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Chronic stress as one of the most significant risk factor can trigger overactivity of hypothalamic-pituitary-adrenal (HPA) axis in depression as well as anxiety. Yet, the shared and unique neurobiological underpinnings underlying the pituitary abnormality in these two disorders have not been made clear. We previously have established depression-susceptible, anxiety-susceptible and insusceptible groups using a valid chronic mild stress (CMS) model. In this work, the possible protein expression changes in the rat pituitary of these three groups were continuously investigated through the use of the comparative quantitative proteomics and bioinformatics approaches. The pituitary-proteome analysis identified totally 197 differential proteins as a CMS response. These deregulated proteins were involved in diverse biological functions and significant pathways potentially connected with the three different behavioral phenotypes, likely serving as new investigative protein targets. Afterwards, parallel reaction monitoring-based independent analysis found out that expression alterations in Oxct1, Sec24c, Ppp1cb, Dock1, and Coq3; Lama1, Glb1, Gapdh, Sccpdh, and Renbp; Sephs1, Nup188, Spp1, Prodh1, and Srm were specifically linked to depression-susceptible, anxiety-susceptible and insusceptible groups, respectively, suggesting that the same CMS had different impacts on the pituitary protein regulatory system. Collectively, the current proteomics research elucidated an important molecular basis and furnished new valuable insights into neurochemical commonalities and specificities of the pituitary dysfunctional mechanisms in HPA axis underlying vulnerability and resistance to stress-induced anxiety or depression.
Keywords: anxiety, chronic mild stress, depression, proteome, rat pituitary
INTRODUCTION
Anxiety and depression are two severe and chronic neuropsychiatric illnesses. The prevalences of these disorders are increasing, potentially representing a significant clinical challenge. Mounting evidence suggests that many risk factors are shared between the anxiety and depression disorders such as chronic life stress (Krishnan et al., 2007; Zhou et al., 2016; Jefferson et al., 2020). Chronic stress can result in the adverse health impacts when it increases beyond a certain level, thereby causing anxiety and depression (Chang and Grace, 2014; Tian et al., 2020). However, many individuals can manage the psychological and physical effects of the stressful situations and do not have the disease symptoms (Henningsen et al., 2012). To model the adverse environment factors that affect humans, chronic mild stress (CMS) protocol has been commonly employed to induce anxious-like and depressive-like behaviors in rodent animals (Chang and Grace, 2014; Zhou et al., 2016). To identify the potential biological relationships between CMS and pathological changes, it may be useful to focus on the neurobiological components and processes reflecting adaptive and maladaptive responses to the stress-caused anxiety and depression.
Generally, the clinical symptoms of anxiety and depression are different. However, they are frequently presented simultaneously (Liu et al., 2021; Thorp et al., 2021). Importantly, there are lots of overlaps with respect of the pathophysiology and comorbidity of these two disorders. Considerable data in many clinical and animal researches are usually mixed, thereby confusing our knowledge of the underlying causes and effects of anxiety and depression (Chiba et al., 2012; Lucassen et al., 2016; Oh et al., 2020). In recent years, researchers have attempted to separately investigate non-comorbid individuals to unravel the specificities and commonalities of the two disorders (Lotan et al., 2014; Hamilton et al., 2015; Zhao et al., 2017; Chen et al., 2018). Many studies have demonstrated that the activity of hypothalamic-pituitary-adrenal (HPA) axis is perturbed in these stress-related disorders (Borrow et al., 2016; Delvecchio et al., 2017; Lee and Rhee, 2017). As an integral part of the HPA axis, the pituitary synthesizes and secretes a variety of hormones to mediate a series of biological functions (Yelamanchi et al., 2018). It may be one of the areas most impacted by stress dysregulation in anxiety and depression (Stelzhammer et al., 2015). An increase in the size of the pituitary has also been found in subjects with depression and anxiety through magnetic resonance imaging (Tsigos and Chrousos, 2002; Lorenzetti et al., 2009; Krishnamurthy et al., 2017). To some extent, this reflects an increase in the size and number of corticotropin-releasing hormone (CRH) cells that produce and secrete higher levels of hormones, such as CRH and adrenocorticotrophic hormone (ACTH) (Tsigos and Chrousos, 2002; Krishnamurthy et al., 2017). Despite the morphological and functional abnormalities of the pituitary have been implicated in stress-related anxiety and depression, the corresponding neurobiological molecular basis may remain difference and need to be extensively explored.
Our previous study has demonstrated the three different subpopulations induced by CMS including depression-susceptible (Dep-Sus), anxiety-susceptible (Anx-Sus), and insusceptible (Insus) groups and carried out the comparative proteomic analysis of the rat hippocampal tissues (Tang et al., 2019). In this work, the pituitary tissues from the identical batch of CMS-exposed rats were used to continuously study stress-caused anxiety and depression (Tang et al., 2019). A proteomic approach based on isobaric tags for relative and absolute quantitation (iTRAQ) was utilized to gain unbiased profiling data. Enrichments of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to analyze the main function and the significant pathways of the identified abnormally-expressed proteins. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and Cytoscape were employed to map protein-protein interaction (PPI) networks. The results help elucidate commonalities and differences of the complex molecular mechanisms that underlie stress resistance and stress-caused anxiety or depression.
METHODS
Animals and Ethics Statement
Healthy adult male Sprague-Dawley rats (weight, about 250 g; Animal Center of Chongqing Medical University) were used in the present study. All the rats were individually housed in standard laboratory conditions (55 ± 5% relative humidity, 12/12 h light/dark cycle, 21–22°C) with ad libitum feeding. The study protocol was approved by the local Ethics Committee (2017013). All animals were treated according to the National Institutes of Health protocols for the use and care of laboratory animals.
CMS Rat Model
As previously described (Tang et al., 2019), the 8-weeks CMS protocol was employed to build the rat model. Following exposure to the CMS, the stressed rats were divided into the three groups: 1) Dep-Sus group [assessed by sucrose preference (SP) test and forced swimming (FS) test]; 2) Anx-Sus group [assessed by elevated plus-maze (EPM) test]; and 3) Insus group. Additional non-handled rats acted as the control (Ctrl) group. For a more detailed description, please refer to our previous study (Tang et al., 2019).
Tissue Isolation and Lysis
After the behavioral assessment, the animals were anesthetized and decapitated and their whole brains were carefully removed on ice. The pituitary tissue was isolated from the rat brain and frozen rapidly in liquid nitrogen and then stored at −80°C in a refrigerator prior to use. For protein extraction, a sample of the pituitary of each animal was added to an SDT buffer composed of 4% SDS, 0.1 M dithiothreitol, 0.1 M Tris–HCl, pH 8.0, and protease inhibitors. The tissues were homogenized and lyzed, the extracted proteins were boiled for 5 min. After centrifugation at 4°C and 40,000 × g for 15 min, the supernatants were collected and the protein concentrations were quantified using Pierce bicinchoninic acid assay kit.
Digestion of Pituitary Proteins and iTRAQ Labeling
Following our previously described procedure (Gong et al., 2021), the protein samples were in parallel digested using filter-aided sample preparation (FASP). In this method, an ultrafiltration filter (10 kD cutoff) was used for effective digestion. In brief, UA buffer (8 M urea, 0.15 M Tris-HCl, pH 8.0) was added to each sample. The sample was transferred to an ultrafiltration centrifuge tube and then centrifuged, and washed again with UA buffer. Subsequently, 0.05 M iodoacetamide in UA buffer was added to the filter. The protein mixture was incubated and alkylated for 30 min at room temperature in the dark. The filter unit was centrifuged and then washed twice with UA buffer. Finally, trypsin solution was added and digested at 37°C overnight. The resulting peptides were collected as a filtrate and then dried in a Speed Vac.
High-pH Reversed-Phase Liquid Chromatography (RPLC) Fractionation and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
The tryptic peptides were labeled with eight-plex iTRAQ reagents according to the protocol of the manufacturer. The reagents 113–121 were used to label the eight samples from the three stressed and the Ctrl groups, as depicted in Figure 1A. Each used sample was obtained from 2 to 3 rats in each group (Lenselink et al., 2015). Subsequently, the eight labeled samples were pooled and preliminarily separated using high-pH RPLC. Briefly, the peptides were dissolved with buffer A (5% acetonitrile, 0.01 M ammonium formate, pH 10.0) and fractionated through linear elution in a gradient of 5–38% buffer B (90% acetonitrile (ACN), 0.01 M ammonium formate, pH 10.0) for 80 min at 300 μL/min. A total of sixteen fractions were collected, desalted and dried for the subsequent LC-MS/MS analysis.
[image: Figure 1]FIGURE 1 | Comparative analysis of the pituitary proteomic response of the rats under chronic mild stress (CMS). (A) Schematic representation of quantitative proteomics analysis of the control (Ctrl), depression-susceptible (Dep-Sus), anxiety-susceptible (Anx-Sus) and insusceptible (Insus) groups. (B) Volcano plot of the protein expression changes in the three groups. In volcano plot, the red plot represented up-regulated proteins, and the blue plot represented down-regulated proteins. The x-axis shows the log2-transformed average fold change. The y-axis shows the negative log10-transformed p-value.
The peptides in each fraction were re-dissolved in 0.1% formic acid, and delivered into Thermo Scientific Easy-nLC 1200 system coupled with a nanoViper C18 trap column (3 μm, 100 Å). The peptide mixtures were trapped and then desalted using 100% solvent A (0.1% formic acid). Afterward, the peptides were eluted with 8–38% solvent B (80% ACN/0.1% formic acid) for 50 min, and separated with an analytical column (50 μm × 150 mm, 3 μm-C18 100 Å). Q-Exactive Orbitrap mass spectrometer equipped with a Nano Flex ion source (ThermoFisher) was used for the MS analysis (interface heater temperature, 275°C; ion spray voltage, 1.9 kV). The tandem MS data were acquired through the use of a data-dependent acquisition mode along with full MS scans. The acquisition range was 350–1,200 m/z for the MS1 and 110–1,200 m/z for the MS2. For the information acquisition, survey scans were acquired in 250 ms and up to 14 product ion scans (50 ms) were collected. Those MS spectra along with charge state 2–4 were selected and subjected to fragmentation using higher-energy collision dissociation, and dynamic exclusion for selected precursor ions was set to 25 s.
Protein Identification and Quantification
Raw files were processed and searched using the Sequest HT search engine embedded into Proteome Discoverer software 2.1 (ThermoFisher) against the UniProt Rat database. The following search parameters were set: monoisotopic mass values, fragment mass tolerance at 0.05 Da and precursor mass tolerance ± 10 ppm, trypsin as the enzyme, and allowing up to 2 missed cleavages. Fixed modifications were defined as iTRAQ labeling and carbamidomethylation of Cys; Oxidation on Met, acetylation on protein N-term, deamidation on Asn and Gln, and Pyro-Glu were specified as a variable modification. The decoy database pattern was set as the reversed version of the target database. All reported data were based on 99% confidence for peptide identification as determined by a false discovery rate (FDR) of lower than 1%. Relative ratios of identified peptides among labeled samples were computed using relative peak intensities of released iTRAQ reporter ions in each of the MS/MS spectra, and introduced into Excel spreadsheet for manual treatment. Then, the ratios of all identified proteins were analyzed via a two-tailed Student’s t-test. Those proteins with 1.2-fold expression alterations and p-values lower than 0.05 could be considered as significantly different. The raw data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD025429 (Ma et al., 2019).
Bioinformatics
GO analyses including biological processes (GO-BP), molecular functions (GO-MF), and cellular components (GO-CC) were conducted through the use of the OmicsBean tool (http://www.omicsbean.cn/). KEGG (http://www.genome.jp/kegg/) was used to identify the significant pathways with p-values of lower than 0.1 following the previously described procedure (Yu et al., 2017). Moreover, the STRING database and Cytoscape were used to construct PPI networks following the previously reported protocol (Gong et al., 2021).
Parallel Reaction Monitoring (PRM) MS Assay
Following the iTRAQ-based proteomics experiment, extraction and digestion of the pituitary proteins were performed. The resulting peptides were analyzed using the Q-Exactive Orbitrap mass spectrometer. A normalized collision energy of 28 was used for the fragmentation of the peptides, and the resulting fragments were analyzed at a resolution of 35,000. The acquired raw data were analyzed via the Proteome Discoverer tool. The MS data were further processed using the analysis software Skyline 19.1 (ThermoFisher). The statistical analysis of the data were performed using Student’s t tests of SPSS software. The data were presented as means ± standard error (SE). The difference was considered to be statistically significant when p-values lower than 0.05.
RESULTS
iTRAQ-Based Proteomics Analysis of the Rat Pituitary Under the CMS
In the present work, our used pituitary tissue samples were from the identical batch of the stressed animals in our recently published paper (Tang et al., 2019). Briefly, the stress-induced depressive-like behavior including anhedonia and behavioral despair were firstly assessed through the use of the SP and FS tests. Meanwhile, we also utilized the EPM test for indexing the anxious-like symptom. Based on these testing data, a subset of the Dep-Sus, Anx-Sus, Insus, and Ctrl groups was finally obtained. Overall, these results indicated that we could effectively utilized the CMS model to investigate the neurobiological processes associated with the resistance and vulnerability of stress-related anxious or depressive disorders.
Next, we investigated the effects of CMS on the expression of the rat pituitary proteins through the use of iTRAQ-based quantitative proteomics analyses (Figure 1A). In this experiment five animals per group were used, and the pituitary proteins from 2 to 3 rats were equally pooled for each sample (Lenselink et al., 2015). Matching to the UniProt database, within the Ctrl, Dep-Sus, Anx-Sus and Insus groups, totally 3,601 non-redundant proteins were identified and quantified based on the FDR lower than 0.01. The iTRAQ-based protein expressions that changed greater than 1.2-fold and p-values lower than 0.05 versus the values for the Ctrl group were deemed to be significantly different. Overall, 197 proteins were found to exhibit a significant differential expression in the three groups (Supplementary Table S1). Here, the proteome profile of the pituitary was contrasted with that of the hypothalamus from our previous work (Gong et al., 2021) (Supplementary Figure S1). Despite the profile of hypothalamus and pituitary was similar based on a 60–70% overlap of the total quantified proteins, the differential protein sets in each area exhibited considerably divergent. This suggested that there were different proteome responses to stress in these two areas.
Functional and Network Characterization of CMS-Responsive Differential Proteins
The pituitary site-specific proteome signature of the CMS-exposed rats unraveled 37 downregulated and 32 upregulated proteins in the Dep-Sus group, 44 downregulated and 26 upregulated proteins in the Anx-Sus group, and 44 downregulated and 68 upregulated in the Insus group (Figure 1B). In the two stress-susceptible cohorts, 30 proteins were seen to be similarly deregulated, potentially representing the commonality of stress-induced anxiety and depression. Among the susceptible and the insusceptible groups, 27 similarly deregulated proteins were seen and might sever as a consequence of stress exposure (Figure 2A). To sum up, as many as 78% of these deregulated proteins were uniquely connected with the three phenotypes, which demonstrated that the three stressed cohorts had specific protein expression disturbances as a response of stress. Further, based on the unsupervised hierarchical clustering analysis, the expression profile of the 197 deregulated proteins were divided into three different units, to some extent suggesting the three specific CMS responses (Figure 2B).
[image: Figure 2]FIGURE 2 | Analysis of the deregulated pituitary proteins identified in the depression-susceptible (Dep-Sus), anxiety-susceptible (Anx-Sus), and insusceptible (Insus) groups. (A) Venn diagrams of the deregulated proteins in the three stressed groups. (B) Heatmap of the deregulated proteins in the three groups. Higher expressions were indicated by red and lower by blue. The expression levels were shown with various color intensities. In the color bar the log2 scale was used.
We carried out GO classification and pathway enrichment of the deregulated proteins through the use of the OmicsBean software, for a better understanding of the significant protein functions and biological pathways correlated with the three behavioral phenotypes. The 69 deregulated proteins in the Dep-Sus group were subjected to enrichment analyses of the GO and KEGG pathways. Total 377, 85, 82, and 9 terms in the GO-BP, GO-CC, GO-MF, and KEGG pathways were significantly overrepresented (Supplementary Table S2). The ten top enriched GO terms are shown in Figure 3A. According to the GO-BP annotations, many deregulated proteins were associated with acute-phase and inflammatory responses, tRNA modification and processing, interferon-alpha, type 1 interferon and protein secretion and regulation. The GO-CC annotations showed that these differential proteins were mainly located in blood microparticle, extracellular region and organelle, and membrane-bounded organelle and vesicle. According to the GO-MF annotations, most of proteins were involved in enzyme inhibitor, peptidase inhibitor and regulator activity, and RNA binding. In pathway enrichment analyses, the deregulated proteins were mainly related to complement and coagulation cascades, RNA transport, mRNA surveillance pathway, synthesis and degradation of ketone bodies, metabolism, apoptosis and SNARE interactions in vesicular transport (Figure 3B).
[image: Figure 3]FIGURE 3 | Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments. The top ten enriched GO biological process (GO-BP), cellular component (GO-CC) and molecular function (GO-MF) terms of the deregulated pituitary proteins from the depression-susceptible (Dep-Sus, A), anxiety-susceptible (Anx-Sus, C) and insusceptible (Insus, E) groups were indicated. Meanwhile, the significantly overrepresented KEGG pathway terms from the Dep-Sus (B), Anx-Sus (D), and Insus (F) groups were shown with underscores. The x-axis represented the negative log10-transformed p-value. (G) Venn diagram displaying unique and common significantly-enriched pathways among the three groups.
At the same time, enrichments of GO annotations and KEGG pathways of the 70 deregulated proteins in the Anx-Sus group were carried out. There were 388 GO-BP, 84 GO-CC, 82 GO-MF, and 9 KEGG pathway terms overrepresented. The top 10 enriched GO terms are indicated in Figure 3C. The GO-BP annotations displayed that the majority of proteins were associated with coagulation, hemostasis, and amino acid and glutathione metabolic processes. According to the GO-CC annotations, the differential proteins were mainly found in membrane-bounded and intracellular organelle, protein, supraspliceosomal and macromolecular complex, and nucleoplasm and cytoplasm parts. The GO-MF annotations indicated that most proteins were involved in enzyme activity, protein and thyroid hormone receptor binding. According to pathway enrichment analyses, the deregulated proteins were primarily implicated in complement and coagulation cascades, metabolism and biosynthesis, cytosolic DNA-sensing pathway, and endocytosis (Figure 3D).
Afterwards, GO annotation and KEGG pathway enrichments of the 115 deregulated proteins in the Insus group were also conducted. There were 516 GO-BP, 116 GO-CC, 104 GO-MF, and 10 KEGG pathway terms overrepresented. The top ten enriched GO terms are shown in Figure 3E. According to the GO-BP annotations, most of the differential proteins were involved in vesicle-mediated, cytosolic and endosomal transport and regulation, localization and metabolic process, and GO-CC category analysis showed that the majority of the deregulated proteins located in the cytoplasmic and intracellular parts, endomembrane system, organelle and endosome. The GO-MF annotations predicted that most of the proteins were engaged in vitamin, protein and ubiquitin binding, and enzyme and peptidase regulator, SNAP receptor activities. The pathway enrichment analyses uncovered that the deregulated proteins were mainly enriched in SNARE interactions in vesicular transport, endocytosis, ECM-receptor interaction, focal adhesion, metabolism and biosynthesis, and GABAergic synapse (Figure 3F).
Interestingly, of these significantly-enriched KEGG pathways, there were one shared terms among the three cohorts (Figure 3G). Meanwhile, we could see the two common pathways between the two susceptible cohorts. Importantly, the 6, 6 and 7 pathways were seen to be uniquely related to the Dep-Sus, Anx-Sus and Insus groups, respectively, potentially suggesting the three different neurobiological response to the identical CMS.
Furthermore, we also focused on the proteome-inferred PPI networks in the Dep-Sus, Anx-Sus and Insus groups, as shown in Figures 4A–C. The PPI network maps of the three stressed groups were built through the use of the deregulated proteins correlated with the significant pathways. 29, 36, and 71 deregulated proteins were identified to be several important factors based on the unified conceptual framework of the three networks from the Dep-Sus, Anx-Sus and Insus groups, respectively. As expected, these networks unraveled close relationships between the deregulated proteins and the significantly enriched pathways, thereby furnishing a useful and valuable interactome unit connected with the three different behavioral phenotypes.
[image: Figure 4]FIGURE 4 | Protein–protein interaction (PPI) network and parallel reaction monitoring (PRM) analyses of the deregulated pituitary proteins of the three groups. The PPI networks of depression-susceptible (Dep-Sus, A), anxiety-susceptible (Anx-Sus, B), and insusceptible (Insus, C) were built based on fold changes of protein expression, PPIs and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments. Circular nodes represented proteins/genes and rectangles represented KEGG pathway terms. Lower p-value was indicated in blue and higher p-value in yellow. (D) PRM analysis of the deregulated proteins in the three stressed groups when compared to the control (Ctrl). Oxct1, Sec24c, Ppp1cb, Dock1, Coq3, Lama1, Glb1, Gapdh, Sccpdh, Renbp, Sephs1, Nup188, Spp1, Prodh1, Srm, Ifih1, Vamp7, Arfgap3, and Ubqln4 were determined on the pituitary protein extracts of the rats. The relative abundance of target proteins among sample groups were compared based on the abundance of the corresponding peptides. n = 5 per group, *p < 0.05, **p < 0.01.
PRM Analysis of CMS-Response Proteins
In this work, the PRM technique was used to further independently validate nineteen abnormally-expressed proteins of interest involved in the significant biological functions and pathways. On the whole, the PRM data mirrored the iTRAQ results (Supplementary Figure S2). As illustrated in other proteomics work (Abdi et al., 2006; Cheng et al., 2011; Xu et al., 2012; Wu et al., 2019), some discrepancies existed between the iTRAQ and PRM data. Except as the assay difference of these two approaches, another probable reason was the additional mixing step in the iTRAQ experiment (Xu et al., 2012; Wu et al., 2019). Compared with the Ctrl group, the expressions of Oxct1, Ppp1cb, Dock1, and Coq3 were significantly down-regulated while Sec24c was up-regulated in the Dep-Sus group; the expressions of Gapdh was significantly down-regulated whereas Lama1, Glb1, Sccpdh, and Renbp were up-regulated in the Anx-Sus group; the expressions of Sephs1, Spp1, and Srm were significantly down-regulated whereas Nup188 and Prodh1 were up-regulated in the Insus group (Figure 4D). In addition, the expression level of Ifih1 was displayed to be significantly reduced in both the Dep-Sus and Anx-Sus groups as compared to the Ctrl group. The reduced level of Vamp7 in both the Dep-Sus and Insus groups, and the elevated level of Arfgap3 and Ubqln4 in the three stressed groups were observed as contrasted with the Ctrl group.
DISCUSSION
Chronic stress is the most major factor among many factors that may cause psychiatric illnesses, including anxiety and depression (Henningsen et al., 2012; Chang and Grace, 2014). This is largely due to the means through which the stress affects the function of the HPA axis (Tsigos and Chrousos, 2002). A valid CMS paradigm was thus commonly employed to cause anxious-like and depressive-like behaviors of rats (Henningsen et al., 2012; Chang and Grace, 2014). Previously we constructed the CMS model to gain the three different phenotypes (Dep-Sus, Anx-Sus, and Insus) of the rats through assessment the behavior performance (Tang et al., 2019). This stress model provided a useful means for assay of common and specific neurochemical characteristics of resistance and susceptibility to anxiety or depression. Profiling the phenotype-related protein expressions may lead to new molecular insights into translational research of depression and anxiety.
To discover the phenotype-related protein deregulations, we compared the expression of proteins in the pituitary of the rats exposed to CMS using iTRAQ-based proteomics analyses. There is a total number of 197 deregulated proteins found in the pituitary of Dep-Sus, Anx-Sus, and Insus rats. The overlapped protein deregulations between the Dep-Sus and Anx-Sus groups likely reflected the shared protein expression patterns of anxiety and depression. Those similar deregulations between the Insus and Dep/Anx-Sus groups could be considered to be a general response to CMS. Interestingly, the specifically deregulated protein expressions in the three stressed cohorts suggested potential differences among the stress-induced behavioral phenotypes. The specific protein dysfunctional profiles were further exhibited and evidenced through the use of the clustering analysis.
Subsequently, some potentially affected biological processes and pathways in the pituitary tissue uniquely associated to stress-induced depressive-like and anxious-like behaviors and stress resistance were found through integrated analysis of the proteomics and bioinformatics. The analysis of biological pathways indicated that the deregulated proteins were significantly enriched for complement and coagulation, ketone bodies, vesicular transport, and metabolism dysfunctions in the Dep-Sus group, complement and coagulation, metabolism and endocytosis deregulations in the Anx-Sus group, and vesicular transport, endocytosis, metabolism and synapse repercussions in the Insus group. Importantly, many significant pathways were found to be distinctly connected with the three phenotypes, which reflected differences in active biological processes and events that happened in these stressed cohorts. The further network mapping unraveled the protein deregulation systems and likely offered some useful clues correlated with resistance and susceptibility to stress-caused anxiety or depression.
In this work, we further utilized PRM-based quantitative method to independently validate the nineteen abnormally-expressed proteins involved with the remarkable biological functions and pathways. The results indicated that Oxct1, Sec24c, Ppp1cb, Dock1, and Coq3 were distinctly deregulated in the pituitary of the Dep-Sus group, whereas Lama1, Glb1, Gapdh, Sccpdh, and Renbp were distinctly deregulated in the Anx-Sus group. These specific alterations suggested that the same stimuli could lead to the different molecular response and neurobiological processes in the pituitary, thereby triggering the depression and anxiety behaviors. Meanwhile, we observed that Sephs1, Nup188, Spp1, Prodh1, and Srm were distinctly deregulated in the Insus group, suggesting a potential positive way to dealing with the stress-caused pituitary protein deregulations for stress protection and behavioral adaptation (Krishnan et al., 2007; Zhou et al., 2016).
We found that these PRM-determined phenotype-specific deregulated proteins were mainly involved in the metabolism, focal adhesion, protein processing and RNA transport. Oxct1, Coq3, Glb1, Sccpdh, Gapdh, Renbp, Sephs1, Prodh1, and Srm are involved in a wide range of principal metabolic pathways. In the Dep-Sus group, specific dysregulations of Oxct1 and Coq3 would result in the abnormalities of synthesis and degradation of ketone bodies, and ubiquinone and other terpenoid-quinone biosynthesis. In the Anx-Sus group, the aberrations of Glb1 and Sccpdh were important for glycosphingolipid and glycolipid biosynthetic processes, and potentially affected the formation of lipid (Dakik et al., 2021). In the Insus group, Sephs1, Prodh1, and Srm have also been reported to participate in some critical metabolic pathways, such as amino sugar and nucleotide sugar metabolism, selenocompound metabolism, and arginine and proline metabolism. More importantly, these metabolisms were generally considered as a significant source of energy supply. The regulatory abnormality of multiple metabolic processes in the pituitary would lead to a negative or positive energy balance of the HPA axis (Nieuwenhuizen and Rutters, 2008; Harris, 2015). Furthermore, Ppp1cb, Dock1, Lama1, and Spp1 were found to be involved in focal adhesion pathway. These neural cell adhesion molecule might be vital for the neuronal plasticity of stress-induced disorders (Cotman et al., 1998; Ditlevsen et al., 2008). Moreover, dysregulation of Sec24c in the Dep-Sus group might affect cell surface levels of the serotonin transporters and thus be linked to depression (Sucic et al., 2011). Meanwhile, we also noted the underexpression of Ifih1 in both the two susceptible groups, which probably was an important pathological clue for depression and anxiety. In our present work, changes in the expressions of proteins involved in multiple significant biological functions and pathways especially metabolism were identified in the pituitary of the stressed rats, it would be interesting to further explore the possible complex mechanisms behind these stress-induced deregulations pointing to the HPA axis dysfunction in depression and anxiety.
CONCLUSION
In this study, we determined the impacts of CMS on the rat pituitary proteome via iTRAQ-based and PRM-based quantitative approaches. We found out some candidate pituitary proteins that were likely linked to resistance and susceptibility to CMS-induced depression or anxiety and thus furnished new valuable insights into the stress-affected molecular deregulations in the chronically stressed groups. The current proteomic research can serve as an important molecular underpinning, and help to better understand similarities and differences of the pituitary dysfunction mechanisms in the HPA axis that underlie stress resistance and stress-caused anxiety or depression.
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The present study was designed to systemically evaluate changes in the diffusion tensor imaging (DTI)-derived parameters of iNPH (idiopathic normal pressure hydrocephalus) patients with different responses to the tap test (TT), and to correlate cognitive impairment with white matter (WM) degeneration. This study included 22 iNPH patients and 14 healthy controls with structural magnetic resonance imaging (MRI) and DTI scanning. DTI was used to explore the differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) for all participants. DTI parameters were evaluated using an ROI (region of interest)-based and tract-based spatial statistics (TBSS) approach. Neuropsychological assessments and the idiopathic normal pressure hydrocephalus grading scoring scale (iNPHGS) were performed. Compared to the TT non-responders, the TT responders group had significantly lower FA values in the corpus callosum, cingulum cingulate gyrus, superior longitudinal fasciculus, and lower AD values in the right cingulum cingulate gyrus and the left posterior thalamic radiation. Besides, the MD values were significantly increased in the corpus callosum, left anterior corona radiata, and the RD values in the corpus callosum and cingulum cingulate gyrus. In addition, the cognitive improvement was negatively correlated with FA of the corpus callosum, cingulum cingulate gyrus, and MD values of the genu of corpus callosum. While, the cognitive improvement was positively related to the AD of the cingulum cingulate gyrus, superior longitudinal, and RD values of the corpus callosum, cingulum cingulate gyrus and uncinate fasciculus. The ROI specific WM lesions in iNPH patients are the underlying basis for cognitive impairment.

Keywords: idiopathic normal pressure hydrocephalus (iNPH), tap test, diffusion tensor imaging, tract-based spatial statistics (TBSS), cognitive impairment


INTRODUCTION

Idiopathic normal pressure hydrocephalus (iNPH) is a complex clinical disease with an undetermined etiology. The clinical characteristics of iNPH include gait disorders, cognitive impairment and urinary incontinence. Ventriculomegaly on neuroimaging and cerebrospinal fluid pressures ranging from 70 to 200 mm H2O (1 mm H2O = 0.0098 kPa) are primary diagnostic criteria for iNPH (Williams and Malm, 2016). iNPH is one of the few etiologies of reversible dementia. Ventriculo-peritoneal shunting (VPS) is an effective treatment for iNPH (Marmarou et al., 2005) that can significantly improve cognitive function in patients (Klinge et al., 2005; Liu et al., 2016).

The increased aging population across the world has resulted in dementia becoming a major global public health problem. As iNPH is a reversible form of dementia, the disease has become the focus of intense research efforts. The symptoms and neuroimaging findings of iNPH are similar to other neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Kang et al., 2013). All of these clinical entities mainly occur in elderly patients and so iNPH is often found along with other neurodegenerative diseases. According to the uniform diagnostic criteria (Marmarou et al., 2005), the postoperative effects in different iNPH vary significantly. The accurate prediction of the shunt response can distinguish patients with reversible dementia from other forms of the disease.

The tap test (TT) is the most widely used and effective method for the preoperative evaluation of iNPH (Martín-Láez et al., 2016). Patients diagnosed with iNPH show differential responses to the cerebrospinal fluid (Ko et al., 2017). Patients with a positive TT response can obtain obvious improvements in cognitive function after shunt surgery, whilst most TT negative patients usually experience very poor postoperative effects often with no change in cognitive deficits (McKhann and Mayeux, 2010; Wolfsegger and Topakian, 2017). These observations suggest that different mechanisms of cognitive impairment may occur between TT responders and non-responders and could potentially be used to predict cognitive function outcomes after surgery in iNPH patients.

The mechanism of cognitive impairment in iNPH patients remains unclear. The cognitive network is highly complex and its dysfunction in cognitive disorders is an area of intense research interest. Diffusion tensor imaging (DTI) is a magnetic resonance (MR) technique that has recently been used to study white matter (WM) degeneration in patients with iNPH. Amongst the DTI parameters, fractional anisotropy (FA) and mean diffusivity (MD) have been demonstrated as a useful index of WM impairment in iNPH patients (Kanno et al., 2011; Nicot et al., 2014; Radovnický et al., 2016). FA is the most widely used DTI parameter, which reflects the integrity of the axon and is highly sensitive to change in microstructure. MD quantifies cellular and membrane density whereas an increase in MD indicates cellularity, edema, and necrosis of WM (Tae et al., 2018). Previous studies observed lower FA and higher MD within various supratentorial regions including the corticospinal tract (CST), the corpus callosum (CC), and some subcortical WM (Hattori et al., 2011, 2012; Koyama et al., 2013; Daouk et al., 2014). However, few studies have systemically analyzed whole-brain WM microstructures and explored the relationship between the integrity of WM and cognitive decline. The DTI parameters of axial diffusivity (AD) and radial diffusivity (RD) have rarely been reported in previous iNPH studies (Scheel et al., 2012; Jurcoane et al., 2014). RD is a putative myelin marker and increases with demyelination. AD is related to axonal injury and thus decreases in cases of axonal damage (Tae et al., 2018). Furthermore, few studies have compared the differences between TT responders and non-responders in iNPH patients.

This study aimed to systemically evaluate the WM changes in iNPH patients with different responses to the TT, and to correlate cognitive impairment and WM microstructural damage in iNPH patients.



MATERIALS AND METHODS


Participants

A total of 22 patients diagnosed with iNPH in the Neurology Department of Mianyang Central Hospital from May 2016 to December 2019 were included in this study. Before lumbar puncture and at 8, 24, 48, and 72 h after the drainage, gait disturbance, mini-mental state examination (MMSE) score, and the idiopathic normal pressure hydrocephalus grading scoring scale (iNPHGS) were assessed (Tarnaris et al., 2007). Gait improvements at any observation times after drainage, improvements in the MMSE score of ≥3 points, or improvements in the iNPHGS of >1 point were considered a positive criterion for the cerebrospinal fluid discharge test. The twenty-five iNPH patients consisted of 12 patients in the TT responsive group and 13 patients in the TT non-responsive group. A total of 14 control subjects with no cognitive impairments were included in the study across the same period.



Demographic and Clinical Data Collection

Cognitive function was assessed using the following tests:


1.The MMSE was used to test the subjects’ overall cognitive level including orientation, immediate and short-term memory function, language function, and computational power (Folstein et al., 1975).

2.The digit span test (DST) was used to assess attention and immediate memory in memory function (Richardson, 2007).

3.The verbal fluency test animal (VFT-A) was used to assess working memory and vocabulary storage memory in executive functions, and long-term memory in memory function and semantic smooth function (Carlesimo et al., 1996).

4.The trail-making test A (TMT-A) was used to assess performance functions and attention (O’Leary et al., 1977).

5.The Stroop color-word test-card B (CWT-B) was used to assess attention (Jensen and Rohwer, 1966).

6.The clock drawing test (CDT, Huashan version) was used to assess multiple cognitive functions including the task plan in the executive function, the spatial mechanism function, the semantic and digital memory in the memory function, the abstract thinking ability, and the anti-interference ability (Olazarán et al., 2016).



The iNPHGS is a clinician-rated scale to evaluate the severity of core symptoms of iNPH (cognitive impairment, gait disturbance, and urinary disturbance). The score of each domain ranges from 0 to 4, with higher scores indicating worse symptoms (Tarnaris et al., 2007).

All the subjects were scored at the baseline before the tap test. All of the iNPH patients were scored at 8, 24, 48, and 72 after the tap test.



Magnetic Resonance Imaging Acquisition and Image Processing

Magnetic resonance imaging was performed on a 3.0T Siemens MAGNETON Skyra using a 12-channel head matrix radio frequency receive coil. The MR imaging protocol included a T1-weighted sequence (TR = 700 ms, TE = 11 ms, 0.9 mm slice separation, giving a voxel size 0.9 mm × 0.9 mm × 0.9 mm), a T2-weighted sequence (TR = 4,910 ms, TE = 99 ms, 5 mm slice separation, giving a voxel size 0.6 mm × 0.6 mm × 5 mm), and a fluid attenuated inversion recovery (FLAIR) sequence (TR = 8000, TE = 99 ms, 5 mm slice separation, giving a voxel size 0.9 mm × 0.9 mm × 5 mm). The DTI data set was acquired by using a spin echo diffusion weighted echo planar imaging sequence with the following parameters: TR = 10,400 ms; TE = 89 ms; FOV = 256 mm × 256 mm; acquisition matrix = 128 × 128; voxel size 2 mm × 2 mm × 2 mm; 75 axial slices; 4 images without (b0) and 60 images with diffusion weighting (b = 1,000 s/mm–2) uniformly distributed across 60 gradient directions.

DTI data was processed using several approaches as follows:


a)Tract-based spatial statistics (TBSS): PANDA [Pipeline for Analyzing braiN Diffusion imAges, a MATLAB toolbox which consists of FMRIB Software Library (FSL) and several established packages] was used for the processing of the DTI raw data1 (Cui et al., 2013). All of the DTI data of the subjects were automatically processed by TBSS to achieve the DTI scalars FA, MD, AD, and RD used in the analysis.

b)ABA-TBSS: FSL was used to generate a WM map (JHU DTI-based white-matter atlases) by separating all of the whole WM. This approach was used to automatically calculate the average skeleton value of each brain region. The outputs were saved in Excel file format.



Comparison of whole brain WM skeleton (TBSS): quantitative analysis of the whole brain WM skeleton was performed using the built-in TBSS randomize statistical tool in FSL. The statistical results were displayed using the xjview and fslview software packages. The regions of interest (ROIs) were mapped using the JHU DTI-based white-matter atlases: anterior thalamic radiation (ATR), posterior thalamic radiation include optic radiation (PTR), anterior corona radiata (ACR), superior corona radiata (SCR), posterior corona radiata (PCR), tapetum (TAP), cingulum cingulate gyrus (CgC), cingulum hippocampus (CgH), superior fronto-occipital fasciculus (SFOF), inferior frontooccipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), superior longitudinal fasciculus temporal part (SLFT), sagittal stratum (include ILF and IFOF) (SS), and uncinate fasciculus (UF) within each hemisphere, and forceps major (F-major), forceps minor (F-minor), genu of corpus callosum (GCC), body of corpus callosum (BCC), splenium of corpus callosum (SCC), and fornix (column and body of fornix) (FN) across hemispheres (shown in Supplementary Figure 1) (Alexander et al., 2007).



Statistical Analysis

Statistical analysis was performed using SPSS 20.0 software. A p-value threshold of <0.05 was used to determine the level of statistical significance. The demographic data, neuropsychological scores, and the iNPHGS scores were presented as the mean ± standard deviation. One-way analysis of variance (ANOVA) was used to compare demographic data and baseline cognitive scores among the control group and the iNPH patients (TT responsive and TT non-responsive groups). A Mann–Whitney U test was used to compare the maximum improvement scores (time duration) of the neuropsychological performance in the two iNPH groups after the TT. Comparison of the average skeletal values (FA, MD, AD, and RD) in the ROIs was performed using ANOVA among different groups. Bonferroni correction was used to control for multiple comparisons, while uncorrected results are also presented because Bonferroni’s correction is quite conservative (Narum, 2006). Correlation analysis was performed between the DTI parameters (FA, MD, AD, and RD) and the MMSE scores, the total cognitive scores, and the improvement of cognitive scores by Pearson correlation analysis. The Pearson coefficient (r-value) > 0.4 and P < 0.05 were set to define moderate correlation.




RESULTS


Demographic and Clinical Profiles

The detailed demographic and clinical information from the patients is presented in Table 1. This study involved 22 patients with iNPH who met the inclusion criteria and 14 healthy controls (HCs). In the iNPH patient group, 20 patients were male and 2 patients were female. The average age of the patients in this group was 75.40 ± 5.83 years and the average education period was 6.92 ± 5.72 years. The control group consisted of 11 males and 3 females with an average age of 75.36 ± 5.76 years and an average education period of 6.43. ± 4.69 years. There were no significant differences in gender, age, and years of schooling between the iNPH patients and the HCs. The iNPH patients had significantly poorer performance in the MMSE, DST, VFT-A, CWT-B, TMT-A, and CDT compared to the HCs (P < 0.05). According to the improvements after the TT, 12 patients were classified in the TT responsive group (TT-R) and 13 patients were classified in the TT non-responsive group (TT-nR). No significant differences were found between the TT-R and TT-nR groups in age, sex, years of schooling, and baseline cognitive levels (MMSE, DST, VFT-A, CWT-B, TMT-A, and CDT scores). The iNPHGS score of the TT-R group was higher than the TT-nR group suggesting that the clinical symptoms were more severe in the TT-R group.


TABLE 1. Demographic and characteristics of all subjects.
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Tract-Based Spatial Statistics Whole Brain White Matter Skeleton Comparison

Significant changes were observed in the TT-R group compared to the TT-nR group. These included decreases in the FA skeleton values in specific areas (GCC, BCC, SCC, F-major, FN, CgC, L-CgH, L-ATR, L-IFOF, SLF, L-UF) (P < 0.05), and decreased in the MD skeleton values in areas of the CC, FN, B-CgC, B-PTR, L-CgH, L-IFOF, SLF, L-UF (P < 0.05), AD values in areas of the GCC, BCC, SCC, F-major, CgC, PTR, IFOF (P < 0.05) and RD values in areas of the CC, CgC, CgH, PTR, IFOF, ILF, ACR, UF (P < 0.05) (shown in Figure 1).


[image: image]

FIGURE 1. Comparisons of DTI imaging in group analyses of TBSS. Results of TBSS between TT responsive group and TT non-responsive group. Significant region (P < 0.05) illustrated in warm colors for decreased values and in cool colors for increased values on mean WM skeleton. DTI, diffusion tensor imaging; TBSS, tract-based spatial statistics; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity.




The Region of Interest Average Skeleton Values Based on ABA-Tract-Based Spatial Statistics Comparison

Comparison of the TT-R and TT nR groups showed that the average FA skeleton values in the areas of the GCC, BCC, SCC, F-major, CgC, SLF, L-SLFT were significantly lower in the TT-R group (P < 0.05). The average MD skeleton values in the areas of the GCC, BCC, L-ACR, and the average RD skeleton values in the areas of GCC, BCC, SCC, CgC, L-SLFT, L-ACR were significantly increased in the TT-R group (P < 0.05). Also, the average AD skeleton values in the areas of the R-CgC, L-PTR, L-SLFT were significantly reduced in the TT-R group (P < 0.05) (Shown in Table 2 and Supplementary Table 1).


TABLE 2. ABA-TBSS analysis results.
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Correlation Analysis Between the Region of Interest Average Skeleton Values and Cognitive Performance in Idiopathic Normal Pressure Hydrocephalus Patients


Correlation Analysis Between Region of Interest Average Skeleton Values (Fractional Anisotropy, Mean Diffusivity, Axial Diffusivity, and Radial Diffusivity) and Baseline Total Cognitive Scores in Idiopathic Normal Pressure Hydrocephalus Patients

The total cognitive scores of the iNPH patients were positively correlated with the average FA values of the GCC, BCC, SCC, F-major, F-minor, CgC, and the ILF (r > 0.4, P < 0.05). The total cognitive scores were negatively correlated with the average MD values of the GCC, BCC, SCC, F-major, F-minor, ACR, and SCR (r > 0.4, P < 0.05), the total cognitive scores were negatively correlated with the average AD values of the GCC and SCR (r > 0.4, P < 0.05) and positively correlated with the average AD values of the CgC (r > 0.4, P < 0.05). The total cognitive scores were negatively correlated with the average RD values of the GCC, BCC, SCC, F-major, F-minor, CgC, SLF, and ACR (r > 0.4, P < 0.05) (shown in Table 3 and Supplementary Table 2).


TABLE 3. Correlation analysis between the ROI average skeleton values and cognitive performance in iNPH patients.
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Correlation Between the Region of Interest Average Skeleton Values (Fractional Anisotropy, Mean Diffusivity, Axial Diffusivity, and Radial Diffusivity) and Cognitive Improvements After the Tap Test in Idiopathic Normal Pressure Hydrocephalus Patients

A moderate negative correlation was observed between the cognitive improvement and the mean FA of GCC, BCC, SCC, F-minor, CgC, SLF, and SLFT in iNPH patients after lumbar puncture (r > 0.4, P < 0.05), and also with the mean MD of GCC (r > 0.4, P < 0.05). The degree of cognitive improvement in iNPH patients was positively related to the mean AD of the CgC, SLF, SLFT, and SS (r > 0.4, P < 0.05), and also with the average RD values of the GCC, BCC, SCC, CgC, ATR, and UF (r > 0.4, P < 0.05) (shown in Table 3 and Supplementary Material 2).





DISCUSSION

The underlying mechanisms of cognitive impairment have been the major research efforts in the field of iNPH research. The TT is the most widely used and effective method for preoperative evaluation of iNPH and the test is used to clinically classify patients into two groups. Patients who respond to the TT can achieve improvements in cognitive performance after shunt surgery, whilst patients who are not responsive to the TT usually experience very poor postoperative effects. These observations suggest different mechanisms of cognitive impairment between TT-R and TT-nR patients.

The present study used the TBSS method and a quantitative ROI analysis of skeletonized brain maps to compare differences in the cognitive-related WM microstructure of iNPH patients with different TT responses. Our data showed that the microstructural WM damage in TT-R patients was significantly more severe than in TT-nR patients. Furthermore, we assessed the associations between FA, MD, AD, and RD values and the cognitive performance of iNPH patients.

The mean FA in the areas of the GCC, BCC, SCC, F-major, FN, B-CgC, L-CgH, L-ATR, L-IFOF, SLF, and L-UF were significantly lower in the TT responsive compared to the TT non-responsive group (P < 0.05). Also, the MD and RD in the area of the GCC, BCC, SCC, B-CgC, and ATR were significantly increased (P < 0.05). These results indicated that WM edema or the destruction of myelin sheath were more severe in the TT-R group than in the TT-nR group.

In comparison to the subjects in the HC group, patients in the TT-R and TT-nR groups had more extensive microstructural damage presenting with lower FA, higher MD, and RD in CC, CgC, ATR, ACR, SLF, and UF. However, no significant difference was found in preoperative cognitive performance between the TT-R and TT-nR groups. These data may indicate that the cognitive dysfunction in the TT-R group is mostly caused by WM injury, whilst cortical volume atrophy plays a more contributing role in the cognitive decline of patients in the TT-nR group. This hypothesis is supported by previous studies. Kang et al. (2013) found that CSFTT non-responders had statistically significant cortical thinning in the left superior frontal gyrus compared to responders suggesting that comorbid AD pathology might be related to the cortical thinning patterns found in CSFTT non-responders. Also, biopsy studies found that iNPH patients with pathological evidence of AD exhibited more severe initial symptoms and had lower shunt responsiveness compared to patients without AD (Golomb et al., 2000; Savolainen et al., 2002; Picascia et al., 2016).

Correlation analysis showed significant associations between lower FA, higher MD, higher AD, higher RD and poor executive performance in the GCC, BCC, SCC, F-major, and F-minor. The data indicated that the corpus callosum and cingulate gyrus are involved in both memory and executive function, furthermore, different parts of the corpus callosum may participate in different cognitive functions.

The data presented in this study are compatible with other previous studies (Bettcher et al., 2016). Our data showed that WM damage is dominated by the anterior and superior part of the lateral ventricle in iNPH patients, particularly in the frontal lobe, which may account for the prominent executive impairment of iNPH patients. Also, our results showed that more severe damage in the anterior, outer, and upper regions of the periventricular WM obtains more obvious cognitive improvement after cerebrospinal fluid drainage in patients with iNPH. Particularly, the RD values in the corpus callosum and cingulate gyrus were significantly associated with cognitive improvement suggesting that the edema and WM degeneration in the area of anterior and superior lateral ventricles were reversible. WM demyelination, wallerian degeneration, and late axonal degeneration are short-term irreversible processes. In contrast, edema and early axonal degeneration of WM are reversible pathologies. We speculate that the TT rapidly reduces the extravasation pressure of the cerebrospinal fluid by releasing cerebrospinal fluid, and subsequently reduces edema in the periventricular WM. The changes significantly improve cognitive function in iNPH patients. However, the extent of WM fiber stretching in this area is not related to the degree of cognitive improvement after drainage. Our findings may suggest that edema in the area of anterior and superior lateral ventricles contributed mostly to the reversible cognitive impairment.

