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Editorial on the Research Topic

Imaging the developing connectome of perinatal brain

Brain maturation during the perinatal period in the fetus and infant is a rapid and

complex process. Neurodevelopment during this period is critical for supporting later cognitive,

emotional, and behavioral abilities. Increasing evidence for the perinatal origins of various

neurodevelopmental disorders underscores the importance of identifying features of early

brain development (Dehaene-Lambertz and Spelke, 2015). Understanding the developing brain

connectome will open new insights into the fundamental processes of brain circuit formation

and maturation in early life and reveal the etiology of intractable neurodevelopmental disorders.

Advances in magnetic resonance imaging (MRI), such as rapid imaging and motion correction

techniques, have overcome significant challenges in fetal and infant brain MRI and enabled

non-invasive in vivo assessment of functional and structural connectivity between separate

brain regions (Kaiser, 2017; Dubois et al., 2021), offering great opportunities to capture the

connectome of the fetal and postnatal brain with unprecedented accuracy. Thus, the purpose

of this Research Topic focuses on neuroimaging studies of the early development of the

brain connectome.

This Research Topic includes 8 original research paper and 1 data descriptor. Main

research contents concentrate on atypical connectome pattern and novel imaging biomarkers

for prematurity, hypoxic ischemic encephalopathy (HIE), etc. and machine learning algorithms

for fetal brain analysis. Neumane et al. explored the impact of prematurity on the development

and integrity of the sensorimotor connectivity and their relationship to later motor impairments.

They found that prematurity affected early microstructural development of the primary

sensorimotor network and these effects differed according to the level of prematurity. They

also highlighted the microstructural development of specific tracts predicted fine motor and

cognitive outcomes at 18 months. Li et al. investigated the effects of daily iron supplementation

on motor development and brain structural connectivity of preterm infants. They found that

iron status at early postnatal period was related to both motor development and connectivity

decreases, and the delayed motor development can be reversed by supplying 2 mg/kg of iron per

day for 6 months. Vishnubhotla et al. studied the influence of prenatal opioid exposure on brain

structural connectivity, and identified two connectivity pathways that were significantly differed
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between opioid exposure infants and unexposed controls.

Votava-Smith et al. reported that clinical risk factors and

brain dysplasia score were associated with distinct brain

dysmaturation patterns in term neonates with congenital heart

disease (CHD). Specifically, clinical factors were most predictive

to postnatal microstructural dysmaturation, whereas subcortical

dysplasia predicted connectome-based measures, suggesting the

complementary effects of connectome and microstructure in

deciphering risk factors related to poor neurodevelopment in

CHD. Based on the least absolute shrinkage and selection operator

(LASSO) regression model, Onda et al. developed a novel biomarker

named composite diffusion tensor imaging (cDTI) score to assess

the severity of short-term neurological functions of HIE neonates.

They demonstrated high cDTI scores were related to the intensity

of the early inflammatory response and the severity of neuronal

impairment after therapeutic hypothermia.

Characterizing fetal brain development in utero is still challenging

due to the difficulties in acquiring high-quality MRI data and lack

of effective analytic methods. Based on 188 brain MRI of normal

fetuses ranging from 19 to 37 gestational weeks, Ren et al. establish

a reference of intracranial structure volumes during this period by

manual segmentation from two experienced experts. Wang et al.

developed a MRI-based semi-automatic pipeline to segment the

cortex and subcortical structures of fetal brains, reducing the costs of

manual segmentation. De Asis-Cruz et al. proposed a full automatic

and computationally efficient generative adversarial neural network

for segmenting the fetal brain based on functionalMRI, which yielded

whole brain masks that closely approximated the manually labeled

ground truth. This study is of great significance in facilitating in utero

investigations of emerging functional connectivity.

Lack of available and reliable data is one of dominating factors

that limits the exploration of brain maturational trajectories early

in life. Edwards et al. introduced the neonatal data release of

the Developing Human Connectome Project, which includes 887

multimodal high-quality MR images from 783 preterm-born and

term-born infants and essential metadata. This open dataset allows

researchers to design the experiment as they wish, making great

contribution to uncover the typical and atypical brain development

across the perinatal period.

In conclusion, these nine papers included in this Research

Topic summary the recent progression of normal brain maturation

and markers of neurodevelopmental disorders during the perinatal

period, as well as important technical advances in fetal and infantile

brain MRI.
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Objectives: The aim of the study is to demonstrate the characteristic of motor
development and MRI changes of related brain regions in preterm infants with different
iron statuses and to determine whether the daily iron supplementation can promote
motor development for preterm in early infancy.

Methods: The 63 preterm infants were grouped into non-anemia with higher serum
ferritin (NA-HF) group and anemia with lower serum ferritin (A-LF) group according to
their lowest serum Hb level in the neonatal period as well as the sFer at 3 months
old. Forty-nine participants underwent MRI scans and Infant Neurological International
Battery (INFANIB) at their 3 months. At 6 months of corrected age, these infants received
the assessment of Peabody Developmental Motor Scales (PDMS) after 2 mg/kg/day iron
supplementation.

Results: In total, 19 preterm infants were assigned to the NA-HF group while 44 preterm
infants to the A-LF groups. The serum ferritin (sFer) level of the infants in A-LF group was
lower than that in NA-HF group (44.0 ± 2.8 mg/L vs. 65.1 ± 2.8 mg/L, p < 0.05) and
was with poorer scores of INFANIB (66.8 ± 0.9 vs. 64.4 ± 0.6, p < 0.05) at 3 months
old. The structural connectivity between cerebellum and ipsilateral thalamus in the NA-
HF group was significantly stronger than that in the A-LF group (n = 17, 109.76 ± 23.8
vs. n = 32, 70.4 ± 6.6, p < 0.05). The decreased brain structural connectivity was
positively associated with the scores of PDMS (r = 0.347, p < 0.05). After 6 months
of routine iron supplementation, no difference in Hb, MCV, MCHC, RDW, and sFer was
detected between A-LF and NA-HF groups as well as the motor scores of PDMS-
2 assessments.
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Li et al. Iron Supplementation and Motor Development

Conclusion: Iron status at early postnatal period of preterm infant is related to motor
development and the enrichment of brain structural connectivity. The decrease in brain
structural connectivity is related to the motor delay. After supplying 2 mg/kg of iron per
day for 6 months, the differences in the iron status and motor ability between the A-LF
and NA-HF groups were eliminated.

Keywords: preterm infant, iron supplementation, motor development, brain structural connectivity, diffusion MRI

INTRODUCTION

Iron deficiency (ID) continues to be the most prevalent nutrient
deficiency in the world. As we know, preterm infants are more
likely susceptible to be anemic than term infants, most of which
were due to ID (Todorich et al., 2009). Iron is an essential
mineral necessary for delivering oxygen to tissues throughout
the body as well as serving important roles in metabolism,
respiration, and immune functions (Todorich et al., 2009). It
is also a cofactor in the central nervous system development
processes (DellaValle, 2013). Our body carefully sustains a
balance between iron loss, iron absorption, and iron storage. ID
is a precursor to iron deficiency anemia (IDA). The first stage
of ID is characterized by a decrease in serum ferritin (sFer),
which is caused by the depletion of total body iron stores, while
other iron indices and hemoglobin (Hb) remain normal. The
IDA stage is not only symbolized by lower sFer and hemoglobin
but also by lower mean corpuscular volume (MCV), lower mean
hemoglobin concentration (MCHC), and higher red blood cell
distribution width (RDW).

Brain ID occurs before IDA. It can alter the development
of oligodendrocytes and result in hypomyelination of white
matter, which is related to changes in startle response, auditory
evoked potentials, and motor function in the infant (Beard, 2007;
Todorich et al., 2009). Early ID also neurochemically alters the
function of neurotransmitters. Animal models have shown that
ID can alter the function of the frontal cortex, midline thalamus,
and other brain regions by modifying the dopaminergic
neurotransmission system (Beard and Connor, 2003).

Brain ID in fetuses or neonates is more detrimental than in
toddler because of the rapidity of brain growth early in life.
Obtaining adequate iron of the developing brain is necessary
for behavioral and motor development (Felt and Lozoff, 1996).
A number of studies have reported that term infants with IDA
or chronic severe ID have lower motor development scores,
compared with infants with normal iron status (Shafir et al.,
2008). It is particularly concerning that the ID infants have poorer
motor function because ID without anemia is more common
than IDA, which cannot be detected by regular screening
procedures (Shafir et al., 2008).

Compared with full-term infants, preterm infants are deprived
of iron accretion that occurs in the third trimester of pregnancy,
which results in a decrease in iron storage at birth, as reflected
in the decrease in sFer (Lackmann et al., 1998; McCarthy et al.,
2017). In addition, most studies have found that reduced brain
iron concentration was accompanied with lower sFer (Georgieff,
2017). Therefore, sFer is a valuable index indicating the brain
ID of these infants who are more susceptible to motor delay.

As iron supplementation after birth could improve gross motor
remarkably in term infants (Shafir et al., 2008), we speculate that
early regular iron supplementation to these premature infants at
high risk of ID can be beneficial to their motor development.

Clinical neuroimaging research on early motor abilities is still
limited. Previous studies have found that structural connections
between motor-related brain regions play an important role in
movement development (Craig et al., 2020). Cranial magnetic
resonance (MRI) is a common and valuable method to study
the infant brain functions, and diffusion tensor imaging (DTI)
is a non-invasive method to study the white matter of the brain.
Great progress has also been made in the study of human brain
architecture with ID or IDA by DTI and structural MRI (Hannah
and D’Cruz, 2019). Probabilistic fiber tracking by DTI in ID
adult has found that iron concentration is linked to structural
connectivity of the subthalamic nucleus (Dimov et al., 2019).
Therefore, MR tractography in premature infants with ID or IDA
was a recommended method for exploring development delay.

To characterize the motor development and MRI changes
of related brain regions in preterm infants with different iron
status, we examined data from a follow-up study including
brain imaging and behavior development of preterm infants with
different levels of iron metabolism. The relationship between
scores of gross and fine motor function of preterm infants
and structural brain network based on DTI were analyzed. We
hypothesized that preterm infants with neonatal anemia who
have lower iron levels would present an altered brain network
connectivity and motor ability. Routine iron supplementation
can improve iron status as well as motor development.

MATERIALS AND METHODS

The present study was approved by the ethics committee of
the Children’s Hospital, Zhejiang University School of Medicine
(Permit Number: 2019-IRB-027). Parents who accepted the
participation provided written informed consent before enrolled
on the study. All the data used in the present study were available
to the community via a suitable open repository.

Participants
We conducted a follow up study of preterm infants who
attended the High Risk Infant Clinic of the Children’s Hospital,
Zhejiang University School of Medicine, from January 2018 to
December 2019. Participants included 63 preterm infants, with
a gestational age (GA) of 28–36 weeks. All the enrolled infants
were invited for regular follow-up every month since 40 weeks
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GA. Information of medical records, including weight at birth,
GA, neonatal complications, Hb during neonate period (the
lowest Hb tested within the first month after birth), as well as
anthropometric measurements were collected. The enrollment
criteria included no chromosomal and genetic anomalies,
no craniofacial anomalies, no neurological complications, no
hematological disease, and no blood transfusions in the first
6 months (corrected age) of life.

Iron Status Detection and Iron
Supplementation
Venous blood samples of enrolled participants have been tested
for estimation Hb and ferritin at 3 months, and sFer, Hb, MCV,
MCHC, and RDW were collected at 6 months (correct age).
Anemia was defined as venous Hb < 145 g/L within 28 days of
age, Hb < 90 g/L at 3 months old, and < 110 g/L at 6 months old
(Domellof, 2017). According to the lowest Hb level during the
neonatal period as well as the sFer at 3 months, preterm infants
were divided into two groups: anemia with lower ferritin group
(A-LF, with Hb < 145 g/L) and non-anemia with higher ferritin
group (NA-HF, with Hb ≥ 145 g/L). C-reactive protein (CRP)
were all < 8 mg/L both at 3- and 6-month of age, which stands
for no inflammation.

All participants in this study had delayed cord clamping at
birth and were given iron supplements with a dosage of 2 mg/kg
per day from 40 weeks of corrected GA according to the post-
discharge feeding recommendations for premature, low birth
weight infants in China (preterm infants in this study cohort were
not introduced to have complementary food, so the total daily
iron intake was calculated as the sum of iron supplements and
the iron from formula and/or breast milk fortifier) (Wang and
Liu, 2016).

The Motor Ability Assessment
Early neurological function was evaluated according to the Infant
Neurological International Battery (INFANIB) at 3 months of
age. Results are expressed as raw scores for total motor ability.
Peabody Developmental Motor Scales, second edition (PDMS-
2), was conducted at 6 months of corrected age. The scales
contain sub-tests of the following six parameters: (a) reflexes, (b)
stationary (body control and equilibrium), (c) locomotion, (d)
object manipulation, and (e) grasping. Raw scores are converted
into age-equivalent scores for each sub-test; motor quotient is
calculated from the standard scores of five sub-tests of PDMS-2.
The assessment of PDMS-2 was performed by two pediatricians
who had no knowledge of the medical history of the infants.

Image Acquisition
Infants were scanned after receiving 50 mg/kg of enema or
oral chloral hydrate within 3 months old. The scans were
performed on a Philips 3.0T Achieva system with standard
eight-channel head coils. Two sequences were used in this
study: (1) 3-D sagittal T2-weighted sequence echo time
[(TE) = 278 ms, repetition time (TR) = 2,200 ms, acquisition
matrix = 224 × 204, voxel size = 0.8 × 0.8 × 0.8 mm3, field of view
(FOV) = 180 × 161 × 140 mm3]; (2) DTI images were collected

using an echo-planar image (EPI) sequence with 32 non-colinear
diffusion encoding directions for b value = 800 and 1,500 s/mm2

each, in addition with one non-weighted image (TE = 115 ms,
TR = 9,652 ms, voxel size = 1.5 × 1.5 × 2 mm3, flip angle = 90◦,
FOV = 180 × 180 × 120 mm3, acquisition matrix = 120 × 118,
bandwidth = 1,341 Hz/pixel, number of volumes = 60, 60 slices).

Brain Region Segmentation and Volume
Calculation Using T2-Weighted Imaging
The T2-weighted images were preprocessed including brain
extraction (Smith, 2002), creation of brain mask, and bias
correction (Tustison et al., 2010). Then the whole brain of
each subject was segmented into 83 brain regions using Draw-
EM (Developing brain Region Annotation With Expectation-
Maximization) (Makropoulos et al., 2014, 2018), and the volume
of each region was extracted.

Diffusion Tensor Imaging Preprocessing
All DTI data were performed intra-subject registration using a
linear image registration tool FLIRT (Jenkinson and Smith, 2001;
Jenkinson et al., 2002), followed by eddy current correction using
“topup” and “eddy” in FSL (Andersson and Sotiropoulos, 2016).
Fractional anisotropy (FA) and mean/axial/radial diffusivity
(MD/AD/RD) maps were generated from the diffusion tensor
using the weighted linear least squares method (Basser et al.,
1994). The individual images were transformed to the JHU-
neonate single brain DWI atlas using a non-linear transformation
of the multi-channel large deformation diffeomorphic metric
mapping (LDDMM) (Miller et al., 1993; Djamanakova et al.,
2013). Then the JHU-neonate parcellation map, which included
126 regions of interest (ROIs), was transformed to the individual
native space. Registration of all subjects was checked.

Diffusion Tensor Imaging-Based
Connectivity Analysis
Tractography was performed using a fiber orientation
distribution-based probabilistic fiber tracking algorithm in
MRtrix3,1 with the whole-brain mask as the seed, and the
following parameters were used: a cutoff of 0.05 min/max length
of 10/250 mm, step size of 0.5 mm. An asymmetric connection
matrix was generated for each subject from the whole brain
tractography based on the JHU-neonate parcellation map,
and the number of connection fibers between ipsilateral and
contralateral motor-related regions, including frontal cortex,
striatum, cerebellum, and thalamus, which were implicated
in supporting early motor development (Todorich et al.,
2009), was extracted.

Statistical Analysis
All analyses were performed using SPSS software, version 16.0
(IBM Corporation, Armonk, NY, United States).

An independent sample t-test was performed on the iron
metabolism parameters, age and birth weight. A Chi-square test
was performed on gender and maternal education background.

1www.mrtrix.org
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ROIs were paired to compare the connectivity between
A-LF and NA-HF groups. As all the data form a normal
distribution and homogeneity, covariance analyses of the volume
and connectivity of the brain regions, as well as the motor scores
of PDMS-2, were performed by controlling GA and physical age
before homogeneity test of variance. Multiple linear regression
was used to test the relationship between INFANIB scores and
the number of connection fibers/brain region volumes. Multiple
comparison correction was conducted, and adjusted p < 0.05 was
considered as statistically significant.

RESULTS

Demographic and Clinical Information
A total of 63 infants were enrolled in the present study.
Demographic and clinical information are shown in Table 1. GA
and birth weight were lower in the A-LF group than in the NA-HF
group. No difference was detected in gender, maternal age at
delivery, and maternal education background between the two
groups. The neonatal Hb level of the A-LF group was significantly
lower than that of the NA-HF group (n = 44, Hb:114.9 ± 6.3 g/L
vs. n = 19, Hb:174.1 ± 2.8 g/L, p < 0.05). Although there was no
significant difference of Hb between the A-LF and NA-HF groups
at 3 months old (n = 44, Hb: 102.1 ± 1.3 mg/L vs. n = 19, Hb:
97.6 ± 2.7 g/L, p = 0.127), sFer of the A-LF group was lower than
that of the NA-HF group (n = 44, sFer: 44.0 ± 2.8 mg/L vs. n = 19,
sFer: 65.1 ± 2.8 mg/L, p < 0.05) (Table 2).

All preterm infants were tested with INFANIB at 3 months
old. We found that the overall INFANIB scores were lower in
the A-LF group. The discrepancy has statistical significance after
controlling by GA and corrected age (n = 44, 64.4 ± 0.6 vs. n = 19,
66.8 ± 0.9, p < 0.05, Figure 1).

Structural Changes of Neuroimaging in
Anemia Preterm Infant With Lower
Serum Ferritin
Previous studies have found that structural connections between
motor-related brain regions play an important role in movement
development (Craig et al., 2020). Only 32 of A-LF infants

TABLE 1 | The baseline characteristics of the NA-HF and A-LF groups.

NA-HF A-LF p-Value

Gestational age (week) 35.5 [3.2] 32.1 [3.6] <0.05*

Birth weight (kg) 2,009.0 [373.2] 1,597.0 [447.3] <0.05*

Sex [n (%)] 0.589

Male 11 (57.9%) 27 (61.4%)

Female 8 (42.1%) 17 (38.6%)

Maternal age (year) 30.5 (0.41%) 30.0 (0.36%) 0.669

Maternal education
background [n (%)]
≤ senior middle school

6 (31.6%) 11 (25.0%) 0.292

Values are means ± SEM, n = 19 in NA-HF group/44 in the A-LF group. *p < 0.05
indicates means with significant difference. NA-HF, non-anemia with higher serum
ferritin; A-LF, anemia with lower serum ferritin.

and 17 of NA-HF infants had qualified MRI examination.
MRI quality control was performed as follows: (1) without
acquired punctate or focal lesions, marked dilation of the
cerebral ventricles on MRI scans; (2) without visible artifacts
on MRI scans. The ROI registration files of all the subjects
were checked, and the registration effect was good. According
to previous studies, a total of 12 connections were examined
in the present study, including ipsilateral and contralateral
precentral gyrus, cerebellum, thalamus, and striatum. The
results showed that there was obvious fiber connection
between the ipsilateral and contralateral precentral gyrus–
cerebellum, precentral gyrus–striatum, cerebellum–thalamus,
and cerebellum–striatum which had significance (Table 3) in
both A-LF and NA-HF groups.

Then, we compared the above eight connections between
the two groups. After controlling GA and physical age, only
the connectivity between cerebellum and ipsilateral thalamus
in the A-LF group was lower than that in the NA-HF group
(109.76 ± 23.8 vs. 70.4 ± 6.6, p < 0.05). No statistical difference
of the structural connectivity between other ROIs was detected in
the two groups (Figure 2).

According to the reported decreased volume of brain regions
in IDA infants, the volume of brain region was calculated in
the present study. Based on the results of connectivity analysis,
we calculated the volume of cerebellum and thalamus. It was
found that the overall volume of the left and right thalamus was
significantly lower in the A-LF group than that in the NA-HF
group (8,369.3 ± 353.2 mm3 vs. 6,926.2 ± 552.3 mm3, p < 0.05),
but no significant difference in the cerebellum volume was found
between the two groups (Figure 3).

Iron Status and Scores of Peabody
Developmental Motor Scales After Iron
Supplementation at 6 Months of
Corrected Age in Preterm Infant
To identify the effect of oral iron supplementation, iron
metabolism parameters were compared between the two groups
at 6 months of corrected age. No difference was detected in Hb
(116.6 ± 2.8 g/L, n = 19 in the NA-HF group, and 117.2 ± 2.5 g/L,
n = 44 in the A-LF group) and sFer (39.3 ± 15.0 µg/L, n = 19 in
the NA-HF group, and 30.8 ± 3.6 µg/L, n = 44 in the A-LF group)
between the two groups (Table 2).

As shown in Figure 4, although the mean of the total
motor quotient, gross motor quotient, and fine motor quotient
by PDMS-2 assessment was slightly higher in the NA-
HF group at 6 months of correct age after 6 months
supplementation, there was no significant difference between the
two groups (Figure 4).

Brain Structure–Movement Relationship
in Anemia Preterm Infant With Lower
Serum Ferritin
After controlling GA and the age of MRI scan, the structural
connection strength between the cerebellum and ipsilateral
thalamus was positively correlated with motor scores of
INFANIB at 3 months old (r = 0.347, p < 0.05), while
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TABLE 2 | Iron status in the NA-HF and A-LF groups.

NA-HF A-LF p-Value

Newborn

Hb (g/L) 174.1 [2.8] 114.9 [6.3] <0.05*

3 months

Hb (g/L) 97.6 [2.7] 102.1 [1.3] 0.127

MCV (fl) 82.1 [1.4] 85.5 [0.9] 0.628

MCHC (g/L) 330.8 [2.8] 330.9 [1.9] 0.550

RDW (%) 13.7 [0.5] 14.5 [0.3] 0.790

SF (µg/L) 65.1 [2.8] 44.0 [2.8] < 0.05*

6 months

Hb (g/L) 116.6 [2.8] 117.2 [2.5] 0.881

MCV (fL) 79.1 [1.0] 75.5 [2.2] 0.336

MCHC (g/L) 327.1 [3.1] 328.4 [2.4] 0.753

RDW (%) 13.3 [0.4] 13.5 [0.3] 0.655

SF (µg/L) 39.3 [15.0] 30.8 [3.6] 0.460

Values are means ± SEM, n = 19 in the NA-HF group/44 in the A-LF group.
*p < 0.05 indicates means with significant difference. Hb, hemoglobin; MCV, mean
corpuscular volume; MCHC, mean hemoglobin concentration; RDW, red blood cell
distribution width.

FIGURE 1 | The scores of Infant Neurological International Battery (INFANIB)
display a lower value in anemia in the lower ferritin (A-LF) group than
non-anemia in the higher ferritin (NA-HF) group at 3 months old. ∗p < 0.05.

there was no significant correlation between the volumes
of cerebellum/thalamus and the motor scores (r = 0.056,
p = 0.930/r = 0.047, = 0.951). In addition, we also found that the
connection strength was significantly higher in the A-LF group
than that in the NA-HF group controlling for the volume of
thalamus and cerebellum (p < 0.05) (Figure 5).

DISCUSSION

This study together provides the following evidence: (1) Anemia
with lower iron levels during the neonatal period was related
to the poor motor performance during early postnatal life
among preterm infants. (2) The volume of the thalamus and
the structural connection between the cerebellum and ipsilateral
thalamus was lower in A-LF than that in NA-HF preterm infants,
but only the decreased connectivity between the cerebellum and
ipsilateral thalamus in the A-LF group was related with the motor
delay. (3) After 6 months of daily iron supplementation, no

difference in iron status was detected between the A-LF and NA-
HF groups, as well as the motor scores of PDMS-2 assessment.

As premature infants are susceptible to ID than term infants
(Moreno-Fernandez et al., 2019), iron detection is necessary at
early age of preterm infants. However, considering the limitation
of venous blood sampling for iron detection in neonates, as well
as the finding that preterm infants with neonatal anemia probably
had a lower level of iron than those without neonatal anemia
in the previous studies, we analyzed the serum Hb and sFer at
3 months of age. The findings demonstrated that infants with
neonatal anemia had lower sFer levels at 3 months old, which may
indicate lower iron levels early after birth. Furthermore, previous
research found that brain ID occurs earlier than serum ID/IDA
(Zamora et al., 2016), and we speculated that lower Hb at birth in
the A-LF group might increase the risk of brain ID in our sample.

Many studies have shown that brain iron status is related to
neurodevelopment of infants, which is involved in myelination,
dopamine neurotransmission, and neuronal metabolism (Beard
and Connor, 2003). Most researches focused on ID with cognitive
development, but little is known about the motor development
of premature infants with ID (Berglund et al., 2013, 2018). In
our study, at the same time when blood sampling was tested at
3 months old, we conducted the INFANIB and found that the
motor development of A-LF infants obviously lagged behind than
that of NA-HF infants. This was consistent with the previous
study on term infants that there is poorer motor function in ID
group with or without anemia (Shafir et al., 2008).

Currently, most findings showed that brain ID is mainly
related to the decrease in the volume of the brain regions (Mudd
et al., 2018). Brain regions involved in our study, such as the
frontal cortex, striatum, cerebellum, and thalamus, are associated
with early motor development (Niendam et al., 2012). As Mudd
reported in the pig model, pigs with ID demonstrated reduced
iron content in the cerebellum and left cortex as well as decreased
gray and white matter compared with the controlled group
using the QSM and voxel-based morphometric analysis (Mudd
et al., 2018). Another research also indicated that lower iron
concentrations in 30-day-old pigs had smaller volume in cortical
gray matter in the ID group compared with the control group
(Leyshon et al., 2016). In our preterm cohort, the volumes of
thalamus were different between the A-LF and NA-HF groups.
After further analysis, there is no significant correlation between
the volume of thalamus and motor development. It may be
related to the limitation of our sample size. Further study
with an expanding sample size will be needed to address this
issue in more detail.

Despite the volume of brain regions, recent animal studies
demonstrated that perinatal ID affected cortical neurons, and
both apical and basal dendrites displayed a uniform decrease
in branching (Felt et al., 2006; Greminger et al., 2014), which
may lead to decreased neuron connection between cortex and
other brain regions. Iron is important as it is involved in the
production of myelin basic protein (MBP) and maintenance
of myelination of neurons in brain gray matter, such as the
thalamus (Mills et al., 2010; Huber et al., 2020). Other studies
reported that the cerebellum and thalamus are susceptible to
ID, which may lead to changes in monoamine metabolism,
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FIGURE 2 | Comparisons of clusters with significant connectivity between motor regions in the A-LF and NA-HF groups with multiple corrections by diffusion tensor
imaging (DTI) at 3 months old. (A) Color-coded spheres present motor-related ROIs. (B–D) Locations and signs of brain structural connectivity between
motor-related regions are illustrated. Spheres represent regions of interest (ROIs). Neostriatum and globus pallidus stand for striatum. Sticks with colors from blue to
red represent probabilistic brain structural connectivity for an ROI pair. Color bars in (B,D) indicate the connectivity enrichment. Color bars in (C) indicate the
discrepancy between the A-LF group and NA-HF group, respectively. (E–L) Comparisons of structural connectivity showed lower enrichment between cerebellum
and ipsilateral thalamus in the A-LF group compared with the NA-HF group, and no significant difference was detected between other ROIs. grcp, precentralgyrus;
cere, cerebellum; th, thalamus; st, striatum (include caudate nucleus, Cau/globus pallidus, GP); I, ipsilateral; C, contralateral; *p < 0.05.

resulting in functional connection disorder (Felt et al., 2006).
Our study has shown that the structural connections between
the cerebellum and thalamus were lower in the A-LF than that
in the NA-HF groups at 3 months old. The results of regression
analysis demonstrated that the level of motor development
of infants of the same age was positively correlated with the
structural connection between the cerebellum and thalamus.
Our study showed that the structural connections between the
cerebellum and thalamus in A-LF were obviously lower than
that in the NA-HF groups at 3 months old. Moreover, consistent
with Andreasen’s findings, the result of our regression analysis
demonstrated that the level of motor development of infants at
3 months old was positively correlated with the number of nerve
structural connections between the cerebellum and thalamus. ID
may lead to the reduction in motor-related neural connections,
thus, affecting the level of motor development of premature
infants in our cohort. The findings of both studies, one based
on probabilistic fiber tracking and another by Andreasen’s team,
suggested that anemic infants with lower iron levels had reduced
structural connection between the cerebellum and thalamus. This
evidence helps us to explain why A-LF preterm infants have
poorer motor performance compared with the NA-HF group.
Although the locus coeruleus drives disinhibiting in the midline

thalamus via a dopaminergic mechanism (Beas et al., 2018),
the relationship between structural and functional connection
remains controversial. Most studies believed that the decrement
in structural connectivity is prior to the reduction in functional
connectivity, as structural connectivity is the basis of functional
connectivity (Hampton et al., 2017), while Betzel et al. (2014) and
Bernard et al. (2016) found an increase in functional connection
followed by a secondary alteration of structural connection. As
previous researches indicated, the findings by Bernard may be
related to the reconstruction of synapsis at young age and the
compensation of monoamine metabolism (Paolicelli et al., 2011).
The findings above support the importance of the detection with
DTI to evaluate the network level of structural connection.

To improve the motor development of preterm infants
affected by ID, many guidelines for daily iron supplementation
were proposed. Although there were discrepancies of the
recommended dosage and initiation time of routine iron
supplementation on preterm infants among the following
consultations, the overall consensus is reached that early iron
supplementation can be beneficial to preterm infants. The
American Academy of Pediatrics recommends that breast-
fed and formula-fed premature infants should receive 2
and 1 mg/kg/day element iron, respectively, from the age
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FIGURE 3 | The volumes of motor-related regions. (A) The whole brain of each subject was segmented into 83 brain regions using the atlas of the Developing Brain
Region Annotation with Expectation-Maximization. (B) There was no significant difference in the volumes of cerebellum between the A-LF and NA-HF groups. (C)
The volume of the thalamus was smaller in the A-LF group than in the NA-HF groups. *p < 0.05.

TABLE 3 | The number of fiber connectivity between motor related brain regions.

NA-HF A-LF p-value

Precentral gyrus–cerebellum
(ipsilateral)

1,572.6 [250.0] 1,751.9 [184.6] 0.568

Precentral gyrus–cerebellum
(contralateral)

1,098.7 [175.1] 1,210.4 [143.3] 0.636

Precentral gyrus–striatum
(ipsilateral)

1,032.2 [281.4] 900.0 [103.2] 0.664

Precentral gyrus–striatum
(contralateral)

6 [1.2] 10.2 [2.1] 0.171

Cerebellum–thalamus (ipsilateral) 109.7 [23.8] 70.4 [6.6] <0.05*

Cerebellum–thalamus (contralateral) 52.5 [19.6] 42.6 [5.1] 0.628

Cerebellum–striatum (ipsilateral) 94.8 [15.7] 91.1 [14.0] 0.869

Cerebellum–striatum (contralateral) 61.2 [18.3] 56.8 [10.0] 0.821

Values are means ± SEM, n = 17 in NA-HF group/32 in A-LF group. *p < 0.05
indicates means with significant difference.

of 1–12 months, and the European Society of Pediatric
Gastroenterology and Nutrition and the Canadian Pediatric
Society recommended a larger dose (Nutrition Committee,
Canadian Paediatric Society, 1995; Rao and Georgieff, 2009).
ID/IDA during pregnancy was associated with poorer motor
development of the offspring, but iron supplementation during
pregnancy has little effect on the impairment of motor function
(Hernandez-Martinez et al., 2011; Tran et al., 2014). The optional

time window of iron supplementation on neurodevelopment
remains controversial. A longitudinal study from Costa Rica
demonstrated that despite iron therapy in infancy, the motor
development of infants with chronic ID was not improved over
time (Shafir et al., 2006). However, a randomized controlled trial
from Hebei of China demonstrated that iron supplementation
during early infancy reduced the proportion of children in the
lowest quartile of the locomotor subscale in the child, regardless
of whether their mothers were receiving iron supplementation
or not during pregnancy (Angulo-Barroso et al., 2016). Similar
findings were also reported in another Chinese RCT cohort
that iron supplementation from 6 weeks to 9 months had a
positive effect on overall gross motor development at 9 months
in term infants. These studies indicated the importance of iron
supplementation in early infancy (Zhang et al., 2019). However,
all of these studies only focused on term infants. Our study
added the evidence of the significance of iron supplementation
for premature infants that, similar to term infants, daily iron
supplementation from early infancy can reverse the delayed
motor development of preterm infants. However, whether we
can maintain a more desirable iron level of preterm infants
and improve their motor ability by long-term regular iron
supplementation needs to be evaluated in the future.

Our study had some limitations and are as follows: First, the
study was limited by a relatively small sample size, and there
is a sample bias between the NA-HF and A-LF groups. It may
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FIGURE 4 | The motor scores accessed by Peabody Developmental Motor Scales, second edition (PDMS-2) after iron supplementation at corrected age of
6 months old. (A–C) Although the mean of total motor quotient was slightly lower in A-LF group rather than NA-HF group, there was no significant difference in total
motor quotients, gross motor quotients, and fine motor quotients between A-LF and NA-HF groups at this age.

FIGURE 5 | Correlations between the motor scores of INFANIB and brain structural connectivity at 3 months old. (A) The structural connectivity between the
cerebellum and ipsilateral thalamus was positively correlated with the scores of INFANIB at 3 months old. r = 0.347, p < 0.05. (B,C) The volume of the cerebellum
and thalamus were not linearly related with the scores of INFANIB at this age. r = 0.056, p = 0.930/r = 0.047, p = 0.951. cere, cerebellum; th, thalamus; I, ipsilateral.

lead to a statistical bias. The sample size should be enlarged and
balanced in future research. Second, considering ethical issues, we
did not set up sub-groups without routine iron supplementation.
A further well-designed study will help to better monitor the
long-term effect of routine iron supplementation among preterm
infants and to determine if our results can be generalized. Third,
MRI scan including sequence for quantitative susceptibility
mapping (QSM) as an indirect quantitative marker of brain iron
and one more DTI detection at 6 months old of correct age will be
needed to confirm the mechanism that the iron status of preterm
infants is related to motor development via the decreased brain
structural connectivity.

As a conclusion, in this study, we demonstrated that iron
status of preterm infants is related to motor development,
which is also related with the decreased connectivity between
the cerebellum and ipsilateral thalamus. These neuroimaging
outcomes together with the infantile iron status and motor
abilities in our study provided evidence that structural
connectivity assessed by diffusion MRI may serve as a
biomarker to predict the motor development in ID preterm
infants. Daily iron supplementation at an early age can reverse
the delayed motor development in preterm infants with
lower iron status.
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Objective: The purpose of this study is to establish a reference of intracranial structure

volumes in normal fetuses ranging from 19 to 37 weeks’ gestation (mean 27 weeks).

Materials and Methods: A retrospective analysis of 188 MRI examinations (1.5 T)

of fetuses with a normal brain appearance (19–37 gestational weeks) from January

2018 to December 2021 was included in this study. Three dimensional (3-D) volumetric

parameters from slice-to-volume reconstructed (SVR) images, such as total brain

volume (TBV), cortical gray matter volume (GMV), subcortical brain tissue volume (SBV),

intracranial cavity volume (ICV), lateral ventricles volume (VV), cerebellum volume (CBV),

brainstem volume (BM), and extra-cerebrospinal fluid volume (e-CSFV), were quantified

by manual segmentation from two experts. The mean, SD, minimum, maximum, median,

and 25th and 75th quartiles for intracranial structures volume were calculated per

gestational week. A linear regression analysis was used to determine the gestational

weekly age-related change adjusted for sex. A t-test was used to compare the mean

TBV and ICV values to previously reported values at each gestational week. The formulas

to calculate intracranial structures volume derived from our data were created using a

regression model. In addition, we compared the predicted mean TBV values derived by

our formula with the expected mean TBV predicted by the previously reported Jarvis’

formula at each time point. For intracranial volumes, the intraclass correlation coefficient

(ICC) was calculated to convey association within and between observers.

Results: The intracranial volume data are shown in graphs and tabular summaries.

The male fetuses had significantly larger VV compared with female fetuses (p = 0.01).

Measured mean ICV values at 19 weeks are significantly different from those published in

the literature (p < 0.05). Means were compared with the expected TBV generated by the

previously reported formula, showing statistically differences at 22, 26, 29, and 30 weeks’

gestational age (GA) (all p < 0.05). A comparison between our data-derived formula and

the previously reported formula for TBV showed very similar values at every GA. The
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predicted TBV means derived from the previously reported formula were all within the

95% confidence interval (CI) of the predictedmeans of this study. Intra- and inter-observer

agreement was high, with an intraclass correlation coefficient larger than 0.98.

Conclusion: We have shown that the intracranial structural volume of the fetal brain can

be reliably quantified using 3-D volumetric MRI with a high degree of reproducibility and

reinforces the existing data with more robust data in the earlier second and third stages

of pregnancy.

Keywords: fetal brain development, magnetic resonance imaging, three dimensional volumetric, prenatal

diagnosis, image processing

INTRODUCTION

Currently, ultrasound (US) biometry is the reference standard for
assessing fetal brain development (Griffiths et al., 2017). With
regard to the central nervous system (CNS), indirect indicators
of fetal brain development are used routinely by measurement
of two-dimensional (2-D) parameters (De Oliveira Júnior et al.,
2021), such as biparietal diameter (BPD) and head circumference
(HC) (Ruiz et al., 2017; Kline-Fath, 2019; Sibbald et al., 2021).
However, BPD and HC can only be compared with the size of the
head, including the skull, and the sizes of the brain and detailed
study of different intracranial structures cannot be performed
(Fried et al., 2021).

Although US has been the primary imaging method for
prenatal screening for fetal brain anomalies, fetal MRI has
become a useful supplemental imaging tool. Fetal MRI has
been useful in evaluating abnormalities of fetal structures which
are difficult to thoroughly evaluate by prenatal US alone,
with obvious advantages over US in displaying neurological
maturation and abnormalities (Grossman et al., 2006; Ruiz
et al., 2017). The use of three-dimensional (3-D) volumetric
in utero MRI is a relatively newer modality and allows more
accurate measurement of intracranial structure volumes, which
can more accurately reflect the growth of the fetal brain than 2-
D parameters (Blondiaux and Garel, 2013; Jarvis and Griffiths,
2017; Kyriakopoulou et al., 2017; Takakuwa et al., 2021).

Although several existing studies (Clouchoux et al., 2012;
Griffiths et al., 2019) have attempted to establish the normative
MR data for intracranial compartment volume at varying
gestational ages (GAs) as measured by fetal MRI, however,
these have some limitations. Most studies had a relatively small
GA range (Corbett-Detig et al., 2011; Clouchoux et al., 2012),
as well as limited measurements of regional brain structures
(Andescavage et al., 2017), thicker slice thickness of MRI scans
(Gholipour et al., 2011). In our study, we aim to provide reference
values for normal fetal intracranial structure volumes to reinforce
existing data with more reliable normative data in the second
and third stages of pregnancy. This is essential to understand the

Abbreviations: GA, Gestational age; 2D, Two-dimensional; 3D, Three-

dimensional; ICV, Intracranial cavity volume; TBV, Total brain volume;

VV, Lateral ventricles volume; CBV, Cerebellar volume; GMV, gray matter

volume; SBV, subcortical brain volume; BM, Brainstem volume; E-CSFV,

Extra-cerebrospinal fluid.

progression and timing of aberrant brain development and early
detection of deviations from normal growth during this period.

MATERIALS AND METHODS

Subjects
A retrospective study at our institution was performed. Fetal
brain MRI databases spanning the years 2018–2021 in our
medical center were searched for examinations performed
between 18 and 38 weeks of gestation (median GA: 27 weeks).
These data were from pregnant women who had been acquainted
with the procedure and possible risks of fetal MRI and had
given written informed consent to conduct prenatal studies
before the examination. This study protocol was authorized by
the review board of our medical hospital. All methods of the
study were performed in accordance with the relevant guidelines
and regulations.

We created a normative database by scanning low-risk
pregnant women who were enrolled in our control cohort
group. Inclusion criteria: women who had a previous child
with a confirmed abnormality or US query of non-CNS mild
abnormalities without brain abnormalities seen on fetal MRI.
Fetal age was based on the first day of the last normal menstrual
period and confirmed by a first-trimester US scan.

Exclusion criteria: twin or multiple pregnancies, fetal
malformation or chromosomal abnormalities, associated
arrhythmias, perinatal infections, fetal anemia, and maternal
conditions that may affect fetal hemodynamics, such as
thyroid disease, pregestational diabetes, and pre-eclampsia. The
malformation of non-CNS that may be affect CNS development
can also be excluded. Excessive fetal motion artifact prevents
the acquisition of three orthogonal planes for reconstruction
and measurement.

MRI Protocol and Analysis
All fetal MRI scans were performed using a Philips Achieva
1.5 T MRI scanner and a 16-channel sense-xl-torso coil (Philips
Healthcare). Pregnant women were in the supine or the left-
sided position. No maternal or fetal sedation was used during the
MR imaging examinations. First, localizer images were acquired
to determine the location of the fetal head. The following
parameters were used for the single-shot fast spin-echo (SSFSE)
sequence: TR/TE: 12,000/80ms, matrix: 236 × 220, flip angle: 90
degrees, field of view: 260–355 mm2, and slice thickness: 2mm
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FIGURE 1 | An example of fetal brain reconstruction from two dimensional (2D) single-shot fast spin-echo (SSFSE) MRI slices of axial, sagittal, and coronal planes

(Stack1; 2) to a single three dimensional (3D) reconstruction volumetric image (reconstruction column); 3D reconstructed brain of a normal control fetus at 32

gestational weeks with manual 3D segmentations of supratentorial brain tissue, lateral ventricles, cortex, cerebellum, brainstem (BM), and extra-cerebrospinal fluid

volume (eCSF) (segmentation column).

with 0-mm spacing. The scan time of SSFSE sequence was 15–
45 s. The repeat data acquisition or breath-holding of pregnant
women at the end of expiration or both was used to reduce
motion artifacts to improve the success of the SSTSE sequence.

MRI Processing and Segmentation
The post-acquisition processing was performed using the
Linux workstation. The acquired data were converted from
DICOM (Digital Imaging and Communications in Medicine)
to NIfTI (Neuroimaging Informatics Technology Initiative)
format with MATLAB (The MathWorks Inc, Natik, MA) and
DCM2NII software (version 12.12.2012). For each subject, a
single 3D motion-corrected high-resolution brain volume was
reconstructed from the 2D SSTSE imaging stacks using a slice-
to-volume reconstruction (SVR) method (Jiang et al., 2007;
Gholipour et al., 2011). First, we used an atlas-based method

to extract a mask of the brain by defining a region of interest
(ROI) from surrounding fetal and maternal tissue in each of the
3 principal planes, namely, sagittal, coronal, and axial. Second,
images were processed using the non-parametric non-uniform
intensity normalization algorithm to correct for intensity
inhomogeneity to get a consistent, spatially invariant, signal
intensity distribution for each brain tissue. After that, the high-
resolution isotropic reconstructed 3D volumetric images with
the resolution of 0.5 × 0.5 × 0.5mm were reconstructed from
the registered low resolution and motion-corrupted 2D slices
by using the Gauss–Seidel and super-resolution reconstruction
method (Gholipour et al., 2010; Askin Incebacak et al., 2022)
(Figure 1).

