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Survival prediction is highly valued in end-of-life care clinical practice, and patient

performance status evaluation stands as a predominant component in survival

prognostication. While current performance status evaluation tools are limited to their

subjective nature, the advent of wearable technology enables continual recordings of

patients’ activity and has the potential to measure performance status objectively. We

hypothesize that wristband actigraphy monitoring devices can predict in-hospital death

of end-stage cancer patients during the time of their hospital admissions. The objective

of this study was to train and validate a long short-term memory (LSTM) deep-learning

prediction model based on activity data of wearable actigraphy devices. The study

recruited 60 end-stage cancer patients in a hospice care unit, with 28 deaths and 32

discharged in stable condition at the end of their hospital stay. The standard Karnofsky

Performance Status score had an overall prognostic accuracy of 0.83. The LSTM

prediction model based on patients’ continual actigraphy monitoring had an overall

prognostic accuracy of 0.83. Furthermore, the model performance improved with longer

input data length up to 48 h. In conclusion, our research suggests the potential feasibility

of wristband actigraphy to predict end-of-life admission outcomes in palliative care for

end-stage cancer patients.

Clinical Trial Registration: The study protocol was registered on ClinicalTrials.gov

(ID: NCT04883879).

Keywords: palliative care, performance status, survival prediction, prognostic accuracy, wearable technology,

deep learning, long short-term memory networks, actigraphy

5

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2021.730150
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2021.730150&domain=pdf&date_stamp=2021-12-09
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:drshabbir@tmu.edu.tw
mailto:chiaweisun@nctu.edu.tw
mailto:solomanc@tmu.edu.tw
https://doi.org/10.3389/fpubh.2021.730150
https://www.frontiersin.org/articles/10.3389/fpubh.2021.730150/full
https://ClinicalTrials.gov


Yang et al. Survival Prediction With Wristband Actigraphy

INTRODUCTION

Accurate survival prediction is highly valued in the clinical
practice of end-of-life care. It enables better communication
and preparation for impending death, helps avoid futile medical
treatment, and facilitates optimal palliative care quality for
patients, families, and physicians altogether (1–3). Several
validated prognostic tools are available, including Palliative
Prognostic Score (PaP) (4–6), Palliative Prognostic Index
(PPI) (7–9), Prognosis in Palliative care study (PiPS) score
(10, 11), and Glasgow Prognostic Score (12, 13). These scoring
systems employ a combination of subjective clinical parameters
and/or objective biomarkers to generate survival predictions.
Among the parameters used by these prognostic tools, the
evaluation of patient performance status (PS) stands as a
predominant component. Commonly used PS assessment tools
include Karnofsky Performance Status (KPS) (14), Eastern
Cooperative Oncology Group (ECOG) Performance Status
(15), and Palliative Performance Scale (PPS) (16). However,
applications of these evaluation tools are subjective in nature
and require trained healthcare professionals for assessments.
These characteristics inevitably lead to issues including
intraobserver or interobserver variability (17, 18), overestimating
or underestimating (19), discontinuous evaluations of activity
status, as well as inconvenient implementation in contexts
without healthcare professionals.

With the advent of wearable activity monitoring technology,
we are now granted convenient and objective methods for the
evaluation of patient functional status. Wearable monitors also
enable constant documentation of a patient’s activity status
which could be retrospectively examined and validated. Because
of these benefits, monitoring technologies have been applied
in different research areas and yielded valuable information
on the relationship between activity status and diseases in
clinical fields of gynecology (20), surgery (21), pulmonary (22),
nephrology (23), and psychology (24). In addition, a study
by Gresham et al. also applied objective PS evaluation in a
group of advanced cancer patients, which identified correlations
between objective activity data of patients and clinical outcomes
of adverse events, hospitalization, and overall survival (25).
However, no previous study had employed objective PS data for
survival prognostication.

In this study, wearable actigraphy devices were applied in a
group of end-stage cancer patients for objective measurement
of their activity status. We hypothesized that the objective
activity data recorded by the wearable devices contained
information to help predict in-hospital death of end-stage
cancer patients on their hospital admissions. A deep-learning-
based prediction model was developed to analyze activity
data and suggest survival outcomes of patients. Furthermore,
the prognostic accuracy of the proposed activity monitoring
and survival prediction model was compared to a current
PS evaluation tool, KPS, and a complex prognostic tool,
PPI. Finally, we explored and described the applicability,
potential, and limitations of the objective activity data recorded
by wearable devices as a simple prognostic parameter in
clinical settings.

MATERIALS AND METHODS

Study Setting, Participants, and
Procedures
The study was conducted in the hospice care unit of Taipei
Medical University Hospital (TMUH) from December 2019 to
December 2020. Patients with terminal illnesses were admitted
to the unit for palliative care and management of pain and
other symptoms. Participants aged > 20 years who had at least
one diagnosis of end-stage solid tumor diseases and consented
to receive hospice care were recruited. Patients with diagnoses
of leukemia or carcinoma of unknown primary, patients with
evident signs of approaching death upon admission, patients
with no vital signs upon admission, or patients who continued
to receive aggressive treatment were excluded from this study.
After admission to the hospice care unit, patients and their
caregivers were first visited and assessed by registered hospice
specialist doctors and nurses. If the patient met the criteria
mentioned above, they would be invited to participate in the
study. Participants would only be recruited once the informed
consent was signed by themselves or their legally authorized
representative. The study was approved by the ethical committee
of the Taipei Medical University-Joint Institutional Review Board
(TMU-JIRB No. N201910041).

Clinical data including age, gender, diagnosis, and
comorbidities were collected after successful recruitment.
Patients were asked to wear a wristband actigraphy device on
their hands without intravenous lines. The wearable actigraphy
devices (model no. XB40ACT, K&Y lab, Taipei, Taiwan) used
in this study is a tiny gadget that weighs 7 g with dimensions of
44∗19∗8mm and has been previously validated (26) and applied
in a sleep quality study among cancer patients (27). The monitor
collects three-dimensional data of gravitational acceleration,
angular change, and spin change of the patient’s hand motion
every second and transforms them into three statistical
parameters: physical activity, angle, and spin. Participants were
instructed to wear the devices throughout their hospital stay
except showering time because they were not water-resistant.
The information was also forwarded to their caregivers.

Subsequently, subjective PS assessments using the KPS and
prognostic evaluations using the PPI were done by two trained
specialists. The KPS system is an established tool designed for PS
evaluation. The score collaboratively takes ambulation, activity,
evidence of disease, self-care, the requirement of assistance, and
progression of disease into consideration with a scale that ranges
from normal activity (100) to death (0) (14). In addition to
PS assessments, we applied a complex prognostic tool based
on evaluations of PS and other clinical symptoms, namely PPI,
starting from July 16, 2020. We were only able to conduct
the PPI assessments due to the participation of an additional
specialist, who undertook extra work derived from evaluations
of patients’ clinical symptoms. PPI considers PS and clinical
symptoms of oral intake, edema, dyspnea at rest, and delirium,
to generate an overall prognostication. According to the original
study, the results range from 0 to 15, and a PPI > 6.0 estimates
a survival time of fewer than 3 weeks (7). The same group of
specialists conducted all KPS and PPI assessments to ensure
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FIGURE 1 | The basic architecture (A) and data pre-processing and architectural flow (B) of the Long Short-Term Memory model. Symbol x and h represent the input

and output values of the LSTM cell. Symbol c represents the value of the memory cell in each LSTM cell. Subscript t represents the time step.

interpersonal consistency. After the initial consultation, patient
activity data recorded by the actigraphy devices would be synced
and uploaded every 2–3 days until the patient was discharged
from the hospital. Survival outcomes were documented as either
death or discharged in stable condition at the end of each patient’s
hospital stay.

Data Pre-processing and LSTM-Based
Deep Learning Model
The data collected by the actigraphy device is a time series
with three features: physical activity, angle, and spin. The issue
of variations in each patient’s data length was managed by
zero paddings until the maximum length of the time series
was reached. To avoid vanishing gradients in the deep learning
model, we opted for an average value of 20 timesteps and
shortened the time series to <500 timesteps.

In this study, we trained a long short-term memory (LSTM)-
based deep learningmodel to predict the clinical status of patients
at discharge, which was either death or discharged in stable
condition. Recurrent neural networks (RNN) is a deep learning
method well-suited to deal with time series structure (28, 29).
However, the vanishing gradient problem of RNN made the
tool suboptimal for long time-series data (30) for which the
LSTM, a particular type of RNN, was used to resolve the issue.
Compared to RNN, the LSTM architecture is more resistant to
vanishing gradients and allows robust processing of long time-
series data (31, 32). The performance of LSTM has been validated

in disciplines of economic, financial, stock market forecasting,
and even stress forecasting using survey data and physiology
parameters. In these studies, LSTM demonstrated lower error
rates (33), lower variance (34), and higher accuracy (34, 35)
than other analytical methods. A study by Umematsu et al. also
showed that LSTM could generate satisfactory results based on
objective data measured by wearable devices and phones (35).

Figure 1A showed the basic architecture of the LSTM model.
Symbol x and h represent the input value and the output value of
the LSTM cell, respectively. The value in the memory cell in each
LSTM cell is c. The subscripts of x, h, and c represented different
time points. Each LSTM cell contains an input gate, forget
gate, and output gate. The input gate determines whether the
neuron writes input values into the memory cell. The forget gate
determines whether the memory cell formats memory values.

The output gate determines whether the neuron reads the values
in the memory cell. The hyperbolic tangent function (tanh)

and sigmoid function (σ) are activating functions in LSTM.
In this study, the prediction model was based on the LSTM
cell to process the three-dimensional time-series data. Data

pre-processing and model architecture flows were presented in
Figure 1B. The model consisted of an LSTM layer, a dense layer

wrapped with TimeDistributed, a flatten layer, and a dense layer.
Parameters were adjusted according to different model structures
and are presented in the results section. It should be noted that
the model was designed to generate survival predictions based
solely on activity data of patients, therefore, demographic and
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TABLE 1 | Patient demographics and characteristics at baseline visit.

Characteristics (N = 60) Value

Age, years

• Mean 72.9

• SD 12.2

• Range 45–94

Sex, N (%)

• Male 37 (61.67%)

• Female 23 (38.33%)

Primary tumor site, N (%)

• Gastrointestinal system 26 (43.33%)

• Lung 12 (20.00%)

• Genitourinary system 10 (16.67%)

• Gynecological system 5 (8.33%)

• Breast 3 (5%)

• Head and neck 2 (3.33%)

• Central nervous system 2 (3.33%)

Patients with comorbidities, N (%) 46 (76.67%)

Length of hospital stay, days

• Median (IQR) 10 (5–15)

Patient status at discharge

• Death 28 (46.67%)

• In stable condition 32 (53.33%)

KPS (N = 59) Death Discharged in stable condition

• KPS < 50% 23 (38.98%) 5 (8.47%)

• KPS ≥ 50% 5 (8.47%) 26 (44.07%)

PPI (N = 20) Death Discharged in stable condition

• PPI > 6.0 8 (40.00%) 0 (0.00%)

• PPI ≤ 6.0 1 (5.00%) 11(55.00%)

clinical data of patients (such as comorbidities) were not utilized
by the model.

Statistical Analysis
Patient characteristics were summarized using descriptive
statistics. The clinical outcomes of participants were determined
at the end of their hospital stay as binary results: death (1)
or discharged in stable condition (0). We adopted a validated
cutoff value of 50% for KPS (36) and a cutoff value of 6.0
for PPI as suggested by the original study (7). A receiver
operating characteristic (ROC) curve analysis was also conducted
to identify optimal cutoff values based on our dataset. The
predictive accuracy of KPS and PPI were presented as sensitivity,
specificity, positive predictive value (PPV), negative predictive
value (NPV), overall accuracy, and the area under the receiver
operating characteristic (ROC) curve (AUC). Additionally, an
exploratory analysis was conducted to investigate the predictive
correlation between KPS and the LSTM model. Correlation
between the two variables was calculated using the Pearson
correlation coefficient. Statistical analyses were computed using
Python version 3.6 and R software version 4.0.2.

FIGURE 2 | The Receiver Operating Characteristic curve of Karnofsky

Performance Status (blue) and Palliative Prognostic Index (green).

RESULTS

Demographics of Study Population
From December 11, 2019, to December 10, 2020, 60 patients
admitted to the hospice care unit of TMUHwere eligible for study
recruitment and consented to participate. Patient characteristics,
information on KPS and PPI, and their clinical outcomes at
discharge were presented inTable 1. The mean age was 72.9 years
old (SD 12.2), and 62% were male. Gastrointestinal tumors were
the most commonmalignancies, followed by lung, genitourinary,
gynecological, breast, head and neck, and CNS cancers. Seventy
seven percent of participants had one or more comorbidities,
consisting of hypertension, diabetes mellitus, hyperlipidemia,
coronary artery diseases, cerebral infarctions, and others. The
median length of hospital stay of patients was 10 (IQR 5-15)
days. Twenty eight (47%) patients died at the end of their hospice
care stay, whereas 32 (53%) patients were discharged from the
hospice care unit in stable condition. It should be noted that
one case was discharged against medical advice and deemed as
discharged in stable condition. KPS assessments were available
or 59 participants, with 28 of them having a KPS score < 50%
at admission. PPI assessments were available for 20 participants,
with 8 of them having a PPI score > 6.0 on admission.

Prognostic Accuracy of KPS and PPI
The absolute numbers of the true positive, false positive, false
negative, and true negative of KPS and PPI assessments are
presented in Table 1. True positive was defined as participants
with KPS< 50% or PPI> 6.0 at baseline visit and death at the end
of their hospital stay. The predictive performance of KPS score
based on binary outcomes had an overall predictive accuracy of
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FIGURE 3 | The representative activity pattern of patients with clinical outcomes of death (A) and discharged in stable condition (B). The red points on the graph

indicated that the patient had taken off the device.

83.1% (95% CI 71.0–91.6%), sensitivity of 82.1% (95% CI 63.1–
93.9%), specificity of 83.9% (95% CI 66.3–94.5%), PPV of 82.1%
(95% CI 63.1–93.9%), NPV of 83.9% (95% CI 66.3–94.5%), and
AUC of 0.902. The predictive performance of PPI score based
on binary outcomes had an overall predictive accuracy of 95.0%
(95% CI 75.1–99.9%), sensitivity of 88.9% (95% CI 51.8–99.7%),
specificity of 100% (95% CI 71.5–100%), PPV of 100% (95% CI
63.1–100%), NPV of 91.7 (95% CI 61.5–99.8%), and AUC of
0.960. The discrimination thresholds identified by the ROC curve
analysis correlated with the cutoff values we initially adopted for
both KPS and PPI (Figure 2).

Activity Dataset Description and Splitting
The representative activity pattern recorded by the wearable
wristband was shown in Figure 3. Figure 3A belonged to a
participant who died at the end of the hospital stay, while
Figure 3B belonged to a participant who was discharged in
stable condition. Although activity data of patients were recorded
throughout their hospital stay, the LSTM-based predictionmodel
only employed data of the initial 48 h for prognostic applicability
in clinical settings. After excluding recordings with tracking
interruption or data volume of fewer than 48 h, the final dataset
included activity data of 44 participants, with 21 deaths and
23 discharged in stable condition at the end of hospital stay,
respectively. The maximum length of data after zero-padding
is 9,640.

All data was fed into the model after data pre-processing;
thus, sampling rates and strides were not defined. We first
conducted a preliminary analysis to investigate the feasibility and
performance of the model. In the preliminary analysis, the data

TABLE 2 | Details of the dataset for the preliminary and final LSTM models.

Training

dataset

Validation

dataset

Testing

dataset

Total

Preliminary model

Discharged in stable

condition

15 (34.09%) - 8 (18.18%) 23

Death 15 (34.09%) - 6 (13.64%) 21

Total 30 - 14 44

Final model

Discharged in stable

condition

16 (36.36%) 4 (9.09%) 3 (6.82%) 23

Death 14 (31.82%) 4 (9.09%) 3 (6.82%) 21

Total 30 8 6 44

were divided into a training dataset and a testing dataset at a ratio
of 7:3. The number of LSTM units for the preliminary model is
64, with a batch size of 8. We further divided data into training,
validation, and testing datasets at a ratio of 7:2:1 in the final
LSTM model to detect the possibility of overfitting. The number
of LSTM units for the final model was 256, with a batch size of 16.
The epochs of the preliminary and final model were 50 and 100,
respectively. Both models adopted adam as the optimizer and the
mean absolute error was used as the loss function. Dataset of the
preliminary and final models are presented in Table 2.

Training of LSTM Survival Prediction Model
Based on the activity data recorded in the initial 48 h after
admission, the preliminary model yielded an accuracy of 0.8667

Frontiers in Public Health | www.frontiersin.org 5 December 2021 | Volume 9 | Article 7301509

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Yang et al. Survival Prediction With Wristband Actigraphy

FIGURE 4 | Confusion matrices of the preliminary prediction model. (A): Confusion matrix of the testing dataset, with normalization. (B): Confusion matrix of the

testing dataset, without normalization.

in the training dataset and 0.7143 in the testing dataset. The
confusion matrix visualized the differences between model
prediction and the ground truth. The variables used for the
original and normalized confusion matrices were the same.
In the normalized form of confusion matrices, the sum of
each row is 1.0 and represents the correct prediction in terms
of probability. Figures 4A,B illustrate the confusion matrices
with normalization and without normalization, respectively. The
sensitivity, specificity, PPV, NPV, and AUC of the model on the
testing dataset were 0.8333, 0.625, 0.625, 0.8333, and 0.7292,
respectively. These satisfactory results indicated the feasibility
of LSTM in classifying time series data collected by wearable
actigraphy devices without any physiological information.

The dataset was further sliced into training, validation, and
testing data in the final model with appropriate parameters. The
training accuracy increased to 0.9667, and the validation accuracy
and testing accuracy were 0.75 and 0.8333, respectively. After
increasing the LSTM units from 64 to 256, the performance of
the model on the testing dataset was greatly improved. Confusion
matrices of the final model were shown in Figures 5A,B. The
sensitivity, specificity, PPV, NPV, and AUC of the model on the
testing dataset were 1.0, 0.6667, 0.75, 1.0, and 0.8333, respectively.

The Impact of Data Length on LSTM Model
Performance
Since activity data of the initial 48 h yielded favorable results,
we further explored the performance of the model based on a
shorter time series. The input data of the preliminary model and
the final model were reduced from 48 to 24 h with the same
parameters. The maximum length of data after zero-padding is
6,460. After reducing the time interval, the prognostic accuracy
of both preliminary and final models decreased. The comparison
of model performance based on 48 and 24 h is demonstrated in

Table 3. The finding indicated decreasing classification accuracy
of the models with reducing time length of the input data.

DISCUSSION

The study proposed and examined the use of a wearable
actigraphy device for survival prediction among end-stage cancer
patients. Compared to the subjective PS evaluation by KPS, our
results indicated that objective activity data recorded by the
wearable devices also provided favorable prognostic accuracy
when employing the LSTM model. The wearable actigraphy
device employed in this study is a lightweight and low-cost
device, and based on the results, provides convenient activity data
for survival prediction in end-stage cancer patients. The findings
of this study suggest implementing the wearable technology and
the survival prediction model in end-of-life care to facilitate
decision-making for clinicians and better preparation for patients
and their families.

PS evaluation can inform patients’ clinical condition and
treatment decisions in end-of-life care. However, subjective
evaluation tools like KPS are seldomly used as a single predictor
for patient survival; one of the reasons is the potential risk
of measurement bias due to their subjective nature (37). As a
result, studies examining the applicability of objective activity
evaluation, such as measurements by wearable technology, are
being conducted to investigate the usability of activity data
for survival prediction. While several studies have identified
associations between activity data of cancer patients and their
clinical outcomes, such as unplanned healthcare encounters (38),
adverse events, hospitalizations, and survival (25), no previous
studies have utilized the activity data to build a prediction model
that suggests survival outcomes. To our knowledge, this is the
first study that applied objective activity data of patients in a
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FIGURE 5 | Confusion matrices of the final prediction model. (A) Confusion matrix of the testing dataset, with normalization. (B) Confusion matrix of the testing

dataset, without normalization.

TABLE 3 | Model performance with different input data lengths.

Model Training ACCa Validation ACC Testing ACC Sensitivity Specificity PPVb NPVc AUCd

Preliminary model 48 h 0.8667 N/A 0.7143 0.8333 0.625 0.625 0.8333 0.7292

Preliminary model 24 h 0.8333 N/A 0.6429 0.6667 0.625 0.5714 0.7143 0.6458

Final model 48 h 0.9667 0.75 0.8333 1.0 0.6667 0.75 1.0 0.8333

Final model 24 h 0.9333 0.625 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667

aACC: accuracy.
bPPV: positive predictive value.
cNPV: negative predictive value.
dAUC: area under the receiver operating characteristic curve.

deep-learning model to provide survival outcome predictions in
the end-stage cancer population.

In this study, while KPS had comparable performance,
PPI yielded a nearly impeccable result regarding prognostic
accuracy. However, it should be noted that the accuracy
of these prognostic tools, either KPS or PPI, relies heavily
on the judgment of an experienced clinical practitioner. In
comparison, the activity monitoring and survival prediction
model proposed by this study, requires no clinical expertise but
a wearable wristband. The advantage introduces two clinical
implications: first, automatically-generated survival predictions
can lessen healthcare practitioners’ workload in clinical settings,
and second, enable end-of-life care at places outside hospitals,
such as hospice at home. The result also suggested that
integrating activity evaluation and clinical parameters in a
survival prediction model might facilitate better prognostic
accuracy, and subsequent analysis should be conducted to
investigate the feasibility of such a combination.

The activity data of only the initial 24 and 48 h since patients’
hospital admission was employed to provide timely survival
prediction and enable practicable use in the clinical settings.
Activity recordings fewer than 24 h were not analyzed due to the

consideration of circadian rhythm (39). Circadian rhythms are
part of the body’s internal clock and are approximately 24 h a
cycle. However, studies have shown that circadian rhythms can
be disrupted bymultiple factors, including the states of cancerous
diseases (40); thus, we employed activity analysis of both 24 and
48 h to include at least a cycle of the circadian rhythm. Our
findings showed that the predictions based on activity data of 48 h
yielded better prognostic accuracy than 24 h in both preliminary
and final models. While the better performance of the model
may be attributed to the increasing length of data (41), the
inclusion of at least a cycle of circadian rhythms might also serve
as a constructive factor. Future studies examining the impact of
circadian rhythm on activity data of end-stage cancer patients are
thus warranted.

Though the study offers promising results of the deep-
learning-based survival prediction model, the study still
encompasses a few limitations. First, the issue of data
discontinuity was noticeable. Probable causes include battery
charging requirements and the non-waterproof characteristics
of the device, as these monitors were removed during the
showering time. Although the issue of data discontinuity and
different data lengths were handled by data pre-processing,
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future studies with better activity tracking devices and data
quality are warranted. Second, the study was designed to
provide patients’ outcomes at the end of their hospital stay,
either death or discharged in stable condition. Even though
the survival time varied among participants regardless of their
final survival outcomes, the proposed model only informed
binary survival outcomes rather than the estimated survival
time. Finally, we failed to adopt PPI assessments at the
beginning of the study and thus, only applied the tool to the last
20 participants.

In conclusion, the study presented a wearable activity
monitoring and survival prediction model for end-stage cancer
patients in hospice care settings. Our survival prediction model
provided satisfactory prognostic accuracy of patients’ binary
survival outcomes, death or discharged in stable condition, by
using activity data of the initial 24 or 48 h on their hospital
admission. The prognostic accuracy of the model was time-
dependent, with models using activity data of 48 h yielding better
results than those of 24 h. The automatically-generated survival
prediction by the LSTM deep-learning model demonstrated
feasibility in clinical settings and may benefit end-of-life care in
settings without healthcare professionals.
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Background: The etiology of fever of unknown origin (FUO) is complex and remains a

major challenge for clinicians. This study aims to investigate the distribution of the etiology

of classic FUO and the differences in clinical indicators in patients with different etiologies

of classic FUO and to establish a machine learning (ML) model based on clinical data.

Methods: The clinical data and final diagnosis results of 527 patients with classic

FUO admitted to 7 medical institutions in Chongqing from January 2012 to August

2021 and who met the classic FUO diagnostic criteria were collected. Three hundred

seventy-three patients with final diagnosis were divided into 4 groups according to 4

different etiological types of classical FUO, and statistical analysis was carried out to

screen out the indicators with statistical differences under different etiological types.

On the basis of these indicators, five kinds of ML models, i.e., random forest (RF),

support vector machine (SVM), Light Gradient Boosting Machine (LightGBM), artificial

neural network (ANN), and naive Bayes (NB) models, were used to evaluate all datasets

using 5-fold cross-validation, and the performance of the models were evaluated using

micro-F1 scores.

Results: The 373 patients were divided into the infectious disease group (n = 277),

non-infectious inflammatory disease group (n = 51), neoplastic disease group (n = 31),

and other diseases group (n = 14) according to 4 different etiological types. Another

154 patients were classified as undetermined group because the cause of fever was

still unclear at discharge. There were significant differences in gender, age, and 18 other

indicators among the four groups of patients with classic FUO with different etiological

types (P < 0.05). The micro-F1 score for LightGBM was 75.8%, which was higher

than that for the other four ML models, and the LightGBM prediction model had the

best performance.

Conclusions: Infectious diseases are still themain etiological type of classic FUO. Based

on 18 statistically significant clinical indicators such as gender and age, we constructed

and evaluated five ML models. LightGBM model has a good effect on predicting the

etiological type of classic FUO, which will play a good auxiliary decision-making function.

Keywords: fever of unknown origin, machine learning, etiology, retrospective analysis, LightGBM algorithm
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INTRODUCTION

Fever of unknown origin (FUO) is a difficult and active
medical topic in the diagnosis and treatment of difficult
and complicated diseases in internal medicine, and it is a
challenging problem for physicians (1, 2). Currently, there are
four categories of FUOs: classic FUO, FUO in hospitalized
patients, FUO in patients with agranulocytosis, and FUO in
patients with human immunodeficiency virus (HIV) infection
(3, 4). Among them, classic FUO is the most common,
which is defined as a disease that lasts for >3 weeks,
has a body temperature of >38.3◦C at least three times,
and cannot be diagnosed after systematic and comprehensive
examinations in the outpatient or inpatient department of
the hospital for >1 week (5, 6). There are >200 kinds
of causes of classic FUO (7). For clinicians, because of its
complex etiology, lack of characteristic clinical signs, and
inadequate laboratory tests, the diagnosis is very difficult (8).
The etiological categories of classic FUO are infectious disease,
non-infectious inflammatory disease (NIID), neoplastic disease,
and others, and the treatment methods vary greatly, including
anti-infective drugs, hormones, and chemotherapy (9–11). With
the development of immunohistopathology andmodern imaging
(12, 13), the diagnosis of classic FUO has become easier, but the
final diagnosis is often difficult and up to 50% of cases cannot be
confirmed (8, 11, 14, 15).

The diagnostic process of a classic FUO includes four steps:
to determine whether it belongs to classic FUO, a first stage
of primary screening, a second stage of specific examination,
and treatment (including symptomatic and diagnostic treatment)
(4). Among them, the first stage (etiological screening) includes
improving medical history collection, physical examination, and
non-invasive laboratory and auxiliary examinations in line with
local medical standards. After the first stage of screening, some
patients are diagnosed and some patients offer no diagnostic
clues and enter the second stage, which requires further specific
examinations. The second phase of the process is more complex,
partly invasive, and more expensive. Therefore, the first stage
of etiology screening is very important. If the etiology of
a FUO can be classified into one category, no matter the
disease that caused the FUO, the direction of diagnosis can
be determined, which is of great significance to physicians
(16, 17). Previous studies of classic FUO have focused on
the etiology, prognosis, or diagnosis of classic FUO (18, 19).
So far, few researchers have studied the etiological causes
of classic FUO from the perspective of clinical prediction
models and machine learning (ML) (16). In recent years, ML
has been widely used in the medical field and has achieved
good results in disease diagnosis, risk assessment, and other
factors (20–22).

In this study, the clinical data and etiological types of
classic FUO patients were retrospectively analyzed, and a
predictive model of FUO etiology was established to help
clinicians make reasonable decisions in the diagnosis of
classic FUO, improve diagnostic accuracy, and reduce the
misdiagnosis rate.

MATERIALS AND METHODS

Materials
The clinical data of 527 patients with classic FUO admitted to
seven medical institutions in Chongqing from January 2012 to
August 2021 were selected. The selected patients, whose ages
ranged from 14 years old upwards, had each been hospitalized
for more than a week with a fever higher than 38.3◦C (101◦F)
that had occurred on several occasions and had persisted for at
least 21 days (4, 8). Patients diagnosed with HIV infection before
hospitalization, patients with immunodeficiency disorders, and
pregnant women were screened out (4, 8). Of the 527 patients
with classic FUO, 373 were finally diagnosed and 154 were not
diagnosed at discharge. A total of 373 patients with classic FUO
were divided into four groups according to their diagnosis and
medical record information: infectious disease, NIID, neoplastic
disease, and other diseases groups.

The index system of this study included general information
(gender and age), past history (operation history and
history of blood transfusion), accompanying symptoms
(headache/consciousness disorders, nasal obstruction, sore
throat, abdominal pain, arthralgia, muscle pain, and rash),
physical (lymphadenopathy, hepatomegaly, and splenomegaly)
and laboratory examinations [globulin, red blood cell (RBC),
lactate dehydrogenase (LDH), C-reactive protein (CRP),
procalcitonin (PCT), erythrocyte sedimentation rate (ESR),
monocyte, basophils, eosinophils, lymphocyte, white blood cell
(WBC), alkaline phosphatase (ALP), platelet (PLT), alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and
gamma-glutamyltransferase (GGT)], and the final diagnosis of
etiological types.

The research protocol was approved by the Medical Research
Ethics Committee of Chongqing Medical University.

Statistical Analysis
SPSS 25.0 statistical software was used for data processing.
The continuity index was analyzed with a normality test, the
median (M) and quartile (P25, P75) were used to express a non-
normal distribution, the Kruskal–Wallis test was used to compare
between groups. The normal distribution was expressed by x
± s. The analysis of variance was used to compare multiple
groups, and the least significance difference (LSD) method was
used for comparisons between two groups. The classification
index was expressed by rate (%), and the comparison between
groups was performed with a χ

2-test. P < 0.05 was considered
statistically significant. We used Python (version 3.7.3) for
algorithm development.

Machine Learning
This study was based on the aforementioned differences that
were statistically significant indicators to build the model. In
order to determine the best model for classifying etiological
types in this study, we compared the performance of the
following representative ML classification algorithms: RF, SVM,
LightGBM, ANN, and NB. For each algorithm, we used the 5-
fold cross-validation method to split the data, each time using
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TABLE 1 | Percentages of causes of classic FUO ranked by age.

Age Infectious

diseases (%)

Non-infectious

inflammatory

disease (%)

Neoplastic

diseases (%)

Other

diseases (%)

Undetermined (%) Total

<20 13 (72.2) 3 (16.7) 0 (0) 0 (0) 2 (11.1) 18

20–39 48 (47.5) 9 (8.9) 4 (3.9) 7 (6.9) 33 (32.8) 101

40–59 99 (49.8) 25 (12.6) 12 (6.0) 5 (2.5) 58 (29.1) 199

≥60 117 (56.0) 14 (6.7) 15 (7.2) 2 (1.0) 61 (29.1) 209

Total 277 (52.5) 51 (9.7) 31 (5.9) 14 (2.7) 154 (29.2) 527

FIGURE 1 | The relationship between the distribution of etiology and gender in patients with classic FUO.

the training set to train the model and verify the performance of
the model on the test set data. Because the predicted etiological
types of this study had four categories and the categories were
imbalanced, we evaluated the performance of the model using
micro-F1. micro-F1 is suitable for multi-classification problems
and unbalanced data, and higher values represent better model
performance. The calculation method for micro-F1 is as follows
(taking four categories as an example):

a) Total Recallmi =
TP1+TP2+TP3+TP4

TP1+TP2+TP3+TP4+FN1+FN2+FN3+ FN4
;

b) Total Precisionmi =
TP1+TP2+TP3+TP4

TP1+TP2+TP3+TP4+FP1+FP2+FP3+ FP4
;

c) Calculatemicro F1 score = 2 Recallmi×Precisionmi
Recallmi+ Precisionmi

wherein TPi refers to a true positive of class i; FPi refers to a false
positive of class i; TNi refers to a true negative of class i; and FNi

refers to a false negative of class i.

RESULTS

Brief Introduction of the Cases Selected
for the Study
A total of 527 patients with classic FUO were collected from
seven medical institutions in Chongqing, including 303 men
(57.5%) and 224 women (42.5%). Of the patients, 3.4% (n =

18), 19.2% (n = 101), 37.8% (n = 199), and 39.6% (n = 209)

were <20, 20–39, 40–59, and ≥60 years, respectively. Table 1,
Figure 1 show the distribution of classic FUO etiologies by age
and gender, respectively.

Infectious disease (n = 277; 52.5%) and NIID (n = 51;
9.7%) were the most common causes of classic FUO (Figure 2).
Infectious diseases included bacterial (n = 193), tuberculosis
(n = 46), and other bacterial infections (n = 2) and viral
(n = 21), fungal (n = 12), parasitic (n = 1), and other
pathogen infections (n = 2). The most common NIIDs were
hemophagocytic syndrome (n= 12), anti-neutrophil cytoplasmic
antibody (ANCA)-associated vasculitis (n = 9), systemic lupus
erythematosus (n = 9), and Adult-onset Still’s disease (n = 7).
Thirty-one cases (5.9%) were diagnosed as neoplastic diseases, of
which eight cases were lymphoma. Other causes, such as subacute
thyroiditis (n = 9) and drug fever (n = 3), were diagnosed in
14 patients (2.7%). A total of 29.2% (n = 154) of the patients
remained undiagnosed at discharge (Table 2).

Test of the Difference in the Indexes of
Patients With Classic FUO With Different
Etiologies
There was a significant difference in the proportion of male and
female patients with classic FUO among the four groups (χ2

=

8.24, P < 0.05). Male patients with FUO were common in the
infectious and neoplastic disease groups, whereas female patients
with FUO were common in the NIID and other diseases groups.
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FIGURE 2 | Etiology distribution of 527 patients with classic FUO.

There was a significant difference in age among the groups (H
= 9.34, P < 0.05). The age of patients with tumor disease was
the oldest [57.00 (43.50, 67.50)], whereas the age of patients
with other diseases was the youngest [42.00 (32.50, 50.75)].
Regarding their past history, there was significant difference
between patients with or without an history of blood transfusion
and patients diagnosed with different types of causes (χ2

= 27.59,
P < 0.001). There were significant differences in concomitant
symptoms and physical examinations among the four groups (P
< 0.05), except for nasal obstruction (χ2

= 2.66, P = 0.447),
abdominal pain (χ2

= 5.79, P = 0.122), and splenomegaly (χ2

= 1.39, P = 0.708). In terms of laboratory tests, RBC (F = 6.97,
P < 0.001), LDH (H = 12.37, P = 0.006), PCT (H = 15.69, P
= 0.001), monocyte (H = 12.26, P = 0.007), lymphocyte (H =

8.51, P = 0.037), ALP (H = 9.83, P = 0.020), AST (H = 10.21, P
= 0.017), and GGT (H = 8.70, P = 0.033) were performed. The
results are shown in Tables 3, 4.

Prediction Model Performance
There were significant differences in the 18 characteristics
including age and gender among the four different etiological
types of patients with classic FUO. On the basis of the
aforementioned indicators, five ML models were constructed
and the whole dataset was included in the analyses. Table 5
shows the results of the five ML models. We mainly
compared the sizes of the micro-F1 values. The micro-
F1 value of each ML algorithm was the average of the
five results in the 5-fold cross-validation. The micro-F1
of LightGBM was 75.8%, which was significantly higher
than that of the other four ML algorithms (74.4, 73.4,
70.8, and 71.0%, respectively), and LightGBM has the best
performance evaluation.

In order to better understand the contribution of each variable
in our modeling results, we chose the LightGBM model with
the best performance evaluation to present. Each variable was
evaluated using Gini Importance, which is commonly used in
ensembles of decision trees as a measure of a variable’s impact in
predicting a label that also takes into account the estimated error
in randomly labeling an observation according to the known

TABLE 2 | Etiology distribution of 527 patients with classic FUO.

Etiology N (%) Etiology N (%)

Infectious diseases 277 (52.5) Other pathogenic

infections

2 (0.4)

Bacterial infections 193 (36.6) Mycoplasmal pneumonia 2 (0.4)

Respiratory system infection 116 (22.0) Non-infectious

inflammatory disease

51 (9.7)

Bloodstream infection 30 (5.7) Hemophagocytic syndrome 12 (2.3)

Urinary tract infection 21 (4.0) Systemic lupus

erythematosus

9 (1.7)

Biliary tract infection 6 (1.1) ANCA-associated vasculitis 9 (1.7)

Liver abscess 6 (1.1) Adult onset still disease 7 (1.3)

Cellulitis 6 (1.1) Sjogren syndrome 4 (0.8)

Pressure ulcers infection 2 (0.4) Rheumatoid arthritis 2 (0.4)

Reproductive tract infection 2 (0.4) Undifferentiated connective

tissue disease

2 (0.4)

Infective endocarditis 2 (0.4) Gouty arthritis 1 (0.2)

Umbilical infection 1 (0.2) Dermatomyositis 1 (0.2)

Intra-abdominal infection 1 (0.2) Takayasu arteritis 1 (0.2)

Tuberculosis 46 (8.7) Crohn’s disease 1 (0.2)

Pulmonary tuberculosis 35 (6.6) Autoimmune hemolytic

anemia

1 (0.2)

Extrapulmonary tuberculosis 11 (2.1) macrophage activation

syndrome

1 (0.2)

Other bacterial infections 2 (0.4) Neoplastic diseases 31 (5.9)

Typhoid 1 (0.2) Lymphoma 8 (1.5)

Brucellosis 1 (0.2) Lung carcinoma 6 (1.1)

Viral infections 21 (4.0) Hepatoma 5 (0.9)

HIV 10 (1.9) Castleman’s disease 3 (0.6)

Epstein-Barr virus 5 (0.9) Acute myelogenous

leukemia

2 (0.4)

Hepatitis B 4 (0.8) Colon cancer 2 (0.4)

other viral infections 2 (0.4) Myelodysplastic Syndrome 1 (0.2)

Fungal infections 12 (2.3) Renal carcinoma 1 (0.2)

Candida albicans 2 (0.4) Cholangiocarcinoma 1 (0.2)

Pneumocystis carinii

pneumonia

2 (0.4) Multiple myeloma 1 (0.2)

Crytococcus neoformans 2 (0.4) Thyroid carcinoma 1 (0.2)

Pulmonary aspergillosis 1 (0.2) Other diseases 14 (2.7)

Candida tropicalis 1 (0.2) Subacute thyroiditis 9 (1.7)

Other fungal infections 4 (0.8) Drug fever 3 (0.6)

Parasitic infections 1 (0.2) Hyperthyroidism 1 (0.2)

Malaria 1 (0.2) Necrotizing lymphadenitis 1 (0.2)

Undetermined 154 (29.2)

label distributions (23). Figure 3 shows the ranking of feature
importance for all variables in the model. The results showed
that age, PCT, ALP, AST, and GGT were the top five important
features in the model, which made a great contribution to the
prediction results.

For the LightGBM model defined as the final prediction
model, the relationship between each variable and the prediction
outcome for the model is illustrated in Figure 3. To determine
the most salient features that drove the model predictions,
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TABLE 3 | Test of the difference of indexes (continuous indexes) in patients with classic FUO of different etiological types.

Variable Infectious diseases (%) Non-infectious

inflammatory

disease (%)

Neoplastic diseases (%) Other diseases (%) χ
2 P

No. of cases 277 51 31 14

Gender

Male 165 (59.6%) 20 (39.2%) 17 (54.8%) 6 (42.9%) 8.24 0.041

Female 112 (40.4%) 31 (60.8%) 14 (45.2%) 8 (57.1%)

Operation history

Yes 109 (39.4%) 20 (39.2%) 13 (41.9%) 4 (28.6%) 0.76 0.858

No 168 (60.6%) 31 (60.8%) 18 (58.1%) 10 (71.4%)

History of blood transfusion

Yes 35 (12.6%) 8 (15.7%) 15 (48.4%) 1 (7.1%) 27.59 <0.001

No 242 (87.4%) 43 (84.3%) 16 (51.6%) 13 (92.9%)

Headache/consciousness disorders

Yes 66 (23.8%) 6 (11.8%) 3 (9.7%) 8 (57.1%) 16.32 <0.001

No 211 (76.2%) 45 (88.2%) 28 (90.3%) 6 (42.9)

Nasal obstruction

Yes 9 (3.2%) 3 (5.9%) 0 (0.0%) 0 (0.0%) 2.66 0.447

No 268 (96.8%) 48 (94.1) 31 (100.0%) 14 (100.0%)

Sore throat

Yes 25 (9.0%) 12 (23.5%) 1 (3.2%) 6 (42.9%) 23.96 <0.001

No 252 (91.0%) 39 (76.5%) 30 (96.8%) 8 (57.1%)

Abdominal pain

Yes 17 (6.1%) 6 (11.8%) 5 (16.1%) 2 (14.3%) 5.79 0.122

No 260 (93.9%) 45 (88.2%) 26 (83.9%) 12 (85.7%)

Arthralgia

Yes 19 (6.9%) 12 (23.5%) 3 (9.7%) 2 (14.3%) 14.09 0.003

No 258 (93.1%) 39 (76.5%) 28 (90.3%) 12 (85.7%)

Muscle pain

Yes 30 (10.8%) 12 (23.5%) 1 (3.2%) 0 (0.0%) 11.25 0.010

No 247 (89.2%) 39 (76.5%) 30 (96.8%) 14 (100.0%)

Rash

Yes 7 (2.5%) 5 (9.8%) 2 (6.5%) 2 (14.3%) 9.63 0.022

No 270 (97.5%) 46 (90.2%) 29 (93.5%) 12 (85.7%)

Lymphadenopathy

Yes 10 (3.6%) 9 (17.6%) 4 (12.9%) 0 (0.0%) 18.10 <0.001

No 267 (96.4%) 42 (82.4%) 27 (87.1%) 14 (100.0%)

Hepatomegaly

Yes 1 (0.4%) 3 (5.9%) 3 (9.7%) 0 (0.0%) 18.41 <0.001

No 276 (99.6%) 48 (94.1) 28 (90.3%) 14 (100.0%)

Splenomegaly

Yes 9 (3.2%) 2 (3.9%) 2 (6.5%) 0 (0.0%) 1.39 0.708

No 268 (96.8%) 49 (96.1%) 29 (93.5%) 14 (100.0%)

we calculated the SHapley Additive exPlanation (SHAP) values
of the best-performing models for different etiological types.
Figures 4A–D shows the important characteristics of each
etiological type. For infectious diseases, age, lymphocyte, and
RBC increased and ALP and LDH decreased in favor of the
classifier to predict infectious diseases. For NIID, higher LDH,
monocyte, and AST; younger age; and a lower lymphocyte were
helpful to the classifier to predict NIID. For neoplastic diseases,

higher ALP, monocyte, and lymphocyte; older age; and previous
history of blood transfusion were conducive to the classifier
to predict the cause of neoplastic diseases. For other diseases,
accompanied by headache or disturbance of consciousness and
sore throat symptoms, younger age and lower PCT and GGT
were conducive to the classifier to predict the cause of tumor
diseases. Other important features of each etiological type are
shown in Figure 4.
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TABLE 4 | Test of difference of indexes (classification indexes) in patients with classic FUO of different etiological types.

Variable Infectious diseases (%) Non-infectious

inflammatory

disease (%)

Neoplastic diseases (%) Other diseases (%) F/H P

Age [year, M (P25, P75)] 55.00 (42.00, 68.00) 51.00 (40.50, 60.50) 57.00 (43.50, 67.50) 42.00 (32.50, 50.75) 9.34 0.025

Laboratory examination

Globulin (g/L, x±s) 31.89 ± 6.95 33.20 ± 5.77 32.37 ± 7.66 33.47 ± 3.50 0.44 0.725

RBC (×1012/L, x ± s) 3.82 ± 0.72 3.38 ± 0.68 3.38 ± 0.85 3.98 ± 0.67 6.97 <0.001

LDH [U/L, M (P25, P75)] 219.50 (157.75, 441.48) 340.00 (198.50,

629.50)

408.00 (244.45, 867.00) 191.00 (166.50, 251.58) 12.37 0.006

CRP [mg/L, M (P25, P75)] 61.90 (20.23, 115.11) 48.23 (10.21, 130.42) 112.78 (62.32, 152.64) 24.94 (8.38, 130.35) 6.59 0.086

PCT [ng/ml, M (P25, P75)] 0.21 (0.09, 0.77) 0.26 (0.10, 0.59) 0.43 (0.19, 1.89) 0.07 (0.05, 0.12) 15.69 0.001

ESR [mm/H, M (P25, P75)] 57.00 (29.50, 83.50) 69.00 (36.00, 94.50) 70.00 (38.75, 91.00) 49.00 (26.00, 78.75) 3.33 0.344

Monocyte [×109/L, M (P25, P75)] 0.47 (0.31, 0.66) 0.44 (0.15, 0.70) 0.71 (0.55, 0.99) 0.55 (0.41, 0.77) 12.26 0.007

Basophils [×109/L, M (P25, P75)] 0.01 (0.01, 0.02) 0.01 (0.00, 0.02) 0.01 (0.01, 0.02) 0.01 (0.00, 0.02) 0.53 0.913

Eosinophils [×109/L, M (P25, P75)] 0.04 (0.01,0.10) 0.02 (0.00,0.10) 0.03 (0.01,0.12) 0.02 (0.00,0.06) 1.67 0.645

Lymphocyte [×109/L, M (P25, P75)] 0.95 (0.61, 1.41) 0.79 (0.55, 1.15) 0.92 (0.61, 1.71) 1.43 (0.94, 1.61) 8.51 0.037

WBC [×109/L, M (P25, P75)] 7.20 (5.45, 10.51) 8.04 (5.20, 11.39) 10.27 (6.15, 16.94) 6.48 (5.52, 11.29) 3.15 0.370

ALP [U/L, M (P25, P75)] 83.30 (65.50, 119.25) 92.00 (71.00, 134.00) 110.60 (96.50, 208.00) 96.50 (78.75, 128.50) 9.83 0.020

PLT [×109/L, M (P25, P75)] 224.00 (172.00, 311.50) 214.00 (108.00,

303.00)

200.00 (86.00, 301.50) 334.00 (159.50, 408.00) 3.75 0.289

ALT [U/L, M (P25, P75)] 24.00 (13.00, 41.00) 29.00 (14.00, 53.60) 21.00 (14.00, 40.00) 26.00 (21.00, 36.00) 1.89 0.597

AST [U/L, M (P25, P75)] 26.00 (17.00, 44.00) 33.50 (23.00, 80.00) 30.00 (19.00, 53.00) 17.00 (14.40, 28.00) 10.21 0.017

GGT [U/L, M (P25, P75)] 46.00 (23.00, 108.00) 51.00 (27.00, 115.00) 77.00 (53.00, 196.00) 33.00 (28.00, 71.00) 8.70 0.033

TABLE 5 | Comparison of five ML models.

Model micro-F1 score, % Recallmi, % Precisionmi, %

RF 74.4 74.4 74.4

SVM 73.4 73.4 73.4

LightGBM 75.8 75.8 75.8

ANN 70.8 70.8 70.8

NB 71.0 71.0 71.0

DISCUSSION

The etiological distribution of 527 patients with classic FUO was
analyzed retrospectively, and the patients were divided into five
groups according to the final diagnosis, including the group with
unknown etiology of fever at discharge. Analysis showed that
infectious diseases were the most common cause of classic FUO,
followed by NIID. These results are consistent with most of the
previous research results at home and abroad (8, 24–26), and
the reasons for this phenomenon may be related to the non-
standard use of antibiotics and drug resistance leading to disease
persistence and changes in the rule of fever type. There were
also different findings between this study and previous studies.
First of all, the proportion of tuberculosis infection in infectious
diseases was 16.6% (46/277), which was significantly lower than
that of Li’s study (30%) (27) but similar to that of Zhai’s study
(17.6%) (24). This change may be related to the strengthening of
public awareness of tuberculosis and the improvement of medical
conditions in recent years. Conversely, with the improvements

in diagnosis and treatments, most tuberculosis infections can be
diagnosed clearly in the early stage, thus reducing the proportion
of patients with tuberculosis with FUO. Second, this study
showed that the proportion of HIV infection was 3.6%, which
is higher than the previous research results (1%) (8), which may
be related to the increase in floating populations, sexual attitudes
and sexual behavior, sexual orientation changes, and other factors
that increase the risk of HIV infection. This study found that
the proportion of NIIDs was 9.7%, which was significantly lower
than the results of Naito’s research (30.6%) in 2013 (28). It may
be due to the early use of relevant immunological indicators,
which enabled the early diagnosis of autoimmune diseases with
more typical symptoms, and no longer classified as classic FUO.
In this study, neoplastic diseases accounted for 5.9% of classic
FUO, which was significantly lower than 15%, as reported in
the literature (1), which may be due to PET-CT and serum
tumor markers that have been widely used in recent years (29,
30). Many malignant tumors can be diagnosed early, and the
widespread use of early biopsy is also a reason for the reduction
of neoplastic diseases with classic FUO. Among other diseases,
subacute thyroiditis accounts for a considerable proportion
(64.3%), which is in line with the findings of Popovska-Jovicić
(31). Subacute thyroiditis rarely has persistent fever as the
only clinical manifestation, generally have some related clinical
manifestations (32), such as upper respiratory tract infection
symptoms, weight loss, neck pain, fatigue, and anorexia. Routine
thyroid color ultrasound, thyroid antibody tests, and thyroid
function tests are rarely performed; therefore, thyroiditis is
easily misdiagnosed as an upper respiratory tract infection.
The manifestations of elderly patients with subacute thyroiditis
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FIGURE 3 | Ranking of importance of characteristics of patients with classic FUO in predicting all types of causes.

are often not obvious, and other underlying diseases may also
have clinical signs of subacute thyroiditis, or patients cannot
provide a good medical history. A total of 154 patients (29.2%)
whose reason for fever was still not clear at the time of
discharge from the hospital and who had early discharge due to
economic or other personal reasons, had shorter hospitalization
times, which led to inadequate examination and diagnostic
treatment during hospitalization. A tentative diagnosis followed,
and eventually, they were classified in the unclear group, which
may be the reason for the high proportion of patients in
this group.

In this study, 373 patients with classic FUO were divided
into four groups and the groups were compared. The study
found that male patients were more common and older in
the tumor group than in the other three groups, whereas
female patients were more common and younger in the other
disease groups than in the other three groups. Regarding past
history, accompanying symptoms and physical examination of
patients with classic FUO had some special clinical signs that
could provide clinical clues worthy of attention. Among them,
arthralgia was very common. In this study, patients with classic
FUO in all four groups with different etiological types had
symptoms of arthralgia. The most common rheumatic diseases
were heterogeneous diseases with joint, bone, and muscle pain
as the main symptoms, which could have involved internal
organs (33). Infectious arthritis in infectious diseases and some
hematological tumors also have manifestations of arthralgia
(34, 35). Rash is an important concomitant sign in patients
with classic FUO, which may provide an important clue for
the etiological diagnosis of classic FUO. In classic FUO, most
diseases can be accompanied by clinical signs of skin rash
(4), including (1) infectious diseases, such as Epstein–Barr
virus infection, typhoid fever, and infective endocarditis; (2)
NIID, such as systemic lupus erythematosus, dermatomyositis,
and adult-onset Still’s disease; (3) neoplastic diseases, such as
lymphoma; and (4) other diseases, such as drug fever. In this

study, all patients in the infectious disease, NIID, and neoplastic
disease groups had symptoms of lymphadenopathy. Lymph node
enlargement is either localized or generalized (36). Localized
lymphadenopathy involves a draining region, often caused by
a non-specific inflammatory response of the tissue or organ in
the draining region or by lymphatic metastasis of malignant
tumors corresponding to the draining region. Direct invasion of
infectious pathogens or immune response caused by infection,
allergic or autoimmune diseases, and invasion of neoplastic
diseases can lead to systemic lymphadenopathy. In laboratory
examinations, we found that the levels of LDH, PCT, monocyte,
ALP, and GGT in the neoplastic disease group were significantly
higher than those in the other three groups, whereas the level
of AST in the NIID group was higher than that in the other
three groups, and the levels of RBC and lymphocyte in the
other disease groups were higher than those in the other three
groups. Among them, the higher PCT levels in the neoplastic
disease group was an interesting finding. In general, increase
concentration of blood PCT is associated with severe bacterial
infection. However, the clinical interpretation of elevated PCT
concentration in blood represents a great challenge in cancer
patients since its values might be influenced by several factors
such as the presence of metastasis or neuroendocrine function
of malignant tissue (37). In these cases, PCT concentrations
can be elevated regardless of infections, manifesting a poor
specificity for bacterial infection. Matzaraki et al. (38) indicated
that patients with solid tumors, metastasis, and no evidence
of infection had markedly elevated PCT levels, especially those
with generalized metastatic disease. Similarly, Liu et al. (39)
show that in the absence of bacterial infection, PCT levels
are elevated in patients with certain inflammatory conditions,
such as Kawasaki disease, Adult-onset Still’s disease and some
cancers like medullary carcinoma of the thyroid and small-cell
lung carcinoma.

On the basis of the aforementioned discussion, this study
screened 18 indicators, such as gender and age, and constructed
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FIGURE 4 | SHapley Additive exPlanations (SHAP) scores for identifying important features for the prediction of etiological types. (A) Infectious diseases; (B) NIID; (C)

neoplastic diseases; and (D) other diseases. Colors indicate whether the value of the feature is high (red) or low (blue).

a clinical prediction model of the etiological types of patients
with classic FUO. The indicators included in the model are
all from the indicators reported in the consensus on current
management of fever of unknown origin, which adds reliability
to the model we constructed. We compared five ML algorithms,
all of which were tested using the 5-fold cross-validation method.
These five ML algorithms are widely used in clinical prediction
model construction. For example, SVM learning is widely used in
cancer genomics (40). Compared to other ML algorithms, SVM
is very powerful in identifying subtle patterns in complex data
sets. However, there are also some shortcomings, such as slow
training speed and difficult to understand the internal operation.
Ivanović et al. (41) constructed an ANN model to predict

the lymph node status of clinical lymph node-negative breast
cancer. ANN have the ability to adapt to variable interaction
and non-linear correlation, but also have the constraints of
opaque underlying model and difficult to explain (42). Yang
et al. (43) constructed a response prediction model of breast
cancer neoadjuvant chemotherapy based on NB algorithm. In
their study, the NB algorithm showed higher predictive values
than other algorithms. EachML algorithm has its own advantages
and disadvantages, but in our research data, the micro-F1 value
of the LightGBM model was 75.8%, which was significantly
higher than that of the other four ML algorithms. It is suggested
that the LightGBM model has better predictive performance
for the classification of etiological types of patients with classic
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FUO. LightGBM is a distributed gradient lifting framework
based on a decision tree algorithm, which has high efficiency
and performance in dealing with binary classifications and
multi-classification problems (44–46). LightGBM is an ensemble
algorithm developed by Microsoft, which is superior to other
machine learning methods for disease diagnosis in many cases
(45). Fundamentally, this is achieved by combining multiple
base classifiers into an ensemble model by learning the inherent
statistics of the combined classifiers and, hence, outperforming
the single classifiers. In addition, the RF model also achieved
a high accuracy, micro-F1 was 74.4%, which was second only
to LightGBM in the results of this study. RF is recognized as
one type of ensemble learning method and are effective for
the most classification and regression tasks (47), which further
illustrates the advantages of ensemble learning methods. In
this study, 18 indexes related to the etiological diagnosis of
classic FUO were ranked in descending order of importance.
Among them, the ranking of laboratory indicators can provide
doctors with decision support for laboratory examination to
a certain extent. We also calculated the SHAP value of the
best performance model according to the cause category for
explaining the model, and we could clearly see the influence
of the characteristics of each cause type on the output of the
model. In the following research, how to deal with the imbalanced
data set and the small sample size problem is worth considering,
because these problems affect the performance of the prediction
model to some extent. Data imbalance is widespread in the
real world, especially in medical big data, which affects the
accuracy of medical diagnosis classification learning algorithm
to a certain extent. In order to solve the problem of poor
performance of medical diagnosis learning algorithms due to the
serious shortage of minority samples, Han et al. (48) proposed
a distribution-sensitive oversampling method for unbalanced
large data, including the distribution-sensitive minority sample
selection algorithm and the minority sample synthetic algorithm
of weight adaptive adjustment, which improves the quality of
newly generated minority samples. This may be a way to improve
the accuracy of the model. In addition, few-shot learning is
also a research direction that we should pay attention to. Few-
shot learning is such a research topic that studies how to learn
a new concept from few training data of this concept and
has received significant attention from the machine learning
community (49).

Our study has several limitations. First, this was a
retrospective study, which had its own shortcomings, such
as information bias. Second, the prediction model may
have lacked generality because the 30 variables are still
too few and many other variables were omitted because
of the loss of too many values. Therefore, we hope to
include more patients and variables in future studies. In
addition, 154 cases with unknown etiology of fever were
not included in the model, which do exist in the real
world. Therefore, the accuracy in reality may be lower,
and these situations should be taken into account in
future studies.

CONCLUSIONS

In summary, this study retrospectively analyzed the clinical data
of 527 patients with classic FUO from 7 medical institutions
in Chongqing, discussed the differences of clinical indexes of
373 patients with classic FUO under 4 different etiological
types, and introduced ML methods into the study of classic
FUO to explore the application value of ML methods in the
etiological diagnosis of classic FUO. The data of this study
shows that infectious diseases are still the main etiological type
of classic FUO. Based on 18 statistically significant clinical
indicators such as gender and age, we constructed and compared
5 differentML algorithmmodels. The results show that compared
with other algorithms, LightGBM is the best, and its micro-
F1 value is 75.8%. We also use feature importance ranking
and SHAP values to enhance the interpretability of the model.
We believe that our model will provide clinicians with the
most likely direction of etiological diagnosis in the diagnosis
of classic FUO, assist clinicians to make reasonable decisions,
improve the diagnostic accuracy of classic FUO, and reduce the
misdiagnosis rate.
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Objective: The reasonable classification of a large number of distinct diagnosis codes

can clarify patient diagnostic information and help clinicians to improve their ability to

assign and target treatment for primary diseases. Our objective is to identify and predict

a unifying diagnosis (UD) from electronic medical records (EMRs).

Methods: We screened 4,418 sepsis patients from a public MIMIC-III database

and extracted their diagnostic information for UD identification, their demographic

information, laboratory examination information, chief complaint, and history of present

illness information for UD prediction. We proposed a data-driven UD identification

and prediction method (UDIPM) embedding the disease ontology structure. First,

we designed a set similarity measure method embedding the disease ontology

structure to generate a patient similarity matrix. Second, we applied affinity propagation

clustering to divide patients into different clusters, and extracted a typical diagnosis

code co-occurrence pattern from each cluster. Furthermore, we identified a UD by

fusing visual analysis and a conditional co-occurrence matrix. Finally, we trained five

classifiers in combination with feature fusion and feature selection method to unify the

diagnosis prediction.

Results: The experimental results on a public electronic medical record dataset

showed that the UDIPM could extracted a typical diagnosis code co-occurrence pattern

effectively, identified and predicted a UD based on patients’ diagnostic and admission

information, and outperformed other fusion methods overall.

Conclusions: The accurate identification and prediction of the UD from a large

number of distinct diagnosis codes and multi-source heterogeneous patient admission

information in EMRs can provide a data-driven approach to assist better coding

integration of diagnosis.

Keywords: unifying diagnosis, disease ontology structure, set similarity measure, clustering, electronic medical

records

25

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2021.793801
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2021.793801&domain=pdf&date_stamp=2022-01-20
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dlutguo@dlut.edu.cn
mailto:fccjfchen@zzu.edu.cn
https://doi.org/10.3389/fpubh.2021.793801
https://www.frontiersin.org/articles/10.3389/fpubh.2021.793801/full


Chen et al. Unifying Diagnosis Identification and Prediction

INTRODUCTION

In medical practice, clinicians are encouraged to seek a unifying
diagnosis (UD) that could explain all the patient’s signs and
symptoms in preference to providing several explanations for the
distress being presented (1). A UD is a critical pathway to identify
the correct illness and craft a treatment plan; thus, clinical
experience and knowledge play an important role in the science
of diagnostic reasoning. Generally, from a brief medical history
from a patient, clinicians can use the intuitive system in their
brain and rapidly reason the disease types, whereas for complex
and multi-type abnormal results, clinicians must use the more
deliberate and time-consuming method of analytic reasoning to
deduce the UD, raising the risk of diagnostic errors (2).

To increase the accuracy of a UD, enhancing individual
clinicians’ diagnostic reasoning skills and improving health
care systems are regarded as two important approaches
to support clinicians through the diagnostic process. The
former requires professional knowledge training and lifelong
learning, whereas the latter mainly involves the development
of information technology (3). For an individual clinician, an
intelligent clinical decision support system is prone to acceptable
and can help clinicians to improve their unifying diagnostic
decisions (4). Recently, along with the widespread adoption of
electronic medical records (EMRs), an extremely large volume
of electronic clinical data has been generated and accumulated
(5, 6). Meanwhile, artificial intelligence and big data analytic
technology have been successfully applied to clinical diagnostic
procedures and treatment regimen recommendation, which has
resulted in new opportunities for intelligent clinical decision
support systems that use data-driven knowledge discovery
methods (7–10).

From the datamining perspective, a UD aims to classify a large
number of distinct diagnosis codes reasonably according to the
disease taxonomy and attempt to adopt a disease to summarize or
explain various clinical manifestations of the disease. Therefore,
the nature of a UD is diagnosis code assignment along with
disease correlation exploitation. Diagnosis code assignment
refers to the clinical decision process in which supervised
methods are adopted to predict and annotate disease codes based
on patients’ medical history, signs and symptoms, and laboratory
examination (11). According to the number of diagnosis codes
that patients suffer from, diagnosis code assignment can be
divided into single-label (12), multi-class (13), multi-label (14),
and multi-task learning methods (15). However, although many
novel supervised learning models have been proposed and can
achieve high performance in terms of assigning diagnosis codes
for new patients using frontier supervised methods, such as
ensemble learning (16), reinforcement learning (17), and deep

Abbreviations: EMR, Electronic medical record; UDIPM, Unifying diagnosis

identification and prediction method; CDSS, Clinical decision support system;

ICU, Intensive care unit; IC, Information content; LCA, Least common

ancestor; AP, Affinity propagation; SS, Sum of similarities; TDC, Typical

diagnosis code; LCoP, LCA co-occurrence pattern; AOrd, Average order;

TDCCoP, Typical diagnosis code co-occurrence pattern; CCoM, Conditional

co-occurrence matrix; UD, Unifying diagnosis; Hadm-id, Hospital admission

identifier; FM, Fusion method.

learning (18), they cannot further explore disease co-occurrence
relations for UD identification and prediction.

The coexistence of multiple diseases is pervasive in the clinical
environment, particularly for patients in the intensive care unit
(ICU) (19). According to the statistical results of the MIMIC-
III database, which is a freely accessible critical care database,
the average number of diagnosis codes for patients in the ICU is
11. Additionally, diagnosis codes are highly fine-grained, closely
related, and extremely diverse (20). For example, the patient with
admission identifier (ID) 100223 is assigned to 28 ICD-9 codes,
and many diagnosis codes are similar, such as 276.2 (Acidosis,
order: 15), 276.0 (Hyperosmolality and/or hypernatremia, order:
18), and 276.6 (Hyperpotassemia, order: 26). Thus, it is trivial and
difficult for clinicians to make a consistent, accurate, concise, and
unambiguous diagnostic decision reasonably.

Furthermore, although the inter-relation of diagnosis codes
was considered in previous studies, the researchers commonly
used the first three digits of ICD-9 codes to assign diagnosis
codes for patients (21–23); hence, the complexity may increase
and prediction performance may reduce when considering
all digits of the ICD-9 codes. Additionally, in those studies,
reasonable complicated and confused diagnosis codes could
not be classified into a UD using a data-driven method. A
UD is the basic principle of clinical diagnostic thinking. Its
basic idea is that when a patient has many symptoms, if these
symptoms can be explained by one disease, it will never explain
different symptoms using multiple diseases (1). A UD reflects
the integrity of the patient and the professionalism of clinicians;
however, in previous studies, the main focus was on the UD
of a category of diseases from the clinical perspective, such as
mood/mental disorders (24), intracranial mesenchymal tumor
(25), and arrhythmogenic right ventricular cardiomyopathy (26).
In this study, we fully consider the fine-grained diagnosis codes
(i.e., all digits) of patients, identify the UD from a group of patient
diagnostic information using an unsupervised clustering method
and predict the UD for new unseen patients using multi-class
learning methods.

MATERIALS AND METHODS

Data Collection
We selected a dataset of sepsis patients from the MIMIC-III
database, where sepsis is divided into general sepsis, severe sepsis,
and septic shock (27, 28). Figure 1 shows the detailed processes
of data collection and preprocessing of sepsis patients, including
the identification of sepsis patients, data extraction, data cleaning,
and feature selection. Finally, we screened 4,418 sepsis patients
and extracted their diagnostic information to unify the diagnosis
identification, their demographic information, laboratory
examination information, chief complaint, and history of present
illness information, and obtain a UD prediction.

First, the diagnostic information of 4,418 sepsis patients
mainly contained the patient hospital admission ID (Hadm-
id), ICD-9 diagnosis code, order of diagnosis code, and a brief
definition of the diagnosis codes, where the sum, maximum,
minimum, and average numbers of diagnosis codes were 80501,
39, 3, and 18.3, respectively. Additionally, for the visualization,
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FIGURE 1 | Dataset selection of sepsis patients from the MIMIC-III database.

TABLE 1 | Feature information of the health condition of sepsis patients.

Information Feature Description (Range, Type)

Demographic information Admission type Emergency, elective, urgent (Nominal)

Gender Female, male (Nominal)

Age [18, 89] (Numeric)

Laboratory examination

information

Potassium Level, PO2, serum bicarbonate level, temperature, sodium level, urine out foley, urea

nitrogen, WBC, bilirubin level, GCSmotor, GCSeyes, HR, GCSverbal, NBP, RR, SPO2, hemoglobin,

platelet count, creatimine

Minimum, maximum, median, mean,

and variance value (Numeric)

Symptom information Fever, abdominal pain, shortness of breath, nausea and vomiting, weakness, diarrhea, dizziness,

palpitation, cough, fatigue, discomfort, dysuria, shock, weight change, loss of appetite, and night

sweating

0, 1 (Nominal)

Related indicators AIDS, hematologic malignancy, metastatic cancer 0, 1 (Nominal)

SOFA, SAPS, and SAPS-II Integer (Numeric)

we removed duplicate diagnosis codes and converted the
remaining 3,070 diagnosis codes into digital numbers from
1 to 3,070. The Supplementary Table 1 shows the diagnostic
information of two patients.

Then, for the health condition of patients admitted to
hospital, we used the minimum, maximum, median, mean, and
variance value as the 5-tuple features of each laboratory indicator,
and designed a symptom identification method based on text
analysis of patient discharge reports, including rule setting,
text segmentation, text extraction, abbreviation dictionary
construction, negative word recognition, case unification, word
segmentation, stop word removal, and external symptom
dictionary embedding (Supplementary Figure 1). Additionally,
we added related indicators to measure patients’ severity, such as
AIDS, hematologic malignancy, metastatic cancer SOFA, SAPS,
and SAPS-II. Finally, we obtained 120 features of the health

condition of sepsis patients in the experimental dataset, as shown
in Table 1.

Method
Figure 2 shows the proposed UD identification and prediction
method (UDIPM), which uses four types of information from
EMRs. We adopt diagnostic information to identify the UD,
and use demographic information, symptom information, and
laboratory examination information to predict the UD. First, we
apply a set of similarity measure methods to a large number
of patients by embedding the semantic relation of the ICD
classification system (Task 1 in Figure 2). Second, we apply a
clustering algorithm to the similarity matrix to divide patients
into different groups, and further obtain the exemplar and core
patients of each cluster (Task 2 in Figure 2). Third, we extract
the typical diagnosis code co-occurrence patterns (TDCCoP)
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FIGURE 2 | Research framework for applying the proposed UDIPM to EMRs.

from each cluster by defining a threshold and a sorting function
(Task 3 in Figure 2). Fourth, we combine the visual analysis
and conditional co-occurrence matrix (CCoM) to identify the
UD by selecting the optimal segmentation (Task 4 in Figure 2).
Finally, after obtaining the health condition of the patient
admitted to hospital, we obtain a UD prediction using multi-class
classification methods (Task 5 in Figure 2).

Patient Similarity Measure Method
Many methods exist for measuring patient similarity (29, 30). In
this study, considering the semantic relations of diagnosis codes
in the ICD ontology structure, we adopt a set similarity measure
method. First, we define patient diagnostic information as a series
of ordered diagnosis codes. Then we reconstruct the ontology
structure based on a disease classification system to easily
measure patient similarity. Finally, we describe the process of
the set similarity method, including the information content (IC)
measure of diagnosis codes, diagnosis code similarity measure,
and diagnosis code set similarity measure.

Patient’s Diagnostic Information Representation
Diagnostic information refers to a record of disease diagnosis
made by clinicians based on the health condition of a patient
admitted to hospital. It is stored in the patient’s EMR data in
the form of a diagnosis code (e.g., ICD-9 and ICD-10). Because
of the prevalence of disease complications, a patient’s EMR is

typically annotated using multiple disease codes, and these codes
have a certain priority (i.e., order). The higher the priority of the
diagnosis code is, the more central and important the disease
is for this patient, then the weaker conversely. Thus, patient
diagnostic information can be represented as

D = {(dc1,Ord(dc1)), (dc2,Ord(dc2)), · · · , (dci,Ord(dci)), · · · },

(1)

where dci and Ord(dci) represent the i-th diagnosis code and its
order, respectively.

Ontology Structure Construction
We automatically construct a five-level ICD-9 ontology structure,
shown in Figure 3, in which level-0 is the virtual root node, level-
1 has 19 chapters, level-2 has 129 sections, level-3 has ∼1,300
categories (Supplementary Figure 2), and the last two levels are
expanded to 10 types of sub-nodes under each node. For example,
level-4 contains 550.0, 550.1, 550.2 (virtual code), 550.3 (virtual
code), . . . and 550.9, and level-5 includes 550.10, 550.11, 550.12,
550.13, 550.14 (virtual code), . . . 550.19 (virtual code). More
importantly, the actual diagnosis codes of patients belong to the
ICD-9 ontology structure, whereas the virtual codes are only used
to construct a complete ICD ontology structure and do not play
a role in the actual similarity measure.
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FIGURE 3 | Local ontology structure of ICD-9 codes.

Set Similarity Measure

Information Content Measure of Diagnosis Codes
In the ICD-9 ontology structure, each code represents a concept,
and there is semantic similarity between classification concepts.
Additionally, concepts on the same branch are more similar than
those on different branches. Thus, we use the level depth measure
method of the hierarchical tree (29), that is, we assign a value
to each level of the ICD-9 ontology structure; the deeper the
concept level, the larger the value. For an ICD-9 code dci, the IC
is defined as

IC(dci) = level(dci → Root), (2)

where Root is the virtual root node and the function level(.)
denotes the level depth from the ICD-9 code di to the root node.
Intuitively, the IC of the root node (level-0) is 0, the ICs of a
chapter (level-1), section (level-2), category (level-3), subcategory
(level-4), and extension (level-5) are 1, 2, 3, 4, and 5, respectively.

Code-Level Similarity Measure
For the IC of codes, there are several approaches tomeasure code-
level similarity. We use the least common ancestor (LCA) of two
codes to measure the similarity of diagnosis codes, defined as

s(dci, dcj) =
2IC(LCA(dci, dcj))

IC(dci)+ IC(dcj)
, (3)

where dci and dcj are two diagnosis codes, and LCA(dci, dcj) is
the LCA of dci and dcj. If dci = dcj, then LCA(dci, dcj) = dci =
dcj, and IC[LCA(dci, dcj)] = IC (dci) = IC (dcj). If dci 6= dcj and
LCA(dci, dcj)= Root, then IC[LCA(dci, dcj)]= 0.

To make this concept easier to understand, we provide a
simple example in Figure 4A. Thus, LCA(550.12, 550.13) =
550.1, LCA(541, 550.13) = 520–579, s = s1(550.12, 550.13) =
2IC(550.1)/[IC(550.12)+ IC(550.13)]= 2 ∗ 4/(5+ 5)= 0.8.

Code Set-Level Similarity Measure
In the EMR dataset, patient diagnostic information is
typically a set of diagnosis codes. Thus, patient similarity
can be transformed into the similarity of the diagnosis
code set. Generally, for binary code-level similarity, we can
use classical methods, such as Dice, Jaccard, cosine, and
overlap, to calculate set-level similarity. However, these
methods cannot fully embed semantic similarity. Thus,
we use the most similar concept pair’s average value to
measure the set-level similarity (29), and the formula is
defined as

S(D′ i,D
′
j) =

1−

(
∑

dcig∈D′ i

mindcjh∈D′ j (1− s(dcig , dcjh))+
∑

dcjh∈D
′
j

mindcig∈D′ i (1− s(dcjh, dcig )))

|D′ i| + |D′ j|
,

(4)
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FIGURE 4 | Example of LCA generation in the ICD-9 ontology structure. (A) Denotes the ICD-9 ontology structure, and (B) denotes the diagnosis codes of two

patients.

where D′i and D′j are the diagnostic information of patient i

and patient j, respectively, which does not consider the order of
diagnosis codes; that is,D′i={dci1, dci2,. . . , dcig,. . . } andD

′

j={dcj1,

dcj2,. . . , dcjh,. . . }. |D
′

i| and |D′j| are the number of diagnosis

codes for patient i and patient j, and dcig and dcjh are the g-
th diagnosis code of patient i and the h-th diagnosis code of
patient j, respectively. Finally, we obtain the similarity Sij of
the two patients (Figure 4B), and similarity matrix S for all
patients in the EMRs using a set similarity measure method. The
pseudocode of the patient similaritymeasuremethod is presented
in Algorithm 1.

Algorithm 1 | Patient similarity measure method.

Input: D′i={dci1, dci2,. ..,dcig,...}, i = 1, 2,…, N

Output: Similarity matrix SN*N

1. Construct the ICD ontology structure

2. For i = 1: N do
For j = i + 1: N do

Compute IC(dci1, dci2, ...,dcig,...), IC(dcj1, dcj2,..., dcjh,...), and

diagnosis code similarity s(dcig, dcjh) = 2IC(LCA(dcig, dcjh))/(IC(dcig) +

IC(dcjh)) based on the ICD ontology structure, compute set similarity

S(D′i , D
′

j ) using Eq. 4

3. Obtain the similarity matrix SN*N for N patients

Patient Clustering Algorithm
A clustering algorithm aims to divide patients into multiple
groups based on the similarity matrix S, requiring that patients in
the same group are as similar as possible, and patients in different
groups are as dissimilarity as possible (31, 32). In this study,
considering the advantages, such as not predefining the number
of clusters, the real existence of exemplars, and much lower error,
we adopt affinity propagation (AP) clustering (33, 34).

AP clustering determines the number of clusters by
controlling the input exemplar preferences (p), where p is
more robust than K because p monotonically controls the
perception granularity. Generally, p depends on the similarity
matrix SN∗N, number of input patients (N), and p coefficient
(pcoe), which is represented as

p = median(S)− pcoe ∗ N. (5)

After patients are clustered, we identify K clusters (C1, C2,. . . ,
CK), and define the popularity (i.e., support) of each cluster as

Support(Ck) =

∑

j∈{1,2,··· ,N} λ(C(D
′
j),E(Ck))

N
, k=1, 2, · · · ,K,(6)

where C(D′j) represents the cluster to which patient j belongs and

E(Ck) denotes the exemplar of Ck. λ(.) is an indicator function;
if patient j belongs to Ck, then λ[C(D′j), E(Ck)] = 1; otherwise,

λ[C(D′j), E(Ck)]= 0.

Additionally, we obtain the sum of similarities (SS), which is
an important indicator used to evaluate clustering performance.
The SS depends on the similarity matrix SN∗N, number of
input patients (N), number of clusters (K), and corresponding
exemplars, which is represented as

SS(K) =
∑K

i=1

∑

D′ j∈Ci
S(D′j,E(Ci)). (7)

Generally, the larger the SS value, the better the clustering
performance. The pseudocode of the patient clustering algorithm
is presented in Algorithm 2.

TDCCoP Extraction Method
In our previous studies, we proved that defining the core zone of a
cluster is an effective approach to extract stable clustering results
(35). Additionally, considering the complex semantic relations
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Algorithm 2 | Patient clustering algorithm.

