score between
high-risk and low-risk samples. The results showed that the
average immune score (Figure 6D), stromal score (Figure 6E),
and ESTIMATE score (Figure 6F) were significantly higher in
high-risk samples than in low-risk samples.

We further compared the enrichment levels of different types of
cells from gene expression data for 64 types of immune and stromal
cells in the two types of samples (Figure 7A, Supplementary Table
S3). The results showed that the low-risk samples had more
infiltrating adaptive immune cells including CD8+ TEM cells,
CD8+ naive T cells, CD4+ TCM cells, Th1 cells, and Th2 cells,
and the scores of infiltration immune cells were also higher, which
might be a key factor for favorable prognosis of the low-risk samples.
Recent studies have shown that CD8+ T cells are regarded as the
main driver of anti-tumor immunity (Reiser and Banerjee, 2016;
Fang et al., 2020). Additionally, we found infiltration scores of
stromal cells, such as endothelial cells, fibroblasts, and pericytes,
were relatively high in high-risk samples compared to low-risk
samples. Subsequently, on the basis of data for the high-risk and
low-risk samples, we generated a heatmap of immune cells with
significant differences and performed a differential analysis of gene
expression of the immune checkpoint PD-L1 (Figures 7B–D).
Using the HR-LR model, the low-risk samples were associated
with a favorable prognosis with a median survival time of
2,197 days, while the high-risk samples had a median survival
time of 635 days. The low-risk samples were characterized
primarily by infiltration of high levels of CD4+ memory T cells,
CD8+ naive T cells, CD8+ TEM cells, natural killer cells, plasma cells,
pro-B cells, Th1 cells, and Th2 cells. Subjects in the high-risk samples
had shorter overall survival times and exhibited significant increases
in the infiltration of CD4+ naive T cells, CD4+ T cells, CD4+ TCM
cells, megakaryocytes, dendritic cells, and eosinophils. PD-L1 has
been found to be an immune checkpoint. A previous study found
that global hypomethylation of DNA could contribute to the
upregulation of PD-L1 in melanoma cells and had an impact on
DNA repair pathways (Emran et al., 2019). We selected CpG islands
and open-sea regions to measure methylation levels in each STAD
sample by the method described in the Materials and Methods
section. The results showed that high-risk samples had lower
methylation levels in CpG islands and higher methylation levels
in open-sea regions in comparison with low-risk samples (Wilcoxon
p = 2.37e−11 and 1.66e−10, respectively; Figure 7C). In addition,
high-risk samples were characterized by a significantly lower
expression level of PD-L1 (Wilcoxon p = 5.65e−04; Figure 7D).
This might have been caused by the higher methylation level of CpG
sites in the promoter region of the gene encoding PD-L1 (Wilcoxon
p = 4.19e−05; Figure 7D). The relationships between global
methylation, promoter methylation, and expression of PD-L1 and
DNA repair processes need to be further studied. Moreover, we also
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calculated the expression of other immune checkpoints. We found
that high-risk samples were characterized by a significantly higher
expression level of immune checkpoint genes including CD27,
CD40, and CD160. A previous study found that tumor samples
with high levels of CD8+ tumor-infiltrating lymphocytes were
associated with good outcomes in bladder cancer and had
significantly higher levels of genes encoding immune checkpoints,
such as PD-L1 (Vidotto et al., 2019). Several studies have shown that
tumors with a higher TMB can produce more neoantigens, which
are more easily recognized by T cells and induce greater immune
cytotoxic activity (Rooney et al., 2015). In addition, multiple studies
have shown that patients with positive expression of PD-L1 in
tumors and infiltration of CD8+ T cells have longer overall survival
times (Wang et al., 2018; Wang et al., 2021), as was observed in our
analysis.

Cancer-Normal Model Was Developed to
Predict the State of an Individual
As described in the first Results subsection, we found that SSA and
NHEJ have low activity in normal cells because less replication
occurs in normal cells in comparison with cancer cells. As the SSA-
NHEJ score is related to the activity of the SSA and NHEJ repair
mechanisms, we inferred that normal samples should have lower

SSA-NHEJ scores in comparison with cancer samples. This
hypothesis was validated, as shown in Figure 8A. Normal
samples had the lowest SSA-NHEJ scores, while cancer samples
associated with good outcomes had the highest SSA-NHEJ scores
(Figure 8A; all p < 0.05). From the receiver operating characteristic
plot, we selected 0.008 as the cut-off value for distinguishing cancer
samples from normal samples, as 0.008 corresponded to high
sensitivity and specificity (Figure 8B; AUC = 0.918). The
forecasting performance of the Cancer–Normal model was
validated in four other independent datasets obtained from the
GEO database (Figure 8C; AUC = 0.855, 0.902, 0.917, and 0.949
for the GSE13861, GSE139911, GSE33335, andGSE66229 datasets,
respectively). Five measures were utilized to evaluate the
performance of the Cancer–Normal model, namely, the true
positive rate (or sensitivity), 1—the false positive rate (or
specificity), accuracy, precision, and the F-measure. All these
measures showed that the Cancer–Normal model gives good
predictions of the status of individuals (Figure 8D).

Evaluation of the HR-LR and
Cancer-Normal Models
The prognostic effect of the HR-LR model and the predictive
accuracy of the Cancer–Normal model with regard to cancer or

FIGURE 6 | Immune-related score by “estimate”. (A–C)Correlation between SSA-NHEJ score and StromalScore (A), ImmuneScore (B), and ESTIMATEScore (C)
in TCGA samples. R and P were calculated by the Pearson test. (D–F) Low-risk samples have lower StromalScore (D), ImmuneScore (E), and ESTIMATEScore (F)
compared with high-risk samples. p values were calculated by Wilcoxon test.
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normal health status were validated in the TCGA cohort and
various GEO cohorts. We then evaluated these two models by
comparing their predictive accuracy with that of random models.
By randomly selecting 76 genes from the expression profiles,
computing random scores, and selecting a cut-off as in the case of
the real models, we constructed a random HR-LR model and
Cancer–Normal model. By repeating this process 1000 times, we
obtained 1000 random HR-LR models and Cancer–Normal
models. We compared the prognostic effects of the random
HR-LR models with that of the real HR-LR model. The results
showed that the SSA-NHEJ score and the derived class (high-risk
vs. low-risk class) were significantly more accurate prognostic

factors (Figure 9A; p = 0.03, p < 0.001, and p < 0.001 for
univariate Cox p of SSA-NHEJ score, univariate Cox p of class
and log-rank p of class, respectively). On the other hand, we
compared the AUC values of the 1000 random Cancer–Normal
models with that of the real Cancer–Normal model. The results
showed that the SSA-NHEJ-related Cancer–Normal model had a
significantly higher AUC value (Figure 9B; p = 0.003). Together,
these results validated the effectiveness of our HR-LR model and
Cancer–Normal model and confirmed that their predictive
accuracy was not randomly achieved.

From previous results, we found that the patient disease stage
also had a significant prognostic value as well as the SSA-NHEJ

FIGURE 7 | Immune-related score by “xCell”. (A) The infiltration of immune and stromal cell types as well as the immune-related scores in high-risk and low-risk
samples. p values less than 0.05, 0.01, and 0.001 are marked with “*”, “**”, and “***”. (B) The heatmap of infiltration degree of those immune and stromal cell types with
significantly different infiltration in high- and low-risk samples. Cell typesmarked with orange color represent higher infiltration in high-risk samples while cell typesmarked
with green color represent higher infiltration in low-risk samples. Samples are sorted by SSA-NHEJ score. (C) Genome-wide hypermethylation in CGI regions and
hypomethylation in open sea regions. (D) Promoter methylation and expression of PD-L1 in high-risk and low-risk samples. p values were evaluated by Wilcoxon test.
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score (Figure 3A). We, therefore, combined the HR-LR model
and patient disease stage and obtained three classes of samples
with more significantly different clinical outcomes (Figure 9C;
log-rank p = 2.29e−04). On the basis of this result, we constructed
a decision tree to help predict the clinical outcome for an
individual (Figure 9D). In addition, a nomogram was
constructed to quantify the survival probability for individual
GC patients (Figure 9E). The SSA-NHEJ-derived class (high-risk
or low-risk) and several clinicopathological features were

included in the nomogram, such as age, gender, disease stage,
and disease grade. The C-index reached 0.702 after 1000
bootstrap iterations in the TCGA cohort (0.734 and 0.728 for
the training and test sets, respectively). The calibration curve also
indicated good agreement between the estimates and
observations, which suggested that our nomogram had a high
level of accuracy (Supplementary Figure S2). The decision tree
and nomogram could contribute to the prognosis in the case of an
individual.

FIGURE 8 | Constructing Cancer-Normal model and predicting the status of samples. (A) SSA-NHEJ score of a normal, good outcome, and poor outcome
samples. p values were evaluated by Wilcoxon test. (B) ROC curve of predicting TCGA STAD cancer and normal samples. 0.008 is selected to be the cutoff to predict a
sample as normal or cancer status. (C) ROC curves of predicting sample status in four independent GEO cohorts. AUC values are listed. (D) Five measures of predictive
effect for TCGA and four GEO cohorts are listed, including true positive rate, 1—false-positive rate, accuracy, precision, and F-measure.
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DISCUSSION

DNA repair is a vital biological process in normal physiological
conditions and includes various types of repair approaches, such
as base excision repair, mismatch repair, and DSB repair. Some
repair methods could reduce the number of mutations in
individuals, while other repair approaches such as SSA and
NHEJ might result in fairly large errors and lead to the
accumulation of many somatic mutations (Negrini et al., 2010;
Lu et al., 2014). In this study, we extracted GO processes and
pathways related to DNA repair from the MSigDB. By combining
clinical data from patients in the TCGA STAD cohort, we found
that clinical outcomes in GC patients were significantly associated
with DSB repair and were especially strongly correlated with the
SSA and NHEJ approaches. By the Pearson correlation test, we
selected 76 genes with significant correlations with the ssGSEA
scores of SSA and NHEJ. These 76 genes comprised 37 positively
correlated genes and 39 negatively correlated genes, which were
further subjected to the t-test to obtain the value of the t-statistic

for each sample. We referred to the value of the t-statistic as the
SSA-NHEJ score. Follow-up analyses showed that the SSA-NHEJ
score was a valuable prognostic factor for overall survival and
recurrence in GC patients. In addition, the SSA-NHEJ score could
also predict whether an individual had GC.