Coronal slices were segmented manually by editing using
ITK-SNAP software (version3.8, http://www.itksnap.org/) to
volumetric measure in intracranial cavity volume (ICV), total
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brain volume (TBV), lateral ventricles volume (VV), and extra-
cerebrospinal fluid (e-CSFV). Besides, based on the created label-
maps, gray matter (GMV), subcortical brain (SBV), cerebellar
(CBV), and brainstem (BM) volumes were determined, and
total brain (TBV = GMV + SBV+CBV+BM) and intracranial
cavity (ICV=TBV+VV+ e-CSFV) volumes were calculated. All
intracranial CSF spaces surrounding the supratentorial brain
structures and infratentorial regions were included in E-CSF but
not any ventricular tissue. Lateral ventricles volume represented
the volume of left and right lateral ventricles. Volumes were
determined by multiplying the voxel count by the number of
voxels in the segmentation and converting to cubic centimeters
(Figure 1). Raters were blinded to the patient’s identity and
gestation for all subjects.

The relative growth rate represents the percentage volume
gain relative to the average volume for each intracranial structure
and was calculated using the formula (Hoffmann and Poorter,
2002): [(lnV2 – lnV1)/(GA2 – GA1)] × 100, where ln is the
natural logarithm, GA1and GA2 are the gestational weeks at a
given GA range, and V1 and V2 are the average volumes of
different intracranial structures corresponding to GA1 and GA2
at the time point, respectively.

Statistical Analysis
Statistical analysis was performed using SPSS 22.0 software. The
mean, SD, minimum, maximum, median, and 25th and 75th
quartiles were calculated for the measured volumes of TBV,

GMV, SBV, ICV, e-CSFV, VV, CBV, and BM at each GA and
presented in tabulated form. A t-test was used to compare our
mean TBV and ICV to previously reported values (Jarvis et al.,
2016, 2019). Scatter plots were drawn according to the segmented
volumes against GA and adjusted for sex, then a quadratic
line showed the best fit for TBV, GMV, SBV, ICV, e-CSFV, VV,
CBV, and BM with 95% confidence intervals (CIs). Then, the
new formulas to calculate intracranial structures derived from
our data were created. Jarvis’ formula for calculating fetal TBV
was derived from a fitting standard curve (TBV = 0.53 GA2 –
13.33 GA + 89.69 [R2 = 0.97]). Subsequently, student’s t-tests
analysis was performed to compare the predicted mean TBV
values at each GA derived by our formula with the expected
mean TBV predicted by the Jarvis’ formula. About 30% of scans
were randomly selected and were corrected by the same observer
and another observer. For intracranial volumes, the intraclass
correlation coefficient (ICC) was calculated to convey association
within and between observers. The values of p were considered
statistically significant when <0.05.

RESULTS

Fetal brain MRI data were collected from 700 singleton
pregnancy fetuses at a GA between 18 and 38 weeks. After
excluding 512 normal fetal brain data with noticeable motion
artifacts that resulted in low-quality data and gross errors in
segmentation, a total of 188 normal fetal brains (97 female

FIGURE 2 | Histogram of gestational age (GA) and sex distribution of MR scans in normal fetuses (n = 188).
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TABLE 1 | The tabular summaries of min, max, mean, 25th, 50th, and 75th

centiles of (A) TBV, (B) ICV, (C) GMV, (D) SBV, (E) e-CSFV, (F) VV, (G) CBV, and

(H) BM.

A:TBV(ml)

GA Min 25th 50th 75th Max Mean SD

37 305.00 307.50 318.00 325.80 331.60 316.90 10.20

36 280.80 285.10 293.00 303.40 306.80 294.00 9.97

35 244.10 249.30 260.60 269.70 278.80 260.30 12.11

34 228.50 229.10 234.00 245.10 250.80 236.90 8.87

33 196.50 202.40 210.50 220.10 231.90 212.10 11.10

32 180.90 190.80 196.70 200.70 208.60 197.80 6.43

31 165.20 175.40 184.30 189.40 192.40 182.00 8.92

30 166.50 170.00 176.70 180.80 184.90 175.60 6.09

29 140.00 156.90 166.90 175.60 178.70 164.10 11.55

28 122.30 131.90 138.00 152.20 157.10 140.80 11.65

27 107.00 114.6 124.30 130.50 140.80 122.30 10.18

26 82.42 88.75 92.00 93.92 97.00 91.10 4.04

25 76.00 80.38 83.69 86.42 88.00 83.17 3.80

24 64.82 68.42 74.46 80.10 88.90 74.98 6.60

23 58.58 61.48 65.81 67.21 72.80 64.98 3.78

22 51.42 53.32 55.90 58.59 61.62 56.08 3.66

21 40.11 42.05 47.00 51.35 57.41 47.28 5.63

20 33.10 35.33 37.95 39.75 41.90 37.63 2.87

19 26.80 27.25 29.00 31.73 32.50 29.33 2.38

B:ICV (ml)

GA Min 25th 50th 75th Max Mean SD

37 480.00 480.20 493.30 502.80 505.50 491.80 11.47

36 448.80 449.60 463.60 468.50 470.00 460.00 9.74

35 384.50 410.40 432.40 443.30 451.10 426.70 23.28

34 367.50 376.40 387.50 398.30 402.70 386.60 12.09

33 330.60 333.70 345.50 354.20 358.00 344.50 10.24

32 308.90 321.50 330.20 336.30 340.40 328.80 9.25

31 283.60 296.00 308.50 312.30 324.00 304.70 12.19

30 278.90 287.70 306.50 317.00 319.60 302.50 15.51

29 256.00 266.70 274.40 289.00 301.00 277.50 13.94

28 225.60 234.10 246.10 260.60 269.70 246.80 15.27

27 187.50 196.90 212.80 235.50 253.40 215.50 21.33

26 157.60 167.50 176.00 183.00 189.00 175.40 9.45

25 143.70 149.60 158.30 167.00 173.10 158.50 9.53

24 122.20 128.70 139.50 147.50 160.10 141.50 12.11

23 112.50 118.70 123.50 135.60 140.60 125.70 9.34

22 94.00 98.64 106.90 119.60 128.40 109.30 11.90

21 79.26 80.78 86.00 91.36 95.60 86.40 5.65

20 73.50 74.99 76.89 78.23 80.00 76.74 2.13

19 65.70 66.53 69.75 72.38 73.00 69.55 3.05

C:GMV (ml)

GA Min 25th 50th 75th Max Mean SD

36 80.80 81.40 83.40 86.80 89.10 83.96 3.20

36 68.67 72.78 79.58 80.57 81.00 77.26 5.04

(Continued)

TABLE 1 | Continued

C:GMV (ml)

GA Min 25th 50th 75th Max Mean SD

35 60.00 61.56 64.79 69.39 70.89 65.24 4.23

34 52.35 55.10 58.77 61.29 63.49 58.23 3.70

33 42.86 44.64 47.50 50.18 54.79 47.84 3.68

32 39.87 41.74 45.67 49.61 52.38 45.78 4.14

31 37.65 39.13 40.34 42.42 46.33 40.95 2.53

30 34.23 36.49 39.00 43.26 45.69 39.71 3.76

29 27.00 29.60 32.06 37.72 40.00 33.44 4.44

28 26.22 28.19 29.00 32.49 34.09 29.98 2.66

27 20.18 23.46 24.60 25.75 26.91 24.31 1.81

26 16.69 17.90 18.00 19.40 20.68 18.47 1.18

25 15.45 16.09 17.00 17.50 18.66 16.96 0.96

24 13.46 14.78 15.59 16.09 17.03 15.42 0.97

23 12.24 13.00 13.54 14.35 15.01 13.63 0.88

22 10.77 11.52 12.03 12.74 13.02 12.05 0.68

21 8.14 9.23 10.00 10.66 11.89 9.99 1.08

20 6.55 6.99 7.23 7.70 8.00 7.28 0.48

19 6.00 6.12 6.63 6.95 7.00 6.57 0.43

D:SBV (ml)

GA Min 25th 50th 75th Max Mean SD

37 194.50 196.90 210.40 215.60 220.40 207.10 10.27

36 185.20 186.30 190.00 201.90 207.30 193.30 8.88

35 165.80 167.30 176.10 182.00 186.30 175.50 7.95

34 153.10 156.10 160.70 165.90 176.70 162.10 7.39

33 138.50 142.60 148.50 156.00 167.80 150.00 9.27

32 119.10 131.90 135.20 140.40 152.70 137.70 8.89

31 114.60 124.40 130.10 135.20 139.30 129.30 7.60

30 112.50 120.50 125.90 130.60 133.10 124.90 6.29

29 102.10 110.3 125.00 128.80 139.90 120.80 11.43

28 75.39 90.15 99.42 111.33 115.81 99.43 12.54

27 78.99 82.77 89.91 99.20 107.40 91.02 9.20

26 57.46 66.33 67.93 69.23 71.80 67.15 3.62

25 54.20 59.63 61.87 64.58 66.53 61.39 3.93

24 43.96 50.99 54.96 59.01 67.84 55.35 5.97

23 42.56 44.29 48.37 49.67 56.00 47.59 3.72

22 37.11 38.88 40.95 43.08 45.96 40.96 2.68

21 25.96 30.39 34.22 38.64 42.30 34.40 5.11

20 24.44 25.68 28.34 29.74 31.20 27.93 2.30

19 18.88 19.05 20.18 22.72 23.36 20.65 1.98

E:e-CSFV (ml)

GA Min 25th 50th 75th Max Mean SD

36 152.90 156.00 161.00 178.70 192.00 166.10 15.17

36 135.30 148.70 162.60 166.20 166.20 158.50 13.08

35 138.00 149.30 165.00 178.50 186.10 164.10 17.51

34 134.00 150.20 161.30 171.70 182.10 160.40 16.00

33 96.56 115.80 132.10 140.80 150.10 128.00 16.53

32 112.00 120.90 130.10 138.40 145.60 129.60 10.68

(Continued)
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TABLE 1 | Continued

E:e-CSFV (ml)

GA Min 25th 50th 75th Max Mean SD

31 92.73 114.30 123.00 127.00 130.80 119.50 11.20

30 90.00 105.50 128.80 138.30 147.20 124.10 18.73

29 73.30 98.46 107.00 137.40 139.10 110.70 20.53

28 89.17 95.01 98.22 113.20 116.60 103.10 10.13

27 64.20 73.72 87.17 103.80 131.50 90.38 21.36

26 66.74 73.86 84.22 87.42 93.22 81.57 8.24

25 54.55 61.74 74.59 83.18 88.48 72.38 11.33

24 43.36 55.07 63.36 75.44 88.27 63.76 12.21

23 44.22 53.94 57.72 65.25 68.09 57.23 7.42

22 33.00 39.81 47.74 62.15 64.28 50.17 11.28

21 25.52 34.68 37.90 42.36 44.99 37.60 5.85

20 36.02 36.47 37.08 37.96 39.46 37.32 1.09

19 36.80 37.05 38.35 39.05 39.10 38.15 1.07

F:VV (ml)

GA Min 25th 50th 75th Max Mean SD

37 8.00 8.25 9.00 9.40 9.50 8.86 0.61

36 6.66 6.83 7.80 8.05 8.10 7.51 0.64

35 3.04 4.84 6.32 6.99 7.84 5.94 1.64

34 3.00 4.00 5.25 6.13 7.13 5.11 1.42

33 2.14 3.50 4.13 5.24 6.20 4.34 1.24

32 1.69 2.53 3.46 4.55 5.53 3.50 1.22

31 1.99 2.34 3.15 3.90 5.00 3.20 0.95

30 1.58 2.00 2.82 3.17 4.00 2.70 0.72

29 2.00 2.00 2.24 3.79 4.00 2.73 0.85

28 1.78 2.47 2.75 3.41 4.83 2.98 0.89

27 1.15 2.32 3.00 3.69 4.00 2.90 0.92

26 1.86 2.00 2.34 3.60 4.14 2.74 0.86

25 1.50 2.43 2.85 3.74 4.34 2.97 0.82

24 1.13 2.08 2.56 3.76 4.29 2.73 0.93

23 1.70 2.64 3.32 4.00 4.60 3.29 0.84

22 2.07 218 3.20 3.51 4.64 3.05 0.79

21 1.00 1.17 1.50 1.84 2.34 1.53 0.43

20 1.00 1.03 1.77 2.51 3.00 1.80 0.77

19 1.60 1.65 1.95 2.63 2.80 2.08 0.53

G:CBV (ml)

GA Min 25th 50th 75th Max Mean SD

37 17.96 18.23 18.78 19.45 19.45 18.83 0.64

36 16.98 17.35 17.82 18.13 18.26 17.76 0.48

35 11.95 13.59 15.00 17.07 17.72 15.14 2.00

34 11.28 11.31 12.69 14.11 14.25 12.71 1.32

33 8.45 9.48 10.20 10.94 15.10 10.49 1.91

32 9.11 9.57 10.00 11.21 12.44 10.43 0.99

31 6.63 7.39 8.34 9.18 10.00 8.32 1.09

30 6.45 6.94 7.58 8.02 9.00 7.54 0.76

29 6.00 6.30 6.72 7.00 7.77 6.75 0.54

28 4.45 4.99 5.84 5.98 6.75 5.63 0.70

(Continued)

TABLE 1 | Continued

G:CBV (ml)

GA Min 25th 50th 75th Max Mean SD

27 3.40 3.87 4.50 4.89 6.00 4.50 0.77

26 2.52 2.96 3.74 4.10 4.67 3.58 0.70

25 2.47 2.67 3.11 3.73 4.03 3.15 0.55

24 2.05 2.20 2.64 2.82 3.69 2.64 0.49

23 2.10 2.22 2.47 2.54 2.82 2.41 0.22

22 1.25 1.51 1.72 2.20 2.67 1.84 0.43

21 1.35 1.56 1.80 2.14 2.47 1.85 0.36

20 1.25 1.36 1.49 1.69 2.00 1.54 0.24

19 1.16 1.18 1.34 1.45 1.45 1.32 0.15

H:BM (ml)

GA Min 25th 50th 75th Max Mean SD

37 6.60 6.70 7.00 7.48 7.66 7.07 0.42

36 4.40 5.04 5.98 6.22 6.27 5.70 0.76

35 4.30 4.45 4.89 5.29 5.57 4.89 0.46

34 3.37 3.55 3.95 4.12 4.15 3.87 0.30

33 2.91 3.51 3.76 4.23 4.71 3.83 0.53

32 3.00 3.61 3.87 4.00 4.15 3.79 0.32

31 2.79 3.16 3.54 3.98 4.00 3.54 0.42

30 2.70 3.14 3.62 3.73 4.05 3.49 0.41

29 2.50 2.88 3.00 3.36 3.70 3.09 0.35

28 2.14 2.50 3.12 3.75 4.00 3.14 0.67

27 1.76 1.94 2.40 2.85 3.40 2.42 0.52

26 1.35 1.62 1.86 2.06 2.60 1.90 0.39

25 1.15 1.52 1.64 1.80 2.45 1.67 0.34

24 1.01 1.30 1.45 1.88 2.23 1.57 0.37

23 1.10 1.14 1.28 1.49 1.88 1.36 0.24

22 0.93 1.08 1.24 1.39 1.64 1.23 0.21

21 0.71 0.80 1.10 1.24 1.33 1.05 0.23

20 0.61 0.73 0.89 1.00 1.05 0.87 0.16

19 0.60 0.64 0.82 0.90 0.91 0.79 0.14

(A): TBV, total brain volume; (B): ICV, intracranial cavity volume; (C): GMV, gray matter

volume; (D): SBV, subcortical brain volume; VV, and (E): e-CSFV, extra-cerebrospinal fluid;

(F) VV, lateral ventricles volume; (G): CBV, cerebellar volume; (H): BM, brainstem volume.

fetuses/91 male fetuses) were analyzed between 19 and 37 GA.
The GA of the fetuses ranged from 19 to 37 weeks (mean, 27.4
± 4.8 weeks) is shown in Figure 2. Intra- and inter-observer
agreement for supratentorial brain structures and infratentorial
regions was high, with ICCs all larger than 0.98.

The tabular summaries of mean, SD, minimum, maximum,
median, and 25th and 75th quartiles from the base data of
TBV, GMV, SBV, ICV, e-CSFV, VV, CBV, and BM for fetuses
between 19 and 37 GA are shown in Tables 1A–H. All volumetric
measurements had significant positive correlations with GA and
the quadratic lines for CI’s for each GA determined by the
best regression fit for each structure are shown in Figure 3.
Our measured volumes data were used to derive a best-fit
formula, TBV = 0.45GA2-9.57GA + 47.41(R2 = 0.98); ICV =

0.46GA2 – 2.10GA – 69.30 (R2 = 0.98); GMV = 0.21GA2 –
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FIGURE 3 | Three dimensional measurements: growth trajectories and centiles. Best fit models for normal control 3D growth trajectories of an intracranial brain tissue,

(A): brain volume (TBV), (B): intracranial cavity volume (ICV), (C): gray matter volume (GMV), (D): subcortical brain volume (SBV), (E): extra-cerebrospinal fluid

(e-CSFV), (F): lateral ventricles volume (VV), (G): cerebellar (CBV), (H): brainstem (BM). Solid lines depict the 50th centile, and dotted lines the 5th and 95th centiles.

Red square (F): female fetuses; black triangle (M): male fetuses.
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TABLE 2 | Total brain volume and ICV analysis compared with values reported by Jarvis’ study.

TBV Analysis ICV Analysis

GA Mean Mean difference

(95% confidence)

P Mean Mean difference

(95% confidence)

P

36 (n = 5) −3.81 (−20.12, 12.49) 0.59 −8.02 (−59.24, 43.20) 0.73

35 (n = 6) 5.90 (−11.95, 23.75) 0.46 −2.30 (−52.94, 48.33) 0.92

34 (n = 8) 6.40 (−6.01, 41.42) 0.23 10.21 (−28.68, 49.09) 0.58

33 (n = 9) 9.36 (−5.58, 18.81) 0.27 24.62 (−10.70, 59.94) 0.15

32 (n = 12) 5.00 (−4.63, 14.63) 0.28 12.59 (−15.21, 40.40) 0.35

31 (n = 11) −1.10 (−12.90, 10.71) 0.84 8.86 (−23.45, 41.17) 0.56

30 (n = 10) −13.41 (−21.56, −5.25) 0.004* −16.73 (−49.30, 15.84) 0.29

29 (n = 11) −19.45 (−34.50, −4.41) 0.02* −19.30 (−48.38, 9.78) 0.18

28 (n = 9) −12.77 (−28.37, 2.84) 0.10 −15.69 (−46.94, 15.55) 0.30

27 (n = 13) −9.82 (−22.85, 3.21 0.13 −10.63 (−39.43, 18.17) 0.45

26 (n = 13) 6.87 (1.52, 12.22) 0.02* 4.03 (−16.48, 24.55) 0.68

25 (n = 12) 1.36 (−3.74, 6.46) 0.57 −3.28 (−22.97, 16.41) 0.73

24 (n = 15) −2.88 (−11.25, 5.49) 0.48 −8.73 (−26.51, 9.06) 0.32

23 (n = 15) −4.18 (−9.08, 0.71) 0.09 −13.74 (−13.00, 40.48) 0.27

22 (n = 13) −5.62 (−9.90, −1.33) 0.01* −14.70 (−30.81, 1.40) 0.07

21 (n = 9) −6.05 (−13.89, 1.79) 0.12 −7.18 (−20.69, 6.33) 0.27

20 (n = 8) −4.63 (−9.67, 0.42) 0.07 −11.04 (−22.61, −0.52) 0.06

19 (n = 4) −3.43 (−11.37, 4.52) 0.32 −16.47 (−31.83, −1.11) 0.04*

*Denotes statistical significance.

7.60GA + 77.78 (R2 = 0.97); SBV = 0.17GA2 + 0.70GA –
58.48 (R2 = 0.97); e-CSFV = 0.46GA2 – 2.10GA – 69.30 (R2

= 0.98); VV = 0.03GA2 – 1.40GA + 18.99 (R2 = 0.57); CBV
= 0.06GA2 – 2.37GA + 25.51 (R2 = 0.97); BM = 0.007GA2

– 0.46GA + 0.16 (R2 = 0.89). Measured mean ICV values
at 19 weeks are significantly different from those previously
reported (p < 0.05). When comparing the mean TBV values
for each GA week as generated by the Jarvis’ formula, our data
were found to approximate the prediction at every GA week
except weeks 22, 26, 29, and 30 (all p < 0.05; Table 2). The
predicted mean TBV value generated by our formula (TBV =

0.45GA2 - 9.57GA + 47.41) were very similar at every GA week
to values predicted by the Jarvis’ formula, and the predicted
TBV means derived from the previously reported formula were
all within the 95% CI of the predicted means of this study
(Table 3).

The relative growth rate of the volume of different intracranial
structures is as follows: ICV: 10.87%; TBV: 13.22%; GMV: 14.15%;
SBV: 12.81%; e – CSFV: 8.12%; VV: 8.05%; CBV: 14.77%; and
BM: 12.18%.

Effect of Sex
Male fetuses had slightly larger measurements compared
with female fetuses in any intracranial structure of the 3D
measurements expect for e-CSFV (male fetuses, 93.08; female
fetuses, 93.31; p = 0.97), while the difference between sexes were
not significant in ICV (male fetuses, 234.0; female fetuses, 226.0;
p = 0.63), TBV (male fetuses, 137.2; female fetuses, 129.6; p
= 0.50), GMV (male fetuses, 31.16; female fetuses, 29.11; p =

0.48), SBV (male fetuses, 96.95; female fetuses, 91.91; p = 0.50),

CBV (male fetuses, 6.38; female fetuses, 6.01; p = 0.60), and BM
(male fetuses, 2.72; female fetuses, 2.56; p = 0.47). The largest
sex-related differences were significantly higher volumes in male
fetuses for the lateral ventricles (male fetuses, 3.69; female fetuses,
3.08; p= 0.01).

DISCUSSION

Quantitative image analysis of the human brain in utero
plays an important role in clinical decision-making and
neuroscience investigation. With the advent of image post-
processing technology and motion correction algorithms to
obtain high-quality 3D images (Kim et al., 2010), it is now
possible to improve the accuracy of manual segmentation of
the fetal brain in the early and middle trimesters (Habas et al.,
2010). We have presented normative data of the intracranial
contents from a large cohort (n = 188) of control fetuses and
individualized data on the regional fetal brain volumes (not all
these structures were assessed by previous articles) between 19
and 37 GA. In addition, we found that the largest sex-related
differences were significantly higher volumes in male fetuses for
the VV.

In recent years, different studies have analyzed and reported
changes in fetal brain volume (Jarvis et al., 2019; Cai et al., 2020;
Dovjak et al., 2021), but the results are inconsistent and may
depend on different measurement methods and whether or not
fetal movement artifacts are processed. In addition, the number
of fetuses in the cohorts studied varied widely in these studies,
from the smaller cohort of 25 fetuses reported by Gholipour et al.
(2017) to the largest cohort of 659 normal fetuses studied by Shi
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TABLE 3 | Total brain volume derived by our formula compared with predictive

inference values calculated with formula by Jarvis et al.

GA Predicted

Mean Value

Lower

Predicted CI

Upper

Predicted CI

Prediction by

Jarvis’ formula

37 309.82 288.93 330.71 –

36 286.52 265.85 307.19 290.20

35 264.12 243.60 284.63 266.20

34 242.62 222.19 263.04 243.30

33 222.02 201.64 242.40 221.50

32 202.32 181.96 222.68 200.70

31 183.52 163.17 203.88 180.90

30 165.62 145.27 185.98 162.20

29 148.63 128.27 168.99 144.60

28 132.53 112.17 152.89 128.00

27 117.33 96.98 137.69 112.40

26 103.04 82.69 123.39 98.00

25 89.64 69.30 109.98 84.50

24 77.15 56.81 97.48 72.10

23 65.55 45.20 85.90 60.80

22 54.86 34.47 75.24 50.50

21 45.06 24.61 65.52 41.20

20 36.17 15.58 56.76 33.00

19 28.18 7.39 48.96 25.90

et al. (2020), which proposed an automated fetal brain analysis
method, such as brain extraction, 3D volumetric reconstruction,
atlas generation, and quantification of brain development. This
method reduces the time required for manual editing following
automatic segmentation to achieve such a surprising amount.
While the data in most studies with large sample sizes are
acquired from multi-institutions with multi-sequences (SSFSE
and steady-state free precession, SSFP) on different scanners
(different field strength and manufacturers). We are looking
forward to using a single device and a single sequence to
get a large sample of normative data of fetal intracranial
structures, which would be more meaningful and perfect. So
the accurate manual segmentations as prior knowledge could be
used for the design and verification of the automatic volumetric
segmentation method.

We made a like-to-like comparison of our total fetal brain
volumes with those predicted by Jarvis et al., which used a
large cohort (n = 200) of control fetuses and individualized
data on the intracranial volumes between 18 and 37 GA (Jarvis
et al., 2016, 2019). While a major strength of Jarvis’ study is the
inclusion of 200 fetuses across a wide GA range, they limited
their measurements to total and regional brain structures without
different tissue types (e.g., cortical gray matter and white matter).
In an earlier publication (Jarvis et al., 2016), they reported on the
TBV (only) from 132 of the cases reported in this manuscript
along with a prediction equation. By substituting GA into this
model, the difference between the actual and theoretical mean
values of TBV can be analyzed to obtain a more accurate
assessment of fetal brain development. Jarvis’ formula measured
an average TBV of 25.9ml at 19 weeks gestation and 290.6ml at
36 GA. In our study, the mean TBV of 188 fetuses was 29.33ml

at 19 weeks and 294ml at 36 weeks. When comparing the mean
TBV with the expected values generated by the Jarvis’ formula
for each GA week, our data were found to approximate the
prediction at every GA week except weeks 22, 26, 29, and 30
(p < 0.05).

A number of reasons could explain this difference. First,
the thickness of their MRI acquisitions ranged from 2 to
2.6mm, whereas ours was 2mm thick. Another source of
bias is that the reconstructed volumetric images allowed
us to develop supervised image segmentation techniques to
improve the accuracy and ease of obtaining precise fetal brain
volumetry. These may have introduced large errors in volume
measurements, especially for small intracranial structures. The
results generated by our formula were very similar to values
predicted by the Jarvis’ formula at every GA week. Therefore,
using the formula by Jarvis’ to predict expected small intracranial
structures is based on extrapolation by the formula, which
introduces potential error. So, our study reinforces the formula
by Jarvis et al. but provides more robust total fetal brain volume
measurements in the earlier second and third stages of pregnancy
as a result of our larger study population.

From our results, the GMV followed a quadratic growth
pattern, indicating accelerated growth at this stage of
development, as demonstrated by the progressing growth
velocity in brain volume in the later middle and third trimesters.
The GMV increased at a relative growth rate of 14.15% per
week in our study. This is consistent with a previous study
(Kyriakopoulou et al., 2017) performed on 127 normal fetuses
at 21–38 gestational weeks (14.78%). Although the overall
growth rate of GMV and SBV is not very different throughout
pregnancy, the growth trajectory and proportion of cerebral
volume of GMV and SBV between 18 and 37 weeks are different.
We found that subcortical white matter is a major contributor
to fetal brain volume development during the middle and later
trimesters of pregnancy, reaching the peak between 29 and 30
weeks of gestation. Our results showed that the proportion of
cerebral cortex to the fetal total brain volume in the late trimester
increased significantly with the increase of gestation.

Our results indicated that the relative growth rates varied
between structures with the CBV (14.77%), which showed
the fastest growth per week followed by the cortex and the
supratentorial brain tissue, while the growth of the lateral
ventricles was the slowest (8.05%). During the second and third
trimesters of pregnancy, the cerebellum undergoes extensive
proliferation and migration of external granulosa cells, and the
formation of the internal granulosa layer, which are the basis for
significant increase in CBV (Griffiths et al., 2004; Bolduc et al.,
2012). Reductions in total cerebellum and local volume in infants
with microcephaly are associated with delays in cognition, motor
function, and social-affective disorders.

The size of lateral ventricles can be used to predict fetal
nervous system dysfunction (Carta et al., 2018; Fox et al.,
2018). Therefore, the accuratemeasurement of bilateral ventricles
volume is crucial to the diagnosis of lateral ventricle enlargement,
and ventriculomegaly is an indicator of fetal brain development
abnormalities. In our study, we found that male fetuses had
significantly larger VV compared with female fetuses. This result
is supported by extensive US data, which consistently report
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that the standard 2-D indicators of ventricular diameter are
larger in male fetuses (Salomon et al., 2007). This result is very
critical, as ventriculomegaly is frequently encountered at fetal
MRI. So the difference in the VV between fetuses of different
sexes suggests that this variable should be considered in the
assessment of ventriculomegaly.

There are some limitations to this study. First, the number
of fetal brains in our cohort for 3D construction is still
limited, because the poor imaging quality caused by motion
artifacts, causing failures of fetal brain super-resolution
reconstruction. We acknowledge that we did not have successful
neurodevelopment outcomes for all of the children who had
been studied as normal fetuses in our cohort. However, previous
research (Griffiths et al., 2017) has shown that the false positive
and negative rates for detecting abnormalities by prenatal MR are
very low. In the future, we hope to optimize the reconstructed
algorithm and segmental process with the eventual aim to
provide accurate automatic segmentation.

The normative values of fetal intracranial structures across a
broad range of gestations with associated prediction limits could
potentially be used as a reference tool in prenatal counseling.
Volumetric growth of the fetal brain follows a complex trajectory
that is dependent on structure, GA, and sex. Therefore, we
propose preferential use of these measured mean values over
formula-derived predictions in clinical counseling for fetuses
with GA in the early second and third stages of pregnancy.
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The Developing Human Connectome Project has created a large open science
resource which provides researchers with data for investigating typical and atypical
brain development across the perinatal period. It has collected 1228 multimodal
magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal
participants, together with collateral demographic, clinical, family, neurocognitive and
genomic data from 1173 participants, together with collateral demographic, clinical,
family, neurocognitive and genomic data. All subjects were studied in utero and/or soon
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after birth on a single MRI scanner using specially developed scanning sequences which
included novel motion-tolerant imaging methods. Imaging data are complemented by
rich demographic, clinical, neurodevelopmental, and genomic information. The project
is now releasing a large set of neonatal data; fetal data will be described and released
separately. This release includes scans from 783 infants of whom: 583 were healthy
infants born at term; as well as preterm infants; and infants at high risk of atypical
neurocognitive development. Many infants were imaged more than once to provide
longitudinal data, and the total number of datasets being released is 887. We now
describe the dHCP image acquisition and processing protocols, summarize the available
imaging and collateral data, and provide information on how the data can be accessed.

Keywords: Developing Human Connectome Project, brain development, MRI, neonatal, connectome, perinatal

INTRODUCTION

Recent advances in MRI acquisition, image processing and
analysis have made it possible to gain a non-invasive yet detailed
multimodal characterization of the human brain’s macroscopic
connections (Craddock et al., 2013). Novel connectivity maps
encompass not only the structural connections relating to
white matter tracts, but the functional connections revealed by
coordinated gray-matter activations, and connectivity related
to coordinated development revealed in structural covariance
(Alexander-Bloch et al., 2013) and multimodal similarity
networks (Seidlitz et al., 2018). The value of these approaches
has been highlighted in recent years by the Human Connectome
Project (HCP), which has fostered growing interest in the science
of connectomics and become a critical resource for research into
the mature human brain (Van Essen et al., 2013).

Human brain development accelerates rapidly in late
pregnancy to reach maximum global growth rate before
6 months (Bethlehem et al., 2022). This rapid growth is
accompanied by equally dramatic changes in the brain’s
associated architecture of structural and functional connectivity,
and therefore understanding these processes in both the healthy
and pathological brain can provide marked new insights into
fundamental neural processes and the possible changes that
underlie intractable neuropsychiatric conditions. However,
characterization of this process has previously been limited by
the challenges inherent in safely and robustly studying the brain
during this vulnerable phase of life. The Developing Human
Connectome Project (dHCP) is an open science study, funded
by the European Research Council to obtain and disseminate
Magnetic Resonance Imaging (MRI) data which map the brain’s
structural and functional development across the period from
20 weeks gestational age to full term. By coupling advances
in imaging with bespoke solutions developed for the fetal and
neonatal population, principally but not exclusively solving the
problems of subject motion, the dHCP captures the development
of brain anatomy and connectivity at a systems level. This
enables exploration of maturational trajectories, structure and
function relationships, the neural substrates for behavior and
cognition, and the influences of genetic and environmental
factors. The dHCP includes both in utero imaging of fetal
brain and postnatal imaging of preterm and term born infants,

capturing typical and atypical brain development. It has created
maps of the developing human brain and its connections as a
resource for the neuroscience community and a platform for
connectome research.

The dHCP dataset includes a large number of healthy, term-
born infants which allow definition of typical development with
previously unobtainable precision. It is increasingly appreciated
that the perinatal period is crucial for lifelong brain health,
and multiple lines of evidence show that early life influences
have a critical effect on brain circuitry in later childhood
and adult life (Batalle et al., 2018). This has key implications
for understanding the pathophysiology of neurodevelopmental
conditions, such as autism (Hisle-Gorman et al., 2018) or
the difficulties associated with preterm birth (Montagna and
Nosarti, 2016). Understanding these effects has important clinical
implications, and to support relevant investigations clinical and
demographic data were collected and saliva samples obtained for
genetic and epigenetic analysis, with participating families invited
back at 18 months of age for a developmental assessment using
standard tests and questionnaires, including eye-tracking studies.

A key priority for the project was that the data be made
available to the research community, and preliminary data
releases1 have been accessed and used by a number of research
groups. We now describe the main neonatal data release,
providing a summary of the participants, the MR imaging
data acquisition and processing, the collateral data including
sociodemographic and neuropsychological outcome data, and
the genomic data. We also describe available data for each
category and how to obtain it. Fetal data will be described and
released separately.

PARTICIPANTS

Infants were recruited at St Thomas’ Hospital, London and
imaged at the Evelina Newborn Imaging Centre, Centre for the
Developing Brain, King’s College London, United Kingdom. The
MR suite is sited within the neonatal intensive care unit which
allows imaging of even the smallest and most vulnerable newborn

1www.developingconnectome.org
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infants, as well as having proximity to the maternity unit to
support fetal scanning.

The images of 783 newborn infants are being released.
Infants were recruited with specified inclusion and exclusion
criteria2 across a spread of gestational ages at birth (range: 23 to
43+ 1 weeks+ days) and post-menstrual ages at the time of study
(range: 26 + 5 to 45 + 1). The distributions of gestational age at
birth and post-menstrual age at scan are shown in Figure 1.

The study population includes 583 subjects born at term
equivalent age (37–44 weeks post-menstrual age) without any
known pregnancy or neonatal problems and are regarded as
healthy. All the anatomical images were reviewed by an expert
perinatal neuroradiologist and radiologic scores included in the
released data. Incidental findings were noted in a proportion and
a report on these have been published (Carney et al., 2021).

MAGNETIC RESONANCE IMAGING DATA

Overview
A summary schematic of the imaging data flow is shown
in Figure 2 with further detail about the steps in the
following section. This incorporated optimized MR acquisition
sequences, novel image reconstruction methods, transfer to
an intermediate server (InstraDB) prior to processing using
state-of-the-art pipelines, and packaging of the data for final
public release.

The data release contains anatomical [T1 weighted (T1w)
and T2 weighted (T2w)], resting state functional MRI (rsfMRI)
and diffusion MRI (dMRI) images supplied as both original
image data and after the processing pipelines described below
have been applied.

The neonatal brain has significantly different tissue properties
to the adult brain, including higher water content and incomplete
myelination of white matter, and T1 and T2 relaxation times
are generally longer than in the adult brain. Neonatal white
matter in particular, has longer T1 and T2 times in comparison
to gray matter, and brain anatomy is revealed more clearly on
T2w images as there is greater contrast compared to T1w images.
T2w images are thus treated as the primary data for anatomical
segmentation and to provide the anatomical substrates for
functional and diffusion analysis.

To ameliorate the effects of infants and fetuses moving
during image acquisition novel neonatal patient handling and
motion-tolerant acquisition approaches were developed (Hughes
et al., 2017; Cordero-Grande et al., 2018, 2020; Hutter et al.,
2018a). Participants were imaged in natural sleep, with six
exceptions who were sedated with chloral hydrate. If a baby
woke up, scanning was halted and the infant settled without
taking them out of the imaging cradle. However, as many
infants still move even when sleeping peacefully, all subjects were
motion corrected.

A total of 887 sessions are being released. 886 had T2w images
that passed quality control (QC). 818 had fMRI data that passed
QC and 758 had dMRI data that passed QC. Detailed information

2http://www.developingconnectome.org/study-inclusion-and-exclusion-criteria/

about the QC process are described in the notes accompanying
the data release.3 The T1w images were not required by pre-
processing pipelines and were placed at the end of the scanning
protocol resulting in more variable quality than the T2w data;
the release contains 711 sessions with T1w multi-slice fast spin-
echo (FSE) images and 734 sessions with T1 3D magnetization-
prepared rapid gradient-echo (MPRAGE) images.

Imaging Acquisition Methods and
Parameters
Imaging was carried out on a 3T Philips Achieva scanner running
modified Release 3.2.2 software, using a dedicated neonatal
imaging system which included a neonatal 32 channel phased
array head coil and customized patient handling system (Rapid
Biomedical GmbH, Rimpar, Germany) (Hughes et al., 2017).
Infants were imaged following feeding and swaddling in a
vacuum-evacuated blanket. Infants were provided with hearing
protection in the form of: molded dental putty placed in the
external auditory meatus (President Putty, Coltene Whaledent,
Mahwah, NJ, United States); Minimuffs (Natus Medical Inc., San
Carlos, CA, United States); and an acoustic hood. Monitoring
throughout the scanning session (In vivo Expression, Philips,
Best, NL), included pulse oximetry, respiration (using a small air
cushion placed on the lower abdomen) and body temperature
via a fiber optic probe placed in the axilla. The bespoke
imaging cradle system (Hughes et al., 2017) placed subjects in
a standardized pose and allowed a fixed imaging geometry to
be deployed, with only the position in the head-foot direction
adjusted at the start of the examination. The field of view was set
after a biometric analysis of data from 91 previously studied term-
born infants with dimensions sufficient to accommodate 95% of
late-term neonates (Hughes et al., 2017).

To reduce the risk of waking infants due to startle responses
at the start of new sequences, the scanner software was modified
to ramp up the gradient waveforms gradually over 5 s as each
acquisition commenced and prior to any radiofrequency (RF)
pulses or data being acquired. Calibration scans, anatomical
images (T1w and T2w), resting state functional (rs-fMRI) and
diffusion (dMRI) acquisitions were acquired, with an average data
rate of 27 slices/second including all preparation and calibration
phases. The acquisition protocol was optimized for the properties
of the neonatal brain and for efficiency and is summarized in
Table 1.

Calibration Scans
Static magnetic field (B0) mapping was performed using an
interleaved dual TE spoiled gradient echo sequence and localized
image-based shimming performed for use with all EPI sequences
(Gaspar et al., 2015). Following application of optimized 1st
and 2nd order shim settings, B0 (shimmed) field maps were
acquired after the fMRI and dMRI acquisitions, and later in the
cohort were acquired between the two acquisitions. B1 mapping
was performed using the dual refocusing echo acquisition mode
(DREAM) method (Nehrke and Bornert, 2012), with STE first
and STEAM flip angle of 60.

3https://biomedia.github.io/dHCP-release-notes/
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FIGURE 1 | Histograms showing ages for boys and girls at (A) birth and (B) postnatal MR imaging.

FIGURE 2 | Schematic of the Developing Human Connectome Project imaging data flow from acquisition to data release.

Anatomical Acquisition
Imaging parameters were optimized for contrast to
noise ratio using a Cramer Rao Lower bound approach
(Lankford and Does, 2013) with nominal relaxation parameter
values for gray matter T1/T2: 1800/150 ms and white
matter T1/T2: 2500/250 ms (Williams et al., 2005). T2w
and inversion recovery T1w multi-slice FSE images were
each acquired in sagittal and axial slice stacks with in-
plane resolution 0.8 × 0.8 mm2 and 1.6 mm slices
overlapped by 0.8 mm (except in T1w Sagittal which used
a slice overlap of 0.74 mm). Other parameters were–T2w:
TR/TE = 12000/156 ms, SENSE factor 2.11 (axial) and 2.60
(sagittal); T1w: TR/TI/TE = 4795/1740/8.7 ms, SENSE factor
2.27 (axial) and 2.66 (sagittal). 3D MPRAGE images were
acquired with 0.8 mm isotropic resolution and parameters:
TR/TI/TE = 11/1400/4.6 ms, SENSE factor 1.2 RL (Right-Left).
The FSE acquisitions were each reconstructed using a motion
correction algorithm and then the transverse and sagittal images
were fused into a single 3D volume for each modality using
slice-to-volume methods (Cordero-Grande et al., 2016).

Resting State Functional Magnetic Resonance
Imaging
A fMRI acquisition with high temporal resolution developed for
neonates (Price et al., in preparation; Fitzgibbon et al., 2020)
using multiband (MB) 9× accelerated echo-planar imaging was
collected for 15 min, with parameters: TE/TR = 38/392 ms,
2300 volumes, with an acquired spatial resolution of 2.15 mm
isotropic. No in-plane acceleration or partial Fourier was
used. Single-band reference scans were also acquired with
bandwidth matched readout, along with additional spin-
echo acquisitions with both anterior-posterior/posterior-anterior
(AP/PA) fold-over encoding directions. Physiological recordings
of vectorcardiogram (VCG), photoplethysmogram (PPU) and
respiratory traces during the fMRI data acquisition are provided
unprocessed in the source data folder for optional physiological
artifact removal. Alignment to rs-fMRI data can be achieved by
means of locating the “end of scan” marker (scripts are available
to aid loading and interpretation of this file) and knowledge of
the frequency of the recordings (496 Hz) and TR × number
of volumes acquired (0.392 s × 2300) can be used to identify
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TABLE 1 | Neonatal imaging protocol, lasting a total of 1 h 3 min 11 s.

Sequence name Duration Acquisition reference publications Processing pipeline reference publications

Pilot 00:00:10

Coil reference 00:01:14

B0 calibration map 00:00:20 Gaspar et al., 2015

B1 map 00:00:05

T2 Turbo Spin Echo (TSE) axial 00:03:12 Cordero-Grande et al., 2016; Hughes et al., 2017;
Cordero-Grande et al., 2018

Schuh et al., 2017; Makropoulos et al., 2018

T1 MPRAGE 00:04:35

T2 TSE sagittal 00:03:12

Spin Echo (SE) fMRI ref. 00:01:53 Price et al., in preparation Baxter et al., 2019; Fitzgibbon et al., 2020

Single-Band (SB) fMRI ref. 00:00:19

Multi-Band (MB) fMRI 00:15:03

SB fMRI ref. repeat 00:00:19

SB diffusion MRI ref. 00:01:39 Cordero-Grande et al., 2018; Hutter et al., 2018a,b;
Cordero-Grande et al., 2019; Tournier et al., 2020

Bastiani et al., 2019; Christiaens et al., 2019;
Pietsch et al., 2019; Christiaens et al., 2021

MB diffusion MRI 00:19:20

B0 shim map 00:00:20

T1 TSE Inversion Recovery (IR) axial 00:05:45 Cordero-Grande et al., 2018

T1 TSE IR sagittal 00:05:45

Total 01:03:11

the start of scan timepoint. Note, for improved accuracy on this
cohort a small delay of ∼85 ms between the true end of data
acquisition and “end of scan” marker has been identified. After
accounting for this, the precision of identifying the true start of
scan in the physiological file should be on the order of ±50 ms,
for a complete scan of 15 min duration.

Diffusion Magnetic Resonance Imaging
The dMRI acquisition was optimized for the properties of the
developing brain (Tournier et al., 2020) and implemented as a
uniformly distributed set of directions on 4 shells (b = 0 s/mm2:
20, b = 400 s/mm2: 64, b = 1000 s/mm2: 88, b = 2600 s/mm2:
128), each of which was split into 4 optimal subsets acquired
using AP, PA, RL, and LR phase encoding (Hutter et al., 2018b).
As described in Hutter et al. (2018b), the diffusion gradient
b-values and directions and the phase encoding directions were
spread temporally taking the risk of infant motion and gradient
duty cycle considerations into account in order to achieve
maximal imaging efficiency. If the subject woke up during the
diffusion scan, the acquisition could be halted and restarted (after
resettling the subject) with a user defined overlap in acquired
diffusion weightings. The EPI sequence uses MB factor 4,
SENSE factor 1.2, partial Fourier factor 0.86, in-plane resolution
1.5 × 1.5 mm, 3 mm slices with 1.5 mm overlap, TE = 90 ms,
TR = 3800 ms. Image reconstruction used a dedicated SENSE
algorithm (Hennel et al., 2016; Zhu et al., 2016; Cordero-Grande
et al., 2018).