Input: SN*N, pcoe, step size ε

Output: Optimal clustering number K*, E(Ck ), support (Ck ), SS(K*)

1. Initialize µ = 1, pcoe (µ) = pcoe=0, ε

2. Run the AP clustering algorithm with SN*N and p (p = median(S)-pcoe (µ)*N)

3. Return the clustering number K(µ)

4. While K(µ) < N and K(µ) > 1 do
µ = µ+1, pcoe (µ) = pcoe (µ – 1) +ε

p = median(S) – pcoe (µ) * N

Run the AP clustering algorithm with SN*N and p

Return the clustering number K(µ) and pcoe (µ)

5. Compute the distance dpcoe(K) = max [pcoe (µi )] – min [pcoe (µj )] for

the same K

6. Return the maximum dpcoe(K) and the optimal clustering number K*

7. Set pcoe=0.5 * {max [pcoe (µi )] + min [pcoe (µj )]} for K*

8. Run the AP clustering algorithm with SN*N and p (p = median(S) – pcoe* N)

9. Return E(Ck ), support (Ck ) using Eq. 6, and SS(K*) using Eq. 7

among different diagnosis codes, the feature of a cluster cannot be
fully described when the diagnostic information (cluster center
or exemplar) of only one patient is used. Thus, we also define
the core zone of each cluster to select a group of patients (i.e.,
core patients) using the k-nearest neighbor method, and further
extract typical diagnosis codes (TDCs). For cluster Ck, the core
zone is defined as

Corek =
{

D′j|S(D
′
j,E(Ck)) ≥ τ

}

, (8)

where E(Ck) is the exemplar of cluster Ck and τ is a similarity
threshold defined in advance, which aims to determine the
number of core patients.

Then, for cluster Ck, the occurrence probability of the
diagnosis code dch can be represented as

Probk(dch) =

∑

D′ j∈Corek
λ(dch, D

′
j)

|Corek|
, h = 1, · · · ,H, (9)

where |Corek| denotes the number of core patients in
cluster Ck. λ(.) is an indicator function; if the diagnostic
information D′j of patient j contains diagnosis code

dch, then λ (dch, D′j) = 1; otherwise, λ (dch, D′j) = 0.

H is the number of all diagnosis codes after duplicates
are deleted.

After we calculate the probability of all diagnosis codes in the
cluster Ck, we define the TDC as

Tdch =
{

dch|Probk(dch) > δ1

}

, (10)

where δ1 is a threshold defined in advance to differentiate high-
frequency and low-frequency diagnosis codes.

Based on all TDCs of the cluster Ck, we further analyze
the priority of TDCs by embedding the order of the patient

diagnostic information, that is, for patient j, Dj= {[dcj1,
Ord(dcj1)], [dcj2, Ord(dcj2)], [dcjh, Ord(dcjh)], . . . } and Dj

′
=

{dcj1, dcj2, dcjh, . . . }. Thus, the average order (AOrd) of TDC
Tdchis defined as

AOrd(Tdch) =

∑

D′ j∈Corek,Tdch∈D
′
j
OrdDj (Tdch)λ(Tdch, D

′
j)

∑

D′ j∈Corek,Tdch∈D
′
j
λ(Tdch, D′j)

,

h = 1, · · · ,H′, (11)

where H′ is the number of TDCs in cluster Ck and OrdDj(Tdch)
denotes the order of TDC Tdch in the diagnostic information Dj

of patient j. Generally, the smaller the AOrds of typical diagnostic
codes, the more likely they are to be primary diseases.

Finally, after obtaining TDCs and their AOrds, we define a
sorting function to determine TDCCoP, which is represented as

TDCCoPk = Sort((Tdc1,AOrdk(Tdc1)), · · · , (TdcH′ ,AOrdk(TdcH′ )))

={(Tdc1,Ord
′(Tdc1)), · · · , (TdcH′ ,Ord

′(TdcH′ ))}, (12)

where Ord′ (Tdch) is the new order of Tdch. For example, if
cluster Ck has only three TDCs (e.g., Tdc1, Tdc2, and Tdc3) and
its AOrds are 5.3, 7.8, and 3.8, respectively, then after sorting, the
TDCCoPk is {(Tdc3, 1), (Tdc1, 2), (Tdc2, 3)}. The pseudocode of
the TDCCoP extraction method is presented in Algorithm 3.

Algorithm 3 | TDCCoP extraction method.

Input: Ck , E(Ck ), Corek , Dj , D
′

j , H, k = 1, 2 …, K

Output: TDCCoPk , k = 1, 2, …, K

1. Initialize k = 1, τ , h = 1, δ1, i = 1

2. For k = 1: K do
Corek= {D′j |S(D

′

j , E(Ck )) ≥ τ }

For h = 1:H do
Probk (dch) =

∑

Dj′ǫCorekλ(dch, D
′

j )/|Corek |

If Probk (dch) > δ1 then
Tdch ←dch

i = i + 1

H′ i

For h = 1:H′ do
AOrdk (Tdch) =

∑

TdchǫDj’Ord(Tdch)/|D
′

j |

TDCCoPk= Sort ((Tdc1, AOrdk (Tdc1)),…, (Tdc′H, AOrdk (Tdc
′

H)))

3. Return TDCCoPk , k = 1, 2,…, K

UD Identification Method
To identify a UD, categorizing the TDCCoP of each cluster
reasonably according to the disease taxonomy is a critical step.
In this study, we propose a UD identification method, as
shown in Figure 5. Specifically, for the TDCCoPkof cluster k,
we first visualize all TDCs in the reconstructed ICD ontology
structure, and mark their orders. Then we use the LCA
method to categorize these codes, and define their LCA and
the corresponding orders. Furthermore, we calculate the CCoM
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FIGURE 5 | Proposed UD identification method.

using patient diagnostic information to select the optimal
segmentation between primary diseases and complications.
Finally, we regard the identified primary diseases as the UD.

First, we define the LCA co-occurrence pattern (LCoP) of the
TDCCoPk using visual analysis of the ICD ontology structure as

LCoPk=
{

di|di = LCA{Tdc1 ,Tdc2 ,··· }∈TDCCoPk(Tdc1,Tdc2, · · · ),

di 6= Root
}

. (13)

Then we calculate the order of each diin LCoPk as

Ord(di)=mindi=LCA(Tdc1 ,Tdc2 ,··· ,Tdcm)

(Ord′(Tdc1),Ord
′(Tdc2), · · · ,Ord

′(Tdcm)), (14)

wherem is the number of TDCs in LCoPk whose LCA is di.
Additionally, considering the causal relation between di and

djin LCoPk, we define the conditional co-occurrence probabilities
pk(dj/di) and pk(di/dj) as

pk(dj/di) = Freqk(dj, di)/Freqk(di)
pk(di/dj) = Freqk(di, dj)/Freqk(dj)

, (15)

where Freqk (di, dj) and Freqk (dj, di) denote the number of co-
occurrences of di and dj, respectively, and Freqk(di) denotes the
number of occurrences of diin the cluster Ck.

Thus, for all diagnosis codes in LCoPk, we generate a CCoM
CCoMk, where CCoMk (i, j) = pk(dj/di), CoMk (j, i) = pk(di/dj),
and the diagonal entry CCoMk (i, i)= pk(di)= Freqk(di)/|Corek|.
If CCoMk (i, j) >> CCoMk (j, i) or CCoMk (i, i) >> CCoMk (j,
j) exist, then dj is more prone to occur after the occurrence of
di; thus, diis more likely to be a primary disease, whereas dj will
become a complication, and vice versa.

After analyzing the precedence relation of all diagnosis codes
in LCoPk using CCoMk, we obtain the optimal segmentation

between primary diseases and complications, and define the UD
of cluster k as

UDk=
{

di|di ∈ LCoPk, di 6= Complication
}

, (16)

where UDk is a set of primary diseases. The pseudocode of the
UD identification method is presented in Algorithm 4.

Algorithm 4 | UD identification method.

Input: TDCCoPk , Corek , Dj , Dj
′, k = 1, 2, …, K, ICD ontology structure

Output: UDk , k = 1, 2, …, K

1. Initialize i = 1, call the ICD ontology structure

2. For k = 1: K do
While Tdcε TDCCoPk do

di= LCA (Tdc1, Tdc2,…)

Ord(di ) = min (Ord′(Tdc1), Ord
′(Tdc2),…)

i = i + 1

I← i

For i1 = 1:I do
For i2 = i1 + 1:I do

pk (di1) =
∑

di1=LCA(Tdc1,...Tdcg)λ(Tdcg, D
′

j )/|Corek |

pk (di2) =
∑

di2=LCA(Tdc1,...Tdch)λ(Tdch, D
′

j )/|Corek |

pk (di2/di1) = (
∑

di1=LCA(...Tdcg),di2=LCA(...Tdch)λ(Tdcg, Tdch, Dj
′)/|Corek |)/pk (di1 )

pk (di1/di2) = (
∑

di1=LCA(...Tdcg),di2=LCA(...Tdch)λ(Tdcg, Tdch, Dj
′)/|Corek |)/pk (di2 )

If pk (di1) >> pk (di2) || pk (di2/di1) >> pk (di1/di2) || Ord(di1) << Ord(di2) then
UDk ←di1

Else
UDk ←di2

3. Return UDk , k = 1, 2,…, K

UD Prediction Method
After identifying the UD, we further study the prediction task
based on the health condition of a patient admitted to hospital,
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FIGURE 6 | Proposed UD prediction method.

exploring the important features to assign the most possible UDs
to new patients. Figure 6 shows the proposed UD prediction
method. First, we extract three categories of features using time
series feature representation and text analysis methods, and fuse
them in structured data for further prediction. Then after data
pre-processing and feature selection, we label all patients with a
UD. Finally, we adopt classical prediction models to perform the
UD prediction task.

Patient’s Health Condition Representation
The health condition of a patient admitted to hospital includes
demographic information, symptom information, and laboratory
examination information, which play crucial roles for clinicians
in diagnosing disease types, evaluating disease severity, and
designing a treatment regimen.

Demographic Information
Demographic information mainly includes the date of birth, age,
gender, admission type, marital status, occupation, and residence,
defined as

De =
{

DeAge,DeGender ,DeAdmission Type,DeMarital Status, · · ·
}

.(17)

Symptom Information
Symptom information is recorded in the chief complaint and
history of present illness in the form of text, where the chief
complaint is the most painful part of the disease process,

including the main symptoms and onset time. The history
of present illness describes the entire process for the patient
after suffering from diseases, including occurrence, development,
evolution, diagnosis, and treatment. Thus, the patient’s symptom
information can be represented as.

Sy =
{

SyFever , SyWeakness, SyDiarrhea, · · ·
}

. (18)

Laboratory Examination Information
Laboratory examination refers to an indirect judgment of the
health condition as a result of measuring specific components of
blood and body fluids using instruments. Laboratory indicators
typically have the characteristics of a time series, particularly for
patients in the ICU. Thus, we use the minimum value, maximum
value, median value, mean value, and variance of laboratory
indicators to represent the time series, defined as

LE = {{(min(LEWBC),max(LEWBC),med(LEWBC),

mean(LEWBC), var(LEWBC)}, · · · } (19)

Finally, we obtain the health condition of a patient admitted to
hospital using a feature fusion method, that is, X = {De; Sy; LE}.

Information Gain-Based Feature Selection
Before predicting the UD, to remove noisy data, reduce the
complexity and dimensionality of the dataset, and achieve
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accurate results, it is essential to apply feature selection methods
to identify useful features. Therefore, feature selection is an
important step that improves the clarity of the data and decreases
the training time of prediction models (4). In this study, we use
the information gain (IG) method to measure the importance
of features and eliminate some irrelevant features. Then we
compute the IG of feature xi as

IG(xi) = H(Y)−H(Y/xi)

= −

K
∑

k=1

P(yk) log P(yk)+

K
∑

k=1

P(yk/xi) log P(yk/xi),

(20)

where feature xiǫX, Y = {UD1,. . . , UDk,. . . , UDK}, ykǫY, H(Y),
and H(Y/xi) denote the information entropy and conditional
information entropy given feature xi for a UD classification, and
P(yk) and P(yk/x) denote the probability of yk and condition
probability of yk given feature xi, respectively.

Thus, we obtain the important features as

X′ =
{

xi|IG(xi) > δ2

}

, (21)

where δ2 is a threshold defined in advance to differentiate the
important and unimportant features using the IG method.

Prediction Model Establishment
After obtaining the feature representation and UD result of each
patient, we generate a standard dataset (Y and X′) and establish
a prediction model [Y = f (X′)]. In this study, we apply five
classifiers to achieve a UD prediction: logistic regression, decision
tree, random forest, SVM, and extreme gradient boosting
(XGBoost). In the prediction process, we adopt the Z-fold cross-
validation (CV) method, which randomly partitions the initial
dataset into Z mutually exclusive subsets, and perform training
and testing Z times. We set Z to 5 or 10. Then we compute the
average CV error to determine the prediction model as

CVErrorZ =
1

Z

Z
∑

z=1

Lz=
1

Z

Z
∑

z=1

1

mz

mz
∑

j=1

(ŷj − yj)
2, (22)

where Lz andmz are the average CV error and number of the z-th
testing dataset, and yj and ŷj are the real and predicted UDs of the
j-th patient, respectively.

Additionally, we identify distinctive features of different
unifying diagnoses by analyzing the feature importance
ranking results.

Parameter Setting
In our experiment, we set 5 parameters in advance. First, we set
pcoein Eq. 5 to select the number of clusters, and then τ in Eq. 8,
which is a similarity threshold to determine the number of core
patients (i.e., |Core|). We discuss both parameters based on the
stability of the experimental results. We set δ1 in Eq. 10 to 0.3 to
obtain TDCs, and δ2 in Eq. 21 to 0.005 to select the important
features. We set the last parameter Z in Eq. 22 to 10 to perform
the 10-fold CV method. In particular, before UD prediction, we

FIGURE 7 | Distribution of the number of clusters for different values of pc.

used data pre-processing methods, that is, data normalization
and smoothing for imbalanced classes.

RESULTS

Selection of the Cluster Number
After obtaining the set similarity measure based on the ontology
structure for 4,418 sepsis patients, we obtained the similarity
matrix S and used the AP clustering algorithm to divide all the
patients into multiple groups. Figure 7 shows the distribution of
the number of clusters under different values of pc. Generally,
the number of clusters decreased as the preference coefficient
increased. The most stable number of clusters was two when pc
ranged from 0.018 to 0.032. Thus, we selected two clusters (pc =
0.025) to identify TDCs and extract TDCCoPs from each cluster.

Stability Analysis of TDCs
After applying the AP clustering algorithm, we first divided the
4,418 sepsis patients into two clusters, where cluster 1 and 2
contained 1,391 and 3,027 patients with a support of 31.48% and
68.52%, respectively. Then we analyzed the stability of the TDCs
in Eq. 10 using a set of different numbers of core patients in Eq.
8 (|Core|=100, 200, 400, 500, 800, and all patients), as shown in
Figure 8, Supplementary Figure 3.

From the distribution of TDCs in Figure 8,
Supplementary Figure 3, the results showed that the stable
range of core patients was from 400 to 800 (five codes in
cluster 1 and 12 codes in cluster 2) because the number of
TDCs and their distributions were approximately coincident.
Specifically, compared with the stable TDCs, more TDCs were
identified when the number of core patients was set to 100
and 200 (14 codes in cluster 2), such as the digital number
71 (276, disorders of fluid electrolyte and acid-base balance)
and digital number 490 [V58.610, long-term (current) use of
anticoagulants] (Supplementary Figures 3A,B). Digital number
99 (995.91, sepsis) was identified in cluster 1, and another three
codes (486, 276.2, and 250) were not identified in cluster 2
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(Supplementary Figure 3E) when we used all patients in the two
clusters to extract TDCs. Thus, in the next experiment, we set
the number of core patients to 800 to extract the TDCCoPs.

TDCCoP Extraction From Each Cluster
Using the clustering results, we finally determined two clusters,
selected 800 core patients from each cluster, and set δ to 0.3 in Eq.
10 to identify TDCs and extract TDCCoPs. Figure 9 shows the
co-occurrence relation and AOrd of all TDCs in two TDCCoPs,
and Table 2 provides a detailed description of all TDCs in the
two TDCCoPs.

To summarize, the experimental results indicated that there
were 12 types of TDCs in the two TDCCoPs, where TDCCoP1
and TDCCoP2 had 5 and 12 codes, respectively. Specifically,
the two TDCCoPs had similarities and differences. There were

FIGURE 8 | Distribution of TDCs for 800 core patients.

three similarities: (1) Five types of TDCs were the same, that
is, 518.81, 38.9, 785.52, 584.9, and 995.92. (2) The AOrds of
all TDCs in the same TDCCoPs were similar, for example, the
AOrds of four TDCs in TDCCoP1 were all below 6, whereas
those of the TDCs in TDCCoP2 were over 7. (3) The TDCs 38.9
(septicemia), 785.52 (septic shock), and 995.92 (severe sepsis) had
the highest occurrence probability in the two TDCCoPs. There
were also three differences: (1) TDCCoP2 identified more TDCs
than TDCCoP1. (2) The occurrence probabilities of TDCs in
TDCCoP1 were larger than those in TDCCoP2. (3) The AOrds of
the same TDC were different in the two TDCCoPs, for example,
518.81 (acute respiratory failure) in the two TDCCoPs was 4.145
and 7.665, respectively. Additionally, septicemia (38.9) was a
high-frequency and primary disease in sepsis patients, which
is a life-threatening complication that can occur when bacteria
from another infection enters the blood and spreads throughout
the body.

Furthermore, using Eq. 12 and Algorithm 3, we extracted
the TDCCOPs of the two clusters described in Table 2, that
is, TDCCOP1 = {(38.9, 1), (785.52, 2), (518.81, 3), (584.9, 4),
(995.92, 5)} and TDCCOP2 = {(584.9, 1), (38.9, 2), (518.81,
3), (599.0, 4), (428.0, 5), (486.0, 6), (401.9, 7), (785.52, 8),
(276.2, 9), (995.92, 10), (427.31, 11), (250.0, 12)}. Thus, from
a reordering perspective, acute kidney failure, septicemia, and
acute respiratory failure were probably the primary diseases in
the two TDCCOPs.

UD Identification Based on TDCCOPs
After obtaining TDCCoPs, we visualized all the TDCs in the
ICD-9 ontology structure. First, we categorized them using the
LCA method to identify LCoPs using Eq. 13. Consider TDCCoP2
as an example. The visualization result is shown in Figure 10.
Clearly, we identified LCoP2 with seven types of diseases, which
are light green color, and computed the order of the new diseases
using Eqs 13, 14: diseases of the genitourinary system (580–629,
order: 1), septicemia (38.9, order: 2), diseases of the respiratory

FIGURE 9 | Co-occurrence relation and AOrd of all TDCs. (A) Co-occurrence relation. (B) AOrd.
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TABLE 2 | Detailed description of three TDCs.

TDCCOP Digital

number

TDC Definition of

diagnosis code

Occurrence

frequency

Average

order

Re-order

TDCCOP1 1 518.81 Acute respiratory failure 0.604 4.145 3

(1391) 2 38.9 Septicemia 0.769 2.411 1

4 785.52 Septic shock 0.669 4.090 2

5 584.9 Acute kidney failure 0.534 4.956 4

14 995.92 Severe sepsis 0.824 7.816 5

TDCCOP2 1 518.81 Acute respiratory failure 0.526 7.665 3

(3027) 2 38.9 Septicemia 0.608 7.545 2

4 785.52 Septic shock 0.729 7.813 8

5 584.9 Acute kidney failure 0.554 7.377 1

12 427.31 Atrial fibrillation 0.593 8.038 11

14 995.92 Severe sepsis 0.941 8.031 10

30 428.0 Congestive heart failure 0.729 7.703 5

46 486.0 Pneumonia organism 0.334 7.805 6

58 599.0 Urinary tract infection 0.389 7.701 4

62 401.9 Essential hypertension 0.343 7.807 7

63 276.2 Acidosis 0.360 7.875 9

77 250.0 Diabetes mellitus without complication 0.383 8.062 12

FIGURE 10 | LCoP2 identified using the visualization of TDCoP3 in the ontology structure.

system(460–519, order: 3), diseases of the circulatory system
(390–459, order: 5), septic shock (785.52, order: 8), endocrine,
nutritional, and metabolic diseases, and immunity disorders
(240–279, order: 9), and severe sepsis (995.92, order: 10).

Then we calculated the CCoM2 of the LCoP2 based on
the diagnostic information of 800 core patients in cluster 2,
as described in Table 3. First, the conditional probabilities

p({390–459, 995.92}/{580–629, 38.9, 460–519}) colored red were
significantly larger than the values p({580–629, 38.9, 460–
519}/{390–459, 995.92}) colored blue, which indicates that
diseases of the genitourinary system (580–629, order: 1),
septicemia (38.9, order: 2), and diseases of the respiratory system
(460–519, order: 3) were more likely to be primary diseases,
whereas diseases of the circulatory system (390–459, order: 5) and
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severe sepsis (995.92, order: 10) were probably complications.c
Second, the orders of septic shock (785.52, order: 8) and
endocrine, nutritional, and metabolic diseases, and immunity
disorders (240–279, order: 9) were also larger than those of the
first three diseases. Thus, diseases of the respiratory system (460–
519, order: 3) and diseases of the circulatory system (390–459,
order: 5) were likely to be the optimal segmentation between
primary diseases and complications, and the first three diseases
were considered to be the UD (UD2) of cluster 2.

UD Prediction Based on Patient Admission
Information
After we applied feature fusion and feature selection using the
IG method, we further performed five classifications to predict
a UD based on patient admission information and identify
important features for the constructed prediction models.
Figure 11 shows the classification performance of the proposed
UDIPM, including the area under the ROC curve (AUC),
accuracy (Acc), precision (Pre), recall (Rec), and F1-score (F1),
and Figure 12 presents the 10 most important features identified
using the random forest method (Supplementary Figure 4).

TABLE 3 | CCoM2 of the LCoP2.

Values in brackets are the orders of the seven diseases, bold values on themaster diagonal

denote the occurrence probabilities of the seven diseases, and values in red and blue are

conditional probabilities for distinguishing between primary diseases and complications.

The experimental results indicated that the proposed UDIPM
achieved better prediction performance, where the AUC values
were all above 0.8, except for the decision tree method. Similarly,
the best Acc, Pre, Rec, and, F1 among all classifications
was XGBoost, at ∼80%, followed by random forest, SVM,
and logistic regression, whereas the decision tree was last,
at ∼66%. Consider the random forest as an example. We
obtained the feature importance results to better understand the
prediction model. First, we found that demographic information
(i.e., age) and laboratory examination information were more
important than symptom information. Then some disease
severity indicators were very important, such as SAPS and
SAPS-II. Finally, the variance distribution (i.e., Var) of the
laboratory examination indicators was more important than the
mean, median, minimum, and maximum values. To summarize,
the proposed UDIPM not only identified a UD from patient

FIGURE 12 | Ten most important features using the random forest method.

FIGURE 11 | Classification performance of the proposed UDIPM. (A) AUC. (B) Acc, Pre, Rec, and F1.
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TABLE 4 | Evaluation methods and metrics used in our experiment.

Method name Set similarity measure Clustering Classification

The proposed method (UDIPM) Set similarity based on ontology AP clustering Logistic regression

Fusion method 1 (FM1) Dice = 2
∣

∣A
⋂

B
∣

∣ / |A| + |B| Decision tree

Fusion method 2 (FM2) Jaccrd =
∣

∣A
⋂

B
∣

∣ /

∣

∣A
⋃

B
∣

∣ Random forest

Fusion method 3 (FM3) Cosine =
∣

∣A
⋂

B
∣

∣ /
√
|A| � |B| SVM

Fusion method 4 (FM4) Overlap =
∣

∣A
⋂

B
∣

∣ /min{ |A| , |B| } XGBoost

AUC

Acc = (TP + TN)/N

Metric SS (Eq. 7) Pre = TP/(TP + FP)

Rec = TP/(TP + FN)

F1 = 2Pre*Rec/(Pre + Rec)

A and B are the diagnosis code sets of two patients, the Dice method is the same as the proposed UDIPM when we do not consider the disease ontology structure and replace the

code similarity with s = (dci ,dcj ) =

{

1, if dci = dcj

0 otherwise
, true positive (TP) and true negative (TN) measure the ability of classifier models to predict the UD, false positive (FP) and false

negative (FN) identify the number of false predictions generated by the models, and we used FM to determine the prediction performance.

FIGURE 13 | Similarity measure and clustering results of different fusion

methods.

diagnostic information but also predicted a UD based on the
health condition of a patient admitted to hospital.

DISCUSSION

In this study, we conducted various experiments to demonstrate
the efficiency of the proposedUDIPMwhen compared with other
methods. Specifically, the proposedUDIPM fused threemethods:
a set similarity measure method, clustering, and classification
algorithms. For the set similarity measure method, we selected
Dice, Jaccard, cosine, and overlap as comparative methods, and
used SS in Eq. 7 as a performance metric based on the AP
clustering results. For the classification algorithms, we selected
logistic regression, decision tree, random forest, SVM, and
XGBoost. Additionally, we used AUC, Acc, Pre, Rec, and F1
as performance metrics to measure the effectiveness of the
classification algorithms. The evaluationmethods andmetrics are
described in detail in Table 4.

The detailed experimental results are shown in Figure 13,
Table 5. Specifically, for the set similarity measure, we first

TABLE 5 | Classification results of different fusion methods.

Fusion

method

Classification

algorithm

Metric

Acc Pre Rec F1 AUC

FM1 Logistic regression 0.725 0.739 0.725 0.721 0.782

(Dice) Decision tree 0.682 0.683 0.682 0.682 0.682

FM2 Random forest 0.779 0.782 0.779 0.778 0.851

(Jaccard) SVM 0.722 0.763 0.722 0.711 0.778

XGBoost 0.804 0.818 0.804 0.802 0.860

FM3 Logistic regression 0.734 0.743 0.734 0.732 0.804

(Cosine) Decision tree 0.682 0.683 0.682 0.682 0.682

Random forest 0.786 0.790 0.786 0.785 0.859

SVM 0.736 0.752 0.736 0.732 0.801

XGBoost 0.813 0.821 0.813 0.812 0.884

FM4 Logistic regression 0.465 0.437 0.421 0.411 0.628

(Overlap) Decision tree 0.388 0.370 0.371 0.369 0.529

Random forest 0.467 0.434 0.400 0.371 0.620

SVM 0.471 0.384 0.404 0.350 0.626

XGBoost 0.481 0.451 0.423 0.404 0.629

UDIPM Logistic regression 0.733 0.740 0.733 0.732 0.806

Decision tree 0.662 0.663 0.662 0.662 0.662

Random forest 0.782 0.784 0.782 0.781 0.854

SVM 0.734 0.743 0.734 0.732 0.800

XGBoost 0.795 0.803 0.795 0.794 0.866

Bold values denote the first and second-highest performance using the UDIPM.

selected the optimal number of clusters using AP clustering
algorithms, and then computed the SS value based on the
clustering results (Algorithm 2). The experimental results
indicated that the optimal numbers of clusters for four FMs
were 2, 2, 2, and 3 (Supplementary Figure 5), and the proposed
UDIPM achieved the second-highest SS value of 1997.86; it was
only below FM4 (Figure 13). The reason is that the SS value
increased as the cluster number increased. Interestingly, although
the similarities of FM1 and FM2were different, they had the same
clustering results.
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For the classification results obtained using the 10-fold CV
method in Table 5, the proposed method achieved the second-
highest performance using logistic regression, random forest, and
SVM, and the third-highest performance using the decision tree
and XGBoost. More importantly, all metrics of the proposed
UDIPM were higher than those of FM4. Therefore, from the
overall performance evaluation in combination with the set
similarity measure, clustering, and classification, the UDIPM
was an effective method for identifying and predicting a UD
from EMRs.

Further, for all fusion methods, the results of performance
comparison indicated that both XGBoost and random forest
were superior to other classification algorithms in terms of
the Acc, Pre, Rec, F1, and AUC. The main reason is that
XGBoost and random forest are ensemble learning algorithms
by combining multiple classifiers, which can often achieve
more significant generalization performance than a single
classifier. Specifically, XGBoost is an improved algorithm based
on the gradient boosting decision tree, which can efficiently
construct boosted trees and run in parallel. XGBoost works
by combining a set of weaker machine learning algorithms to
obtain an improved machine learning algorithm as a whole
(36). XGBoost has been shown to perform exceptionally well
in a variety of tasks in the areas of bioinformatics and
medicine, such as the lysine glycation sites prediction for Homo
sapiens (37), the chronic kidney disease diagnosis (38), and
the risk prediction of incident diabetes (39). Also, random
forest classifier is an ensemble algorithm, which combines
multiple decorrelated decision tree prediction variables based
on each subset of data samples (40). In general, random forest
shows better performance in disease diagnosis than many single
classifiers (41).

CONCLUSION

In this study, we proposed a UDIPM embedding the disease
ontology structure to identify and predict a UD from EMRs
to assist better coding integration of diagnosis in the ICU. We
discussed many critical issues, including a formal representation
of multi-type patient information, symptom feature extraction
from an unstructured discharge report, ICD ontology structure
reconstruction for semantic relation embedding, multi-level set
similarity measure for generating a patient similarity matrix,
number of cluster selections using AP clustering, stability of
the extracted TDC and TDCCoP from each cluster, optimal
split line determination for identifying a UD based on
visual analysis and the CCoM of LCoP, feature fusion and
selection using the IG-based method, and the performance
evaluation of UD prediction using five classifiers. We verified
the proposed UDIPM on 4,418 sepsis patients in the ICU
extracted from the MIMIC-III database. The results showed
that the highest stability cluster number and largest range of
TDCs were 2 and 400–800, respectively, the UD of cluster
2 was diseases of the genitourinary system (580–629, order:
1), septicemia (38.9, order: 2), and diseases of the respiratory
system (460–519, order: 3), and the best AUC and Acc, Pre,

Rec, and F of the UD prediction were 0.866, 0.795, 0.803,
0.795, and 0.794, respectively, which were better than those
of other fusion methods from the overall view of SS and
prediction performance.

STUDY LIMITATIONS

The proposed UDIPM can identify and predict a UD from
EMRs; however, there remain several topics for future work.
First, the order of diagnosis codes should be considered in the
patient similarity measure by way of different weights because
of the importance of primary diseases. Then some state-of-
the-art feature selection and classification models should be
implemented to improve the prediction accuracies of the UD.
Additionally, we hope to make progress on many of the valuable
suggestions made by clinicians regarding our implemented
method and experimental results.
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NOTATION

dci i-th diagnosis code

Ord(dci) Order of dci

LCA(dci, dcj) Least common ancestor of dci and dcj

s(dci, dcj) Similarity of diagnosis code dci and dcj

S(Di
′, Dj

′) Similarity of diagnostic information of patients i and j

S Patient similarity matrix based on diagnostic information

pc p coefficient to control the input exemplar preferences

K Number of clusters

Ck k-th cluster, k = 1, 2,…, K

E(Ck) Exemplar of cluster Ck

Corek, |Corek | Core zone and the number of patients in Ck

Probk (dch) Occurrence probability of the diagnosis code dch in Ck

AOrdk (Tdch) Average order of the typical diagnosis code dch in Ck

Ord’ (Tdch) New order of the typical diagnosis code dch

TDCCoPk k-th typical diagnosis code co-occurrence pattern

LCoPk k-th least common ancestor co-occurrence pattern

CCoMk Conditional co-occurrence matrix for all diseases in TDCoPk

UDk k-th unifying diagnosis

IG(xi) Information gain of feature xi

CVErrorZ Average error using Z-fold cross-validation
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Background: Renal cell carcinoma (RCC) is one of the most common cancers

in middle-aged patients. We aimed to establish a new nomogram for predicting

cancer-specific survival (CSS) in middle-aged patients with non-metastatic renal cell

carcinoma (nmRCC).

Methods: The clinicopathological information of all patients from 2010 to 2018 was

downloaded from the SEER database. These patients were randomly assigned to the

training set (70%) and validation set (30%). Univariate and multivariate COX regression

analyses were used to identify independent risk factors for CSS in middle-aged patients

with nmRCC in the training set. Based on these independent risk factors, a new

nomogram was constructed to predict 1-, 3-, and 5-year CSS in middle-aged patients

with nmRCC. Then, we used the consistency index (C-index), calibration curve, and area

under receiver operating curve (AUC) to validate the accuracy and discrimination of the

model. Decision curve analysis (DCA) was used to validate the clinical application value

of the model.

Results: A total of 27,073 patients were included in the study. These patients were

randomly divided into a training set (N = 18,990) and a validation set (N = 8,083).

In the training set, univariate and multivariate Cox regression analysis indicated that

age, sex, histological tumor grade, T stage, tumor size, and surgical method are

independent risk factors for CSS of patients. A new nomogram was constructed

to predict patients’ 1-, 3-, and 5-year CSS. The C-index of the training set and

validation set were 0.818 (95% CI: 0.802-0.834) and 0.802 (95% CI: 0.777-0.827),

respectively. The 1 -, 3 -, and 5-year AUC for the training and validation set ranged

from 77.7 to 80.0. The calibration curves of the training set and the validation set

indicated that the predicted value is highly consistent with the actual observation
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value, indicating that the model has good accuracy. DCA also suggested that the model

has potential clinical application value.

Conclusion: We found that independent risk factors for CSS in middle-aged patients

with nmRCC were age, sex, histological tumor grade, T stage, tumor size, and surgery.

We have constructed a new nomogram to predict the CSS of middle-aged patients

with nmRCC. This model has good accuracy and reliability and can assist doctors and

patients in clinical decision making.

Keywords: nomogram, middle-aged patients, nmRCC, cancer-specific survival, SEER, online application

INTRODUCTION

In recent years, renal cell carcinoma (RCC) incidence has
gradually increased, accounting for 2-3% of adult malignant
tumors (1). The incidence of RCC in the United States is about
9.1 per 100,000, and the mortality rate is 3.5 per 100,000 (2). It
has been reported in the literature that 15% of patients with RCC
diagnosed for the first time have developed distant metastases,
and another 10-20% of patients with localized RCC eventually
develop metastatic RCC (3, 4). The incidence of RCC in men is
higher than that in women, about 1.65:1 (5, 6). In 2016, there were
6,700 new diagnoses of RCC in the United States, and 14,240
patients died of renal cancer (7). The prognosis of nmRCC is
good, but the 5-year survival rate of metastatic RCC is about
10%, and the median survival time is only 10 months (8). A
comprehensive treatment method based on surgery is advocated
for localized RCC (9). However, 20-30% of patients with localized
RCC still relapse after surgery (10). Therefore, evaluation of
the progression, metastasis and prognosis of RCC is critical in
clinical management.

At present, studies have shown that clinicopathological factors
such as age, sex, and tumor size are related to the prognosis of
RCC (11, 12). Guo et al. found that the right RCC has a better
prognosis than the left (13). Wang et al. constructed a nomogram
to predict the survival of RCC patients with bone metastases and
found that age, sex, marriage, tumor histology grade, T stage,
N stage, surgery, and radiotherapy are independent risks factors
for patients (14). Li et al. developed a nomogram to predict the
risk of distant metastasis in patients with RCC (15). Yue et al.
found that age is a critical factor in the prognosis of patients
withmetastatic RCC; elderly patients have a worse prognosis than
younger patients (16).

At present, artificial intelligence has been widely used in the
medical field. Awais et al. (17) use texture analysis to classify
abnormal areas of the mouth and promote the development of
oral cancer treatment. Mishra et al. (18) use intelligent drive for
multistage assessment of mental disorders to help patients with
mental illness. Although various kinds of nomograms have been
widely used in clinical practice, the accuracy and specificity of
these nomgorams are very worrying. We aimed to establish a
specific nomgogram to predict survival in middle-aged patients
with renal cell carcinoma. This study used big data based on the
Cox regression model to construct a simple nomogram, which is
as convenient as possible for users to operate under the premise
of ensuring accuracy.

RCC has become significant cancer endangering the health
of the population. Accurate prediction of the survival of cancer
patients is the key to improving the survival time and quality of
life of patients with RCC. At present, using big medical data to
establish a prediction model has become an essential means to
predict the survival of cancer patients. The nomogram is a user-
friendly graphical digital model that can accurately predict the
occurrence of a given event based on the numerical estimation
of multiple single variables (19). Middle-aged patients with RCC
have a good prognosis without distant metastasis. However,
accurate prognostic assessment can answer patient consultations
and help doctors and patients make clinical decisions. Therefore,
we aim to establish a nomogram to predict the CSS of middle-
aged patients with nmRCC.

PATIENTS AND METHODS

Data Source and Data Extraction
We downloaded the clinical-pathological data of the patients
from the National Cancer Institute’s Surveillance, Epidemiology,
and Final Results (SEER) project, including patients who were
diagnosed with nmRCC in the United States from 2010 to 2018
between 40 and 60 years old. The data of this study can be
obtained from the SEER database (http://seer.cancer.gov/). The
SEER database is a public database that contains 18 cancer
registries and covers ∼28% of the American population (20).
Patient information can be obtained on the database, including
demographic information, tumor characteristics, and survival
status. Because the data we used is publicly available, and the
patient’s personal information is not identifiable, our study did
not require ethical approval and informed consent. Our research
method complies with the rules of the SEER database.

The patient’s demographic information and clinical-
pathological data include age, sex, race, year of diagnosis,
marriage, tumor laterality, tumor histological type, histological
grade, T stage, type of surgery, radiotherapy chemotherapy,
and survival time. Inclusion criteria: (1) age 40-60 years;
(2) pathological diagnosis of renal cell carcinoma (ICD-O-3
codes 8260, 8310, 8312, 8317); (3) diagnosis year 2010-2018.
Exclusion criteria: (1) unknown race; (2) unknown tumor size;
(3) unknown surgical method; (4) unknown T stage; (5) survival
time <1 month; (6) unknown cause of death. The flow chart of
patient screening is shown in Figure 1.
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The year of diagnosis was divided into 2010-2014 and
2015-2018. The race included white, black, and other races
(American Indian/AK Native, Asian/Pacific Islander). Tumor
grades have grade I (highly differentiated), grade II (moderately
differentiated), grade III (poorly differentiated), and grade
IV (undifferentiated). The pathological types of RCC include
renal clear cell carcinoma, renal papillary adenocarcinoma,
renal chromophobe cell carcinoma, and unclassified renal cell
carcinoma. According to the SEER operation code, the operation
was divided into local tumor excision (code 10-27), partial
nephrectomy (PN, code 30) and radical nephrectomy (RN,
code 40-80).

Univariate and Multivariate Cox
Regression Analysis
The patients were randomly divided into a training set (70%)
and a validation set (30%). In the training set, univariate
and multivariate Cox regression models were used to analyze
independent risk factors for survival of nmRCC patients,
and the hazard ratio (HR) and 95% confidence interval (CI)
were recorded.

Nomogram Construction for 1-, 3-, and
5-Year CSS
The identified independent risk factors were used to construct a
nomogram to predict 1-, 3-, and 5-year CSS in nmRCC patients.
All independent risk factors were imported into the nomogram
based on the Cox regression model. The risk weights of various
variables and the degree of risk are accurately displayed in
the nomogram.

Nomogram Validation
The calibration curve was used to test the accuracy of the
prediction model, and we used 1,000 bootstrap samples for
internal validation. The 1-, 3-, and 5-year areas under the receiver
operating curve (AUC) of the training set and the validation

set were used to test the accuracy and discrimination of the
prediction model. Similarly, we used the consistency index (C-
index) to test the discriminative power of the model.

Clinical Utility
Decision curve analysis (DCA) is a new calculation method
that estimates the net benefits under various risk thresholds
to evaluate the clinical value of the model (21). DCA was
used to assess the clinical application value of the nomogram
and compare it with T staging. In addition, according to the
nomogram score, patients were divided into a high-risk group
and a low-risk group. Kaplan-Meier curve and log-rank test
were used to compare the survival differences of patients in
different groups.

Statistical Analysis
The count data was described by frequency (%), and the chi-
square test and non-parametric you test were used to compare
groups.Measurement data (age, tumor size) were expressed using
mean and standard deviation, and a non-parametric test (U-test)
was used for differences between groups. The Cox regression
model was used to analyze the risk factors of patient survival, and
the Kaplan-Meier curve and log-rank test were used to compare
the survival differences of patients between groups. All statistical
analysis uses SPSS 26.0 and R software 4.1.0. P-value < 0.05 was
considered to be statistically different.

RESULTS

Clinical Features
According to the inclusion and exclusion criteria, a total of
27,073 patients were included in the study. These patients were
randomly divided into a training set (N = 18,990) and a
validation set (N = 8,083). Table 1 shows the clinicopathological
characteristics of all patients. The average age of the patients was
52.4 years, 20,993 patients were white (77.5%), 17,531 patients

FIGURE 1 | The flowchart of including and dividing patients.
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TABLE 1 | Clinicopathological characteristics of patients with nmRCC.

All Training set Validation set

N = 27,073 N = 18,990 N = 8,083 P

Age 52.4 (5.61) 52.4 (5.61) 52.4 (5.61) 0.724

Race 0.651

White 20,993 (77.5%) 14,754 (77.7%) 6,239 (77.2%)

Black 4,288 (15.8%) 2,985 (15.7%) 1,303 (16.1%)

Other 1,792 (6.62%) 1,251 (6.59%) 541 (6.69%)

Sex 0.644

Male 17,531 (64.8%) 12,314 (64.8%) 5,217 (64.5%)

Female 9,542 (35.2%) 6,676 (35.2%) 2,866 (35.5%)

Year of diagnosis 0.718

2010-2014 14,784 (54.6%) 10,356 (54.5%) 4,428 (54.8%)

2015-2018 12,289 (45.4%) 8,634 (45.5%) 3,655 (45.2%)

Marriage 0.152

No 11,058 (40.8%) 7,810 (41.1%) 3,248 (40.2%)

Married 16,015 (59.2%) 11,180 (58.9%) 4,835 (59.8%)

Grade 0.143

I 2,747 (10.1%) 1,894 (9.97%) 853 (10.6%)

II 12,412 (45.8%) 8,797 (46.3%) 3,615 (44.7%)

III 6,048 (22.3%) 4,196 (22.1%) 1,852 (22.9%)

IV 928 (3.43%) 651 (3.43%) 277 (3.43%)

Unknown 4,938 (18.2%) 3,452 (18.2%) 1,486 (18.4%)

T 0.172

T1a 14,571 (53.8%) 10,178 (53.6%) 4,393 (54.3%)

T1b 6,105 (22.6%) 4,314 (22.7%) 1,791 (22.2%)

T2 5,015 (18.5%) 3,557 (18.7%) 1,458 (18.0%)

T3 1,350 (4.99%) 917 (4.83%) 433 (5.36%)

T4 32 (0.12%) 24 (0.13%) 8 (0.10%)

Laterality 0.784

Left 13,090 (48.4%) 9,171 (48.3%) 3,919 (48.5%)

Right 13,983 (51.6%) 9,819 (51.7%) 4,164 (51.5%)

Histologic type 0.866

Clear cell 17,534 (64.8%) 12,270 (64.6%) 5,264 (65.1%)

Papillary 4,011 (14.8%) 2,832 (14.9%) 1,179 (14.6%)

Chromophobe 1,776 (6.56%) 1,249 (6.58%) 527 (6.52%)

Not classified 3,752 (13.9%) 2,639 (13.9%) 1,113 (13.8%)

Tumor size 46.0 (31.9) 46.1 (31.8) 45.7 (32.1) 0.323

Surgery 0.843

No 1,161 (4.29%) 811 (4.27%) 350 (4.33%)

Local tumor excision 1,042 (3.85%) 742 (3.91%) 300 (3.71%)

Partial nephrectomy 11,750 (43.4%) 8,222 (43.3%) 3,528 (43.6%)

Radical nephrectomy 13,120 (48.5%) 9,215 (48.5%) 3,905 (48.3%)

Chemotherapy 0.266

No/unknown 26,702 (98.6%) 18,740 (98.7%) 7,962 (98.5%)

Yes 371 (1.37%) 250 (1.32%) 121 (1.50%)

Radiation 0.531

No/unknown 27,015 (99.8%) 18,952 (99.8%) 8,063 (99.8%)

Yes 58 (0.21%) 38 (0.20%) 20 (0.25%)

were male (64.8%), and 16,015 patients were married (59.2%).
There were 14,784 (54.6%) patients diagnosed in 2010-2014.
Patients with tumor grades I, II, III, and IV was 2,747 (10.1%),

12,412 (45.8%), 6,048 (22.3%), and 928 (3.43%), respectively.
14,571 (53.8%) tumors with T1a stage, 17,534 (64.8%) with the
histopathological type of renal clear cell carcinoma, and the
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average tumor diameter were 46.0mm. Most patients underwent
surgery, 11,750 (43.4%) patients underwent PN, and 13,120
(48.5%) patients underwent RN. Most of the patients did not
receive radiotherapy and chemotherapy, 26,702 (98.6%) patients
did not receive chemotherapy, and 27,015 (99.8%) patients did
not receive radiotherapy. There was no significant difference
between the clinical-pathological information of the patients in
the training set and the validation set.

Univariate and Multivariate Cox
Regression Analysis
All variables were included in univariate Cox regression analysis
to screen out survival-related variables. We found that age
(HR 1.05, 95%CI 1.03-1.06, p < 0.001), sex (HR 0.7, 95%CI
0.59-0.82, p < 0.001), tumor histological grade (HR 1.41,
95%CI 1.34-1.49, p < 0.001), T stage (HR 2.55, 95%CI 2.35-
2.75, p < 0.001), tumor size (HR 1.01, 95%CI 1.01-1.01, p <

0.001), and surgery (HR 1.23, 95%CI 1.1-1.38, p < 0.001) were
related to survival prognosis. These factors were included in the
multivariate cox regression analysis and showed that all variables
were independent prognostic risk factors (Table 2). In other
words, these risk factors can be used as factors predicting CSS
in patients with nmRCC.

Nomogram Construction for 1-Year, 3-Year,
and 5-Year CSS
Based on the independent risk factors screened out by univariate
and multivariate Cox regression analysis, we constructed a
new nomogram to predict the 1-year, 3-year, and 5-year
CSS of middle-aged patients with nmRCC (Figure 2). The
nomogram showed that tumor size and T stage are the most
significant factors affecting the patient’s CSS, followed by surgery,
histological tumor grade, and the final age and sex have little
effect on the survival and prognosis of patients.

Validation of the Nomogram
The calibration curve showed that the 1-, 3-, and 5-year predicted
values are highly consistent with the actual observed values in
the training set, and the validation set are highly compatible with
the existing experimental values, suggesting that our model has
good accuracy (Figures 3A-F). The C-index in the training set
and the validation set were 0.818 (95% CI: 0.802-0.834) and 0.802
(95%CI: 0.777-0.827), respectively, indicating that our prediction
model has good discrimination. In the training set, the AUCs of
the models that predict patients’ 1-, 3-, and 5-year CSS are 0.796,
0.80, and 0.792, respectively (Figure 4A). In the validation set,
the AUCs of the models that predict the patient’s 1-, 3-, and 5-
year CSS are 0.781, 0.795, and 0.777, respectively (Figure 4B). It
also proved that the predictive model has good discrimination.

FIGURE 2 | Nomogram for 1-, 3-, and 5-year CSS of middle-aged patients with nmRCC.
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FIGURE 3 | Calibration curves of the nomogram. (A–C) For 1-, 3-, and 5-year CSS in the training set; (D– F) For 1-, 3-, and 5-year CSS in the validation set.

Clinical Application of the Nomogram
DCA suggested that the nomogram has a better clinical
application value in the training and validation set, and it is

significantly better than T staging (Figures 5A,B). In addition,
we had developed a risk stratification system. According to the
score of each patient on the nomogram, all patients were divided
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FIGURE 4 | The AUC of nomogram of 1-, 3- and 5-year in the training set (A) and validation set (B).

FIGURE 5 | DCA of the nomogram predicting CSS in the training set (A) and validation set (B). The Y-axis represents net income, and the X-axis represents threshold

probability. The green line means no patients died, and the dark green line means all patients died. When the threshold probability is between 0 and 50%, the net

benefit of the model exceeds all deaths or none.

into a low-risk group (total score ≤ 72.3) and a high-risk group
(total score > 72.3).

According to the Kaplan-Meier curve, the high-risk group’s 1-
, 3-, and 5-year CSS rates were 97.2, 91.5, and 87.2%, respectively.
The low-risk group’s 1-, 3-, and 5-year CSS rates were 99.7, 98.7,
and 97.8%. There was a significant difference in survival between
the high-risk group and the low-risk patients in the training and
validation set (Figure 6), indicating that our predictivemodel can
accurately identify high-risk patients. In addition, we compared
the survival differences of surgical methods in patients with
different risk groups. We found that patients with surgery in the
low-risk group had a higher survival rate than patients without
surgery, including PN, RN, and local tumor excision (Figure 7A).
However, although most patients chose RN in the high-risk

group, patients with PN and local tumor excision have a higher
survival rate than RN (Figure 7B).

Online Application for CSS Prediction
Based on the nomogram we constructed, we developed a web
application to predict the CSS of middle-aged patients with
nmRCC. Visit https://xiudanpan.shinyapps.io/DynNomapp/ to
enter the website. Enter the patient’s clinical characteristics, and
we can obtain the CSS of the patient at each time.

DISCUSSION

RCC is a common tumor of the urinary system in the world,
the incidence of women ranks ninth, and the incidence of
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FIGURE 6 | Kaplan–Meier curves of CSS for patients in the low- and high-risk groups in the training set (A) and validation set (B).

FIGURE 7 | Comparison of different surgical methods of Kaplan–Meier curves in the Low-risk group (A) and High-risk group (B).

men ranks seventh (22, 23). Although surgical treatment,
immunotherapy, targeted therapy, and other RCC treatment
methods are developing rapidly. However, due to the widespread
local recurrence, distant metastasis, and drug tolerance of RCC,
the prognosis of RCC patients is not very optimistic (24). To
improve RCC patients’ prognosis and quality of life, more and
more renal cancer surgery risk scoring standards and renal cancer
prognostic risk stratification have been established (25–27). The
prognosis of early RCC is relatively good. The study reported that
early asymptomatic RCC prediction is significantly better than
that of symptomatic RCC (28). With improved health awareness
and the popularization of health examinations, symptomatic
kidney cancer is rare, and patients with advanced kidney cancer
are more common. The proportion of early asymptomatic kidney
cancer is gradually increasing, with reports ranging from 46.2 to

61% (29). It may be because of the recent increase in abdominal
imaging, which is the main reason for the early diagnosis of
asymptomatic kidney cancer (30). One study found that frequent
use of CT for abdominal scans is associated with the risk of
nephrectomy (31).

This study focused on middle-aged nmRCC patients and
established a prognostic nomogram for predicting the CSS
of middle-aged nmRCC patients for the first time. Because
middle-aged patients’ remaining lives with nmRCC are still very
long, an accurate prognosis can help patients improve their
survival rate and quality of life. Our constructed nomogram
can accurately predict patients’ 1-, 3-, 5-year CSS. According
to the univariate and multivariate analysis of patients, age,
sex, histological grade, T stage, surgery, and tumor size are
independent risk factors.
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TABLE 2 | Univariate and multivariate analyses of CSS in training set.

Univariate Multivariate

HR 95%CI P HR 95%CI P

Age 1.05 1.03-1.06 <0.001 1.036 1.021-1.051 <0.001

Race

White Reference

Black 1.075 0.911-1.267 0.391

Other 0.998 0.774-1.288 0.989

Sex

Male Reference Reference

Female 0.7 0.59-0.82 <0.001 0.859 0.729-1.013 0.07

Year of diagnosis

2010-2014 Reference

2015-2018 0.89 0.73-1.08 0.225

Marriage

No Reference

Married 0.88 0.76-1.02 0.088

Grade

I Reference Reference

II 1.238 0.895-1.714 0.198 1.082 0.723-1.618 0.702

III 4.17 3.042-5.717 <0.001 2.468 1.658-3.673 <0.001

IV 14.972 10.711-20.93 <0.001 5.054 3.293-7.759 <0.001

Unknown 3.14 2.26-4.363 <0.001 1.508 0.99-2.297 0.055

T

T1a Reference Reference

T1b 1.982 1.628-2.413 <0.001 1.377 1.065-1.779 0.015

T2 6.509 5.565-7.613 <0.001 3.328 2.612-4.241 <0.001

T3 11.057 8.482-14.412 <0.001 4.861 3.46-6.83 <0.001

T4 74.388 36.566-151.329 <0.001 21.349 9.677-47.103 <0.001

Laterality

Left Reference

Right 0.93 0.81-1.08 0.345

Histologic type

Clear cell Reference

Papillary 0.909 0.758-1.091 0.308

Chromophobe 0.366 0.245-0.545 <0.001

Not classified 1.414 1.209-1.655 <0.001

Tumor size 1.01 1.01-1.01 1.004 1.003-1.005 <0.001

Surgery

No Reference Reference

Local tumor excision 0.174 0.111-0.273 <0.001 0.254 0.151-0.427 <0.001

Partial nephrectomy 0.08 0.062-0.103 <0.001 0.082 0.059-0.115 <0.001

Radical nephrectomy 0.421 0.345-0.514 <0.001 0.172 0.128-0.232 <0.001

Similar to other studies, our results also found that age is
a critical factor in the prognosis of patients, even in middle-
aged patients (32). Because the increase of age will bring about
the weakening of the immune system, further causing the
deterioration of the tumor and reducing the survival time of the
patient (33). In our study, men have a higher incidence of kidney
cancer and a higher mortality rate. Sex as a prognostic factor of
patients may be related to hormone levels in the body, such as
androgens and testosterone can cause specific cancers (34, 35).

Previous studies have found that tumor characteristics are
also critical factors for patient survival, such as histological
tumor grade, T stage, N stage, and distant metastasis (36). Our
study found that tumor size and histological tumor grade are
independent risk factors for patient prognosis. The histological
grade is related to the stemness of the tumor. Previous studies
have found that high-grade tumors are related to bladder cancer
and prostate cancer (37, 38). Because high-grade tumors are often
highly malignant and aggressive tumors. In addition, tumor size
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is also associated with the patient’s prognosis. The larger the
tumor, the higher the risk of metastasis and invasion.

The TNM staging system is a standard staging system for all
tumors. It is mainly determined by postoperative pathological
results and clinical staging (39). According to the patient’s tumor
condition (T), lymph node (N), distant metastasis (M), the cancer
is divided into different stages. Indeed, TNM staging is related
to the patient’s prognosis. The higher the stage, the worse the
patient’s prognosis. For nmRCC, there is no lymph node and
distant metastasis, and only T staging can reflect the staging of
the tumor. Our study found that the T stage is the most critical
factor affecting the prognosis of patients. The higher the T stage,
the worse the patient’s prognosis. This also proved that T staging
should be used as an essential component of the nomogram.

Tumor treatment mode is also an important prognostic
factor for patients with RCC. Surgery, as the essential treatment
method, is the most critical factor for the prognosis of renal
cancer patients (40). The nomogram showed that patients with
PN have the best prognosis, while those without surgery have
the worst prognosis. Our risk stratification system suggested
that most patients in the low-risk group choose PN and have a
high survival rate. For high-risk patients, most patients choose
RN. Although patients with RN and local tumor excision have
a higher survival rate, this may be caused by selection bias.
Because of more extensive and higher T-stage tumors, doctors
and patients are more inclined to choose RN. And these patients
will have worse outcomes.

This study used the identifiable variables in the SEER database
to construct predictions of 1-, 3-, and 5-year CSS in middle-
aged patients with nmRCC. The model has good accuracy and
discrimination. The calibration curve of the nomogram indicated
that the prediction accuracy of the prediction model is very
high. The C-index and AUC of the nomogram are about 0.8,
which stated that the discriminative accuracy of the prediction
model is about 80% and proved that the model is reliable. This
nomogram can predict the prognosis of middle-aged patients
with nmRCC and provide a reliable basis for personalized
treatment and monitoring.

This study used the identifiable variables in the SEER database
to construct predictions of 1-, 3-, and 5-year CSS in middle-
aged patients with nmRCC. The model has good accuracy and
discrimination. The calibration curve of the nomogram indicated
that the prediction accuracy of the prediction model is very
high. The C-index and AUC of the nomogram are about 0.8,

which stated that the discriminative accuracy of the prediction
model is about 80% and proved that the model is reliable. This
nomogram can predict the prognosis of middle-aged patients
with nmRCC and provide a reliable basis for personalized
treatment and monitoring.

This study also has some limitations. First of all, we did not
include some possible clinical factors, such as BMI, smoking,
drinking, hypertension, geneticmarkers, etc. But we had included
important clinical-pathological information, such as tumor stage,
surgery and other vital factors, so our results will not be too
biased. Secondly, our study was a retrospective cases study, and
there may be some deviations that are difficult to adjust. Further
prospective studies are necessary to validate our prediction

model. Finally, we only used the data in the SEER database for
internal validation, and the subsequent external proof is needed
to validate the model’s accuracy.

CONCLUSION

We found that independent risk factors for CSS in middle-aged
patients with nmRCC were age, sex, histological tumor grade,
T stage, tumor size, and surgery. We have constructed a new
nomogram to predict the CSS of patients. This model has good
accuracy and reliability and can assist doctors and patients in
clinical decision making.
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Objective: Papillary renal cell carcinoma (pRCC) is the second most common type

of renal cell carcinoma and an important disease affecting older patients. We aimed

to establish a nomogram to predict cancer-specific survival (CSS) in elderly patients

with pRCC.

Methods: Patient information was downloaded from the Surveillance, Epidemiology,

and End Results (SEER) project, and we included all elderly patients with pRCC from

2004 to 2018. All patients were randomly divided into a training cohort and a validation

cohort. Univariate and multivariate Cox proportional risk regression models were used

to identify patient independent risk factors. We constructed a nomogram based on a

multivariate Cox regression model to predict CSS for 1-, 3-, and 5- years in elderly

patients with pRCC. A series of validation methods were used to validate the accuracy

and reliability of the model, including consistency index (C-index), calibration curve, and

area under the Subject operating curve (AUC).

Results: A total of 13,105 elderly patients with pRCC were enrolled. Univariate

and multivariate Cox regression analysis suggested that age, tumor size,

histological grade, TNM stage, surgery, radiotherapy and chemotherapy were

independent risk factors for survival. We constructed a nomogram to predict

patients’ CSS. The training and validation cohort’s C-index were 0.853 (95%CI:

0.859–0.847) and 0.855 (95%CI: 0.865–0.845), respectively, suggesting that

the model had good discrimination ability. The AUC showed the same results.

The calibration curve also indicates that the model has good accuracy.
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Conclusions: In this study, we constructed a nomogram to predict the CSS of elderly

pRCC patients, which has good accuracy and reliability and can help doctors and

patients make clinical decisions.

Keywords: nomogram, papillary renal cell carcinoma, cancer-specific survival, elderly patients, SEER

BACKGROUND

Renal cell carcinoma (RCC) is the most common Renal
malignant tumor in adults, accounting for 90% of renal
tumors (1). RCC is divided into three main types based
on histological features, with papillary renal cell carcinoma
(pRCC) being the second most common type, accounting
for ∼10 to 15% of the total number of diseases. Clear
cell renal cell carcinoma (ccRCC) accounts for 70–80% of
these cases, and chromophobe renal cell carcinoma (cRCC)
remains in the rest (2, 3). According to pathological features,
pRCC is divided into two main subtypes: Type I papillary
renal cell carcinoma is characterized by unique basophilic
papillary cells. In contrast, Type II is characterized by
many papillary cells, and the cytoplasm of type II pRCC
is eosinophilic (4). It is worth noting that compared with
other RCC, pRCC has special clinical manifestations, biological
behaviors and pathological morphology, and its diagnosis and
treatment are also different from other RCCS, which are still
controversial (5, 6).

Around the world, 400,000 people are diagnosed with

RCC every year (1), and the elderly over 60 years old

account for more than 75% of the cases (7). In addition,

with the aggravation of population aging and the extension

of life expectancy, the incidence rate of renal cancer in

the elderly is also increasing year by year (8). At present,

the prognosis of pRCC is still poor, especially for advanced

patients, and there is no effective treatment (9). Therefore, it is

particularly important to judge the prognosis of elderly pRCC

patients accurately.
Traditionally, TNM staging has been regarded as the

main criteria for the prognosis of various malignant tumors.

However, it is not enough to cover the biological characteristics

of various malignant tumors nor to validate the survival

outcome (10). Other clinical variables, such as age, sex,

race, grade, surgical treatment, adjuvant therapy, and
molecular characteristics, may also impact the outcome of
cancer patients.

In recent years, the nomogram prediction model, including
UISS (11), SSIGN (12), etc., is considered to be one of the most
accurate methods for tumor prediction (13). However, there
are no relevant reports of these clinical variables on elderly
pRCC cases at the present stage (14). The objective of this
retrospective study was to investigate the clinicopathological
features associated with the prognosis of elderly pRCC patients
collected from the Surveillance, Epidemiology, and End Results
(SEER) database of the National Cancer Institute. We then used
these features to construct a nomogram to predict cancer-specific
survival of patients with pRCC.

PATIENTS AND METHODS

Data Source and Data Extraction
We downloaded clinicopathological information of all patients
with pRCC from 2004 to 2018 to the SEER database. SEER data
is the national cancer database of the United States, consisting
of 18 cancer registries covering∼30% of the national population.
Clinicopathological information and follow-up data for all cancer
patients are publicly available from the SEER database. Patient
personal information is not identifiable, and SEER database
information is publicly available, so we do not need to obtain
ethical approval and informed consent from patients. Our
research methods strictly follow the rules of SEER data.

We collected the basic information of the patient, including
age, gender, race, year of diagnosis, marital status; we collected
the patient’s clinical-pathological information, including the
tumor size, laterality, histological grade, TNM staging, surgery,
radiation therapy, chemotherapy, patients with follow-up
information including living status, the cause of death and
survival time. Inclusion criteria:(1) pathological diagnosis of
papillary renal cell carcinoma (ICD-O-3 code, 8260); (2) Age
≥65; (3) Unilateral renal tumor. Exclusion criteria:(1) TNM
staging is unknown; (2) Tumor size is unknown; (3) Unknown
surgical method; (4) Survival time<1 month. The screening flow
chart of all patients is shown in Figure 1.

The patients’ marital status was divided into married and
unmarried (single, divorced, widowed); Patients’ races were
divided into white, black, and others (American Indian /AK
Native, Asian/Pacific Islander). The years of diagnosis were
divided into between 2004 and 2010 and between 2011 and
2018. The histological grades of the patients included grade I
(well differentiated), grade II (moderately differentiated), grade
III (poorly differentiated), and grade IV (undifferentiated).
The surgical classification of patients included non-surgical
(surgical code 0), local tumor resection (surgical code 10–27),
partial nephrectomy (surgical code 30), and radical nephrectomy
(surgical code 40–80).

Nomogram Development and Validation
All patients enrolled were randomly assigned to a training
cohort (70%) or a validation cohort (30%). In the training
cohort, we used a univariate Cox regression model to pre-
screen the influencing factors of patients’ prognoses. We then
used a multivariate Cox proportional risk regression model to
determine the independent risk factors for CSS in patients.
Based on a multivariate Cox proportional risk regression model,
we constructed a new nomogram to predict CSS at 1-, 3-,
and 5 years in patients with pRCC. Then, we use a series of
validation methods to test the accuracy and discrimination of
the prediction model. We used consistency index (C-index) and
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FIGURE 1 | Flowchart for inclusion and exclusion of all patients.

area under the receiver operating curve (AUC) to test the model’s
discrimination. Calibration curves of 1,000 bootstrap samples
were used to validate the model’s accuracy.

Clinical Utility
A decision analysis curve (DCA) is a new algorithm to calculate
the net benefits of models under different thresholds. DCA was
used to validate the clinical utility of the nomogram. In addition,
we calculated the value of risk for each patient based on the
nomogram and used truncation values to divide all patients into
high-risk and low-risk groups. Kaplan-Meier (K-M) curves and
log-rank tests were used to determine differences in survival
among groups.

Statistical Analysis
Continuous variables (age, tumor size) were described by
means and variance, and comparisons between groups were
performed by chi-square or non-parametric U-tests. Count
data were expressed by frequency (%), and a chi-square test
was used to compare groups. Univariate and multivariate
Cox proportional regression models analyzed the survival and
prognostic factors. All statistical analyses were conducted by
SPSS 26.0 and R software 4.1.0. A P value <0.05 was considered
statistically significant.

RESULTS

Clinical Features
Based on inclusion and exclusion criteria, a total of 13,105
elderly patients with pRCC were included. All patients were
divided into a training cohort (N = 9250) and a validation
cohort (N = 3855). The mean age of the patients was 75.2
± 7.57 years, and there were 10936 (83.4%) white patients,
7594 (57.9%) male patients, and 7089 (54.1%) married patients.
There were 768 (5.86%) patients at grade I, 2560 (19.5%) at
grade II, 1685 (12.9%) at grade III, and 497 (3.79%) at grade

IV. There were 5794 (65.8%) patients with stage T1a, 11983
(91.4%) patients with stage N0, and 10665 (81.4%) patients with
stage M0. Local tumor excision, partial nephrectomy and radical
nephrectomy were performed in 1269 (9.68%), 1519 (11.6%),
and 4521 (34.5%) patients, respectively. 1,085 (8.28%) patients
underwent chemotherapy, and 638 (4.87%) patients underwent
radiotherapy. The clinicopathological information of all patients
was shown in Table 1, and there was no significant difference
between the training and validation cohorts.

Univariate and Multivariate Cox
Regression Analysis
We analyzed patient prognostic factors using univariate and
multivariable Cox regression models. The univariate Cox
regression model showed that age, year of diagnosis, race,
marriage, histological grade, tumor size, TNM stage, surgery,
radiotherapy, and chemotherapy influenced patients’ CSS.
Multivariate Cox regression analysis showed that age, histological
grade, TNM stage, tumor size, surgery, radiotherapy and
chemotherapy were prognostic factors affecting patients’ CSS.
Cox regression analysis results are shown in Table 2.

Nomogram Construction for 1, 3, and
5-Year CSS
The essence of the nomogram is to visualize the multivariate
Cox regression analysis. Therefore, we constructed a nomogram
based on multivariate Cox regression analysis to predict CSS in
elderly patients with pRCC (Figure 2). As shown in the figure,
tumor size and TNM stage are the biggest factors affecting the
prognosis of patients, followed by surgery, radiotherapy and
chemotherapy. In addition, age and histological grade are also
important factors. The larger the tumor, the higher the risk of
death, and the higher the TNM stage, the higher the risk of
death. Patients with partial nephrectomy had the lowest risk, and
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TABLE 1 | Clinicopathological characteristics of elderly patients with pRCC.

All Training cohort Validation cohort

N = 13105 N = 9,202 N = 3,903 p

Age 0.024

65–74 6,847 (52.2%) 4,762 (51.7%) 2,085 (53.4%)

75–84 4,432 (33.8%) 3,110 (33.8%) 1,322 (33.9%)

≥85 1,826 (13.9%) 1,330 (14.5%) 496 (12.7%)

Race 0.404

White 10,936 (83.4%) 7,658 (83.2%) 3,278 (84.0%)

Black 1,444 (11.0%) 1,036 (11.3%) 408 (10.5%)

Other 725 (5.53%) 508 (5.52%) 217 (5.56%)

Sex 0.337

Male 7,594 (57.9%) 5,307 (57.7%) 2,287 (58.6%)

Female 5,511 (42.1%) 3,895 (42.3%) 1,616 (41.4%)

Marital 0.002

Married 7,088 (54.1%) 4,885 (53.1%) 2,203 (56.4%)

Unmarried or Domestic Partner/Single 1,874 (14.3%) 1,341 (14.6%) 533 (13.7%)

Separated/Divorced/ Widowed 4,143 (31.6%) 2,976 (32.3%) 1,167 (29.9%)

Year of diagnosis 0.683

2004–2010 6,125 (46.7%) 4,312 (46.9%) 1,813 (46.5%)

2010–2018 6,980 (53.3%) 4,890 (53.1%) 2,090 (53.5%)

Laterality 0.660

Left 6,440 (49.1%) 4,510 (49.0%) 1,930 (49.4%)

Right 6,665 (50.9%) 4,692 (51.0%) 1,973 (50.6%)

Grade 0.652

I 768 (5.86%) 531 (5.77%) 237 (6.07%)

II 2,560 (19.5%) 1,785 (19.4%) 775 (19.9%)

III 1,685 (12.9%) 1,167 (12.7%) 518 (13.3%)

IV 497 (3.79%) 347 (3.77%) 150 (3.84%)

Unknown 7,595 (58.0%) 5,372 (58.4%) 2,223 (57.0%)

T 0.925

T1a 5,794 (44.2%) 4,070 (44.2%) 1,724 (44.2%)

T1b 3,011 (23.0%) 2,121 (23.0%) 890 (22.8%)

T2 1,606 (12.3%) 1,137 (12.4%) 469 (12.0%)

T3 2,607 (19.9%) 1,813 (19.7%) 794 (20.3%)

T4 87 (0.66%) 61 (0.66%) 26 (0.67%)

N 0.295

N0 11,983 (91.4%) 8,430 (91.6%) 3,553 (91.0%)

N1 1,122 (8.56%) 772 (8.39%) 350 (8.97%)

M 0.724

M0 10,665 (81.4%) 7,481 (81.3%) 3,184 (81.6%)

M1 2,440 (18.6%) 1,721 (18.7%) 719 (18.4%)

Tumor size 0.963

<40mm 6,109 (46.6%) 4,284 (46.6%) 1,825 (46.8%)

41–80mm 4,680 (35.7%) 3,293 (35.8%) 1,387 (35.5%)

>80mm 2,316 (17.7%) 1,625 (17.7%) 691 (17.7%)

Surgery 0.125

No 5,796 (44.2%) 4,110 (44.7%) 1,686 (43.2%)

Local tumor excision 1,269 (9.68%) 911 (9.90%) 358 (9.17%)

Partial nephrectomy 1,519 (11.6%) 1,048 (11.4%) 471 (12.1%)

Radical nephrectomy 4,521 (34.5%) 3,133 (34.0%) 1,388 (35.6%)

Chemotherapy 1.000

No/Unknown 12,020 (91.7%) 8,440 (91.7%) 3,580 (91.7%)

Yes 1,085 (8.28%) 762 (8.28%) 323 (8.28%)

Radiation 0.757

No/Unknown 12,467 (95.1%) 8,758 (95.2%) 3,709 (95.0%)

Yes 638 (4.87%) 444 (4.83%) 194 (4.97%)
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TABLE 2 | Proportional subdistribution hazard analyses of CSS in training cohort.

CSS

HR 95%CI P

Age

65–74

75–84 1.20 1.09–1.32 <0.001

≥85 1.50 1.32–1.7 <0.001

Race

White

Black 0.94 0.81–1.08 0.35

Other 0.89 0.75–1.06 0.18

Sex

Male

Female 0.87 0.79–0.95 0.001

Marital

Married

Unmarried or Domestic Partner/Single 1.05 0.93–1.19 0.4

Separated/Divorced/ Widowed 1.10 1–1.21 0.56

Year of diagnosis

2004–2010

2010–2018 0.88 0.81–0.95 0.002

Laterality

Left

Right 1.08 1–1.17 0.057

Grade

I

II 0.95 0.73–1.23 0.7

III 1.37 1.06–1.78 0.017

V 1.76 1.31–2.37 <0.001

Unknown 1.19 0.92–1.52 0.18

T

T1a

T1b 1.56 1.19–2.04 0.001

T2 2.00 1.54–2.6 <0.001

T3 2.38 1.87–3.04 <0.001

T4 2.03 1.24–3.32 0.005

N

N0

N1 1.49 1.32–1.68 <0.001

M

M0

M1 4.32 3.84–4.87 <0.001

Tumor size

<40mm

41–80mm 1.26 0.99–1.59 0.06

>80mm 1.44 1.13–1.82 0.003

Surgery

No

Local tumor excision 0.47 0.37–0.58 <0.001

Partial nephrectomy 0.30 0.24–0.39 <0.001

Radical nephrectomy 0.49 0.42–0.56 <0.001

Chemotherapy

No/Unknown

Yes 0.99 0.88–1.12 0.92

Radiation

No/Unknown

Yes 1.20 1.04–1.38 0.013

patients without surgery had the highest risk. In addition, the
older the patient, the higher the risk of death.

Validation of the Nomogram
We first use the C-index to validate the discrimination of
the prediction model. In the training cohort and validation
cohort, the C-index was 0.853 (95%CI: 0.859–0.847) and 0.855
(95%CI: 0.865–0.845), respectively. The results showed that the
nomogram had good discrimination. The calibration curve was
also used to validate the accuracy of the model. The calibration
curve showed that the predicted value of the nomogram was
highly consistent with the actual observed value, indicating that
the prediction model had good accuracy (Figure 3). In the
training cohort, the nomogram’ 1-, 3- and 5-year AUC values
were 91.5, 91.5 and 90.2, respectively. In the validation cohort,
the nomogram’ 1-, 3- and 5-year AUC values were 92.1, 91.2
and 90.3, respectively. It shows that the nomogram has good
discrimination (Figure 4).

Clinical Application of the Nomogram
DCA was used to test the clinical application value of the
predictionmodel. DCA showed that the nomogram had potential
clinical application value and was more practical than the
traditional TNM staging (Figure 5). Based on the nomogram,
we calculated the risk values of all patients and divided them
into the high-risk group using ROC cut-off values (total score
> 95.7) and the low-risk group (total score ≤95.7). The K-M
curve showed that the survival rate of patients in the high-risk
group was significantly lower than that in the low-risk group
(Figure 6). In the high-risk group, 1-, 3-, and 5-year survival
rates were 64.7, 47.9, and 42.2%, respectively. In the low-risk
group, 1-, 3-, and 5-year survival rates were 98.4, 95.7, and 92.2%,
respectively. In addition, we analyzed surgical procedures in the
high-risk and low-risk groups. In the low-risk group, survival
was highest in patients who received partial nephrectomy and
lowest in radical nephrectomy. In the high-risk group, survival
was highest who underwent radical nephrectomy and lowest for
those who did not (Figure 7).

DISCUSSION

RCC accounts for about 2% of all cancer diagnoses and deaths
worldwide, with higher rates in developed countries. RCC is
the most common type of renal malignancy, accounting for
more than 90%. pRCC accounts for 10–20% of all renal cell
carcinomas. However, compared with other types of RCC, pRCC
lacks specific clinical manifestations and associated symptoms,
and more importantly, pRCC does not have typical radiographic
findings. In addition, some elderly patients may present with
perirenal abscesses due to weakened immunity. It brings great
difficulties to the diagnosis and treatment of pRCC for clinicians
(15). According to recent reports, the overall prognosis of
pRCC is slightly better than that of clear cell renal carcinoma
and chromophobe renal carcinoma (16). However, in clinical
practice, in addition to TNM staging, there is currently a lack of a
model that can accurately predict the prognosis of elderly patients
with pRCC.
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FIGURE 2 | The nomogram for predicting 1-, 3-, and 5-year CSS in elderly patients with pRCC.

Nomogram is a data-based graphical computing tool that can
estimate the risk of a disease based on staging systems such as the
American Joint Commission on Cancer (AJCC) and other key
risk factors related to prognosis (17). Compared with traditional
TMN staging, nomogram has better accuracy in prognostic
prediction and can provide better advice and help for clinicians
in diagnosis and treatment (18). To our knowledge, there have
been no reports on the prognosis of elderly patients with pRCC.
In addition, due to the relatively low incidence of pRCC, it is
difficult to collect a large sample size for single-center studies
of this disease to draw reliable conclusions (19). Therefore, it is
particularly important to establish a more reliable and accurate
predictive model for pRCC in the elderly. This study collected
data from the SEERDatabase, a large sample database established
in 1973. At present, the database covers 18 countries and regions,
effectively avoiding the lack of sample size and single type (20).

In this study, we established and validated a new nomogram
to accurately predict CSS in elderly pRCC. Previous studies have
found that pRCC has a higher incidence and worse survival rate
in elderly patients (21). Our study also confirmed that age is a
key factor in the development of pRCC in the elderly. As we

age, it is well known that the risk of genetic mutations leading
to cancer increases. Studies have shown that age plays a key role
in the survival rate of various cancers (22, 23). Huang et al.
found by propensity matching comparison that pRCC had a
significantly worse prognosis than ccRCC in patients aged ≤45
years (24). Su et al. collected the SEER database of pRCC patients
who underwent nephrectomy from 2010 to 2016 for analysis.
They confirmed that age is a key factor influencing the all-cause
mortality of pRCC (25). The study of Nelson et al. also found
that the survival rate of mRCC patients aged ≥75 years was
significantly lower than that of patients aged < 75 years (26).
There is no consensus on defining the age of elderly patients, but
more than 60% of initial cancer diagnoses and more than 70% of
cancer deaths occur in patients over 65 years old (8). To improve
the accuracy and representativeness of the prediction model,
pRCC patients over 65 years old were included in this study.

At the same time, we found that tumor size is a major
risk factor affecting the prognosis of pRCC in the elderly, and
larger tumor occurrence often suggests poor prognosis, which
is consistent with the results of previous studies. Hutterer et al.
previously established a nomogram to predict the survival rate of
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FIGURE 3 | Calibration curve of the nomogram. (A) Calibration curves of 1 -, 3 - and 5-year CSS in the training cohort; (B) calibration curves of 1-, 3-, and 5-year

CSS in the validation cohort.

FIGURE 4 | AUC for predicting 1-, 3-, and 5-year CSS in the training cohort (A) and the validation cohort (B).