Numerous studies have demonstrated that the SSA and
NHEJ approach in DSB repair would lead to the
accumulation of somatic mutations in comparison with
homologous recombination repair (Turner et al., 2004; Yang
et al., 2011). In our study, we further confirmed this conclusion.
Samples with higher SSA and NHEJ activities (or ssGSEA
scores) were found to have higher TMBs. On the other hand,
we found that SSA and NHEJ activities were significantly higher
in cancer samples with good outcomes in comparison with
normal samples, but the increase was significantly less in cancer
samples with poor outcomes. On the basis of this phenomenon,
we suggest that in normal physiological conditions biological
activities such as DNA replication are maintained within
normal limits, and hence the SSA and NHEJ approaches are

FIGURE 9 | Evaluation of two models and combing clinical features to predict risk assessment for individuals. (A) The prognosis of 1000 random HR-LR models
based on the expression of random gene sets. (B) AUC values of 1000 randomCancer-Normal models based on the expression of random gene sets. (C) Survival plot of
TCGA STAD patients classified by stage and SSA-NHEJ score. (D) Decision tree to predict the patient’s clinical outcome. The result of samples in the TCGA cohort is
listed at to bottom. (E) A nomogram plot is constructed to quantify risk assessment for an individual patient.
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not much needed. However, in cancer cells, DNA replication
and other activities increase rapidly, which leads to increases in
the activities of the SSA and NHEJ processes. On the other hand,
the higher activities of SSA and NHEJ and the higher TMB
would lead to the apoptosis of cancer cells (Lu et al., 2014; Hu
et al., 2019) or the production of new antigens and finally result
in good outcomes in patients (Klempner et al., 2020). In
contrast, in other GC patients lower activities of SSA and
NHEJ finally, lead to poor outcomes.

There have also been many studies that focused on the
relationship between TMB and immune infiltration. Some studies
found that a higher TMB is associated with more immune
infiltration, while some studies obtained the opposite result. In
this study, low-risk samples were found to have a higher TMB
but less infiltration of general immune cells. However, significantly
higher abundances of CD8+ T cells and CD4+ memory T cells were
observed in low-risk samples. In addition, we found that PD-L1 had
higher expression levels in low-risk samples. Similarly, other
investigators also found that CD8 positivity is significantly
associated with PD-L1 expression (Vidotto et al., 2019). The
relationship between the TMB and immune infiltration and their
roles in GC needs to be further investigated.

The HR-LR model was constructed on the basis of the training
set of sequencing data from the Illumina platform. The predictive
accuracy of the model was validated in the test set, which also
comprised sequencing data. Furthermore, the prognostic value of
the HR-LR model was validated in several GEO datasets, which
contained microarray data from different platforms. Similarly,
the Cancer–Normal model was also constructed on the basis of
Illumina sequencing data and validated in microarray data from
different platforms. In addition, we validated the accuracy of the
two models by comparing them with random models. These
results proved that our HR-LR model and Cancer–Normal model
had stable accuracy and could be used universally on different
platforms. Combining the models with clinical features will
contribute to the prognosis in GC patients.

In summary, we found that SSA and NHEJ are vital prognostic
factors in GC, proposed two models to help predict clinical
outcomes in GC patients, and investigated the relationships
among the SSA and NHEJ approaches, the TMB and immune
infiltration, and their roles in GC. The present study aims to
provide an improved understanding of the complexity of DNA
repair, the TMB, and immune infiltration in GC and to contribute
to the development of clinical diagnosis and treatment.

CONCLUSION

In summary, we found that SSA and NHEJ were the most
prognostically effective DNA repair processes in GC patients.
On the basis of the activities of these two approaches and
expression profiles, in this study, we proposed two models to
help predict clinical outcomes in GC patients and investigated the
relationships among the SSA and NHEJ approaches, the TMB
and immune infiltration, and their roles in GC. Moreover, we
estimated methylation levels in each STAD sample. The present
study aims to provide novel insights for the understanding of the
complexity of DNA repair, the TMB, and immune infiltration in
GC and for further investigation of their diagnostic value.
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Different cancer types not only have common characteristics but also have their own
characteristics respectively. The mechanism of these specific and common characteristics
is still unclear. Pan-cancer analysis can help understand the similarities and differences
among cancer types by systematically describing different patterns in cancers and
identifying cancer-specific and cancer-common molecular biomarkers. While long non-
coding RNAs (lncRNAs) are key cancer modulators, there is still a lack of pan-cancer
analysis for lncRNA methylation dysregulation. In this study, we integrated lncRNA
methylation, lncRNA expression and mRNA expression data to illuminate specific and
common lncRNA methylation patterns in 23 cancer types. Then, we screened aberrantly
methylated lncRNAs that negatively regulated lncRNA expression andmapped them to the
ceRNA relationship for further validation. 29 lncRNAs were identified as diagnostic
biomarkers for their corresponding cancer types, with lncRNA AC027601 was
identified as a new KIRC-associated biomarker, and lncRNA ACTA2-AS1 was
regarded as a carcinogenic factor of KIRP. Two lncRNAs HOXA-AS2 and AC007228
were identified as pan-cancer biomarkers. In general, the cancer-specific and cancer-
common lncRNA biomarkers identified in this study may aid in cancer diagnosis and
treatment.

Keywords: lncRNA, pan-cancer, DNA methylation, biomarker, ceRNA

INTRODUCTION

Cancer is a general term that refers to malignant tumors, and its world-wide incidence and mortality
have been high for many years. In 2020, there were 19.29 million new cancer cases and 9.96 million
cancer deaths world-wide (Sung et al., 2021). There is no cure for cancer at the moment. Not only do
different types of cancer have common biological characteristics such as abnormal cell differentiation
and proliferation, lack of growth control, invasion and metastasis, but they also have many
specifically biological characteristics, respectively. Therefore, it is necessary to conduct pan-
cancer research on a variety of cancer types to ascertain the similarities and differences in
molecular characteristics across different cancers.

DNA methylation is an important epigenetic modification that plays an important role in many
physiological processes (Martin-Subero, 2011; Li et al., 2013; Neri et al., 2017), and its aberrant
behavior can result in gene instability, proto-oncogene activation and tumor suppressor gene
inactivation (Li et al., 2012; Hou et al., 2021). Aberrant DNA methylation occurs in almost all
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cancers, where unmethylated promoters become methylated or
methylated sequences lose their methylation. Focusing on the
pan-cancer analysis of DNAmethylation can inform research and
therapy. Saghafinia et al. (Saghafinia et al., 2018) described an
algorithmic strategy for identifying pan-cancer-related DNA
methylation alteration affecting gene expression. Numerous
DNA methylation dysregulation were discovered to be
associated with patient prognosis and therapeutic response.
Methylated research in cancer patients has been shown to
improve and maintain the efficiency of cancer treatment
(Pauken et al., 2016; Sen et al., 2016; Marwitz et al., 2017).

Long non-coding RNAs (lncRNA) are non-coding RNAs with
a length of more than 200 nucleotides. In comparison to protein-
coding genes, they have a high degree of tissue specificity in their
expression (Cabili et al., 2011). LncRNAs play an important role
in the occurrence and development of cancer and many other
complex diseases (Zhou et al., 2019). LncRNAs are associated
with practically every major cancer type and contribute to all ten
hallmarks of cancer (Huarte, 2015; Bartonicek et al., 2016;
Esposito et al., 2019; Bao et al., 2020). Additionally, lncRNAs
play an important role in immune regulation (Chen et al., 2017;
Zhang et al., 2021b). Lin et al. (Lin and Yang, 2018) explored the
mechanisms by which lncRNAs regulated cellular responses to
extracellular signals and their clinical potential as diagnostic
indicators, stratification markers, and therapeutic targets for
combinatorial treatments. Zhang et al. (Zhang et al., 2018)
identified lncRNA MT1JP as a ceRNA for the tumor
suppressor FBXW7 in gastric cancer by demonstrating
competitive binding with MiR-92A-3p. Xu et al. (Xu et al.,
2019) discovered that lncRNA SNHG6 regulated the
expression of the oncogene EZH2 in colorectal cancer via the
ceRNA sponge-associated with MiR-26a/b and MiR-214. Chen
et al. (Chen et al., 2019) discovered that the lncRNA PVT1
promoted tumor development in gallbladder cancer by
regulating the miR-143/HK2 axis. Wang et al. (Wang et al.,
2017) identified the lncRNA HOXD-AS1 as a ceRNA that
regulated SOX4 and promoted liver cancer metastasis. The
above studies established the role of lncRNAs in
corresponding cancer types, and identified the cancer-
associated lncRNAs for each cancer type (Dong et al., 2019).
Pan-cancer analysis of lncRNAs can help in identifying the
similarities and differences between distinct cancer types and
identifying potential therapeutic targets for cancer treatment.