Overall, these observations confirm the role of the hydrocephalus effect in the occurrence of reversible cognitive impairment in iNPH patients.

This study had several limitations as the analysis was performed on a relatively small sample size and further validation is required in larger patient cohorts. Also, due to the low acceptance rate of shunt surgery for iNPH patients in the Chinese population, our study lacked postoperative follow-up data to further validate the longer-term responses of patients. Prospective cohort studies need to be designed to confirm the values of DTI parameters as a non-invasive imaging biomarker to predict post-operative cognitive improvement in iNPH patients. At last, combining more scales of information, such as radiomics features, might lead to more fine-grained findings in the future.



CONCLUSION


1.The extensive microstructural damage of cognitive WM in iNPH patients is the material basis for the development of cognitive impairment.

2.The microstructural damage of the anterior superior ventricle and the WM in the frontal ventricle in TT positive iNPH patients was greater than TT negative patients.

3.The microstructural changes of the CC, the cingulate ligament and the adjacent radiant fibers can affect the memory and executive functions in the cognitive field of iNPH patients, whilst microstructural changes of the anterior subcortical WM in the frontal lobe mainly affect the executive features.

4.The more severe the edema degeneration of WM in the anterior superior region of the lateral ventricle, the more obvious the cognitive improvement in the iNPH patients after the TT. The decrease in the WM FA value and increase of RD value in this region has diagnostic and prognostic value in iNPH patients.
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ABBREVIATIONS

DTI, diffusion tensor imaging; TBSS, tract-based spatial statistics; WM, white matter; FA, fractional anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity; TT, tap test; TT-R, TT responsive group; TT-nR, TT non-responsive group; MMSE, Mini-Mental State Examination; DST, digit span forward; VFT-A, Verbal Fluency Test –ANIMAL; TMT-A, Trail Making Test A; CDT, Clock Drawing Test; CWT-B, Stroop Color Word Test- card B; L-ATR, anterior thalamic radiation L; R-ATR, anterior thalamic radiation R; L-PTR, posterior thalamic radiation include optic radiation L; R-PTR, posterior thalamic radiation include optic radiation R; L-ACR, anterior corona radiata R; R-ACR, anterior corona radiata L; L-SCR, superior corona radiata R; R-SCR, superior corona radiata L; L-PCR, posterior corona radiata R; R-PCR, posterior corona radiata L; F-major, forceps major; F-minor, forceps minor; GCC, genu of corpus callosum; BCC, body of corpus callosum; SCC, splenium of corpus callosum; L-TAP, tapetum L; R-TAP, tapetum R; FN, fornix (column and body of fornix); L-CgC, cingulum cingulate gyrus L; R-CgC, cingulum cingulate gyrus R; L-CgH, cingulum hippocampus L; R-CgH, cingulum hippocampus R; L-SFOF, superior fronto-occipital fasciculus L; R-SFOF, superior fronto-occipital fasciculus R; L-IFOF, inferior frontooccipital fasciculus L; R-IFOF, inferior frontooccipital fasciculus R; L-ILF, inferior longitudinal fasciculus L; R-ILF, inferior longitudinal fasciculus R; L-SLF, superior longitudinal fasciculus L; R-SLF, superior longitudinal fasciculus R; L-SLFT, superior longitudinal fasciculus temporal part L; R-SLFT, superior longitudinal fasciculus temporal part R; L-SS, sagittal stratum (include ILF and IFOF) L; R-SS, sagittal stratum (include ILF and IFOF) R; L-UF, uncinate fasciculus L; R-UF, uncinate fasciculus R.

FOOTNOTES

1http://www.nitrc.org/projects/panda/
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Glioma is a relatively low aggressive brain tumor. Although the median survival time of patients for lower-grade glioma (LGG) was longer than that of patients for glioblastoma, the overall survival was still short. Therefore, it is urgent to find out more effective molecular prognostic markers. The role of the Fam20 kinase family in different tumors was an emerging research field. However, the biological function of Fam20C and its prognostic value in brain tumors have rarely been reported. This study aimed to evaluate the value of Fam20C as a potential prognostic marker for LGG. A total of 761 LGG samples (our cohort, TCGA and CGGA) were included to investigate the expression and role of Fam20C in LGG. We found that Fam20C was drastically overexpressed in LGG and was positively associated with its clinical progression. Kaplan-Meier analysis and a Cox regression model were employed to evaluate its prognostic value, and Fam20C was found as an independent risk factor in LGG patients. Gene set enrichment analysis also revealed the potential signaling pathways associated with Fam20C gene expression in LGG; these pathways were mainly enriched in extracellular matrix receptor interactions, cell adhesion, cell apoptosis, NOTCH signaling, cell cycle, etc. In summary, our findings provide insights for understanding the potential role of Fam20C and its application as a new prognostic biomarker for LGG.
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INTRODUCTION
Malignant central nervous system tumors account for 31.5% of nervous system tumors, and gliomas account for 80.7% of malignant central nervous system tumors (Goodenberger and Jenkins 2012; Ostrom et al., 2018). Global cancer statistics in 2018 showed that nervous system cancer was the 19th most common cancer in the world, with 296,851 new cases, accounting for 1.6% of the total cancer incidence, and 241,037 deaths each year, accounting for 2.5% of the total case mortality (Bray et al., 2018). According to the World Health Organization (WHO) 2016 version of the central nervous system classification, diffuse gliomas include WHO grade II and grade III astrocytic tumors, grade II and III oligodendrogliomas, and grade IV glioblastomas (Louis et al., 2016; Wesseling and Capper 2018).
At present, the standard treatment of glioma includes surgical resection to the maximum safety range followed by postoperative radiotherapy and chemotherapy (Stupp et al., 2005). However, the prognosis of glioma is still poor. Glioblastoma (GBM) is the most aggressive type of brain tumor in adults. Despite the improvement of current treatment methods, the median survival time is only 17–23 months (Xu et al., 2017; Jiang et al., 2019). The median survival time of WHO grade II-III glioblastoma is longer than that of WHO grade IV glioblastoma, with a median survival time of 1.7–13.3 years (Buckner et al., 2016; Mair et al., 2021; van den Bent 2014). There is extensive heterogeneity among lower-grade glioma patients. Some patients could survive for many years without any treatments; however, other patients progress quickly after active treatment. Therefore, it is very important to find more effective molecular prognostic markers for the treatment of patients with LGG. Understanding the pathogenesis and etiology of LGG may assist in discovering advanced treatment methods and effective biomarkers for diagnosis and prognosis.
The Fam20 kinase family is a newly discovered class of secreted kinases that can phosphorylate secreted proteins and proteoglycans. This family includes Fam20A, Fam20B, and Fam20C (Nalbant et al., 2005; Zhang et al., 2018). Fam20C is a casein kinase protein enriched in the Golgi that can phosphorylate a variety of secreted proteins (Tagliabracci et al., 2014; Cozza et al., 2018). Protein phosphorylation modification refers to the process of transferring the phosphate group of ATP or GTP to the amino acid residue of the substrate protein through the catalytic effect of a protein kinase (Fischer 2013). This process mediates most of the signal transduction in eukaryotic cells and it regulates many cellular processes, including metabolic regulation, transcription regulation, cell cycle, cytoskeleton rearrangement, apoptosis, and differentiation (Manning et al., 2002; Sreelatha et al., 2015). Abnormal protein phosphorylation is the leading cause of many diseases, including cancer, diabetes, Alzheimer’s disease, and Parkinson’s disease (Fischer 2013; Klement and Medzihradszky 2017).
Fam20C is located inside the cell, but it may also play an important role outside the cell (Wang et al., 2013; Tagliabracci et al., 2015). Fam20C has been shown to phosphorylate secreted proteins by recognizing the protein motif “Ser-x-Glu/phospho-Ser,” thereby being involved in biomineralization, lipid homeostasis, cell adhesion and migration. More importantly, many Fam20C substrates are related to tumor cell apoptosis and metastasis, including insulin-like growth factor binding proteins, osteopontin, and serine protease inhibitors (Rangaswami et al., 2006; Baxter 2014; Zhang et al., 2020). Insulin-like growth factor binding protein 7 (IGFBP7), which depends on Fam20C phosphorylation, could induce cell migration (Bieche et al., 2004; Georges et al., 2011). However, the utility of Fam20C as a potential tumor diagnostic and prognostic marker has not been fully elucidated.
In this study, we found that Fam20C was overexpressed in a variety of cancers, including LGG. High expression of Fam20C was associated with tumor progression. Therefore, Fam20C may serve as a potential biomarker for the diagnosis and prognosis of LGG. Moreover, the transcriptional expression of Fam20C in LGG patients may be an independent risk factor for survival. In addition, pathway and function enrichment indicated that the mechanism of Fam20C-mediated tumorigenesis involves extracellular matrix receptor interactions, cell adhesion, and the cell cycle. Our results clarified the important role of Fam20C in the prognosis of LGG and provided a reliable biomarker for the diagnosis and prognosis of LGG.
MATERIALS AND METHODS
Data Acquisition and Processing
LGG gene expression data and clinical information were obtained from The Cancer Genome Atlas TCGA database (http://cancergenome.nih.gov/) and the Chinese Glioma Genome Atlas CGGA database (http://www.cgga.org.cn). From the TCGA database, we obtained the original mRNAseq data of 529 LGG samples, which were normalized using the edge R package in R (version 4.0.2). A total of 132 LGG samples were obtained from the CGGA database, and the gene expression profile of each sample and the corresponding clinical data were sorted (Supplementary Table S1). The RNA-seq data from the CGGA database were generated from total RNA and directly expressed as fragment values per thousand bases per million mapped reads (FPKM). In CGGA database, a rapid hematoxylin and eosin-stain for frozen sections was applied to each sample to assess the tumor cell proportion before RNA extraction. In addition, the RNA was extracted from only those samples with >80% tumor cells (Zhao Z. et al., 2021).
Patient Information and Ethics
This study was approved by the ethics committee of 900th Hospital of Joint Logistics Support Force. Between January 2016 and November 2020, a cohort assessment of 100 patients who underwent neurosurgery was conducted. According to the WHO 2007 and 2016 standards, all patients were newly diagnosed with grade II and III gliomas. Patients younger than 16 years old at the time of diagnosis were excluded from this study (Supplementary Table S1). Clinical data and detailed follow-up data were obtained from all patients. Sanger sequencing was then employed to investigate the mutation status of isocitrate dehydrogenase (IDH). In addition, we also studied the 1p/19q deletion and the heterozygosity status of LGG using fluorescence in situ hybridization.
Immunohistochemistry Analysis
One hundred patients with LGG and three normal brain tissues from grade 1 glioma patients in the 900th Hospital of Joint Logistics Support Force were collected. The adjacent brain tissues to the three cases of grade 1 glioma patients were used as normalized data. The surgical specimens were fixed with 40 g/L formaldehyde solution, routinely embedded in paraffin, cut into 4 μm-thick sections, and stained with HE. The EliVision method was used for Fam20C immunohistochemical staining and the results were observed through light microscopy. Anti-Fam20C polyclonal antibody, was purchased from Abcam, UK (product number ab154740). Non-biotin universal two-step immunohistochemistry kit (mouse/rabbit enhanced polymer detection system) was purchased from Beijing Zhongshan Jinqiao Biotechnology Co., Ltd. The positive control tissue in this experiment was glioblastoma tumor tissues (Du et al., 2020). Results interpretation criteria: Fam20C positive expression means brown-yellow particles in the nucleus and cytoplasm. Dark brown in the nucleus and cytoplasm of the cells was defined as a strong cell; Cells with yellow or brown nucleus and cytoplasm were defined as medium-strength cells; The nucleus and cytoplasm of the cells were light yellow or had faintly visible staining, which was defined as a weak intensity cell. No staining of nucleus and cytoplasm was negative. The histochemical score (H-score) was employed to quantify the expression of Fam20C. H-score = (percentage of weak intensity cells×1) + (percentage of medium intensity cells 2) + (percentage of strong cells×3).
Gene Set Enrichment Analysis (GSEA)
GSEA was conducted to detect whether a set of a priori defined genes showed statistically significant differential expression between the high and low Fam20C expression groups during the MSigDB set enrichment process, with 1000 genome permutations performed per analysis. In this study, GSEA first generated an ordered list of all genes based on the correlation between the genes and Fam20C expression. Then, GSEA was performed to clarify the significance of the difference in survival between the high and low Fam20C expression groups. The expression level of Fam20C was used as the phenotype label. The phenotypic enrichment pathways were ranked by the nominal p value and normalized enrichment score. The calculation results were given using the ggplot2 R packages.
Functional Enrichment Analysis
Gene Ontology (GO) was employed to detect the function of the differentially expressed genes. The analysis gained a new understanding of the biological effects of Fam20C. The genes related to Fam20C expression (absolute Pearson correlation coefficient>0.5 and p < 0.05) were regarded as risk score-related genes, and their potential biological functions and pathways were determined. The Ggplot2 software package in R software was employed to analyze the GO pathways. The enrichment analysis of GO was based on a p-value and a q-value threshold <0.05.
Statistical Analysis
The Wilcoxon signed-rank test was used to detect the expression of Fam20C. The correlation between the clinicopathological characteristics and Fam20C expression was tested with the Wilcoxon signed-rank test. The survival ROC software package in R software was used to generate receiver operating characteristic (ROC) curves to evaluate the diagnostic value of Fam20C expression. The area under the curve represents the diagnostic value. Using the Survival package in R, the overall survival (OS) rates of the high expression group and the low expression group were compared by Kaplan-Meier analysis. Univariate Cox analysis was used to determine the potential survival rate, and multivariate Cox analysis was used to determine whether Fam20C expression was an independent risk factor for OS in LGG patients. p < 0.05 was considered statistically significant. All data were processed using R software (version 4.0.2) and Adobe Photoshop CC.
RESULTS
Fam20C Was Overexpressed in LGG
Data from the Cancer Cell Line Encyclopedia (CCLE) database showed that Fam20C was highly expressed in multiple cancer cell lines, especially glioma (Figure 1A). At present, there are few studies on the relationship between Fam20C and tumorigenesis. To determine the expression of Fam20C in other tumors, we conducted a comprehensive analysis of 33 tumors in TCGA. Among them, there were five cancer types in which Fam20C was overexpressed (Figure 1B).
[image: Figure 1]FIGURE 1 | The expression of FAM20C in different types of cancer, including glioma. (A) The expression of FAM20C in different types of cancer cells was obtained from the CCLE database, including glioma (n = 66), chondrosarcoma (n = 4), mesothelioma (n = 11), meningioma (n = 3), kidney (n = 37), upper aerodigestive (n = 33), thyroid (n = 12), giant cell tumour (n = 3), melanoma (n = 63), soft tissue (n = 20), neuroblastoma (n = 17), breast (n = 60), osteosarcoma (n = 10), liver (n = 29), esophagus (n = 27), Ewing’s sarcoma (n = 12), medulloblastoma (n = 4), bile duct (n = 8), lung NSC (n = 136), pancreas (n = 46), ovary (n = 55), urinary tract (n = 28), endometrium (n = 28), prostate (n = 8), lung small cell (n = 54), stomach (n = 39), acute myeloid leukemia (n = 39), leukemia other (n = 5), lymphoma Hodgkin (n = 13), colorectal (n = 63), B cell acute lymphoblastic leukemia (n = 13), T cell acute lymphoblastic leukemia (n = 16), chronic myelogenous leukemia (n = 15), lymphoma DLBCL (n = 18), multiple myeloma (n = 29), B cell lymphoma other (n = 16), T cell lymphoma other (n = 11), and lymphoma Burkitt (n = 11); (B) the expression of FAM20C in different types of cancer was obtained from Tumor Immune Estimation Resource database, including ACC (n = 77), BLCA (n = 423), BRCA (n = 1197), CESC (n = 309), CHOL (n = 45), COAD (n = 316), DLBC (n = 47), ESCA (n = 195), GBM (n = 163), HNSC (n = 563), KICH (n = 91), KIRC (n = 595), KIRP (n = 318), LAML (n = 173), brain LGG (n = 518), LIHC (n = 419), LUAD (n = 542), LUSC (n = 542), MESO (n = 87), OV (n = 426), PAAD (n = 183), PCPG (n = 185), PRAD (n = 544), READ (n = 102), SARC (n = 264), SKCM (n = 462), STAD (n = 444), TGCT (n = 137), THCA (n = 571), THYM (n = 120), UCEC (n = 187), UCS (n = 57), and UVM (n = 79). *p < 0.05; ***p < 0.001.
Overexpressed Fam20C Was Associated With Advanced LGG
Next, we analyzed the correlation between the level of Fam20C mRNA in LGG patients and their clinicopathological parameters. The TCGA database includes the patient’s tumor grade, sex, and survival status. The CGGA database includes the patient’s tumor grade, sex, survival status, IDH mutation/wild-type, and 1p19q joint deletion status. As shown in Figure 2A, the higher the grade of the tumor, the higher the Fam20C expression level. In addition, in the TCGA database, high expression of the Fam20C gene was positively related to grade and survival status but not to sex. In the CGGA database, higher Fam20C expression was related to grade, survival status, IDH wild-type, and 1p19q nonjoint deletion but not to sex (Figure 2A and Supplementary Figure S1).
[image: Figure 2]FIGURE 2 | Association with FAM20C expression and clinicopathological characteristics. (A) Clinical in TCGA database, including grade (grade 2 n = 248, and grade 3 n = 261); fustat (alive n = 400, and dead n = 109); gender (male n = 281, and female n = 228); Clinical in CGGA database, including grade (grade 2 n = 87, and grade 3 n = 45); fustat (alive n = 68, and dead n = 64); gender (male n = 81, and female n = 51); TCGA, The Cancer Genome Atlas. CGGA, Chinese Glioma Genome Atlas. (B) Kaplan–Meier curves for OS in LGG Higher FAM20C expression was remarkably associated with poorer OS in TCGA database; Higher FAM20C expression was remarkably associated with poorer OS in CGGA database. OS, overall survival. The fustat means the patients’ survival status.
Since high expression of Fam20C in LGG patients was related to tumor grade, we further tried to determine whether this overexpression of Fam20C in LGG patients was related to a poor prognosis through the use of Kaplan-Meier curves. As shown in Figure 2B, higher Fam20C expression levels were significantly correlated with a worse OS in both the TCGA and CGGA datasets (Figure 2B). In general, the results showed that the expression of Fam20C was significantly related to the prognosis of LGG patients and could be used as a biomarker to predict the survival of LGG patients.
High Fam20C Expression Served as an Independent Risk Factor Among LGG Patients
Univariate and multivariate Cox analyses were utilized to evaluate the independent prognostic values of Fam20C expression in LGG patients. The univariate analysis results showed that high Fam20C expression was significantly correlated with a shorter OS (HR = 1.02, 95% CI: 1.01–1.03, p < 0.001; HR = 1.01, 95% CI: 1.00–1.01, p = 0.001) in TCGA and CGGA. Other variables related to poor survival included age and grade in TCGA (Supplementary Table S2). In CGGA, variables related to poor survival that including grade IDH and 1p19q (Supplementary Table S3). Multivariate analysis showed that high expression of Fam20C in LGG patients was independently associated with a significant decrease in OS (Figure 3 and Supplementary Tables S2, S3).
[image: Figure 3]FIGURE 3 | Multivariate Cox analysis evaluating independently predictive ability of Fam20c for OS in TCGA and CGGA database. **p < 0.01; ***p < 0.001.
Fam20C Expression Is a Novel Diagnostic Biomarker for LGG
To evaluate the diagnostic value of Fam20C for LGG, TCGA RNA-seq data were employed to draw the ROC curve. The area under the ROC curve was 0.690, which had high diagnostic value (Figure 4A). This result was further verified with the CGGA data set, and the area under the ROC curve was 0.778 (Figure 4B).
[image: Figure 4]FIGURE 4 | Diagnosis value of FAM20C expression in LGG analysis. (A) ROC curve for FAM20C expression in LGG tissues in TCGA database; (B) validation of FAM20C diagnosis value in CGGA database. ROC, receiver operating characteristic.
Functional Enrichment Analysis
To clarify the functions and signaling pathways of genes co-expressed with Fam20C, we performed GO and KEGG enrichment analyses. GO analysis results showed that co-expressed genes were mainly closely related to the biological process of extracellular matrix remodeling (Figure 5A). KEGG analysis showed that co-expressed genes were mainly enriched in extracellular matrix receptor interactions, cell adhesion, apoptosis, cancer pathways, P53 signaling pathways, NOTCH signaling pathways, and cell cycle signaling pathways (Figure 5B).
[image: Figure 5]FIGURE 5 | Functional enrichment analysis of Fam20c in LGG. (A) Gene Ontology enrichment analysis; (B) enrichment plots from GSEA. KEGG, Kyoto Encyclopedia of Genes and Genomes.
Fam20C Was Also Overexpressed in Our Cohort
To further verify the expression of Fam20C in our cohort, we detected its expression in our clinical samples and found that Fam20C was significantly overexpressed in grade 3 tumors (Figure 6A). Higher Fam20C expression levels were also correlated with a worse OS in our cohort (Figure 6B).
[image: Figure 6]FIGURE 6 | Expressions, immunohistochemistry and multivariate Cox analysis of Fam20c in our cohort. (A) Representative figures of FAM20C immune-staining in our clinical LGG samples (200X; grade II: n = 60, grade III: n = 40, normal: n = 3); (B) Kaplan–Meier curve evaluating the correlation between FAM20C protein expression and LGG patients’ survival (FAM20C low vs high, low n = 51, high n = 49, p < 0.001; Log rank test). (C) Multivariate Cox analysis evaluating independently predictive ability of Fam20c for OS.
Univariate and multivariate Cox analyses were utilized to evaluate the independent prognostic values of Fam20C expression in LGG patients. The univariate analysis results showed that high Fam20C expression was significantly correlated with a shorter OS (HR = 6.39, 95% CI: 1.86–21.86, p = 0.003). Other variables related to poor survival included IDH 1p19q and extent of resection (Supplementary Table S4). Multivariate analysis showed that high expression of Fam20C in LGG patients was independently associated with a significant decrease in OS (Figure 6C and Supplementary Table S4).
DISCUSSION
Glioma is one of the most common primary malignant tumors in the nervous system. It arises from active glial cells in the brain, including astrocytes, oligodendrocytes, and ependymal cells. Although the prognosis of lower-grade glioma is better than that of glioblastoma, there are still some lower-grade gliomas with a poor prognosis and a short survival time, and 70% of low-grade patients undergo a high-grade transformation within 10 years. Therefore, early diagnosis and accurate prognostic biomarkers are essential for improving the prognosis of patients with LGG.
In recent years, a class of secreted kinases have been newly discovered that are involved in the regulation of many important physiological reactions. The Fam20 kinase family includes Fam20A, Fam20B, and Fam20C (Nalbant et al., 2005; Zhang et al., 2018). Fam20C is a casein kinase enriched in the Golgi apparatus that modulates many downstream substrates through protein phosphorylation and plays an important role in the formation of the secretome of tumor cells. However, its diagnostic and prognostic value in cancer is still unclear. Our results provide insights for further understanding the pathological role of Fam20C in promoting tumor growth and invasion and its potential value as a diagnostic and prognostic marker for LGG.
Fam20C protein kinase has a significant promotion effect on the metastasis and invasion of triple-negative breast cancer (Tagliabracci et al., 2015). Fam20 is also a potential target gene related to the pathogenesis of early lung adenocarcinoma (Kang 2013). Therefore, we speculate that the expression of Fam20C may affect the survival of patients through promoting the progression of tumor cells. However, the expression of Fam20C in cancer and its effects on other important aspects, such as tumor cell metastasis, still lack consensus. It has been previously reported that insulin-like growth factor binding protein 7 (IGFBP-7) regulates the migration of glioma cells through the AKT-ERK pathway, thereby playing an important role in the growth and migration of gliomas (Jiang et al., 2008). Adult diffuse glial tumor GWAS contains variants of D2HGDH and Fam20C in different molecular subtypes. In IDH mutant gliomas, the nine variants located on chromosome two of D2HGDH and those in its vicinity are all significant genome-wide (Eckel-Passow et al., 2020).
In this study, we systematically detected the expression level of Fam20C in different types of cancer in the TCGA database. Based on the available evidence, our results indicated that Fam20C expression was elevated in breast cancer. In addition, Fam20C was also overexpressed in five other cancers, such as glioma, meningioma, and kidney cancer, and Fam20C overexpression was associated with higher-grade gliomas.
At present, the biological functions of Fam20C and its mechanism of action in tumorigenesis have rarely been reported. The phosphorylated substrate of Fam20C is related to tumor cell apoptosis and migration and can accelerate the process of tumor metastasis by activating matrix metalloproteinases (MMPs). In this study, the Fam20C-related signaling pathways activated in LGG were mainly enriched in extracellular matrix receptor interactions, cell adhesion, apoptosis, cancer pathways, P53 signaling pathways, NOTCH signaling pathways, and the cell cycle, which further stimulated tumor proliferation and invasion.
Biomarkers are biological characteristics that could be objectively measured or evaluated. They may be employed as indicators of biological and pathological processes, or reflect the results of treatment methods, which are mainly used for disease prevention, diagnosis, treatment, prognosis, and drug development. Fam20C was an effective target for the treatment of triple-negative breast cancer. Fam20C inhibitor induced apoptosis of TNBC cell line (MDA-MB-468) and potentially inhibited cell migration (Qin et al., 2016). In our study, Fam20C expression was detected in postoperative pathological specimens of resectable glioma patients. Our present data has demonstrated that Fam20c may be a protentional prognostic marker for LGG. There is no research on whether Fam20C was highly expressed in the serum of LGG patients, we will reconsider and complete this topic in the future.
A Fam20C inhibitor induced cell apoptosis through the mitochondrial pathway and had the potential to inhibit cell migration (Qin et al., 2016; Zhao R. et al., 2021). Shaonan Du et al. found that Fam20C may serve as a predictive protein and a therapeutic target for GBM (Du et al., 2020). However, there have been few studies on the Fam20C gene in LGG. Hence, we further investigated whether Fam20C could be used as a diagnostic and prognostic marker for LGG. The ROC curve showed that the expression of Fam20C had a high diagnostic value for LGG. In addition, the Kaplan-Meier curves showed that high expression of Fam20C mRNA in LGG patients was significantly associated with a poor OS. In addition, univariate and multivariate Cox analyses showed that high Fam20C expression was an independent risk factor for a poor OS of LGG patients. In summary, our research showed that Fam20C was over-expressed in LGG and was correlated with more aggressive tumors and a worse prognosis. Our results showed that Fam20C is a promising biomarker for LGG diagnosis and prognosis.
CONCLUSION
In conclusion, we established a potential prognostic and diagnostic signature for LGG patients based on two databases (TCGA and CGGA) and clinical samples. This biomarker could efficiently stratify the LGG patients into two groups with distinct survival differences. Moreover, we identified the potential signaling pathways of Fam20C in LGG patients. Overexpression of Fam20C was correlated with progressive malignancy and poor survival of LGG patients and was associated with significant enrichment of extracellular matrix receptor interactions, cell adhesion and apoptosis in LGG. Taken together, our results suggest that Fam20C inhibition could be a potential therapeutic target to prevent LGG progression.
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In recent years, the herpes virus infectious hypothesis for Alzheimer’s disease (AD) has gained support from an increasing number of researchers. Herpes simplex virus (HSV) is a potential risk factor associated with AD. This study assessed whether HSV has a causal relationship with AD using a two-sample Mendelian randomization analysis model. Six single-nucleotide polymorphisms (SNPs) associated with HSV-1 and thirteen SNPs associated with HSV-2 were used as instrumental variables in the MR analysis. We estimated MR values of relevance between exposure and the risk of AD using inverse-variance weighted (IVW) method, MR-Egger regression (Egger), and weighted median estimator (WME). To make the conclusion more robust and reliable, sensitivity analyses and RadialMR were performed to evaluate the pleiotropy and heterogeneity. We found that anti-HSV-1 IgG measurements were not associated with risk of AD (OR, 0.96; 95% CI, 0.79–1.18; p = 0.736), and the same was true for HSV-2 (OR, 1.03; 95% CI, 0.94–1.12; p = 0.533). The findings indicated that any HSV infection does not appear to be a genetically valid target of intervention in AD.
Keywords: HSV, genome, Mendelian randomization, Alzheimer’s disease, causality
1 INTRODUCTION
Alzheimer’s disease (AD) is a complex chronic progressive degenerative disorder of the central nervous system, affecting primarily the elderly, which severely reduces the quality of life (Calabrò et al., 2021). According to the 2015 World Alzheimer Report, the number of AD patients is expected to double every 20 years, reaching up to 131.5 million by 2050 (Prince et al., 2015; Du et al., 2018) with the incidence rate of AD increasing exponentially after 65 years of age (Hou et al., 2019). AD is diagnosed after age 65 as late-onset AD (LOAD) and before age 65 as early-onset AD (EOAD). LOAD accounts for about 95% of AD cases. EOAD is essentially an inherited disease, with a 92%–100% heritability. In contrast, there are multiple factors influencing LOAD, which are sporadic (Laval and Enquist, 2021). AD has two central pathological features: the extracellular deposition of amyloid plaques and intracellular accumulation of neurofibrillary tangles (NFTs). Amyloid plaques are mainly composed of amyloid-β (Aβ) protein and NFTs are composed of hyperphosphorylated tau proteins. Hence, there have been contrasting theories proposed about the underlying pathogenesis of AD, such as amyloid cascade hypothesis, Tau protein hypothesis, and oxidative stress. Nonetheless, to date, current therapies have failed to delay disease progression. In recent years, the herpes virus infection hypothesis has received a renewed interest by scientists who believe that infection is the main cause of AD.
In the 1980s, herpes simplex virus (HSV) was first proposed to be associated with AD after viral genetic material was discovered in the human brain as well as virus-induced lesions present in the limbic system were associated with AD (Ball, 1982). The viruses belong to the Alphaherpesviridae subfamily of the Herpesviridae family, including HSV-1 and HSV-2, which are ubiquitous human pathogens (Piret and Boivin, 2020). Previous studies (Wozniak et al., 2010) found that HSV-1 DNA was present in the brains of both AD patients and normal elderly people; however, in the brains of AD patients, HSV-1 DNA was found within 90% of the plaques and 72% of HSV-1 DNA was associated with plaques, while in the brains of normal elderly people, only 24% of HSV-1 DNA was associated with plaques. Thus, it was proposed that the HSV-1 infects infants and remains latent in the peripheral nervous system. Reactivation of latent HSV-1 infections may cause local neuronal damage and inflammation, which over time may lead to the deposition of Aβ and abnormal phosphorylation of tau in the brain. A recent study proposed that Aβ deposition and abnormal phosphorylation of tau were the brain’s immune response to HSV-1 (Eimer et al., 2018). However, another recent study showed that AD associated β-amyloid does not protect against HSV-1 infection in the mouse brain (Bocharova et al., 2021).
To date, the precise molecular events, and biological pathways underlying the disease have yet to be identified and the existing evidence does not definitively support the herpesviruses hypothesis of AD. The deposition of Aβ and abnormal phosphorylation of tau are not necessarily the cause of AD, but may be the result of other risk factors leading to AD. Meanwhile, given the existence of unmeasured confounding variables and reverse causation, previous epidemiological studies have demonstrated a correlation but no direct causal relationship between HSV and AD, which allows for a re-evaluation of the theory as a possible strategy.
Multi-omics research probes the interaction between multiple factors in biological systems, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. These factors jointly affect phenotypes and physiological traits. With the development of high-throughput sequencing technology, omics research continues to provide more extensive data. Through high-throughput sequencing, omics, and data integration studies, we can comprehensively and systematically understand the relationship between various factors in the fields of basic research, molecular biology, clinical diagnosis, and drug discovery. (Hasin et al., 2017).
Genomics is the earliest discipline stemming from histology, and focuses on the study of the entire genome, and is currently the most established discipline in the field. Genomics focuses on the identification of genetic variants associated with disease, treatment response, or patient prognosis (Hasin et al., 2017). With the successful development of next-generation sequencing (NGS) technology and the completion of the human genome project and the International Human Genome HapMap project (HapMap), genome-wide association studies (GWAS) have become a method for identifying millions of genetic variants related to complex diseases (GWAS catalog https://www.ebi.ac.uk/gwas/home) in different human populations. In such studies, millions of individuals are genotyped for many genetic markers, and the genotypes and phenotypes are subjected to statistical analysis at a population level. Significant differences in minor allele frequencies (MAF) between cases and controls are thought to be markers affecting the trait. GWAS studies provide an invaluable contribution to our understanding of complex phenotypes (Hasin et al., 2017).
Mendelian randomization (MR) is a strategy for evaluating the causality of risk factors of a disease using genetic variants from the GWAS as instrumental variables (IV) (Lawlor et al., 2008). It is based on the Mendelian inheritance law of “random allocation of parental alleles to offspring” in meiosis, which is equivalent to a randomized controlled trial using genotypes. MR analysis can remove the limitations of traditional epidemiology. As alleles were randomly allocated at conception, confounders cannot influence the result of the allocated alleles. Because the disease cannot alter genetic variants, reverse causation may be avoided.
IVs should satisfy three major hypotheses (Figure 1), which have been widely described in recent studies (Liu et al., 2018; Liu et al., 2021). 
1) The IV is associated with the exposure (γ≠0, strong IVs).
2) The IV is not associated with the confounders (φ = 0).
3) The IV does not influence the outcome through some pathways other than the exposure (α = 0, no directional pleiotropy).
[image: Figure 1]FIGURE 1 | Directed acyclic graph (DAG) model of instrumental variables in causal associations.
Scepanovic et al. (2018) measured quantitative IgG responses to HSV-1 and HSV-2 infection in humoral immunity to explore the influence of genetic factors on the variability of humoral responses. After genome-wide genotyping of single-nucleotide polymorphisms (SNPs) and imputation, they examined associations between genetic variants and HSV-1 and HSV-2 IgG and performed two genome-wide association analyses. The International Genomics of Alzheimer’s Project Consortium (IGAP) (Lambert et al., 2013) conducted a meta-analysis using genotyped and imputed data on four previously published GWAS datasets and obtained a novel genome-wide association analysis demonstrating the relationship of genetic variants with AD. In the present study, we used many SNPs of multi-genome association analysis as IVs to perform two-sample MR analysis (Gibran et al., 2018).
2 MATERIALS AND METHODS
2.1 Data Sources
The exposure risk factors considered in this study were HSV-1 and HSV-2. The genetic variations for both exposures were anti-HSV-1 IgG measurement and anti-HSV-2 IgG measurement, which were downloaded from a GWAS study of Scepanovic et al. (2018), which was the basis of the summary data published in the NHGRI-EBI GWAS (https://www.ebi.ac.uk/gwas). The sample was derived from The French Milieu Interieur cohort, which was stratified by sex (500 men, 500 women) and age (200 individuals from each decade of life, between 20 and 70 years of age). The HSV-2 datasets contained 208 cases and 792 controls, and HSV-1 datasets contained 645 cases and 355 controls.
The summary data of AD derived from the International Genomics of Alzheimer’s Project Consortium (IGAP), which was a sizeable two-stage research based on GWASs of AD in 74,046 diseased and normal individuals of European ancestry (Lambert et al., 2013). In stage 1, the IGAP performed a meta-analysis of four previously published GWAS datasets containing 17,008 AD patients and 37,154 controls, using genotyped and imputed data on 7,055,881 SNPs. The outcome data from IGAP stage 1 results were from the study of Kunkle et al. (2019). Table 1 shows the detailed descriptions of IGAP stage 1 data.
TABLE 1 | Description of consortium datasets for IGAP stage 1.
[image: Table 1]2.2 Methods
All the analyses were performed using R version 4.1.0 software.
2.2.1 Selection of Instrumental Variables
The most critical step in MR design is to identify suitable genetic variants as IVs. First, we extracted SNPs that had significant (p < 1 × 10–5) associations with HSV-1 and HSV-2. Then, we performed a linkage disequilibrium (LD) analysis to exclude mutual linkage SNPs and to discard non-biallelic SNPs. LD (r2 < 0.001, kb > 10,000) was applied to select IVs of HSV-1 and HSV-2. The samples used to estimate the LD effect derived from individuals of European ancestry from the 1,000 Genome Project. Correlated SNPs in LD were excluded using the “clump_data” function of the “TwoSampleMR” R package. As a result, 7 SNPs were identified for HSV-1 and 13 SNPs for HSV-2.
2.2.2 Harmonize
A summary set can generate errors if the effect alleles for the SNP effects in the exposure and outcome datasets are different. We aligned the effect alleles for exposure and outcome based on reported effect alleles and effect allele frequencies using the “harmonise_data” function of the “TwoSampleMR” R package (Gibran et al., 2018). Furthermore, we used F-statistics (Bowden et al., 2016) to measure the strength of the selected IVs. If the F-statistic was more than ten, genetic variants were generally deemed to be a strong IV.
2.2.3 Mendelian Randomization
We conducted the MR analysis using inverse-variance weighted (IVW) regression analysis, MR-Egger regression analysis, and weighted median estimator (WME). IVW can provide accurate estimates when the IV satisfies the MR assumptions that there are no invalid IVs (Burgess et al., 2013). The mean effect estimate of IVW is derived from a random effect IVW meta-analysis of the Wald ratios (SNP-outcome associations divided by SNP-exposure associations) estimated for each IV (Staley and Burgess, 2017). MR-Egger regression is robust for invalid instruments, and can be used to test for directional pleiotropy, providing an estimate of the causal effect adjusted for a variable’presence. In MR-Egger, an intercept that differs from zero estimates the average pleiotropy effect across the genetic variants, which indicates that the IVW estimate is biased (Bowden et al., 2015). However, MR-Egger regression is more easily influenced by regression dilution, so that it should be approximated using the I2 statistic. If I2 is high (I2 > 0.9), Egger regression can be considered an unbiased estimation (Bowden et al., 2016). The WME provides a consistent, valid estimate if at least half of the IVs are valid (Verbanck et al., 2018). MR analyses were performed using the R-based package “TwoSampleMR”.
2.2.4 Sensitivity Analysis
The three methods described above were applied to analyze causal estimation, and we performed the following additional analyses and assessments to examine the robustness of the results. First, we used Egger intercept to test the pleiotropy of SNPs (Burgess and Thompson, 2017). Then, we calculated the heterogeneity among SNPs using Cochran’s Q-statistic to assess the robustness of IVs (Kippersluis and Rietveld, 2017). Furthermore, to evaluate whether the MR estimate was driven or biased by a single SNP that might have an enormous pleiotropic effect, RadialMR was applied to present a more straightforward detection of outliers and to correct horizontal pleiotropy by removing outliers (Bowden et al., 2018). All sensitivity analyses were performed using the R-based package “TwoSampleMR” and “RadialMR”.
3 RESULTS AND DISCUSSION
3.1 The Causality of HSV-1 and AD
After removing the palindrome SNP (rs1738233), six SNPs for HSV-1 infection were identified, which were significant (p < 1 × 10–5) and independent (r2 < 0.001). The F-statistics for the six SNPs were all more than 10, which indicated that all six IVs were strong instruments (Table 2).
TABLE 2 | SNPs significantly (p-value < 1 × 10−5) and independently (r2 < 0.001) associated with herpes simplex virus type 1 (HSV-1) infection (SNPs = 6).
[image: Table 2]Table 3; Figure 2 showed the estimated associations of HSV-1 risk factor with AD from MR analysis. Genetically predicted HSV-1 infection was not associated with AD risk using IVW (OR = 0.96, p = 0.736), WME (OR = 0.97, p = 0.833), and MR-Egger (OR = 0.79, p = 0.653). The MR-Egger intercept indicated no directional pleiotropy (intercept = 0.018, p = 0.694), suggesting that horizontal pleiotropy was unlikely to influence the IVW estimate. The I2 statistics was 0.958, indicating that relative bias did not materially affect the standard MR-Egger analysis. Cochran’s Q test showed no existence of heterogeneity of SNPs (Cochran’s Q-statistic = 5.83, p = 0.322), while RadialMR showed that there were no outliers in the six SNPs.
TABLE 3 | Association of six SNPs for HSV-1 infection with AD using MR with different methods.
[image: Table 3][image: Figure 2]FIGURE 2 | Forest plot for two-sample Mendelian randomization effect size between Herpes simplex virus type 1 (HSV-1) and Alzheimer’s disease (AD).
3.2 The Causality of HSV-2 and AD
Thirteen SNPs for HSV-2 infection were identified, which were both significant (p < 1 × 10–5) and independent (r2 < 0.001) (Table 4). The F-statistics for the thirteen SNPs were more than 10, which indicated that they were strong IVs.
TABLE 4 | SNPs significantly (p-value < 1 × 10−5) and independently (r2 < 0.001) associated with herpes simplex virus type 2 (HSV-2) infection (SNPs = 13).
[image: Table 4]Table 5; Figure 3 showed the estimated associations of HSV-2 risk factors with AD from the MR analysis. Genetically predicted HSV-2 infection was not associated with the AD using IVW (OR = 1.03, p = 0.533), WME (OR = 1.08, p = 0.121), and MR-Egger (OR = 0.95, p = 0.764). The MR-Egger intercept indicated that there was no directional pleiotropy (intercept = 0.017, p = 0.646). Furthermore, the Cochran’s Q-statistic indicated the existence of heterogeneity of SNPs (Cochran’s Q-statistic = 18.8, p = 0.04). Meanwhile, no outliers were detected using RadialMR.
TABLE 5 | Association of thirteen SNPs for HSV-2 infection with AD using MR with different methods.
[image: Table 5][image: Figure 3]FIGURE 3 | Forest plot for two-sample Mendelian randomization effect size between Herpes simplex virus type 2 (HSV-2) and Alzheimer’s disease (AD).
4 DISCUSSION
We found that both HSV-1 and HSV-2 were not causally associated with an increased risk of AD using genetic variation as instrumental variables. Kwok and Schooling (2021) used the GWAS summary statistics data from the French Milieu Interieur cohort, the United Kingdom biobank, and the US 23 and Me Study, pointing out that HSV-1 and HSV-2 were not associated with AD. SY et al. (2021) used the GWAS summary statistics data from the 23 and Me cohort, indicating the same result.
4.1 The Result of HSV and AD
Although the causality of the association is unclear, many studies have proven that HSV is not unrelated to AD. HSV-1 virus was detected in the brains of both AD patients and elderly normal people. However, most of the AD patients were APOE-ε4 gene carriers. The herpesvirus hypothesis proposes that HSV-1 enters the brains of APOE-ε4 carriers, where it remains a latent life with limited transcription and low protein synthesis. In response to immunosuppression, peripheral infection, and inflammation, HSV-1 reactivates, creating a combination of viral action and inflammatory effects that are poorly repaired by APOE-ε4 carriers, ultimately leading to the development of AD (Itzhaki, 2018). In addition, a recent study pointed out novel molecular mechanisms through which recurrent HSV-1 infection may affect neuronal aging, likely contributing to neurodegeneration (Napoletani et al., 2021).
We inferred that our results may have occurred mainly due to several reasons. The major reason is that reactivation after latent HSV-1 infection may be responsible for a pathogenetic mechanism of AD, and IgM is a marker of activation of primary infection. Our study used anti-HSV-1 IgG antibodies rather than IgM as a proxy for HSV-1 infection, implicitly demonstrating that previous HSV-1 infection is not associated with AD risk. Another reason is the speculation that HSV-1 infection is not a risk factor for cognitive decline but rather a phenomenon that co-occurs with neuro-inflammation or as a result of neuro-inflammation.
Meanwhile, we found that HSV-2 was not causally associated with an increased risk of AD using genetic variation as an instrumental variable. This is probably because that according to the available epidemiological observations, HSV-2 mainly invades the genitalia and the area from the waist down and is not associated with the brain.
Future studies should perform MR analyses using anti-HSV-1 IgM antibodies as an IV for HSV-1 infection. What we can conclude, however, is that AD is not simply a single factor disease caused by HSV, but that it encompasses complex disease mechanisms.
4.2 Advantages and Challenges of MR Analysis
In the investigation of risk factors for AD, traditional research methods present many challenges in discovering the cause of the disease. Observational studies can only demonstrate a correlation rather than causality between exposure and outcome due to confounding factors and reverse causality. Cohort studies can make causal arguments but waste time. Random control trials (RCT) are considered the gold standard for clinical diagnosis and have a solid causal view. However, when applied by researchers, they are difficult to practice due to medical ethics and the many limitations of the design process. For these reasons, MR analysis has become a more convenient and effective way of exploring the causal links between risk factors and AD.
The application of MR analysis in this study has several advantages. First, reverse causality can be avoided, and second, it can prevent the interference of confounding factors. MR analysis can also address situations where an intervention experiment cannot be performed because of ethical restrictions (Zheng et al., 2017). Our exposure data were obtained from a publicly available GWAS database published with credibility. Our outcome data derived from a study conducted by the IGAP with a large sample population.
Nonetheless, our study also has some limitations. First, our data samples were based on individuals of European ancestry, so the results are not representative of all races. Second, the sample size of the exposure data was not sufficiently large, leading to the low power of statistics and false negatives. However, a significant number of IVs can lead to high power but inevitable heterogeneity and pleiotropy of IVs. This is where the general challenge of MR.
5 CONCLUSION
We implemented a two-sample MR to demonstrate the causal relationship between HSV infection and AD risk. The SNPs were independent and strong instrumental variables, and the result was robust and reliable. Our findings indicated the negative association between any HSV IgG and AD. Further research is needed to investigate whether HSV IgM is corelated with AD, and whether HSV infections that co-occur with neuro-inflammation are more relevant.
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Introduction: Alzheimer’s disease (AD) is the most prevalent cause of dementia, and emerging evidence suggests that ferroptosis is involved in the pathological process of AD.

Materials and Methods: Three microarray datasets (GSE122063, GSE37263, and GSE140829) about AD were collected from the GEO database. AD-related module genes were identified through a weighted gene co-expression network analysis (WGCNA). The ferroptosis-related genes were extracted from FerrDb. The apoptosis-related genes were downloaded from UniProt as a control to show the specificity of ferroptosis. The overlap was performed to obtain the module genes associated with ferroptosis and apoptosis. Then the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and the protein-protein interaction (PPI) were conducted. Cytoscape with CytoHubba was used to identify the hub genes, and the Logistic regression was performed to distinguish the AD patients from controls.

Results: 53 ferroptosis-related module genes were obtained. The GO analysis revealed that response to oxidative stress and starvation, and multicellular organismal homeostasis were the most highly enriched terms. The KEGG analysis showed that these overlapped genes were enriched not only in renal cell carcinoma pathways and central carbon metabolism in cancer, but also in autophagy-related pathways and ferroptosis. Ferroptosis-related hub genes in AD (JUN, SLC2A1, TFRC, ALB, and NFE2L2) were finally identified, which could distinguish AD patients from controls (P < 0.05). The area under the ROC curve (AUC) was 0.643. Apoptosis-related hub genes in AD (STAT1, MCL1, and BCL2L11) were also identified and also could distinguish AD patients from controls (P < 0.05). The AUC was 0.608, which was less than the former AUC value, suggesting that ferroptosis was more special than apoptosis in AD.

Conclusion: We identified five hub genes (JUN, SLC2A1, TFRC, ALB, and NFE2L2) that are closely associated with ferroptosis in AD and can differentiate AD patients from controls. Three hub genes of apoptosis-related genes in AD (STAT1, MCL1, and BCL2L11) were also identified as a control to show the specificity of ferroptosis. JUN, SLC2A1, TFRC, ALB, and NFE2L2 are thus potential ferroptosis-related biomarkers for disease diagnosis and therapeutic monitoring.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent cause of dementia, accounting for approximately 60–80% of all cases (Gbd 2016 Dementia Collaborators, 2019). The exact pathogenesis of AD is still not fully elucidated (Zhang et al., 2021). Ferroptosis is an iron-dependent lipid peroxidation-driven cell death, and emerging evidence suggests that it is involved in the pathological process of AD (Lane et al., 2018; Weiland et al., 2019). In addition, several characteristics of the pathogenesis of AD were consistent with those of ferroptosis, such as excess iron accumulation, elevated lipid peroxides (Zhang et al., 2012; Hambright et al., 2017; Ayton et al., 2019). Therefore, ferroptosis is increasingly being recognized as a unique cell death mechanism participating in the pathogenesis of AD. However, more direct evidence is needed to be presented (Chen et al., 2021). Apoptosis is the spontaneous and orderly death of cells, which involves the activation, expression and regulation of a series of genes, and it is a biological process that plays an essential role in normal physiology (Obulesu and Lakshmi, 2014). It is now generally accepted that massive neuronal death due to apoptosis is a common characteristic in the brains of patients suffering from neurodegenerative diseases, and apoptotic cell death has been found in neurons and glial cells in AD (Shimohama, 2000; Sharma et al., 2021).