Processing Pipelines
Standardized processing pipelines for all three MRI modalities
(anatomical, diffusion, and functional imaging) have been
developed specifically for the dHCP neonatal data. The outputs of
these pipelines are supplied as part of the data release. Details of
the individual pipelines have been published elsewhere including:

anatomical segmentations into 9 tissues and 87 regions,
and extracted cortical surfaces (Makropoulos et al., 2018) and
cortical atlases (Bozek et al., 2018), resting state fMRI analysis
(Fitzgibbon et al., 2020) and two diffusion analysis pipelines
based on FSL EDDY (Bastiani et al., 2019) and based on
SHARD slice-to-volume reconstruction (Christiaens et al., 2019,
2021). The SHARD pipeline also includes de-noised source
diffusion data (Cordero-Grande et al., 2019) and inter-slice
intensity correction (Pietsch et al., 2021). These offer natural
entry points for those wishing to use image analysis software
such as FSL4 and MRtrix35 for further analysis. An atlas of
diffusion properties has also been created based on a multi-shell
multi-tissue constrained spherical deconvolution model (Pietsch
et al., 2019). Whilst the majority of the processing pipelines
are designed specifically for neonatal data given the inherent
differences in tissue contrast and image properties, most analysis
pipelines were also set up for comparison with adult data in
mind. For instance, the cortical analysis pipeline was aligned
with the young adult HCP FS_LR template space. However,
we would urge caution about directly comparing adult and
neonatal data given that much of the HCP dataset is aligned and
parcellated using adult functional networks, and it is likely that
the developing functional networks are not sufficiently developed
to support this.

Exemplar Imaging Data
Figures 3–8 show examplar data for one participant to provide
an indication of what is available. Figure 3 shows anatomical
T1w and T2w fast spin echo data from this infant with the native
images for all the acquisitions and the final motion corrected
reconstructions. Although the infant was asleep, there is still

4www.fmrib.ox.ac.uk/
5www.mrtrix.org
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FIGURE 3 | Anatomical T1 and T2 weighted images before and after motion correction for one participant. (A: top row) T1 native acquisition (left) with motion artifact
visible in the left frontal region in the transverse plane (yellow arrow), which is resolved in the motion corrected images (right) after slice to volume reconstruction. (B:
bottom row) T2 native acquisition (left) with motion artifact visible in the sagittal plane (orange arrow), which is resolved in the motion corrected images (right).

FIGURE 4 | Tissue segmentation and neonatal atlas parcelation for the same infant. Using the automated dHCP structural pipeline, the anatomical images can be
segmented into nine tissue classes (A: top row) and parcellated into 87 brain regions (B: bottom row).

some residual motion artifact. However, the final reconstruction
can be seen to be of high quality after motion correction.
The MPRAGE data (not shown) is not motion corrected, so is
more vulnerable to subject motion. The anatomical segmentation
into tissue type and neonatal brain atlas regions are shown
in Figure 4, and cortical surfaces with projection of the atlas
and example derived measures for this subject are shown in
Figure 5. Anatomical atlases at one week intervals are available

for download6 and will also be available from the NIMH
database.7 Figure 6 shows one volume of the fMRI time series and
a single subject network analysis from the pipeline. Figures 7, 8
show diffusion data. Figure 7 shows selected images from
all shells, before correction, after denoising, and after motion

6https://brain-development.org/brain-atlases/atlases-from-the-dhcp-project/
7https://nda.nih.gov/edit_collection.html?id=3955
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FIGURE 5 | Surface projections using the dHCP structural pipeline for the same infant. (A: top row) 87 region neonatal brain atlas projected onto the pial surface; (B:
middle row) Cortical thickness projected onto the inflated cortical surface; and (C: bottom row) Sulcal depth projected onto the inflated cortical surface.

and distortion correction and destriping (Pietsch et al., 2021).
Figure 8 shows derived dMRI metrics in the same slice,
including the mean diffusivity (8a) and fractional anisotropy (8b)
of the diffusion tensor (Basser et al., 1994), fiber orientation

FIGURE 6 | Resting state functional MRI data from the same infant. (A) An
example volume from the fMRI acquisition after image reconstruction and the
preprocessing pipeline has been applied; and (B) the auditory and (C)
sensorimotor resting state networks. Resting state networks were defined
using independent component analysis (ICA) as implemented in FSL
MELODIC and have been overlaid onto the native T2 image for ease of
visualization.

distribution functions (8c) estimated using multi-component
spherical deconvolution (Jeurissen et al., 2014; Pietsch et al.,
2019) produced with MRtrix3 (Tournier et al., 2019), and
(9d) whole brain probabilistic streamline tractography using all
tissue components and using only the mature white matter
like component from the neonatal multi-component model
(Pietsch et al., 2019).

COLLATERAL DATA

A broad spread of demographic and other data is available,
although practical constraints, including the COVID-19
pandemic, have led to a certain amount of missing data. The data
codebook can currently be accessed through the dHCP website
(see text footnote 1) and NIMH database (see text footnote 7),
providing a listing with descriptions of the variables. The data
sets include the following categories of data.

Demographic, Family, and Clinical Data
Demographic Data for Parents
Age at conception; ethnicity according to United Kingdom
census categories; highest age enrolled in full-time education;
occupation. This data is collected at enrollment and again at the
18-month neurodevelopmental assessment.

Mother’s Past Medical History
Height, weight, body mass index (BMI); blood group; history of
medical conditions prior to the pregnancy; smoking, alcohol, and
recreational drug use; injury during the pregnancy.

Mother’s Obstetric History
Previous pregnancies; number of live births; number of
miscarriages; previous premature birth; current pregnancy type,
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FIGURE 7 | Diffusion MRI (dMRI) data from the same infant. Shown are four selected volumes with different b-values and phase encoding directions. Left: input data
after MB-SENSE reconstruction. Middle: images after denoising. Right: images after motion and distortion correction and destriping.

FIGURE 8 | Diffusion MRI metrics in a single subject from the same infant (A) Mean Diffusivity and (B) Color Fractional Anisotropy maps of the Diffusion Tensor
Imaging (DTI) model. (C) Tissue Orientation Distribution Function (ODF) of the multi-component analysis in Pietsch et al. (2019). (D) Full brain probabilistic streamline
tractography based on the tissue ODF (top image) and based on the mature appearing tissue component (bottom image).

mode of conception (natural or IVF); pregnancy number; late
pregnancy and labor/delivery history for the pregnancy.

Mental Health History
Self-reported by mother at enrollment and self-reported by
both parents at the 18-month assessment, including any

history of parental psychiatric problems and how treated;
parental history of attention deficit hyperactivity disorder
(ADHD), bipolar disease, autistic spectrum disorder (ASD),
or schizophrenia; ASD or ADHD in proband’s siblings;
close relatives with history of ASD, ADHD, bipolar disease,
or schizophrenia.
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Baby Medical Details at Birth
Gestational age at birth; birth weight, length, and occipito-
frontal head circumference; presentation and mode of delivery;
medication required at delivery, nutrition and feeding; Apgar
scores at 1 and 5 min of age; arterial cord blood pH and base
excess where available. The majority of dHCP participants were
born in good health and were not admitted to the neonatal
intensive care unit (NICU), for those who were, summary data
for each day on the neonatal unit and an overall summary of the
stay are recorded.

Neurodevelopmental and Neurocognitive
Testing at 18 Months
A series of standardized age-appropriate child-centered
assessments, parent-report questionnaires, and gaze-tracking
tasks were used to provide a targeted overview of toddlers’
development. These measures were chosen were chosen to be
able to capture individual differences along a typical-to-atypical
continuum, to probe associations between early imaging features
and emerging behavioral outcomes and to provide normative
reference data for future studies.

A total of 619 infants (79%) attended for follow-up assessment,
planned for 18 months corrected age but affected by the
COVID-19 pandemic, so that median (range) of assessment was

TABLE 2 | Completion rates for neurodevelopmental assessments
and questionnaires.

Neurodevelopmental assessment/Questionnaire Number (%)

Bayley III Cognitive, language, motor neurodevelopmental variables 602 (77%)

Neurological examination total score 594 (76%)

Early Childhood Behavioral Questionnaire (ECBQ) 592 (76%)

Child Behavioral Checklist (CBCL) 591 (76%)

Quantitative Checklist for Autism in Toddlers (Q-CHAT) 591 (76%)

Cognitively Stimulating Parenting Scale (CSPS) 583 (75%)

Parenting Scale: primary caregivers’ laxness, over reactivity,
verbosity

589 (75%)

Parenting Scale: secondary caregivers’ laxness, over reactivity,
verbosity

517 (66%)

TABLE 3 | Tests and completion rates for eye tracking assessments.

Eye-tracking task N (%)

Gap-overlap 602 (77)

Non-social contingency 597 (76)

Visual search 597 (76)

Fishtanks 596 (76)

Cognitive control 585 (75)

Working memory 585 (75)

Emotions 576 (74)

Smooth pursuit fixation 568 (72)

Fixation 484 (64)

Scenes 483 (61)

Static images 481 (61)

Entire eye-tracking battery completed 453 (58)

18 months + 12 days (range 17 + 8–34 + 15). Completion rates
for broad components of this assessment are shown in Tables 2, 3.

The Bayley Scales of Infant and Toddler
Development, Third Edition (Bayley-III)
Assessed toddlers’ cognitive, language (receptive and
expressive) and motor abilities (gross and fine) using
age normed standardized scores (mean = 100, SD = 15)
(Albers and Grieve, 2007). The age of assessment and
distribution of Bayley III cognitive scores for boys and girls
are shown in Figure 9.

The Neurological Examination of Infant/Child
Used 26 non-age dependent items to assess cranial
nerve function, posture, movements, tone, and reflexes
(Haataja et al., 1999).

Behavioral Questionnaires Completed by
Primary Caregivers
Early Childhood Behavior Questionnaire
This measures dimensions of temperament, referring to
individual differences in reactivity and self-regulation
(Putnam and Rothbart, 2006). The Early Childhood Behavior
Questionnaire (ECBQ) describes three broad scales: Surgency,
characterized by impulsivity, intense pleasure seeking and
high activity levels; Negative Affectivity, which refers to the
disposition to experience aversive affective states, such as anger,
fear, anxiety, shame, and disgust; Effortful Control, which refers
to the capacity to inhibit/activate a behavioral response by
focusing attention.

Child Behavioral Checklist for Ages 1.5–5
Which is a 100-item measure on the frequency of behavioral and
emotional problems in young children (Achenbach and Ruffle,
2000). The Child Behavioral Checklist (CBCL) yields scores
for seven problem behavior syndrome subscales: Emotionally
Reactive, Anxious/Depressed, Somatic Complaints, Withdrawn,
Sleep Problems, Attention Problems, and Aggressive Behavior.
Scores are also derived for Externalizing Problems, Internalizing
Problems, and Total Problems.

Quantitative Checklist for Autism in Toddlers
A 25-item questionnaire designed to assess potential autistic traits
in children (Allison et al., 2008).

Cognitively Stimulating Parenting Scale
Adapted from Wolke et al. (2013), which assesses the availability
and variety of experiences that promote cognitive stimulation in
the home. This includes availability of educational toys, parental
interactions such as teaching words or reading stories, and
cognitively stimulating activities such as family excursions. The
version of the Cognitively Stimulating Parenting Scale (CSPS)
used here was updated to include four items now widely used
by toddlers (i.e., iPhone and Apps) (Bonthrone et al., 2021).
Scores from the 28 items included in the CSPS can be
aggregated to provide an overall cognitively stimulating
parenting score.
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FIGURE 9 | Probability plot showing age of assessment and combined Bayley III cognitive score for boys and girls.

Parenting Scale
Is a 30-item rating scale that measures dysfunctional parenting
in discipline situations (Arnold et al., 1993). Parents are
asked to indicate their tendency to use specific discipline
practices using a 7-point scale. The Parenting Scale identifies
three different suboptimal parenting styles, as well as a total
score providing a dysfunctional parenting index. Over-reactivity
indicates authoritarian and coercive discipline practices; Laxness,
in contrast, describes a permissive parent who is inconsistent
in providing discipline; Verbosity refers to a parenting style
characterized by lengthy and ineffective verbal reprimands.
Primary careers were usually mothers and secondary careers
usually fathers.

Eye-Tracking
Used to obtain data on a number of cognitive processes.
The Tobii TX-300 (Tobii AB, Sweden) gaze tracking system
was used to record the temporal and spatial features of the
children’s direction of gaze in 609 infants (78%) at a median
age of 18 months + 12 days (range 17 + 8 − 34 + 15).
The battery of tasks comprised a series of animated video
clips designed to measure endogenous and exogenous visual
attention (Elsabbagh et al., 2009, 2013; Gliga et al., 2009; Wass
et al., 2011). Extracted metrics included visual engagement
and disengagement, efficiency of attention shifting, social
and non-social attention and memory guided choices and
visual search. The list of tests and completion rates are
shown in Table 3. A manuscript describing the tasks and
the results in detail has been submitted for publication
(Braithewaite et al., submitted). The project codebook details
the variables to be released, while the rich meta-data from
these tests may be available through discussion with the
dHCP investigators.

Genomic Data
Genetic Data
Saliva samples were collected at the initial neonatal MRI
data acquisition and 18-month old infant timepoints using
Oragene DNA OG-250 kits (DNAGenotek Inc., Kanata, Canada).
The genotyping was performed on only one sample (usually
the first). There are no linked maternal or paternal samples.
Samples were genotyped on the Illumina Infinium Omni5-
4 array v1.2, which comprises a total of 4327108 single-
nucleotide polymorphisms (SNPs), by NIHR BioResource Centre
Maudsley Genomics & Biomarker Core Facility. Genotyping was
undertaken in two batches. Basic quality control was performed
by the Department of Biostatistics & Health Informatics, King’s
College London for the combined dHCP batches and a small
additional independent study cohort. Raw Illumina microarray
genotype image (IDAT) files were uploaded into GenomeStudio
and processed according to the GenomeStudio quality control
Standard Operating Procedure (Patel et al., 2022).8 Data was then
further processed according to a pipeline which identified and
removed samples with call rates below 95% (Patel et al., 2022).
It also identified gender mismatches and potential heterozygosity
outliers which are flagged in the metadata files. SNP data are
available for 731 infants.

Methylation Data
Saliva-derived DNA from each sample was treated with sodium
bisulfite [Zymo Research EZ-96 DNA Methylation Kit (D5004)].
DNA methylation was quantified using the Illumina Infinium
HumanMethylationEPIC BeadChip Kit. Methylation analysis for
the dHCP samples was undertaken alongside two additional
independent study cohorts. A randomized sample layout was
generated using key study parameters including all study cohorts,

8https://khp-informatics.github.io/COPILOT/index.html
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with Omixer R/Bioconductor package (Sinke et al., 2021).9 Saliva
samples have been processed for 739 infants, including a subset
with samples taken at birth and repeated at the 18-month visit,
but QC has yet to be carried out.

GOVERNANCE AND ACCESS

The study was approved by the United Kingdom Health
Research Authority (Research Ethics Committee reference
number: 14/LO/1169) and written parental consent was
obtained in every case for imaging and open data release
of the anonymized data. The main imaging data, essential
metadata and the collateral data, will be available after accepting
a data sharing agreement. Downloaded data should not
be passed on to third parties outside the research group,
and no attempt should be made to de-anonymize the
data which have been face stripped to prevent attempts at
facial recognition.

The preliminary data releases are currently available to
download by academic torrent via the dHCP website (see text
footnote 1). The primary long-term site for curation and access
of the full data release will be the National Institute for Mental
Health (NIMH) data repository portal at https://nda.nih.gov/
edit_collection.html?id=3955.

Examples of Developing Human
Connectome Project Data Use
The preliminary data releases of a proportion of the images
have been available to scientists since 2019. There datasets have
been accessed frequently and already a large number of studies
have been published using dHCP data. These include studies
of prenatal opioid exposure (Merhar et al., 2021), cerebral gene
expression (Ball et al., 2020), the effects of preterm birth on
brain structure and function (Dimitrova et al., 2020; Kline
et al., 2020; Eyre et al., 2021), the development of specific
cognitive functions (Li et al., 2020), and the neural response
to noxious stimuli (Baxter et al., 2019), as well as a number
of analyses of brain connectivity and growth (Eyre et al., 2021;
Wang et al., 2021; Bethlehem et al., 2022). The data have
been widely used to develop novel imaging analytic methods
(Ding et al., 2020; Collins-Jones et al., 2021; Grigorescu et al.,
2021) and to define new approaches to understanding brain
development (Adamson et al., 2020; O’Muircheartaigh et al.,
2020).

DISCUSSION

We describe here the main neonatal data release of the
Developing Human Connectome Project which includes 887
datasets from 783 subjects. We are releasing data from all steps
in the project, from the initial images through intermediate
steps in processing, to results from running our processing

9http://www.bioconductor.org/packages/release/bioc/html/Omixer.html

pipelines. The aim is to allow researchers to work with the data
as they wish, without pre-filtering the available selection. In
the majority of cases high quality images across all modalities
are available, and are linked to rich collateral data, although
practical issues, notably the COVID-19 pandemic, led to some
incomplete ascertainment.

Each image acquisition that contributes to the dHCP
collection was individually optimized both to take account
of the properties of the developing neonatal brain and to
achieve the most efficient total examination. After the initial
piloting in which the head-foot location of the imaging
volume was set, the scanner operated without pause for the
entire examination.

Virtually all subjects were examined during natural sleep,
so available time for imaging was constrained. We took steps
to reduce the risk that infants would awaken by minimizing
preparation time after feeding was complete, improving the
patient-handling equipment (see Hughes et al., 2017 for
details) and modifying the scanner software to avoid sudden
changes in acoustic conditions that might create a startle
response. Despite these precautions some babies did wake
up during the scanning session, but it was often possible
to re-settle them and the protocol was designed to allow
restart with minimal time penalty, particularly for the dMRI,
which was the longest single acquisition. Although precise
information about whether a baby woke up during image
acquisition was not recorded, it would be of interest in future
studies exploring the specific relationship between imaging
measures and behavior.

However, even those babies that continued to sleep often
moved sufficiently to impair the data quality of the advanced
images being collected, so data were motion corrected, either
as part of a motion corrected image reconstruction (Anatomical
T2w and T1w FSE sequences, but not MPRAGE) or as part of the
data processing pipelines, each of which had motion correction
steps included. These pipelines were designed and optimized
specifically for neonatal data, and software for pipelines is
freely available.10 Full details are available as part of the data
download documentation.

The data from the dHCP naturally sits within a context
of other connectome-oriented collections and will be curated
alongside many similar resources by the National Institutes
of Mental Health in the large multimodal neuroinformatic
data repository. The dHCP neonatal data collection will prove
valuable to a broad range of users and that it will complement
and augment other available materials. Taken together with the
dHCP fetal data release, this collection provides what is currently
a unique observational resource that captures information on
the developing human brain at a key stage of rapid growth
and change. The companion genetic and follow-up behavioral
resources, as well as atlases, which will be accessed from
the same locations, can provide rich materials to address a
range of scientific and clinical questions. The data are already
being widely used.

10https://biomedia.github.io/dHCP-release-notes/open-resources.html
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An important step in the preprocessing of resting state functional magnetic resonance
images (rs-fMRI) is the separation of brain from non-brain voxels. Widely used imaging
tools such as FSL’s BET2 and AFNI’s 3dSkullStrip accomplish this task effectively in
children and adults. In fetal functional brain imaging, however, the presence of maternal
tissue around the brain coupled with the non-standard position of the fetal head limit
the usefulness of these tools. Accurate brain masks are thus generated manually,
a time-consuming and tedious process that slows down preprocessing of fetal rs-
fMRI. Recently, deep learning-based segmentation models such as convolutional neural
networks (CNNs) have been increasingly used for automated segmentation of medical
images, including the fetal brain. Here, we propose a computationally efficient end-to-
end generative adversarial neural network (GAN) for segmenting the fetal brain. This
method, which we call FetalGAN, yielded whole brain masks that closely approximated
the manually labeled ground truth. FetalGAN performed better than 3D U-Net model
and BET2: FetalGAN, Dice score = 0.973 ± 0.013, precision = 0.977 ± 0.015;
3D U-Net, Dice score = 0.954 ± 0.054, precision = 0.967 ± 0.037; BET2, Dice
score = 0.856 ± 0.084, precision = 0.758 ± 0.113. FetalGAN was also faster than 3D
U-Net and the manual method (7.35 s vs. 10.25 s vs. ∼5 min/volume). To the best of
our knowledge, this is the first successful implementation of 3D CNN with GAN on fetal
fMRI brain images and represents a significant advance in fully automating processing
of rs-MRI images.

Keywords: fetal rs-fMRI, resting state, segmentation, deep learning, generative adversarial networks (GANs), 3D
U-Net, fetal brain

INTRODUCTION

Resting state functional MRI (rs-fMRI) is an emergent technique for interrogating in-vivo fetal
brain function. A critical step in preparing rs-fMRI images for analyses is separating brain from
non-brain voxels. In most cases, fetal brain masks are generated manually, as imaging tools that
are effectively used for adult whole brain segmentation do not accurately extract the fetal brain.

Frontiers in Neuroscience | www.frontiersin.org 1 June 2022 | Volume 16 | Article 8876344142

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.887634
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.887634
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.887634&domain=pdf&date_stamp=2022-06-07
https://www.frontiersin.org/articles/10.3389/fnins.2022.887634/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-887634 June 1, 2022 Time: 16:5 # 2

De Asis-Cruz et al. FetalGAN: Automated Fetal EPI Brain Segmentation

This suboptimal performance likely arises from the presence of
surrounding maternal tissue, non-standard orientation of the
fetal head, and reduced gray/white matter contrast in the fetal
brain. While manual segmentation of the fetal brain provides
reasonable brain masks, the process is time consuming and
operator dependent. Automated processes have the potential to
increase efficiency of pipelines and reproducibility of results.

A growing body of literature has demonstrated that deep
learning-based segmentation outperforms traditional approaches
including multi-atlas registration techniques (Huo et al., 2019;
Khalili et al., 2019; Dolz et al., 2020; Zhao et al., 2022).
Deep convolutional neural networks (CNN) such as U-Net
have achieved remarkable success for anatomical medical image
segmentation and have been shown to be versatile and effective
(Ronneberger et al., 2015; Yang et al., 2018; Zhao et al., 2018;
Son et al., 2020). Recently, 2D U-Net has been successfully
applied to fetal resting state functional MRI data (Rutherford
et al., 2021), a crucial step in automating preprocessing of
fetal rs-fMRI. However, there are several limitations in using
CNN-based approaches for segmentation (Ronneberger et al.,
2015; Xue et al., 2018; Li et al., 2019; Rutherford et al.,
2021). Although U-Nets can use skip connections to combine
both low- and high-level features, there is no guarantee of
spatial consistency in the final segmentation map, especially
at the boundaries (Isola et al., 2017; Yang et al., 2018;
Zhao et al., 2018; Dhinagar et al., 2021). To address this
limitation, methods that consider spatial correlations among
neighboring pixels such as conditional random field and other
graph cut techniques are used as post-processing refinement
(Pereira et al., 2016b; Nancy, 2019; Son et al., 2020). Utilizing
pair-wise potentials, however, may cause serious boundary
leakage, especially in low-contrast regions (Vijayanarasimhan
and Grauman, 2010). To prevent leakage and the lack of
spatial consistency, methods such as patch-based networks for
training CNNs and multi-scale, multi-path CNNs with different
input resolutions/network architectures have been used (Pereira
et al., 2016a; Havaei et al., 2017; Kamnitsas et al., 2017;
Chattopadhay et al., 2018; Xiao et al., 2020; Ghimire et al.,
2021; Zhang et al., 2021; Zhu et al., 2021). However, patch-
based training is computationally costly. Moreover, finding the
optimal patch size that achieves superior localization accuracy
is challenging. Generally, traditional CNNs have a tradeoff
between achieving good localization performance/higher level
of semantics (i.e., correctly classifying each voxel’s label) and
crisper, more well-defined boundaries. This is a potential
disadvantage specifically when applied to brain segmentation of
fetal rs-fMRI, which often have low-contrast boundaries, varied
voxel intensities, and features at different scales/orientations
(Ronneberger et al., 2015; Xue et al., 2018; Dolz et al., 2020;
Rutherford et al., 2021).

Recently, generative adversarial networks (GANs) have been
shown to be a robust approach for automated medical image
segmentation and to yield better, stable performance compared to
state-of-the-art CNN-based models (Isola et al., 2017; Xue et al.,
2018; Xun et al., 2021). Using two competing neural networks—
a generator and a discriminator—GANs create exemplar images
that are difficult to distinguish from real (i.e., training) images,

effectively modeling any distribution of data (Gonog and
Zhou, 2019). The generative network creates new examples
of the data while the discriminator simultaneously evaluates
these exemplars in a cyclic fashion effectively giving rise to
a network that self-optimizes its error rate and converges on
a model with high accuracy. Specifically, adversarial losses
enforced by the discriminator network consider higher-order
potentials, as opposed to the pairwise correlations utilized by
voxel-wise loss functions, such as softmax. This adversarial loss
serves as an adaptively learned similarity measure between the
predicted segmentation label maps and the annotated ground
truth that improves localization accuracy while enforcing spatial
contiguity at low contrast regions, including image boundaries.
Various end-to-end adversarial neural networks (e.g., SegAN)
have been proposed as stable and effective frameworks for
automatic segmentation (SegAN) of organs such as the brain,
chest, and abdomen, among others (Frid-Adar et al., 2018;
Giacomello et al., 2020; Xun et al., 2021; Zhu et al., 2021).
Furthermore, a recent study by Chen et al. (2022) showed
that a GAN-based paradigm improved the robustness and
generalizability of deep learning models like graph neural
networks (GNNs). Using their model on multi-modal MRI
data, they identified autism spectrum disorders (ASD) with
higher accuracy (74.7%) compared to other state-ot-the-art deep
learning methods.

Motivated by SegAN, here, we propose FetalGAN, a GAN
based end-to-end architecture for the automated segmentation
of fetal rs-fMRI brain images. FetalGAN addresses the previously
described drawbacks of deep CNNs and may be better suited for
low-contrast fetal rs-fMRI. We hypothesized that FetalGAN will
produce whole brain labels that closely approximate the manually
created ground truth and will outperform deep CNN-based
models (i.e., 3D U-Net) and the commonly used BET2 algorithm.

MATERIALS AND METHODS

Data
We initially evaluated 75 rs-fMRI scans. Out of the 75 datasets,
four were excluded from further analyses: three had image
dimensions (x, y, or z) that exceeded the chosen patch size of
32 × 32 × 32, and one had incomplete demographic data. The
final sample consisted of 71 datasets from 64 healthy fetuses.

Pregnant women were recruited as part of a larger study
investigating brain development in healthy and high-risk fetuses.
All participants had normal ultrasonograms/echocardiograms
and structurally normal brains on MRI. Fetal exclusion
criteria included: dysmorphic features by antenatal
ultrasound, chromosomal abnormalities by amniocentesis,
evidence of congenital infections, presentation after
28 weeks gestational age, and multiple gestation. Maternal
exclusion criteria included: pregnant women with known
psychiatric/metabolic/genetic disorders, complicated/multiple
pregnancies, alcohol and/or tobacco use, maternal medications,
and contraindications to MRI.

Data were collected using a 1.5T GE MRI scanner (GE
Healthcare, Milwaukee, WI) with an 8-channel receiver
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coil. Anatomical single-shot fast spin-echo anatomical T2-
weighted images were collected with the following parameters:
TR = 1,100 ms, TE = 160 ms, flip angle = 90◦, and slice
thickness = 2 mm. Resting-state echo planar images (EPI) images
were collected with the following parameters: TR = 3,000 ms,
TE = 60 ms, voxel size = 2.578 mm × 2.578 mm × 3 mm, flip
angle = 90◦, field of view = 33 cm, matrix size = 128 × 128,
and scan duration = 7 min (140 volumes). On average,
5:21 min (107 volumes) of resting-state data was available
after preprocessing.

Preprocessing
Fetal resting state data were preprocessed up to the point of
brain segmentation using AFNI, unless specified otherwise (Cox,
1996). Briefly, as previously described here (De Asis-Cruz et al.,
2021), fetal EPI images were slice time corrected, trimmed by
removing the first four volumes to stabilize magnetic gradients,
manually oriented to radiologic orientation using landmark
based rigid registration (IRTK1), despiked, and then corrected for
bias-field inhomogeneities (N4BiasFieldCorrection) (Tustison
et al., 2010). At this point, the oriented EPI images were
ready for motion correction. For this step, we used a two-
pass registration approach optimized to correct for the high-
motion typically observed in fetuses and newborns (Joshi
et al., 2011; Scheinost et al., 2018). This method required
two inputs: a reference volume and its mask. For each
resting state (RS) dataset, a reference volume was defined
using AFNI’s 3dToutcount; this identifies the volume with
the lowest fraction of outlier voxels based on signal intensity
trend. A brain mask was then manually drawn (JDC) for
each reference brain volume using ITK-SNAP (Yushkevich
et al., 2006). The goal was to automatically create this whole
brain mask and provide it as input to the motion correction
algorithm. The selected reference volume and the manual brain
mask were utilized as inputs for training the model. During
testing, the reference image was segmented using three different
approaches: FSL Brain Extraction Tool v2 (BET2) (Smith, 2002),
3D U-Net (Çiçek et al., 2016), and FetalGAN. Segmentation
outputs were compared to the manually created mask using
the following metrics: Dice index, Jaccard score, sensitivity,
specificity, and precision. We also reported the computation time
for each method.

SegAN Architecture
We used the GAN framework to automatically segment the fetal
brain from rs-fMRI scans. The algorithm consisted of two neural
networks: the generator (segmenter) based on 3D U-Net, and
the discriminator (critic) based on a fully convolutional decoder
network (Xue et al., 2018).

The generator network received a 3D patch as an input and
consisted of eight residual convolutional blocks with the leaky
rectified linear unit (ReLU) activation, batch normalization, and
maxpooling layers (Figure 1, top; see 3D U-Net Architecture
for details). In the encoding branch, the upsampling layers
had a kernel size of 3 × 3 × 3 with stride 2 × 2 × 2;

1https://github.com/BioMedIA/IRTK

in the decoding branch, the downsampling layers resized by
a factor of 2 and used a kernel size of 2 × 2 × 2. The
discriminator network’s structure was like the deconvolution
block of the generator. Receiving both the ground truth and
predicted label map, the discriminator extracted hierarchical
features to quantify differences between these two input images.
Please see Supplementary Material for a summary of generator
and discriminator parameters.

SegAN learns a loss function that penalizes structural
differences between the discriminator network output and target
(Xue et al., 2018). Rather than computing discriminator loss for
the entire network, we computed loss at each discriminator layer.
The multi-scale loss function Lwas defined by Xue et al. (2018) as,

min
θG

max
θD

L (θG, θD) =
1
N

N∑
n=1

lmae (fD (xn · G (xn)) , fD(xn · yn))

(1)

where x is the training image; y its corresponding ground
truth; N is the number of training images; lmae is the
mean absolute error (MAE) or L1 distance; xn · G(xn) is the
probabilistic map generated by the generator network; xn ·
yn is the input image masked by its corresponding ground
truth; and fD(x) represent the hierarchical features extracted
from image x by the discriminator network. Using a multi-
scale loss function to quantify training error, the network
sequentially learned both global and local features and encoded
long and short-range spatial relationships between voxels. As
training progressed, the generator network was able to produce
probabilistic predictions that more closely approximated the
expert-annotated, ground truth.

3D U-Net Architecture
3D U-Net, patch-based architecture was also performed
(Figure 1, top). The network consisted of both an expanding and
contracting path. Here, the contracting path was supplemented
with successive layers where the standard pooling operators
were replaced with upsampling operators to enhance image
resolution. The high-resolution feature from the contracting
path was then concatenated with the upsampled features
from the expanding path for localization of the fetal brain.
The expanding and contracting paths had four convolutional
blocks, each with two Conv3D layers, BatchNormalization, and
the PReLU activation function. In each convolutional block,
the number of feature maps was doubled per layer (96 initial
feature maps and 364 feature maps generated after the last
block); a kernel size of 3 and 2 was used for the expanding
and contracting paths, respectively. At the junction of the
contracting/expanding path, the layers were regularized using
dropout with a rate of 15%. In the expanding path, a MaxPooling
(downsampling) layer with stride 2 followed each convolution
block to encode the input 3D patches into feature representations
at different levels. Deconvolution layers (upsampling) were
used intermittently throughout the contracting path to increase
the density of the sparse feature maps of the expanding path
using a transpose convolution with multiple trainable filters.
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FIGURE 1 | Architecture of proposed FetalGAN network.

TABLE 1 | Comparison of FetalGAN, 3D U-Net, and BET2.

FetalGAN 3D U-Net BET2

Mean ± SD Mean ± SD p* Mean ± SD p*

Dice 0.973 ± 0.013 0.954 ± 0.054 9.260 × 10−4 0.856 ± 0.084 1.124 × 10−18

Jaccard 0.948 ± 0.024 0.916 ± 0.082 1.993 × 10−4 0.756 ± 0.113 4.910 × 10−23

Precision 0.977 ± 0.015 0.967 ± 0.037 0.043 0.758 ± 0.113 6.685 × 10−26

Sensitivity 0.971 ± 0.021 0.945 ± 0.077 0.002 0.996 ± 0.011 1.493 × × 10−17

Specificity 0.994 ± 0.005 0.992 ± 0.010 0.239 0.915 ± 0.051 3.703 × 10−21

Time/patch (s) 0.05 0.08 -

Time/vol (s) 7.35 10.25 4.40

*FetalGAN compared to 3D U-Net and BET2, asterisk (*) indicates significant difference between method and FetalGAN using paired t-test.

The successive downsampling and upsampling feature maps
were concatenated to localize and learn representations after
each convolution.

Training Specifications
The SegAN was trained using a multi-scale loss function, the
U-Net model using binary cross-entropy loss. For both, weights
were determined using an Adam optimizer (Kingma and Ba,
2014). The models were trained on 71 reference brain volumes
and their corresponding manually drawn masks. We used
k-fold cross validation, where k = 5, for evaluating the model’s
performance. Each 3D MR scan and its respective normalized
mask was split into patches of size 32 × 32 × 32 with stride
2 × 2 × 2 and fed into the model for training. Given a
test EPI image, we extracted the overlapped patches with size
32 × 32 × 32, and fed them to the trained network to obtain the
final probability label map.

The final segmentation results were derived by averaging
together the probability maps of each overlapped patch. The
model training and validation are performed on NVIDIA
V100 multi-GPU. After prediction, isolated and/or misidentified
voxels were corrected, and internal holes were filled using
morphological operations available in the openCV library
(Bradski, 2000).

RESULTS

We evaluated 71 datasets from 64 healthy fetuses between 25
and 39.43 gestational weeks (mean GA ± SD: 33.28 ± 3.79; see
Supplementary Material for age distribution). The average scan
interval for the seven fetuses with two scans is 7.63± 2.48 weeks.

The proposed SegAN method was more time efficient than 3D
U-Net, requiring, on average, 7.35 s to segment a single volume
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FIGURE 2 | Representative whole brain masks from manual segmentation, BET2, 3D U-Net, and FetalGAN. Manual corrections were done using ITK-SNAP.
FetalGAN produced the most accurate segmentation relative to the ground truth with an average Dice score of 0.942 ± 0.095. (A) 25 4/7 weeks, (B) 29 2/7 weeks,
(C) 34 4/7 weeks, and (D) 38 6/7 weeks.

compared to 10.25 s for the latter (Table 1). BET2 was the fastest
algorithm, needing only 4.40 s to extract the brain.

Whole brain segmentation outputs of FetalGAN, FSL’s
BET2, and 3D U-Net were compared to the manually
segmented brains. The proposed method’s Dice score,
Jaccard index, precision, and specificity were significantly
higher than 3d U-Net and BET2 (paired t-test p < 0.05;
see Table 1). FetalGAN’s specificity was comparable to

3D U-Net and higher than BET2. Visual inspection of
representative scans (Figure 2) showed FetalGAN outputs
more closely resembled the ground truth. The 3D reconstructed
surface of the segmentations by SegAN and U-Net is
smoother when compared to the outputs of the manual
and BET segmentation.

FetalGAN and 3D U-Net performance showed stability
across GAs (Figure 3). The Dice and Jaccard scores for these
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FIGURE 3 | Performance scores fo FetalGAN, 3D U-Net and BET2 methods across gestation ages: (A) Dice coefficient, (B) Jaccard Score, (C) Precision,
(D) Sensitivity, and (E) Specificity.

two models were uncorrelated with age (Pearson r = –0.114,
p = 0.230 and r = –0.1410, p = 0.241, FetalGAN and 3D U-Net,
respectively; see Supplementary Table 1). FetalGAN specificity
decreased with increasing GA. Despite this decrease, specificity
remained high (range: 0.9723–0.9993) and was comparable to
3D U-Net and significantly better than BET2. Unlike the deep
learning models, BET2 Dice coefficients and Jaccard indices were
positively correlated with age (r = 0.558, p = 4.228 × 10−7

and r = 0.564, p = 2.985 × 10−7, respectively). Precision
also positively scaled with increasing GA for both BET2
(r = 0.568, p = 2.396 × 10−7) and 3D U-Net (r = 0.317,
p = 0.007).

DISCUSSION

We successfully implemented FetalGAN, a SegAN-based model,
to accurately extract the fetal EPI brain from the maternal
compartment in a sample of 71 normative fetal rs-fMRI
datasets. The whole brain mask generated by FetalGAN closely
approximated manually segmented images. The proposed model
produced outputs superior to labels derived from 3D U-Net
and FSL’s BET2. FetalGAN masks were also generated at a
faster rate than U-Net and with only a minimal increase
in preprocessing time compared to BET2. In addition, the
proposed method produced consistently accurate segmentation
across gestational ages. These findings suggest that FetalGAN
is a robust, fast, and reliable approach to segmenting fetal rs-
fMRI images.

To the best of our knowledge, the proposed method is
the first successful application of the SegAN framework for
segmentation of the fetal EPI brain and only the second
automated tool for accurately separating the fetal brain from
surrounding maternal tissue (Rutherford et al., 2021). We
speculate that the modifications applied to the conventional
GAN framework accounted for the superior performance of
FetalGAN over the 3D U-Net model. Previous, conventional
GAN approaches have been reported to be unstable at times
due to failures during training, such as vanishing gradients
and non-convergence (Isola et al., 2017; Xue et al., 2018). In
other words, the adversarial loss, which classifies the image
based on a scalar output by the discriminator, was unable to
propagate sufficient gradients to improve the performance of
the generator network (i.e., insufficient information passed on to
the generator). FetalGAN utilized a multi-scale, weighted feature
loss function, which effectively quantified minute differences
between the generated and ground truth segmentation across
multiple layers of the network. This enabled both the generator
and discriminator networks to learn hierarchical features
that captured relationships between voxels, especially in low
contrast regions around the boundary between the fetal
brain and maternal tissue. Altogether, these permitted the
training process of FetalGAN to be end-to-end and stable.
Moreover, FetalGAN performed faster than the comparable
3D U-Net implementation because the number of trainable
parameters in the generator network was less than a 3D
U-Net model. FetalGAN also outperformed BET2, likely because
the boundary between fetal brain and non-brain voxels was
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low-contrast and BET2 relied on intensity differences between
tissues to accurately estimate the boundary of the brain
(Smith, 2002).

One recent study successfully implemented 2D U-Net to
automatically segment the fetal EPI brain (Rutherford et al.,
2021). Trained on 855 images from 129 subjects, their
model yielded slightly lower performance metrics compared
to FetalGAN (2D U-Net: Dice score = 0.94 ± 0.069, Jaccard
index = 0.89 ± 0.069 vs. FetalGAN: Dice score = 0.973 ± 0.013,
Jaccard index = 0.948 ± 0.024). In the 2D U-Net model,
images were segmented in their original space; in contrast,
FetalGAN was applied to oriented images. During development
of our pipeline, we observed that orienting images prior
to brain extraction allowed more options in subsequent
preprocessing steps, thus we repositioned the brains prior
to segmentation. Another critical difference between the two
models is that FetalGAN was trained using 3D patches, thus
it can leverage spatial information across three dimensions
(i.e., interslice relationships) whereas 2D convolutional kernels
obtain context only across the width and height of a slice.
Moreover, with 3D U-Net, warping or normalization was
not required. While we did not directly compare 2D and
3D U-Net models, previous studies have demonstrated the
advantage of 3D over 2D CNNs (Nemoto et al., 2020;
Woo and Lee, 2021).

FetalGAN aims to provide an automated alternative to
manual segmentation of fetal rs-fMRI data. FetalGAN addresses
drawbacks inherent to manual processes. First, since the
process is automated, outputs are replicable. Second, the need
for highly skilled operators is eliminated. Lastly, relative to
manual segmentation, the time required to segment a brain
volume is markedly reduced. Taken together, these three main
areas of improvement are a critical step toward increasing
rigor and reproducibility in fetal neuroimaging. While this
is but one of the first steps in fetal rs-fMRI preprocessing,
we believe that our proposed method will contribute to
the field’s broader and overarching goal of creating fully
automated pipelines such as what’s currently available for older
children and adults with SPM,2 AFNI (Cox, 1996), or FSL
(Jenkinson et al., 2012) (or pipelines that combine these such
as fMRIPrep3 and CPAC,4 among others). The widespread
availability of these tools to the larger scientific community has
been instrumental in advancing our understanding of human
health and disease.

Our work has several limitations. First, we used fewer
training data sets for fetal EPI brain segmentation compared
to a previous study (Rutherford et al., 2021). With the
smaller sample size, however, we achieved comparable
performance. Moreover, it should be noted that our inputs
are 3D rather than 2D, thus the information that is fed
into the learning model is likely comparable. Second,
we used data from a single site. Additional studies that
test the model on data collected from other institutions

2https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3https://fmriprep.org/en/stable/index.html
4https://fcp-indi.github.io/docs/latest/user/quick

would support the generalizability of FetalGAN. Lastly,
the paper demonstrated FetalGAN’s superior performance,
but further studies that integrate brain extraction with
other preprocessing steps to yield a fully automated
pipeline are needed.

With mounting evidence supporting the fetal origins of
many prevalent adult disorders including mental illness (Barker
et al., 2009; Al-Haddad et al., 2019), there has been increased
interest in investigating fetal functional brain development
in vivo using MRI. FetalGAN, an implementation of SegAN
for fetal rs-fMRI brain, offers a fast, automated, unbiased,
and accurate alternative to currently available fetal EPI
brain extraction techniques. Further improvements that focus
on increasing computational efficiency, extracting the brain
in the original space, and integrating FetalGAN into a
fully automated fetal rs-fMRI pipeline, among others, are
currently underway. It is our hope that this technique
would help facilitate in utero investigations of emerging
functional connectivity.
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Hypoxic–ischemic encephalopathy (HIE) is the most common cause of

neonatal acquired brain injury. Although conventional MRI may predict

neurodevelopmental outcomes, accurate prognostication remains di�cult.

As di�usion tensor imaging (DTI) may provide an additional diagnostic

and prognostic value over conventional MRI, we aimed to develop a

composite DTI (cDTI) score to relate to short-term neurological function.