Numerous pan-cancer studies have been carried out on
lncRNAs. Li et al. (Yongsheng Li et al., 2020) identified
multiple pan-cancer immune-associated lncRNAs as potential
oncogenic biomarkers. Martens-Uzunova et al. (Martens-
Uzunova et al., 2014) summarized the role of lncRNAs in the
diagnosis and treatment of urinary tumors, and concluded that
lncRNAs could be used as new biomarkers for prostate cancer,
kidney cancer and bladder cancer. Zhang et al. (Zhang et al., 2021)
identified clinically distinct tumor subtypes by characterizing pan-
cancer lncRNA modifiers of the immune microenvironment. Bao
et al. (Bao et al., 2021) proposed a framework for identifying
lncRNA signatures associated with pan-cancer prognosis.

Previous studies have established a correlation between lncRNAs
and epigenetic regulation (Spizzo et al., 2012; Xu et al., 2018),

suggesting that they regulates chromatin state and epigenetic
inheritance (Tsai et al., 2010). Lu et al. (Lu et al., 2020) found
that DNA methylation-mediated lncRNA activation improved
temozolomide resistance in glioblastoma, implying that SNHG12
could be a therapeutic target for overcoming temozolomide
tolerance.

Detecting the dynamic pattern of lncRNA methylation during
cancer development across pan-cancer may help highlight
epigenetic changes and aid in cancer diagnosis and treatment.
Yang et al. (Yang et al., 2021) presented a novel integrative
analysis framework, termed MeLncTRN for integrating data
on gene expression, copy number variation, methylation and
lncRNA expression. They identified epigenetically-driven
lncRNA-gene regulation circuits across 18 cancer types. Wei
et al. (Wei et al., 2019) constructed a systematic biological
framework to evaluate the co-methylation events between two
lincRNAs in nine cancer types. The lincRNA prognostic
signatures were identified to significantly correlate with overall
survival in cancers. Wang et al. (Wang et al., 2018) characterized
the epigenetic landscape of genes encoding lncRNAs associated
with pan-cancer and identified EPIC1 as an oncogenic lncRNA.
Xu et al. (Xu et al., 2021) constructed networks of lncRNA-
associated dysregulated ceRNA across eight cancer types. They
screened nine pan-cancer epigenetically related lncRNAs.

However, no research has been conducted to systematically
compare methylation changes of lncRNAs in pan-cancer to
identify the specific methylation-related lncRNAs. In this
study, we used pan-cancer lncRNA methylation data from the
TCGA to examine the lncRNA methylation patterns of 23 cancer
types and identified differentially methylated lncRNAs (DMlncs).
Subsequently, we examined differentially methylated lncRNAs

TABLE 1 | The number of samples and lncRNAs for each cancer in
methylation data.

Cancer No. of tumor samples No.
of normal samples

No. of lncRNAs

BLCA 412 21 4,317
BRCA 783 96 4,314
CESC 307 3 4,314
CHOL 36 9 4,309
COAD 296 38 4,317
ESCA 185 16 4,317
GBM 141 2 4,317
HNSC 528 50 4,317
KIRC 319 160 4,317
KIRP 275 45 4,317
LIHC 377 50 4,317
LUAD 458 32 4,316
LUSC 370 42 4,317
PAAD 184 10 4,317
PCPG 179 3 4,315
PRAD 498 50 4,317
READ 98 7 4,316
SARC 261 4 4,310
SKCM 470 2 4,317
STAD 395 2 4,314
THCA 507 56 4,314
THYM 124 2 4,316
UCEC 431 46 4,314
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from different cancer types to identify cancer-specific and cancer-
common differentially methylated lncRNAs. Further, combining
lncRNA expression data with survival data, lncRNAs with a
negative correlation between methylation and expression
dysregulation were found as diagnostic biomarkers for each
cancer. Finally, the lncRNAs were mapped into the ceRNA
network to establish ceRNA relationships with mRNAs
confirming their important roles in cancer.

MATERIALS AND METHODS

Data
Pan-cancer DNA methylation data for lncRNAs from Infinium
450k arrays were downloaded from the TCGA database. The
cancer types with normal samples were selected, and a total of
7,634 tumor samples and 746 normal samples from 23 cancer
types were retained. Table 1 shows the number of tumor and
normal samples, as well as the number of lncRNAs. The
methylation status of each probe in each sample was measured
using the β-value (Aryee et al., 2014). The β-value denoted the
ratio of methylation intensity of the probe to total intensity, with a
range of 0 (low methylation) to 1 (high methylation). The probes
with β-values greater than 0 in more than 50% of the samples
were retained in the methylation profile for each cancer, and the
missing values were filled with the average of all non-zero values
on the probes. The average β-value of the promoter region was
used to determine the methylation level of each lncRNA.

Expression data of lncRNAs and mRNAs for 13 cancer
types were downloaded from the TANRIC and the TCGA
databases, respectively (Li et al., 2015). The number of tumor
and normal samples and the number of lncRNAs and mRNAs
are shown in Supplementary Tables S1, S2. Each lncRNA
and mRNA expression value was defined as its reads per
kilobase per million mapped reads (RPKM) (Mortazavi et al.,
2008). Subsequently, we transformed the expression data by
log2 (RPKM+1), reserved the lncRNAs and mRNAs with
expression values in more than 70% of the samples, and
filled their missing values using the average expression
values of these RNAs in the samples.

The expression data of mRNA and lncRNA was downloaded
from different databases, so we got the human gene annotation
files from the GENCODE database (https://www.gencodegenes.
org/) to obtain the corresponding relations of ENSG IDs and gene
symbols. Then, using Entrez IDs as the main reference, different
versions of human gene names (Entrez IDs, gene symbols and
ENSG IDs) were converted to standard human gene names.

Identification of DMlncs
The DMlncs for each cancer were first screened using the
following formula Δβ:

Δβ � ∣∣∣∣�βt − �βn
∣∣∣∣ (1)

Where, �βt and
�βn denoted the average level of methylation in

tumor and normal samples, respectively. Δβ was the subtraction
difference in average methylation levels between tumor and

normal samples. lncRNAs with Δβ>0.1 were selected as
candidates for DMlncs.

Additionally, the “limma” package (Ritchie et al., 2015) in R
language was used to measure the degree of difference between
tumor and normal samples. The lncRNAs with
|log2(fold change)|>1 (PCAWG Transcriptome Core Group
et al., 2020) and FDR<0.05 were identified as DMlncs.

Identification of Differentially Expressed
lncRNAs
The “limma” package was used to calculate differential expression
between tumor and normal samples for lncRNA expression data.
We took the lncRNAs with |log2(fold change)|>1 and
FDR<0.05 as differentially expressed lncRNAs.

Functional Enrichment Analysis
The GREAT software (McLean et al., 2010) was used to conduct
functional enrichment analysis on lncRNAs. We took the
lncRNA BED data as input. The lncRNA BED information
included the chromosome, start site and end site extracted
from GENCODE database. Gene ontology (GO) functions of
the output results were selected for subsequent analysis.

Recognition of ceRNAs
LncRNA-miRNA and mRNA-miRNA targeted relationships
were downloaded from the ENCORI platform (Li et al., 2014).
For each pair of lncRNA and mRNA, the intersection of their
target miRNAs should be more than two (Zhang et al., 2021a).
The intersections of their miRNA lists were subjected to the
hypergeometric test, and the lncRNA-mRNA pairs with a p-value
less than 0.05 were considered. A total of 4,739,668 pairs were
obtained.

Subsequently, the Pearson correlation coefficient between
lncRNA expression and mRNA expression was calculated.
LncRNA-mRNA pairs with Pearson correlation coefficient >0.3
and p-value<0.05 were selected as ceRNAs. Supplementary Table
S3 shows the number of lncRNA-mRNA pairs, lncRNAs and
mRNAs in each cancer.

Survival Analysis
Survival analysis of patients was carried out using the “survival”
package in R language, in which the maxstat model was used to
evaluate the best cut-off point to divide high-risk and low-risk
groups. Kaplan-Meier curves were then drawn to depict the
survival of patients of high-risk and low-risk groups.

Immunological Score
Three scores were used to assess the immunological effect of
lncRNAs: Major Histocompatibility Complex (MHC), Cytolytic
Activity (CYT) and Cytotoxic T Lymphocyte (CTL). The MHC
score of each sample was calculated as:

ScoreMHCi � (∑ expn)/9 (2)
Where i denoted the sample, expn represented the expression of
gene n, and n was one of the nine genes (HLA-A, PSMB9, HLA-B,
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PSMB8, HLA-C, B2M, TAP2, NLRC5, and TAP1). These nine
genes had a strong correlation and were the core gene set of
MHC-I (Rooney et al., 2015; Lauss et al., 2017).

The CYT score of each sample was calculated as follows:

ScoreCYTi � (expGZMA + expPRF1)/2 (3)
In which, i represented the sample, expGZMA and expPRF1

represented the expression of GZMA and PRF1, respectively.
These two genes were key factors of cytolysis and were
upregulated in activated CD8+T cells and strongly responded
to CTLA4 and PDCD1 immunotherapy (Narayanan et al., 2018).

The CTL score of each sample was calculated as follows:

ScoreCTLi � (expGZMA + expPRF1 + expGZMB)/3. (4)
In which, i represented the sample, expGZMA, expPRF1 and

expGZMB represented the expression of GZMA, PRF1, and GZMB,
respectively. These three genes were important factors to measure
T cell toxicity and immune cell effector function (Basu et al., 2016).