RCC and found that tumor size was an important risk factor (27).
Zastrow et al. also found that tumor size was a risk factor for the
long-term survival of pRCC (28).

As is known to all, the TNM staging system is a common
method for clinical evaluation of various malignant tumors,
which helps to judge the prognosis of cancer patients and guide
clinicians to take better treatment (29, 30). However, only the size
of the tumor, the presence of lymph node metastasis, and distant
metastasis were used as criteria. Age, marital status, surgical
method, chemotherapy and radiotherapy, and other important
factors that have been proven to affect cancer patients’ overall
survival rate (OS) were ignored (31). Our study found that in

elderly patients undergoing pRCC surgery, partial nephrectomy
(PN) had the best prognosis, radical nephrectomy (RN) was
intermediate, and local tumor resection had the worst prognosis.
It is consistent with most research conclusions. Shum et al.
showed that in T2 stage malignancies, the OS of PN was
significantly better than that of RN (32). Hellenthal et al.
collected RCC patients from 1988 to 2005 in the SEER database.
After analysis, it was concluded that PN could still significantly
improve OS even with tumor metastasis, benefiting mRCC
patients (33). In recent years, postoperative radiotherapy has
been gradually included in various cancer guidelines because
of its good effect as a key means of postoperative treatment.
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FIGURE 5 | DCA of the nomogram in the training cohort (A) and the validation cohort (B). The Y-axis represents a net benefit, and the X-axis represents threshold

probability. The green line means no patients died, and the dark green line means all patients died. When the threshold probability is between 0 and 100%, the net

benefit of the model exceeds all deaths or none.

FIGURE 6 | Kaplan-Meier curves of patients in the low-risk and high-risk groups in the training cohort (A) and the validation cohort (B).

RCC is sensitive to radiotherapy, and the strategy has been
agreed upon.

Interestingly, we found that postoperative chemotherapy
did not improve CSS in elderly patients with pRCC,
which is consistent with Tachibana and De Vries-Brilland
et al. The former retrospectively analyzed RCC patients
who received nivolumab and ipilimumab as a first-line
treatment between December 2015 and May 2020 and

found that the chemotherapy regimen achieved good
results in ccRCC, but intermediate results in pRCC (34).
The latter summarized the treatment methods of pRCC
and concluded that the existing chemotherapy regimens
were not sensitive to pRCC. The combination of immune
checkpoint inhibitors (ICI) and tyrosine kinase inhibitors
(MET) may be a new direction for the treatment of pRCC in
the future (35).
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FIGURE 7 | Kaplan-Meier curves of patients with different surgery in the low-risk group (A) and high-risk group (B).

Finally, the newly constructed nomogram model for
predicting CSS in elderly patients with pRCC includes many
factors, such as diagnosis age, tumor size, TNM grade, Fuhrman
grade, and operation at the primary site, which is convenient
for clinical information collection. In summary, the nomograms
we developed can accurately predict CSS at 1, 3, and 5 years in
patients with pRCC. Furthermore, we used AUC, C-index, and
DCA to validate its accuracy and predictive power for elderly
papillary renal cell carcinoma.

However, there are still some limitations in this study.
First of all, the SEER database does not include BMI,
smoking, alcohol consumption, etc. These are important
factors affecting patients’ survival. However, we included
the basic patient information cohort, tumor information,
and other key factors. Secondly, because this study is
retrospective, there is inevitable selection bias. Finally,
the prediction model is only validated internally, and
further external validation is necessary to validate the
model’s accuracy.

CONCLUSION

In this study, we explored the prognostic factors of
elderly pRCC patients and the patient’s age, histological
grade, TNM stage, tumor size, surgery, radiotherapy,
and chemotherapy as independent risk factors affecting
patients CSS. We constructed a nomogram to predict
the CSS of elderly pRCC patients with good accuracy
and reliability, which can help doctors and patients make
clinical decisions.
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Breast cancer is among the most common types of cancer in women and under the

cases of misdiagnosed, or delayed in treatment, the mortality risk is high. The existence

of breast microcalcifications is common in breast cancer patients and they are an effective

indicator for early sign of breast cancer. However, microcalcifications are often missed

and wrongly classified during screening due to their small sizes and indirect scattering in

mammogram images. Motivated by this issue, this project proposes an adaptive transfer

learning deep convolutional neural network in segmenting breast mammogram images

with calcifications cases for early breast cancer diagnosis and intervention. Mammogram

images of breast microcalcifications are utilized to train several deep neural network

models and their performance is compared. Image filtering of the region of interest

images was conducted to remove possible artifacts and noises to enhance the quality

of the images before the training. Different hyperparameters such as epoch, batch

size, etc were tuned to obtain the best possible result. In addition, the performance

of the proposed fine-tuned hyperparameter of ResNet50 is compared with another

state-of-the-art machine learning network such as ResNet34, VGG16, and AlexNet.

Confusion matrices were utilized for comparison. The result from this study shows that

the proposed ResNet50 achieves the highest accuracy with a value of 97.58%, followed

by ResNet34 of 97.35%, VGG16 96.97%, and finally AlexNet of 83.06%.

Keywords: transfer learning, region of interest (ROI), intervention, machine learning, artificial intelligence

INTRODUCTION

In 2020, World Health Organization (WHO) reported 2.3 million cases of breast cancer worldwide
with over 685,000 fatalities, making it among the highest fatal diseases in the world. Although
extensive efforts on breast cancer screening have shown promising results for early intervention,
localizing breast lesions has remained a challenge. This is because detection of breast lesions on
mammogram images heavily depended on the radiologist’s skill (1), which proved to be time
consuming, and at times lacked the accuracy and precision Thus, this factor poses a serious
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challenge onto rapid diagnosis process which in the case of breast
cancer, late detection may prove terminal. Advancements and
involvement of artificial intelligence (AI) in the healthcare sector
have improved accuracy and assisted radiologists by minimizing
the rates of false positives and false negatives during clinical
diagnosis. Deep Convolutional Neural Networks (D-CNN), a
subsidiary of AI, have advanced to the point where they can
automatically learn from enormous picture data sets and detect
abnormalities in mammograms such as mass lesions (2). D-
CNN has quickly become the preferred approach for evaluating
medical images to aid the early detection of breast cancer
diseases, which resulted in a favourable prognosis and a higher
percentage of survival (3, 4).

The presence of microcalcification during breast cancer
screening is often missed due to its small size which is
approximately 0.1–1.0mm. In addition, it may be scattered
and less visible to naked eyes due to the surrounding dense
breast tissues. Different from microcalcification, breast lump
has a relatively high predictive value for malignancy (5, 6).
Calcifications may appear as white dots with specific patterns,
size, density, and location on mammogram images, which might
signify breast cancer or precancerous alterations in breast tissue
(7). Even with visible calcifications, most lesions are not recalled
immediately but identified as interval cancer in subsequent
screening due to the poor sensitivity of screening for malignant
calcifications (8). This is due to the low contrast and unclear
boundaries on conventional images of breast mammograms (9).
According to WHO, the survival probabilities of breast cancer
patients may reach an astonishing number of 90% if the disease
is identified and treated effectively in early stages.

Generally, in terms of detection, diagnosis, and treatment,
many healthcare providers are faced with problems such
as a lack of human resources and technological capabilities
to deliver timely care to breast cancer patients (10). This
problem worsens in developing and under-developed countries,
where inexperienced radiologists are faced with a myriad
number of mammogram images during screening. Therefore, the
emergence of current computer-aided diagnosis (CAD) systems
aids breast cancer diagnosis by allowing more comprehensive
and objective analyses to be performed on many mammogram
images. However, the CAD system is mostly based on hand-
crafted features. The prognostic choice on the categorization
of microcalcification clusters is mostly based on extracting
useful handmade characteristics and then creating a highly
discriminative classifier on top of them, which frequently
yielded false results (11). Also, the installation of a sophisticated
computer program in healthcare usually necessitates a multi-
pronged strategy as it often involves political, economic, and
social issues (12, 13).

The use of AI as an automated image classification tool
has increased over the years as it allows automated disease
diagnosis, characterization of histology, stage, or subtype, and
patient classification based on therapeutic outcome or prognosis
(14). Many types of diseases have incorporated the use of AI
to form an automated prediction system. As such, the use
of the Hippocampal Unified Multi-Atlas Network (HUMAN)
algorithm to diagnose Alzheimer’s disease (AD) (15). Current

algorithms normally utilize transfer learning techniques or pre-
trained CNNs to reduce the cost and time of training the network
to allow automatic extraction of features at various levels of
abstraction, features, and objects from raw images (16).

In the proposed work, we propose an end-to-end machine
learning technique for automated breast cancer diagnosis
using a pre-trained network to discriminate microcalcification,
specifically a novel D-CNN architecture with adaptive transfer
learning. In this study, curated Breast Imaging Subset of Digital
Database for Screening Mammography (CIBS-DDSM) dataset
from The Cancer Imaging Archive (TCIA) data portal which
contains ROI images of digital mammography in grayscale will
be utilized to facilitate training of the model. Our work utilizes
CNN networks to automatically extract features of benign and
malignant microcalcification instead of directing the machine to
learn from locations identified via ∗.csv files. A series of pre-
processing algorithms are introduced to ensure the images were
well prepared before beginning the process of feature extraction
to enhance the accuracy of the model.

The primary contribution of the work involves; (i) proposing
end-to-end machine learning architecture to diagnose breast
cancer using microcalcifications’ characteristics, (ii) performing
pre-processing operations for the collected mammogram images
before classification using deep learning algorithms, and (iii)
proposing an adaptive transfer learning technique of CNN
to build a breast cancer image classifier. The proposed work
involves four state-of-the-art deep learning architectures such as
ResNet38, ResNet50, VGG16, and AlexNet, and the performance
of the models is compared to evaluate their performance.

Related Works
The introduction of digital mammography images has made
deep learning approaches for breast cancer diagnosis possible
in recent years (17, 18). Significant research which involves the
use of machine learning, specifically D-CNN-based supervised
machine learning for microcalcification detection has been
performed. CNNs are able to achieve higher detection accuracy
as compared to CAD models by delivering quantitative analysis
of suspicious lesions (19). Table 1 depicts the examples of
studies that involve the classification of microcalcification of
the breast into malignant and benign cases in recent years,
including the model used and the accuracy achieved. Existing
models of breast image classifiers for microcalcification detection
are shown in Table 1. Based on Table 1, the highest accuracy
for research breast image classifier involving VGG16 models is
94.3%, AlexNet is 88.6%, Resnet34 is 76.0%, and Resnet50 is
91.0%. Logic-based supervised learning such as Random Forest
also managed to achieve an accuracy of 85.0% while Support
Vector Machine (SVM) reached 95.8%.

As compared to learning algorithms such as SVM, CNN
has gained its popularity due to higher accuracy and greater
flexibility when it comes to tuning of hyperparameters. CNNs
are feed-forward neural networks that are fully connected and
are exceptionally good at lowering the number of parameters
without sacrificing model quality. Since images have a high
dimensionality as each pixel is considered a feature, it suits the
capabilities of CNNs mentioned above.
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TABLE 1 | Models of breast image classifier for microcalcification detection.

References Base model Type of image Database Accuracy

Wang et al. (20) Support vector machine (SVM) Histopathology Private 95.8%

Fadil et al. (21) Random Forest Mammography DDSM 85.0%

Tsochatzidis et al. (22) AlexNet Mammography CBIS-DDSM 75.3%

VGG16 71.6%

ResNet50 (training from scratch) 62.7%

ResNet50 (pre-trained network) 74.9%

Xiao et al. (23) 2D ResNet34 with anisotropic 3D ResNet34 Digital breast Tomosynthesis (DBT) Private DBT 76.0%

Li (24) Modified VGG16 Mammography Private, DDSM 90.0%

Khamparia et al. (25) Hybrid ImageNet Modified VGG16 Mammography DDSM 94.3%

Modified VGG16 89.8%

ResNet50 85.1%

AlexNet 83.4%

Heenaye-Mamode Khan

et al. (26)

ResNet50 Mammography CBIS-DDSM, UPMC 88.0%

Cai et al. (27) AlexNet Mammography Private 88.6%

Hekal et al. (28) Modified AlexNet Mammography CBIS-DDSM 84.0%

Modified ResNet50 91.0%

Private = SunYat-sen University Cancer Center (Guangzhou, China) (SYUCC) and Nanhai Affiliated Hospital of Southern Medical University (NAHSMU) (Foshan, China).

FIGURE 1 | Workflow of the proposed design.

As more models surfaced, accuracy has become one of the
main aspects to compare the performance of models. Works
of (22) highlighted that the accuracy for a pre-trained model

is higher as compared to the scratch model. The accuracy for
ResNet50 has achieved 62.7% for scratch model and 74.9% for
pre-trained model respectively with the utilization of dataset
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TABLE 2 | Dataset distribution.

Image Calcified benign ROI Calcified malignant ROI

Original ROI image 1,077 577

Rotated at 90 degrees 1,077 577

Rotated at 180 degrees 1,077 577

Rotated at 270 degrees 1,077 577

Total number of images 4,958 1,653

FIGURE 2 | Code section for computing PSNR and MSE values based on

filtered image and original image. “output” represents the finalized filtered

image that will be used to compare with the original image, in this case is

img_new1.

from CBIS-DDSM. Ensemble modelling has also been observed
in (24, 25, 27), where fusion or modification of existing models
has been performed to produce a better model. For instance,
the fusion of Modified VGG and ImageNet is observed in
works of Khamparia et al. (25). This hybrid model enhances
the performance of the model and achieved an astonishing
accuracy of 94.3% in breast image classification (25). On the other
hand, AlexNet based CNN model that is modified with multiple
layer architecture and drop-out strategy together with the fusion
of “off-the-shelf ” model from ImageNet observed in (27) has
demonstrated the ability to get robust and spatially invariant
features, achieving an accuracy of 88.6% for morphologically
filtered CNN feature.

Inspired by the promising results produced by the deep
learning neural network, our research seeks to propose an
end-to-end novel adaptive transfer learning convolutional
neural network to discriminate microcalcifications of breast
mammograms into benign or malignant cases. Most of the
methods used were based on the Mammographic Image Analysis
Society (MIAS) and InBreast dataset, which uses handcrafted
features for machine learning. This research utilizes the CIBS-
DDSM dataset obtained from TCIA data portal, which provides a
higher resolution and number of images for machine learning to
enhance the accuracy of diagnosis. Instead of training the model
using a whole mammogram image, the model in this research
is trained by using ROI images of calcifications, allowing the
model to extract features from a focused area. The main goal
of this research is to detect and categorize microcalcification
as accurately as possible to aid radiologists to prepare the

TABLE 3 | Parameters of data augmentation.

Parameter Function Description

Flipping do_flip (), flip_vert () Flips the images at vertical and

horizontal axis randomly

Zooming max_zoom () Zooms the images at certain

scale randomly

Rotating max_rotate () Rotates the images at certain

degree randomly

Lighting max_lighting (), p_lighting() Changes the contrast of image

randomly controlled by

max_lighting () with random

probability ()

diagnosis report rapidly. The model is beneficial to be applied in
a clinical setting.

MATERIALS AND METHODS

The proposed deep learning model is developed in Google
Collab’s platform with an OpenCV library of programming
functions. Data acquisition is performed by downloading
the breast mammography ROI images with microcalcification
from the TCIA database. Micro-calcified images of the breast
mammography were categorized into benign and malignant
cases based on the information given in the ∗.csv files from
TCIA. Moving on, the downloaded images were pre-processed to
remove artifacts and noises. Since the size of microcalcification
is small and scattered in the mammogram, a conventional
D-CNN model often failed to classify and often resulted in
false positive or false-negative results. Therefore, we propose
an end-to-end machine learning technique, which consists two
stages of pre-processing technique, specifically implementation
of artifacts removal to remove the existence of artifacts surfaced
and filtering of images to lower the noise level of images prior
to implementation of machine learning. The focus of work on
enhancing quality of images were performed automatically upon
identifying threshold value of breast region using Google Colab’s
platform. This step is crucially important to build and train a
model with quality information of features extracted from the
image itself.

A D-CNN model is developed with finely tuned
hyperparameters. To categorize the mammogram images
into benign and malignant cases, a CNN model is utilized as a
baseline. Transfer learning is used instead of training CNN from
scratch. As such, different CNN models pre-trained with torch
vision from the fastai library will be transferred to conduct the
classification. To get the best possible result, hyperparameters
such as the number of extra layers, learning rate, batch size,
and epochs will be tuned. Finally, the confusion matrix will be
utilized to assess the performance of the model to get the best
possible accuracy. The overall algorithm for automated breast
microcalcification classification is presented in Figure 1.
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FIGURE 3 | Learning curve plotted using learn.recorder.plot(). Y-axis depicts

the learning loss while X-axis depicts the learning rate. Red dot shows the

minimum gradient of the learning curve.

Materials and Preparation of Dataset
The following are the materials needed for the work of
this research:

1. Intel Core i7-4710 HQ, 3.5 GHz, 1 TB SSD, 4 GB RAM,
2. Google Colaboratory Platform (Python OpenCV language

and fastai Library)
3. Breast Image dataset CIBS-DDSM from TCIA.

The CIBS-DDSM dataset of ROI microcalcification images for
this research is obtainable from Cancer Imaging Archive (TCIA).
The prepared dataset consists of 1,077 benign and 577 malignant
ROI images in various sizes in DICOM format. Data Retriever
software was installed to download radiological pictures from
the TCIA Radiology Portal and was later fed into DICOM
software to be saved in ∗.jpeg format with a size of 224 × 224
to achieve uniformity in feature learning. The total number of
images for benign and malignant as was multiplied by rotation at
90◦, 180◦, and 270◦, resulting in 4,958 mammogram images for
calcified benign ROI and 1,653 mammogram images for calcified
malignant ROI. Table 2 shows the distribution of the dataset
utilized in this study.

Pre-processing of Dataset
Before any pre-processing work was performed, the notebook on
Google Collab was set to be under GPU Runtime to allow heavier
computational work. Prior to training CNNs, the images will be
pre-processed to remove the artifacts and improve the contrast by
removing noise.Otsu SegmentationMethod andMorphologicalEx
Method presented by (29) were utilized to remove the artifacts
that may be present at the image. Otsu Segmentation Method
works on grayscale images and involves global thresholding
or local thresholding to classify pixels values (30, 31). For
instance, we denote mammogram image as function of G(x, y)
and intensity value of I {I = 0, 1, 2, . . . I−1}. The variance of
these two variables can be computed by using Equation (1).

σ
2
m=θ

(th)
1 · σ

2
1 (th)+θ2

(th) · σ 2
2 (th) (1)

whereby,

θ1 (th)=
∑

th
i=1P(i) (2)

θ2(th) =
∑

i=th+ 1P(i) (3)

P (i) denotes the probability of gray-level i occurred, given as
P (i) =

ni
n . In which, the number of pixels with a certain gray-

level I is denoted by i. The image’s total number of pixels is
n. Threshold value th, which determines the class probability
of pixels, is denoted as θ1 and θ2, and the mean of the class
is calculated as u1and u2 as in Equations (4), (5) below. The
threshold value that is predetermined earlier, th, which falls
within the range of 0 < th < I will be utilized to divide the
original mammogram image into two segments according to the
intensity, which are [0, th] and [th + 1, I], where I is the
maximum pixel value (255).

u1(th) =
∑

th
i= 1

iP(i)

θ1(th)
(4)

u2 (th)=
∑

i=th

iP(i)

θ2 (th)
. (5)

The value of interclass variance and global mean-variance can
then be computed by using Equations (6) and (7), respectively.

σ
2
1 (th) =

∑

th
i=1[1−u1 (th ) ]2

P(i)

θ1(th)
(6)

σ
2
2 (th) =

∑

I
i=th+1[1−u2 (th) ]2

P(i)

θ2(th)
. (7)

The optimum threshold value is identified to achieve the
best performance in distinguishing the target class from the
background class, which is mostly utilized in mammography
image binarization. Before executing the procedures for breast
cancer detection segmentation and feature extraction, this
thresholding approach is employed as a pre-processing technique
(32, 33).

On the other hand, simple logical operations on local
groupings of pixels, which is also defined as morphological
operators are utilized in this research. Two of the main
morphological operations used are dilation and erosion, which
are shown in Equations (8) and (9), respectively (34). The binary
image is denoted as X while the structuring element is denoted as
B. The term Bx can be understood as translation of B by the vector
x. Erosion reduces the size of an image by removing a layer of
pixels from the inner and outer boundaries of regions. Dilation,
on the other hand, has the reverse effect of erosion in that it adds a
layer of pixels to both the inner and outer boundaries of regions.
Many functions, such as opening and closing, are derived from
these operators. When a picture is opened, it undergoes erosion
and then dilation, and when it is closed, it undergoes dilation and
then erosion (34).

X ⊖ B =
{

x
∣

∣B1
x⊂ X

}

(8)

X ⊕ B =
{

x
∣

∣B2
x⊂Xc

}

. (9)
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Adaptive median filter, mean filter and median filter were
included in this research. The performance of filter was assessed
according to Peak Signal to Noise Ratio (PSNR) andMean Square
Error (MSE). PSNR value is closely linked with MSE as it is
computed based on MSE values, as in Equation (10).

PSNR = 20log10(
MAXf
√
MSE

) (10)

MAXf is the maximum signal value that exists in the original
image. Lower MSE indicates better filtration as MSE is the
squared average of the “errors” between the actual image and the
noisy image. The best filter will be selected based on the highest
PSNR and lowest MSE value. The pseudocode of calculatingMSE
and PSNR value is shown in Figure 2.

Upon identifying the best performing filter, the filter will be
applied to the images which has undergone artifacts removal
process to further remove the noises of the image for clarity
enhancement of the images, therefore completing the two-stages
of optimization. The enhanced images will replace the original
images to store the image in the same file location for machine
learning. Before finalizing the two-stages of optimization process,
the enhanced images will be inspected again to make sure the
artifacts have been removed completely before proceeding to the
next stage.

Deep CNNs Architecture
Prior training, valid_pct () splits the dataset into training
and testing sets at a particular ratio of 0.80 testing sets and

0.20 validation set. In total, there are 5,288 training images
and 1,323 validation images. Data augmentation technique was
implemented on the training set to avoid over-fitting by including
get_transforms () function to increase the volume of the dataset
by artificially producing new training data from the current data.
Parameters of data augmentation is tabulated in Table 3.

Hyperparameters were chosen manually in each set of tests
to identify the best possible accuracy on binary classification.
Hyperparameters that is tuned involves number of layers,
learning rate, batch size as well as epoch. ADAM optimization
algorithm was included to enhance the effectiveness of the model
in to computing adaptive learning rate in complicated network
architectures. In addition to that, ReLu is activated to prevent
the computation required to run the neural network from
growing exponentially. Batch Normalization is also activated
to enable each layer of the network to conduct learning more
independently by re-centering and re-scaling the layers’ inputs
to improve the speed and stability of the network.

TABLE 4 | PSNR and MSE values for adaptive median filter, median filter and

mean filter.

Parameter Adaptive median filter Median filter Mean filter

PSNR 42.3863 37.5911 36.9511

MSE 3.7536 11.3233 13.1213

FIGURE 4 | (A) Comparison on application of artifacts removal with implementation of Otsu Segmentation Method and MorphologicalEx Method for a sample of full

breast mammogram image. (B) Comparison on before and after application of adaptive median filter.
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TABLE 5 | Output of VGG16 model.

Test Batch size Learning rate Epoch Training loss Validation loss Error rate Accuracy

1 32 8e-6,1e-4 15 42.7083 43.9302 23.4493 76.5507

2 64 8e-6,1e-4 15 76.4934 50.4612 22.4917 77.5083

3 64 8e-6,1e-4 30 26.2982 45.7910 18.0787 81.9213

4 32 2e-6,1e-3 15 30.7861 32.0147 16.4522 83.5478

5 64 2e-6,1e-3 15 25.4205 25.4679 10.9682 89.0318

6 64 2e-6,1e-3 30 7.5000 8.4696 3.0257 96.9743

TABLE 6 | Output of ResNet34 model.

Test Batch size Learning rate Epoch Training loss Validation loss Error rate Accuracy

7 32 8e-6,1e-4 15 42.2252 43.1934 21.4070 78.5930

8 64 8e-6,1e-4 15 41.1351 42.8464 21.5582 78.4418

9 64 8e-6,1e-4 30 12.6166 36.0723 16.3888 83.6112

10 32 2e-6,1e-3 15 35.0093 30.7748 14.2965 85.7035

11 64 2e-6,1e-3 15 26.2728 26.9305 10.8926 89.1074

12 64 2e-6,1e-3 30 7.6075 9.5925 2.6475 97.3525

Pretrained network was downloaded from the fastai library
using create_cnn (). The first layer of the model was trained
by using learn.fit_one_cycle (). Later, the learning rate for the
model was determined with the aid of learn.lr_find () and
learn.recorder. plot (), which illustrates the learning curve of
the model after training the first layer and suggests the lowest
gradient of the learning curve. The example of learning curve
plotted by using learn.recorder. plot () is shown in Figure 3.

Moving on, all layers of the model were unfreeze using
learn.unfreeze () to allow more parameters to be trainable.
The model undergoes training again with Cylindrical Learning
Rate (CLR) using learn.fit_one_cycle (), but restrained on a
cyclic learning rate using max_lr (). CLR enables the learning
rate to fluctuate between appropriate minimum and maximum
boundaries and is computationally cheap and eliminates the need
to identify the ideal learning rate.

Upon running the number of epochs predetermined, the
confusion matrix of the model on the validation set was plotted.
The top losses of images during training were plotted with
labels of “Prediction/Actual/Loss/Probability.” By the end of the
training, the value for training loss, validation loss, error rate and
accuracy were recorded.

Performance Measurement
When it comes to evaluating the performance of the model,
a confusion matrix is utilized. Four main parameters that are
presented in a confusion matrix, which are: (i) True positive (TP)
which shows the outcome of the model correctly predicts the
benign cases, (ii) True negative (TN) which shows the outcome
where the model correctly predicts the malignant cases, (iii) False
positive (FP) which indicates the number of benign cases that
are recognized as malignant cases by the model, and (iv) False
negative (FN) which indicates the number of malignant case that
are recognized as benign case by the model.

The values obtained from the confusion matrix will be
further analyzed to compute additional parameters such as
Recall, Precision, Specificity, Accuracy, F-1 score and Matthew
Correlation Coefficient (MCC). MCC measures the performance
of the parameters in the confusionmatrix. The classifier produces
a more accurate classifier if the MCC values trend more towards
+1, and the reverse situation occurs if the MCC values trend
more towards−1.

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

Specificity =
TN

TN + FP
(13)

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

F1Score =
2∗Recall

2∗Recall+ FP + FN
(15)

MCC =
TP∗TN − FP∗FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(16)

RESULTS AND DISCUSSION

Artifacts Removal
Wedges and labels in the raw mammography picture may
cause needless disruptions during the mass detection procedure
(35). By manually looking at each ROI images of breast
calcification downloaded from the TCIA database, the images
were found to be free labelling artefacts. However, the
algorithms for removal of artifacts were still conducted just
in case there is hidden or unobvious artifact. In order to
ensure that this section of coding works properly, a sample
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TABLE 7 | Output of AlexNet model.

Test Batch size Learning rate Epoch Training loss validation loss Error rate Accuracy

13 32 8e-6,1e-4 15 52.147 48.5449 26.0968 73.9032

14 64 8e-6,1e-4 15 49.9790 46.5579 25.416 74.5840

15 64 8e-6,1e-4 30 42.8953 44.6564 24.2814 75.7186

16 32 2e-6,1e-3 15 46.3035 42.8736 22.1044 77.8956

17 64 2e-6,1e-3 15 44.2203 42.6651 22.0121 77.9879

18 64 2e-6,1e-3 30 39.0666 35.3782 16.9440 83.0560

TABLE 8 | Output of ResNet50 model.

Test Batch size Learning rate Epoch training loss Validation loss Error rate Accuracy

19 32 8e-6,1e-4 15 39.0362 41.5517 20.5749 79.4251

20 64 8e-6,1e-4 15 35.1833 40.6826 19.5159 80.4841

21 64 8e-6,1e-4 30 21.1929 36.9642 14.2965 85.7035

22 32 2e-6,1e-3 15 20.5363 37.8652 15.5068 84.4932

23 64 2e-6,1e-3 15 29.6796 24.4782 10.6657 89.3343

24 64 2e-6,1e-3 30 10.8362 5.8117 2.4206 97.5794

FIGURE 5 | Graphical illustration of CNN models in terms of Training Loss, Validation Loss and Accuracy in (A) graph of best VGG16 model, (B) graph of best

ResNet34 model, (C) graph of best AlexNet model, and (D) graph of best ResNet50 model.

image of whole breast mammogram with obvious artifacts
were imported and tested. The test result in Figure 4 shows
successful removal of labelling artifacts with the whole breast

mammogram image. Upon confirming the workability of the
coding, the algorithm is then implemented to the ROI images in
this study.
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FIGURE 6 | Confusion matrix of CNN models in (A) best VGG16 model, (B) best ResNet34 model, (C) best AlexNet model, and (D) best ResNet50 model.

Image Enhancement
In this research, three types of filters, namely adaptive median
filter, mean filter, and median filter were applied on the same
image and the MSE and PSNR value for each filter was computed
to identify the best filter. Figure 4B shows a comparison of
before and after application of adaptive median filter on breast
mammogram image. The PSNR and MSE values for adaptive
median filter, median filter andmean filter is tabulated in Table 4.

By referring to Table 4, value for MSE is lowest for adaptive
median filter, indicating that the error difference between the
original image’s values and the degraded image’s values for
adaptive median filter is the least among all three types of filters.
Similar to (36, 37), comparison for adaptive median, mean and
median filter for breast mammogram images were reported and
the authors had concluded that adaptive median filter is the best

filter for noise reduction since the quality of the image produced
is much superior. Hence, this research utilizes adaptive median
filter for image enhancement of breast microcalcification images.

CNN Model Architecture
Tables 5–8 show the output of VGG16, ResNet34, AlexNet
and Resnet50 models respectively. Identifying ideal batch size
for CNNs is important as it helps the network to reach
maximum accuracy in the quickest possible time, particularly
for complicated datasets, such as a medical picture dataset (38).
Results obtained from this study demonstrates that with learning
rate and epochs remains, the accuracy of the model increases
when the number of batch sizes increases from 32 to 64. In
Table 7, the increase in batch size from 32 to 64 in Test 10 and
Test 11 has resulted in increase in accuracy with an additional
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TABLE 9 | Additional performance measurement for best Resnet34, Resnet50, VGG16 and AlexNet model.

Architecture Recall Precision Specificity Accuracy F-1 Score MCC

Resnet34 1.0000 0.9897 0.9802 0.9932 0.1818 0.8950

Resnet50 0.9988 1.0000 1.0000 0.9992 0.6664 0.9983

VGG16 0.9954 0.9897 0.9800 0.9902 0.1328 0.9781

AlexNet 0.9239 0.8979 0.8239 0.8865 0.0122 0.7558

Bold values indicates the model with the best performance.

value of 4.67%. Findings from this research also implies that the
larger the batch size, the greater the network accuracy, implying
that batch size has a significant influence on CNN performance.

Figure 5 depicts the graphical illustration of CNN models
in terms of Training Loss, Validation Loss and Accuracy for
different models. Graphs obtained from this study suggests better
accuracy was achieved with smaller learning rates of 2e-6,1e-3
as compared to 8e-6,1e-4. With number of epochs increases, the
accuracy tends to increase as well. In Table 5 Test 5 and 6, with
learning rate of 2e-6,1e-3, the accuracy of VGG16 has managed
to reach 96.9743% for 30 epochs as compared to 89.0318% for 15
epochs. Test 17 and 18 also demonstrates the same characteristic
with an increase of accuracy from 77.99 to 83.06%, about a 6.50%
difference with increase of 15 to 30 epochs.

By referring to Figure 5, upon reaching 30 epochs, the
losses and accuracy starts to flatten out, suggesting overfitting.
Overfitting occurs when the network begins to overfit the data
and the error on the validation set will soon begin to rise on a
regular basis. This is where training should be terminated (39,
40). Therefore, the number of epochs for all the models is fixed
at 30. In addition to that, the training and validation loss at 30
epochs is not increasing nor achieving linearity before minimal
loss is achieved, suggesting that the result is not overfitting.

Comparison of Models With Existing Work
As deep learning becomes more popular, more researchers
created new architectures with deeper CNN in radiomics of
mammographic imaging to improve breast cancer diagnosis (41).
VGG net requires much more parameters to thoroughly evaluate
its performance. In (30, 31), the use of VGG16 was modified
to classify microcalcification images into benign or malignant
cases from the DDSM database and obtained accuracy of 94.3
and 87.0%, respectively. Study of (33) utilized AlexNet and
managed to achieve an accuracy of 79.1% upon utilizing 10-
fold cross validation technique with 300 epochs and learning
rate of 0.01 based on 900 images from SYUCC and NAHSMU
database. In this research, the technique of cross validation was
not performed, but the accuracy achieved in AlexNet is much
higher, reaching 83.1% with just 30 epochs. The difference in the
result might be due to the different database of images that was
used. For instance, this research utilizes ROI calcification images
of CIBS-DDSM database which provides higher resolution.
Also, the learning rate that was used in this study is much
smaller. Study of (42) highlights that smaller learning rate can
frequently increase generalization of accuracy substantially. A
slower learning rate may allow the model to learn a set of weights

that is more optimum or even globally optimal. This might
explain why smaller learning rates may also be able to produce
models with higher accuracy.

Study of (34) classified 1,852 calcification images of CIDB-
DDSM database into CNN pretrained models of modified
AlexNet and ResNet50, of which the FC8 layer in AlexNet
or FC1000 layer in ResNet50 is replaced with a shallow
classifier (SVM). With 20 epochs, the accuracy for breast
microcalcification for Resnet50 has managed to reach 91% while
AlexNet has reached 90%. Although the accuracy for the AlexNet
model in this study was lower (83.1%), the accuracy for Resnet50
managed surpassed with a value of 97.6%. Modified ResNet50
was also observed in (26, 32, 43), with (43) achieving the highest
accuracy of 90.3% upon utilizing 354 images from Inbreast
dataset. The Resnet50 model in this study is able to surpass
existing work with accuracy value of 97.6%. The main difference
between the models is the image that is fed to the machine
for training. For instance, this research directly utilizes ROI
calcification images of CIBS-DDSM database, which enables the
machine to learn the features of malignant and benign calcified
cases accurately.

The use of Resnet34 in breast microcalcification can be
observed in the study of (23), where the authors utilized 2D
Resnet34 together with anisotropic 3D Resnet to classify 495
Digital Breast Tomosynthesis (DBT) microcalcification images
and reached an accuracy value of 76.0%. The model of Resnet34
in this study is able to provide a significantly higher accuracy
value, which is 97.4%, probably due to the large number of images
(6,611 images) utilized for machine learning, of which is 13 times
larger than the study of (23).

Figure 6 depicts the confusion matrix of CNN models.
Overall, the AlexNet model has the highest percentage of both
falsely classified benign and falsely classified malignant cases,
which is 11.37% and 15.48%, respectively. The performance of
the Resnet50 is considered as the best because it only has 1
misclassified image over 1,322 images, while Resnet34 has a
total of nine misclassified images. For the case of VGG, it has
a total of 13 misclassified images. Based on the values obtained
in the confusion matrix, calculation for additional performance
measurement was performed and tabulated in Table 9.

Based on Table 9, Resnet50 has the highest precision,
specificity, and accuracy, while ResNet 34 model has the highest
Recall, which is also referred to as True Positive Rate or
Sensitivity. Result from this study suggests that the performance
by ResNet model outperforms VGG and AlexNet models.
ResNet50 also has the highest F1-score (0.6664), which indicates
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how accurate a model is on a given dataset. MCC, can be
considered as the most credible statistical metric since it is
only high if all four confusion matrix categories are correctly
predicted. From this study, Resnet50 is able to achieve the highest
score of MCC with a value of 0.9983.

In a summary, an automated microcalcification detection
in mammography for early breast cancer diagnosis using deep
learning techniques has been successfully developed. Collected
greyscale mammogram images had undergone pre-processing
operations which includes conversion of images from DICOM
to ∗.jpeg format, resizing to 224 × 224 pixels, removal of
artifacts, and image enhancement by application of adaptive
median filter. Transfer learning technique for CNN architectures
was employed and result shows that ResNet50 achieves the
highest accuracy with a value of 97.58%, followed by ResNet34
of 97.35%, VGG16 of 96.97% and finally AlexNet of 83.06%.
The main limitation with current work is the possibility of the
machine to remember the repeated patterning of the dataset for
classification into benign or malignant cases via implementation
of data augmentation. Resizing of ROI images might also result
in data compression and loss of useful features or information of
the image.

CONCLUSIONS

Our proposed work has built an end-to-end novel adaptive
transfer learning convolutional neural network that has
shown ability to discriminate microcalcifications of breast
mammograms into benign or malignant cases. ROI breast
images were acquired from CIBS-DDSM database to obtain a
higher resolution image of breast mammogram. The selection
of quality datasets, abundancy of images for training, as well
as tuning of hyperparameters are all important in improving
the accuracy of the models. We have also shown a quantitative
analysis on the effectiveness of three filters, namely adaptive
median, median and mean filter in noise removal of breast
microcalcification mammogram images by calculating the
MSE and PSNR value. As compared to traditional method
of feature extraction which uses coordinates to identify the
location of microcalcification, we have successfully automize the
model to identify the characterization of benign and malignant
microcalcification patterns. All CNN models that were trained

shows powerful ability to discriminate benign and malignant
microcalcification, with ResNet50 achieving the highest accuracy
of 97.58%.

Breast cancer is a significant threat to women or men all
over the world and improving the existing state of breast cancer
detection systems is definitely a critical challenge. Findings
from this study will be able narrow the gap of findings for
CNNs models which were mostly tailored for binary classifier
that focuses solely on breast microcalcification classification by
providing a comparative comparison beginning from datasets
that is utilized, pre-processing algorithms that are included,
up to the algorithms utilized during machine learning. In
addition, this study will also be able to aid research in
developing a competent binary classification model by providing
a comprehensive approach to the recent results on different
CNN models in breast microcalcification detection. In future,
different sources of breast images could be incorporated, such
as 3D mammogram images, in order to identify and compare
the effectiveness of the model in classifying different sources
of microcalcification images. K-fold cross validation could
also be incorporated in the algorithm to combine metrics of
prediction fitness to get a more accurate estimate of model
prediction performance.
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Background: RNA N6-methyladenosine (m6A) regulators may be necessary for diverse

viral infectious diseases, and serve pivotal roles in various physiological functions.

However, the potential roles of m6A regulators in coronavirus disease 2019 (COVID-19)

remain unclear.

Methods: The gene expression profile of patients with or without COVID-19 was

acquired from Gene Expression Omnibus (GEO) database, and bioinformatics analysis

of differentially expressed genes was conducted. Random forest modal and nomogram

were established to predict the occurrence of COVID-19. Afterward, the consensus

clustering method was utilized to establish two different m6A subtypes, and associations

between subtypes and immunity were explored.

Results: Based on the transcriptional data from GSE157103, we observed that the

m6A modification level was markedly enriched in the COVID-19 patients than those

in the non-COVID-19 patients. And 18 essential m6A regulators were identified with

differential analysis between patients with or without COVID-19. The random forest

model was utilized to determine 8 optimal m6A regulators for predicting the emergence

of COVID-19. We then established a nomogram based on these regulators, and its

predictive reliability was validated by decision curve analysis. The consensus clustering

algorithm was conducted to categorize COVID-19 patients into two m6A subtypes from

the identified m6A regulators. The patients in cluster A were correlated with activated

T-cell functions and may have a superior prognosis.

Conclusions: Collectively, m6A regulators may be involved in the prevalence of

COVID-19 patients. Our exploration of m6A subtypes may benefit the development of

subsequent treatment modalities for COVID-19.

Keywords: COVID-19, m6A methylation modification, m6A regulators, diagnostic biomarkers, consensus

clustering
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) derived from severe
acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2)
has evolved as a significant challenge to the public health of
global populations (1). Although various vaccines and antiviral
agents are now being developed to reduce virus infection and
combat this epidemic, little is known about how viruses interact
with their hosts (2, 3). Recent studies have demonstrated a
clear genetic link between SARS-CoV-2 infection and COVID-
19 severity, and have identified multiple human genomic
regions that are linked to disease severity (4, 5). Moreover,
COVID-19 patients displayed obvious variations in the immune
system, including immune cells, immune checkpoint, and
cytokines (6–8). A deeper understanding of the pathogenesis
of COVID-19 will facilitate better management of it, and
determination of susceptible populations benefit for rationalizing
the allocation of medical resources. It is critical and urgent to
identify the association between patients’ genomes and immune
function during viral infections. Accordingly, early detection and
appropriate intervention of high-risk patients from a genomic
perspective will provide a significant benefit to managing the
prevalence of COVID-19.

The N6-methyladenosine (m6A), an innate modification
of mRNA and lncRNA, is a reversible procedure regulated
by “writers,” “readers,” and “erasers” (9). For its biological
characteristics, m6A can regulate carcinogenesis, immunity,
stemness, and so on (10–12). Numerous reports have
demonstrated that m6A modification serves a prominent
part in tumorigenesis through modulating the activity of tumor-
associated genes (13, 14). Similarly, m6A is observed and widely
studied in diverse virus infections (15, 16), and existing studies
have proven the significant role of m6A in the occurrence and
progression of COVID-19 (17, 18). However, these researches
concentrated predominantly on several m6A-related genes, and
a majority of these models were constructed based on non-
virally infected cells, which may not fully reveal the authentic
status of m6A methylome modifications in immune cells of
COVID-19 patients. Therefore, the function of m6A regulators
in COVID-19 remain to be further investigated.

In this research, we systematically explored the roles of m6A
regulators in the management and categorization of COVID-19.
We constructed a gene signature to predict the occurrence of
COVID-19 based on 8 selectedm6A regulators and observed that
patients could benefit from clinical decisions from this signature.
Additionally, we identified two m6A subtypes that were closely
associated with T-cell activation, indicating that m6A subtypes
may distinguish COVID-19 and non-COVID-19 and provide
reliable options for clinical treatment.

MATERIALS AND METHODS

Data Collection and Processing
The GSE157103 dataset, composed of 100 COVID-19 patients
and 26 non-COVID-19 patients, was acquired from the GEO
database (19). This dataset was selected based on some
characteristics: sample size >100, diverse disease status, and

TABLE 1 | m6A modification regulators and their major biological functions.

Type m6A regulator Function

Writer METTL3 Catalyze m6A modification

METTL14 Facilitate METTL3 recognition of subunits

METTL16 Catalyze m6A modification

WTAP Facilitate METTL3-METTL14 heterodimer to

the nuclear speckle

VIRMA Bind the m6A complex and mobilize it to

specific site

RBM15 Bind the m6A complex and mobilize it to

specific site

RBM15B Bind target RNAs and recruiting the WMM

complex

CBLL1 Regulate mRNA splicing and RNA processing

ZC3H13 Bridge WTAP to the mRNA-binding factor Nito

Reader YTHDC1 Promote RNA splicing and translocation

YTHDC2 Promote target RNA translocation

YTHDF1 Promote RNA translocation

YTHDF2 Decrease mRNA stability

YTHDF3 Regulate the translation or degradation

HNRNPC Regulate mRNA splicing

FMR1 Regulate mRNA splicing, stability, dendritic

transport and postsynaptic local protein

synthesis

LRPPRC Regulate nuclear mRNA exportation

HNRNPA2B1 Promote primary microRNA processing

IGFBP1/2/3 Recruiting RNA stabilizer

IGF2BP1 Improve mRNA stability

ELAVL1 Improve mRNA stability

RBMX Regulate gene transcription and pre-mRNAs

splicing

Eraser ALKBH Regulate mRNA intranuclear transport

FTO Catalyze the demethylation of m6A

publicly available data. And all samples are extracted from plasma
and leukocyte samples of hospitalized patients. Normalization of
the read count values was completed with the limma package
(20). A total of 26 m6A regulators was collected from previous
studies, and these regulators contain 9 writers, 15 readers,
and 2 erasers (Table 1). Differently expressed analysis of these
regulators based on limma package was performed between
patients with or without COVID-19 to subsequent exploration.
A protein-protein interaction (PPI) analysis of differentially
expressed genes (DEGs) was performed through the string
website (https://cn.string-db.org), and we exhibited gene set
variation analysis (GSVA) with the “GSVA” package (21), thus
matching the biological function between patients with or
without SARS-COV-2 infection.

Establishment of a Random Forest Model
and Support Vector Machine Model
Random forest (RF) and support vector machine (SVM) model
was established to predict the prevalence of COVID-19 patients.
Several methods, including “Reverse cumulative distribution
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FIGURE 1 | Landscape of the 26 m6A regulators in COVID-19. (A) Differential expression analysis of the 26 m6A regulators identified between samples with different

COVID-19 status. (B) Expression heat map of the 26 m6A regulators in samples. (C) GSVA enrichment analysis between Non-COVID-19 and Non-ICU-COVID-19

samples. (D) GSVA enrichment analysis between Non-COVID-19 and ICU-COVID-19 samples. (E) GSVA enrichment analysis between Non-ICU-COVID-19 and

ICU-COVID-19 samples. (F) The PPI network analysis among the differentially expressed genes. (G) Chromosomal positions of the 26 m6A regulators. *p < 0.05, **p

< 0.01, and ***p < 0.001.
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of residual,” “Boxplots of residual” and receiver operating
characteristic (ROC) curve was conducted to validate these
models. “RandomForest” package was applied to construct an
RF model to identify optimal m6A regulators within the 26

m6A regulators for predicting the prevalence of COVID-19 (22).
In this study, to identify optimal RF model, mtry and ntrees
were given as 3 and 500 after multiple adjustment. We also
discussed the relevance of the 26 m6A regulators and determined

FIGURE 2 | Correlation between m6A regulators in COVID-19. (A) Correlation plot of 26 m6A regulators. (B–J) Correlation between writers and erasers in COVID-19.

Writer genes: METTL3, METTL14, METTL16, RBM15B, VIRMA, CBLL1, and ZC3H1; eraser genes: ALKBH5 and FTO. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 3 | Establishment of RF model and SVM model. (A) Reverse cumulative distribution of residual was displayed to demonstrate the residual distribution of RF

and SVM model. (B) Boxplots of residual was displayed to demonstrate the residual distribution of RF and SVM model. (C) The influence of the number of decision

trees on the error rate. (D) The importance of the 26 m6A regulators based on the RF model. (E) ROC curves revealed the accuracy of the RF and SVM model.

the candidate m6A regulators based on 10-fold cross-validation.
The Y-axis of the 10-fold cross-validation curve represents the
precision of the model when identifying different numbers of
m6A regulators. The genes with an importance value over 2 were
considered as the disease specific genes for the further analysis.
SVM can minimize structural risk, thus enabling classification
and regression analysis (23). In SVM model, the expression level
of m6A regulators was regarded as the continuous predictive
parameter and the sample type was regarded as the categorical
variable. The “caret” package was applied to conduct a grid
search for the determination of the reasonable hyperparameters
for the SVM model with a 5-fold cross-validation (24). Each
data is considered as a point in the n-dimensional space (n
is 26 in this study), and an appropriate plane was found to
distinguish well between the two categories (COVID-19 and non-
COVID-19). A repeated 10-fold cross-validation was utilized to

tune and evaluate the models. The sample was split into 70%
training and 30% test sets. We randomly split the training-test
dataset 500 times and used 10-fold repeated 10 times cross-
validation approach to optimize the model factors of each round
of evaluation. The robustness of these model was assessed based
on the area under curve (AUC) value of the receiver operating
characteristics (ROC) curve.

Establishment of the Nomogram
Based on the abovementioned m6A regulators, a nomogram was
developed to predict the occurrence of COVID-19 (25). Then,
the reliability of this nomogram was assessed by the calibration
curve, and decision curve analysis (DCA) was also constructed
(26).Moreover, a clinical impact curve was established to evaluate
the rationality and benefit of decisions from this nomogram (25).
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FIGURE 4 | Establishment of the nomogram model. (A) Establishment of the nomogram model based on the 8 selected m6A regulators. (B) Predictive robustness of

the nomogram model as disclosed by the calibration curve. (C) Decisions based on the nomogram model may benefit COVID-19 patients. (D) Clinical impact of the

nomogram model as evaluated by the clinical impact curve.

Identification of Molecular Subtypes From
m6A Regulators
Consensus clustering with K-means algorithms was applied to
identify m6A regulators-related subtypes correlated with gene
expression (27). The quantity and robustness of clusters were
determined with a consensus clustering algorithm realized in the
“ConsensuClusterPlus” package (28).

Identification and Functional Enrichment
Analysis of Differentially Expressed Genes
The “limma” package was applied to identify DEGs between
different m6A subtypes with the criterion of p < 0.001 (29).
GO enrichment analysis was utilized to investigate the potential
function of the DEGs responsible for COVID-19 with the
“clusterProfiler” package (30).

Establishment of the m6A Gene Signature
Principal component analysis (PCA) was conducted to obtain
the m6A score for individual specimens, thus quantifying
the m6A subtypes (31). We exhibited the PCA method to
identify the m6A subgroups, and the m6A score was acquired
based on the following method: m6A score = PC1i, of

which PC1 refers to principal component 1 and i to DEG
expression (32).

Exploration of Infiltrating Immune Cell
Single sample gene set enrichment analysis (ssGSEA)
was applied to assess the infiltration of immune cells
in COVID-19 specimens (33). The gene expression
levels in the specimens were sequenced with ssGSEA to
acquire an individual grade. We then summarized the
expression data of these genes for immunological analysis.
Consequently, we gained the enrichment of immune cells in the
individual specimen.

Statistics Analysis
Linear regression analyses were applied to determine the
relationship between m6A regulators. Kruskal-Wallis tests were
utilized to identify a discrepancy between clusters. All statistical
analyses were carried out with two-tailed tests, and the significant
value was considered p < 0.05. The R software was utilized to
perform relevant analysis.
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RESULTS

Landscape of the 26 m6A Regulators in
COVID-19
Based on the GSE157103 dataset, all samples were divided
into three groups (Non-COVID-19, ICU-COVID-19, and
Non-ICU-COVID-19). We identified the expression levels of
26 m6A regulators in these groups, of which 22 regulators
were differently expressed in these samples. The expression
landscape and heatmap of these differentially expressed
genes (DEGs) were presented in Figures 1A,B. According
to differently expressed analysis of m6A regulators between
COVID-19 samples and Non-COVID-19 samples, 18
DEGs were subsequently observed. Most of DEGs were
overexpressed in COVID-19 patients compared to non-
COVID-19 patients, including METTL3, METTL14, WTAP,
VIRMA, ZC3H13, RBM15, CBLL1, YTHDC1, YTHDF3,
HNRNPC, HNRNPA2B1, FMR1, ELAVL1, and FTO, and
several DEGs, such as RBM15B, IGFBP2, and IGFBP3 were
downregulated in COVID-19 patients. Some of DEGs may
be associated with the varying severity of COVID-19, such
as METTL3, FTO, and RBM15. The finding was consistent
with previous reports (17, 34, 35). We further conducted

GSVA analysis to explore the biological difference between
different groups. Compared to samples without COVID-19,
p53 signaling pathway, cell cycle, oocyte meiosis, and olfactory
transduction were obviously enriched in COVID-19 samples
(Figures 1C,D). Similarly, we observed that diverse signaling
pathways were more enriched in the ICU-COVID-19 samples
than Non-ICU-COVID-19 samples, such as oocyte meiosis,
ERBB signaling pathway, and TGF-β signaling pathway
(Figure 1E). These results demonstrated that identified signaling
pathways were potentially associated with the occurrence
and severity of COVID-19. A protein-protein interaction
(PPI) analysis was also performed to show the interactivity
of DEGs, which demonstrated that METTL3 and YTHDF3
were hub genes (Figure 1F). Additionally, the location of m6A
regulators on the chromosome was discussed and displayed
in Figure 1G.

Association Between Writers and Erasers
in COVID-19
We investigated the correlation between three types of m6A
modification, and the result was presented in Figure 2A.
Interestingly, m6A regulators of a different type, such as

FIGURE 5 | Consensus clustering of the 18 significant m6A regulators in COVID-19. (A) Consensus matrices of the 18 significant m6A regulators for k = 2. (B)

Differential expression analysis of the 18 significant m6A regulators in cluster A and cluster B. (C) Expression heatmap of the 18 significant m6A regulators in cluster A

and cluster B. (D) PCA for the expression data of the 18 significant m6A regulators that indicates an obvious difference in transcriptomes between the two m6A

subtypes. (E) GO analysis that investigates the potential mechanism underlying the effect of the 139 m6A-related DEGs on the occurrence and development of

COVID-19. *p < 0.05, **p < 0.01, and ***p < 0.001.
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METTL3 and HNRNPA2B1, can display cooperative activities
(coefficient = 0.86). We also discussed the possibility of
regulators co-expression, and observed a clear relationship
between FTO and additional regulators, with the greatest
relevance for METTL3 and FTO (correlation coefficient
= 0.83). This finding is consistent with PPI analysis and

provides a possible explanation for the regulation mechanism
of m6A regulators. To further investigate the relationship
between writers and erasers in COVID-19, we discussed the
expression levels of these regulators with linear regression
analyses. Significant positive correlations were observed between
METTL3, METTL16, RBM15B, VIRMA, and FTO in COVID-19

FIGURE 6 | Single sample gene set enrichment analysis. (A) Correlation between infiltrating immune cells and the 18 significant m6A regulators. (B) Difference in the

abundance of infiltrating immune cells between high and low METTL3 expression groups. (C) Differential immune cell infiltration between cluster A and cluster B. *p <

0.05, **p < 0.01, and ***p < 0.001.
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patients. COVID-19 patients with high expression levels of
FTO tend to display high levels of METTL3, METTL16,
RBM15B, or VIRMA (Figures 2B–E). Similarly, we also found
a close association between CBLL1, METTL14, METLL16,
RBM15B, ZC3H13, and ALKBH5. COVID-19 patients with
elevated expression levels of CBLL1, METLL16, and RBM15B
presented elevated expression levels of ALKBH5 while elevated
METTL14 and ZC3H13 expression demonstrated a negative
association with ALKBH5 (Figures 2F–J). Consequently,
we proved a clear association between diverse writers
and erasers.

Evaluation of the RF Model and SVM Model
We next constructed an RF and SVM model to identify
optimal m6A regulators from abovementioned DEGs to
predict the occurrence of COVID-19. Based on “Reverse
cumulative distribution of residual” and “Boxplots of residual”
(Figures 3A,B), the RF model with the least residuals were
established. As a majority of the specimens in this model
retained only small residuals, the predictive performance of
the RF model is extremely excellent. Then, we chose 500
trees as the variables of the current model based on the
relationship overview between the model error and the number
of decision trees, and this model presented a stable error
possibility (Figure 3C). We also ranked 18 DEGs depending
on their respective gene importance based on RF model,
and this result demonstrated that RBM15B and ELAVL1 had
a high priority in this model (Figure 3D). Additionally, the
ROC curves were established to assess the accuracy of these
models, and the AUC value also demonstrated that the RF
model has superior performance compared to the SVM model
(Figure 3E).

Evaluation of a Predictive Nomogram
Based on the abovementioned findings, 8 recommended m6A
regulators were utilized to develop a predictive nomogram
for predicting the incidence of COVID-19 (Figure 4A).
Interestingly, we observed that the expression level of
RBM15B was negatively correlated with the patients’ risk
score, and RBM15B may be a protective factor for COVID-19
patients. This result was consistent with abovementioned
analysis based on the expression difference in the patients
with different disease status. Calibration curves proved the
predictive accuracy of the nomogram (Figure 4B). The model
developed by the m6A regulator is always at the top of the DCA
curve (Figure 4C), indicating that COVID-19 patients were
clearly benefited from the decisions based on this nomogram.
Furthermore, the clinical impact curve also demonstrated
that the predictive robustness of this nomogram was reliable
(Figure 4D).

Analysis of Specific Subtypes Based on
m6A Regulators
Based on differently expressed m6A regulators, we performed
a consensus clustering algorithm to identify different subtypes
(Figure 5A), and COVID-19 patients were well-categorized
into two clusters when the cluster variable is 2. Cluster A

consisted of 80 cases, and cluster B consisted of 20 cases.
Subsequently, we detected the expression of these m6A
regulators in cluster A and Cluster B. METTL3, METTL14,
WTAP, VIRMA, ZC3H13, CBLL1, YTHDC1, YTHDF3,
HNRNPC, FMR1, HNRNPA2B1, and FTO presented increased
expression in cluster A compared to those in the cluster B,
while the opposite performance was observed in IGFBP2.
Meanwhile, RBM15, RBM15B, IGFBP3, ELAVL1, and IGF2BP1
displayed no significant differences between these clusters
(Figures 5B,C). PCA revealed that the 18 m6A regulators
could exactly classify the two m6A subtypes (Figure 5D).
Totally, 139 m6A-related DEGs were identified between the
two m6A subtypes. To explore the potential role of these
DEGs in COVID-19, the findings from GO enrichment
analysis revealed that the DEGs were particularly abundant
in cellular response and cell differentiation-related pathways
(Figure 5E).

We further conducted ssGSEA to assess the enrichment
of immune cells in COVID-19 specimens and discussed
the relationship between the m6A regulators and immune
cells (Figure 6A). METTL3 had positive associations with
various immune cells. Afterward, we investigated the
distinct enrichment of immune cells in patients with high-
or low-METTL3 (Figure 6B). The findings demonstrated
that patients with high METTL3 expression had obviously
enriched immune cells. Ultimately, we also discussed the
differential immune cell enrichment between the m6A subtypes.
We observed that cluster A displayed higher infiltrating
levels of immune cells, particularly T helper cells (Th1
and Th2), than cluster B (Figure 6C), which indicated that
patients in cluster A may have a positive immune response
for COVID-19.

Evaluation of the m6A Gene Signature
To prove the m6A subtypes, we performed the consensus
clustering algorithm to categorize the COVID-19 patients into
distinct gene subgroups based on 139 m6A-related DEGs
(Figure 7A). We observed that these genomic subtypes were in
accordance with m6A subtypes, and Figure 7B displayed the
differential expression of the 139 DEG. Afterward, the differential
expression of the 18 m6A regulators and infiltrating immune
cells between different gene clusters were also similar to those
in the m6A subtypes (Figures 7C,D). This result demonstrated
the rationality of the clustering algorithm. Moreover, PCA
was utilized to obtain m6A scores for individual specimens,
thus quantifying the m6A subtype. We also compared the
m6A score in the m6A clusters or gene clusters, and the
finding revealed the m6A score in cluster A or gene cluster
A was greater than that in cluster B or gene cluster B
(Figures 7E,F). Additionally, the correlation between the m6A
cluster, m6A gene clusters, and m6A scores were displayed in
Figure 8A.

Relationship Between m6A Subtypes and
Cytokines
The “cytokine storm” is an inappropriate immune response
that is the main cause of death in COVID-19, and many
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FIGURE 7 | Consensus clustering of the 139 m6A-related DEGs in COVID-19. (A) Consensus matrices of the 139 m6A-related DEGs for k = 2. (B) Expression heat

map of the 139 m6A-related DEGs in gene cluster A and gene cluster B. (C) Differential expression of the 18 significant m6A regulators in gene cluster A and gene

cluster B. (D) Differential immune cell infiltration between gene cluster A and gene cluster B. (E) Differences in m6A score between cluster A and cluster B. (F)

Differences in m6A score between gene cluster A and gene cluster B. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 8 | Role of m6A subtypes in distinguishing COVID-19. (A) Sankey diagram demonstrating the relationship between m6A subtypes, m6A gene subtypes, and

m6A scores. (B) Differential expression levels of cytokines between cluster A and cluster B. (C) Differential expression levels of cytokines between gene cluster A and

gene cluster B. *p < 0.05, **p < 0.01, and ***p < 0.001.

cytokines and their inhibitors are now used in the clinical
treatment of COVID-19. To further determine the correlation

between m6A subtypes and COVID-19, we comprehensively
discussed the association between m6A subtypes and various
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cytokines. As displayed in Figures 8B,C, diverse cytokines
presented significant discrepancies in the m6A clusters and
genomic clusters. It is noteworthy that IL1B, IL7, IL8, and IL6ST
were overexpressed in the cluster A and gene cluster A compared
to cluster B and gene cluster B, consistent with existing reports.
This finding revealed that cluster A or gene cluster A is closely
correlated with COVID-19 characterized by multiple cytokines.

DISCUSSION

COVID-19 is an infectious respiratory disease with general
susceptibility in the population, and there are limited treatment
strategies for COVID-19 at present (36). To improve the
management and recovery of patients with limited medical
facilities, it is essential to clarify the pathogenesis of COVID-
19 and the associated susceptible population. Emerging evidence
demonstrated that m6A regulators participate in the diverse
biological behavior of SARS-COV-2 (18, 37). However, the
potential role of m6A regulators in the COVID-19 is still unclear.

In the present research, we comprehensively explored the
basic elements of m6A modification in COVID-19 patients.
The expression levels of m6A regulators were obviously
overexpressed in COVID-19 patients compared to in non-
COVID-19 patients. This different expression of m6A regulators
was also observed between COVID-19 patients with ICU
status and non-ICU status. These results indicated that m6A
modification may have a close correlation with development
and severity of COVID-19. We also performed GSVA to
identify COVID-19-related pathways and found diverse signaling
pathways may serve a critical role in the development of
COVID-19, and the exploration of these pathways may be
beneficial for clarifying the special mechanism of COVID-19.
We further discussed the intrinsic relevance of m6A regulators
in the patients with or without COVID-19, and a significant
association between m6A regulators in COVID-19 was observed.
Moreover, an RF model was constructed to identify 8 regulators
from differential expressed m6A regulators and thus predict
the occurrence of COVID-19. However, this model cannot
yet be validated in the absence of adequate information of
m6A regulators in the public databases. Additionally, univariate
analysis for feature selection had a possibility to ignore the
multivariate association in the feature selection process, and
multivariate analysis was further considered to identify optimal
DEGs. Previous reports have demonstrated that the selected
m6A regulators are responsible for the initiation and progression
of tumors, such as hepatocellular carcinoma, lung cancer, and
gastric cancer (32, 38, 39). Currently, there are few studies on
the correlation between these selected regulators and COVID-19.
This study provides a novel option for further genomic analysis
on these m6A regulators in the COVID-19 patients.

A multicomponent m6A methyltransferase complex (MTC)
consisted of a METTL3-METTL14 heterodimer core and
additional binding elements (40). MTC can promote m6A
modification to regulate the disease processes. A nomogram
based on 8 candidate m6A regulators was constructed to
guide clinical treatment for COVID-19 patients, and the

DCA curve demonstrated that COVID-19 patients may benefit
from the decisions based on this nomogram. We observed
that RBM15B, HNRNPA2B1, and VIRMA may be protective
factors in the development of COVID-19, and the opposite
performance was found in ELAVL1, RBM15, FMR1, IGFBP3,
and METTL3. RBM15 and its paralogue RBM15B bind the
m6A-methylation compound and mobilize it to appropriate
sites in RNA (41). RBM15 was markedly upregulated in
laryngeal squamous cell carcinoma and correlated with a worse
prognosis (42). METTL3 serves a critical role in various
cellular biological processes, such as promoting the anti-
tumor immunity of natural killer cells (43). As a prominent
subunit of the MTC, METTL3 facilitates the generation of
m6A. It is reported that METTL3 and RBM15 can modulate
intrinsic immune responses of the host cell during SARS-
CoV-2 infection in diverse cells (18). Similarly, the specific
role of VIRMA, ELAVL1, and FMR1 in COVID-19 was
mentioned in several studies (44–46). Numerous studies
demonstrated that the 8 selected m6A regulators may be
involved in the emergence and lymphocyte responses of COVID-
19 patients.

At present, the immune response activated by T cells may
benefit COVID-19 patients, and reduce the damage caused by
cytokine storms (47, 48). Based on DEGs between COVID-
19 and non-COVID-19, we found 18 m6A regulators for
subsequent analysis. Unsupervised cluster analysis of differential
expressed m6A regulators was performed to identify two distinct
modification subtypes in COVID-19 patients. m6A cluster A
presented activated T cell behaviors, while m6A cluster B
was marked by monocyte-related activity. Similar to the m6A
categorization, two genomic subtypes were established based
on DEGs between cluster A and cluster B, and we found
that gene cluster A displayed higher infiltrating levels of T
cells than gene cluster B, such as CD4+ T cells and natural
killer T cells. JAK-STAT pathway may participate in T cell
differentiation (49), and we observed that components in the
JAK-STAT pathway were more enriched in cluster A or gene
cluster A than those in cluster B or gene cluster B. Consequently,
these findings demonstrated that m6A cluster A and gene cluster
A with positive T cell activity to defend against SARS-COV-
2 could present a superior clinical performance. Furthermore,
the m6A score was identified to quantify the m6A subtype
for individual COVID-19 patients. Consistent with the above
results, patients in m6A cluster A or gene cluster A displayed
higher m6A scores compared to m6A cluster B or gene
cluster B.

Nonetheless, there are some limitations in the present
research. Since our findings have not been supported by clinical
specimens, the specific relationship between m6A regulator and
COVID-19 remains to be further confirmed. And this signature
will be evaluated and validated in future experimental studies.

CONCLUSION

Briefly, this research identified 8 recommended m6A
regulators and constructed a nomogram that predicts
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the susceptibility of COVID-19. Based on differently
expressed m6A regulators, we then determined two
m6A subtypes, and cluster B may be clearly associated
with COVID-19.
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Background: Artificial intelligence-based disease prediction models have a greater

potential to screen COVID-19 patients than conventional methods. However, their

application has been restricted because of their underlying black-box nature.

Objective: To addressed this issue, an explainable artificial intelligence (XAI) approach

was developed to screen patients for COVID-19.

Methods: A retrospective study consisting of 1,737 participants (759 COVID-19 patients

and 978 controls) admitted to San Raphael Hospital (OSR) from February to May 2020

was used to construct a diagnosis model. Finally, 32 key blood test indices from 1,374

participants were used for screening patients for COVID-19. Four ensemble learning

algorithms were used: random forest (RF), adaptive boosting (AdaBoost), gradient

boosting decision tree (GBDT), and extreme gradient boosting (XGBoost). Feature

importance from the perspective of the clinical domain and visualized interpretations were

illustrated by using local interpretable model-agnostic explanations (LIME) plots.

Results: The GBDT model [area under the curve (AUC): 86.4%; 95% confidence

interval (CI) 0.821–0.907] outperformed the RF model (AUC: 85.7%; 95% CI 0.813–

0.902), AdaBoost model (AUC: 85.4%; 95% CI 0.810–0.899), and XGBoost model

(AUC: 84.9%; 95% CI 0.803–0.894) in distinguishing patients with COVID-19 from those

without. The cumulative feature importance of lactate dehydrogenase, white blood cells,

and eosinophil counts was 0.145, 0.130, and 0.128, respectively.

Conclusions: Ensemble machining learning (ML) approaches, mainly GBDT and LIME

plots, are efficient for screening patients with COVID-19 and might serve as a potential

tool in the auxiliary diagnosis of COVID-19. Patients with higher WBC count, higher LDH

level, or higher EOT count, were more likely to have COVID-19.

Keywords: artificial intelligence, ensemble learning, explainable, disease prediction, COVID-19

INTRODUCTION

Coronavirus disease 2019 (COVID-19, also called novel coronavirus pneumonia) is characterized
by fever, cough, and shortness of breath. COVID-19 spreads rapidly due to its highly infectious
nature, and caused huge manpower and material resources losses (1, 2). Early detection, diagnosis,
isolation, and treatment are keys to improving the cure and survival rates of COVID-19 patients.
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To respond to this unprecedented pandemic emergency, early
identification of infected patients is very important. Infection
with severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the virus that causes COVID-19 is typically identified
with molecular detection using reverse transcriptase PCR (RT–
PCR) as the gold standard (3). However, the test process is time-
consuming (no<4 h under ideal conditions) and requires the use
of special equipment and reagents and specialized and trained
personnel for sample collection. Furthermore, the high cost and
slow processing speed of RT-PCRmake it less feasible for massive
population screening in remote areas or backward countries (4).
The development of artificial intelligence (AI) technology has
made the mining of medical information and the development
of disease prediction models for assisting doctors in disease
prediction or diagnosis a popular research subject.

To improve the ability to diagnose COVID-19 and curb
the spread of the pandemic, the data science community has
proposed several machine learning (ML) models, most of which
are based on computed tomography (CT) scans or chest X-
rays (5–9). Although promising results have been reported, some
concerns have been raised about these efforts, especially the
chest X-ray-based solutions, regarding the high incidence of
false negative results (10). Additionally, while the CT imaging
method is accurate, it is costly and time-consuming and requires
specialized equipment. As a result, methods based on this
imaging technology are inappropriate for screening. Although
various clinical studies (11–15) have emphasized the usefulness
of blood test-based diagnoses in providing an effective and low-
cost alternative for the early detection of COVID-19, relatively
few ML models are based on hematological parameters.

The primary goal of medicine in the 21st century has switched
from disease prevention and treatment to health maintenance,
and the medical mode has changed from a simple disease
treatment mode to the so-called “4P” medical mode: prevention,
prediction, personalization, and participation (16). To address
issues regarding medical complexity, the methodological system
of clinical research is also constantly improving. A disease
prediction model is a statistical evaluation method based on
disease risk factors that divides scores according to the degree of
influence of the underlying factor and calculates the probability
of a certain event in the future by a mathematical formula
(17). These disease prediction models can enable medical staff
to implement targeted intervention measures for patients with
different risk probabilities and improve patient care. Due to the
powerful ability to mine information and explore the hidden
links behind the data, machine learning algorithms have been
used in many studies and a wide variety of fields to develop
predictive models of disease risk.

Abbreviations: AdaBoost, adaptive boosting; AUC, area under the curve;

BP, backpropagation; CBC, complete blood count; CI, confidence interval;

GBDT, gradient boosting decision tree; GGT, gamma-glutamyl transferases;

HCT, hematocrit; HGB, hemoglobin; JMIR, Journal of Medical Internet

Research; LDH, lactate dehydrogenase; LIME, local interpretable model-agnostic

explanations; ML, machining learning; OSR, San Raphael Hospital; PAC, probably

approximately correct; RF, random forest; RCT, randomized controlled trial; XAI,

explainable artificial intelligence; XGBoost, extreme gradient boosting.

As the main caregivers for patients, nurses play a key role in
patient condition observation and disease prediction. Compared
with traditional risk prediction models or scores, machine
learning models are more precise, sensitive, and generalizable,
capable of analyzing the deep-seated interaction of multiple
factors among data (18) and explore more complex linear or
nonlinear correlations. In diverse clinical situations, the capacity
to forecast disease risk using the ML technique is greater, which
is vital for encouraging medical professionals to intervene early
to enhance patient care.

The core of machine learning is the algorithm, which has three
main learning patterns: (1) supervised learning, which adjusts the
prediction algorithm based on the previous examples to make the
prediction results match as close as possible to the output values
of the examples when reinput; (2) unsupervised learning, which
does not output a value; instead, the training system models the
underlying structure of the data; and (3) reinforcement learning,
which uses reward/punishment sequences to form strategies for
action in a specific problem space through trial and error (19).
Machine learning adopts supervised learning algorithms such as
support vector machine (SVM), Bayesian learning, decision tree,
and regression, and unsupervised learning algorithms such as K-
means clustering and association rule learning. Reinforcement
learning algorithms (20), such as Q-learning (21) and SARSA,
as well as neural networks and other special algorithms, are also
implemented in machine learning. At present, the main idea of
the quantitative identification technology of disease prediction
is to transform the problem of disease risk into a classification
problem and then use the corresponding model to perform the
classification. According to the literature, the most commonly
used and best performing algorithms for disease prediction (22)
include SVM, backpropagation (BP) neural network, random
forest, and naive Bayes.

However, only single prediction models are implemented
in these studies, and the accuracy and stability need to be
improved. Ensemble learning is based on the idea of learning
from the strengths of others. Constructing and combining
multiple machine learning devices to complete the learning task
can effectively prevent overfitting and underfitting problems and
thus improve the prediction performance (23). In the disease
prediction task, there are some problems, such as high feature
dimension, multicollinearity between features, and highly noisy
physical examination data, that can produce unideal stability in
singlemodels. To overcome the above problems and obtain better
stability, this paper proposes an ensemble learning method to
integrate multiple models to predict disease risk. Bagging and
boosting strategies are adopted to evaluate disease prediction
based on the ensemble idea.

Prediction models can be coarsely divided into “black-box”
and “white-box” models. Most existing prediction models in
the medical and health fields are “white-box” models due to
the high demands for comprehensibility, interpretability, and
transparency. These “white-box” models, which include linear
regression and decision tree, have a strong visualization ability
but relatively poor prediction precision (24). If the prediction
problem is difficult and requires high precision, neural networks,
random forests, and other “black-box” models must be used (25).
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In recent years, explainable machine learning has become
a popular topic in different research fields (26). Explainable
machine learning focuses on improving the transparency and
credibility of black-box model decision-making. There are two
methods for bestowing explicability to a predictive model.
First, intrinsically interpretable machine learning methods, such
as logistic regression, can be used as the predictive model.
Second, postinterpretation methods, such as local interpretable
model-agnostic explanations (LIME) (27) and SHapely Additive
exPlanations (SHAP) (28), explain complex models through
postassisted attribute analysis. This paper improves upon LIME
and uses an explainable additive model proposed in recent
years to approximate the complex model further to improve the
interpretability of the ensemble learning model.

This work aims to overcome the limitations described
above by building a COVID-19 diagnostic model based on
hematological parameters to provide a new method to screen
COVID-19. Different classification models have been developed
by applying AI technology to blood test results that can be
obtained in a short amount of time (<10min even in an
emergency) and at only a small percentage of the cost of RT–
PCR and CT. Our approach can be used to screen COVID-
19 patients using regular blood tests in resource-constrained
situations, especially during the peak of an outbreak, when RT–
PCR reagent shortages become a severe issue. The developed
method can also be used as a supplement to RT–PCR tests to
increase their sensitivity.

METHODS

Data Sources
COVID-19 spread rapidly throughoutmany countries worldwide
(29, 30). Early identification of COVID-19 patients and SARS-
CoV-2-infected persons is very important and can play a key
role in epidemic prevention and control. Therefore, the routine
blood test data of patients with COVID-19 was used in this
study (31). The data were extracted from a database including the
hematochemical values from 1,737 patients (47.00% COVID-19
positive) admitted to San Raphael Hospital (OSR) from February
to May 2020. Patient age and sex, the presence of COVID-19-
related symptoms at admission (dyspnea, pneumonia, pyrexia,
sore throat, influenza, cough, pharyngitis, bronchitis, generalized
illness), and a set of hematochemical values from laboratory
tests (complete blood count and coagulation, biochemical, blood
gas analysis and CO-oximetry values) were considered covariate
features. The goal of this study is to classify patients as positive or
negative for COVID-19.

Feature Selection
First, features with no significant differences between the positive
and negative COVID-19 groups were eliminated. Student’s t-
test or the Kruskal–Wallis test were used to compare continuous
variables, which are presented as the mean± standard deviation.
The chi-square test was used to compare categorical variables,
which are presented as frequencies and percentages. A two-
tailed p value of <0.05 was considered statistically significant.
Then, feature correlation analysis was performed according to the

Pearson correlation coefficient matrix. Highly correlated features
were eliminated to avoid issues related to multicollinearity.

Machine Learning Algorithms
Four ensemble learning algorithms, including random forest
(RF), adaptive boosting (AdaBoost), gradient boosting decision
tree (GBDT) and eXtreme gradient boosting (XGBoost), are
used as representative boosting algorithms to determine the
best performing model. The most optimal variables were further
validated using the GBDT method.

Compared with single learning models, the advantage of
an ensemble learning model is that it can combine multiple
single learning models to obtain more accurate, stable, and
robust results (32). The principle of ensemble learning came
from the probably approximately correct (PAC) learning model
(33). Kearns and Valiant first explored the equivalence of weak
and strong learning algorithms (34). Bagging and boosting
strategies both combine existing classification algorithms or
regression algorithms to form a more powerful predictor. In
this paper, RF was used as the representative bagging algorithm.
AdaBoost, GBDT, and XGBoost are used as representative
boosting algorithms.

Bagging
Bagging, also known as bootstrap aggregation, refers to the use
of bootstrapping to extract training samples under the same base
classifier to train multiple base classifiers and finally obtain the
results through a voting method. This approach can help reduce
errors caused by random fluctuations in the training data (35).
The steps of the bagging process are as follows. The training
sets are extracted from the original sample set. In each round,
n training samples are extracted from the original sample set by
bootstrapping, and a total of k rounds of extraction are performed
to obtain k training sets. One training set is used to obtain a
model, and so k training sets obtain a total of k models. [The
model can be determined according to the specific situation;
it can be a decision tree, K-nearest neighbor (KNN), etc.] The
classification results are produced by voting.