Sixty prospective neonates treated with therapeutic hypothermia (TH) for HIE

were evaluated with DTI, with a voxel size of 1 × 1 × 2mm. Fractional

anisotropy (FA) and mean di�usivity (MD) from 100 neuroanatomical regions

(FA/MD ∗100 = 200 DTI parameters in total) were quantified using an atlas-

based image parcellation technique. A least absolute shrinkage and selection

operator (LASSO) regression was applied to the DTI parameters to generate
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the cDTI score. Time to full oral nutrition [short-term oral feeding (STO) score]

was used as ameasure of short-term neurological function and was correlated

with extracted DTI features. Seventeen DTI parameters were selected with

LASSO and built into the final unbiased regression model. The selected factors

included FA or MD values of the limbic structures, the corticospinal tract, and

the frontotemporal cortices. While the cDTI score strongly correlated with

the STO score (rho = 0.83, p = 2.8 × 10−16), it only weakly correlated with

the Sarnat score (rho = 0.27, p = 0.035) and moderately with the NICHD-

NRN neuroimaging score (rho = 0.43, p = 6.6 × 10−04). In contrast to the

cDTI score, the NICHD-NRN score only moderately correlated with the STO

score (rho = 0.37, p = 0.0037). Using a mixed-model analysis, interleukin-10

at admission to the NICU (p = 1.5 × 10−13) and tau protein at the end of

TH/rewarming (p = 0.036) and after rewarming (p = 0.0015) were significantly

associated with higher cDTI scores, suggesting that high cDTI scores were

related to the intensity of the early inflammatory response and the severity of

neuronal impairment after TH. In conclusion, a data-driven unbiased approach

was applied to identify anatomical structures associated with some aspects of

neurological function of HIE neonates after cooling and to build a cDTI score,

which was correlated with the severity of short-term neurological functions.

KEYWORDS

hypoxic-ischemic encephalopathy, outcome prediction, di�usion tensor imaging,

neonatal brain atlas, least absolute shrinkage and selection operator, short-term

neurologic outcome, serum biomarkers

Introduction

Neonatal hypoxic–ischemic encephalopathy (HIE) is the

most common neonatal acquired brain injury and is caused by

the disruption of cerebral blood flow and oxygen supply near

birth. HIE can lead to significant lifelong neurological morbidity

(Douglas-Escobar and Weiss, 2015), and HIE represents about

half of all cases of neonatal encephalopathy. Therapeutic

hypothermia (TH) reduces by one-third the death and major

disability in neonates with moderate-to-severe HIE (Gluckman

et al., 2005; Shankaran et al., 2005; Tagin et al., 2012). Identifying

which neonates are at the highest risk of poor neurological

outcomes despite TH is still difficult, and accurate prognostic

indicators are needed.

Assessment of injury by qualitative and quantitative analyses

of magnetic resonance imaging (MRI) has been correlated

with short- and long-term outcomes in HIE (van Laerhoven

et al., 2013; Massaro, 2015; Shankaran et al., 2015). However,

conventional MRI may under-estimate injury, and advanced

techniques, including diffusion tensor imaging (DTI), provide

an additional diagnostic and prognostic value (Thayyil et al.,

2010; Alderliesten et al., 2011; Martinez-Biarge et al., 2011;

van Laerhoven et al., 2013) by detecting mild neuronal injury

that is difficult to evaluate with conventional MRI sequences.

Prior research using DTI data has been limited by the need

for the manual segmentation of regions of interest (ROIs),

which are labor-intensive and require anatomical expertise,

thus limiting both the number of patients and the number of

regions that can be evaluated (Massaro et al., 2015; Lemmon

et al., 2017; Seo et al., 2017; Jang and Kwon, 2018; Gerner

et al., 2019; Salas et al., 2019; Longo et al., 2020). Moreover,

many of the previously published studies have relied on

the hypothesis-driven identification of brain regions known

to be involved in HIE, including brainstem, basal ganglia,

thalamus, posterior limb of the internal capsule, postcentral

gyrus, and cortical white matter. Voxel-based analysis using

tract-based spatial statistics (TBSS) is a data-driven approach,

but is limited to white matter tracts (Tusor et al., 2012;

Ly et al., 2015). Moreover, although previous studies have

shown a relationship between anatomical impairment in

specific brain regions and clinical severity, the prediction of

prognosis has remained problematic, especially for mild cases

(Zarifi et al., 2002; Rollins et al., 2014; Bano et al., 2017),

suggesting the need to introduce a predictive model that

combines DTI findings from multiple areas of the brain in an

unbiased manner.

To overcome the limitations of previous studies, we used

an atlas-based approach to parcellate whole-brain DTI into

122 anatomical regions covering the whole brain, including

both gray and white matter structures (Oishi et al., 2011). The
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FIGURE 1

Demographic histograms of 60 subjects with neonatal HIE who underwent therapeutic hypothermia treatment. Categorical clinical variables are

summarized in (A–F) with color scaled by variables, and continuous clinical variables are summarized in (G–J).

DTI information in these regions was analyzed by the LASSO

regression analysis to create a model that outputs a numerical

value [composite DTI (cDTI) score] correlating with time to

full oral feedings as a short-term neuro-functional measure

[short-term oral feeding (STO) score]. Serum biomarkers

previously reported in this cohort of HIE newborns (Dietrick

et al., 2020; Chavez-Valdez et al., 2021b) were used to

elucidate the longitudinal mechanistic origins related to the

cDTI score.

Materials and methods

Participants

Data were obtained from a prospective cohort of neonates

who underwent TH for neonatal encephalopathy at the Johns

Hopkins Hospital, Baltimore, MD, USA. The study was

approved by the institutional review board. A diagnosis of HIE

was based on the National Institute of Child Health and Human
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Development (NICHD) Neonatal Research Network criteria

(Shankaran et al., 2005). Out of 659 cases in total, 535 cases

were excluded due to a lack of brain MRI. In addition, neonates

with arterial ischemic stroke or IVH or both (n = 21), neonates

requiring extracorporeal membrane oxygenation (ECMO) (n

= 4), non-perinatal events (n = 3), incomplete clinical data

(n = 3), partial TH administration (<72 h) (n = 2), TH off-

label use (<35-week gestation at birth) (n = 1), and non-HIE

neonatal encephalopathy (n = 1) were also excluded; three of

the 89 eligible neonates were excluded due to motion artifact

from the baby’s arousal during scanning. Additionally, DTIs

that did not meet the voxel size criteria (n = 22) and neonates

who were older than 14 days at the time of the MRI scan (n

= 4) were excluded. A total of 60 patients were included in the

final analysis.

Clinical variables

Clinical data were obtained from the medical record. The

race was assigned based on maternal race. The sex and GA

were assigned by the NICU team at admission to the NICU.

The highest modified Sarnat score during the first 6 h of

admission to the NICU was determined by the study team (RC-

V, CP, and FJN) (Sarnat and Sarnat, 1976). The distributions

of clinical categorical/numerical characteristics, such as sex,

race, NICHD-NRN score, Sarnat score, GA at birth, and post-

menstrual age (PMA) at MRI scan, chronological age at MRI

scan, and birth weight (BW) are summarized in Figure 1 and

Table 1.

Short-term oral-feeding (STO) score

The STO score was designed as a measure of short-term

neurological function, with a focus on the attainment of oral

feeding (Graham et al., 2008; Badran et al., 2020). This score

ranged from 0 to 4. For all neonates undergoing TH, no feeds

were offered until the day of life (DOL) 3, which corresponded

to the end of the rewarming phase. Thus, a score of 0 was

assigned if a patient achieved full oral feeds within 3 days after

initiation (≤ 7 days of life); a score of 1 was assigned if 3

extra days were needed (8–10 days of life), which corresponded

to the standard weaning of parenteral fluids and transition to

enteral feeds; a score of 2 was assigned if a patient achieved

full oral feeding in ≤ 5 weeks; a score of 3 was assigned if

> 5 weeks was needed or a gastrostomy tube (G-tube) was

placed for discharge; and a score of 4 was assigned if a patient

died during the hospitalization due to withdrawal of care as a

result of the severity of brain injury. Data were obtained by

RC-V, HS, SM, and CP, and the data were revised and scored

by RC-V.

TABLE 1 Clinical characteristics of 60 neonatal HIE patients who

underwent therapeutic hypothermia treatment.

Categorical clinical variables, n / N (%) N = 60

Sex of patients

Male 33 (55%)

Female 27 (45%)

Race

White 19 (32%)

Black 23 (38%)

Hispanic 7 (12%)

Asian 3 (5.0%)

other 8 (13%)

STO score

0 21 (35%)

1 20 (33%)

2 9 (15%)

3 10 (17%)

Sarnat score

Mild 10 (17%)

Moderate 41 (68%)

Severe 9 (15%)

NICHD-NRN score

0 41 (68%)

1A 10 (17%)

1B 1 (1.7%)

2A 2 (3.3%)

2B 6 (10%)

Scanner type

Aera (1.5T) 23 (38%)

Avanto (1.5T) 4 (6.7%)

Skyra (3T) 20 (33%)

TrioTim (3T) 13 (22%)

Continuous clinical variables, Mean (SD) N = 60

Gestational age at birth (weeks) 38.81 (1.92)

Post-menstrual age at MRI scan (weeks) 39.91 (1.89)

Chronological age at MRI scan (days) 7.73 (1.96)

Body weight at birth (grams) 3,299 (621)

Serum biomarkers

Serum levels of central nervous system injury (glial

fibrillary acidic protein [GFAP], neurogranin [NRGN], tau),

inflammation (interleukin [IL]-6, IL-8, IL-10), and trophism

(brain-derived neurotrophic factor [BDNF] and vascular

endothelial growth factor [VEGF]) proteins were available for

those patients included in the study. Serial samples at up to eight

separate time periods (from DOL 0 to 7) were measured from

stored laboratory samples using a custom,multiplex assay (Meso

Scale Discovery [MSD], Rockville, MD, USA) as previously
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described (Dietrick et al., 2020; Chavez-Valdez et al., 2021b).

For each patient, the measurements were reorganized into four

time points, namely, baseline [admission to NICU], during

TH, end of TH/rewarming, and after rewarming, according to

the DOL; the value sampled at DOL 0 was set as baseline;

the larger value sampled at DOL 1 and 2 as during TH;

the larger value sampled at DOL 3 and 4 as the end of

TH/rewarming; and the largest value sampled at DOL 5, 6, and

7 as after rewarming.

MRI acquisition

The MR imaging studies were acquired at either 1.5 tesla or

3.0 tesla on four clinical types of MR scanners, namely, Aera,

Avanto, Skyra, and TrioTim (Siemens, Erlangen, Germany),

using a standard eight-channel head coil. The neonatal imaging

protocols included a single-shot spin-echo, echo-planar axial

DTI sequence with diffusion gradients along 20 noncollinear

directions. For each of the 20 diffusion-encoding directions, a

b-value of 800 s/mm2 was used for four patients and 1,000

s/mm2 was used for the rest of the patients. An additional

measurement without diffusion weighting (b0 s/mm2) was

taken. The voxel size was 1 × 1 × 2mm. The distributions

of field strength, field of view (FOV), and b-value among the

four types of MR scanners are summarized in Figure 1C and

Table 2.

Evaluation of the impact of di�erences in
MR scanner, magnetic field strength, and
b-value on DTI quantification

As the four different scanners, namely, Aera, Avanto, Skyra,

and TrioTim, were used to obtain DTI for this population,

we first investigated whether the neurological severity of the

neonates was evenly distributed among the scanners used.

We built a proportional odds model and performed a type II

likelihood ratio test on the model to evaluate the difference in

the STO score distribution among the four MR scanners. To

compare the effect size of the MR scanners, the preference of

the STO score was estimated based on the model for each MR

scanner, and those estimations were analyzed through the type

II likelihood ratio test. The Brant–Wald test was conducted

to check whether there was a violation of the proportional

odds model assumption. We used the MASS library version

7.3-54 for model building and the Brant library version 0.3-0

for testing, both of which run on R (version 4.1.2). The same

analysis was performed for two field strength levels (1.5T/3.0T),

and the results are summarized in Supplementary Table 1.

Then, we examined the impact of the scanner used on the

cDTI score, applying Spearman’s rank pairwise correlation

test to investigate the correlation between the cDTI score

and the use of each scanner (not used = 0 and used =

1), as described in Section “Relationship between the cDTI

score and the clinical variables.” To determine the effect of

including different b-values (four patients were scanned with

b = 800 s/mm2 and the rest of the patients were scanned

with 1,000 s/mm2) on the results, an additional analysis was

performed on a group of 56 patients using a b-value of

1,000 s/mm2.

Clinical scoring of the T1- and
T2-weighted images and
di�usion-weighted images

Two experienced pediatric neuroradiologists (BPS and

AT) scored the neonatal brain MRIs using the National

Institute of Child Health and Human Development

(NICHD) Neonatal Research Network (NRN) score

(Shankaran et al., 2015). In addition, the overall image

quality of all sequences was reviewed to determine the

quality of DTI data. Throughout the quality control, three

MRIs that had significant artifacts were excluded from the

subsequent quantitative DTI analysis, as described in Section

“Participant.”

Atlas-based image analysis

The diffusion-weighted images were first linearly registered

to the b0 image, followed by voxel-wise tensor fitting

using DtiStudio (www.mristudio.org) (Jiang et al., 2006). An

automated outlier rejection function (Li et al., 2013) was applied

to reject slices with a relative fitting error of more than

3%. The fractional anisotropy (FA) and the mean diffusivity

(MD) maps were calculated from the tensor field. The JHU-

neonate single-brain DTI atlas and the parcellation map that

contains 122 anatomical areas as the regions of interest (ROIs)

(Oishi et al., 2011) were transformed into each individual’s

FA and MD images through the dual-channel (FA and MD)

large deformation diffeomorphic metric mapping (LDDMM),

as described in Oishi et al. (2011), Akazawa et al. (2016),

and Wu et al. (2017a,b). Among 122 ROIs defined on

each neonate’s brain, 100 ROIs with a minimum volume

greater than 2 mm3 were analyzed as reliable ROIs (Otsuka

et al., 2019). The names of the 100 ROIs are provided in

Supplementary Table 2. Two of the authors (KOn. and KOi)

inspected the resultant parcellation maps and identified eight

parcellation maps with minor errors in structural boundaries,

which were manually corrected. For each ROI, an FA threshold

of > 0.2 was applied to select white matter areas and fiber-

rich components within the deep gray matter. The mean
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TABLE 2 MRI scan parameters used in this study.

Scanner type, n/N (%) Aera, N = 23 Avanto, N = 4 Skyra, N = 20 TrioTim, N = 13

FOV

1,344× 1,344 0 (0%) 0 (0%) 1 (5.0%) 0 (0%)

1,536× 1,536 23 (100%) 4 (100%) 19 (95%) 9 (69%)

1,728× 1,728 0 (0%) 0 (0%) 0 (0%) 4 (31%)

Field strength

1.5T 1.5T 3T 3T

B-value

800 s/mm2 0 (0%) 0 (0%) 0 (0%) 4 (31%)

1,000 s/mm2 23 (100%) 4 (100%) 20 (100%) 9 (69%)

FA and MD values were quantified for statistical analysis.

Figure 2 shows the representative parcellation maps overlaid on

FA maps.

LASSO regression model

The least absolute shrinkage and selection operator (LASSO)

regression method with cross-validation was applied to extract

important DTI features from 200 measures (100 ROIs × 2

measures [FA, MD]) and generate a cDTI score for neonatal

HIE that correlated with the STO score for each individual.

The LASSO regression model was chosen as a sparse model

that addresses the overfitting and multicollinearity problem

expected in whole-brain DTI analysis and includes only

variables that have a significant impact on the STO scores.

The DTI measures were converted to a z-score based on

the mean and the standard deviation of each DTI-derived

measurement of each ROI and served as input variables.

The best lambda parameter was defined by 10-fold cross-

validation, setting the alpha parameter as 1, to minimize

a mean squared prediction error between the measured

and the predicted STO scores. A software package, glmnet

version 4.1-3, that runs on R (version 4.1.2) was used

for the analysis (Friedman et al., 2010). Spearman’s rank

correlation tests with the cDTI score were performed for all

factors selected in the prediction model, and the results are

presented in scatterplots with regression lines and coefficients

(Supplementary Figure 1).

Relationship between the cDTI score and
the clinical variables

The Spearman’s rank pairwise correlation test was used

to evaluate the relationship between the categorical variables

(i.e., STO score, Sarnat score, NICHD-NRN score, sex, field

strength, with or without the use of each MR scanner) and

the Pearson’s pairwise correlation test was used to evaluate

the relationship between the numerical variables (i.e., GA and

BW at birth, and chronological age and PMA at MRI scan),

both including the cDTI score. A p < 0.05 was regarded as a

significant correlation.

Comparison of biomarkers between
severe and mild groups over time

Based on the cDTI score, all patients were classified into

mild or severe groups. A cDTI score of 1.5 or less was defined

as the mild group and above 1.5 as the severe group. The cut

point of cDTI score of 1.5 was set to separate neonates with

mild MRI findings from those with typical lesions in the basal

ganglia–thalamus, watershed area, and the internal capsule, with

approximately the same number of subjects in the mild and

severe groups. Using lme4 library version 1.1-27.1 on R (version

4.1.2), a linear mixed-effects analysis was performed for each

biomarker (i.e., BDNF, IL-6, VEGF, GFAP, NRGN, IL-10, IL-8,

and tau). The concentration values of biomarkers were set as a

response, and the dichotomized severity (mild/severe), the four

time points (i.e., baseline, during TH, end of TH/rewarming, and

after rewarming), and the interaction of both were set as fixed

effects, and the intercepts for subjects were set as random effects.

A type II Wald F-test with a Kenward–Roger degree of freedom

was conducted on each mixed model to see the overall difference

in biomarker values among the four different time points, two

levels of severity, and their interaction.

For biomarkers in which significant differences were

identified between the mild and severe groups, Welch’s t-test

was further performed as a post-hoc test using the emmeans

library version 1.7.2 on R (version 4.1.2) to identify at which

time points there were differences. Furthermore, the correlation

between the cDTI score and biomarker values at each time point

was examined using Spearman’s rank correlationmethod. For all

series of analyses (i.e., F-test, post-hoc tests, and correlation test),

the significance level of the p-value was set at 0.05.
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FIGURE 2

Representative parcellation maps superimposed on FA maps. The locations and laterality (L/R) of the selected 17 structures in the cDTI score

calculation are annotated. (A–D) Axial images at the level of the corticospinal tract, the uncinate fasciculus (A), the cerebral peduncle (B), the

basal ganglia (C), and the superior parietal lobule (D). (E) A sagittal image at the level of the right fornix and the right cuneus.

Results

Participants and distribution of clinical
variables

Sixty patients met our clinical inclusion criteria and had

high-quality DTI available for quantitative analysis. Overall, the

group tended to have mild-to-moderate rather than moderate-

to-severe injury, as evidenced by the distribution of the Sarnat

scores and NICHD-NRN scores shown in Figures 1E,F and

Table 1. The chronological age at the MRI scan averaged 7.7

days, indicating that the DTI captured the subacute phase of

HIE when a diffusion-weighted image is most informative in

determining the overall extent of injury (Huang and Castillo,

2008; Ouwehand et al., 2020).

The e�ect of di�erent MR scanners and
field strength levels

The result of the type II likelihood ratio test on the

proportional odds model showed no significant differences in
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TABLE 3 Results of the proportional odds model analysis for the

evaluation of the distribution of the STO score among four MR

scanners.

Analysis of deviance table (Type II test)

Variable χ
2 df p-value

MRI scanner 1.3 3 0.73

Brant test table for the proportional odds model

Variable tested for χ
2 df p-valuea

Aera 0.18 2 0.91

Avanto 2.3 2 0.32

Skyra 0.19 2 0.91

TrioTim 10 6 0.11

aIf there are no significant p-values, themodel satisfies the proportional odds assumption.

the STO score distribution among four MR scanner types

(p = 0.73) or between two levels of field strength (p =

0.38), as described in Table 3 and Supplementary Table 1. The

Brant–Wald test was performed to assess the validity of the

proportional odds model used for both tests. No significant p-

values were found for any items, indicating that the proportional

odds model assumption was not violated, and the results of the

proportional odds model were valid. Thus, all 60 MR data were

pooled together for the subsequent cDTI score calculation.

Generation of the cDTI score

Seventeen factors (FA of 10 ROIs and MD of 7 ROIs) were

selected from 200 factors by the LASSO analysis and built into

the final regression model. In this model, each variable (FA or

MD derived from the 17 selected anatomical structures) was

weighted and the sum (cDTI score) was calculated for each

patient. The standardized regression coefficients for each of the

image and non-image factors are presented in Table 4. Most of

the 17 selected structures can be categorized as limbic fibers

and related structures (parahippocampal gyrus, fornix, medial

fronto-orbital gyrus, uncinate fasciculus, and cingulate gyrus);

lateral frontotemporal cortices and related fibers (middle frontal

gyrus, middle temporal gyrus, inferior temporal gyrus, and

tapetum); and corticospinal projection fibers (cerebral peduncle

and posterior limb of internal capsule). The locations and

laterality of the selected factors are illustrated in Figure 2.

For the majority of the selected factors, increased MD and

decreased FA were associated with higher cDTI scores, that is,

worse neurological functions. On the contrary, a decrease inMD

was shown to worsen the functions in five anatomical structures,

including the lateral frontotemporal structures and the cerebral

peduncle. Ten factors demonstrated moderate correlation with

the cDTI score: cuneus MD (rho = 0.45); parahippocampal

gyrus MD (rho = 0.32); middle temporal gyrus FA (rho =

−0.28); superior parietal lobule FA (rho = −0.36); external

capsule FA (rho = −0.34); gyrus rectus FA (rho = −0.40);

fusiform gyrus FA (rho = −0.32); uncinate fasciculus FA (rho

= −0.29); medial fronto-orbital gyrus FA (rho = −0.45); and

fornix FA (rho=−0.59).

Relationship between the cDTI score and
the clinical variables

Severity scale comparison
(STO/cDTI/NICHD-NRN)

Figure 3 illustrates the relationship between three severity

scales, namely, STO, cDTI, and NICHD-NRN. An excellent

correlation was achieved between the STO score and the cDTI

score, with a Spearman’s rank correlation rho of 0.83 (p = 2.8

× 10−16, Figure 3A). For comparison, a correlation between the

STO score and the NICHD-NRN score was also evaluated. The

correlation (rho = 0.37, p = 0.0037) was significant, but weaker

than the one between the STO and the cDTI scores (Figure 3B).

As shown in the scatterplots in Figures 3B,C, higher NICHD-

NRN and cDTI scores were associated with worse neurological

functions. However, lower NICHD-NRN scores (e.g., 0, 1A,

or 1B) were not necessarily associated with better neurological

functions, whereas lower cDTI scores were associated with better

neurological functions as represented by lower STO scores.

This result suggested that the cDTI score is highly sensitive

in detecting neuroanatomical alterations that are difficult to

identify with conventional MRI sequences.

Relationships between cDTI score and
demographics, clinical variables, and scanners

The pairwise Spearman’s correlation test revealed that

the cDTI score had a strong correlation with the STO

score and had a weak or a moderate correlation with the

Sarnat score (rho = 0.27, p = 0.035) and the NICHD-

NRN score (rho = 0.43, p = 6.6 × 10−4) (Figure 4A and

Table 5). Correlations between the cDTI scores and sex, field

strength, MR scanner preference, and all numerical clinical

variables were not significant, as summarized in Figure 4 and

Tables 5, 6.

Comparison of biomarkers between
severe and mild groups over time

A summary of the mixed-model analysis is presented in

Table 7. The results of the F-test for the model indicated that

there was a significant difference in biomarker values between
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TABLE 4 Regression coe�cients of the 17 factors selected by the LASSO regression analysis.

Regression coefficient DTI Anatomical structure Side

Positive regression coefficients

0.40 MD Cuneus* Right

0.064 MD Parahippocampal gyrus*† Right

Negative regression coefficients

−0.31 MD Middle frontal gyrus Right

−0.23 FA Fornix*† Right

−0.22 MD Inferior temporal gyrus Left

−0.15 MD Tapetum Left

−0.13 FA Medial fronto-orbital gyrus*† Right

−0.12 FA Uncinate fasciculus*† Left

−0.072 FA Fusiform gyrus* Left

−0.068 FA Gyrus rectus* Left

−0.059 MD Cerebral peduncle Right

−0.057 FA Precuneus Right

−0.037 FA External capsule* Left

−0.031 FA Superior parietal lobule* Left

−0.017 FA Middle temporal gyrus* Left

−0.011 FA Posterior limb of internal capsule Left

−0.0091 MD Cingulate gyrus† Right

*Significant correlation with the cDTI score (Spearman’s rank correlation, p < 0.05).

†Limbic fibers and related structures.

FIGURE 3

Scatterplots showing the relationship among severity scales: comparison between (A) the cDTI score and the STO score, (B) the NICHD-NRN

score and the STO score, and (C) the NICHD-NRN score and the cDTI score. Solid black lines with gray areas represent the regression lines with

95% confidence intervals, and Spearman’s correlation coe�cients/p-values are shown in the upper left corner of each graph. For (B), the data

are jittered to show the sample size.

the cDTI mild and severe groups for IL-10 (p= 4.1× 10−4) and

tau (p = 0.014). Significant time effects were present for BDNF

(p= 0.0064), IL-6 (p= 0.030), VEGF (p= 6.1× 10−4), GFAP (p

= 0.016), and IL-10 (p = 5.9 × 10−10). Significant interactions

between time point and severity were found for VEGF (p =

0.0043) and IL-10 (p= 1.7× 10−9).
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FIGURE 4

(A) Spearman’s correlation coe�cient matrix between the cDTI score and categorical clinical variables (i.e., STO, Sarnat, NICHD-NRN, sex, field

strength, scanner preference). (B) Pearson’s correlation coe�cient matrix between the cDTI scores and numerical variables (postmenstrual age,

chronological age, gestational age, and weight). Color-coded numbers in the upper right half of the matrix indicate correlation coe�cients (*p

< 0.05, **p < 0.01, and ***p < 0.001, blue: positive coe�cient, red: negative coe�cient). The color-coded ellipses in the lower left half of the

matrix indicate the strength of correlation between variables, with blue indicating a negative correlation and red indicating a positive correlation.

The shape of the ellipses indicates the strength of the correlation (ellipses are sharp when the correlation is strong and round when it is weak),

positive slope indicates a positive correlation, and negative slope indicates a negative correlation.

TABLE 5 Spearman’s correlation coe�cients and p-values between the cDTI score and the categorical clinical variables.

Statistic STO

score

Sarnat

score

NICHD

NRN

score

Sex Field

strength

Aera Avanto Skyra TrioTim

rho 0.83 0.27 0.43 0.14 −0.057 0.12 −0.13 0.023 −0.095

p-valuea 2.8 × 10−16*** 0.035* 6.6 ×

10−4***

0.28 0.66 0.35 0.33 0.87 0.47

a*p < 0.05 and ***p < 0.001. Correlation coefficients (rho) and p-values in bold indicate significant correlations.

Table 8 summarizes the result of the subsequent pairwise

Welch’s t-tests for each biomarker. These post-hoc tests aimed

to identify at which time point the difference between the mild

and severe groups was observed. Among the biomarkers that

had significant differences between mild and severe groups (IL-

10, tau), significant differences were found at baseline (p =

1.5 × 10−13) for IL-10 and at the end of TH/rewarming (p

= 0.036) and after rewarming (p = 0.0015) for tau. These

group differences are observed in Figure 5, illustrating the

time course of IL-10 and tau concentrations by the groups.

The Spearman’s rank correlation test indicated a moderate

correlation between the cDTI score and IL-10 concentration

after rewarming (rho = 0.44, p = 0.024) and between the

cDTI score and tau concentration during TH (rho = 0.41, p =

0.0056) and at the end of TH/rewarming (rho= 0.31, p= 0.029;

Figure 6).

The e�ect of including di�erent b-values

The results from the group of 56 patients, excluding

the four patients who were scanned using a b-value of 800

s/mm2 to avoid the influence of the b-value on the DTI

quantification, demonstrated a trend similar to that of the

results that included all 60 patients. Although the number

of anatomical structures selected by the LASSO regression

model was slightly increased, all anatomical structures selected

in the analysis of all 60 patients were included, and the

magnitude of the regression coefficients for each anatomical

structure tended to be similar (Supplementary Figure 2 and

Supplementary Table 3). The significant correlations between

the cDTI score and other severity scales (STO, NICHD-

NRN, and Sarnat) and between the cDTI score and clinical

variables were also unchanged (Supplementary Figures 3, 4
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TABLE 6 Pearson’s correlation coe�cients and p-values between the cDTI score and the continuous clinical variables.

Statistic Postmenstrual

age at MRI

scan

(weeks)

Chronological

age at MRI

scan (days)

Gestational

age at birth

(weeks)

Body weight at birth (grams)

r 0.012 0.14 −0.0088 0.14

p-value 0.93 0.29 0.95 0.30

TABLE 7 Results of mixed-model analysis for each biomarker.

Biomarkera Sourceb df df (residual) F-value p-valuec

BDNF Timepoint 3 105 4.3 0.0064**

Severity 1 50 0.41 0.53

Timepoint * Severity 3 105 0.76 0.52

IL-6 Timepoint 3 112 3.1 0.030*

Severity 1 48 0.0073 0.93

Timepoint * Severity 3 111 0.41 0.75

VEGF Timepoint 3 99 6.3 0.00061***

Severity 1 51 2.9 0.096

Timepoint * Severity 3 100 4.7 0.0043**

GFAP Timepoint 3 103 3.6 0.016*

Severity 1 51 0.35 0.56

Timepoint * Severity 3 103 0.11 0.96

NRGN Timepoint 3 104 1.3 0.30

Severity 1 50 0.35 0.56

Timepoint * Severity 3 104 0.47 0.71

IL-10 Timepoint 3 95 20 5.9 × 10−10***

Severity 1 35 15 0.00041***

Timepoint * Severity 3 94 18 1.7 × 10−9***

IL-8 Timepoint 3 87 1.9 0.13

Severity 1 39 0.30 0.59

Timepoint * Severity 3 85 0.17 0.92

Tau Timepoint 3 100 1.2 0.33

Severity 1 46 6.6 0.014*

Timepoint * Severity 3 100 2.0 0.12

aBiomarkers with significant differences between the severe and mild groups are made bold.

Severity is a binary variable of severity grouping (mild/severe) based on the cDTI score.
bTimepoint * Severity cells shows interactions of timepoint and severity variables.
c*p < 0.05, **p < 0.01, and ***p < 0.001.

and Supplementary Tables 4, 5). In the mixed-model

analysis of serum biomarkers and the cDTI scores, all

significant effects (time point, severity, and interaction

between both) remained except for the interaction effects

in VEGF (Supplementary Table 6). Significant differences

between severity groups were also replicated for IL-10 and

tau concentrations.

Discussion

Clinical relevance of the cDTI score

We applied an atlas-based, whole-brain approach to capture

the neuroradiological features of neonatal HIE that are

associated with short-term neurological function. Our novel
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TABLE 8 Results of Welch’s t-test for the di�erence in biomarker values between the mild and severe groups defined by the cDTI score for each

time point.

Biomarkera Timepoint Estimated difference (mild - severe) SE df T-ratio p-valueb

BDNF Baseline −209 561 147 −0.37 0.71

During TH 248 410 112 0.60 0.55

End of TH/Rewarming 500 406 111 1.2 0.22

After Rewarming −103 468 133 −0.22 0.83

IL-6 Baseline 105 103 148 1.0 0.31

During TH −9.6 71 141 −0.14 0.89

End of TH/Rewarming −8.7 70 140 −0.13 0.90

After Rewarming −19 83 146 −0.23 0.82

VEGF Baseline −103 74 129 −1.4 0.17

During TH 95 60 81 1.6 0.12

End of TH/Rewarming 131 60 84 2.2 0.033*

After Rewarming 122 65 102 1.9 0.064

GFAP Baseline 0.088 0.93 131 0.095 0.92

During TH 0.48 0.76 89 0.63 0.53

End of TH/Rewarming 0.31 0.76 87 0.41 0.69

After Rewarming 0.55 0.84 110 0.66 0.51

NRGN Baseline 0.019 0.16 139 0.12 0.91

During TH −0.010 0.13 98 −0.077 0.94

End of TH/Rewarming 0.12 0.13 96 0.89 0.38

After Rewarming 0.13 0.15 120 0.86 0.39

IL-10 Baseline −124 15 120 −8.3 1.5 × 10−13***

During TH −11 11 120 −1.0 0.30

End of TH/Rewarming 0.013 11 120 0.0012 1.0

After Rewarming −0.49 13 120 −0.039 0.97

IL-8 Baseline 46 128 118 0.36 0.72

During TH 59 96 92 0.61 0.54

End of TH/Rewarming 58 98 94 0.59 0.56

After Rewarming −18 111 109 −0.16 0.88

Tau Baseline −50 310 140 −0.16 0.87

During TH −276 225 112 −1.2 0.22

End of TH/Rewarming −461 217 107 −2.1 0.036*

After Rewarming −808 250 126 −3.2 0.0015**

aBiomarkers with significant differences between the severe and mild groups are made bold.
b*p < 0.05, **p < 0.01, and ***p < 0.001.

severity scale, the cDTI score, has the potential to resolve

conventional challenges. It has been extensively reported that

even cases with a severe clinical prognosis have subtle or

no abnormalities on DWI or conventional MRI, leading to

an increase in false negatives in the early diagnosis of HIE

brain injury (Liauw et al., 2009; Rollins et al., 2014; Krishnan

and Shroff, 2016; ElBeheiry et al., 2019). This conclusion is

also supported by this study, in which more than 20% of

the patients scored low (0, 1A, 1B) on the NICHD-NRN

score, but were found to have severe short-term functional

impairments (STO score of 3 or 4). On the contrary, the

cDTI scores were strongly correlated with the STO scores,

even in cases with the NICHD-NRN scores of 0, 1a, and 1b.

However, the interpretation of the cDTI scores of 1–2 remained

difficult. Nevertheless, our cDTI score may overcome one of the

previous challenges of finding severe cases that were difficult

to detect by visual qualitative MRI evaluation and may provide

an accurate prediction of short-term clinical prognosis for

those cases.

E�ect of variations in scanner and scan
protocols

Although DTI is an essential imaging tool in terms of its

ability to assess the brain quantitatively and is widely used

in clinical research, it is necessary to consider the impact of

different protocols on its quantitative data. For the acquisition

of DTI parameters, we had matched voxel sizes (1 × 1 ×

2mm), but other parameters (scanner type, magnetic field
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FIGURE 5

Time courses of biomarker values [(A): IL-10 and (B): tau] by severity group. Raw biomarker values are shown as scatterplots, and time courses

are indicated as error bars. The error bars on each timepoint (baseline, during TH, end of TH/rewarming, and after rewarming) were calculated

based on the results of the mixed-model analysis. Significance stars are embedded according to the result of the post-hoc t-test (*p < 0.05, **p

< 0.01, and ***p < 0.001).

FIGURE 6

Scatterplots illustrating the relationship between the cDTI score and biomarker values [(A): IL-10 and (B): tau] over time (baseline, during TH, end

of TH/rewarming, and after rewarming). Solid lines with gray areas indicate the regression lines with 95% confidence intervals, and Spearman’s

correlation coe�cients/p-values are shown in the upper left corner of each graph.

strength, and b-value) could not be completely standardized;

therefore, the results need to be interpreted carefully. Several

studies have investigated the effect of these different protocols on

FA/MD values. To assess the impact of using different scanners,

Zhou et al. examined inter-manufacturer (GE vs. Siemens)

and intra-manufacturer (Siemens Skyra vs. Siemens TrioTim)

comparability and concluded there was a little impact between

scanners on DTI metrics within the same manufacturer (Zhou

et al., 2018), which we confirmed in this study. Regarding

the magnetic field strength, although DTI theoretically is not

affected by magnetic field strength, some papers report that it

is affected (Huisman et al., 2006; Chung et al., 2013), while

Frontiers inNeuroscience 13 frontiersin.org

6263

https://doi.org/10.3389/fnins.2022.931360
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Onda et al. 10.3389/fnins.2022.931360

others conclude that it is not affected (Hunsche et al., 2001;

Alexander et al., 2006), indicating the effect of magnetic field

strength on quantitative DTI values and its mechanisms are not

fully understood. Given this situation, we used a proportional

odds model to examine the uniformity of the distribution

of the STO scores among scanners and between magnetic

field strength to check that the effect between protocols was

not significant. The pairwise Spearman’s correlation test on

categorical clinical variables showed no significant correlation

between the cDTI/STO scores and field strength or scanner

preference, and the correlation coefficients were, at most, 0.14,

which supports the small effect size of the protocol difference.

In terms of the difference in b-values, several studies have

suggested that the signal-to-noise ratio decreases as b-value

increases (Bisdas et al., 2008; Chung et al., 2013). Diffusivity

measures are also known to be affected by b-value (Barrio-

Arranz et al., 2015). Taking these findings into consideration, we

performed the same series of analyses, with the exclusion of the

four patients with an 800 s/mm2 b-value, and found that most of

the results were similar to those before the exclusion, as shown

in Section “The effect of including different b values”

(Supplementary Figures 2–7 and Supplementary Tables 3–7).

Although the impact of different b-values on the cDTI score was

minor in this study, the influence of b-values on neurological

prediction needs to be examined further.

DTI measurements selected by LASSO
regression model

Throughout the LASSO regression, we identified two types

of relationships between the neurological functions of HIE and

DTI measures: for structures such as the lateral frontotemporal

structures and the cerebral peduncle, decreased MD values were

related to the poor neurological functions of HIE, whereas

for other structures including the limbic system, decreased

FA and increased MD values were associated with the poor

neurological functions of HIE. Although the pathogenetic

factors responsible for the alterations in FA and MD after

neonatal HIE remain unknown, these results may be explained

by multiple mechanisms (Wu et al., 2014), namely, cytotoxic

edema for the former group of structures, vasogenic edema

for the latter group of structures, and the potential effects of

Wallerian degeneration (Groenendaal et al., 2006), which can be

observed in the subacute phase of HIE (Neil and Inder, 2006).

The primary pathogenesis of HIE can be broadly divided

into ischemic and reperfusion phases. Cytotoxic edema occurs

during the ischemic phase, whereas vasogenic edema results

from the effects of free radical-induced vascular endothelial

damage during the reperfusion phase (Distefano and Praticò,

2010). In our study, DTI was acquired during the subacute

phase, in which the effects of both the ischemic and reperfusion

phases could be observed. Gutierrez et al. demonstrated that,

in the subacute phase of ischemia, blood reperfusion induces

vasogenic edema, whereas the restriction of water mobility due

to high blood viscosity also causes the exacerbation of cytotoxic

edema (Gutierrez et al., 2010).

Cytotoxic edema is a redistribution of water from the

extracellular to the intracellular space due to the disruption

of the Na+/K+ ATPase pump and intracellular calcium

concentration maintenance mechanisms, caused by decreased

oxygen and glucose due to reduced cerebral blood flow (Allen

and Brandon, 2011). This condition is known to cause decreased

MD values due to cell swelling (Rai et al., 2008). On the contrary,

in vasogenic edema, disruption of the blood–brain barrier

(BBB) and increased vascular permeability leads to extravascular

leakage of serum proteins, resulting in extracellular fluid

retention (Utsunomiya, 2011). As a result, unlike cytotoxic

edema, increased MD and decreased FA values are observed due

to the expansion of the extracellular compartment (Keller et al.,

1999; Moritani et al., 2000). In addition to these pathological

mechanisms, our findings may also reflect the early impact of

Wallerian degeneration on the corticospinal tracts. In the early

stage of the degeneration (onset to 1–2 weeks), the axonal and

myelin debris causes restriction of water diffusion, resulting in

a significant decrease in FA or MD values of the corticospinal

tracts (Yu et al., 2009; Qin et al., 2012). The posterior limb of

the internal capsule and cerebral peduncle have been reported

as preferential sites of the degeneration (Venkatasubramanian

et al., 2013), which is consistent with the present results.

Among the structures identified in this study that may

be involved in vasogenic edema, limbic-related structures, in

particular, are consistent with the recently reported findings

that they are susceptible to hypoxic–ischemic injury in neonates

(Zheng et al., 2021; Parmentier et al., 2022). Long-term studies

have identified survivors of even mild HIE, without evidence

of cerebral palsy, to have deficits in functions served by the

limbic system, including memory, emotional processing, and

behavior (van Handel et al., 2010; Lee-Kelland et al., 2020),

which is also reported in preclinical studies (Burnsed et al.,

2015; Diaz et al., 2017; Chavez-Valdez et al., 2018). Another

study of 10-year-olds with a history of neonatal HIE found

that smaller mammillary body and hippocampal volumes were

associated with lower total IQ, performance IQ, processing

speed, and episodic memory (Annink et al., 2021). Our

results support that the severity of impairment of the limbic

network by HIE may be related to the severity of neurological

sequelae. Preclinical animal studies also support regionally

specific temporal patterns of cell death and neurodegeneration

(Northington et al., 2001a,b, 2022; Chavez-Valdez et al., 2021a).

Thus, the results also suggested that the progression of

cytotoxic and vasogenic edema and Wallerian degeneration

occurs heterogeneously in different brain regions and that the

pattern of progression and the severity may be associated with

neurological functions.
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Relationship between cDTI score and
time course of serum biomarker

We also examined the potential biological mechanism

supporting the cDTI score by comparing the time course of

serum biomarker values between the cDTI score-defined severe

andmild disease groups. The results of themixed-model analysis

showed that not only higher cDTI scores were associated with

higher IL-10 and tau values, but also, more precisely, at which

time points these relationships were observed: at baseline for IL-

10 and at the end of TH/rewarming and after rewarming for tau.

Moreover, tau was correlated with the cDTI score during TH and

at the end of TH/rewarming, further supporting its association.

Our group has previously reported in a larger cohort, which

included those patients studied here, that indicators of worse

HIE severity, including the Sarnat scores correlated with higher

IL-10 within the first 24 h of life, and tau at and after TH

(Chavez-Valdez et al., 2021b). Increased levels of IL-10 (Orrock

et al., 2016) and tau proteins (Dietrick et al., 2020) are closely

linked to the worse prognosis of HIE. Previous animal (Li

et al., 2014; Bai et al., 2021) and human (Youn et al., 2013)

studies have identified a broad anti-inflammatory role for IL-10,

such as the prevention of pro-inflammatory cytokine synthesis

and the excessive phosphorylation of tau protein that leads to

microtubule collapse and deposition in neurons, resulting in

neurodegeneration (Wu et al., 2017c). Interpreting the present

results in light of these findings, the cDTI score may be a

composite measure that reflects the degree of both inflammatory

responses in the early stages and accumulated neuronal damage

in the later stages in HIE patients with TH.

Relationship between cDTI and STO
scores

In a previous study by our group, neonates suffering from

HIE who end up developing qualitative MRI evidence of brain

injury despite TH took an average of 17 ± 9 days to reach

full oral feeds, with >60% needing G-tube placement prior to

discharge, and >10% dying, which contrasted with those HIE

neonates with negative MRI, who took only 9 ± 5 days to reach

full feeds and had no need for G-tube or mortality (Ennen

et al., 2011). Others have also found similar feeding difficulties

in this population (Krüger et al., 2019) and associations with

brain injury in MRI and alterations in EEG (Badran et al., 2020;

Takle et al., 2021). Thus, time to reach full oral feeds, the need

for G-tube, and mortality after TH are appropriate functional

assessments of the severity of short-term neurological functions

and were used to build the STO score as described in Section

“Short-term oral-feeding (STO) score.” Here, we show that while

the Sarnat or NICHD-NRN scores alone have a weak correlation

with the STO scores, the cDTI score has a strong correlation,

which was not related to sex, field strength, MRI scanner, or

other clinical variables. Furthermore, unlike low cDTI scores,

low NICHD-NRN scores do not necessarily relate to better

neurological functions based on the STO scores. Therefore,

the cDTI scores are superior in identifying poor neurological

functions in HIE neonates without major abnormalities on

qualitative MRI reading, suggesting a higher sensitivity in

detecting mild neuronal damage.