RESULTS

The Workflow of DMlncs Identification
In this study, the identification flow of methylation-related
lncRNA biomarkers for pan-cancer is shown in Figure 1. We
conducted a study on a total of 23 cancer types. Firstly, DMlncs
between tumor and normal samples were obtained using lncRNA
methylation data. Specific and common lncRNAs were identified
for pan-cancer. Subsequently, lncRNA methylation data and
lncRNA expression data were integrated to identify DMlncs
whose methylation changes were negatively correlated with
expression changes. Following that, prognostic lncRNAs were
screened and mapped into the ceRNA network. The ceRNA
network was constructed by combining lncRNA and mRNA
expression data. Finally, pan-cancer lncRNA biomarkers were
identified by analyzing the lncRNAs of the ceRNA network.

Identification of Pan-Cancer DMlncs
To identify DMlncs, we downloaded cancer methylation
profiles of 23 cancer types from the TCGA, including both

tumor and normal samples. The data of 7,634 tumor samples
and 746 normal samples was downloaded. The proportion of
tumor samples for each cancer is shown in Figure 2A. BRCA
had the largest number of samples, which was nearly double
that of other cancer types, while CHOL had the lowest
number of samples. A total of 7,542 tumor samples had
corresponding clinical data of the patients. As shown in
Figure 2B, the age, sex, and survival status of patients
were analyzed. The male to female ratio of the patients
was 1:1, and the age was concentrated among the elderly,
which was consistent with the law of the general onset age of
cancer. The majority of patients survived following
treatment. Figure 2C shows the mortality rate of tumor
patients, three-quarters of the patients survived after
surgery. GBM had the highest mortality rate, followed by
CHOL. PRAD had the lowest mortality rate.

After standardizing the data, DMlncs for each cancer were
identified. The number of DMlncs is shown in Table 2. A total of
2,286 DMlncs were obtained. The majority of the cancer types
had a large number of DMlncs, and only a few cancer types had a
small number of DMlncs.

Additionally, DMlncs were divided into up-methylated and
down-methylated groups. Up-methylated lncRNAs were those
whose methylation level was elevated in cancer samples
compared with normal samples, while down-methylated
lncRNAs were the inverse. Table 2 shows the number of
patients in each of the two groups. There were overlaps in
the genes of different cancers. In total, there were 1,229
DMlncs in the up-methylated group and 1,654 DMlncs in
the down-methylated group. Among them, 597 lncRNAs were
up-methylated in some cancers but down-methylated in some
other cancers, demonstrating uneven regulation tendencies
across different cancers. As shown in Figure 3, the
proportion of up-methylated and down-methylated
lncRNAs varied between cancer types. There were 13 types
of cancer had a higher number of down-methylated lncRNAs
and ten types of cancer had a higher number of up-methylated
lncRNAs. The first few cancer types of most DMlncs had
obvious higher number of down-methylated lncRNAs and
most of the other cancer types had more up-methylated
lncRNAs. Certain cancer types contained only a single type

FIGURE 1 | The framework for identifying the lncRNA methylation biomarkers.
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of DMlncs. For example, all 74 DMlncs in SKCM were up-
methylated, and all three DMlncs in THYM were up-
methylated as well.

Cancer-Specific lncRNA Biomarkers
As a complex disease, cancer has a high heterogeneity and distinct
pathogenesis. In this study, we searched for specific DMlncs for

FIGURE 2 | Characteristics of pan-cancer tumor samples (A)The proportion of samples collected for each cancer (B)The clinical information of tumor samples (C)
The mortality rate of each cancer.

TABLE 2 | The number of DMlncs of each cancer.

Cancer Total lncRNAs Down-methylated
lncRNAs

Up-methylated
lncRNAs

Cancer-specific
up-methylated

Cancer-specific
down-methylated

BLCA 1,126 931 195 2 45
BRCA 753 411 342 23 9
CESC 395 99 296 20 8
CHOL 433 80 353 65 23
COAD 762 464 298 28 14
ESCA 569 263 306 28 1
GBM 48 7 41 13 2
HNSC 854 581 273 9 12
KIRC 435 286 149 5 24
KIRP 406 154 252 57 4
LIHC 1,074 936 138 10 114
LUAD 583 349 234 5 1
LUSC 932 674 258 11 18
PAAD 344 150 194 11 9
PCPG 174 112 62 26 47
PRAD 604 236 368 77 13
READ 575 375 200 5 6
SARC 7 1 6 2 1
SKCM 74 0 74 22 0
STAD 8 7 1 0 7
THCA 118 99 19 3 5
THYM 3 0 3 2 0
UCEC 1,015 651 364 32 47
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each cancer. Figure 4A shows the proportion of cancer-specific
lncRNAs, and only a fraction of the DMlncs were cancer-specific.
LIHC had the most specifically down-methylated lncRNAs,
whereas PRAD had the most specifically up-methylated
lncRNAs. The proportion of both specifically up and down
lncRNAs in PCPG was about 42%. SARC, STAD, and THCA
had DMlncs less than ten, preventing them from being compared
with other cancers in terms of lncRNA proportion. Except for
SARC, STAD, and THCA, PCPG had the highest proportion of
specific lncRNAs. STAD had no up-methylated lncRNAs, while
all its seven down-methylated lncRNAs were specific. SARC
possessed a single down-methylated lncRNA, and it was

specific. Two of the three DMlncs of THYM were specific.
Supplementary Table S4 shows the specific DMlncs of each
cancer.

Subsequently, we performed functional enrichment analysis of
specifically up-methylated and down-methylated lncRNAs in
each cancer. For each cancer, the functions enriched by
specifically up-methylated and down-methylated lncRNAs
were analyzed separately, and the number of functions
enriched by each cancer is shown on the right side of
Figure 4B. There were significant differences in the number of
enriched functions for the cancers. LIHC, COAD, and PAAD
enriched in more than 200 functions, while the enriched

FIGURE 3 | The percentage of up-methylated and down-methylated lncRNAs for each cancer. Blue represents the number of down-methylated lncRNAs, and red
represents the number of up-methylated lncRNAs.

FIGURE 4 | The cancer-specific lncRNAs with differential methylation (A)The number and proportion of cancer-specific lncRNAs. Green represents up-methylated
lncRNAs, blue represents down-methylated lncRNAs, yellow represents specifically up-methylated lncRNAs, and red represents specifically down-methylated lncRNAs
(B) The functions of specific lncRNAs in each cancer type. Red represents the functions of up-methylated lncRNAs, while blue represents the functions of down-
methylated lncRNAs.
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functions of THYM, STAD, and HNSC were less than five. There
also a difference between the number of functions of up-
methylated and down-methylated lncRNAs for each cancer.
The specifically down-methylated lncRNAs of COAD were
enriched in the majority of functions (261), whereas up-
methylated lncRNAs of COAD were enriched in only a few
functions (14), and LIHC demonstrated a similar pattern. The
specifically up-methylated lncRNAs of ESCA were found to be
enriched in a variety of functions (194), but the down-methylated
lncRNAs were enriched in no functions. The details of enriched
functions are shown in Supplementary Table S5.

Among the functions, we selected the most significant
function for each group and displayed them on the left side of
Figure 4B. The function names, enrichment p-values and other
information are shown in Table 3. The lncRNAs of most cancer
types were enriched in the “regulation” or “response” functions.
Both the up-methylated group of CHOL and the down-
methylated group of LIHC were enriched in “depyrimidine”.
The specifically up-methylated lncRNAs of GBM were enriched
in “methylation”, the specifically down-methylated lncRNAs of
COAD were enriched in “dimethylation”, and the specifically up-
methylated lncRNAs of BRCA were enriched in “epigenetic”.

These results established the important role of lncRNAs in the
epigenetic process.

In this study, we hypothesized that up-methylated lncRNAs
would exhibit decreased expression and vice versa. That is, there
is a negative correlation between changes in methylation and
expression levels. In order to screen out negative correlated
lncRNAs in DMlncs, we used lncRNA expression data to
identify differentially expressed lncRNAs in various cancers.

LncRNA expression data of 13 cancer types were downloaded,
and the number of differentially expressed lncRNAs in each
cancer is shown in Supplementary Table S6. We identified
2,887 over-expressed lncRNAs and 2,375 low-expressed
lncRNAs in different cancers. The total number of these
lncRNAs was 4,155, and several genes were overlapped
between two groups and displayed conflicting regulation
patterns across different cancers. The numerical distribution of
differentially expressed lncRNAs in various cancers is shown in
Figure 5A. Although the number of over-expressed and low-
expressed lncRNAs was similar in the majority of cancer types,
there were significantly more low-expressed lncRNAs in BRCA
and THCA, and significantly more over-expressed lncRNAs in
LIHC and STAD.

TABLE 3 | The functions of specific lncRNAs for each cancer.