Boosting
Boosting transforms weak learners into strong learners through
iteration. By increasing the number of iterations, a strong learner
with high performance is generated (36); this is considered
one of the best performing approaches in machine learning.
Boosting increases the weights of samples that were incorrectly
classified by the weaker classifier in the previous round and
decreases the weights of samples that were correctly classified
in the previous round so that the classifier has a better effect
on the misclassified data. The final boosting model is obtained
according to this rule. The main idea is to combine multiple
weak classifiers into one strong classifier. Under the PAC
learning framework, the weak classifier must be assembled into
a strong classifier.

Model Validation
All patients were randomly divided into training and testing
sets at a ratio of 8:2. To minimize the randomness effect
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of the training result, 10-fold cross-validation was also
adopted. First, the training sets are divided into 10-fold,
then the model is trained with nine-fold and verified
with the remaining fold. The training is repeated for 10
times, with each a different fold for verification, and the
average value of the performance is represented as the
generalization performance. Once the models were derived,
the performances of the different models were further validated
using the receiver operating characteristic (ROC) curve as the
evaluation metric. The accuracy, precision, recall, sensitivity,
F1 score, youden’s index and area under the curve (AUC)
were calculated to evaluate the performance of the ML
algorithm on testing sets. Finally, the optimal ML algorithm
was selected.

Model Interpretation
The local interpretable model-agnostic explanation (LIME) was
used to explain the predictions. The rationale by which a model
predicts a single sample using a local linear approximation of the
model behavior can be better trusted.

LIME, proposed by (27), is a tool that helps explain how
a complex black-box model makes decisions. A new dataset is
generated by randomly perturbing the samples in LIME. The
new dataset is then used to train a linear model, which locally
approximates the black-box model. Then, the local decision
behavior of the black-box model is obtained according to the
interpretable model.

Note that x∈Rd are the samples that need to be interpreted.
First, the more important d

′

dimensional features are selected,
and x becomes x

′

∈Rd
′

after removing the less important features.

A new sample z
′

is generated by perturbing x
′

, and the all-new

samples constitute a new dataset Z
′

. After adding the removed

features to the samples, z
′

is restored to Z ∈ Rd. πx(z) is defined
as the similarity of samples before and after modification and can
be calculated as follows:

πx(z) = exp(−
D(x, z)2

σ 2
), (1)

whereD(x,z) is the distance formula, whose definition varies with
the sample type. When the sample is an image, for example,
D(x,z) is usually the L2 norm distance, and when it is text, D(x,z)
is usually the cosine similarity function.

If f is the complex model to be explained and g is a simple
model, the objective function to measure the difference between
the two models is as follows:

ξ(x) =
∑

z,z′

πx(z)f(f(z)− g(z′)
2
+�(g), (2)

where �(g) is the complexity of model g. When g is a linear
regression model, the number of nonzero weight coefficients
determines the model’s complexity. The flow of the LIME
algorithm is shown in Table 1.

Statistical Analyses
Categorical variables were described as number (%) and
compared by Chi-square or Fisher’s exact test where appropriate.

TABLE 1 | Algorithm: LIME.

Algorithm: LIME

Input: (1) Complex Model f ; (2) Samples X; (3) Number of randomly

generated samples N

Steps:

1. Through feature screening, the more important d
′

features are

preliminarily obtained, allowing the interpretation version X
′

of X to be

obtained

2. A new sample Z
′

is generated by randomly perturbing X
′

; then, Z
′

is

restored to Z with the same dimensions as X. The complex model is used

to predict and obtain the labels

3. The newly generated dataset is fitted with a linear model

Output: The weight of the linear model

Continuous variables that satisfy normal distribution were
described as mean [standard deviation (SD)] and compared
by the 2-tailed Student’s t-test; otherwise, median [interquartile
range (IQR)] and Wilcoxon Mann–Whitney U-test were
used. A two-sided p-value <0.05 was considered statistically
significant. All statistical analyses were performed with Python
(version 3.8.5).

RESULTS

Among 1,736 patients. 362 patients were excluded because they
had more than four missing attribute values. After processing,
1,374 patients remained in the database. Two features (CK and
UREA) were removed because their missing value was larger
than 30% of their overall value; the average value of each feature
was used to fill in the remaining missing values. Thirty-two
features were selected for screening patients for COVID-19
(Table 2).

Baseline Characteristics
Table 2 presents the characteristics of the positive and negative
COVID-19 patients. The chi-square test for sex yielded a
Pearson’s chi-square value of 14.918, and p = 0.000 (close to
but not equal to zero) <0.05, indicating that the sex differences
between the positive and negative COVID-19 groups were
significant. In contrast, Student’s t-test or the Kruskal–Wallis test
showed that there was no difference in age, CREA, KAL, or MCH
between the two groups (p > 0.05).

Figure 1 shows that Sex (r = 0.13), GGT (r = 0.07), GLU (r
= 0.11), AST (r = 0.22), ALT (r = 0.18), LDH (r = 0.24), PCR
(r = 0.23), RBC (r = 0.17), HGB (r = 0.17), HCT (r = 0.16),
MCHC (r = 0.10), NE (r = 0.14), and Suspect (r = 0.32) were
positively correlated with the target, while, CA (r = −0.14), ALP
(r = −0.09), NAT (r = −0.10), WBC (r = −0.22), MCV (r =
−0.06), PLT1 (r = −0.11), LY (r = −0.09), MO (r = −0.05),
EO (r = −0.31), BA (r = −0.31), NET (r = −0.14), LYT (r =
−0.26), MOT (r = −0.17), EOT (r = −0.31), and BAT (r =

−0.29) were negatively correlated with the target. Therefore, we
believed that there were no redundant features and selected all of
them to develop the model.
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TABLE 2 | Characteristics of the positive and negative COVID-19 patients.

Total (N = 1,374) COVID-19 negative (N = 615) COVID-19 positive (N = 759) p-Value

Age, year 60.40 ± 20.83 60.40 ± 20.83 62.27 ± 15.84 0.066

Female 583 (42.43%) 304 (49.43%) 279 (36.76%) <0.001

CA, mmol/L 2.20 ± 0.751 2.29 ± 0.74 2.14 ± 0.14 <0.001

CREA, mg/dl 1.18 ± 1.01 1.22 ± 1.20 1.14 ± 0.82 0.180

ALP, U/L 87.74 ± 64.26 94.18 ± 77.16 82.53 ± 50.95 0.001

GGT, U/L 66.12 ± 101.95 58.52 ± 118.90 72.27 ± 85.40 0.013

GLU, mg/dl 119.03 ± 55.85 112.19 ± 49.85 124.58 ± 59.73 <0.001

AST, U/L 47.11 ± 51.37 34.60 ± 33.44 57.25 ± 60.37 <0.001

ALT, U/L 40.15 ± 40.67 32.23 ± 35.22 46.56 ± 43.58 <0.001

LDH, U/L 336.86 ± 210.61 280.76 ± 243.48 382.33 ± 166.44 <0.001

PCR, 72.22 ± 79.59 52.86 ± 70.90 89.72 ± 82.43 <0.001

KAL 4.22 ± 0.51 4.25 ± 0.50 4.20 ± 0.52 0.101

NAT 138.58 ± 4.66 139.10 ± 3.92 138.15 ± 5.15 <0.001

WBC, 109/L 8.56 ± 4.75 9.73 ± 5.45 7.62 ± 3.85 <0.001

RBC, 1012/L 4.53 ± 0.73 4.40 ± 0.75 4.64 ± 0.69 <0.001

HGB, g/dl 13.18 ± 2.05 12.80 ± 2.13 13.49 ± 1.94 <0.001

HCT, % 39.32 ± 5.64 38.32 ± 5.79 40.14 ± 5.39 <0.001

MCV, fl 87.33 ± 6.93 87.76 ± 7.23 86.97 ± 6.65 <0.001

MCH, pg/cell 29.25 ± 2.69 29.27 ± 2.76 29.23 ± 2.63 0.783

MCHC, g Hb/dl 33.48 ± 1.34 33.34 ± 1.35 33.60 ± 1.32 <0.001

PLT1, 109/L 234.74 ± 95.89 246.55 ± 98.70 225.17 ± 92.51 <0.001

NE, % 72.35 ± 13.26 70.33 ± 13.47 73.98 ± 12.86 <0.001

LY, % 18.58 ± 11.00 19.73 ± 11.37 17.65 ± 10.62 0.001

MO, % 7.83 ± 3.88 8.06 ± 3.61 7.65 ± 4.08 0.045

EO, % 0.88 ± 1.62 1.43 ± 2.02 0.44 ± 1.00 <0.001

BA, % 0.34 ± 0.327 0.43 ± 0.31 0.26 ± 0.21 <0.001

NET, 109/L 6.45 ± 4.48 7.15 ± 5.28 5.88 ± 3.60 <0.001

LYT, 109/L 1.37 ± 0.95 1.64 ± 1.02 1.15 ± 0.83 <0.001

MOT, 109/L 0.62 ± 0.54 0.72 ± 0.45 0.54 ± 0.59 <0.001

EOT, 109/L 0.07 ± 0.14 0.12 ± 0.18 0.03 ± 0.08 <0.001

BAT, 109/L 0.02 ± 0.04 0.03 ± 0.05 0.01 ± 0.02 <0.001

Suspect, % 0.83 ± 0.33 0.71 ± 0.39 0.92 ± 0.23 <0.001

CA, calcium; CREA, creatinine; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase, an enzyme that converts glutamyl to glutamine; GLU, glucose; AST, aspartate

aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase, a type of enzyme that breaks down lactate; WBC, white blood cell; RBC, red blood cell; HGB,

hemoglobin, a protein that transports oxygen throughout the body; HCT, hematocrit, a metric representing the proportion of RBCs in the blood; MCV, mean corpuscular volume;

MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT1, platelets; NE, neutrophil count (%); LY, lymphocyte count (%); MO, monocyte count

(%); EO, eosinophil count (%);BA, basophil count (%); NET, neutrophil count; LYT, lymphocyte count; MOT, monocyte count; EOT, eosinophil count; BAT, basophil count; Suspect,

suspected COVID-19.

ML Algorithms’ Performance Comparison
Data from 80% of the 1,374 patients were randomly selected and
used as the training set, while the data from the remaining 20%
of the patients were used as the testing set. The prediction models
were developed with the training set, and their performance
was evaluated with the testing set. Random forest, AdaBoost,
GBDT, and XGBoost were selected as the typical algorithms of
the ensemble learningmodel. The performance of theMLmodels
was evaluated by using the area under the receiver operating
characteristic curve (AUC).

The GBDT algorithm had the best fitting effect on the
COVID-19 dataset, with an accuracy of 93.8% and an AUC of
98.4% [95% CI (0.978, 0.990)] on the training set and 80.4 and

86.4% [95% CI (0.821, 0.907)], respectively, on the test set (see
Tables 3, 4 for details on the performance metrics).

As shown in Figure 2, the performance of GBDT was better
than that of random forest, AdaBoost, and XGBoost. DeLong’s
test was further used to assess the difference between two
AUCs, which confirmed that the AUC of the GBDT model was
significantly different from that of the other three models (p
< 0.01).

A calibration curve was obtained with the bucket method
(continuous data discretization) to observe whether the
prediction probability of the classification model was close to
the actual probability. It is an evaluation index of a probability
model. The calibration curve of the GBDT model was drawn

Frontiers in Public Health | www.frontiersin.org 5 June 2022 | Volume 10 | Article 87445596

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Gong et al. Explainable AI Approach for Screening COVID-19

FIGURE 1 | Correlation coefficient matrix heatmap of all 29 variables. The obtained numerical matrix is visually displayed through a heatmap. Orange indicates a

positive correlation, and green indicates a negative correlation. Color depth indicates the value of the coefficient, with deeper colors indicating stronger correlations.

Specifically, redder colors indicate correlation coefficients closer to 1, and greener colors indicate coefficients closer to −1.

with the predicted probability as the abscissa and the true
probability in each bin as the ordinate. As shown in Figure 3, the
calibration curve was close to the diagonal, indicating that in the
model testing experiment, the GBDT model performed well.

Explanation of the Best Model
Feature Importance of GBDT
The meaning of “GradientBoostingClassifier (n_estimators =

100, learning_rate = 1.0, max_depth = 1, random_state = 0)”
in classifying the patients could not be explained to the doctors
sufficiently. In general, the interpretability of GBDT is reflected
in its feature importance. The feature importance derived from
the XGBoost model is shown in Figure 4.

Interpretation by LIME
Local interpretable model-agnostic explanations selects a
specific sample in the test dataset to obtain the probability
value of each class and explains the reason for assigning
the probability. Figure 5 shows the prediction results of
the sample. The figure shows which features determined
that the sample should be classified as COVID-19 positive
(blue) and which determined that the sample should be
classified as COVID-19 negative (orange). The values of the
features for the sample are listed in the figure to show the
contribution of the features. Specifically, CA, PCR, and LDH
were important factors for determining positive COVID-
19 patients. These three features were further discretized
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TABLE 3 | Performance of random forest, AdaBoost, GBDT, and XGBoost models in screening COVID-19.

Model Accuracy Precision Recall Sensitivity F1 score Youden’s index

Random forest 74.2% 70.8% 90.8% 53.7% 0.795 0.589

AdaBoost 76.7% 78.2% 80.3% 72.4% 0.792 0.553

GBDT 80.4% 80.3% 85.5% 74.0% 0.828 0.615

XGBoost 75.3% 73.3% 86.8% 61.0% 0.795 0.565

TABLE 4 | Performance of random forest, AdaBoost, GBDT, and XGBoost models to screen COVID-19.

Model AUC AUC_95% CI AUC_SD AUC_p value Confusion matrix

Random Forest 85.7% 0.813, 0.902 0.02 <0.001 [66, 57], [14, 138]

AdaBoost 85.4% 0.810, 0.899 0.02 <0.001 [89, 34], [30, 122]

GBDT 86.4% 0.821, 0.907 0.02 <0.001 [91, 32], [22, 130]

XGBoost 84.9% 0.803, 0.894 0.02 <0.001 [75, 48], [20, 132]

FIGURE 2 | Receiver operating characteristic (ROC) curves for the machine

learning models in screening COVID-19.

and used to developed a simplified decision tree model
(Figure 6).

DISCUSSION

The COVID-19 outbreak is currently under control in China
and is in a state of normalized prevention and control,
but imported cases from other countries occur often, and
the number of infections worldwide continues to rise.
Virus nucleic acid detection is the “gold standard” for the
diagnosis of COVID-19. However, due to premature collection
times, nonstandard collection methods, and inaccurate

FIGURE 3 | Calibration curve for the internal validation set. The calibration

curve was plotted using the bucket method (continuous data discretization) to

observe whether the prediction probability of the classification model is close

to the empirical probability (that is, the real probability). Ideally, the calibration

curve lies along the diagonal (i.e., the prediction probability is equal to the

empirical probability).

collection locations, false negative results have occurred
many times in virus nucleic acid detection (37). Chest CT
plays an important role in the early diagnosis of COVID-
19, with a high sensitivity but low specificity (25%) (38).
Therefore, developing a new strategy for achieving a rapid
and accurate diagnosis for COVID-19 is essential from a
clinical perspective.

Since the start of the COVID-19 outbreak, a large number
of scholars have been committed to applying AI technology
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FIGURE 4 | Influence of input features on the outcome of the XGBoost model. The top three features are LDH, WBC, and EOT. It indicates that they have important

auxiliary diagnostic significance for COVID-19. The model found that patients with higher WBC count, higher LDH level, or higher EOT count, were more likely to have

COVID-19. It might assist physicians to make their decisions.

to rapidly diagnose COVID-19. Wu et al. (39) constructed a
COVID-19 differential diagnosis model by mining 11 key blood
indices through an ML algorithm and obtained accuracy rates of
0.9795, 0.9697 and 0.9595 with their cross-validation set, test set
and external validation set, respectively. Li et al. (40) developed a
deep learning model based on CT images to distinguish COVID-
19 from community-acquired pneumonia. With the independent
validation set, the AUC for identifying COVID-19 was 0.96
and that for identifying community-acquired pneumonia was
0.95. Ozturk et al. (8) constructed a deep learning classification
model based on the chest X-ray films of COVID-19 patients.
The results showed that the accuracy of the model in performing
two-class and multiclass classification were 0.9808 and 0.8702,
respectively. All the AI models in the above studies showed
good diagnostic performance but only included a single index for

evaluation and analysis and participation in model construction
(laboratory examination index or chest image index). Combined
with the comprehensive analysis of clinical manifestations,
laboratory examination, CT and other indicators, this study
jointly constructed a predictive diagnosis model for COVID-
19 based on ML that better reflects the real-world COVID-
19 situation.

Artificial intelligence technology has an excellent ability
to process big data and mine complex medical information.
In medical scenarios, the most common problem is binary
classification, such as predicting whether a patient has a disease
through data analysis and model establishment. Simple models
used to solve classification problems include logistic regression,
decision tree, and SVM. However, due to the limitations of these
simple models, they often cannot achieve optimal prediction
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FIGURE 5 | Influence of nine variables on the outcome of the XGBoost model. Because PCR ≤9.30 and CA >2.29 were the most significant features, the

classification of this sample was confirmed as positive.

FIGURE 6 | Simplified decision tree model based on the top three features.

efficiency, so the application of ensemble learning models is
becoming more widespread in the machine learning field.
AdaBoost was the first boosting model and functions by training
different weak models based on the same training dataset and
then integrating these weak models to form a stronger classifier
with a better effect. XGBoost is a machine learning method
focusing on the gradient lifting algorithm. The loss function
is expanded as a second-order Taylor expansion, the second
derivative of the loss function is used to optimize the loss
function, and depending on whether the loss function is reduced,
a decision on whether to split nodes is made. The disadvantage of
XGBoost is that it is sensitive to outliers.

In GBDT, a tree is trained first by using the training set
and the real classification of the samples; then, the tree is used
to predict the classification of the training set to obtain the

predicted value of each sample, and the deviation between the
predicted value and the true value, that is, the residual, is used
as the standard answer to train the next tree. Then, the residual
is used to train a third tree, and the final prediction result
is obtained. Because the growth process of the decision tree
continuously selects and segments features, GBDT composed
of a large number of decision trees has inherent advantages
and can easily yield the importance ranking of its features. The
advantages of the chosen methods over the others are as follows.
(1) The prediction accuracy is higher, it is more suitable for low-
dimensional data, and it can contend with nonlinear data. (2) It
can flexibly handle various types of data, including continuously
and discretely valued data. (3) In the case of a relatively short
parameter adjustment time, the preparation rate of the prediction
can be high relative to that of SVM. (4) Certain robust loss
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functions, such as the Huber and quantile loss functions, make
the model very robust to outliers.

The model constructed in this study has high clinical
application value. The three features identified, LDH, WBC, and
EOT, can assist doctors in rapidly and accurately diagnosing
COVID-19 patients. Under normal circumstances, LDH is
limited to the cytoplasm of tissue cells; it is released only when
cell damage and necrosis cause an increase in cell membrane
permeability, resulting in a rise in serum LDH concentration.
The degree of lung tissue injury is directly proportional to the
level of serum LDH, so the level of serum LDH can indirectly
reflect the severity of the disease. The sickness is mild when
a patient is first infected with SARS-CoV-2. As the disease
progresses, the condition gradually worsens, and the LDH level
gradually increases (41, 42). The number of white blood cells
in a unit volume of blood is measured by the white blood cell
count (WBC). White blood cells are an important part of the
body’s defense system and a common marker for identifying
infection, with a high specificity in the diagnosis of infectious
fever. According to previous research, infection should still be
considered first when the WBC rises. SARS-CoV-2 infection
stimulates the innate and adaptive immune responses of the
infected body, resulting in a series of inflammatory reactions
and pathological changes. The excessive immunological response
of the body to external stimuli such as viruses and bacteria
is referred to as a cytokine storm (43). It can cause the body
to quickly produce a large number of cytokines, such as IL-6,
IL-12, IL-8, and IFN-α; this abnormal increase in the number
of cytokines can cause aggregation of eosinophils and other
infectious lesions. The organs and tissues are also severely
damaged in the process of effectively eradicating the infection
(44, 45).

The application of AI technology in the medical field has
created new opportunities for solving many medical challenges.
However, it can be difficult for users to understand the internal
working principle and decision-making process of the model
due to its inherent inexplicability. This reduces doctors’ trust
and acceptance of the AI model and limits the development of
AI products in the medical field. Therefore, the construction
of interpretable AI models has become the focus of research in
recent years. The decision tree model can reflect both linear and
nonlinear relationships, allowing it not only to make accurate
predictions but also to be interpretable (46). The interpretability
of the model is reflected in both global interpretability and
local interpretability. The global interpretability shows that the
decision tree model can visualize the weight of each index
variable, allowing it to assess the value of each index in the
prediction model. The higher the index weight value is, the
greater the importance of the index. In this study, LDH was the
most important index in the construction of the GBDT model,
with a weight value of 0.145. Local interpretability explains the
diagnosis results for a specific case, which can indicate which
indicators support the diagnosis of the disease, which indicators
deny the diagnosis of the disease, and the basis for the diagnosis,
which is helpful in making an individualized prediction for each
patient and providing accurate treatment. To determine whether
a patient is infected with COVID-19, the patient is selected from

the validation set and input into the LIME model. The results
show that although the CA and PCR2 indicators confirm that
the model can diagnose COVID-19 patients, all other indicators
deny a diagnosis of COVID-19; the overall tendency, however,
is toward a positive diagnosis of COVID-19 for the patient,
consistent with the actual patient diagnosis (Figure 5).

In the fight against COVID-19, top international journals have
published many research results, including epidemiological and
clinical feature analysis, epidemic trend prediction, death-related
risk factors, prognostic impact of basic diseases, and critical
disease prediction models, which provide important scientific
support for this fight and play a positive role in guiding epidemic
prevention and control. In a study published in the Lancet, a
susceptible-exposed-infectious-recoveredmetapopulationmodel
was used to simulate epidemics across all major cities in China.
The study suggested that preparedness plans and mitigation
interventions should be readied for quick deployment globally
(47). In a study published in JAMA, Pan et al. (48) applied
surveillance data to quantify the temporal evolution of the
intensity of COVID-19 transmission across different periods.
Their study may have important implications for ongoing and
potential future nonpharmaceutical bundles in the US and other
nations with respect to daycare for children (49). Liang et al.
(50) developed a clinical risk score to predict the occurrence
of critical illness in hospitalized patients. The score may help
identify patients with COVID-19 who may subsequently develop
a critical illness. Vaid et al. (51) developed machine learning
models to predict critical illness and mortality in a cohort
of patients in New York City. These models identified at-risk
patients and uncovered underlying relationships that predicted
patient outcomes. In most studies, a kind of model was applied
without considering the ensemble learning algorithms.

This study used a small sample of COVID-19 patients, which
may affect the accuracy of the results. Additionally, utilizing
a deep learning model with such a small sample size is not
ideal. The dataset is not sufficiently standardized, resulting in
the elimination of several indicators due to the large number of
missing values. In future research, the sample size must be further
increased, and a more standardized sample set should be selected
to confirm the results of this study.

CONCLUSIONS

In this study, random forest, AdaBoost, GBDT, and XGBoost
algorithms were used to develop bagging and boosting ensemble
learning models to predict disease risk and then compared in
terms of the AUC, accuracy, recall, and F score. Finally, the
optimal model was explained by way of the LIME algorithm.
Taking the COVID-19 data as a case study, the research is
summarized as follows.

First, compared with other classifiers, the precision of GBDT
was 80.3%, and the recall was 85.6%. TheAUCwas 86.4% [95%CI
(0.821, 0.907)], indicating better performance. Therefore, GBDT
was chosen as the prediction model for the early diagnosis of
COVID-19. The model, which was developed based on blood
tests, can provide an alternative method to rRT-PCR for the fast
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and cost-effective identification of COVID-19-positive patients.
It is especially effective in places where outbreaks are on the rise.

Second, the risk factors in the prediction model were
visualized using the LIME algorithm. CA, PCR, and LDH were
revealed as important factors for identifying patients positive for
COVID-19. These findings can help doctors control and treat
patients in a timely manner. In addition, the same method can
be extended to predict other diseases.

Third, in future studies, multiple features will be fused to
enhance the richness and effectiveness of the features. In the
ensemble strategy, stacking is a hierarchical model integration
framework that will be incorporated into an integration model
in future studies. Finally, for classification algorithms, the most
popular models were tested. To obtain improved precision in
early disease risk identification, combinations of models will be
investigated, model complexity will be reduced, and graph neural
networks will be integrated in future works.
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Objective: Distant metastasis other than non-regional lymph nodes and lung (i.e., M1b

stage) significantly contributes to the poor survival prognosis of patients with germ cell

testicular cancer (GCTC). The aim of this study was to develop a machine learning (ML)

algorithm model to predict the risk of patients with GCTC developing the M1b stage,

which can be used to assist in early intervention of patients.

Methods: The clinical and pathological data of patients with GCTC were obtained from

the Surveillance, Epidemiology, and End Results (SEER) database. Combing the patient’s

characteristic variables, we applied six machine learning (ML) algorithms to develop

the predictive models, including logistic regression(LR), eXtreme Gradient Boosting

(XGBoost), light Gradient Boosting Machine (lightGBM), random forest (RF), multilayer

perceptron (MLP), and k-nearest neighbor (kNN). Model performances were evaluated by

10-fold cross-receiver operating characteristic (ROC) curves, which calculated the area

under the curve (AUC) of models for predictive accuracy. A total of 54 patients from our

own center (October 2006 to June 2021) were collected as the external validation cohort.

Results: A total of 4,323 patients eligible for inclusion were screened for enrollment from

the SEER database, of which 178 (4.12%) developing M1b stage. Multivariate logistic

regression showed that lymph node dissection (LND), T stage, N stage, lung metastases,

and distant lymph node metastases were the independent predictors of developing M1b

stage risk. The models based on both the XGBoost and RF algorithms showed stable

and efficient prediction performance in the training and external validation groups.

Conclusion: S-stage is not an independent factor for predicting the risk of developing

the M1b stage of patients with GCTC. The ML models based on both XGBoost and

RF algorithms have high predictive effectiveness and may be used to predict the risk of

developing the M1b stage of patients with GCTC, which is of promising value in clinical

decision-making. Models still need to be tested with a larger sample of real-world data.

Keywords: machine learning algorithms, prediction model, germ cell testicular cancer, M1b stage, real-world

research
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INTRODUCTION

Testicular cancer (TC), as a rare malignant tumor of the
genitourinary system, accounts for about 1% of male tumors and
about 5% of urogenital tumors. In Occident, the annual rate
of new cases is <1 in 10,000 (1). Despite having a relatively
low overall incidence rate and a good prognosis, TC is the
most common malignancy in men aged 15 to 35 years (2, 3).
Germ cell testicular cancer (GCTC) is the most common kind of
testicular cancer, accounting for over 95% of all testicular cancer
histological types. There are two types of GCTC: seminoma and
non-seminomatous germ cell tumors (NSGCTs). The former is
the most common type of GCTC, accounting for about one-
third of its total, and the latter includes embryonal carcinomas,
yolk sac tumors, choriocarcinomas, teratomas, and mixed germ
cell cancers (4). Cryptorchidism, family history, Klinefelter’s
syndrome, androgen insensitivity syndrome (AIS), and industrial
exposure may be the major risk factors for testicular cancer (5–
8). Serum levels of alphafetoprotein (AFP), human chorionic
gonadotropin (hCG), and lactate dehydrogenase (LDH) should
be determined before and after orchiectomy, as they can
assist in diagnosis and predict prognosis. Genetic studies have
shown that TC is associated with ectopic short arms of
chromosome 12 (i12p) and that alterations in the P53 gene have
a correlation with their occurrence (1, 9). Radical orchiectomy,
together with bilateral retroperitoneal lymph node dissection,
is the standard surgical management of patients with TC, and
radiotherapy and/or chemotherapy is recommended for patients
with advanced TC (10, 11).

Germ cell testicular cancer outward invasion includes lymph
nodes, lungs, liver, brain, bones, etc. Although distant metastases
are more likely to invade the lungs and distant lymph nodes
for GCTC, the risk of other atypical metastases (including liver,
brain, bones, and other rare organs or tissues), which account
for approximately 10% of all patients, cannot be ignored (12–16).
The International Germ Cell Cancer Collaborative Classification
for Metastatic Testicular Cancer (IGCCCG) identifies non-
pulmonary visceral metastases as a strong influence on poor
prognosis in metastatic patients with TC (15). A recent study also
showed that patients with liver metastases and bone metastases
had a significantly poor prognosis compared to distant lymph
node and lung metastases (13). Although most metastatic
lesions are not palpable, if a patient has supraclavicular lymph
node metastases, they may palpate a left cervical mass. Lung
metastases may present with the shortness of breath or even rare
hemoptysis. If a patient has extensive retroperitoneal metastases,
they may present with low back pain due to organ compression.
Meanwhile, brain metastases may cause headaches as well
as various neurological symptoms (17). Contrast-enhanced
computerized tomography (CECT) is the most sensitive method
to evaluate patients with TC for tumor invasion in the chest,
abdomen, and pelvis (18, 19). Although both CECT andmagnetic
resonance imaging (MRI) are the key image modalities for
detecting brain metastases, MRI is much more sensitive than
CECT, and therefore, MRI plays a major role in detecting brain
metastases (20).However, imaging scans may not be effective
enough in screening out patients with GCTC at high risk for

developing to M1b stage. Therefore, a model to predict the risk
of progression to M1b in patients with GCTC can be used for
clinical applications to improve patient prognosis.

Machine learning (ML) is an advanced algorithmic model that
automatically learns and improves performance by identifying
complex non-linear relationships in different patterns and is
considered superior to traditional algorithms (21–23). As one of
the topics of artificial intelligence (AI), ML has been widely used
in clinical practice, such as image recognition, complications
prediction, and survival analysis (24, 25). The aim of this study
was to establish and validate an ML-based model predicting the
risk of progression to the M1b stage in patients with GCTC.

MATERIALS AND METHODS

Data Collection
A retrospective cohort research approach was adopted. The
information came from the SEER research database, which covers
approximately 27.8% of the US population. We used I CD-
O-3 site codes C62.1 and C62.9 and histological codes 9061
to 9064, 9070 to 9071, 9080 to 9085, and 9100 to 9102 to
identify patients with GCTC. To develop the ideal ML model,
several variables were obtained, including survival data, age, race,
marital status at diagnosis, histology type, TNM stage, tumor
laterality, radiotherapy documents, chemotherapy documents,
LND, lymph-vascular invasion (LVI), metastatic sites, and
AFP/hCG/ LDH index after orchiectomy. We evaluated the S-
stage of patients based on the postoperative serum tumor marker
data obtained above. An external validation set was constructed
by collecting the same variables from the Affiliated Hospital of
Xuzhou Medical University. The flow chart for patient selection
of the SEER database is shown in Supplementary Figure 1.

Statistical Analysis
For continuous variables, the Student’s t-test was used for
normally distributed data and the Mann–Whitney U-test for
non-normally distributed data. The chi-square test was used to
analyze categorical data. The Kaplan–Meier method was being
used to determine the clinical endpoints of the patients, and the
log-rank test was used to analyze them. Uni- and multivariate
logistic regression analyses were used to calculate the odds ratio
(OR) with 95% confidence intervals (Cis). Only two-sided p-
value<0.05 was considered statistical significance. We used six
different ML algorithms to analyze our data: LR, XGBoost,
lightGBM, RF, MLP, and kNN. The model with the highest
average AUC was chosen as the best algorithm. Furthermore,
the ML-based model was tuned to avoid overfitting, and the
accuracy of the algorithm was tested using the 10-fold cross-
validation method. R 4.1.2 (https://www.r-project.org/), Python
3.10 (https://www.python.org/), and SEER∗Stat (https://seer.
cancer.gov/seers tat/) were used in this study. Detailed packages
used in the development of our ML models including XGBoost
1.2.1, lightGBM 3.2.1, and sklearn 0.22.1. For the kNN classifier,
the number of neighbors is set as 3. For the RF algorithm, we
set the “ntree” as 100 and “mtree” as 3. To avoid overfitting and
enhance interpretability, the maximum tree depth was set to 8
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FIGURE 1 | Heatmap of the correlation of patients’ clinical and pathological features.

nodes in the XGBoost algorithm. The hidden layer sizes of MLP
algorithm were (10, 10).

RESULTS

Patient’s Characteristics
Baseline data for the training cohort and external validation
cohort are listed in Supplementary Table 1. In the training
cohort, the variables with p < 0.05 were LND, chemotherapy, T-
stage, N-stage, lung metastasis, distant lymph node metastasis,
LDH, hCG, AFP, and S-stage. The differences were not
statistically significant in age, tumor size, race, histology type,
laterality, marital status, radiotherapy, and LVI. The correlations
between the variables chosen as predictors were analyzed and

visualized by a heatmap using Spearman’s rank correlation
coefficient (Figure 1).

Survival Analysis
We retrieved patients’ survival data from the SEER database,
cancer-specific survival (CSS) was considered as the endpoint,
and Kaplan–Meier survival analysis was used to estimate the
survival. As shown in Figure 2, patients who reached the M1b
stage had significantly worse CSS (p < 0.001).

Univariate and Multivariate Logistic
Regression Analyses
As illustrated in Table 1, in terms of univariate logistic regression
analysis, LND, chemotherapy, T-stage, N-stage, lung metastasis,
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FIGURE 2 | Kaplan–Meier curve of cancer-specific survival in patients with GCTC.

distant lymph nodemetastasis, LDH, hCG, AFP, and S-stage were
all significantly associated with the occurrence of developing
M1b stage in the overall population (p < 0.05). In multivariable
logistic regression analysis (Table 2), given the high correlation
between serum tumor markers and S-stage as shown by heatmap,
two models were carried out to avoid collinearity. Factors with
statistical significance were T-stage, N-stage, lung metastasis, and
distant lymph node metastasis (p < 0.001) in both model 1
(included S-stage) and model 2 (included three serum tumor
markers). The p-value of LND was 0.056 in model 1 and 0.049

in model 2. After comprehensively considering the performance
of this variable in the two models, we finally incorporated it into
the model algorithm of ML.

Performance of ML Algorithms
To compare the predictive efficiency of six ML algorithmmodels,
10-fold cross-validation was applied in this study (Figure 3).
Both the XGBoost model (AUC = 0.814, 95% CI 0.777–0.851)
and the RFmodel (AUC= 0.816, 95%CI 0.779–0.852) performed
well in the training cohort. The learning curves of models
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TABLE 1 | Univariable logistic regression analysis of the training cohort.

Variables Level Univariate OR 95%CI p-value

Age (year) NA 1.006 [0.993, 1.019] 0.367

Tumor size (mm) NA 1.002 [0.999, 1.005] 0.113

Race White Ref 0.602

Black 0.672 [0.211, 2.141] 0.501

Other 1.191 [0.739, 1.919] 0.473

Histology type Seminoma Ref 0.139

NGSTC 1.257 [0.928, 1.701]

Laterality Left Ref 0.83

Right 1.033 [0.765, 1.396]

Marital status Single Ref 0.505

Married 1.205 [0.881, 1.648] 0.242

Other status 1.08 [0.596, 1.957] 0.799

LND No/Biopsy only Ref <0.001

Yes 2.309 [1.592, 3.349]

Radiotherapy No Ref 0.984

Yes 0.993 [0.501, 1.969]

Chemotherapy No Ref <0.001

Yes 2.571 [1.854, 3.566]

LVI Absent Ref 0.643

Present 0.926 [0.668, 1.283]

T stage T1 Ref <0.001

T2 1.379 [0.973, 1.955] 0.071

T3 6.214 [4.118, 9.377] <0.001

T4 10.848 [3.425, 34.362] <0.001

N stage N0 Ref <0.001

N1 5.214 [3.485, 7.801] <0.001

N2 4.166 [2.622, 6.620] <0.001

N3 9.431 [6.300, 14.119] <0.001

Lung metastasis No Ref <0.001

Yes 4.648 [3.264, 6.620]

Distant lymph node metastasis No Ref <0.001

Yes 9.593 [5.674, 16.218]

LDH (U/l) Within normal limits Ref 0.002

<1.5 x N 1.5 [1.008, 2.233] 0.045

1.5–10 x N 2.109 [1.315, 3.383] 0.002

>10 x N 2.822 [1.268, 6.283] 0.011

Only know elevated after orchiectomy 0.914 [0.285, 2.931] 0.88

hCG (mIU/ml) Within normal limits Ref <0.001

<5,000 1.44 [0.967, 2.144] 0.072

5,000–50,000 2.765 [1.307, 5.849] 0.008

5,000–50,000 4.814 [2.400, 9.657] <0.001

Only know elevated after orchiectomy 1.926 [0.589, 6.297] 0.278

AFP (ng/ml) Within normal limits Ref 0.011

<1,000 1.07 [0.714, 1.603] 0.742

1,000–9,999 2.88 [1.546, 5.367] 0.001

≤ 10,000 1.374 [0.327, 5.764] 0.664

S-stage S0 Ref <0.001

S1 1.143 [0.756, 1.729] 0.527

S2 1.607 [1.104, 2.338] 0.013

S3 3.262 [1.889, 5.631] <0.001

OR, odds ratio; CIs, confidence intervals; NSGCT, non-seminomatous germ cell tumor; LND, lymph node dissection; LVI, lymph-vascular invasion;LDH, lactate dehydrogenase; hCG,

human chorionic gonadotropin; AFP, alpha-fetoprotein; other marital status includes divorced/widowed/unknown; N indicates the upper limit of normal; serum tumor markers were

determined after orchiectomy/before chemotherapy.
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TABLE 2 | Multivariate logistic regression analysis of the training cohort.

Variables Level Model 1 Model 2

Multivariate OR 95%CI p-value Multivariate OR 95%CI p-value

LND No/Biopsy only Ref 0.056 0.049

Yes 1.492 [0.989, 2.250] 1.517 [1.002, 2.295]

Chemotherapy No Ref 0.085 0.117

Yes 1.397 [0.955, 2.044] 1.358 [0.926, 1.991]

T stage T1 Ref <0.001 <0.001

T2 1.053 [0.728, 1.523] 1.072 [0.74, 1.554]

T3 3.216 [2.054, 5.035] 3.259 [2.074, 5.121]

T4 5.6 [1.643, 19.090] 5.079 [1.436, 17.965]

N stage N0 Ref <0.001 <0.001

N1 4.201 [2.756, 6.404] 4.291 [2.808, 6.559]

N2 3.159 [1.945, 5.129] 3.288 [2.019, 5.354]

N3 6.148 [3.159, 1.945] 6.416 [4.138, 9.947]

Lung metastasis No Ref <0.001 0.001

Yes 2.396 [1.538, 3.734] 2.254 [1.406, 3.613]

Distant lymph node metastasis No Ref <0.001 <0.001

Yes 4.288 [2.335, 7.877] 4.588 [2.494, 8.441]

LDH (U/l) Within normal limits / / / 0.697

<1.5 x N / / / 1.014 [0.644, 1.599]

1.5–10 x N / / / 0.735 [0.404, 1.339]

>10 x N / / / 0.976 [0.376, 2.532]

Only know elevated after orchiectomy / / / 0.495 [0.142, 1.721]

hCG (mIU/ml) Within normal limits / / / 0.177

<5,000 / / / 1.021 [0.634, 1.645]

5,000–50,000 / / / 1.368 [0.553, 3.382]

5,000–50,000 / / / 2.873 [1.196, 6.901]

Only know elevated after orchiectomy / / / 1.57 [0.434, 5.689]

AFP (ng/ml) Within normal limits / / / 0.396

<1,000 / / / 0.703 [0.442, 1.116]

1,000–9,999 / / / 1.143 [0.544, 2.403]

≤10,000 / / / 0.611 [0.123, 3.029]

S-stage S0 Ref 0.397 / / /

S1 0.834 [0.534, 1.302] / / /

S2 0.791 [0.512, 1.221] / / /

S3 1.299 [0.678, 2.489] / / /

OR, odds ratio; Cis, confidence intervals; LND, lymph node dissection; LVI, lymph-vascular invasion;LDH, lactate dehydrogenase; hCG, human chorionic gonadotropin; AFP, alpha-fetoprotein; N indicates the upper limit of normal; serum

tumor markers were determined after orchiectomy/before chemotherapy.
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FIGURE 3 | 10-fold cross-ROC curves of six ML models in the training cohort; logistic regression (LR), eXtreme Gradient Boosting (XGBoost), light Gradient Boosting

Machine (lightGBM), random forest (RF), multilayer perceptron (MLP), and k-nearest neighbor (kNN).

in the training cohort are shown in Supplementary Figure 2.
In external validation, as shown in Figure 4, the XGBoost
model (AUC = 0.957, 95% CI 0.904–1.000) showed the best
performance in ROC curve analysis among six algorithms, and
the RF model also showed great performance (AUC = 0.946,
95% CI 0.886–1.000). Since both the XGBoost model and the
RF model were efficient and stable in the training and validation
groups, we suggested that both the two algorithmic models can
be considered as ideal for predicting the risk of developing M1b
stage with patients with GCTC.

Relative Importance of Variables
The GCCT patients’ clinical feature importance based on the
XGBoost and the RF model is shown in Figure 5.

DISCUSSION

For patients with undetectable metastatic lesions, early
application of systemic chemotherapy and combination therapy
may improve the prognosis and increase the median survival rate
(26). The IGCCCG-related metastatic germ cell testicular cancer
prognostic-based staging system (15) is clinically recognized as
an effective system. This system showed that for patients with
TC who developed metastases, the prognosis for pulmonary
metastases was better, whereas patients with non-pulmonary
metastases had a poorer prognosis. A recent study also showed
that patients with TC who developed organ metastases, such as
bone and liver, had over all poor survival and cancer-specific
survival (13). Some patients fail to detect metastatic lesions at the
first diagnosis or even at the early postoperative review. Some

patients with early metastatic GCTC (mGCTC) have subclinical
metastases (most common in the retroperitoneum) that are not
identified by imaging and are identified and diagnosed as clinical
M1 at follow-up after orchiectomy (14, 27). The S-stage is a
classification based on serum tumor markers (post-orchiectomy
and pre-chemotherapy initiation) and is complementary to the
TNM stage. Since the serum half-lives of AFP and β-hCG are 5
to 7 days and 1 to 3 days, respectively, it will take several weeks to
return to normal levels (28, 29). These tumor markers not only
have prognostic predictive value, but also should be continued
during follow-up to assist in determining whether postoperative
metastases have occurred (30). The BEP-based (bleomycin,
etoposide, and cisplatin) chemotherapy regimen is the standard
treatment for metastatic patients with TC (31). A randomized
phase III trial showed similar relapse-free survival rates and no
significant difference in quality of survival between patients who
underwent retroperitoneal lymph node dissection and adjuvant
BEP (32). Most patients with GCTC are sensitive to radiotherapy
as well (33).

Previous studies have shown that patients with metastases

to internal organs other than the lungs have a significantly

poor prognosis (13, 15). We confirmed this by obtaining GCTC

patients’ survival indicators from the SEER database, utilizing the

Kaplan–Meier method. Since most patients have no conscious

symptoms in the early clinical stage of metastasis, and there
is a possibility of missing micrometastases on imaging, the
construction of an effective model to predict the risk of stageM1b
in patients with GCTC is of great value in clinical application. To
the best of our knowledge, this study is the first study to develop
an accurate predictive model for predicting the risk of developing
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FIGURE 4 | The ROC curves of six models in the external validation cohort.

FIGURE 5 | Patients clinical and pathological features’ importance of the XGBoost model (A) and the RF model (B).
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the M1b stage in patients with GCTC by incorporating multiple
clinical and pathological indicators. In the baseline analysis, we
found that the majority of patients received chemotherapy, but
only a small percentage of patients received radiotherapy and
LND, which is in line with our clinical experience and guideline
recommendations. In terms of univariate logistic regression
analysis, LND, chemotherapy, T-stage, N-stage, lung metastasis,
distant lymph nodemetastasis, LDH, hCG, AFP, and S-stage were
all significantly associated with the occurrence of developing the
M1b stage. In the multivariate logistic regression, LND, T-stage,
N-stage, lung metastasis, and distant lymph node metastasis
were considered significant risk factors. Based on clinical reality,
the inclusion of LND in the ML model means that the patient
is judged to have an indication for LND by imaging or other
assessment modalities preoperatively, rather than receiving LND,
which results in an elevated risk of progression to the M1b stage.
Unfortunately, in both models of multivariate logistic regression,
serum tumor markers were not a predictor of progression to
M1b stage in patients with GCTC, which may indicate that
serum tumor markers (postoperative LDH, hCG, AFP) are
more clinically significant in suggesting metastasis in the lung
and distant lymph nodes and have limited predictive value for
metastasis in other tissues or organs.

Machine learning is an important branch of AI, which learns
the data structure of input data and its intrinsic patterns,
selects corresponding learning methods and training methods
to construct optimal mathematical models, and continuously
adjusts model parameters to seek optimal solutions through
mathematical methods to improve generalization ability and
effectively prevent the occurrence of overfitting. ML has
been widely used in various medical research fields as a
powerful algorithm for predictive model building. Compared
with traditional statistical methods, ML can better deal with
overfitting, unbalanced data distribution and other problems
(21, 24, 25). A total of six common ML algorithms were utilized
in this study, including LR, XGBoost, lightGBM, RF, MLP, and
kNN. The LR algorithm is often thought of as a traditional
algorithm, but is essentially a form of machine learning (34).
The XGBoost is a ML approach that has the unique ability to
integrate missing data quickly and flexibly, as well as to assemble
poor prediction models into a more accurate one (35, 36). The
RF is a ML classifier that employs multiple trees to train and
predict samples. It may be used to reduce training variance
and increase integration and generalization (37). The other
algorithms included have also shown high prediction accuracy,
model stability, and computational efficiency in previous studies
(38–40). Integrating the effectiveness and stability of the models
in the training and external validation sets, XGBoost and RF were
finally identified as two best prediction model algorithms for the
risk prediction of progression toM1b in patients with GCTC.We
hope to further validate the performance of these two models in
the future through collaboration with multicenter medical units,
hoping to specify a most efficient algorithmic model and to work
with software development experts to develop a mobile program
that facilitates clinically friendly applications.

Our study has certain limitations. First, the unavailability
of data, including immunohistochemistry, patients’ underlying

disease, and hematology index, limits the ability to further
optimize the ML model, and we hope to incorporate these
metrics at a later stage when a multicenter, real-world database
is established. Second, S-stage was assessed by the postoperative
serum tumormarkers we obtained, whichmay have some human
analysis errors because they are not directly available from the
database. Meanwhile, the criteria for whether a patient has an
indication for adjuvant therapy or LND are inconsistent from
one medical institution to another and may be subjected to
some errors in practical application. In addition, the practical
value of the model obtained based on a predominantly Caucasian
database for application in other centers (including China)
is unclear due to the inevitable differences in ethnicity and
treatment levels in different countries’ or regions’ validation.
Nevertheless, our study is an important step forward in
developing a model to predict the risk of developing the M1b
stage in patients with GCTC.

CONCLUSION

We developed and validated ML algorithms for individualized
prediction of the risk of progression toM1b stage in patients with
GCTC who underwent orchiectomy by utilizing readily available
perioperative patient clinical and pathological data. The ML-
based prediction models can identify whether patients are at high
risk and may assist the clinician in decision-making.
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Background: Pneumonia is an infection of the lungs that is characterized by

high morbidity and mortality. The use of machine learning systems to detect

respiratory diseases via non-invasive measures such as physical and laboratory

parameters is gaining momentum and has been proposed to decrease

diagnostic uncertainty associated with bacterial pneumonia. Herein, this study

conducted several experiments using eightmachine learningmodels to predict

pneumonia based on biomarkers, laboratory parameters, and physical features.

Methods: We perform machine-learning analysis on 535 di�erent patients,

each with 45 features. Data normalization to rescale all real-valued features

was performed. Since it is a binary problem, we categorized each patient into

one class at a time. We designed three experiments to evaluate the models:

(1) feature selection techniques to select appropriate features for the models,

(2) experiments on the imbalanced original dataset, and (3) experiments on the

SMOTE data. We then compared eight machine learning models to evaluate

their e�ectiveness in predicting pneumonia

Results: Biomarkers such as C-reactive protein and procalcitonin

demonstrated the most significant discriminating power. Ensemble

machine learning models such as RF (accuracy = 92.0%, precision = 91.3%,

recall = 96.0%, f1-Score = 93.6%) and XGBoost (accuracy = 90.8%, precision

= 92.6%, recall = 92.3%, f1-score = 92.4%) achieved the highest performance

accuracy on the original dataset with AUCs of 0.96 and 0.97, respectively. On

the SMOTE dataset, RF and XGBoost achieved the highest prediction results

with f1-scores of 92.0 and 91.2%, respectively. Also, AUC of 0.97 was achieved

for both RF and XGBoost models.
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Conclusions: Our models showed that in the diagnosis of pneumonia,

individual clinical history, laboratory indicators, and symptoms do not have

adequate discriminatory power. We can also conclude that the ensemble ML

models performed better in this study.

KEYWORDS

pneumonia, machine learning, non-invasive measures, electronic health records

(EHR), decision support system (DSS)

Introduction

Pneumonia has been a major cause of morbidity and

mortality in both developed and developing countries, especially

among patients who are diagnosed and treated at a later

stage (1, 2). Specific symptoms such as cough with sputum

production, fever, chest pain, shortness of breath, and chills

are the main characteristics associated with pneumonia (3).

Because of several reasons such as difficulty in identifying the

etiological agents in individuals, low specificity of symptoms

of lower respiratory tract infections, and lack of widespread

availability of laboratory tests and imaging, the accurate

definition and diagnosis of pneumonia are still debatable

(4). Diagnostic findings such as decreased breathing sounds,

crackles, bronchial breath sounds, egophony, along with a

sharp increase in body temperature, tachypnea, hypoxia,

tachycardia, and dyspnea, should suggest pneumonia (either

broncho- or lobar). Pneumonia benefits from antibiotics. So,

to prevent unnecessary administration of antibiotics that might

ultimately create multi-drug-resistant “superbugs” - as has

already happened - procalcitonin levels are monitored along

with clinical symptoms. Procalcitonin is released from lung

neuroendocrine cells after exposure to bacterial endotoxin and

lipopolysaccharides which typically increases the production of

procalcitonin. The appearance of pneumonia symptomatology

coupled by a rise in procalcitonin levels would trigger

antibiotic administration.

Although chest radiography is the recommended technique

for pneumonia diagnosis, factors such as lack of standardized

interpretation (5), inter-rater variability (6), absence of

abnormalities in the chest radiographs of children (7),

low sensitivity to early-stage pneumonia, and potential

harm due to exposure to x-rays hinder their use. Most

importantly, radiography is usually not available in areas with

the highest disease burden such as those in low-income settings.

Consequently, general practitioners mainly rely on non-invasive

measures such as the use of signs, symptoms, and simple

laboratory tests as tools to diagnose pneumonia. To improve

diagnostic accuracy and enhance various treatment strategies

for pneumonia, prediction models based on non-invasive

measures have been proposed.

Machine learning (ML), a powerful computer-based method

that has the capacity to learn, reason, and self-correct without

explicit programming, has the potential to provide solutions to

the above problems. In recent years, the use of ML has achieved

great advances and major benefits in medicine. Researchers have

used large clinical databases to answer previously unanswerable

questions and create systems that facilitate human decision-

making (8, 9). Over the years, enthusiasm and optimism

have been alternated with skepticism and pessimism in this

fascinating field of research. Although some claims associated

with this kind of research are currently being made with great

grandiose claims (10), ML-based models have already proven to

be useful in some clinical applications (11). ML has been shown

to improve diagnostic accuracy for pneumonia when applied

to hospitalized patients (12). The use of machine learning

techniques to detect pneumonia via non-invasive measures

such as signs and symptoms is gaining much attention. In

several clinical studies, clinical history and physical examination

parameters have been evaluated for their diagnostic value in

predicting pneumonia (13, 14).

Based on the above, this study conducted several

experiments on various ML models to predict pneumonia

based on biomarkers, laboratory, and physical features.

Methods

Data collection and preprocessing

We retrospectively recruited patients aged at least 18 with

confirmed acute lower respiratory illness and treated at the

First Affiliated Hospital of Zhengzhou University in Henan

Province between October 29, 2019, andMay 21, 2021. The First

Affiliated Hospital of Zhengzhou University is one of the largest

hospitals in central China, with an ∼13,000-bed capacity. We

extracted patient demographic information (including age, sex,

and comorbidities), physical parameters (tachycardia, tracheal

secretion, pleural effusion, mean arterial pressure, heart rates,

breathing rates, and systolic blood pressure), and hematological

parameters. Hematological parameters included serum sodium,

serum potassium, serum creatine, hematocrit, WBC count,

platelet, total bilirubin, hemoglobin, C-reactive protein (CRP),
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and procalcitonin (PCT). Unfortunately, some patients had

some missing data. As a result, we later addressed some of these

missing values in the dataset (data preprocessing). Typically,

real-world data contains multiple errors, incompleteness, and

incoherence, requiring data preprocessing. Because of this, we

preprocessed the data following these four steps:

Missing values

Missing data causes problems when aMLmodel is applied to

the dataset. Mostly, ML models don’t process data with missing

values. In this study, some variables had several missing values

of about 15% of that variable data. We used the median and

mode of the corresponding columns to fill in the missing values

of numerical attributes and categorical attributes, respectively.

Median is the centrally located value of the dataset in ascending

order. We filled missing numerical attribute values with the

median value. Mode is the most repeated value in the given

categorical observations. We filled missing entries with the

mode observations.

Imbalance data

The dataset was unbalanced. A classification dataset with

skewed class proportions is called imbalanced. Classes that make

up a large proportion of the dataset are called majority classes.

Those that make up a smaller proportion are minority classes.

The degree of imbalance in the minority class can be mild

(20–40% of the dataset), moderate (1–20% of the dataset), and

extreme (<1% of the dataset). In this study, the minority class

was 22% lesser than the majority class. Therefore, we needed

to resolve the issue before applying machine learning in order

to reduce data bias. One of the over-sampling approaches to

fix imbalanced data is the synthetic minority over-sampling

technique (SMOTE) (15). It manages overfitting induced by

a limited decision interval by controlling the generation and

distribution of manual samples using the minority class sample.

Specifically, SMOTE is based on selecting a random minority

class as the last sample. Then it finds the k nearest neighbors

(normally k = 5) of the selected prior sample. Finally, it selects

a random neighbor and creates a synthetic sample between the

two samples (prior sample and selected neighbor) in the feature

space at a randomly selected point. We can express SMOTE as

SMOTE(xsyn) = xp +
(

xknn − xp
)

× α,

where xp denotes feature vector of a prior sample, xknn
represents the k nearest neighbors, and α is the randomly

selected point.

Data rescaling

Before applyingML algorithms, one important step required

in data preprocessing is data rescaling. This makes the various

ML models more effective. The dataset contained various

scales for various quantities (e.g., age, mean arterial pressure,

heart rate, C-reactive protein, and procalcitonin). Therefore, we

perform data normalization to rescale all real-valued features:

x̃ =
x− avg

std
,

where x denotes the value, avg is the average of the values, and

std is the standard deviation. For models like logistic regression,

which rely on the magnitude of values to determine coefficients,

this step is highly important.

Feature selection

Some features contribute to predicting a variable of interest

than others. Feature selection is, therefore, performed to

automatically select those features. By doing this, the accuracy

is improved, overfitting is reduced, and most importantly, the

time required for training is reduced. Irrelevant features can

reduce the performance of several machine learning models. We

investigated six techniques of feature selection: Lower variance,

L1 regularization-based feature selection, L2 regularization-

based feature selection, Univariate feature selection, Tree-based

feature selection, and Principal Component Analysis (PCA).

• Eliminate lower variance (LV): Variance quantifies how

widely apart a collection of data is. When the variance is

0, all of the data values are the same and vice-versa. The

formula to compute variance is given as

σ
2
=

1

n

n
∑

i=1

(xi − x̄)2

where n is the number of pieces of data, xi is each of the

values in the data, and x is the mean (average) of the data. If

the variance is low or near zero, that feature is relatively

constant and will not increase the model’s performance.

Hence, it should be removed.

• Univariate feature selection: The univariate feature

selection (UFS) selects the best features by applying

univariate statistical tests. Specifically, UFS examines each

feature exclusively to determine the strength of the

feature’s relationship with the response variable using

the Chi-Squared Test. Given the data of two variables,

the Chi-Squared Test observes count O and expected

count E. Chi-Square measures how expected count E and

observed count O deviate from each other. The formula for

chi-square is

xC2 =

∑ (Oi − Ei)
2

Ei
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where c is the degree of freedom, O denotes observed

values(s), and E denotes expected values(s).

• L1/L2 regularization-based feature selection: The solutions

to linear models penalized with the L1 norm are sparse:

many estimated coefficients are 0. L1/L2 regularization-

based feature selection can reduce the dimensionality of the

data by selecting features with non-zero coefficients. The L2

norm adds “squared magnitude” of coefficient as a penalty

term to the loss function as

n
∑

i=1

(yi −

p
∑

j=1

xijβj)
2
+ λ

p
∑

j=1

β
2
j

Whiles the L1 norm adds an absolute value of the

magnitude of coefficient as a penalty term to the loss

function as

n
∑

i=1

(yi −

p
∑

j=1

xijβj)
2
+ λ

p
∑

j=1

|βj|

• Tree-based feature selection: We used tree-based

estimators to calculate the impurity-based feature

importance; this can be used to remove irrelevant features.

We used a Random Forest algorithm. We selected 50

decision trees, each constructed using a random extraction

of observations from the dataset and features. Because

most data characteristics are not seen by some trees,

they (the tress) are de-correlated which makes them less

prone to over-fitting. Each tree is also a series of yes-no

questions based on a single or many characteristics. The

tree splits the dataset into two buckets at each node, each

containing more similar observations and distinct from

those in the other bucket. As a result, the significance

of each attribute is determined by how “pure” each of

the buckets is.

• Principal Component Analysis (PCA): We utilized PCA to

reduce the dimensions of our larger dataset. Essentially,

the reduced dataset still contains much of the information

in the large set. It is accomplished by evaluating the

correlation between features in order to find the most

important principal components. Although it is clear

that there are other better options such as t-SNE and

UMAP for dimension reduction, these reasons were

considered before choosing PCA for this task. t-SNE

involves a lot of calculations and computations because it

computes pairwise conditional probabilities for each data

point and tries to minimize the sum of the difference

of the probabilities in higher and lower dimensions. t-

SNE has a quadratic time and space complexity in the

number of data points. This makes it particularly slow,

computationally quite heavy and resource draining. Also,

the main disadvantage of UMAP is its lack of maturity.

It is a very new technique, so the libraries and best

practices are not yet firmly established or robust. The

short summary is that PCA is far and away from the

fastest option, it is deterministic and linear. However, we

potentially gave up a lot for that speed. We set the principal

components to 26.

Experimental setup

We perform machine-learning analysis on 535 different

patients, each with 45 features. Since it is a binary problem,

we categorized each patient into one class at a time. We

designed three experiments to evaluate the models: (1)

feature selection techniques to select appropriate features

for the models, (2) experiments on the imbalanced

original dataset, and (3) experiments on the balanced data

via SMOTE.

Prediction models

We compared several models to evaluate their

effectiveness in predicting pneumonia: Logistic Regression

(LR), Naïve Bayes (NB), Support Vector Machine

(SVM), Adaboost Decision Tree (ADT), K-Nearest

Neighbor (KNN), Random Forest (RF), Extreme Gradient

Boosting (XGBoost), and Multilayer Perceptron (MLP).

These models have been extensively used for many

classification tasks.

Evaluation metrics

Following previous works (16, 17), and considering that

machine learning models have multiple tuning parameters,

which are essential for model performance, we adopted 5-

fold cross-validation (CV) to evaluate all the classification

models using confusion matrices (Figure 1) and ROCs.

CV is a resampling technique used for evaluating and

validating ML algorithms based on a small dataset sample.

The dataset is randomly divided into k equal portions

(number of folds). In training the model, the residual k-

1 dataset is used, while the remaining dataset (validation

dataset) is used to test the model. The CV procedure is

then replicated k times with different folds as the test set

each time. In order to achieve a specific outcome, all k

outcomes from k-folds are summed and the average is

then calculated (18, 19). In the 5-fold cross-validation, we

randomly partition the dataset into five equal subsamples.

One subsample was used as the validation set and the
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FIGURE 1

Confusion matrix.

TABLE 1 Performance evaluation metrics equations.

Metric Equation

Accuracy TP+TN
TP+FP+FN+TN

Recall TP
TP+FN

Precision TP
TP+FP

F-measure 2× Recall×Precision
Recall+Precision

remaining four subsamples were used as the training

set. We divided all datasets into 80% training and 20%

testing. We used the training data during the feature

selection and training. However, the test data was used for

model selection.

For binary classification, multiple criteria are needed in

evaluating the performance of the models. As such, we evaluate

the performance of the various models based on f-measure,

Area Under the Curve of the Receiver Operator Characteristic

(AUC-ROC), accuracy, recall, and precision. These performance

metrics can be determined using True Positives (TP), True

Negatives (TN), False Positives (FP), and False Negatives

(FN) as seen in Figure 1. The accuracy is the proportion

of all correctly predicted samples to the total samples. The

recall rate is the proportion of positive samples correctly

identified as positive to the total number of positive samples.

This metric is critical for our work since prediction models

want to identify as many positive samples as possible. The

precision defines the ratio of the number of positive samples

accurately predicted as positive to the number of positive

examples. Naturally, an excellent predictive model seeks a

high recall rate and precision. There is, however, a trade-

off between recall rate and accuracy; the F-measure provides

a thorough assessment by computing the harmonic mean of

recall and precision. Table 1 shows the equations used for

calculating the desired performancemetrics: accuracy, precision,

recall, and f-measure.

TABLE 2 LR prediction result of feature selection methods on original

dataset.

Feature selection Accuracy Precision Recall F1-score

LV 80.4 83.7 84.4 84.0

UFS 82.6 85.8 85.9 85.8

L1 75.9 79.0 82.5 80.7

L2 77.9 82.3 81.6 81.8

Tree-based 83.0 85.7 86.8 86.2

PCA 81.1 84.5 84.7 84.6

Results

Data balancing, rescaling, and feature
selection

The dominant class of the dataset had 22% more samples

(Figure 2). After SMOTE, we obtain two types of datasets: the

original imbalanced dataset and the SMOTE dataset.

We then used Logistic Regression as the baseline model to

choose the appropriate feature selection methods. The results

show that the Tree-based is most effective on the original data

followed by UFS (Table 2). In the SMOTE dataset, PCA is most

effective, followed by LV (Table 3). We used Tree-based and UFS

in subsequent experiments on the original dataset and reported

the best results. Likewise, we used PCA and LV in subsequent

experiments on the balanced SMOTE dataset and reported the

best results.

Evaluation of the performance of the
machine learning models on the original
dataset

We conducted experiments to acquire empirical evidence

on the original imbalanced dataset using the ML models listed
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FIGURE 2

Target data (LRTI) distribution before and after applying SMOTE. The label ’0’ is pneumonia and “1” for bronchitis. (A) Imbalanced data. (B)

Balance data.

TABLE 3 LR prediction result of feature selection method on balanced

dataset.

Feature selection Accuracy Precision Recall F1-score

LV 83.6 85.4 81.3 83.4

UFS 82.2 83.3 80.9 82.0

L1 77.3 78.2 75.4 77.1

L2 79.1 81.5 75.2 78.0

Tree-based 82.0 83.1 80.3 81.6

PCA 85.4 86.6 83.0 84.7

TABLE 4 Machine learning model prediction results on the original

dataset.

Model Accuracy Precision Recall F1-score

LR 81.4 82.7 84.2 84.3

NB 59.8 89.6 39.2 53.7

SVM 80.7 82.8 86.5 84.5

ADT 90.1 91.3 92.7 91.9

KNN 72.1 87.3 63.8 73.5

RF 92.0 91.3 96.0 93.6

XGBoost 90.8 92.6 92.3 92.4

MLP 79.4 83.7 82.5 82.9

above. From Table 4, the Ensemble machine learning models

such as RF (accuracy = 92.0%, precision = 91.3%, recall =

96.0%, f1-Score = 93.6%) and XGBoost (accuracy = 90.8%,

precision = 92.6%, recall = 92.3%, f1-score = 92.4%) achieved

the highest performance accuracy while NB achieved the lowest

performance accuracy on the original imbalanced dataset. Also,

ADT (accuracy= 90.1%, precision= 91.3%, recall= 92.7%, F1-

Score = 91.9%) had a performance which was almost similar to

that of XGBoost.

We also visualize the confusion matrix of RF and XGBoost

in Figure 3. We observe that the XGBoost model wrongly

predictedmore pneumonia samples (25) than the RFmodel (13).

However, XGBoost performed better than RF when predicting

other LRTIs other than pneumonia. Generally, it can be deduced

that the models could learn from the data.

The ROC curves of the XGBoost and RF are shown in

Figure 4. We observe that both the XGBoost and RF models

achieve a similar performance of 0.97 and 0.96, respectively.

Also, the “steepness” of the ROC shows that the XGBoost model

has a slightly high positive rate than the RF model.

Figures 5, 6 show the essential features that XGBoost and

RF models consider essential for prediction. Both XGBoost

and RF models consider hemoglobin, C-reactive protein,

and procalcitonin features very notably. Tracheal secretion,

antibiotics taken within the last 90 days, total bilirubin and

hematocrit features are also considered necessary by both

models, but their importance is relatively low compared with

those listed earlier. However, XGBoost does not consider some

features necessary (e.g., age, years of smoking, years of drinking,

dyspnea, tachycardia) compared to the RF model.

Evaluation performance of the machine
learning models on the SMOTE dataset

We also conducted experiments to acquire empirical

evidence on the SMOTE dataset using similar machine learning

models listed above.
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FIGURE 3

Confusion matrix of XGBoost and random forest on the original dataset. (A) XGBoost. (B) RF.

FIGURE 4

ROC curves of XGBoost and random forest on the original dataset. (A) XGBoost. (B) RF.

From Table 5, the RF model achieved the highest

performance followed by XGBoost and ADT, while NB

achieved the lowest prediction performance. The f1-scores of RF

and XGBoost are 92.0 and 91.2%, respectively, which indicates

how robust the models are.

We also visualized the confusion matrix of XGBoost and RF

in Figure 7 and made the following observations. The XGBoost

model wrongly predicted more pneumonia samples (24) than

the RF model (18). Generally, it was observed that the models

could learn significantly from the data.

The ROC curves of the XGBoost and RF are shown

in Figure 8. We observe that RF models achieve the

same superior performance as the XGBoost model.

Also, the “steepness” of the ROC shows that the

RF model has a slightly high positive rate than the

XGBoost model.

Figures 9, 10 show the features the XGBoost and

RF model considers vital for prediction. XGBoost

and RF models consider hemoglobin, hematocrit,

drinking, mean arterial pressure, plural effusion, tracheal

secretion, tachycardia, years of smoking, C-reactive

protein, antibiotics taken within the last 90 days,

procalcitonin, and total bilirubin features significantly in

the prediction.

Because we performed machine learning experiments on

both the original and the SMOTE data, we run ANOVA

to compare whether there are statistical differences in the

prediction performances of the models before and after SMOTE.
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FIGURE 5

Feature importance according to XGBoost model on the original dataset.

FIGURE 6

Feature importance according to the RF model on the original dataset.

We did this by comparing their AUCs. AUC is a measure

of the accuracy of a quantitative diagnostic test. It is the

average value of specificity for all values of sensitivity. Table 6

shows the AUCs of the models for the original and balanced

datasets. We observed that the AUCs of some models (LR,

MLP, KNN, NB) differ significantly in the two datasets

while others (SVM, XGBoost, ADT, RF) achieved similar or

showed no significant difference in their before and after

SMOTE AUCs.

Decision boundaries of the models

Decisions, or boundaries, are lines drawn using the best

decisions (for our purposes, binary classifiers) that separate

samples of one class from the other class. All instances of one

class and the opposing class are found on each side. The decision

boundaries of the models show that the RF and XGBoost models

learn a robust decision boundary (Figure 11). RF and XGBoost

models can learn and correctly classify the samples at the bottom
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compared to the other models. This observation is expected

because the two models (RF and XGBoost) achieved the best

performance on the original dataset.

Based on the balanced dataset (Figure 12), the ADT, RF, and

XGBoost models demonstrate a well-bodied boundary while LR

and SVM show poor boundaries.

External validation of the models

To validate our models for generalizability, we externally

collected data from 77 patients with lower respiratory tract

infections (either pneumonia or bronchitis). The two best

models, RF and XGBoost, were chosen for the external

validation. Although the data used for this experiment was

limited, the models were still robust in the prediction of

pneumonia (Table 7). The ROCs values (Figure 13) show AUCs

TABLE 5 Machine learning model prediction results in the balanced

dataset.

Model Accuracy Precision Recall F1-score

LR 83.6 84.9 81.2 83.1

NB 68.4 75.8 54.4 62.7

SVM 81.1 83.0 77.2 80.1

ADT 91.0 91.2 90.1 90.9

KNN 75.0 91.9 54.8 68.4

RF 92.2 93.0 91.2 92.0

XGBoost 91.2 91.1 91.6 91.2

MLP 81.4 81.9 83.2 82.4

of 95 and 96% for XGBoost and RF models confirming that our

models have good generality.

Discussion

Laboratory tests, blood culture, C-reactive protein,

serology, and procalcitonin are diagnostic tests with varying

rates of accuracy (20). Our models showed that individual

clinical history and symptoms do not have adequate

discriminatory power except dyspnea, diminishing breath

sound on auscultation, cough, fever, and phlegm to diagnose

pneumonia. Earlier studies have shown that radiographic

pneumonia cannot be diagnosed by a single clinical symptom

and this was consistent with our study (21). Fever, tachycardia,

and breathing rate were among the most useful predictors of the

clinical signs. Evidence suggests that adults whose respiration

rates exceed 20 breaths per minute are probably unwell, and

those whose respiration rates exceed 24 breaths per minute

are deemed to be critically ill (22). The findings of this study

are similar to previously published study (23). Similar to other

studies (24), diminishing sound on auscultation was shown to

be an important predictor of pneumonia in our models. As

part of externally validated prediction models for pneumonia,

diminishing sound on auscultation, tachycardia, and fever were

found to be useful predictors (25). In a study by Niederman

et al., it was postulated that patients with symptoms such as

cough, sputum production, and/or dyspnea, in addition to other

indicators like fever and auscultatory findings of abnormal

breath sounds may have a higher risk of developing pneumonia

(26). Tracheal secretion, antibiotics taken within the last 90

days, total bilirubin, and hematocrit were all features considered

FIGURE 7

Confusion matrix of XGBoost and RF on SMOTE data. (A) XGBoost. (B) RF.
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FIGURE 8

ROC curves of XGBoost and random forest on the SMOTE dataset. (A) XGBoost. (B) RF.

FIGURE 9

Feature importance according to the XGBoost model on the SMOTE dataset.

important for pneumonia prediction in our models. Tracheal

secretion has been noted by several authors as an important

diagnostic tool for pneumonia (27, 28).

Biomarkers can support clinicians in the differentiation

of bacterial pneumonia from other disorders. Among all

the variables tested in our prediction models, biomarkers

such as CRP and PCT demonstrated the most significant

discriminating power in the prediction of pneumonia. CRP

and PCT, are extensively used in the monitoring of treatment

of severe infections in the ICU. PCT is a marker that is

strongly correlated with bacteria load and severity of infection

(29). Also, a high PCT level indicates a bacterial infection

rather than a viral infection. A meta-analysis reported that

the use of PCT to guide antibiotic treatment in pneumonia

resulted in a reduction in exposure to antibiotics (30). A

PCT level of >0.25 ng/ml is indicative of an underlying

bacterial infection (31). This evidence supports our results that,

PCT can accurately predict pneumonia. Among patients with

pneumonia, the prognostic value of PCT and its correlation

with disease severity has been exclusively studied (31). In

ambulatory care, CRP has been widely used as a point of

care test. Researchers have examined CRP as a diagnostic

Frontiers in PublicHealth 10 frontiersin.org

124

https://doi.org/10.3389/fpubh.2022.938801
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


E�ah et al. 10.3389/fpubh.2022.938801

FIGURE 10

Feature importance according to the RF model on the SMOTE dataset.

TABLE 6 AUCs of the various models before and after SMOTE.

Model Original dataset Balanced dataset P value

LR 89 91 0.032

NB 82 76 0.019

SVM 89 86 0.221

ADT 91 94 0.071

KNN 79 84 0.016

RF 96 97 0.050

XGBoost 97 97 0.314

MLP 80 86 0.005

tool in screening for inflammation and detecting bacterial

infections (32). Through the use of CRP in primary care,

antibiotic exposure can be reduced in suspected LRTI (risk

ratio [RR] 0·78 [95% CI 0·66–0·92]) (33). According to the

NICE’s guidelines, antibiotics should not be given to patients

without a convincing clinical diagnosis of pneumonia, when

their CRP is <20 mg/L (34). Our results showed that CRP

is a useful diagnostic tool to predict pneumonia. This finding

is similar to previous studies (32). CRP has been shown to

improve the diagnostic discriminatory power of models built

on basic signs and symptoms during the prediction of patients

with pneumonia (35).

From our machine learning models, RF and XGBoost were

considered the best models on both the original dataset and the

SMOTE balanced data. RF model has demonstrated superiority

and stability in numerous medical studies (36, 37). Because

of the extensive application of integrated algorithms, the RF

model has become a well-established technology (38). RF uses

the bagging ensemble technique for classification. Decision

trees (DTs) are the building blocks of the RF classifier. In

order to train uncorrelated decision trees, each tree is trained

with a random sample selected from the dataset. Then, final

decisions are made by combining the outputs from all the

DTs. Because the forest is randomized, it slightly increases

the biasness of the forest. However, due to the averaging of

the outputs, its variance decreases, hence yielding an overall

better model. As an efficient and scalable tree boosting system

(39), the XGBoost model has shown excellent performance

in several ML competitions, primarily due to its simplicity

and accuracy in prediction (40). Our study showed that the

XGBoost model had a good performance, with an F1-score

of 92.4% and an accuracy of 90.8%. Because ensemble ML

models (RF and XGBoost) integrate multiple base learners or

classifiers, they are robust and have high accuracy which was

confirmed in this study. All models on the original data had

AUC values lower than those observed in the ensemble ML

models. However, comparing XGBoost, a boosting ensemble

method to RF which is a bagging ensemble method, RF needs

to train a large amount of decision trees and aggregate them,

thereby requiring longer time to trade numerous random

computations for high accuracy. Moreover, XGBoost leverages

second order derivative and implements sampling method in
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FIGURE 11

Decision boundaries of the models on the original dataset.

FIGURE 12

Decision boundaries of the models on the balanced dataset.

each iteration to alleviate overfitting and speed up computation.

In addition to the RF and XGBoost models, ADT also

achieved better performance on the SMOTE balanced data.

The strength of AdaBoost resides in combining weak learners

with a powerful learner with a high prediction accuracy

based on the adjustments of weights (41). These weights are
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TABLE 7 External validation results from the best models.

Model Accuracy Precision Recall F1-score

RF 88.6 84.8 95.6 89.7

XGBoost 88.7 86.4 93.1 89.3

FIGURE 13

AUROC curves for the external validation dataset. (A) XGBoost. (B) RF.

mainly related to samples that are used by the learner in

the training phase. The learners in this phase can generate

a set of misclassified samples. AdaBoost tries to resolve this

issue by providing appropriate weights for samples that have

been wrongly classified. Those samples that are misclassified

are assigned a larger weight while samples that are already

well classified receive a smaller weight. The unique ability of

AdaBoost to spot the misclassified samples, correct them, and

re-feed them to the next learner until an accurate predictor

model is constructed, makes it one of the best powerful

binary classification models. Comparing the results of this study

with other studies that used non-invasive measure to build

algorithms for disease predictions, we realized that our results

were comparable to these studies or even performed better than

most studies (Table 8).

Conclusions

This study predicted pneumonia from other LRTIs such as

bronchitis using biomarkers, physical indicators, and laboratory

parameters. Individual clinical history and symptoms do not

have adequate discriminatory power, hence should not be

considered in unison during the diagnosis of pneumonia.

Two biomarkers, C-reactive protein and procalcitonin, in

TABLE 8 Comparing prediction performance from various studies that

used non-invasive measures.

Models Predicted

disease

Performance

evaluation

Ref

DT, SVM, LR Pneumonia Accuracy-84, 82, 83 (42)

RF, LightGBM,

SVM, DT

COVID-19 Accuracy-89, 88, 84, 82 (43)

LogitBoost, RF, DT Blood diseases Accuracy-98.2, 97.1, 97 (44)

XGBoost,

LightGBM

Accuracy-93, 91 (45)

LR COVID-19 Specifificity-0.95; AUC-0.971;

Sensitivity-0.82

(46)

RF, XGBoost Pneumonia Accuracy-92, 90.8;

AUCs-0.96, 0.97

This

study

addition to other features, were considered very important

in the prediction of pneumonia. Compared to the SMOTE

balanced data, using the original data achieved a higher

prediction performance. Therefore, we can conclude that

the original dataset was sufficient to predict pneumonia

without balancing. RF and XGBoost were considered

the best models on both the original dataset and the
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SMOTE balanced data. From this, we can conclude that

the ensemble ML models performed better in the prediction

of pneumonia.
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Manyworks have employedMachine Learning (ML) techniques in the detection

of Diabetic Retinopathy (DR), a disease that a�ects the human eye. However,

the accuracy of most DR detection methods still need improvement. Gray

Wolf Optimization-Extreme Learning Machine (GWO-ELM) is one of the most

popular ML algorithms, and can be considered as an accurate algorithm

in the process of classification, but has not been used in solving DR

detection. Therefore, this work aims to apply the GWO-ELM classifier and

employ one of the most popular features extractions, Histogram of Oriented

Gradients-Principal Component Analysis (HOG-PCA), to increase the accuracy

of DR detection system. Although the HOG-PCA has been tested in many

image processing domains including medical domains, it has not yet been

tested in DR. The GWO-ELM can prevent overfitting, solve multi and binary

classifications problems, and it performs like a kernel-based Support Vector

Machine with a Neural Network structure, whilst the HOG-PCA has the ability

to extract the most relevant features with low dimensionality. Therefore,

the combination of the GWO-ELM classifier and HOG-PCA features might

produce an e�ective technique for DR classification and features extraction.