Limitations

Our study has several limitations. First, the scanner and

scan protocols varied among patients. We are fully aware of

the impact of differences in scanners, magnetic field strength,

and b-values on DTI measurements. Although our results

indicated that such technological variations were negligible in

obtaining cDTI scores, the potential impact of the technological

variations on the predictive model and cDTI scores cannot be

completely excluded. Nevertheless, the results suggest that the

cDTI score is a robust measure against technological variability,

and this robustness is crucial in clinical applications across

institutions. Second, our cohort was comprised predominantly

of neonates with mild-to-moderate rather than moderate-to-

severe HIE injury by MRI, with relatively small contributions

from basal ganglia and thalamic structures known to be involved

in moderate-to-severe HIE before TH became standard of care

for this subgroup of patients. Whether the cDTI scores from our

model can predict the neurological function in more severely

injured patients remains to be explored. Third, our analysis

did not include standard neurological assessments such as the

Hammersmith Neonatal Neurological Assessment, the NICU

Network Neurobehavioral Scale, or the General Movements

Assessment. Although an association between oral feeding

difficulties and poor neurological prognosis has been reported,

a direct comparison of the STO scores with gold standard

assessments has not been made. Future studies are needed to

test whether the STO scores accurately reflect short- and long-

term neurological complications. Particularly, a longer follow-

up is needed to assess whether the cDTI score is predictive of

future neurological function. Fourth, the current single atlas

analysis required manual correction to quantify DTI-derived

scalar indices when errors in parcellation occur. This need for

manual correction may limit its use in clinical practice. We

are currently developing an atlas-based image parcellation tool

based on themulti-atlas label fusion (MALF) algorithm that uses

multiple atlases as teaching files to accurately parcellate neonatal

brains (Tang et al., 2014; Otsuka et al., 2019). MALF algorithm,

once validated, is expected to improve the accuracy of image

parcellation and enable fully automated DTI quantification

suitable for clinical applications. Fifth, a substantial number of

patients in the original study cohort did not undergo brain MRI

scans during their NICU admission. Because our study included
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only neonates who had MRI scans, there may be a patient

selection bias based on indications or contraindications for brain

MRI scans. The cohort in this study had relatively mild Sarnat

scores, which may have excluded HIE neonates with unstable

clinical conditions that precluded them from undergoing MRI

scans. Finally, although our cohort size was larger than previous

studies using DTI in neonates, the number of participants was

still small, considering the number of regions analyzed in a

whole-brain approach. Larger cohorts may allow for more stable

modeling with less prediction error and may identify more areas

associated with disease severity.

Summary

Using an unbiased composite quantitative imaging measure

across whole-brain structures, we developed the cDTI score,

a novel severity measurement correlating with short-term

neurological status inHIE patients who undergo TH. Limbic and

frontotemporal regions and corticospinal projection fibers were

identified as a lesion associated with short-term neurological

functions. The relationship between the cDTI score and

serum biomarkers suggested that the cDTI score reflects

the inflammatory response prior to TH and the neuronal

damage observed after TH. Larger studies that include more

patients with moderate-to-severe HIE are needed to validate

the cDTI score and assess how it can be implemented in

clinical practice.
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Introduction: Infants with prenatal opioid exposure (POE) are shown to be

at risk for poor long-term neurobehavioral and cognitive outcomes. Early

detection of brain developmental alterations on neuroimaging could help

in understanding the effect of opioids on the developing brain. Recent

studies have shown altered brain functional network connectivity through

the application of graph theoretical modeling, in infants with POE. In this

study, we assess global brain structural connectivity through diffusion tensor

imaging (DTI) metrics and apply graph theoretical modeling to brain structural

connectivity in infants with POE.

Methods: In this prospective observational study in infants with POE and

control infants, brain MRI including DTI was performed before completion

of 3 months corrected postmenstrual age. Tractography was performed

on the whole brain using a deterministic fiber tracking algorithm. Pairwise

connectivity and network measure were calculated based on fiber count

and fractional anisotropy (FA) values. Graph theoretical metrics were

also derived.

Results: There were 11 POE and 18 unexposed infants included in the

analysis. Pairwise connectivity based on fiber count showed alterations in 32

connections. Pairwise connectivity based on FA values showed alterations in

24 connections. Connections between the right superior frontal gyrus and

right paracentral lobule and between the right superior occipital gyrus and

right fusiform gyrus were significantly different after adjusting for multiple

comparisons between POE infants and unexposed controls. Additionally,

alterations in graph theoretical network metrics were identified with fiber

count and FA value derived tracts.

Frontiers in Neuroscience 01 frontiersin.org

6970

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.952322
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.952322&domain=pdf&date_stamp=2022-09-16
https://doi.org/10.3389/fnins.2022.952322
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.952322/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-952322 September 12, 2022 Time: 14:22 # 2

Vishnubhotla et al. 10.3389/fnins.2022.952322

Conclusion: Comparisons show significant differences in fiber count in two

structural connections. The long-term clinical outcomes related to these

findings may be assessed in longitudinal follow-up studies.

KEYWORDS

NOWS, DTI, diffusion tensor imaging, brain development, prenatal opioid exposure,
brain networks, opioid use disorder, structural connectivity

Introduction

Over 6% of pregnant women in the US indicate antepartum
opioid use (Ko et al., 2020). From 1999 to 2014, opioid use
in pregnant women increased more than 4-fold, (Haight et al.,
2018) with consequent increase in incidence of infants born
with prenatal opioid exposure (POE). Up to 94% of infants
with POE develop drug withdrawal symptoms called neonatal
opioid withdrawal syndrome (NOWS) (Khan, 2020). From 2004
to 2014, documented cases of NOWS rose 5-fold and NOWS
management associated Medicaid costs rose from $65 million to
$462 million, a greater than 7-fold increase (Winkelman et al.,
2018).

Risks associated with POE go beyond signs and symptoms
of NOWS. Children with POE are at a higher risk of adverse
neurodevelopmental and neurobehavioral outcomes, such as
learning and attention problems (Levine and Woodward, 2018),
educational delay (Lee et al., 2019), and lower cognitive and
motor scores than unexposed children (Yeoh et al., 2019). In
addition, children with POE are at a higher risk for development
of attention deficit hyperactive disorder (ADHD) (Azuine et al.,
2019; Schwartz et al., 2021) and autism spectrum disorder
(Rubenstein et al., 2019).

Older children and adolescents with a history of POE
may have long-term alterations in brain development (Sirnes
et al., 2017) compared to unexposed controls, including reduced
basal ganglia, thalamus, and cerebellar white matter volumes
(Walhovd et al., 2007; Yuan et al., 2014), reduced regional
cortical thickness (Nygaard et al., 2018), and alterations in
hippocampal volumes (Riggins et al., 2012; Robey et al., 2014).
However, some of these alterations, such as cortical thickness,
are not consistently identified in all studies (Walhovd et al.,
2015; Sirnes et al., 2017) or the changes were negated by
early childhood environment, Riggins et al. (2012) suggesting
that perinatal and postnatal factors could potentially influence
neuroplasticity in the developing pediatric brain. Older
children and adolescents with POE also showed white matter

Abbreviations: R, right; L, left; POE, prenatal opioid exposure; NOWS,
neonatal opioid withdrawal syndrome; ROI, region of interest; MRI,
magnetic resonance imaging; DTI, diffusion tensor imaging; ADHD,
attention deficit hyperactivity disorder.

microstructural alterations (Soares et al., 2013) alterations
such as decreased fractional anisotropy (FA) (Walhovd et al.,
2010) on diffusion tensor imaging (DTI), and alterations
in working memory networks on functional MRI (fMRI)
(Sirnes et al., 2018), all of which correlated with cognitive
outcomes.

Recent studies have focused on early detection of evidence
related to the impact of prenatal opioids on fetal and infant brain
development. For example, fetal brains with POE demonstrated
differences in brain morphometry (Radhakrishnan et al., 2022a)
compared to unexposed controls based on fetal MRI. Alterations
in functional network connectivity on resting state functional
MRI (rs-fMRI) have also been described in infants with POE
compared to controls using both seed-based and connectome-
based approaches (Radhakrishnan et al., 2020, 2022b,c; Merhar
et al., 2021; Liu et al., 2022). In a few small DTI studies, white
matter microstructural alterations in infants with POE and
substance exposure have been reported with voxel-wise analysis
(Walhovd et al., 2012; Monnelly et al., 2018; Warton et al., 2018).
In our study, we attempt to use a connectome-based approach to
understand tract-based microstructural alterations in prenatal
opioid exposure.

Brain connectivity is based on anatomical links (structural
connectivity) and statistical dependencies (functional
connectivity) (Rubinov and Sporns, 2010). It has been
effectivity utilized to assess infant (Wen X. et al., 2019;
Zhao et al., 2019) and even fetal brains (Turk et al., 2019).
In infants, DTI has been used as a marker of white matter
integrity and maturation in addition to POE, is shown to
be altered in several conditions such as prematurity (Rose
et al., 2014; Li et al., 2015; Pannek et al., 2018) and perinatal
brain injury (Merhar et al., 2016; Kline-Fath et al., 2018). On
rs-fMRI studies, the developing neonatal and infant brain
shows increasing complexity in connectomes when assessed
using graph theoretical models, with disruptions in network
connectivity shown to be associated with perinatal brain
insults (Zhao et al., 2019). Graph theory analysis involves
studying relationships/connections mathematically utilizing
systems composed of nodes and edges (connections between
nodes). While the first paper involving graph theoretical
analysis was first published in the 1736 by Swiss mathematician
Leonhard Euler (Biggs et al., 1986), graph theory metrics
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have been applied in neuroimaging to understand networks
in the human brain (Bassett and Bullmore, 2009; Bullmore
and Sporns, 2009; Mears and Pollard, 2016; Sporns, 2018;
Lee et al., 2020).

The direct effects of opioids on the developing brain are
mainly through the opioid receptors which are expressed in
variable concentrations in different regions of the developing
brain as revealed in animal studies (Zhu et al., 1998).
Opioid receptors are expressed on oligodendrocytes and
their precursors as well as developing neurons. Specifically,
these animal studies suggest that opioids impair regional
brain myelination, probably through accelerated apoptosis
of oligodendrocytes and microglial activation (Oberoi et al.,
2019; Gibson et al., 2022). Studies also reveal increases in
myelinated axons with compacted myelin sheaths (Vestal-
Laborde et al., 2014) in prenatal methadone exposed rats,
and dose dependent decreased number of myelinated axons
and increased percentage of larger diameter axons with
thinner myelin sheaths in prenatal buprenorphine exposed
rats, with some of these changes being dose dependent
(Sanchez et al., 2008). In addition, prenatal morphine
exposure in rats have shown to be associated with regional
decreases in neuronal dendritic length and branching (Mei
et al., 2009). More recently, POE has been linked to
increased neuroinflammation, reduced myelin basic protein,
lower fractional anisotropy, and deficits in learning and
executive control (Jantzie et al., 2020). These studies suggest
an impact of prenatal opioid exposure on white matter
developmental integrity that could be evaluated in the infant
brain using DTI metrics. We therefore used a connectomics
approach to assess microstructural brain development in
infants with POE compared to control non-opioid exposed
controls.

Materials and methods

Subject recruitment

Subject recruitment was performed similarly to previous
studies (Radhakrishnan et al., 2022b,c). This prospective
study was performed at Indiana University Health with
approval by the Indiana University Institutional Review
Board. We recruited infants with prenatal opioid exposure
as well as control infants without prenatal opioid exposure
at less than 3 months corrected postmenstrual age. Eligible
participants were screened from medical records. Infants
with major genetic or congenital anomalies, or significant
postnatal abnormalities such as birth asphyxia or neonatal
sepsis were excluded. Information regarding maternal and
infant demographics, maternal opioid use, infant birth and
postnatal details including any treatment for neonatal opioid
withdrawal syndrome were collected from medical records

and maternal self-report questionnaires. Written informed
consent was obtained from at least one parent for all minor
participants.

Diffusion tensor imaging acquisition

MRI data were acquired on a single Siemens Prisma
3T scanner with a 64-channel RF receiver head/neck
coil. All participants underwent T1-weighted imaging
and diffusion MRI. T1-weighted anatomical imaging
used a 3-dimensional magnetization rapid gradient echo
(MPRAGE) with 1 mm × 1 mm × 1mm resolution.
The diffusion MRI protocol employed a single-shot spin-
echo echo-planar imaging (SS-SE-EPI) sequence with two
diffusion-encoding schemes. One used a hybrid diffusion
imaging (HYDI)-encoding scheme that contained three
zero diffusion-weighting (i.e., b-value = 0 s/mm2) and
multiple concentric diffusion-weighting shells (b-values = 5,
495, 500, 505, 795, 800, 805, 1590, 1595, 1600, 1605, 1610,
2590, 2595, 2600, 2605, and 2610 s/mm2) for a total of 141
diffusion-weighting gradient directions (Wu and Alexander,
2007; Wen Q. et al., 2019). The second scheme used a
single shell diffusion imaging with 64 diffusion directions
at b-value = 1000 s/mm2. The resolution was matched
in both schemes, with a field of view of 160 × 160 mm,
66 slices, and a slice thickness of 1.5 mm, yielding 1.5-
mm isotropic voxels. An additional b = 0 s/mm2 with
reversed-phase encoding was acquired for geometric distortion
correction.

Preprocessing

Initial preprocessing of the MR images for each subject
was performed using the FMRIB (for Functional MRI of
the Brain) software Library (FSL, Oxford, UK) (Woolrich
et al., 2009). Fieldmap and gradient-non-linearity distortion
corrections were performed using FSL-topup (Smith et al.,
2004). Eddy current-induced disruptions and subject motion
were corrected using FSL-eddy (Andersson and Sotiropoulos,
2016). Samples were inspected for quality and those with
deformations or greater than 20% loss were excluded. The
b-tables were imported and corrected using DSI Studio1 using
a population average template (Yeh et al., 2018). Diffusion
data was reconstructed in the MNI space using q-space
diffeomorphic reconstruction (QSDR) (Yeh and Tseng, 2011)
and aligned with the software neonatal template. We note that
for the HYDI-encoding scheme, only the b-values between 505
and 800 s/mm2 were included in the subsequent tractography
analysis.

1 http://dsi-studio.labsolver.org
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Tractography

Tractography was performed on the whole brain with DSI
Studio using a deterministic fiber tracking algorithm (Yeh et al.,
2013) with a diffusion sampling ratio of 1.25. Ten million tracts
were calculated for each subject. Quantitative anisotropy (qa)
threshold values were determined based visual inspection to
maximize number of tracts while minimizing spurious fibers.
The quantitative anisotropy threshold was set at 0.05 and
0.03 for DTI and HYDI samples, respectively. The angular
threshold was set at 45 degrees and the step size was 0.75 mm.
Track lengths shorter than 10 mm or longer than 150 mm
were discarded. ICBM template (Fonov et al., 2009, 2011) was
registered to subject space through non-linear transformation.
Brain parcelation regions were based on the AAL2 atlas (Rolls
et al., 2015). Connectivity matrices and graph network measures
were calculated in DSI Studio based on fiber count and fractional
anisotropy (FA) values.

Pairwise connectivity analysis

Connectivity matrices with 120 regions of interest (ROIs)
were collected for each subject based on fiber count and
FA values. Regions involving the cerebellum and vermis
were excluded, leaving 94 ROIs for the analysis. Region
pairs with zero values in over 50% of the samples were
removed from the analysis ending up with 644 pairs of
fiber count and 652 pairs of FA values. Linear regression
models were fitted for each pair to compare between POE
and control groups with infant sex, postmenstrual age (PMA)
at time of MRI, and DTI scan sequence as the covariates.
Multiplicity was corrected following the Benjamini-Hochberg
procedure to control for the false discovery rate (Benjamini
and Hochberg, 1995). A p-value of <0.05 was considered
significant.

Network measures

Network measures for fiber count and FA values were
collected for each subject within DSI Studio using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010).
Evaluated network measures include network density, global
clustering coefficients, local clustering coefficients, average
path length, global efficiency, local efficiency, eccentricity, rich
club coefficients, node degree, node strength, betweenness
centrality, eigenvector centrality, and pagerank centrality.
Network measures were based on weighted values. The same
type of analysis as in the pairwise connectivity analysis was
conducted with the network measures as the outcome. Multiple

TABLE 1 Demographic information of subjects.

POE Control p-value

Subject number 11 18

Males 5 9 1

Gestational age (weeks) (SD) 37.71 (2.77) 39.59 (0.8) 0.051

Postmenstrual age at MRI
(weeks) (SD)

43.42 (3.28) 44.37 (1.86) 0.4

Birth weight (kg) (SD) 2.715 (0.52) 3.386 (0.4) 0.002

Birth head circumference
(cm) (SD)

33.16 (2.0) 34.39 (1.04) 0.083

Maternal age (years) (SD) 28.73 (3.56) 28.39 (4.27) 0.82

NOWS 3 NA NA

Postnatal opioid treatment 2 NA NA

Maternal depression 5 2 0.071

Maternal hepatitis 2 0 0.14

Maternal college degree 0 6 0.058

Maternal buprenorphine 10 NA NA

Maternal methadone 1 NA NA

Maternal other opioids 3 NA NA

Maternal non-opioids 5 NA NA

Maternal smoking 6 1 0.006

P-values were calculated using Fisher’s exact test or unpaired t-test as appropriate.

testing correction was also performed following the Benjamini-
Hochberg procedure. A p-value of <0.05 was considered
significant.

Results

Demographics

There were 37 subjects with DTI available and 8 infants
were excluded due to poor DTI quality. Therefore, 29 infants
were included in this study including 11 POE and 18 unexposed
infants. Of these, 2 POE and 4 unexposed subjects were
imaged using the HYDI protocol. The POE group demonstrated
significantly lower birth weight than controls although mean
birth weight for both groups was still within range of normal.
There were no significant differences in gestational age at birth,
postmenstrual age at time of MRI, or birth head circumference.
There were differences in education levels as 6 of 18 mothers
of unexposed infants had a college degree while none of the 11
mothers with POE infants were college graduates. Within the
control group, there were no statistically significant differences
in birth weight or birth head circumference in infants born to
mothers with or without a college degree.

Mothers of the POE infant group received treatment
with 10 receiving buprenorphine and 1 receiving methadone.
Of the mothers with POE infants, 3 indicated use of
opioids including heroin and 5 indicated use of other non-
opioid substances including methamphetamines, marijuana,
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and cocaine. Demographic information for the 29 infants is
shown in Table 1.

Pairwise connectivity based on fiber
count

Connectivity based on fiber count between multiple ROIs
were significantly altered in POE infants compared to opioid
naïve controls. Connections between the right superior frontal
gyrus and right paracentral lobule and between the right
superior occipital gyrus and right fusiform gyrus showed
significance considering uncorrected p-values as well as p-FDR
values (Figure 1). There were 30 other connections which
were significant when considering uncorrected p-values but
did not maintain significance when correcting for multiple
comparisons. Diagram of connections based on fiber count is
shown in Figure 2. Data is summarized in Table 2.

Pairwise connectivity based on
fractional anisotropy

Connectivity based on FA between multiple ROIs were
altered in POE infants compared to opioid naïve controls.
Prior to multiple correction, there were 24 connections which
were significant when considering uncorrected p-values, but
none of these retained significance after correcting for multiple
comparisons. Diagram of connections based on FA values is
shown in Figure 3. Data is summarized in Table 3.

Network measures based on fiber
count

Based on fiber count, there were 15 network metrics which
were significantly altered in POE infants compared to opioid
naïve controls when considering uncorrected p-values. None of
the networks maintained statistical significance when correcting
for multiple comparisons. Data is summarized in Table 4.

Network measures based on fractional
anisotropy

Based on FA values, there were 22 networks which were
significantly altered in POE infants compared to opioid naïve
controls when considering uncorrected p-values. None of the
networks maintained statistical significance when correcting for
multiple comparisons. Data is summarized in Table 5.

Discussion

Our study is one of the first to show alterations in
structural ROI-to-ROI pairwise connectivity and structural
network measures in infants with POE compared to non-opioid
exposed control infants. In infants with POE, there were greater
number of fiber tracks between the right superior frontal gyrus
and the right paracentral lobule and fewer fiber tracks between
the right superior occipital gyrus and right fusiform gyrus when
compared to control infants. We also identified several other
regional alterations in graph network metrics in infants with

FIGURE 1

(A) There was greater structural connectivity between the right superior frontal gyrus and right paracentral lobule in POE infants. (B) There was
greater structural connectivity between right superior occipital gyrus and right fusiform gyrus in unexposed infants.
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TABLE 2 Connectivity values between POE and opioid naïve infants based on fiber count.

ROI 1 ROI 2 POE vs. Cont. (SE) t-stat p-value p-corr

Superior Frontal - R Paracentral Lobule - R 52.80 (6.02) 8.77 4.60E−07 2.96E−04

Superior Occipital - R Fusiform - R −28.81 (4.08) −7.06 8.53E−06 0.003

Parahippocampal – R Middle Temporal - R 79.13 (19.38) 4.08 5.33E−04 0.092

Fusiform - R Middle Temporal - R 83.61 (21.06) 3.97 5.68E−04 0.092

Caudate - R Pallidum - R 54.85 (14.13) 3.88 7.12E−04 0.092

Superior Parietal - R Precuneus - L 63.83 (17.53) 3.64 0.003 0.263

Olfactory - R Parahippocampal – R 37.22 (10.79) 3.45 0.003 0.263

Fusiform - R Precuneus - R −43.12 (12.16) −3.55 0.005 0.427

Superior Frontal - L Lateral OFC - L 35.05 (10.5) 3.34 0.007 0.453

Precuneus - R Middle Temporal - R 53.15 (17.2) 3.09 0.007 0.453

Superior Temporal - R Middle Temporal Pole - R 18.97421 2.79 0.012 0.631

Cuneus - R Superior Parietal - R 51.08212 2.74 0.012 0.631

Cuneus - R Middle Occipital - R 52.65 (19.63) 2.68 0.013 0.631

Hippocampus - R Putamen - R 33.87 (12.69) 2.67 0.014 0.631

Hippocampus - R Middle Temporal - R 82.98 (31.96) 2.60 0.016 0.677

Middle Cingulate - R Posterior Cingulate - L 34.47 (13.27) 2.60 0.017 0.677

Inferior Frontal (Oper) - L Rolandic Operculum - L −31.07 (12.32) −2.52 0.019 0.709

Precentral - R Middle Cingulate - R 47.57 (19.07) 2.49 0.021 0.750

Rectus - R Amygdala - R 27.67 (10.54) 2.63 0.024 0.750

Insula - R Parahippocampal - R 30.89 (12.37) 2.50 0.024 0.750

Hippocampus - R Superior Temporal - R 46.81 (19.26) 2.43 0.025 0.750

Middle Frontal - R Anterior Cingulate - R −51.87 (21.32) −2.43 0.026 0.750

Inferior Parietal - R Supramarginal - R 30.14 (12.98) 2.32 0.029 0.814

Superior Frontal 2 - L Insula - L 71.08 (30.49) 2.33 0.032 0.847

Insula - L Middle Temporal - L 45.74 (20.46) 2.24 0.036 0.901

Rectus - L Putamen - L 26.11 (11.69) 2.23 0.038 0.901

Inferior Frontal (Tri) - L Rolandic Operculum - L −35.88 (15.84) −2.26 0.038 0.901

Calcarine - R Angular - R 28.17 (12.69) 2.22 0.042 0.931

Lingual - L Lingual - R 66.69 (30.76) 2.17 0.048 0.931

Insula - R Amygdala - R 35.53 (16.73) 2.12 0.049 0.931

Middle Frontal - L Lateral OFC - L 26.36 (12.47) 2.11 0.049 0.931

Superior Occipital - R Precuneus - R −52.34 (25.25) −2.07 0.049 0.931

POE; however, these did not maintain statistical significance
after multiple corrections.

A few small studies have investigated brain diffusion metrics
in infants with prenatal opioid exposure (Walhovd et al., 2012;
Monnelly et al., 2018; Peterson et al., 2020). Using tract based
spatial statistics, Monnelly et al. showed decreased fractional
anisotropy in the internal capsule and inferior longitudinal
fasciculus in prenatal methadone exposed infants compared
to controls (Monnelly et al., 2018). Using similar methods,
Walhovd et al. identified higher mean diffusivity (MD) in
the superior longitudinal fasciculus in methadone exposed
infants compared to control infants (Walhovd et al., 2012).
Interestingly, another recent study showed higher FA values
and reduced apparent diffusion coefficient (ADC) values in
the frontal and parietal white matter in infants with prenatal
methadone or heroin exposure (Peterson et al., 2020). In

our current study, we used graph theoretical modeling to
better understand global brain structural connectivity. The
apparent differences in direction of FA values on prior studies
is somewhat explained by our study, where we identified both
stronger and weaker ROI-to-ROI connectivity based on FA
strength in different brain region pairs in infants with POE
compared to controls. We hypothesize therefore that there may
be regional alterations in myelin and axonal microstructure
that could be responsible for these results. Opioids likely exert
their effects on the brain mainly through the opioid receptors
and animal studies show differential opioid receptor expression
in the developing fetal brain (Zhu et al., 1998). Opioid
receptors are expressed on neurons and oligodendrocytes and
their precursors, and are responsible for neuronal and glial
development, and prenatal exposure to exogenous opioids
may hence result in regional variations in degree of neuronal
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FIGURE 2

Structural connectivity between regions of interest based on fiber count. Red bands indicate a greater connectivity in the POE group while blue
bands indicate greater connectivity in the control group. Band thickness is determined by the t-stat value.

apoptosis and myelination in the fetal and infant brain (Vestal-
Laborde et al., 2014; Velasco et al., 2021).

We identified significantly higher FA based fiber tracts
in the right superior frontal gyrus to the right paracentral
lobule. The superior frontal gyrus has been associated with
response inhibition and motor urgency (Hu et al., 2016), while
the paracentral lobule is responsible for motor and sensory
functions of the lower limbs (Johns, 2014). Cortical thickness
in the right superior frontal gyrus and other areas of the
right prefrontal cortex (Almeida et al., 2010) are also shown
to be reduced in children and adults with attention deficit

hyperactivity disorder (ADHD). Considering that those with
POE are more likely to develop ADHD (Azuine et al., 2019;
Schwartz et al., 2021), assessing structural connectivity of the
superior frontal gyrus may be an important prognostic marker
for developmental disorders such as ADHD.

We also identified a significant lower FA based fiber count
between the right superior occipital gyrus and the right fusiform
gyrus in infants with POE compared to controls. Both these
regions correspond to visual processing and object and facial
recognition (Weiner and Zilles, 2016). Our results are in keeping
with other studies have also indicated visual deficits in children
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FIGURE 3

Structural connectivity between regions of interest based on FA values. Red bands indicate a greater connectivity in the POE group while blue
bands indicate greater connectivity in the control group. Band thickness is determined by the t-stat value.

with POE (McGlone and Mactier, 2015; Maguire et al., 2016;
Andersen et al., 2020). Children with POE have shown to have
vision impairments compared to prenatally unexposed children
(Andersen et al., 2020). Additionally, these children have been
linked to poorer visual motor skills (Melinder et al., 2013;
Sundelin-Wahlsten and Sarman, 2013).

Structural changes in brain functional connectivity have
also been shown in infants with POE. Recent work showed
alterations in amygdala and thalamocortical functional
connectivity in infants with POE compared to controls

(Radhakrishnan et al., 2020, 2022b). In addition, recent studies
have also applied graph theoretical methods to understand
further the brain functional connectivity alterations in POE
and their associations with maternal comorbidities and clinical
outcomes (Merhar et al., 2021; Radhakrishnan et al., 2022c). Due
to differences in brain segmentation atlases, ROI selections and
network connectivity analyses methods used in these prior rs-
fMRI studies compared to our current DTI study, intermediary
causal relationship of microstructural to functional network
alterations is difficult to surmise. Since structural deficits often
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TABLE 3 Connectivity values between POE and opioid naïve infants based on fractional anisotropy (FA).

ROI 1 ROI 2 POE vs. Cont. (SE) t-stat p-value p-corr

Superior Frontal – L Insula - L 0.041 (0.011) 3.78 0.001 0.47

Olfactory – L Hippocampus – L −0.044 (0.011) −3.96 0.001 0.47

Putamen – R Heschl’s- R 0.044 (0.013) 3.46 0.003 0.65

Middle Cingulate – L Inferior Parietal - L −0.026 (0.008) −3.31 0.006 0.98

Medial OFC – L Insula - L 0.04 (0.013) 3.07 0.010 0.98

Insula - R Caudate - R −0.041 (0.015) -2.66 0.014 0.98

Inferior Frontal (Oper) – L Superior Temporal - L 0.059 (0.021) 2.76 0.016 0.98

Medial OFC - L Putamen - L 0.029 (0.01) 2.83 0.016 0.98

Fusiform - R Superior Temporal Pole - R 0.036 (0.014) 2.62 0.021 0.98

Posterior Cingulate - R Thalamus - R 0.082 (0.033) 2.50 0.023 0.98

Hippocampus - R Precuneus - R 0.034 (0.014) 2.42 0.024 0.98

Inferior Frontal (Orb) – R Caudate - R 0.032 (0.013) 2.42 0.029 0.98

Caudate – L Thalamus - R 0.065 (0.027) 2.42 0.034 0.98

Middle Temporal_Pole - L Inferior Temporal - L 0.018 (0.008) 2.28 0.034 0.98

Precentral - R Caudate - R 0.038 (0.015) 2.45 0.034 0.98

Amygdala - L Middle Temporal - L 0.031 (0.013) 2.33 0.035 0.98

Rectus - R Anterior Cingulate - L −0.071 (0.03) −2.34 0.036 0.98

Caudate - R Palladium - R 0.032 (0.015) 2.18 0.039 0.98

Olfactory - R Superior Temporal Pole - R −0.03 (0.013) −2.24 0.039 0.98

Superior Frontal – L Putamen - L 0.023 (0.011) 2.18 0.044 0.98

Posterior Cingulate - L Lingual - L 0.043 (0.02) 2.15 0.046 0.98

Superior Temporal - L Superior Temporal Pole - L 0.023 (0.011) 2.10 0.046 0.98

Inferior Occipital - L Inferior Temporal - L −0.021 (0.01) −2.11 0.046 0.98

Posterior Cingulate - R Hippocampus - R 0.05 (0.024) 2.06 0.050 0.98

TABLE 4 Network measures between POE and opioid naïve infants based on fiber count.

Network Measure POE vs. Cont. (SE) t-stat p-value p-corr

Betweenness centrality

Transverse Temporal – L 10.52 (4.98) 2.11 0.045 0.694

Inferior Parietal – L 43.3 (19.65) 2.20 0.037 0.694

Supp. Motor – R −44.66 (20.68) −2.16 0.041 0.694

Thalamus – L 357.25 (121.32) 2.94 0.007 0.665

Cluster coefficient

Caudate – R 0.005 (0.002) 2.43 0.023 0.691

Middle Cingulate – R 0.007 (0.002) 3.44 0.002 0.201

Hippocampus – R 0.01 (0.004) 2.43 0.023 0.691

Inferior Parietal – L −0.013 (0.006) −2.21 0.037 0.691

Middle Temporal – R 0.009 (0.004) 2.26 0.033 0.691

Eigenvector centrality

Precentral – R −0.025 (0.012) −2.12 0.045 0.997

Local efficiency

Caudate – R 0.009 (0.004) 2.43 0.023 0.724

Middle Cingulate – R 0.011 (0.004) 2.68 0.013 0.724

Hippocampus – R 0.018 (0.007) 2.58 0.016 0.724

Inferior Parietal – L −0.019 (0.009) −2.27 0.032 0.764

Pagerank centrality

Precentral – R −0.002 (0.001) −2.48 0.020 0.771
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TABLE 5 Network measures between POE and opioid naïve infants based on fractional anisotropy (FA).

Network Measure POE vs. Cont. (SE) t-stat p-value p-corr

Betweenness centrality

Cuneus – R 93.3 (27.95) 3.34 0.003 0.086

Hippocampus – L −194.23 (81.31) −2.39 0.025 0.273

Hippocampus – R −118.81 (42.54) −2.79 0.010 0.19

Lateral OFC – L −1.58 (0.74) −2.13 0.043 0.369

Medial OFC – R 36.38 (15.59) 2.33 0.028 0.273

Inferior Parietal – L 65.37 (18.97) 3.45 0.002 0.086

Rectus – L 205.45 (75.78) 2.71 0.012 0.191

Rectus – R 168.55 (47.09) 3.58 0.002 0.086

Supp. Motor – R −70.59 (29.11) −2.43 0.023 0.273

Supramarginal – ‘R 47.63 (20.51) 2.32 0.029 0.273

Thalamus – R −153.34 (54.79) −2.80 0.010 0.19

Cluster coefficient

Middle Occipital – L −0.033 (0.014) −2.28 0.032 0.925

Rectus – R −0.042 (0.019) −2.22 0.036 0.925

Supp. Motor – L −0.027 (0.013) −2.13 0.044 0.925

Thalamus – L −0.04 (0.018) −2.24 0.034 0.925

Local efficiency

Middle Occipital – R −0.048 (0.022) −2.16 0.041 0.853

Paracentral Lobule – R −0.052 (0.02) −2.54 0.018 0.853

Pagerank centrality

Middle Occipital – R −0.001 (0.0006) −2.08 0.049 0.761

Medial OFC – L 0.001 (0.0006) 2.22 0.036 0.761

Precuneus – L −0.002 (0.0007) −2.47 0.021 0.761

Supp. Motor – R −0.002 (0.0006) −3.15 0.004 0.408

Inferior Temporal – L 0.001 (0.0005) 2.12 0.044 0.761

underlie functional impairments, we may presume some degree
of overlap in regional structural and functional connectivity.
However, prenatal opioid exposure is known impact myelin,
axonal and neuronal integrity based on the distribution of
opioid receptors, and there may also be isolated effects of
opioids on these structures. Brain morphometry, DTI and fMRI
network studies may therefore be considered complementary in
assessing the overall impact of opioids on the developing brain.

Several mothers in our study indicated use of substances
such as methamphetamines, marijuana, cocaine, and tobacco.
Prenatal exposure to some of these substances also show
disruptions in the structural connectome. For example, neonates
with prenatal methamphetamine exposure (PME) show lower
FA values than unexposed infants in several connections
between the striatum and midbrain, orbitofrontal cortex and
associated limbic structures, all components of the striato-
thalamo-orbitofrontal circuit and its limbic connections, which
may be responsible for drug addiction related neurocircuitry
(Warton et al., 2018, 2020). Detrimental effects due to prenatal
substance exposure may linger as older children with PME
demonstrated lower FA in the frontal and limbic regions and
greater mean, radial, and axial diffusivities (Roos et al., 2015)

as well as lower apparent diffusivity coefficients (Cloak et al.,
2009). These early brain microstructural alterations noted
on diffusion imaging in prenatal cocaine, marijuana and
methadone or heroin exposure may also serve as predictors
of 12 month behavioral and language outcomes (Peterson
et al., 2020). Similarly, infants with prenatal alcohol exposure
also showed altered FA values and reduced white matter
microstructural integrity (Donald et al., 2015), and these early
brain microstructural disruptions may persist until later life
(Wozniak et al., 2009; Moore and Xia, 2021; Roos et al., 2021;
Stephen et al., 2021).

Given the long-term developmental issues associated with
prenatal substance exposure, especially in the realm of mental
processing, impulse control, and executive functions (Wozniak
and Muetzel, 2011), identification of early brain developmental
microstructural alterations with DTI may offer a mechanistic
understanding and be a predictive biomarker for these future
outcomes. However, more work needs to be done to further
our understanding on how the brain structural connectome may
correlate with developmental outcomes.

This study had a few limitations. First, this study was
restricted by the number of subjects that were evaluated.
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While 37 infants were imaged, only 29 studies were able
to be used for analysis due to poor image quality, mostly
due to motion artifact. Since diffusion imaging has a low
signal to noise ratio, it is particularly susceptible to motion
artifacts (Farrell et al., 2007). Infants pose a particular challenge
as they cannot follow instructions. While imaging of neonates
in this study was conducted during sleep, head motion was
still a noticeable issue. Two different diffusion techniques were
used, however we had infants with POE and control subjects
that were scanned with both these techniques, and DTI scan
technique was used in the regression model to account for
scan related issues. Polysubstance use was not controlled for
in this study due to limited prevalence of individuals with
single substance use. Polysubstance use (e.g., SSRIs, nicotine,
benzodiazepines, etc.) is known to affect opioid metabolism
and development of NOWS (Patrick et al., 2015) and may
impact brain development. Future larger studies would be
better powered to understand these associations. Maternal
comorbidities (e.g., stress, depression, socioeconomic, genetic)
were not included in this small sample study. We and other
researchers have shown the effects of maternal comorbidities on
infant brain functional connectivity, and we hope that future
studies would be able to assess this impact. Nevertheless, our
study has shown novel findings in graph theoretical networks
of brain structural connectivity in POE that adds to the existing
limited knowledge in this field. Future longitudinal studies
can also help understand the clinical outcomes associated
with brain microstructural alterations in prenatal substance
exposure.

Conclusion

Children with prenatal opioid exposure may be at greater
risk to have a developmental disorder. Assessing structural
connectivity could have important prognostic value for these
conditions. This study identified two structural connections
where tract counts were significantly different in POE
infants compared to unexposed infants. These microstructural
alterations may be positive or negative based on brain
region and may reflect differences in development and
opioid related impact. Future longitudinal studies with larger
sample sizes would help understand how these preliminary
results of altered structural connectivity relate to long-
term developmental implications in children with prenatal
substance exposure.
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University, London, ON, Canada, 8Department of Anatomy and Cell Biology, Schulich School
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Background: Volumetric measurements of fetal brain maturation in the

third trimester of pregnancy are key predictors of developmental outcomes.

Improved understanding of fetal brain development trajectories may aid

in identifying and clinically managing at-risk fetuses. Currently, fetal

brain structures in magnetic resonance images (MRI) are often manually

segmented, which requires both time and expertise. To facilitate the targeting

and measurement of brain structures in the fetus, we compared the results of

five segmentation methods applied to fetal brain MRI data to gold-standard

manual tracings.

Methods: Adult women with singleton pregnancies (n = 21), of whom

five were scanned twice, approximately 3 weeks apart, were recruited [26

total datasets, median gestational age (GA) = 34.8, IQR = 30.9–36.6]. T2-

weighted single-shot fast spin echo images of the fetal brain were acquired

on 1.5T and 3T MRI scanners. Images were first combined into a single 3D

anatomical volume. Next, a trained tracer manually segmented the thalamus,

cerebellum, and total cerebral volumes. The manual segmentations were

compared with five automatic methods of segmentation available within

Advanced Normalization Tools (ANTs) and FMRIB’s Linear Image Registration

Tool (FLIRT) toolboxes. The manual and automatic labels were compared

using Dice similarity coefficients (DSCs). The DSC values were compared using

Friedman’s test for repeated measures.

Results: Comparing cerebellum and thalamus masks against the manually

segmented masks, the median DSC values for ANTs and FLIRT were 0.72

[interquartile range (IQR) = 0.6–0.8] and 0.54 (IQR = 0.4–0.6), respectively.

A Friedman’s test indicated that the ANTs registration methods, primarily

nonlinear methods, performed better than FLIRT (p < 0.001).
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Conclusion: Deformable registration methods provided the most accurate

results relative to manual segmentation. Overall, this semi-automatic

subcortical segmentation method provides reliable performance to segment

subcortical volumes in fetal MR images. This method reduces the costs of

manual segmentation, facilitating the measurement of typical and atypical

fetal brain development.

KEYWORDS

fetal, MRI, brain, linear registration, nonlinear registration, volumetric reconstruction

Introduction

Magnetic resonance imaging (MRI) of the fetal brain for
clinical purposes has advanced considerably in recent years due
to its application in assessing atypical brain development and
brain injury and its potential utility in predicting functional
outcomes in high-risk fetuses (Banović et al., 2014; Brossard-
Racine et al., 2014, 2019; Cesaretti et al., 2016; Andescavage
et al., 2017). Additionally, research-based MRI studies of typical
fetal brain development have provided important normative
data for subsequent comparison with clinical populations (De
Asis-Cruz et al., 2021). MRI methods for the characterization of
fetal brain abnormalities are of key clinical relevance due to the
high incidence of central nervous system malformations (i.e.,
anencephaly, ventriculomegaly, schizencephaly, and callosal
agenesis) in as many as 1/1,000 fetuses (Werner et al., 2018).
In particular, detection of delayed brain growth offers new
opportunities to identify objective biomarkers that can facilitate
a better understanding of fetal brain development, improved
management of high-risk pregnancies (Rutherford et al., 2008;
Cesaretti et al., 2016; Knezović et al., 2019; Wu et al., 2020),
and potentially early detection of neurodevelopmental outcome
(Banović et al., 2014; Bonnet-Brilhault et al., 2018). Additionally,
longitudinal studies point to fetal brain abnormalities as an
important contributor to later life neurodevelopmental and
psychiatric disorders (Thomason, 2020). Better understanding
of typical fetal brain developmental trajectories may aid in
predicting functional outcomes.

Quantitative measurements of the fetal brain and subcortical
volumes can support characterizing normal brain development
and identifying early predictors of brain dysmaturation

Abbreviations: ANTs, advanced normalization tools; ANTs Lin MI, ANTs
linear registration with mutual information similarity metric; ANTs Lin CC,
ANTs linear registration with cross-correlation similarity metric; ANTs NL
MI, ANTs nonlinear registration with mutual information similarity metric;
ANTs NL CC, ANTs nonlinear registration with cross-correlation similarity
metric; CSF, Cerebrospinal Fluid; CNN, convolutional neural network;
FGR, fetal growth restriction; FLIRT, FMRIB’s Linear Image Registration
Tool; FSE, fast spin echo; GUI, graphical user interface; IUGR, Intrauterine
Growth Restriction; MRI, magnetic resonance imaging; TR, repetition
time; TE, echo time; ROI, regions of interest; SyN, symmetric image
normalization.

(Boardman et al., 2010; Rathbone et al., 2011). However,
the traditional manual segmentation of MR images is time-
consuming and requires high-level expertise; thus, it is
impractical to implement these methods to large datasets. For
functional imaging, manual segmentation of 4D fetal images can
take upwards of 30 h to complete a single scanning run in an
individual participant’s data (Nichols et al., 2022). Automatic
segmentation pipelines and routines developed for neonatal and
child imaging protocols are not appropriate for studying fetal
brain tissue due to the variations in image acquisition, and
maturational differences leading to poorer contrast of the gray
and white matter. Therefore, reliable automatic segmentation
methods for fetal MR images are needed to study typical and
atypical fetal brain development.

We applied two atlas-based segmentation techniques, linear
and nonlinear atlas registration algorithms, to perform the
regional segmentation of the cortex and subcortical areas in the
fetal brain to examine their macrostructural development. The
cerebellum and thalamus are key deep brain structures related
to alterations in neuro-cognition and motor behaviors that are
typically seen in infants impacted by growth restriction as well
as preterm birth. Early growth impairments or alterations in
the trajectory of growth in the cerebellum have been found
to be associated with an increased risk of autism (Beversdorf
et al., 2005; Limperopoulos et al., 2007). Further, cerebellar
lesions in adulthood can impair decision-making, working
memory, and planning (Koziol et al., 2014; Clausi et al.,
2015). Deficits in linguistic abilities, anxiety, and impaired
social behavior have also been associated with cerebellar lesions
(Schmahmann, 2004; Ramphal et al., 2021). Early cerebellar
lesions at the vermis area can produce impaired eye gaze,
anxiety, and lack of mental flexibility such as stereotyped
behavior (Wells et al., 2008; Clausi et al., 2015). The thalamus,
is the primary relay station to the cortex and plays an important
role in motor and cognitive functions (Dehghani and Wimmer,
2019). Atypical development of the thalamus is associated with
impaired emotional processing, language, and social cognition
in children and adult populations with neurodevelopmental
disorders (Hardan et al., 2006). Volumetric segmentations of the
cerebellum and thalamus can aid in morphological analysis of
the growth of the two brain structures, which may be beneficial
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to exploring in utero origins of cognitive and motor functions in
the typically developing fetus.

Manual based segmentation methods have been employed
to segment subcortical fetal brain tissues (Twickler et al.,
2002). However, these methods are very time consuming and
require high level expertise. Deep-learning methods such as
deep convolutional neural networks (CNNs) have been used
to segment subcortical structures in fetal MR images (Khalili
et al., 2019; Zhao et al., 2022). Atlas-based segmentation
methods have been used to target deep brain structures in
fetal MR images (Habas et al., 2010). Landmark-based rigid
image transformation has been applied to fetal MR images
to obtain volumetric and cortical measures (Wu et al., 2020).
However, deformable registrations may be more robust. They
may be able to more accurately segment subcortical structures
in fetal MR images compared to linear registration, but are
more computationally intensive and may be more challenging to
implement in clinical settings. Using an atlas-based method, we
examined whether more computationally intensive deformation
image registration methods, using the Advanced Normalization
Tools (ANTs), are needed for adequate subcortical segmentation
compared to an affine image registration FLIRT (FMRIB’s
Linear Image Registration Tool). This research aimed to develop
and implement a semi-automatic pipeline combining semi-
automatic fetal brain reconstruction, segmentation, volumetric
reconstruction, and atlas registration algorithms for subcortical
segmentation in fetal brains to extract and analyze subcortical
volumes.