Group Cancer ID Function FDR q-value

down BLCA GO:0,036,297 interstrand cross-link repair 3.34E-03
up BLCA GO:0,010,729 positive regulation of hydrogen peroxide biosynthetic process 2.77E-05
down BRCA GO:0,048,284 organelle fusion 6.43E-03
up BRCA GO:0,040,030 regulation of molecular function, epigenetic 1.15E-10
down CESC GO:0,001,887 selenium compound metabolic process 2.47E-04
up CESC GO:0,048,846 axon extension involved in axon guidance 4.69E-03
down CHOL GO:0,034,587 piRNA metabolic process 1.32E-02
up CHOL GO:0,045,008 Depyrimidination 1.29E-12
down COAD GO:0,018,016 N-terminal peptidyl-proline dimethylation 4.41E-13
up COAD GO:0,034,214 protein hexamerization 1.23E-05
up ESCA GO:0,010,157 response to chlorate 4.36E-08
up GBM GO:2,001,162 positive regulation of histone H3-K79 methylation 7.71E-03
down HNSC GO:0,030,157 pancreatic juice secretion 2.35E-02
up HNSC GO:0,005,993 trehalose catabolic process 3.32E-03
down KIRC GO:0,046,597 negative regulation of viral entry into host cell 3.49E-18
down KIRP GO:0,007,144 female meiosis I 8.51E-03
up KIRP GO:0,046,878 positive regulation of saliva secretion 1.03E-02
down LIHC GO:0,045,008 Depyrimidination 2.81E-13
up LIHC GO:0,021,897 forebrain astrocyte development 1.48E-05
up LUAD GO:0,035,814 negative regulation of renal sodium excretion 3.03E-03
down LUSC GO:0,019,358 nicotinate nucleotide salvage 1.34E-03
up LUSC GO:0,045,006 DNA deamination 1.65E-02
down PAAD GO:0,070,585 protein localization to mitochondrion 1.63E-08
up PAAD GO:0,046,329 negative regulation of JNK cascade 1.04E-05
down PCPG GO:0,021,723 medullary reticular formation development 3.25E-05
up PCPG GO:0,006,335 DNA replication-dependent nucleosome assembly 1.72E-04
down PRAD GO:0,001,957 intramembranous ossification 5.15E-03
up PRAD GO:0,045,053 protein retention in Golgi apparatus 6.23E-09
down READ GO:0,060,123 regulation of growth hormone secretion 6.57E-05
up READ GO:0,042,742 defense response to bacterium 3.49E-04
down SARC GO:0,010,324 membrane invagination 7.69E-05
up SKCM GO:0,002,931 response to ischemia 8.74E-05
down STAD GO:0,080,184 response to phenylpropanoid 1.85E-04
down THCA GO:0,007,161 calcium-independent cell-matrix adhesion 8.69E-05
down UCEC GO:2,000,978 negative regulation of forebrain neuron differentiation 1.50E-03
up UCEC GO:0,070,208 protein heterotrimerization 1.10E-07
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Subsequently, negatively correlated lncRNAs (NClncs) were
screened from differentially expressed lncRNAs. The number of
NClncs in each cancer is shown in Figure 5A. NClncs were
divided into two types: up-methylated-low-expressed lncRNAs
(UMLElncs) and down-methylated-over-expressed lncRNAs
(DMOElncs) based on the changes in expression and
methylation levels. The two types of lncRNAs in each cancer
are shown in Figure 5B–N. As seen from the figure, the number
of NClncs was proportional to the number of differentially
expressed lncRNAs. However, the proportion of differential
lncRNAs was not balanced in several cancers. For example,
STAD and THCA had many differentially expressed lncRNAs,

but a small number of DMlncs, implying a small number of
NClncs. The proportion of UMLElncs and DMOElncs was
different in each cancer. For example, both types of lncRNAs
for LUSC were abundant. HNSC and LIHC had significantly
more DMOElncs, while BRCA and PRAD had significantly more
UMLElncs.

The cancer-specific negatively correlated lncRNAs
(CSNClncs) were then identified, and the results are shown in
Table 4. Among the cancer-specific DMlncs, 49 NClncs were
identified, with LIHC having the highest CSNClncs (11), followed
by PRAD (7), BLCA (6) and KIRC (6). LUAD, THCA, and UCEC
did not contain any CSNClnc.

FIGURE 5 | The negatively correlated lncRNAs for cancers (A) Quantitative analysis of lncRNAs that are differently expressed and negatively correlated (B–N)
Distribution and names of negatively correlated lncRNAs for cancers. Red and blue dots represent differentially expressed lncRNAs. In which, blue represents down-
expressed lncRNAs, and red represents up-expressed lncRNAs. Green and yellow boxes represent the names of negatively correlated lncRNAs. Where green indicates
lncRNAs with up-methylated and low-expressed, and yellow represents lncRNAs with down-methylated and over-expressed.

TABLE 4 | Cancer specific negatively correlated lncRNAs.

Cancer Negatively correlated lncRNAs

BLCA XXbac-B476C20, RP5-943J3, RP11-390P2, AC006116, AC073046, RP11-514P8
BRCA RP11-667K14, RP11-1094M14, RP11-497H17, LINC00619
CESC MEF2C-AS1, CTA-384D8, CTD-2035E11
HNSC LA16c-390E6, CTC-548K16, LA16c-325D7
KIRC RP11-488L18, AC027601, RP1-118J21, HLA-F-AS1, SNHG12, EPB41L4A-AS1
KIRP ACTA2-AS1, RP11-77H9, RP11-126K1
LIHC AC007879, AC025335, CTC-246B18, HULC, LINC00665, RP11-215P8, RP11-890B15, RP11-968A15, RP11-973H7,

RP3-395M20 and TEX41
LUSC Z83851, RP11-311F12, RP11-757G1, RP11-12L8
PRAD MIR205HG, LINC01018, JAZF1-AS1, RP4-639F20, RP1-223B1, RP11-597D13, LINC00115
STAD MNX1-AS1, RP11-298I3
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Additionally, survival-correlated lncRNAs were identified
by analyzing the CSNClncs of each cancer. As shown in
Table 5, 29 lncRNAs were identified to associated with
survival in ten cancers. These lncRNAs may be used as

specifically diagnostic markers for corresponding cancers.
They not only exhibited synergistic alterations in expression
and methylation, but were also closely associated with the
survival of cancer patients.

TABLE 5 | Significantly survival associated lncRNAs in negatively correlated lncRNAs for each cancer.

Cancer Count lncRNAs

BLCA 5 RP11-390P2, XXbac-B476C20, RP5-943J3, AC073046, AC006116
BRCA 3 LINC00619, RP11-497H17, RP11-667K14
CESC 2 MEF2C-AS1, CTD-2035E11
HNSC 3 LA16c-390E6, LA16c-325D7, CTC-548K16
KIRC 5 SNHG12, EPB41L4A-AS1, RP11-488L18, AC027601, RP1-118J21
KIRP 2 ACTA2-AS1, RP11-77H9
LIHC 4 RP11-215P8, RP11-968A15, RP11-973H7, CTC-246B18
LUSC 2 RP11-757G1, RP11-311F12
PRAD 2 RP1-223B1, LINC01018
STAD 1 MNX1-AS1

FIGURE 6 | The negatively correlated lncRNAs which specific to each cancer in the ceRNA network (A)The ceRNAs of BLCA-specific negatively correlated
lncRNAs (B) The ceRNAs of KIRC-specific negatively correlated lncRNAs (C) The ceRNAs of KIRP-specific negatively correlated lncRNAs (D–I) Kaplan-Meier curves for
the lncRNAs associated with each cancer types. The red line represents the group with a high level of expression, while the blue line represents the group with a low level
of expression. Additionally, the “+” on the lines represents patients who were lost to follow-up. At this point, the number of patients decreases but the overall survival
rate remains stable.
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The main function of lncRNAs was to combine miRNAs
competing with mRNAs, thereby increasing mRNA
expression. As the methylation of lncRNAs increased, their
expression decreased, which indirectly led to the decrease in
mRNA expression, and vice versa. Therefore, we screened the
ceRNAs of DMlncs. First, the lncRNA-miRNA and mRNA-
miRNA regulatory relationships were integrated. A lncRNA
and a mRNA sharing more than two miRNAs were
considered to have a ceRNA relationship. The correlation
between lncRNA and mRNA expression was calculated for
each cancer to confirm the ceRNA relationship. We
maintained the ceRNA relationships that showed a positive
correlation between lncRNA and mRNA expression. Each
survival-related CSNClnc was put into the ceRNA network to
search for associated mRNAs. The visualized results of ceRNAs
for BLCA, KIRC and KIRP are shown in Figures 6A–C.

BLCA had two lncRNAs mapped into the ceRNA network
(AC006116 and AC073046). Both lncRNAs formed a ceRNA
relationship with the mRNA ATXN7L3B and formed ceRNA
relationships with some other mRNAs, respectively. ATXN7L3B
have been confirmed to be associated with an increased risk of
colorectal cancer (Leberfarb et al., 2020), and cytoplasmic
ATXN7L3B interfered with the nuclear functions of the SAGA
deubiquitinase module (Li et al., 2016). The SAGA complex was
composed of two enzymatic modules, which house histone
acetyltransferase (HAT) and deubiquitinase (DUB) activities.
The DUB module was important for normal embryonic
development (Glinsky, 2006; Lin et al., 2012), and alterations
in the expression or structure of component proteins were linked
to cancer (Lan et al., 2015). Therefore, AC006116 and AC073046,
as its ceRNAs, could regulate the expression of ATXN7L3B and
were also closely related to cancer. The survival correlation of
AC006116 and AC073046 in BLCA is shown in Figures 6D,E.
Both lncRNAs were significantly associated with the survival of
BLCA patients.