The proposed GWO-ELM is evaluated based on two di�erent datasets, namely

APTOS-2019 and Indian Diabetic Retinopathy Image Dataset (IDRiD), in both

binary and multi-class classification. The experiment results have shown an

excellent performance of the proposed GWO-ELMmodel where it achieved an

accuracy of 96.21% for multi-class and 99.47% for binary using APTOS-2019

dataset as well as 96.15% for multi-class and 99.04% for binary using IDRiD

dataset. This demonstrates that the combination of the GWO-ELM and HOG-

PCA is an e�ective classifier for detecting DR andmight be applicable in solving

other image data types.
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Introduction

Diabetic Retinopathy (DR) is a condition of the eye that

can cause blindness and vision loss in individuals who have

diabetes. Regular examination of the eyes is essential for

early retinopathy detection in order to decrease the blindness

and vision loss caused by DR (1). The core objective of

the DR examination is to reveal whether further treatments

are required or not (2). Therefore, a robust and accurate

retinal examination system is desired to help the screeners

to classify the retinal images effectively as well as with

high confidence.

Nowadays, Artificial Intelligence (AI) andMachine Learning

(ML) techniques are playing significant roles in aiding medical

experts with early illness diagnosis (3–6). Therefore, recently,

research has been conducted using various AI and ML

techniques in order to automatically detect the DR using

images (7–9). One of the well-known feature extraction

techniques is Histogram of Oriented Gradients (HOG) and

has been widely utilized in many image processing fields,

including medical fields (10–12). Moreover, the Principal

Component Analysis (PCA) is considered one of the most

recognized dimensionality reduction techniques (13), where

it condenses most of the information in the database into

a small dimensions’ number. In addition, recently, the

Gray Wolf Optimization-Extreme Learning Machine (GWO-

ELM) has been considered one of the most popular ML

algorithms (14). Therefore, the major aims of this study are

as follows:

• Propose a new DR detection approach based on a GWO-

ELM classifier and Histogram of Oriented Gradients-

Principal Component Analysis (HOG-PCA) features using

image data.

• Test the proposed approach based on two different DR

image datasets [i.e., APTOS-2019 and Indian Diabetic

Retinopathy Image Dataset (IDRiD)] in both binary and

multi-class classifications.

• The NN, SVM, Random Forest (RF), and basic ELM

classifiers are also implemented in both binary and multi-

class classifications using APTOS-2019 and IDRiD datasets.

• Evaluate the performance of the proposed DR detection

approach based on several evaluation measures such as

accuracy, recall, precision, specificity, F-measure, G-mean,

and Matthews Correlation Coefficient (MCC).

• Compare the proposed DR approach against the most

recent studies that have used the same datasets in terms of

accuracy for the binary and multi-class classifications.

This research is organized as follows: Section 2 presents the

related work of this study. Section 3 provides a deep explanation

and description of the materials and proposedmethod. Section 4

discusses the experiments and their outcomes. Section 5 presents

the conclusion of this research as well as recommendations for

future research.

Related work

The authors in Sridhar et al. (15) have proposed an

automatic system for detecting DR by using Convolutional

Neural Network (CNN). The proposed system was tested based

on binary classification and used an image dataset that is

available on the Kaggle website. The experiments’ outcomes have

shown that the highest performance of their proposed CNN was

achieved with an accuracy of 86%. However, they have tested the

proposed system based on binary classification only and ignored

themulti-class classification. In addition, the accuracy rate is still

not encouraging and needs more enhancement.

Another attempt has been conducted in Gangwar and

Ravi (16). They proposed a hybrid architecture of inception-

ResNet-v2 and custom CNN layers for the detection of DR.

The proposed model was evaluated based on the multi-class

classification using APTOS-19 and Messidor-1 dataset. Results

showed that the highest accuracy achieved by the proposed

model is 72.33% on the Messidor-1 dataset and 82.18% on the

APTOS-19 dataset.

One of the most popular ML algorithms is Extreme

Learning Machine (ELM); ELM is a single hidden layer feed-

forward neural network that consists of three layers (i.e., input,

hidden, and output layers) (17, 18). The neurons of the input

layer are connected to the neurons of the hidden layer by

randomly generated input weights and biases. The neurons of

the hidden layer are connected to the neurons of the output

layer by output weights. The output weights are calculated

based on discovering the least-squares solution (19, 20). ELM

is preferred by researchers as it is superior to traditional Support

Vector Machine (SVM) and Back Propagation Neural Network

(BPNN) (21, 22) specifically in: (1) preventing overfitting,

(2) its implementation on multi and binary classifications,

and (3) its similar kernel-based capability SVM and working

with a Neural Network (NN) structure. These factors make

the ELM more efficient in accomplishing a better learning

performance. Therefore, some researchers have implemented

the ELM algorithm in DR detection. For example, the authors

in Asha and Karpagavalli (23) have proposed a DR detection

system. The system is based on combining several extracted

features such as standard deviation, mean, edge strength, and

centroid as well as using the ELM classifier. The system

was evaluated based on a binary classification by using the

DIARETDB1 dataset which contains 100 images in total. The

experiment results showed that the performance of the ELM

outperformed both Naive Bayes (NB) andMultilayer Perceptron

(MLP) with the highest achieved accuracy reaching up to 90%.

In addition, the authors in Zhang and An (24) have proposed

an automatic DR detection system. The proposed system uses
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two features extraction methods (i.e., lesion detection and

anatomical part recognition) and Kernel Extreme Learning

Machine (KELM) with an active learning technique for the

classification process. The evaluation of the proposed system

has been conducted based on binary classification using the

Messidor dataset. The results have shown that the highest

performance of the proposed system was achieved with an

accuracy of 88.60%.

Further, Punithavathi and Kumar (25) used four different

feature extraction techniques (i.e., mean, standard deviation,

entropy, and third momentum) and the ELM classifier in

order to detect DR. The proposed DR detection system was

tested based on a multi-class classification problem using the

DIARETDB0 dataset with four different classes. The outcomes

of the experiments have proved the superiority of the ELM

performance over both BPNN and SVM with the highest

achieved accuracy of 95.40%.

Additionally, Deepa et al. (26) proposed a DR detection

system that has three different phases. The first phase is to use

several micro-macro feature extraction algorithms. The second

phase is to apply the Principal Component Analysis (PCA) on

the extracted features in order to reduce the dimensionality.

Finally, the third phase is to implement the KELM on

the extracted features with low dimensions for classification

purposes. The proposed system was tested based on a dataset

with four classes, which has been collected by the department of

medical retina at Bharath hospital in Kottayam. The outcomes

of the experiments have demonstrated that the highest achieved

accuracy rate of the proposed system reached up to 93.20%.

Although (23–26) showed that the ELM and KELM

outperformed their comparatives, these studies have ignored

the fact that the random generated input weights and biases

of the ELM and KELM need to be optimized. In other words,

there is no guarantee that the trained ELM/KELM is the

best for carrying out the classification. This drawback can be

resolved by integrating the ELM/KELM with an optimisation

approach to achieve the optimal input weights and hidden

layer biases that guarantee the best ELM/KELM performance

(27). Therefore, one of the most popular improvements of the

ELM is the GrayWolf Optimization-Extreme LearningMachine

(GWO-ELM), where the GWO is integrated into ELM in order

to obtain the best input weights and biases (14). GWO was

established by studying the hunting behavior of gray wolves (28).

It has a simple concept with easy implementation, requiring

very few coding lines, allowing many to leverage from it. In

comparison to other evolutionary algorithms, GWO is highly

robust in regulating parameters with greater computational

efficacy (29, 30). The effectiveness of this integration (GWO-

ELM) has been proven in many domains including breast cancer

diagnosis (31), poison diagnosis (32), lung cancer classification

(33), identification of cardiovascular disease (34), electricity

load projections (35), bankruptcy predictions (36), and paraquat

poisoned patients diagnosis (37). However, to the best of our

knowledge, no research has used the GWO-ELM classifier in

the detection of DR. Therefore, this study aims to employ

the GWO-ELM classifier for detecting DR. Table 1 provides a

summary of the previous DR detection works using ML and

deep learning techniques.

Materials and proposed method

The general diagram of the proposed work using the GWO-

ELM method is demonstrated in Figure 1. The diagram consists

of various stages which will be used to create the DR detection

approach based on images. The first stage refers to the image

dataset that contains five categorizations (i.e., no DR, mild,

moderate, severe, and proliferative DR). While, in the second

stage, the pre-processing operation will be used in order to

prepare the images for the next stage, which is the features

extraction stage. In addition, in the third stage, the HOG-

PCA method will be utilized in order to extract the needed

features from images. Lastly, in the fourth stage, the HOG-

PCA extracted features will be fed into the GWO-ELM classifier

in order to detect DR based on images. These fourth stages

of the proposed DR detection approach will be deliberated as

sub-sections, respectively.

Image dataset

In this study, two different datasets will be used in order to

evaluate the proposedDR detection approach. The first dataset is

APTOS-2019 while the second dataset is IDRiD. The description

of both datasets APTOS-2019 and IDRiD are provided as follow:

• APTOS-2019 Dataset has been provided by an Indian

hospital, Aravind Eye Hospital. The APTOS-2019 dataset

is available online in Hospital (39). In this study, the

dataset consists of five main classes, which are no DR,

mild, moderate, severe, and proliferative DR, and each

class contains 190 images. Thus, 950 is the total number

of images in the whole dataset. In this study, 80% of the

dataset, which equals 760 images, were used for training

purposes, whilst 20% of the dataset, which equals 190

images, were used for testing purposes. In other words, 152

images from each class were used for training purposes

whilst the remaining 38 images were used for testing

purposes. The description of the APTOS-2019 dataset

which is used in this study is provided in Table 2.

• IDRiD is a DR image dataset that is available online at (40).

The IDRiD dataset consists of five main classes, which are

no DR, mild, moderate, severe, and proliferative DR. In

addition, the IDRiD dataset has a total number of images

equal to 516 and each class contains a different number

of images. In this study, 80% of the dataset that equals
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TABLE 1 Illustrates the previous works of DR detection using ML and deep learning techniques.

References Dataset Classification

mode

Classifier Results Disadvantages

Sridhar et al. (15) Kaggle dataset Binary classification CNN 86% Accuracy • The proposed system tested based on binary classification

only and ignored the multi-class classification.

• The accuracy rate is still not encouraging and needs

more enhancement.

Gangwar and Ravi.

(16)

APTOS-19 and

Messidor-1

Multi-class

classification

Hybrid CNN 72.33% Accuracy

on the Messidor-1

dataset and 82.18%

accuracy on the

APTOS-19 dataset.

• The evaluation of both systems considered only the multi-

class classification and ignored the binary classification.

• The accuracies of both systems are still not promising and

need more improvement.

Reddy et al. (38) Messidor Multi-class

classification

SVM 69.09% Accuracy

Asha and

Karpagavalli. (23)

DIARETDB1 Binary classification ELM 90% Accuracy • The proposed system tested based on binary classification

only and ignored the multi-class classification.

• The accuracy rates are still not encouraging and need more

enhancement.

• These studies have ignored the fact that the random

generated input weights and biases of the ELM and KELM

need to be optimized.

Zhang and An (24) Messidor Binary classification KELM 88.60% Accuracy

Punithavathi and

Kumar (25)

DIARETDB0 Multi-class

classification

ELM 95.40% Accuracy • The evaluation of both systems considered only the multi-

class classification and ignored the binary classification.

• The accuracy rates are still not encouraging and need more

enhancement.

• These studies have ignored the fact that the random

generated input weights and biases of the ELM and KELM

need to be optimized.

Deepa et al. (26) 4 classes dataset Multi-class

classification

KELM 93.20%

FIGURE 1

Block diagram of the proposed DR detection approach.
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TABLE 2 The description of the APTOS-2019 dataset.

Class Number Samples of the dataset Class label

of image

No DR 190 1

Mild 190 2

Moderate 190 3

Severe 190 4

Proliferative 190 5

DR (PDR)

TABLE 3 The description of the IDRiD dataset.

Class Number Samples of the dataset Class label

of image

No DR 168 1

Mild 25 2

Moderate 168 3

Severe 93 4

Proliferative 62 5

DR (PDR)

412 images were used for training purposes, whilst the

remaining 20% of the dataset which equals 104 images were

used for testing purposes. The description of the IDRiD

dataset which is used in this study is provided in Table 3.

Pre-processing

This section discusses the pre-processing of this study, which

consists of four steps. The first step is to read the RGB image

that will be as an array with three dimensions. The second step

is to convert the image from RGB to Grayscale, which will lead

to making it an array with two dimensions. The third step is to

adjust the intensity values in the grayscale image which leads

to an increase in the contrast of the output image. Finally, the

fourth step is to re-size the dimensionality of the image to (255

× 255) which will be as an input into the features extraction

approach. Figure 2 depicts an example of the pre-processing

steps which are used in this study.

Features extraction

In this work, the required features were calculated in

two steps. The first step is to use the output of the pre-

processing as an input into the Histogram of Oriented Gradients

(HOG) features extraction technique, which begins after the pre-

processing phase. HOG is considered as one of the most popular

features extraction techniques that has been widely utilized in

many image processing fields, including medical fields (10–12).

The output of the HOG features extraction approach is a vector

with the dimensionality of (1 × 32,400) per image, and (950 ×

32,400) and (516 × 32,400) for whole APTOS-2019 and IDRiD

dataset, respectively.

Whilst the second stage is to reduce the dimensionality

of HOG features using Principal Component Analysis (PCA).

PCA is considered one of the most recognized dimensionality

reduction techniques (13), where it condenses most of the

information in the database into a small dimensions’ number.

The aim of that is to reduce the high dimensionality of the HOG

features from (950 × 32,400) to (950 × 949) for whole APTOS-

2019 dataset and from (516 × 32,400) to (516 × 515) for whole

IDRiD dataset. This enables the issue of limited resources (i.e.,

requiring a large memory space) to be overcome. Literature has

addressed the issue that the requiredmemory space is affected by

the dimensionality of the features (i.e., number of features). In

other words, the higher dimensionality requires a large memory

space (41–43). The final output of the features extraction is the

HOG-PCA features with (950 × 949) dimensionality for whole

APTOS-2019 dataset and (516 × 515) for whole IDRiD dataset,

both of which will be used as inputs into the classification step.

Figure 3 demonstrates the steps of the features extraction in

more detail. Further, Table 4 demonstrates the dimensionality

of the features extraction steps for a single image and whole

dataset images.

Classification

This section provides a deep explanation of both GWO and

GWO-ELM approaches separately. The explanation of the GWO

approach is delivered in Section 2.4.1, while the explanation of

the GWO-ELM approach is presented in Section 2.4.2.
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FIGURE 2

The pre-processing steps.

FIGURE 3

Steps of the features extraction.

Gray wolf optimization

In recent years, GWO has emerged as a prominent new

nature-based metaheuristic algorithm and population-oriented

metaheuristic (30). GWO is based on the natural behaviors of

the gray wolf (28). The algorithm fundamentally simulates the

wolf ’s social behavior and hunting mechanisms. In GWO, the

wolves (search agents) are classified as alpha (α), beta (β), delta

(δ), and omega (ω). α is the fittest wolf or the best solution. β

and δ each denote the second and third best wolves. Meanwhile,

ω denotes the other wolves in the population. Finding the prey

(process of optimization) is spearheaded by δ, β , and α whilst

the wolves (ω) are the followers. When surrounding the prey,

wolves inform about their positions based on δ, β , or α using the

following equations (28):

D = |C · Xp(it)− X(it)| (1)

and

X(it + 1) = Xp(it)− A · D (2)

Where, it denotes the present iteration number. Xp (it) denotes

the present position of the prey. X (it) denotes the wolf ’s present

position. D denotes the distance between the prey and wolf.

Below are the mathematical formulas for coefficient vectors (A

and C):

A = 2a · r1 − a (3)

and

C = 2 · r2 (4)

Where r1 and r2 are the two vectors that are randomly generated

between 1 and 0. “a” denotes linear decrement from 2 to 0 as

the iterations number increase. The simulation of the wolves’

hunting behaviors results in the saving of the first three top

values as α, β, and δ. Below is the formula for updating the

position of the gray wolf population:











Dα = |C1 · Xα − X|

Dβ = |C2 · Xβ − X|

Dδ = |C3 · Xδ − X|

(5)











X1 = Xα(it)− A1 · Dα

X2 = Xβ (it)− A2 · Dβ

X3 = Xδ(it)− A3 · Dδ

(6)

and

X(t + 1) =
X1 + X2 + X3

3
(7)

Where Xα , Xβ , and Xδ denote the positions of α, β , and δ,

respectively. X denotes the current wolf position. C1, C2, and C3

are vectors that are randomly generated based on Equation (4).

Equation (5) is used to calculate the estimated distances among

the current wolf and α, β , and δ, whilst Equations (6) and (7)

are used to determine the current wolf ’s final position. A1, A2,
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TABLE 4 Elaborate the features extraction step dimensionality for

single image and whole dataset images.

APTOS-2019 Dataset

Features

Extraction

Dimensionality

of a single

image

Dimensionality

of the whole

dataset

First Step: HOG

Features

(1 x 32400) (950 x 23400)

Second Step:

HOG-PCA Features

(1 x 949) (950 x 949)

IDRiD Dataset

Features

extraction

Dimensionality

of a single

image

Dimensionality

of the whole

dataset

First Step: HOG

Features

(1 x 32400) (516 x 32400)

Second Step:

HOG-PCA Features

(1 x 515) (516 x 515)

and A3 are vectors that randomly generated using Equation (3).

it represents the iterations number.

This updating mechanism facilitates the omega wolves

in reaching new stochastic places (presumed to be nearer

to the prey) in the circle delineated by the leading wolves’

positions. GWO is distinguished by its strategy in managing

the explorations and exploitations in the search process. With

a decrease from 2 to 0 during the iterations, the algorithm

progressively moves on from underlining the process of

exploration to the process of exploitation (30). Figure 4 shows

the GWO algorithm flowchart. Below are the general processing

steps of the GWO algorithm (28):

(a) Parameters of the gray wolf, such as population size or

the number of search agents (NSA), are initialized. For

the following steps, the search agent term refers to a wolf,

position of each wolf (search agent), maximum number of

iteration (itmax), and upper and lower bound of search.

(b) Set the iteration counter it= 0.

(c) Initialize the coefficient vectors “A, and C” using

Equations (3 and 4) while the initialization of “a”, which is

the linear decrements from 2 to 0 as the iterations number

increase, uses a= 2-it∗((2)/ itmax).

(d) Calculate the fitness for all search agents and set the first

three best search agents as Xα , Xβ , and Xδ where Xα

denotes the first best search agent whilst Xβ denotes the

second best search agent, and Xδ denotes the third best

search agent.

FIGURE 4

Flowchart of the GWO algorithm.

(e) Increase the iteration counter it= it+ 1.

(f) Update “A, and C” using Equations (3 and 4) while “a”

using a=2-it∗((2)/ itmax).

(g) Update the position of all current search agents using

Equations (5 and 6).

(h) Recalculate the fitness for all search agents.

(i) If any better search agent is found, then update the best

agents Xα , Xβ , Xδ .

(j) Repeat steps from “e” if the stopping criteria are

not satisfied.

(k) The best-calculated optimum (best search agent) will be

returned as Xα .

GWO-ELM

The GWO-ELM follows the GWO concept in Mirjalili et

al. (28). It adjusts the input weight values and the biases of

the hidden nodes by updating the GWO parameters toward

achieving greater accuracy. The GWO-ELM steps are presented

belowwhile the flowchart is illustrated in Figure 5. Table 5 shows

the ELM-GWO parameter settings.
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FIGURE 5

GWO-ELM algorithm flowchart.

Let N be the number of training samples and (Xj, tj) refer to

a single sample of the training samples.,

Where:

Xj is the input extracted from HOG-PCA features where Xj

= [xj1, xj2, . . . , xjn]
T
∈ Rn,

tj is the expected output (true value) where tj = [tj1, tj2, . . . ,

tjm]
T
∈ Rm.

Step 1: Random initialization of the gray wolf population

(position of all search agents) within the range of [-1,

1] for the values of the input weights, and [0, 1] for

the hidden nodes’ bias. Ascertaining the initial GWO

parameters entails: 1) the population size or number

of search agents (NSA), 2) the maximum number of

iterations (itmax), and 3) the iteration counter it = 0.

Each wolf (search agent) in the population is reshaped

using the following form:

SAi =

{

w11, w12, . . . w1n, w21, w22, . . .

w2n, wL1, wL2, . . . wLn, b1, . . . bL

}

Where:

wij = value of input-weights which connect between

the ith hidden node and jth input node, wij∈ [−1, 1].

bi = ith hidden node’s bias, bi ∈ [0, 1].

n= number of the input-nodes.

L= number of the hidden nodes.

L × (1+n) denotes the dimension of the search

agent, which therefore requires optimization of

its parameters.

Step 2: Initialization of the coefficient vectors ‘A, and C’ using

Equations (3 and 4) while the initialization of the ‘a’

which is the linear decrements from 2 to 0 as the
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TABLE 5 The parameters settings for the ELM and GWO.

ELM GWO

Parameter Value Parameter Value

AS assemble of the

biases and input

weights

Population (wolves

or search agents)

Consists of the

position of all

search agents

ρ Output-weights

matrix

Position Start stochastically

generated within

the range of [-1, 1]

for the

input-weights and

[0, 1] for the biases

Input-weights (w) −1 to 1 Population size or

number of search

agents (NSA)

50

Bias values (b) 0 to 1 r1 and r2 Stochastically

generated with the

range of [0, 1]

Input-nodes

number (n)

Input attributes Number of

iterations itmax

100

Hidden-nodes

number (L)

[100–300]; with a

25 increment step

C1 , C2 , and C3 Randomly

generated vectors

based on Equation

(4)

Output neurones

number (m)

Number of classes A1 , A2 , and A3 Randomly

generated vectors

using Equation (3)

Activation function Sigmoid Xα Best position of all

search agents.

iterations number increase, using a= 2-it∗((2)/ itmax).

Step 3: Division of the dataset into training and testing sets

Set the hidden layer nodes as m, and choose a

suitable activation function g(x) for ELM;

f (X) =

√

∑N
j=1 ||

∑L
i=1 ρig(wixj + bi)− tj||

2
2

N
(8)

Where:

ρ = output weight matrix;

tj = true value; and

N = number of training samples.

Where:

ρ = H†T (9)

H =









g(w1.X1 + b1) · · · g(wL.X1 + bL)
... . . .

...

g(w1.XN + b1) · · · g(wL.XN + bL)









N×L

(10)

ρ =









ρ1
T

...

ρL
T









L×m

and T =









t1
T

...

tN
T









N× m

H in Equation (10) is the hidden layer output matrix

of the ELM network; inH, the ith column is indicated to

the ith hidden layer neuron on the input neurons.While

the H† is the Moore–Penrose generalized inverse of H.

The activation function g is infinitely distinguishable

when the desired number of hidden neurons is L ≤ N.

Step 4: Train the ELM and evaluate the fitness value of

each search agent according to the accuracy of

the classification.

Step 5: Based on the fitness values of each search agent, set the

first three best search agents as Xα , Xβ , and Xδ , where

Xα denotes the first best search agent whilst Xβ denotes

the second best search agent, and Xδ denotes the third

best search agent.

Step 6: Increase the iteration counter it= it+ 1.

Step 7: Update ‘A, and C’ using Equations (3 and 4) while ‘a’

using a= 2-it∗((2)/ itmax).

Step 8: Update the position of all current search agents using

Equations (5–7).

Step 9: Recalculate the fitness for all search agents using

Equation (8).

Step 10: If any better search agent is found, then update the best

agents Xα , Xβ , Xδ .

Step 11: Repeat steps from step 6 if the stopping criteria are not

satisfied, or else save the optimal weights and thresholds

between input layers and hidden layers (Xα).

Step 12: The results of GWO are utilized as input-weights and

hidden-layer biases of the ELM, calculating the hidden

layer output matrix (H) via the activation function g(x);

Step 13: Calculate the output-weights (ρ) according to Equation

(9) and save the forecasting ELMmodel for testing.

Experiments and results

The proposed GWO-ELM approach was utilized in both

binary and multi-class classification experiments with a hidden

neurons number in a range of [100–300] and increment steps

of 25. In the multi-class classification experiments, we have used

both APTOS-2019 and IDRiD datasets in order to classify five
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TABLE 6 The highest experiment outcomes of the binary and multi-class classifications for GWO-ELM approach using APTOS-2019 and IDRiD

datasets.

APTOS-2019 dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 96.21 90.53 90.53 97.63 88.16 90.53 90.53

2 99.47 99.34 100.00 97.44 98.38 99.67 99.67

IDRiD dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 96.15 90.38 90.38 97.60 87.98 90.38 90.38

2 99.04 100.00 98.59 100.00 97.82 99.29 99.29

FIGURE 6

The confusion matrix of the highest multi-class classification

outcome for the GWO-ELM approach using the APTOS-2019

dataset.

different classes, namely no DR, mild, moderate, severe, and

proliferative DR. In the binary classification experiments, we

have used both APTOS-2019 and IDRiD datasets in order to

classify two different classes (i.e., no DR and DR). The class

of DR was obtained by combining mild, moderate, severe, and

proliferative DR classes. Hence, the total number of both binary

and multi-class classification experiments for the GWO-ELM

approach is 36, and each experiment has 100 iterations. All the

experiments have been applied based on using 80% of the dataset

as a training dataset and the remaining 20% as a testing dataset.

In addition, it is worth mentioning that all the experiments have

been implemented in MATLAB R2019a programming language

over a PC Core i7 of 3.20 GHz with 16 GB RAM and SSD 1TB

(Windows 10).

In this study, numerous evaluation measurements were

utilized to evaluate the proposed approach GWO-ELM. The

evaluation measurements rely on the ground truth, which

entails the application of the model to expect the answer

on the evaluation dataset followed by a comparison between

the predicted target and the actual answer. The evaluation

FIGURE 7

The confusion matrix of the highest binary classification

outcome for the GWO-ELM approach using the APTOS-2019

dataset.

FIGURE 8

The confusion matrix of the highest multi-class classification

outcome for the GWO-ELM approach using the IDRiD dataset.

measurements have been used in order to evaluate the

proposed GWO-ELM approach regarding True Positive (TP),

True Negative (TN), False Positive (FP), False Negative
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FIGURE 9

The confusion matrix of the highest binary classification

outcome for the GWO-ELM approach using the IDRiD dataset.

FIGURE 10

The ROC of the highest binary classification outcome for the

GWO-ELM approach using the APTOS-2019 dataset.

(FN), recall, accuracy, specificity, G-mean, precision, F-

measure, and MCC. Equations (11–17) (44–46) depict these

evaluation measurements.

accuracy =
TP + TN

TP + TN + FN + FP
(11)

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
(13)

F −Measure =
(2 × precision × recall)

(precision + recall)
(14)

FIGURE 11

The ROC of the highest binary classification outcome for the

GWO-ELM approach using the IDRiD dataset.

G−Mean =
2
√

recall× precision (15)

Specificity =
TN

TN + FP
(16)

MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

(17)

Table 6 shows the highest outcomes of the binary andmulti-class

classification experiments that have been conducted using the

proposed GWO-ELM approach based on both datasets APTOS-

2019 and IDRiD. Table 6 presents the evaluation outcomes of

the GWO-ELM in terms of recall, accuracy, specificity, G-mean,

precision, F-measure, and MCC. The highest achieved multi-

class classification accuracies of the GWO-ELM approach were

96.21% and 96.15% using APTOS-2019 and IDRiD datasets,

respectively. Whilst the highest achieved binary classification

accuracies of the GWO-ELM approach were 99.47% using the

APTOS-2019 dataset and 99.04% using the IDRiD dataset. In

addition, Figures 6–10 show the confusion matrices for the

highest outcomes of the binary and multi-class classification

using the GWO-ELM approach based on both datasets APTOS-

2019 and IDRiD. Further, Figures 10, 11 present the ROC of the

best binary classification outcome for the GWO-ELM approach

using the APTOS-2019 and IDRiD datasets.

Further, additional experiments have been implemented

utilizing feedforward NN and basic ELM as classifiers andHOG-

PCA features to perform binary and multi-class classification of

the DR. Both classifiers NN and basic ELM were implemented

in binary and multi-class classifications when varying the

number of the hidden nodes in the range of [100–300] and
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TABLE 7 The highest experiment outcomes of the binary and multi-class classifications for ELM approach using APTOS-2019 and IDRiD datasets.

APTOS-2019 dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 80.21 50.53 50.53 87.63 38.16 50.53 50.53

2 92.63 93.42 93.42 77.27 78.60 95.30 95.32

IDRiD dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 74.62 36.54 36.54 84.13 20.67 36.54 36.54

2 72.12 85.71 75.95 60.00 32.75 80.54 80.68

TABLE 8 The highest experiments outcomes of the classification and detection for NN approach using APTOS-2019 and IDRiD datasets.

APTOS-2019 dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 78.53 46.32 46.32 86.58 32.89 46.32 46.32

2 90.53 98.68 90.36 91.67 68.13 94.34 94.43

IDRiD dataset

Number of class Accuracy Precision Recall Specificity MCC F-measure G-mean

5 72.31 30.77 30.77 82.69 13.46 30.77 30.77

2 71.15 97.14 70.83 75.00 26.04 81.93 82.95

increment steps of 25. Tables 7, 8 provide the highest binary

and multi-class classification experiments outcomes of the

NN and ELM classifiers using both APTOS-2019 and IDRiD

datasets. The best performance of the basic ELM in multi-class

classification has been obtained with an accuracy of 80.21%

and 74.62% for APTOS-2019 and IDRiD datasets, respectively.

While the highest performance of the basic ELM in binary

classification has acquired an accuracy of 92.63% using APTOS-

2019 dataset and 72.12% using IDRiD dataset. Furthermore,

the best achieved multi-class classification accuracies of the

NN approach were 78.53% and 72.31% using APTOS-2019

and IDRiD datasets, respectively. The highest achieved binary

classification accuracies of the NN approach were 90.53% using

the APTOS-2019 dataset and 71.15% using the IDRiD dataset.

Moreover, further experiments have been conducted

utilizing SVM (linear kernel), SVM (precomputed kernel), and

RF as classifiers and HOG-PCA features to perform binary

and multi-class classifications of the DR. Table 9 provides

the outcomes of the binary and multi-class classification

experiments for the SVM (linear kernel), SVM (precomputed

kernel), and RF classifiers using both APTOS-2019 and

IDRiD datasets. In multi-class classification and when using

APTOS-2019 dataset, the best performance of the SVM

(linear) was achieved with an accuracy of 79.58% while

the highest performance of the SVM (precomputed kernel)

and RF classifiers was equal with an accuracy of 79.37%.

Moreover, in binary classification and when using APTOS-2019

dataset, the best performance of the SVM (linear) and SVM

(precomputed kernel) was equal and achieved an accuracy

of 88.95% while the highest performance of RF classifier

was achieved with an accuracy of 91.58%. Additionally, in

multi-class classification and using IDRiD dataset, the best

performance of the SVM (linear), SVM (precomputed kernel),

and RF classifiers was achieved with an accuracy of 73.85, 73.08,

and 74.23%, respectively. In binary classification and using

IDRiD dataset, the highest performance of the SVM (linear),

SVM (precomputed kernel), and RF classifiers was achieved

with an accuracy of 68.27, 67.31, and 69.23%, respectively.

The outcomes for binary and multi-class classification are

shown in Tables 6–9. The performance of the GWO-ELM
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TABLE 9 The experiments outcomes of the binary and multi-class classification for SVM (linear kernel), SVM (precomputed kernel), and RF

approaches using APTOS-2019 and IDRiD datasets.

APTOS-2019 dataset with 5 classes

Classifier Accuracy Precision Recall Specificity MCC F-measure G-mean

SVM (linear) 79.58 48.95 48.95 87.24 36.18 48.95 48.95

SVM (Precomputed Kernel) 79.37 48.42 48.42 87.11 35.53 48.42 48.42

RF 79.37 48.42 48.42 87.11 35.53 48.42 48.42

APTOS-2019 dataset with 2 classes

Classifier Accuracy Precision Recall Specificity MCC F-measure G-mean

SVM (linear) 88.95 100.00 87.86 100.00 62.69 93.54 93.73

SVM (Precomputed Kernel) 88.95 100.00 87.86 100.00 62.69 93.54 93.73

RF 91.58 100.00 90.48 100.00 72.37 95.00 95.12

IDRiD dataset with 5 classes

Classifier Accuracy Precision Recall Specificity MCC F-measure G-mean

SVM (linear) 73.85 34.62 34.62 83.65 18.27 34.62 34.62

SVM (Precomputed Kernel) 73.08 32.69 32.69 83.17 15.87 32.69 32.69

RF 74.23 35.58 35.58 83.89 19.47 35.58 35.58

IDRiD dataset with 2 classes

Classifier Accuracy Precision Recall Specificity MCC F-measure G-mean

SVM (linear) 68.27 98.57 68.32 66.67 12.48 80.70 82.06

SVM (Precomputed Kernel) 67.31 84.29 71.95 50.00 19.11 77.63 77.87

RF 69.23 100.00 68.63 100.00 20.09 81.40 82.84

approach outperformed the NN, ELM, SVM (linear kernel),

SVM (precomputed kernel), and RF in all experiments. This

discovery confirms that generating the appropriate weights and

biases for the ELM’s single hidden layer decreases classification

errors. In other words, avoiding inappropriate weights and

biases prevents the ELM algorithm from becoming stuck in

the local maxima of the weights and biases. Consequently,

the performances of the proposed GWO-ELM approach in

the multi-class and binary classification were impressive and

achieved an accuracy of 96.21, 99.47, 96.15, and 99.04% using

APTOS-2019 and IDRiD datasets, respectively. This research

confirms that the combination of the GWO-ELM classifier with

HOG-PCA features is an effective approach for detecting the

DR using retinal images which could help physicians in easily

screening for DR.

Furthermore, the proposed GWO-ELM technique is

compared with some recent works (47–65) in terms of accuracy

based on binary and multi-class classifications using APTOS-

2019 and IDRiD datasets. Table 10 exhibits the comparison

accuracy results of the proposed GWO-ELM and some other

previous works.

Based on all the results in Table 10, it is clear that the

performance of the GWO-ELM outperformed all the other

previous works in binary and multi-class classifications using

both datasets APTOS-2019 and IDRiD. This suggests that the

proposed GWO-ELM is a reliable technique for the detection of

DR when using image data. Although the proposed method has

shown a good performance, there are some limitations which are

provided as follows:

• The image datasets which have been used in this study for

the training and testing purposes are small.

• The evaluations of this study did not consider the execution

time measurement of the proposed GWO-ELM approach.
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TABLE 10 The comparison of accuracy between the proposed GWO-ELM and other previous works.

Accuracy results based on APTOS-2019 dataset with 5 classes Accuracy results based on APTOS-2019 dataset with 2 classes

Method Accuracy Method Accuracy

DNN (50) 81.70 DNN (50) 97.41

Hybrid model (56) 86.34 DNN (51) 98.00

DNN (51) 82.54 Hybrid CNN-SVD and ELM (57) 99.32

-SVM (52) 77.90 Ensemble (trimmed mean) (61) 98.60

MLP (55) 83.09 ResNet34 (47) 96.35

CNN512 (48) 89.00 CNN (62) 91.00

Tuned XGBoot (59) 94.20 RA-EfficientNet (64) 98.36

Proposed GWO-ELM 96.21 Proposed GWO-ELM 99.47

Accuracy results based on IDRiD dataset with 5 classes Accuracy results based on IDRiD dataset with 2 classes

Method Accuracy Method Accuracy

MLP (53) 92.01 MLP (53) 98.87

ResNet50+ J48 (54) 92.46 CNN (58) 90.29

XG-Boost (49) 88.20 Coarse Network (63) 80.00

Lesion(Semi+ Adv) (65) 91.34 HE-CNN (60) 96.76

Proposed GWO-ELM 96.15 Proposed GWO-ELM 99.04

• The current study has considered only the off-line aspect

for detecting DR.

Conclusion

In this study, we have proposed a DR detection approach

based on HOG-PCA features and GWO-ELM classifier.

The GWO-ELM classifier underwent evaluations using the

APTOS-2019 and IDRiD datasets. The outcomes indicated the

superiority of the GWO-ELM over the existing methods [i.e.,

NN, ELM, SVM (linear kernel), SVM (precomputed kernel),

and RF] (see Tables 6–10) in all experiments. In addition,

the performance of the GWO-ELM classifier has been proven

to outperform some recent studies (see Table 10) in both

binary and multi-class classifications. The maximum multi-

class classification performance of the GWO-ELM classifier was

achieved with an accuracy reaching up to 96.21%. Further,

the maximum binary classification performance of the GWO-

ELM classifier was achieved with an accuracy of 99.47%. This

demonstrates that the combination of the GWO-ELM and

HOG-PCA is an effective classifier for detecting DR and might

be applicable in solving other image data type. However, the

current research has taken into account only the off-line aspect

for detecting DR. Therefore, the future plan of the current

research is to establish an approach to detect DR, which can

handle the online execution for both classification and feature

extraction in order to meet the real-time aspects. The proposed

DR detection approach will be tested under adversarial attacks.

Additionally, other optimization methods for ELM will be

further explored in order to generate the most suitable weights

and biases for the ELM which leads to minimizing classification

process errors.
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Background: Continuously growing of HIV incidence among men who

have sex with men (MSM), as well as the low rate of HIV testing of MSM

in China, demonstrates a need for innovative strategies to improve the

implementation of HIV prevention. The use of machine learning algorithms is

an increasing tendency in disease diagnosis prediction. We aimed to develop

and validate machine learning models in predicting HIV infection among

MSM that can identify individuals at increased risk of HIV acquisition for

transmission-reduction interventions.

Methods: We extracted data from MSM sentinel surveillance in Zhejiang

province from 2018 to 2020. Univariate logistic regression was used to select

significant variables in 2018–2019 data (P < 0.05). After data processing and

feature selection, we divided the model development data into two groups

by stratified random sampling: training data (70%) and testing data (30%). The

Synthetic Minority Oversampling Technique (SMOTE) was applied to solve the

problem of unbalanced data. The evaluation metrics of model performance

were comprised of accuracy, precision, recall, F-measure, and the area

under the receiver operating characteristic curve (AUC). Then, we explored

three commonly-used machine learning algorithms to compare with logistic

regression (LR), including decision tree (DT), support vector machines (SVM),

and random forest (RF). Finally, the four models were validated prospectively

with 2020 data from Zhejiang province.

Results: A total of 6,346 MSM were included in model development data,

372 of whom were diagnosed with HIV. In feature selection, 12 variables were

selected as model predicting indicators. Compared with LR, the algorithms

of DT, SVM, and RF improved the classification prediction performance in

SMOTE-processed data, with the AUC of 0.778, 0.856, 0.887, and 0.942,

respectively. RF was the best-performing algorithm (accuracy = 0.871,

precision = 0.960, recall = 0.775, F-measure = 0.858, and AUC = 0.942). And

the RF model still performed well on prospective validation (AUC = 0.846).
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Conclusion: Machine learning models are substantially better than

conventional LR model and RF should be considered in prediction tools

of HIV infection in Chinese MSM. Further studies are needed to optimize

and promote these algorithms and evaluate their impact on HIV prevention

of MSM.

KEYWORDS

machine learning, HIV, MSM, prediction, models

Introduction

Acquired immune deficiency syndrome (AIDS) caused by

the human immunodeficiency virus (HIV) is a global health

crisis, which destroys the human immune system and gives rise

to a variety of opportunistic infections and death (1, 2). Men

who have sex with men (MSM) are one of the highest-risk

populations for HIV acquisition because of their tendency to

have multiple sexual partners and unprotected anal intercourse

(3). Therefore, this group has now received special attention

from society.

In China, an increasing body of evidence from different

periods and locations has suggested thatMSMplay an important

role in the HIV epidemic. A large-scale systematic analysis,

in which data were extracted from 355 cross-sectional studies

covered 59 cities from 2001 to 2018, found that the overall

national prevalence of HIV among MSM was estimated to

be 5.7% (95% CI: 5.4–6.1%), exceeding the WHO 5% AIDS

epidemic warning threshold (4, 5). And two reports by the

Chinese Center for Disease Control and Prevention (CDC)

showed that the proportion of newly identified HIV/AIDS cases

due to male-to-male intercourse has increased rapidly, from

13.7% in 2011 to 25.5% in 2017 (6, 7). To improve the status

quo, the Chinese government has taken actions to promote

HIV testing by MSM, such as Pilot Program for HIV/AIDS

Comprehensive Intervention, peer education, and free HIV

voluntary counseling and testing (8). However, only 47% of

ChineseMSMhad ever tested for HIV in 2016, and only 38% had

tested for HIV in the last 12 months (9). This is still far behind

the target of the Joint United Nations Programme on HIV/AIDS

(UNAIDS) for 90% testing among infected individuals (10). It

is urgent to develop a reliable model to identify early infected

MSM in order to reduce the transmission of virus in this group,

which can make up for the defect of incomplete coverage of HIV

testing to a certain extent.

Previous studies have used logistic regression or Cox

proportional hazards regression models to establish the

prediction tool of HIV infection among MSM, but performance

is not great due to the problems of data structure which

are often non-linear, abnormal, and heterogeneous (11–14).

Compared to the above traditional models, the machine learning

algorithm provides a new method to construct models, since it

can balance the deviation and variance of data (15). Nowadays,

machine learning has been widely applied in the medical field,

mainly reflected in medical auxiliary diagnosis and classification

prediction, such as image-based cancer diagnostics (16, 17).

However, machine learning algorithms have not been used to

predict HIV infection among MSM, especially in China. In the

present study, we focused on the Chinese MSM population and

aimed to develop prediction models for HIV acquisition using

logistic regression and several machine learning approaches.

The processing of imbalance data by SMOTE before modeling

is different from previous related studies. The predictive

performance of these models is tested to determine the one

that can most accurately identify high-risk MSM individuals

with HIV, thus providing a basis for timely intervention and

treatment of this population.

Materials and methods

Study population and data collection

MSM Sentinel Surveillance is a national government public

health activity. The survey subjects were recruited by Non-

Governmental Organizations and local CDC using snowball

sampling at MSM event venues or online, with one-on-one

questionnaires administered by trained enumerators and 5ml

of venous blood collected. Verbal consent was obtained from

all study participants before survey and collection of specimens.

Therefore, institutional review board approval was not required

for analysis using sentinel surveillance data in China.

In this study, the cross-sectional data was derived from

the questionnaire records which were collected from the MSM

sentinel surveillance in Zhejiang province between 2018 and

2020. We included MSM that: (i) had oral or anal sex with

other men within the past year, (ii) currently resided in Zhejiang

Province, and (iii) were aged≥ 15 years at the time of the survey.

We excluded MSM that: (i) had already tested positive for HIV

every year, (ii) disagreed to be blood collected. The main content

of the questionnaire included five parts: general demographic

information, AIDS-related knowledge, the occurrence of sexual

behaviors, prevention services, and HIV antibodies testing. HIV
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antibodies testing used ELISA reagents for initial screening and

retesting, and Western Blot was used for confirmatory testing

when the results of both tests were positive.

Data processing

Some samples may exist with missed or abnormal values,

so we performed data cleaning to delete them. In addition,

we also performed data transformation on the several features:

“age” was divided into four classes according to Chinese

age group classification (<18, 18–40, 41–65, >65); as for

“AIDS-related knowledge”, if the results of 8 questions

turn out to be all right, we would give a value of 1,

otherwise, value of 0 will be given; “time of last HIV test”

can be converted to dichotomous variables that whether

had been tested for HIV in the past year or not. After

data processing, continuous variables were presented as

mean ± standard deviation or median [interquartile range

(IQR)], and categorical variables were presented as the

frequency number (percentage).

Feature selection

The purpose of the feature selection was to eliminate

redundant and irrelevant variables. Potential features can be

selected by traditional statistical methods (15). We applied the

filter method of univariate logistic regression to choose the

feature subsets in which the independent variables are correlated

with the dependent variable in the original data structure.

Variables with statistical significance (p-value < 0.05) were

selected as predicting features. As an estimate of effect size and

variability, we have reported the odds ratio (OR) with a 95%

confidence interval (CI).

Data balancing

As the proportion of MSM infected with HIV was

imbalanced in this study, we can apply resampling method

to handle the disproportionate ratio of observations in

each class. The technology of resampling consisted of

random under-sampling (RUS) and random over-sampling

(ROS). However, RUS removed a number of samples of

the majority class so that lost some information. In our

experiments, we performed the Synthetic Minority Over-

sampling Technique (SMOTE) to balance data (18).

SMOTE could generate synthetic data to increase the

number in the smaller class by using the nearest neighbor’s

algorithm (19).

TABLE 1 The confusion matrix.

Positive actual case Negative actual case

Positive prediction True positive (TP) False positive (FP)

Negative prediction False negative (FN) True negative (TN)

Model establishing

We explored three classic machine learning algorithms

for predicting HIV infection in MSM compared with Logistic

Regression (LR), including Decision Tree (DT), Support Vector

Machines (SVM), and Random Forest (RF). These algorithms

are widely used for classification problems, and each has its

unique features and advantages. LR is a generalized linear

regressionmodel that can apply a non-linear sigmoid function to

predict the results of two sets of classifications through a series of

continuous or categorical variables (20). DT uses tree structure

to classify data in a hierarchical fashion and is recommended

for problems in which input variables are discrete and final

classification is binary (21). SVM employs the “max-margin

principle” to create a decision boundary that is as far as possible

from the closest data points from each of the classes (22). RF is

an ensemble version of decision tree by aggregating predictions

from multiple decision trees for a better model, which is more

robust against overfitting (23).

Model evaluation

Several standard indicators can be adopted to evaluate

models’ performance: accuracy, precision, recall, F-measure, and

the area under the receiver operating characteristic curve (AUC).

The result of a classification job can be classified into four

categories in a confusion matrix that can explain the evaluation

metrics for better understanding (24), and the tabular form of

output is shown in Table 1. Relative concepts were shown as

follows (15, 20).

Accuracy measures the ratio of correct classification.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

Precision means the proportion of positive prediction that

are positive actual cases.

Precision =
TP

TP+ FP

Recall represents the fraction of positive actual cases that are

correctly predicted.

Recall =
TP

TP+ FN
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FIGURE 1

Flow chart of models development and prospective validation. LR, logistic regression; DT, decision tree; SVM, support vector machines; RF,

random forest.

F-measure is the weighted harmonic mean of precision and

recall. The higher the F-measure, the better predictive power of

the model.

F−measure =
2× Precision × Recall

Precision + Recall

AUC is a measure of the discriminative ability of prediction

models which represents the area under the receiver operating

characteristic curve (ROC). The vertical coordinate of the ROC

curve is the true positive rate, and the horizontal coordinate

of the ROC curve is the false positive rate. The value of AUC

is between 0.5 and 1, and the closer to 1 indicates the better

performance of the model (25).

In this study, we built our models according to the

Transparent Reporting of a multivariable prediction model

for Individual Prognosis or Diagnosis statement for prediction

models (26) (see Figure 1 for flow chart). After data processing

and feature selection, we divided the 2018–2019 data into two

groups by stratified random sampling based on the layer of

“HIV-positive or negative”: training data (70%) and testing

data (30%). Secondly, both training data and testing data were

balanced by SMOTE. Then, the hyperparameters optimization

of each model was obtained by grid-search and 5-fold cross-

validation on the training data (see Supplementary Table 1).

Finally, these models were verified on the testing data. We also

conducted prospective validation of four models in the 2020

data. All data analyses were carried out with R software 4.1.2

version and Python software 3.9 version.

Results

Demographic characteristics

After data processing in 2018–2019 data, we included 6,346

MSM into this study, 372 of whom were infected with HIV

(5.86%). The median age of them was 30.0 (IQR: 25.0–39.0)

years, with 72 (1.13%) younger than 18 years, 4,993 (78.68%)

aged 18–40 years, 1,245 (19.62%) aged 41–65 years, and 36

(0.57%) older than 65 years. And among them, 3,821 (60.21%)

were unmarried; 6,557 (98.12%) identified as the Han ethnicity;

3,836 (60.45%) were census register of Zhejiang; 2,207 (34.78%)

had obtained a college degree or above of education background.

Feature selection

Univariate logistic regression analysis was performed

to search the possible predictors and their associations

with HIV infection. Descriptive summaries were shown

in Table 2. Of all 27 potential predictors, age, marital

status, census register, ethnicity, years of living in

Zhejiang, AIDS-related knowledge, Condom use in the

latest homosexual sex, frequency of condom use during

homosexual sex in the past 6 months, diagnosed with

sexually transmitted diseases, condom promotion/AIDS

counseling and testing, AIDS peer education and HIV test

in the past year were associated with HIV acquisition (P
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TABLE 2 Basic characteristics of variables in both 2018–2019 and 2020 MSM and univariate associations of potential predictors with HIV infection

in 2018–2019 MSM.

Variables 2018–2019 MSM Odd ratio (95%

confidence interval)

P-value 2020 MSM

No-HIV HIV No-HIV HIV

N = 5,974 N = 372 N = 3,219 N = 145

(94.14%) (5.86%) (95.72%) (4.28%)

Age (years)

<18 66 6 Ref. 27 2

18–40 4,720 273 0.64 (0.27, 1.48) 0.294 2,470 108

41–65 1,161 84 0.80 (0.34, 1.89) 0.605 698 34

>65 27 9 3.67 (1.19, 11.30) 0.024 24 1

Marital status

Unmarried 3,574 247 Ref. 1,974 92

Married 1,990 102 0.74 (0.59, 0.94) 0.013 992 44

Cohabiting 49 2 0.59 (0.14, 2.44) 0.467 21 0

Divorced or widowed 361 21 0.84 (0.53, 1.33) 0.461 232 9

Census register of Zhejiang

No 2,289 221 Ref. 1,260 86

Yes 3,685 151 0.42 (0.34, 0.53) <0.001 1,929 59

Ethnicity

Han 5,878 349 Ref. 3,161 139

Others 96 23 4.04 (2.53, 6.44) <0.001 58 6

Years of living in Zhejiang

<3 months 280 28 Ref. 155 10

3–6 months 269 16 0.59 (0.31, 1.12) 0.110 107 9

7–12 months 467 24 0.51 (0.29, 0.90) 0.021 197 4

1–2 years 849 51 0.60 (0.37, 0.97) 0.037 633 21

>2 years 4,109 253 0.62 (0.41, 0.93) 0.020 2,127 101

Education background

Illiteracy 35 4 Ref. 6 0

Primary school 250 18 0.63 (0.20, 1.97) 0.427 107 8

Junior high school 1,553 121 0.68 (0.24, 1.95) 0.475 838 41

Senior high school 2,047 111 0.47 (0.16, 1.36) 0.165 1,153 38

College degree or above 2,089 118 0.49 (0.17, 1.41) 0.189 1,115 58

Sexual orientation

Homosexuality 3,994 249 Ref. 2,289 102

Heterosexuality 48 2 0.67 (0.16, 2.76) 0.578 36 1

Bisexuality 1,743 109 1.00 (0.79, 1.27) 0.979 774 40

Unascertained 189 12 1.02 (0.17, 1.41) 0.952 120 2

Places of seeking sex partners

Bar/dance hall 339 13 Ref. 260 0

Tearoom/clubhouse 157 10 1.66 (0.71, 3.87) 0.240 143 8

Public bath 329 20 1.58 (0.78, 3.24) 0.206 175 5

Park 257 6 0.61 (0.23, 1.62) 0.321 72 1

Internet 4,761 315 1.73 (0.98, 3.04) 0.059 2,527 179

Others 131 8 1.59 (0.65, 3.93) 0.313 42 2

AIDS-related knowledge

No 2,529 203 Ref. 1,143 71

Yes 3,445 169 0.61 (0.50, 0.75) <0.001 2,076 74

(Continued)
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TABLE 2 (Continued)

Variables 2018–2019 MSM Odd ratio (95%

confidence interval)

P-value 2020 MSM

No-HIV HIV No-HIV HIV

N = 5,974 N = 372 N = 3,219 N = 145

(94.14%) (5.86%) (95.72%) (4.28%)

Homosexual sex in the past week

No 3,062 209 Ref. 1,630 91

Yes 2,912 163 0.82 (0.66, 1.01) 0.065 1,589 54

Condom use in the latest homosexual anal sex

No 1,072 158 Ref. 363 39

Yes 4,902 214 0.30 (0.24, 0.37) <0.001 2,856 106

Frequency of condom use during homosexual sex in the past 6 months

Never 249 39 Ref. 105 10

Sometimes 2,430 233 0.61 (0.43, 0.88) <0.001 817 82

Every time 3,295 100 0.19 (0.13, 0.29) <0.001 2,297 53

Commercial sex in the past 6 months

No 5,730 362 Ref. 3,105 139

Yes 244 10 0.65 (0.34, 1.23) 0.186 114 6

Heterosexual sex in the past 6 months

No 4,602 298 Ref. 2,636 122

Yes 1,372 74 0.83 (0.64, 1.08) 0.171 583 23

Drug-taking

No 5,912 366 Ref. 3,213 144

Yes 62 6 1.56 (0.67, 3.64) 0.300 6 1

Diagnosed with sexually transmitted diseases

No 5,725 350 Ref. 3,116 137

Yes 249 22 1.45 (1.02, 2.26) 0.008 103 8

Condom promotion/AIDS counseling and testing

No 1,406 124 Ref. 572 45

Yes 4,514 248 0.65 (0.52, 0.81) <0.001 2,647 100

Community drug maintenance therapy/cleaning needle provision

No 5,585 344 Ref. 3,038 138

Yes 389 28 1.17 (0.78, 1.74) 0.444 181 7

AIDS peer education

No 3,059 225 Ref. 1,697 77

Yes 2,915 147 0.69 (0.55, 0.85) 0.001 1,522 68

HIV test in the past year

No 2,691 212 Ref. 1,278 67

Yes 3,283 160 0.62 (0.50, 0.76) <0.001 1,941 78

< 0.05), suggesting that these 12 variables can be used as

predicting features.

Performance comparison of the models

After data processing and feature extraction, there are three

stages in our approach of model construction. The first stage is

stratified random sampling on the whole model development

dataset: training data (n = 4,442) and testing data (n = 1,904).

We also implemented the resampling techniques of SMOTE in

the original training data and testing data separately: training-

smote data (n = 8,364) and testing-smote data (n = 3,584).

Details showed in Table 3. Take the original data and SMOTE-

processed data as input for the next stage.

In the second stage, we developed models by using the

training data. In reference to Table 4, we summarized the

performance of prediction models by validating in testing data.
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TABLE 3 Description of original data and SMOTE-processed data.

Dataset Minority class Majority class Samples in total

Training 260 4,182 4,442

Training-smote 4,182 4,182 8,364

Testing 112 1,792 1,904

Testing-smote 1,792 1,792 3,584

TABLE 4 Results of classification models in original unbalanced data.

Models Accuracy Precision Recall F-measure AUC

LR 0.941 0.500 0.009 0.018 0.764

DT 0.934 0.208 0.045 0.074 0.549

SVM 0.935 0.071 0.009 0.016 0.632

RF 0.934 0.118 0.018 0.031 0.667

TABLE 5 Results of classification models in SMOTE-processed data.

Models Accuracy Precision Recall F-measure AUC

LR 0.702 0.690 0.733 0.711 0.778

DT 0.852 0.954 0.741 0.834 0.853

SVM 0.811 0.906 0.695 0.787 0.887

RF 0.871 0.960 0.775 0.858 0.942

We can see that the only advisable indicator of these models was

accuracy (>0.934). However, the results of other indicators were

not great that recall ranged from a low of 0.009 to a high of 0.045

and F-1 ranged from a low of 0.016 to a high of 0.074. In the

third stage, we also developed models by taking the training-

smote data. Compared to the prediction effects of models in the

original dataset, the performances of four models in SMOTE-

processed data were much better, as shown in Table 5. The

accuracy calculated by LR, DT, SVM, and RF was 0.702, 0.852,

0.811, and 0.871, respectively; the precision was 0.690, 0.954,

0.906, and 0.960, respectively; the recall was 0.733, 0.741, 0.695,

and 0.755, respectively; the F-measure was 0.711, 0.834, 0.787,

and 0.858, respectively; the AUC value was 0.778, 0.853, 0.887,

and 0.942, respectively. ROC curves of four algorithms in two

situations were shown in Figure 2.

Prospective validation

According to the results of the models above, we used the

prospective validation data to further verify the extensibility of

models in this stage. The basic characteristics of variables in

2020 data were shown in Table 2. ROC curves of four algorithms

were shown in Figure 3. The final results showed that RF model

also exhibits better performance compared with LR, DT, SVM

(with the AUC of 0.596, 0.812, 0.823, and 0.846, respectively).

Compared with the AUC of the RF model in the internal testing

set, we found that the AUC of the RF model in the prospective

validation set decreased by 0.096.

Discussion

MSM are one of the high-risk groups because they are

susceptible to infection after engaging in unprotected anal sex

(27). An updated systematic review and meta-analysis revealed

that the overall HIV incidence for multiple periods amongMSM

in China was a rising trend, which pooled separately from

2005 to 2008 (3.24/100 PY), 2009 to 2011 (5.29/100 PY), and

2012 to 2014 (5.50/100 PY) (28). Failure to test and receive

antiretroviral treatment in time will lead to the progression of

diseases and ultimately to the development of AIDS, soMSMhas

been identified as a priority population for HIV prevention and

control interventions in China (29). In response to the fact that

the detection rate of MSM population is lower than the first of

UNAIDS’ 90-90-90 targets, we need to find a fairly high accuracy

model for the prediction of HIV status.

To our knowledge, this is the first study to apply machine

learning on AIDS sentinel surveillance data to predict HIV

infection among MSM in China. The predictive model by

machine learning can distinguish between high and low risks.

As long as an individual has a predictive value of one, he or

she is considered to be at high risk for HIV infection and

could benefit from early additional screening and diagnosis

(30). In the present study, we examined whether machine

learning algorithms provide more accurate prediction models

for HIV infection in MSM than the conventional logistic

regression model.

In the beginning, the predictors selected for this study

were independently associated with HIV infection, including

important sexual behavior factors, such as condom use in the

latest homosexual anal sex (OR = 0.30, 95% CI: 0.24–0.37),

frequency of condom use was every time (OR = 0.19, 95% CI:

0.13–0.29), and diagnosed with sexually transmitted diseases

(OR = 1.45, 95% CI: 1.02–2.26). These above variables were

generally reported in recent HIV-related studies of behavioral

risk factors (31, 32).

Our study shows that the approach of machine learning is

feasible and fairly high accuracy. We compared LR, DT, SVM,

and RF, and accuracy, precision, recall, F-measure, and AUC

value of each model were analyzed. In unbalanced original data,

we found that only the indicator of accuracy was acceptable

and the other indicators were poor. However, using this metric

alone is not meaningful because class distributions that are

highly skewed tend to bias the results of machine learning

algorithms (33). Even if all cases are predicted to be negative,

the accuracy of the model is also more than 90%, but the

precision and recall are both 0 (15). Therefore, it is not enough

to represent great classifiers in terms of high accuracy value.

Then, the comprehensive evaluation indices of machine learning
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FIGURE 2

Receiver operating characteristics (ROC) curve of four models for the prediction of HIV in original unbalanced data (A) and SMOTE-processed

data (B). LR, logistic regression; DT, decision tree; SVM, support vector machines; RF, random forest.

FIGURE 3

Receiver operating characteristics (ROC) curve of four models

for the prediction of HIV in prospective validation data. LR,

logistic regression; DT, decision tree; SVM, support vector

machines; RF, random forest.

models in SMOTE-processed data were better than traditional

logistic regression model, in which the RF model performed

best (accuracy = 0.871, precision = 0.960, recall = 0.775,

F-measure = 0.858, AUC = 0.942). In addition, the RF model

also performed well when the optimal model was prospectively

validated with 2020 data (AUC = 0.846). The above results

indicate that advanced methods of machine learning can be used

to develop models with higher prediction accuracy, where the

performance of RF is satisfactory to predict HIV status among

MSM in China.

Previous studies have also provided evidence of using

machine learning algorithms in predicting HIV infection.

Krakower et al. (34) developed and validated multiple machine

learning models to identify potential HIV pre-exposure

prophylaxis (PrEP) candidates by using electronic health records

containing 180 potential predictors from an ambulatory practice

in Massachusetts in America, found that the best-performing

algorithm was obtained with the least absolute shrinkage and

selection operator (LASSO) (AUC = 0.86). In a similar setting

in California, Marcus et al. (35) used 81 electronic health record

variables to identify PrEP candidates by machine learning and

demonstrated improved ability to predict incident HIV with

inclusion of multiple data domains compared with simpler

algorithms that based on MSM status and STI positivity (AUC

= 0.86). In Denmark, Ahlstrom et al. (36) applied various

machine learning methods in electronic registry data to predict

HIV status and found that the RF algorithm also performed

slightly better (AUC = 0.89). More recently, Bao et al. (37)

developed four machine learning models and evaluated their

performance in predicting HIV diagnosis based on a cohort
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of MSM in Australia, and he proposed that Machine learning

approaches outperformed the multivariable logistic regression

model, with the gradient boostingmachine achieving the highest

performance (AUC = 0.76). Our study complements these

machine learning studies applied to HIV infection prediction, all

of which effectively illustrate that machine learning can be used

as an effective method for detecting HIV infection amongMSM.

There were several limitations to this study. First, although

the questionnaire information was collected through individual

interviews between survey subjects and health professionals,

some of this occurred in the past, which is subjected to

the recall bias. Moreover, the questionnaire needs to be

further supplemented due to the absence of some behavioral

characteristics (e.g., the number of sexual partners, sex role

of accessor/recipient) (38). Second, we only employed the

three most commonly-used machine learning algorithms for

classification results prediction, so other useful models and

methods can be explored in future research, including natural

language processing in unstructured data (39). Third, since the

research subjects selected for models building came from only

Zhejiang province, further exploration is needed in generalizing

the optimal model to the whole country and making it

universally applicable. Fourth, machine learning for effectively

avoiding overfitting is a crucial strategy (40). Our models

may have the problem of overfitting and should address it by

regularization and penalization of model complexity (41).

In conclusion, the study shows that machine learning

has an advantage over traditional models in predicting HIV

infection among MSM and the RF has a superior performance.

In particular, SMOTE technology helps models to achieve

better performance when facing unbalanced data. Within an

increase in HIV incidence among MSM, even other high-

risk populations, it is expected that prediction models based

on machine learning for HIV infection can be an important

direction to discriminate whether they are at high-risk for

HIV acquisition to be provided with timely interventional

treatment. Furthermore, additional researches are needed to

further optimize these algorithms, expand useful models to the

entire country, and evaluate their usefulness and effects of them

on HIV prevention.
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1Department of Urology, A�liated Zhongda Hospital of Southeast University, Nanjing, China,
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Chemotherapy, A�liated the Second Hospital of Nanjing, Nanjing University of Chinese Medicine,

Nanjing, China, 4Department of Urology, Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui

Branch of Southeast University, Nanjing, China

Background: Renal sarcoma (RS) is rarely seen in clinical practice. The purpose

of this study was to develop a prognostic nomogram model, which could

predict the probability of overall survival (OS) and cancer-specific survival (CSS)

in adult patients with RS.

Methods: Patients diagnosed with RS were recruited from the SEER database

between 2004 and 2015, and randomized to two cohorts: the training cohort

and the validation cohort. Uni- and multivariate Cox regression analyses in the

training cohort were used to screen independent prognostic factors for OS and

CSS. Prognostic nomograms for OS and CSS were created separately for adult

RS patients based on independent risk factors. The area under the receiver

operating characteristic (ROC) curves, calibration curves, and decision curve

analysis (DCA) were used to validate the nomograms.

Results: A total of 232 eligible patients were recruited, including 162 in

the training cohort and 70 in the validation cohort. Sex, histological type,

SEER stage, and surgery were independent prognostic factors for OS, while

histological type, SEER stage, surgery, chemotherapy were independent

prognostic factors for CSS. Based on the above independent prognostic

factors, prognostic nomograms for OS and CSS were created respectively. In

the training cohort, the AUCs of the nomograms for OS and CSS were 0.742

and 0.733, respectively. In the validation cohort, the AUCs of the nomograms

for OS and CSS were 0.837 and 0.758, respectively. The calibration curves of

the nomograms showed high consistencies between the predicted and actual

survival rates. Finally, the DCA demonstrated that the nomograms in the wide

high-risk threshold had a higher net benefit than the SEER stage.

Conclusion: A prognostic nomogram for renal sarcoma was created and

validated for reliability and usefulness in our study, which assisted urologists

in accurately assessing the prognosis of adult RS patients.
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adult patients, renal sarcoma, nomogram, SEER, prognosis
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Introduction

Sarcomas are a heterogeneous group of tumors arising

in the embryonic mesoderm, accounting for approximately

1% of all malignant tumors, of which <5% occur in the

urogenital tract (1). Primary renal sarcoma (RS) accounts

for around 24.6% of all genitourinary sarcomas and <1%

of all primary kidney tumors (1, 2). Renal sarcoma is not

only very rare but also leads to a poor prognosis: the

overall 1-, 3-, and 5-year survival rate was 86.3, 40.7, and

14.5%, respectively, and the median survival was 28 months

(3). According to previous reviews and case reports, renal

sarcoma could be classified into the following pathological

types: liposarcoma (4), leiomyosarcoma (5), carcinosarcoma (6),

rhabdomyosarcoma (7), clear cell sarcoma (8), fibrosarcoma

(9) and others, and different pathological types predict

distinct prognosis.

RS is currently poorly studied as it is such a rare malignancy.

As a result, an accurate prognostic model for RS is essential

for both urologists and patients. In fact, the SEER stage

grading system was employed by urologists to measure the

progression of RS, which includes localized, regional, distant,

and unstaged (10, 11). However, other factors including sex, age,

year of diagnosis, race, marital status, radiation, chemotherapy,

Abbreviations: RS, Renal sarcoma; SEER, Surveillance, Epidemiology,

and End Results; OS, Overall survival; CSS, Cancer-specific survival;

DCA, Decision curve analysis; ICD-O, The International Classification of

Diseases for Oncology; ROC, Receiver operating characteristic; AUC,

Area under the curve; HR, Hazard ratios; CI, Confidence intervals.

FIGURE 1

The study flow chart of the selection process.

surgery, etc. may also have an impact on prognosis due to

individual variances. In recent years, nomograms have been

increasingly employed in clinical practice for cancer prognosis.

It has been regarded as a useful statistical prediction tool

for benefiting both clinicians and patients (12, 13). So far,

there is no report on the application of nomograms in

predicting the prognosis of renal sarcoma in adults. In the

present study, based on data from the SEER database between

2004 and 2015, nomograms were set up to predict survival

outcomes for adult patients with RS and their reliability was

also validated.

Materials and methods

Data sources

Data were extracted from the Surveillance Epidemiology

and End Results (SEER) database (https://seer.cancer.gov/),

which is supported by the Surveillance Research Program

(SRP) in NCI’s Division of Cancer Control and Population

Sciences (DCCPS). SEER statistics are collected on a national

scale, with information from 18 states that represent all

regions of the country covering 28% of the US population,

including sociodemographic factors, geographic variables,

clinical factors, cancer-specific factors, pathologic variables,

treatment factors, and outcomes (14). The SEER database is

openly accessed, and all authors have obtained permission.

SEER∗Stat software [Version 8.3.9.2 - August 20, 2021,

SEER∗Stat Software (cancer.gov)] was used to extract

the data.
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TABLE 1 Baseline demographic and clinical characteristics with adult renal sarcoma patients in our study.

Characteristic Total no. (%) The training

cohort

The validation

cohort

P value

No. (%) No. (%)

Total 232 (100) 162 (70.0) 70 (30.0)

Age, years 0.219

≤60 120 (51.7) 79 (48.8) 41 (58.6)

>60 112(48.3) 83 (51.2) 29 (41.4)

Year of diagnosis 0.627

2004–2009 115 (49.6) 82 (50.6) 33 (47.1)

2010–2015 117 (50.4) 80 (49.4) 37 (52.9)

Sex 0.814

Male 105 (45.3) 72 (44.4) 33 (47.1)

Female 127 (54.7) 90 (55.6) 37 (52.9)

Marital status 0.330

Married 133 (57.3) 89 (54.9) 44 (62.9)

Unmarried 99 (42.7) 73 (45.1) 26 (37.1)

Race 0.606

White 188 (81.1) 134 (82.7) 54 (77.1)

Black 27 (11.6) 17 (10.5) 10 (14.3)

Others 17 (7.3) 11 (6.8) 6 (8.6)

Grade 0.878

Grade I 22 (9.5) 14 (8.5) 8 (11.4)

Grade II 22 (9.5) 16 (9.9) 6 (8.6)

Grade III 39 (16.8) 28 (17.3) 11 (15.7)

Grade IV 67 (28.9) 49 (30.2) 18 (25.7)

Unknown 82 (35.3) 55 (34.0) 27 (38.6)

Histological type 0.308

Liposarcoma 69 (29.7) 52 (32.1) 17 (24.3)

Leiomyosarcoma 95 (40.9) 60 (37.0) 35 (50.0)

Carcinosarcoma 10 (4.3) 6 (3.7) 4 (5.7)

Rhabdomyosarcoma 4 (1.7) 3 (1.9) 1 (1.4)

Clear cell sarcoma 19 (8.3) 12 (7.4) 7 (10.0)

Fibrosarcoma 2 (0.9) 2 (1.2) 0

Sarcoma, NOS 33 (14.2) 27 (16.7) 6 (8.6)

SEER stage 0.178

Localized 79 (34.1) 56 (34.6) 23 (32.9)

Regional 70 (30.2) 43 (26.5) 27 (38.6)

Distant 73 (31.5) 54 (33.3) 19 (27.1)

Unstaged 10 (4.2) 9 (5.6) 1 (1.4)

Surgery 0.274

Yes 52 (22.4) 40 (24.7) 12 (17.1)

No/Unknown 180 (77.6) 122 (75.3) 58 (82.9)

Radiotherapy 1.000

Yes 198 (85.3) 138 (85.2) 60 (85.7)

No/Unknown 34 (14.7) 24 (14.8) 10 (14.3)

Chemotherapy 0.788

Yes 178 (76.7) 123 (75.9) 55 (78.6)

No/Unknown 54 (23.3) 39 (24.1) 15 (21.4)

SEER, Surveillance, Epidemiology, and End Results. Percentages may not total 100 because of rounding.
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TABLE 2 Univariate and multivariate analysis of overall survival (OS) rates in the training cohort.

Characteristic Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age, years

≤60 Reference Reference

>60 1.469 (1.000–2.159) 0.050 - 0.098

Year of diagnosis

2004–2009 Reference

2010–2015 0.652 (0.418–1.015) 0.058

Sex

Male Reference Reference

Female 0.601 (0.409–0.881) 0.009 0.498 (0.328–0.756) 0.001

Marital status

Married Reference Reference

Unmarried 0.869 (0.592–1.277) 0.475 - 0.745

Race

White Reference Reference

Black 0.453 (0.219–0.935) 0.032 - 0.038

Others 1.217 (0.561–2.641) 0.619 - 0.868

Grade

Grade I Reference Reference

Grade II 1.489 (0.355–6.240) 0.586 - 0.091

Grade III 3.301 (0.960–11.349) 0.058 - 0.752

Grade IV 5.251 (1.619–17.025) 0.006 - 0.205

Unknown 5.779 (1.791–18.647) 0.003 - 0.498

Histological type

Liposarcoma Reference Reference

Leiomyosarcoma 1.364 (0.839–2.219) 0.210 1.406 (0.854–2.315) 0.181

Carcinosarcoma 7.253 (2.936–17.919) <0.001 6.996 (2.703-18.107) <0.001

Rhabdomyosarcoma 2.590 (0.783–8.562) 0.119 3.797 (1.127–12.789) 0.031

Clear cell sarcoma 1.063 (0.480–2.353) 0.880 0.542 (0.232–1.266) 0.157

Fibrosarcoma 0.701 (0.095–5.170) 0.728 0.374 (0.050–2.809) 0.339

Sarcoma, NOS 1.910 (1.061–3.437) 0.031 1.563 (0.843–2.898) 0.157

SEER stage

Localized Reference Reference

Regional 2.769 (1.599–4.794) <0.001 3.623 (2.047–6.410) <0.001

Distant 4.793 (2.861–8.029) <0.001 4.317 (2.487–7.494) <0.001

Unstaged 2.444 (0.924-6.462) 0.072 1.936 (0.645-5.805) 0.239

Surgery

No/Unknown Reference Reference

Yes 0.478 (0.313–0.728) 0.001 0.515 (0.313–0.847) 0.009

Radiotherapy

Yes Reference Reference

No/Unknown 0.875 (0.521–1.471) 0.615 - 0.771

Chemotherapy

Yes Reference Reference

No/Unknown 0.679 (0.444–1.038) 0.074 - 0.348

CSS, Cancer-specific survival; SEER, Surveillance, Epidemiology, and End Results; HR, hazard ratio; CI, confidence interval.
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TABLE 3 Univariate and multivariate analysis of cancer-specific survival (CSS) rates in the training cohort.

Characteristic Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age, years

≤60 Reference Reference

>60 2.101 (1.144–3.859) 0.017 - 0.083

Year of diagnosis

2004–2009 Reference

2010–2015 0.761 (0.557–1.040) 0.087

Sex

Male Reference Reference

Female 0.838 (0.466–1.507) 0.556 - 0.767

Marital status

Married Reference Reference

Unmarried 0.714 (0.394–1.294) 0.267 - 0.256

Race

White Reference Reference

Black 0.538 (0.192–1.508) 0.238 - 0.433

Others 0.749 (0.180–3.117) 0.691 - 0.652

Grade

Grade I - -

Grade II Reference Reference

Grade III 2.378 (0.493–11.461) 0.280 - 0.919

Grade IV 4.481 (1.044–19.228) 0.044 - 0.153

Unknown 3.624 (0.836–15.713) 0.085 - 0.698

Histological type

Liposarcoma Reference Reference

Leiomyosarcoma 2.088 (0.802–5.437) 0.132 2.225 (0.839–5.901) 0.108

Carcinosarcoma 24.382 (7.227–82.262) <0.001 23.815 (6.516–87.039) <0.001

Rhabdomyosarcoma 3.799 (0.456–31.661) 0.217 9.022 (0.995–81.826) 0.051

Clear cell sarcoma 3.740 (1.198–11.676) 0.023 2.686 (0.825–8.740) 0.101

Fibrosarcoma 3.026 (0.363–25.224) 0.306 4.303 (0.446–41.551) 0.207

Sarcoma, NOS 5.748 (2.165–15.262) <0.001 4.816 (1.712–13.547) <0.001

SEER stage

Localized Reference Reference

Regional 3.106 (1.214–7.948) 0.018 3.926 (1.492–10.328) 0.006

Distant 7.031 (2.988–16.547) <0.001 5.867 (2.301–14.962) <0.001

Unstaged 4.656 (1.201–18.049) 0.026 1.800 (0.379–8.557) 0.460

Surgery

No/Unknown Reference Reference

Yes 0.350 (0.191–0.639) 0.001 0.352 (0.168–0.739) 0.006

Radiotherapy

Yes Reference Reference

No/Unknown 0.950 (0.425–2.127) 0.901 - 0.518

Chemotherapy

Yes Reference Reference

No/Unknown 0.889 (0.450–1.756) 0.735 2.315 (1.065–5.033) 0.034

CSS, Cancer-specific survival; SEER, Surveillance, Epidemiology, and End Results; HR, hazard ratio; CI, confidence interval.
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Patients

A total of 367 patients diagnosed with RS between 2004

and 2015 were established according to the International

Classification of Disease for Oncology, Third Edition [ICD-O-

3] site codes, including liposarcoma (8850/3, 8851/3, 8852/3,

8853/3, 8858/3, 8860/3), leiomyosarcoma (8890/3, 8891/3,

8896/3), carcinosarcoma (8980/3), rhabdomyosarcoma (8900/3,

8901/3, 8910/3), clear cell sarcoma (8964/3), fibrosarcoma

(8810/3), sarcoma, NOS (8800/3). The exclusion criteria are

based on the following principles: (1) age at diagnosis is below

18 years old, n = 62; (2) unknown marital status at diagnosis, n

= 18; (3) unknown Race, n = 1; (4) unknown Survival months,

n= 1; (5) not the first malignant primary tumor, n= 53. Finally,

232 eligible patients were included in the analytic cohort. The

flow chart of the selection process was presented in Figure 1.