Materials and methods

Participants

Pregnant individuals with singleton fetuses were recruited
to the study. All participants self-identified as native English
speakers and reported no history of psychiatric illness,
neurological disorder, or hearing impairment.

The study was approved by the Health Sciences Research
Ethics Board at Western University. The research was
conducted according to the principles expressed in the
Declaration of Helsinki. The letter of information was sent to
participants in advance of the study, and a member of the
research team reviewed the protocol. All participants provided
informed consent.

Magnetic resonance imaging protocol

Participants were scanned at two sites, and the study
procedures were maintained at both locations. The majority of
the scans (n = 21) were acquired on a 3T MRI [General Electric
(GE), Milwaukee, WI, SA; MR7500] with a 32-channel GE torso

coil and a 60 cm bore at the Translational Imaging Research
Facility at the Robarts Research Institute. Of the 21 scans, 5
were repeat scans whereby the mothers returned for an identical
scanning session. The other five scans were collected on a 70 cm
bore 1.5T (GE, MR450w) with a GEM posterior and anterior
array coil at London Health Science Center.

The T2-weighted MR images were acquired using a
single shot fast spin echo (SSFSE) sequence [repetition
time (TR) > 1,200 ms, echo time (TE): 81.36–
93.60 ms, voxel size: 0.98 mm × 1.96 mm × 8 mm and
0.125 mm × 0.17 mm × 9 mm], applied in three image planes
(Figure 1).

Volumetric reconstruction of magnetic
resonance images

NiftyMIC (Ebner et al., 2020) was used for fetal brain
segmentation and 3D reconstruction. The main processing
pipeline for detection and segmentation of the fetal brain
included with NiftyMIC involves only a single command
(fetal_brain_seg) and can be executed unsupervised. Various
features of different slice-to-volume reconstructions methods
including NitfyMIC have been compared for fetal MRI, and have
reported comparable results (Payette et al., 2021).

It was essential to first estimate the fetal brain location
in the MR image such that a bounding box was created to
reduce both unrelated contents and image space, as well as the
algorithm processing time for the later more precise fetal brain
segmentation algorithm using 2D P-Net CNN (Yamashita et al.,
2018). NiftyMIC’s fetal_brain_seg command was then executed
on the MR image, generating a mask of the fetal brain in the
surrounding tissue for each slice within the image. This step took
under 2 min per stack of 2D slices.

The resulting masks were then reviewed using FSLeyes.1

These automatically generated 2D fetal brain masks from
NiftyMIC were suboptimal for most participants, resulting in
either over- or under-estimating fetal brain tissue in the slices;
surrounding maternal gray and white tissue were still evident
in the slices, depending on the acquisition and field of view.
Therefore, manual adjustments of the masks, such as filling and
excluding pixels, were performed on all automatically generated
2D masks (n = 26). Time spent manually editing ranged from 1
to 15 min per stack of 2D slices, with the majority taking under
5 min to complete.

After segmenting fetal brains in the 2D planes, the stacks
of 2D slices were reconstructed into 3D volumes, and the 2D
fetal brain segmentations were also reconstructed into 3D space.
The 2D MR image slices could be corrupted by low-frequency
bias field signals to blur the high-frequency contents, such

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
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FIGURE 1

The original T2-weighted acquisition of a fetal MR image in axial, sagittal, and coronal planes. T2-weighted images acquired separately in three
separate image planes in the axial (left), sagittal (middle), and coronal (right) in a representative participant. The three image planes were
subsequently used for the reconstruction of 3D images.

as edges and contours. Intensity variance also resulted from
existing bias field signals where the same tissue had a uniformed
pixel gray level in the images. Thus, the stacks of segmented
2D fetal brain slices were first bias-field corrected. Second, the
bias-field corrected 2D slices were reconstructed into a 3D
volume by the slice-to-volume process that rigidly registered
the 2D slices to one randomly selected target slice from the
fetal brain MR images so that all the slices were volumetrically
aligned. The slice-to-volume process also used linear regression
to correct and match the slices’ voxel intensities to the target
slice’s voxel intensity. Third, the volume-to-volume process was
performed on the 2D slices and previously segmented 2D masks
to reconstruct into 3D volumes and 3D fetal brain masks in
native space. Processing times varied but were up to 2 h in some
participants’ data (Uus et al., 2022).

Subsequently, the native-space 3D volumes were rigidly
registered to a spatiotemporal atlas developed from images
acquired at 3T MRI from typically developing fetuses to
obtain the volumetric reconstruction in the standard anatomical
planes of atlas space.

Registration-based subcortical segmentation
The reconstructed 3D fetal brain masks were applied

onto the reconstructed 3D brain volumes for fetal brain
skull stripping (Figure 2). The 3D brain volumes were
segmented with the binary masks for fetal brain-only MR
images. This segmentation was a prerequisite for later
subcortical segmentation utilizing image registration since
image registration for tissue alignment assumes the target object
and the moving object are the same tissue with similar shapes.
Registering the skull-stripped fetal brain atlas to the subject’s
fetal brain, excluding maternal tissue, would reduce unrelated
content for meaningful registration results. The skull stripping
step was performed using 3dcalc from the AFNI toolkit that
multiplied the reconstructed 3D fetal brain image with the
binary 3D masks. Then the orientations of the skull-stripped MR

images were manually adjusted according to the orientations of
the age-appropriate fetal brain atlas using the ITK-SNAP GUI
(Figure 2; graphical user interface2).

Two different registration toolkits were applied to the
reconstructed images and compared to determine an optimal
fetal subcortical segmentation strategy. Deformable registration
was performed using ANTs (Avants et al., 2008) using the
well-known SyN (symmetric image normalization) method, and
linear (affine) atlas registration was performed using FLIRT
(Jenkinson et al., 2012). The fetal brain atlas (Figure 3;
Gholipour et al., 2017) is an averaged atlas from fetuses
imaged at 36 weeks GA with predefined labels of deep-brain
structures, including the thalamus and cerebellum. The atlas was
nonlinearly and linearly registered into the native participant 3D
MRI space. The transformation matrix was saved and applied
onto the atlas mask to warp the tissue labels into subject
space. The transformed atlas labels were used as thalamus and
cerebellum masks and were compared with manual masks by
calculating DSCs for the reliability test.

The applied FLIRT registration tool implemented the
correlation ratio similarity metric for linear (affine) registration
as the default parameters. The ANTs registration tool used a
mutual information (MI) similarity metric for linear (rigid and
affine) registration and nonlinear (SyN) registration. Different
combinations of similarity metrics for both linear and nonlinear
image registration of ANTs were also applied and compared
to find the more suitable image registration method for our
MR image data. The cross-correlation (CC) and MI similarity
metrics, provided in the ANTs toolbox, which are both sufficient
for intra-modality registration were used for rigid, affine, and
SyN registration algorithms.

The FLIRT linear image registration was performed using
the command line tool with the DOF (degree of freedom)
option set at 12. The ANTs linear image registration (12

2 http://itksnap.org
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FIGURE 2

Fetal brain segmentation. Row (A) includes the volumetrically reconstructed fetal brains in three planes. The red areas are the manually
segmented fetal brain binary masks. Row (B) includes the orientation-corrected and skull-stripped (using the binary masks in red) fetal brain
volumes in three planes.

FIGURE 3

The average 36-week GA fetal brain atlas, including cerebellum
and thalamus labels. The axial, sagittal, coronal, and 3D
rendered views of the age-appropriate fetal brain atlas whereby
deep brain tissues are color-coded.

DOF) was performed using the antsRegistration command
line tool by defining the rigid and affine transformations. The
ANTs nonlinear registration (millions of DOF) algorithm
using the MI metric was performed using the default
antsRegistraionSyNQuick.sh script. Keeping every other
parameter the same as the antsRegistraionSyNQuick.sh script,
the ANTs nonlinear registration using the CC metric was also
performed using the antsRegistration command line tool by

TABLE 1 Maternal ages and fetal gestational ages.

Characteristic Total (n = 26)

Maternal ages, median years (IQR) 33.5 (29.3–36)

Fetal gestational age, median weeks (IQR) 34.8 (30.9–36.6)

Ages of the mothers (years) and fetuses (weeks’ gestation), IQR, interquartile range
(25%ile–75%ile).

adding the SyN transformation definition upon the linear
registration parameters. To apply the transformation matrices
to the atlas masks, the FLIRT command line tool was defined
with the applyxfm option, and the ANTs command line tool was
antsApplyTransformations. The whole fetal brain, cerebellum,
and thalamus volumes were computed from the skull-stripped
fetal brain masks and subcortical masks.

Manual subcortical segmentation protocol
Anonymized with respect to GA, the left and right thalamus

and cerebellum were delineated in all reconstructed T2-
weighted images. The 3D reconstructed T2-weighted images
were visualized and segmented using ITK SNAP. The displays
provided simultaneous coronal, sagittal and axial views of the
brain and created a 3D image of the thalamus and cerebellum.
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FIGURE 4

A segmented and volumetrically reconstructed fetal brain image
using NiftyMIC. The original 2D slices of fetal MR images were
automatically segmented and manually adjusted for fetal brain
2D masks. Then the 2D slices and 2D brain masks were
reconstructed into 3D volumes and 3D masks with motion
correction. This figure shows an example of the skull-stripped,
orientation-adjusted 3D fetal brain volumes in axial, sagittal,
coronal, and 3D-rendered views.

TABLE 2 Fetal brain volumes.

Characteristic Total (n = 25)

Cerebellum, median volumes mm3 (IQR) 13,365 (10,167–17,783)

Thalamus, median volumes mm3 (IQR) 3,850 (2,714–8,381)

Whole brain, median volumes mm3 (IQR) 373,186 (285,450–405,289)

GA, median weeks (IQR) 34.6 (30.9–36.4)

GA, Gestational age (weeks), IQR, interquartile range (25%ile–75%ile).

Bilateral thalamus and cerebellum masks were created through
the visual identification and tracing of these brain regions in
each slice. A three-step segmentation protocol was applied
to each image to segment the cerebellum and thalamus. The
thalamus was segmented first, followed by the cerebellum. In
each scan, the thalamus was present in approximately 40 slices,
whereas the cerebellum was present in approximately 50 slices.
Segmentations were based on the intensity differences between
white and gray matter.

Step 1: Segmentation of the cerebellum and thalamus.
Dependent on the participants and the resolution of
the images, the rater segmenting the images manually
composed segmentations through all three viewpoints
(sagittal, coronal, and axial) to ensure that the masks
were accurate in all viewpoints. The initially completed
segmentations were verified in the other views, and any
incorrectly identified areas were omitted and revised.

Step 2: Inspection of the 3D surface. The segmented
cerebellum and thalamus masks were represented in a 3D
display through ITK-SNAP. The surface of the cerebellum
and thalamus is expected to be smooth throughout, so
any areas on the masks that protruded excessively were
trimmed through a smoothing feature on ITK-SNAP.
Step 3: Segmentation of left and right hemispheres. Once
complete, cerebellum and thalamus masks were segmented
into left and right hemispheres. Each mask was segmented
and split into the left and right hemispheres by identifying
the brain’s midline. These segmentations were verified
across all three viewpoints to ensure accuracy and to revise
the original segmentations.

Protocol reliability testing

Three fetal MR images were randomly selected and
re-segmented by the same rater to assess the reliability
of the three-step manual segmentation protocol. The re-
segmentations of the left and right thalamus and cerebellum
in the fetal MR images were performed 6 months after the
original segmentations to ensure that the rater’s memory
would not unduly influence the results. This type of test-
retest metric, intra-rater reliability, can be used as an upper
bound metric to assess the accuracy of the segmentations of
the thalamus and cerebellum. The protocol’s reliability was
measured using the Dice similarity metric, which evaluates
the spatial and volumetric overlap of the original and re-
segmented label volumes.

Manually adjusting automatically
generated masks from NiftyMIC

Anonymized with respect to GA, whole brain masks were
manually segmented in all 25 fetal brain scans. A three-step
segmentation protocol (described below) was applied to each
image to segment the whole brain masks. The whole brain
appeared in approximately 90 slices.

Step 1: Automatic segmentation. Whole brain masks
were generated automatically for each subject using
NiftyMIC software.
Step 2: Manual segmentation. Brain masks generated
automatically through NiftyMIC were contrasted against
the original brain scan for each subject on ITK-SNAP.
Each mask was manually edited to ensure that the mask
fit the image. Dependent on the subject and the clarity of
the image, the individual segmenting the images manually
worked through all three viewpoints (sagittal, coronal,
and axial) to ensure that the masks were accurate in all
viewpoints. The initially completed segmentations were
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FIGURE 5

Fetal subcortical volumes (y-axis) plotted in relation to gestational age (x-axis). Fetal thalamus (top, left), whole brain (top, right) and
cerebellum (bottom, left) volumes were plotted in relation to gestational age in weeks. The cerebellum, thalamus and total cerebral volumes
showed a positive linear association with gestational age (all, p < 0.05). (Bottom, right) The color-coded fetal atlas overlaid on a atlas MRI
demonstrates the location of the thalamus (orange/purple) and the cerebellum (gray).

verified in the other views, and any incorrectly identified
areas were omitted and revised. Any area of the mask
that protruded excessively outside the brain region was
removed. Additionally, any areas of the brain that were not
covered by the mask were filled in appropriately.
Step 3: Segmentation of left and right hemispheres. Once the
segmentations were complete, the whole brain masks were
segmented into left and right hemispheres. Each mask was
segmented and split into the corresponding hemisphere by
identifying the midline of the brain. These segmentations
were verified across all three viewpoints to ensure accuracy
and to revise the original segmentations.

Software installation and operating
system decency

The computer used in this study was built with the
10th generation of intel i7 CPU (central processing unit)
with 8 cores and 16 threads, 32 GB of RAM (random
access memory). The operating system used for this study
was Ubuntu 18.04. ITK-SNAP (version 3.6.0), AFNI (version
20.3.01), convert3d package (version 1.0.0), FSL package
(version 6.0.4) including FLIRT was installed locally from
source. ANTs was provided by and installed on the SciNet
supercomputer center at the University of Toronto (i.e., Digital

Research Alliance of Canada). NiftyMIC was installed with the
provided Docker image.

Statistical analysis

The robustness of the entire automatic fetal deep
brain structure segmentation workflow was tested by
comparing the automatically segmented masks and
manually segmented masks by calculating the DSCs of
the common areas covered. The DSC, which computes
the ratio of two times the common area to the sum of
both areas, was calculated using the formula D = 2(A∩B)

A+B ,
where A and B represent the automatic and manual
masks. The masks for the left and right thalamus and
cerebellum were combined.

Statistical analyses were performed using SPSS (version 27,
Armonk, NY, USA). The resulting DSCs were non-normally
distributed, based on Shapiro–Wilk’s tests (all, p < 0.02).
Therefore, a nonparametric Friedman’s test for repeated
measures data was applied to the DSCs. We had a single
hypothesis regarding deformable registration methods, so the
alpha level was set at p < 0.05. The DSCs range from 0,
indicating no spatial overlap between the binary segmentation
results calculated automatically versus gold-standard manual
segmentations, to 1, indicating complete overlap (Cohen, 1960).
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Moderate overlap occurs when DSCs are 0.5–0.6, while very
good overlap occurs at >0.7.

To calculate the DSCs, four regions of interest (ROI):
the right cerebellum, left cerebellum, right thalamus, and left
thalamus, were extracted from the registration-based subcortical
masks using the combination of 3dcalc and 3dcluster command
line tools from AFNI. The reason for this step is that the
manually drawn subcortical masks of one participant were
traced separately for the four ROIs described above. The DSCs
were then calculated by overlaying the automatically extracted
ROIs from the five different registration methods with the
corresponding manual ROIs using the c3d-overlay command
line tool of the convert3d package from ITK-SNAP. The c3d
command line tool produced the DSCs and redirected the
output numbers to print into text files. An in-house Python
script was developed to read and write the DSCs from the text
files into CSV format.

Results

Participants

A total of 21 pregnant adult women participated in the
MRI study. Five women returned for a second scan (median
time between scans = 3.5 weeks). This resulted in a total
of 26 scans that were subsequently used for the analysis.
The majority of scans were acquired during the women’s
third trimester of pregnancy (n = 24, 92%), with the other
scans occurring in the near third trimester (range: 27.6–
39 weeks of GA). The median GA for all 26 scans was
34.8 weeks (Table 1).

Two-dimensional fetal brain
segmentation and 3D volumetric
reconstruction

The 2D fetal brain masks of the stacks of the original
fetal brain MR images were automatically segmented using
NiftyMIC in the axial, coronal, and sagittal image planes. For
the NiftyMIC volumetric reconstruction algorithm to perform
optimally, the 2D auto-masks were manually adjusted using
ITK-SNAP for the over- and under-estimations of fetal brain
tissue by the NiftyMIC segmentation algorithm. The volumetric
reconstruction process was performed on all 26 scans from
the 21 total participants. On a total of 25 scans from 20
participants were 2D masks (96%) successfully reconstructed
into 3D space (Figure 4). One participant’s data, from the total
of 21 participants, was excluded due to a complete failure of the
fetal brain segmentation and volumetric reconstruction routine.
Once reconstructed, the image dimensions were X = 122,
Y = 127, Z = 103 and the voxel size was 1 mm3.

TABLE 3 Intra-reliability test – Dice similarity coefficients.

Dice similarity coefficients

Cerebellum 0.78 (0.7–0.8)

Thalamus 0.6 (0.5–0.7)

Overall 0.7 (0.5–0.7)

The median Dice similarity coefficients for cerebellar and thalamic segmentations, and
both segmentations combined. IQR, interquartile range (25%ile–75%ile).

Skull stripping and orientation tags correction were
successfully applied to the reconstructed 3D volumes. Based
on the skull-stripped automatically reconstructed 3D fetal
brain MR images, manual segmentations of the thalamus and
cerebellum on both left and right sides were successfully
performed. The median volumes of the subcortical ROI and
whole brain volumes are presented in Table 2, along with
the interquartile ranges (IQR). Left and right volumes were
combined.

Of the 25 scans, the majority (n = 21) were completed
on a 3T MRI and 4 were completed at 1.5T. None of the
manually segmented volumes for the thalamus, cerebellum or
total cerebral volumes differed based on the Tesla strength of
the magnets when adjusting for gestational age (all, p > 0.05).
The averaged left and right thalamus and cerebellum volumes
were plotted against gestational age (Figure 5). All regions, the
cerebellum (r = 0.74, p < 0.001), thalamus (r = 0.7, p < 0.001)
and the total cerebral volumes (r = 0.8, p< 0.001) were positively
associated with gestational age, indicative of larger volumes at
older gestational ages.

Manual segmentation protocol
validation: Intra-reliability test

The thalamus and cerebellum were re-segmented by a
single rater (MM) to assess the consistency of the three-step
manual segmentation protocol. Re-segmentations of both the
left and right thalamus and cerebellum in these images were
performed at least 6 months after the original segmentations
were performed to minimize memory effects in the rater. The
intra-reliability test results are listed in Table 3. The IQR of the
median DSCs of cerebellar and thalamic segmentations were
0.78 and 0.6, respectively. The overall median DSC was 0.7.

Registration-based segmentation
reliability test: Comparisons of dice
similarity coefficients

The ANTs- (5–10 h/dataset) and FLIRT-based
(10 min/dataset) registrations of the 36-week GA fetal
brain atlas into the native spaces of the individual fetal MR
images were successfully processed in all participants. The
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FIGURE 6

Cerebellar masks: registration-based segmentation (red) versus
manual segmentation (yellow). The masks are shown in axial,
coronal, and sagittal planes from left to right. Row (A) ANTs
linear registration (MI); (B) ANTs linear registration (CC); (C) ANTs
nonlinear registration (CC); (D) ANTs nonlinear registration (MI);
and (E) FLIRT linear registration.

median DSCs comparing the five image registration methods
to the manual segmentation method were: (1) FLIRT linear
registration (affine) using the correlation ratio similarity
metric, (2) ANTs linear registration (rigid and affine) using
the MI similarity metric (ANTs Lin MI), (3) ANTs linear
registration using the CC similarity metric (ANTs Lin CC),
(4) ANTs nonlinear registration (rigid, affine, and SyN)
using the MI similarity metric (ANTs NL MI), and (5)
ANTs nonlinear registration using the CC similarity metric
(ANTs NL CC) for left and right cerebellum and thalamus
segmentations. The cerebellar masks produced by the five
registration methods using different similarity metrics are
shown in Figure 6.

The median DSCs of the five registration methods for
the cerebellum segmentations, thalamus segmentations, and
both segmentations are listed in Table 4. Overall, the FLIRT
linear registration resulted in non-optimal estimation with
gross misalignment of the masks on the fetal MR image. The
ANTs nonlinear registration (CC) had the highest median Dice
similarity index. The ANTs non linear registration (MI) also
demonstrated a very good performance.

The median DSCs of both subcortical segmentations
revealed that ANTs NL CC and ANTS NL MI were high
with the linear registrations being comparable, while

TABLE 4 Median Dice similarity coefficients.

Registration
method

Both Cerebellum Thalamus

FLIRT 0.54 (0.44–0.63) 0.62 (0.46–0.73) 0.52 (0.39–0.66)

ANTs Lin MI 0.70 (0.58–0.74) 0.80 (0.73–0.83) 0.59 (0.48–0.7)

ANTs Lin CC 0.72 (0.59–0.75) 0.80 (0.74–0.83) 0.61 (0.48–0.71)

ANTs NL MI 0.72 (0.63–0.76) 0.79 (0.75–0.83) 0.62 (0.49–0.68)

ANTs NL CC 0.74 (0.65–0.76) 0.79 (0.76–0.82) 0.65 (0.52–0.71)

The median Dice similarity coefficients and the interquartile ranges of the cerebellum,
thalamus, and both subcortical segmentations using five registration methods compared
to manual segmentations.

TABLE 5 Post hoc comparisons of mean ranks: fetal cerebellar
segmentations.

Sample 1–sample 2 Standard test statistic P-value*

FLIRT – ANTs NL CC 6.77 <0.001

FLIRT – ANTs Lin MI 7.65 <0.001

FLIRT – ANTs NL MI 8.41 <0.001

FLIRT – ANTs Lin −8.48 <0.001

ANTs NL CC – ANTs Lin MI 0.89 0.9

ANTs NL CC – ANTs NL MI 1.64 0.9

ANTs NL CC – ANTs Lin −1.71 0.88

ANTs Lin MI – ANTs NL MI 0.76 0.9

ANTs Lin MI – ANTs Lin CC −0.82 0.9

ANTs NL MI – ANTs Lin CC −0.06 0.9

Results of a Dunn’s pairwise post hoc tests on the mean ranks. *Bonferroni corrected for
multiple comparisons. Significant values are in bold.

those produced by FLIRT were the lowest. The DSCs
for the linear (i.e., ANTs rigid and affine, and FLIRT
affine) and nonlinear (i.e., ANTs nonlinear with MI and
CC similarity metrics) methods for the thalamus and
cerebellum segmentations were compared using Friedman’s
Repeated Measure Analysis of Variance by Ranks. Upon
comparison of the left and right cerebellar DSCs (n = 50),
the calculated mean ranks were significantly different from
one another (df = 4, test statistic = 100.84, p < 0.001). Post
hoc pairwise comparisons revealed that the mean ranks
were significantly different for the FLIRT-based registrations
compared to the ANTs linear and nonlinear methods (all,
p < 0.001; Table 5). Additionally, none of the mean ranks
differed for any of the ANTs based registration methods (all
p > 0.88).

Subsequently, the DSCs produced by the linear and
nonlinear registrations algorithms compared to the
manual segmentations were examined for the left and
right thalamic segmentations and were also significantly
different (n = 50, df = 4, test statistic = 47.36, p < 0.001).
Pairwise comparisons indicated slightly different results than
seen for the cerebellar segmentations, whereby FLIRT-
based registrations were associated with significantly
different mean ranks compared to the ANTs-based
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TABLE 6 Post hoc comparisons for mean ranks: fetal
thalamic segmentations.

Standard test statistic P-value*

FLIRT – ANTs Lin MI 2.15 0.32

FLIRT – ANTs Lin CC −3.67 0.002

FLIRT – ANTs NL MI 4.49 <0.001

FLIRT – ANTs NL CC 6.45 <0.001

ANTs Lin MI – ANTs Lin CC −1.52 0.9

ANTs Lin MI – ANTs NL MI 2.34 0.19

ANTs Lin MI – ANTs NL CC −4.30 <0.001

ANTs Lin CC – ANTs NL MI 0.82 0.1

ANTs Lin CC – ANTs NL CC 2.78 0.05

ANTs NL MI – ANTs NL CC −1.96 0.5

Results of a Dunn’s pairwise post hoc tests on the mean ranks. *Bonferroni corrected for
multiple comparisons. Significant values are in bold.

nonlinear registration methods, including ANTs NL
MI and NL CC, but also the ANTs Lin CC method (all
p < 0.002; Table 6).

Comparison of the mean ranks indicated that ANTs NL CC
performed significantly better than ANTs Lin MI (p < 0.001).

We further compared the volumes extracted by
the 5 registration methods relative to the manually
segmented volumes. The extracted volumes for the
cerebellum and thalamus based on the FLIRT and ANTs-
based methods were subtracted from the manually
segmented volumes. The differences in the volumes
were then divided by the manually segmented volumes
and the resulting values were converted to percentages
(Figure 7). Overall, the cerebellar segmentations were
more likely to be underestimated by ANTs-based
methods. FLIRT-based registration of the thalamus
and the cerebellum resulted in overestimation of
the volumes.

Discussion

Fetal MRI represents one of the next frontiers in clinical,
translational and basic science research, not only to improve
our understanding of the developing fetal brain, but to
aid in early diagnosis, particularly for fetuses at-risk for
adverse neurodevelopmental outcomes (Andescavage et al.,
2017; Mufti et al., 2021; Rajagopalan et al., 2021). The
study of the brain and other organs in the fetus has
been limited to primarily non-invasive ultrasound technology.
While ultrasound offers many advantages due to its low
cost and ease of use in hospital settings, it is limited
in terms of its spatial resolution to study fetal brain
structure. MRI of the fetal brain offers superior 3D image
resolution and can be used to study brain volumetric
development.

FIGURE 7

Comparisons of thalamic and cerebellar volumes produced by
FLIRT- or ANTs-based methods relative to manually segmented
volumes. The overlap (positive values indicate overestimation,
negative values indicate underestimation) is displayed according
to the registration methods from top to bottom. Top to
bottom: ANTs nonlinear registration (CC, cross-correlation);
ANTs nonlinear registration (MI, mutual information); ANTs linear
registration (CC); ANTs linear registration (MI); and FLIRT linear
registration.

This work aimed to develop a semi-automatic pipeline
to segment fetal brain volumes acquired in third-trimester
images. A recently developed deep learning algorithm
was employed to mask the fetal brain and reconstruct
MR images in second-trimester fetuses. Analyzing fetal
MR images using brain segmentation toolkits designed
for adult populations is impractical due to the presence
of motion artifacts from fetal movements. This study
aimed to overcome this obstacle in fetal MRI by applying
segmentation, volumetric reconstruction, and image
normalization toolkits to build a semi-automated process
for fetal brain subcortical segmentation in T2-weighted
fetal MR images that were acquired during the third
trimester of pregnancy.

The fetal brain was masked in three anatomical 2D
planes (axial, sagittal, and coronal) in the first step. Then the
segmented 2D fetal brains and brain masks in three planes were
reconstructed into 3D brain volumes and masks. After skull-
stripping and orientation tag correction, linear and nonlinear
image registration methods were evaluated in terms of their
accuracy in segmenting cortical and subcortical structures by
applying an age-appropriate MRI atlas. In turn, the subcortical
labels of the chosen atlas were aligned with the individual
fetal MR images using two different image registration toolkits
(ANTs and FLIRT) using linear (ANTs Lin MI/CC and FLIRT)
and nonlinear registration methods (ANTs NL MI/CC). The
optimal cortical and subcortical segmentation performance was
determined by applying and comparing two image registration
toolkits for both nonlinear and linear image registration
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algorithms with different configurations of similarity metrics.
The aligned subcortical labels were then compared with
manually segmented thalamus and cerebellum subcortical
masks. The manually labeled masks were considered ground
truth for later comparison with the atlas-based registration.
The nonlinear registration methods within ANTs provided
improved results compared to a linear transformation (FLIRT)
for the cerebellum segmentations as well as in comparison to
the linear methods within ANTs, primarily for the thalamic
segmentations. The ANTs MI and CC similarity metrics are
optimized in terms of translation, rotation, scaling, and shearing
during the registration of the images. Nonlinear registration
methods, while computationally more intensive, may be more
suitable for small samples of fetal brain images acquired during
the third trimester to have higher quality results. Overall,
our findings indicated that ANTs-based nonlinear registration
methods using the MI and CC similarity metric performed
adequately and may be more practical for processing larger
datasets but with additional computational processing time.

Semi-automatic registration-based
fetal subcortical segmentation

This research utilized a machine learning-based
segmentation algorithm from the NiftyMIC toolkit (Ebner
et al., 2020) to significantly mitigate motion artifacts, segment
the fetal brain images acquired during the third trimester in 2D,
and reconstruct 2D images in three planes into 3D volumes. The
NiftyMIC toolkit (Ebner et al., 2020) is open-source, Python-
based software for research within the Guided Instrumentation
for Fetal Therapy and Surgery (GIFT-Surg) project, which is
an international research consortium focused on developing
technology, tools and training to facilitate fetal surgery (Joyeux
et al., 2018). The software can reconstruct an isotropic, high-
resolution brain volume from multiple low-resolution 2D image
slices acquired in fetuses. The NiftyMIC 2D segmentation was
originally trained and developed for second-trimester fetal
MR images. This masking step is essential for the remaining
workflow steps. In the current work, each fetal mask required
visual inspection and manual editing to aid the performance
of the automatically generated labels. With the adequate 2D
fetal brain masks serving as input, the NiftyMIC volumetric
reconstruction process performed smoothly. Overall, NiftyMIC
performed well on most images, and the performance was
comparable to what was published in second-trimester images.

Machine learning algorithms are known to theoretically
perform well to learn and predict data patterns when the
process is trained with enough data (Cardenas et al., 2019).
This performance depends on the problem’s complexity and the
sophistication of the machine learning algorithm. The NiftyMIC
2D brain segmentation of third-trimester fetal MR images
did not always perform reliably on the third-trimester MRI

data. The NiftyMIC (niftymic_segment_fetal_brains) machine
learning algorithm was originally trained with MR images of
second-trimester healthy fetuses and fetuses diagnosed with
spina bifida. Exponential growth of the fetal brain from the
second to the third trimester results in significant cortical and
subcortical morphology changes.

Additionally, during the third trimester, the fetal brain
becomes increasingly myelinated (Dubois et al., 2008a,b, 2014;
Wilson et al., 2021). Structural MR images weighted by T1 or
T2 relaxation times will be influenced by different water and fat
contents in the fetal brain compared to that seen in adults. This
difference results in different signal intensities in the voxels of
MR images of the fetal brain, which can vary in fetuses even
compared to 6-month-old infants due to the rapid changes in
overall growth and myelination (Dubois et al., 2014). Less is
known about tissue intensity changes between second-trimester
and third-trimester fetuses; however, in relation to the current
work, the image intensity of the voxels of the gray and white
matter tissues of the training data used for NiftyMIC may have
been quite different from that of our third-trimester data. These
factors could have notably influenced the machine learning
algorithm’s performance.

The linear and nonlinear registration algorithms paired with
various similarity metrics were successfully applied to register
the labeled atlas into native space for cortical and subcortical
segmentation of the MRI scans acquired in third-trimester
fetuses. The use of different similarity metrics applied to fetal
deep-brain segmentation was explored. The registered thalamic
and cerebellar masks were compared to manually segmented
masks. The ANTs nonlinear registration tool (Avants et al.,
2008) reliably segmented deep brain structures of fetal brains
on MR images for both the cerebellum and thalamus. The
DSCs of ANTs Lin CC indicated a good agreement between
the atlas-based and manual segmentations. The ANTs Lin MI
registration had similar DSCs for both thalamic and cerebellar
segmentations. According to the guidelines for interpreting
DSCs (Cohen, 1960), the median DSCs of ANTs Lin MI and
CC indicated a substantial agreement between the registration-
based semi-automatic segmentation and manual segmentation
for estimating fetal deep brain structures. However, there was a
notable performance difference between thalamic and cerebellar
segmentations using all five registration methods. The median
DSCs of the thalamic segmentations were lower than that of the
cerebellar segmentations, which indicated very good agreement
(>0.7) and only moderate agreement (0.5–0.6) between the
registration-based and manual thalamic segmentations using
ANTs Lin MI and CC. Findings indicated that ANTs-based
nonlinear image registration did not outperform ANTs-
based linear image registration for segmenting the cerebellar
structures. The CC similarity metric, suitable for intra-modality
MR image normalization, was sufficient for our fetal MRI
data. The additional calculations involving histogram matching
from the MI metric did not substantially improve the image
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registration quality. Therefore, using the CC metric, which
requires less computation time to register the data, is sufficient
for processing datasets, particularly those with larger sample
sizes.

This semi-automatic fetal subcortical segmentation
method may be very beneficial for future studies of fetal
neurodevelopment. The in utero origin of neurodevelopmental
delay reflected in smaller cortical and subcortical volumes can
be studied by applying this methodology to a larger fetal MR
image dataset that has the potential for significant savings in
terms of time and labor devoted to manual segmentations.
The whole brain volume and deep brain structures such as the
hippocampus are important for learning and memory processes
and can be segmented from the MR images for comparison,
analysis and developmental outcome prediction (Eichenbaum,
1997; Bird and Burgess, 2008; Milivojevic and Doeller, 2013).
The proposed methodology could also be utilized to study
second-trimester fetal volumetric development. From the
second to the third trimester, fetal neurodevelopment could be
monitored by segmenting and calculating subcortical and brain
growth in high-risk groups. This method could potentially
reveal when the variations in brain morphology occur to aid
in the early diagnosis of fetal brain abnormalities in clinical
settings.

The ANTs-based nonlinear image registration performed
slightly better than the ANTS-based linear image registration
for aligning the fetal brain atlas to our dataset’s native MR
image space. However, this difference was not strongly evident
statistically. The amount of deformation of the image when
warping the atlas might have been minimal, given that the
difference in the shape of the fetal brain of the atlas and our
acquired fetal MR images was comparable in terms of the
anatomy. Linear mislocalization of the fetal brains between
the atlas image and the target image may have contributed to
spatial differences. The ANTs-based nonlinear registration is
more time-consuming than linear registration, with a higher
requirement of computation abilities while providing reliable
subcortical segmentation performance.

Conclusion

Antenatal development of the fetal cortex and subcortical
structures is a complex neurophysiological process. The
development of the nervous occurs through genetically
predetermined events, including cellular proliferation, neuronal
migration, and differentiation of cells into specialized subtypes,
followed by synaptogenesis, which provides the formation of
cortical and subcortical circuitry. Environmental influences
such as maternal diet and even stress can alter these processes
and, in more severe cases, can lead to growth restriction
of the fetus. The study of fetal brain development using
volumetric MRI provides a window into the development of

the cortex and subcortical structures in typical and atypically
developing fetuses. This work developed and evaluated a semi-
automatic pipeline to segment the cortex and subcortical
structures in third-trimester images. A novel deep learning-
based algorithm was used to segment and reconstruct 3D MR
images of the entire fetal brain. An atlas to segment cortical and
subcortical structures was aligned to the fetal brain images. Five
registration algorithms were compared to gold-standard manual
segmentations of subcortical structures. Overall a deformable
registration method, ANTs using a CC metric provided optimal
performance to segment the cortical structures, and may
be favorable for large datasets or for use in high-resource
settings without access to high throughput computational
facilities. Future work, using deep-learning methods for image
registration and segmentation may facilitate more automated
methods for cortical and subcortical parcellation in the fetus.
Larger datasets with wider gestational age ranges would aid
in facilitating artificial intelligent approaches to fetal brain
development. Additionally, applying this atlas-based method
to study deep-brain macrostructural development in high-
risk fetuses would be a future step. Fetal brain growth
is a key marker for developmental outcomes. Methods to
characterize subcortical development in typically and atypically
fetuses could aid in the detection of potential biomarkers
associated with delayed or arrested growth. Utilizing multi-
modal MR methods may also further facilitate fetal brain
tissue extraction.
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and Babiæ, I. (2014). Fetal brain magnetic resonance imaging and long-term
neurodevelopmental impairment. Int. J. Gynaecol. Obstet 125, 237–240.

Beversdorf, D. Q., Manning, S. E., Hillier, A., Anderson, S. L., Nordgren, R. E.,
Walters, S. E., et al. (2005). Timing of prenatal stressors and autism. J. Autism Dev.
Disord. 35, 471–478.

Bird, C. M., and Burgess, N. (2008). The hippocampus and memory: insights
from spatial processing. Nat. Rev. Neurosci. 9, 182–194.

Boardman, J. P., Craven, C., Valappil, S., Counsell, S. J., Dyet, L. E., Rueckert,
D., et al. (2010). A common neonatal image phenotype predicts adverse
neurodevelopmental outcome in children born preterm. Neuroimage 52, 409–414.
doi: 10.1016/j.neuroimage.2010.04.261

Bonnet-Brilhault, F., Rajerison, T. A., Paillet, C., Guimard-Brunault, M., Saby,
A., Ponson, L., et al. (2018). Autism is a prenatal disorder: evidence from late
gestation brain overgrowth. Autism Res. 11, 1635–1642. doi: 10.1002/aur.2036

Brossard-Racine, M., du Plessis, A. J., Vezina, G., Robertson, R., Bulas, D.,
Evangelou, I. E., et al. (2014). Prevalence and spectrum of in utero structural
brain abnormalities in fetuses with complex congenital heart disease. AJNR Am.
J. Neuroradiol. 35, 1593–1599. doi: 10.3174/ajnr.A3903

Brossard-Racine, M., McCarter, R., Murnick, J., Tinkleman, L., Vezina, G.,
Limperopoulos, C., et al. (2019). Early extra-uterine exposure alters regional
cerebellar growth in infants born preterm. Neuroimage Clin. 21:101646. doi: 10.
1016/j.nicl.2018.101646

Cardenas, C. E., Yang, J., Anderson, B. M., Court, L. E., and Brock, K. B. (2019).
Advances in auto-segmentation. Semin. Radiat. Oncol. 29, 185–197.

Cesaretti, C., Nanni, M., Ghi, T., Parazzini, C., Conte, G., Contro, E., et al.
(2016). Variability of forebrain commissures in callosal agenesis: a prenatal MR
imaging study. AJNR Am. J. Neuroradiol. 37, 521–527.

Clausi, S., Coricelli, G., Pisotta, I., Pavone, E. F., Lauriola, M., Molinari, M., et al.
(2015). Cerebellar damage impairs the self-rating of regret feeling in a gambling
task. Front. Behav. Neurosci. 9:113. doi: 10.3389/fnbeh.2015.00113

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educ. Psychol.
Meas. 20, 37–46.

De Asis-Cruz, J., Andescavage, N., and Limperopoulos, C. (2021). Adverse
prenatal exposures and fetal brain development: insights from advanced fetal MRI.
Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 480–490.

Dehghani, N., and Wimmer, R. D. (2019). A computational perspective of the
role of the thalamus in cognition. Neural Comput. 31, 1380–1418.

Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P. S., and
Hertz-Pannier, L. (2014). The early development of brain white matter: a review of
imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71.

Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J. F., Cointepas, Y.,
Duchesnay, E., et al. (2008a). Asynchrony of the early maturation of white matter
bundles in healthy infants: quantitative landmarks revealed noninvasively by
diffusion tensor imaging. Hum. Brain Mapp. 29, 14–27. doi: 10.1002/hbm.20363

Dubois, J., Dehaene-Lambertz, G., Soarès, C., Cointepas, Y., Le Bihan, D.,
Hertz-Pannier, L., et al. (2008b). Microstructural correlates of infant functional
development: example of the visual pathways. J. Neurosci. 28, 1943–1948. doi:
10.1523/JNEUROSCI.5145-07.2008

Ebner, M., Wang, G., Li, W., Aertsen, M., Patel, P. A., Aughwane, R., et al.
(2020). An automated framework for localization, segmentation and super-
resolution reconstruction of fetal brain MRI. Neuroimage 206:116324. doi: 10.
1016/j.neuroimage.2019.116324

Eichenbaum, H. (1997). Declarative memory: insights from cognitive
neurobiology. Annu. Rev. Psychol. 48, 547–572.

Gholipour, A., Rollins, C. K., Velasco-Annis, C., Ouaalam, A., Akhondi-Asl, A.,
Afacan, O., et al. (2017). A normative spatiotemporal MRI atlas of the fetal brain
for automatic segmentation and analysis of early brain growth. Sci. Rep. 7:476.
doi: 10.1038/s41598-017-00525-w

Habas, P. A., Kim, K., Rousseau, F., Glenn, O. A., Barkovich, A. J., and
Studholme, C. (2010). Atlas-based segmentation of developing tissues in the
human brain with quantitative validation in young fetuses. Hum. Brain Mapp. 31,
1348–1358. doi: 10.1002/hbm.20935

Hardan, A. Y., Girgis, R. R., Adams, J., Gilbert, A. R., Keshavan, M. S., and
Minshew, N. J. (2006). Abnormal brain size effect on the thalamus in autism.
Psychiatry Res. 147, 145–151.

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., and Smith,
S. M. (2012). FSL. Neuroimage 62, 782–790.

Joyeux, L., De Bie, F., Danzer, E., Van Mieghem, T., Flake, A. W., and Deprest,
J. (2018). Safety and efficacy of fetal surgery techniques to close a spina bifida
defect in the fetal lamb model: a systematic review. Prenat Diagn. 38, 231–242.
doi: 10.1002/pd.5222

Khalili, N., Turk, E., Benders, M. J. N. L., Moeskops, P., Claessens, N. H. P.,
de Heus, R., et al. (2019). Automatic extraction of the intracranial volume in fetal

Frontiers in Neuroscience 13 frontiersin.org

9596

https://doi.org/10.3389/fnins.2022.1027084
https://doi.org/10.1038/jp.2017.129
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.neuroimage.2010.04.261
https://doi.org/10.1002/aur.2036
https://doi.org/10.3174/ajnr.A3903
https://doi.org/10.1016/j.nicl.2018.101646
https://doi.org/10.1016/j.nicl.2018.101646
https://doi.org/10.3389/fnbeh.2015.00113
https://doi.org/10.1002/hbm.20363
https://doi.org/10.1523/JNEUROSCI.5145-07.2008
https://doi.org/10.1523/JNEUROSCI.5145-07.2008
https://doi.org/10.1016/j.neuroimage.2019.116324
https://doi.org/10.1016/j.neuroimage.2019.116324
https://doi.org/10.1038/s41598-017-00525-w
https://doi.org/10.1002/hbm.20935
https://doi.org/10.1002/pd.5222
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1027084 November 9, 2022 Time: 10:59 # 14

Wang et al. 10.3389/fnins.2022.1027084

and neonatal MR scans using convolutional neural networks. Neuroimage Clin.
24:102061. doi: 10.1016/j.nicl.2019.102061
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Objective: Term congenital heart disease (CHD) neonates display

abnormalities of brain structure and maturation, which are possibly related

to underlying patient factors, abnormal physiology and perioperative insults.

Our primary goal was to delineate associations between clinical factors

and postnatal brain microstructure in term CHD neonates using diffusion

tensor imaging (DTI) magnetic resonance (MR) acquisition combined with

complementary data-driven connectome and seed-based tractography

quantitative analyses. Our secondary goal was to delineate associations

between mild dysplastic structural brain abnormalities and connectome

and seed-base tractography quantitative analyses. These mild dysplastic

structural abnormalities have been derived from prior human infant CHD MR

studies and neonatal mouse models of CHD that were collectively used to

calculate to calculate a brain dysplasia score (BDS) that included assessment
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of subcortical structures including the olfactory bulb, the cerebellum and the

hippocampus.