Three lncRNAs in KIRC were mapped into the ceRNA
network, among which SNHG12 and AC027601 shared more
than 30 mRNAs, while EPB41L4A-AS1 did not share any mRNAs
with the other two lncRNAs. The survival analysis results for the
three lncRNAs in KIRC are shown in Figures 6F–H. The high
expression of SNHG12 and AC027601 both showed a worse
prognosis. However, the low expression group of EPB41L4A-
AS1 showed a worse prognosis. Therefore, we inferred that in
KIRC, lncRNAs SNHG12 and AC027601 had a carcinogenic
effect, whereas EPB41L4A-AS1 had a tumor-suppressive effect,
which explains why it shared no mRNAs with the other two
lncRNAs. Numerous studies have established that SNHG12 is
associated with cancers (Zhang et al., 2020), and could be used as
a potential therapeutic target and biomarker for human cancers
(Tamang et al., 2019). DNA-methylation-mediated activation of
SNHG12 promoted temozolomide resistance in glioblastoma (Lu
et al., 2020). SNHG12 promoted tumor progression and sunitinib
resistance by upregulating CDCA3 in renal cell carcinoma (Liu
et al., 2020). EPB41L4A-AS1was a repressor of theWarburg effect
and played an important role in the metabolic reprogramming of
cancer (Liao et al., 2019), and EPB41L4A-AS1 has been identified
as a potential biomarker in non-small cell lung cancer (Wang

et al., 2020). At present, AC027601 has been identified as a
survival signature in renal clear cell carcinoma (Qi-Dong
et al., 2020), but has not been reported in other cancers. Given
that the three lncRNAs were simultaneously identified as KIRC-
related lncRNAs in this study, we believed that AC027601 should
be closely associated with the occurrence and development of
KIRC, and it is a newly identified cancer-related lncRNA.

Only ACTA2-AS1 was mapped into the ceRNA network in
KIRP, where it established a ceRNA relationship with PPP1R12B.
PPP1R12B has been shown to inhibit tumor growth and
metastasis by regulating Grb2/PI3K/Akt signaling in colorectal
cancer (Ding et al., 2019). ACTA2-AS1 plays an important role in
a variety of cancers, for example, ACTA2-AS1 is significantly
associated with overall survival in ovarian cancer patients (Li and
Zhan, 2019). ACTA2-AS1 plays different roles in different
cancers. ACTA2-AS1 knockdown promotes liver cancer cell
proliferation, migration and invasion (Zhou and Lv, 2019),
while ACTA2-AS1 suppresses lung adenocarcinoma
progression (Ying et al., 2020), implying an inhibitory effect
on the two cancers. However, ACTA2-AS1 promotes cervical
cancer progression (Luo et al., 2020), suggesting its carcinogenic
role in cancer. Figure 6I shows the survival analysis result for
ACTA2-AS1 in KIRP. We believed that ACTA2-AS1 had a
carcinogenic effect in KIRP.

Common lncRNA Biomarkers in Cancers
All cancer types exhibited infinite proliferation, transformation
and ease of metastasis. Therefore, we sought to identify DMlncs
common to different cancers to help understand the mechanisms
underlying the occurrence of common features in cancers. First,
the intersection of DMlncs were searched in cancers, and the
results are shown in Figure 7. The upper triangle and lower
triangle reflected the intersection of up-methylated lncRNAs and
the intersection of down-methylated lncRNAs, respectively. The
findings were consistent with the hypothesis that the larger the
lncRNA set, the greater the overlap with other cancers. The
intersections of DMlncs of SARC, STAD, and THYM with
other cancers were small. The down-methylated lncRNAs of
GBM and SKCM had small intersections with other cancers,
whereas the up-methylated lncRNAs of THCA had small
intersections with other cancers. There were amount of up-
methylated lncRNAs in PCPG (62), but the overlaps with
other cancers were small. Among the down-methylated
lncRNAs, the intersection of KIRC and KIRP was the largest
of KIRP, but only ranked 10th of the KIRC. Among the up-
methylated lncRNAs, the intersection of KIRC and KIRP was the
largest of KIRC, while was the second largest of KIRP.

Subsequently, we extracted DMlncs which were common in
various cancers. The findings indicated that there were 19
common DMlncs in more than 15 cancers (RP4-792G4, RP5-
855F14, OTX2-AS1, RP11-52L5, CYP1B1-AS1, RP11-175E9,
RP11-552E20, HCCAT3, RP11-718O11, HOXA-AS2, RP3-
326L13, AC007228, RP11-297B11, CTC-523E23, LINC01010,
RP11-227D2, EVX1-AS, AC018730, and RP11-465L10).
Fourteen of them were up-methylated in all the cancers,
indicating their carcinogenic potential, whereas three lncRNAs
were down-methylated in the majority of cancers and may act as
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potential tumor suppressors (Figure 8A). Figure 8B shows the
comparison of methylation levels of the 19 lncRNAs in tumor and
normal samples. It is intuitive to conclude that there were
significant differences in lncRNAs methylation levels between
tumor and normal samples. Except for LINC01010, RP11-552E20,
and RP5-855F14, the lncRNAs had a higher methylation level in
tumor samples.

Among the 19 lncRNAs, OXT2-AS1 was shown to be
significantly down-methylated in lung squamous cell
carcinoma and was closely associated with poor prognosis of
cancer (Zheng et al., 2021). CYP1B1-AS1 has been confirmed to
play an important role in triple-negative breast cancer, lung
adenocarcinoma and acute myeloid leukemia, and was
associated with the prognosis of these cancers (Cheng et al.,
2021; Ren et al., 2021; Vishnubalaji and Alajez, 2021). Abnormal
methylation and low expression of CTC-523E23 led to poor
prognosis in patients with lung squamous cell carcinoma (Rui
Li et al., 2020). Inhibition of LINC01010 may promote the
migration and invasion of lung cancer cells (Cao et al., 2020)
and help in the prediction of neuroblastoma prognosis (Gao et al.,
2020). EVX1-AS is closely associated with the prognosis of colon
cancer and has been predicted to be potentially associated with
the development of multiple cancers by LncRNADisease V2.0
(Bao et al., 2019; Gao et al., 2021). The findings revealed that the
abnormalities of lncRNAs played an important role in the
occurrence and development of cancer, and the unconfirmed
lncRNAs could serve as entry points for future research.
Additionally, numerous lncRNAs were identified as abnormal
in lung cancer, indicating that lung cancer may be influenced by a
variety of pathogenic factors.

Then, we investigated the functions of the 19 lncRNAs and
performed functional enrichment analysis on these lncRNAs
using the GREAT software. Figure 8C shows that these
lncRNAs were enriched in processes required for organisms
such as metabolism and biosynthesis, as well as those closely
associated with the occurrence and development of cancer, such
as gene expression and transcription.

NClncs in common lncRNAs were investigated in
combination with the results of differentially expressed
lncRNAs. Seven of the 19 lncRNAs were found to be
differentially expressed, and four (CYP1B1-AS1 (BLCA,
BRCA, and LUSC), AC007228 (BLCA, HNSC, LIHC,
LUAD, LUSC and PRAD), HOXA-AS2 (BRCA) and
LINC01010 (HNSC)) of them had a negative correlation in
multiple cancers. Additionally, we analyzed the four NClncs
shared by cancers for their correlation with survival, and
survival-related lncRNAs were identified. The four lncRNAs
were associated with patients’ survival in a variety of cancers,
including CYP1B1-AS1 in eight types of cancers (BRCA,
HNSC, KIRC, KIRP, LIHC, PUAD, PRAD and STAD),
AC007228 in seven types of cancers (BLCA, HNSC, KIRC,
KIRP, LIHC, LUAD and THCA), LINC01010 in five types of
cancers (BRCA, LIHC, LUAD, LUSC and THCA) and HOXA-
AS2 in four types of cancers (BRCA, KIRC, KIRP and THCA)
(Supplementary Figures S1–S4).

To further validate the cancer-common lncRNAs identified in
this study, significantly survival-related lncRNAs were mapped to
the ceRNA network, and only mRNAs shared by more than four
types of cancers were selected for further study. Finally, a
subnetwork comprising 33 mRNAs and three lncRNAs

FIGURE 7 | The intersection of DMlncs for cancers. The upper red triangle represents the intersection of up-methylated lncRNAs, while the lower blue triangle
represents the intersection of down-methylated lncRNAs.
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(AC007228, CYP1B1-AS1, and HOXA-AS2) was identified in ten
cancers. The ceRNA distribution of the 33 mRNAs in cancers is
shown in Figure 9A. Although these mRNAs were shared by
multiple cancers, they generally formed ceRNA relationships with
a greater number of lncRNAs and had higher correlation
coefficients in KIRP. HOXA3 had ceRNA lncRNAs in ten
cancers and showed high correlation coefficients in BRCA,
CESC, HNSC and LUSC. Figure 9B shows the ceRNA
subnetwork, in which HOXA-AS2 and AC007228 were shared
by ten cancers, and the two lncRNAs shared some ceRNA
relationships with some mRNAs (DMTF1, HOXB3, NOD1,
RABL2A, TRIOBP, ZNF443, and ZNF789) but formed ceRNA
relationships with some other mRNAs, respectively (AC007228:
ZNF10, ZNF211, ZNF229, ZNF471, ZNF583, ZNF614, ZNF649,
ZNF763, ZNF793, and ZNF879; HOXA-AS2: DHRS3 and
HOXA3).

The genomic locations of HOXA-AS2 and AC007228 were
checked. As shown in Figure 10A, the genomic locations of
lncRNAs belonging to the AC007228 family and mRNAs
belonging to the ZNF family were extremely similar. As
shown in Figure 10B, HOXA-AS2 (Zhao et al., 2013) and
its ceRNA HOXA3 were both located in the same genomic
region. Their sequences were similar, and the ceRNA
relationships were generated by the lncRNAs’ cis-regulatory
interactions with mRNAs.