Current studies on ferroptosis and AD are mainly focused on two aspects: one is the mechanism of ferroptosis in the pathological process of AD, mainly discussing how ferroptosis participates in the AD (Masaldan et al., 2019; Jakaria et al., 2021); the second is the clinical efficacy study of ferroptosis inhibitors in AD, mainly to explore whether ferroptosis as a drug target of AD can effectively delay the progression of AD (Yan and Zhang, 2019; Plascencia-Villa and Perry, 2021; Vitalakumar et al., 2021). The purpose of this study is to investigate the association between ferroptosis-related genes and AD with the gene level, which is a supplement to existing studies and also a reference for ferroptosis as a therapeutic target for AD. These hub genes identified by this study could also serve as the ferroptosis-related biomarkers for disease diagnosis and therapeutic monitoring.



MATERIALS AND METHODS


Microarray Data Processing

Three microarray datasets (GSE122063, GSE37263, and GSE140829) of AD were collected from the GEO database1. GSE122063 was based on the platforms of the GPL16699 (Mckay et al., 2019); GSE37263 was based on the platforms of the GPL5175 (Tan et al., 2010); and GSE140829 was based on the platforms of the GPL15988. Data for 56 AD patients and 44 control samples from GSE122063, 8 AD patients and 8 control samples from GSE37263, and 182 AD patients and 207 control samples from GSE140829 were analyzed in our study. A flow diagram of the study is shown in Figure 1.
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FIGURE 1. The workflow chart of data preparation, processing, analysis, and validation.




Weighted Gene Co-expression Network Analysis

Firstly, the expression profiles of three datasets were removed from the batch effect for further analysis. The gene co-expression network was constructed with an R package termed “weighted gene co-expression network analysis (WGCNA)” (Langfelder and Horvath, 2008, 2012). The Adjacency matrix was constructed by a weighted correlation coefficient. Subsequently, the adjacency matrix was transformed into a topological overlap matrix (TOM). Then, hierarchical clustering was performed to identify modules, and the eigengene was calculated. Finally, we assessed the correlation between phenotype (i.e., AD or control samples) and each module by Pearson’s correlation analysis and identified AD-related modules. The genes in these modules were considered as AD-related module genes.



The Extraction of Ferroptosis-Related Genes From FerrDb and Apoptosis-Related Genes From UniProt

FerrDb2 is an artificial ferroptosis database for the management and identification of ferroptosis-related markers and regulatory factors, as well as ferroptosis-related diseases (Zhou and Bao, 2020). Therefore, ferroptosis-related genes were downloaded from this database for further analysis. The UniProt Knowledgebase is the central hub for the collection of functional information on proteins, with accurate, consistent and rich annotation, and thus apoptosis-related genes were extracted from UniProt3.



Overlap Alzheimer’s Disease-Related Module Genes With Ferroptosis-Related Genes and Apoptosis-Related Genes, Respectively

Ferroptosis-related genes were downloaded from FerrDb and apoptosis-related genes were downloaded from UniProt. We overlapped these genes with AD-related module genes derived from WGCNA, respectively. The Venn diagram was used to describe the details of the overlapped genes.



Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis of Overlapped Genes

Functional enrichment analysis was performed in three domains of GO, including biological process (BP), cellular component (CC), and molecular function (MF). The KEGG database contains datasets of pathways involving biological functions, diseases, chemicals, and drugs. The enrichment analysis was carried out by clusterProfiler R package to determine the biological functions of the genes and associated pathways (Yu et al., 2012).



Protein-Protein Interaction Establishment and Identification of Hub Genes

An online tool (Search Tools for the Retrieval of Interacting Genes, STRING4) was used to analyze protein interactions. The PPI pairs were screened by confidence score (>0.40), and the PPI network was visualized by the Cytoscape V3.9.0 software (Shannon et al., 2003). Three indicators (Degree, closeness, and Betweenness) were calculated through CytoHubba to evaluate the importance of each node, and the top 10 nodes were selected. The hub genes were their common nodes.



Construction and Validation of the Logistic Regression

To effectively differentiate the AD patients from controls, the logistic regression was constructed, and to evaluate the performance of the logistic regression model for predicting the occurrence of AD, we performed receiver operating characteristic (ROC) curve analyses using the pROC package of R (Robin et al., 2011). We selected the statistically significant genes from hub genes (P < 0.05) and used the nomogram to predict the occurrence of AD. The expression level of the hub genes was shown by the violin plot.




RESULTS


Weighted Co-expression Network Construction and Identification of Core Modules

The scale-free network was constructed with the soft threshold set to 4 (R2 = 0.905) (Figures 2A,B). Then, the adjacency matrix and topological overlap matrix were built. We then calculated the module eigengenes representing the overall gene expression level of each module; these were clustered based on their correlation. A total of 4 modules were identified and labeled with a unique color (Figure 2C). We analyzed the correlations of each eigengene with phenotype (AD or control samples), and found two modules were correlated with AD-namely, the turquoise (cor = −0.32, P = 2e-13), and blue (cor = 0.30, P = 1e-11) modules (Figure 2D). The 4,617 genes in these modules-which are associated with AD-were retained for further analysis.
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FIGURE 2. (A) Analysis of the scale-free index for various soft-threshold powers (β). (B) Analysis of the mean connectivity for various soft-threshold powers. (C) Identification of co-expression gene modules. The branches of the dendrogram cluster into 4 modules and each one was labeled in a unique color. (D) A heatmap showing the correlation between each module eigengene and phenotype. Two modules were correlated with AD-namely, turquoise and blue modules.




The Extraction of Ferroptosis-Related Genes From FerrDb and Apoptosis-Related Genes From UniProt

The ferroptosis-related genes were downloaded and summarized from the FerrDb (Zhou and Bao, 2020; Table 1). 253 regulatory factors (including 108 drivers, 69 suppressors, 35 inducers, and 41 inhibitors), 111 markers, and 95 ferroptosis-related diseases were collated by FerrDb. We have extracted 2,130 genes from Uniprot, which is related to apoptosis.


TABLE 1. Details for FerrDb.
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Overlap Alzheimer’s Disease-Related Module Genes With Ferroptosis-Related Genes and Apoptosis-Related Genes, Respectively

We overlapped the AD-related module genes derived from WGCNA with ferroptosis-related genes extracted from FerrDb, 53 overlapped genes were obtained, namely ferroptosis-related module genes, which was shown by the Venn diagram (Figure 3A). The details of overlapped genes, including 19 drivers, 16 suppressors, and 18 markers, were shown in Table 2. We also overlapped the AD-related module genes with apoptosis-related genes to obtain apoptosis-related module genes as a control for further analysis, and 90 overlapped genes were obtained, which was also shown by the Venn diagram (Figure 3B).
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FIGURE 3. (A) Venn diagram showing the numbers of overlapped genes between AD-related module genes and ferroptosis-related genes. (B) Venn diagram showing the numbers of overlapped genes between AD-related module genes and apoptosis-related genes.



TABLE 2. Ferroptosis-related module genes obtained through the Venn diagram.
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Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis of Overlapped Genes

The significant GO functional terms of the 53 ferroptosis-related module genes, including BP, MF, and CC, were illustrated in Figure 4A. The significant terms of GO-BP were principally associated with the response to stress, such as the response to oxidative stress. The pathways enriched by GO-MF were principally associated with the activity of peroxidase, oxidoreductase, and antioxidant. The ferric iron-binding was also enriched by the GO-MF. The analysis of GO-CC indicated that overlapped genes were significantly enriched in basolateral plasma membrane, phagophore assembly site, pigment granule, and melanosome. The KEGG analysis showed that these overlapped genes were enriched not only in renal cell carcinoma pathways and central carbon metabolism in cancer, but also in autophagy-related pathways and ferroptosis (Figure 4B). The pathway of ferroptosis was enriched by KEGG, suggesting that these overlapped genes were significant for our study and could be used for further analysis.
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FIGURE 4. (A) Gene Ontology (GO) functional analysis showing enrichment of ferroptosis-related module genes. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of ferroptosis-related module genes.




Protein-Protein Interaction Establishment and Identification of Hub Genes

The PPI analysis of 53 ferroptosis-related module genes was performed through the STRING database and visualized by Cytoscape V3.9.0 (Figure 5). JUN, SLC2A1, TFRC, ALB, MTOR, and NFE2L2 were taken as potential hub genes based on Degree, closeness, and betweenness. The hub genes were their common top ten nodes. The PPI network of the hub genes was presented in Figure 6. Similarly, the identification of hub genes of apoptosis-related module genes was also conducted, and STAT1, CFLAR, FASLG, MCL1 and BCL2L11 were obtained from the 90 overlapped genes.
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FIGURE 5. Protein-protein interaction network of 53 ferroptosis-related module genes were analyzed using Cytoscape software. The network includes 44 nodes and 120 edges (The disconnected nodes were hided). The edges between 2 nodes represent the gene-gene interactions. The size and color of the nodes corresponding to each gene were determined according to the degree of interaction. Color gradients represent the variation of the degrees of each gene from high to low.
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FIGURE 6. Protein–protein interaction network for the six hub genes. Three indicators (degree, closeness and betweenness) were, respectively, calculated to evaluate the importance of each node and the top 10 nodes were selected. The six hub genes were their common nodes.




Construction and Validation of the Logistic Regression

Through constructing the logistic regression, JUN, SLC2A1, TFRC, ALB, and NFE2L2 were selected, which could effectively differentiate AD patients from controls (P < 0.05). The P-value of MTOR was more than 0.05, which was not statistically significant. We used the ROC curve to evaluate the performance of the logistic regression model (the area under the ROC curve of the model was 0.643), and the nomogram was used for predicting the occurrence of AD (Figures 7A,B). The expression level of the five hub genes is shown in Figure 8. Similarly, the logistic regression was also constructed for apoptosis-related hub genes, and STAT1, MCL1, and BCL2L11 were selected and could distinguish AD patients from controls (P < 0.05). The AUC was 0.608, which was less than the former AUC value, suggesting that ferroptosis was more special than apoptosis in AD. The ROC curve and nomogram are shown in Figures 9A,B.
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FIGURE 7. (A) ROC curve was used to evaluate the performance of the logistic regression model. The area under the curve (AUC) was 0.643. (B) The nomogram was used to predict the occurrence of AD. Ferroptosis-related hub genes, JUN, SLC2A1, TFRC, ALB, and NFE2L2 (P < 0.05), were included in this nomogram.
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FIGURE 8. Violin plot of the expression level of five hub genes. The red violin reflects the AD group, and the blue violin reflects the control group.
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FIGURE 9. (A) The area under the curve (AUC) was 0.608. (B) The nomogram of apoptosis-related hub genes, STAT1, MCL1, and BCL2L11 (P < 0.05).





DISCUSSION

The pathological process of ferroptosis has some characteristics in common with AD, such as excess iron accumulation and elevated lipid peroxides. It has been reported that the pathological process of ferroptosis could be directly induced by iron overload (Wang et al., 2017; Fang et al., 2019). Clinically, lipid peroxidation metabolites were highly correlated with the progression of AD (Benseny-Cases et al., 2014). Besides, it has also been reported that reactive oxygen species (Wang et al., 2016) and reduced glutathione (Chiang et al., 2017) were found in the pathological process of AD. However, how does ferroptosis mediate AD? Some ferroptosis-related signaling pathways were found in AD, such as iron metabolism pathway, redox homeostasis pathway, and lipid metabolism pathway (Chen et al., 2021). Exploring of the mechanism of ferroptosis in AD could provide a novel therapeutic target for the treatment of AD and possibly, other neurodegenerative diseases (Ashraf and So, 2020). This study identified five hub genes that may participate in the pathologic processes associated with ferroptosis in AD. The possible pathways of these five genes involved in ferroptosis are shown in Figure 10 (see text footnote 2) (Gao et al., 2016; Shin et al., 2018; Chen et al., 2019).
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FIGURE 10. The regulation pathways of JUN, SLC2A1, TFRC, ALB, and NFE2L2 participating in ferroptosis in AD. The gray edge represents the gene-gene interactions. The orange T-shaped edge denotes suppression, and the blue arrow denotes promotion.


Emerging evidence has demonstrated that ferroptosis could be a therapeutic target for AD (Gleason and Bush, 2021). Some ferroptosis inhibitors, such as iron-chelators and vitamin E, have shown clinical efficacy in treating AD. Deiprone is a brain osmotic iron-chelating agent currently in phase II clinical trials to treat AD (Nikseresht et al., 2019). Antioxidant vitamin E could delay decline in function and relieve caregiver burden in patients with AD (Dysken et al., 2014a,b). Collectively, Patients with AD may benefit from ferroptosis as a therapeutic target. Unlike targeting β-amyloid, the clinical trials of ferroptosis inhibitors are still in the exploratory stage and need to be dose-optimized and replicated on a larger scale (Nikseresht et al., 2019). The clinical efficacy of ferroptosis inhibitors in the treatment of AD also needs to be further improved.

There were some limitations to this study. Firstly, while selecting datasets for differentially expressed analysis, it was found that some datasets had fewer or no differentially expressed genes (DEGs, correcting P-value < 0.05 and | logFC| ≥ 1.0), such as GSE48350 (Berchtold et al., 2013) and GSE131617 (Miyashita et al., 2014; Kikuchi et al., 2020). Therefore, the datasets and related AD patients we can choose are still limited. In addition, if the DEGs further overlaps with the ferroptosis-related module genes, the number of available genes are limited and could not be used for further analysis. Secondly, the potential ferroptosis-related biomarkers identified by this study still need further literature support and laboratory evidence verification. Thirdly, the ferroptosis-related genes are derived from FerrDb, which is being updated continuously, and more genes are yet to be discovered.



CONCLUSION

We identified five hub genes (JUN, SLC2A1, TFRC, ALB, and NFE2L2) that are closely associated with ferroptosis in AD and can differentiate AD patients from controls, and are thus potential ferroptosis-related biomarkers for disease diagnosis and therapeutic monitoring. Three hub genes of apoptosis-related genes in AD (STAT1, MCL1, and BCL2L11) were also identified as a control to show the specificity of Ferroptosis. JUN, SLC2A1, TFRC, ALB, and NFE2L2 are thus potential ferroptosis-related biomarkers for disease diagnosis and therapeutic monitoring.
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Mendelian Randomization Analysis Suggests No Associations of Herpes Simplex Virus Infections With Multiple Sclerosis
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Previous studies have suggested an association between infection with herpes simplex virus (HSV) and liability to multiple sclerosis (MS), but it remains largely unknown whether the effect is causal. We performed a two-sample Mendelian randomization (MR) study to explore the relationship between genetically predicted HSV infection and MS risk. Genetic instrumental variables for diagnosed infections with HSV (p < 5 × 10–6) were retrieved from the FinnGen study, and single nucleotide polymorphisms associated with circulating immunoglobulin G (IgG) levels of HSV-1 and HSV-2 and corresponding summary-level statistics of MS were obtained from genome-wide association studies of the European-ancestry. Inverse-variance weighted MR was employed as the primary method and multiple sensitivity analyses were performed. Genetically proxied infection with HSV was not associated with the risk of MS (odds ratio [OR], 0.96; 95% confidence interval [CI], 0.90–1.02; p = 0.22) per one-unit increase in log-OR of herpes viral infections. MR results provided no evidence for the relationship between circulating HSV-1 IgG levels and MS risks (OR = 0.91; 95% CI, 0.81–1.03; p = 0.37), and suggested no causal effect of HSV-2 IgG (OR = 1.04; 95% CI, 0.96–1.13; p = 0.32). Additional sensitivity analyses confirmed the robustness of these null findings. The MR study did not support the causal relationship between genetic susceptibly to HSV and MS in the European population. Further studies are still warranted to provide informative knowledge, and triangulating evidence across multiple lines of evidence are necessary to plan interventions for the treatment and prevention of MS.
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INTRODUCTION

Multiple sclerosis (MS) is the most common chronic demyelinating and neurodegenerative disease of the central nervous system (CNS) (Hauser and Cree, 2020). It is the leading cause of non-traumatic neurological disability in young adults, affecting more than 2 million people worldwide (GBD, 2017). The symptoms of MS usually follow relapsing or progressive path, eventually leading to impaired mobility or cognition (Reich et al., 2018). MS is currently incurable though therapeutic advances have remarkably improved the long-term outcome for patients at this time (Hauser and Cree, 2020; Iqubal et al., 2020). The etiology of MS has not been fully elucidated. Early infections with herpes simplex virus (HSV) infection are constantly proposed to be involved in the pathogenesis of MS. HSV-1 and HSV-2 infections usually occur in the early years of life, mostly latent and asymptomatic (Koyuncu et al., 2013). HSV viruses lurk in the sensory ganglion of the trigeminal nerve, remain exist lifelong, and could invade CNS (Kimberlin et al., 2001). Post-mortem results have also confirmed the presence of HSV in brain demyelinating plaques of MS patients (Sanders et al., 1996).

Based on retrospective data in Sarajevo, the positive incidence of HSV immunoglobulin G (IgG) antibodies was 93.2% in 110 newly diagnosed MS patients (Djelilovic-Vranic and Alajbegovic, 2012). In another study, the prevalence of HSV-1 mRNA and DNA in the peripheral blood mononuclear cells (PBMC) of acute MS patients is significantly higher compared to controls (Ferrante et al., 2000). They also suggested that HSV-1 reactivate in the acute attack and might trigger MS relapses (Ferrante et al., 2000). Data addressing pediatric MS showed that HSV-1 IgG antibodies in serum was associated with increased risk of pediatric MS (Waubant et al., 2011; Nourbakhsh et al., 2018). Waubant et al. (2011) recruited 189 pediatric MS patients and found that HSV-1 was associated with an increased risk of MS in those negative for HLA DRB1*1501. Another multi-center research suggested that sero-positivity for HSV-1 was significantly increased in pediatric MS patients, but the increase was only seen in Caucasian people and those without a DRB1*15 allele (Nourbakhsh et al., 2018). Pooled results of a recent meta-analysis has implicated a statistical difference in the serum prevalence of IgG against HSV-2 between patients with MS and controls (Xu et al., 2021).

However, other studies reported conflicting results, and did not find any relationship between HSV infection and MS risk. Data in several studies showed that the prevalence of antibodies against HSV-1 or HSV-2 had no statistical associations with adult MS (Wandinger et al., 2000; Kiriyama et al., 2010; Sotelo et al., 2014; Etemadifar et al., 2019). By testing HSV DNA in cerebrospinal fluid or in PBMC, Koros et al. (2014) and Sotelo et al. (2014) reported no significant difference of HSV DNA between adult MS and healthy controls. Another pediatric study found no difference in the association of prior HSV infections with the onset of pediatric MS (Mowry et al., 2011).

Those equivocal results might be caused by methodological shortcomings of observational studies, such as residual confounding and reverse causality. Confined by these limitations, observational research is unable to deduce the causal role of HSV infection in the development of MS. With the exponential growth in and widespread availability of genotype data, Mendelian randomization (MR) approach as an epidemiologic study designed to establish causality between exposures and outcomes has gained its popularity in the last two decades (Zhuang et al., 2019; Huang et al., 2021; Kwok and Schooling, 2021; Zhang et al., 2021). MR utilizes germline genetic variants as proxies. Since genetic variants are unaffected by environmental factors or disease process, MR can diminish confounding, strengthen exposure-outcome associations and avoid reverse causalities (Smith and Ebrahim, 2003). In this study, we leveraged the MR approach to infer the associations of HSV infection with risk of MS.



MATERIALS AND METHODS

The schematic for the MR design was shown in Figure 1 and datasets underlying the study was summarized in Supplementary Table 1. This study was built upon summary-level statistics which were publicly accessible. Informed consent from participants and approval by ethical committees had been completed by consortia involved in original studies.


[image: image]

FIGURE 1. Schematic diagram of the Mendelian randomization study. HSV, herpes simplex virus; MR, Mendelian randomization; MS, multiple sclerosis; SNP, single nucleotide polymorphism.



Instrumental Variables for Herpes Simplex Virus

Genetic instrumental variants for HSV infection were obtained from the FinnGen study (FinnGen, 2021). Diagnosed infections with HSV were defined by International Classification of Diseases (ICD) from the Finnish registries of inpatient, outpatient and cause of death. In the R5 release, there were 1,595 cases (ICD-10, B00; ICD-9, and ICD-8, 054) and 211,856 participating controls of Finnish ancestry. Sex, age, 10 principal components and genotyping batch were included as logistic regression covariates. Eight instrumental single-nucleotide polymorphisms (SNPs) were selected at a suggestive genome-wide significance threshold (p < 5 × 10–6) as previous studies did (Kodali et al., 2018; Bae and Lee, 2020; Kwok and Schooling, 2021). The effect size was presented in a unit of log- odds ratio (OR) using the additive model (Supplementary Table 2).

Instrumental variables for circulating HSV-1 and HSV-2 IgG levels were selected from one genome-wide association study (GWAS) conducted in the Milieu Intérieur cohort (Scepanovic et al., 2018). Total IgG levels and antigen specific seropositivity was tested in 1,000 individuals, and in seropositive donors, serum IgGs specific for HSV-1 (n = 645) and HSV-2 (n = 208) were further measured using the BioPlex™ 2200 HSV-1 and HSV-2 IgG kit (Bio-Rad, Hercules, CA, United States). After log10-transformed of IgG levels, genetic association analyses were performed with the additive regression adjusted for age, sex, total IgG and the first two principal components incorporated as covariates. Four and eight SNPs were utilized as instrumental variables for HSV-1 IgG (Supplementary Table 3) and HSV-2 IgG (Supplementary Table 4), respectively.



Summary-Level Datasets of Multiple Sclerosis

Summary-level GWAS results of MS were released by the International Multiple Sclerosis Genetics Consortium (2019). In total, 14,802 individuals diagnosed with MS and 26,703 healthy controls of the European-ancestry were recruited in the discovery stage with 8,589,719 SNPs being meta-analyzed. Diagnostic criteria and demographic descriptions in each contributing cohort were summarized in the published GWAS (International Multiple Sclerosis Genetics Consortium, 2019). Effect estimates were adjusted for age, sex, batch effects and ten principal components in the logistic regression, and Beta represented one-unit increase in log-OR of MS per additional effect allele (Supplementary Table 5). Here, the following formulae were employed in transforming variables: Beta = log(OR) and Standarderror = Beta/abs((qnorm(P−value/2)). We kept instrumental SNPs which were present in the MS dataset, or whose proxied SNPs (r2 > 0.8 or D’ > 0.8, EUR panel 1000 Genomes Phase 3) were available. We harmonized the exposure and outcome effect size in terms of the effect allele and merged datasets were used for subsequent analyses.



Statistical Analysis

We performed MR analyses in the R language, version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria) with the TwoSampleMR and MR-PRESSO packages (Hemani et al., 2018; Verbanck et al., 2018). Effect of HSV related exposures on the risk of MS contributed by individual instrumental variable was first given by Wald ratio: Yk/Xk with its standard error óóYk/Xk, where the SNP-effect on HSV was denoted with Xk and its standard error σXk, and the SNP-MS association statistics denoted with Yk and σYk. Then the primary MR method, the inverse-variance weighted (IVW) model combined ratio estimates for each exposure and yielded an overall estimate: [image: image] with [image: image]. Based on stringent prerequisites, IVW estimates would be biased if not all variants are valid or unbalanced pleiotropy exists (Burgess et al., 2013). Three additional approaches were implemented. Weighted median method effectively pooled individual estimate if less than half instrumental SNPs were invalid (Bowden et al., 2016). MR-Egger regression identified horizontal pleiotropic effects with p for intercept <0.05, meanwhile the regression slope provided a causal estimate corrected for unbalanced pleiotropy (Bowden et al., 2015). MR-PRESSO also examined outlier SNPs with potential pleiotropy by the global test and computed both a raw estimate and an outlier-adjusted estimate (Verbanck et al., 2018). We conducted Cochran’s Q test and leave-one-out analysis to identify individual SNP which exerted an extremely heterogenous effect. As a measure of causal associations between HSV-related exposures and the risk of MS, we reported OR and 95% confidence interval (CI) per one unit increase in log-OR of diagnosed HSV infection or one SD elevation in circulating IgG levels of HSV-1 or HSV-2. Associations with P < 0.05/3, using the Bonferroni correction, were deemed as significant.




RESULTS


Association of Herpes Simplex Virus Infection With Multiple Sclerosis Risk

In the MR analysis investigating the relationship between infections with HSV and MS risk, nine instrumental SNPs were utilized and they collectively explained 0.09% variances of HSV (Supplementary Table 2). MR results suggested that diagnosed infections with HSV were not associated with the risk of MS (Table 1). By the IVW method, OR of MS was 0.96 (95% CI, 0.90–1.02; p = 0.22) per one-unit increase in log-OR of herpes viral infections. Sensitivity analyses by weighted median, MR-Egger regression slope and MR-PRESSO provided similar and consistent results. There was no evidence of pleiotropy by MR-Egger regression intercept (p = 0.85) or MR-PRESSO global test (p = 0.91). Besides, Cochran’s Q test (Table 2) and leave-one-out analysis (Figure 2) indicated no heterogeneity among the instrumental SNPs.


TABLE 1. Association of genetically predicted herpes simplex virus infection with the risk of multiple sclerosis by different Mendelian randomization approaches.
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TABLE 2. Results from Mendelian randomization sensitivity analyses between herpes simplex virus (HSV) and multiple sclerosis (MS).
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FIGURE 2. Scatter plot (A) and leave-one-out plot (B) in the Mendelian randomization analysis of HSV infection on MS risk. HSV, herpes simplex virus; MR, Mendelian randomization; MS, multiple sclerosis.




Effect of Circulating Herpes Simplex Virus-1 and Herpes Simplex Virus-2 Immunoglobulin G Levels on Multiple Sclerosis Risk

Genetically predicted HSV-1 IgG was not associated with the risk of MS (OR = 0.75; 95% CI, 0.35–1.60; p = 0.45) by the IVW method. Notably, rs3132935 was associated with MS at genome-wide significance (p = 3.40 × 10–9). MR-PRESSO global test, Cochran’s Q test (Table 2) and leave-one-out analysis (Figure 3) all indicated that rs3132935 might have pleiotropic effects and was an outlier variant in the MR analysis. Nevertheless, the MR-PRESSO corrected estimate with the removal of rs3132935 suggested no causal effect of circulating HSV-1 IgG levels on MS risks (OR = 0.91; 95% CI, 0.81–1.03; p = 0.37), either.
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FIGURE 3. Scatter plot (A) and leave-one-out plot (B) in the Mendelian randomization analysis of HSV-1 IgG levels on multiple sclerosis. MR-PRESSO outlier-corrected estimate was calculated with the removal of rs3132935 as an outlying variant, while the raw estimate was not delineated since it was nearly the same as the value given by inverse-variance-weighted method. HSV, herpes simplex virus; MR, Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; MS, multiple sclerosis.


The MR analyses did not support the causal effect of HSV-2 IgG on MS (OR = 1.04; 95% CI, 0.96–1.13; p = 0.32) per one SD increase in HSV-2 IgG levels. Additional MR methods provided consistent results (Table 1). Furthermore, no unbalanced horizontal pleiotropy or evident heterogeneity was identified through multiple sensitivity analysis (Figure 4).
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FIGURE 4. Scatter plot (A) and leave-one-out plot (B) in the Mendelian randomization analysis of HSV-2 IgG on MS risk. HSV, herpes simplex virus; MR, Mendelian randomization; MS, multiple sclerosis.





DISCUSSION

Seroprevalence of HSV is ubiquitous in populations where MS is prevalent (50–100% in adult members) (Lycke, 2017). In response to exposure to HSV-1, persistent lymphocytic cells would infiltrate in the CNS, levels of cytokine transcripts would elevate, and amounts of chemokine mRNAs would increase, which suggest that latent HSV-1 infection might trigger a chronic inflammatory process in brain tissue (Theil et al., 2003; Menendez et al., 2016). Meanwhile, levels of matrix metalloproteinases 2 and 9 would increase in infected CNS, and contribute to a partial breakdown of the blood brain barrier which is crucial in MS (Martínez-Torres et al., 2004). After exposure to HSV-1, plasmacytoid dendritic cells (DC) produce a great deal of Type I IFNs, including IFN-α and β (Soumelis and Liu, 2006). Plasmacytoid DC can promote naïve T cells to produce IL-10, which leads to anti-inflammatory reactions (Rissoan et al., 1999). Type I IFNs can inhibit the production of IL-12 and increase IL-10 production, which act on myeloid DC and switch pro- to anti-inflammation (Sanna et al., 2008). PBMC of MS patients showed increased production of IFN-α, IL-6, and IL-10 but decreased production of IL-4 (Sanna et al., 2008) and productions of IL-6 and IL-10 by PBMC and plasmacytoid DC were lower in MS patients compared with healthy controls (Sanna et al., 2008). The above data implied impaired anti-inflammatory response after HSV-1 infection in MS. Animal experiments have further proved that previous exposure to HSV-1 can cause an earlier onset of symptoms and more severe experimental autoimmune encephalomyelitis compared to uninfected control mice (Duarte et al., 2021).

Clinical trials of antiviral treatments in MS (Lycke et al., 1996; Bech et al., 2002; Friedman et al., 2005) were limited when compared with the development of other therapies (Lizak et al., 2017; Islam et al., 2020). There are three phase II clinical trials of acyclovir or valacyclovir in MS patients (Lycke et al., 1996; Bech et al., 2002; Friedman et al., 2005). One trial showed 34% reduction of annualized relapse rate in acyclovir-treated patients and a significant reduction in the relapse rate in favor of acyclovir treatment (Bech et al., 2002). In a high-activity group of another trial, valacyclovir-treated patients had significant reduction of new lesions compared to placebo-treated patients (Friedman et al., 2005). Although the above research suspected HSV as a candidate for the etiology of MS, the fact that HSV infection is far more prevalent in human populations compared to MS argues against this viewpoint. HSV DNA in 77 demyelinated plaques from 23 MS patients revealed that HSV-1 DNA was amplified from only one plaque and HSV-2 DNA was amplified from none of the plaques (Nicoll et al., 1992). The infection of HSV in the CNS might be insufficient for the development of MS which requires other genetic and environmental triggers. Further investigations are warranted to detangle the role of HSV in disease onset or disease progression of MS.

The major strength of this study is the multivariable MR method, which explicated the roles of HSV infection in MS and exempted the result from residual confounding or reverse causality. Also, up-to-date genetic instruments for HSV infection traits and the largest GWAS dataset for MS were used to boost the power. There are several limitations for this study. Firstly, instrumental SNPs collectively explained small proportions of variance for HSV infection, and especially for circulating IgG levels of HSV-1 and HSV-2 due to inadequate sample size. Hence, we had restricted power to identify small causal effects. Secondly, we used a relaxed significance level (p < 5 × 10–6) rather than the classical GWAS threshold (p < 5 × 10–8) to choose instrumental variables. Distortion to the overall estimate might occur in the scenario, albeit no weak instrument was identified in the present study. Thirdly, biological implications for most SNPs are yet to be explored; thus, the suitability of current instrumental sets would be disputed by the possibility of pleiotropy, although no pleiotropic effects (except for rs3132935) were indicated through our sensitivity analyses. Lastly, this study was based on genome-wide association data only from the Europeans and we should be cautious with the interpretation and generalization when it comes to other populations.



CONCLUSION

In conclusion, we failed to provide evidence for the effect of HSV on the risk of MS. Further studies triangulating evidence from observational cohorts, clinical trials and genetic-epidemiological biobanks are still warranted to elucidate whether targeting HSV is an effective intervention for MS.
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Posttraumatic stress disorder (PTSD) is a serious stress disorder that occurs in individuals who have experienced major traumatic events. The underlying pathological mechanisms of PTSD are complex, and the related predisposing factors are still not fully understood. In this study, label-free quantitative proteomics and untargeted metabolomics were used to comprehensively characterize changes in a PTSD mice model. Differential expression analysis showed that 12 metabolites and 27 proteins were significantly differentially expressed between the two groups. Bioinformatics analysis revealed that the differentiated proteins were mostly enriched in: small molecule binding, transporter activity, extracellular region, extracellular space, endopeptidase activity, zymogen activation, hydrolase activity, proteolysis, peptidase activity, sodium channel regulator activity. The differentially expressed metabolites were mainly enriched in Pyrimidine metabolism, D-Glutamine and D-glutamate metabolism, Alanine, aspartate and glutamate metabolism, Arginine biosynthesis, Glutathione metabolism, Arginine, and proline metabolism. These results expand the existing understanding of the molecular basis of the pathogenesis and progression of PTSD, and also suggest a new direction for potential therapeutic targets of PTSD. Therefore, the combination of urine proteomics and metabolomics explores a new approach for the study of the underlying pathological mechanisms of PTSD.
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INTRODUCTION

Post-Traumatic Stress Disorder (PTSD) is a persistent stress disorder type that may be delayed or imminent following major psychological trauma (Kessler et al., 1995; Breslau et al., 1998). PTSD can be caused by a variety of major events, including diseases (Kangas et al., 2005; Bush, 2010), war incidents (Owens et al., 2005), natural disasters (Wu et al., 2009), etc. PTSD has four core symptoms according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5); the re-experiencing of traumatic event(s), continuous avoidance of trauma-related stimuli, negative emotions related to cognitive trauma, and continued increase in alertness (Mahan and Ressler, 2012; Tandon, 2014; Tanaka et al., 2019). Several of these aspects can be captured using situational reminder programming in animal models, leading it to become a common model for studying the symptoms and mechanisms of PTSD. However, the precise molecular changes occurring in these models remains incompletely understood.

Assessments for compositional changes in urine have been demonstrated to have considerable potential for monitoring bodily health (Gao, 2013; Nicholas, 2020). In comparison with blood, urine has the advantages of being non-invasive, convenient to sample repeatedly, biochemical stability, and so on (Wu and Gao, 2015; Jing and Gao, 2018). In addition, urine may not be as strongly regulated by homeostatic mechanisms (Wang et al., 2014; Huang and Lo, 2018). The detection of blood biomarkers usually reflects the relatively stable state in the middle and late stages of the disease (Li, 2015), but misses the signals of short-term changes in the early stage of the disease. In opposite urine, as a blood filter, will collect all the body’s metabolites, thereby detecting more differentiated factors (Li et al., 2014; Gao, 2015). Moreover, recent reports have shown that urine can provide a lot of non-urogenital information, including regarding neuropsychiatric disorders (Emanuele et al., 2010; Marc et al., 2011).

In the past few years, advances in “omics” technology have yielded powerful new tools for biomarker screening, disease mechanism identification, and diagnostic modeling (Petricoin et al., 2006). Cutting-edge “omics” technology has already been deployed to study PTSD. Diverse epigenetic phenomena have enabled researchers to discover conserved molecular mechanisms involved in chromatin modification (Goldberg et al., 2007), especially non-coding RNAs, which play an important role in multiple epigenetic phenomena (Bernstein and Allis, 2005). Studies on PTSD and miRNA have revealed several key contributors to the underlying pathophysiological basis of PTSD (Wingo et al., 2015; Bam et al., 2016a,b; Martin et al., 2017). Genomics research can be used to analyze DNA and RNA sequences by second-generation sequencing and third-generation sequencing techniques to discover new transcripts or exon single nucleotide polymorphisms (SNPS) (Girgenti and Duman, 2018). However, researchers thus far have primarily used blood and postmortem brain tissue to identify biomarkers for PTSD (Thomson et al., 2014; Breen et al., 2015; Bharadwaj et al., 2018). Glycomics studies can analyze the biological functions of all glycans by studying the unique pond group of organisms (Miura and Endo, 2016). Compared with genome sequence discovery, glycomics can better reflect the biological state of complex diseases (Zoldos et al., 2013; Lauc et al., 2016). It has been reported that there are significant changes in the N-glycomic group in psychiatric and neurodegenerative diseases (Vanhooren et al., 2010; Lundstrom et al., 2014; Park et al., 2018). Proteomics studies the complete set of proteins in a biological system (cell, tissue or organism) in a given state at a given time, analyzing changes in protein expression, post-translational modifications, and protein-protein interactions (Wilkins et al., 1996; Jensen, 2006). It is more complex than genomics, but can reflect the precise functional characteristics of proteins (Baloyianni and Tsangaris, 2009). Metabolomics mainly analyses final or intermediate small molecule metabolites produced by gene regulation and can evaluate metabolites altered by treatment or disease (Kaddurah-Daouk and Krishnan, 2009; Mastrangelo et al., 2016). It is reported that metabolomics plays an important role in analyzing the metabolic profile, inflammatory mechanisms and biomarker identification of PTSD (De Bellis et al., 2000; Pace and Heim, 2011; Karabatsiakis et al., 2015; Bersani et al., 2016; de Vries et al., 2016; Hemmings et al., 2017; Mellon et al., 2018; Nedic Erjavec et al., 2018). Therefore, Omics technologies can be further improved study the underlined mechanisms of PTSD and identify diagnostic and prognostic biosignatures.

Despite the promising features of urine biomarkers, the biological interpretation of single typology data is very challenging due to the complexity of urine samples. Therefore, in this study, the analytical capabilities of proteomics and metabolomics were combined to obtain more comprehensive data on mice in the normal group and PTSD group, aiming to discover new potential biomarkers.



MATERIALS AND METHODS


Induction of Electric Foot Shock Stress

Twelve healthy male 8–10 weeks old C57BL/6 mice were purchased from Laboratory Animal Centre at the Army Medical University. All mice were housed in individual cages under a reversed 12 h light/12 h dark cycle (light on at 6 AM) and standard laboratory conditions (21 ± 1°C, 55 ± 5% relative humidity). Food and water were provided ad libitum. This study was approved by the Ethics Committee of Army Medical University (Animal Ethics Statement: AMUWEC20211605). As shown in Figure 1, after a 14-day adaptation phase, the mice were divided into plantar foot shock group (PTSD group, n = 6) and non-foot shock group (control group, n = 6). Mice were subjected to electric foot shock in a Plexiglas chamber (27 × 20 × 300 cm3) with a grid floor made of stainless-steel rods (0.3 cm diameter, spaced 1.0 cm apart) connected to a shock generator. After a habituation period of 2 min, the mice in the foot shock group received a series of foot shocks of medium (0.15 mA) intensity of 10 s duration with foot shock interval of 10 s being delivered for 5 min to produce acute stress (Rabasa et al., 2011). The mice in the control group were placed in the chamber for a similar period without receiving a foot shock. Thereafter, the mice in the foot shock group were subjected to the same moderate electric foot shock stressor for 12 days (twice a day) to induce stress adaptation (Van den Berg et al., 1998; Daniels et al., 2008).
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FIGURE 1. The experimental procedure for PTSD. EPM, elevated plus maze; OFT, open field test.




Behavioral Test

All the behavioral tests were performed in daytime from 8 AM to 3 PM. Mice were given two tests a day to avoid the potential interference from the other tests. Animal cages were moved to a testing room at least 0.5 h before each test. After completion of the test session, the behavioral apparatus and chamber were cleaned with 70% ethanol and then completely hand-fan dried.



Elevated Plus Maze Test

The apparatus consisted of four arms (28 cm × 5.8 cm width), with two arms open and two closed by gray walls (15.5 cm height) arranged on the opposite side of the same type. The platform was located 55 cm above the floor of the testing room illuminated and four arms were connected in the center platform (5 cm × 5 cm), where the animal was placed facing a closed arm. The position and movement of the animal were monitored for 5 min by a video camera. An entry was defined as more than half of the animal’s full body entering the open arm. The time spent in the open arms and the number of visits to the open arms were analyzed.



Open Field Test

The periphery and bottom of the test space were made of black opaque metal sheets, with length 72 cm, width 72 cm, and height 60 cm. The floor area was divided into 16 squares of the same size. During the test, each mouse was placed in the center of the area and was allowed to freely explore the area for 5 min. The numbers of crossing and standing were recorded during the last 4 min by technicians. After each test, the open area was washed with 70% ethanol to avoid any olfactory cues.



Urine Sample Collection

Urine was collected on ice using metabolic cages at the end of the experiment from 9:00 pm to 9:00 am in the next day. The collected urine was centrifuged at 13,000 g for 20 min at 4°C to obtain the supernatant sample. The average sample size was 2 mL. The urine sample was stored at −80°C before analysis.



Metabolomics Analysis

Urine samples (50 μL) were thawed on ice and immediately mixed with 200 μL of ice-cold acetonitrile. After mixing by vortex for 1 min, the mixture was centrifuged at 13,000 g for 15 min at 4°C. A supernatant aliquot of 10 μL was used for liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Quality control (QC) samples were prepared by supernatant aliquot with an equal amount (15 μL) and were periodically analyzed throughout the complete run to monitor signal drift.

The LC 30A UHPLC system (Shimadzu, Kyoto, Japan) was linked to a Triple TOF 4600 system (SCIEX, Framingham, MA, United States). The separation step was conducted using the hydrophilic interaction liquid chromatography (HILIC) and the reversed-phase liquid chromatography (RPLC) methods. A Kinetex C18 column (2.1 mm × 100 mm, 2.6 μm, 100 Å, Phenomenex) was used with a binary gradient method. Solvent A was 0.1% formic acid in water (vol/vol), and solvent B was 0.1% formic acid in acetonitrile (vol/vol). A flow rate of 0.35 mL/min was used, and the injection volume was 2 μL. The gradient program used was 15% B at 0 min to 85% B at 10 min, with a total running time of 15 min. A TSK gel NH2-100 column (2.1 mm × 100 mm, 3.0 μm, TOSOH) was also used with a binary gradient method. Solvent A was 5 mmol/L ammonium acetate, and solvent B was acetonitrile. A flow rate of 0.25 mL/min was used, and the injection volume was 2 μL. The gradient program used was 100% B at 2 min to 15% B at 15 min, and at 20 min to 100% B, with a total running time of 25 min.



Proteomics Analysis

1 mL urine sample was thawed and transferred to a centrifuge tube, and then centrifuged at 12,000 g at 4°C for 30 min to remove impurities. The samples were six times mixed with the volume of acetone, fully mixed, and precipitated overnight at – 20°C. The mixture was removed and centrifuged at 12,000 g at 4°C for 30 min to remove the supernatant. The precipitate was dissolved in pyrolysis buffer solution (8 mol/L urea, 2 mol/L Thiourea, 50 mmol/L Tris, and 25 mmol/L DTT), and completely dissolved, centrifuged at 12,000 g for 30 min at 4°C, and then the supernatant was saved. Protein concentration was determined using the Bradford method. 100 ug protein was added to each sample in a 30 KDa filter (millipore, MRCF0R030), Urea buffer solution (UA, 8 mol/L, 0.1 mol/L Tris–HCl, pH 8.5), and 25 mmol/L NH4HCO3 solutions were in turn washed several times. Protein samples were reduced with 20 mmol/L dithiothreitol (DTT, Sigma) at 37°C for 1 h, followed by 50 mmol/L iodoacetamide (IAA, Sigma) in darkness for 30 min. Then, the samples were centrifuged at 18°C for 30 min at 14,000 g, washed with UA and NH4HCO3, with trypsin being added (enzyme protein ratio 1:50) and digested overnight at 37°C. The peptide mixture was desalted using a C18 column (Thermo, 84850), concentrated, dried in vacuum, and stored at −80°C.

AU3000 UHPLC system (Thermo Fisher Scientific, Waltham, MA, United States) was used to separate the peptides. Peptides were loaded onto an analytical column (Acclaim™ PepMap™ 100, 75 μm × 15 cm, C18, 3 μm, 100 Å, Thermo Fisher Scientific, Waltham, MA, United States) with a Trap Column (Acclaim™ PepMap™ 100, 75 μm × 2 cm, C18, 3 μm, 100 Å, Thermo Fisher Scientific, Waltham, MA, United States) and separated by reversed-phase chromatography (U3000nano, Thermo Fisher Scientific, Waltham, MA, United States) using a 106 min gradient. The gradient was composed of Solvent A (0.1% formic acid in water) and Solvent B (0.1% formic acid in 80% acetonitrile) elution gradient: 1% B for 13 min, 1–30% B in 70 min, 30–90% B in 10 min, 90% B for 2 min and 90–1% B in 1 min, 1% B for 10 min. The eluted peptides were analyzed using the Data Dependent Acquisition (DDA) method applying one full MS scan (350.00–1800.00 m/z) in the Orbitrap at a resolution of 60,000 M/ΔM, followed by consecutive MS/MS (profile) scans in the ion trap by product ion scans (relative CID energy 35) of the 16 most abundant ions in each survey scan. The product ion scans were acquired with a 2.0 unit isolation width and a normalized collision energy of 35 in an LTQ-Orbitrap Velos Pro MS spectrometer (Thermo Fisher Scientific, Waltham, MA, United States).



Statistical Analysis

Statistical analyses were performed using SPSS 20.0 software, values are expressed as mean ± standard deviation (X ± SD, n = 6 per group), the graphics were generated using GraphPad Prism 8.0.1 software. Metabolomics and Proteomics data analyses were performed in MetaboAnalyst 5.0 and Proteome Discover Daemon 2.5. The metabolite peaks of the urine samples were normalized, analyses performed using SIMCA-P 14.1 multivariate statistical analysis software. All variables were tested and found to be normally distributed, an independent-samples student’s t-test was used to compare differences between the two groups, and identify differentially expressed metabolites and proteins, and then we used Ingenuity Pathway Analysis to analyze the significantly altered canonical pathways and molecular interaction networks. A p-value threshold of 0.05 was used to infer statistically significant findings, and a more strict p-value threshold of 0.01 was used to infer highly statistically significant changes.




RESULTS


The Results of the Behavioral Test


Elevated Plus Maze Test

Elevated plus maze test was deployed to explore the potential anxiety actions of the induction of electric foot shock stress. There was no significant difference in terms of total arms entries (Figure 2A) and total time spent in the arms (Figure 2B) between the control and the PTSD groups.
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FIGURE 2. The effect of the induction of electric foot shock on anxiety in the elevated plus-maze test in mice compared to the control group (n = 6). (A) Total arms entries; (B) Total time spent in the arms; (C) The percent of entries in open arms; (D) The percent of time spent in open arms; (E) The actual times spent in open arms; (F) The actual amount of entries in open arms. Results are provided in the form of mean ± SD. *p < 0.05; **p < 0.01.


The induction of the electric foot shock stress caused a significant reduction in the percent of open arm entries (open arm/total × 100) with the ones of the control and the PTSD group being 45.4 and 27.5%, respectively (Figure 2C). The percent of time spent in open arms was also significantly reduced when applying induction of electric foot shock stress with control and PTSD group values being 23.1 and 14.7%, respectively (Figure 2D). The actual times spent in open arms in the control group and the PTSD group were 578 s and 319 s, respectively (Figure 2E). The actual amount of entries in open arms in the control group and the PTSD group were 99 and 72, respectively (Figure 2F).



Open Field Test

The anxiety-like behavior of the induction of electric foot shock stress was measured with an open-field test. The overall distance was significantly reduced when applying induction of electric foot shock stress with the values of the control and PTSD groups being 1511.18 and 1292.94 cm, respectively (Figure 3A). The number of crossing and standing was also significantly reduced by the Induction of electric foot shock stress. The numbers of crossing in the control group and the PTSD group were 77.1 and 36.0 times, respectively (Figure 3B). The amount of times of standing in the control group and the PTSD group were 18.4 and 7.2 times, respectively (Figure 3C).
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FIGURE 3. The effect of the induction of electric foot shock on anxiety in the open-field test in mice compared to the control group (n = 6). (A) Overall distance; (B) Numbers of crossing; (C) Numbers of standing. Data are expressed as mean ± SD. **p < 0.01.