Methods: Neonates undergoing cardiac surgery for CHD were prospectively

recruited from two large centers. Both pre- and postoperative MR brain

scans were obtained. DTI in 42 directions was segmented into 90 regions

using a neonatal brain template and three weighted methods. Clinical

data collection included 18 patient-specific and 9 preoperative variables

associated with preoperative scan and 6 intraoperative (e.g., cardiopulmonary

bypass and deep hypothermic circulatory arrest times) and 12 postoperative

variables associated with postoperative scan. We compared patient specific

and preoperative clinical factors to network topology and tractography

alterations on a preoperative neonatal brain MRI, and intra and postoperative

clinical factors to network topology alterations on postoperative neonatal

brain MRI. A composite BDS was created to score abnormal findings

involving the cerebellar hemispheres and vermis, supratentorial extra-

axial fluid, olfactory bulbs and sulci, hippocampus, choroid plexus, corpus

callosum, and brainstem. The neuroimaging outcomes of this study included

(1) connectome metrics: cost (number of connections) and global/nodal

efficiency (network integration); (2) seed based tractography methods of

fractional anisotropy (FA), radial diffusivity, and axial diffusivity. Statistics

consisted of multiple regression with false discovery rate correction

(FDR) comparing the clinical risk factors and BDS (including subcortical

components) as predictors/exposures and the global connectome metrics,

nodal efficiency, and seed based- tractography (FA, radial diffusivity, and axial

diffusivity) as neuroimaging outcome measures.

Results: A total of 133 term neonates with complex CHD were prospectively

enrolled and 110 had analyzable DTI. Multiple patient-specific factors

including d-transposition of the great arteries (d-TGA) physiology and severity

of impairment of fetal cerebral substrate delivery (i.e., how much the

CHD lesion alters typical fetal circulation such that the highest oxygen

and nutrient rich blood from the placenta are not directed toward the

fetal brain) were predictive of preoperative reduced cost (p < 0.0073) and

reduced global/nodal efficiency (p < 0.03). Cardiopulmonary bypass time

predicted postoperative reduced cost (p < 0.04) and multiple postoperative

factors [extracorporeal membrane oxygenation (ECMO), seizures and

cardiopulmonary resuscitation (CPR)] were predictive of postoperative

reduced cost and reduced global/nodal efficiency (p < 0.05). Anthropometric

measurements (weight, length, and head size) predicted tractography

outcomes. Total BDS was not predictive of brain network topology. However,

key subcortical components of the BDS score did predict key global and nodal

network topology: abnormalities of the cerebellum predicted reduced cost

(p < 0.0417) and of the hippocampus predicted reduced global efficiency

(p < 0.0126). All three subcortical structures predicted unique alterations of

nodal efficiency (p < 0.05), including hippocampal abnormalities predicting

widespread reduced nodal efficiency in all lobes of the brain, cerebellar

abnormalities predicting increased prefrontal nodal efficiency, and olfactory

bulb abnormalities predicting posterior parietal-occipital nodal efficiency.

Conclusion: Patient-specific (d-TGA anatomy, preoperative impairment of

fetal cerebral substrate delivery) and postoperative (e.g., seizures, need for

ECMO, or CPR) clinical factors were most predictive of diffuse postnatal
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microstructural dysmaturation in term CHD neonates. Anthropometric

measurements (weight, length, and head size) predicted tractography

outcomes. In contrast, subcortical components (cerebellum, hippocampus,

olfactory) of a structurally based BDS (derived from CHD mouse mutants),

predicted more localized and regional postnatal microstructural differences.

Collectively, these findings suggest that brain DTI connectome and seed-

based tractography are complementary techniques which may facilitate

deciphering the mechanistic relative contribution of clinical and genetic risk

factors related to poor neurodevelopmental outcomes in CHD.

KEYWORDS

congenital heart disease, diffusion tensor imaging, connectome analysis, seed-based
tractography, subcortical brain dysmaturation, magnetic resonance imaging, clinical
factors

Background

Congenital heart disease (CHD) is the most prevalent
birth defect, accounting for nearly one third of all major
congenital anomalies (van der Linde et al., 2011). While
surgical techniques have vastly improved survival in the past
few decades, with most children with complex CHD now
living to adulthood, neurodevelopmental impairments have
emerged as one of the most common long-term sequelae of
CHD survivors, including the realms of cognition, memory,
social interaction, communication and language, attention, and
executive function (Bellinger et al., 2009; Marino et al., 2012;
Mussatto et al., 2014; Cassidy et al., 2015; Gaynor et al., 2015;
Pike et al., 2016). Neonates with CHD display findings of
brain dysmaturation as well as vulnerability to brain injury,
assessed by magnetic resonance imaging (MRI) (Miller et al.,
2007; Licht et al., 2009; Panigrahy et al., 2016). The cause
of the widespread neurodevelopmental delays seen in CHD
children are likely multifactorial, stemming from prenatal,
genetic, and postnatal factors. Abnormalities of brain growth
and microstructure in CHD have fetal origins (Limperopoulos
et al., 2010; Rajagopalan et al., 2018), and may result from
impaired oxygen and substrate delivery to the developing brain
based on alterations of fetoplacental circulation related to the
CHD (Sun et al., 2015). Neurodevelopmental impairments in
the CHD population correlate more with brain immaturity
rather than injury (Beca et al., 2013; Rollins et al., 2014).
Therefore, the traditional “lesion-based approach” to specific
brain injuries driving the widespread cognitive dysfunction seen
in CHD seems to fall short.

A brain connectome approach has emerged in recent years
as a new paradigm to understand the complexity of functional
neural networks and how they influence human behavior. This
type of analysis has also been used to evaluate adolescents
with d-transposition of the great arteries (d-TGA), in which

network topology differences were found to mediate multiple
domains of adverse neurocognitive outcomes (Panigrahy et al.,
2015a). We have recently described a quantitative data-driven
network topology (connectome) graph analysis to compare
neonates with CHD to normal controls, and demonstrated
the early presence of brain reorganization in CHD neonates
(Schmithorst et al., 2018; Bhroin et al., 2020; Feldmann
et al., 2020; Ji et al., 2020; Ramirez et al., 2022). Other
recent studies have described aberrant diffusion tensor -
based connectome in CHD neonates and infants in both
preoperative and postoperative periods, finding distinct patterns
of structural network topology alterations (Schmithorst et al.,
2018; Bhroin et al., 2020; Feldmann et al., 2020; Ji et al.,
2020; Ramirez et al., 2022). There is also recent literature
to suggest that genetic factors might impact the structural
connectome in CHD (Ji et al., 2020; Patt et al., 2022). While
the connectome technique is a robust analytical tool, there are
other hypothesis-driven approaches that have been applied to
quantifying diffusion tensor-based data in CHD which includes
seed-based tractography that facilitates quantitative metrics of
cortical association tracts. Of note, pre-clinical surgical based
animal models of CHD show that the postnatal subventricular
zone is vulnerable to neurotoxicity from volatile anesthetic
agents (Brambrink et al., 2010, 2012) and hypoxia, resulting
in diffuse white matter injury (WMI) of white matter tracts,
including the superior longitudinal fasciculus (SLF), inferior
longitudinal fasciculus (ILF), and fronto-occipital fasciculus
(FOF), assessed by diffusion tensor imaging (DTI) tractography
techniques. Diffuse WMI also correlates with cortical long-range
connectivity dysmaturation. In contrast, focal WMI, acquired
in CHD infants on serial preoperative/immediate postoperative
brain MRIs (usually performed on 7–14 postnatal days and
are detected with 3D-T1 based MR imaging), involve punctate
periventricular fronto-parietal white matter lesions involving
long-range connectivity crossing-fibers (Beca et al., 2009, 2013;
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Petit et al., 2009; Block et al., 2010; McQuillen and Miller,
2010; Gaynor et al., 2016; Peyvandi et al., 2019), also caused by
hypoxia/inflammation.

A recent published study comparing critical/serious CHD
prior to surgery and 116 matched healthy controls as part of
the developing Human Connectome Project imaged with high
angular resolution diffusion MRI (HARDI) and processed with
multi-tissue constrained spherical deconvolution, anatomically
constrained probabilistic tractography (ACT) and spherical-
deconvolution informed filtering of tractograms (SIFT2) was
used to construct weighted structural networks, and identified
one subnetwork with reduced structural connectivity in CHD
infants involving basal ganglia, amygdala, hippocampus, and
the cerebellar vermis (Bhroin et al., 2020; Feldmann et al.,
2020). We have recently described a similar pattern of structural
subcortical dysmaturation both in human infants with CHD
and genetically relevant ciliary motion dysfunction, and also in
relation to preclinical models of CHD including hypoplastic left
heart syndrome (HLHS) (Panigrahy et al., 2014, 2015b, 2016;
Votava-Smith et al., 2017; Ceschin et al., 2018; Gabriel et al.,
2018; Subramanian et al., 2019). This pattern of subcortical
dysmaturation was predominantly seen in the olfactory bulb
(dysmorphometry of left and right olfactory bulbs and sulci),
the cerebellum (hypoplasia and/or dysplasia in cerebellar
hemispheres and vermis) and the hippocampus (hypoplasia or
malrotation) are components of a larger spectrum of structural
abnormalities including extra-axial CSF fluid increases, corpus
callosum abnormalities, choroid plexus abnormalities and
brainstem dysplasia that we have recently observed in both
human CHD patients and preclinical CHD mouse models
(Panigrahy et al., 2014, 2015b, 2016; Votava-Smith et al., 2017;
Ceschin et al., 2018; Gabriel et al., 2018; Subramanian et al.,
2019). As such, we have derived a composite Brain Dysplasia
Score (BDS) which was previously created with one point given
for each positive finding in any of thirteen parameters including:
hypoplasia in cerebellar hemispheres and vermis; dysplasia
in cerebellar hemispheres and vermis; supratentorial extra-
axial fluid; dysmorphometry of left and right olfactory bulbs
and sulci; abnormalities in hippocampus and choroid plexus;
malformation of corpus callosum; and brainstem dysplasia
(Panigrahy et al., 2014, 2015b, 2016; Votava-Smith et al., 2017;
Ceschin et al., 2018; Gabriel et al., 2018; Subramanian et al.,
2019). There is little known about the relationship of these
milder structural dysplastic abnormalities (relative to more gross
brain malformation) to white matter connectivity.

Here, we sought to use our quantitative data-driven
approach to primarily correlate clinical risk factors in CHD
neonates to abnormalities of white matter connectivity using
two complementary techniques: structural network topology
(connectome) and seed based tractography. We first compared
patient specific and preoperative clinical factors to network
topology and tractography alterations on a preoperative
neonatal brain MRI, and intra and postoperative clinical factors

to network topology alterations on postoperative neonatal
brain MRI. Secondarily, we correlated our previously derived
total BDS score (and its subcortical components including
olfactory, cerebellar, and hippocampal dysmaturation) with
similar methodologies as our primary aim including structural
network topology (connectome) and seed-based tractography
measurements. As such, we tested the hypothesis that clinical
risk factors would predict distinct patterns of microstructural
brain dysmaturation compared to those patterns predicted by
the total BDS score/subcortical components.

Materials and methods

Patients with critical CHD were recruited both pre- and
postnatally for consecutive enrollment in this prospective,
observational neuroimaging study at two large children’s
hospitals [Children’s Hospital Los Angeles (CHLA) and
Children’s Hospital of Pittsburgh (CHP)]. Critical CHD was
defined as defects expected to require corrective or palliative
cardiac surgery within the first month of life. Patients
that had a known major chromosomal abnormality, were
premature (=36 weeks of age), died prior to MRI or had
no MRI performed, or did not require neonatal cardiac
surgery were excluded. The data collection sources included
the electronic medical record. Clinical data collection included
18 patient-specific and 9 preoperative variables associated with
preoperative scan and 6 intra-operative (e.g., cardiopulmonary
bypass, deep hypothermic circulatory arrest times) and 12
postoperative variables associated with postoperative scan that
were selected based on prior literature on neurodevelopmental
research in CHD as well as criteria included in the RACHS-
1 scoring system; these are listed in Table 1 (Jenkins
et al., 2002; Limperopoulos et al., 2002; Mahle et al.,
2002; Beca et al., 2013). CHD lesions were classified in
several ways (not mutually exclusive) including cyanotic vs.
acyanotic defects, presence of aortic arch obstruction, single
vs. double ventricle defects, presence of d-TGA, presence of
a conotruncal defect (which includes d-TGA as well as other
lesions with altered conal septal/outflow tract relationships
such as tetralogy of Fallot, double outlet right ventricle,
truncus arteriosus, etc.), and presence of heterotaxy. CHD
lesions were additionally classified by impairment of fetal
substrate delivery, i.e., how a CHD lesion impacts the fetal
circulation which aims to direct the highest oxygen and
nutrient rich blood from the placenta toward the fetal
brain. This severity score included normal (isolated septal
and arch defects), altered (which includes single ventricles,
tetralogy of Fallot, and other lesions which have fetal
intracardiac mixing), and severely altered (which includes
d-TGA and its variants which results in direction of the
least oxygen and nutrient rich blood to the fetal brain)
(Sun et al., 2015). Parental consent was obtained, and the

Frontiers in Neuroscience 04 frontiersin.org

100101

https://doi.org/10.3389/fnins.2022.952355
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-952355 November 18, 2022 Time: 10:52 # 5

Votava-Smith et al. 10.3389/fnins.2022.952355

TABLE 1 Demographic characteristics of final 110 subjects with
analyzable diffusion tensor imaging (DTI) in study group.

Factor Total or
average (% or

SD)

Innate factors and
cardiac lesions

Male sex 80 (73%)

Gestational age at birth, weeks 38.9 (0.9)

Birth weight, gm 3,216 (517)

Birth weight percentile 39 (30)

Head circumference, cm 34.3 (2.8)

Head circumference percentile 41 (31)

Birth length, cm 49.0 (5.9)

Birth length percentile 36.0 (31.4)

APGAR at 1 and 5 min 7.5 (2), 8.4 (1.2)

22q11 microdeletion 10 (9%)

Cyanotic heart disease 99 (90%)

Arch obstruction 45 (41%)

Single ventricle 49 (45%)

With arch obstruction 39 (35%)

d-TGA 38 (35%)

Conotruncal defect 70 (64%)

Heterotaxy 8 (7%)

Severity of altered fetal cerebral
substrate delivery

Normal 11 (10%)

Altered 69 (63%)

Severely altered (d-TGA
physiology)

30 (27%)

Preoperative factors Preop arterial blood gas Ph 7.44 (0.066)

Preop arterial blood gas pO2 50.5 (31.8)

Preop arterial lactate (mmol/L) 1.7 (0.7)

Preop renal dysfunction 0

Preop hepatic dysfunction 1 (1%)

Preop inotrope use 44 (40%)

Age at surgery (days) 6.9 (5)

Age at surgery ≤ 7 days 81 (67)

Post-conceptional age at surgery
(weeks)

40 (1)

Intraoperative factors Cardiopulmonary bypass used 97 (88%)

Cardiopulmonary bypass time
(minutes)

86 (56)

Aortic cross-clamp used 65 (59%)

Aortic cross-clamp time
(minutes)

41 (39)

Circulatory arrest/DHCA used 91 (80)

Circulatory arrest/DHCA time
(minutes)

17 (20)

Postoperative factors ECMO during 1st hospitalization 22 (20%)

Time on ECMO (days) 5 (2.5)

Delayed sternal closure 86 (78%)

Unplanned intervention(s), 1st
hospitalization (patients)

66 (60%)

Required CPR, 1st hospitalization 10 (9%)

(Continued)

TABLE 1 (Continued)

Factor Total or
average (% or

SD)

Had seizures during 1st
hospitalization

15 (14%)

ICU length of stay, 1st
hospitalization (days)

30 (32)

Hospital length of stay (days) 41 (36)

Expired during 1st hospitalization 6 (6%)

Discharged on antiepileptics 12 (11%)

Discharged with
gastrostomy-tube

26 (24%)

Discharged with tracheostomy
and/or ventilator

7 (6%)

d-TGA, d-transposition of the great arteries; CPR, cardiopulmonary resuscitation;
DHCA, deep hypothermic circulatory arrest; ECMO, extra corporeal membrane
oxygenation; ICU, intensive care unit.

institutional review boards of both institutions approved the
study.

Neonatal brain magnetic resonance
imaging protocol

Preoperative brain imaging was conducted when the
cardiothoracic intensive care unit (CTICU)/cardiology team
determined the patient was stable for transport to the MRI
scanner. A postoperative scan was performed when the patient
was younger than 3 months of postnatal age either as an
inpatient or outpatient. Most of our scans were research
indicated and, as such, no additional sedation/anesthesia was
given for purpose of the scan. Most of the preoperative
scans were performed on non-intubated, non-sedated patients;
however, if a patient was intubated and sedated for clinical
reasons at the time of the scan, their clinically indicated
sedation continued under care of the primary CTICU team. The
postoperative scans were performed after the infant had stepped
down from the CTICU and were done as “feed and bundle”
scans without sedation.

MR data were acquired on a Philips 3T Achieva MR
System (Ver. 3.2.1.1; Philips Healthcare, Foster City, California)
with the use of either a neonatal SENSE coil or a standard
8-channel SENSE head coil. To minimize movement during
imaging, infants were secured in Med-Vac Immobilization Bag
(CFI Medical, Fenton, Michigan) with multiple levels of ear
protection, including ear plugs, MiniMuffs (Natus Medical
Inc., Pleasanton, California), and standard headphones.
Conventional T1-weighted, T2-weighted, and diffusion-
weighted images were acquired and reviewed by 2 pediatric
neuroradiologists for evidence of punctate white matter lesion,
acute focal infarction, and hemorrhage as described previously
(Brambrink et al., 2012).
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Magnetic resonance acquisition
At both sites, a 3T scanner was used for all studies;

scans were acquired on a Phillips Achieva at CHLA and
Siemens Skyra. Newborns were positioned in the coil to
minimize head tilting. Newborns were fitted with earplugs
(Quiet Earplugs; Sperian Hearing Protection, San Diego,
CA) and neonatal earmuffs (MiniMuffs; Natus, San Carlos,
CA). An MR-compatible, vital signs monitoring system
(Veris, MEDRAD, Inc., Indianola, PA) was used to monitor
neonatal vital signs. All scans were performed using a multi-
channel head coil. Volumetric 3D T1 and T2 imaging and
a blood sensitive sequence (GRE or SWI) were performed
to evaluate for punctate WMI and to evaluate for other
major forms of brain injury (infarcts and hemorrhage)
and congenital brain malformations. 2D EPI-DTI with 42
directions, TE/TR = 92 ms/12,600 ms, b = 1,000 s/mm
(Marino et al., 2012), 2 mm slice thickness were acquired; in-
plane resolution was close to 2 mm but varied slightly for
some participants.

Data analysis
Analyses were performed using in-house routines in IDL

(ENVI, Boulder, CO); and routines in SPM8 (Wellcome
Department of Cognitive Neurology, London, UK), FSL
(fMRIB, Oxford, UK), and Brain Connectivity Toolbox (BCT;
Indiana University, Bloomington, IN). A schematic of the graph
analysis pipeline is presented in Figure 1.

Pre-processing and generation of fractional
anisotropy-independent developing white
matter segmentation

Data that was automatically upsampled (factor = 2) by
the scanner reconstruction software (in GE scanners) was
corrected by rebinning the data in the in-plane directions by a
factor of 2. Frames with slice drop-out artifacts were removed
using an automated routine in IDL. Motion and eddy current
artifacts were corrected using routines in FSL, and maps of
FA, axial diffusivity, radial diffusivity, and direction of principal
eigenvector computed. The B0 maps were normalized to the
neonatal anatomical template (Shi et al., 2011) using routines

FIGURE 1

Computational pipeline for processing neonatal diffusion tensor imaging data: first a white matter template is generated in MNI space. Second,
parcellation is performed using a neonatal AAL template; third, different weighted matrixes are generated to facilitate network topology
measures at the global and the nodal levels.
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in SPM8 and these transformations were used to applied to the
FA maps (resampled to 2 mm isotropic resolution). An average
study specific FA template was then constructed in template
space. The FA template was back-transformed into native space
for each participant (using routines in SPM8 and the individual
FA map as the reference) and the neonatal cortical parcellation
atlas (Shi et al., 2011) was also transformed into native space
using that transformation.

In the population studied, FA maps cannot be directly
used in deterministic tractography due to within participant
variations in FA values associated with post-conceptional age,
CHD status, regional differences in myelination status, and
other factors. To account for FA variations, WM probabilistic
maps were computed from segmentations performed using the
FA map, the neonatal WM, gray matter, and CSF templates (Shi
et al., 2011) using spm_preproc8 routine in SPM8. These WM
probability map computed are not dependent on the absolute
values of FA in white matter and were used for the deterministic
tractography.

Tractography and construction of unweighted
and weighted graph matrices

Deterministic tractography in native space was carried
out using routines in IDL. Streamlines were constructed
starting from each voxel with WM probability > 0.78 and
were continued in both directions with stopping criteria of
turning angle > 45 degrees or WM probability < 0.78
(using the white matter template). This threshold was
determined via visual inspection to optimize the tradeoff
between ensuring all streamlines remain in white matter
and ensuring streamlines do not end prematurely due to a
misclassified voxel. Secondary analyses showed that variation
of this parameter did not appreciably affect cost and global
efficiency. Using the parcellation atlas (transformed into native
space) to identify the cortical regions at both ends of each
streamline we generated three 90 × 90 matrices using two
different weighted matrices and one unweighted matrix).
One of the two weighted approaches was termed “average
FA” (each non-diagonal element contains the FA averaged
over all streamlines connecting two regions), and the other
weighted approach was termed “number of tracts” (each non-
diagonal element contains the total number of streamlines
connecting the two regions). The unweighted approach was
termed “adjacency” (each non-diagonal element is either 0
or 1, depending on whether at least one tract connects the
corresponding cortical regions). See Figure 2 for a schematic
of these 3 weighted methods. We interpreted these difference
in weighting as follows: “microstructural” changes reflect more
in mean FA weighting while “macrostructural” change reflects
more the other weighted approach “number of tracts” and the
unweighted approach “adjacency.” Of note, the “number of
tracts” approach likely also weights toward total white matter
volume. Our previous publication using this pipeline provides

more information about the value of these different weighting
within respect to the microstructural architecture (Schmithorst
et al., 2018). The sensitivity of the various graph analyses
(adjacency/# tracts/average FA) lies on a continuum with the
average FA connectome being more sensitive to microstructural
change, as the graph weights are directly related to a DTI
microstructural parameter (FA). Adjacency, on the other hand,
is the least sensitive to microstructural change as it needs
only one streamline to connect between areas, irrespective of
the FA values. In our previously published study in which
the neonates with CHD that are included in this manuscript
were initially compared to healthy controls we found that
the highest degrees of statistical significance for cost/global
efficiency were found in the mean FA and # tracts connectomes,
consistent with the changes in DTI microstructure and with our
secondary analyses relating DTI metrics to network topology
parameters. Macrostructural changes may also be distinguished
from microstructural changes seen here via controlling for
cost in the analysis. Higher significance was seen in the #
tracts and average FA connectomes for the small-worldness
metric controlling for cost, which we interpret as hierarchical
fiber reorganization involving changes in relative strength of
connections (which adjacency is unable to measure) rather than
creation and destruction of connections (Schmithorst et al.,
2018).

Graph analysis
Unweighted (for adjacency matrices) and weighted (for

number of tracts and average FA matrices) metrics were
computed using routines in the C++ version of BCT and
in-house routines in IDL. Global metrics computed included
cost (number of connections), global efficiency, transitivity,
modularity, and small-worldness. Nodal metrics (which have a
value for each of the 90 nodes) (see Supplementary Table 1 for
anatomic labels) included nodal efficiency (adjacency matrices
only). As the modularity and small-world calculations depend
on a stepwise optimization from a random starting point, 100
iterations were used and the results were averaged (small-world)
or maximum value was used (modularity). Additionally, we
examined our nodal level results in context of the developing
brain network topology in the last trimester and early infancy
(Gao et al., 2011, 2013, 2014; Menon, 2011; Thomason et al.,
2014, 2015; Alcauter et al., 2015).

Graph analysis

Graph metrics (global efficiency, modularity, transitivity,
and small-worldness) were computed via the C++ modules
available from the Brain Connectivity Toolbox (BCT;
Indiana University). A brief description for each metric is
given below (Rubinov and Sporns, 2010; Panigrahy et al.,
2015a). Global efficiencyis a measure of network integration
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FIGURE 2

Theoretical interpretations of the different weighted matrices in relation to cost, micro/macro- organization, fiber density/organization, and
volume.

(Bullmore and Sporns, 2012; Panigrahy et al., 2015a). The path
length between two nodes is defined as the shortest distance
between them. Global efficiency is defined as the mean of the
reciprocal path length over all pairs of nodes (e.g., if every
node was directly connected to every other node, the path
lengths would all be one, and global efficiency [mean(1/path
length) would be 1]. In a highly integrated network, the typical
number of steps it takes to get from one node to another is low.
Modularity is a measure of network segregation (Meunier et al.,
2010; Uehara et al., 2012). Modularity is defined as the fraction
of the edges that fall within given modules minus the expected
such fraction if the edges were distributed at random. In a
more modular—or segregated—network, nodes within a given
module are more highly interconnected, and less connected to
nodes outside the module. Modularity was calculated using the
Louvain algorithm (Blondel et al., 2008). Transitivity, another
measure of segregation at the local or nodal level, is calculated
as the proportion of triangles (i.e., where A-B, A-C, and B-C
are all directly connected) relative to incomplete triangles (i.e.,
where A-B and A-C are directly connected, but B-C are not) and
quantifies the frequency of localized clusters within the overall

network. Small-worldness represents the balance of integration
and segregation (Bassett and Bullmore, 2006; Telesford et al.,
2011). Small-worldness is calculated as the ratio of transitivity
to characteristic path length, divided by the ratio of transitivity
to characteristic path length for a random graph with the same
degree distribution; and quantifies the extent to which the
network balances overall efficiency and localized clustering
(Humphries and Gurney, 2008). In a small-world network,
there is only a slight increase in characteristic path length as
compared to a random network (and hence only slightly less
integration), but a large increase in transitivity (and hence much
greater segregation).

Brain dysplasia score methods

The BDS was based on previous correlative analysis of brain
phenotype from CHD mouse mutant and human infant MRI
including a spectrum of subtle brain dysplasia (hypoplasia or
aplasia) including increased extra-axial CSF and abnormalities
of the olfactory bulbs, cerebellum, hippocampus and corpus
callosum and a composite BDS, as previously described

Frontiers in Neuroscience 08 frontiersin.org

104105

https://doi.org/10.3389/fnins.2022.952355
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-952355 November 18, 2022 Time: 10:52 # 9

Votava-Smith et al. 10.3389/fnins.2022.952355

(Panigrahy et al., 2014, 2015b, 2016; Votava-Smith et al., 2017;
Ceschin et al., 2018; Gabriel et al., 2018; Subramanian et al.,
2019). Basic pediatric neuroradiological definitions and criteria
were used from Barkovich and Raybaud (2012) for overall
assessment of brain abnormalities. For olfactory abnormalities,
we assessed for aplasia/hypoplasia of the olfactory blub
within the olfactory groove and aplasia/hypoplasia of the
olfactory sulcus on high resolution coronal T2 images
(Blustajn et al., 2008). Hippocampal abnormalities (hypoplasia/
malrotation/inversion) were identified as previously described
on coronal T1 and T2 images (Sato et al., 2001; Montenegro
et al., 2006; Righini et al., 2006; Bajic et al., 2008, 2012).
Brainstem dysplasia including either hyperplasia/hypoplasia
and asymmetry/disproportion of the any part of the brainstem
(medulla, pons, midbrain) using sagittal and axial T1/T2
imaging based on prior studies by Barkovich et al. (2007).
Corpus callosum dysplasia included focal hypogenesis,
asymmetry/disproportion of different portions of the corpus
callosal (genu, body, splenium, rostrum), or overall abnormal
“arching” or morphology best identified on Sagittal T1/T2
imaging as previously described by Hetts et al. (2006).
A composite was created with one point given for each
positive finding in any of thirteen parameters including:
hypoplasia in cerebellar hemispheres and vermis; dysplasia in
cerebellar hemispheres and vermis; supratentorial extra-axial
fluid; dysmorphometry of left and right olfactory bulbs and
sulci; abnormalities in hippocampus and choroid plexus;
malformation of corpus callosum; and brainstem dysplasia.
Brain injury was assessed using the method described by Licht
et al. (2009).

Seed-based tractography analysis

Iterative mask set refinement
To measure the accuracy of our iteratively developed semi-

automated method, we first generated a “gold-standard” set
by manually delineating the mask sets for the following tracts:
genu, body, and splenium of the corpus callosum; anterior and
posterior segments of the superior longitudinal fasciculus (SLFA
and SLFP, respectively); ILF, FOF, and cortical spinal tract (CST).
Manual mask set delineation was performed following the
guidelines published by Fernandez-Miranda et al. (2012). The
ROIs and ROAs comprising each mask set, and visualization
of each manual mask set has recently been published (Meyers
et al., 2022). All subjects from the CHP and CHLA cohorts were
manually delineated.

The automated tractography was performed by propagating
the above mask sets from a cohort-specific template onto
each subject’s native space diffusion images. We generated
cohort-specific templates using a modified version of the FSL
TBSS pipeline (Smith et al., 2006). First we non-linearly co-
registering all subject FA maps into a standard space, selecting

the most representative subject and setting it as the new
standard space for subsequent registrations. All subjects were
then non-linearly transformed into this new space, generating
a new cohort-specific atlas. This process is iterated until
no measurable improvement in registration is perceived. We
then duplicating the above mask sets, following the identical
anatomical guidelines, onto each the generated cohort template.
The masks were then propagated into each subject’s native
diffusion space using the previously calculated non-linear
transforms. Each tract was delineated in DSI studio using a
deterministic tracking algorithm an FA threshold of 0.1 and
angular threshold of 45 degrees with no manual pruning. We
used four increasingly granular metrics to measure the accuracy
of the semi-automated approach. At each successive mask-
refinement iteration, more emphasis is placed on the more
granular measure. First, as a qualitative measure of cohort-
level accuracy, we projected both the manually delineated tracts
and automated tracts onto the cohort-specific atlas, displaying
the spatial distribution of each tract and level of agreement.
This allows for the detection of obvious points of failure in
the pipeline, as well as a general overview of the variance
in anatomical tract location. Further refinement used DICE
coefficients to compare automated vs. manual tractography, and
finally, along-tract measures of dispersion within cohort was
the final quality check to validate the automated approach. All
tractography values used in this hypothesis-driven analysis used
the output of the automated pipeline.

Statistical analysis

Multivariable regression with false discovery rate (FDR)
correction was used, with covariates including postmenstrual
age at time of scan. The FDR is one way of conceptualizing
the rate of type I errors in null hypothesis testing when
conducting multiple comparisons. We defined our “exposure”
as the patient and clinical factors and the “neuroimaging
outcome measure” as cost (number of connections) and global
and nodal efficiency (network integration) as the outcome,
in each of the 3 differentially weighted connectome methods
(average FA, number of tracts, and adjacency connectomes). The
patient and clinical risk factors were then additionally compared
against seed-based tractography (including FA, radial diffusivity,
and axial diffusivity). Patient specific, cardiac lesion subtype,
and preoperative variables were compared only with the
preoperative MRI scans. The intraoperative and postoperative
exposures were compared only with the postoperative MRI
scans. The BDS, its individual components of cerebellar,
olfactory and hippocampal abnormalities, as well as presence of
brain injury (punctate WMI and stroke) were evaluated against
the three connectome methods on both pre and postoperative
MRI timepoints. The BDS and its individual components
of cerebellar, olfactory, and hippocampal abnormalities were
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evaluated against tractography by FA, radial and axial diffusivity
at preoperative and postoperative time points as well as on
all scans combined.

We have controlled for effect of scanner by not only
including scanner as a covariate but modeling different between-
subject variances dependent on scanner and shown that these
variances are in fact similar in an our prior publication on the
dataset (Schmithorst et al., 2018). We have also demonstrated
from human phantom data a high degree of reliability for graph
metrics (nodal/global efficiency) and DTI metrics (FA/AD)
(Schmithorst et al., 2018).

Outcomes

The primary neuroimaging outcomes for the study were cost
and global and nodal efficiency (connectome) and fractional
anisotropy (FA) (seed-based tractography). The secondary
outcomes were (connectome) modularity and small-worldness
(connectome) and radial and axial diffusivity (seed-based
tractography). These outcomes were based on our prior
publication which compared the network topology of these
CHD patients with healthy controls (Schmithorst et al., 2018).

Results

Two hundred ninety-one subjects were enrolled from June
2009 to October 2016. Of these subjects, 158 met exclusion
criteria including 57 with no MRI done, 38 due to prematurity,
38 passed the age threshold, 11 expired preoperatively, 10
had no neonatal surgery and 4 had a postnatal major genetic
diagnosis. Of the 133 term CHD infants with brain MRI meeting
inclusion criteria, 110 subjects had sufficient imaging quality
for DTI analysis and comprised the study group, including

57 from CHLA and 53 from CHP. This group included
67 preoperative MRI scans and 77 postoperative MRI scans
(Figure 3). Those excluded for insufficient imaging quality
mirrored the demographics of the study group, with 12 from
CHLA and 11 from CHP, and consisted of 10 pre- and 13
postoperative scans.

Table 1 lists patient demographic data and clinical factors.
The majority of the CHD neonates were male (73%), had
cyanotic forms of CHD (90%) including 48% with single
ventricle CHD and 35% with d-TGA, and had surgery
involving cardiopulmonary bypass (88%), with an average
cardiopulmonary bypass time of 86 ± 56 min. Postoperatively,
20% were on extracorporeal membrane oxygenation (ECMO),
14% had seizures, and 9% required cardiopulmonary
resuscitation (CPR) during the first hospitalization. The
mortality rate for the study population prior to discharge
was 6%.

Clinical risk factors vs. connectome

Patient and prenatal factors-correlation with
connectome measures

We analyzed the patient-specific and CHD subtype factors
against the 3 differentially weighted connectome analyses on
preoperative scans and found several CHD subtypes were
related to alterations in global network topology (Tables
2A–C). Aortic arch obstruction (in both single and 2-
ventricle patients combined) predicted altered modularity by
all 3 connectome methods (p = −0.0106 for adjacency,
−0.0098 for number of tracts, and −0.0183 for average FA
connectome), as well as small-worldness in the number of tracts
(p = −0.0141) and average FA (p = −0.0039) connectomes.
D-TGA predicted altered modularity (p = 0.0009) and reduced
cost (p = −0.0442) in the adjacency connectome, as well as

FIGURE 3

Study flow chart and recruitment.
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TABLE 2(A) Correlation between clinical risk factors and global connectome metrics: Adjacency matrix (FDR-corrected).

Cost Global
efficiency

Transitivity Modularity Small
world

Assortativity

Innate factors
and cardiac
lesions

Gestational age at birth 0.3393 0.4742 −0.9632 0.7849 −0.5117 −0.7608

Birth weight −0.3771 −0.5902 −0.7142 0.8003 0.8375 −0.9972

Birth weight percentile −0.0567 −0.1512 −0.5948 0.2046 0.1767 0.2328

Head circumference 0.8768 −0.7604 0.9361 −0.9694 0.956 −0.5454

Head circumference percentile −0.2892 −0.0439 0.8222 0.3757 0.2501 0.7831

Birth length 0.8093 0.9694 −0.4568 −0.5394 −0.3504 −0.8874

Birth length percentile 1 −0.4935 −0.4365 −0.3042 −0.168 0.0565

APGAR, 1 min −0.533 0.5919 −0.2054 −0.4152 −0.8175 −0.334

APGAR, 5 min −0.9119 0.4618 0.4893 −0.833 0.5417 −0.8021

22q11 microdeletion −0.5514 −0.2186 −0.6524 0.9916 −0.7051 0.9463

Single ventricle 0.1528 −0.8881 0.6944 −0.071 −0.232 0.8596

Arch obstruction 0.572 −0.8024 −0.503 −0.0106 −0.0141 0.2608

Single ventricle with arch obstruction 0.4095 −0.5173 0.6432 −0.2468 −0.3673 0.1547

d-TGA −0.0442 −0.3057 −0.4542 0.0517 0.0849 0.8169

Conotruncal defect −0.3726 −0.5388 0.7487 0.009 0.1013 −0.8047

Altered fetal cerebral substrate delivery −0.4349 −0.2581 0.784 0.2262 0.3117 −0.4175

Altered fetal substrate delivery, severity score −0.0559 −0.2424 −0.4373 0.0731 0.3005 0.751

Heterotaxy 0.3437 0.4249 0.577 −0.9005 −0.7657 −0.7109

Preoperative
factors

Preoperative arterial blood gas pH −0.0444 −0.0532 −0.128 0.2902 0.6587 0.8897

Preoperative arterial blood gas pO2 0.7139 0.1438 0.8756 −0.6411 0.6388 −0.2578

Preoperative arterial lactate 0.609 0.6729 0.4887 0.9987 0.4399 −0.2661

Preoperative renal dysfunction 0.5678 −0.6186 −0.8305 0.989 −0.1747 0.1117

Preoperative hepatic dysfunction 0.1413 0.2046 0.1575 0.8789 0.8958 0.8389

Preoperative inotrope use −0.6446 −0.1852 −0.6888 −0.967 −0.0832 −0.4767

Age at surgery, days 0.5973 0.4562 0.3746 0.1595 0.6875 −0.4308

Age at surgery ≤ 7 days −0.7191 −0.5292 0.8511 −0.3441 0.5453 0.9782

Post-conceptional age at surgery, weeks 0.473 0.3836 0.6587 0.2224 0.9365 −0.5161

Intraoperative
factors

Cardiopulmonary bypass used −0.6136 −0.737 −0.66 −0.864 0.7605 −0.1917

Cardiopulmonary bypass time −0.4517 −0.5571 −0.1952 0.4127 −0.593 −0.5451

Aortic cross-clamp used −0.8278 −0.7459 −0.4735 −0.16 −0.8284 −0.2995

Aortic cross-clamp time −0.8423 −0.9097 −0.4466 0.8169 −0.3826 −0.524

Circulatory arrest/DHCA used −0.7393 0.671 0.4861 −0.8968 0.165 −0.0051

Circulatory arrest/DHCA time −0.418 −0.861 0.8306 0.8215 0.031 −0.1187

Postoperative
factors

ECMO during 1st hospitalization −0.9575 −0.6103 −0.7278 −0.2475 −0.088 −0.827

Time on ECMO (days) −0.4635 −0.3165 −0.4087 −0.4905 −0.2352 −0.7835

Delayed sternal closure −0.9673 0.4216 0.8002 0.6009 0.4257 −0.4587

Had unplanned intervention(s), 1st hospitalization −0.8938 −0.7 −0.3149 −0.7572 −0.1424 −0.8704

ICU length of stay, 1st hospitalization −0.7763 −0.6725 −0.4364 −0.9797 −0.6921 0.9291

Hospital length of stay −0.5218 −0.6434 −0.246 0.8926 −0.8239 −0.779

Expired during 1st hospitalization −0.5742 −0.3424 −0.5219 0.9913 −0.4949 0.9834

Required CPR during 1st hospitalization 0.6693 −0.9399 −0.4697 −0.1615 −0.2419 0.7517

Had seizures during 1st hospitalization −0.0388 −0.0714 −0.0704 0.1237 0.3648 −0.7843

Discharged on antiepileptics 0.8048 0.4454 −0.6969 0.9339 0.4292 −0.7385

Discharged with gastrostomy tube 0.9248 −0.9773 −0.1932 −0.3559 −0.1179 0.1806

Discharged with tracheostomy and/or ventilator −0.215 −0.6838 −0.4707 0.6231 0.1736 −0.833

Bold values indicate reference FDR-corrected values.
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TABLE 2(B) Correlation between clinical risk factors and global connectome metrics: Number tracts matrix (FDR-corrected).

Cost Global
efficiency

Transitivity Modularity Small
world

Assortativity

Innate and
cardiac lesions

Gestational age at birth 0.2918 0.1846 0.524 −0.5181 0.4814 −0.7608

Birth weight 0.9739 0.6472 0.6176 −0.2367 0.0759 −0.9972

Birth weight percentile −0.299 −0.3999 −0.8739 −0.8968 0.0725 0.2328

Head circumference 0.2385 0.2246 0.4581 −0.5984 0.8289 −0.5454

Head circumference percentile 0.7785 1 0.429 −0.7041 0.1823 0.7831

Birth length 0.3057 0.2915 −0.8689 −0.5285 −0.2581 −0.8874

Birth length percentile 0.1748 0.2791 0.7156 −0.2275 −0.12 0.0565

APGAR, 1 min −0.9608 0.4852 −0.6635 −0.2196 0.4353 −0.334

APGAR, 5 min −0.7745 0.7962 0.9329 −0.5814 0.6284 −0.8021

22q11 microdeletion 0.3997 0.4856 0.7645 −0.5744 0.9477 0.9463

Single ventricle 0.0825 0.1872 0.1694 −0.2159 −0.1002 0.8596

Arch obstruction 0.575 0.6645 0.8957 −0.0098 −0.0361 0.2608

Single ventricle with arch obstruction 0.1453 0.3584 0.1226 −0.4095 −0.1829 0.1547

d-TGA −0.0043 −0.0058 −0.0203 0.0435 0.101 0.8169

Conotruncal defect −0.5529 −0.4627 −0.7289 0.0111 0.2363 −0.8047

Altered fetal cerebral substrate delivery −0.458 −0.2826 −0.8858 0.1006 0.3929 −0.4175

Altered cerebral substrate delivery severity score −0.0073 −0.0054 −0.046 0.0585 0.3361 0.751

Heterotaxy 0.1544 0.1302 0.3229 −0.6267 −0.3342 −0.7109

Preoperative
factors

Preoperative arterial blood gas pH −0.1056 −0.0875 −0.0558 0.5133 0.7699 0.8897

Preoperative arterial blood gas pO2 0.8971 0.5152 0.8042 −0.6566 0.5429 −0.2578

Preoperative arterial lactate 0.8769 0.9856 0.8261 0.4515 −0.8143 −0.2661

Preoperative renal dysfunction 0.8891 −0.5072 −0.5942 −0.872 −0.0802 0.1117

Preoperative hepatic dysfunction 0.8081 0.9093 0.8589 0.8398 −0.9418 0.8389

Preoperative inotrope use −0.6951 −0.4534 −0.562 0.8415 −0.1463 −0.4767

Age at surgery, days 0.9474 −0.8745 −0.9641 0.3906 −0.5035 −0.4308

Age at surgery ≤ 7 days 0.9424 0.8055 0.455 −0.5178 0.1021 0.9782

Post-conceptional age at surgery, weeks 0.607 0.5579 0.8236 0.9837 0.9641 −0.5161

Intraoperative
factors

Cardiopulmonary bypass used −0.1086 −0.1435 −0.3265 0.187 0.3983 −0.1917

Cardiopulmonary bypass time −0.0759 −0.0765 −0.0663 −0.9521 −0.6056 −0.5451

Aortic cross-clamp used −0.1836 −0.2674 −0.1699 0.2248 0.5837 −0.2995

Aortic cross-clamp time −0.5709 −0.5751 −0.5269 −0.9326 −0.671 −0.524

Circulatory arrest/DHCA used −0.9488 0.8619 0.6678 −0.5385 0.6901 −0.0051

Circulatory arrest/DHCA time −0.8855 0.9394 0.6792 −0.9018 0.2848 −0.1187

Postoperative
factors

ECMO during 1st hospitalization −0.3713 −0.2622 −0.2767 −0.6661 −0.0545 −0.827

Time on ECMO (days) −0.1446 −0.1052 −0.0973 0.9931 −0.0878 −0.7835

Delayed sternal closure −0.5379 −0.6143 −0.6814 0.3623 0.9183 −0.4587

Had unplanned intervention(s), 1st hospitalization −0.3879 −0.3596 −0.1475 −0.6329 −0.0733 −0.8704

ICU length of stay, 1st hospitalization −0.6355 −0.5327 −0.3574 −0.3949 −0.2001 0.9291

Hospital length of stay −0.3037 −0.283 −0.1566 −0.448 −0.1779 −0.779

Expired during 1st hospitalization −0.6103 −0.4601 −0.3885 −0.194 −0.1493 0.9834

Required CPR during 1st hospitalization −0.7533 −0.5378 −0.3742 −0.1507 −0.1666 0.7517

Had seizures during 1st hospitalization −0.1804 −0.1351 −0.1467 0.279 −0.8936 −0.7843

Discharged on antiepileptics −0.9114 −0.8641 −0.8618 0.3822 0.5556 −0.7385

Discharged with gastrostomy tube −0.5563 −0.6523 −0.1695 0.9847 −0.3562 0.1806

Discharged with tracheostomy and/or ventilator −0.0674 −0.1208 −0.1959 0.1477 0.3242 −0.833

Bold values indicate reference FDR-corrected values.
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TABLE 2(C) Correlation between clinical risk factors and global connectome metrics: Average fractional anisotropy matrix (FDR-corrected).