Variables and endpoints

The following variables were filtered from the SEER

database: age, year of diagnosis, sex, marital status, race,

FIGURE 2

The prognostic nomograms for predicting 3- and 5- OS and CSS probabilities of adult RS patients in the training cohort. (A) OS nomogram; (B)

CSS nomogram.
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grade, histological type, SEER stage, surgery, radiotherapy,

chemotherapy. To facilitate the next step of data analysis, the

categorical variables were coded directly, and for continuous

variables, they were first converted to categorical variables before

coding. Some of the variables are explained below:

1. Regarding age, patients were divided into two categories:

older than 60 years and≤60.

2. Regarding year of diagnosis, it was divided into two phases:

2004–2009, 2010–2015.

3. Regarding grade, it was defined as follows: well-

differentiated (Grade I); moderately differentiated (Grade

II); poorly differentiated (Grade III); undifferentiated

(Grade IV); and unknown grade.

4. Regarding the stage of SEER, patients were classified

into four subgroups according to the progression of

the sarcoma, including localized, regional, distant,

and unstaged.

The death and RS-specific death were regarded as observed

endpoints. OS refers to the period between the start of the

study and death from any cause, and survivors are censored

as of the last follow-up. CSS refers to the period between the

commencement of the study and the death due to RS, with

deaths due to other causes or survivors omitted.

Statistical methods

Categorical data were described as numbers (n) and

percentages (%), and chi-square tests were used to assess

differences in categorical variables. The sample was divided

FIGURE 3

ROC curves of nomograms and the SEER stage for predicting OS and CSS probabilities in the training and validation cohort. ROC for OS (A) and

CSS (B) in the training cohort, respectively; ROC for OS (C) and CSS (D) in the validation cohort, respectively.
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into a training cohort and a validation cohort (in a ratio

of 7:3) using a no-replacement random sampling method.

The training cohort was used to create nomograms and filter

factors for nomograms, while the validation cohort was used

to validate the results of the training cohort. Univariate Cox

regression was used to identify factors associated with OS and

CSS, and multivariate Cox regression to identify associated

independent risk factors. Variables with P values <0.05 in

univariate Cox regression analysis were included in multivariate

Cox regression analysis, and associated hazard ratios (HR) and

95% confidence intervals (CI) were calculated. Based on the

results of multivariate Cox regression analysis, independent risk

factors were used to create prognostic nomograms to predict the

probability of OS and CSS at 3 and 5 years. In addition, receiver

operating characteristic (ROC) curves, decision curve analysis

(DCA), and calibration curves were used to assess the predictive

performance of the nomogram and SEER stage.

A vertical line was drawn on the scale for each variable for

a given adult RS patient, and the intersection with the “dot”

line represented the score for that variable. The total score is

calculated by adding up the scores for each variable. Matching

scores were found on the “total score” line and projected onto

the OS and CSS lines below, resulting in 3- and 5-OS and CSS

probabilities for that individual.

In ROC curve analysis, the area under the curve (AUC)

is defined as the area enclosed by the ROC curve and the

coordinate axes. The value of the AUC usually ranges between

0.5 and 1, and the diagnostic value of the nomogram is

represented by the AUC. In the calibration curve analysis, a

bootstrap method with 1,000 resamples was used for testing.

SPSS 26.0 (IBM Corp. Released 2019. IBM SPSS Statistics

for Windows, Version 26.0. Armonk, NY: IBM Corp.) was

applied to conduct statistical analysis for univariate and

multivariate Cox regression. The nomograms were developed

and validated by exerting the rms, hmisc, lattice, survival,

formula, ggplot2, pROC, timeROC, and rmda packages in R

version 4.1.2 (http://www.r-project.org/). P < 0.05 (two-sided)

was considered statistically significant.

Results

Baseline demographic and clinical
characteristics

A total of 232 eligible patients diagnosed with RS between

2004 and 2015 were included in our study, which were divided

into two cohorts randomly: the training cohort (162, 70.0%) and

the validation cohort (70, 30.0%). The number of RS patients

aged over or equal to 60 and under 60 was similar in the

total cohort. Similarly, the number of patients with the year of

diagnosis in 2004–2009 and in 2010–2015 was approximately

equal. Most RS patients were female (54.7%), married (57.3%),

and white (81.1%). Grade IV accounts for the largest proportion

of known grades. Of the other general type, the majority

were leiomyosarcoma (40.9%) and localized (34.1%). Most RS

adult patients received radiotherapy (85.3%) and chemotherapy

(76.7%), but only a few had undergone surgery (22.4%). Specific

baseline demographic and clinical characteristics information

are represented in Table 1.

Univariate and multivariate analysis of OS
and CSS

The univariate and multivariate Cox regression analysis

of OS and CSS rates in the training cohort was carried out

for screening independent prognostic variables. Age, year of

diagnosis, sex, marital status, race, grade, histological type, SEER

stage, surgery, radiotherapy, and chemotherapy were included in

our analysis. By univariate regression analysis, it was shown that

all variables mentioned above might be substantially linked with

OS and CSS. Meanwhile, it was also shown that sex, histological

type, SEER stage, and surgery were independent predictive

variables for OS by multivariate analysis, while histological

type, SEER stage, surgery, and chemotherapy were independent

prognostic variables for CSS. Confidence intervals (CI) and

corresponding p-values for specific variables in the univariate

and multivariate analyses of OS and CSS were summarized in

Tables 2, 3, respectively.

Nomogram development and validation

According to the independent prognostic variables of

OS and CSS, the nomograms were established, respectively

(Figure 2). In the OS nomogram, the SEER stage contributed the

most to survival outcome, while the histological type contributed

the least. In the CSS nomogram, the SEER stage was the most

significant predictor of survival, followed by histological type.

As shown in Figure 3, the ROC curves were drawn, and

the AUC of the OS nomogram was significantly greater than

that of the SEER stage in the training cohort (nomogram 0.742,

SEER stage 0.698), while in the validation cohort the AUC of

the OS nomogram was similar to SEER stage (nomogram 0.837,

SEER 0.833). However, the AUCs of the nomograms for CSS

were considerably higher than those of the SEER stage both

in the training cohort (nomogram 0.733, SEER stage 0.656)

and validation cohort (nomogram 0.758, SEER stage 0.656). By

comprising of the above ROC curves, it was demonstrated that

the nomogram had more diagnostic value than the SEER stage

to discriminate the survival probability of adult RS patients.

The AUCs for 3- and 5-OS were 0.751 and 0.757,

respectively, and 0.779 and 0.750 for 3- and 5-CSS, respectively,

in the training cohort. The validation cohort AUCs for 3-

and 5-OS were 0.775 and 0.829, respectively, and 0.807 and
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FIGURE 4

ROC curves for predicting 3-,5- OS and CSS probabilities in the training and validation cohort. ROC for 3-,5- OS (A) and CSS (B) in the training

cohort; ROC for 3-,5- OS (C) and CSS (D) in the validation cohort.

0.855, respectively, for 3- and 5-CSS. As shown in Figure 4, the

nomograms accurately predict the probability of 3- and 5- OS

and CSS for adult RS patients.

The calibration curves of the nomograms showed high

consistencies between the predicted and actual survival rates

both in the training and validation cohorts, illustrated in

Figure 5 and Supplementary Figure 1. The gray line in the

calibration curves represents the ideal reference line, where

the predicted survival probability matches the actual survival

probability. The presentation of the nomogramswas represented

by red dots. The DCA demonstrated that the nomograms in

the wide high-risk threshold had a higher net benefit than the

SEER stage (Figure 6), which validated the superiority of the

nomogram utility over the SEER stage in clinical practice.

Discussion

As mentioned above, adult renal sarcomas are an extremely

rare group of tumors, accounting for only 0.8% of primary

renal tumors (3). The SEER stage grading system was used

by urologists to evaluate the progression of renal sarcomas.

Sarcomas are classified into different grades based on the

location and the extent to which it invades organs, blood

vessels, and lymph nodes, including localized, regional, distant,

and unstaged. However, due to the influence of individual

differences, such as sex, age, race, marital status, radiation,

chemotherapy, surgery, etc., it is not comprehensive enough to

use the extent of tumor invasion alone to evaluate the prognosis

for adult RS patients.

The nomogram is a graphical representation of a clinical

prediction model that calculates a total score based on the values

of individual predictor variables, and then predicts the risk

of an event or the probability of survival based on the total

score (15, 16). It is a novel prediction model that is gradually

sought after by clinicians. In recent years, predictions for the

prognosis of various urinary cancer with nomograms have been

reported more and more. For instance, Wu et al. employed a

genomic-clinicopathologic nomogram to predict preoperative

lymph node metastasis in bladder cancer (17); A nomogram

was conducted by Mao et al. to predict prognosis in patients

with lung metastatic renal cell carcinoma (18). Zhang et al.
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FIGURE 5

Calibration curves for verifying the consistency between predicted 3-,5- OS and CSS and actual 3-,5- OS and CSS in the training cohort. 3- OS

(A) and 5- OS (B) calibration curves; 3- CSS (C) and 5- CSS (D) calibration curves.

established a radiomics nomogram to predict bone metastasis in

newly diagnosed prostate cancer patients (19). The nomogram

and Aggtrmmns scoring system were utilized by Zhou et al. for

predicting overall survival and cancer-specific survival of kidney

cancer patients (20).

As it is known that compared with the SEER stage,

nomogram has the following advantages: (1) By combining

various independent risk factors according to the patient’s

condition, it allows for a more intuitive assessment and

individualization of the patient’s prognosis (21). (2) It quantifies

the possibility of OS and CSS in patients, permitting a more

precise prognostic evaluation (22). Therefore, for the first time,

the prognostic nomograms were developed for adult RS patients

to obtain personalized and accurate prognostic predictions in

this study.

We extracted data from the SEER database for adult RS

patients and used COX univariate and subsequent multivariate

regression analysis to conclude that histological type, SEER

stage, surgery were independent risk factors for OS and CSS.

Based on the multivariate regression analysis, the OS and CSS

nomograms were constructed, respectively. Subsequently, we

validated the nomograms. The area under the ROC curves for

3-,5- OS were 0.775 and 0.829, respectively, and 0.807 and 0.855

for 3-, 5- CSS, respectively, which depicted that the nomograms

accurately predict the probability of 3- and 5- OS and CSS

for adult RS patients. The calibration curves showed high

consistencies between the predicted and actual survival rates.

From the nomograms, it was suggested that RS patients

without surgery, with distant SEER stage grade, and histological

type of carcinosarcoma had the poorest prognosis. According to

the Kaplan-Meier overall and disease-specific survival analysis

of patients with RS established by Nazemi et al. (1), liposarcoma

had the greatest prognosis, followed by leiomyosarcoma and

clear cell sarcoma, while carcinosarcoma had the worst

prognosis. Some studies have shown that carcinosarcoma had

the worst prognosis, which was consistent with our analysis.

In addition, in our study, univariate Cox regression analysis

found that Sarcoma, NOC patients had poorer OS compared

to liposarcoma patients (HR = 1.910, 95% CI 1.061–3.437, p

= 0.031). However, after multivariate Cox regression analysis,
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FIGURE 6

DCA curves for validating the clinical utility of the nomograms. DCA curves for OS (A) and CSS (B) in the training cohort. DCA curves for OS (C)

and CSS (D) in the validation cohort.

there was no difference between the two groups, which could be

explained by the inclusion of other confounding variables, which

led to biased results.

In addition, our study demonstrated that surgical treatment

for adult RS patients may effectively reduce the risk of death.

This is in line with the findings of Moreira et al. (14) and Öztürk

(23). Moreover, it is also found that chemotherapy may also

improve the prognosis of adult RS patients. Chemotherapy has

now been applied clinically to treat advanced or recurrent renal

sarcoma, although not standardized (24), and the latest research

of Yakirevich et al. suggested that comprehensive genomic

analysis of adult RS patients may provide new opportunities for

targeted therapy (25).

To our surprise, our data suggested radiotherapy was not

an independent prognostic factor for the adult patient with

renal sarcoma, which was in accordance with the findings of Li

et al. (26). However, Gamboa et al. reported that preoperative

radiotherapy may improve the prognosis by making some

tumors easier to resect (27). Thus, the prognostic impact of

radiotherapy on patients with renal sarcomas should be further

explored. The clinical outcome of primary adult renal sarcoma

is extremely poor and the optimal treatment remains to be

debated. Further studies are needed to verify whether it is

surgery or combination therapy that works best. Furthermore,

our data also suggested that female patients had a better

prognosis than male patients, which could be attributed to

differences in female anatomy or hormone levels.

We appraised the prognosis of adult RS patients with

nomograms for the first time, which adds a new dimension to

our research. Simultaneously, using the SEER database excluded

the influencing factors of single-center. Even so, there are still a

few flaws in our study: (1) Because of the rarity of renal sarcoma,

limited sample size is inevitable and therefore our findings may

not be representative; (2) As our study is retrospective, there

is a lack of multicenter data for external validation. (3) Due to

the lack of data in the SEER database, genetic factors, laboratory

findings, and medication history were not included in our study.

Conclusions

In conclusion, a prognostic nomogram was created to

predict overall survival (OS) and cancer-specific survival (CSS)

for adult patients with RS, and their reliability and usefulness
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were also validated in our study. We anticipate that our study

will facilitate urologists in accurately assessing the prognosis of

adult RS patients and provide support for further clinical trials.
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Thyroid tumors, one of the common tumors in the endocrine system, while

the discrimination between benign and malignant thyroid tumors remains

insu�cient. The aim of this study is to construct a diagnostic model of

benign andmalignant thyroid tumors, in order to provide an emerging auxiliary

diagnosticmethod for patients with thyroid tumors. The patients were selected

from the Chongqing General Hospital (Chongqing, China) from July 2020 to

September 2021. And peripheral blood, BRAFV600E gene, and demographic

indicators were selected, including sex, age, BRAFV600E gene, lymphocyte

count (Lymph#), neutrophil count (Neu#), neutrophil/lymphocyte ratio (NLR),

platelet/lymphocyte ratio (PLR), red blood cell distribution width (RDW),

platelets count (PLT), red blood cell distribution width—coe�cient of variation

(RDW–CV), alkaline phosphatase (ALP), and parathyroid hormone (PTH). First,

feature selection was executed by univariate analysis combined with least

absolute shrinkage and selection operator (LASSO) analysis. Afterward, we used

machine learning algorithms to establish three types ofmodels. The first model

contains all predictors, the second model contains indicators after feature

selection, and the third model contains patient peripheral blood indicators.

The four machine learning algorithms include extreme gradient boosting

(XGBoost), random forest (RF), light gradient boosting machine (LightGBM),

and adaptive boosting (AdaBoost) which were used to build predictive models.

A grid search algorithmwas used to find the optimal parameters of themachine

learning algorithms. A series of indicators, such as the area under the curve

(AUC), were intended to determine the model performance. A total of 2,042

patients met the criteria and were enrolled in this study, and 12 variables were

included. Sex, age, Lymph#, PLR, RDW, and BRAFV600E were identified as

statistically significant indicators by univariate and LASSO analysis. Among the

model we constructed, RF, XGBoost, LightGBM and AdaBoost with the AUC

of 0.874 (95% CI, 0.841–0.906), 0.868 (95% CI, 0.834–0.901), 0.861 (95% CI,

0.826–0.895), and 0.837 (95% CI, 0.802–0.873) in the first model. With the

AUC of 0.853 (95% CI, 0.818–0.888), 0.853 (95% CI, 0.818–0.889), 0.837 (95%

CI, 0.800–0.873), and 0.832 (95% CI, 0.797–0.867) in the second model. With

the AUC of 0.698 (95% CI, 0.651–0.745), 0.688 (95% CI, 0.639–0.736), 0.693
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(95% CI, 0.645–0.741), and 0.666 (95% CI, 0.618–0.714) in the third model.

Compared with the existingmodels, our study proposes amodel incorporating

novel biomarkers which could be a powerful and promising tool for predicting

benign and malignant thyroid tumors.

KEYWORDS

thyroid tumor, machine learning, predictive model, BRAFV600E gene mutation, risk-

factors

Introduction

The incidence of thyroid tumors has been increasing over

the past 20 years, and it was the eighth most commonly

diagnosed tumors in the world among endocrine tumors (1–

3). According to the National Cancer Registry, thyroid tumors

in China will continue to grow at an annual rate of 20% (4,

5). Therefore, identifying benign and malignant tumors owns

great significance for early clinical intervention and treatment.

Although ultrasonography and fine needle aspiration biopsy

(FNAB) cytology methods can diagnose most thyroid tumors,

there were still some patients who were misdiagnosed or

overtreated. In addition, the limitations of those examinations

included the need for a highly experienced cytopathologist for

accurate interpretation, and not suitable for early screening

of disease.

At present, many biomarkers of thyroid tumors have been

discovered by researchers. Ozmen found that higher NLR

and PLR were associated with worse survival in differential

thyroid tumors (6). Another study from Turkey suggested

that mean platelet volume (MPV) levels can be used as an

easily available biomarker for monitoring the risk of papillary

thyroid carcinoma (PTC) in patients with thyroid nodules,

enabling early diagnosis of PTC (7). And Liu found that lower

pretreatment platelet count (PLT) levels may indicate a poor

prognosis for PTC (8). In particular, the BRAFV600E gene is

also an important biomarker for the occurrence and progression

of papillary thyroid tumors (9). In addition, the review by

Qian and Iryani mentions that many genetic biomarkers

can differentiate benign from malignant thyroid tumors (10,

11). However, most studies just investigated the diagnostic

performance of individual biomarkers, and few studies have

integrated these biomarkers to construct models that can be used

to diagnose benign and malignant thyroid tumors in clinical

practice. Previous studies have the shortcomings of small sample

size and large differences in diagnostic performance between

different biomarkers.

Machine learning (ML) is an emerging artificial intelligence

discipline that analyzes multiple data types and uses them to

explore disease risk factors, accurate diagnosis, and prognosis

(12). Moreover, it can integrate multiple clinical indicators,

explore the nonlinear relationship between predictors and

clinical outcomes, and solve problems such as poor performance

of logistic methods in traditional clinical modeling. Sui

developed a deep-learning AI model (ThyNet) using ultrasound

images to differentiate between malignant tumors and benign

thyroid nodules with an AUC of 0.875 (95% CI, 0.871–

0.880) (13). Although there have been some studies using ML

algorithms to diagnose benign and malignant thyroid tumors,

the data selected are mostly image data, which makes data

collection more complicated.

Therefore, this study aims to apply ML algorithms to

build a predictive model of thyroid tumors with demographic,

peripheral blood laboratory, and genetic biomarkers to provide

an accurate and reliable prediction method for the early

discrimination of benign and malignant thyroid tumors.

Methods

Study participants

Patients with thyroid tumor included in the current

study, were selected from the Chongqing General Hospital

(Chongqing, China) from July 2020 to September 2021.

According to WHO 2017 classification and the eighth edition

of the AJCC/TNM classification (TNM-8) (14), operating

records and final pathologic reports were reviewed to ascertain

tumor categories, they were divided into benign groups and

malignant groups. Benign groups are defined as thyroid

follicular nodular disease, follicular adenoma, follicular

adenoma with papillary architecture, oncocytic adenoma of

the thyroid, and benign thyroid nodules. While, malignant

groups are defined as follicular thyroid carcinoma, invasive

encapsulated follicular variant papillary carcinoma, papillary

thyroid carcinoma, oncocytic carcinoma of the thyroid,

follicular-derived carcinomas, high-grade, and anaplastic

follicular cell-derived thyroid carcinoma (15).

This study was exempt from ethical review by the

Institutional Review of the Chongqing General Hospital. The

study methods were carried out in accordance with the relevant

guidelines and regulations.
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TABLE 1 Clinical characteristics and variables of patients in all cohorts.

Predictors Benign

(N = 561)

Malignant

(N = 1,481)

P-value

Sex (%)

Male 105 (18.7) 357 (24.1) 0.011

Female 456 (81.3) 1,124 (75.9)

BRAFV600E (%)

Mutation 76 (13.5) 1,170 (79.0) <0.001

Wild 485 (86.5) 311 (21.0)

Age (years) 45.00 [35.00, 52.00] 39.00 [32.00, 50.00] <0.001

Lymph# (×109/L) 1.64 [1.37, 2.01] 1.58 [1.29, 1.94] <0.001

Neu# (×109/L) 3.64 [2.85, 4.65] 3.60 [2.84, 4.57] 0.991

NLR 2.13 [1.69, 2.85] 2.20 [1.70, 2.96] 0.061

PLR 130.06 [103.38, 157.24] 140.00 [110.36, 172.27] <0.001

RDW (%) 42.30 [40.60, 43.90] 41.90 [40.50, 43.40] 0.002

PLT (×109/L) 215.00 [184.00, 251.00] 222.00 [187.00, 260.00] 0.061

RDW-CV 12.90 [12.50, 13.40] 12.80 [12.50, 13.30] 0.594

ALP (U/L) 67.00 [59.00, 78.14] 67.00 [56.00, 81.00] 0.395

PTH (ng/ml) 49.20 [43.90, 53.75] 48.50 [37.80, 58.90] 0.786

Candidate predictors

The data was collected from the electronic medical

record (EMR) system of the Chongqing General Hospital,

which contains laboratory examination records, diagnosis

and treatment process records, doctor orders, etc. Patient’s

peripheral blood indicators, BRAFV600E gene, and

demographic indicators were selected, including age, sex,

lymphocyte count (Lymph#), neutrophil count (Neu#), red

blood cell distribution width (RDW), red blood cell distribution

width - coefficient of variation (RDW–CV), platelets count

(PLT), neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte

ratio (PLR), alkaline phosphatase (ALP), parathyroid hormone

(PTH), and BRAFV600E gene mutation as predictors to build

a ML model to identify benign and malignant thyroid tumors.

All the peripheral blood tests and BRAFV600E gene results were

obtained at the first examination after the patient was admitted

to the hospital.

The BRAFV600E gene mutation was detected by real-

time PCR using the ABI QuantStudio R©5 Real-Time PCR

System, according to the manufacturer’s instructions

(Human BRAFV600E Mutation assay Kit, YZY MED,

Wuhan, China) The DNA from FNAB specimen was

extracted using a companion kit, which was provided

by the same manufacturer. The DNA concentration

was quantified in a Nano-300 Micro Spectrophotometer

(ALLSHENG Instrument Co., Ltd. Hangzhou, China)

as per the manufacturer’s instructions. The DNA was

immediately used to carry out the test of BRAFV600E

gene mutation.

Statistical analysis

All the statistical analyses and model building were

conducted in R for windows (version 4.0.1, https://www.r-

project.org/). For information on hardware devices in the

development environment, please see Supplementary Table 1.

The data were presented as count with percentage for

categorical variables, median with interquartile range (IQR),

or mean with SD for continuous variables. For the variables

with miss rate <30%, missforest algorithm was used to fill.

First, the Mann–Whitney U-test or t-test was performed for

the continuous variables, and the chi-square test for categorical

variables was carried out used for univariate analysis. The

variables after univariate analysis were analyzed by the least

absolute shrinkage and selection operator (LASSO). Afterward,

random forest (RF), extreme gradient boosting (XGBoost), light

gradient boosting machine (LightGBM) and adaptive boosting

(AdaBoost) were used to establish prediction models. We used

the grid search algorithm to find the optimal parameters of

each algorithm to optimize the performance of the model.

Sensitivity (SEN), specificity (SPE), precision, recall, F1, and the

area under the curve (AUC) were intended to determine the

model performance.

Result

Sample collection

A total of 2,423 patients met the inclusion criteria and were

enrolled in the study. In total, 381 patients were excluded due
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FIGURE 1

Flowchart of research object.

to missing clinical data. At last, a total of 2,042 patients with

12 predictors were included in the final study. Table 1 shows

the information of the whole cohort. In the whole cohort, 1,481

malignant patients and 561 benign patients were included. The

average age of patients was 42.03± 11.30 years, ranging from 14

to 76 years, women accounted for 77.34% (1,580 cases) and men
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TABLE 2 Clinical characteristics and variables of patients in training cohort and test cohort.

Predictors Training cohort Test cohort

Benign (N = 395) Malignant (N = 1,034) P-value Benign (N = 166) Malignant (N = 447) P-value

Sex (%)

Male 70 (17.7) 247 (23.9) 0.015 35 (21.1) 110 (24.6) 0.421

Female 325 (82.3) 787 (76.1) 131 (78.9) 337 (75.4)

BRAFV600E (%)

Mutation 55 (13.9) 822 (79.5) <0.001 21 (12.7) 348 (77.9) <0.001

Wild 340 (86.1) 212 (20.5) 145 (87.3) 99 (22.1)

Age (years) 45.00 [36.00, 52.00] 39.00 [33.00, 50.00] <0.001 44.00 [34.00, 52.00] 38.00 [32.00, 49.00] 0.008

Lymph# (×109/L) 1.64 [1.39, 2.00] 1.56 [1.28, 1.92] 0.001 1.65 [1.35, 2.05] 1.61 [1.31, 1.96] 0.189

Neu# (×109/L) 3.62 [2.83, 4.65] 3.58 [2.83, 4.54] 0.925 3.66 [2.93, 4.66] 3.64 [2.88, 4.63] 0.877

NLR 2.14 [1.69, 2.91] 2.21 [1.71, 2.98] 0.074 2.11 [1.70, 2.73] 2.18 [1.70, 2.95] 0.48

PLR 131.40 [103.99, 160.30] 140.70 [110.93, 173.62] <0.001 127.47 [101.35, 155.48] 138.33 [109.73, 170.43] 0.013

RDW (%) 42.40 [40.90, 44.00] 41.90 [40.40, 43.48] <0.001 41.95 [40.30, 43.58] 41.90 [40.50, 43.20] 0.816

PLT (×109/L) 215.00 [185.00, 253.00] 221.00 [186.00, 259.00] 0.222 215.00 [183.00, 248.75] 225.00 [190.00, 261.00] 0.121

RDW-CV 12.90 [12.50, 13.40] 12.80 [12.50, 13.30] 0.387 12.80 [12.40, 13.20] 12.80 [12.50, 13.30] 0.709

ALP (U/L) 67.00 [59.26, 78.28] 66.80 [56.00, 80.89] 0.23 66.44 [58.77, 78.00] 68.00 [56.00, 82.00] 0.791

PTH (ng/ml) 49.03 [43.50, 53.73] 48.70 [37.80, 58.80] 0.925 49.44 [44.19, 53.82] 47.68 [37.90, 59.45] 0.498

FIGURE 2

LASSO analysis of indicators after univariate analysis.

22.66% (463 cases). The specific screening process and study

protocol are shown in Figure 1.

Model building

The data were split into a training cohort (70%, N = 1,429)

and a test cohort (30%, N = 613) by random number table. In

the training cohort, there were 395 cases of the benign group and

1,034 cases of the malignant group. In the test cohort, there were

166 cases of the benign group and 447 cases of the malignant

group. The predictors we collected were used as input variables

of ML algorithms. Whether malignancy or benign was regarded

as the outcome event (yes = 1, no = 0) to establish prediction

model by using training cohort, and the test cohort was used to

verify the ability of the established prediction model previously.
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TABLE 3 The optimal parameters of the three models.

Categories Algorithm Parameter

The first

model

RF mtry= 1, ntree= 60,

nodesize= 8

XGBoost max_depth= 3, eta= 0.6,

nrounds= 5

LightGBM nrounds= 20, min_data= 1,

learning_rate= 0.1

AdaBoost mfinal= 170

The second

model

RF mtry= 6, ntree= 140,

nodesize= 12

XGBoost max_depth= 4, eta= 0.3,

nrounds= 3

LightGBM nrounds= 10, min_data= 3,

learning_rate= 0.1

AdaBoost mfinal= 20

The third

model

RF mtry= 1, ntree= 90,

nodesize= 10

XGBoost max_depth= 6, eta= 0.7,

nrounds= 3

LightGBM nrounds= 10, min_data= 3,

learning_rate= 0.4

AdaBoost mfinal= 5

According to Table 2, univariate analysis results indicated that

6 predictors were statistically significant between the malignant

group and benign group in training cohort. We performed the

LASSO analysis on the 6 indicators with statistically significant,

and the results showed that these 6 indicators were all selected

by LASSO (Figure 2). Therefore, our final diagnostic model

included the 6 indicators of sex, age, Lymph#, PLR, RDW,

and BRAFV600E.

We built 3ML models with different predictors, the first

model included all the predictors we included, the second

model included predictors after feature selection, and the

third model included patient peripheral blood predictors.

For the specific construction steps of the model, please

see Supplementary Figure 1, and the detailed description of

the three models can be found in Supplementary Table 2.

In addition, we also used the grid search algorithm to

find the optimal parameters of the ML algorithm. The

grid search algorithm permutes and combines each possible

parameter value, and then substitutes the results of all possible

combinations into the algorithm for model training. The

optimal parameter combination was selected from all possible

parameter combinations. In our research, we selected the

optimal parameters of four ML algorithms: RF, XGBoost,

LightGBM, and Adaboost through the grid search algorithm.

Please see Table 3 for the optimal parameters of each algorithm.

Performance evaluated in di�erent
models

In Table 4, the metrics of three models were compared in

terms of SEN, SPE, AUC, etc., in the test cohort. The SEN

and precision are indicators to measure the positive predictive

performance of the model. In the first and second models, the

SEN indicator exceeds 0.7, and the precision indicator reaches

0.9, suggesting that the model we established can well identify

malignant patients from thyroid tumor patients. The SPE is an

indicator of the model’s negative predictive performance, and

in our study, the highest SPE was 0.892, indicating that our

model could also predict patients with benign thyroid tumor

well. The AUC is a comprehensive indicator for comparing

prediction performance. Among the three models constructed

with different predictors, the first model including all predictors

performed best with the highest AUC of 0.874 (95% CI, 0.841,

0.906). The secondmodel had the highest AUC of 0.853 (95%CI,

0.818, 0.889; Figure 3). However, we performed the Delong test

on the optimal AUC of the first and second models (z = 1.65,

P = 0.099), and the results showed that the difference was not

statistically significant. The third model selects peripheral blood

predictors, and the best AUC is 0.698 (95% confidence interval,

0.651, 0.745). In the third model, we selected biomarkers in

patients’ peripheral blood to establish a prediction model, and

the performance of the model is inferior to the first and second

models. Biomarkers in peripheral blood are easy to obtain, and

the AUC of the model is close to 0.7, suggesting that it also has a

certain predictive value.

To balance the diagnostic performance and simplicity of

the model, according to the comprehensive evaluation of the

performance indicators of the model and the Delong test

analysis, the second model, using the RF algorithm, was

the best at predicting benign and malignant thyroid tumors.

The importance ranking of predictors in the RF algorithm

is as follows: BRAFV600E, age, PLR, RDW, Lymph#, and

sex (Figure 4).

Discussion

In this study, we developed the ML-based predictive

models to identify benign and malignant thyroid nodules. The

current gold diagnostic standard for thyroid tumors meeting

appropriate criteria is a cyto-pathologic assessment of FNAB.

However, high operator requirements were needed in FNAB,

and the accuracy of diagnosis largely depends on the operator’s

personal level of experience. Therefore, it is crucial to provide

more objective and direct parameters that can help with the

identification of benign and malignant thyroid lesions. Thus,

predictors including BRAFV600E gene mutation, Lymph#,

Neu#, RDW, PLT, NLR, PLR, ALP, PTH, and clinical characters
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TABLE 4 Performance evaluation table of three models.

Categories Algorithm SEN SPE Precision Recall F1 AUC (95%CI)

The first model RF 0.790 0.886 0.949 0.790 0.862 0.874 (0.841–0.906)

XGBoost 0.790 0.873 0.944 0.790 0.860 0.868 (0.834–0.901)

LightGBM 0.734 0.892 0.948 0.734 0.827 0.861 (0.826–0.895)

AdaBoost 0.723 0.855 0.931 0.720 0.812 0.837 (0.802–0.873)

The second model RF 0.781 0.873 0.943 0.781 0.854 0.853 (0.818–0.888)

XGBoost 0.754 0.873 0.941 0.754 0.837 0.853 (0.818–0.889)

LightGBM 0.765 0.873 0.942 0.765 0.844 0.837 (0.800–0.873)

AdaBoost 0.779 0.880 0.946 0.779 0.854 0.832 (0.797–0.867)

The third model RF 0.671 0.645 0.836 0.671 0.744 0.698 (0.651–0.745)

XGBoost 0.781 0.548 0.823 0.781 0.801 0.688 (0.639–0.736)

LightGBM 0.624 0.705 0.849 0.626 0.721 0.693 (0.645–0.741)

AdaBoost 0.626 0.651 0.828 0.626 0.713 0.666 (0.618–0.714)

FIGURE 3

ROC curve of four models in di�erent categories.

of patients were enrolled and the ML algorithm was used to

predict benign and malignant thyroid tumors in our study.

Recent advances in understanding the molecular

pathogenesis of thyroid tumors have enabled the application of

molecular tests to provide more objective information and play

a role in making more personalized clinical treatments (16). A

large number of biomarkers such as BRAFV600E, RAS, EIF1AX,

PIK3CA, PTEN and AKT1, SWI/SNF, ALK, and CDKN2A,

have been excavated, demonstrating the potential of molecular

diagnostic detection(17). Nevertheless, the BRAFV600E is the

most prevalent mutation detected in PTC, with an average

frequency of 60%−70%, and the tests for BRAFV600E mutation

are commonly available in the current clinical practice (18). The

BRAFV600E protein kinase has received extensive attention

because of its function in promoting cell proliferation, growth,

and division, and numerous studies have investigated the

relationship between the BRAFV600E mutations and various

clinicopathological features. In vitro tests have shown a high

concordance between the BRAFV600E mutations and the

aggressive characteristics of PTC, while clinical trials have

shown contrasting results, making it controversial whether

the BRAFV600E mutations can be used as an aggressive

marker for PTC. Most studies suggest that the BRAFV600E

mutations are associated with worse clinical pathology, such as

lymph node metastasis, distant metastasis, worse tumor stage,

aggressive subtype, tumor size, male, and old age, and therefore,

recommend the central lymph node dissection based on total

thyroidectomy with more stringent radioiodine therapy and

a close follow-up after surgery (19). However, some studies

did not find such an association (20). The differences in these

studies may be due to the different sample sizes included in the

studies, epidemiological characteristics of the patients, papillary

carcinoma subtypes, types of specimens used for molecular

testing, and testing methods. In this study, the BRAFV600E
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FIGURE 4

Importance ranking of prediction indicators after feature selection.

gene mutation status was important for all algorithms, which

is consistent with a recent study. The BRAFV600E mutation

has both high specificity and sensitivity to predict thyroid

malignancy in the Chinese population. It can accurately

complete cytopathology in the guidance of thyroid surgery

(21). In our study, the diagnostic performance accuracy of the

BRAFV600E gene was 0.810, and the AUC was 0.827, which had

a high-diagnostic value.

The peripheral blood routine test and the blood biochemical

test have major advantages over the traditional pathological

test of tumor lesions in terms of quick and simple sample

acquisition, low collection cost, minimal trauma, and

preoperative detection, which should be paid more attention

to in research (22). Lymph#, Neu#, RDW-CV, PLT, NLR,

PLR, ALP, PTH, and other related indicators can quickly and

accurately detect the values of blood, in order to effectively

indicate abnormalities of infection, anemia, and cruor. In

recent years, a wide variety of blood indicators with different

changes were concerned and discussed in the study of malignant

tumor diseases. The preoperative NLR and RDW–CV are

convenient, practical, and easily measured biomarkers for

clinical diagnosis and prognostic assessment of patients with

esophageal cancer. Moreover, the NLR was more effective than

RDW–CV, acting as an independent prognostic biomarker for

esophageal cancer (23). On the contrary, the RDW–CV has

attracted more attention in cervical, ovarian, and endometrial

cancer as studies have shown the hierarchical independent

relationship between the RDW and these kinds of cancers

(24). The preoperative blood count from peripheral blood

may provide prognostic value in patients with pathologic stage

I NSCLC undergoing surgical resection. Of significance in

patients with pT1 N0 NSCLC, the high lymphocyte count and

high platelet count were associated with higher recurrence (25).

Even the NLR, PLR, and LMR, which are the derived indexes

of peripheral whole blood cell counts, were developed into

new indexes, and have fairly good values of prognostic(26–28).

However, the values of NLR and PLR to distinguish between

benign and malignant of thyroid nodules is still controversial.

Our study found that the Lymph#, RDW–CV, and PLR were

statistically different between benign and malignant thyroid

nodules (P < 0.05).

Recently, the ML algorithms have been extensively used

in the medical field, emerging as a powerful tool in dealing

with many health care problems. In our study, the ML-based

model for diagnosing benign and malignant thyroid tumors

showed the highest AUC of 0.874 (95% CI, 0.841, 0.906), which

suggests that our model has a high value in diagnosing benign

and malignant thyroid tumors. To evaluate the accuracy and

simplicity of the model, feature selection is often used to screen

indicators with predictive value. We screened out six predictors

from 12 predictors by the univariate analysis method. Compared

with the inclusion of 12 predictors, the model established by

these six predictors also has good predictive performance and

was identified as the optimal model. From the perspective of

algorithm selection, when the indicators contained in the model

are consistent, the performance of the four algorithms is not

significantly different. One of the reasons is that if there is

a clear correlation between the independent and dependent
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TABLE 5 Comparison of the newly created model with the existing model.

Title Authors Algorithms Parameters AUC

Machine Learning for Identifying

Benign and Malignant of Thyroid

Tumors: A Retrospective Study of 2,423

Patients (final model)

Yuan-yuan Guo.et

al

Machine learning

(Random forest)

Sex, age, Lymph#,

PLR, RDW,

BRAFV600E

0.853 (95% CI,

0.818,0.888)

Deep learning-based artificial

intelligence model to assist thyroid

nodule diagnosis and management: a

multicentre diagnostic study(13)

Sui, Peng. et al Deep learning

(ResNet, ResNeXt,

DenseNet)

Ultrasound images 0.875 (95% CI,

0.871–0.880)

Machine learning to identify lymph

node metastasis from thyroid cancer in

patients undergoing contrast-enhanced

CT studies (29)

Masuda et al machine learning

(Support Vector

Machines)

CT images 0.86

Deep convolutional neural network for

classification of thyroid nodules on

ultrasound: Comparison of the

diagnostic performance with that of

radiologists (30)

Yeonjae et al. Deep learning Images of

underwent

US-guided

fine-needle

aspiration biopsy

0.83–0.86

Deep convolutional neural network for

the diagnosis of thyroid nodules on

ultrasound (31)

Yeon et al. Deep learning

(Convolutional

Neural Network)

Ultrasound image 0.845, 0.835, and

0.850

A comparison between deep learning

convolutional neural networks and

radiologists in the differentiation of

benign and malignant thyroid nodules

on CT images (32)

Hong-Bo Zhao et al. Deep learning

(Convolutional

Neural Network)

CT images 0.901–0.947

variables, then most ML algorithms can handle this nonlinear

relationship and have good predictive performance. At present,

many scholars have studied the use of artificial intelligence

algorithms to accurately identify benign and malignant thyroid

tumors (Table 5). The performance of our model is inferior

to that of Hong-Bo Zhao, Sui, Peng et al., and similar to

that of Masuda, Kim, Su Yeon Ko et al. Current researches

mainly use ultrasound or CT images combined with intelligent

algorithms to accurately diagnose benign and malignant thyroid

tumors, and has excellent performance. In general, CT and

ultrasound images have better predictive performance because

they contain more information about benign and malignant

tumors. However, from the perspective of patient’s genetic

markers and peripheral bloodmarkers, our predictors are easy to

obtain and has good value in identifying benign and malignant

thyroid tumors.

In conclusion, the prediction model established in this study

can distinguish benign with the risk of identifying malignant

thyroid nodules, which could be further developed into a clinical

decision support system. Our study also had some limitations.

First, all of the data come from southwest China, so there may

be a selection bias. Second, only four algorithms were selected

to establish the prediction model, therefore it is still necessary to

try whether there are other better predictive algorithms. Third,

the missing rate ≥30% of the variables were not included in

the study. Therefore, further analysis is required to identify

these factors related to identifying benign and malignant of

thyroid nodules.
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Background: This study aimed to develop an artificial intelligence predictive

model for predicting the probability of developing BM in CRC patients.

Methods: From SEER database, 50,566 CRC patients were identified between

January 2015 and December 2019 without missing data. SVM and LR models

were trained and tested on the dataset. Accuracy, area under the curve (AUC),

and IDI were used to evaluate and compare the models.

Results: For bone metastases in the entire cohort, SVM model with poly

as kernel function presents the best performance, whose accuracy is 0.908,

recall is 0.838, and AUC is 0.926, outperforming LR model. The top three most

important factors a�ecting the model’s prediction of BM include extraosseous

metastases (EM), CEA, and size.

Conclusion: Our study developed an SVM model with poly as kernel function

for predicting BM in CRC patients. SVM model could improve personalized

clinical decision-making, help rationalize the bone metastasis screening

process, and reduce the burden on healthcare systems and patients.

KEYWORDS

predictive model, artificial intelligence, colorectal cancer, machine learning,

bone metastasis

Introduction

Colorectal cancer (CRC) is a common malignant tumor, ranked the third most

malignant tumor worldwide (1, 2). Distant metastasis is the leading cause of death in

CRC patients (3), accounting for approximately 50% of patients after CRC surgery (4).

The most common metastatic site of CRC is the liver or lung, while bone metastases

are rare with an incidence of only 3–7% (5, 6). Patients with bone metastases have a

poor prognosis, with a 5-year survival rate of < 5% and a median survival of 5–21

months (7–9).

Frontiers in PublicHealth 01 frontiersin.org

180

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.984750
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.984750&domain=pdf&date_stamp=2022-09-20
mailto:zhxp1011@163.com
mailto:liangfulv@tju.edu.cn
mailto:zmq@nankai.edu.cn
https://doi.org/10.3389/fpubh.2022.984750
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.984750/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2022.984750

Due to the low incidence and insignificant initial symptoms,

bonemetastases of CRC are difficult to diagnose at an early stage.

On the one hand, compared with the low incidence of bone

metastases in CRC patients, the incidence at autopsy is higher,

reaching 10.7–23.7% (10). On the other hand, bone metastases

are identified by further imaging or pathological examination

after the occurrence of skeletal-related events (SREs) in CRC

patients (11), but the median time to SREs is 2 months after the

onset of bone metastases (7). Therefore, bone metastases may

not be diagnosed on time in many CRC patients. Due to delayed

diagnosis, patients may miss the optimal treatment time, leading

to further disease progression and poor prognosis. Therefore,

it is significant to predict the occurrence of bone metastasis in

CRC patients.

Several predictive models for developing bone metastasis

in CRC patients have been reported in previous studies (12–

14). However, the performance of these models is hardly

satisfactory because they are based on simple LR regression

models, whichmay be unsuitable for predicting bonemetastases.

In addition, these models only identified independent risk

factors associated with developing bone metastasis from CRC

but did not assess the importance of each factor. Recently,

artificial intelligence (AI) models based on machine learning

(ML) algorithms have been increasingly used in clinical practice

(15, 16). Among them, support vector machine (SVM) and

other prediction models based on machine learning are better

at predicting the distant metastasis of tumors, such as gastric

cancer, thyroid cancer, and prostate cancer (17). SVM used in

this study is a binary classification model whose basic model

is a linear classifier defined by maximizing the interval on

the feature space. SVM can be transformed into a non-linear

classifier using the kernel method. SVM learning strategy is to

maximize the interval, which can be translated into a convex

quadratic programming problem and SVM learning algorithm

is the optimization algorithm for solving the convex quadratic

programming (18). Notably, SVM has some advantages for

solving small sample high-dimensional problems. However,

there are remain no studies using artificial intelligence models

to predict bone metastasis in CRC patients.

Therefore, this study used population-based data to

identify risk factors associated with bone metastasis in CRC

patients and then build an artificial intelligence model to

predict disease occurrence and help clinicians detect bone

metastases in a timely manner. This can provide patients with

personalized clinical strategies and promote rational allocation

of healthcare resources.

Materials and methods

Study population

This study was based on SEER database, and patient data

were collected from “SEER Research Plus Data, 17 Registries,

Nov 2021 Sub (2000–2019)” using SEER∗stat 8.4.0 software and

then extracted from the database between January 2015 and

December 2019. SEER database covers 28% of the US population

and includes information regarding cancer incidence, survival

outcome, and treatment strategy from 17 population-based

cancer registries. The patient selection procedure is displayed in

Figure 1, and informed consent was not required as the patients

were anonymized before publication. This study was approved

by the Ethics Committee of Tianjin Union Medical Center.

The inclusion criteria were 1) primary CRC cases with

histological confirmation, 2) histological classification:

adenocarcinoma (icd-o-3:8140 to 8144, 8210 to 8213, 8220 to

8221, 8260 to 8263, 8551–8574) mucinous adenocarcinoma

(MC, icd-o-3: 8480, 8481), seal ring cell carcinoma (SRCC,

icd-o-3:8490), and 3) with a clear record of bone metastases.

The exclusion criteria were (1) unknown information about the

size, location, grade, The American Joint Committee on Cancer

(AJCC) TNM stage(8th), T stage, N stage, surgery information,

extraosseous metastasis, and bone metastatic status, and (2)

CRC was not the first tumor.

Data selection

All CRC patients were definitively diagnosed by pathologic

examination, and BM was confirmed by imaging examination

and/or pathologic examination. A total of 17 population,

clinicopathological, serological indicator, extraosseous

metastasis, and treatment variables were included. Population

variables included age and sex, clinicopathology variables

included site, size, grade, histology, AJCC TNM stage, T

stage, N stage, and M stage, and serological indicators included

FIGURE 1

The analytical cohort and exclusion criteria.
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FIGURE 2

Feature correlation heatmap after initial preprocessing.

carcinoembryonic antigen (CEA) levels. Extraosseousmetastasis

involves bone, brain, liver, and lung metastasis. All methods

were conducted according to SEER database relevant guidelines.

Model establishment

All statistics were calculated using python (version 3.8).

First, the initial data were preprocessed (12, 19). (1) Continuous

variables: “Age” was divided into “>60 years” and “<60 years”;

“Size” was divided into “>2 cm,” “2–5 cm” and “>5 cm.” (2)

Categorical variables: “Grade” was divided into “Grade I-II”,

“Grade III-IV”; “T stage” was divided into “T1/2” and “T3/4”;

“N stage” was divided into “N0” and “N1/2.” (3) Due to the

small sample size and unbalanced distribution of the original

distant metastasis variables (including lung metastasis, liver

metastasis and brain metastasis) in SEER database, we added the

variable of extraosseous metastasis for later model calculation.

Pearson correlations between ten variables were calculated, and

heatmaps were drawn. As Figure 2 displays, T stage strongly

correlates with tumor size. For the features involved in the

calculation to have low correlation, it is necessary to remove T

stage or size, and the principle of feature removal is to remove

the feature with less weight in the model calculation. The weight

of each feature calculated by the random forest is presented in

Figure 3. The figure shows that T stage occupies the smallest

weight, implying that it is the is least important feature in the

model analysis, so it is reasonable to remove T stage feature.

To sum, nine features were included: age, sex, primary site,

histologic type, CEA, size, N stage, extraosseous metastases

(EM), and grade. Considering that the extreme imbalance of

this sample (200:1) is likely to affect the model performance, it

is necessary to adopt some sampling strategies. SMOTE Tomek

was used in the training set as an Integrated Sampling method,

and then the dataset was divided into a training set and a test set

according to a ratio of 8:2.

SVM, LR, decision tree (DT), random forest (RF), and

Extreme Gradient Boosting (XGB) models were used to analyze

the data. To select a model with good results, we also include

model comparison as part of the study. As a binary classification
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FIGURE 3

The influence weight of each factor calculated by the random forest algorithm.

FIGURE 4

Schematic diagram of SVM.

model, SVM aims to find the optimal hyperplane to partition

the samples (Figure 4), the learning strategy is to maximize the

interval, and the solution of the model must be transformed

into a convex optimization problem. The basic principle is to

map the sample training data from the low-dimensional space to

the high-dimensional space. Consequently, the sample training

data is linearly separable and then the boundaries are linearly

partitioned. For the sample
(

xi, yi
)

and the hyperplane( Eω, b), the

geometric interval is defined as follows.

γi = yi

(

Eω

‖ Eω ‖
· Exi +

b

‖ Eω ‖

)

Under the premise of correctly classifying the samples, when

the geometric distance is the largest, the obtained separation

hyperplane is optimal. The constraints are as follows:

max
ω,b

ϒ

s.t.yi

(

Eω

|| Eω||
· Exi +

b
|| Eω||

)

≥ ϒ , i = 1, 2, · · · ,N

Using the decision boundary function, it can be transformed

into the following:

min
w,b

‖Eω‖
2

2

s.t.yi
(

Eω · Exi + b
)

≥ 1, i = 1, 2, . . . ,N

After introducing the Lagrange operatorαi, it can be

transformed into the following:

L( Eω, b,α) =
1

2
‖ Eω‖

2
−

N
∑

i=1

αi
(

yi
(

Eω · Exi + b
)

− 1
)

(αi ≥ 0)

By taking the partial derivative of a function L( Eω, b,α) with

respect to Eωandb, we can obtain a function aboutαi.Let this

function be 0 to find the optimal solution, and the optimal

hyperplane formula can be obtained as follows.

Eω
∗
· Ex+ b∗ = 0
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FIGURE 5

Performance of SVM models with di�erent kernel functions.

Its corresponding Lagrange operator is optimal, denoted

asα∗

i . At this point the classification decision function is

listed below.

f (Ex) = sign
(

Eω
∗ EX + b∗

)

= sign





N
∑

i=1

α
∗

i yiExi · Ex+ b∗





Using classification decision functions, samples can be

classified, which is known as SVM. However, for non-linear

problems, a kernel function is required. The function of kernel

function is mainly to realize the mapping from a feature space in

the support vector machine to another feature space and convert

the inner product of high-dimensional vectors into the inner

product of low-dimensional vectors.

In the model of LR, the goal of training is to find the best

weight and bias for each feature so that the error is minimized.

DT is a supervised machine learning algorithm based on if-then-

else rules. In the model of RF, it is trained to obtain multiple

decision trees by randomly putting back the samples sampled,

and finally the results of each decision tree are summed using

Bagging algorithm. The above model is built by python to learn

the dataset’s features.

Model improvement

Linear, poly, rbf, and sigmoid were used as kernel functions

for SVM model, and the results are demonstrated in Figure 5.

SVM model with poly as the kernel function showed the best

performance, with an accuracy of 0.908048, recall of 0.837838,

and AUC of 0.908236. Therefore, the linear kernel function

was selected to build the SVM model to predict whether CRC

patients have bone metastasis.

To achieve better model performance, a random search

method was used for parameter optimization. After parameter

optimization, SVM’s Accuracy is 0.908, Recall is 0.838,

and AUC is 0.926, demonstrating superior performance to

previous models.

Results

Demographic and pathological
characteristics

A total of 50,566 CRC patients were included in this

study. At initial diagnosis, 50,325 patients (99.5%) had no bone

metastases and 241 (0.5%) had bone metastases. All patients

were randomized into a training set (n = 40,452) and a test set

(n = 10,114) in a ratio of 8:2, and their clinical and pathological

characteristics are listed in Table 1.

Model analysis and variable influence on
prediction

Pearson correlations between all variables were calculated,

and heatmaps were drawn, revealing no significant

correlations between variables (Figure 5). For the multivariate
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TABLE 1 Clinical and pathological characteristics of training and test sets.

Variables Training set Test set

NBM(n = 40,248) % BM(n = 204) % NBM(n = 10,077) % BM(n = 37) % p–value

Age 0.714

<60 13847(34.4) 78(38.2) 3447(34.2) 15(40.5)

>60 26401(65.6) 126(61.8) 6630(65.8) 222(59.5)

Sex 0.182

Male 21857(54.3) 116(56.9) 5399(53.6) 20(54.1)

Female 18391(45.7) 88(43.1) 4678(46.4) 17(45.9)

Primary tumor site 0.922

Colon 30131(74.9) 135(66.2) 7552(74.9) 20(54.7)

Rectal 10117(25.1) 69(33.8) 2525(25.1) 17(45.9)

Size 0.91

<2 cm 4936(11.5) 1(0.5) 1150(11.4) 2(5.4)

2–5 cm 21397(53.2) 108(52.9) 5385(53.4) 16(43.2)

>5 cm 14215(35.3) 95(46.6) 3542(35.1) 19(51.4)

Histology 0.947

Adenocarcinoma 37405(92.9) 189(92.6) 9366(92.9) 34(91.9)

Mucosal adenocarcinoma 2542(6.3) 8(3.9) 633(6.3) 1(2.7)

Signet-ring cell carcinoma 301(0.7) 7(3.4) 78(0.8) 2(5.4)

T stage 0.839

T1/2 10411(25.9) 28(13.7) 2616(26) 4(10.8)

T3/4 29837(74.1) 176(86.3) 7461(74) 33(89.2)

N stage 0.108

N0 22046(54.8) 60(29.4) 5607(55.6) 10(27)

N1/2 18201(45.2) 144(70.6) 4470(44.4) 27(73)

Grade 0.566

Grade I–II 34486(85.7) 140(68.6) 8655(85.9) 25(67.6)

Grade III–IV 5762(14.3) 64(31.4) 1422(14.1) 12(32.4)

CEA level 0.242

Negative 23446(58.3) 32(15.7) 5930(58.8) 5(13.5)

Positive 16802(41.7) 172(84.3) 4147(41.2) 32(86.5)

Extraosseous metastases 0.012

No 36227(90) 64(31.4) 9153(90.8) 6(90.6)

Yes 4021(10) 140(68.6) 924(9.2) 31(9.4)

Brain metastasis 0.497

No 40219(99.9) 196(96.1) 10071(99.9) 36(97.3)

Yes 29(0.1) 8(3.9) 6(0.1) 1(2.7)

Liver metastasis 0.019

No 36655(91.1) 79(38.7) 9249(91.8) 11(29.7)

Yes 3593(8.9) 125(61.3) 828(8.2) 26(70.3)

Lung metastasis 0.704

No 39263(97.6) 138(67.6) 9838(97.6) 20(54.1)

Yes 985(2.4) 66(32.4) 239(2.4) 17(45.9)

LR model with an enter variable selection method, six

characteristics were identified as independent risk factors

(Table 2), including primary tumor site (p < 0.001), size

(p= 0.042), histology (p= 0.018), grade (p < 0.001),

CEA level (p < 0.001), EM (p < 0.001). According to RF

results (Figure 4), the top three most important factors

affecting model prediction of BM are EM, CEA, and size.

Notably, the influence weight of EM accounts for 42.32%,
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TABLE 2 Multivariable logistic regression model with enter variable

selection.

Variables OR (95% CI) P

Age

<60 years Reference

>60 years 0.155(0.862–1.548) 0.333

Sex

Male Reference 0.72

Female 0.949(0.715–1.261)

Primary tumor site <0.001

Colon Reference

Rectal 1.88(1.39–2.543)

Size

<2 cm Reference

2–5 cm 11.96(1.661–86.47) 0.014

>5 cm 10.868(1.504–78.531) 0.018

Histology

Adenocarcinoma Reference

Mucosal adenocarcinoma 0.699(0.341–1.433) 0.328

Signet-ring cell carcinoma 3.035(1.316–6.998) 0.009

N stage

N0 Reference

N1 1.123(0.815–1.548) 0.479

Grade <0.001

Grade I–II Reference

Grade III–IV 2.118(1.537–2.92)

CEA level <0.001

Negative Reference

Positive 2.879(1.908–4.344)

Extraosseous metastases <0.001

No Reference

Yes 12.207(8.805–16.923)

which may provide some basis for diagnosing clinical

auxiliary BM.

Model performance

The training set was used to train the model, and the test

set was used to test the accuracy and generalization ability

of the model. The performance indicators of the evaluation

model were AUC, Accuracy, and Recall. After comparing the

performance of different kernel functions in the SVM model

(Figure 6), the linear kernel function was selected. The results

were compared and analyzed using SVM, LR, DT, RF, and XGB

models. The performance comparison of different models is

provided in Table 3, showing that SVM model is better than

the other models and may be used clinically. Previous models

have mostly used LR, and to better compare the improvements

brought about by SVM model, ROC curves were plotted, and

Integrated Discrimination Improvement (IDI) was calculated.

As displayed in Figure 7, LR AUC is 0.92, and SVMAUC is 0.93,

with an IDI of 22.66% (Figure 8), confirming that SVM model

outperforms LR in this scenario.

Discussion

The incidence of bone metastasis in CRC patients is only 3–

7% (6), but these patients have a poor clinical prognosis and

often suffer from SREs, such as pathological fractures, severe

bone pain, spinal cord compression, and hypercalcemia (20)

which can seriously impair their function and quality of life, and

even further affect the outcomes. Therefore, early identification

and clinical intervention of bone metastasis are critical to

prevent SREs and improve the clinical prognosis.

There remains a lack of accurate and effective methods to

predict bone metastasis in CRC patients. Pathological diagnosis

is the gold standard, but if the pathological diagnosis is

unclear, the identification of bone metastasis in CRC patients

relies on SREs and imaging examinations such as X-ray, CT,

MRI, emission computed tomography (ECT), and positron

emission tomography/computed tomography (PET/CT) (21,

22). However, these imaging modalities are expensive and

associated with radiation risks, so they are not recommended as

routine screening for CRC patients until SREs occur (12). For

this reason, we developed an artificial intelligence model based

on SVM algorithm to predict bone metastasis in CRC patients.

The advantage of this model is that it can effectively deal with

the imbalance of medical data, as SVM algorithm can effectively

solve the problem of inaccurate judgment results caused by

small sample data in machine learning, which has stronger

practicability (18, 23). In this study, this model displayed better

accuracy and generalization than other models (LR, DT, and RF)

and can be used to predict the occurrence of bone metastasis in

CRC patients, which is helpful for doctors to make timely and

effective clinical decisions.

Previous studies have reported risk factors associated with

bone metastasis in CRC. Zheng et al. (21) conducted a

retrospective study of 106 patients with bone metastasis of CRC,

indicating that primary tumor location, lung metastasis, and

serum CEA are independent risk factors. Moreover, compared

with colon cancer and liver metastasis, colorectal cancer and

lung metastasis were more likely to predict disease progression

to bone metastasis. Wang et al. (13) determined that the degree

of tumor differentiation, N stage, serum alkaline phosphatase

(ALP), lactate dehydrogenase (LDH), CEA, liver and lung

metastasis were risk factors for bone metastasis of CRC, and

further developed a nomogram to evaluate the risk of bone

metastasis in CRC patients. In addition, studies have shown that

the most common risk factors for BM in CRC patients include

cancer site, lymph node invasion, and lung metastasis (6).
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FIGURE 6

Results of Pearson correlation analysis between all variables. The heatmap shows the correlation between the variables.

In this study, EM, followed by CEA level and tumor size,

were the top three most important factors for developing bone

metastasis in CRC patients. Notably, EM has an influence

weight of 42.32%, an important predictor of bone metastasis

in CRC patients. Studies have depicted that about 25% of CRC

patients have distant metastases at the time of diagnosis (24).

In our study, EM occurred in 10% of CRC patients and was

an independent predictor of bone metastasis in CRC patients,

consistent with previous findings (12). Due to the low incidence

and insidious symptoms of bone metastasis, it is often identified

after the occurrence of SREs, when the disease has already

advanced, so the treatment effect and prognosis are poor (25).

In addition, due to the environment of a specific organ and its

effect on tumor cell adhesion, CRC tends to metastasize first to

the liver or lungs before the bones (8, 9, 26). Therefore, for CRC

patients with extraosseous metastasis, regular health monitoring

and follow-up may be helpful for the early identification of

bone metastases.

Serum CEA is considered a specific biomarker for CRC,

and its concentration is significantly elevated in patients with

TABLE 3 Comparing the prediction performances of di�erent models

for BM.

Models AUC Accuracy Recall

SVM 0.926 0.908 0.838

LR 0.918 0.865 0.865

DT 0.770 0.850 0.703

RF 0.770 0.850 0.676

XGB 0.873 0.882 0.838

metastatic colon cancer (27–29). In this study, CEA level was

an independent predictor of bone metastasis in CRC patients,

consistent with previous findings (21). Higher CEA levels

may be associated with distant metastasis of CRC and nerve

infiltration (30). In addition, in the current AJCC TNM staging

of CRC, T staging is determined by the depth of the tumor

invading the intestinal wall rather than the tumor size, but

previous studies have shown that solid tumors, including those
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FIGURE 7

ROC curve, in which the new model refers to SVM and the old

one refers to LR.

FIGURE 8

IDI curve, in which the new model refers to SVM and the old one

refers to LR.

of the gastrointestinal tract, exhibit the potential to spread not

only during the vertical invasion but also during horizontal

growth; (31). As the tumor size increases, the potential for

metastasis is higher (32). A retrospective study by Luo et al.

showed that tumor size was positively correlated with distant

metastasis of rectal cancer (33). Similarly, our study depicted

that size was an independent risk factor for bone metastasis of

CRC, with a significantly higher incidence of bone metastases

in tumors larger than 2 cm. This may provide some basis for

diagnosing CRC patients with bone metastases in the clinic.

Nonetheless, this study has some limitations. First, since

the model was not externally validated and was based on

retrospective data, prospective cohort studies are needed to

validate its accuracy and stability. Second, the model is based on

an SVM algorithm, so it may be clinically difficult to interpret

key features screened out by the model. In addition, since all

study subjects were representative of the US population, the

application of this risk model to other countries and ethnicities

is limited.

Nowadays, with the rapid development of artificial

intelligence technology, deep learning is widely applied in the

detection and treatment of various diseases, such as cancer,

diabetes, Alzheimer’s disease and Parkinson’s disease, and better

results have been obtained (34, 35). In future research, it is

planned to apply deep learning techniques in the prediction of

bone metastasis occurring in colorectal cancer.

Conclusion

This study developed and validated an artificial intelligence

model based on machine learning algorithms to individually

predict the occurrence of bone metastasis in CRC patients

by using clinical characteristics and quantifying the major

factors leading to the increased risk of bone metastases.

Among them, EM, followed by CEA level and size, were

the top three most important factors for bone metastasis

in CRC patients. Compared with the traditional LR model,

the prediction performance of SVM algorithm is better (IDI:

22.66%); consequently, it could be used to timely detect bone

metastases providing patients with personalized treatment and

allocating health resources more effectively.
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Coronavirus Disease 2019 (COVID-19) is currently a global pandemic, and

early screening is one of the key factors for COVID-19 control and treatment.

Here, we developed and validated chest CT-based imaging biomarkers

for COVID-19 patient screening from two independent hospitals with 419

patients. We identified the vasculature-like signals from CT images and

found that, compared to healthy and community acquired pneumonia (CAP)

patients, COVID-19 patients display a significantly higher abundance of these

signals. Furthermore, unsupervised feature learning led to the discovery of

clinical-relevant imaging biomarkers from the vasculature-like signals for

accurate and sensitive COVID-19 screening that have been double-blindly

validated in an independent hospital (sensitivity: 0.941, specificity: 0.920, AUC:

0.971, accuracy 0.931, F1 score: 0.929). Our findings could open a new avenue

to assist screening of COVID-19 patients.

KEYWORDS

Coronavirus Disease 2019 (COVID-19), chest CT image, artificial intelligence, imaging

biomarker, biomedical imaging application, multicentric retrospective study

Introduction

Coronavirus Disease 2019 (COVID-19) remains a global pandemic (1, 2). Early

detection, early diagnosis, early isolation, and early treatment are essential for the

prevention and control of the epidemic. Currently, nucleic acid detection is the most

effective tool for COVID-19 diagnosis. However, early COVID-19 detection is still

challenging: (1) COVID-19 belongs to a class of highly infectious diseases, with a

considerable proportion of patients without obvious clinical symptoms during the onset

of disease (2); (2) the critical shortages of resources, including nucleic acid detection

kits, also limits the early detection of COVID-19; (3) relatively long time for nucleic
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acid extraction and detection, non-standard throat swab

sampling; (4) relatively high detection cost; (5) false negative rate

and limited sensitivity to a certain extent due to relatively low

viral load in the early stage of the disease, non-standard throat

swab sampling, heterogeneities in types of samples, degradation

samples, presence of PCR inhibitors, evolution of the virus,

mutations in the viral genome, etc. (3–5); (6) corresponding

medical waste (6–8).

Besides the coronavirus etiology, epidemiological contact

history, and clinical symptoms, pulmonary imaging, especially

chest computed tomography (CT) imaging, plays a unique

role for COVID-19 diagnosis (9). For early-stage COVID-19

patients, unifocal ground-glass opacities (GGOs) may present

as the main feature, which are most commonly located in the

peripheral and inferior lobe. As the disease progresses, these

unifocal GGO can develop into multiple GGOs and infiltrate the

lungs, while severe consolidation of these lesion may occur in

patients with severe disease (10). Lung CT images can be used

not only for the diagnosis of COVID-19, but also for assessing

the severity of the disease and tracking the lung changes in

patients with COVID-19 who have negative nucleic acid tests

(11). Several earlier studies showed high sensitivity of CT for the

detection of COVID-19, indicating the potential of CT scan in

the screening of COVID-19 (4, 12). Fang et al. confirmed in a

cohort study of 51 patients with COVID-19 that the detection

rate of chest CT for COVID-19 was 98%, while the detection

rate of RT-PCR was only 71% (13). At the same time, their

study showed that pulmonary vascular prominence as a key

feature of COVID-19 can be found in 45–90% of cases. In

another cohort study of 1014 patients, Tao et al. (11). compared

the detection rate of CT and RT-PCR for COVID-19. In all

1014 patients, RT-PCR and chest CT scans were positive in

59 and 88%, respectively. Among patients with a positive RT-

PCR test, chest CT showed a 97% sensitivity for the detection

of COVID-19. Among patients with negative RT-PCR results,

75% had positive chest CT results, and 60–93% of cases had

positive chest CT results before (or at the same time as) the initial

positive RT-PCR result. Before RT-PCR results turned negative,

42% (24/57) of cases showed improvement on follow-up chest

CT scans.

However, the CT image characteristics of COVID-19

patients, especially at early stage, are similar to those

found in other common pneumonia patients, including those

suffering from H7N9 influenza virus pneumonia, mycoplasma

pneumonia, chlamydial pneumonia and bacterial pneumonia

(14), which requires immediate investigation of potentially

underlying characteristics other than the classical ones. Most

recently, several interesting studies used artificial intelligence

(AI) for the early diagnosis and GGO detection of COVID-

19, including PointNet++ (15) and an AI-driven android

application (16), where the former can be used for detection

and quantifying GGOs in CT scans of COVID-19 patients

as well as assessing the severity of the disease, and the latter

provided a novel Android application that detected COVID-

19 infection from chest CT scans using a highly efficient

and accurate deep learning algorithm. Furthermore, neural

search architecture network (NASNet)-based algorithm has been

demonstrated with great potential in a well-designed computer-

aided detection (CAD) system for COVID-19 diagnosis (17).

And many other deep learning related systems for COVID-

19 detection and diagnosis were summarized in (18). In this

study, we developed and validated chest CT-based imaging

biomarkers (IBs) for early stage COVID-19 patient (i.e., mild

and moderate) screening and differential diagnosis combining

Artificial Intelligence (AI) and clinical findings on vascular

changes in the lung regions of COVID-19 patients within a

system biology approach, which could open a new avenue

to assist early stage screening of COVID-19 patients. The

major advantages of our imaging biomarkers reside in two

folds as follows: (1) they provide robust, accurate and cost-

effective COVID-19 screening, which can significantly alleviate

the shortage of clinical resources, including both nucleic acid

detection kits and experienced radiologists; and (2) they provide

a non-invasive diagnostic tool that enables world-wide scalable

practical applications. We expect that our imaging biomarkers

will be of great significance to reduce the workload of clinicians

and to assist in differential diagnosis of COVID-19 from

other diseases.

Materials and methods

Data collection

The chest CT images in this case-control study were

collected from Wuhan Third Hospital (hospital A) and

Hubei Provincial Hospital of Traditional Chinese Medicine

(hospital B). The inclusion criteria for COVID-19 patients

were: (1) patients were diagnosed and confirmed through

nucleic acid test from January 2020 to March 2020; (2)

patient were with mild or moderate disease status, where the

severity was classified according to the Coronavirus Disease

2019 (COVID-19) diagnosis and treatment guideline (trial

version 7) (19) issued by the National Health Commission

of the People’s Republic of China. In addition, both patients

with community acquired pneumonia (CAP) and healthy

participants (with no obvious abnormalities in chest CT images)

were randomly collected from aforementioned two hospitals

and used as control groups in training and validation cohorts,

independently. The inclusion criteria for control group were: (1)

patients who were diagnosed with lung infection on imaging

and clinical basis a few months before the onset of the

epidemic; (2) patients without severe diseases of respiratory

system, cardiovascular or cerebrovascular systems; (3) patients

without mental illness or cognitive impairment. This study

has been approved by the institutional review board (IRB) of
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participating hospitals, and been performed according to the

required guidelines.

Imaging protocol for CT chest

Chest CT exams from Hubei Provincial Hospital of

Traditional Chinese Medicine were randomly performed with

two different scanners: (1) GE Optima 660 CT (GE Healthcare,

Milwaukee) and (2) uCT 530 (United imaging, Shanghai), with

tube voltage for both scanners at 120 kVp and reconstruction

thickness at 0.625 and 1.5mm, respectively. While, CT exams

fromWuhan Third Hospital were performed with GEDiscovery

CT750 HD (GE Healthcare, Milwaukee) with tube voltage

at 120 kVp and reconstruction thickness at 0.625mm. No

intravenous contrast agents were used during scanning in

both hospitals.

Vasculature-like structure enhancement

Blood vessels in lung form tubular structures and the

corresponding vasculature-like signal is recognized and

enhanced using iterative tangential voting (ITV) (20) within

pre-segmented lung regions in 3D, where ITV enforces

the continuity and strength of local linear structures and

the 3D lung segmentation is achieved via level-set method

(21). Specifically, each 3D chest CT image is resampled into

isotropic image space (voxel size = 1.5 × 1.5 × 1.5mm)

with SimpleITK (version 1.2.4), followed by ITV operating

on the isotropic chest CT image gradient information with

sigma set to be 0.5 and 1.0 on training and validation

cohorts, respectively, to accommodate the technical difference

across hospitals.

Imaging biomarker detection and
visualization

We developed an unsupervised feature learning pipeline

based on Stacked Predictive Sparse Decomposition (Stacked

PSD) (22) for discovery of underlying 3D characteristics from

the “vasculature-like signal” space derived by ITV. Given

V=[v1,. . .,vN] as a set of 3D “vasculature-like signal” (N), the

formulation of the imaging biomarkermining pipeline is defined

as follows.

minB,Z,W,G ||V − BZ||2F + ||Z − Gσ (WV)||2F + λ1||Z||1

s.t. ||bi||
2
2 = 1, ∀i = 1, . . . , h

where B= [b1,. . .,bh] is a set of imaging biomarkers to be

mined (h). Z= [z1,. . .,zN] is the sparse biomarker abundance

matrix; W is the auto-encoder for efficient and effective

extraction of sparse biomarker abundance matrix (Z) from

“vasculature-like signal” (V); G = diag(g1, .., gh) is a scaling

matrix with diag being an operator aligning vector, [g1, .., gh],

along the diagonal; σ (·) is an element-wise sigmoid function;

λ1 is the regularization constant to ensure the sparsity of

Z, such that only a subset of imaging biomarkers will be

utilized during the reconstruction of original “vasculature-

like signal.”

The first constraint: ||V−BZ||2F, penalizes the reconstruction

error of original “vasculature-like signal” (V) with imaging

biomarker (B) and the corresponding sparse biomarker

abundancematrix (Z); the second constraint: ||Z− Gσ (WV)||2F,

penalizes the approximation error of sparse biomarker

abundance matrix (Z) with the auto-encoder; the third

constraint: ||Z||1, penalizes the sparsity of the biomarker

abundance matrix, which helps ensure the utilization/activation

of dominant biomarkers during the learning process. The

optimization of biomarker pipeline (22) was an iterative

process involving ℓ1 − minimization (23) and stochastic

gradient descent. Specifically, in this study, we used single

network layer with 256 dictionary elements (i.e., patterns) at

a fixed patch size of 20 × 20 × 20 voxels and a fixed random

sampling rate of 100 3D patches, where the patch size was

optimized against reconstruction error and cross-validation

performance on training set (Supplementary Figure 15). After

training, Stacked PSD reconstructs vasculature-like structures,

at given locations, as a combination of pre-trained patterns,

with the reconstruction coefficients as the abundance of the

corresponding patterns. In training cohort, 8 of 256 patterns

were identified with significant correlation with COVID-19

(FDR < 0.05) through cross-validation (training sample rate:

0.8; bootstrap 100 times). The Out of Bag Error (OOB error) was

used to measure the prediction error of model on the training

set. At last, these 8 significant patterns (i.e., imaging biomarkers)

were utilized to build the random forest classification model

for COVID-19 screening. A double-blind study was designed

and implemented to validate this pre-built model in an

independent hospital with three steps: (1) vasculature-like

structure enhancement: apply ITV on the isotopically rescaled

3D CT chest scan; (2) imaging biomarker extraction: apply

Stacked PSD with pre-identified imaging biomarkers on

“vasculature-like signal” space derived from step (1); and (3)

double-blind COVID-19 screening: apply the pre-built random

forest model on the abundance of pre-identified imaging

biomarkers extracted from validation cohort. Visualization of

these imaging biomarkers was created in 3D space using ITK-

Snap (version 3.8.0), Python (version 3.7.0), Matplotlib (version

3.1.2), Blender (version 2.82) and Three.js (version r115 on

GitHub). Snapshots of the three-dimensional visualization were

used to generate two-dimensional visualization that overlays

with the original CT scans.
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Performance comparison between 3d
imaging biomarkers and experienced
chest radiologists

We invited two experienced chest radiologists to

independently and blindly assess the CT images in our

validation cohort, who have 8 and 10 years of clinical imaging

diagnosis experience, respectively. And both radiologists have

more than 2 months of intense and continuous diagnosis

experience of COVID-19 in Wuhan, China. Specifically,

de-identified and randomized chest CT images were given

to the chest radiologists and their diagnosis were achieved

according to their chest CT based clinical practice during

COVID-19 diagnosis. Sensitivity and specificity were utilized

for performance comparison, with nucleic acid test results as

the ground-truth.

Statistical analysis

The difference in vasculature-like signals and abundance

of individual imaging biomarker among different groups

were assessed by Mann-Whitney non-parametric test, and

association between signatures and COVID-19 were evaluated

by logistic regression. The importance of individual imaging

biomarker during COVID-19 screening was assessed by random

forest package (version 4.6-14) in R (version 3.6.1). Principle

component analysis (PCA) and heatmap were performed in

R (version 3.6.1) and MATLAB (version 2012b), respectively.

The screening performance was characterized with sensitivity,

specificity and area under the ROC curve (AUC). Calibration of

the screening model was characterized with Hosmer-Lemeshow

test in R (version 3.6.1).

Results

Study population characteristics

The flowchart of participant selection in our case-control

study was illustrated in Figure 1. The characteristics of cohorts

are summarized in Table 1. A total of 419 participants were

included in this study. The cohort (n = 116) from Hospital A

served as training set, the cohort (n = 303) from the Hospital B

as a double-blind validation set (Figure 2). The median ages of

participants in training and validation cohorts were 42 (range:

14–76) and 51 (range: 15–89), respectively. There were 53

(45.7%) females and 63 (54.3%) males in training cohort, and

161 (53.1%) females and 142 (46.9%)makes in validation cohort.

Training cohort contained 47 (40.5%) COVID-19 patients, 20

(17.2%) healthy and 49 (42.2%) CAP patients, while validation

cohort had 153 (50.5%) COVID-19 patients, 60 (19.8%) healthy,

and 90 CAP (29.7%) patients.

FIGURE 1

The flowchart for the selection of the participants.

Vasculature-like structure enhancement

Inspired by recent findings on vascular changes in

lung tissue of COVID-19 patients, including vascular

congestion/enlargement, small vessels hyperplasia and

vessel wall thickening (24–26), we hypothesize that, compared

with healthy and CAP patients, COVID-19 patients have

significantly more vascular changes in the lung. Therefore, we

built a machine learning pipeline on enhanced vasculature-like

structures formed by blood vessels to discover underlying

characteristics from chest CT of early stage COVID-19 patients.

Specifically, the vasculature-like structure was recognized and

enhanced with ITV (20) in both training and validation cohorts

as a pre-processing step. Interestingly in training cohort, the

mean vasculature-like signal (i.e., the average intensity of

vasculature-like structures recognized and enhanced by ITV in

lung region) reveals significant differences (p < 0.05) between

healthy, CAP and COVID-19 patients (Figure 3B). Examples

of vasculature-like structure enhancement are illustrated in

Figures 4A–D and Supplementary Videos 1–3 for COVID-19,

CAP, and healthy cases, respectively. These findings are not

only consistent with the clinical observations (24–26), but

also leads to remarkable differentiation between COVID-19

and non-COVID-19 groups in training cohort [AUC = 0.721

(95% CI (0.536, 0.861)), Supplementary Figure 1, blue curve]

with logistic regression. Altogether, it encourages us to identify

imaging biomarkers from the “vasculature-like signal” space to

assist accurate early stage COVID-19 screening.
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TABLE 1 Characteristics of participants included in this study.