Metabolomics Analysis

Quality control results pinpointed that the variation caused by instrument error is small and the data quality is reliable (Supplementary Figure 1). The PCA results plot does not show clear segregation between the PTSD group and the control group (Supplementary Figure 2). In addition, The OPLS-DA model was established and a permutation test of the OPLS-DA model was performed (positive mode: R2X = 0.919, R2Y = 1.0, Q2 = 0.723; negative mode: R2X = 0.854, R2Y = 0.998, Q2 = 0.657; Figures 4A,B). The results of the permutation test showed the absence of overfitting (positive mode: R2 = 0.999, Q2 = −0.0431; negative mode: R2 = 0.995, Q2 = −0.0933; Figures 4C,D). In conclusion, the model presented good reliability and predictability.
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FIGURE 4. OPLS-DA score results and OPLS-DA quality control figure of mice urine samples. (A) Positive ion mode OPLS-DA scores; (B) Negative ion mode OPLS-DA scores; (C) Positive ion mode OPLS-DA permutation test; (D) Negative ion mode OPLS-DA permutation test; intercepts: R2 and Q2 represent y-intercept of R2 and Q2 regression lines.




Differential Metabolites

Metabolomics profiling of urine from the C57BL/6 normal group mice and the PTSD mouse-model group detected a total of 559 metabolite components and revealed 12 differentially expressed metabolites between the PTSD group and the Control group using as criteria to infer significant findings the VIP > 1 and p < 0.05 (Figure 5A and Table 1). These differentially expressed metabolites possess different characteristics (Figure 5B) and were enriched for several KEGG pathways associated with amino acid and nucleic acid metabolism, including Pyrimidine metabolism, D-Glutamine and D-glutamate metabolism, Alanine, aspartate and glutamate metabolism, Arginine biosynthesis, Glutathione metabolism, Arginine, and proline metabolism (Figure 5C).
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FIGURE 5. Metabolites profile shift during of mice urine samples between the PTSD group and the control group. (A) Volcano plot showing altered metabolites, Positive (up), negative (down) ion mode. The red dots indicate significantly upregulated metabolites (fold change > 1.2), while the green dots indicate significantly downregulated metabolites (fold change < 0.8). (B) Heat map of the differentially expressed metabolites. The red band indicates the upregulation of metabolites levels (fold change > 1.2), while the blue band indicates the downregulation of metabolites levels (fold change < 0.8). (C) KEGG pathway enrichment category of the differentially expressed metabolites, n = 6.



TABLE 1. The significantly differentiated metabolites in control vs. post-traumatic stress disorder (PTSD) groups.
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Proteomics Analysis

The number of peptide-spectral matches, unique peptide number, and quantified proteins, were 88,734, 4,125, and 691 for both PTSD and control groups. 27 proteins exhibited significantly differentiated expression between the two groups using the criteria of p-value < 0.05 and fold change > 1.20 or <0.80. A total of 18 proteins among these were upregulated and 9 downregulated in the PTSD group compared to the Control group (Figure 6A and Table 2). These altered features were subjected to clustering, and the heat map revealed clusters with the ability to discriminate between control and PTSD samples (Figure 6B). Gene Ontology (GO) function annotation analysis showed that these differentially expressed proteins were mainly involved in biological processes, such as small molecule binding, transporter activity, extracellular region, extracellular space, endopeptidase activity, zymogen activation, hydrolase activity, proteolysis, peptidase activity and sodium channel regulator activity (Figure 6C). Based on the KEGG database, the significantly enriched pathways (P < 0.05) were Endocrine and other factor-regulated calcium reabsorption, Lysosome, Renin-angiotensin system, Carbohydrate digestion and absorption, Thyroid hormone synthesis, Metabolic pathways, Proximal tubule bicarbonate reclamation, Galactose metabolism and Starch and sucrose metabolism (Figure 6D).
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FIGURE 6. Proteomic profile shift of mice urine samples between the PTSD group and the control group. (A) Volcano plot showing dysregulated proteins. The red dots indicate significantly upregulated proteins (fold change > 1.2), while the green dots indicate significantly downregulated proteins (fold change < 0.8); (B) Heat map of the differentially expressed proteins. The red band indicates the upregulated proteins (fold change > 1.2), while the blue band indicates the downregulated proteins (fold change < 0.8); (C) Differentially expressed protein GO function enrichment diagram; (D) KEGG pathway enrichment of the differentially expressed proteins, n = 6.



TABLE 2. The differentially expressed proteins in control vs. PTSD groups.
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Integrative Analysis of the Metabolomics and Proteomics

A total of 12 differential expression metabolites and 27 differential expression proteins that were submitted to Ingenuity Pathway Analysis (IPA) for significantly altered canonical pathways analysis. As shown in Table 3, We found three pathways significantly expressed proteins and metabolites. They were Pyrimidine Metabolism, Metabolic pathways, and Small Molecule Biochemistry. These significantly differential metabolic pathways were selected for more detailed analysis (Figure 7). In these pathways, L-Glutamic acid(L-Glu), Uridine5-monophosphate(UMP), Thymidine 5-monophosphate(dTMP), Uridine, URIDINE-5′-DIPHOSPHATE-MANNOSE(UDP-Gal), CTSH and CTS6 were downregulated, and UMOD, Fxyd2, AHCY, ACY3, Hamp2, CTSE, SCLT1, WFDC2 were upregulated.


TABLE 3. Significantly altered pathways with differentially expressed proteins and metabolites.
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FIGURE 7. Network of significantly differential metabolic pathways for Posttraumatic stress disorder. Yellow dashed areas represent the pathways. metabolites are shown as rectangles, and Proteins are shown without no rectangles. Red represents significant upregulation in the PTSD group compared to the control group, green represents significant downregulation.





DISCUSSION

Currently, diagnosis of PTSD is primarily based on subjective symptom representation and patient self-reporting, and the molecular mechanism remains unclear. As such, rates of PTSD in the general population may be significantly underestimated. In the present manuscript, we established a mouse model of PTSD to investigate some of its qualitative biomarkers and potential mechanistic contributors. The elevated cross maze and open-field test were evaluated based on the fact that the plantar shock can continuously produce traumatic stimulation. The mice with the PTSD group were observed to have reduced movement, weakened active exploration ability, and showed negative avoidance and anxiety in comparison to the mice of the control group (Montgomery, 1955; Pellow et al., 1985), indicating significant stress disorder. Combined proteomics and metabolomics analysis was performed revealing 27 significantly dysregulated proteins and 12 significantly dysregulated metabolites.

In this study, urinary uridine levels in the mice model were significantly reduced, suggesting that PTSD can cause metabolic abnormalities of uridine in urine. It has been reported that uridine has a protective effect on mental disorders (Mironova et al., 2018) and can improve neurophysiological functions (Connolly and Duley, 1999). Uridine excretion is mainly achieved through renal and pyrimidine metabolism, producing uracil and β -alanine, which can enter the tricarboxylic acid (TCA) cycle (Gonzalez and Fernandez-Salguero, 1995; Connolly et al., 1996). The homeostasis and metabolic abnormalities of uridine can be accurately monitored by the detection of uridine in urine.

In mammals, in pyrimidine metabolism, uridine (UR) is involved in the de initio synthesis of uridine monophosphate (UMP) to form uridine 5′ -diphosphate (UDP), which can be combined with UDP-galactose and plays an important role in the glycosylation of protein (Connolly and Duley, 1999). It has been reported that pyrimidines are mainly recovered from uridine, which synthesizes RNA and biofilms through pyrimidine nucleotide – lipid conjugates (Yamamoto et al., 2011). In the study, the urine metabolism of uridine (UR), uridine monophosphate (UMP), and UDP-galactose in mice of the PTSD model group showed decreased expression, suggesting that the PTSD mice induced by plantar electric shock exhibit disorder of pyrimidine metabolism.

Glutamate (L-glutamate) is a major excitatory neurotransmitter, and glutamate disorder in the brain is often observed in depression models (Hemanth Kumar et al., 2012; Liu et al., 2016). In this study, the expression of L-glutamate in urine metabolism was decreased in the PTSD model group, while glutamate can provide a nitrogen source for pyrimidine synthesis (Vincenzetti et al., 2016). The pyrimidine metabolism disorder can directly reflect abnormal glutamate metabolism. Studies have reported that patients with PTSD and alcohol use disorder (AUD) have significantly reduced glutamate in the anterior cingulate cortex (ACC; Pennington et al., 2014). Glutamate is the basis of synaptic plasticity and memory formation, and stress response significantly affects glutamate transmission and plays a key role in PTSD (Chambers et al., 1999; Lamprecht and LeDoux, 2004; Popoli et al., 2011; Kelmendi et al., 2016). Urine collects all metabolites of the body and is not regulated by the homeostasis mechanism. Abnormal l-glutamate metabolism detected in urine directly reflects PTSD.

In addition to metabolomic changes, significant proteomics differences were also identified. GO analysis of the urine proteome data showed that proteins with differential expression were mainly located in the extracellular space and extracellular region. It mainly binds to small-molecule, and it is involved in hydrolase activity, endopeptidase activity, and sodium channel regulator activity. Pathway enrichment analysis showed that these proteins are mainly involved in Endocrine and other factor-regulated calcium reabsorption, Lysosome, Renin-angiotensin system, Carbohydrate digestion and absorption, Metabolic pathways, etc.

Hepcidin is a circulating antimicrobial peptide involved in iron homeostasis, inflammation, infection, and metabolic signaling (Lu et al., 2015), There are two murine hepcidin genes: hepcidin-1 (Hamp1) and hepcidin-2 (Hamp2) (Truksa et al., 2007). Studies have shown that in addition to liver level, inflammation can increase the expression level of iron modulin (Kanamori et al., 2017; Silva et al., 2019). In this study, hepcidin-2 (Hamp2) expression increased. It has been reported that people with PTSD show elevated levels of pro-inflammatory cytokines, including IL1B (Dinarello, 2011; Tursich et al., 2014; Passos et al., 2015). In animal studies, IL1B expression level in hippocampus of depressed animal model was increased (Goshen et al., 2008). Therefore, Hamp2 expression may be induced by inflammatory factors in mice with PTSD. At the same time, IPA analysis showed that increased Hamp2 expression was correlated with IL1B, and the relationship between Hamp2 and IL1B in THE urine of PTSD will be further discussed in subsequent studies.

There are some limitations in the present study. First, the abundance of metabolites and proteins in the urine itself is small, and removing the peak degree through database construction ends up in data-loss, suggesting a potential data loss in urine protein-metabolism combined analysis. Second, only 6 eligible mice from each group were used for protein-metabolic analysis, and the results of the discovery omics study were not validated by targeted methods (e.g., western blotting). Therefore, further studies are required to validate these findings.