The major histocompatibility complex (MHC) region was
one of the regions with the highest gene density and
polymorphism. High-throughput sequencing and other
technologies confirmed the role of MHC in disease and
showed that MHC was associated with cancer and
neurological diseases in addition to infection and
autoimmune diseases. MHC is involved in antigen
recognition during the immune response and is capable of
inducing immune cells to participate in immune response
(Trowsdale and Knight, 2013). Studies have also reported
that immune cytolytic activity (CYT) is positively correlated
with the presence of inhibitory receptors (PDCD1, PDL1,
CTLA4, LAG3, TIM3, and IDO1), and the presence of CYT
is more responsive to immune checkpoint inhibition,
suggesting that it can be used as a key marker for immune
checkpoint therapy (Narayanan et al., 2018; Wang et al., 2019).
Immune control of tumor lesions requires local antigen
recognition, activation and amplification of tumor-specific
cytotoxic T lymphocytes (CTL). The activated CTL infiltrate
the tumor microenvironment and scan the tumor tissue, where
they directly interact with the target cells, inducing tumor cell
apoptosis and atrophy (Basu et al., 2016). First, effector T
lymphocytes are required to migrate to the tumor foci, a
process referred to as immune cell infiltration. Following
that, they have to make physical contact with the tumor

FIGURE 8 |Common DMlncs of cancers (A)Methylation changes of common DMlncs in cancers. Red indicates up-methylation of the lncRNA, while blue indicates
down-methylation in corresponding cancer (B) The functions of common DMlncs in cancer. Red represents a biological process (BP), blue represents a molecular
function (MF), green represents cell component (CC), and the size of the bubble represents the amount of lncRNA enriched (C) A comparison of the methylation states of
common DMlncs. Red represents tumor samples, while blue represents normal samples.
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FIGURE 9 | The ceRNA network of common DMlncs of cancers (A) The ceRNA distribution of mRNAs in each cancer type. The color of the dots represents the
mean of the correlation coefficient for the lncRNAs that form ceRNA relationships in corresponding cancer. The size of the dots represents the number of lncRNAs that
have a ceRNA relationship with the corresponding mRNA in cancer (B) The ceRNA network. Square nodes represent lncRNAs, triangle nodes represent mRNAs, and
round nodes represent cancer types. The size of lncRNA nodes is proportional to the number of cancer types sharing it, and nodes of different cancer types are
distinguished by different colors.

FIGURE 10 | The characteristics of HOXA-AS2 and AC007228 (A) The genomic location of AC007228 (B) The genomic location of HOXA-AS2 (C) Immune
response scores of HOXA-AS2 and AC007228 (D) TMB of HOXA-AS2 and AC007228.
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cells and scan their MHC. Finally, by releasing perforin or fas/
fasl to bind target cells, CTL activates and induces apoptosis
(Weigelin et al., 2011). Therefore, we assess the immunological
effects of HOXA-AS2 and AC007228 using MHC, CYT, and
CTL scores.

To improve the evaluation of the effect of lncRNAs on
immunity, the R package “ConsensusClusterPlus” (Wilkerson
and Hayes, 2010) was used to cluster samples of each cancer
based on their expression profiles of HOXA-AS2 and
AC007228. We varied the parameter k from two to six, and
then selected the optimal subtypes for subsequent immune
score evaluation. The score comparison shown in Figure 10C
demonstrates that all three scores were consistent across
cancer subtypes, indicating that the identified key lncRNAs
may aid in predicting the immunological status of cancer
patients and provide a basis for tumor treatment.
Subsequently, the Wilcoxon rank-sum test was used to
compare the immunity scores of different subtypes, and
significant differences were observed in the immunity
scores of different subtypes in KIRC, LIHC, LUAD,
and PRAD.

Finally, we assessed the tumor mutation burden (TMB)
among subtypes. TMB was a novel biological target for which
therapeutic impact may be predicted. Previous research has
demonstrated that the more somatic mutations a cancer
patient possesses, the more likely it is that new antigens are
produced. Antigen peptides could be loaded onto the MHC
and displayed on the cell surface, aiding in their recognition by
T cells (Jiang et al., 2018). Therefore, cancer patients with high
TMB levels responded better to immune checkpoint blockade
therapy. As shown in Figure 10D, the TMB of KIRC, KIRP,
LIHC, LUAD, and UCEC corresponded to the immunity score.
Subtypes of key lncRNAs played an important role in the
immune effect in KIRC, LIHC, and LUAD.

DISCUSSION

LncRNAs have been implicated in the occurrence and
development of cancer. This study aimed to identify the
specific and common lncRNAs with aberrant methylation in
pan-cancer. After searching for DMlncs in a variety of cancers,
the pan-cancer results were compared. Subsequently, data on
lncRNA expression, lncRNA methylation and mRNA
expression was integrated to identify lncRNAs with a
negative correlation between methylation and expression
changes, and survival analysis was performed to further
verify the results. Following that, survival-related lncRNAs
were mapped to the ceRNA network, and pan-cancer
biomarkers were identified by examining the connection
characteristics of the network. Finally, the immune effect of
the lncRNAs was verified.

In this study, DMlncs for 23 cancers were acquired, and
cancer-specific lncRNAs and cancer-common lncRNAs were
identified. The NClncs were further screened for ten cancers,
and the correlation between the lncRNAs and mRNAs, as well

as the association with survival were verified. Cancer-specific
lncRNAs may be used as diagnostic biomarkers for
corresponding cancers. In clinical application, these
lncRNAs could apply to make detection kits of
corresponding cancers. Common lncRNAs in pan-cancers
could be used to understand the mechanism underlying
common features in cancers. These lncRNAs can be used
for the development of targeting drugs for the remission of
general symptoms and treatment of cancer.

This study yielded significant results. Not only did we validate
several previously known cancer-associated lncRNAs, but we also
identified new cancer-related lncRNAs. AC027601 was identified
as a novel KIRC-associated lncRNA, and ACTA2-AS1 was
discovered to be carcinogenic in KIRP. Additionally, two
lncRNAs, HOXA-AS2, and AC007228 were identified as pan-
cancer lncRNAs.

However, there are some limitations to this study. Because
the number of DMlncs for SARC, STAD, and THYM was less
than ten, the more systematic comparisons for these cancers
were impossible. The number of normal samples with
methylation data for these three cancers was less than ten.
The sample proportion was skewed when differences were
calculated, resulting in less statistically significant results.
Additionally, the DNA methylation data only included
450k arrays and did not cover the entire genome, which
might have contributed to the study’s insufficiency
outcomes. We only identified the epigenetically
dysregulated lncRNAs based on DNA methylation,
although N6-methyladenosine (m6A) as the RNA post-
transcriptional modification has been shown to influence
the function of RNAs as well. We did not evaluate the
relationship between m6A and lncRNA due to the lack
of data.

In the future, more complete data sets on cancers may be
collected to allow for more rigorous comparisons. We may use
copy number data to analyze the change in copy number of
lncRNA and conduct a more comprehensive investigation of
the change and function of lncRNA in cancer. Additionally,
other types of omics data may be integrated, and factors
affecting lncRNAs and gene expression could be evaluated
more comprehensively bringing the research process closer to
the way molecules interact in the human body. With the
development of sequencing techniques, additional
methylation data sets such as HM850K, whole-genome
bisulfite sequencing (WGBS), and reduced representation
bisulfite sequencing (RRBS), as well as other types of
methylation data sets, will be used to analyze the function
of DNA methylation for lncRNAs.

In general, this study screened cancer-related lncRNA
biomarkers based on their methylation alterations and their
competing mRNAs. This study considered multiple omics data
more comprehensively and used more stringent screening
criteria, which effectively eliminated of data deviation
errors. The lncRNA biomarkers identified in this study may
aid in the investigation of cancer mechanisms.
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GLOSSARY

BLCA Bladder Urothelial Carcinoma

BRCA Breast Invasive Carcinoma

CESC Cervical Squamous Cell Carcinoma and Endocervical
Adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon Adenocarcinoma

ESCA Esophageal Carcinoma

GBM Glioblastoma Multiforme

HNSC Head and Neck Squamous Cell Carcinoma

KIRC Kidney Renal Clear Cell Carcinoma

KIRP Kidney Renal Papillary Cell Carcinoma

LIHC Liver Hepatocellular Carcinoma

LUAD Lung Adenocarcinoma

LUSC Lung Squamous Cell Carcinoma

PAAD Pancreatic Adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate Adenocarcinoma

READ Rectum Adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach Adenocarcinoma

THCA Thyroid Carcinoma

THYM Thymoma

UCEC Uterine Corpus Endometrial Carcinoma

lncRNA Long non-coding RNAs

DMlnc differentially methylated lncRNA

NClnc negatively correlated lncRNA

UMLElnc up-methylated-low-expressed lncRNA

DMOElnc down-methylated-over-expressed lncRNA

CSNClncs cancer-specific negatively correlated lncRNAs

MHC major histocompatibility complex

CYT immunolytic cell activity

CTL cytotoxic T cell

TMB tumor mutation burden

lncRNA Long non-coding RNA

DMlnc Differentially Methylated lncRNA

NClnc Negatively Correlated lncRNA

UMLElnc Up-Methylated-Low-Expressed lncRNA

DMOElnc Down-Methylated-Over-Expressed lncRNA

CSNClnc Cancer-Specific Negatively Correlated lncRNA

MHC Major Histocompatibility Complex

CYT Cytolytic Activity

CTL Cytotoxic T Lymphocyte

TMB Tumor Mutation Burden

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 88269818

Zhao et al. Pan-Cancer lncRNA Epigenetic Biomarkers

128

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover

	Frontiers eBook Copyright Statement
	DNA Methylation Dynamics and Human Diseases

	Table of Contents
	Editorial: DNA Methylation Dynamics and Human Diseases
	Author Contributions
	Funding
	Acknowledgments
	References