Variables Training Validation

COVID-19 Healthy CAP P-value COVID-19 Healthy CAP P-value

(n = 47) (n = 20) (n = 49) (n = 153) (n = 60) (n = 90)

Age ∼ Median [Min, Max]

53.0 [31.0, 74.0] 29.0 [14.0, 50.0] 37.0 [16.0, 76.0] <0.001 64.0 [20.0, 89.0] 41.0 [19.0, 67.0] 38.0 [15.0, 85.0] <0.001

Gender

Female 24 (51.1%) 7 (35.0%) 22 (44.9%) 0.477 81 (52.9%) 37 (61.7%) 43 (47.8%) 0.247

Male 23 (48.9%) 13 (65.0%) 27 (55.1%) 72 (47.1%) 23 (38.3%) 47 (52.2%)

GGO

No 6 (12.8%) 20 (100%) 33 (67.3%) <0.001 12 (7.8%) 60 (100%) 55 (61.1%) <0.001

Yes 41 (87.2%) 0 (0%) 16 (32.7%) 141 (92.2%) 0 (0%) 35 (38.9%)

Consolidation

No 43 (91.5%) 20 (100%) 26 (53.1%) <0.001 123 (80.4%) 60 (100%) 46 (51.1%) <0.001

Yes 4 (8.5%) 0 (0%) 23 (46.9%) 30 (19.6%) 0 (0%) 44 (48.9%)

COVID-19, Coronavirus Disease 2019; CAP, community acquired pneumonia; GGO, ground-glass opacities.

FIGURE 2

A graphic illustration of the study design. A case-control study was designed to identify chest CT-based imaging biomarkers for COVID-19

patient screening. Biomarker discovery and biomarker-based predictive model construction were conducted using the data from Hospital A

(training cohort), which were validated in Hospital B (validation cohort) with the double-blind design.

Imaging biomarker detection and
COVID-19 screening

Next, we applied Stacked PSD (22) on the “vasculature-

like signal” space from training cohort. Two hundred

fifty-six dictionary elements were learned and optimized,

where 8 of them have significant positive correlations

with COVID-19 (FDR < 0.05, Supplementary Tables 1,

2, Supplementary Figures 2, 3). These eight COVID-19-

relevant signatures (i.e., imaging biomarkers, Figure 2 3D CT

Imaging Biomarkers panel, and Supplementary Figures 4,

5) allow the construction of multispectral staining in

the entire lung region (Figure 3A), which is further

demonstrated in 3D (Supplementary Videos 4–6) and 2D

(Supplementary Videos 7–9) animations. The 8 imaging

biomarkers clearly separate COVID-19 patients from others in

training cohort by PCA (Figure 3C) and clustering (Figure 5A)

analysis, where each individual biomarker has significantly

different abundance between COVID-19 patients and others

(Figure 5B). Finally, we built a random forest classification
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FIGURE 3

Chest CT-based imaging biomarkers accurately predicts COVID-19. (A) Representative examples for 3D multispectral imaging biomarker

visualization in COVID-19, CAP and healthy samples. (B) The boxplot shows di�erences in the vasculature-like signals among healthy,

community acquired pneumonia (CAP), and COVID-19 patients in the training cohort. The p-values were obtained by the non-parametric

Mann–Whitney test. (C) PCA of 8 imaging biomarkers in the training cohort. Twenty healthy participants (green dots), 49 CAP patients (blue

dots), and 47 COVID-19 patients (red dots). The p-values were obtained from permutational multivariate analysis of variance (PERMANOVA). (D)

The boxplot shows di�erences in the vasculature-like signals among healthy, community acquired pneumonia (CAP), and COVID-19 patients in

the validation cohort. The p-values were obtained by the non-parametric Mann–Whitney test. (E) PCA of 8 imaging biomarkers in the validation

cohort. Sixty healthy participants (green dots), 90 CAP patients (blue dots), and 153 COVID-19 patients (red dots). The p-values were obtained

from permutational multivariate analysis of variance (PERMANOVA). (F) Screening performance of signal-based model, imaging

biomarker-based model, and two COVID-19 experienced radiologist on validation cohort.

model for COVID-19 screening based on these imaging

biomarkers within training cohort [the OOB error = 3.26%,

95% CI (1.09–6.52%); AUC = 1.000, 95% CI (0.982, 1.000);

Sensitivity = 1.000, 95% CI (0.800, 1.000); Specificity = 1.000,

95% CI (0.930, 1.000); F1 score = 0.966, 95% CI (0.923,

1.000); accuracy = 0.964, 95% CI (0.900, 1.000); precision

= 1.000, 95% CI (0.875, 1.000); Supplementary Figure 1, red

curve]. Additionally, we show that each individual imaging

biomarker contribute differently during screening, where IB-

163 played the most important role (Supplementary Figure 1b),

with the best single biomarker performance [AUC =

0.893, 95% CI (0.842, 0.953), Supplementary Figures 1c, 6,

Supplementary Table 3].

Double-blind test of imaging biomarkers
in validation cohort

The vasculature-like structure enhancement process

was applied onto validation cohort, followed by biomarker
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FIGURE 4

Illustration of representative CT image and the corresponding vasculature-structure enhancement and multi-spectral staining in COVID-19,

CAP and healthy samples. (A) Representative examples for 3D multispectral imaging biomarker visualization (3D animations are provided by

Supplementary Videos 4–6); (B) Representative 2D CT images; (C) Corresponding 2D vasculature-structure enhancement (enhancement for

entire chest CTs are provided by Supplementary Videos 1–3); (D) Corresponding 2D multi-spectral staining (2D multi-spectral staining for entire

chest CTs are provided by Supplementary Videos 7–9).

extraction. As seen in training cohort, we observed the

distinction of mean vasculature-like signal between different

groups (Figure 3D). The logistic regression model pre-built

on training cohort with mean vasculature-like signal led

to accurate prediction in validation cohort (AUC = 0.942,

Figure 3F, blue curve). The combination of 8 pre-identified

imaging biomarkers also clearly separates the COVID-19

patients from others in validation cohort (Figures 3E, 5C),

where each individual biomarker consistently revealed

significantly different abundance (Figure 5D). Excitingly,

we found the pre-built random forest model based on

pre-obtained imaging biomarkers predict COVID-19 with

excellent sensitivity (0.941), specificity (0.920), accuracy (0.931),

precision (0.939), F1 score (0.929), and AUC (0.971), which is

competitive with two COVID-19 experienced chest radiologists

(Figure 3F): radiologist A (sensitivity = 0.915; specificity

= 0.977, accuracy = 0.944, precision = 0.898, F1 score =

0.946, radiologist B (sensitivity = 0.975; specificity = 0.950,

accuracy = 0.974, precision = 0.973, F1 score = 0.973). In

addition, the competitiveness is further demonstrated using

bootstrapping strategy (100 iterations, 80% sampling rate) on

various performance metrics between imaging biomarkers and

two radiologists (Supplementary Figure 7). Furthermore, the

Hosmer-Lemeshow test suggested no departures from perfect fit

on both training (p = 0.867) and validation (p = 1.000) cohorts

(Supplementary Figure 8).

Case study

We further examined the capability of our imaging

biomarkers with misdiagnosed cases by our participating

radiologists, where a COVID-19 patient (female, 65 years old,

Figure 6A), and a CAP patient (male, 21 years old, Figure 6E)

were included. Due to the lack of typical abnormality (Figure 6C,

both experts misdiagnosed the COVID-19 patient. Meanwhile,

the CAP patient showed subtle misleading characteristics

(i.e., GGO) in the upper lobe of both lungs (Figure 6G, red

arrows), and led to false positive decision by one of the experts.

Obviously, in real-world clinical practice, chest CT based early

screening of COVID-19 can be challenging for both clinical

experts, and typical-abnormality-driven end-to-end AI systems,

due to either lack of typical abnormality in COVID-19 cases

or presence of misleading characteristics in non-COVID-19

cases. In contrast, our imaging biomarkers provided both

perceptual (Figure 6B vs. Figure 6F, Supplementary Video 10

vs. Supplementary Video 11; Figure 6D vs. Figure 6H,

Supplementary Video 12 vs. Supplementary Video 13) and
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FIGURE 5

Chest CT-based imaging biomarkers provide consistent and significant distinction between COVID-19 patients and others across hospitals. (A)

Heatmap of the relative abundance of imaging biomarkers shows distinct clusters with respect to COVID-19 and non-COVID-19 groups in

training cohort; (B) Individual imaging biomarker shows significantly higher relative abundance in COVID-19 patients in training cohort; (C).

Heatmap of the relative abundance of imaging biomarkers shows distinct clusters with respect to COVID-19 and non-COVID-19 groups in

validation cohort; (D) Individual imaging biomarker shows significantly higher relative abundance in COVID-19 patients in validation cohort.

quantitative (Figure 6I) distinctions (except for IB-88) for these

ambiguous cases, and therefore enables accurate screening

with high confidence (Figures 6A,E; over 96% confidence for

both cases).

Further comprehensive justification of
the robustness of imaging biomarkers

We (1) switched the role of two hospitals with Hospital

B as training cohort and A as validation cohort [sensitivity:

0.957, specificity: 0.841, accuracy: 0.888, precision: 0.951, F1

score: 0.892 and AUC: 0.961 (95% CI (0.932, 0.994))]; and

(2) combined two cohorts for cross-validation with random

training sample rate at 80% and 100 bootstrap iterations

[Supplementary Table 4, Supplementary Figure 9; sensitivity:

0.950 (95% CI (0.875, 1.000)), specificity: 0.977 (95% CI

(0.909, 1.000)), accuracy: 0.953 (95% CI (0.909, 0.995)),

precision: 0.973 (95% CI (0.902, 1.000)), F1 score: 0.951 (95%

CI (0.903, 0.994)) and AUC: 0.980 (95% CI (0.937, 0.999))],

which further demonstrated the robustness of our imaging

biomarkers. Also, we performed age-group-wised (<60 and

≥60 years old) study (27) on combined cohorts to evaluate

the age impact on our imaging biomarkers. As shown in

Supplementary Table 5, age was comparable between the two

groups both in training and validation set in ≥60 years old

groups. It is clear that (Supplementary Figure 10), for all

signatures (except IB-88), (1) within all age groups, the imaging

biomarker has significantly higher abundance in COVID-19

patients; (2) across age groups, the imaging biomarker has

significant higher abundance in category (COVID-19, <60

years old) than in category (non-COVID-19, ≥60 years old).

Additionally, correlation analysis (Supplementary Table 6,

Supplementary Figure 11) revealed (1) statistically non-

significant (FDR > 0.05) “poor correlation” (28) between

age and single/imaging biomarkers within COVID-19 group;

and (2) three statistically significant (FDR < 0.05) “poor/fair

correlation” (28) between age and (IB-3, IB-61, and IB-166)

within Non-COVID-19 group. Also, we investigated the

abundance of imaging biomarkers between age groups on both

training and validation sets (Supplementary Figure 12), and

confirmed that most biomarkers were significantly different

between COVID-19 and non-COVID-19 age groups on both

training and validation sets, except for IB-61, IB-88 and
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FIGURE 6

Examples of misdiagnosed cases by participating chest radiologist(s). (A) Characteristics of the COVID-19 patient and the corresponding

diagnosis (chest radiologists)and screening (imaging biomarkers) results; (B) 3D multi-spectral staining of the COVID-19 patient (3D animation

can be found in Supplementary Video 10); (C) Representative CT image slice of the COVID-19 shows no typical abnormity related to COVID-19,

which led to the false negative decision of both chest radiologist; (D) the corresponding 2D multi-spectral staining of the selected CT image

slice (2D animation of the entire CT scan can be found in Supplementary Video 12); (E) Characteristics of the CAP patient and the corresponding

diagnosis and screening results; (F) 3D multi-spectral staining of the CAP patient (3D animation can be found in Supplementary Video 11); (G)

Representative CT image slice of the CAP patient shows the typical while subtle image characteristics (GGO, marked by red arrows) of the

COVID-19 in the upper lobe of both lungs, which led to the false positive decision by one of the chest radiologists; (H) The corresponding 2D

multi-spectral staining of the selected CT image slice (2D animation of the entire CT scan can be found in Supplementary Video 13); (I) Relative

abundance of imaging biomarkers di�erentiate the COVID-19 from CAP patient.

IB-248, potentially due to the limited sample numbers in

each age group. In addition, we showed that the prediction

model built upon our 8 biomarkers and patient age yielded

statistically identical performance compared to the original

prediction model with our 8 biomarkers only on training

cohort (Supplementary Table 7, Supplementary Figure 13; p

> 0.05; 100 bootstrap iterations with random training sample

rate at 80%), which was further confirmed by the quantitative

evaluation of these two pre-built models on validation cohort

(Supplementary Table 8, Supplementary Figure 14). These

evidences indicate that age does not impact our imaging

biomarker nor the corresponding screening model.

Potential underlying molecular and
biological mechanisms

Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infection triggers a reverse host immunity response,

followed by propagation of the virus especially to the ACE2

rich organs, among which lungs remain to be the mostly

affected organ resulting in severe respiratory disease in

many individuals. Also, the unrestrained immune response

triggers lung inflammation with unfavorable outcomes, where

reactive oxygen species (ROS) are key signaling molecules

with an important role in the progression of inflammatory

disorders (29). Recent studies on SARS-CoV-2 revealed the

potential molecular and biological mechanisms strikingly

similar to what have been seen in pulmonary vascular disease

development, including inflammation, hypoxia, oxidative

stress, and DNA damage, that contribute to the promotion

of endothelia dysfunction, vascular leak, and pulmonary

microthrombi (30–36). Furthermore, SARS-CoV-2 leads to

cytokine outburst, including IL-6, IL-1b, IL-2, IL-10, and

monocyte chemoattractant protein-1 (MCP-1), which are also

associated with vascular dysfunction and vascular disease such

as atherosclerosis, abdominal aortic aneurysm, varicose veins

and hypertension (37). Consequently, the SARS-CoV-2-related

disease (COVID-19) revealed significant effects on the lungs

and the pulmonary vasculature. In addition to parenchymal

abnormalities, pulmonary microthrombi, ventilation-perfusion

mismatch, and hypoxemia are also observed which are
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due to disseminated intravascular coagulation, endothelial

dysfunction, and impaired hypoxic pulmonary vasoconstriction.

Importantly, our findings are consistent with these molecular-

and biological-driven effects on pulmonary vasculature, which

provides the underlying molecular and biological mechanism

for our imaging biomarkers. Furthermore, our study indicates

that these molecular and biological effects on pulmonary

vasculature exist and can be quantitative captured even at

the early stage of COVID-19. With above molecular and

biological potentials, we believe our imaging biomarkers could

help assess the severity as well as the treatment outcome of

COIVD-19 patients.

Discussion

In this study, we developed and validated chest CT based

3D imaging biomarkers for early stage COVID-19 screening.

We suggest, compared to healthy and CAP patients, COVID-

19 patients may have significantly more vascular changes in lung

tissue (24–26), which leads to the discovery of robust imaging

biomarkers for early stage COVID-19 screening. Our double-

blind validation across hospitals and CT scanners confirms

(1) the hypothesis on the quantitative difference of vascular

changes among COVID-19 and non-COVID-19 groups; (2) the

robustness and effectiveness of our imaging biomarkers in real-

world clinical settings with considerable technical variations;

and (3) the competitiveness with COVID-19 experienced

chest radiologists. Detailed case study further demonstrates

the capability of our imaging biomarkers especially for

ambiguous cases, which is common during early-stage COVID-

19 screening. Further comprehensive evaluation suggests our

imaging biomarkers are independent from hospital (batch

effect free) and age (independent value). In addition, the

robustness and effectiveness of our vasculature-related imaging

biomarkers attribute to the effects of COVID-19 on the

lungs and the pulmonary vasculature, including pulmonary

microthrombi, ventilation-perfusion mismatch and hypoxemia,

which are resulted from the potential mechanisms of SARS-

CoV-2, including inflammation, hypoxia, oxidative stress, and

DNA damage, that contribute to the promotion of endothelia

dysfunction, vascular leak, and pulmonary microthrombi.

For example, the structure of our best performing single

imaging biomarker: IB-163 (Figure 2), potentially resembles the

phenomenon related to vascular leak.

Specifically, our demonstrated screening capability was

built upon biomedical evidence, robustness, interpretability,

scalability, and accuracy to maximize its clinical impact.

Different from many existing end-to-end solutions (38), our

work was realized by seamless integration of the blood-

vessel-related clinical insights within an highly compact and

scalable unsupervised learning framework with feed-forward

biomarker extraction strategy involving only element-wise non-

linearity andmatrixmultiplication (22), which helped alleviating

challenges due to the (1) absence or subtle typical abnormal

characteristics in chest CT especially for early stage COVID-

19 patients; (2) presence of misleading characteristics in chest

CT from non-COVID-19 cases; and (3) requirement of large

training cohort and excessive computational resources by many

end-to-end AI models. Subsequently, it enables the discovery of

robust biomedical-relevant imaging biomarkers effectively from

a small training cohort (n = 116), and thereafter scalable [∼50 s

via Matlab with Intel(R) Xeon(R) CPU E5-2630 v3], superior

and stable screening performance.

The major limitation of our study is the exclusion

of non-image information, including clinical symptoms and

laboratory findings, which are valuable for COVID-19 diagnosis

(39, 40). However, given (1) our current focus on imaging

biomarker development and validation, and (2) the nature

of biomarker detection and utilization (different from end-

to-end AI systems), it is straightforward to combine non-

image information with our imaging biomarkers to realized

multi-modality screening capability via scalable techniques (e.g.,

random forest). Additionally, the CAP patients included in

this study were from patients with pneumonia before the

outbreak, which were clinically diagnosed (based on imaging

findings) and treated with empirical drugs. Therefore, like

many retrospective studies (38, 39, 41), the CAP patients

cannot be classified according to specific pathogens, which

requires a future prospective study. Chest CT scan also has

certain shortcomings: first, similar to RT-PCR, chest CT scan

also has certain false negative rates when the viral load is

relatively low. Second, lung CT imaging is relatively expensive

compared to RT-PCR testing, which may limit its use in less

developed areas. Third, if the lung CT scan environment is

not sufficiently disinfected, it may cause cross-infection among

the tested persons. In the early stage of this epidemic, due to

the high false negative rate of RT-PCR and the long return

time of the test results, the chest CT scan has made up for

the shortcomings of RT-PCR, and a large number of patients

have been timely diagnosed, isolated and treated (42, 43). Even

with the improvement of RT-PCR detection technology, chest

CT still remains useful for auxiliary diagnosis and assessment of

disease severity and prognosis (44–47), as well as for its potential

screening capability in consideration of the possible variation

of the virus during RT-PCR test. We also realized that the

accessibility of CT scannermay potentially impact the utilization

of our findings. However, given the (1) the demonstrated clinical

implications; and (2) the prognostic potential of our imaging

biomarkers combining with clinical information, we strongly

believe the potential of our study in providing a valuable

alternative besides nucleic acid toolkit for early-stage COVID-19

screening with world-wide impact.

To summarize, COVID-19 epidemic is a world-wide threat

(48), consuming the medical resources in some countries
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(49). Facing the short supply of nucleic acid detection kits

in many countries, most chest CT based computational

studies were built upon typical abnormity in an end-to-end

fashion, which can suffer due to the lack/subtle amount of

such typical characteristics in early stage COVID-19 patients,

or even misleading characteristics in others. To overcome

these challenges, we identified robust imaging biomarkers

from vasculature-like signal in chest CT scans for accurate

early stage COVID-19 screening with major advantages as

follows: (1) they provide robust, accurate and cost-effective

COVID-19 screening, which can significantly alleviate the

shortage of clinical resources, including both nucleic acid

detection kits and experienced chest radiologists; and (2) they

provide a non-invasive diagnostic tool that enables world-wide

scalable practical applications. Our merits originate from the

system biology approach, and thus provide important clinical

insights/knowledge that is beyond existing clinical practice as

well as the capability/scope of many existing end-to-end AI

systems. As future work, our imaging biomarkers may (1) be

combined with non-image information to improve screening

performance; and (2) facilitate the prediction of COVID-19

patients’ prognosis and clinical outcome at early stage.
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Computer Coded Verbal Autopsy (CCVA) algorithms are commonly used to

determine the cause of death (CoD) from questionnaire responses extracted

from verbal autopsies (VAs). However, they can only operate on structured data

and cannot e�ectively harness information from unstructured VA narratives.

Machine Learning (ML) algorithms have also been applied successfully in

determining the CoD from VA narratives, allowing the use of auxiliary

information that CCVA algorithms cannot directly utilize. However, most

ML-based studies only use responses from the structured questionnaire, and

the results lack generalisability and comparability across studies. We present

a comparative performance evaluation of ML methods and CCVA algorithms

on South African VA narratives data, using data from Agincourt Health

and Demographic Surveillance Site (HDSS) with physicians’ classifications as

the gold standard. The data were collected from 1993 to 2015 and have

16,338 cases. The random forest and extreme gradient boosting classifiers

outperformed the other classifiers on the combined dataset, attaining accuracy

of 96% respectively, with significant statistical di�erences in algorithmic

performance (p < 0.0001). All our models attained Area Under Receiver

Operating Characteristics (AUROC) of greater than 0.884. The InterVA CCVA

attained 83% Cause Specific Mortality Fraction accuracy and an Overall

Chance-Corrected Concordance of 0.36. We demonstrate that ML models

could accurately determine the cause of death from VA narratives. Additionally,

through mortality trends and pattern analysis, we discovered that in the

first decade of the civil registration system in South Africa, the average life

expectancy was approximately 50 years. However, in the second decade,

life expectancy significantly dropped, and the population was dying at a
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much younger average age of 40 years, mostly from the leading HIV related

causes. Interestingly, in the third decade, we see a gradual improvement in life

expectancy, possibly attributed to e�ective health intervention programmes.

Through a structure and semantic analysis of narratives where experts

disagree, we also demonstrate the most frequent terms of traditional healer

consultations and visits. The comparative approach also makes this study a

baseline that can be used for future research enforcing generalization and

comparability. Future study will entail exploring deep learning models for

CoD classification.

KEYWORDS

cause of death, machine learning, Verbal Autopsy, CCVA, algorithms

1. Introduction

More than 65% of the population in the world lacks high

quality information on the cause of death (CoD) since every

year about sixty million deaths worldwide are not assigned a

medically certified cause (1). As such, most of the countries in

the world fail to meet the United Nations 90% death registration

coverage requirement, as deaths in many Low to Medium

Income Countries (LMICs) are not captured in civil registration

systems (2, 3). On the contrary, the CoD information is vital

for public health monitoring, informing critical health policies

and priorities. Therefore, in the absence of clinically oriented

sources, CoD information should be derived from alternative

sources. Verbal Autopsy (VA) is the most used tool worldwide

as an alternative source of CoD information. VA is common in

LMICs and is a process that is used to determine CoD where

deaths occur outside health facilities and is not certified by a

medical practitioner (4). These sentiments are supported by

Mapoma et al. (5), who also reports on the importance of the

VA process in determining CoD in countries where there are no

active civil registration systems. The VA process is conducted by

non-medical personnel who seek to elicit valuable information

using both structured questions and an open narrative section

with the next of kin of the deceased about circumstances and

events that led to death (1). Two doctors are given the full set of

responses, both from structured questions and open narratives

for assessment and to reach a consensus on the CoD and if not

a third physician is consulted, a process known as Physician

Coded Verbal Autopsy (PCVA). PCVA is the most used

process for determining CoD. However, it is widely criticized

because of its lack of robustness, cost, time, inconsistencies,

and inaccuracies as it is subjective and prone to errors among

many drawbacks (6). This results in PCVAs mostly employed

for the training and validation of computational approaches.

The surge of technological advances has availed a plethora

of automated methods for determining CoD which are faster,

efficient, and cost effective (1). Most of the research that reports

on ML applications in the VA domain mainly uses the responses

from the questionnaire as the classical dataset. As such, this

affects comparability and generalisability. In this study, we

validate the performance of variousML techniques using various

VA data types for determining CoD using a comparative

analysis approach. We apply enhanced data standardization

and normalization strategies to achieve optimum transparency

and accuracy through addressing most model limitations and

applying recommendations that are reported in Reeves and

Quigley (7) and Mujtaba et al. (8). We assess the robustness

of several classifiers including; random forest (RF), k-nearest

neighbor (KNN), decision tree (DT), support vector machine

(SVM), logistic regression (LR), artificial neural network (ANN),

Bayes Classifier (BC), bagging and eXtreme Gradient Boosting

(XGBoost) as ensemble classifiers. We also validate our dataset

using the common conventional Computer Coded Verbal

Autopsy (CCVA) algorithm; InterVA.

1.1. Computer Coded Verbal Autopsy
algorithms

Previous studies report on the most commonly used VA

algorithms also known as CCVA algorithms. These CCVA

approaches use expert-driven rules to determine CoD from

VAs (9–13). The VA algorithms make use of the responses

from the standardized structured World Health Organization

questionnaire that denote signs or symptoms based on the

deceased health history prior to death. Most of these VA

algorithms take input from VA data derived from real deaths,

and symptom-cause information (SCI) which is a repository of

information about symptoms that are related to each probable

CoD. Additionally, they make use of logic that entails a logical

algorithm that combines the SCI and VA data to identify

cause-specific mortality fractions (CSMF), so as to assign a

specific CoD.

The InterVA uses the Bayes rule to compute the probability

of cause of death, given the availability of indicators such as SCI

from the VAs. This approach is reported in the study of Clark
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et al. (14), Leitao et al. (15), Miasnikof et al. (13), and Murray

et al. (16).

These VA approaches have been widely criticized in terms

of their credibility and reliability. The study of Kalter et al.

(17) reports on the evaluation of VA expert algorithms and

deduces that population level accuracy is similar to that of ML

approaches with CSMF in the range of 57−96%. Similar findings

are also presented in the study of Quigley et al. (18) who did

a study where they validated data derived algorithms against

the gold standard of physician review using various disease

categories based on the CSMF. Leitao et al. (15) argues that, there

is little evidence to justify the CCVA as a possible replacement

of the gold standard which is the PCVA. Therefore, there is a

need for further investigations and research with large datasets

to train and test models on CoD classification.

Little research exists in the VA domain on the application of

ML to determine CoD fromVA narratives. TheseML algorithms

make use of automated computer programs that can take input

of data to learn new trends and patterns from complex data by

applying optimization techniques for VA classification (19).

1.2. Machine learning in VA

Most ML model predictors commonly use only responses

from the standardized questionnaire, attaining Sensitivity scores

of around 60%for individual CoD classification, using various

numbers of CoD categories. On the contrary, the study

of Jeblee et al. (1) demonstrates that the VA narratives

have valuable rich information that can be used for CoD

determination. ML can avail real-time results that are similar

to that of physicians/experts (20). Alternative complex ML

approaches exist in the literature and can be used as substitutes

for the PCVA and CCVA algorithms as approaches to

determining CoD.

Moran et al. (21) applied the Bayesian hierarchical factor

regression models to infer CoD using VA narratives and report

an improvement in model performance on inferring CoD

and CSMF. However, they used thirty-four disease categories.

Idicula-Thomas et al. (22) applied six different ML algorithms

(SVM, ANN, KNN, DT, C5.0, and gradient boosting). Their

results report the SVM as the best classifier with an Accuracy

of more than 80%. However, they used six disease categories.

Similar results are reported in the study of Mujtaba et al. (23),

with SVM attaining a Precision of 78.1%, Recall of 78.3%, F-

score of 78.2%, and overall Accuracy of 78.25%for 16 disease

categories. Their study used text classification techniques to

predict CoD from forensic autopsy reports. Other studies by

Danso et al. (24), Mujtaba et al. (25), and Koopman et al. (26)

also found similar results and deduce that feature extraction

approaches are grossly affected by variations in words and

word combinations.

The study of Mwanyangala et al. (27) used the LR model

to determine the completion rate of VA and factors associated

with undetermined CoD. They report a completion rate of 83–

89%. They ascertain that 94% of deaths submitted to physicians

were assigned a specific cause, and on the other hand, 31%

were labeled as undetermined. Quigley et al. (28) reports

various common diseases that lead to death using CSMF and

LR classifier and they achieved 80% Specificity. Boulle et al.

(29) applied ANN to classify CoD from VAs and achieved a

Sensitivity of 45.3%. They concluded that more explorations are

needed with large datasets and large training samples to improve

the results of the ANN. The study of Flaxman et al. (30) used

the RF classifier to assign CoD categories and affirmed that the

RF algorithm performed better if not as the PCVA approach.

Additionally, they point out that the RF classifier was better than

PCVA on overall chance concordance and CSMF accuracy for

both adults and children.

Related work that has also used VA data for cause of death

determination is also reported elsewhere in Danso et al. (31).

They conclude that using word occurrences produced better

results as compared to word occurrence features and suggest

using large datasets in order to improve model performance.

Their sentiments are echoed in the study of Pestian et al. (32) and

Murtaza et al. (33). Additionally, Mujtaba et al. (8, 23, 25, 34)

have done vast work in the VA domain and argue that uni-

grams are better feature extraction techniques, Term Frequency

(TF) and TF-IDF are better feature representation schemes, and

Chi-squared is a better dimensionality reduction approach. They

recommend employing effective data cleaning strategies and

feature engineering techniques to get improved performance.

Despite the reported results in the literature, both CCVA

algorithms and ML models applied to VA data to determine

CoD, suffer from challenges and limitations as they lack concrete

evidence where there is a limited expert diagnosis and cannot be

fully utilized to inform health priorities (2). Most of the CCVA

approaches use statistical concepts and scores to determine CoD

(9, 35). Moreover, these approaches are affected in terms of

optimal performance because of their dependency on sample

size, age group, causes of death, and characteristics of the

sample (4, 13, 17, 35, 36). Other issues that affect VA data

quality, emanate from having interviewers being untrained,

incompetent, and unqualified to appropriately elicit relevant

and appropriate symptoms on causes of death. Additionally,

language barriers call for the need for the interviewer and

interviewee to speak the same language so as to derive the best

results. Soleman et al. (4) recommended incorporating fully

trained multiple translators. The other downside is the length

of the recall period which can create a bias in the collected VA

data. The heterogeneity of various autopsies in terms of the

non-intersecting dialects of the English language (terms being

in the native language) compromises data quality as most of

these approaches tend to omit such autopsies in their model

prediction, yet they might entail valuable information.
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All the discussed challenges and limitations affect the VA

data quality that is taken as input to the CCVA and ML

approaches. Therefore, we can deduce that there is a great need

to address these challenges in order to remove room for any

bias and misinterpretations of the models, thereby enforcing

generalisability and comparability. This study demonstrates the

robust assessment of ML approaches and CCVA algorithms in

determining CoD, thus availing a baseline ML framework that

can be used for comparability and generalization across all VA

dataset types.

2. Methods

2.1. Study design

This is a retrospective cross-sectional study that uses

secondary data analysis. All the cleaned VA datasets, model

performance, and classification results of various tasks are

pushed from a Python Jupyter Notebook environment and

housed within a PostgreSQL Version 4.2 object-relational

database management system.

2.2. Population

This study uses VA narrative data from the study area of

the Agincourt Health and Demographic Surveillance System

(HDSS). The HDSS came into existence in 1992 and is located

in the rural Sub-district of Bushbuckridge under Ehlanzeni

District, in Mpumalanga Province, in north-eastern South

Africa. The study area covers approximately 420 km2. According

to the Agincourt fact sheet of 2019, the population was

at 1,16,247 individuals residing in 28 villages with 22,716

households, with men being 55 961, women being 60,280,

children under 5 years being 11,724, and school going children

with ages from 5− 19being 35,928 (37).

2.3. Data source

The source of our data for this study is the Agincourt HDSS.

It is a surveillance site that specifically provides evidence based

health monitoring that seeks to strengthen health priorities,

practice and inform policy. The VA narratives data is from 1993

to 2015. However, physician diagnosis was done from 1993 to

2010, and this target variable of the doctors’ diagnosis is enough

for model training and prediction.

In this study, we used three types of datasets such as

the responses from the standard questionnaire, narratives,

and a combination of the responses and the narratives.

The whole dataset had 287 columns/features and 16,338

records/observations. For the responses only, we took all

TABLE 1 Twelve disease classes and the number of data samples

before and after data balancing.

Class labels and corresponding number of samples

Disease category Label Samples before

data balancing

Samples after

data balancing

HIV/TB 0 3,388 3,388

Other infectious 1 964 3,388

Metabolic 2 242 3,388

Cardiovascular 3 140 3,388

Indeterminate 4 1,468 3,388

Maternal and Neonatal 5 121 3,388

Abdominal 6 117 3,388

Neoplasms 7 93 3,388

External causes 8 89 3,388

Neurological 9 57 3,388

Respiratory 10 46 3,388

Other NCD 11 21 3,388

features that had responses from the standard questionnaire as

our predictors and the CoD assigned by physicians using the

International Classification of Diseases-10 (ICD-10) code for

each record in the dataset as our target variable. Ultimately, we

had 231 predictors (all symptoms, age at death, and gender)

and 1 target variable, and all our features were in English. The

predictions using the narratives were done using age at death,

gender, the narrative feature, and 1 target variable.

For the combined VA dataset, we used 232 predictors and 1

target variable. We only added the VA narrative feature to the

responses dataset in order to have our combined dataset. We

further created 12 CoD categories with corresponding labels,

and class distribution with the number of samples for each

class before and after data balancing for our training dataset,

as shown in Table 1. The CoD categories were derived based on

the InterVA user guide and literature studies of Byass et al. (11),

Danso et al. (24), King and Lu (38), and Jeblee et al. (1).

Figure 1 illustrates the logical steps that we follow for this

study’s experiments. We first do data acquisition of our VA

narratives as a comma separated value text file (csv), followed

by data exploration and cleaning. Additionally, we do feature

engineering and data balancing and feed our data to our

models for training, validation, and testing. Finally, we do

CoD classification.

2.4. Data pre-processing and encoding

For the questionnaire responses dataset, we cleaned and

replaced all nulls with zeros, implying that there was no

symptom assigned for a missing value in a record. All symptoms

Frontiers in PublicHealth 04 frontiersin.org

206

https://doi.org/10.3389/fpubh.2022.990838
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Mapundu et al. 10.3389/fpubh.2022.990838

FIGURE 1

Schematic diagram of ML process followed.

that had a ‘Y’ were encoded as a 1 meaning that the record had

a present symptom value. On the other hand, all symptoms that

had an ‘N’, were encoded as a 0 meaning that those records had

no symptoms present. In order to normalize and standardize

the narrative feature used with the combined dataset, we pre-

processed in order to retain with only relevant data. Data were

first imported in comma separated value format, followed by

pre-processing. The pre-processing stage entailed converting

all text to lowercase and removing all punctuation, spaces,

numbers, and special characters. Tokenisation was done by

splitting a document (seen as a string) into tokens. Stopword

removal was then applied to do away with insignificant words

using the NLTK library of English stopwords. We applied

normalization using the Python spacy package, a process known

as lemmatization. Lemmatization uses a dictionary of known

word forms and considers the role of a word in a sentence

with the aim of extracting some normal form of a word.

Finally, we applied feature engineering to determine the most

representative features, as we then aimed at retaining only

relevant words in the vector space by applying a weighting

scheme (39). All categorical data was encoded using the one-

hot encoding technique to create numeric vectors. This was

followed by concatenating the narratives and the questionnaire

response datasets using horizontal stacking which was pushed to

our models for training, validation, and testing.

2.5. Feature engineering

We did feature engineering in order to derive new input

features from existing ones. This process was done in three

phases namely; feature extraction, feature selection, and feature

value representation. Feature extraction was applied in order to

get only relevant and useful features from textual data using n-

gram models. The n-grams are a set of words that are sequential

as they make use of the continuous number of items such as

characters or words from a given sequence of narratives. n-gram

models can be of the form; a) n = 1 (unigram), b) when n =

2 (bigram), c) n = 3 (trigram), and d) hybrid-grams (mixture

of unigram, bigram, and trigram) (8, 23). This was followed

by the feature value representation stage employing the TF-

IDF approach. In this phase, we sought to create a numeric

vector of features, where each feature will have a corresponding

numeric value that can be used for model learning. TF-IDF

considers a feature important if it occurs frequently in the VA

narratives belonging to one class and less frequently available

in narratives belonging to another class. Finally, we applied

feature selection in order to attain the most useful subset of

features from the narratives. This was achieved using Singular

Value Decomposition (SVD) as a selection approach to reduce

the dimensionality of our feature space, thus removing noise in

our dataset. This dimensionality reduction technique creates a

matrix that only has relevant information producing an exact

representation of data in a low dimensional space without any

loss of data (40, 41).

2.6. Data balancing and feature scaling

We applied data balancing to the training set to address data

imbalance where one or more classes are less represented than

the other classes, meaning that the majority classes have more

samples as compared to other minority classes. As such, this

creates a bias in the minority classes as they will have fewer

data points that can cause large misclassification errors. The

ratio of the majority against the minority class was 1 : 160. In

order to address the issue of data imbalance, we explored various

techniques (under sampling, over sampling, threshold, and class

weight). We attained optimal results when using the Random

Over Sampling Examples (ROSE) and Synthetic Minority

Oversampling Technique (SMOTE). After our experiments,

we chose SMOTE as the best choice for our dataset. This
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possibly suggests that our dataset was well suited for SMOTE

as a data balancing technique. Moreover, our balanced datasets

behaved better than imbalanced datasets. SMOTE was applied

by generating artificial samples for the minority class, through

interpolation between the positive instances that lie together.

This approach addresses the issue of over-fitting caused by the

general oversampling approach that replicates existing positive

cases (8). We ended up having 3, 388samples per class. We did

feature scaling using the Python Standard scaler library in order

to get all our features within the same range as the target variable.

After data balancing and feature scaling, we fed the data into our

12 models for training and validation.

2.7. Machine learning models for CoD
prediction

We specifically applied supervised ML techniques to predict

our target variable given input data. We aimed at predicting the

related CoD by taking input of; questionnaire responses only,

narratives only, and combined questionnaire responses and

narratives. The input was then fed into nine classifiers (SVM,

DT, XGBoost, KNN, RF, Bagging, LR, BC, and ANN). These

ML approaches are reported elsewhere (1, 22, 23, 27, 33, 34, 39–

47). Using the questionnaire responses only, we created a feature

space made up of binary responses as predictors and our target

variable was a categorical ICD-10 code for CoD. Similarly, we

did the same for the narratives only dataset. For the combined

dataset only, we added the narrative column to the list of

our predictors.

2.8. Model training, validation, and testing

In this study, we perform multi-class classification, where

we generated individual prediction models for each of the

12 disease categories. Data were split into 70% training, 20%

validation, and 10% testing on unseen or new data, for all our

nine models. We evaluated model performance by assessing

the robustness of the nine classifiers by applying 10-fold cross-

validation supplemented by the GridSearch algorithm. The k-

fold cross-validation (k=10 in our study) is advantageous in

that, it uses all observations for both training and validation,

with each observation used for validation exactly once. On

the contrary, this approach has the disadvantage of having to

define the number of folds manually. In order to address the

limitations of the k-fold cross-validation technique, we also

used the automated GridSearch approach that eliminates the

random setting of parameters and chooses optimum parameters

automatically for a specific model.

In order to attain a better estimate of the generalization

performance, we used 10-fold cross-validation to evaluate the

performance of each parameter combination, instead of using

TABLE 2 Model optimal hyperparameters.

Selected hyperparameters

Model

name

Hyperparameters

XGBoost L1, max_depth=10, objective=multi:softmax, learning_rate =0.1,

alpha=0

RF gini, max_depth =10, n_estimators=100, min_samples_leaf=1

ANN relu, alpha=0.0001, solver=adam

KNN minkowski, n_neighbors=5, p=2

SVM gamma=scale, kernel=rbf, C=1.0

Bagging KNN, max_samples, max_features

DT gini, min_samples_split=2, min_samples_leaf=1,

LR L2,C = 1.0

BC alpha=1.0, fit_prior=True, class_prior=None

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural

Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT,

Decision Tree; LR, Logistic Regression; BC, Bayes Classifier.

a single split into a training and validation set. First, we specified

the parameters for searching stored in a dictionary. GridSearch

cross validation function then performed all the necessarymodel

fits. All dictionary keys were the names of the parameters that we

wanted to tune, and the values were the parameter settings that

we wanted to test out. Applying cross-validation, we managed

to choose the optimal parameters that gave us the best model

performance based on the accuracy of the test set or unseen data.

We used optimisation parameters such as; cost complexity

pruning and tuning parameter alpha through k-fold validation

(tree based models). Moreover, we also used the Mean Squared

Error (MSE) and Cross Entropy Error (CEE), Minkowski and

Gini as cost functions to compute the minimal cost error

between our predictor and the response using the k-fold cross-

validation approach to optimize model performance. These cost

functions are described in Zaki and Meira (40). Additionally,

we also employ L1and L2regularization approaches to further

optimize some of our models. L1regularization involves

eliminating features that are not useful for model prediction

by setting some weights close to zero. On the contrary,

L2regularization tends to penalize large weights more and

small weights less (41). Table 2 depicts some of the model

hyperparameters used in our models.

3. CCVA algorithms

We followed the same preprocessing steps of our dataset and

fed it into our commonly applied CCVA algorithm InterVA. The

data preprocessing steps entailed de-duplication based on the

identifier field (ID), dropping observations with peculiar IDs,

filtering out observations with recorded age at death above 110

years, and any observation with the year of death before 1992
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and after 2016. All records with unspecified sex were dropped

from the raw dataset. All modeling for the InterVA was done

in R. Libraries such as knitr were used for dynamic report

generation, lubridate was used for date and time functions, tidyr

for organizing and tidying of data, tidyverse for loading core

packages, ggplot for plotting graphs, readxl for reading our excel

raw data, and InterVA for our CCVA algorithm. In order to

determine the most probable CoD, we used the InterVA libraries

for analysis in our R-statistical analysis software guided by the

study of Li et al. (48) and McCormic et al. (12). Since InterVA

and InSilico are correlated, we decided to only validate the

InterVA algorithm for comparability with ML approaches.

4. Identification of contradicting
cases and best model predictors

In order to identify contradicting cases, where physicians

were not agreeing on the diagnosis, we extracted a separate

dataset. We used simple text mining techniques known as n-

gram models for identifying the contradicting cases and best

features for our models (refer to Section 2.5).

4.1. ML techniques model evaluation

Performance evaluation of classifiers is evaluated using

various metrics and we report the metrics based on studies by

Mujtaba et al. (23, 34). We validated our results using one vs.

all with Accuracy, Precision, Recall, F-score, and AUROC as our

metrics for evaluation.

Accuracy denotes all classes with classified results that have

been predicted correctly in fraction terms. Precision also known

as the Positive Predictive Value (PPV) defines the proportion

of VA narratives correctly predicted as positive to the total

of positively predicted VA narratives. Recall also known as

Sensitivity or True Positive Rate (TPR) defines the proportion of

VA narratives correctly predicted as positive to all VA narratives

in the actual positive category. F-measure computes the average

or harmonic mean of Precision and Recall.

True Positives (TP) and True Negatives (TN) represent the

number of outcomes in which our prediction model correctly

classifies positive and negative cases, respectively. In our case,

TP denotes predicted positive VA narratives with a particular

disease category from the 12 classes and are actually positive and

TN denotes predicted negative VA narratives with a particular

disease category from the 12 classes and are actually negative.

Conversely, False Positives (FP), and False Negatives (FN)

denote the number of outcomes where our models incorrectly

predict the positive and negative classes, respectively. As in our

case, the FP implies predicted positive VA narratives with a

particular disease category from the 12 classes but are actually

negative and FN depicts the predicted negative VA narratives

with a particular disease category from the 12 classes but are

actually positive.

The AUROC visualizes the TPR against the false positive rate

(FPR). The area under the ROC curve applies the principle of

plotting a curve specific to a machine learning algorithm where

the classifier is evaluated relative to a weighting on the area

under the curve. Good performance of the algorithm is given

a weight of close to 1, thus graph is AUROC closer to the upper

left corner and the poor performance of an algorithm is given

a weight of 0.5 and below. Specificity computes the ratio of

negative VA narratives that are correctly predicted as negative.

4.2. CCVA techniques model evaluation

We explicitly validated the InterVA algorithm using CSMF

accuracy and Overall Chance-Corrected Concordance (CCC).

CCC computes the accuracy of individual cause assignment and

ranges from 0 to 1 and the lower the CCC, the larger the error

type on the accuracy of the underlying cause (14, 49). On the

other hand, CSMF accuracy defines accuracy as having a value

between 0and 1. This metric assumes the worst possible case

for predicting CSMF and assigns a weight on the least possible

CSMF value that matches the total absolute error (50).

5. Statistical analysis

We applied statistical tests for comparing the performance of

our nine algorithms. We computed the variance of our models

using descriptive statistics such as mean and standard deviation

based on the results of our AUROC. Moreover, we computed

some tests using 10-fold cross-validation using the mean and

standard deviation. Furthermore, we conducted some non-

parametric tests since our data distribution was non-normal

using the Kruskal-Wallis test, to test if the model’s mean is

different or the same. For the Kruskal-Wallis test, we considered

p < 0.005statistically significant. We applied the pairwise model

comparisons using McNemar statistical tests, in order to be able

to state objectively whether one model performs better than

the other (51). Since we did eight different tests, we used the

Bonferroni corrected p-value of 0.0065, derived from 0.05/8,

where the denominator is the total number of tests. We used

Python version 5.2.2 and STATA version 17 SE edition for all

these statistical tests.

6. Results

In this section, we present the results attained from CCVA

algorithms and various classification techniques employed to

determine CoD from various VA datasets (using only narratives

as predictors, using questionnaire responses only, and results of

the combined features).
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TABLE 3 Comparison of nine ML models using narratives only.

Model evaluation

Model name Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROCMIA AUROCMAA

XGBoost 96 96 96 96 0.927 0.906

RF 96 96 96 96 0.998 0.996

ANN 94 94 94 94 0.982 0.964

KNN 93 93 93 92 0.989 0.987

SVM 92 92 92 92 0.917 0.917

Bagging 91 91 91 91 0.997 0.995

DT 85 84 85 84 0.910 0.910

LR 82 82 82 82 0.977 0.959

BC 71 75 71 72 0.921 0.920

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT, Decision Tree;

LR, Logistic Regression; BC, Bayes Classifier; AUROCMIA, Area Under Receiver Operating Characteristics Micro Average; AUROCMAA, Area Under Receiver Operating Characteristics

Macro Average.

6.1. Performance evaluation of ML
classifiers

We validated our results using one vs. all with Precision,

Recall, Accuracy, F1-score, and AUROC. We report on

Precision, Recall, Accuracy, F-score measure, and AUROC

for our nine classifiers in the CoD categorization of the 12

disease classes for narratives only in Table 3, questionnaire

responses only in Table 4, combined questionnaire responses

and narratives in Table 5.

6.1.1. Results from only the VA narrative
predictors

The XGBoost and RF classifier outperformed all the other

classifiers with a Precision of 96%, Recall of 96%, F1-score of

96%, and Accuracy of 96%, respectively. The least performing

classifier was the statistical BC classifier with an Accuracy of

71%. Overall, our nine models had an AUROCMIA (Area

Under Receiver Operating Characteristics Micro Average) and

AUROCMAA (Area Under Receiver Operating Characteristics

Macro Average) between 0.910 − 0.998and 0.910 − 0.996,

respectively. Table 3 shows the detailed performance evaluation

results of our nine models using VA narratives only.

6.1.2. Results from using questionnaire
responses only as predictors

The ANN and XGBoost outperformed all the other

classifiers when using questionnaire responses from the

standardized questionnaire attaining a Precision, Recall,

F1-score, and Accuracy of 100%, respectively. It was followed

by Bagging our ensemble classifier and KNN both recorded a

Precision, Recall, F1-score, and Accuracy of 98%, respectively.

Our statistical classifiers LR and BC were on the lower ranking

of our evaluation recording an Accuracy in the range of

74–83%, respectively. All of our models attained the highest

AUROCMIAs within the range of 0.869and 1, respectively. Our

nine models XGBoost, RF, ANN, Bagging, SVM, LR, DT, and

KNN record high scores and the BC a bit lower AUROCMIA of

0.869. Additionally, the same nine models attained the highest

AUROCMAAs within the range of 0.976and 1, respectively.

On the other hand, the BC achieved an AUROCMAA score of

0.884. Table 4 shows the detailed performance evaluation results

of our nine models using questionnaire responses only.

6.1.3. Results from using combined narratives
and questionnaire responses

The XGBoost, ANN, and the RF classifier outperformed all

the other classifiers with a Precision of 96%, Recall of 96%,

F1-score of 96%, and Accuracy of 96%, respectively. On the

contrary, BC and SVM were the least performing classifiers

with Accuracy in the range of 68 − 72%. All of our models

attained the highest AUROCMIAs within the range of 0.910and

0.998, respectively. The RF, XGBoost, ANN, Bagging, and KNN

recorded high scores and the rest a bit lower scores. Additionally,

our models attained the highest AUROCMAAs within the range

of 0.907and 0.996, respectively. Similarly, the RF, XGBoost,

ANN, Bagging, and KNN recorded high scores and the rest

a bit lower comparable scores. However, the BC attained the

lowest AUROCMIAs of 0.869and 0.884, respectively. Table 5

shows the detailed performance evaluation results of our nine

models using combined questionnaire responses and narratives.

Additionally, Figure 2 shows the model validation done using

AUROC.

We report on the performance validation of our nine

algorithms using descriptive statistics such as the mean and

SD based on the Micro and Macro averages of our AUROC
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TABLE 4 Comparison of nine ML models using questionnaire responses only.

Model evaluation

Model name Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROCMIA AUROCMAA

XGBoost 100 100 100 100 1 1

ANN 99 99 99 99 1 1

Bagging 98 98 98 98 0.998 0.998

KNN 98 98 98 98 0.997 0.997

RF 97 97 97 97 0.999 0.998

DT 97 97 97 97 0.976 0.976

SVM 94 94 94 94 0.990 0.988

LR 83 83 83 83 0.990 0.980

BC 74 77 74 75 0.869 0.884

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT, Decision Tree;

LR, Logistic Regression; BC, Bayes Classifier; AUROCMIA, Area Under Receiver Operating Characteristics Micro Average; AUROCMAA, Area Under Receiver Operating Characteristics

Macro Average.

TABLE 5 Comparison of nine ML models using combined narratives and questionnaire responses.

Model evaluation

Model name Accuracy (%) Precision (%) Recall (%) F1-score (%) AUROCMIA AUROCMAA

XGBoost 96 96 96 96 0.994 0.990

RF 96 96 96 96 0.998 0.996

ANN 96 95 96 95 0.995 0.991

Bagging 93 92 93 92 0.994 0.994

KNN 91 91 91 90 0.982 0.981

DT 87 87 87 87 0.928 0.928

LR 76 76 76 76 0.985 0.973

BC 72 73 72 73 0.910 0.907

SVM 68 68 68 66 0.969 0.958

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT, Decision Tree;

LR, Logistic Regression; BC, Bayes Classifier; AUROCMIA, Area Under Receiver Operating Characteristics Micro Average; AUROCMAA, Area Under Receiver Operating Characteristics

Macro Average.

reported in Table 5.We report on 0.010282and 0.010105variance

for AUROCMAA and AUROCMIA for our dataset, respectively.

Table 6 shows the mean and standard deviation scores for

each model throughout the 10-fold cross-validation training of

the algorithms. The rank sums for each model column depict

the Kruskal-Wallis test conducted. The test revealed that the

mean observation was not the same (Chi = 85.383, p =

0.0001)across the ninemodels. This, therefore, implies that there

was a statistically significant difference in mean observation

between the nine models. We also report a p-value greater than

the significance level of 0.05, hence, we fail to reject the null

hypothesis and conclude that the nine model observations are

not normally distributed. All model variances are very low or

insignificant, implying that our dataset had a low degree of

spread. Therefore, we can confidently state that our models were

consistent in making predictions, thus even if different training

data were used, they could still make a good estimate of the

target variable. Additionally, we can infer that our sampled data

points were very close to where our nine models predicted they

would be.

The results of the McNemar tests on validating the

performance of our nine models suggest good performance on

the XGBoost and RF classifiers. The pairwise tests on XGBoost

and RF suggest that there is a significant difference between the

classifiers (p < 0.0001), which is smaller than our significance

threshold (α = 0.0065). Therefore, we reject our null hypothesis.

We discovered that the XGBoost got 868 predictions right that

RF got wrong. On the contrary, RF got 555predictions correct

that XGBoost got wrong. As such, based on this 1.5 : 1ratio, we

may conclude that XGBoost performed substantially better than

RF. Additionally, we performed comparative pairwise tests on

all our models (LR, KNN, DT, SVM, ANN, BC, and Bagging)
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FIGURE 2

Area Under Receiver Operating Characteristics (AUROC) of our nine classifiers using combined questionnaire responses and narratives. (A)

AUROC for ANN. (B) AUROC for KNN. (C) AUROC for RF. (D) AUROC for DT. (E) AUROC for SVM. (F) AUROC for LR. (G) AUROC for XGBOOST.

(H) AUROC for BG. (I) AUROC for BC. XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural Network; KNN, K-Nearest

Neighbor; SVM, Support Vector Machine; BG, Bagging; DT, Decision Tree; LR, Logistic Regression; BC, Bayes Classifier.

and our best classifiers XGBoost and RF. Based on the tests, we

can objectively reject our null hypothesis and state that there

is a significant difference between our two best classifiers and

the other seven classifiers in terms of model performance (p <

0.0001)smaller than our significance threshold (α = 0.0065).

7. CCVA algorithm evaluation using
CSMFs

This extract highlights how the InterVA and InSilico

algorithms were evaluated using CSMFs. We also present CSMF

and CCC as evaluation metrics for the InterVA algorithm.

Figure 3 presents the 12 leading causes of death over time as

determined by the InterVA algorithm using only one CoD. We

observe that between the years 1993 and 2015, HIV/AIDS was

the leading CoD across the population (CSMF=0.2739). This was

closely followed by Pulmonary Tuberculosis (CSMF=0.1987)

and Other Infectious/parasitic diseases (CSMF=0.1385). These

three causes alone accounted for up to 61% of all deaths

in the population during this period. The InterVA algorithm

performance using CSMF accuracy and CCC attained values of

83% and 0.36, respectively.

8. Trend and pattern analysis using
ML and CCVA approaches

8.1. CCVA algorithms

This section presents mortality trend and pattern analysis

using conventional CCVA algorithms based on gender

(Figure 4A), age (Figure 4B), and population over time
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(Figure 4C), using data from structured questions. The

visualizations are given in Figure 4.

We investigated the average age at death for the 12 leading

causes of death. We discovered that both men and women

TABLE 6 Statistical tests of our nine models.

Model scores

Model name Mean Standard deviation Rank sum

XGBoost 0.9622614 0.003209 836.00

RF 0.9566394 0.0030548 735.50

ANN 0.9530553 0.0025771 663.50

Bagging 0.9216445 2.91e+07 585.00

KNN 0.9015075 0.0033769 447.00

DT 0.8671503 0.003984 255.00

LR 0.7509405 0.0124037 155.00

BC 0.698092 0.0081906 55.00

SVM 0.6783361 0.0054433 50.00

XGBoost, eXtreme Gradient Boosting; RF, Random Forest; ANN, Artificial Neural

Network; KNN, K-Nearest Neighbor; SVM, Support Vector Machine; BG, Bagging; DT,

Decision Tree; LR, Logistic Regression; BC, Bayes Classifier.

were more likely to die from any disease at an average age

of 40 years (mean=40, median=39, IQR=36, SD=26), despite

the sex. We notice more women’s deaths from HIV and

circulatory diseases. On the contrary, we notice more male

deaths from other infectious diseases, tuberculosis, and external

causes (refer to Figure 4A). However, these differences were not

statistically significant.

Figure 4B depicts percentages of mortality trends across

all age groups. To determine mortality across age groups,

the data were grouped into five bins “0–4,” “5–14,” “15–

49,” “50–64,” and “65+.” We significantly notice a declining

trend in the number of deaths among persons aged between

0 and 4 years over time. In the earlier years of the

Agincourt HDSS, there appears a declining trend in the

number of deaths among individuals 65 years and above.

However, this pattern is reversed and the mortality in the

same age category is gradually increasing since the mid-

2000s. Similarly, we also notice an almost comparable trend

in the 50–64 age group to that of the 65+ group but the

trend is gentle and stable. Among the 5–14 and 15–49 age

groups, the number of deaths is appearing to be constant

over time.

FIGURE 3

Top 12 CoD diseases.

Frontiers in PublicHealth 11 frontiersin.org

213

https://doi.org/10.3389/fpubh.2022.990838
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Mapundu et al. 10.3389/fpubh.2022.990838

FIGURE 4

Computer Coded Verbal Autopsy (CCVA) mortality trends based on age, population, and gender. (A) Cause of death by sex. (B) Percentage of

deaths by age group. (C) Yearly mortality trends by gender.
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FIGURE 5

Gender and age group counts graphs. (A) Gender count. (B) Age group count per gender. (C) Age group count.
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FIGURE 6

Mortality trends across age groups. (A) Number of deaths over time. (B) Age at death count. (C) Yearly death count across age groups. (D) Age

group CoD count. (E) CoD and age death. (F) Age at death per year.

Figure 4C showsmortality trends based on gender over time.

A total of 16,063 observations was collected, and composed of

52% men (n = 8,354) and 48% women (n = 7,709). We observe

a gentle but steady increase in mortality between the years 1993

and 2000. This pattern rapidly accelerates among men between

2001 and 2008 before gradually declining.

8.2. ML techniques

Figures 6A–C depict the number of deaths over time, age

at death count and yearly death count across age groups

respectively. In this section, we present the results of our trend

and pattern analysis using ML approaches to mortality based

on gender, age, and population over time using narrative data

combined with structured questions. We start by looking at

the general distribution of our population based on gender,

as depicted in Figure 5A, age groups (Figures 5B,C). All these

graphs are depicted in Figure 5.We observe that there weremore

male deaths than female deaths. Most of the deaths were within

the 15–49 and 65+ age groups.

We analyzed our mortality trend and pattern based on age

groups as in Figure 5. We observe that most deaths are within

the 15–49 and 65+ age groups. The 65+ age group had more

deaths recorded in the 1990s with a gradual increase till 2014.

We also discovered that the 15–49 age group trend sharply

increases till 2008 and then steadily goes down till 2015. We

notice a constant trend for the 5–14 year age group over time.

There is a high number of deaths from HIV causes affecting

mostly the 15–49 age group. We also notice that most deaths

appear to be common in the 0–10 year age group and 30–

80 years age groups. Conversely, we notice fewer deaths for

80+ years.

Figures 6E,F depict our boxplots on CoD and age at death

over time and age at death per year. On average, the population

died of HIV/AIDS or tuberculosis which was the leading CoD at

amedian age of 38 years. The plots depict an average death age of

66 years succumbed to cardiovascular, neoplasm, metabolic, or

abdominal diseases.Worth taking note of is the death from other

infectious disease causes that show a dissimilar trend across all

age groups. Additionally, on average, most of the cases died

of metabolic causes at an elderly age of 65 years. Other Non

Communicable Diseases (NCDs’) causes of death were more

prevalent in the 30–35-year-old age group and neonatal and

maternal causes in their first year (shown by the narrow IQRs).

CoD from neurological and respiratory causes show a mortality
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FIGURE 7

Yearly CoD based on gender. (A) CoD based on gender. (B) Yearly CoD based on gender.

trend and pattern that illustrates an average age at death of 50

years. We observe that there were more deaths in men than

women, despite the cause. There is a gradual up-trend from

1992 (less than 100 deaths) to 2008 (almost 500 deaths) and

a steady decline in the number of deaths from 2009 (refer to

Figures 7A,B). Figure 6D illustrates that between the years 1993

and 1997, the average life expectancy was approximately 50

years. However, from 1998 to 2010, life expectancy significantly

dropped and the population was dying at a much younger age

of 40 years on average. From the year 2011, we see a gentle

improvement in life expectancy.

8.3. Analysis of contradicting cases

The extract details an analysis of the structure and semantics

of features in cases where the doctors are in disagreement. We

discovered that approximately 16%of the observations in the

VA dataset denote cases where the experts are in disagreement.

Further analysis of the structure and semantics availed insights

that in most cases the narratives entail information related to

traditional healers’ visits and consultations. Additionally, we

deduced that also this is a result of cases where the captured

information entails the imminent loss of weight, vomiting,

and having a fever leading to an unexplainable sudden death.

Figure 8 below shows our n-gram model of what was mined

from the contradicting narratives.

8.4. Model best predictors

This part discusses how the most important narrative

features where identified as the best predictors of our models.

We chose the bi-grams as they show an evenly distributed
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FIGURE 8

Tri-gram model showing frequently occurring contradicting cases.

frequency analysis of features (refer to Figure 9). As nincreases

the features start having more or less the same frequency.

9. Discussion

The process of determining causes of death using VAs

still remains a manual task and suffers from many drawbacks

(refer to Section 1). This negatively affects the VA reporting

process, despite it being vital for strengthening health priorities

and informing civil registration systems. Therefore, under

such circumstances, there is a great need for innovative novel

automated approaches to address these problems thereof.

In this study, we explore various VA data types, despite

most studies in literature reporting results based on the classical

dataset for CoD determination using ML approaches. Our aim

is to investigate if the narratives can improve or enhance model

prediction if they are added to the responses from the structured

questionnaire. Our deductions suggest that the VA narratives

have vital valuable information that should be used in model

prediction. Consequently, we identify the best model predictors

from the narratives. We further do a mortality pattern and trend

analysis based on age, population, and gender over time.We also

do a structure and semantic analysis of narratives in cases where

the experts agree and also disagree. To add to our findings, we

also investigate the best features that contribute to our models

from the narratives.

Generally, the results of all our ML models used in

this study, demonstrate that our models exhibited consistent

superior performance on all datasets. This further reinforces

the notion that ML approaches can be used as alternatives to

conventional approaches for CoD determination using VAs.

Ensemble classifiers (XGBoost, bagging), tree based models

(DT, RF), ANN and KNN performed exceptionally well on all

datasets. Our results of the combined dataset do not exhibit

a consistent model performance, as most models slightly drop

in model performance. This can be attributed to the fact that

the combined dataset creates high dimensionality of the feature

space and this triggers model complexity with too many noisy

data points. The CCVA approach, InterVA, attained a CSFM

accuracy of 83% and CCC of 36%.

Our CCVA approaches andML techniques produced similar

mortality trends and patterns based on age, population, and

gender. Interestingly, we observed that in the first decade

of the civil registration system, the average life expectancy

was approximately 50 years. However, in the second decade,
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FIGURE 9

Bi-gram model of our best model predictors.

life expectancy significantly dropped and the population was

succumbing to death at a slightly lower average age of

40 years. This suggests CoD mostly from the leading HIV

and tuberculosis related causes. Interestingly, in the third

decade, we see a gradual improvement in life expectancy,

possibly attributed to the implementation of effective health

intervention programmes. We notice that cardiovascular,

neoplasm, neurological, respiratory, and metabolic CoD mainly

affected the elderly. We observe that other infectious diseases

and external causes affected the population disproportionately

across all age groups, with the latter having an average

age at death of 30 years. Despite the expected CoD from

neonatal and maternal causes, we can also infer that those

with HIV had a lower life expectancy as compared to the

other CoDs. Of interest, is that most undetermined causes

of death are found within the 65+ age group. This suggests

that as the elderly population grows older, their health state

deteriorates and they succumb to many symptoms that can

lead to untimely hard to explain deaths. Other NCDs, causes

of death were more prevalent in the younger age groups.

We also discovered that sudden deaths are common in the

elderly, suggesting symptoms, such as imminent loss of weight,

vomiting, and having a fever leading to an unexplainable

premature death. Generally, we notice more deaths in men

than women.

We, therefore, propose that optimal model performance

should be set at 80% accuracy. In cases where the ML

model fails to reach a threshold value of 80% accuracy in

terms of performance, we propose an expert’s intervention

for further exploration and assessment. Conversely, in cases

where the experts are failing or do not reach a consensus,

we recommend the help of the machine to make predictions.

Most of these cases where the machine can assist, entail

narratives where the interviewee details most content about

the deceased circumstances and events that led to death based

on traditional healer visits and consultation. Interestingly,

we still found out that traditional healer consultations are a

common practice in the population as they occurred frequently

in our model best predictors. This cements the notion that

most people in the HDSS seek traditional ways for their

terminal illnesses, rather than western means. This finding

opened exciting avenues for future study, which will focus on

sequential text modeling with the aim of fully understanding

treatment sequences for terminal illnesses. Nevertheless, in cases

where the physicians were in agreement, these narrations about

traditional healer’s consultations were supplemented by enough
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symptoms that made it possible for the experts to give a proper

diagnosis. We also discovered that our model’s best predictors

entail matching symptoms with those in the responses to the

structured questionnaire.

The results of this study, consistent with several studies that

used VA data to determine CoD, suggest that ML approaches

can accurately classify CoD from VA narratives. However, in

most cases, statistical approaches and CCVA approaches are

always outperformed by ML approaches (1, 8, 9, 13, 23, 25,

34). Therefore, it is imperative for future research studies to

incorporate effective data handling strategies (8). This study

adds to the existing body of literature, suggesting that automated

approaches can be used as alternatives to PCVA in a cost effective

way, producing real-time results that are consistent, accurate,

and error free, thus strengthening health priorities. As such, VA

processes are still key in capturing civil registration data where

death occurs outside health facilities, up until a point when

deaths start to take place in areas where it can be documented.

Given these complexities, there is a great need for novel

automated approaches that can be used as alternatives (22).

The strength of this study lies in the application of

various ML and CCVA algorithms to various VA data types.

Moreover, our sample size was large and representative of

deaths that occurred at Agincourt HDSS that were captured

in a standard way. Moreover, our mortality trend and

pattern analysis gave us valuable insights into our HDSS

and this can be used to inform policy and practice. This

enforces generalization and comparability across studies. On the

contrary, this study had limitations of data quality described in

Section 1.2.

10. Conclusion

In general, this study demonstrates that ML techniques

can be used as alternatives in determining CoD from VA

narratives producing results comparable to physician diagnosis.

Our findings should be used to inform policy and practice and

enforce effective health intervention programmes and resource

prioritization to reduce the mortality rate and prolong life

expectancy. As such, they can help close the gap in civil

registration systems. Our comparative analysis of the ML

models on various VA datasets enforces comparability and

generalization, thus availing a baseline study for future research.

Future work will entail exploring deep learning methods

and employing novel techniques such as transfer learning to

determine CoD.
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Background: Identifying patients at high risk of stroke-associated pneumonia

(SAP) may permit targeting potential interventions to reduce its incidence.

We aimed to explore the functionality of machine learning (ML) and natural

language processing techniques on structured data and unstructured clinical

text to predict SAP by comparing it to conventional risk scores.

Methods: Linked data between a hospital stroke registry and a deidentified

research-based database including electronic health records and

administrative claims data was used. Natural language processing was

applied to extract textual features from clinical notes. The random forest

algorithm was used to build ML models. The predictive performance of ML

models was compared with the A2DS2, ISAN, PNA, and ACDD4 scores using

the area under the receiver operating characteristic curve (AUC).

Results: Among 5,913 acute stroke patients hospitalized between Oct 2010

and Sep 2021, 450 (7.6%) developed SAP within the first 7 days after stroke

onset. The ML model based on both textual features and structured variables

had the highest AUC [0.840, 95% confidence interval (CI) 0.806–0.875],

significantly higher than those of the ML model based on structured variables

alone (0.828, 95% CI 0.793–0.863, P = 0.040), ACDD4 (0.807, 95% CI 0.766–

0.849, P = 0.041), A2DS2 (0.803, 95% CI 0.762–0.845, P = 0.013), ISAN

(0.795, 95% CI 0.752–0.837, P = 0.009), and PNA (0.778, 95% CI 0.735–

0.822, P <0.001). All models demonstrated adequate calibration except for the

A2DS2 score.

Conclusions: The ML model based on both textural features and structured

variables performed better than conventional risk scores in predicting SAP. The

workflow used to generateML predictionmodels can be disseminated for local

adaptation by individual healthcare organizations.

KEYWORDS

machine learning, natural language processing, pneumonia, prediction, risk score,

stroke
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Introduction

The global burden of stroke is huge and rising (1).

According to the most updated statistics from the World Stroke

Organization, the global incidence of strokes exceeds 12 million

annually and the number of prevalent strokes is more than 100

million worldwide (2). Apart from direct neurological damage,

stroke patients are prone to medical complications such as

infection (3). Approximately 21−30% of stroke patients develop

post-stroke infections, with pneumonia accounting for a third

to half of them (4, 5). Stroke-associated pneumonia (SAP) is

not only associated with substantial morbidity and mortality

(6–8) but also increases direct healthcare costs (9). Despite the

advances in acute stroke treatment over the past decades, the

frequency of SAP remains unchanged (4). Effective strategies

and interventions are therefore urgently needed to reduce the

burden of pneumonia, a potentially preventable complication

of stroke.

To prevent SAP, a fundamental first step is the early

recognition of high-risk patients, for whom appropriate

preventive measures can be taken. Besides, the high-risk patient

group is also the main target population for which clinical

trials can be designed to test novel interventions for the

prevention of pneumonia. Analysis of patient data stored in

the Virtual International Stroke Trials Archive showed that

most post-stroke pneumonias occurred in the first week and

its incidence peaked on the third day after stroke onset (10).

Consequently, the risk of developing pneumonia should be

assessed as early as possible following stroke. To date, several

integer-based risk scores have been developed for predicting

SAP (11). Most of the risk models make predictions based on

similar predictor variables, such as age, stroke severity, and

the presence of dysphagia (11). Hence it is no surprise that

these risk models perform comparably regarding discrimination

and calibration (11–13). On the other hand, almost all existing

SAP prediction models were developed using logistic regression

analysis, thus ignoring the potential complex interactions

between variables.

With the advances in data science and artificial intelligence,

data-driven machine learning (ML) approaches have been

increasingly used to develop prediction models in the medical

domain (14). These approaches have also been introduced

to develop SAP prediction models (15, 16). Compared to

conventional parametric techniques like logistic regression, ML

approaches have several advantages such as the capability of

dealing with high-dimensional data and modeling complex and

non-linear relations between data. Furthermore, the ubiquitous

adoption of electronic health record (EHR) systems provides an

opportunity to use various types of structured and unstructured

data for data-driven prediction of clinical outcomes (17–19).

Using natural language processing techniques, information

extracted from unstructured clinical text has the potential to

improve the performance of clinical prediction models (20, 21).

Inspired by these ideas, we aimed to explore the value of

combining both structured and unstructured textual data in

developing ML models to predict SAP.

Materials and methods

Data sources

The data sources for this study were the hospital stroke

registry and the Ditmanson Research Database (DRD), a

deidentified database comprising both administrative claims

data and EHRs for research purposes. Supplementary Table 1

lists the general specifics of the data sources. The DRD currently

holds clinical information of over 1.4 million patients, including

0.6 million inpatient and 21.5 million outpatient records.

It includes both structured data (demographics, vital signs,

diagnoses, prescriptions, procedures, and laboratory results)

and unstructured textual data (physician notes, nursing notes,

laboratory reports, radiology reports, and pathology reports).

The hospital stroke registry has prospectively registered all

consecutive hospitalized stroke patients since 2007 conforming

to the design of Taiwan Stroke Registry (22). Currently, it

has enrolled over 12,000 patients. The stroke registry consists

of structured data only. Stroke severity was assessed using

the National Institutes of Health Stroke Scale (NIHSS) while

functional status was evaluated using the modified Rankin

Scale (mRS). Information regarding patients’ demographics,

risk factor profiles, treatments and interventions, complications,

and outcomes were collected by trained stroke case managers.

To create the dataset for this study, the stroke registry was

linked to the DRD using a unique encrypted patient identifier.

The study protocol was approved by the Ditmanson Medical

Foundation Chia-Yi Christian Hospital Institutional Review

Board (approval number: 2022060). Study data were maintained

with confidentiality to ensure the privacy of all participants.

Study population

The derivation of the study population is shown in

Supplementary Figure 1. The stroke registry was queried for all

stroke hospitalizations, including both acute ischemic stroke

(AIS) and intracerebral hemorrhage (ICH), between Oct 2010

and Sep 2021. Only the first hospitalization was considered

for each patient. Patients who suffered an in-hospital stroke or

already had pneumonia on admission and those whose records

could not be linked were excluded. Patients with missing data

that made the calculation of pneumonia risk scores impossible

were excluded. The study population was randomly split into a

training set that consisted of 75% of the patients and a holdout

test set comprising the remaining 25% of the patients.
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Predictor and outcome variables

The outcome variable was SAP occurring within the first 7

days after stroke onset (23). As per the protocol of the Taiwan

Stroke Registry (22), the diagnosis of SAP was made according

to the modified Centers for Disease Control and Prevention

criteria (23). Because risk stratification at an early stage after

stroke is preferred so that appropriate interventions can be

applied, only information available within 24 h of admission was

considered. Candidate predictors comprised demographics, pre-

stroke dependency (defined as an mRS score of ≥3), risk factors

and comorbidities, prior use of medications, physiological

measurements, neurological assessment (NIHSS, Glasgow coma

scale, and bedside dysphagia screening), as well as routine

blood tests (Supplementary Table 2). For predictors that had

multiple measurements after admission, such as physiological

measurements, neurological assessment, and routine blood

tests, only the first measurement was used. Missing values for

continuous variables were imputed using the mean of non-

missing values. Then each continuous variable was rescaled to

a mean of zero and a standard deviation of one.

In the study hospital, admission notes are written in English.

To extract predictor features from clinical text, we experimented

with three approaches of text representation: a simple “bag-of-

words” (BOW) approach, a fastText embedding approach (24),

and a deep learning approach using the bidirectional encoder

representations from transformers (BERT) (25).

The free text from the History of Present Illness (HPI)

section of the admission note was preprocessed through the

following steps: spell checking, abbreviation expansion, removal

of non-word symbols, lowercase conversion, lemmatization,

marking of negated words with the suffix “_NEG” using the

Natural Language Toolkit mark_negation function with default

parameters (https://www.nltk.org/_modules/nltk/sentiment/

util.html), and stop-word removal. Lemmatization, negation

marking, and stop-word removal were not needed for the

BERT approach.

Supplementary Figure 2 shows an example of feature

extraction and preprocessing using the BOW approach. Having

no prior knowledge of what information the text can provide,

we used an “open-vocabulary” approach (26) to detect features

predictive of SAP. We built a document-termmatrix where each

column represents each unique feature (word or phrase) from

the text corpus while the rows represent each patient’s clinical

document. The preprocessed text was vectorized using the BOW

approach with three different types of feature representation

(27). In other words, the cells of the document-term matrix

represent the counts of each word within each document (term

frequency), the absence or presence of each word within each

document (binary representation), or the term frequency with

inverse document frequency weighting, respectively. Because

medical terms are commonly comprised of two words or even

more, we also experimented with adding word bigram features

(two-word phrases) to the basic BOW model. To reduce noise

such as redundant and less informative features as well as to

improve training efficiency (28), feature selection was performed

by selecting the top 20 words or phrases that appeared in the

documents of patients with SAP and those without based on

chi-square statistics (29). Supplementary Figures 3–6 show the

top 20 selected words or phrases for each feature representation

method.

The fastText subword embedding model is an extension of

Word2Vec, which uses skip-grammodel to represent each word

in the form of character n-grams (24). It allows handling out-of-

vocabulary words in the training samples. We resumed training

of themodel from a pre-trainedmodel called BioWordVec using

the training set. Then the clinical text was vectorized using

the trained model. BioWordVec was originally created from

unlabeled biomedical text from PubMed and Medical Subject

Headings using the fastText subword embedding model (30).

Later, the original BioWrodVec was extended by adding the

Medical Information Mart for Intensive Care III clinical notes

to the training text corpus (31).

The BERT model is a contextualized word representation

model, which allows modeling long-distance dependencies in

text. The BERT model is pre-trained based on masked language

modeling and next sentence prediction using bidirectional

transformers on the general Toronto BookCorpus and English

Wikipedia corpus (25). For this study, we used a domain-specific

BERT model, i.e., ClinicalBERT (32), which was pre-trained on

the Medical Information Mart for Intensive Care III clinical

notes. We fine-tuned the BERT model using the training set to

predict SAP. The text from the training set was preprocessed

and split into BERT tokens. Since the BERT model can only

accommodate 512 tokens, the input text was truncated to 512

tokens. For BERT fine-tuning, the batch size was set at 16. The

learning rate of the Adam optimizer was set at 2× 10−5 and the

number of epochs was 3. Then text from the training and test sets

was vectorized by averaging all contextualized word embeddings

output by the fine-tuned BERT model.

SAP risk scores

To compare the predictive performance of ML models, four

conventional SAP risk scores (Table 1) were used as comparison

models based on variables available in the dataset. The total

score of each SAP risk score is calculated by summing up the

scores of all its items. A higher total score indicates a greater

risk of developing SAP. The A2DS2 score was derived from

clinical data of patients with AIS from the Berlin Stroke Register

(33). It comprised age (1 point for ≥75), atrial fibrillation (1

point), dysphagia (2 points), male sex (1 point), and NIHSS (3

points for 5–15 and 5 points for ≥16). The 22-point ISAN score

was developed using data of patients with AIS or ICH from
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TABLE 1 Risk scores for predicting stroke-associated pneumonia.