CONCLUSION

In this study, based on urine protein-metabolomics combined analysis, we found that the differentially expressed proteins of PTSD in mice were mainly in the extracellular space and region, and showed dysfunction of pyrimidine metabolism. Furthermore, Uridine and L-glutamate can be used as key urine biomarkers to provide a reference for subsequent studies on PTSD.
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Background: Neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies (NEDDFSA) is a rare syndromic disorder characterized by global neurodevelopmental delay, early-onset hypotonia, poor overall growth, poor speech/language ability, and additional common phenotypes such as eye anomalies, joint hypermobility, and skeletal anomalies of the hands and feet. NEDDFSA is caused by heterozygous pathogenic variants in the ZMIZ1 gene on chromosome 10q22.3 with autosomal dominant (AD) mode of inheritance. All the 32 reported cases with variants in ZMIZ1 gene had a genetic background in Caucasian, Hispanic, North African, and Southeastern Asian. Until now, there are no reports of Chinese patients with ZMIZ1 pathogenic variants.
Methods: A 5-year-old girl was found to have the characteristic phenotypes of NEDDFSA. Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing (WES) were applied for the trio of this female patient. Sanger sequencing was used to verify the selected variants. A comprehensive molecular analysis was carried out by protein structure prediction, evolutionary conservation, motif scanning, tissue-specific expression, and protein interaction network to elucidate pathogenicity of the identified ZMIZ1 variants.
Results: The karyotype was 46, XX with no micro-chromosomal abnormalities identified by array-CGH. There were 20 variants detected in the female patient by WES. A de novo heterozygous missense variant (c.2330G > A, p.Gly777Glu, G777E) was identified in the exon 20 of ZMIZ1. No variants of ZMIZ1 were identified in the non-consanguineous parents and her healthy elder sister. It was predicted that G777E was pathogenic and detrimental to the spatial conformation of the MIZ/SP-RING zinc finger domain of ZMIZ1.
Conclusion: Thus far, only four scientific articles reported deleterious variants in ZMIZ1 and most of the cases were from Western countries. This is the first report about a Chinese patient with ZMIZ1 variant. It will broaden the current knowledge of ZMIZ1 variants and variable clinical presentations for clinicians and genetic counselors.
Keywords: Zmiz1, NEDDFSA, Chinese, low-complexity region, whole-exome sequencing
INTRODUCTION
Neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies (NEDDFSA; OMIM #618659) is a rare syndromic disorder characterized by global neurodevelopmental delay, hypotonia, poor overall growth, poor speech/language ability, and other common phenotypes such as eye anomalies, joint hypermobility, and distal skeletal anomalies of the hands and feet (Carapito et al., 2019). A balanced translocation t (10; 19) (q22.3; q13.33) was first reported in 2015, involving zinc finger MIZ-type containing 1 (ZMIZ1, OMIM #607159) and proline-rich protein 12 (PRR12, OMIM #616633). It produced two types of fusion genes, ZMIZ1-PRR12 and PRR12-ZMIZ1, which might be related to the occurrence of intellectual disability (ID) and neuropsychiatric alterations (Córdova-Fletes et al., 2015). Later, in 2019, pathogenic variants involving the gene ZMIZ1 were identified in a cohort of 19 NEDDFSA cases from a transatlantic collaborative effort (Carapito et al., 2019). In the same year of 2019, an affected father and his two sons were identified to be suffering from the ZMIZ1-related neurodevelopmental disorder in Florida (Latchman et al., 2020). In 2021, Phetthong et al. reported a 5-year-old Thai girl with developmental delay, facial phenotypes resembling Williams syndrome, and cardiac defects. She carried three types of compound variants, a heterozygous ZMIZ1 variant (c.1497+2T > C), a heterozygous frameshift variant of OTUD6B (OMIM #612021) (c.873delA, p.Lys291AsnfsTer3), and a 0.118 Mb 8q21.3 microdeletion involving OTUD6B (Phetthong et al., 2021).
The gene ZMIZ1 was mapped to chromosome 10q22.3 and it contains 21 exons to produce a 1067-amino acid protein with a calculated molecular mass of 123 kDa (Sharma et al., 2003). According to the Conserved Domain database (CDD) (Lu et al., 2020), ZMIZ1 contains a Zmiz1 N-terminal tetratricopeptide repeat domain (Zmiz1_N, 8–100), Med15 domain (184–557), a nuclear localization signal (NLS, 697–711), a SP-RING zine finger domain (SP-RING_ZMIZ, 739–786), and a transactivation domain (TAD, 837–1067). In 1999, Nagase et al. identified the gene ZMIZ1 (previously called KIAA1224) from a fetal brain cDNA library (Nagase et al., 1999). The encoded protein is a transcriptional co-activator, which belongs to the Protein Inhibitor of Activated STAT (PIAS) family. As a member of the PIAS family, ZMIZ1 has a highly conserved MIZ (Msx-interacting zinc finger) domain which is important for protein-protein interaction and SUMOylation (Sharma et al., 2003; Beliakoff and Sun, 2006). It had been reported that ZMIZ1 could regulate the activity of many transcription factors, such as androgen receptor (AR) (Beliakoff and Sun, 2006), SMAD3 (Li et al., 2006), SMAD4 (Li et al., 2006), and p53 (Lee et al., 2007). As an ortholog of ZMIZ1, tonalli (tna) was identified in Drosophila melanogaster and interacted with the ATP-dependent SWI/SNF complexes, which suggested a potential role in chromatin remodeling (Gutiérrez et al., 2003). Recently, ZMIZ1 was identified to be interacted with BRG1 (SMARCA4) (Li et al., 2011), BAF57 (SMARCE1) (Li et al., 2011), or SATB1 (Pinnell et al., 2015) to regulate the chromatin remodeling in humans. Chromatin remodeling complex could regulate the expression of genes which were essential for the normal dendrite development, synaptic plasticity, and synapse formation (Wu et al., 2007; Vogel-Ciernia et al., 2013; Vogel-Ciernia and Wood, 2014). It has been reported that in utero electroporation of ZMIZ1 pathogenic variants into the progenitor cells in the ventricular zone (VZ) of mice cortices (E14.5) resulted in impaired neuronal positioning with an accumulation in the ventricular and subventricular zones (VZ/SVZ) and intermediate zone (IZ) and a corresponding depletion in the upper cortical plate (CP). Therefore, ZMIZ1 variants were regarded as the causal genetic factors for NEDDFSA (Carapito et al., 2019).
Thus far, no patients with ZMIZ1 variants have been reported in Chinese. In order to decipher the genetic factors for neurodevelopmental disorder or intellectual disability (NEDD/ID) in China, array-CGH and WES were carried out for a cohort of 54 patients with NEDD/ID living in Shenzhen, Guangdong Province, China. After comprehensive bioinformatic analysis, a de novo missense variant (c.2330G > A, p.Gly777Glu, or p.G777E) was identified in the exon 20 of ZMIZ1 in a 5-year-old girl with mild development delay, mild intellectual disability, bilateral hip dysplasia, joint hypermobility, amblyopia in both eyes, strabismus in the right eye, and dysmorphic facial features. According to the criteria proposed by the American College of Medical Genetics and Genomics (ACMG) (Richards et al., 2015), this variant was classified as PS2 + PM1 + PM2 + PP2 + PP3 and annotated as “Pathogenic.” After comparing the clinical phenotypes described for NEDDFSA with the clinical phenotypes of our current Chinese patient, this girl was diagnosed as NEDDFSA. This variant is located in the highly conserved zf-MIZ domain and affected the three-dimensional conformation which might be detrimental for the binding of ZMIZ1 to its partners.
To our knowledge, this is the first case of Chinese NEDD/ID caused by a ZIMI1 variant. Due to the huge population, more patients with ZMIZ1-related disorder will be found in the near future.
METHODS
Sample Collection
This study was conducted in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans. This study was approved by the Ethics Committee of the Shenzhen Baoan Women’s and Children’s Hospital. Written informed consent was obtained from each individual.
Peripheral venous blood was collected from the 54 NEDD/ID patients and their parents. Genomic DNA was extracted using the TIANamp Blood DNA Kit (DP348, Tiangen Biotech, Beijing, China) according to the manufacturer’s instructions.
Array-Comparative Genomic Hybridization
Array-CGH was performed using the Fetal DNA Chip (Version 1.2) designed by The Chinese University of Hong Kong (CUHK) (Leung et al., 2011; Huang et al., 2014). The chip contains a total of 60,000 probes for more than 100 diseases caused by known microduplication/microdeletions. It does not include small-size chromosomal abnormalities, copy number polymorphism, chimerism, or chromosomal rearrangement (Iafrate et al., 2004). The experimental procedures were carried out according to the standard Agilent protocol (Agilent Oligonucleotide Array-Based CGH for Genomic DNA Analysis, version 3.5). Hybridized slides were scanned with SureScan High-Resolution Microarray Scanner (G2505B, Agilent Technologies, Santa Clara, CA), and the image data were extracted and converted to text files using Agilent Feature Extraction software (Version 10.5.1.1). The data were graphed and analyzed using Agilent CGH Analytics software.
Only gains or losses that were encompassed by at least three consecutive oligomers on the array were considered. Then, the clinical relevance of observed chromosomal aberrations was estimated according to data found in the scientific literature and databases for each of the regions and genes involved, using the DECIPHER database (Swaminathan et al., 2012) for known microdeletion and microduplication syndromes and the Online Mendelian Inheritance in Man (OMIM) (Sayers et al., 2021) for known disease-causing genes, gene functions, and inheritance patterns. Copy number variations were considered as “likely pathogenic/pathogenic” when they involved regions known to be associated with microdeletion or microduplication syndromes.
High-Throughput Whole Exome Sequencing
WES was performed for family trios (trio-WES) without chromosomal abnormalities at MyGenostics or BerryGenomics Co. LTD. Briefly, the fragmented genomic DNAs were ligated with the 3ʹ end of the Illumina adapters and amplified by polymerase chain reaction (PCR). The amplified DNA was captured with Gencap Human whole Exon Kit (52M) at MyGenostics or with xGen Exome Research Panel v2.0 (Integrated DNA Technologies, Coralville, IA) at BerryGenomics. The capture procedure was performed in accordance with the manufacturer’s protocol. Finally, the generated libraries were sequenced on Illumina HiSeq 2500 platform for paired-end sequencing.
The sequencing depth of each sample was about 100. Sequencing reads were aligned with the human reference genome (UCSC hg19). The workflow of the screening for causal variants was depicted in Figure 1. Briefly, clean reads were obtained after removal of adaptors and low-quality reads. GATK (Genome Analysis Toolkit) was used to trim the variant calling in the trimmed WES clean data (https://gatk.broadinstitute.org/hc/en-us). ANNOVAR was applied to annotate the generated VCF file (Wang et al., 2010). Deleted variants with a minor allele frequency (MAF) > 5% in the 1000 Genome Project, MAF >2% in in-house data, or synonymous single nucleotide variants (SNVs) were removed. SNVs that caused splicing, frameshift, stop gain, or stop loss were retained for subsequent analysis. A position was called as heterozygous if 25% or more of the reads identify the minor allele.
[image: Figure 1]FIGURE 1 | Analysis flowchart of the whole exome sequencing data.
The chromosomal location and type of the identified variants were retrieved in UCSC Genome Browser (Navarro Gonzalez et al., 2021) and NCBI dbSNP (Bhagwat, 2010). The MAFs of the variants were screened in several public databases with a large number of human samples, such as 1000 Genome Project (n = 2504) (Siva, 2008), NHLBI Exome Sequencing Project (GO-ESP) (n = 6503) (Amendola et al., 2015), The Exome Aggregation Consortium (ExAC) (n = 60,706) (Lek et al., 2016), gnomAD (n = 15,708) (Scheps et al., 2020), and NHLBI Trans-Omics for Precision Medicine (TOPMED) (n = 60,000) (Taliun et al., 2021). The function prediction of these variants was carried out by online software, PolyPhen-2 (Adzhubei et al., 2010), and PROVEAN (Choi et al., 2012). Pathogenicity of the variants was evaluated according to the American College of Medical Genetics and Genomics (ACMG) guidelines (Richards et al., 2015). The selected variants were verified by Sanger sequencing using the ABI 3500 Genetic Analyzer (Applied Biosystems, Foster City, CA).
Computational Analysis for the G777E Variant of ZMIZ1
Protein sequences of ZMIZ1 in 34 species were downloaded from NCBI GenBank, including five primates (Homo sapiens, Pan troglodytes, Gorilla Gorilla gorilla, Hylobates moloch, and Macaca fascicularis), one cattle (Bos taurus), one horse (Equus caballus), one dog (Canis lupus familiar), three carnivores (Neogale vison, Panthera tigris, and Halichoerus grypus), three rodents (Eptesicus fuscus, Mus musculus, and Rattus norvegicus), five reptiles (Crotalus tigris, Varanus komodoensis, Dermochelys coriacea, Chelonoidis abingdonii, and Mauremys mutica), two birds (Falco rusticolus, Gallus gallus), three amphibians (Bufo bufo, Xenopus tropicalis, and Oryzias latipes), three fish (Takifugu rubripes, Hippocampus comes, and Danio rerio), three arthropods (Limulus polyphemus, Penaeus monodon, and Ceratitis capitata), and four mollusks (Acropora millepora, Crassostrea gigas, Octopus sinensis, and Exaiptasia diaphana). The protein sequences were aligned by the ClustalW alignment algorithms of MEGA X (Kumar et al., 2018) (gap opening penalty and gap extension penalty for pairwise alignment and multiple alignment were set as 10.00, 0.10 and 10.00, 0.20, respectively; the delay divergent cutoff was 30%).
The intrinsically disordered regions of ZMIZ1 protein (NP_065071) were analyzed using the online web server IUPred2A (https://iupred2a.elte.hu/) with long disorder setting to identify probable disordered regions using the IUPred2 model and disordered binding regions using the ANCHOR2 model (Erdos and Dosztanyi, 2020). The distinct motifs of ZMIZ1 were analyzed using the online software Motif Scan (https://myhits.sib.swiss/cgi-bin/motif_scan) under default settings to search all known motifs in HAMAP (Pedruzzi et al., 2015), PROSITE (Hulo et al., 2006), Pfam (Mistry et al., 2021), and InterPro databases (Mitchell et al., 2019). The possible phosphorylation sites of ZMIZ1 were predicted by Disorder Enhanced Phosphorylation Predictor (DEEP, http://www.pondr.com/cgi-bin/depp.cgi) using 0.50 as the cutoff value (Iakoucheva et al., 2004).
The effect of G777E on the structural change was predicted by the online protein structure and function prediction tool, I-TASSER (Iterative Threading ASSEmbly Refinement) under default parameters (Yang and Zhang, 2015) for the whole second globular region (aa575-820) and visualized using Mol* 3D Viewer (Sehnal et al., 2021). The gene expression data of ZMIZ1 were evaluated according to the normalized signal intensity of probe 212124 at which were extracted from a gene atlas of human protein-encoding transcriptomes for 79 human tissues (NCBI GEO #GSE1133) (Su et al., 2004). The protein interaction network with ZMIZ1 (PPI enrichment p value = 1.51E-03) was generated by STRING (version 11.5, https://string-db.org/) under default settings. Gene Ontology (GO) analysis was performed on the nine members of the network in the GO knowledgebase (http://geneontology.org/) under default parameters.
RESULTS
Sample Description
There were 54 cases in our current NEDD/ID cohort collected from southern China. There were 48.15% (26/54) women and 51.85% (28/54) men. The mean age of women and men patients was 2.45 ± 1.15 and 2.67 ± 1.71, respectively. In these 54 samples, pathogenic variants were found in 33 patients, 5 with microdeletions and 28 with variants in protein-coding genes (Supplementary Table S1). The positive rate was 61.11% (33/54). In one patient, ZMIZ1 was detected to have a pathogenic missense variant (c.2330G > A, p.G777E). This patient was a 5-year-old girl who was referred to our department because of psychomotor developmental delay. She was the second child of a non-consanguineous couple (Figure 2A). The proband was delivered at term to a 36-year-old mother by Cesarean section due to breech position at 2016-10. Her birth weight was 3000 g, and there was no history of asphyxia at birth. At the sixth month after birth, asymmetric dermatoglyphs were found on both of her lower limbs after a physical examination and later diagnosed as dysplasia of bilateral hip joints. At 1 year old, the patient had chronic constipation. Since 2017, she has been sent to the ophthalmology department several times due to binocular weak eyesight and strabismus in the right eye. After 1 year old, she was still unable to speak and walk without support and was sent to the rehabilitation center for special training. Until 2 years old, she was able to speak simple words and walk, and was finally diagnosed as “developmental delay”.
[image: Figure 2]FIGURE 2 | Characterization of the patient’s information. (A) Pedigree; (B) pictures of hands and foot; (C) DR X-ray film for bilateral hip joints.
For facial features, the patient had epicanthus, ptosis, up-slanting eyelid fissure, wide eye distance, wide nose bridge, Cupid lip arch and low-set ear. Regarding skeletal abnormalities, she had short fingers and toes, conical fingers (Figure 2B), and excessive joint mobility. As for the gross motor, the patient could walk alone. She could not stand on one foot for more than 3 s and jump on one foot. The trotting posture was slightly abnormal, and easy to fall. In terms of fine motor, she could draw a straight line, pull a zipper, unbutton buckles, cut paper inflexibly with scissors, eat with spoons and chopsticks, but couldn’t draw circles, squares, and triangles. In terms of the language, she could speak simple and long sentences with clear pronunciation, understand a few Chinese characters, recite numbers from 1 to 20, answer simple questions, but sometimes with confused word order and logic. For the social adaptive capacity, she could wear and take off clothes, shoes, and socks, could go to the bathroom, and eat by herself. She had the initiative to share and express her needs but without the initiative to say hello and goodbye. Besides, she had poor name calling response, poor sitting quietly ability, and hyperactive behavior.
The visually evoked potential (VEP) test showed that after blink flash stimulation for both eyes, N75, P100, and N145 waves could be induced with good repeatability. However, the latency of the P100 and N145 waves on both sides was prolonged, which was slightly abnormal. The evaluations for audiology system, heart, and urinary system were normal. DR X ray film for hip joint anteroposterior projection at 4-years-7-months old showed that the left and right acetabular angles were about 22 and 25°, respectively (Figure 2C). She was diagnosed with congenital dysplasia of the hip by an orthopedic surgeon at a tertiary children’s hospital. She received 2 brain MRI scans (March 28, 2019and October 26, 2021) and 3 electroencephalogram (EEG) examinations (March 15, 2019, August 20, 2020, and June 23, 2021). No obvious irregularities were identified.
Neuropsychological development assessment was performed for the patient at 5-years-1-month old using the Wechsler Preschool and Primary Scale of Intelligence Fourth Edition (WPPSI-IV) and the parent-rated Adaptive Behavior Assessment System II (ABAS-II) infant version. Her score on the full-scale intelligence quotient of WPPSI-IV was 75 (95% CI: 70-82, P5). The verbal comprehension index, visual spatial index, perceptual reasoning index, working memory index, and processing speed index of WPPSI-IV were 77 (95% CI: 71-86, P6), 83 (95% CI 76-94, P13), 79 (95% CI 73-87, P8), 76 (95% CI 76-94, P5), and 71 (95% CI 66-85, P3), respectively. The overall adaptive function score of ABAS-II was 77 (95% CI: 73-81, P6). The scores of social skills, conceptual skills, and practical skills in the three composite areas of adaptive function were 71 (95% CI 64-78, P3), 84 (95% CI 77-91, P14), and 80 (95% CI 74-86, P9), respectively. According to the clinical evaluation, she was at the edge level of intellectual development.
Trio-WES Identified a de Novo Missense Variant of ZMIZ1 Gene
Whole exome sequencing was performed for the trio to identify possible genetic factors of the proband. After removal of adaptors and low-quality reads, the obtained total clean data obtained for the trio were 11,959.04 (Mb) for the proband, 15,681.80 (Mb) for the father, and 12,202.51 (Mb) for the mother (Table 1). The target coverage was at least or more than 98%. The average depth of target region was more than 100X. The on-target ratio was more than 35%. In these samples, the total numbers of identified SNVs were 175,809 for the proband, 197,560 for the father, and 179,722 for the mother, respectively. The percentages of pathogenic variants were around 4%. The total number of small insertions and deletions were 36,452, 42,698, and 36,816 for the proband, father, and mother, respectively.
TABLE 1 | Characterization of the whole exome sequencing for the trio.
[image: Table 1]In this proband, 20 specific variants were selected. Twelve of them were heterozygous in 10 genes (ANKRD36C, MUC2, MUC4, HRCT1, KLHL29, MYO15B, PER3, RPTN, TWIST1, and ZMIZ1) and 8 homozygous in 8 genes (AGAP3, CCDC177, CGN, DSPP, ESX1, FOXN4, MUC4, POTEB3, and SLC35E2A) (Table 2). According to the criteria of ACMG guidelines, 10 heterozygous and 8 homozygous variants were annotated as variants of uncertain significance (VUS). Most of these variants were predicted to be “neutral” by Provean or “benign” by Polyphen. PER3 (OMIM #603427), TWIST1 (OMIM #601622), and DSPP (OMIM #125485) were also recorded in the OMIM database as disease-causing genes. However, the phenotypes caused by these genes were not in line with our female proband. Besides, two rare heterozygous variants (c.148C > T, p.R50W in KLHL29 and c.2330G > A, p.G777E in ZMIZ1) were annotated as “likely pathogenic” (PS2 + PM2 + PP2) and “pathogenic” (PS2 + PM1 + PM2 + PP2 + PP3), respectively.
TABLE 2 | Identified variants in the five-year-old proband.
[image: Table 2]Since there was no experimental evidence for KLHL29 leading to neurodevelopmental disorder, ZMIZ1 was considered as the most potential disease-causing gene. The c.2330G > A (p.G777E) was a heterozygous SNV in the exon 20 of ZMIZ1 gene (NM_020338) (Figures 3A,B) and confirmed by Sanger sequencing (Figure 3C) only in the patient, but not in her healthy parents or her elder sister. Thus, it was a de novo variant. The protein sequences of ZMIZ1 from more than 34 species (Mollusca, crabs, fish, amphibians, insects, reptiles, rodents, dogs, cats, cattle, and primates) were downloaded from NCBI GenBank and aligned by the ClustalW alignment algorithms of MEGA 11, the G777 was highly conserved in the animals during evolution (Figure 3D). G777E was localized in the functional MSX-interacting zinc finger (zf-MIZ) domain (Figure 3E) and predicted to be “deleterious” with a score of 0.536, “deleterious” with a score of -7.736 (Provean) and “probably damaging” with a score of 0.992 (PolyPhen-2). In addition, this SNV has not been detected in multiple public genome databases, such as 1000 Genome Project (n = 2504), NHLBI Exome Sequencing Project (GO-ESP) (n = 6503), the Exome Aggregation Consortium (ExAC) (n = 60,706), Genome Aggregation database (gnomAD) (n = 15,708), and NHLBI Trans-Omics for Precision Medicine (TOPMED) (n = 60,000). Since this amino acid changing variant was only identified in the patient, and not in her parents, it was regarded as “spontaneous.” According to the Probability of Loss-of-function Intolerance (pLI) analysis, the pLI value of ZMIZ1 was 1.000, which indicated ZMIZ1 being a haploinsufficient gene. It has been reported that ZMIZ1 could cause the occurrence of a rare neurodevelopmental disorder, neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies (NEDDFSA). Based on the recorded clinical phenotypes (Supplementary Table S2), this patient was finally diagnosed as NEDDFSA. Besides, four rare variants in ZMIZ1 were also detected in another four NEDD patients, namely, c.3096 + 15C > T, c.1024A > G (p.M342V), c.540 + 20T > C and c.679G > A (p.A227T) (Supplementary Table S3).
[image: Figure 3]FIGURE 3 | Molecular analysis of the c.2330G > A (p.G777E) in ZMIZ1 gene. (A) Gene structure of ZMIZ1; (B) IGV view of the c.2330G > A identified by WES; (C) Sanger sequencing of the c.2330G > A variant; (D) evolutionary conservation analysis; (E) protein structure of ZMIZ1; (F) analysis for intrinsically disordered regions and phosphorylation sites.
The intrinsically disordered regions of ZMIZ1 protein (NP_065071) were analyzed using the online web server IUPred2A. Two functional globular regions were identified at two portions (aa2-110 and 575-820), which overlapped with the two important functional domains, Zmiz1 N-terminal tetratricopeptide repeat domain (Zmiz1_N, aa8-100) and MIZ/SP-RING zinc finger (zf-MIZ, aa739-786), respectively. The predicted two globular regions and two intrinsically disordered regions are displayed in Figure 3E. The possible phosphorylation sites of ZMIZ1 were predicted using DEEP under default parameters. Interestingly, most of the phosphorylation sites were located in the two long disordered regions (Figure 3F). As for G777E, it was localized in the second globular regions containing zf-MIZ domain and might affect the probable tertiary structures as predicted by I-TASSER (Supplementary Figure S1).
Analysis of the Distinct Regions of ZMIZ1
The distinct regions of ZMIZ1 were analyzed using the online software Motif Scan under default settings. Seven distinct regions were identified, one alanine-rich region (aa280-305, E-score = 2.1E-06), two proline-rich regions (aa334-555, E-score = 3.9E-16; aa867-1002, E-score = 3.8E-07), one bipartite nuclear localization signal (NLS, aa697-711, E-score = 2.1E+04), MIZ/SP-RING zinc finger (aa738-787, E-score = 1.1E-33), and one copper binding octapeptide (aa947-954, E-value = 1.5). All variants of ZMIZ1 were also recruited from the DECIPHER database (Swaminathan et al., 2012) and the four published articles (Córdova-Fletes et al., 2015; Carapito et al., 2019; Latchman et al., 2020; Phetthong et al., 2021). A total of 33 patients with ZMIZ1 pathogenic variants were collected, 1 from our current cohort (Figures 4A,B), 8 from the DECIPHER database (Figure 4C), and 24 from published articles (Figure 4D). Except for K91R, H581R, and H683Y, other variants were localized in the low-complexity regions, such as the alanine-rich region and the proline-rich region of the Med15 (mediator complex subunit 15) domain, and the proline-rich region in the C-terminal transactivation domain (TAD). There were nine amino acid-changing variants, which were strongly conserved during evolution (Figure 4E). Six of them were in the alanine-rich region, accounting for 66.67% (6/9). From the phosphorylation prediction by DEEP, except for T300M, other variants could distinctly change the phosphorylation pattern of the alanine-rich region (Figure 4F).
[image: Figure 4]FIGURE 4 | Molecular analysis of variants of ZMIZ1. (A) Variant in our cohort; (B) diagram of ZMIZ1 protein; (C) variants in DECIPHER; (D) variants in reported articles; (E) evolutionary conservation; (F) phosphorylation analysis in the alanine-rich region.
Interaction Network of ZMIZ1
The gene expression data of 79 human tissues showed that ZMIZ1 was expressed in the heart, thyroid, immune cells, ovary, retina, and brain, with the highest in the pineal (Figure 5A). The protein interaction network with ZMIZ1 indicated that ZMIZ1 could interact with SMAD3, SMAD4, MYC, NOTCH1, RBPJ, SMARCA4, ETS1, and UBE2I (Figure 5B). According to the GO analysis for the 9 members (Figure 5C), the network was involved significantly in mesenchyme morphogenesis, hypoxia, tube morphogenesis, regulation of transcription, response to stimulus, endocardium development, epithelial to mesenchymal transition, and cardiac left ventricle morphogenesis in GO term “biological process.” In “molecular function,” transcription, SMAD binding, and SUMOylation were significantly enriched. As for “cellular component” and “subcellular localization,” members of this network were localized in nuclear to form multiple protein complexes, mainly MAML1-RBP-Jκ-ICN1 (Intracellular Notch1) complex and SMAD protein complex to regulate the expression of target genes.
[image: Figure 5]FIGURE 5 | Expression of ZMIZ1 in different human tissues, and network analysis. (A) Tissue-specific expression of ZMIZ1; (B) protein interaction network produced by STRING; (C) GO analysis for the 9 members of the network; (D) phenotypes of the patients carrying ZMIZ1pathogenic variants.
DISCUSSION
Pathogenic variants of the zinc finger MIZ-type containing 1 (ZMIZ1, OMIM#607159) could cause the occurrence of a rare syndromic disease, neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies (NEDDFSA) with an autosomal dominant (AD) mode of inheritance. Currently, 32 patients with neurodevelopmental disorders have reported carrying pathogenic variants in the protein coding sequences of ZMIZ1 (n = 29) and chromosomal translocations involving ZMIZ1 (n = 3) (Supplementary File S2). Among these patients, except for c.1491+2T > C identified in a Thai female, the remaining 31 variants were detected in patients with Caucasian origin in Western countries. In our small cohort of NEDD/ID cases in China, a de novo missense pathogenic variant c.2330G > A (p.G777E) was detected in a 5-year-old girl. This patient presented the characteristic clinical phenotypes of NEDDFSA, such as neurodevelopmental delay, mild intellectual disability, hypotonia, language delay, dysmorphic facial features, joint hypermobility, and hand and foot anomalies, which were the common features of NEDDFSA (Figure 5D, Supplementary Table S2). As far as we know, this was the first report of ZMIZ1 variant in Chinese. Besides, we also identified four other rare variants in the ZMIZ1 gene (c.540 + 20T > C, c.679G > A, c.1024A > G, and c.3096 + 15C > T) (Supplementary Table S3). Although predicted as “neutral” or “benign” to the function of ZMIZ1, it still could not rule out their pathogenicity. Cellular and animal experiments should be taken to verify the function of these variants, including the c.2330G > A (p.G777E).
ZMIZ1 was previously known as ZIMP10, RAI17, or KIAA1224. In 1999, Nagase et al. identified the gene ZMIZ1 (previously called KIAA1224) from a fetal brain cDNA library (Nagase et al., 1999). According to the human tissue-specific transcriptomes, it was expressed in the heart, thyroid, immune cells, ovary, retina, and brain, with the highest in the pineal gland (Su et al., 2004). The encoded protein is a transcriptional co-activator, which belongs to the Protein Inhibitor of Activated STAT (PIAS) family. As a member of the PIAS family, ZMIZ1 has a highly conserved MIZ (Msx-interacting zinc finger) domain which is important for protein-protein interaction and SUMOylation (Sharma et al., 2003; Beliakoff and Sun, 2006). It had been reported that ZMIZ1 could regulate the activity of many transcription factors, such as androgen receptor (AR) (Beliakoff and Sun, 2006), SMAD3 (Li et al., 2006), SMAD4 (Li et al., 2006), and p53 (Lee et al., 2007). As an ortholog of ZMIZ1, tonalli (tna) was identified in Drosophila melanogaster and interacted with the ATP-dependent SWI/SNF complexes, which suggested a potential role in chromatin remodeling (Gutiérrez et al., 2003). Recently, ZMIZ1 was identified to be interacted with BRG1 (SMARCA4) (Li et al., 2011), BAF57 (SMARCE1) (Li et al., 2011), or SATB1 (Pinnell et al., 2015) to regulate the chromatin remodeling in humans. The protein-protein interaction network showed that ZMIZ1 could interact with SMAD3, SMAD4, MYC, NOTCH1, RBPJ, SMARCA4, ETS1, and UBE2I. According to the GO analysis for the 9 members of the protein network containing ZMIZ1, the network was significantly involved in mesenchyme morphogenesis, hypoxia, tube morphogenesis, regulation of transcription, response to stimulus, endocardium development, epithelial to mesenchymal transition, and cardiac left ventricle morphogenesis. This explained why ZMIZ1 pathogenic variant could affect the normal development of multiple systems, such as nerve, heart, and bones. GO analysis also showed that members of this network were localized in the nucleus to form two multiple protein complexes, mainly MAML1-RBP-Jκ-ICN1 complex and SMAD protein complex, to regulate the expression of target genes. The proper expression of ZMIZ1 was essential for the standard embryonic development. It has been revealed in mice embryos at different stages that ZMIZ1 was expressed dynamically in the neural tissues, craniofacial tissues, mandibular, foregut, limb buds, optic vesicle and otic pit, and somite (Beliakoff et al., 2008; Rodriguez-Magadán et al., 2008). This was consistent with the above-mentioned clinical features produced by the mutant ZMIZ1.
After compiling all the ZMIZ1 variants in the DECIPHER database, published articles, and our cohort (Supplementary Table S2), 12 patients were found to carry amino-acid changing variants, and half of them (6/12) had variants in the alanine-rich sequence. The alanine-rich low-complexity region (LCR) was localized in the N-terminal intrinsic disordered region of ZMIZ1. The alanine-rich sequences were extremely conserved in different species during evolution, suggesting its importance for the proper function of ZMIZ1. According to the reports, many transcription factors or transcription mediators, such as FUS (FUS RNA binding protein), EWSR1 (EWS RNA binding protein 1), TAF15 (TATA-box binding protein associated factor 15), Sp1 (Sp1 transcription factor), and AR could interact with ZMIZ1 at the transcriptional start sites via their extremely low-complexity regions (LCRs) to form local phase-separated condensates (or called droplets) to stabilize DNA binding, recruit RNA polymerase II (RNA Pol II), and activate transcription (Chong et al., 2018; Zamudio et al., 2019). These special condensates were a trade-off between proper functionality and risk of abnormal aggregation. The aberrant phase transitions within liquid-like droplets lie at the heart of many kinds of diseases, such as TATA box-binding protein (TBP, OMIM#600075) for spinocerebellar ataxia 17 (SCA17, OMIM#607136) (Friedman et al., 2007), FUS (OMIM#137070) for amyotrophic lateral sclerosis 6 (ALS6, OMIM#608030) (Patel et al., 2015), and androgen receptor (AR, OMIM#313700) for spinal and bulbar muscular atrophy (SBMA, OMIM#313200). As predicted by IUPred2A, ZMIZ1 contained three low-complexity regions (one alanine-rich and two proline-rich regions). It is reasonable that the alanine-rich region might be indispensable for the phase separation of ZMIZ1 to carry out the transcription mediator function. As predicted, the variants could change the phosphorylation pattern in the alanine-rich region, which might affect the local conformation. This might be the underlying molecular mechanism for the alanine-rich region being the variation hotspot of ZMIZ1. However, this has not yet been experimentally verified.
CONCLUSION
In conclusion, a de novo missense variant was first discovered in a Chinese female with a rare heterozygous syndromic disease, neurodevelopmental disorder with dysmorphic facies, and distal skeletal anomalies (NEDDFSA). Currently, a total of 32 patients with 27 types of variants of ZMIZ1 (24 in protein-coding sequences and 3 translocations) have been identified globally. However, the underlying molecular mechanism of these variants has not been elucidated. Further experimental studies should be carried out to clarify these unknown fields to determine potential drug targets for the treatment of NEDDFSA.
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Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease, and many other disease types, cause cognitive dysfunctions such as dementia via the progressive loss of structure or function of the body’s neurons. However, the etiology of these diseases remains unknown, and diagnosing less common cognitive disorders such as vascular dementia (VaD) remains a challenge. In this work, we developed a machine-leaning-based technique to distinguish between normal control (NC), AD, VaD, dementia with Lewy bodies, and mild cognitive impairment at the microRNA (miRNA) expression level. First, unnecessary miRNA features in the miRNA expression profiles were removed using the Boruta feature selection method, and the retained feature sets were sorted using minimum redundancy maximum relevance and Monte Carlo feature selection to provide two ranking feature lists. The incremental feature selection method was used to construct a series of feature subsets from these feature lists, and the random forest and PART classifiers were trained on the sample data consisting of these feature subsets. On the basis of the model performance of these classifiers with different number of features, the best feature subsets and classifiers were identified, and the classification rules were retrieved from the optimal PART classifiers. Finally, the link between candidate miRNA features, including hsa-miR-3184-5p, has-miR-6088, and has-miR-4649, and neurodegenerative diseases was confirmed using recently published research, laying the groundwork for more research on miRNAs in neurodegenerative diseases for the diagnosis of cognitive impairment and the understanding of potential pathogenic mechanisms.
Keywords: neurodegenerative disease, microRNA, feature selection, expression pattern, classification algorithm
1 INTRODUCTION
Dementia is one kind of cognitive impairment that is characterized by difficulties in memory, language, and behavior. Of all chronic diseases, dementia has become one of the most important contributors to dependence and disability (Iliffe et al., 2009). With an increasing number of morbidity, dementia has become a great concern worldwide (Prince et al., 2016). Unfortunately, there is no cure for this disease at present, and earlier diagnosis and interventions to slow down the disease progress are needed (Iliffe et al., 2009). Therefore, researchers have focused on searching effective diagnostic methods, including the identification of new biomarkers for diagnosis, and interventions for dementia.
Although young-onset cases are increasingly recognized, dementia is typically a condition that affects older people. Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause of intellectual deficit in populations older than 65 years. More than 20% of individuals over 80 years of age are affected by AD, and epidemiological data predict that there will be over 35 million AD patients by 2050 (Danborg et al., 2014). Other less common causes of cognitive impairment include vascular dementia (VaD) whose definition and distinction remain controversial, mixed dementia, and dementia with Lewy bodies (DLB) (Mckeith et al., 1996). Diagnosing dementia is markedly difficult due to its insidious onset and diversity of other presenting symptoms such as difficulty in making decisions (Kostopoulou et al., 2008). Recent studies have reported that certain protein biomarkers in cerebrospinal fluid (CSF) can be applied in the clinical diagnosis of AD with a high predictive accuracy (De Meyer et al., 2010). However, such biomarkers have their limitations in differentiating AD from other types of dementia. In addition, biomarkers in CSF require an invasive collection process; thus, new methods through less invasive procedures are needed. Considering that the diagnosis of dementia subtypes is important to manage different therapies, disease courses, and outcomes for different dementias (Robinson et al., 2015), development of better biomarkers for AD and other dementias will contribute to more accurate diagnosis for an early and specialized treatment.
For a better clinical care in disease prevention and treatment, several computational models have been developed to predict dementia risk or subtypes (Stephan et al., 2010). For example, Licher et al. (2019) reported a dementia risk model using optimism-corrected C-statistics, which can be used to identify individuals with high risk of dementia with an accuracy of 0.86. This model was based on comprehensive clinical information such as age, cognitive impairment, and lifestyle factors. Interestingly, a novel machine learning prediction model for dementia risk identification using the voice data from daily conversations was proposed by Shimoda et al. (2021). They applied three strategies including extreme gradient boosting, random forest (RF), and logistic regression methods in developing models, which had AUCs of 0.86, 0.88, and 0.89, respectively. Li et al. (2019) reported a deep learning model for the early prediction of AD using hippocampal magnetic resonance imaging data, which achieved a concordance index of 0.762. In addition, genetic data were taken into account to improve the ability of the prediction model given that many genes were confirmed to be associated with AD (Seshadri et al., 2010). So far, models in dementia prediction lack molecular signatures such as transcriptional expression, which can reflect the underlying pathogenic mechanisms.
MicroRNAs (miRNAs) are small non-coding RNA molecules of approximately 22 nucleotides in length, which have been shown to regulate gene expression by binding to complementary regions of messenger transcripts (Lagos-Quintana et al., 2001). The detection of circulating miRNA levels has been proposed to be a potential diagnostic tool for a number of diseases (Gilad et al., 2008). MiRNAs play a crucial role in the control of neuronal cell development (Mistur et al., 2009). The alteration of the expression of some miRNAs has been shown to relate to various neurological diseases including AD. For example, miR-137, miR-181c, and miR-29a/b were reported to be involved in AD by modulating ceramide levels (Geekiyanage and Chan, 2011). The downregulation of miR-16, miR-195, and miR-103 was observed in the brain of AD patients, and these miRNAs were shown to target the β-site amyloid precursor protein cleaving enzyme 1 (BACE1), which is involved in amyloid plaque formation (Bekris et al., 2013). Cogswell et al. found significantly decreased expression of miR-9, which regulates neuronal differentiation, in the human hippocampus of AD patients (Cogswell et al., 2008; Coolen et al., 2013). Different expression patterns of miRNAs have also been found between AD and other neurodegenerative diseases; for example, miR-15a is uniquely elevated in the plasma of AD patients (Bekris et al., 2013). Therefore, miRNAs in the blood or serum are easily accessible and noninvasive biomarkers for diagnosing dementia. In addition, some miRNAs can be used to distinguish different subtypes of dementia for more precise treatment.
In this study, on the basis of the miRNA expression profiles from 1601 serum samples (Shigemizu et al., 2019a), including AD cases, VaD cases, DLB cases, mild cognitive impairment (MCI) cases, and normal controls (NC), we computationally analyzed such expression data. The data was first analyzed by Boruta (Kursa and Rudnicki, 2010), irrelevant miRNA features were excluded. Remaining miRNA features were evaluated by minimum redundancy maximum relevance (mRMR) (Peng et al., 2005) and Monte Carlo feature selection (MCFS) (Dramiński et al., 2007), respectively. Two feature lists were generated, which were fed into incremental feature selection (IFS) (Liu and Setiono, 1998), incorporating random forest (RF) (Breiman, 2001) or PART (Frank and Witten, 1998). As a result, we identified the crucial miRNAs that show the most relevance to the distinction of four different types of dementia and NC, suggesting that these selected miRNAs may play crucial roles in neuronal development. Furthermore, we also identified interesting classification rules, which suggested different miRNA expression patterns on different dementia subtypes and NC. These results can guide further research about the interaction between miRNAs and neurodegenerative diseases. Finally, we constructed two optimal classifiers with high accuracy to group individuals into the corresponding categories (four dementia subtypes and NC). They can be useful tools for the precise diagnosis of dementia subtypes. Our study highlights the potential application of miRNAs in dementia subtype diagnosis, indicating that the prediction framework using serum miRNA expression data can provide feasible therapeutic and diagnostic targets for dementia.
2 MATERIALS AND METHODS
2.1 Dataset
In this study, the miRNA expression profiles were obtained from the Gene Expression Omnibus database under the accession code GSE120584 (Shigemizu et al., 2019a; Shigemizu et al., 2019b; Asanomi et al., 2021). These expression profiles include 1,601 samples, which are composed of AD cases, VaD cases, DLB cases, MCI cases, and NC. The sample sizes of different cases are provided in Table 1. A total of 2547 miRNAs were identified in the expression profiles. Subsequently, we performed a computational workflow to detect key miRNA features and expression patterns in the expression profiles.
TABLE 1 | Sample size for normal control and four neurodegenerative diseases.
[image: Table 1]2.2 Boruta Feature Filtering
Aside from the time and energy costs of dealing with a high number of features, most machine learning algorithms work better when the number of predicting features employed is kept as small as possible. We thus applied a Boruta analysis on the miRNA expression profiles to reduce feature dimension and retain important miRNA features (Kursa and Rudnicki, 2010). Boruta is a feature selection approach based on the RF model to access feature importance (Z-score) by comparing the relevance of real features with shadow features, which are randomly shuffled from original features. The python application from https://github.com/scikit-learn-contrib/boruta_py with default parameters was used for Boruta feature selection in this analysis.
2.3 Feature Ranking
2.3.1 Minimum Redundancy Maximum Relevance
The mRMR algorithm (Peng et al., 2005) is an entropy-based feature selection method that calculates the mutual information (MI) between a group of features and class variable. The MI is defined as follows:
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where [image: image] is the joint probability density function of X and Y, [image: image] and [image: image] are the marginal probability density functions of X and Y, respectively. In the mRMR method, the correlation (D) between features and target label and the redundancy (R) between features and other features are computed as follows:
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where [image: image] is the selected features and [image: image] is the MI between feature [image: image] and the target label [image: image].
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where [image: image] is the MI between feature [image: image] and feature [image: image]. To repeatedly add a new feature to a feature subset [image: image], the following objective function is optimized:
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In this study, we used the mRMR program acquired from http://home.penglab.com/proj/mRMR/ to rank all the features obtained by Boruta analysis, resulting in an mRMR feature list.
2.3.2 Monte Carlo Feature Selection
The MCFS method (Dramiński et al., 2007) evaluates the feature importance by creating numerous decision trees. More specifically, for a dataset with M features, MCFS first randomly constructs s feature subsets with m features (m << M). For each feature subset, t decision trees are constructed using the bootstrap sampling method. Finally, s✕t classification trees are constructed and evaluated. The RI score of feature g based on these classification trees is defined as follows:
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where [image: image] is the weight accuracy of the decision tree [image: image]; [image: image] denotes the gain information of node [image: image]; [image: image] and [image: image] represent the number of samples of node [image: image] and the number of samples in tree [image: image], respectively; and u and v are parameters that are recommended to be 1. After MCFS processing, all features are ranked in a feature list in descending order of RI values. In this study, we applied the MCFS program developed by Draminski et al., which can be accessed at http://www.ipipan.eu/staff/m.draminski/mcfs.html, for feature sorting, and the parameters were set to default values. The obtained feature list was called MCFS feature list.
2.4 Incremental Feature Selection
In the previous analysis, the mRMR and MCFS feature ranking lists were obtained, but it was not possible to determine the optimal feature subsets for classifying disease cases. Thus, the IFS method (Liu and Setiono, 1998) was used in this study to identify the best number of features in a feature list for a specific classification algorithm. IFS first generates a series of feature subsets on the basis of a step size. For example, if the step size equals to 1, the first feature subset includes one top-ranked feature, the second feature subset is made up of two top-ranked features, and so on. Then, the sample datasets represented by these feature subsets are trained by one classification algorithm (RF or PART in this study). The classifiers are evaluated by using 10-fold cross-validation (Kohavi, 1995; Tang and Chen, 2022; Yang and Chen, 2022). The evaluation metrics (e.g., Matthews correlation coefficient [MCC]) for each classifier with different number of features are obtained and used to plot IFS curves, where the X-axis is the number of features and the Y-axis is the evaluation metrics. In the end, the optimal feature subsets that achieves the best classification results are identified, and the optimal classifiers are built.
2.5 Classification Algorithms
2.5.1 RF
The RF (Breiman, 2001) is an ensemble learning algorithm that takes decision trees as the base learner. It first produces a number of training sets from the original dataset using a bootstrapping method with randomized put-back sampling. These training sets are then used to train the decision tree model individually, and the generated decision trees are formed into a forest. Lastly, the final result is determined by aggregating the voting results of many tree classifiers. As RF is powerful, it is always an important candidate for constructing efficient classifiers (Chen et al., 2017; Zhao et al., 2018; Chen et al., 2021; Li X. et al., 2022; Li Z. et al., 2022; Chen et al., 2022; Ding et al., 2022). In this study, the RF program in Weka (Frank et al., 2004) was employed with default parameters.
2.5.2 PART
In contrast to black-box models, such as RF, rule learning models may learn rules from data to make discriminations on unknown data, and these rules are commonly expressed in an IF–THEN structure, which clearly expresses the patterns existing in the data. PART is a rule-generating method that combines the Ripper and C4.5 approaches without the need for global optimization (Frank and Witten, 1998). It uses a separate-and-conquer technique to develop several partial decision trees, in which a rule is constructed each time. Then, the instances it covers are eliminated, and rules are created recursively for the remaining instances until the end. The PART program in WEKA was used with the default parameters in this investigation.
2.6 SMOTE
The distribution of samples under five cases is uneven, which may lead to the poor performance of the established classifiers. To address this issue, we applied SMOTE methods to increase the sample size of the minority class, which is an oversampling technique presented by Chawla et al. (2002). SMOTE generates synthetic samples randomly between samples of a minority class and their neighbors on the basis of the k-nearest neighbor concept. The SMOTE algorithm in Weka software was used to process the miRNA expression profiles in this investigation, resulting in an equal number of samples in each class. It was necessary to pointed out that SMOTE was only used in evaluating the performance of classifiers in the IFS method. Pseudo samples generated by SMOTE did not participate in the mRMR or MCFS methods as they can influence the feature selection results.
2.7 Performance Measurement
For the 10-fold cross-validation, we used the MCC as a predictive metric for the evaluation of classifiers. In this study, considering that the analyzed miRNA dataset includes multiple disease cases, the multi-categorical version of MCC (Gorodkin, 2004) was applied and calculated as follows:
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where the binary matrix X represents the prediction results, the binary matrix Y indicates the real class label, and [image: image] stands for the covariance of the two matrices. The MCC ranges from −1 to 1, with a value closer to 1 indicating stronger model performance.
To fully display the performance of classification models, we also calculated other measurements, including individual accuracy on each class and overall accuracy (ACC). For one class, its individual accuracy was defined as the proportion of correctly predicted samples in this class. The ACC was defined as the proportion of correctly predicted samples.
3 RESULTS
3.1 Feature Selection Results on miRNA Expression Profiles
A flow chart of the present study is illustrated in Figure 1. We started by removing unnecessary features using the Boruta feature selection method, and the 108 retained features are listed in Supplementary Table S1.
[image: Figure 1]FIGURE 1 | Analysis flowchart for this study, which consists of three main steps: 1) miRNA dataset collection; 2) filtering and ranking of miRNA features in the dataset using Boruta, mRMR, and MCFS; 3) determining the essential miRNA features and building the best classifiers and classification rules using IFS method with RF and PART algorithms.
Then, using mRMR and MCFS, remaining 108 features were ranked according to feature importance, yielding two ranked feature lists (mRMR feature list and MCFS feature list), as shown in Supplementary Table S1. Top ten miRNA features in these two lists were investigated, as shown in Figure 2. Four miRNAs, including hsa-miR-3184-5p, hsa-miR-1227-5p, hsa-miR-3181, and hsa-miR-6088, appeared in the top 10 features yielded by two methods, highlighting their visibility and importance. The biological roles of these miRNA features will be explored in Section 4.
[image: Figure 2]FIGURE 2 | Venn diagram to show top ten miRNA features obtained by mRMR and MCFS methods. Four miRNA features are commonly identified.
3.2 IFS Results on the mRMR Feature List
Based on the mRMR feature list, it was fed into the IFS method with a step size of 1, returning 108 feature subsets. For example, the first feature subset includes the first feature, the second feature subset includes the first two features, and so on. The RF and PART classifiers were trained using the sample set consisting of these feature subsets, and the performance was assessed using 10-fold cross-validation. Obtained measurements are provided in Supplementary Table S2. To clearly display the performance of classifiers on different feature subsets, an IFS curve was plotted for each classification algorithm, which is shown in Figure 3A. When RF was selected as the classification algorithm in the IFS method, the highest MCC was 0.683, which was obtained by using top 106 features. Accordingly, the optimal RF classifier can be built with these features. The ACC of such classifier was 0.802, as listed in Table 2. As for PART, the highest MCC was 0.359. It was obtained by using top 72 features, with which the optimal PART classifier can be built. The ACC of such PART classifier was 0.570, as listed in Table 2. Clearly, the optimal PART classifier was much inferior to the optimal RF classifier. As for their performance on five classes, individual accuracies are shown in Figure 4A. Evidently, the optimal RF classifier provided better performance than the optimal PART classifier on all classes. Both MCI and VaD have an individual accuracy of over 0.900 in the optimal RF classifier.
[image: Figure 3]FIGURE 3 | IFS curves with different number of features in RF and PART under the mRMR and MCFS feature lists. (A). With the mRMR feature list, RF reaches the highest point (MCC = 0.683) with the top 106 features, and PART obtains the highest MCC (0.359) when using the top 72 features. The RF with top 41 features also provides high performance (MCC = 0.587). (B). With the MCFS feature list, RF and PART reach the highest points (MCC = 0.681 and 0.360, respectively) at the top 106 and 89 features. The RF with top 31 features also yields high performance (MCC = 0.575).
TABLE 2 | Performance of key classifiers with different algorithms based on the mRMR feature list.
[image: Table 2][image: Figure 4]FIGURE 4 | Performance of the key RF and PART classifiers on each class based on mRMR (A) and MCFS (B) feature lists. AD, VaD, DLB, MCI, and NC stand for Alzheimer’s disease, Vascular dementia, Dementia with Lewy bodies, Mild cognitive impairment and Normal control, respectively.
Although the optimal RF classifier gave good performance, it was not very proper to do large-scale tests because lots of miRNA features involved. In view of this, we carefully checked the IFS results with RF and found that RF provided the MCC of 0.587 when top 41 features were used (Figure 3A). This classifier yielded the ACC of 0.743 (Table 2). Its performance on five classes is shown in Figure 4A. Although it provided lower performance than the optimal RF classifier, it was much faster as much less miRNA features were needed. This classifier can be an efficient tool to identify four dementia subtypes and NC.
3.3 IFS Results on the MCFS Feature List
For the MCFS feature list, the same procedures were conducted. Detailed performance of RF and PART on different number of features is listed in Supplementary Table S3. Likewise, an IFS curve was plotted for each classification algorithm to display the performance of them on different feature subsets, as illustrated in Figure 3B. It can be observed that the highest MCC for RF was 0.681, which was obtained by using top 106 features. Thus, we can build the optimal RF classifier with these features. The ACC of such classifier was 0.803, as listed in Table 3. Its performance on each class is shown in Figure 4B. Compared with the performance of the optimal RF classifier in Section 3.2, their performance was almost equal. As for PART, its highest MCC was 0.360. It was obtained by using top 89 miRNA features. Accordingly, the optimal PART classifier was built using these features. The ACC of this classifier was 0.555 (Table 3). The performance of this classifier on each class is shown in Figure 4B. Evidently, this PART classifier provided equal performance to the optimal PART classifier in Section 3.2. However, they were all inferior to the optimal RF classifiers.
TABLE 3 | Performance of key classifiers with different algorithms based on the MCFS feature list.
[image: Table 3]Similar to the optimal RF classifier in Section 3.2, this optimal RF classifier also need several features. It was necessary to discover another RF classifier with a higher efficiency. After careful checking, we found that RF classifier with top 31 features can produce the MCC of 0.575 (Figure 3B) and ACC of 0.713 (Table 3). Its performance on five classes is shown in Figure 4B. Clearly, it was inferior to the optimal RF classifier. However, it had a higher efficiency because it used much less features. Thus, it can be a useful tool to identify four dementia subtypes and NC. Furthermore, the performance of such RF classifier and RF classifier with top 41 features yielded by mRMR method was almost equal.
3.4 miRNA Expression Patterns Extracted From the Optimal PART Classifiers
Although the performance of two optimal PART classifier was much lower than two optimal RF classifiers, they can give interpretable rules, which can help us uncover the difference between four dementia subtypes and NC at miRNA level. For the mRMR feature list, the optimal PART classifier used top 72 features. With these features, PART was applied to all samples, resulting in 245 rules. These rules are provided in Supplementary Table S4. Likewise, for the MCFS feature list, top 89 features were adopted in the optimal PART classifier. 251 decision rules were obtained by applying PART on these features, which are also available in Supplementary Table S4. Accordingly, we accessed two groups of decision rules. For each group, each class received some rules. The number of rules for each class on each group is shown in Figure 5. With the exception of MCI, which has a relatively small number of rules, the numbers of rules of other classes were quite considerable. Some key expression rules are listed in Tables 4, 5 and the relevance of these rules in differentiating neurological disorders will be reviewed in Section 4.1.
[image: Figure 5]FIGURE 5 | Number of rules generated by the optimal PART classifiers based on mRMR and MCFS feature lists. AD, VaD, DLB, MCI, and NC stand for Alzheimer’s disease, Vascular dementia, Dementia with Lewy bodies, Mild cognitive impairment and Normal control, respectively.
TABLE 4 | Some important rules extracted by the optimal PART classifier under the mRMR feature list.
[image: Table 4]TABLE 5 | Some important rules extracted by the optimal PART classifier under the MCFS feature list.
[image: Table 5]3.5 Comparison of Optimal Classifiers Without SMOTE
In the IFS method, we employed SMOTE to reduce the influence of imbalanced problem. To elaborate the utility of SMOTE, the RF and PART classifiers mentioned in Sections 3.2, 3.3 were tested when SMOTE was not adopted. All classifiers were assessed by 10-fold cross-validation. The ACCs and MCCs of these classifiers are listed in Table 6. Compared with the ACCs and MCCs listed in Tables 2, 3, MCC greatly decreased by at least 19%, even over 30% for the optimal RF classifiers. The ACC also decreased, but the degree was much smaller than that of the MCC. As the dataset was imbalanced, classifiers directly built on such dataset may be apt to the major classes (AD and NC in this study). Individual accuracies on these classes may be high, whereas individual accuracies on other classes may be low. The individual accuracies shown Figure 6 confirmed this fact. The individual accuracies on AD were very high, followed by those on NC, whereas the individual accuracies on other three classes were very low, even zero. By employing SMOTE, the individual accuracies on AD decreased and those on other classes greatly increased, improving the entire performance of the classifiers. All these indicated the utility of the SMOTE.
TABLE 6 | Performance of key classifiers without SMOTE.
[image: Table 6][image: Figure 6]FIGURE 6 | Performance of the key RF and PART classifiers without SMOTE. (A). Classifiers obtained by using mRMR feature list; (B). Classifiers obtained by using MCFS feature list. AD, VaD, DLB, MCI, and NC stand for Alzheimer’s disease, Vascular dementia, Dementia with Lewy bodies, Mild cognitive impairment and Normal control, respectively.
4 DISCUSSION
The alteration of miRNA expression has been shown to relate with many pathological processes, including nervous system disorders. In this study, using the expression data of serum miRNAs, two optimal classifiers were constructed with high accuracy to identify the expression features of miRNAs through mRMR and MCFS method. We identified several putative miRNA biomarkers, which displayed strong relevance to the classification, suggesting that these miRNAs have specific effect in different types of neurodegenerative diseases. Additionally, the optimal PART classifiers yielded by mRMR and MCFS feature lists were then applied to generate 245 and 251 decision rules, respectively, which can classify each sample into one of five categories, namely, AD, VaD, DLB, MCI, and NC. In this section, we mainly focused on several optimal and common features identified both by mRMR and MCFS methods, considering that common features are much more important in the classification. We examined the selected features and decision rules and searched for the function and target genes of each miRNA using miRBase, an online database of miRNA sequences and annotation (Kozomara et al., 2018). For some miRNAs that have never been reported, we conducted bioinformatic analysis using miRDB for miRNA target prediction and functional annotation (Liu and Wang, 2019). Through literature review, several pieces of experimental evidence have been found to support the reliability of our prediction.
4.1 Analysis of Decision Rules Identified by mRMR and MCFS Methods
The most impactful feature in our computational analysis is miR-3184-5p, the mature miRNA product originating from the stem–loop precursor miRNA through cleavage by ribonuclease. As demonstrated by miRNA array experiment in multiple system atrophy disorders, a downregulated expression of miR-3184-5p was found in the FFPE sample of pons compared with controls, which indicates that this miRNA molecule plays an important role in normal brain development and may contribute in the prevention of neurodegenerative disorders (Wakabayashi et al., 2016). In another research of spinocerebellar ataxia type 3 (SCA3), which is known as a highly heterogeneous neurodegenerative disorder, significantly downregulated expression of miR-3184 was observed in plasma from SCA3 patients compared with healthy controls (Hou et al., 2019). Therefore, we concluded that miR-3184-5p is necessary for the normal function of the brain, and the depletion of this molecule will lead to certain neurodegenerative disorders. Consistent with this finding, several decision rules in which miR-3184-5p is implicated show similar prediction that low expression levels of miR-3184-5p indicate AD and VaD categories, while relatively high expression levels indicate healthy controls.
In many decision rules that indicate the AD category, a relatively high expression of miR-6088 is required for the classification. Although little has been known about this miRNA, we found a report that miR-6088 displays a significantly upregulated expression in patients with stroke compared with NC (Gui et al., 2019). Considering that stroke is a brain disease induced by deficient blood supply and will lead to nervous system injury, we inferred that miR-6088 may also participate in the process of neurodegeneration. Additionally, miR-6088 was identified as one of the differentially methylated genes with high relevance to Parkinson’s disease and neurodegeneration (Marsh et al., 2016), which provides strong support for the crucial role of miR-6088 in pathological processes of the nervous system.
Another important miRNA (miR-4327) is significantly associated with dementia, especially AD, through literature review. In the decision rules, we found that high expression of miR-4327 will lead to the classification of dementia, while relatively low expression indicates the normal cohort. As demonstrated by a miRNA expression profile experiment with Down syndrome, the expression level of miR-4327 was significantly higher in the case group than in the control group, suggesting that dysregulated miR-4327 may be related to abnormal development (Karaca et al., 2018). Individuals with Down syndrome usually show characteristics of damaged brain and intellectual disability, suggesting that miR-4327 affects brain development and results in several pathological processes including neurodegeneration. Moreover, using miRDB website tools, we found that the OTUD1 gene is predicted as one of the target genes of miR-4327. OTUD1 encodes a deubiquitinase, and mutations in this gene were reported to be associated with the development of neurological phenotypes including ataxia with cerebellar atrophy and dementia (De Roux et al., 2016). On the basis of this finding, OTUD1 is necessary for the normal neurological function, while excessive miR-4327 levels may inhibit OTUD1 transcription and break the normal expression status. Therefore, the high level of miR-4327 is a risk indicator of dementia, which is consistent with our prediction model.
The high expression levels of miR-208a-5p display a strong indication to the categories of dementia in decision rules, suggesting that this miRNA plays a potential role in the associated processes. Several studies have described the role of miR-208a in cardiovascular diseases; for example, circulating levels of miR-208a are significantly elevated in patients with acute coronary syndrome (De Rosa et al., 2011). MiR-208a was undetectable in the blood from healthy individuals, while upregulated expression was observed in the plasma of patients with acute myocardial infarction (Wang et al., 2010). Transgenic overexpression of miR-208a in heart tissue led to hypertrophic growth and arrhythmias in mice (Callis et al., 2009), providing reliable experimental evidence regarding the key function of miR-208a in cardiovascular diseases. Healthy brain functioning is dependent on adequate blood supply, while certain vascular diseases will cause brain injury such as VaD. We inferred that high expression of miR-208a first induces disorders in the vascular system that gradually develop into VaD, which is consistent with the decision rules. Our study is the first to present the role of miR-208a in neurodegenerative diseases, and this will contribute to the clinical diagnosis of dementia.
The high expression of miR-520f, one of the identified features implicated in both decision rules, indicates dementia. MiR-520f was found to be significantly increased in the CSF of patients with Huntington’s disease compared with controls, suggesting that miR-520f can be used as a CSF biomarker for evaluating treatments (Reed et al., 2018). Huntington’s disease is a neurodegenerative disease typically diagnosed in midlife, and this disease shares similar neuropathologic phenotypes to dementia. Thus, we inferred that an elevated level of miR-520f may also influence the pathologic processes of dementia. In addition, miR-520f is also significantly upregulated in multiple system atrophy, and its expression is negatively correlated with the target gene AKT3 (Kim et al., 2019). AKT3 has been reported to be related to neuronal insulin resistance in neurodegenerative diseases (Schubert et al., 2004). Taken together, we concluded that miR-520f acts as a transcriptional inhibitor of AKT3, and AKT3 reduction will cause the neuropathologic processes of dementia.
The expression level of miR-1227 can be efficiently used to distinguish the types of dementia and NC in the prediction model, which suggests that miR-1227 is another important functional molecule involved in neurodegeneration. On the basis of a rabbit AD model, the specific expression pattern of miR-1227 was observed, which showed similar profiles to those observed in human AD samples (Liu et al., 2014), indicating the potential role of miR-1227 in AD and other dementia diseases. A recent study reported that LINC00639, the target gene of miR-1227, was downregulated in HIV-associated dementia (HAD), a kind of cognitive impairment induced by HIV infection (Li et al., 2018). Even though the pathogenesis of HAD remains unclear, the aberration of certain miRNAs such as miR-1227 can provide novel direction for further research. Similarly, increased expression of miR-1227 was detected in CSF from patients with intracerebral hemorrhage (Shi et al., 2018). In summary, miR-1227 displays distinct expression profiles in many brain injury disorders or dementia, suggesting that it may be an auxiliary diagnostic biomarker for these diseases. These findings confirmed the reliability of our decision rules and implied that the expression criteria of identified miRNAs can be used in disease risk classification and clinical diagnostic.
4.2 Analysis of the Top Features Identified by mRMR and MCFS Methods
In addition to the quantitative analysis discussed above, we have also identified many miRNAs that can be used as indicators for dementia. As the RF classifier with less features provided slight lower performance than the corresponding optimal RF classifier, miRNA features used in these two RF classifiers with less features were investigated in this section. Based on the mRMR feature list, 41 miRNA features were obtained, whereas 31 miRNA features were accessed from the MCFS feature list. After taking the union of these two feature subsets, 53 different miRNA features were obtained, which are listed in Supplementary Table S5. A Venn diagram was plotted to show the distribution of these miRNA features in two feature sets, as shown in Figure 7. It can be observed that nineteen miRNA features were commonly identified. These features were thought to be more reliable than others. Some of them were discussed as follows.
[image: Figure 7]FIGURE 7 | Venn diagram to show top 41 miRNA features obtained by mRMR method and top 31 miRNA features obtained by MCFS method. Nineteen miRNA features are commonly identified.
MiR-4649-5p exhibits an upregulated expression profile in neurodegenerative disorders (Viswambharan et al., 2017). In amyotrophic lateral sclerosis (ALS), which is a fatal neurodegenerative disease, increasing concentration of miR-4649-5p was observed in the plasma of ALS patients, suggesting that this miRNA can be used in the diagnosis of ALS (Takahashi et al., 2015). On the basis of the miRDB database, we found that miR-4649-5p can target INSYN2, a protein coding gene implicated in inhibitory synapses. This synaptic inhibition is fundamental for the functioning of the central nervous system, shaping and orchestrating the flow of information through neuronal networks to generate a precise neural code (Uezu et al., 2016). Therefore, miR-4649-5p plays an important role in neural development, which confirms the reliability of our computational analysis.
MiR-3181 is one of the most related features in our computational analysis, and many studies indicate the close association between this miRNA and vascular diseases. Significantly upregulated miR-3181 was detected in endothelial cells treated with acrolein, which is a component of cigarette smoke and has been implicated in the development of vascular disease, suggesting that this miRNA may improve the diagnosis of vascular disease induced by environmental pollutants (Lee et al., 2015). As discussed previously, the development of vascular disease may be accompanied by brain injury such as VaD, suggesting the role of miR-3181 in dementia. The TCL1B gene, which is predicted as one target of miR-3181, showed significant differential expression between Parkinson’s disease patients and NC (Infante et al., 2015). TCL1B is also an activator of Akt, a kinase involved in neuron survival (Hashimoto et al., 2013), and abnormal Akt signaling has been reported to induce dopamine neuron degeneration (Greene et al., 2011).
The expression profile of miR-128-1-5p is also a strong indicator for the classification in our analysis. MiR-128 is a neuronally enriched miRNA that plays a crucial role in neuronal differentiation and survival (Guidi et al., 2010). The expression of miR-128 is increased in the hippocampus of AD patients (Lukiw and Pogue, 2007). In addition, upregulated miR-128 can cause a decreased expression of SNAP25 and lead to the perturbation of neuronal activity (Eletto et al., 2008). These results support the role of miR-128 in neurodegenerative disease. Using RNA sequencing techniques, miR-128 showed decreased expression in Huntington’s disease (Martí et al., 2010). MiR-128 displays distinct expression patterns in different neurodegenerative diseases, indicating its potential capability of distinguishing varied disease subtypes and confirming the ability of our prediction model to classify different dementias.
Besides above commonly identified miRNAs, some miRNAs identified by exact one feature selection method (mRMR or MCFS) were also quite essential. For example, miR-185-5p is identified as one of the most relevant features that contribute to the classification. MiR-185 has been suggested to participate in the pathogenesis of major depression, a psychosocial impairment, and finally lead to suicide. It was thought to influence neuronal and circuit formation by regulating target downstream gene, TrkB-T1, which has been associated with suicidal behavior (Serafini et al., 2014). This finding suggests the key role of miR-185-5p involved in nervous system development, physiology, and diseases.
In this section, we discussed the verified or speculative functions of miRNAs identified by our computational analysis. All these miRNAs have been confirmed to contribute to distinguishing patients with dementia from healthy and varied disease subtypes. Strikingly, many miRNAs related to vascular diseases usually play a putative role in neurodegenerative diseases. This finding suggests the interaction between these two distinct disease types. In summary, this study presented a novel computational approach to identify potential biomarkers for diagnosis and therapy, and also set up a basic research foundation for further studies on the detailed pathological mechanism of miRNAs in neurodegenerative diseases.
5 CONCLUSION
We employed a computational analysis approach to discovery key miRNA properties that differentiate normal and neurodegenerative disease subgroups in this work. The Boruta feature selection method was utilized to exclude unnecessary miRNA features, and then mRMR and MCFS were used to rank the remaining features. A series of feature subsets was generated from these ranked feature lists using the IFS method, and the sample data containing these feature subsets was used to train the RF and PART classifiers. As a result, the optimal miRNA biomarker set was identified on the basis of the evaluation metrics of classifiers under varying number of features, and the classification rules were extracted from the optimal PARTs. Finally, the relationship between candidate features including hsa-miR-3184-5p, has-miR-6088, and has-miR-4649 and neurodegenerative diseases was validated in recent studies, confirming the efficacy of our methods and establishing the groundwork for further investigation into the underlying pathogenic mechanisms of miRNAs in neurodegenerative illnesses.
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Spinal cord injury (SCI) is a disabling condition with significant morbidity and mortality. Currently, no effective SCI treatment exists. This study aimed to identify potential biomarkers and characterize the properties of immune cell infiltration during this pathological event. To eliminate batch effects, we concurrently analyzed two mouse SCI datasets (GSE5296, GSE47681) from the GEO database. First, we identified differentially expressed genes (DEGs) using linear models for microarray data (LIMMA) and performed functional enrichment studies on those DEGs. Next, we employed bioinformatics and machine-learning methods to identify and define the characteristic genes of SCI. Finally, we validated them using immunofluorescence and qRT-PCR. Additionally, this study assessed the inflammatory status of SCI by identifying cell types using CIBERSORT. Furthermore, we investigated the link between key markers and infiltrating immune cells. In total, we identified 561 robust DEGs. We identified Rab20 and Klf6 as SCI-specific biomarkers and demonstrated their significance using qRT-PCR in the mouse model. According to the examination of immune cell infiltration, M0, M1, and M2 macrophages, along with naive CD8, dendritic cell-activated, and CD4 Follicular T cells may have a role in the progression of SCI. Therefore, Rab20 and Klf6 could be accessible targets for diagnosing and treating SCI. Moreover, as previously stated, immune cell infiltration may significantly impact the development and progression of SCI.
Keywords: spinal cord injury, immune cells, key genes, bioinformatics analysis, machine learning strategies
INTRODUCTION
Spinal cord injury (SCI) is a devastating injury that frequently results in total or partial impairment of motor, sensory, and sphincter function (Lago et al., 2018). Moreover, whether classified as traumatic or non-traumatic, SCI always causes significant lifelong disability. SCI is becoming more common as vehicle accidents and extreme sports increase. As a result, this condition has disastrous impacts on patients, families, and society (Ropper and Ropper, 2017).
The pathological process of SCI is generally divided into two stages (Alizadeh et al., 2019). The primary injury causes hemorrhage, ischemia, edema, anoxia, and neuron and glial cell necrosis. The secondary injury involves complex pathophysiologic mechanisms, including ionic imbalance, free radical stress, inflammatory responses, and glial scars. Although the creation of glial scars can slow secondary damage spread, it also inhibits axon regrowth. Secondary injuries impair nerve plasticity and functional recovery. The main challenge in SCI treatment development is the difficulty of repairing injured neurons and restoring the conducting function of axons. Currently, no effective drugs or therapeutic approaches exist for SCI (Badhiwala et al., 2019). As many patients experience severe physical and psychological consequences, SCI has become a global issue. Thus, elucidating the specific molecular mechanisms underlying the pathophysiology of SCI is crucial.
Recently, an increasing number of articles revealed that immune cell infiltration plays a pivotal role in SCI healing. For example, microRNA-151-3p is abundant in microglia-derived exosomes and has neuroprotective properties during SCI healing (Li et al., 2021). The chemokine (C-C motif) ligand 28 (CCL28) acts as a protective factor after SCI by recruiting C-C chemokine receptor 10 (CCR10)-positive and immunosuppressive regulatory T cells (Wang et al., 2019). After SCI, interleukin 19 (IL-19) enhances locomotor function recovery and decreases motor neuron loss, as well as microglial and glial activation (Guo et al., 2018). C3 is a novel Th2 interleukin reducing neurite outgrowth and neuronal survival in vitro and axon regeneration in vivo (Peterson et al., 2017). Chronic SCI can impair CD8 T cell function by up-regulating programmed cell death-1 expression (Zha et al., 2014). γδ T cells are recruited to the SCI site, promoting the inflammatory response and exacerbating neurological impairment. CCL2/CCR2 signaling is critical for T cell recruitment to the SCI site and may be used as a novel therapeutic target in the future (Xu P. et al., 2021). Nonetheless, it is necessary to elucidate the molecular mechanism by which diverse immune cells influence SCI progression. As previously stated, assessing immune cell infiltration and dissecting the components of invading immune cells is crucial for unraveling the SCI molecular system and identifying novel immunotherapeutic targets (Ahmed et al., 2018; Al Mamun et al., 2021). CIBERSORT is a computational method for quantifying cell composition using gene expression data. This approach may help characterize immune cell infiltration (Newman et al., 2015).
We used the GEO database to obtain microarray datasets and conduct differential expression gene analyses. Additionally, we combined bioinformatics analysis and machine-learning techniques to thoroughly screen and identify key SCI genes. Next, we used CIBERSORT to compare immune cell infiltration in 25 immune cell subsets between SCI and sham samples. Additionally, we explored the relationships between the key genes and immune cells to better understand the molecular immunological mechanisms during SCI development.
MATERIALS AND METHODS
Data Source
We downloaded two SCI datasets (GSE5296, GSE47681) from the NCBI Gene Expression Omnibus (GEO) (Clough and Barrett, 2016). These two datasets were gene expression arrays generated using GPL1261 [Mouse430_2] Affymetrix Mouse Genome 430 2.0 Array (Affymetrix, Santa Clara, CA, United States) (Barrett et al., 2013). We selected 18 samples with SCI and 12 sham samples from the GSE5296 dataset. Similarly, we selected 17 spinal cord tissue samples from the GSE47681 dataset (Wu et al., 2013), including 13 samples with SCI and 4 sham spinal cord tissue samples.
Data Normalization and Differentially Expressed Genes Screening
We processed the two SCI datasets using the R package “affy,” notably for normalization and log2 transformation (Irizarry et al., 2003). Here, we considered the average value as the expression value when a group of probes corresponded to the same gene. Moreover, we eliminated the batch effects between two datasets using the surrogate variable analysis (SVA) package from Bioconductor (Leek et al., 2012). Finally, we screened the DEGs using the LIMMA package with a p-value < 0.05 and |log2 Fold change (FC)| > 1 (Ritchie et al., 2015).
GO, Kyoto Encyclopedia of Genes and Genomes, and GSEA Analysis of the Differentially Expressed Genes
We performed the analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for the DEGs using DAVID 6.8 (https://david-d.ncifcrf.gov/). To understand the function of the DEGs, we uploaded them to the DAVID (Ritchie et al., 2015) and KOBAS databases (http://kobas.cbi.pku.edu.cn/) (Wu et al., 2006). We used a p-value < 0.05 and count ≥ 2 as the significant enrichment threshold. To provide a more intuitive understanding of the gene expression levels associated with significantly enriched functional pathways, we performed a gene set enrichment analysis (GSEA) using the R software (Subramanian et al., 2005).
Screening and Validation of Characteristic Genes
We screened for key genes associated with SCI using three algorithms: least absolute shrinkage and selection operator (LASSO) regression analysis (Tibshirani, 1996), random forests analysis (Strobl et al., 2007; Wang et al., 2016), and support vector machine-recursive feature elimination (SVM-RFE) analysis (Suykens and Vandewalle, 1999). For the random forest method, we used the R package “randomForest”. We performed the LASSO logistic regression using the R package “glmnet,” and a lambda of zero was considered optimal. We constructed the SVM classifier with tenfold cross-validation using the R package “e1071.” We also used the RFE function within the “caret” package to select the featured gene using tenfold cross-validation. Then, we selected the genes from the three classification models for further analysis. The GSE45006 dataset was used as a validation dataset (Niu et al., 2021).
Spinal Cord Injury Procedure and Immunofluorescence
6–8 weeks C57BL/6 mice were obtained from the Experimental Animal Center of Guizhou Medical University [license no. SCXK (Qian) 2018-0001]. All animal experiments were approved by the Animal Care and Use Committee of Guizhou Medical University. We divided the mice into an SCI group and a sham group. All mice were anesthetized with 1.25% Avertin. First, we performed a 1-cm dorsal incision and performed a laminectomy of the T10 vertebra. We crushed the spinal cord with vessel clamping for 15 s. Paralysis of both lower limbs indicated successful modeling. For the sham group, we isolated the skin and tissue to expose the spinal cord without injuring the animals. After surgery, we returned the mice to their home cages and performed manual bladder expression three times a day. We sacrificed the animals 7 days later. We injected 100 ml of phosphate-buffered saline (PBS) from the apex with a syringe to remove the blood, followed by 100 ml of 4% paraformaldehyde for tissue fixation until the mouse body was rigid. Next, we fixed the spinal cord with formalin and embedded it in paraffin before transversely cutting 20-µm-thick tissue sections using a Cryotome. We washed the sections three times with PBS for 5 min and added blocking buffer (10% goat serum and 0.3% TritonX-100) for 1 h. We then incubated the sections with the primary antibody overnight at 4°C, washed them three times with PBS for 5 min, incubated them with secondary antibodies (goat anti-rabbit Alexa Fluor 488,1:500,CST) in the dark for 2 h, and stained cells nuclei with DAPI (4',6-diamidino-2-phenylindole). Finally, we photographed the sections with a laser confocal microscope.
We used Rab20 (YT3922, 1:200, Immunoway) and Klf6 (14716-1-AP, 1:200, Proteintech) as primary antibodies.
Quantitative PCR Analysis
To summarize, we extracted total RNA from the spinal cord of mice using the TRIZOL reagent (TIANGEN BIOTECH Corp, Beijing, China), then polyadenylated and reverse-transcribed it into cDNA using a poly(T) adapter following the manufacturer’s instructions. We performed real-time PCR using a thermal cycler with the following parameters: a 5 min initial denaturation step at 95°C; 44 cycles at 95°C for 15 s; 55°C for 30 s, and 72°C for 20 s. We subjected each sample to the entire experimental procedure in triplicate. Table 1 lists the primers specific for mRNA.
TABLE 1 | mRNA-specific primers of key genes.
[image: Table 1]Immune Cell Infiltration Analysis
We measured the relative proportions of immune cells in SCI mouse tissue using the CIBERSORT method to annotate merged expression data and calculate immune cell infiltrations based on mouse tissue expression profiles (Chen et al., 2017). Next, we compared the relative levels of 25 immune cells between the SCI and sham groups. A correlation heatmap, produced using the “corrplot” package, revealed the relationships between 25 types of infiltrating immune cells. Finally, we analyzed and visualized the Spearman correlation between key biomarkers and immune infiltrating cells using the “ggstatplot” and “ggplot2” packages.
RESULTS
Identification of Differentially Expressed Genes
Figure 1 shows the workflow of this study. We integrated two SCI datasets (GSE5296, GSE47681), including 16 sham samples and 31 SCI samples (Figure 2A). We found a total of 561 DEGs—536 up-regulated genes and 25 downregulated genes. Figures 1B, 2B display the DEGs heatmap and volcano plot, respectively.
[image: Figure 1]FIGURE 1 | The flowchart of the analysis process.
[image: Figure 2]FIGURE 2 | Heat map and Volcano plot of the DEGs. (A) Each row of the heat map represented one DEG, and each column represents one sample. The red and blue colors represent upregulated and downregulated DEGs, respectively. (B) Red points represented upregulated DEGs, and green points displayed downregulated DEGs.
Function Enrichment Analysis
The GO and KEGG analyses revealed that the DEGs were mainly involved in the biological processes of leukocyte migration, cytokine-mediated signaling pathway, positive regulation of cytokine production, positive regulation of defense response, tumor necrosis factor superfamily cytokine production, response to molecule of bacterial origin, regulation of inflammatory response, and cell chemotaxis. Regarding the cellular components, these DEGs were mainly associated with the membrane raft receptor complex, endocytic vesicle, Golgi apparatus sub-compartment, membrane microdomain, phagocytic vesicle, collagen trimer, collagen-containing extracellular matrix, inflammasome complex, and NADPH oxidase complex (Figure 3A). The KEGG pathway analysis showed that the DEGs were involved in lipid metabolism, cytokine–cytokine receptor interaction, atherosclerosis, osteoclast differentiation, tuberculosis, phagosome, TNF signaling pathway, rheumatoid arthritis, Leishmaniasis, viral protein interaction with cytokine and cytokine receptor, and IL-17 signaling pathway (Figure 3B). Additionally, GSEA data indicated that certain pathways were enriched (Figure 3C). These results suggested that the immune system plays a vital role in SCI.
[image: Figure 3]FIGURE 3 | The results of functional enrichment analyses. (A) GO analysis results of DEGs. (B) KEGG analysis results of DEGs. (C) GSEA profiles showed the ten significant GSEA sets.
Key Biomarkers Screening and Validation
We used the LASSO logistic regression method to find 14 important biomarkers from the DEGs (Figure 4A). With the SVM-RFE method, we identified four genes qualifying as key biomarkers among the DEGs (Figure 4B). Additionally, we identified 30 genes as significant biomarkers using the random forest strategy (Figures 4C,D). The Rab20 and Klf6 genes were overlapped genes. Thus, we selected Rab20 and Klf6 as key biomarkers for further validation (Figure 4E). To verify the relationship between key genes and SCI vulnerability, we selected GSE45006 as the training data and Rab20 and Klf6 as the test genes. We compared the expression of hub genes during the SCI process. The SCI group had higher Rab20 and Klf6 expression levels than the sham group (Figures 4F,G). To confirm this, we performed immunofluorescence staining experiments using mouse spinal cord tissue. SCI tissues had significantly higher Rab20 and Klf6 levels than those from the sham group (Figures 5A,B). Finally, we quantified Rab20 and Klf6 expression in mouse samples using qRT-PCR. The SCI group had considerably higher levels of these two biomarkers (Rab20 and Klf6) than the sham group (Figure 5C).
[image: Figure 4]FIGURE 4 | Screening of key genes via the comprehensive strategy. (A) screening key markers using Least absolute shrinkage and selection operator (LASSO) logistic regression method. (B) screening key markers through support vector machine recursive feature elimination (SVMRFE) method. (C,D) random forest (RF) strategy to screen biomarkers. (E)Venn diagram displayed the intersection of key markers obtained by the three methods. (F,G) The expression levels of Rab20 and Klf6 in GSE45006.
[image: Figure 5]FIGURE 5 | Key genes validation. (A) Representative images showed that Rab20 expression was examined using immunofluorescence. (B) Representative images showed that Klf6 expression was examined using immunofluorescence. (C) qRT-PCR verification of Rab20 and Klf6 in SCI samples of mice and sham samples of mice. The results were represented as mean average ± SE with p < 0.05. scale bar represents 100 µM in (A,B).
Immune Cell Infiltration Analysis
To further investigate the association between SCI and immune cells during the development of SCI, we predicted immune cell infiltration using the CIBERSORT method. Figure 6A is a bar plot depicting the percentages of the 25 different kinds of immune cells. As revealed by the correlation heatmap for the 25 different types of immune cells, memory B cells and M0 macrophages, we found that neutrophil cells and M0 macrophages exhibited a substantial negative association. We also found substantial positive associations between monocytes and memory CD4 T cells, γδ T cells and naive CD4 T cells, γδ T cells and mast cells, eosinophils and neutrophils, natural killer resting cells and plasma cells, and memory CD8 T cells and plasma cells (Figure 6B). Furthermore, the SCI group had significantly higher proportions of naive CD8 T Cells, CD4 Follicular T cells, M0 macrophages, M1 macrophages, M2 macrophages, DC-activated cells than the sham group, and markedly lower proportions of memory B cells, plasma cells, memory CD8 T cells, memory CD4 T cells, naive CD4 T cells, Th17 Cells, and γδ T cells (Figure 6C).
[image: Figure 6]FIGURE 6 | Assessment and visualization of immune cell infiltration. (A)The relative percentage of 25 types of immune cells. (B) Heatmap exhibited the correlation of 25 types of immune cells. Both horizontal and vertical axes demonstrate immune cell subtypes. (C) The violin diagram displayed the ratio of 25 types of immune cells. The red represents the SCI group, and the green represents the sham group.
Immune cell infiltration gradually played an important role after SCI. Thus, we selected different time points (1, 3, 7, 28 days of post-injury) to show the relationship between SCI and immune cells. We found no obvious difference between the SCI group and the sham group on the first day. However, the SCI group had significantly higher proportions of M0 macrophages, M2 macrophages than the sham group, and markedly lower proportions of memory B cells, plasma cells, naive CD4 T cells, and NK resting cells at day 3. At 7 days, the SCI group displayed higher ratios of M0 macrophages, M1 macrophages, M2 macrophages than the sham group, and noticeably lower ratios of memory B cells, plasma cells, memory CD8 T cells, and naive CD4 T cells at day 7. On day 28, there was no apparent difference between the SCI group and the sham group (Figure 7).
[image: Figure 7]FIGURE 7 | Different time points of immune cell infiltration. The violin diagram exhibited the ratio of immune cells at different time points (1, 3, 7, 28 days of post-injury). The red represents the SCI group, and the green represents the sham group.
Based on the correlation analysis, Rab20 was positively correlated with M0 macrophages, M2 macrophages, and naive CD8 T cells and negatively correlated with memory CD4 T cells, naive CD4 T cells, plasma cells, memory B cells, γδ T Cells, and memory CD8 T cells (Figure 8A). In addition, Klf6 was positively correlated with naive CD8 T cells, DC-activated cells, M2 macrophages, and activated CD8 T cells and negatively correlated with plasma cells, memory CD4 T cells, naive CD4 T cells, γδ T cells, and memory CD8 T Cells (Figure 8B).
[image: Figure 8]FIGURE 8 | The Correlation between key markers and infiltrating immune cells. (A) Correlation between Rab20 and infiltrating immune cells. (B) Correlation between Klf6 and infiltrating immune cells.
DISCUSSION
SCI frequently results in permanent functional deficits below the affected spinal cord region. The pathology of SCI is generally divided into two processes, named the primary injury and secondary injury. The secondary injury plays a crucial role in SCI onset and progression, leading to acute and chronic inflammation, tissue architecture damage, and motor and sensory dysfunction (Kong and Gao, 2017). Additionally, current research indicates that immune cell infiltration noticeably affects SCI development and progression (Al Mamun et al., 2021). Therefore, this study aimed to discover relevant SCI biomarkers and to investigate the role of immune cell infiltration in SCI.
Based on the GEO database, researchers can easily access Spinal cord injury (SCI) related datasets. Two SCI datasets (GSE5296, GSE47681) were included in this study (Zhao et al., 2018; Liu et al., 2019; Wei et al., 2019). We identified 561 DEGs in total. Among them, 536 were up-regulated and 25 were downregulated. Next, we performed functional enrichment analysis on these DEGs and found potential associations with immune responses and inflammatory signals (e.g., regulation of inflammatory response, leukocyte migration, positive regulation of cytokine production, and cytokine-mediated signaling pathway). Furthermore, The top 10 pathways of these DEGs according to p value were screened. Cytokines are crucial for immune response, pro-inflammatory cytokines influence the progression of disease (Bass et al., 2008). Cytokine–cytokine receptor interaction can be activated by neuroinflammation after SCI (Baek et al., 2017). Phagocytosis has important functions in immunity. Innate immune cells recognize and degrade microbes and debris by phagosomes. Macrophages process the debris of the spinal cord and promote the neurological function recovery after SCI (Zhou et al., 2020). TNF signaling pathway involves in the modulation of immune response and triggering the activation of T cells to induce cell death. The suppression of the TNF-α signaling pathway promotes function restoration after SCI (Wang N. et al., 2018). IL-17 is a pro-inflammatory cytokine and generated by T helper 17 cells (Torchinsky and Blander, 2010). IL-17 exacerbates the neuroinflammation of the spinal cord after SCI in the rat (Zong et al., 2014). Atherosclerosis is a chronic inflammatory disease. Monocytes and macrophages contribute to the initiation and development of atherosclerosis (Moroni et al., 2019). Osteoclasts originated from hematopoietic monocyte-macrophage lineage. Osteoclast differentiation is mainly regulated by receptor activators of NF-κB and immune receptors (Park-Min et al., 2009). The pathology of tuberculosis is closely related to immune cells. Innate immune cells determined the inflammatory environment against Mycobacterium tuberculosis infection and induced adaptive immune responses (de Martino et al., 2019). Rheumatoid arthritis (RA) is a systemic inflammatory disorder. Immune cells (like T-cells, B cells, and macrophages) played a crucial role in the pathogenesis of RA (Yap et al., 2018). Viruses have produced many mechanisms to escape detection and destruction from the immune system by copying and repurposing host cytokine and cytokine receptor genes. Viral protein interaction with cytokine and cytokine receptor activates downstream cytokine signaling and affects different immune processes (Bruggeman, 2007). Immunity and leishmaniasis are also closely related. Leishmania first infected macrophages in the host. Then neutrophils secreted chemokine (C-C motif) ligand 3 (CCL3) to recruit dendritic cells. The interleukin (IL) 12 was produced by dendritic cell, which induced the differentiation of T helper type (Th) 1 cell to produce more IFN-γ to control the infection of Leishmania (de Freitas and von Stebut, 2021).
To explore the potential biomarkers during the development of SCI, we integrated and analyzed two mouse SCI datasets. We only selected SCI-related data. Thus, 47 samples were included. Based on the differentially expressed genes (DEGs), three machinery learning methods were applied for screening important genes. The random forest (RF) is a non-parametric approach for achieving classification under supervision. The term “random forest” refers to decision trees constructed from a subdivided data set. This method does not generate overfitting phenomena readily and exhibits strong anti-noise properties (Yang et al., 2020). Thus, the RF method has been employed widely in recent years for prediction. ASSO logistic regression is a comprehensive machine-learning method for selecting variables by identifying those with the lowest chance of classification error. SVM-RFE is a machine learning approach for ranking and selecting the most significant features for classification. Every method obtained some essential genes. This study integrated these three distinct methods. We picked Rab20 and Klf6 because they were overlapped genes. In a previous study, researchers found a possible link with the immune and inflammatory functions, neuronal function, and synaptic transmission based on the functional enrichment analysis (GO and KEGG) of differentially expressed genes (DEGs) from GSE5296. Then they defined and collected these Neuronal function and synaptic transmission-associated genes and inflammation-associated genes from the literature review and investigated their expression in trauma site (R), adjacent rostral (M), and caudal (C) regions at different time points after SCI (Chen et al., 2015; Zhao et al., 2018). Another study aimed to explore the critical genes with genes expression of SCI from trkB.T1 knockout mice. This study identified the top four modules genes from GSE47681 using Weighted correlation network analysis (WGCNA). These module genes were used to construct the Protein-protein interaction (PPI) network. Finally, protein tyrosine phosphatase, receptor type C (PTPRC), coagulation factor II, thrombin (F2), plasminogen (PLG) were the most significant nodes in the PPI network (Wei et al., 2019). Compared to these two studies, we confirmed the differential expression of Rab20 and Klf6 with validation experiments, whereas other did not. Secondly, we used different screening methods to obtain SCI-related biomarkers. Importantly, our combined approach is more innovative as it points straightforward to relevant SCI markers Rab20 and Klf6, which are still not that much investigated.
Rab20 is a member of the Rab GTPase family, associating with macropinosomes at stages that overlap with those of Rab5, Rab21, Rab7, and Lamp1. Rab20 up-regulation may contribute to plaque destabilization via increased autophagy and cell death (Cederstrom et al., 2020). High Rab20 levels promote B cell activation and facilitate rheumatoid arthritis development (Tseng et al., 2019). Rab20’s expression was increased during B cell transformation by a polymorphism associated with Crohn’s disease and vaccination (Mehta et al., 2017). Additionally, Rab20 is an interferon-regulated Rab GTPase that promotes the homotypic fusion of early endosomes and directs endosomal cargo to lysosomes for degradation (Pei et al., 2015).
The Klf family of zinc finger transcription factors participates in various processes, including development, cellular differentiation, and stem cell biology. Klf6 promotes corticospinal tract sprouting and regeneration after SCI (Kramer et al., 2021). Alternatively, Klf6 is required for chronic pain maintenance, emphasizing its potential as a therapeutic target in chronic pain management (Mamet et al., 2017). When expressed ectopically in the adult injured central nervous system, Klf6 can promote axon growth (Wang Z. et al., 2018). Therefore, the identification of Rab20 and Klf6 together may imply that Rab20-mediated phagosomes cause cell death and KLf6 promotes nerve regeneration during SCI.
To more precisely assess the impact of immune cell infiltration in SCI, we analyzed immune cell infiltration through mice tissue expression profiles using CIBERSORT (Chen et al., 2017). The immune cell infiltration of M1, M0, and M2 macrophages, naive CD8 T cells, follicular CD4 T Cells, and DC-activated cells increased, indicating possible associations with SCI development and progression. Additionally, immune cell infiltration may have the property of dynamic changes at different time points after SCI. Microglia are well-known as the central nervous system’s resident immune cells. After traumatic SCI, microglia/macrophages and neutrophils are recruited to the damaged location (Xu L. et al., 2021). Macrophages, microglia, and other antigen-presenting cells (APCs) activate T lymphocytes. SCI inhibits B cell activation and antibody production (Ankeny and Popovich, 2010). Autoantibodies aggravate post-SCI complications such as cardiovascular, renal, and reproductive failure (Alizadeh et al., 2019). Although this has been mentioned previously, more investigation into the molecular mechanisms and effects of immune cell infiltration in SCI seems required.
Regarding the associations between immune cells and key genes, Rab20 was positively correlated with M0 and M2 macrophages and naive CD8 T cells during activation and negatively correlated with memory CD4 T cells, naive CD4 T cells, plasma cells and memory B cells, γδ T cells, and memory CD8 T cells. Further, Klf6 was positively correlated with naive CD8 T cells, DC-activated cells, M2 macrophages, and activated CD8 T cells, but negatively correlated with plasma cells, memory CD4 T cells, naive CD4 T cells, γδ T cells, and memory CD8 T cells. According to one study, the expression of a dominant-negative Rab20 mutant may impair macrophage phagosome maturation (Pei et al., 2014). KLF6 promotes HIF1 expression in macrophages, regulating inflammatory and hypoxic responses (Kim et al., 2019). Because there is no additional information about the sophisticated interaction mechanisms between key genes and immune cells, they should be thoroughly investigated based on the assumption mentioned above.
We used novel and scientific approaches (e.g., LASSO logistic regression, random forest, and SVM-RFE algorithm) to identify characteristic SCI makers. Additionally, we used CIBERSORT to investigate immune cell infiltration. Nonetheless, this study has some limitations. First, it is the result of the second round of data mining and analysis. Additionally, we did not obtain clinical specimens for this study and had to rely on mouse tissue to confirm our predictions. Finally, the results’ reliability should be thoroughly validated using large samples.
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Deletion of brain-derived neurotrophic factor (BDNF) and upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) are associated with depression severity in animals. The neurotransmitter hypothesis of depression at the transcriptomic level can be tested using BDNF- and IDO1-knockout mouse models and RNA-seq. In this study, BDNF+/−, IDO1−/−, and chronic ultra-mild stress (CUMS)-induced depression mouse models and controls were developed, and the differentially expressed genes were analyzed. Furthermore, the ceRNA package was used to search the lncRNA2Target database for potential lncRNAs. Finally, a protein–protein interaction (PPI) network was constructed using STRINGdb. By comparing the control and CUMS model groups, it was found that pathway enrichment analysis and ceRNA network analysis revealed that most differentially expressed genes (DEGs) were associated with protection of vulnerable neuronal circuits. In addition, we found the enriched pathways were associated with nervous system development and synapse organization when comparing the control and BDNF+/−model groups. When replicating the neurotransmitter disruption features of clinical patients, such comparisons revealed the considerable differences between CUMS and knockdown BDNF models, and the BDNF+/−model may be superior to the classic CUMS model. The data obtained in the present study implicated the potential DEGs and their enriched pathway in three mouse models related to depression and the regulation of the ceRNA network-mediated gene in the progression of depression. Together, our findings may be crucial for uncovering the mechanisms underlying the neurotransmitter hypothesis of depression in animals.
Keywords: depression, RNA-seq, pathway enrichment analysis, protein–protein interaction (PPI) network, brain-derived neurotrophic factor (BDNF), indoleamine 2,3-dioxygenase 1 (IDO1)
INTRODUCTION
Depression is a common mental disorder characterized by high morbidity and suicidal risk (Auerbach et al., 2018; Devendorf et al., 2020). Previous studies have shown that depression is a complex disorder involving multiple genes (Fan et al., 2020; Kang et al., 2020). The brain-derived neurotrophic factor (BDNF) gene, which is widely involved in emotion and cognition, has neurotrophic effects and modulates neuron regeneration, synaptic plasticity, and dendritic growth (Kowianski et al., 2018; Lima Giacobbo et al., 2019). Several studies have shown that BDNF is involved in the pathogenesis of neuropsychiatric diseases (Lima Giacobbo et al., 2019; Colucci-D’amato et al., 2020). Chronic social defeat stress in a rat model of depression has revealed a significant reduction of BDNF levels in the hippocampus and prefrontal cortex (Amidfar et al., 2018).
Increasing studies have shown that rats that have been deprived of maternal care during their young stage exhibit reduced hippocampal BDNF levels, short- and long-term deficits in aversion, and recognition memory, as well as cognitive flexibility (Menezes et al., 2020). Environmental enrichment interventions restore the levels of hippocampal BDNF in rats and protect their memory and cognitive flexibility (Zhang et al., 2020). Furthermore, the reduced level of BDNF has been associated with anhedonia (Dong et al., 2018) which is the main symptom of depression. The deletion of brain-derived neurotrophic factor (BDNF) and upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) are associated with depression severity in animals. The neurotransmitter hypothesis of depression at the transcriptomic level can be tested using BDNF- and IDO1-knockout mouse models and RNA-seq. In this study, BDNF+/−, IDO1−/−, and chronic ultra-mild stress (CUMS)-induced depression mouse models and controls were developed, and the differentially expressed genes were analyzed. Furthermore, the ceRNA package was used to search the lncRNA2Target database for potential lncRNAs. Finally, a protein–protein interaction (PPI) network was constructed using STRINGdb. By comparing the control and CUMS model groups, it was found that pathway enrichment analysis and ceRNA network analysis revealed that most differentially expressed genes (DEGs) were associated with the protection of vulnerable neuronal circuits. In addition, we found the enriched pathways were associated with nervous system development and synapse organization when comparing the control and BDNF+/−model groups. When replicating the neurotransmitter disruption features of clinical patients, such comparisons revealed the considerable differences between CUMS and knockdown BDNF models, and the BDNF+/−model may be superior to the classic CUMS model. The data obtained in the current study implicated the potential DEGs and their enriched pathway in three mouse models related to depression and the regulation of the ceRNA network-mediated gene in the progression of depression. Together, our findings may be crucial for uncovering the mechanisms.
Indoleamine 2,3-dioxygenase 1 (IDO1), which is the tryptophan catabolizing enzyme, affects the nervous system through two mechanisms. The first mechanism involves tryptophan depletion through over-activation of IDO1 which increases tryptophan catabolism and thereby reduces the levels of tryptophan, as well as suppressing the synthesis of 5-HT, hence resulting in depression (Chaves Filho et al., 2018). The second mechanism is the increase in kynurenine toxicity mediated by IDO1 (Jiang et al., 2020). It has been found that although kynurenine is neuroprotective, it is neurotoxic at excessive levels.
Therefore, it is evident that the reduction of BDNF can cause depression-like symptoms in mice (Jiang et al., 2019) whereas the knockout of IDO1 has antidepressant-like effects (Gao et al., 2021). Furthermore, there is no corresponding report on the mRNA sequencing of the comparison between BDNF and IDO1, but this study sequenced the mRNA expression in BDNF+/−, IDO1−/−, chronic ultra-mild stress (CUMS), and control mice.
MATERIALS AND METHODS
Animals and Experimental Groups
To avoid the effects of sex differences and hormones, only male mice were selected for the current study. Mice (10 per group) were randomly assigned to the control (untreated), CUMS-exposed (mimicking adult stress), BDNF+/− (strain BDNFtm1Krj/J, C57BL6/J background, Jax Strain #006579), and IDO1−/− (strain IDO1tm1Alm/J, Jax Strain #005867) groups. The detailed information about the mice is shown in Supplementary Table S1. They were housed in a pathogen-free, temperature-controlled environment (22 ± 1°C) and subjected to 12/12 h light/dark cycles, with ad libitum access to food and water except during model building. Animal experimental protocols in the current study were approved by the National Institutional Animal Care and Ethical Committee of Southern Medical University.
Chronic Ultra-Mild Stress Protocol
CUMS modeling was performed, as previously described (Huang et al., 2017; Gao et al., 2018). Briefly, the protocol involved the sequential application of various mild stressors: 1) 24 h of food and water deprivation, 2) 1 h of empty bottle, 3) 17 h of 45° cage tilt, 4) overnight illumination, 5) 24 h of wet cage, 6) 5 min swimming in water at 4°C, 7) 24 h of disrupting the squirrel cage, 8) 24 h of foreign body stimulation, and 9) 4 h of restriction in movement.
RNA Sequencing
TRIzol reagent was used to isolate RNA (Invitrogen, United States). The mRNA sequencing libraries were constructed using multiplex PCR amplification techniques. The sequencing of mRNA was carried out on the Illumina sequencing platform NextSeq 550, while the sequencing of microRNA was carried out on the Illumina sequencing platform Hiseq 4000.
Mapping
Adaptors were removed by FastQC and Trimmomatic. The alignment of mRNA was conducted by STAR software with the reference mm10, while miRNA was aligned with data from miRBase. Downstream statistical analyses were carried out in R software.
Differential Expression Analysis
The mRNA expression differential analysis was carried out using DESeq2. Volcano plots were plotted by the EnhancedVolcano package with a default cut-off for log2FC >|2|, and the default cut-off for p-value 10e-6 to highlight the top genes.
Differential miRNA: mRNA Interaction
miRNAs were searched on multiple miRNA-mRNA databases using multiMiR. The differential miRNA–mRNA interaction was calculated by using the binomial test. FDR was also used to adjust for multiple tests.
ceRNA Network Analysis
The potential lncRNAs targeting differentially expressed genes (DEGs) were searched on lncRNA2Target for the analysis of ceRNA. In addition, the ceRNA network of the collected miRNAs and lncRNAs was constructed and visualized by using the igraph package by querying interactions between them from multiple miRNA-lncRNA databases from multiMiR.
Protein–Protein Interaction Network Analysis
The analysis of the protein–protein interaction (PPI) network of the mRNA DEGs was performed using the R package STRINGdb to generate an interaction table, and the interaction network was visualized by using the igraph package.
RESULTS
Identification of Differentially Expressed Genes
It was found that the differences in expressed genes were highly significant between BDNF+/− and IDO1−/− mice, whereas there was a less evident difference in the gene expression between the CUMS and control groups.
Mouse medial prefrontal cortex (mPFC) was obtained for sequencing from BDNF+/−, IDO1−/−, CUMS-exposed, and control mice. Results of the DEG analysis revealed gene expression differences between BDNF+/− and other groups, as well as modest gene expression differences in CUMS vs. control groups (Figure 1A). Consistently, the results of clustering analysis revealed close clustering between the control and CUMS samples (Figure 1B).
[image: Figure 1]FIGURE 1 | Identified DEGs in each group. (A) Bar plot showing statistical data of DEGs. (B) Sample clustering based on the expression level of top DEGs. (C) Volcano plot of DEGs between BDNF+/− and control. (D) Volcano plot of DEGs between BDNF+/− and IDO1−/−. (E) Volcano plot of DEGs between BDNF+/− and CUMS. In the Volcano plot, blue and green scatter points represent insignificant DEGs, red scatter points represent upregulated DEGs, and blue scatter points represent downregulated DEGs. The statistical method is the default cut-off for log2FC which is >|2|, and the default cut-off for p-value is 10e-6 to highlight the top genes with red color.
It was found that the analysis of gene expression identified 859 significantly upregulated and 975 significantly downregulated genes in BDNF+/− vs. control samples (Figure 1A, Supplementary Table S2). Furthermore, the results of volcano plot visualization revealed that the top DEGs included Lnpep, Adhd2, Nf2c2, Mgat2, and Rn18s (Figure 1C). A heatmap with sample clustering showed the most genes that were upregulated in the expression of the top 50 different genes in BDNF+/− (Supplementary Figure S1A). In addition, the results of analysis of the top five DEGs revealed that relative to BDNF+/−, Lnpep, Abhd2, Mgat5, Nr2c2, and Rn18s expressions were significantly higher in controls (Supplementary Figure 1B). It was evidently noted that among the DEGs, Mgat5 influences behavior and physical outcomes in response to early life stress by remodeling N-glycans and cell surface glycoproteins.
Comparison BDNF+/− vs. IDO1−/− identified a total of 1,145 downregulated and 447 upregulated DEGs (Figure 1A, Supplementary Table S2), including Entppl, Idem, and Kirrel2 (Figure 1D). A heatmap showed an even regulated difference among the expressions of the top 50 DEGs, indicating that IDO1−/− may have a unique expression pattern under different biological mechanisms as compared with BDNF+/− (Supplementary Figure S2A). It was found that the top five DEGs exhibited an evenly matched relationship between these two groups (Supplementary Figure S2B). Etnppl was evaluated as an astrocyte-specific fasting-induced gene that induces the catabolization of phosphoethanolamine (PEtN), regulating brain lipid homeostasis (White et al., 2021). The altered Etnppl expression has also been associated with mood disorders (White et al., 2021). Both genes indicated a strong change in the neural level under these two groups of models.
A comparison of BDNF+/− vs. CUMS groups identified a total of 1,195 downregulated and 968 upregulated genes (Supplementary Table S2, Figure 1A). The DEGs included Lnpep, Mgat5, Rn18s, and Abdh2, which are quite similar to the results from BDNF+/− vs. control (Figure 1E). Similar to the control group, the heatmap also showed the most upregulated expression in BDNF+/− among the top 50 DEGs, and the top five DEGs, Abhd2, Lnpep, Mgat5, Nr2c2, and Rn18s also presented a higher expression in BDNF+/− (Supplementary Figure S3). This comparison illustrated a similar result of DEGs with previous groups of BDNF+/− and control, indicating that there was likely no significant difference in the gene expression between the CUMS and control groups. For the significantly different aforementioned genes , the significance threshold for statistical analysis was log2FC >|2|, and the default cut-off for p-value was 10e-6 to highlight the top genes with red dots.
Pathway Enrichment Among Models
It was found that there was little difference in neural activities between BDNF+/− that were involved in negative neuromodulatory pathways and IDO1−/− mice, but the CUMS model did not significantly differ from controls as compared with BDNF+/−.
To assess pathway activation differences between the models, we subjected the DEGs to pathway enrichment analysis. Gene ontology (GO) term enrichment analysis of the BDNF+/− vs. control groups identified a total of 427 pathways (Supplementary Table S3), including the negative regulation of neurogenesis, negative regulation of nervous system development, synapse organization, and negative regulation of neuron differentiation (Figure 2A), which indicated a negative neural regulation in BDNF+/− mice.
[image: Figure 2]FIGURE 2 | Pathway enrichment of DEGs between BDNF+/− and controls. (A) Top 10 enriched pathways in GO terms for BDNF+/− and control groups. (B) Top 10 enriched pathways for GO terms for BDNF+/− and IDO1−/− groups. (C) Top 10 enriched pathways for GO terms in BDNF+/− and CUMS groups.
The results of the heatmap and upset plot showed a common sharing gene enriched by different pathways (Supplementary Figure S7A,B). Furthermore, a comparison between the top pathways in the upset plot and their significant genes identified a high concentrated gene set that included Mib1, Foxo3, Ptbp1, Sema3c, and Sorl, enriched in a cluster of neural regulation pathways such as negative regulation of neuron differentiation, neuron projection guidance, and axonogenesis (Supplementary Figure 7C).
We identified a total of 237 significant GO terms and revealed the DEGs to be enriched for various pathways that are not related to neural regulation, including extracellular matrix organization, extracellular structure organization, collagen fibril organization, cell-substrate adhesion, and renal system development (Figure 2B, Supplementary Table S3). This indicated little difference in neural activities between BDNF+/− and IDO1−/− mice. The count of shared genes among top pathways was lower as compared to BDNF+/− vs. control, which indicates a discrete distribution of biological functions (Supplementary Figure S8A,B).
In the top five pathways, the high concentrated gene set, including Cxcr2, Tnxb, P4ha1, Adams1, and Col4a5 among others, was not highly related to neural function (Supplementary Figure S8C). The CXCL1 chemokine deletion can cause rat depression-like behaviors, and CXCL1/CXCL2 correlates with depression-like behavior in response to chronic stress (Chai et al., 2019; Song et al., 2020).
We identified a total of 625 significant GO terms and revealed that the DEGs were significantly enriched in synapse organization, negative regulation of neuron differentiation, and negative regulation of neurogenesis (Figure 2C, Supplementary Table S3). Enriched pathways were highly associated with neural activities but slightly differed from the results of the analysis of BDNF+/− vs. control which indicated that the main pathways in BDNF+/− vs. CUMS and BDNF+/− vs. control were the same. The current study found genes similar to those identified in BDNF+/− vs. control pathway enrichment, including Mib1, Sema3c, and Foxo3, which were still enriched in relevant negative regulation of neuron activities, indicating that the CUMS model did not differ significantly from the controls as compared with BDNF+/− (Supplementary Figure S9).
Network Analysis of the Protein–Protein Interaction
PPI differences between BDNF+/−, a series of strong protein interactions, and IDO1−/− were not focused or related to neural activities, whereas internal consistency was similar between the control and CUMS groups.
To analyze the interactions with other molecules, we performed PPI based on the DEGs. Results in the BDNF+/− vs. control groups and the PPI network of DEGs revealed highly confident interactions which illustrated a series of strong interactions between proteins in BDNF+/− mice (Figure 3A). It was found that the whole network includes 171 links with the highest confidence among 60 nodes (score: >700). In addition, the whole network was mainly connected using several hub genes, including Trp53, Foxo3, EGFR, and CDK families. Furthermore, Trp53 responds to diverse cellular stresses to regulate target genes that induce cell cycle arrest, apoptosis, and senescence, as well as commonly interacts with CDKs which indicate cell cycle regulation changes in BDNF+/− mice (Rufini et al., 2013).
[image: Figure 3]FIGURE 3 | Result of the PPI network analysis. (A) PPI network of the top 60 DEGs in BDNF+/− and control groups. (B) PPI network of the top 60 DEGs in BDNF+/− and IDO1−/− groups. (C) PPI network of the top 60 DEGs in BDNF+/− and CUMS. The degree of red color and the size of each vertex indicate the number of connections.
In BDNF+/− vs. IDO1−/−, it was found that the PPI network contained 178 links and 60 nodes (Figure 3B). Notably, the network had three dense subnetworks of nearly equal size. The densest was mostly composed of Rpl family genes, including Rpl36a, Rpl38, and Rpl39. Furthermore, the Rpl family is composed of L ribosomal proteins. It was found that between the other two subnetworks one was led by Cdk2, P1k1, and Psmb10, and the other was led by Ndufb6, Ndufb4, Ndufb9, and the relevant gene of the NADH dehydrogenase subunit. The three subnetworks showed a dispersion in different biological functions, indicating that PPI differences between BDNF+/− vs. IDO1−/− are not focused or related to neural activities.
It was found that in BDNF+/− vs. CUMS, the network was composed of the top 60 DEGs with 163 interaction links (Figure 3C). The results of the PPI network revealed only one cluster of similar topology to the one in BDNF+/− vs. control, as well as similar hub genes, including Trp53, EGRF, Fox, Foxo3, and CDKs, reflecting consistent similarity between control and CUMS. However, it contained other hub genes, including Uba52, Bdnf, and Zap70.
Network Analysis of lncRNA–miRNA–mRNA ceRNA
In BDNF+/− vs. control, BDNF+/− vs. CUMS, and BDNF+/− vs. IDO1−/− mice, most differentially expressed genes were associated with the protection of vulnerable neuronal circuits. To investigate the potential interactions between DEGs and lncRNAs, we analyzed ceRNA based on DEGs among different models. For each comparison, lncRNAs and miRNAs that may interact with the DEGs were identified, and relevant interaction networks were built.
The BDNF+/− vs. control lncRNA-mRNA data were obtained from lncRNA2 targets. The lncRNA-mRNA network revealed 150 interactions between 40 DEGs and 46 lncRNAs (Supplementary Figure S10A). Lnpep, Slc36a4, and Amy1 interacted with most lncRNAs whereas AK040954, Linc-RAM, H19, and Linc1388 targeted most mRNAs. The hub genes in the miRNA-mRNA network included miR-124-3p, miR-132-3p, and miR-9-5p in miRNA and Dyrk2 as well as Nr2c2 and Nbeal1 in mRNA. miR-124-3p, which had the most connections in the current study, is a well-known biomarker of neural diseases (Supplementary Figure S10B).
A ceRNA network was further reconstructed (Figure 4A). In addition, it was noted that the network included lncRNAs H19, Evx1, and Pvt1, whereby H19 connected most miRNAs. The hub miRNAs included miR-130a-3p, miR-130b-3p, miR-223-3p, miR-423-5p, and miR-301b-3p whereas the hub mRNAs included Stox2, Ulk2, Npepl1, Aff4, and Ddx6.
[image: Figure 4]FIGURE 4 | Result of ceRNA network analysis. (A) ceRNA network of all DEGs in BDNF+/− and control groups. (B) ceRNA network of all DEGs in BDNF+/− and IDO1−/− groups. (C) ceRNA network of all DEGs in BDNF+/− and CUMS groups. The size of the vertex indicates the number of connections.
In BDNF+/− vs. IDO1−/−, the lncRNA-mRNA network was composed of 147 interactions between 39 DEGs and 44 lncRNAs (Supplementary Figure S11A). Myh9, Adam12, Iqgap1, and Tfrc interacted with most lncRNAs whereas linc1388, linc1382, linc1470, and linc1558 targeted most mRNAs. In the miRNA-mRNA network, miR-124-3p, miR-30e-5p, and miR-30a-5p connected with most mRNAs, whereas Ptpn13, Tfrc, Zfp36l1, and Myh9 connected with most miRNAs (Supplementary Figure S11B).
The mRNA–miRNA–lncRNA ceRNA network had three lncRNA nodes, 20 mRNA nodes, and 10 miRNA nodes (Figure 4B). The lncRNA nodes with the most connections were H19, Evx1, and Pvt1 as compared with BDNF+/− vs. control. Furthermore, the miRNA nodes included miR-107-3p, miR-130b-3p, miR-130a-3p, miR-195a-5p, miR-301b-3p, and miR-103-3p. The average connection per miRNA was higher than in BDNF+/− vs. control. The hub mRNAs included Tnrc6b, Mob3b, Otud4, Ankrd52m, Tardbp, Sh3d19, and Cav1, and it was found that they had little overlap with results from BDNF+/− vs. control.
In BDNF+/− vs. CUMS, the lncRNA-mRNA network showed 139 interactions between 37 DEGs and 46 lncRNAs (Supplementary Figure S12A). Lnpep, Slc36a4, and Amy1 still interacted with most lncRNAs, whereas AK040954, Linc-RAM, H19, and Linc1388 targeted most of the mRNAs. In the miRNA-mRNA network, hub miRNAs included miR-124-3p, miR-106-5p, miR-132-3p, and miR-9-5p, whereas hub mRNAs included Dyrk2, Nr2c2, Nbeal1, and Ptbp1 (Supplementary Figure S12B). In the mRNA–miRNA–lncRNA network, lncRNA nodes still included H19, Evx1, and Pvt1, with H19 still having the most connections (Figure 4C). Furthermore, the hub miRNAs included miR-301b-3p, miR-223-3p, miR-130a-3p, miR-130b-3p, and miR-223-3p whereas the hub mRNA gene included Mybl1, Ddx6, Aff4, Stox2, and Ddx6, which was similar to BDNF+/− vs. control.
Following the consistency of the aforementioned three PPI networks, we determined the mRNA network of the BDNF+/− vs. control, BDNF+/− vs. IDO1−/−, and BDNF+/− vs. CUMS mice. It showed that BDNF was a common difference between them, which was also in line with the differential expression of the prefrontal lobe after the knockdown of the Bdnf. Among them, we found that not only was the upstream Bmp1 of Bdnf different but also the downstream Fos of Bdnf and Fos was also an important indicator of activating neuronal activity (Figure 5).
[image: Figure 5]FIGURE 5 | Consistency of the three PPI networks, including BDNF+/− vs. control, BDNF+/− vs. IDO1−/−, and BDNF+/− vs. CUMS.
DISCUSSION
The current study identified several differentially expressed genes in normal vs. depression-like mouse tissues from diverse genomic locations. These genes were collected in an mPFC manner. Pathway enrichment and ceRNA network analyses evidently revealed that most differentially expressed genes were associated with the protection of vulnerable neuronal circuits, and enriched pathways were associated with nervous system development and synapse organization.
Consistent with several previous studies, it was found that there were no significant gene expression differences in control vs. CUMS mice (Ma et al., 2016; Ma et al., 2019). It was evident that the possible differences are not reflected at the transcriptomic level but in protein modification or neurotransmitter content. However, it was found that BDNF-knockdown mice exhibited depression-like features based on reduced levels of neurotransmitter content (Kojima et al., 2020). Furthermore, it was found that the BDNF+/− mice exhibited significant gene expression differences as compared with control or IDO1−/− mice.
It was also evident that various genes, including Ptbp1, were predominantly expressed in BDNF+/− as compared with other groups which suggested that they were purposefully produced. This study focused on mouse mPFC sequencing of gene modification, especially in BDNF+/− and IDO1−/− mice. Other previous studies have reported more differential mRNA expressions in the hippocampus, and there are possibilities of molecular lateralization in other subcortical areas (Hu et al., 2020; Chae et al., 2021). Furthermore, various abundant genes are specifically expressed in the gene-editing group and differentially expressed in the depression-like group as compared with the normal or depression-like antagonism groups, hence indicating that they serve specific functions in specific pathways (Le et al., 2018; Xu et al., 2019).
The current study had some limitations. The first limitation was the lack of sequencing comparison between other brain regions such as the hippocampus of the limbic system or the parahippocampal gyrus and cingulate gyrus. The lack of comparison of human samples was also a shortcoming of this study. Adding human-derived depression samples would have enriched the understanding of the degree of gene expression changes in depression-like lesions. Overall, the current study only performed RNA sequencing studies on a CUMS-based depression-like mouse model, BDNF knockdown mice (simulating depression-like), and IDO knock-out mice (antagonizing depression-like). The sample area was the prefrontal cortex, and because no human samples were analyzed for comparison in the current study, there was no experimental verification of whether the differential gene expression, including Ptbp1, is associated with depression pathogenesis.
Nevertheless, the results of the current study suggest that in a mouse model of depression (BDNF+/−), CXCL1 deletion (Chai et al., 2019) and Slc17a7 reduction (Lindstrom et al., 2020) are related to the loss of excitatory neurons in the prefrontal lobe, whereas Ptbp1 downregulation (Qian et al., 2020) correlates with neuronal regeneration. However, there is a need for experimental validation of these findings in future research.
CONCLUSION
Depression mouse models and controls were studied for possible DEGs and enriched pathways. The findings show a function for ceRNA network-mediated genes in the development of depression. There is a difference in the expression between BDNF+/− and CUMS model depressed mice, showing that the BDNF knockout model can only assist in imitating neurotransmitter models. A neurotransmitter disruption was not seen in the IDO1−/− mouse model, in contrast to the CUMS and BDNF+/− models. Our findings may help unravel the neurotransmitter hypothesis of depression in animals.
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Several studies have reported that chromosome 9p21 is significantly associated with ischemic stroke (IS) risk, with the G allele associated with increased risk. However, controversial results have been reported in the literature. We systematically assessed the relationship between stroke and three 9p21 loci (rs2383206, rs2383207, and rs10757278) in this meta-analysis. First, we searched the PubMed and Embase databases for relevant studies. We then calculated odds ratios using the chi-squared test. The evaluation of experimental data was performed using bias tests and sensitivity analyses. We analyzed data from 16 studies involving 18,584 individuals of Chinese ancestry, including 14,033 cases and 14,656 controls. Our results indicated that chromosome 9p21 is significantly associated with IS (odds ratio: 1.15, 95% confidence interval: 1.1–1.20, p < 0.0001). Because the three single-nucleotide polymorphisms (rs2383206, rs2383207, and 10757278) have a linkage disequilibrium relationship, all three may increase the risk of IS.
Keywords: ischemic stroke, chromosome 9p21, rs2383206, rs2383207, rs10757278, Chinese
INTRODUCTION
Stroke is a severe disease and is the leading cause of disability and death in China (Liu et al., 2011). It is an acute cerebrovascular disease that is characterized by focal loss of nerve function and high mortality and disability, and it currently poses a serious threat to human life and health (Li et al., 2021). Stroke is thought to be caused by environmental risk factors, multiple genes, and their interactions. To date, however, a large proportion of stroke risk remains unexplained (Ganesh et al., 2016). Genetic variation on chromosome 9p21 is widely believed to be linked to risk of coronary heart disease (McPherson et al., 2007; Samani et al., 2007), but it has a different role in stroke (Matarin et al., 2008; Gschwendtner et al., 2009). Previously, genome-wide association studies (GWAS) have analyzed genes associated with ischemic stroke (IS) (Söderholm et al., 2019). Single-nucleotide polymorphisms (SNPs) of rs2383206, rs2383207, and rs10757278 on chromosome 9p21 are linked to stroke. However, although several recent genetic studies have reported that chromosome 9p21 plays an important role in the mechanism of stroke, studies of different races and from different geographic locations have provided very different results. Therefore, an association between 9p21 polymorphisms and stroke has been established for individuals of European descent; the main aim of this meta-analysis was to study the relationship between three SNPs on chromosome 9p21 and stroke in the Chinese population.
METHODS
Search Strategy
We searched the PubMed and Embase databases and selected all possible studies using the keywords “Stroke Chinese” and “rs2383206,” “rs2383207,” “rs10757278,” and “9p21.” The relevant literature was updated on 31 January 2022.
Selection Criteria
The following selection criteria were used: (1) an association between the proposed SNPs and stroke was evaluated using a case–control design; (2) an accurate genotype number was provided or could be calculated (Liu et al., 2013); (3) the odds ratio (OR) and 95% confidence interval (CI) were provided to measure the risk of disease; (4) the OR value and 95% CI were calculated by providing enough data; (5) the same diagnostic criteria were used for stroke. The exclusion criteria were (1) the research was presented as a poster presentation, summary, meta-analysis, conference summary or article, or case series analysis; (2) the study was not performed in a Chinese population; (3) the three SNPs were not used; (4) the study was not consistent with the research topic; and (5) the exact number of genotypes was not provided and could not be calculated and/or the OR and 95% CI were not provided and could not be calculated. Two authors (DW and XH) independently screened all studies by their title or abstract and then evaluated the full text. Any differences in opinion were resolved through discussion.
Data Extraction
Trial data from each identified study were extracted separately by two investigators (DW and XH). Any differences were eliminated by discussing the data extraction for each study using standard data collection tables. The data and information that were extracted for inclusion in the analysis included the first author’s name, publication year, language, population, study type, sample size, numbers, and frequencies of rs2383206, rs2383207, and rs10757278 polymorphism genotypes in the cases and controls, ORs, and 95% CIs. All extracted data are presented in Tables 1, 2.
TABLE 1 | Sixteen studies in 11 articles investigating the association between rs2383207, rs2383206, and rs10757278 and IS.
[image: Table 1]TABLE 2 | Correlation analysis between different genetic patterns of rs2383207, rs2383206, and rs10757278 at 9p21 locus and IS susceptibility.
[image: Table 2]Statistical Analysis
We investigated the Hardy–Weinberg equilibrium of rs2383206, rs2383207, and rs10757278. We also investigated their association with stroke using the chi-squared test, which was performed using R (http://www.r-project.org/) (Liu et al., 2013). For the meta-analysis, we determined the heterogeneity among datasets using Cochran’s Q test and I2 = (Q – (k – 1))/Q × 100%. The Q statistic approximately follows a χ2 distribution, with k-1 degrees of freedom (k is the number of studies in the analysis) (Liu et al., 2017). When I2 was greater than 50% and the p-value was less than 0.1 (Higgins et al., 2021), the DerSimonian and Laird random-effects model was used as the pooling method; otherwise, the Mantel–Haenszel or inverse variance fixed-effects model was used as the pooling method, as appropriate. We also used funnel plots to assess potential publication bias. When there is no bias, funnel plots are symmetrical; conversely, when bias is present, funnel plots are asymmetrical (Liu et al., 2014).
RESULTS
Characteristics of Included Studies
In this meta-analysis, 18,584 participants were included: 14,033 in the IS group (7,235 cases with rs2383207, 3,762 cases with rs2383206, and 3,036 cases with rs10757278) and 14,656 cases in the control group (7,653 cases with rs2383207, 3,807 cases with rs2383206, and 3,196 cases with rs10757278). Eleven articles were selected, comprising 16 studies, of which six investigated rs2383207 (Lin et al., 2011; Zhang et al., 2012; Li et al., 2017; Yang et al., 2018; Jin et al., 2021; Li et al., 2021), five investigated rs2383206 (Ding et al., 2009; Hu et al., 2009; Zhang et al., 2012; Xiong et al., 2018; Li et al., 2021), and five investigated rs10757278 (Ding et al., 2009; Zhang et al., 2012; Bi et al., 2015; Xiong et al., 2018; Han et al., 2020). The study identification and selection process is shown in detail in Figure 1.
[image: Figure 1]FIGURE 1 | Flow chart of study selection in this meta-analysis.
Linkage Disequilibrium
The three SNPs—rs10757278, rs2383206, and rs2383207—are located within 10 kb of one another on chromosome 9p21 (https://snipa.helmholtz-muenchen.de/snipa3/).
Meta-Analysis Results of 9p21
There is a linkage disequilibrium relationship among the three SNPS (rs2303206, rs2383207, and rs10757278). Thus, we performed an analysis of the OR values of all studies involving rs2383206, rs2383207, and rs10757278 in which the G allele was a minor allele. Because I2 = 50%, a random-effects model was used to compare alleles (Figure 2). Chromosome 9p21 was significantly associated with IS risk, and the G allele was associated with increased IS risk (OR: 1.14, 95% CI: 1.08–1.19, p < 0.0001, Figure 2).
[image: Figure 2]FIGURE 2 | Random-effects meta-analysis of the association between the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and rs10757278) and ischemic stroke (IS). CI, confidence interval; OR, odds ratios.
Publication Bias
The Harbord test was used to evaluate publication bias. The bias = 0.3228, p = 0.7661, indicating no publication bias in the studies of 9p21 (Figure 3).
[image: Figure 3]FIGURE 3 | Funnel plots corresponding to the random-effects meta-analysis of all studies of the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and rs10757278) and ischemic stroke (IS).
Sensitivity Analysis
Because the I2 is > 50% in this meta-analysis, a random-effects model was used. To assess the impact of each individual study on the pooled effect estimate, we performed a sensitivity analysis by removing one study at a time. The pooled estimate I2 = 49.8%; thus, no single study significantly affected the results of each single-locus sensitivity analysis.
Second and Third Analyses
According to the results of the bias test and sensitivity analysis, it was found that the studies by Yang et al. (rs2383207) (Yang et al., 2018) and Ding et al. (rs10757278) (Ding et al., 2009) had roughly the same weight and were outside the funnel plot. We decided to remove the two studies and re-analyze the results. After removing two studies, we used R program to re-analyze the remaining studies. In the second analysis, chromosome 9p21 remained significantly associated with IS risk, and the G allele was associated with increased IS risk (OR: 1.16, 95% CI: 1.12–1.20, p < 0.0001, Figure 4). The results of this second analysis further confirmed that the two removed studies had little influence on the initial results. Moreover, there was homogeneity between the studies (I2 = 5%, p = 0.40), and the two experiments were outliers. A second bias test revealed that bias = 1.4217, p = 0.0696 (Figure 5). Sensitivity tests for the individual studies were again performed to ensure that no single study significantly affected the results of each single-locus sensitivity analysis.
[image: Figure 4]FIGURE 4 | Fixed effects meta-analysis of the association between the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and rs10757278) and ischemic stroke (IS) in the second analysis. CI, confidence interval; OR, odds ratios.
[image: Figure 5]FIGURE 5 | Funnel plots corresponding to the fixed-effects meta-analysis of the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and rs10757278) and ischemic stroke (IS) in the second analysis.
We know from Figure 4 that the included studies were homogeneous, and the sensitivity analysis of each study also indicated that no single experiment significantly affected the experimental results. Therefore, based on the forest map and funnel plot, we also removed the study by Bi et al. (Bi et al., 2015), located outside the funnel plot, in the third analysis. In this third analysis, an increased risk of IS was associated with the G allele (OR: 1.16, 95% CI: 1.11–1.20, p < 0.0001, Figure 6). Further analysis confirmed that the homogeneity between studies was more significant after removing the study by Bi-2015 (I2 = 0%, p = 0.71, Figure 7), and there was a more significant correlation between chromosome 9p21 and IS risk. Thus, the removal of the study by Bi et al. (2015) further verified our original conclusions. The experimental results indicate that chromosome 9p21 is significantly associated with IS risk, and an increased risk of IS is associated with the G allele.
[image: Figure 6]FIGURE 6 | Fixed-effects meta-analysis of the associated between the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and rs10757278) and ischemic stroke (IS) in the third analysis. CI, confidence interval; OR, odds ratios.
[image: Figure 7]FIGURE 7 | Funnel plots corresponding to the fixed-effects meta-analysis of the three single-nucleotide polymorphisms (SNPs; rs2383207, rs2383206, and rs10757278) and ischemic stroke (IS) in the third analysis.
DISCUSSION
Stroke is currently the main cause of death in China; it has high morbidity, mortality, and disability rates (Kim et al., 2015). Stroke can be clinically divided into two types: IS and hemorrhagic stroke. Among the stroke subtypes, hemorrhagic stroke accounts for 20–40% of strokes in Chinese population, while in most Western populations, the majority of strokes (80–90%) are cerebral infarctions (Reed, 1990). Furthermore, IS accounts for approximately 87% of all stroke types, and IS a multifactorial disease that is influenced by both genetic and environmental factors (Wang et al., 2021). Chromosome 921 was originally reported to be associated with coronary heart disease (Matarin et al., 2008). There are some similarities between the etiologies and mechanisms of coronary heart disease and stroke, and 9p21 variants are associated with both diseases (Matarin et al., 2008). However, when investigating the association between 9p21 and IS, the conclusions drawn by researchers in China and in the rest of the world have been inconsistent. Stroke is influenced by many factors, including genetic, environmental, and vascular risk factors. The main method of studying susceptibility sites and genes in complex diseases is GWAS, based on SNPs (McPherson et al., 2007).
Matthew Traylor et al. found that chromosome 9p21 and histone deacetylase were associated with stroke in individuals of European ancestry (Traylor et al., 2012). Furthermore, Akinyemi et al. reported that rs2383207 increases IS incidence in indigenous West African men (Akinyemi et al., 2017). Previously, GWAS was also used to demonstrate that the antisense non-coding RNA in the INK4 locus (ANRIL) variants rs2383207 and rs1333049 increases the risk of IS and coronary heart disease in Caucasian populations (Dichgans et al., 2014; Dehghan et al., 2016). Notably, studies investigating the genetic associations of chromosome 9p21 variants have mainly been performed among Caucasian populations, and relatively few studies have been carried out in Han Chinese populations. Although Chen et al. (2019) studied chromosome 9p21 variants in Chinese populations, they concluded that mutations in rs2383207 may reduce the risk of IS but reported no definite correlation between rs10757278 and IS (Chen et al., 2019). In the present study, we once again focused on the relationship between stroke and chromosome 9p21.
In this meta-analysis, 18,584 participants were included; the IS and control groups contained 14,033 and 14,656 individuals, respectively. The three investigated SNPs have a linkage disequilibrium relationship, and we arrived at the same conclusions through unified analysis. All three SNPs were associated with IS risk. However, there was heterogeneity between the experimental results and studies; thus, bias detection and sensitivity analyses were carried out. Figure 3 suggested that the research may have been biased; therefore, to remove any possible bias, we performed another set of analyses. These further analyses had similar results that were more significant than those of the original analysis, further confirming that our analysis was correct.
In conclusion, our results indicate that rs2383206, rs2383207, and rs10757278 are significantly associated with IS risk and the G allele is associated with an increased risk of IS. Because the three SNPs in the present study have linkage disequilibrium and are in similar positions on chromosome 9p21, a unified analysis was performed. Environmental factors such as smoking and alcohol use may also be associated with IS risk, but not all studies considered these risk factors. Therefore, the influence of genes and the environment on IS pathogenesis needs to be further studied.
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Vascular dementia (VaD) is the second most common cause of dementia. At present, precise molecular processes of VaD are unclear. We attempted to discover the VaD relevant candidate genes, enrichment biological processes and pathways, key targets, and the underlying mechanism by microarray bioinformatic analysis. We selected GSE122063 related to the autopsy samples of VaD for analysis. We first took use of Weighted Gene Co-expression Network Analysis (WGCNA) to achieve modules related to VaD and hub genes. Second, we filtered out significant differentially expressed genes (DEGs). Third, significant DEGs then went through Geno Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Fourth, Gene Set Enrichment Analysis (GSEA) was performed. At last, we constructed the protein–protein interaction (PPI) network. The results showed that the yellow module had the strongest correlation with VaD, and we finally identified 21 hub genes. Toll-like receptor 2 (TLR2) was the top hub gene and was strongly correlated with other possible candidate genes. In total, 456 significant DEGs were filtered out and these genes were found to be enriched in the Toll receptor signaling pathway and several other immune-related pathways. In addition, Gene Set Enrichment Analysis results showed that similar pathways were significantly over-represented in TLR2-high samples. In the PPI network, TLR2 was still an important node with high weight and combined scores. We concluded that the TLR2 acts as a key target in neuroinflammation which may participate in the pathophysiological process of VaD.
Keywords: vascular dementia, TLR2, neuroinflammation, bioinformatic analysis, WGCNA
INTRODUCTION
Vascular dementia (VaD), following Alzheimer’s disease (AD), is one of the most prevalent causes of dementia (O'Brien and Thomas, 2015). A study in 6,481 Korean older adults showed that in 2016 disability-adjusted life-years (DALYs) caused by VaD (316 per 100,000) comprised 20% of the total DALYs caused by mild cognitive impairment (MCI) and dementia. In 2065, DALYs due to VaD (3654 per 100,000) would comprise 38% of the total DALYs as mentioned before. In parallel, the years of life lived with disability (YLDs) attributed to VaD (85 per 100,000) accounted for 18% of the total YLDs caused by MCI and dementia in 2016, while in 2065 YLDs attributed to VaD (410 per 100,000) will account for 15% of total YLDs (Moon et al., 2021). As the data shows, DALYs and YLDs of VaD are estimated to increase. However, there are fewer relative studies about VaD than those about AD, and there are no licensed treatments for VaD.
As a multifactorial disease, various risk factors participate in the development of VaD. Age and stroke are both major risk factors for the pathogenesis of VaD. VaD is also associated with vascular risk factors (O'Brien and Thomas, 2015; Iadecola et al., 2019). In addition, genetic linkage analyses investigated penetrant monogenic causes of VaD (Romay et al., 2019). Thus, a comprehensive understanding of key risk factors and genetic predispositions that lead to VaD needs to be clarified.
In nervous system, Toll-like receptors (TLRs) were reported to regulate the numbers of neurons and the size of brain, modulating structural plasticity in the adult brain (Li G et al., 2020). TLRs were an ancient family of pattern recognition receptors (PRRs). The role of TLRs in immunity control has been broadly discussed (Fitzgerald and Kagan, 2020). In neurological diseases, TLRs were reported to participate in AD (7), Parkinson’s disease (PD) (Kouli et al., 2019), ischemic stroke (IS) (Wang et al., 2013; Tajalli-Nezhad et al., 2019), and multiple sclerosis (MS) (Racke and Drew, 2009). However, the role of TLRs in VaD remained unclear.
In the present study, we performed a bioinformatic analysis based on GSE122063 (McKay et al., 2019). We first tried to figure out hub genes and top hub gene. Then we conducted a basic analysis on DEGs. Last, we performed relative analyses centered on the top hub gene to further investigate the probable mechanism of that gene in VaD.
MATERIALS AND METHODS
Microarray Data Processing
In the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database, we chose GSE122063 which included the autopsy samples of VaD for analysis. GSE122063 was based on GPL16699 which used Agilent-039494 SurePrint G3 Human GE v2 8 × 60 K Microarray to detect the expression of genes. The microarray data includes eight VaD patients, 12 AD patients, and 11 controls postmortem frontal and temporal cortex samples. Each sample was run with at least two technical replicates. Data from AD patients were excluded from analysis and VaD sample 1063 was removed due to poor data quality according to the clustering result. The raw expression matrix was directly downloaded from the website, and the SOFT format file was downloaded and parsed by the GEOquery package (Davis and Meltzer, 2007). Then we used GPL1699 to transit ID into gene names and gene symbols using merge function in R. In addition, we checked if the data need log transformation or normalization. After pre-processing, a normalized expression matrix was constructed. The group matrix was constructed based on clinical information. All bioinformatic analyses and visualization were processed based on R.
Weighted Gene Co-Expression Network Analysis (WGCNA)
The WGCNA package (Langfelder and Horvath, 2008) was used to create a gene co-expression network. By median absolute deviation (MAD), the top 5,000 ranking genes were selected at first. Then a soft-thresholding power β was calculated by using the “pickSoftThreshold” function. A suitable power value was defined as the first number reaching which the degree of independence was at least 0.9. The gene expression matrix was then converted into a topological overlap matrix (TOM), and the genes were divided into several gene modules, each represented by a distinct color. Next, a hierarchical clustering analysis was performed by using the hclust function. Except for the WGCNA package, the gplots package (Warnes et al., 2020) was used for visualization. In addition, the top 100 networks sorted by weight were exported to Cytoscape software for visualization.
In WGCNA, gene significance (GS) was used to describe the relationship between gene and phenotype. Module membership (MM) was calculated to evaluate the importance of a gene in the module by using the cor function. In this study, genes with both GS > 0.3 and MM > 0.9 was defined as hub genes among the candidate gene modules (Jin et al., 2021). The correlation relationship of hub genes was explored by using the gpairs package (Emerson and Green, 2020).
Identification of DEGs
We first used lmFit and eBayes functions in the limma package (Ritchie et al., 2015) to identify the DEGs between VaD and control groups. The statistical method to calculate false discovery rate (FDR) was the Benjamini–Hochberg method. Then a threshold of adjust-p < 0.05 and the absolute value of log2 fold change (log2FC) > 1 were set, and the significant DEGs between the VaD and controls were filtered out. A volcano plot was presented by using EnhancedVolcano (Blighe et al., 2018). The distribution shape of TLR2 was shown in the violin plot by using the ggpubr package (Kassambara, 2020).
Geno Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis
A GO enrichment analysis was run to annotate the functions of the significant DEGs with GO terms. The GO enrichment analysis could explain the features of changed genes from the following three structural networks of terms: biological processes (BP), cellular components (CC), and molecular functions (MF). The KEGG pathway analysis was performed to investigate the pathway that the significant DEGs might be involved in. The org. Hs.eg.db package (Carlson, 2021) was used for transition from gene symbols to Entrez ID. Then the clusterProfiler package (Yu et al., 2012; Wu et al., 2021) was used for the enrichment analysis. At last, the ggplot2 (Wickham, 2016) package was used for visualization. The aforementioned analysis results enabled us to discover the biological pathways of the altered genes in the VaD group.
Gene Set Enrichment Analysis (GSEA)
In the GSE122063 datasets, GSEA was used to explore distinct GO terms and KEGG pathways that may be associated with TLR2. All genes were included in the analysis. Gene sets were directly downloaded from the website (http://www.gsea-msigdb.org/gsea/downloads.jsp). Except for the VaD and control groups, we set the median expression level of TLR2 as the cutoff value to divide patients into TLR2-high and TLR2-low expression groups. The org. Hs.eg.db package (Carlson, 2021) was used for Entrez ID transition, and the clusterProfiler package (Yu et al., 2012; Wu et al., 2021) was used for the enrichment analysis. Furthermore, the gseaplot2 function in the enrichplot package (Yu, 2021) was used for visualization of enrichment results.
Construction of a Protein–Protein Interaction Network
We used the STRING online database (https://string-db.org/) to construct a PPI network. Significant DEGs were uploaded to the STRING website. After being filtered by the “no more than 50 interactors” and “k-means clustering” options, the PPI network was exported into a TSV file. At last, the analysis and visualization of the interaction network were achieved by Cytoscape software. The function of network analysis function in the Cytoscape software calculated the degree which was utilized as the continuous mapping of nodes both in size and fill color (from blue to red). The combined score exported directly from the string database was used for the continuous mapping of edges both in width and stroke color (from blue to red). Larger size and bluer nodes indicated the higher degree, while wider and bluer lines indicated the higher combined scores.
RESULTS
WGCNA and Module Related With VaD
Using the expression matrix, WGCNA was used to determine the main module which was most linked with VaD. At first, we chose the top 5,000 genes sorted by MAD in the GSE122063 microarray assay for analysis. According to the calculation result, the soft-thresholding power β was 2 as the plot showed, with the scale-free topology R2-value achieving 0.9 (Figure 1A). To visualize the weighted network, a heat map was plotted. The gene co-expression network was created, and the genes were clarified into five modules represented by distinct colors including grey, turquoise, blue, brown, and yellow. This is called a cluster dendrogram, and it was presented along the axis. a network heat map of all 5,000 genes was shown by using the TOMplot function in Figure 1B. Each row and column in the heat map represented the same gene, and thus the network heat map is a symmetric plot. The genes with strong correlations were clustered into modules, which were represented as dark sections symmetrically distributed along the diagonal in the heat map, corresponding to the cluster dendrogram. The biggest grey module included 2,783 genes, and the smallest yellow module included 400 genes. As shown in the module–trait relationships plot, the yellow module was most positively associated with VaD (correlation coefficient = 0.57, ***p < 0.001; Figure 1C) and was chosen as the key module. The functional annotation of three significantly related modules (blue, turquoise, and yellow) are shown in Supplementary Figure S1. The yellow module was most related to immunity and inflammation.
[image: Figure 1]FIGURE 1 | Results and visualization of Weighted Gene Co-expression Network Analysis (WGCNA) analysis. (A) Determination of soft threshold β. Left: scale independence; right: mean connectivity. (B) Heat map showing the TOM among all 5,000 genes involved in the WGCNA with cluster dendrogram showing on the axis. Each color represents one specific co-expression module; the above branches represent genes. The genes with strong correlations are clustered into modules, which are represented as dark sections symmetrically distributed along the diagonal in the heatmap, corresponding to the cluster dendrogram. (C) Module–trait relationships among the five gene modules. The yellow module is the most correlated module (correlation coefficient = 0.57, ***p < 0.001).
Identification of Hub Genes and Top Hub Gene
Among the 400 genes in the yellow module, genes with MM > 0.9 and GS > 0.3 were sorted out as hub genes. The red dotted lines represent the thresholds value of MM > 0.9 and GS > 0.3 set for hub genes and separated an area in the upper right corner. The correlation analysis between yellow module memberships and gene significance showed statistical significance (correlation coefficient = 0.65, ***p < 0.001). In total, 21 hub genes were identified (TLR2, CD163, VSIG4, SLAMF8, C1QB, CD16a, CD32, ALOX5AP, integrinβ2, EBI3, HCLS1, CD14, LAIR-1, CD300a, IFI30, LCP1, C1orf162, γ-parvin, ALOX5, SLA, and CMTM7). According to MM or the chooseTopHubInEachModule function, TLR2 was the top hub gene in the yellow module (Figure 2). Furthermore, we found that TLR2 shows a strong positive correlation with other candidate genes, which indicated that changes in TLR2 expression might cause changes in these genes (Supplementary Figure S2).
[image: Figure 2]FIGURE 2 | Selection of hub genes. Module membership (MM) vs. gene significance (GS) in the yellow module (correlation coefficient = 0.65, ***p < 0.001). The red dotted lines represented the thresholds of MM > 0.9 and GS > 0.3 set for hub genes and separated an area in the upper right corner. Toll-like receptor 2 (TLR2) is selected as the top hub gene.
Identification of DEGs in VaD
The gene expression levels of the samples were distributed at the same baseline after normalization. Compared to the control group, significant DEGs were identified in the VaD group by setting the threshold value as adjust-p < 0.05 and |log2FC| > 1. The expression of the genes was displayed as a volcano plot in which the size of the dot reflects |log2FC| of the gene (Figure 3A). There were 456 significant DEGs between the VaD and control groups among the 23,320 genes detected in microarray, including 198 upregulated ones and 258 downregulated ones. TLR2 was one of the significant DEGs and was marked out in the volcano plot. Specifically, the expression level of TLR2 in the VaD and control groups was shown in the violin plot (***p < 0.001, Figure 3B). TLR2 was significantly differentially expressed between the two groups.
[image: Figure 3]FIGURE 3 | Differentially expressed genes (DEGs) present in vascular dementia (VaD) and control groups in microarray from GSE122063 and the expression level of Toll-like receptor-2 (TLR2). (A) Volcano plot showed the distribution of the DEGs between two groups. The red dots correspond to the significantly regulated genes. (B) Violin plot of TLR2. TLR2 is upregulated in the VaD group (***p < 0.001).
Results of GO and KEGG Analysis
Significantly upregulated and downregulated DEGs were enriched in BP, CC, and MF terms and the KEGG pathway, respectively. The horizontal axis represents −log10 (p-value), while the color indicated the change direction. In detail, BP, Toll-like receptor signaling pathway was enriched, which was consistent with our previous result. Other BPs such as negative regulation of immune system process, antigen processing, and presentation and regulation of B, T, and NK cells were examples of significantly enriched upregulated GO terms (*p < 0.05, Figure 4A), while CCs, including azurophil granule, endocytic vesicle, and secretory granule membrane are shown (*p < 0.05, Figure 4B). Upregulated MFs, such as scavenger receptor activity and RAGE receptor activity, were significantly enriched. Neuropeptide hormone activity, neuropeptide receptor binding, and signaling receptor activation activity were downregulated (*p < 0.05, Figure 4C). Most enriched KEGG pathways did not reach statistical significance in which we observed a trend in Toll-like receptor signaling pathway and neuroactive ligand–receptor interaction was significantly downregulated (Supplementary Figure S3).
[image: Figure 4]FIGURE 4 | Results of the Geno Ontology (GO) terms enrichment analysis of significant DEGs. (*p < 0.05). Blue bars showed the results of upregulated genes while red bars showed the results of downregulated genes.
GSEA Enrichment Results
GSEA was analyzed in the disease group versus control as well as groups divided by the expression level of TLR2. When comparing the VaD group with the control group, the Toll-like receptor pathway was enriched, which was the same as the results from DEGs. Other immunity and inflammation-related processes were also enriched which indicated the representativeness of the data and complemented evidence for the role of TLR2 in neuroinflammation. The results are shown in Supplementary Figure S4. When comparing the TLR2-high group with the low group, the results showed that BPs, such as cytokine-mediated signaling pathway and defense response to other organism, were significantly enriched in the TLR2-high samples (*p < 0.05, Figure 5A). CCs, such as synapse, vacuole, and cell surface granule, and MFs, such as immune receptor activity and molecular transducer activity, were significantly enriched in the TLR2-high samples, shown in Figures 5B, C, respectively (*p < 0.05, Figures 5B,C). When it comes to the KEGG enrichment analysis, pathways such as antigen processing and presentation, ribosome, and cytokine–cytokine receptor reaction were significantly over-represented in TLR2-high samples (*p < 0.05, Figure 5D). The similar enrichment results in VaD and control groups, as well as in the TLR2-high and low groups further demonstrated the important role of TLR2 in VaD. Moreover, high expression level of TLR2 was related to many genes, including myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB), protein kinase B (AKT), glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba1), and many cytokines according to the expression matrix and the KEGG pathway.
[image: Figure 5]FIGURE 5 | Gene Set Enrichment Analysis (GSEA) results grouped by the expression level of TLR2. (A) BP enriched in TLR2-high group. (B) CC enriched in TLR2-high group. (C) MF enriched in TLR2-high group. (D) KEGG pathways enriched in TLR2-high group.
PPI Network Construction
With the combined use of STRING and Cytoscape, the PPI network of the significant DEGs was created. The size and color reflected the degree of nodes in which the more edges connected to this node, the greater its degree. The larger size and bluer node indicated the higher degree. The width and color reflected the combined score of edges in which the combined scores were positively related to the interaction relationships between the two proteins. The wider and bluer line indicated higher combined scores. The overall network of DEG-correlated proteins is shown in Figure 6A. TLR2 got a relatively high degree in this overall network which suggested that TLR2 played a crucial role in the network. Considering the complication of the network, a new network centered on TLR2 was further constructed and amplified. TLR2 was most associated with Complement C5a Receptor 1 (C5AR1), Heat Shock Protein Family A Member 1 A (HSPA1A), cluster of differentiation (CD14), and cytochrome B-245 Beta Chain (CYBB) (Figure 6B).
[image: Figure 6]FIGURE 6 | Construction of the protein–protein interaction (PPI) network consisting of DEGs. (A) PPI of DEGs. (B) Partial network centered on TLR2. The size and color of the nodes reflect the degree and the width and color of the edges reflect the combined scores (color: from blue to red). Larger size and bluer nodes indicated the higher degree while wider and bluer lines indicated the higher combined scores.
DISCUSSION
Cognitive impairment related to aging has become one of the major public health burdens for us. Although Alzheimer’s disease is the most prevalent cause of clinically diagnosed dementia in western nations, vascular etiology is the second most common cause. Also, vascular etiology is the most common cause in East Asia (Iadecola et al., 2019). Thus, it is worthwhile to investigate the underlying mechanism of VaD development. Much progress has been made during the past years; however, several controversies remain to be interpreted.
In the present study, we first took use of WGCNA to achieve modules related to VaD and hub genes. According to the correlation coefficient, a yellow module was chosen which was closely related to immunity and we finally identified 21 hub genes. TLR2 was the top hub gene which was strongly correlated with other possible candidate genes. Second, we filtered out 456 significant DEGs by adjust-p < 0.05 and |log2FC| > 1. TLR2 was one of the DEGs and was significantly upregulated in the VaD group. Third, significantly upregulated and downregulated DEGs were gone through GO and KEGG analyses and the Toll-like receptor pathway, and other inflammation related processes were found to be upregulated in the VaD group. Fourth, GSEA results showed that cytokine-mediated signaling pathway, cell surface, immune receptor activity, and cytokine–cytokine receptor reaction were significantly over-represented in TLR2-high samples. The results were similar to enrichment results achieved by samples being divided by disease status. Finally, in the PPI analysis, TLR2 was an important node with a higher degree and combined scores edges which indicated that TLR2 remained a key target at the protein level. In summary, with five approaches complementing each other, TLR2 might participate in the pathophysiological process of VaD via the neuroinflammation pathway.
TLRs were proved to be involved in the control of immunity and neurological diseases (Racke and Drew, 2009; Kouli et al., 2019; Lin et al., 2019; Tajalli-Nezhad et al., 2019; Fitzgerald and Kagan, 2020). TLR2, as a member of TLRs, also played a vital role in nervous system. Based on the KEGG Toll-like receptor signaling pathway, we summarized a mechanism chart. After comparing the pathway with our analysis results, we found that a high expression level of TLR2 was related to many genes, including MYD88, AKT, NF-κB, Iba1, GFAP, and many cytokines, suggesting that TLR2 might participate in the development of VaD via the neuroinflammation pathway. The genes that were upregulated in this microarray were marked in red. High expression of TLR2 induced activation of astrocytes and microglia, which further lead to the secretion of cytokines (Figure 7). Previous studies were consistent with our results and provided a foundation for this prediction. Knockdown of MyD88 attenuated the mRNA expression of TNF-α and inducible nitric oxide synthase (iNOS) (Jana et al., 2008) in AD, while reduced inflammatory response was observed in MYD88 knockdown mice with traumatic brain injury (TBI) (Krieg et al., 2017). These results revealed the role of MYD88 in neuroinflammation. Meanwhile, AKT and NF-κB were involved in the neuroinflammation pathway in experimental models of AD (Yang et al., 2020). In addition, GFAP is an activation marker of astrocytes, while Iba1 and CD68 are the activation markers of microglia. The anti-TLR2 antibody group had lower GFAP and CD68 immunoreactivity than the control group (McDonald et al., 2016). At last, the expression levels of inflammatory cytokines increased (Brea et al., 2011; Dzamko et al., 2017; Sun et al., 2017). At the protein level, TLR2 was proven to be strongly correlated with proteins such as C5AR1 (Mödinger et al., 2018), HSPA1A (Yang et al., 2013), and CD14 (Aguilar-Briseño et al., 2020), according to the previous study which was coincident with our results. These molecules, as well as CYBB, were all related to neuroinflammation which further proved our results (Tarassishin et al., 2014; Qu et al., 2017; Michailidou et al., 2018; Keller et al., 2021). All the results proved that TLR2 could be an efficient target to regulate the unwanted inflammatory responses in neurological conditions (Hayward and Lee, 2014). Thus, we suggested that TLR2 might participate in the development of VaD via the neuroinflammation pathway.
[image: Figure 7]FIGURE 7 | Potential mechanism for high expression of TLR2 to promote VaD. The network is summarized according to GSE122063 database and public KEGG pathway. Red indicates the upregulated genes.
In parallel, there was other evidence that also supported the role of TLR2 in the development of VaD. First, TLR2 regulated the risk factors of vascular diseases which further affect VaD development, such as atherosclerosis (Li B et al., 2020) and diabetes. TLR2 was found to promote vascular smooth muscle cell chondrogenic differentiation and consequent calcification in atherosclerosis by activating p38 and extracellular regulated protein kinases (ERK) 1/2 signaling (Lee et al., 2019). Activation of TLR2 stimulated the pro-inflammatory cytokines and chemokines secretion, which would cause vascular injuries. Diabetes-induced changes in cerebral blood flow and cognitive deficits were prevented when TLR2 was knocked out (Hardigan et al., 2017).
Second, TLR2 participated in the pathophysiological process of stroke and other neurodegeneration diseases. In IS, TLR2 was associated with the outcome (Brea et al., 2011), and TLR2 inhibition improved neuronal survival (Ziegler et al., 2011), which indicated a future therapy. Repeated exposure to TLR2 agonists may exacerbate neurodegeneration in AD by their microglial-mediated toxicity (Lax et al., 2020) and inhibition of TLR2 in microglia (Liu et al., 2012) or mouse model could be beneficial in AD pathogenesis. Similarly, TLR2 was reported to exert a prominent role in the microglial-mediated responses which is vital for PD progression (Doorn et al., 2014).
Third, TLR2 exerted functions in biological processes or other neurological diseases via the neuroinflammation pathway. Neuraminidase-induced inflammatory reaction in vivo was partly dependent on TLR2 (Fernández-Arjona et al., 2019), while interferon-γ (IFN-γ) enhanced α-syn stimulation and inflammatory responses via TLR2, TLR3, and TNF-α in vitro (Wang et al., 2019). TLR2 and TLR4 could serve as important mediators of repeated social defeat stress (R-SDS)–induced microglial activation in the medial prefrontal cortex (mPFC), which caused neuronal and behavioral alternations via inflammatory-related cytokines (Nie et al., 2018). In addition, TLR2 and TLR4 were shown to potentially advance secondary brain injury after experimentally controlled cortical impact (CCI) via neuroinflammation (Krieg et al., 2017) while activation of microglia, via a TLR2-sphingosine kinase 1 (Sphk1)-pro-inflammatory cytokines (IL-1β, TNF-α, IL-17, and IL-23) pathway, may be involved in ischemia/reperfusion (I/R) injury (Sun et al., 2017). In IS, TLR2 activation was associated with a higher interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and IL-6 expression level (Brea et al., 2011). The expression of TLR2 was increased in affected regions, further inducing TNF-α expression and increased phosphorylation of NF-κB p105 subunit in PD (32). In AD, TLR2 was proved to be a natural receptor for Aβ to trigger neuroinflammatory activation (Richard et al., 2008; Liu et al., 2012). TLR2 deficits in microglia shifted related inflammatory activation in vivo, while TLR2 insufficiency reduced Aβ42-triggered inflammatory activation and increased Aβ phagocytosis in vitro, which were both related to improved neuronal function (Jana et al., 2008; Liu et al., 2012; McDonald et al., 2016). TLR2 could enhance macrophage receptor with collagenous structure (Marco)–induced neuroinflammation by acting on the scavenger receptors cysteine-reach (SRCR) domain of Marco, which also suggested that TLR2 could serve as a novel target for reducing neuroinflammation in neurodegenerative diseases (Wang et al., 2021). Therefore, it is reasonable to speculate that TLR2 participates in the pathophysiological process of VaD through the neuroinflammation pathway and could serve as a key target.
Our research showed that using bioinformatics to investigate the molecular processes underlying VaD could provide valuable information. Bioinformatic techniques, however, were used to identify probable critical pathways and genes. Thus, molecular experiments based on clinical samples or animal models should be performed to further validate the results. It remained to be clarified whether TLR2 is involved in the pathophysiological process of VaD and inhibition of TLR2 would contribute to VaD treatment.
In conclusion, we identified TLR2 as a neuroinflammatory leading change during VaD.
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Alzheimer’s disease (AD) is a life-threatening neurodegenerative disease of the elderly. In recent observations, exposure to heavy metals environmental may increase the risk of AD. However, there are few studies on the causal relationship between heavy metal exposure and AD. In this study, we integrated two large-scale summaries of AD genome-wide association study (GWAS) datasets and a blood lead level GWAS dataset and performed the two-sample Mendelian randomization analysis to assess the causality of blood lead level and AD risk. The results showed that there is a significantly positive causality between blood lead level and AD risk both in the inverse-variance weighted (IVW) model and the weighted median estimator (WME) model. An independent additional verification also reached a consistent conclusion. These findings further confirm the conclusions of previous studies and improve the understanding of the relationship between AD pathogenesis and the toxicity of lead in environmental pollution.
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INTRODUCTION