	Molecular Characterization of the Clinical and Tumor Immune Microenvironment Signature of 5-methylcytosine-Related Regulato ...
	Introduction
	Materials and Methods
	Dataset Acquisition and Processing
	Unsupervised Clustering of 21 5mC Regulators
	Gene Set Variation Analysis and Functional Annotation
	Estimation of the Tumor Microenvironment
	Differentially Expressed Genes
	Construction of 5mC Gene Signatures
	Evaluation of Immune-Checkpoint Inhibitor Genomic and Clinical Information
	Statistical Analysis

	Results
	Genetic Variation and Expression Analysis of 5mC Methylation Regulators
	Identification of 5mC Methylation-Related Phenotypes
	Tumor Microenvironment Cell Infiltration Characteristics in the 5mC Methylation Clusters
	Identification of 5mC Methylation Gene Signature
	Clinical Characteristics of 5mCscore Phenotypes
	The Potential of the 5mCscore to Predict the Response to anti-PD-L1 Immunotherapy

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Integrative 5-Methylcytosine Modification Immunologically Reprograms Tumor Microenvironment Characterizations and Phenotype ...
	Introduction
	Materials and Methods
	Sample Collection and Data Preprocessing
	Unsupervised Clustering for 17 m5C Regulators
	Gene Set Variation Analysis (GSVA) and TME Cell Infiltration Estimation
	Differential Gene Expression Analysis and Functional Enrichment Analysis
	Identifying m5C Score as the m5C Gene Signature
	Copy Number Variant Analysis, Immunotherapy Response Prediction, and IC50 Evaluation
	Immunohistochemistry (IHC)
	Statistical Analysis

	Results
	The Overall Depiction of Genetic Variation of m5C Regulators in ccRCC
	Machine Learning Algorithms Identify m5C Modification Patterns Mediated by the Regulators
	Evaluation of TME Characterizations and Immune Contexture Proportion in Distinct m5C Modification Patterns
	Identification and Functional Annotations of m5C Genotype Signatures
	Generation and Validation of the m5C Score Model
	Relation of m5C Modification with Clinicopathological Features and Tumor Somatic Mutation
	Characteristics of TME and Immune Cell Distribution in m5C-Related Phenotypes
	Influence of m5C Modification Patterns on Chemotherapy and Immunotherapy Response
	TME Characterization in the m5C Modification Phenotypes

	Discussion
	Conclusion
	Main Findings
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	5-Hydroxymethylcytosine Signatures in Circulating Cell-Free DNA as Early Warning Biomarkers for COVID-19 Progression and My ...
	Introduction
	Materials and Methods
	Data and Sample Source
	Study Design
	5hmC Library Construction, Sequencing, and Mapping
	Feature Selection, Model Training, and Validation
	Clinical Indicators Prediction Model Construction
	Exploring Functional Relevance of the 5hmC Markers
	GEO Datasets
	Statistical Analysis

	Results
	Sample Collected and Clinical Sample Characteristic
	The Landscape of 5hmC Profile Between the Healthy Sample and Patients with COVID-19
	5hmC as Early Warning Biomarkers for COVID-19 Progression
	5hmC as Warning Biomarkers for Myocardial Injury
	Potential Associations Between 5hmC Markers and Myocardial Injury in patients with COVID-19

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Comprehensive Analysis of DNA 5-Methylcytosine and N6-Adenine Methylation by Nanopore Sequencing in Hepatocellular Carcinoma
	1 Introduction
	2 Materials and Methods
	2.1 Patients and Samples
	2.2 Nanopore Sequencing and Illumina Sequencing
	2.3 Methylation Calling for Nanopore Reads
	2.4 Differential Gene Expression
	2.5 Functional Enrichment Analysis and Survival Analysis

	3 Result
	3.1 The Distribution of Methylation Sites in Genome
	3.2 Relationship Between Methylation and Transcription
	3.3 Unstable Methylation Genes and Their Relationships With Survival

	4 Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Integrative Analysis of 5-Hydroxymethylcytosine and Transcriptional Profiling Identified 5hmC-Modified lncRNA Panel as Non- ...
	Introduction
	Materials and Methods
	Sample Datasets
	Data Preprocessing and Mapping of 5hmC-Modified lncRNAs
	Machining Learning-Based Establishment of a Non-Invasive Diagnostic Model Based on 5hmc Modified lncRNAs
	Functional Analysis of PAAD-Specific 5hmC-Modified lncRNA Markers
	Statistical Analysis

	Results
	Identification of Altered Plasma 5hmC Modifications in lncRNAs Genes Involved in PAAD
	Development and Validation of a Plasma-Derived Diagnostic Model Based on 5hmC-Modified lncRNAs
	Association Between 5hmC-Modified lncRNAs and Prognosis
	5hmC-Modified lncRNAs-Based Prognostic Prediction Model for PAAD
	Functional Characterization of 5hmC-Modified lncRNA Markers

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	miR-29b-3p Inhibitor Alleviates Hypomethylation-Related Aberrations Through a Feedback Loop Between miR-29b-3p and DNA Meth ...
	Introduction
	Materials and Methods
	Patients With CHD
	RNA Extraction and Quantitative RT-PCR Analysis
	Bioinformatics Analysis
	Cell Culture
	Plasmid Constructs
	Transfection and Luciferase Assay
	BSP and Cloning-Based Sequencing
	CpG Methyltransferase (M. SssI) Treatment
	Targeted Bisulfite Sequencing
	Western Blot Analysis
	Cell Proliferation Assay
	EdU Incorporation Assay
	Zebrafish Embryology and Microinjection
	5-Azacytidine and 5-aza-2′-Deoxycytidine (Decitabine) Working Solution
	General Morphology Score System
	Shortening Fraction Quantification
	Statistical Analysis

	Results
	Negative Correlation Between the Expression of DNMTs and miR-29b-3p in Patients With CHD
	Transcriptional Regulatory Activity of the miR-29b-1 and miR-29b-2 Gene Promoters
	Negative Correlation Between miR-29b-3p Expression and its Promoter Methylation Status in Patients With CHD
	Promoter Hypermethylation Decreased the Expression of miR-29b-3p
	Gene Hypomethylation Increased the Expression of miR-29b-3p
	miR-29b-3p Directly Targeted the 3′UTRs of DNMT3A and DNMT3B
	miR-29b-3p Inhibitor Relieved the Aberration of Zebrafish Embryos Treated With 5-azacytidine
	miR-29b-3p Inhibitor Increased the Proliferation of Hypomethylated Cardiomyocytes
	Effect of miR-29b-3p Inhibitor on the Gene Expression of Hypomethylated Cardiomyocytes

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	M5C-Related lncRNA Predicts Lung Adenocarcinoma and Tumor Microenvironment Remodeling: Computational Biology and Basic Science
	Introduction
	Methods
	Data Collection
	Negative Matrix Factorization Clustering of m5C-lncRNA Gene Set
	Weighted Gene Co-expression Network Analysis
	Functional Enrichment
	Construction of m5C lncRNA Risk Model
	GSVA
	Immune Infiltration Analysis
	Cell Culture
	Cell Transduction
	RT-PCR
	Wound Healing and Transwell Assays

	Results
	Identification of M5C-Related lncRNA Molecular Subtypes in LUAD Based on NMF Classification
	Biological Characteristics of the lncRNA-Related Genes
	Construction of a LUAD Predictive Model Based on lncRNA-Related Predictive Genes
	Correlation of Risk Scores With Immune Checkpoints and Immune Infiltration
	LINC006328 Regulates Migration of LUAD Cells

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Analysis of DNA Repair-Related Prognostic Function and Mechanism in Gastric Cancer
	Introduction
	Materials and Methods
	Transcriptomic, Genomic, and Clinical Datasets of the Cancer Genome Atlas Cohort
	DNA Repair Related GO Terms and Pathways
	Construction of HR-LR Model
	Construction of Cancer-Normal Model
	Transcriptomic and Clinical Datasets of GEO Validation Cohorts
	Generation of ImmuneScore, StromalScore, EstimateScore, and MicroenvironmentScore
	Calculation of DNA Hyper- and Hypomethylation Scores in Tumor Samples
	Survival Analysis
	Decision Tree
	Nomogram Plot

	Results
	The Single-Strand Annealing and Nonhomologous End-Joining DNA Repair Approaches ere Identified as the Primary Predictive Fa ...
	The HR-LR Model Is a Highly Effective Prognostic Factor for Gastric Cancer Patients
	The HR-LR Model Can Also Predict Recurrence in Gastric Cancer Patients
	Low-Risk Samples Had Higher TMBs
	Low-Risk Samples Were Associated With Less Immune Cell Infiltration
	Cancer-Normal Model Was Developed to Predict the State of an Individual
	Evaluation of the HR-LR and Cancer-Normal Models

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Pan-Cancer Methylated Dysregulation of Long Non-coding RNAs Reveals Epigenetic Biomarkers
	Introduction
	Materials and Methods
	Data
	Identification of DMlncs
	Identification of Differentially Expressed lncRNAs
	Functional Enrichment Analysis
	Recognition of ceRNAs
	Survival Analysis
	Immunological Score

	Results
	The Workflow of DMlncs Identification
	Identification of Pan-Cancer DMlncs
	Cancer-Specific lncRNA Biomarkers
	Common lncRNA Biomarkers in Cancers

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References
	Glossary

	Back Cover