A2DS2 ISAN PNA ACDD4

Age

≥70 +1

≥75 +1 +1

60–69 +3

70–79 +4

80–89 +6

≥90 +8

Male +1 +1

Diabetes +1

AF +1

CHF +1

Pre-stroke dependency +2

NIHSS

5–15 +3 +5 +3

≥16 +5 +5

16–20 +8

≥21 +10

Dysphagia +2 +4

Dysarthria +1

AF, atrial fibrillation; CHF, congestive heart failure; NIHSS, National Institutes of Health

Stroke Scale.

a national United Kingdom registry (34). It consisted of pre-

stroke dependency (2 points), male sex (1 point), age (3 points

for 60–69, 4 points for 70–79, 6 points for 80–89, and 8 points

for ≥90), and NIHSS (5 points for 5–15, 8 points for 16–20, and

10 points for ≥21). The PNA score, created using data of AIS

patients from a single academic institution, included age (1 point

for ≥70), history of diabetes (1 point), and NIHSS (3 points for

5–15 and 5 points for >15) (35). The ACDD4 score, developed

based on a single-site cohort of patients with AIS or ICH, was

composed by age (1 point for ≥75), congestive heart failure (1

point), dysarthria (1 point), and dysphagia (4 point) (36).

Machine learning models

ML models were constructed based on structured variables,

features extracted from the text, or a combination of

both (Supplementary Figure 7). For comparison of classifier

performance, simple logistic regression was used as the baseline.

Because the performance of ML classifiers can be affected by

class imbalance, we experimented with both oversampling and

under-sampling methods to maintain the ratio of majority and

minority classes as 1:1, 2:1, or 3:1 (37). The random forest

(RF) algorithm was used to build classifiers. RF is a classifier

ensemble method that consists of a set of decision tree classifiers.

During the learning process, RF iteratively adopts the bootstrap

aggregating method to select samples and randomly selects a

subset of predictors. In each iteration, each set of bootstrap

samples with a subset of predictors is used to generate a decision

tree. In the end, the algorithm outputs a whole forest of decision

trees, which can be used for prediction by a majority vote of

the trees.

During the training process (Supplementary Figure 7),

we first experimented with different combinations of text

vectorization techniques and resampling methods without

hyperparameter tuning. We repeated 10-fold cross-validation

10 times to estimate the performance of classifiers. The best

combination of text vectorization and resampling methods was

determined based on the area under the receiver operating

characteristic curve (AUC). Next, for each text vectorization

technique with its corresponding best resampling method, we

trained classifiers with hyperparameter tuning using 10 times

of 10-fold cross-validation to determine the best number of

decision trees in the random forest. Then we trained the

final ML models from the whole training set using the best

hyperparameter. The generated ML models were tested on

the holdout test set. Shapley additive explanations (38) was

used to interpret the model output. The experiments were

carried out by using scikit-learn, imbalanced-learn, gensim,

transformers, sentence-transformers, and SHAP libraries within

Python 3.7 environment.

Statistical analysis

Categorical variables were presented with counts and

percentages. Continuous variables were reported as medians and

interquartile ranges. Differences between groups were tested by

Chi-square tests for categorical variables and Mann-Whitney U

tests for continuous variables.

Because accuracy may not be appropriate for model

evaluation under imbalanced scenarios (39), the AUC was

chosen as the primary evaluation metric for comparing the

performance of prediction models on the holdout test set. The

AUC for SAP risk scores was calculated using the receiver

operating characteristic (ROC) analysis to determine the ability

of each risk score to predict SAP. The method for ROC

analysis was detailed in the Supplementary Methods in the

Supplementary material. AUCs were calculated and compared

using DeLong’s method (40). The AUC ranges from 0 to 1,

with 0.5 indicating random guess and 1 indicating perfect

model discrimination. A model with an AUC value above

0.7 is considered acceptable for clinical use (41). The point

closest to the upper left corner of the ROC curve (42),

which represents the optimal trade-off between sensitivity and

specificity, was considered the cut-off value for each SAP score.

Then each SAP score was transformed into a binary variable for

calculating accuracy, precision (positive predictive value), recall

(sensitivity), and F1 score. Model calibration was evaluated by
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theHosmer-Lemeshow test and visualized by the calibration plot

(43), which depicts the observed risk vs. the predicted risk.

All statistical analyses were performed using Stata 15.1

(StataCorp, College Station, Texas) and R version 4.1.1 (R

Foundation for Statistical Computing, Vienna, Austria). Two-

tailed P values of 0.05 were considered significant.

Results

Characteristics of the study population

The study population consisted of 5,913 patients including

4,947 (83.7%) with AIS and 966 (16.3%) with ICH. A total of

450 (7.6%) patients developed SAP. Table 2 lists their baseline

characteristics. Patients with SAP were older, more likely to be

male, and more likely to have atrial fibrillation, congestive heart

failure, pre-stroke dependency, dysarthria, and dysphagia, but

less likely to have hyperlipidemia. They had a higher pre-stroke

mRS, NIHSS, and white blood cell (WBC) count as well as a

lower consciousness level than those without SAP. The training

set consisted of 4,434 patients and the remaining 1,479 patients

comprised the holdout test set (Supplementary Table 3).

Construction of ML models

Supplementary Figure 8 shows the estimates of AUC

obtained from 10 times of 10-fold cross-validation in the

training set. In general, the RF algorithm outperformed logistic

regression when structured variables or both structured and

textual features were used to build classifiers. By contrast,

logistic regression models had higher AUCs than RF classifiers

when only textual features were used. Resampling methods

generally improved the performance of ML classifiers. Overall,

RF classifiers based on both structured variables and textual

features attained higher AUCs than the other classifiers. Text

representation using the BOW approach performed better

than that using the fastText embedding or BERT approach.

The highest AUC was achieved by the ML model using

the combination of text vectorization with BOW (binary

representation) and 1:2 under-sampling of data.

Supplementary Table 4 shows the performance of ML

models on the holdout test set and the number of decision

trees used to build the RF classifiers. Supplementary Table 5

lists P values for pairwise comparisons of AUCs between these

models. In general, ML models based on both structured and

textual features achieved higher AUCs than those based on

textual features alone. The ML model using the combination

of text vectorization with BOW (binary representation) also

had the highest AUC among all ML models. Therefore, it was

chosen as the final model (ML Model A). For comparison with

conventional risk scores, the ML model based on structured

variables alone (ML Model B) was also evaluated.

Comparison with conventional risk
scores

By determining the point closest to the upper left corner of

the ROC curve (42) the cut-off value for predicting SAP was

4.5 points for A2DS2, 9.5 points for ISAN, 4.5 points for PNA,

and 1.5 points for ACDD4, respectively. The cut-off value for

ML models was set at the probability of 0.5. Accuracy, precision,

recall, and F1 score were calculated based on these cut-off values.

Table 3 lists the performance of ML models and conventional

SAP risk scores on the holdout test set. Among all prediction

models, MLModel A attained the highest AUC, accuracy, and F1

score. Figure 1 plots the ROC curves of the four SAP risk scores

and twoMLmodels. All the prediction models achieved an AUC

value >0.7. ML Model A had the highest AUC [0.840, 95%

confidence interval (CI) 0.806–0.875], which was significantly

higher than those of ML Model B (0.828, 95% CI 0.793–0.863,

P = 0.040), ACDD4 (0.807, 95% CI 0.766–0.849, P = 0.041),

A2DS2 (0.803, 95% CI 0.762–0.845, P = 0.013), ISAN (0.795,

95% CI 0.752–0.837, P= 0.009), and PNA (0.778, 95% CI 0.735–

0.822, P <0.001). Figure 2 shows the calibration plots and P

values for the Hosmer-Lemeshow test for the prediction models.

ML Model A was well-calibrated over the entire risk range with

all points lying close to the 45-degree line (P = 0.579). All the

other prediction models also demonstrated adequate calibration

except for the A2DS2 score (P = 0.023).

Influential features selected by ML
models

Figure 3A shows the top 20 most influential features selected

by ML Model A ordered by the mean absolute Shapley

value, which indicates the global importance of each feature

on the model output. Figure 3B presents the beeswarm plot

depicting the Shapley value for every patient across these

features, demonstrating each feature’s contribution to the model

output. According to the magnitude and direction of the

Shapley value, higher values of NIHSS, WBC count, heart rate,

blood glucose, international normalization ratio, and aspartate

aminotransferase were associated with a higher risk of SAP,

while lower values of Glasgow coma scale total score and its

component (verbal, motor, and eye) scores, body mass index,

platelet count, and triglyceride were associated with a higher

risk of SAP. Male patients and those with dysphagia, dysarthria,

or current smoking were more likely to have SAP. Among the

textual features, the presence of “numbness”, “deny”, or “acute”

in the HPI of the admission note was associated with a decreased
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TABLE 2 Baseline characteristics of the study population.

Characteristic Total (N = 5,913) SAP (N = 450) No SAP (N = 5,463) P†

Age 70 (59–78) 72 (61–80) 69 (59–78) <0.001

Male 3,643 (61.6) 308 (68.4) 3,335 (61.0) 0.002

Hypertension 4,739 (80.2) 361 (80.2) 4,378 (80.1) 0.966

Diabetes 2,422 (41.0) 188 (41.8) 2,234 (40.9) 0.714

Hyperlipidemia 3,167 (53.6) 187 (41.6) 2,980 (54.6) <0.001

AF 822 (13.9) 106 (23.6) 716 (13.1) <0.001

CHF 226 (3.8) 30 (6.7) 196 (3.6) 0.001

COPD 397 (6.7) 34 (7.6) 363 (6.6) 0.458

Smoking 2,431 (41.1) 202 (44.9) 2,229 (40.8) 0.090

Pre-stroke dependency 562 (9.5) 80 (17.8) 482 (8.8) <0.001

Pre-stroke mRS 0 (0–0) 0 (0–1) 0 (0–0) <0.001

NIHSS 5 (3–11) 17 (9–27) 5 (3–10) <0.001

GCS 15 (14–15) 13 (8–15) 15 (15–15) <0.001

Dysphagia 1,195 (20.2) 282 (62.7) 913 (16.7) <0.001

Dysarthria 3,039 (51.4) 338 (75.1) 2,701 (49.4) <0.001

Glucose (mmol/L) 7.38 (6.11–9.99) 7.77 (6.27–10.43) 7.33 (6.11–9.96) 0.030

WBC (109/L) 7.68 (6.19–9.61) 8.49 (6.63–10.96) 7.63 (6.16–9.47) <0.001

A2DS2 4 (1–5) 6 (4–6) 3 (1–5) <0.001

ISAN 7 (4–10) 11 (8–14) 7 (4–9) <0.001

PNA 4 (1–5) 5 (4–6) 4 (1–5) <0.001

ACDD4 1 (0–2) 5 (2–5) 1 (0–2) <0.001

†P values are comparisons between patients with SAP and those without SAP for each variable.

Data are given as n (%) and median (interquartile range).

AF, atrial fibrillation; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; GCS, Glasgow coma scale; mRS, modified Rankin Scale; NIHSS, National Institutes of

Health Stroke Scale; SAP, stroke-associated pneumonia; WBC, white blood cells.

TABLE 3 Performance of prediction models for predicting SAP.

Model AUC (95% CI) Accuracy Precision Recall F1 score

MLmodel A 0.840 (0.806–0.875) 83.2% 0.254 0.634 0.363

ML model B 0.828 (0.793–0.863) 76.3% 0.212 0.786 0.334

A2DS2 0.803 (0.762–0.845) 75.1% 0.197 0.741 0.311

ISAN 0.795 (0.752–0.837) 76.9% 0.202 0.696 0.313

PNA 0.778 (0.735–0.822) 75.9% 0.189 0.661 0.294

ACDD4 0.807 (0.766–0.849) 73.5% 0.193 0.786 0.310

AUC, area under the receiver operating characteristic curve; CI, confidence interval; ML, machine learning; SAP, stroke-associated pneumonia.

risk of SAP. The top 20 most influential features selected by ML

Model B are shown in Supplementary Figure 9 for reference.

Discussion

In this exploratory study, the predictive performance of ML

models was nominally higher than those using conventional

SAP risk scores in terms of discrimination. Notably, the ML

model built on both structured and unstructured textual data

performed significantly better than the ML model built on

structured data alone as well as all the conventional risk scores.

Besides, we discovered several influential features or predictors

of SAP using Shapley values. These predictors might help

early stratification of stroke patients who are more likely to

develop SAP.

Predictors of SAP

Among the top 20 influential predictors selected by the

ML model, NIHSS score, Glasgow coma scale score, dysphagia,

dysarthria, current smoking, male sex, WBC count, and blood
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FIGURE 1

Receiver operating characteristic curves for predicting

stroke-associated pneumonia in the holdout test set by existing

pneumonia risk scores and two ML models. ML Model A was

built using both structured variables and features extracted from

the text. ML Model B was built using structured variables alone.

The AUC (95% CI) is shown for each model. AUC, area under the

receiver operating characteristic curve; CI, confidence interval;

ML, machine learning.

glucose were known predictors of SAP, which have been

included in conventional SAP risk scores (11, 33–36). A

higher value of international normalized ratio in the context

of stroke generally denotes the use of vitamin K antagonist

and preexisting atrial fibrillation, which is also a known risk

factor for SAP (11, 33). Interestingly, the ML model identified

additional predictors, such as lower values of body mass index,

platelet count, and triglyceride as well as higher values of

heart rate and aspartate aminotransferase. Previous studies have

found significantly lower body mass index, platelet count, and

triglyceride as well as higher aspartate aminotransferase in

stroke patients with SAP than those without (16, 44, 45). All

these factors indicate poorer nutritional status, which may have

a role in the development of SAP (45). Higher heart rate at

rest was associated with poorer functional status in the elderly

and predicted subsequent functional decline independently of

cardiovascular risk factors (46). Higher initial in-hospital heart

rate also predicted poorer stroke outcomes (47). The potential

influence of these additional predictors on the development

of SAP may warrant further research. We speculate that these

factors are missing in conventional SAP risk scores either

because logistic regression models cannot handle complex

interactions and non-linear relationships among variables, or

simply because they were not expected to be predictors of SAP

and thus not investigated in previous studies.

Hidden information from clinical text

The key finding of the present study was that the information

extracted from unstructured clinical text could improve the

prediction of SAP. However, the reason why the identified

textual features (words) were associated with the risk of SAPmay

not be readily discernible unless these words and their context

are examined simultaneously. For example, stroke patients who

complain of “numbness” are generally fully conscious and may

suffer a pure sensory stroke or sensorimotor stroke due to

a small ischemic lesion (48, 49), which carries a low risk of

pneumonia. Likewise, patients who can provide a history of their

illness and “deny” the presence of certain symptoms are likely

to have clear consciousness and may have mild neurological

impairment. Furthermore, the mode of symptom onset can

influence the pre-hospital delay of stroke patients (50). Patients

experiencing “acute” symptoms are generally admitted to the

stroke unit earlier while stroke unit care is associated with a

lower frequency of SAP (4). These findings demonstrate that

useful and informative predictors could be uncovered from

unstructured clinical text through natural language processing

and ML without human curation.

Clinical significance and implications

SAP has traditionally been attributed to aspiration secondary

to dysphagia, impaired cough reflex, or reduced level of

consciousness (3). Nonetheless, up to 40% of SAP may be

unrelated to aspiration (8). Other causes such as bacteremia

due to dysfunction of the gut immune barrier (51) and stroke-

induced immune suppression (3, 52) may also contribute to

the development of SAP. So far there is no sufficient evidence

from clinical trials to demonstrate the effect of dysphagia

screening protocols on the prevention of SAP (53). Meta-

analyses of randomized trials have also failed to support the use

of preventive antibiotic therapy to decrease the risk of SAP in

acute stroke patients (54, 55). Furthermore, only weak evidence

exists about whether intensified oral hygiene care reduces the

risk of SAP (56, 57). Therefore, it is still a major challenge to

find new therapeutic approaches to prevent SAP.

Despite this, adequate stratification of SAP risk is not

without value. First, a good understanding of the risk of this

serious complication of stroke will improve communication

between physicians, patients, and caregivers. Second, the

identification of at-risk patient groups allows recruiting suitable

patients into clinical trials to test preventive interventions for

SAP. Up to two-thirds of SAP occurs in the first week, with

a peak incidence on the third day after stroke onset (10).

Therefore, early stratification of SAP risk is beneficial in both

clinical practice and research settings. The ML model developed

in this study, which was based on information available within

24 h of admission, is well–suited for use in this context.

Frontiers in PublicHealth 07 frontiersin.org

229

https://doi.org/10.3389/fpubh.2022.1009164
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tsai et al. 10.3389/fpubh.2022.1009164

FIGURE 2

Calibration plots for predicting stroke-associated pneumonia in the holdout test set by existing pneumonia risk scores and two ML models. The

P value for the Hosmer-Lemeshow test is shown for each model. ML, machine learning.

Limitations

This study has several limitations to be addressed. First,

even though data-driven ML modeling has the potential to

identify novel predictors, the predictor-outcome relationships

discovered from data do not translate into a causal relationship

(58). Second, we only extracted textual information from the

HPI section of the admission note and did not investigate

other clinical notes such as nursing notes and image reports.

Further studies may examine the usefulness of information

extracted from different kinds of clinical notes. Third, this

study used oversampling and under-sampling techniques to

solve the problem of data imbalance. Other data preprocessing

approaches, such as synthetic minority oversampling technique

or its variants (37), can be explored in future studies. Fourth,

several criteria exist to determine the most appropriate cut-

off value for tests with continuous outcomes (42). The use of

different criteria can result in different cut-off values for SAP

risk scores, hence different results of accuracy, precision, recall,

and F1 score. Fifth, high percentages of missingness for certain

potential predictors, such as glycosylated hemoglobin, might

prevent the ML algorithm from identifying their significance.

Finally, this is a single-site study, and the generalizability of the

study findings is limited. For example, the vocabulary and terms

used for clinical documentation may differ across healthcare

settings. Nevertheless, the procedure of model development can

be replicated in individual hospitals to generate customized

versions of SAP prediction models.
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FIGURE 3

The top 20 most influential features identified by the model based on both structured variables and features extracted from the text. The average

impact of each feature on the model output was quantified as mean absolute Shapley values (A). Each feature’s individual Shapley values for

each patient are depicted in a beeswarm plot (B), where a dot’s position on the x-axis denotes each feature’s contribution to the model

prediction for the corresponding patient. The color of the dot specifies the relative value of the corresponding feature. AST, aspartate

aminotransferase; BMI, body mass index; GCS, Glasgow coma scale; HR, heart rate; INR, international normalization ratio; NIHSS, National

Institutes of Health Stroke Scale; WBC, white blood cells.

Conclusions

We demonstrated that it is feasible to build ML models

to predict SAP based on both structured and unstructured

textual data. Using natural language processing, pertinent

information extracted from clinical text can be applied to

improve the performance of SAP predictionmodels. In addition,

ML algorithms identified several novel predictors of SAP. The

workflow used to generate these models can be disseminated for

local adaptation by individual healthcare organizations.
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Three-dimensional evaluation
using CBCT of the mandibular
asymmetry and the
compensation mechanism in a
growing patient: A case report

Monica Macrì* and Felice Festa

Department of Innovative Technologies in Medicine and Dentistry, University “G. D’Annunzio” of

Chieti-Pescara, Chieti, Italy

Background: This case report aims to evaluate the development and the

compensation mechanisms of the mandibular asymmetry in a growing male

patient using cone beam computed tomography (CBCT). In this case, the

menton deviated on the right, a sporadic condition, which may be the

consequence of a disorder in the mandibular growth.

Case presentation: The young male patient was treated with rapid palatal

expander (RPE) and Fränkel functional regulator III (FR-3). The initial CBCT was

acquired at the beginning of therapy when the patient was 8 years old, and

the final CBCT was developed at the end of the treatment when the patient

was 12 years old. The patient’s CBCT was performed with the head oriented

according to the Natural Head Position (NHP); the NHP is a physiological and

reproducible posture defined for morphological analysis. The 3D image of the

cranium was oriented in the Dolphin software according to NHP posture, and

cephalometricmeasurements were taken in the software’s frontal, laterolateral

right and left, posteroanterior, and submentovertex views. The therapy lasted

3.8 years and ended with significant regression of the mandibular asymmetry

from moderate grade (4.2mm) to slight grade (1.3 mm).

Conclusion: The literature shows that the left hemi-mandible has grownmore

than the right side, which a�rms that in case of deviation of the menton

>4mm, the bone volume increases on the non-deviated side.

KEYWORDS

facial asymmetry, dental midline deviation, CBCT, rapid palatal expander, Fränkel-III,

orthopedic therapy, orthodontic therapy
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Background

Facial asymmetry is the difference in shape, size, position, or

function between the two sides of the face (1). In most cases,

the asymmetry is not clinically detectable; it is also known as

subclinical, minor, or normal facial asymmetry (2).

A dominant half-face is recognized in all subjects: in 80%

of cases, it corresponds to the right side, with no differences in

distribution according to sex and age (3). The dominance of the

right side is explained by the migration of the cells of the cranial

neural crest (NCC): migration begins earlier on the right side

than on the left side, but it ends simultaneously on both sides;

for this reason, there is an evident dominance on the right side

of the face; consequently, the menton left shift (the most inferior

point on mandibular symphysis) is more frequent than the right

shift (4).

In addition, mandibular asymmetry is more frequent than

maxillary asymmetry. The growth of the maxilla is more stable

due to the connection with the cranial base synchondroses,

and it is less vulnerable to environmental factors influence;

differently, themandible is the onlymobile bone in the skull, and

for this reason, it is highly prone to environmental impacts (5).

The right shift of the menton is a rare condition that

may result from a disorder in the mandibular growth (i.e.,

facial trauma, TMJ ankylosis, bad habits, prone sleep position,

premature tooth loss, and iatrogenic causes) (6).

The craniofacial growth can be compromised if a pathogenic

noxa affects an evolutionary age, producing deformities and

asymmetries in the head–neck district.

It is essential to detect dentofacial asymmetries in

orthodontic practice: the dental midline is a reference landmark

that must coincide with the center of the mouth (the imaginary

line that joins the center of the philtrum with the center of the

palatine raphe). The mandibular midline corresponds to the

inferior interincisal line (7).

When a clinician observes a mandibular asymmetry in

children, he has to think of a functional asymmetry, which

must be corrected to prevent its transformation into a skeletal

and joint asymmetry. Using the Frankel function regulator,

it is possible to re-center the two arches and restore muscle

function, breathing and vocalization. If amandibular asymmetry

is detected within 6 years of age, it can be fully recovered,

preventing TMD (8) and joint problems in future adult

patients (9).

Treating mandibular asymmetry as soon as it is detected is

important, and it has practical results if treated during primary

dentition. Frankel’s function regulator type 3 is very effective,

especially in treating third-class malocclusions, even if treated

in early mixed dentition (10).

With its particular shape and design, the device promotes

maxillary growth by retracting soft tissues that block it and

stimulating the periosteum, directing mandibular growth (11).

The device consists of four resin shields: two on the anterior part

and the other on the sides. The upper anterior shields eliminate

the pressure of the upper lip on the underdeveloped jaw. The two

vestibular shields act superiorly by stimulating the periosteum

and relieving the pressure of the buccinator (12).

Controlled retrospective studies show that the craniofacial

changes following the treatment with Frankel-III are stable.

There is no significant inhibition of mandibular growth but

the closure of the gonial angle. Intermaxillary and interdental

changes are maintained and stable over time (13).

Some authors recommended that to be effective, long-term

appliance wear (more than 5 years) is necessary to achieve

clinically valuable results in FR-3 appliances (14).

The present case report describes the successful orthopedic

and orthodontic treatments of an 8-year-old Caucasian patient

with an anterior crossbite and severe mandibular deviation to

the right side.

The orthopedic–orthodontic treatment lasted 3.8 years and

was divided into two phases: the first phase with the RPE and

the second phase with the FR-3. The patient was 8 years at

the beginning of therapy and 12 years at the end. The CBCT

scans were acquired at the treatment’s beginning (T0) and

the end (T1).

Case presentation

Diagnosis and etiology

An 8-year-old male patient visited the Orthodontic

Department at G. D’Annunzio University in Chieti, Italy,

with a chief complaint of anterior crossbite and mandibular

asymmetry. No systemic pathologies or maxillofacial disorders

were found in the medical history.

The facial evaluation showed a straight profile and a soft-

tissue asymmetry of the lower face with a mandible shift to

the right side. Intraorally, the dentition was mildly crowded in

the upper arch, and a class III molar relationship was observed

on the left and right sides. The mandibular dental midline was

deviated 4mm to the right, whereas the upper dental midline

coincided with the facial midline.

The patient exhibited a normal overbite and an anterior

crossbite with a−2.0 mm overjet.

The dental cast analysis at T0 revealed a maxillary transverse

deficiency: the upper arch width was 2.5mm narrower than the

lower arch in the first molar region.

The cephalometric analysis at T0 reveals a class I skeletal

profile (15) (ANB: +0.9◦), mesocephalic (16) (SN—GoGn:

30.1◦), hypodivergent growth pattern (17) (FH—GoGn: 13.6◦),

and moderate right shift of the menton (4.2mm) (18).
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FIGURE 1

Natural head position. (A) Pre-treatment frontal view; (B) Pre-treatment lateral view (right); (C) Post-treatment frontal view; (D) Post-treatment

lateral view (right). The red line corresponds to the sagittal plane. The green line corresponds to the coronal plane. The blue line corresponds to

the transverse plane. The reference landmarks used for cephalometric measurements are shown in Table 1.

Cone beam CT analysis

All CBCT examinations were taken at T0 and T1 and were

performed by the Planmeca ProMax R© 3D MID unit (Planmeca

Oy, Helsinki, Finland) according to the low-dose protocol (19)

with these parameters: large FOV, standard resolution quality

images, 80 kVp, 5Ma, and acquisition time of 15 s resulted in

an effective dose of 35 microsieverts (µSv) (20).

The three-dimensional graphic rendering software used

for the cephalometric measurements was Dolphin Imaging

11.95 Premium (Patterson Technology, Chatsworth, CA). The

software processes the 3D-CT scan images in 2D-Digital

Imaging and Communications in Medicine (DICOM) files.

The patient’s CBCT was performed with the head oriented

according to the NHP; the patient was in a sitting position

with the back perpendicular to the floor as much as possible.

The head was stabilized with ear rods in the external

auditory meatus. The patient was instructed to look into

their eyes in a mirror 1.5m away to obtain NHP. The

NHP is a physiological and reproducible posture defined for

the morphological analysis described in the orthodontic and

anthropological literature (21).

The 3D image of the cranium was oriented in the

Dolphin software according to NHP posture before taking

cephalometric measurements.

The NHP orientation was carried out by the widgets

present in Dolphin; hard and soft tissue views were checked

for orientation in the software by visualizing the head

from the front, right, and left sides. In the NHP, there

are three reference planes (Figure 1), perpendicular to each

other, which are identified on the software for the patient’s

cephalometric measurements.
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TABLE 1 Reference cephalometric landmarks.

Landmark Abbreviation Description

Crista Galli Cg The most superior point of the

crista Galli of the ethmoid bone

Basion Ba The median point on the

anterior margin of the foramen

magnum

Porion Po The highest point on the roof of

the external auditory meatus

Orbitale Or The deepest point on the

infraorbital margin

Condylion superius Cdsup The most superior point of the

condyle head

Condylion medialis Cdmed The most medial point of the

condyle head

Condylion lateralis Cdlat The most lateral point of the

condyle head

Condylion posterius Cdpost The most posterior point of the

condyle head

Sigmoid notch S The most inferior point of the

sigmoid notch

Gonion lateralis Golat The most lateral point of the

gonion area

Gonion posterius Gopost The most posterior point of the

gonion area

Gonion inferius Goinf The most inferior point of the

gonion area

Menton Me The most inferior point on the

mandibular symphysis

First maxillary molar 6 Occlusal fossa of the maxillary

first molar

Mandibular canine 3 Cuspal tip of the mandibular

canine

1. The transverse plane coincides with the Frankfurt plane

(FH), a plane passing through two points: Orbital (Or) and

Porion (Po);

2. The sagittal plane coincides with the mid-sagittal plane

(MSP), a plane perpendicular to the plane FH and passing

through two points: crista galli (Cg) and basion (Ba);

3. The coronal plane coincides with the anteroposterior (PO)

plane, perpendicular to the FH and MSP, passing through the

right and left Porion.

The CBCT measurements (Table 2) were performed in

frontal, laterolateral (LL) right, LL left, posteroanterior (PA),

and submentovertex (SMV) views. Each measurement was

performed on the initial and final CBCT. Also, the size of the

right and left masseter muscles was evaluated with a widget

present in Dolphin. In the frontal view, the size of each muscle

was measured by adjusting the translucency instrument to

discriminate soft from hard tissues.

Treatment objectives

Based on the clinical and radiographic findings, the primary

objectives of treatment were planned as follows: (1) correction

of the dental and skeletal mandibular midlines, (2) correction of

the dental class III malocclusion, (3) correction of the anterior

crossbite, (4) making space on the maxillary dentition for

guiding eruption and correction of the mild crowding, and (5)

correction of the negative overjet.

Treatment alternatives

Option 1. The orthopedic–orthodontic treatment with RPE

and FR-3 was proposed as the first-choice treatment based on

the treatment objectives.

Option 2. The orthopedic treatment with a class III

protraction facemask was proposed as an alternative treatment.

Option 3. If orthopedic–orthodontic treatment (options 1

and 2) could not be performed, orthognathic surgery could

be a choice after completing skeletal growth. However, option

3 was poorly recommended because of the surgical risks

and costs of surgical intervention, whereas option one was

highly recommended and chosen with the consent of the

patient’s parents.

Treatment progress

The orthopedic therapy was performed in two phases: the

first phase with a rapid palatal expander (RPE) and the second

phase with the Fränkel function regulator III (FR-3).

The first phase of the treatment uses the RPE, which

provides a transverse expansion of the maxilla; the RPE was

initially activated on the chair by performing a complete turn

of the screw, which corresponds to four activations (1mm).

The patient was instructed to activate the RPE at home two

times daily (0.5mm expansion a day) for 10 days. The same

RPE was used as a passive retainer to prevent transverse

maxillary relapse for 6 months, and the screw was locked with

a light-cure flow composite. The appliance was removed after 6

months after its last activation. The second phase with the FR-3

corrected skeletal deformities and prognathism. The therapeutic

principle is based on eliminating all factors that could arrest

maxillary development and, at the same time, prevent excessive

mandibular growth (19).
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TABLE 2 Cephalometric measurements.

Landmarks Pre-treatment Post-treatment Results

Frontal view (F)

Menton deviation Distance from Me to MSP 4.2mm (moderate deviation) 1.3mm (slight deviation) 1:−2.9 mm

Right masseter muscle Maximum length and width Lenght: 55.4mm Lenght 61.5mm 1:+6.1 mm

Width: 15.7mm Width: 19.4mm 1:+3.7 mm

Left masseter muscle Maximum length and width Lenght: 51.0mm Lenght 54.3mm 1:+3.3 mm

Width: 11.3mm Width: 14.9mm 1:+3.6 mm

Laterolateral view (LL)

Vertical facial growth pattern Angle from SN to GoGn 30.1◦ (mesofacial) 32.5◦ (mesofacial) 1:+2.4◦

Frankfort-mandibular plane angle (FMA) The angle from FH to GoGn 13.6◦ (hypodivergent) 16.8◦ (hypodivergent) 1:+3.2◦

Sagittal facial growth pattern (ANB) The angle from A to N to B 0.9◦ (class I) 2.5◦ (class I) 1:+1.6◦

Right–left difference in lateral Ramal

inclination

The angle from Cd post—Go post to FH Right: 74.7◦ Right: 77.1◦ 1:+2.4◦

Left: 73.4mm Left: 71.8◦ 1:−1.6◦

Right–left difference in ramus length

(without condyle and gonial angle)

Distance from Copost gopost Right: 37.7mm Right: 38.9mm 1:+1.2 mm

Left: 33.8mm Left: 41.6mm 1:+7.8 mm

Right–left difference in ramus length (with

condyle and gonial angle)

Distance from Cdsup to Go inf Right: 50.9mm Right: 55.8mm 1:+4.9 mm

Left: 48.9mm Left: 54.6mm 1:+5.7 mm

Right–left difference in condylar height Distance from Cdsup to S Right: 18.3mm Right: 17.3mm 1:−1.0 mm

Left: 18.1mm Left: 20.2mm 1:+2.1 mm

Postero-anterior view (PA)

Right–left difference in maxillary height 6 to FH Right: 29.0mm Right: 35.8mm 1:+6.8 mm

Left: 27.2mm Left: 37.0mm 1:+9.8 mm

Right–left difference in frontal Ramal

inclination

The angle from Cdlat-Golat to MSP Right: 20.4◦ Right: 14.9◦ 1:−5.5◦

Left: 16.5◦ Left: 16.9◦ 1:+0.5◦

Right–left difference in mandibular body

height

Distance from 3 to GoGn Permanent canines not erupted Right: 53.1mm Not evaluabe

Left: 33.3mm

Intercondilar distance Distance from right Cdmed to left Cdmed 74.0mm 83.3mm 1:+9.3 mm

Extracondilar distance Distance from right Cdlat to left Cdlat 102.7mm 107.9mm 1:+5.2 mm

Maximum width of the left condyle Distance from Cdlat to Cdmed 15.0mm 16.1mm 1:+1.1 mm

Maximum width of the right condyle Distance from Cdlat to Cdmed 15.1mm 16.5mm 1:+1.4 mm

Right–left difference in condyle—MSP

distance

Distance from Cdlat to MSP Right: 50.3mm Right: 51.7mm 1:+1.4 mm

Left: 52.3mm Left: 53.8mm 1:+1.5 mm

Sub-mentovertex view (SMV)

Right–left difference in mandibular body

length

Me-Gopost, Right: 76.4mm Right: 77.4mm 1:+1 mm

Left: 74.9mm Left: 82.4mm 1:+7.5 mm

1Difference (post-treatment data – pre-treatment data), FH, Frankfort Horizontal plane; PO, anteroposterior reference plane; MSP, mid-sagittal reference plane; GoGn, mandibular plane.

Treatment results

The facial evaluation showed an improved soft-tissue

symmetry in the lower face. Intraorally, ideal occlusion,

proper overjet, and I molar relationship were achieved.

The dental cast analysis revealed the achieving of proper

maxillary and mandibular intermolar widths and revealed a

partial re-centring of the mandibular midline was achieved

(2.9mm to the left), as confirmed by CBCT; however,

at the end of the therapy, the menton still deviated
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FIGURE 2

The right–left di�erence in maxillary height at the end of the treatment (PA view). The maxillary height was calculated from FH to the occlusal

fossa of the maxillary first molar.

1.2mm to the right (slight deviation) (22). The CBCT

cephalometric analysis before and after the treatment is shown

in Table 2.

As described in the literature (23), the menton point

is the most inferior point on mandibular symphysis in the

median plane. In this case report, the mandibular deviation

was evaluated, calculating the deviation of the menton

from the MSP. At T0, the menton deviation was 4.2mm

(moderate deviation) and after the treatment was 1.3mm

(slight deviation).

After the treatment, the menton point moved 2,9mm

toward the reference midline.

The cephalometric analysis of the masseter muscles

(Figure 2) showed that both muscles developed similarly in

thickness but not in length. The maximum length of the right

masseter muscle was 55.4mm at t0, and 61.5mm at t1, with a

difference of+6.1mm. Themaximum length of the left masseter

muscle was 51.0mm at t0, and 54.3mm at t1, with a difference

of +3.3mm. The length of the right muscle has increased

more than the left muscle, and this result positively affected

the re-centring of the menton points toward the MSP. This

finding is significant because it was shown that if mandibular

asymmetry is not corrected, themandible may grow and develop

asymmetrically due to lateral displacement and asymmetric

muscle function.

On the laterolateral view (LL), the cephalometric analysis

evaluated the vertical facial growth pattern, the Frankfort-

mandibular plane angle (FMA), the Sagittal facial growth pattern

(ANB), the right–left difference in lateral Ramal inclination;

the right–left difference in ramus length (without condyle and

gonial angle), the right–left difference in ramus length (with

condyle and gonial angle), and the right–left difference in

condylar height.

SN.GoGn and FMA were the most reliable indicators in

assessing facial vertical growth patterns. An FMA of 25 ± 4◦

is within a normal range (hypodivergent < 21◦, hyperdivergent

> 29◦). An SN.GoGn of 32 ± 4◦ is within a normal range

(hypodivergent < 28◦, hyperdivergent > 36◦) (24).

The facial divergence was evaluated with the Sella–Nasion

and Gonion–Gnathion angle (SNGoGn); the SNGoGn angle is

an angular measurement that quantifies the inclination of the

mandibular base concerning the cranial base. A SNGoGn of 32
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FIGURE 3

Facial vertical growth pattern at the end of the treatment. The facial divergence was evaluated with the Sella–Nasion and Gonion–Gnathion

angle (SNG
oGn); the SN

G
oGn angle is an angular measurement that quantifies the inclination of the mandibular base about the cranial base. The

angle from SN to GoGn was 32.5 (mesofacial) at the end of the treatment. An SN.GoGn of 32 ± 4 degrees is within normal range (hypodivergent

< 28◦ and hyperdivergent > 36◦).

± 4◦ is within a normal range (brachyfacial < 28◦, dolichofacial

> 36◦) (25, 26) found a decrease from 36◦ to 31◦ between 6 and

16 years of age.

The angle from SN to GoGn was 30.1◦ (mesofacial) at t0 and

32.5◦ (mesofacial) at t1, with a difference of+2.4◦ (Figure 3).

The Frankfort horizontal plane–gonion–gnathion angle

(FHGoGn) is formed by the intersection of the Frankfort

horizontal plane (FH) and the mandibular plane (GoGn). A

FMA of 25 ± 5◦ is within a normal range (hyperdivergent >

30◦, hypodivergent < 20◦).

The FMA was 13.6◦ (hypodivergent) at t0 and

16.8◦ (hypodivergent) at t1, with a difference of +3.2◦

(Figure 4). This result does not differ much from

the SNGoGn.

The subspinale–nasion–supramental angle (ANB) indicates

the skeletal relationship between the maxilla (at the level of

point A) and mandible (at the level of point B). The ANB angle

(Figure 5) is commonly used to determine the sagittal facial

growth pattern in cephalometric analysis, and an ANB of 2 ±

2◦ is within a normal range (class II > 4◦, class III < 0◦).

The sagittal facial growth pattern (ANB) was 0.9◦ (class I) at

T0 and 2.5◦ (class I) at T1, with a difference of+1.6◦.

The inclination of themandibular ramus was calculated with

the angle between Cd post—Go post and FH). The inclination of

the right ramus has increased (+2.4◦); instead, the inclination

of the left ramus has decreased (−1.6◦). Also, this result

positively affected the re-centring of the menton points toward

the MSP.

The height of the mandibular ramus was calculated in

different ways: the ramus length without condyle and gonial

angle (distance from Copost gopost), the ramus length with

condyle and gonial angle (distance from Cdsup to Go inf), and

the condylar height (distance from Cdsup to S). In each case, the

right side was significantly higher than the left side at t0. At the

end of the treatment, the right side was slightly higher than the

left side, a sign of more growth on the left side.
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FIGURE 4

Frankfort-mandibular plane angle (FMA) at the end of the treatment. The FMA is the angle from FH to GoGn. The FMA was 16,8◦ (hypodivergent)

at t1 with a di�erence of +3.2◦. An FMA of 25 ± 4◦ is within normal range (hypodivergent < 21◦, hyperdivergent > 29◦).

The maxillary height was calculated from FH to

the occlusal fossa of the maxillary first molar. The

right hemimaxilla was slightly higher than the left

hemimaxilla at t0. At the end of the treatment, the

left hemimaxilla was marginally higher than the right

hemimaxilla, a sign of more growth on the left side

(+9.8 mm).

The frontal Ramal inclination was calculated

with the angle between Cdlat-Golat to MSP. The

inclination of the right ramus has decreased (−5.5◦);

instead, the inclination of the left ramus has

increased (+0.5◦).

After the treatment, the inclination of the right

mandibular ramus has changed more than the left one,

as shown in LL and PA view, instead of the inclination

of the left mandibular ramus, which has remained

relatively unchanged. However, the height evaluation

showed that the left ramus had grown more than the

right ramus.

The height of the hemi-mandible was evaluated as the

distance from the cuspal tip of the mandibular canine to

GoGn. The height of the left hemi-mandible was shorter

than the right hemi-mandible after the treatment. The pre-

treatment height was not evaluated as the canines did not

erupt yet.

The intercondylar distance (from the right Cdmed to the

left Cdmed) was 74.0 mmm at t0 when the patient was 8

years old. After the treatment, when the patient was 12 years

old, the intercondylar distance was 83.3mm, increasing +by

9.3 mm.

The extracondylar distance was 102.7mm at t0 and

107.9mm at t1, increasing+by 5.2 mm.

On SMV view, the cephalometric analysis evaluated the

length of the hemimandibular body.

The length of the hemimandibular body was calculated with

the distance between the menton point and the gopost point.

The right side was slightly longer than the left side at T0.

After the treatment, the length of the right side

has slightly increased (+1.0mm); instead, the length

of the left side has significantly increased (+7.5mm).

The left side resulted longer than the right side at

the end of the treatment. Also, this result positively

affected the re-centring of the menton points toward

the MSP.
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FIGURE 5

Sagittal facial growth pattern (ANB) at the end of the treatment (LL view). The subspinale–nasion–supramental angle (ANB) indicates the skeletal

relationship between the maxilla (at the level of point A) and mandible (at the level of point B). The ANB angle is commonly used to determine

the sagittal facial growth pattern in cephalometric analysis, and an ANB of 2 ± 2◦ is within the normal range (class II > 4◦, class III < 0◦). The

sagittal facial growth pattern (ANB) was 2.5◦ (class I) at the end of the treatment.

Discussion

The purpose of this case report was to evaluate the

development and the compensation mechanisms of the

mandibular asymmetry in a growing male patient using cone

beam computed tomography (CBCT) after treatment with RPE

and FR-3 (21).

A low-dose CBCT protocol was used to identify landmarks

better and reduce the patient’s radiation exposure. The first

phase of the treatment consists of using the RPE, which provides

a transverse expansion of the maxilla. Maxillary transverse

deficiency (MTD ormaxillary hypoplasia) is a common problem

that affects the normal development of the maxillofacial

complex. Therefore, early diagnosis and correction of MTD are

essential to achieve a normal transverse skeletal relationship

between the maxilla and mandible (21). There are three types of

MPS disjunction: RPE (with dental support), miniscrew-assisted

rapid palatal expansion (MARPE) with skeletal support, and

surgically assisted rapid palatal expansion (SARPE). MARPE

and SARPE are used in fused MPS or compromised dental

support. The introduction of CBCT in orthodontics allows

an accurate analysis of sagittal and vertical growth patterns,

which helps decide whether to use conventional (RPE) or

unconventional maxillary expansion (MARPE or SARPE). A

recent study addressed the potential spontaneous adaptive

dentoalveolar compensation of the lower arch during RME (27).

The second phase of the treatment consists of using the

FR-3 appliance that promotes mandibular growth in a vertical

direction and the growth of the maxilla. Compatible with the

present case report, many authors (13, 28) reported that the FR-

3 appliance promotes an increase in overjet. The increased ANB

angle shows that point A advanced sagittally more than point B;

therefore, the maxilla has grown more than the mandible. The

left hemi-mandible has grown more than the right one and the
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height of the left half-maxilla compared to the right one. The

increase in bone volume on the non-deviated side is due to the

compensation mechanisms that occur when the deviation of the

menton is >4mm (29). A recent study found that RME (with

both TB and BB anchorage) could determine a slight opening

of the sfeno-occipital synchondrosis, with questionable clinical

relevance in terms of promoting maxillary protraction helpful

during the functional and orthopedic treatment of class III (30).

In bone specific, the most important vertical bone growth

occurs at the left mandibular ramus; therefore, the condyle and

the goniac angle on the left side have grown more than on the

right side.

The growth of the left hemi-mandible was also confirmed

by measuring the inclination of the left ramus external border:

the angle with MSP decreased in opposition to the right side,

which was slightly increased, proving a strong growth of bone

in the transverse direction on the left hemi-mandible, also

confirmed by the SMV view. In conclusion, the growing patient

with moderate right menton deviation was successfully treated

using RPE and FR-3. There was a significant regression of

the mandibular asymmetry from moderate grade (4.2mm) to

slight grade (1.3mm), in addition to the correction of dental

characteristics (dental class III and anterior crossbite). These

therapeutic goals result from a compensation mechanism: the

left hemi-mandible has grown more than the right side, by the

literature, which affirms that in case of deviation of the menton

>4mm, the bone volume increases on the non-deviated side.

This treatment protocol is recommended for mandibular

asymmetry cases and to use on large samples to better know

the effects.
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Objective: This study aims to develop a new category scheme for the

profile morphology of temporomandibular disorders (TMDs) based on lateral

cephalometric morphology.

Methods: Five hundred and one adult patients (91 males and 410 females)

with TMD were enrolled in this study. Cluster tendency analysis, principal

component analysis and cluster analysis were performed using 36 lateral

cephalometric measurements. Classification and regression tree (CART)

algorithm was used to construct a binary decision tree based on the

clustering results.

Results: Twelve principal components were discovered in the TMD patients

and were responsible for 91.2% of the variability. Cluster tendency of

cephalometric data from TMD patients were confirmed and three subgroups

were revealed by cluster analysis: (a) cluster 1: skeletal class I malocclusion;

(b) cluster 2: skeletal class I malocclusion with increased facial height; (c)

cluster 3: skeletal class II malocclusionwith clockwise rotation of themandible.

Besides, CART model was built and the eight key morphological indicators

from the decision tree model were convenient for clinical application, with the

prediction accuracy up to 85.4%.

Conclusion: Our study proposed a novel category system for the profile

morphology of TMDs with three subgroups according to the cephalometric

morphology, whichmay supplement themorphological understanding of TMD

and benefit the management of the categorical treatment of TMD.

KEYWORDS

temporomandibular disorders, cluster analysis, cephalometric analysis, classification

and regression tree (CART), morphological category
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Introduction

Temporomandibular disorders (TMDs) are a set of clinical

conditions associated with the temporomandibular joint (TMJ),

masticatory muscles, and orofacial structures (1–4). Generally,

approximately 5% of the population suffered from these

disorders with a prevalence between 5 and 15% in adults

(5, 6). However, the situation of TMDs is not encouraging

recently. Evidence shows that the prevalence of TMDs is

increasing recently, with an overall prevalence of 31% in

adults and 11% in children and adolescence (7). Besides, the

most frequent TMD related symptoms including restricted

mouth opening, TMJ sounds, and TMJ pain have been up to

50% in adults (8), which greatly affects the patients’ quality

of life.

Nowadays, in spite of various methods with well diagnostic

reliability and validity developed for diagnosing TMDs (9–

11), the Diagnostic Criteria for Temporomandibular Disorders

(DC/TMD) is still the most widely utilized, thorough and

accurate diagnostic criteria worldwide for assessment and

classification of TMD (12), which comprehensively takes both

characterization of the disease in the joint and muscle (Axis

I) and psychosocial disability (Axis II) into consideration

(13). Although DC/TMD is an excellent tool to diagnose and

classify the TMDs, there also exists several vacancies about

lateral cephalograms and further efforts are still needed for

relevant research.

Lateral cephalometric radiograph, an easily accessible

and non-invasive examination, can supply abundant data

concerning the cranial, facial bony and soft tissue structures. For

its economy and convenience, lateral cephalometric radiograph

has been not only widely used as facial analysis before and

after orthodontic treatment, but also utilized to explore the

association between TMD including its symptoms and the

characteristics of craniofacial morphology (14–17). Already

in 1995, lateral cephalometry was applied to investigate

the association between morphologic features and internal

derangements of the temporomandibular joint (15). Recently,

the craniofacial morphology of TMD and has been well-

investigated (16) and it is reported that patients with TMD

exhibit specific craniofacial features compared to patients

without TMD (16, 17). Our previous study (14) also validated

the results and further observed a significant difference in

Frankfort-mandibular plane angle (FMA) between patients with

and without TMDs. Besides, we found there existed specific

craniofacial features between TMD patients with and without

TMJ pain as well (14). At present, although these studies revealed

the significant relationship between TMD and morphologic

features, the indicators from lateral cephalometric radiograph

were still mainly applied to judge the skeletal pattern of the

patients by orthodontic diagnosis and only partially reflected the

features of TMD, which might help little for the treatment of

TMD patients. Consequently, it is necessary to develop a new

category system specific to TMD to integrate those significant

features for clinical application.

Clustering analysis is an unsupervised learningmodel widely

used in data mining (18) and has been utilized to determine

the subtypes of many diseases according to their numerous

indicators such as idiopathic inflammatory myopathies (19),

class III malocclusion (20) and others (21). However, there was

no clustering analysis based on the cephalograms in the research

of TMD.

In this study, in order to make the most of these

indicators from lateral cephalometric radiograph, we develop

a new category system for the profile morphology of

TMD patients using cluster analysis according to thirty-six

cephalometric parameters.

Materials and methods

Subjects and study design

The research was conducted at the Department of

Orthodontics, West China Hospital of Stomatology, Sichuan

University, from June 2021 to October 2021. All patients were

investigated and diagnosed by one TMD specialist who had

received extensive training and calibration in the use of the

DC/TMD (12).

The inclusion criteria were as follows: (a) patients diagnosed

with TMD for the first time; (b) patients aged 18 years or above;

and (c) patients with available chart, lateral cephalograms, and

photographs. The exclusion criteria were: (a) presence of tumor,

trauma and/or surgery history in the maxilla and facial area; (b)

presence of clefts and other craniofacial anomalies.

The study was approved by the Ethics Committee of West

China School of Stomatology of Sichuan University (Ethics

number: 2021-396) and was conducted in accordance with the

Declaration of Helsinki. Informed consents were provided with

all the patients.

This study was carried out based on multiple clustering

approaches and general procedures were given in the flowchart

(Figure 1).

Cephalometric analysis

All the patients’ lateral cephalograms were collected before

they started to receive orthodontic treatment by the same

radiologist. Patients had to maintain the natural head position

with the mandible in the maximum intercuspal position by

request (22). The Uceph software (Chengdu Yaxun, Chengdu,

China) was applied for cephalometric analysis after collecting

the lateral cephalograms.

Table 1 showed the thirty-six cephalometric parameters

measured in the study. The measurements were conducted by
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FIGURE 1

Flowchart for cluster analysis. PCA, principal component

analysis; PCs, principal components; CART, classification and

regression tree. *Hierarchical clustering and three clusters were

optimal clustering algorithm and number of clusters according

to the methods in the article.

two researchers blinded to the patients’ details. According to

the approach described by Xiong et al. (23), inter-observer

and intra-observer reliability were examined to ensure the

accuracy of the measurements. For inter-observer reliability,

20 lateral cephalograms were selected randomly and measured

by the examiners for the first time. After a washout period of

4 weeks, the observer repeated the measurement. The intra-

class correlation coefficient (ICC) was calculated to test the

repeatability of the results. The examiners were eligible when

ICC was over 0.75.

Cluster tendency analysis

The dissimilaritymatrix based on Euclidean distancemetrics

between the normalized samples was calculated and reordered

to form an ordered dissimilarity image (ODI). The visual

assessment of cluster tendency algorithm (VAT) was used to

visualize the ODI (24). Considering that clustering algorithms

will locate and specify clusters in data even if none are present,

Hopkins statistic H was used to validate cluster tendency.

The significance level was set to H > 0.7, which meant that

data had a cluster tendency and the clustering results were

meaningful (25).

TABLE 1 Cephalometric variables.

Cranial base S-Go (mm) Interincisal angle

(U1-L1) (◦)

Saddle/Sella angle (◦) Mandibular body length

(Go-Me) (mm)

U1-SN(◦)

Anterior cranial base

(S-N) (mm)

Intermaxillary UPDH (U6-PP)

(mm)

Posterior cranial base

(S-Ar) (mm)

Midface length

(Co-A) (mm)

LPDH (L6-MP)

(mm)

Maxilla ANB (◦) U1-ANS (mm)

SNA (◦) Y-axis (◦) L1-Me (mm)

PP-FH (◦) Y-axis length (mm) MP-OP (◦)

Mandible Wits appraisal (mm) PP-OP (◦)

SNB (◦) Anterior face height

(N-Me) (mm)

OP-FH (◦)

Gonial/Jaw angle

(Ar-Go-Me)(◦)

FMA (FH-MP) (◦) Overbite (mm)

Ramus height

(Ar-Go) (mm)

ANS-Xi-Pm (◦) Overjet (mm)

Articular angle

(S-Ar-Go) (◦)

Dental Soft Tissue

Dc-Xi-Pm (◦) IMPA (L1-MP) (◦) Upper lip to

E-plane

(UL-EP) (mm)

SN-MP (◦) FMIA (L1-FH) (◦) Lower lip to E-plane

(LL-EP) (mm)

Boldface indicates six categories of the thirty-six cephalometric parameters.

Principal components analysis

Principal components (PCs) are a series of mutually

orthogonal variables formed by linear combinations of the

original data variables and are arranged in descending order

according to their ability to describe the variance of the

original data.

To calculate the principal components, the data matrix

needed to be normalized first, and the variables of the

normalized data matrix Z are then linearly combined as

principal components in the form of equation (1) through

algorithms (e.g., maximum projection variance, singular value

decomposition, etc.) making the data have the largest variance in

the first principal component, followed by the second principal

component, and so on.

PCk =
∑N

i=1 aikZi (1)

where PCk is the k-th principal component, aik is the coefficient

of the linear combination obtained according to a specific
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FIGURE 2

Pearson’s correlation coe�cient heat map and hierarchical clustering dendrogram for cephalometric variables. *P < 0.05, **P < 0.01, ***P <

0.001.

algorithm, and Zi is the i-th column of the centralized matrix

Z, i.e., the i-th variable.

The first n principal components are selected to satisfy (i)

the cumulative percentage of variance exceeds 90%; (ii) the

(n + 1)-th to N-th principal components have sufficiently small

contribution to the variance to be used as pre-processed data

for modeling.

Optimization of number of clusters and
clustering algorithm

The number of clusters was evaluated by using 26

indices such as CH index and Dula index, and the optimal

number of clusters was selected according to the “ majority

voting” principle (26). The optimal clustering algorithm

was selected by calculating the connectivity, Dunn and

Silhouette indices of three common clustering methods,

namely hierarchical clustering, K-means clustering and

partitioning around medoids (PAM), for the selected number

of clusters.

Hierarchical clustering on principal
components

Hierarchical clustering was performed based on Ward’s

minimum variance method on the basis of principal component
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TABLE 2 Baseline characteristics of the cephalometric variables.

Variables Male (n = 91) Female (n = 410) Total (n = 501)

Age 29.25 (9.95) 32.16 (10.63) 31.63 (10.56)

Cranial base

Saddle/Sella Angle 126.05 (5.10) 125.62 (5.29) 125.70 (5.25)

S-N 65.39 (2.91) 61.90 (2.85) 62.53 (3.16)

S-Ar 35.08 (3.50) 32.13 (2.90) 32.66 (3.22)

Maxilla

SNA 82.52 (3.63) 81.87 (3.49) 81.98 (3.52)

PP-FH 0.14 (2.76) 0.19 (2.76) 0.18 (2.76)

Mandible

SNB 78.28 (4.14) 77.57 (3.76) 77.70 (3.84)

Ar-Go-Me 116.91 (7.21) 117.49 (5.97) 117.39 (6.21)

Ar-Go 50.73 (5.10) 46.01 (4.15) 46.87 (4.70)

S-Ar-Go 148.69 (7.12) 151.24 (6.45) 150.78 (6.64)

Dc-Xi-Pm 37.11 (5.64) 37.01 (5.64) 37.03 (5.63)

SN-MP 31.78 (6.34) 34.53 (5.96) 34.03 (6.12)

S-Go 82.57 (6.64) 75.66 (5.38) 76.91 (6.22)

Go-Me 70.98 (6.11) 68.07 (4.39) 68.60 (4.87)

Intermaxillary

Co-A 84.96 (6.63) 79.40 (4.18) 80.41 (5.18)

ANB 4.23 (2.71) 4.29 (2.69) 4.28 (2.69)

Y-Axis 60.87 (3.64) 61.29 (3.45) 61.21 (3.48)

Y-Axis length 121.40 (7.28) 114.76 (5.96) 115.96 (6.72)

Wits 1.31 (3.68) 0.53 (3.43) 0.67 (3.49)

N-Me 119.48 (6.69) 113.93 (6.13) 114.94 (6.58)

FMA 22.37 (5.83) 24.68 (5.39) 24.26 (5.54)

ANS-Xi-Pm 46.39 (4.44) 47.31 (4.73) 47.14 (4.69)

Dental

IMPA 98.58 (7.70) 97.26 (7.55) 97.50 (7.59)

FMIA 59.04 (8.31) 58.04 (8.56) 58.22 (8.52)

U1-L1 126.27 (11.01) 125.72 (12.19) 125.82 (11.97)

U1-SN 103.34 (7.77) 102.46 (8.62) 102.62 (8.47)

U6-PP 23.60 (2.44) 22.38 (2.10) 22.60 (2.21)

L6-MP 33.67 (2.90) 31.48 (2.61) 31.88 (2.80)

U1-ANS 29.00 (2.94) 28.39 (2.51) 28.50 (2.60)

L1-Me 41.71 (3.11) 39.54 (3.06) 39.93 (3.18)

MP-OP 15.20 (3.86) 16.20 (4.10) 16.02 (4.08)

PP-OP 6.74 (3.69) 8.16 (3.43) 7.91 (3.52)

OP-FH 7.24 (4.14) 8.48 (3.78) 8.25 (3.87)

Overbite 2.76 (2.05) 2.52 (1.79) 2.56 (1.84)

Overjet 4.00 (1.89) 4.04 (1.66) 4.03 (1.70)

Soft Tissue

UL-EP 0.81 (2.81) 0.37 (2.60) 0.45 (2.64)

LL-EP 0.98 (2.54) 0.76 (2.64) 0.80 (2.62)

Mean (SD), SD, standard deviation.
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analysis (PCA), and the initial partitions obtained from the

hierarchical clustering were improved by K-means clustering

(27). The PCA step can be considered as a denoising step which

can lead to a more stable clustering.

Classification and regression tree

Classification and regression tree (CART) algorithm

was used to construct a binary decision tree to help

dentists classify TMD according to patients’ cephalometric

characteristics easily. We performed cross-validation to

select the optimal tree and performed multiple runs to

avoid overfitting. Cephalometric dataset was split into

70% as training set and 30% as validation set and the

classification tree model was evaluated by the accuracy

of prediction. Confusion matrix was made to visualize

and summarize the performance of the CART model

(Supplementary Figure 1).

Statistical analysis

One-way ANOVA, Tukey HSD post hoc test, Kruskal-Wallis

test, Dunn post hoc test and Bonferroni correction were used

for hypothesis testing. Pearson’s correlation coefficient was

used to explore the correlation of the normalized variables

in cephalometric data and was visualized by a heat map

(Figure 2). The Pearson’s correlation coefficient of 0.40, 0.60, and

0.80 were considered weak, moderate and strong associations

respectively. At the same time, hierarchical clustering was

performed on the normalized variables. Feature selection

and feature transformation was conducted to improve the

final clustering effect. All statistical analyses were based

on Language R, version 4.1.3 (R Foundation for Statistical

Computing, Vienna, Austria). P < 0.05 was considered

statistically significant.

Results

Baseline characteristics of the
cephalometric variables

Five hundred and one adult orthodontic patients diagnosed

with TMD were included in this study. The mean age of the

patients was 31.63 ± 10.56 years. Of the 501 patients, 91 were

males and 410 were females (81.8%). Thirty-six cephalometric

parameters shown in Table 1 were measured to reflect the TMD

patients’ maxillofacial features in six categories, including cranial

base, maxilla, mandible, intermaxillary relation, teeth and soft

tissue (Table 2).

FIGURE 3

Ordered dissimilarity image for cluster tendency analysis.

FIGURE 4

Scree plot. The values indicate the percentage of variance and

show that the cumulative percentage of the variance of the first

12 PCs reached 91.2%.

Cluster tendency of cephalometric data

According to the ODI, it was observed that the dissimilarity

matrix presented a block phenomenon along the inverse

diagonal direction (Figure 3), indicating that cephalometric data

had a cluster tendency. The Hopkins statistic (H = 0.736 > 0.7)

also showed a significant cluster tendency of cephalometric data,

which ensured the statistical significance of clustering analysis.

Principal component analysis for
cephalometric data

A strong linear correlation was found by correlation analysis

and cluster tendency analysis implied that feature selection and

feature transformation should be conducted to improve the
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FIGURE 5

Cos2 plot. 24 of the 36 cephalometric variables had Cos2 values >0.9 (66.7%) and 33 were >0.8 (91.7%).

final clustering effect (Figure 2). Therefore, it was necessary to

perform PCA to combine variables.

The cumulative percentage of the variance of the first 12 PCs

was calculated to be 91.2%, and the percentage of the variance

of each PC after the 13th PC < 2% (Figure 4). Consequently, the

first 12 PCs were chosen to represent the entire data. The Cos2

of the first 12 PCs on each variable was calculated, and the results

showed that the first 12PCs were able to represent each variable

to a good extent (Figure 5).

Clusters of cephalometric data of TMD
patients

Twenty-six indices were used to evaluate different numbers

of clusters for the data after principal component analysis

from two to nine, and fifteen indices recommended that the

data should be divided into three clusters, accounting for

57.7% (Figure 6). Connectivity, Dunn and Silhouette indices

of three common clustering algorithms, including hierarchical

clustering, K-means clustering and PAM, were calculated. The

results (Table 3) showed that the optimal number of clusters

was three and the optimal algorithm was the hierarchical

clustering algorithm.

Hierarchical clustering on PCs divided cephalometric data

of TMD patients into three clusters which 34 of the 36

cephalometric parameters (94.4%), as well as age and sex,

FIGURE 6

Fifteen of the twenty-six indices (57.7%) showed that the

optimal number of clusters was three.

showed significant differences (Table 4). The projection of

scatter plot for three clusters on the first two PCs (Figure 7)

visualized the clustering result and the clear clustering

boundaries indicated the reliability of our clustering result. The

cluster dendrogram (Figure 8) visualized the clustering result

from another perspective, which could show that there were

no outliers in the clusters, supporting the reasonability and

reliability of the clustering result.
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TABLE 3 Connectivity, dunn, and silhouette indices of three commonly used clustering methods in three clusters.

Indices* Hierarchical clustering K-means clustering PAM

Connectivity 68.49 272.6 334.5

Dunn 0.182 0.158 0.142

Silhouette 0.152 0.152 0.100

*Dunn and Silhouette indices are positively correlated with the clustering effect while the Connectivity index is negatively correlated with the clustering effect.

Patients with TMD were divided into three groups and

each group could be given clinical meanings according to the

cephalometrics in orthodontics as visualized in Figure 9: (a)

cluster 1: skeletal class I malocclusion; (b) cluster 2: skeletal class

I malocclusion with increased facial height; (c) cluster 3: skeletal

class II malocclusion with clockwise rotation of the mandible

and anterior open bite. Patients in cluster 1 only showed skeletal

class I malocclusion (ANB = 3.27◦) and normo-divergent (SN-

MP = 30.74◦, FMA = 21.17◦). Patients in cluster 2 presented

skeletal class I malocclusion (ANB = 3.67◦), normo-divergent

(SN-MP = 30.57◦, FMA =21.73◦), increased posterior facial

height (S-Go = 84.98mm), increased anterior facial height (N-

Me = 121.42mm) and a slight protrusion of upper lip (UL-

EP = 0.57mm). Patients in cluster 3 exhibited skeletal class

II malocclusion (ANB = 5.68◦), hyperdivergent (SN-MP =

39.38◦, FMA = 28.89◦), tendency of protrusive incisors (U1-L1

= 120.74◦), anterior overjet (4.35mm) and anterior open bite.

CART model for prediction of
cephalometric data category

A CART model was built based on the clustering results

(Figure 10) to easily classify TMDs into the three clusters.

The data were split into training and validation set by 70:

30 and the prediction accuracy was 85.4%, which indicated

the CART model had effective predictive power for our

previously proposed clusters of TMD patients. Confusion

matrix also showed good performance of the CART model

(Supplementary Figure 1).

Discussion

The diagnosis and classification of TMDs has been discussed

since last century. However, the evaluated systems did not meet

the diagnostic criteria until the Research Diagnostic Criteria

for Temporomandibular Disorders (RDC/TMD) was proposed

in 1992 (13). After years of expansion and refinement, the

DC/TMDwas released on the basis of RDC/TMD in 2014, which

improved axis II procedures and delineated 12 disorders in

detail. With years of practical application, the current dominant

two-axis approach was not enough in clinical application and

Enriqueta C. Bond noted that a broader exploration to the

painful TMD beyond the two axes was necessary in future

research (13). Lateral cephalometric radiograph, recognized

as the most commonly used examination during orthodontal

treatment (28), has been already widely applied to explore the

associations between TMD and craniofacial morphology (15,

29, 30). Although the specific craniofacial features of the TMD

patients were observed in many studies through cephalometric

analysis, the features could not reflect the whole morphology

and were difficult for clinical application. Therefore, in this

study, through analyzing the features of TMD obtained from

cephalometric radiograph, we developed a new category system

and proposed a CART model of TMD for clinical application

based on cephalometric morphology aiming to make progress

for the morphological understanding of TMD. For this study

was to identify the subgroups only among TMDpatients, healthy

populations without TMD were not included. This is the first

study to classify TMD using unsupervised analysis according

to lateral cephalometric radiographs in a large population (n =

501). The gender distribution in our study was consist with the

clinical situation that females account for the majority of TMD

patients (31) and the cluster analysis was conducted according

to 36 morphological features, which assured a reliable and

comprehensive evaluation.

In the cluster analysis, three subgroups were identified

from the 36 variables among the 501 participants. In this

procedure, the clustering algorithm was performed for a range

of 2–9 clusters separately. According to our results, fifteen

of the twenty-six indices (57.7%) showed that the optimal

number of clusters was three. Intriguingly, three subgroups

were also identified in another cluster analysis with a large

sample including 1,031 chronic TMD cases and 3,247 TMD-free

controls, which was consistent in the cluster numbers calculated

in our study (32). Thus, we determined three subtypes of patients

with TMD based on the cluster analysis. To our delight, each

group corresponded to the entity with distinct features.

For patients in cluster 1, the values of the morphological

features were mostly in the normal range (33), indicating that

this group of patients did not exhibit much difference in their

appearances compared with normal population, which may

explain why some researchers did not find distinct relationship

between morphologic features of the face and TMD when the

sample size was not large enough (15). Since there was not
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TABLE 4 Comparison of cephalometric variables among three clusters.

Variables Cluster1

(n = 202)

Cluster2

(n = 106)

Cluster3

(n = 193)

P-value Multiple

comparisons

Agek 29.83 (8.90) 31.43 (10.87) 33.63 (11.65) 0.007** 3 > 1

Sex(M/F)c 18/184 54/52 19/174 <0.001*** 2 > (1, 3)

Cranial Base

Saddle/Sella

Anglea

125.72 (5.12) 125.20 (4.63) 125.94 (5.71) 0.511 –

S-Nk 61.88 (2.65) 65.46 (3.23) 61.62 (2.64) <0.001*** 2 > (1, 3)

S-Ara 32.26 (2.80) 35.83 (2.71) 31.35 (2.72) <0.001*** 2 > 1>3

Maxilla

SNAa 82.37 (3.27) 83.33 (3.61) 80.84 (3.38) <0.001*** 2 > 1>3

PP-FHk 0.10 (2.62) −0.44 (2.90) −0.34 (2.79) 0.093 –

Mandible

SNBk 79.09 (3.18) 79.65 (3.69) 75.17 (3.13) <0.001*** (1, 2) > 3

Ar-Go-Mek 115.90 (5.91) 115.74 (6.87) 119.85 (5.30) <0.001*** 3 > (1, 2)

Ar-Goa 46.16 (3.64) 52.26 (4.22) 44.65 (3.53) <0.001*** 2 > 1>3

S-Ar-Gok 149.03 (6.09) 149.57 (6.19) 153.27 (6.69) <0.001*** 3 > (1, 2)

Dc-Xi-Pmk 38.60 (5.34) 38.23 (5.10) 34.73 (5.47) <0.001*** (1, 2) > 3

SN-MPk 30.74 (4.35) 30.57 (4.70) 39.38 (4.36) <0.001*** 3 > (1, 2)

S-Gok 75.58 (4.52) 84.98 (4.77) 73.88 (4.46) <0.001*** 2 > 1>3

Go-Mea 68.42 (4.10) 73.33 (4.32) 66.18 (3.98) <0.001*** 2 > 1>3

Intermaxillary

Co-Ak 79.72 (4.13) 85.55 (5.42) 78.31 (4.05) <0.001*** 2 > 1>3

ANBk 3.27 (2.49) 3.67 (2.62) 5.68 (2.32) <0.001*** 3 > (1, 2)

Y-Axisa 59.07 (2.72) 60.70 (2.98) 63.74 (2.75) <0.001*** 3 > 2>1

Y-Axis

Lengthk

113.20 (4.75) 124.65 (5.58) 114.09 (4.87) <0.001*** 2 > (1, 3)

Witsk −0.22 (3.33) 0.52 (3.63) 1.70 (3.31) <0.001*** 3 > (1, 2)

N-Mek 109.96 (4.56) 121.42 (5.50) 116.58 (4.75) <0.001*** 2 > 3>1

FMAk 21.17 (4.14) 21.73 (4.54) 28.89 (3.97) <0.001*** 3 > (1, 2)

ANS-Xi-Pmk 43.88 (3.84) 46.92 (3.49) 50.67 (3.39) <0.001*** 3 > 2>1

Dental

IMPAk 95.85 (8.24) 98.49 (7.38) 98.70 (6.66) 0.001** (2, 3) > 1

FMIAa 62.97 (7.39) 59.77 (6.87) 52.41 (6.85) <0.001*** 1 > 2>3

U1-L1a 130.48 (11.81) 126.20 (10.99) 120.74 (10.60) <0.001*** 1 > 2>3

U1-SNk 102.91 (8.49) 104.72 (8.94) 101.17 (7.93) <0.001*** 2 > 3

U6-PPa 21.48 (1.78) 24.58 (1.78) 22.68 (2.05) <0.001*** 2 > 3>1

L6-MPk 30.02 (2.02) 34.60 (2.37) 32.34 (2.25) <0.001*** 2 > 3>1

U1-ANSk 26.57 (2.07) 29.84 (2.26) 29.78 (1.95) <0.001*** (2, 3) > 1

L1-Mek 37.35 (2.07) 42.65 (2.54) 41.14 (2.40) <0.001*** 2 > 3>1

MP-OPk 14.13 (3.54) 15.22 (3.66) 18.44 (3.58) <0.001*** 3 > (1, 2)

PP-OPa 6.51 (3.02) 6.45 (3.03) 10.17 (3.05) <0.001*** 3 > (1, 2)

OP-FHa 7.04 (3.24) 6.56 (3.43) 10.45 (3.69) <0.001*** 3>(1, 2)

Overbitek 2.84 (1.68) 2.76 (1.93) 2.16 (1.89) <0.001*** 1 > 3

Overjetk 3.85 (1.53) 3.80 (1.79) 4.35 (1.78) 0.026* –

Soft tissue

UL-EPk −0.82 (2.08) 0.57 (2.66) 1.73 (2.53) <0.001*** 3 > 2>1

LL-EPa −0.58 (2.30) 0.82 (2.18) 2.24 (2.38) <0.001*** 3 > 2>1

Mean (SD), SD: standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001. aOne-way ANOVA and Tukey HSD post hoc test. cChi-square test. Bonferroni’s method was used for multiple

comparisons. The result showed the sex composition of Cluster 2 was significantly different fromCluster 1 and Cluster 3 withmoremale patients, while there were no significant differences

between the sex composition of Cluster 1 and Cluster 2. kKruskal–Wallis test and Dunn post hoc test. Bonferroni’s method was used for multiple comparisons.
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FIGURE 7

Projection of scatter plot for three clusters divided by cluster

analysis on principal components. The horizontal axis represents

the first principal component and the vertical axis represents the

second principal component.

FIGURE 8

Cluster dendrogram. The height of the branches indicates the

distance or dissimilarity between clusters.

much difference in the appearance of the patients compared with

normal population in cluster 1, the TMD could be more likely

developed by psychological distress than intra-articular lesion,

which the latter more or less affected the morphological features

of TMD patients (14, 16, 17, 34–37). Consequently, conservative

therapy and psychological intervention may be the first choice

for treating TMD patients in cluster 1.

Most of the cephalometric C of angles in cluster 2 were

quite similar with those of cluster 1. However, the cephalometric

measurements of linear distances in cluster 2 were larger

than those of cluster 1, indicating cluster 2 exhibited a larger

craniofacial size than cluster 1 with significant increases in

posterior facial height, anterior facial height and S-Go/N-Me

(70.0%). The differences may be mainly attributed to the gender

factor with the percentage of males in cluster 1 and cluster

FIGURE 9

Characteristics of each cluster. The cephalometric image of the

3 subgroups as described in the results.

2 being 8.9 and 51% respectively. A previous study on TMD

classification reported a cluster with equal gender distribution

exhibited “normal” psychological conditions but were more

sensitive to muscle pain (32). It can be extrapolated that patients

in cluster 2 with even gender balance may also presented the

same symptoms. Therefore, conservative therapy especially pain

management may be optimal for treating TMD of cluster 2 for

the first time. However, the validation of the abovementioned

suggestion is still reserved for future work.

Specific craniofacial features observed in patients with TMD

in many studies may mainly refer to the cluster 3 patients in our

study (14, 16, 17). Previous studies compared the craniofacial

morphology of patients with and without TMD and found

that patients with TMDs exhibited specific craniofacial features

such as skeletal class II malocclusion, hyperdivergent growth

pattern, increased FMA, clockwise rotation of the mandible,

anterior open bite and others (14, 16, 17, 34–37), reflecting

the craniofacial morphology of TMD patients in cluster 3.

Considering the great differences in craniofacial morphology,

patients in cluster 3 may suffer from more severe TMD

symptoms than cluster 1 and cluster 2. Studies revealed that

the clockwise rotation of the mandible was associated with disk

displacement (DD) and can be aggravated with the development

of DD (38, 39). A recent study published in June 2022 suggested

that the abnormality of craniofacial structures resulted from

TMJ pain could be reversed by pain control therapy. Therefore,

in spite of conservative therapy including pain management,

it could be more important for the TMD patients in cluster 3

to improve the risky facial type. Orthodontic therapies such as

passive aligners (4) or even surgical method may be considered

during the treatment of TMD.

The assessment and classification of TMDs remains a

challenge for dentists these days, despite multiple relevant

researches in this field. This is because TMDs are a group

of disease and patients can be diagnosed as multiple TMDs

simultaneously due to the complex etiologies and various

symptoms of TMD (7). For simple and convenient application

in clinic, a CART model was designed to help dentists classify

TMD according to patients’ cephalometric characteristics and
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FIGURE 10

CART model for predicting cephalometric data category. The left branch of the binomial tree indicates the cases that meet the conditions while

the right branch do not. The decimal below the branch indicates the probability that the sample belongs to cluster 1, 2, or 3 at this time. CART:

classification and regression tree.

make a preliminary judgment of the TMD to which cluster

they belonged, with the accuracy rate mostly above 80%. It

will be even more easily and quickly when our category system

is applied in cephalometric software with artificial intelligent

analysis. In this CART model, the critical values of 8 key

morphological indicators identified to distinguish among these

three clusters were observed great similarity with the critical

points of the cephalometrics in orthodontics. For example, the

critical value of SN-MP was 35◦ in the CART model, which was

also the critical point for distinguishing whether the mandibular

plane is steep or not. The LL-EP = −1mm in the CART model

was the critical point for discriminating the retraction lower lip

as well. The association reflected the accuracy and reliability of

our study.

Several limitations still remained in our study. Firstly, the

category system was only based on the morphological analysis,

and the clinical symptoms were not involved in this system. This

is because the study was a retrospective study under orthodontic

background and the detailed clinical symptoms such as TMJ

pain and others of the patients were not recorded. Thus, we will

cooperate with the clinicians in the department of TMJ in the

next step to supplement this system with clinical symptoms of

TMD. Secondly, the study primarily proposed a new category

system for the profile morphology of TMD, which lacked

clinical verification. Further studies will be needed to verify the

reliability and validity of this category system. Despite these

limitations, our research creatively classified TMD according to

the lateral cephalometric radiographs, which made a step toward

morphological understanding of TMD.

Conclusion

Our study primarily proposed a novel category system for

the profile morphology of TMDs with 3 subgroups according

to the cephalometric morphology, which dentists can easily

recognize TMDs according to our CART model. This study

may make a step toward the morphological understanding of

TMD and benefit the management of the categorical treatment

of TMD.
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