Heavy metals are non-biodegradable, and well-documented evidence supports that chronic exposure to heavy metals can cause neurodegenerative diseases (Bush, 2003; Mates et al., 2010). These pollutants arise from rapid urbanization and industrialization, such as municipal waste, traffic, aquaculture, agricultural chemicals, paint coatings, petrochemical industry, electronic industry, mining, and smelting (Tchounwou et al., 2012; Wang et al., 2013; Ojuederie and Babalola, 2017; Fan et al., 2020). Human exposure to heavy metals mainly via ingestion of metal-contaminated food, water, and employment in metal-contaminated workplaces (Tchounwou et al., 2012). Several epidemiological studies have shown a significant association between cumulative metals exposure and neurodegenerative diseases (Bjorklund et al., 2018; Bakulski et al., 2020). There is robust evidence that heavy metals can disturb neurotransmitter systems by multiple mechanisms, including the interaction with neurotransmitter receptors, the modification of certain gene and/or protein expression, and the collateral damage of their functions following Reactive Oxygen Species (ROS) production (Bertram and Tanzi, 2005; Carmona et al., 2021). A previous study found that some amyotrophic lateral sclerosis patients have a 2.3- to 3.6-fold increase both in the patellar and tibial lead, which is a dose-dependent increased risk of this disease (Kamel et al., 2002).

There are many kinds of neurodegenerative diseases, including Parkinson’s disease, amyotrophic lateral sclerosis, Lewy body dementia, Alzheimer’s disease (AD), and so on. Among them, AD is the most typical neurodegenerative disease (Bakulski et al., 2020). AD is a neurodegenerative disease that threatens the life of the elderly, and currently, there is no efficient treatment for AD (Bakulski et al., 2020). AD is caused by a variety of environmental, lifestyle, and genetic factors that influence the degeneration of neuronal cells over some time (Bakulski et al., 2020; Huang et al., 2022). The neuropathological features of AD are hyperphosphorylated tau (a microtubule-binding protein), neurofibrillary tangles (NFTs), and aging plaques consisting of accumulated amyloid protein (Aβ) and contained metal ions (Han et al., 2019; Bakulski et al., 2020).

Accumulating evidence suggests that heavy metal pollution may be an important contributor to AD, but there is no comprehensive understanding of the effects of heavy metal pollution on AD. This study attempts to analyze the correlation between heavy metal pollution and AD by the Mendelian randomization. Mendelian randomization analysis is an analytical method for evaluating the observed correlation between a changeable risk or exposure factor and a clinically relevant outcome (Sekula et al., 2016). The use of as many instrumental variables as possible can reduce the concern of weak instrumental bias (Burgess and Thompson, 2011). This research uses genetic variants to assess the causal relationship between heavy metal exposure and AD.

In this study, we first selected the genome-wide association study (GWAS) summary data of AD and environmental pollutants from multiple authoritative databases. Then, we filtered the GWAS summary data and selected independent and matched exposure risk factor-related SNPs as the instrumental variables. Next, based on the instrumental variables with their GWAS summary results, we used two models to assess the causality of environmental pollutants and AD risk by the two-samples Mendelian randomization analysis. Finally, we used three check methods to ensure the reliability of the results of the Mendelian randomization analysis.



MATERIALS AND METHODS


Data Sources

The common water quality pollutants were considered as the exposure risk factors in this study. The related genetic variations of these exposure risk factors were selected by searching the NHGRI-EBI GWAS Catalog1 using the keywords: “Cadmium,” “Chromium,” “Mercury,” “Manganese,” “Lead,” “Molybdenum,” and “Nickel.” The NHGRI-EBI GWAS Catalog is a curated collection for delivering the high-quality published (GWAS) summary results of various human traits (Buniello et al., 2019). Finally, we only identified 14 blood lead level-related SNPs from a 5,433-sample size European ancestry GWAS study. This study used the blood samples from the Queensland Institute of Medical Research in Australia and the Avon Longitudinal Study of Parents and Children in the United Kingdom to measure blood lead levels and genotype of the SNPs (Warrington et al., 2015). The details were shown in Supplementary Table 1. The summary of GWAS data on AD is derived from a consortium consisting of the Alzheimer’s Disease Genetics Consortium (ADGC), European Alzheimer’s Disease Initiative (EADI), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE), and Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES). A total of 10,528,610 variants are genotyped and measured using 21,982 AD individuals and 41,944 controls (Kunkle et al., 2019). In addition, to ensure the reliability of the results, we further used an independent GWAS dataset EFO_0000249, which includes 5,918 AD individuals and 212,874 controls, to conduct a verification using the Mendelian randomization analysis.2



Selection and Filtration of Instrumental Variables

According to the threshold of significant association P < 10–5, we first selected the 14 blood lead level-related SNPs as the instrumental variables and further discarded the non-biallelic SNPs. Then, we matched the remaining SNPs to the AD GWAS results and attempted to align strands of the palindromic SNPs for allele harmonization. Next, to ensure mutual independence between the instrumental variables, we performed a linkage disequilibrium (LD) analysis and filtered the non-independent SNPs according to the significance threshold, i.e., r2 < 0.001 within the 10,000 kb window. The samples used to estimate the LD effect were derived from the 1,000 Genome Project European ancestry individuals (Consortium, 2012). Finally, if blood lead level-related SNP is not present in the AD GWAS results, we tried to use the proxy SNPs through LD tagging (r2 = 1) instead of it and integrated the filtered SNPs with the GWAS results of blood lead level and AD as the instrumental variables.



Mendelian Randomization Analysis

We used the R package “TwoSampleMR” and its web server “MRBASE” to perform the two-sample Mendelian randomization analysis (Hemani et al., 2018). Particularly, we conducted the inverse-variance weighted (IVW) model and the weighted median estimator (WME) model to assess the causal effect of blood lead level on AD risk. The IVW model ignores the intercept in the regression analysis and uses the inverse of the variance as a weight for the fit. The WME model is a consistency estimator under the assumption that more than half of the instrumental variables are valid. For the IVW model, each inverse-variance was estimated by dividing SNP-AD associations by SNP-blood lead level associations (i.e., Wald ratios). Then, the mean effect of blood lead level on AD risk was estimated by a random effect meta-analysis of the Wald ratios. When the inverse-variance satisfies the primary assumptions of Mendelian randomization analysis [i.e., the inverse-variance: (1) is associated with the exposure, (2) is not associated with the confounders, and (3) does not influence the outcome through some pathways other than the exposure], IVW model can provide accurate estimates (Burgess et al., 2013; Staley and Burgess, 2017). For the WME model, the intercept of the fitted curve was calculated to estimate the average pleiotropy effect across the genetic variants. The WME can also provide a consistent estimate when more than half of the inverse variance satisfies the primary assumptions of Mendelian randomization analysis (Verbanck et al., 2018). The threshold of significant causal effect was set as P < 0.05. Moreover, the causal effect was considered positive and negative when the beta value was greater and less than zero, respectively.



Reliability Check

To ensure the reliability of the results of Mendelian randomization analysis, we performed the horizontal pleiotropy test, heterogeneity test, and sensitivity analysis. Particularly, we used the Egger regression intercept to estimate the magnitude of horizontal pleiotropy. If the SNPs influence the AD risk through a pathway other than the blood lead level, the significant horizontal pleiotropic (P < 0.05) can bias the Mendelian randomization estimates (Burgess and Thompson, 2017). Then, we assessed the heterogeneity by a funnel plot. The asymmetry and large spread of the funnel plot indicate a high heterogeneity. The significant threshold was set as P < 0.05 (Van Kippersluis and Rietveld, 2018). Finally, we conducted the sensitivity analysis by removing each SNP from the original Mendelian randomization analysis. The leave-one-out sensitivity analysis was used to ascertain if an association is being disproportionately influenced by a single SNP, and the forest plot was used to show the results.




RESULTS AND DISCUSSION


The Selected Instrumental Variables for Mendelian Randomization Analysis

We collected the summary GWAS data of blood lead levels from the NHGRI-EBI GWAS Catalog, and AD from the EFO_0000249 and a consortium consisting of the ADGC, EADI, CHARGE, and GERAD/PERADES, respectively. All of the samples are derived from European ancestry individuals. The blood lead level GWAS dataset was intersected with two AD GWAS datasets, respectively. After the allele harmonization, LD filtering, and SNP proxy, we selected a total of three SNPs as the instrumental variables for Mendelian randomization analysis which are significantly associated with the blood lead level and independent of each other for the consortium’s AD GWAS dataset. Particularly, SNP rs76153987 (chr3:9173133), rs116864947 (chr7:11666159), and rs6462018 (chr7:27479499) are located in genes SRGAP3, THSD7A, and EVX1, respectively, and all of them are negatively associated with the blood lead level (beta = −0.195, −0.431, and −0.084; P = 4 × 10–6, 3 × 10–7 and 4 × 10–6, respectively) (Warrington et al., 2015). The AD GWAS results of them are beta = −0.073, −0.123, and −0.002 and P = 0.033, and 0.059 and 0.015, respectively (Table 1). For the EFO_0000249 dataset, we identified two additional SNPs, rs798338 (chr7:78287721 in MAGI2), and rs10121150 (chr9:113369415 in BSPRY), after the screening process. The AD GWAS results of them are beta = −0.015 and 0.069 and P = 0.490 and 0.018, respectively (Table 2). The human reference genome hg38 was used in this study. The more detailed information was shown in Supplementary Table 1.


TABLE 1. The causality of blood lead level and Alzheimer’s disease (AD) risk by two-sample Mendelian randomization (MR) analysis using the data of AD consortium (Kunkle et al., 2019).

[image: Table 1]

TABLE 2. The causality of blood lead level and AD risk by two-sample MR analysis using the data of EFO_0000249.
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The Causality of Blood Lead Level and Alzheimer’s Disease Risk

Using the three SNPs with their GWAS results about blood lead level and AD, we performed the two-sample Mendelian randomization analysis to assess the causal effect of blood lead level on AD risk. The results of the IVW model showed that there is a significant positive causality between blood lead level and AD risk (beta = 0.2445 and P = 0.0103). The whole confidence interval of Mendelian randomization effect size for blood lead level on AD is greater than zero (Figure 1A). The WME model showed similar results (beta = 0.2621 and P = 0.0382) (Figure 1A). As Figure 1B shows, the influence of the three SNPs on blood lead level and AD in the two models exhibits good consistency. To ensure the reliability of the results, we further performed a Mendelian randomization analysis using the five SNPs from the EFO_0000249 dataset. We found a similar result, i.e., beta = 0.2421 and 0.2203 and P = 0.0046 and 0.0059 in IVW and WME model, respectively (Figure 1C). The influence of the five SNPs on blood lead level and AD in the two models also exhibits a good consistency (Figure 1D). These results suggest that the elevated blood lead level increases the risk of AD. The previous studies reported that the toxicity of lead gives rise to severe environmental pollution with the use of petrol and its exposure results in cognitive decline in elderly men and women. Moreover, the blood lead level was found significantly higher in the patients with AD and is associated with an increase in AD mortality after adjusting for identified confounders (Laidlaw et al., 2017; Fathabadi et al., 2018; Horton et al., 2019). Our findings are consistent with these studies and further confirm previous conclusions, which suggest that the exposure of lead may damage the nervous system and increase risk of AD.
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FIGURE 1. The Mendelian randomization (MR) analysis for the causality of blood lead level and Alzheimer’s disease (AD) risk. (A) The forest plot represents the causal effect of blood lead level on AD using the Wald ratio. The Mendelian randomization using singly each SNP and all SNPs by the WME and IVW models are shown in it. (B) The method comparison plot shows the SNP effects on AD against SNP effects on blood lead levels in the WME and IVW models. Each method has a different line, and the slope of the line represents the causal association. Panels (C,D) show the forest plot of causal effect and the method comparison plot of WME and IVW models for the EFO_0000249 dataset, respectively.




Reliability Check

We further performed the horizontal pleiotropy test, heterogeneity test, and sensitivity analysis to check reliability of the Mendelian randomization analysis. For the consortium’s AD GWAS dataset, the results showed that there is no directional horizontal pleiotropy affecting the IVW and WME estimate (intercept = −0.029 and P = 0.438) (Table 1). Then, Cochran’s Q test showed that there is also no significant heterogeneity in IVW (Cochran’s Q-statistic = 2.161 and P = 0.340) and WME estimate (Cochran’s Q-statistic = 0.684 and P = 0.408) (Figure 2A). Moreover, the leave-one-out sensitivity analysis showed that the results of the Mendelian randomization analysis do not extremely change when we removed each of the SNP orderly (Figure 2B). For the EFO_0000249 dataset, the similar results also showed a non-directional horizontal pleiotropy (intercept = −0.026 and P = 0.385) (Table 2), non-significant heterogeneity in IVW (Cochran’s Q-statistic = 3.297 and P = 0.510), WME estimate (Cochran’s Q-statistic = 2.269 and P = 0.520) (Figure 2C), and insignificant changes in sensitivity analysis (Figure 2D). These results demonstrate that the causality of blood lead level and AD is reliable, and further suggest that the elevated blood lead level increases the risk of AD.
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FIGURE 2. The heterogeneity test and sensitivity analysis of the Mendelian randomization analysis. (A) Funnel plot to assess heterogeneity. Asymmetry and large spread suggest a high heterogeneity. (B) The forest plot of leave-one-out sensitivity analysis shows if an association is being disproportionately influenced by a single SNP. Each black point represents the Mendelian randomization analysis excluding that particular SNP. Panels (C,D) show the results of the heterogeneity test and leave-one-out sensitivity analysis for the EFO_0000249 dataset, respectively.





CONCLUSION

The lead pollution is a serious environmental problem and damages to the human central nervous system. In this study, we integrated two large-scale summary AD GWAS datasets and a blood lead level GWAS dataset to assess the causality of blood lead level and AD risk by the two-sample Mendelian randomization analysis. After the reliability check, we found a significant positive causality between blood lead level and AD risk. Our findings suggest that the exposure of lead may increase risk of AD, which is further confirm the results of previous studies and benefit to understanding of AD pathogenesis and the toxicity of lead in environmental pollution.
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Clusterin (CLU) is an extracellular chaperone involved in reducing amyloid beta (Aβ) toxicity and aggregation. Although previous genome-wide association studies (GWAS) have reported a potential protective effect of CLU on Alzheimer’s disease (AD) patients, how intron-located rs11136000 (CLU) affects AD risk by regulating CLU expression remains unknown. In this study, we integrated multiple omics data to construct the regulated pathway of rs11136000-CLU-AD. In step 1, we investigated the effects of variant rs11136000 on AD risk with different genders and diagnostic methods using GWAS summary statistics for AD from International Genomics of Alzheimer’s Project (IGAP) and UK Biobank. In step 2, we assessed the regulation of rs11136000 on CLU expression in AD brain samples from Mayo clinic and controls from Genotype-Tissue Expression (GTEx). In step 3, we investigated the differential gene/protein expression of CLU in AD and controls from four large cohorts. The results showed that rs11136000 T allele reduced AD risk in either clinically diagnosed or proxy AD patients. By using expression quantitative trait loci (eQTL) analysis, rs11136000 variant downregulated CLU expression in 13 normal brain tissues, but upregulated CLU expression in cerebellum and temporal cortex of AD samples. Importantly, CLU was significantly differentially expressed in temporal cortex, dorsolateral prefrontal cortex and anterior prefrontal cortex of AD patients compared with normal controls. Together, rs11136000 may reduce AD risk by regulating CLU expression, which may provide important information about the biological mechanism of rs9848497 in AD progress.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease of the central nervous system characterized by progressive cognitive dysfunction and behavioral impairment (Scheltens et al., 2016; Van Cauwenberghe et al., 2016; Pimenova et al., 2018; Hu et al., 2021b). It is estimated that at least 40 million middle-aged and elderly people worldwide suffer from AD (Van Cauwenberghe et al., 2016. Among all the AD susceptibility genes, Apolipoprotein E (APOE), which mediates the binding, internalization, and catabolism of lipoprotein particles, is considered to be the major risk factor (Namba et al., 1991; Belloy et al., 2019). APOE not only co-deposits with beta-amyloid (Aβ) through protein-protein interaction, but also directly leads to secretion and impaired clearance of Aβ (Namba et al., 1991; Huynh et al., 2017; Belloy et al., 2019).

Other susceptibility genes, such as CLU, also affect the occurrence and progression of AD through the accumulation and clearance of Aβ, nerve inflammation, and lipid metabolism (Foster et al., 2019; Uddin et al., 2020a). Previous genome-wide association studies (GWAS) have shown that rs11136000 (CLU) is a protective locus for AD risk, and several case-control association studies replicate this result (Harold et al., 2009; Lancaster et al., 2015; Balcar et al., 2021). However, some of other studies report no statistically significant association of rs11136000 on AD or no association in non-European populations (Carrasquillo et al., 2010; Seshadri et al., 2010; Seripa et al., 2018; Zhu et al., 2018). The conflicting results of these studies made us interested in investigating the effect of rs11136000 on AD. Moreover, how rs11136000 regulates CLU expression and leads to AD needs further evaluation (Hu et al., 2020, 2021a).

In this study, we integrated multiple omics data, including genome-wide association study (GWAS), expression quantitative trait loci (eQTLs), transcriptome and proteome data, to investigate whether rs11136000 regulates CLU expression and thereby contribute to AD. In addition, we identified the different effects of rs11136000 on AD patients of different genders.



Materials and methods


Genome-wide association studies datasets

Genome-wide association studies uses single nucleotide polymorphisms (SNPs) in the human genome as molecular genetic markers to analyze the correlation between genotype and phenotype, aiming to discover genetic risk variants that affect phenotype (Tam et al., 2019). A total of five large-scale GWAS datasets for AD were included in the statistical analysis of this study. First, we obtained two GWAS datasets for AD patients with clinical or autopsy diagnosis from International Genomics of Alzheimer’s Project (IGAP), including 17,008 AD cases and 37,154 controls, and 21,982 AD cases and 41,944 controls, respectively (Table 1; Lambert et al., 2013; Kunkle et al., 2019). In addition, we obtained three large GWAS cohorts for AD proxy from UK Biobank, including family history of maternal AD (27,696 cases and 260,980 controls), family history of patrilineal AD (14,338 cases and 245,941 controls), and family history of all AD patients (Marioni et al., 2018). All of the participants were of European descent.


TABLE 1    Data sources of GWAS.
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Expression quantitative trait loci datasets

Expression quantitative trait loci are genetic variants that control the expression levels of quantitative trait genes. In particular, variants located in non-coding regions may cause disease by modulating gene expression. In this study, we obtained datasets that rs11136000 regulates gene expression in AD patients and controls, respectively. The eQTL data of AD and non-AD samples were obtained from Mayo clinic and Genotype-Tissue Expression (GTEx) project, respectively (Table 2; Allen et al., 2012; GTEx Consortium., 2017). The Mayo dataset contained gene expression data for temporal cortex (TCX) in 186 AD subjects and 170 normal subjects, and cerebellar tissue (CER) in 191 AD subjects and 181 normal subjects (Allen et al., 2012). In addition, eQTL data of 13 brain tissues, including amygdala, anterior cingulate cortex, caudate, cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen, spinal cord, and substantia nigra were obtained from GTEx (version 8) as controls (GTEx Consortium., 2017). The donors in GTEx were of multiple descents including European (85.3%), African (12.3%), Asian (1.4%), etc., (GTEx Consortium., 2017).


TABLE 2    The effect of genetic variant rs11136000 on CLU expression in AD and normal samples.
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RNA expression datasets

RNA-seq data for AD versus controls was generated from over 2,100 samples from post-mortem brains of more than 1,100 individuals from seven distinct brain regions from three human cohort studies, including Religious Orders Study and Memory and Aging Project (ROSMAP), Mayo RNAseq (MAYO), and Mount Sinai Brain Bank (MSBB) (Bennett et al., 2012a,b; Zou et al., 2012; Ng et al., 2017). The seven brain regions contained dorsolateral prefrontal cortex (DLPFC), CER, TCX, frontal pole (FP), inferior frontal gyrus (IFG), parahippocampal gyrus (PHG), and superior temporal gyrus (STG).



Proteomics datasets

Proteomic data was generated from post-mortem brains of more than 500 individuals from four human cohort studies, including Banner Sun Health Research Institute (Banner), Baltimore Longitudinal Study on Aging (BLSA), MAYO and MSBB. Brain samples consisted of four different brain regions [DLPFC, Middle Frontal Gyrus (MFG), TCX and Anterior Prefrontal Cortex (AntPFC)]. Protein abundance was quantified using liquid-free quantification (LFQ). The proteomic data was adjusted for age, sex, and post mortem interval (PMI).



The effect of genetic variant rs11136000 on Alzheimer’s disease risk

We investigated the effect of rs11136000 T allele on AD risk in GWAS summary statistics for AD of clinically diagnosed or autopsy and first-degree relative proxies, respectively. In addition, we explored the effect of rs11136000 on AD patients with different genders using GWAS by proxy (GWAX) from UK Biobank. The statistically significant association is defined to be P < 5E-08 after adjusting for multiple testing.



The effect of rs11136000 on clusterin expression in Alzheimer’s disease and controls

We investigated the potential differential cis-regulated effect of rs11136000 on CLU in AD versus controls using an additive model eQTL analysis (Hu et al., 2020, 2021b; Qiu et al., 2022). According to the additive model, each allele has an independent effect on the trait. Here, we coded the possible genotypes of rs11136000 (TT = 2, TC = 1, CC = 0), where T is an effect allele and C is a non-effect allele. Thus, the differential regulation of CLU expression in rs11136000 T allele carriers of AD and controls can be calculated using linear regression models. The statistically significant association is defined to be P < 0.05/(number of brain tissues) = 0.05/17 = 0.00294 after multiple testing.



Differential expression of clusterin between Alzheimer’s disease and normal individuals

We evaluated the differential mRNA expression of CLU in seven brain regions between AD and controls from ROSMAP, MAYO and MSBB. Meanwhile, we investigated the differential protein expression of CLU in four brain regions of AD versus controls from DLPFC, MFG, TCX, and AntPFC. The differential expression was determined via ANOVA. The significance level of differential expression was defined as P < 0.05/7 = 0.00714 and P < 0.05/4 = 0.0125 after multiple testing.




Results


rs11136000 T allele reduced Alzheimer’s disease risk

rs11136000 T allele significantly reduced AD risk in both clinically diagnosed Alzheimer’s cohorts from IGAP (OR: 0.92, 95%CI: 0.91-0.94, P = 1.38E-24; OR: 0.88, 95%CI: 0.86-0.91, P = 4.90E-16) (Figure 1). In the UK Biobank cohort (using participants whose parents suffered from AD as a proxy for cases), rs11136000 T allele was suggestively protective against AD (OR: 0.95, 95%CI: 0.93-0.97, P = 1.88E-07) (Figure 1). However, rs11136000 only potentially affected female individuals with AD (OR: 0.94, 95%CI: 0.92-0.96, P = 3.96E-07).
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FIGURE 1
Association between rs11136000 variant T allele and AD. IGAP, International Genomics of Alzheimer’s Project. The statistically significant association is defined to be P < 5E-08.




rs11136000 upregulated clusterin expression in Alzheimer’s disease

rs11136000 downregulated CLU expression in all 13 normal brain tissues from GTEx, two of which passed multiple testing (Pnucleusaccumbens = 0.00023 and Pputamen = 0.00082) (Table 2). However, rs11136000 suggestively upregulated CLU expression in cerebellum (β = 0.0635, P = 0.23) and temporal cortex samples of AD (β = 0.0588, P = 0.031) (Table 2).



Clusterin differentially expressed in Alzheimer’s disease versus controls

To further determine the effect of CLU in AD patients, we investigated the differential expression of CLU between AD and controls in various brain regions at the level of gene expression and protein expression, respectively. The CLU mRNA expression in temporal cortex region of AD patients significantly differed from controls regardless of gender ([image: image] = 0.83, PTCX = 2.96E-10) (Table 3). However, CLU was only significantly differentially expressed in parahippocampal gyrus region of female AD patients compared to controls ([image: image] = 0.34, PPHG = 0.00032). Furthermore, CLU protein was detected in DLPFC and AntPFC, and was significantly differentially expressed in both two brain tissues ([image: image] = 0.29, PAntPFC = 0.00022; [image: image] = 0.23, PDLPFC = 5.09E-06) (Figure 2).


TABLE 3    Differential mRNA expression of CLU in AD and normal samples.
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FIGURE 2
Differential protein expression of CLU between AD and normal samples. The gray boxplots represent the expression levels of CLU protein in the brain tissues of healthy participants. The orange dots represent the expression levels of CLU protein in the brain tissues of AD patients. AntPFC, anterior prefrontal cortex; DLPFC, dorsolateral prefrontal cortex.





Discussion

Large-scale GWAS in recent years have identified substantial genetic variants and genes associated with AD risk (Jansen et al., 2019; Kunkle et al., 2019; Schwartzentruber et al., 2021). Susceptibility loci including APOE have been confirmed by numerous studies (Al Mamun et al., 2020; Uddin et al., 2020b). CLU, also known as apolipoprotein J (APOJ) protein, is identified as the third-highest risk gene for late-onset AD (LOAD), contributing approximately 9% of AD risk (Bertram et al., 2007; Foster et al., 2019; Uddin et al., 2020a). Previous studies have shown that elevated CLU levels have been detected in the brain and plasma of AD individuals and are involved in neuroinflammation, lipid metabolism, and Aβ clearance in AD patients (Lidstrom et al., 1998; Bu, 2009; Thambisetty et al., 2010; Uddin et al., 2020a). However, some studies have also reported that CLU incorporation into amyloid aggregates is more harmful than Aβ42 aggregates alone (Uddin et al., 2020a). The ambiguous and complex role of CLU in AD prevents it from becoming a therapeutic target for AD.

In this study, we integrated GWAS, eQTL, gene expression and protein expression data to investigate whether rs11136000 (CLU) affects AD risk by regulating CLU expression. We successfully explained the pathway of rs11136000-CLU-AD. The results showed that rs11136000 significantly reduced AD risk in both clinically diagnosed AD and AD proxy. The effects of rs11136000 on AD risk with different genders and different diagnostic modalities were slightly different. In addition, previous meta-analyses and systematic reviews suggested that the heterogeneity of rs11136000 on AD risk was also reflected by race. Both Han et al. (2018) and Zhu et al. (2018) believed that rs11136000 only reduced the risk of AD in the European population, while the association was weak in the East Asian population. Subsequent eQTL analysis revealed heterogeneity of rs11136000 expression in various brain tissues. Significant difference of the regulation of rs11136000 on CLU expression was only showed in temporal cortex region between AD patients versus controls. Interestingly, CLU-immunopositive Aβ deposits were found in the temporal cortex of AD patients, and 29% of Aβ in brain tissue was associated with CLU protein (Martin-Rehrmann et al., 2005; Uddin et al., 2020a).

The study has some advantages. The multiple omics data used in this study were all from European populations, avoiding the bias associated with population stratification. Multiple omics data constructed a complete pathway that genetic variants regulate gene expression and then affect disease phenotype, which better explains the role of rs11136000 in the brain of AD patients than previous studies. However, this study also has certain limitations. It is difficult for us to obtain gender- and ethnic-specific multi-omics data, which limits the further disclosure of the specific regulatory role of rs11136000 on AD patients in different populations.

In conclusion, this study highlights the potential role of the variant rs11136000 on AD risk by regulating CLU expression. These findings reveal the importance of a better understanding of CLU function and dysfunction in the context of normal and AD individuals.
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A previous genome-wide association study (GWAS) has reported that variants rs2200733 and rs6843082 in the paired-like homeodomain transcription factor 2 (PITX2) gene may be one of the risk factors for ischemic stroke (IS) in European populations. However, more recently, studies in Asia have reported that rs2200733 and rs6843082 are only weakly or not associated with increased risk of IS. This difference may be caused by the sample size and genetic heterogeneity of rs2200733 and rs6843082 among different races. For this study, we selected eight articles with nine studies from the PubMed and Embase databases, including five articles from Asian and three articles from non-Asian, to evaluate the risk of IS caused by rs2200733 and rs6843082. Then, we investigated rs2200733 and rs6843082 single-nucleotide polymorphisms (SNPs) by analysis using allele, recessive, dominant, and additive models. We identified that rs2200733 and rs6843082 are weakly significantly associated with IS for the allele model (p = 0.8), recessive model (p = 0.8), dominant model (p = 0.49), and additive model (p = 0.76) in a pooled population. Next, we performed a subgroup analysis of the population, the result of which showed that rs2200733 and rs6843082 covey genetic risk for IS in a non-Asian population, but not in an Asian population. In conclusion, our analysis shows that the effect of PITX2 rs2200733 and rs6843082 SNPs on IS risk in Asia is inconsistent with the effect observed in European IS cohorts.
Keywords: ischemic stroke, genome-wide association study, rs2200733, rs6843082, population
INTRODUCTION
Ischemic stroke (IS) is the second leading cause of death worldwide and the main leading cause of intellectual disability in adults (Orellana-Urzua et al., 2020). The pathogenesis of IS has been studied using genome-wide association studies (GWAS), which provide a crucial direction for studying the genetic mechanism of IS (Chauhan and Debette, 2016; Liu et al., 2019b; Wei et al., 2019). In 2008, the PITX2 rs2200733 and rs10033464 variants were identified as significant contributors to IS in a European population (p = 2.18 × 10–10) (Gretarsdottir et al., 2008). However, a series of subsequent studies failed to replicate those results.
In 2009, Shi et al. analyzed 383 patients with atrial fibrillation (AF) versus (vs.) 851 patients without AF and 811 patients with IS vs. 688 patients without IS, all of Chinese. After analysis, rs2200733 was meaningfully correlated with AF (p = 4.1 × 10–12) but not IS in this Chinese population (Shi et al., 2009).
In 2012, Bertrand et al. analyzed 3548 patients with stroke vs. 5972 patients without stroke and then replicated their result in 5859 patients with stroke vs. 6281 patients without stroke, all of European ancestry. Their results showed that both rs2200733 and rs1906599 were associated with IS (OR = 1.32) (International Stroke Genetics Consortium et al., 2012). Their study again identified a significant association between rs2200733 and IS.
In 2022, Zhao et al. analyzed 476 patients with IS vs. 501 control individuals, all Chinese (Zhao et al., 2022). Their analysis found no meaningful association between rs6843082 and IS (p = 0.448).
In summary, previous studies have reported different results as to whether rs2200733 and rs6843082 increase susceptibility to IS. It is not clear whether the two SNPs (rs2200733 and rs6843082) are related to IS susceptibility. In this study, we further evaluate whether these two SNPs (rs2200733 and rs68430828) increase the risk of IS using nine studies from eight articles.
MATERIALS AND METHODS
Literature Search
The relevant literature was searched in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Embase (https://www.embase.com/) databases. We filtered all relevant studies based on the keywords “Stroke,” “PITX2,” “rs2200733,” and “rs6843082.” The literature search was completed by 10 March 2022. In the following paragraph, we describe the criteria for inclusion.
Inclusion Criteria
The inclusion criteria for our meta-analysis were as follows: (1) the study used a case–control design, (2) the study evaluated whether the two SNPs (rs2200733 and rs6843082) are risk factors for IS, (3) the study provided a clear and definite number of genotypes or alleles or enough data to calculate these numbers, and (4) the study provided an explicit odds ratio (OR) and 95% confidence interval (CI) or sufficient data to calculate the OR and 95% CI. All studies that did not meet the inclusion criteria were eliminated.
Data Extraction
For each study that met the inclusion criteria, we extracted the following information: (1) first author, (2) year of publication, (3) race of the study subjects, (4) number of cases and controls, and (5) quantity of rs2200733 and rs6843082 genotypes in cases and controls. The full results are shown in Table 1.
TABLE 1 | Characteristics of studies included in the meta-analysis.
[image: Table 1]Genetic Model
We used four common genetic models for this meta-analysis, including the allele model (A vs. G), recessive model (AA vs. AG+GG), dominant model (AA+AG vs. GG), and additive model (AA vs. GG). These results are helpful to evaluate the susceptibility to IS with the two SNPs (rs2200733 and rs6843082): A allele vs. G allele.
Hardy–Weinberg Equilibrium
The HWE of the two SNPs (rs2200733 and rs6843082) in IS cases and the control group were analyzed using the Chi-square test. The relationship between the two SNPs (rs2200733 and rs6843082) and IS was analyzed using four gene models: allele model (A vs. G), recessive model (AA vs. AG+GG), dominant model (AA+AG vs. GG), and additive model (AA vs. GG). We performed all relevant Chi-square tests using the R program (http://www.r-project.org/).
Heterogeneity Test
First, we extracted the summary statistical information corresponding to the two SNPs (rs2200733 and rs6843082) in the above study. Then, Cochran’s Q test and I2 = [Q—(k—1)]/Q × 100% (Liu et al., 2017) were used to analyze the heterogeneity of the two SNPs (rs2200733 and rs6843082) among these datasets. The Q statistic approximately follows a χ2 distribution with k-1 degrees of freedom (k stands for the number of studies for analysis). When the P value from Cochran’s Q statistic <0.1 and the I2 value from Cochran’s Q statistic >50%, the data showed considerable heterogeneity (Hu et al., 2017; Liu et al., 2017).
Meta-Analysis
In Cochran’s Q statistic, if p < 0.05 or I2 >50%, it indicated that there was heterogeneity between studies, and a random-effect model (DerSimonian–Laird) was used to calculate the pooled OR. If not, we used a fixed-effect model (Mantel–Haenszel). All statistical methods in the meta-analysis were applied by program R (http://www.r-project.org/).
Publication Bias Analyses
In this analysis, we used funnel plots to assess the possible publication bias. When there was no publication bias, the plot of the funnel was symmetrically inverted. Otherwise, it was an asymmetric inverted funnel (Liu et al., 2014). The asymmetry of the funnel plot was evaluated by the Egger test. We performed all statistical tests using the R program (http://www.r-project.org/).
RESULTS
Comprehensive Literature Search
We retrieved 29 articles from PubMed and 44 articles from the Embase database. Finally, eight articles (Gretarsdottir et al., 2008; Shi et al., 2009; Bevan et al., 2012; Cao et al., 2013; Su et al., 2015; Wu et al., 2015; Ferreira et al., 2019; Zhao et al., 2022), including nine studies, were chosen for meta-analysis by excluding overlapping studies. A total of 55,829 participants were included in this meta-analysis: 39,231 cases in the case group (38,348 cases with rs2200733 and 1699 cases with rs6843082) and 16,598 cases in the control group (15,636 cases with rs2200733 and 1778 cases with rs6843082). The study by Su et al. analyzed the two SNPs based on 1632 participants, and so the total number of case and controls overlapped. The specifics are shown in Figure 1. The primary features of the studies we included are presented in Table 1.
[image: Figure 1]FIGURE 1 | Flowchart of the selection of studies included in this meta-analysis.
Linkage Disequilibrium
The rs2200733 and rs6843082 SNPs were located within 10 kb on PITX2 gene (https://snipa.helmholtz-muenchen.de/snipa3/).
Heterogeneity Test
The study of Bevan et al. was excluded from the dominant, recessive, and additive models. For this analysis, we observed no remarkable heterogeneity in the pooled population when using the four genetic models (Table 2).
TABLE 2 | Analysis of four genetic models’ association of rs2200733 and rs6843082 with ischemic stroke.
[image: Table 2]Meta-Analysis With the Allele Model
We computed the overall OR using a fixed-effect model in accordance with the outcomes of the heterogeneity test. The allele model tests showed that IS did not have a relationship with rs2200733 and rs6843082 in the Asian (p = 0.45), non-Asian (p = 0.74), and pooled populations (p = 0.80) (Table 2). Our results also showed that the two SNPs did not contribute to IS in Asian populations (OR = 0.92), but interestingly, the opposite results were seen in non-Asian populations, where both rs2200733 and rs6843082 were genetic risk factors for IS (OR = 1.03) (Figure 2).
[image: Figure 2]FIGURE 2 | Fixed-effect meta-analysis of the allele model for rs2200733 and rs6843082 in the Asian, non-Asian, and pooled populations.
Meta-Analysis With the Recessive Model
Similarly, we calculated the overall OR using a fixed-effect model based on the recessive model. The recessive model indicated that rs2200733 and rs6843082 and IS in the Asian (p = 0.70), non-Asian (p = 0.24), and pooled population (p = 0.80) (Table 2) were not closely related. The two SNPs were not associated with IS in Asian populations (OR = 0.94). Conversely, rs2200733 and rs6843082 could increase the incidence of IS disease in non-Asian populations (OR = 1.38) (Figure 3).
[image: Figure 3]FIGURE 3 | Fixed-effect meta-analysis of the recessive model for rs2200733 and rs6843082 in the Asian, non-Asian, and pooled populations.
Meta-Analysis With the Dominant Model
Likewise, we calculated the overall OR using a fixed-effect model in accordance with the dominant model in the three groups. The dominant model showed that the two SNPs (rs2200733 and rs6843082) had no significant relationship with IS in Asian (p = 0.73), non-Asian (p = 0.13), and pooled (p = 0.49) populations (Table 2). The result of the subgroup analysis indicated that in the Asian population, the two SNPs were not genetic risk factors for IS (OR = 0.95); however, in the non-Asian population (OR = 1.30), the two SNPs were genetic risk factors for IS (OR = 1.08) (Figure 4).
[image: Figure 4]FIGURE 4 | Fixed-effect meta-analysis of the dominant model for rs2200733 and rs6843082 in the Asian, non-Asian, and pooled populations.
Meta-Analysis With the Additive Model
Finally, we used the fixed-effect model to calculate the overall OR based on the additive model, where IS had no meaningful relationship with the two SNPs (rs2200733 and rs6843082) in Asian (p = 0.67), non-Asian (p = 0.16), and pooled populations (p = 0.76) (Table 2). The results were the same as the three previous genetic models; the two SNPs were not associated with IS in the Asian population (OR = 0.93); however, rs2200733 and rs6843082 were associated with an increased incidence of IS disease in the non-Asian population (OR = 1.54) (Figure 5).
[image: Figure 5]FIGURE 5 | Fixed-effect meta-analysis of the additive model for rs2200733 and rs6843082 in the Asian, non-Asian, and pooled populations.
Publication Bias Analysis
The funnel plot and Egger’s test were applied to assess the existence of the potential publication bias in the four genetic models. There was no bias in the four plots, which were symmetrical inverted funnels. For the allele, recessive, dominant, and additive models, p = 0.943, 0.133, 0.053, and 0.204, respectively (Figure 6).
[image: Figure 6]FIGURE 6 | Sensitivity analysis of the four genetic models for rs2200733 and rs6843082 in the pooled population: (A) allele model for the two SNPs in the pooled population, (B) recessive model for the two SNPs in the pooled population, (C) dominant model for the two SNPs in the pooled population, and (D) additive model for the two SNPs in the pooled population.
DISCUSSION
Previous GWAS studies have shown that rs2200733 and rs6843082 SNPs in PITX2 are associated with genetic susceptibility to IS in European populations (Gretarsdottir et al., 2008). Subsequently, however, our results indicated that rs2200733 and rs6843082 conveyed no increased risk of IS. Overall, most studies have shown that the rs2200733 SNP in PITX2 is associated with European IS, but five studies conducted in Chinese populations all concluded that the rs2200733 SNP was not associated with the IS risk. Meanwhile, three studies analyzed the association between rs2200733 and AF in the Chinese population, and the results suggested that the expression of rs2200733 had a potential genetic risk for AF, but not IS (Shi et al., 2009; Cao et al., 2013; Su et al., 2015).
In accordance with the analysis of the two SNPs (rs2200733 and rs6843082) in a pooled population, we can conclude that the G allele has low importance for the risk of IS. In the subgroup analysis, the results showed that the two SNPs had no correlation with the risk of IS in an Asian population, but the results in a non-Asian population showed a significant relevance with the risk of IS. These results suggest that the specific gene expression of that population and/or disease could be affected by genetic variation (Liu et al., 2019a). Therefore, two possibilities may lead to different associations between the two SNPs and human IS gene expression. The first factor is the racial difference, such as the genetic difference between Asian and non-Asian populations. For example, Gretarsdottir et al. indicated that rs2200733 has a strong association with IS (Gretarsdottir et al., 2008), but Cao et al. showed that rs2200733 has no association with any type of stroke (Cao et al., 2013). The second probability is that the disease condition has an effect on gene expression (Tammen et al., 2013; Maruthai et al., 2022). Haplotype association analysis by Su et al. showed that rs6843082 was significantly correlated with serum total cholesterol (TC) in IS patients in the additive and dominant models (Su et al., 2015). Moreover, for female individuals, the result of the recessive model also showed that rs2200733 was associated with high levels of TC, increasing the risk of IS (Su et al., 2015). The two SNPs (rs2200733 and rs6843082) are closely related to the PITX2 gene on chromosome 4q25, which is associated with cardiac morphogenesis, particularly the differential identity of the left atrium from the right atrium and the growth of myocardial sleeves of pulmonary veins (Logan et al., 1998; Mommersteeg et al., 2007; Tessari et al., 2008). Therefore, the PITX2 gene may be expressed during the development of the circulatory system and play a role in IS-related risk factors. Further studies are required to determine whether these two SNPs are risk factors for IS and provide a new direction for the treatment of IS.
Numerous studies on the relationship between PITX2 and IS have produced conflicting results. So far, there is still no final and unanimous conclusion. Our analysis includes samples from multiple researchers; therefore, the results of our study may be more reliable than those of single studies. However, some potential limitations in our meta-analysis should be acknowledged. First, there was a small sample of GWAS and candidate gene studies, which may influence the pooled estimated value. Second, environmental factors, such as smoking and alcohol use, may affect the risk of IS, but some studies did not consider these risk factors. Third, different populations have different genetic susceptibilities both to the two SNPs (rs2200733 and rs6843082) and to IS, which can make the primary cause difficult to distinguish. IS is a disease that is effected by the interactions of multiple environmental and genetic factors (Dichgans, 2007; Cai et al., 2020), and so the influence of genes and environment on the pathogenesis of IS needs to be more deeply investigated.
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Index Decision rules Class

1 (hsa-miR-6088 < 10.1065) & (hsa-miR-520f-5> 2.0854) & (hsa-miR-6836-3 <8.6821) & (hsa-miR-6811-5> 1.8782) & (hsa- Normal control
MIR-4667-5> 6.1925) & (hsa-miR-4746-3 <7.4409) & hsa-miR-3917 > 5.1453) & (hsa-miR-6070 < 2.9233) & (hsa-miR-
6869-3>1.8805)

2 (hsa-miR-6088 < 9.9516) & (hsa-miR-4327 > 7.8591) & (hsa-miR-1292-3> 4.0332) & (hsa-miR-6861-5> 6.5728) & (hsa- Alzheimer's disease

miR-125b-1-3 < 4.7145) & (hsa-miR-128-1-5> 7.0405) & (hsa-miR-7854-3 <4.8762) & (hsa-miR-6088 < 9.7663) & (hsa-
miR-4506 < 3.6756)

3 (hsa-miR-520f-5 <1.8945) & (hsa-miR-4485-3> 1.8928) & (hsa-miR-3184-5 <8.4938) & (hsa-miR-4496 > 1.8938) & (hsa- Vascular dementia
miR-6756-5 <8.5013) & (hsa-miR-548f-3 <1.8935) & (hsa-miR-6822-5> 3.4091) & (hsa-miR-4472 < 6.3202) & (hsa-miR-
1914-5 <4.1342) & (hsa-miR-6776-3> 4.0568) & (hsa-miR-5480-3> 1.8798)

4 (hsa-miR-208a-5> 5.8741) & (hsa-miR-548-3 <2.1007) & (hsa-miR-4667-5 <6.7261) & (hsa-MiR-4649-5>10.8290) & Dementia with lewy bodies
(hsa-miR-195-3> 1.8967)

5 (hsa-miR-520f-5 <1.8945) & (hsa-miR-4485-3> 1.8928) & (hsa-miR-1254 > 6.9170) & (hsa-miR-197-5> 7.3729) Mild cognitive impairment





OPS/images/fgene-13-880997/fgene-13-880997-t006.jpg
Feature selection method

mRMR

MCFS

Classification algorithm

Random forest
Random forest
PART

Random forest
Random forest
PART

Number of features

106
4
72

106
31
89

ACC

0.691
0.690
0.650

0.690
0.691
0.547

mcc

0.323
0.313
0.158

0.319
0.317
0.162





OPS/images/fgene-13-880997/inline_5.gif





OPS/images/fgene-13-880997/inline_6.gif





OPS/images/fgene-13-880997/inline_7.gif





OPS/images/fgene-13-880997/inline_2.gif





OPS/images/fgene-13-880997/inline_20.gif





OPS/images/fgene-13-880997/inline_3.gif





OPS/images/fgene-13-880997/inline_4.gif





OPS/images/fgene-13-880997/inline_17.gif





OPS/images/fgene-13-880997/inline_18.gif
)
g (7,





OPS/images/fgene-13-880997/inline_19.gif





OPS/images/fgene-13-880997/crossmark.jpg
©

|





OPS/images/fgene-13-880997/fgene-13-880997-g001.gif





OPS/images/fgene-13-840577/fgene-13-840577-g004.gif





OPS/images/fgene-13-840577/fgene-13-840577-g005.gif
//,/ sk M bbbl

e X/%W}"%@

/,g},!!},"!;; J}/;/,';?UJJ it
i





OPS/images/fgene-13-840577/fgene-13-840577-t001.jpg
ltems

Total clean data (Mb)

Target coverage

Average depth of target region (09

Ratio of average depth of target region (>4X)
Ratio of average depth of target region (>10X)
Ratio of average depth of target region (>20X)
Ratio of average depth of target region (>30X)
On target ratio

Total SNVs

Percentage of pathogenic variants

Total small insertion (and duplications)

Total small deletions

Proband

11,959.04
98.00%
110.73
97.59%
97.20%
96.77%
95.64%
39.66%
175,809
3.57%
17,011
19,441

Father

15,681.80

98.31%
138.49
97.89%
97.62%
97.20%
96.76%
37.83%
197,560
4.46%
19,694
23,004

Mother

12,202.51
98.04%
114.47
97.64%
97.36%
96.85%
95.71%
40.19%
179,722
3.47%
17,254
19,562





OPS/images/fgene-13-840577/fgene-13-840577-t002.jpg
No Location  Genes Ref genes. Variants dbSNPID  Zygosity Acma 1000  EXAC gnomAD PROVEAN  Polyphen2  Phenotype

(GRCH3?) [ annotation genomes exome  (score)  (score) omim
1 2 ANKRD3EC NMLOOIB10164 GS827A>GC 15112858216  Hel/ us: Ps2 - saE - Neutral - -
96521280 (p.19430) Wit 2 -0876
2 o HRCTI  NM.0O100792 c317C>A  rs112212538  Het/ s: ps2 - - - Neutra Benign -
35906601 (p.P106H) wIwT 0071 0.148
3 2 KLHL29  NMO052920  c148C>T  roS6B454968  Het/ Likly pathogersc: - 1526 987E05  Newa  Damagng -
20785214 (o.R50W) WIMWT  PS2:PMR1PP2 o —1.867 0988
4 o Muce NM.0024S7 6863 >T  rs138207246 Het/ Us: PM2 - - - Neutral - -
1083349 (o.P2288L) wWIwT -0461
5 3 muca NMLO'8406  C11180C>G  rs868067409 et/ Us: PM2 ~ 1676 176E04  Newa Bonign -
195507271 (pTO7278) WIWT 0217 0301
3 3 muca NMLO'B406  C9928G>A  rsB79281830 et/ vus: NA - Neural  Damagig -
195508523 (p.A33107) Wit 0500 0.04
4 3 muca NMLO'B406  C9925C>G 151424606542 Het/ vUs: NA - Neutal Benign -
195508526 (0H33090) Wit 0083 0284
3 7. MYOISB  NMOOIG0922 G130C>T  rsiB6791490  Het/ s: PM2 - - - Neutra - -
73585468 (p.RA440) Wit -0446
o 17890053 PERS NMO'S31  cA0IG>A 51776342 Hel VUS: PM21PP3+BPA - —  o4TE06  Neural Benign #6168
(p.AT007T) wimT 0848 0004
10 1 RPN NML001122065 475G >A 15200003389 Hel/ US: PM2+8P4 - - - Neutra Benign -
162129100 (0.G1595) Wit -1.883 0275
" 7 TWIST NML000474  c256.27600p  — He/ VUS: PS2+8P3 - 0 1s8E05 - - #123100
19156668 (0.G86_Go2dup) wrwT
#180750
#101400
617746
2 10z NMO020838  02380G>A - Het/ Pathogenic: - - —  Doeteous  Damagng 618659
81064964 ©.G7778) WIMT  PS2+PM1+PM24PP24PP 7736 0992
18 7 AGAP3  NMLOSISIS  C92T>G [S1171186819 Hom/  VUS:PM2 - - - Neutial - -
150783920 ©N316) wWIwT -0081
4 14 CODCI77  NMO01271507 c534.536del  — Hom/  VUS:PM2+ = - - —~ . =
70039807- (pA180del Heubet  PM3_supporing + BP3
70039809
15 1 can NMO20770  cA16C>T  rsi8143599 Hom/  VUS:NA 998E04 7446 6E04  Neural  Damagng -
161491411 (p.A139Y) Heuret 04 -1.470 0837
© 4 osep NMOW4208  c2018A>G  rs201553143 Hom/  VUS:PM2 - 1ee - Neutral Bonign  #605594
88505632 (.06736) Het/Het o -1.162 0004
#125420
#125490
#125500
7 X esxt NM163448  C1040C>G 15200088361 Hom/  VUS:NA ~ 1676 104603  Newa  Damagng -
108495090 (.PATR) HomirHet © -02% 0915
16 12 FONA  NM213596  C1195G>A  rc146550088 Hom/  VUSINA 220608 1356 149608 Neutl Benign =
100719311 (0.A3097) HeuHet o 0233 0083
CIE Muca NMLO'B406  C12254A>G  rs148307B10  Hom  VUSINA 78908 - 228608  Neuwal  Damagng -
195508107 (0.040856) HeuHom -1.433 0553
20 15 POTEB3  NM2073%  GIS31A>G  rs1949282  Hom  VUSINA - - - Neutal Benign -
22053725 (pX511E) HeuwT 0706 0000

P, proband; F, father; M, mother; W, wi type; Het, heterozygous; Hom, homozygous; Heri, hemizygous; VUS, variants of uncertain significance; PS, strong pathogenic; PM, moderate pathogeric; PP, pathogenic s
supporting; NA, not avaiiable; AD, autosomal dominant.





OPS/images/fgene-13-840577/crossmark.jpg
©

|





OPS/images/fgene-13-840577/fgene-13-840577-g001.gif





OPS/images/fgene-13-840577/fgene-13-840577-g002.gif





OPS/images/fgene-13-840577/fgene-13-840577-g003.gif
O G S S PP P PP P P P PP PSP oo





OPS/images/fgene-13-880997/fgene-13-880997-t004.jpg
Index Decision Rules Class

1 (hsa-miR-6088 < 10.1065) & (hsa-miR-520f-5> 2.0854) & (hsa-miR-6836-3 <8.6821) & (hsa-miR-6811-5>1.8782) & (hsa- Normal control
miR-4867-5> 6.1925) & (hsa-miR-6823-5 > 1.8811) & (hsa-miR-7851-3> 5.1826) & (hsa-miR-4667-5 <7.1244) & (hsa-
miR-6756-5 <8.7714)

2 (hsa-miR-6088 < 9.9516) & (hsa-miR-4327 > 7.8591) & (hsa-MiR-6861-5> 6.5728) & (hsa-miR-4486-5 <6.5087) & (hsa- Alzheimer's disease
MiR-3622a-3> 4.5067) & (hsa-miR-6875-5 <10.0546) & (hsa-miR-7854-3 <4.8701)

3 (hsa-miR-208a-5> 5.8741) & (hsa-miR-548f-3 <2.1097) & (hsa-miR-4667-5> 6.7261) & (hsa-miR-676 1-3> 4.7880) & (hsa- Vascular dementia
miR-520f-5 <1.8849)

4 (hsa-miR-208a-5> 5.8741) & (nsa-miR-5481-3 <2.1097) & (hsa-miR-4649-5>10.8160) & (hsa-miR-3622a-3 <4.4907) & Dementia with lewy bodies
(hsa-miR-6070 > 1.8843) & (hsa-miR-663b < 8.7018)

5 (hsa-miR-520(-5 <1.8945) & (hsa-miR-6840-3 <7.6738) & (hsa-miR-185-5 <2.9551) Mid cognitive impairment
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TS, Total scores; Cl, cognitive improvement; MMSE, Mini-Mental State Examination;, FA, fractional anisotropy,; MD, mean diffusivity; AD, axial diffusivity; RD, radial diffusivity;
L-ATR, anterior thalamic radiation L; R-ATR, anterior thalamic radiation R; L-PTR, posterior thalamic radiation include optic radiation L; R-PTR, posterior thalamic radiation
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Parameter TT-R TT-nR Controls P-value! P-value?

Number, n 10 12 14 - -

Age,y 76.10 £ 4.15 74.41 +£7.58 75.18 £ 5.76 0.93 0.62
Gender, M/F 10/0 1A 11/3 0.36 1

Education, y 6.50 + 6.10 7.50 £ 5.93 7.05 4+ 4.69 0.74 0.70
iNPHGS 7.90 &+ 2.08 5.50 £+ 1.31 = 0.00
MMSE 16.30 £ 7.45 19.42 £ 5.50 24.57 + 2.59 0.00 0.27
DST 5.90 &+ 1.66 6.17 £1.75 9.794+1.48 0.00 0.72
VFT-A 6.90 & 2.08 7.08 £2.35 13.36 £ 2.56 0.00 0.85
CWT-B 38.40 &+ 8.49 42.67 + 6.96 47.14 £ 2.60 0.00 0.21
TMT-A 11.68 £ 8.84 8.23 £8.37 0.93+1.27 0.00 0.46
CDT 8.95+ 8.76 11.16+£9.87 22.36 + 7.82 0.00 0.55

1 Comparison between all INPH patients (TT-R and TT-nR) and control subjects.

2Comparison between TT-R and TT-nR patients.

TT, tap test; TI-R, TT responsive group; TI-nR, TT non-responsive group, MMSE, Mini-Mental State Examination; DST, Digit Span forward; VFT-A, Verbal Fluency
Test -~ANIMAL,; TMT-A, Trail Making Test A; CDT, Clock Drawing Test; CWT-B, Stroop Color Word Test- card B.
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Up arrows (1) indicate higher values, and down arrows ({) indicate lower values in
the former group compared with the later group.

TT, tap test; TI-R, TT responsive group; TI-nR, TT non-responsive group; HC,
healthy controls; TBSS, tract-based spatial statistics; FA, fractional anisotropy, MD,
mean diffusivity; AD, axial diffusivity; RD, radial diffusivity; L-ATR, anterior thalamic
radiation L,; R-ATR, anterior thalamic radiation R; L-PTR, posterior thalamic radiation
include optic radiation L; R-PTR, posterior thalamic radiation include optic radiation
R; L-ACR, anterior corona radiata R; R-ACR, anterior corona radiata L; L-SCR,
superior corona radiata R, R-SCR, superior corona radiata L, L-PCR, posterior
corona radiata R; R-PCR, posterior corona radiata L; F-major, forceps major;
F-minor, forceps minor; GCC, genu of corpus callosum; BCC, body of corpus
callosum; SCC, splenium of corpus callosum; L-TAP, tapetum L; R-TAP, tapetum
R; FN, fornix (column and body of fornix); L-CgC, cingulum cingulate gyrus L;
R-CgC, cingulum cingulate gyrus R; L-CgH, cingulum hippocampus L; R-CgH,
cingulum hippocampus R; L-SFOF, superior fronto-occipital fasciculus L; R-SFOF,
superior fronto-occipital fasciculus R; L-IFOF, inferior frontooccipital fasciculus L;
R-IFOF, inferior frontooccipital fasciculus R; L-ILF, inferior longitudinal fasciculus L;
R-ILF, inferior longitudinal fasciculus R; L-SLF, superior longitudinal fasciculus L;
R-SLF, superior longitudinal fasciculus R; L-SLFT, superior longitudinal fasciculus
temporal part L; R-SLFT, superior longitudinal fasciculus temporal part R; L-SS,
sagittal stratum (include ILF and IFOF) L; R-SS, sagittal stratum (include ILF and
IFOF) R; L-UF, uncinate fasciculus L; R-UF, uncinate fasciculus R.
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SNP First author;
year

r$2383207 Lin-2011
Jin-2021
Yang-2018
Li-2017
Li-2021"
Zhang-2012?

52303206 Hua-2009
Ding-2009*
Li-2021"
Xiong-2018°
Zhang-2012%

510757278 Bi-2015
Han-2020
Xiong-2018°
Ding-2009*
Zhang-2021%

G (case/control)

850/1745
2256/2320
700/391
1908/1,509
1,385/1,227
2143/2100
322/347
439/452
959/841
192/190
1,560/1,467
107/77
533/590
199/193
261/326
1792/1,672

A (case/control)

404/953
1,025/1,190
739/357
950/873
589/665
1,171,228
382/499
441/544
1,053/1,057
208/220
1754/1801
125/159
477/714
201/217
621/676
1,522/1,656

OR

1.15
113
0.88
1.16
1.27
1.07
1.21
1.19
1.14
1.07
1.12
175
1.35
111
0.87
147

95% CI

0.997 ~ 1.325
1.019 ~ 1.249
0.734 ~ 1.045
1.037 ~ 1.302
1.114 ~ 1.458
0.968 ~ 1.183
0.988 ~ 1.479
0.999 ~ 1.437
1.009 ~ 1.298
0.811 ~ 1.408
1.024 ~ 1.243
1.199 ~ 2.541
1.147 ~ 1.594
0.845 ~ 1.467
0.716 ~ 1.060
1.059 ~ 1.284

Note: The same numbers indicate the same article; SNP, single-nucleotide polymorphism: OR, odds ratio; Cl, confidence interval: SE, standard error.

SE (In
(OR)

0.073
0.052
0.09
0.058
0.069
0.051
0.103
0.093
0.084
0.141
0.049
0.192
0.084
0.141
0.100
0.049
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SNP First author;
year

52383207 Lin-2011
Jin-2021
Yang-2018
Li-2017
Li-2021"
Zhang-2012°

52303206 Hua-2009
Ding-2009*
Li-2021"
Xiong-2018°
Zhang-2012°

510757278 Bi-2015
Han-2020
Xiong-2018°
Ding-2009*
Zhang-2021°

Population

Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese

Case

627
1,640
550
1,429
987
1,657
352
440
1,006
200
1,657
116
505
200
441
1,657

Control

1,349
1756
548
1,191
946
1,664
423
498
949
205
1,664
118
652
205
501
1,664

Nota: The same numbers indicate the same arficle. SNP. single-nucleotice polymonahisi.

Case genotype Control genotype

GG GA AA GG GA AA
288 274 65 568 609 172
795 665 180 815 690 250
236 237 77 244 251 53
633 642 164 492 525 174
480 425 82 410 407 129
700 743 214 652 796 216
67 188 97 78 191 154
13 213 14 94 264 140
233 493 280 197 447 305
48 96 56 46 98 61

379 802 476 317 833 514
29 49 38 15 47 56
149 235 121 140 310 2083
52 95 53 47 99 59
40 181 220 45 236 220
509 774 374 420 832 412
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Model

Allele (A vs. G)

Recessive (AA vs. AG+GG)
Dominant ( AA+AG vs. GG)
Additive ( AA vs. GG)

OR- odds ratio.

Asian Non-Asian Pooled population
OR P OR P OR P
(95%Cl) (95%C) (95%Cl)
092 (0.73-1.15) 045 1.03 (0.85-1.26) 074 0.98 (0.85-0.14) 080
0.94 (0.69-1.28) 070 1.38 (0.81-2.35) 024 1.04 (0.79-1.36) 080
0.95 (0.72-1.26) 073 1.30 (0.93-1.81) 0.13 1.08 (0.87-1.33) 0.49
0.93 (0.67-1.30) 0.67 1.54 (0.84-2.82) 0.16 1.05 (0.78-1.40) 0.76
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SNPs. Study Population ~ Case  Control Case genotypes Control genotypes

AA AG GG AA AG GG
2200733 Gretarsdottir et al. (2008) European 29474 6222 514 6754 22206 ! 1189 4962
Shi et al. (2009) Chinese 811 688 200 405 206 180 344 164
Bevan et al. (2012) European 5859 6281 NR NR NR NR NR NR
Cao et al. (2013) Chinese 1388 1629 31 692 385 342 809 478
Suet al. (2015) Chinese 816 816 194 417 205 191 408 217
rs6843082 Su et al. (2015) Chinese 816 816 49 306 462 60 316 440
Wu et al. (2015) Chinese 167 176 12 66 89 20 78 78
Ferreira et al. (2019) Brazilian 240 285 128 95 17 140 120 25
Zhao et al. (2022) Chinese 476 501 34 187 255 40 208 258

SNP. single-nucleotide polymomhisms: NA, not publicly avallable: IS, ischerric stroks.
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MR methods HSV infection HSV-1 IgG HSV-2 IgG

OR 95% CI P-value OR 95% CI P-value OR 95% ClI P-value
Inverse variance weighted 0.96 0.90-1.02 0.22 0.75 0.35-1.60 0.45 1.04 0.96-1.13 0.32
Weighted median 0.98 0.90-1.06 0.58 0.92 0.67-1.27 0.62 1.08 0.94-1.14 0.49
MR-Egger regression slope 0.95 0.80-1.13 0.59 0.45 0.004-44.82 0.76 0.89 0.58-1.36 0.60
MR-PRESSO raw estimate 0.96 0.92-1.01 0.12 0.75 0.35-1.60 0.51 1.04 0.96-1.13 0.35
MR-PRESSO outlier corrected - - - 0.91 0.81-1.08 0.37 ~ ~ =

ClI, confidence interval; HSV, herpes simplex virus;, MR, Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy residual sum and
outlier; OR, odds ratio.
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Exposures MR-Egger regression Heterogeneity test MR-PRESSO global test

Intercept SE P-value Q statistic P-value RSSobs P-value
HSV infection 0.002 0.02 0.91 4.05 0.85 4.92 0.88
HSV-1 1gG 0.05 0.21 0.84 33.98 <0.001 58.55 <0.001
HSV-1 IgG (excluding rs3132935) 0.04 0.11 0.79 5.06 0.08 - -
HSV-2 1gG 0.03 0.04 0.47 8.77 0.27 11.42 0.30

MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; RSSobs, observed residual sum of squares; SE, standard error.
MR-PRESSO global test was not available when examining the association of HSV-19G (excluding rs3132935) with multiple sclerosis due to insufficient number of genetic
instrumental variables.
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Phenotype

AD (all)

AD (female)

AD (male)

Brain tissue

Cerebellum

Dorsolateral Prefrontal Cortex
Frontal Pole

Inferior Frontal Gyrus
Parahippocampal Gyrus
Superior Temporal Gyrus
Temporal Cortex

Cerebellum

Dorsolateral Prefrontal Cortex
Frontal Pole

Inferior Frontal Gyrus
Parahippocampal Gyrus
Superior Temporal Gyrus
Temporal Cortex

Cerebellum

Dorsolateral Prefrontal Cortex
Frontal Pole

Inferior Frontal Gyrus
Parahippocampal Gyrus
Superior Temporal Gyrus

Temporal Cortex

logh€: log fold change value.

loggc
0.12
0.016
0.15
0.13
0.31
0.17
0.83
0.20
—0.013
0.15
0.19
0.34
0.23
0.82
0.012
0.028
0.12
0.64
0.24
0.076
0.84

P-value

0.43
0.78
0.033
0.13
8.17E-07
0.27
2.96E-10
0.29
0.87
0.23
0.14
0.00032
0.061
1.89E-06
0.97
0.78
0.38
0.79
0.084
0.67
0.00004
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Data
sources

GTEx

MAYO

Brain tissue

Amygdala (non-AD)

Anterior cingulate
cortex (non-AD)

Caudate (non-AD)

Cerebellar
Hemisphere
(non-AD

Cerebellum
(non-AD

Cortex (non-AD)

Frontal Cortex
(non-AD

Hippocampus
(non-AD

Hypothalamus
(non-AD

Nucleus accumbens
(non-AD

Putamen (non-AD)

Spinal cord
(non-AD)

Substantia nigra
(non-AD)

Cerebellum (AD)

Cerebellum
(non-AD)
Temporal cortex

(AD)

Temporal cortex
(non-AD)

No. Samples

109

144

125

154

136
118

111

108

130

111
83

80

186
170

191

181

Beta

—0.065

—0.10

—0.041

—0.0012

—0.049

—0.058
—0.068

—0.069

—0.0095

—0.16

—0.12
—0.064

—0.021

0.0635
—0.0905

0.0588

0.286

P-value

0.23

0.027

0.16
0.98

0.065
0.036

0.076

0.81

0.00023

0.00082
0.24

0.75

0.23
0.048

0.031

0.00029

Beta is the regression coefficient based on the effect allele. Beta > 0 and beta < 0 mean that

this effect allele could increase and reduce gene expression, respectively. The statistically

significant association is defined to be P < 0.05/17 = 0.00294.
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Study Traits Diagnosis Cases Controls Ethnicity

IGAP2013 (Lambert et al,, 2013) GWAS Clinical or autopsy 25,580 48,466 European
1GAP2019 (Kunkle et al., 2019) GWAS Clinical or autopsy 35274 59,163 European
UK Biobank (all) (Marioni et al,, 2018) GWAX Clinical or autopsy 42,034 272,244 European
UK Biobank (maternal) (Marioni et al,, 2018) GWAX Proxy 27,69 260,980 European
UK Biobank (paternal) (Marioni et al., 2018) GWAX Proxy 14,338 245,941 European

GWAX, genome-wide association studies by proxy. GWAS, genome-wide association studies.
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Metabolites

L-Methionine sulfone

Docosanoic acid

Uridine

3-Hydroxyhippuric acid

L-Glutamic acid

Uridine 5" monophosphate(UMP)
Trans-2,3,4-Trimethoxycinnamic Acid
B-D-Lactose

Cytidine 3'-monophisphoric acid
N-y-Acetyl-N-2-Formyl-5-methoxykynurenamine
Thymidine-5'-monophosphate(dTMP)
Uridine-5'-diphosphate-mannose(UDP-Gal)

VIP

1.27643
1.11139
2.21959
1.10166
1.04933
2.42806
1.05031
1.65882
3.48481
1.56343
7.26583
1.16583

FC

0.39592211
1.24292539
0.54969523
0.568905271
0.42636368
0.47128583
0.46980814
0.51933915
0.49014935
0.62282757
0.560788472
0.49116102

P-value

0.00128436
0.00153343
0.00295338
0.00886306
0.00901154
0.02161141
0.02427128
0.02631537
0.02692515
0.02905089
0.03078474
0.03410945
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UniProt accession

P49935
G5EB861

AOA1L1SQP8

Q3TWTS
J3QK77
QID1B1
AOA571BF69
Q4FZJ6

Q8K1H9
Q80YX8
Q3KQQ2
Q91WR8
Q9D3H2
A2BHR2
Q3TF14
AOAQU1RPF4
P10639
A2CEKG
P15947
P70269
P51910
P15948

H3BKHG6
L7MUC7

Q91XE4

Q91 x 17
B8JI96

Gene symbol

Ctsh
Sclt1

Fxyd2

Asah1
Scgb2b20
Cst6
Mgam
Wrfdc2

Obp2a
Mup21
Mup3
Gpx6
Obpla
Lentd
Ahcy
Hamp2
Txn
Mup13
Klk1
Ctse
Apod
Kik1b22

Esd
Mup7

Acy3

Umod
Mup14

Protein name

Pro-cathepsin H

Sodium channel and clathrin
linker 1

FXYD domain-containing ion
transport regulator

Ceramidase
ABPBG20
Cystatin E/M
Maltase-glucoamylase

WAP four-disulfide core domain

2
Odorant-binding protein 2a
Major urinary protein 21
Major urinary protein 25
Glutathione peroxidase 6
Odorant-binding protein 1a
Lipocalin 11
Adenosylhomocysteinase
Hepcidin-2 (Fragment)
Thioredoxin
Major urinary protein 11
Kallikrein-1
Cathepsin E
Apolipoprotein D
Kallikrein 1-related peptidase
b22
S-formylglutathione hydrolase
Major urinary protein 7
(Fragment)
N-acyl-aromatic-L-amino acid
amidohydrolase
(carboxylate-forming)
Uromodulin
Major urinary protein 14
(Fragment)

FC

—1.99023949
2.07219424

2.72899236

1.64659341
3.07210788
—3.19900397
2.37524214
1.64128707

1.815633979
—2.29692495
—1.49751001

1.69143645
—1.67221913

1.64440618

1.82072680

2.95442297
1.993343846
—1.85239538

1.37162847

1.84456216

1.69316293

1.73666194

—1.63242181
—1.84000481

2.79646484

1.66345644
—1.54699463

P-value

0.00163517
0.00209911

0.00222118

0.00282754
0.00413095
0.00422517
0.00543735
0.00604615

0.00799517
0.00913460
0.01240960
0.01390856
0.01499012
0.01672011
0.01895520
0.02102362
0.027021861
0.02745480
0.02874193
0.03194560
0.03324157
0.03657697

0.03836365
0.03930886

0.04085258

0.04212900
0.04765555
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Pathway name

Pyrimidine metabolism
Metabolic pathways
Small Molecule Biochemistry

Proteins

UMOD,Fxyd2, AHCY,ACY3
Hamp2,CTSE,SCLT1,WFDC2

Metabolites

Uridine, UMP, dTMP, UDP-Gal
L-Glu
UMP
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Microarray data processing
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{ Weighted Gene Co-expression Network Analysis (WGCNA) 1

4 )

s

Module genes related to AD

% >

Ferroptosis-related genes and

apoptosis-related genes were extracted
5 from FerrDb and UniProt respectively

\

4

Overlap AD-related module genes
with ferroptosis-related genes

o

B

}

|
|

.

GO and
KEGG analysis
of overlapped

of hub genes
X
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PPI establishment
and 1dentification

>

\
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\_

Overlap AD-related module genes
with apoptosis-related genes

identification of hub genes

) -
JUN, SLC2A1, TFRC, ALB, STAT1, CFLAR, FASLG,
MTOR, and NFE21.2 were MCL1 and BCL2L11 were
9 obtained )L ohtained
[ Construction and Validation of the Logistic Regression ]

7

N

JUN, SLC2A1, TFRC, ALB, and NFE2L2 were
identified, which could better differentiate AD patients
from controls than apoptosis-related hub genes.

5
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Consortium

ADGC
CHARGE
EADI
GERAD
N

N (cases/controls)

10,273/10,892
1,315/12,968
2,243/6,017
3,177/7,277

17,008/37,154

AAO, age at onset: AAE, age at examination.

Percent

women (cases/controls)
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64.0/51.8

Case mean AAO (s.d)
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Type Genes

Driver PGD, YY1AP1, ATG3, ATG7, DPP4, NRAS, LPIN1, FBXW7, SCP2, EPAS1, TF, ATG16L1, IDH1, TFRC, BAP1, SNX4, PIK3CA, ATF3, PRKAA2
Suppressor SQSTM1, SLC40A1, MTOR, FANCD2, MUC1, TP63, FTMT, PRDX6, NFE2L2, ACSL3, JUN, SLC7A11, FH, CISD2, SESN2, PROM2
Marker TXNIP, HSD17B11, NCF2, PTGS2, ALB, STEAP3, SLC1A4, RRM2, CXCL2, ANGPTL7, PRDX1, SLC2A1, STMN1, RGS4, OXSR1, KLHL24,

CAPG, DRD5
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Data set Category Annotated from
Driver Regulator Gene
Suppressor Regulator Gene

Marker Marker Gene

Inducer Regulator Small molecule
Inhibitor Regulator Small molecule
Ferroptosis aggravates disease Ferroptosis-diseaseassociation Ferroptosis and disease
Ferroptosis alleviates disease Ferroptosis-diseaseassociation Ferroptosis and disease

The number of “Count” and “Annotations” is inconsistent, because one gene can have multiple annotations.
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54
46
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