Cost Global
Efficiency

Transitivity Modularity Small
World

Assortativity

Innate and
cardiac lesions

Gestational age at birth 0.2129 0.2726 0.6258 −0.938 −0.9175 −0.7608

Birth weight −0.7891 −0.9483 −0.8389 0.6793 0.9634 −0.9972

Birth weight percentile −0.2619 −0.3833 −0.7516 0.0946 0.2292 0.2328

Head circumference 0.7205 0.9823 0.8313 0.8605 0.9079 −0.5454

Head circumference percentile −0.5598 −0.2367 0.8029 0.4178 0.192 0.7831

Birth length 0.7429 0.856 −0.6331 −0.6738 −0.3599 −0.8874

Birth length percentile 0.9289 −0.7633 −0.47 −0.2075 −0.2277 0.0565

APGAR, 1 min −0.6998 0.6338 −0.3445 −0.4049 −0.8701 −0.334

APGAR, 5 min 0.6623 0.3672 0.3478 −0.4664 0.6321 −0.8021

22q11 microdeletion −0.1672 −0.1146 −0.2041 −0.8494 −0.8558 0.9463

Single ventricle 0.2122 0.918 0.6752 −0.0998 −0.1202 0.8596

Arch obstruction 0.4403 0.8931 −0.6476 −0.0183 −0.0039 0.2608

Single ventricle with arch obstruction 0.8128 −0.4546 −0.9548 −0.1547 −0.1898 0.1547

d-TGA −0.1558 −0.4273 −0.7334 0.0237 0.0353 0.8169

Conotruncal defect −0.2603 −0.3807 0.8804 0.0075 0.0305 −0.8047

Altered fetal cerebral substrate delivery −0.2248 −0.1727 −0.7726 0.3247 0.1395 −0.4175

Altered cerebral substrate delivery severity score −0.1602 −0.4154 −0.7166 0.1529 0.1429 0.751

Heterotaxy 0.4118 0.5625 0.55 0.6015 −0.6252 −0.7109

Preoperative
factors

Preoperative arterial blood gas pH −0.1064 −0.1201 −0.2402 0.5332 0.7033 0.8897

Preoperative arterial blood gas pO2 −0.8363 0.5042 −0.5876 −0.789 0.7652 −0.2578

Preoperative arterial lactate 0.722 0.7662 0.5436 −0.9811 0.2692 −0.2661

Preoperative renal dysfunction −0.789 −0.4613 −0.5181 −0.6232 −0.2445 0.1117

Preoperative hepatic dysfunction 0.8424 0.9009 0.8052 −0.7401 0.6648 0.8389

Preoperative inotrope use −0.2349 −0.0956 −0.2937 −0.7737 −0.128 −0.4767

Age at surgery, days 0.7364 0.6158 0.544 0.1907 −0.9121 −0.4308

Age at surgery ≤ 7 days −0.9697 −0.8198 0.7901 −0.5234 0.307 0.9782

Post-conceptional age at surgery, weeks 0.2976 0.2375 0.3806 0.3008 0.9289 −0.5161

Intraoperative
factors

Cardiopulmonary bypass used −0.1915 −0.2437 −0.2629 −0.5077 0.5177 −0.1917

Cardiopulmonary bypass time −0.0271 −0.0373 −0.0173 0.8561 −0.9387 −0.5451

Aortic cross-clamp used −0.4251 −0.4333 −0.2282 −0.1459 0.9109 −0.2995

Aortic cross-clamp time −0.192 −0.2131 −0.0727 0.6495 −0.4238 −0.524

Circulatory arrest/DHCA used −0.6456 0.8999 0.6391 −0.3985 0.2857 −0.0051

Circulatory arrest/DHCA time −0.594 −0.9883 0.7047 −0.7415 0.0247 −0.1187

Postoperative
factors

ECMO during 1st hospitalization −0.193 −0.0566 −0.2699 −0.1254 −0.1765 −0.827

Time on ECMO (days) −0.0404 −0.0116 −0.0938 −0.2941 −0.379 −0.7835

Delayed sternal closure −0.9928 0.4595 0.6821 −0.5052 0.5109 −0.4587

Had unplanned intervention(s), 1st hospitalization −0.2819 −0.16 −0.2036 −0.4477 −0.3391 −0.8704

ICU length of stay, 1st hospitalization −0.2399 −0.1934 −0.2395 −0.9562 −0.898 0.9291

Hospital length of stay −0.166 −0.2456 −0.1726 0.8774 0.9816 −0.779

Expired during 1st hospitalization −0.0926 −0.0318 −0.1541 0.6219 −0.6581 0.9834

Required CPR during 1st hospitalization −0.2268 −0.0361 −0.0608 −0.7409 −0.2031 0.7517

Had seizures during 1st hospitalization −0.0496 −0.0908 −0.1527 0.2009 0.4436 −0.7843

Discharged on antiepileptics −0.9194 0.9117 −0.6587 −0.9203 0.8254 −0.7385

Discharged with gastrostomy tube −0.8844 −0.8286 −0.2652 −0.257 −0.1839 0.1806

Discharged with tracheostomy and/or ventilator −0.1789 −0.4994 −0.4402 −0.7227 0.2231 −0.833

Bold values indicate reference FDR-corrected values.

Frontiers in Neuroscience 13 frontiersin.org

109110

https://doi.org/10.3389/fnins.2022.952355
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-952355 November 18, 2022 Time: 10:52 # 14

Votava-Smith et al. 10.3389/fnins.2022.952355

reduced cost (p = −0.0043), global efficiency (p = −0.0058),
and transitivity (p = −0.0203) in the number of tracts
connectome, and increased modularity (p = 0.0237) and
small-worldness (p = 0.0353) in the average FA connectome.
The prenatal cerebral substrate delivery severity score, which
separated CHD lesions by how much alteration there is
in the typical fetal circulation which directs the highest
oxygen and nutrient rich blood from the placenta to the
fetal brain, was also a strong predictor of lower cost
(p = −0.0073) and global efficiency (p = −0.0054) in the
number of tracts connectome. Conotruncal CHD subtype
(which includes d-TGA as well as other lesions with altered
conal septal/outflow tract relationships such as tetralogy
of Fallot, double outlet right ventricle, truncus arteriosus,
etc.) predicted modularity (p = 0.0075) and small-worldness
(p = 0.0305) in the average FA connectome. Assortativity
was not associated with the CHD subtypes by any of the
methods. The only biometric parameter found to have an
association was head circumference percentile which had a
weak relationship with reduced global efficiency (p = −0.0439)
and the only preoperative variable with a network topology
association was preoperative arterial blood gas pH predicting
reduced cost (p = −0.0444). These results are given in Tables
2A–C.

In the analysis of nodal network topology, increased severity
of fetal cerebral substrate delivery was associated with reduced
nodal efficiency in multiple areas, shown in Figure 4 (anatomic
location of nodes—Precuneus Right (PCUN-R), Postcentral
Gyrus Right (PoCG-R), Precentral Gyrus Right (PreCG-R),
Supplementary Motor Area Right (SMA-R), Middle Frontal
Gyrus Right (MFG-R), Thalamus Right (THA-R), Superior
Temporal Gyrus Right (STG-R), Hippocampus Right (HIP-
R), Insula Right (INS-R), Caudate Right (CAU-R), Anterior
Cingulate Gyrus Right (ACG-R), Superior Frontal Gyrus Medial
Right (SFGmed-R).

Intraoperative factors
Associations between intraoperative factors and global

network topology on the postoperative MRI (Tables 2A–C) were
as follows: Time on cardiopulmonary bypass was associated with
decreased cost (p = −0.0271), global efficiency (p = −0.0373),
and transitivity (p = −0.0173) in the average FA connectome.
Use of circulatory arrest/DHCA (deep hypothermic circulatory
arrest) was associated with decreased assortativity in all 3
connectome methods (p = −0.0051 for adjacency, number of
tracts and average FA) and minutes of circulatory arrest/DHCA
were associated with alterations of small-worldness in the
adjacency (p = 0.031) and average FA (p = 0.0247) connectomes
(Tables 2A–C). There were no significant associations at a nodal
level with the intraoperative factors.

FIGURE 4

Three major clinical risk factors: (prenatal) severity of fetal cerebral substrate delivery correlates with preoperative reduced nodal efficiency in
fronto-temporal, paralimbic, and parietal regions; (postoperative) presence of seizures and ECMO predict reduced nodal efficiency in similar
regions on the postoperative MRI scan. Severity of Fetal Cerebral Substrate Delivery Pre-Operative MR Scan: Hippocampus Right (HIP-R),
Superior Temporal Gyrus Right (STG-R), Thalamus Right (THA-R), Precuneus Right (PCUN-R), Postcentral Gyrus Right (PoCG-R), Precentral
Gyrus Right (PreCG-R), Middle Cingulate Gyrus Right (MCG-R), Insula Right (INS-R), Caudate Right (CAU-R), Anterior Cingulate Gyrus Right
(ACG-R), Superior Frontal Gyrus Medial Right (SFGmed-R), Middle Frontal Gyrus Right (MFG-R), Supplementary Motor Area Right (SMA-R).
Seizures Post-Operative MR Scan: Superior Occipital Gyrus Right (SOG-R), Middle Occipital Gyrus Right (MOG-R), Calcarine Right (CAL-R),
Heschl GyrusRight (HES-R), Putamen Right (PUT-R). ECMO Post-Operative MR Scan: Superior Parietal Gyrus Right (SPG-R), Postcentral Gyrus
Right (PoCG-R), Supramarginal Gyrus Right (SMG-R), Middle Central Gyrus Right (MCG-R), Rolandic Operculum Right (ROL-R), Thalmus Right
(THA-R), Hippocampus Right (HIP-R), Putamen Right (PUT-R), Pallidum Right (PAL-R), Caudate Right (CAU-R), Superior Frontal Gyrus Medial
Right (SFGmed-R).
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Postoperative factors
In the global network topology analysis (Tables 2A–C),

postoperative seizures were associated with decreased cost in the
adjacency connectome (p = −0.0388) and with reduced global
efficiency in the average FA connectome (p = −0.0496). Time on
ECMO predicted reduced cost (p = −0.404) and global efficiency
(p = −0.0116) in the average FA connectome. Undergoing CPR
(including chest compressions) and expiration during the first
hospitalization both predicted reduced global efficiency in the
average FA connectome (p = −0.0318, −0.0361, respectively).

In the nodal analysis by postoperative time points, having
seizures postoperatively and time on ECMO both demonstrated
multiple associations with decreased efficiency in nodal areas,
shown in Figure 4 [anatomic location of nodes- Seizures Post-
Operative MR Scan: Superior Occipital Gyrus Right (SOG-
R), Middle Occipital Gyrus Right (MOG-R), Calcarine Right
(CAL-R), Heschl Right (HES-R), Putamen Right (PUT-R)
ECMO Post-Operative MR Scan: Superior Parietal Gyrus Right
(SPG-R), Postcentral Gyrus Right (PoCG-R), Supramarginal
Gyrus Right (SMG-R), Middle Central Gyrus Right (MCG-R),
Rolandic Operculum Right (ROL-R), Thalmus Right (THA-
R), Hippocampus Right (HIP-R), Putamen Right (PUT-R),
Pallidum Right (PAL-R), Caudate Right (CAU-R), Superior
Frontal Gyrus Medial Right (SFGmed-R)].

Clinical risk factor vs. tractography

The clinical risk factors were analyzed against tractography
including FA, radial diffusivity, and axial diffusivity of the
following areas: genu, body, and splenium of the corpus
callosum, right and left CST, FOF, ILF, SLF.

Clinical risk factor vs. fractional anisotropy
When the clinical risk factors were compared against

DTI tractography by FA (Supplementary Tables 2A–D),
several intraoperative variables were found to have
association with postoperative FA tractography outcomes.
Time on cardiopulmonary bypass correlated with mean
FA of the left FOF (p = 0.0242). Aortic cross-clamp
time was associated with abnormal FA of the genu
and splenium of the corpus callosum (p = 0.0033 for
both, Supplementary Table 2C). After FDR correction,
tractography by FA did not have significance with any
of the patient-specific, CHD subtype, preoperative,
or postoperative clinical parameters (Supplementary
Tables 2A,B,D).

Clinical risk factor vs. radial diffusivity
When the clinical risk factors were compared against

DTI tractography by radial diffusivity, multiple associations
were found with the patient-specific factors specifically the
neonatal anthropometric parameters and preoperative scans

(Supplementary Table 2A). Newborn biometry was predictive
of increased radial diffusivity of the genu, body, and splenium
of the corpus callosum including birth weight (p = 0.041
genu, 0.0066 body, 0.0176 splenium), birth weight percentile
(p = 0.0055 genu, 0.0022 body, 0.0055 splenium), head
circumference (p = 0.0147 genu and body, 0.0198 splenium),
and birth length percentile (p = 0.0407 for all 3). Birth weight
was also predictive of increased radial diffusivity of the left
SLF (p = 0.0187) and birth weight percentile with increased
radial diffusivity of the right CST (p = 0.02), left FOF and
right ILF (p = 0.0426), both right and left SLF (p = 0.0297 R
and 0.02 L). Head circumference percentile predicted increased
radial diffusivity of the left FOF (p = 0.0147), and birth length
percentile of the inferior (p = 0.0407 R and L) and SLF
(p = 0.0407 R, 0.0418 L). The 1-min APGAR score correlated
with increased radial diffusivity of the corpus callosum body, left
FOF, left ILF, and right SLF (p = 0.0204 for all).

Among the intra-operative factors, cardiopulmonary bypass
time predicted increased radial diffusivity of the left FOF
(p = 0.0242) and aortic cross-clamp time predicted increased
radial diffusivity of the genu and splenium of the corpus
callosum on postoperative scans (p = 0.0033) (Supplementary
Table 2C). None of the CHD subtype categories, preoperative
clinical factors, or postoperative clinical factors predicted radial
diffusivity of any of the structures assessed (Supplementary
Tables 2A,B,D).

Clinical risk factor vs. axial diffusivity
When the clinical risk factors were compared against

DTI tractography by axial diffusivity, the findings were quite
similar to those for radial diffusivity. For axial diffusivity,
again multiple associations were found with the patient-specific
factors specifically the neonatal anthropometric parameters on
preoperative scans (Supplementary Table 2A). Birth weight was
predictive of increased axial diffusivity of the corpus callosum
body and left SLF (p = 0.0182). Birth weight percentile predicted
increased axial diffusivity of the corpus callosum (p = 0.0072
genu, 0.0066 body, 0.0176 splenium), right CST (p = 0.0114),
left FOF (p = 0.0327), and both SLF (p = 0.0207 R and
0.0157 L). Head circumference percentile predicted increased
axial diffusivity of the of the corpus callosum (p = 0.0017 genu,
0.0077 body, 0.0132 splenium) and the left FOF (p = 0.0017),
left ILF (p = 0.0132), and bilateral SLF (p = 0.0478 R, 0.0257 L).
Birth length percentile predicted increased axial diffusivity of the
corpus callosum body (p = 0.0226) and splenium (p = 0.0315),
right CST (p = 0.0315), and bilateral ILF (p = 0.0315 R, 0.0187 L)
and SLF (p = 0.0352 R, 0.0330 L). The 1-min APGAR score
correlated with increased radial diffusivity of the left FOF
(p = 0.0231).

Among the intra-operative factors, cardiopulmonary bypass
time predicted increased postoperative axial diffusivity of the
left FOF (p = 0.0242) and aortic cross-clamp time predicted
increased axial diffusivity of the genu and splenium of the corpus
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callosum (p = 0.0033) (Supplementary Table 2C). None of
the CHD subtype categories, preoperative clinical factors, or
postoperative clinical factors predicted radial diffusivity of any
of the structures assessed (Supplementary Tables 2A,B,D).

Brain injury and brain dysplasia score (including
subcortical components) findings

A total of 24 subjects had brain injury (22%) including
12 (11%) with punctate WMI, and 6 (5%) with stroke. The
majority of the injury was seen on the preoperative scan
(83% of punctate WMI and 67% of stroke occurred on
preoperative scan). BDS was 3.6 ± 3.3. Brain dysplasia included
21 (19%) with cerebellar hypoplasia/dysplasia, 49 (45%) with
olfactory bulb/sulcus abnormality, 45 (41%) with hippocampal
hypoplasia/dysplasia.

Brain dysplasia score (including subcortical
components) vs. connectome

Brain dysplasia was evaluated against global network
topology via the 3 differentially weighted connectome analysis
methods at both pre and postoperative time points (Table 3).
BDS was not predictive of brain network topology by any
of the methods. However, abnormalities of the cerebellum on
preoperative scans predicted reduced cost in all 3 connectomes
(p = −0.0417 adjacency, p = −0.0117 number of tracts,
p = −0.0388 average FA) and reduced global efficiency in the
number of tracts connectome (p = −0.0467). Abnormalities
of the hippocampus on preoperative scans predicted reduced
global efficiency (p = −0.0126) in the adjacency connectome.
Olfactory abnormalities on the preoperative scan predicted
increased modularity by the number of tracts connectome
(p = 0.021).

Among the brain injury variables, punctate WMI on the
preoperative scan predicted reduced cost in the adjacency
connectome (p = −0.0401), and stroke on the postoperative scan
predicted multiple abnormalities in the adjacency connectome
including reduced cost (p = −0.0437), global efficiency
(p = −0.0285), transitivity (p = −0.0439), and increased
modularity (p = 0.0381). The composite brain injury did not
predict any connectome metrics (Table 3).

Abnormalities of the subcortical structures including
hypoplasia/dysplasia of the cerebellum, hippocampus, and
olfactory bulb/sulci predicted altered nodal efficiency in
multiple areas (p < 0.05, Figure 5). The patterns of nodal
prediction were unique for each subcortical structures with
the hippocampus abnormalities predicting widespread reduced
nodal efficiency in all lobes of the brain, the cerebellum
abnormalities predicting increased prefrontal nodal efficiency
and the olfactory bulb abnormalities predicting posterior
parietal-occipital nodal efficiency. The anatomic location of
these nodes were: (1) Hippocampal Hypoplasia/Dysplasia:
Inferior Temporal Gyrus Left (ITG-L), Amygdala Left (AMYG-
L), Putamen Left (PUT-L), Insula Left (INS-L), Caudate

Left (CAU-L), Inferior Frontal Gyrus Pars Triangularis Left
(IFGtriang-L), Pallidum Left (PAL-L), Superior Frongal Gyrus
Medial Left (SFGmed-L), Midddle Frontal Gyrus Left (MFG-
L), Superior Frontal Gyrus Left (SFGdor-L), Supplementary
Motor Area Left (SMA-L), Precentral Gyrus Left (PreCG-
L), Paracental Lobule Left (PCL-L), Postcentral Gyrus Left
(PoCG-L), Superior Parietal Gyrus Left (SPG-L), Precuneus
Left (PCUN-L), Cuneus Left (CUN-L), Calcarine Left (CAL-
L), Thalamus Left (THA-L), Hippocampus Left (HIP-L); (2)
Cerebellar Hypoplasia/Dysplasia: Gyrus Rectus Left (REC-
L), Inferior Frontal Gyrus Pars Triangularis Left (IFGtriang-
L), Superior Frontal Gyrus Medial Left (SFGmed-L), Middle
Frontal Gyrus Left (MFG-L), Superior Frontal Gyrus Left
(SFGdor-L), Precentral Gyrus Left (PreCG-L), Postcentral
Gyrus Left (PoCG-L); (3) Olfactory Hypoplasia/Dysplasia:
Superior Temporal Pole Left (TPOsup-L), Hippocampus Left
(HIP-L), Middle Occipital Gyrus Left (MOG-L), Superior
Occipital Gyrus Left (SOG-L), Superior Parietal Gyrus Left
(SPG-L), Middle Central Gyrus Left (MCG-L).

Brain dysplasia score (including subcortical
components) vs. tractography

The brain dysplasia metrics were analyzed against
tractography including FA, radial diffusivity, and axial
diffusivity of the following areas: genu, body, and splenium of
the corpus callosum, right and left CST, FOF, ILF, SLF. This
analysis took place on preoperative scans, postoperative scans,
and all scans combined (Table 4).

FA of the right CST on all scans combined correlated with
global BDS (p = 0.0495) and FA of the bilateral CST correlated
with cerebellar dysplasia (p = 0.0036 R, p = 0.0223 L) for
all scans combined as well as for the preoperative scans only
(p = 0.0288 R).

Radial diffusivity of multiple tracts demonstrated
multiple correlations with brain dysplasia parameters. Radial
diffusivity of the corpus callosum correlated with BDS on
preoperative scans alone (p = 0.0029 genu, 0.0173 body,
0.002 splenium) and all scans combined (p = 0.025 genu,
0.0086 splenium), with cerebellar hypoplasia/dysplasia
on preoperative only scans (p = 0.0275 genu, 0.0391
body, < 0.0001 splenium) and all scans combined (p = 0.0004
splenium), and hippocampal hypoplasia/dysplasia on both
preoperative only scans (p = 0.0133 genu, 0.0002 body,
0.0004 splenium) and all scans combined (p = 0.0282 genu,
0.0029 body, 0.0005 splenium). Radial diffusivity of the left
FOF correlated with BDS (p = 0.0415) and hippocampal
abnormalities (p = 0.0034) and of the right FOF with
cerebellar anomalies (p = 0.0459) all on preoperative scans.
Radial diffusivity of the left ILF correlated with BDS on
preoperative (p = 0.018) and all scans (p = 0.0044), with
cerebellar abnormalities on preoperative (p = 0.0287) and
all scans (p = 0.0088), and with hippocampal abnormalities
on preoperative (p = 0.0054) and all scans (p = 0.082).
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TABLE 3 Correlation between subcortical brain dysplasia score (BDS), brain injury and global connectome metrics (FDR-corrected).

Cost Global
efficiency

Transitivity Modularity Small
world

Assortativity

Adjacency matrix, Preoperative
MRI

BDS −0.0817 −0.0525 −0.1839 0.1353 0.218 −0.6677

Cerebellum −0.0417 −0.2953 −0.2506 0.5293 0.1854 −0.3837

Olfactory −0.6433 −0.7436 −0.8967 0.0766 0.1612 −0.3406

Hippocampal −0.1005 −0.0126 −0.0776 0.3526 0.9879 0.1771

Brain Injury −0.0773 −0.0936 −0.2051 0.1927 0.9104 0.6224

Stroke 0.7366 −0.8034 −0.5851 −0.6983 −0.4022 −0.3788

Punctate white mater injury −0.0401 −0.0552 −0.1822 0.2154 −0.7936 0.1389

Adjacency matrix, Postoperative
MRI

BDS 0.1183 0.0806 0.1422 0.3276 −0.1717 −0.4248

Cerebellum 0.3625 0.3195 0.1936 −0.9118 −0.4835 −0.1075

Olfactory 0.137 0.0916 0.0663 0.2404 −0.323 −0.393

Hippocampal 0.3582 0.4186 −0.9307 0.3746 −0.0616 −0.8561

Brain Injury −0.2206 −0.204 −0.2319 0.1666 0.284 0.6022

Stroke −0.0437 −0.0285 −0.0439 0.2592 0.8144 0.0381

Punctate white mater injury −0.7189 −0.6146 −0.4661 0.2569 0.6579 −0.6747

Numbers tracts matrix,
Preoperative MRI

BDS −0.4672 −0.3245 −0.7039 0.0846 0.4401 −0.6677

Cerebellum −0.0117 −0.0467 −0.0762 −0.9661 0.1175 −0.3837

Olfactory 0.6876 0.8216 0.4707 0.021 0.2736 −0.3406

Hippocampal −0.4156 −0.2242 −0.2342 0.997 −0.4147 0.1771

Brain Injury −0.2819 −0.3661 −0.5621 0.7756 0.3986 0.6224

Stroke 0.4722 0.4767 0.7012 −0.1498 −0.8963 −0.3788

Punctate white mater injury −0.1582 −0.2679 −0.344 0.8958 0.5207 0.1389

Numbers tracts postoperative
MRI

BDS 0.1484 0.2503 0.1179 −0.8474 −0.3386 −0.4248

Cerebellum 0.0567 0.0654 0.0697 −0.2503 −0.5315 −0.1075

Olfactory 0.3392 0.4785 0.181 0.488 −0.613 −0.393

Hippocampal 0.1894 0.2657 0.231 −0.1688 −0.2635 −0.8561

Brain Injury −0.0988 −0.0615 −0.1599 −0.9669 0.4344 0.6022

Stroke −0.3329 −0.4203 −0.0995 −0.7676 0.5287 0.0381

Punctate white mater injury −0.5409 −0.4706 −0.5737 −1 0.8858 −0.6747

Average fractional anisotropy
preoperative MRI

BDS −0.5744 −0.544 0.6988 0.4685 0.1233 −0.6677

Cerebellum −0.0388 −0.2154 −0.2026 0.5875 0.1404 −0.3837

Olfactory 0.5741 0.4828 0.5078 0.4721 0.1548 −0.3406

Hippocampal −0.3403 −0.118 −0.2409 0.4253 0.9481 0.1771

Brain Injury −0.2765 −0.3748 −0.445 0.5613 −0.8481 0.6224

Stroke 0.9845 −0.6852 −0.5091 −0.72 −0.1931 −0.3788

Punctate white matter injury −0.1288 −0.2154 −0.3457 0.5821 −0.694 0.1389

Average fractional anisotropy
postoperative MRI

BDS 0.4757 0.5487 0.3432 0.7551 −0.2918 −0.4248

Cerebellum 0.4413 0.5061 0.1702 −0.8609 −0.7585 −0.1075

Olfactory 0.3753 0.394 0.1805 0.6156 −0.4073 −0.393

Hippocampal −0.6546 −0.3959 −0.3226 0.796 −0.1053 −0.8561

Brain Injury −0.0994 −0.1034 −0.1698 0.365 0.3303 0.6022

Stroke −0.1593 −0.1399 −0.1677 0.2267 0.9753 0.0381

Punctate white matter injury −0.6274 −0.5925 −0.5907 0.3855 0.7528 −0.6747

Bold values indicate reference FDR-corrected values.
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FIGURE 5

A brain dysplasia score (BDS) (composed of hippocampal, cerebellar and olfactory hypoplasia/dysplasia components) predicted specific
regional patterns of nodal efficiency suggestive regional brain reorganization and distinct patterns when compared to clinical risk factors
demonstrated in Figure 4. Hippocampal Hypoplasia/Dysplasia: Inferior Temporal Gyrus Left (ITG-L), Amygdala Left (AMYG-L), Putamen Left
(PUT-L), Insula Left (INS-L), Caudate Left (CAU-L), Inferior Frontal Gyrus Pars Triangularis Left (IFGtriang-L), Pallidum Left (PAL-L), Frontal
Superior Gyrus Medial Left (SFGmed-L), Middle Frontal Gyrus Left (MFG-L), Frontal Superior Gyrus Dorsolateral Left (SFGdor-L), Supplementary
Motor Area Left (SMA-L), Precentral Gyrus Left (PreCG-L), Paracental Lobule Left (PCL-L), Postcentral Gyrus Left (PoCG-L), Superior Parietal
Gyrus Left (SPG-L), Precuneus Left (PCUN-L), Cuneus Left (CUN-L), Calcarine Left (CAL-L), Thalamus Left (THA-L), Hippocampus Left (HIP-L).
Cerebellar Hypoplasia/Dysplasia: Gyrus Rectus Left (REC-L), Inferior Frontal Gyrus Pars Triangularis Left (IFGtriang-L), Superior frontal Gyrus
Medial Left (SFGmed-L), Middle Frontal Gyrus Left (MFG-L), Superior Frontal Gyrus Left (SFGdor-L), Precentral Gyrus Left (PreCG-L), Postcentral
Gyrus Left (PoCG-L). Ofactory Hypoplasia/Dysplasia: Superior Temporal Pole Left (TPOsup-L), Hippocampus Left (HIP-L), Middle Occipital Gyrus
Left (MOG-L), Superior Occipital Gyrus Left (SOG-L), Superior Parietal Gyrus Left (SPG-L), Middle Cingulate Gyrus Left (MCG-L).

Radial diffusivity of the right SLF was associated with
hippocampal abnormalities on preoperative only scans
(p = 0.0449).

Axial diffusivity of multiple tracts also demonstrated
correlations with brain dysplasia parameters. Axial
diffusivity of the corpus callosum correlated with BDS on
preoperative scans alone (p = 0.0194 genu, 0.0371 body,
0.0029 splenium) and all scans combined (p = 0.0262
splenium), with cerebellar abnormality on preoperative
only scans (p = 0.0251 genu, < 0.0001 splenium) and all
scans combined (p = 0.0004 splenium), and hippocampal
abnormality on both preoperative only scans (p = 0.0212
genu, 0.0005 body, 0.0003 splenium) and all scans combined
(p = 0.0007 splenium). Axial diffusivity of the left CST
was associated with hippocampal abnormality on all scans
combined (p = 0.0428). Axial diffusivity of the left FOF
correlated with hippocampal abnormalities (p = 0.006) and
of the right FOF with cerebellar anomalies (p = 0.0495)
on preoperative scans. Axial diffusivity of the left ILF
correlated with BDS on preoperative (p = 0.0464) and
all scans (p = 0.0127), with cerebellar abnormalities on
preoperative (p = 0.0422) and all scans (p = 0.007), and with
hippocampal abnormalities on preoperative (p = 0.0082) and
all scans (p = 0.0109). Axial diffusivity of the right SLF was
associated with hippocampal abnormalities on preoperative
scans (=0.0263).

Discussion

Neurodevelopmental deficits are common in infants with
CHD who undergo neonatal open-heart surgery (Bellinger
et al., 1995, 2003, 2009, 2011). Some risk factors for these
deficits are innate (e.g., genetic), but others involve modifiable
medical management (McQuillen et al., 2010; Li et al., 2015;
Gaynor et al., 2016; Marelli et al., 2016; Wernovsky and
Licht, 2016; Zahid et al., 2018). The pathophysiology of CHD-
related neuropsychological impairment is multifactorial, likely
acting through two broad mechanistic pathways, destructive and
developmental (Volpe, 2014). This destructive-developmental
amalgam is mediated by exposure to potentially toxic agents
(e.g., volatile anesthetic agents, inflammation) or deprivation of
essential exposures (e.g., oxygen) (Volpe, 2014). This amalgam
includes diffuse WMI, cortical long-range connectivity, and
focal WMI all of which is likely to impact DTI measures, either
post-processed by connectome or tractography techniques.
Overall, this is the first study to use the brain connectome to look
at the interaction of clinical factors and novel properties of brain
tractography, specifically cost, global efficiency, and modularity.

One of our major findings was that d-TGA anatomy
and a 3-tiered severity score based on alteration of fetal
substrate delivery were both found to be associated with white
matter network topology including lower cost and reduced
global efficiency when looked at through a number of tracts
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TABLE 4 Correlation between brain dysplasia score (BDS) (including subcortical components) and seed-based tractography metrics
(FDR-corrected).

Fractional anisotropy Radial diffusivity Axial diffusivity

Pre Post All Pre Post All Pre Post All

Corpus callosum genu BDS 0.0489 0.6865 0.1426 0.0029 0.8118 0.025 0.0194 0.8855 0.2067
Cerebellum 0.4839 0.5308 0.9382 0.0275 0.6841 0.1982 0.0251 0.7969 0.1702
Olfactory 0.2686 0.9773 0.4723 0.2837 0.6018 0.5085 0.7493 0.7435 0.9642

Hippocampal 0.2468 0.8402 0.6056 0.0133 0.5037 0.0282 0.0212 0.5277 0.061
Corpus callosum body BDS 0.2271 0.5468 0.2399 0.0173 0.8118 0.0921 0.0371 0.782 0.3028

Cerebellum 0.4581 0.9952 0.6303 0.0391 0.6841 0.1746 0.0947 0.6346 0.3295
Olfactory 0.8371 0.7989 0.7452 0.9785 0.6018 0.6941 0.9095 0.6089 0.7182

Hippocampal 0.1839 0.8296 0.3511 0.0002 0.5037 0.0029 0.0005 0.7277 0.0122
Corpus callosum splenium BDS 0.1747 0.9669 0.3038 0.002 0.7703 0.0086 0.0029 0.8771 0.0262

Cerebellum 0.4251 0.7146 0.6587 <0.0001 0.7349 0.0004 <0.0001 0.8891 0.0004
Olfactory 0.3839 0.9184 0.5273 0.3568 0.8085 0.4968 0.3885 0.7682 0.6243

Hippocampal 0.3557 0.7932 0.6366 0.0004 0.2667 0.0005 0.0003 0.2483 0.0007
Cortical spinal tract left BDS 0.5901 0.9105 0.5348 0.9743 0.4924 0.6447 0.8467 0.4859 0.4524

Cerebellum 0.0826 0.1654 0.0223 0.9191 0.9768 0.9458 0.4199 0.5598 0.2825
Olfactory 0.7273 0.564 0.4249 0.4553 0.6249 0.7845 0.3632 0.3673 0.9907

Hippocampal 0.3988 0.6435 0.3048 0.4696 0.3219 0.2178 0.1532 0.1974 0.0428
Cortical spinal tract right BDS 0.1017 0.4165 0.0495 0.6399 0.83 0.8542 0.8008 0.5668 0.4538

Cerebellum 0.0288 0.0601 0.0036 0.8618 0.6913 0.7149 0.4189 0.6118 0.304
Olfactory 0.2036 0.4406 0.1241 0.1285 0.8603 0.2518 0.2291 0.5701 0.5722

Hippocampal 0.2161 0.3139 0.086 0.4347 0.9691 0.5279 0.1214 0.6186 0.1152
Fronto-occipital fasciculus left BDS 0.13 0.719 0.5897 0.0415 0.4147 0.5228 0.0766 0.3593 0.7491

Cerebellum 0.1437 0.4141 0.6858 0.2875 0.8409 0.5211 0.701 0.7798 0.6798
Olfactory 0.8631 0.4291 0.6268 0.5179 0.3852 0.8711 0.4226 0.6026 0.885

Hippocampal 0.1234 0.6281 0.6567 0.0034 0.4102 0.246 0.006 0.3129 0.4062
Fronto-occipital fasciculus right BDS 0.5517 0.4682 0.6938 0.1853 0.209 0.8943 0.1579 0.203 0.9817

Cerebellum 0.4365 0.7093 0.8125 0.0459 0.7901 0.1887 0.0495 0.9664 0.1502
Olfactory 0.7617 0.3383 0.3335 0.9519 0.1469 0.296 0.8176 0.156 0.4367

Hippocampal 0.293 0.3687 0.8473 0.1328 0.1471 0.8483 0.1997 0.0976 0.6319
Inferior longitudinal fasciculus left BDS 0.1906 0.9454 0.2937 0.018 0.1219 0.0044 0.0464 0.1557 0.0127

Cerebellum 0.6072 0.2079 0.8331 0.0287 0.1928 0.0088 0.0422 0.0869 0.007
Olfactory 0.7237 0.6934 0.6289 0.2189 0.1329 0.0548 0.2429 0.1469 0.0638

Hippocampal 0.3554 0.9786 0.7845 0.0054 0.4265 0.0082 0.0082 0.4136 0.0109
Inferior longitudinal fasciculus right BDS 0.2306 0.4673 0.5476 0.1753 0.9759 0.281 0.2829 0.9581 0.4614

Cerebellum 0.5603 0.7997 0.8938 0.4044 0.9935 0.4452 0.5562 0.5805 0.4227
Olfactory 0.6648 0.7904 0.8086 0.3863 0.9766 0.4474 0.366 0.7085 0.3456

Hippocampal 0.1477 0.7262 0.4223 0.0635 0.8869 0.123 0.1317 0.9192 0.2955
Superior longitudinal fasciculus left BDS 0.0788 0.4744 0.1092 0.3259 0.8205 0.5096 0.6847 0.4671 0.9068

Cerebellum 0.9084 0.3257 0.9145 0.888 0.1867 0.441 0.8351 0.2193 0.4204
Olfactory 0.283 0.2389 0.3002 0.783 0.9614 0.836 0.9008 0.8025 0.8044

Hippocampal 0.1171 0.2793 0.4844 0.2186 0.4673 0.1552 0.4839 0.5139 0.3374
Superior longitudinal fasciculus right BDS 0.9582 0.9454 0.5138 0.5083 0.3462 0.7487 0.3416 0.3821 0.81

Cerebellum 0.7902 0.2079 0.413 0.3184 0.2997 0.8822 0.1067 0.6421 0.4454
Olfactory 0.386 0.6934 0.1821 0.5341 0.3417 0.255 0.8247 0.5582 0.5314

Hippocampal 0.4305 0.9786 0.6757 0.0449 0.8933 0.1611 0.0263 0.7581 0.1362

Bold values indicate reference FDR-corrected values.

connectome analysis, which is weighted toward brain volume.
We found that d-TGA additionally resulted in in lower cost,
revealed from a macrostructure perspective in our adjacency
analysis. The altered fetal substrate delivery severity score also
had multiple nodal-level connectome alterations (Figure 4).
Interestingly, the fact that d-TGA patients tend to have
the most impaired prenatal cerebral oxygen and substrate

delivery (Sun et al., 2015) may be a driving factor for these
perturbations given that patients with d-TGA rarely have
identifiable chromosomal or genetic abnormalities, making
genetic underpinnings seem less likely. Remarkably, a previous
connectome study also showed that adolescents with d-TGA
had reduced global efficiency and, importantly, these network
properties mediated poor neurocognitive outcomes in d-TGA
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patients compared to their referent adolescents across every
domain assessed (Panigrahy et al., 2015a). This has important
implications to suggest that neurocognitive perturbation is
mediated by global differences in white matter network
topology, which are already present in the preoperative neonatal
time period.

Our secondary connectome outcome measures included
brain network modularity and small-worldness. Conotruncal
cardiac defect subtype (which includes d-TGA but also
several other cardiac lesions) predicted increased modularity
by all 3 weighted methods, and predicted increased small-
worldness by the number of tracts and average FA methods
(based on volume and microstructure). D-TGA alone, but not
altered fetal cerebral substrate delivery, predicted increased
modularity and small-worldness in the microstructure/fiber
density-weighted model only. Interestingly, a previous study in
adolescents with d-TGA also showed both increased modularity
and small-worldness, suggesting that both our primary and
secondary outcome network abnormalities seen in neonates
have potential to persist over the lifetime (Panigrahy et al.,
2015a). Despite their low postoperative morbidity and the
rarity of need for reinterventions after an initial arterial switch
operation, d-TGA patients have been shown to have suboptimal
neurodevelopmental outcomes extending into adolescence
as shown by the Boston Circulatory Arrest Study (BCAS)
(Bellinger et al., 1995, 2003, 2009, 2011).

In contrast to increased modularity seen in conotruncal
and d-TGA subjects, aortic arch obstruction was found to
be associated with decreased modularity and decreased small-
worldness by all 3 weighted connectome methods. Our study’s
arch obstruction group consisted largely of single ventricle
subjects with arch obstruction (87% of that group), i.e., infants
with HLHS and its variants, a group with a large burden
of neurodevelopmental disability (Mahle et al., 2000; Tabbutt
et al., 2008; Sananes et al., 2021). Others have implicated
problems with modularity with childhood-onset schizophrenia
(Alexander-Bloch et al., 2010) and autism (Shi et al., 2013), but
this has yet to be studied in neonates with CHD. Further work is
needed to understand specifically why modularity is decreased
in patients that had arch obstruction and what implications that
has on their neurodevelopment.

Our connectome results are in contrast to another study
evaluating global network organization in neonates with CHD
prior to heart surgery (De Asis-Cruz et al., 2017). De Asis-
Cruz et al. (2017) found similar global efficiency, cost and small
world levels in CHD infants compared to healthy controls,
and concluded that the brain’s ability to transfer information
efficiently is maintained in CHD. Of note, this differs from our
present study because it was a grouped analysis of 30 CHD
subjects of which 7 had d-TGA, whereas our significant findings
involving cost and global efficiency were in a subset of infants
with d-TGA; additionally they utilized connectome analysis of
blood oxygen level dependent imaging while our study utilized

DTI. Similar to our present findings, our group’s prior work
which compared a group of CHD infants to control infants
using a similar DTI-based connectome via 3 weighted methods,
detected reductions in cost and global efficiency in CHD infants
compared to controls, as well as increased small-worldness after
controlling for cost, in a population which overlaps the group of
our present study and included about 25% d-TGA in the CHD
subjects, compared to 35% in our present study.

Our second major finding was that certain intraoperative
and post-operative risk factors correlated with decreased cost
and global efficiency in the average FA matrix postoperatively.
This is the connectome method weighted to microstructure
and fiber density, and we found that both longer time on
cardiopulmonary bypass intraoperatively and longer time on
ECMO postoperatively were associated with reduced numbers
of connections and reduced network global efficiency. While we
know that patients with CHD that survive ECMO have worse
neurodevelopmental outcomes (Bellinger et al., 2009), little is
known about early markers of differences in brain connectivity
in relation to life-support needs. In fact, one group looked
at infants that were placed on ECMO compared to healthy
full term controls and found that the ECMO patients (albeit
not with CHD) had significant differences in FA measured
on DTI in multiple regions (Schiller et al., 2017). Similarly
we found significant differences in our ECMO patients when
using FA, specifically decreased number of connections and
brain integration (global efficiency). Recently in a porcine
model, Stinnett et al. (2017) looked at cardiopulmonary bypass-
induced FA alterations after heart surgery and found, similar to
our findings, decreased FA (Stinnett et al., 2017). Specifically
they found the most alterations in the frontal cortex and
suggested that that may be an early biomarker for WMI
after cardiopulmonary bypass. An additional postoperative
association in our data was with postoperative seizures and
lower cost seen in both the average FA and adjacency
connectome models. This suggests that seizures are associated
with reduced number of connections on both macrostructure
and microstructure levels. It is interesting that these the 2
clinical factors of time on ECMO and presence of seizures
showed similar alterations in brain cost, as in our previous
study we found these same clinical factors to both be related
to altered brain metabolism (reduced white matter N-acytyl
aspartate postoperatively) in a similar way (Harbison et al.,
2017). Finally, our present study found that reduction in global
efficiency on a microstructural level correlated with infants who
received CPR (including chest compressions) and in infants who
did not ultimately survive to hospital discharge.

The preclinical justification for also using tractography
measurements was demonstrated by Morton et al. (2017) who
recently showed that hypoxic exposure of the gyrencephalic
piglet brain reduced proliferation and neurogenesis in the
postnatal subventricular zone. This resulted in microstructural
diffuse WMI as assessed by FA quantitative DTI of long range

Frontiers in Neuroscience 20 frontiersin.org

116117

https://doi.org/10.3389/fnins.2022.952355
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-952355 November 18, 2022 Time: 10:52 # 21

Votava-Smith et al. 10.3389/fnins.2022.952355

connectivity of the SLF the FOF, and the ILF the metrics used to
calculate the diffuse WMI (Morton et al., 2017). This preclinical
piglet model also showed reduced cortical maturation similar to
human CHD infants, supporting the concept that diffuse WMI
also correlates with cortical long-range connectivity-related
dysmaturation. Clinically, these DTI findings correlate with
neonatal perioperative factors and long-term neurocognitive
outcomes in the adolescent BCAS TGA study (Panigrahy et al.,
2015a; Schmithorst et al., 2016). Unlike the preterm literature,
there are few long-term outcome studies of diffuse WMI in
CHD. Beca et al. (2013) found relative brain immaturity at
3 months of age was associated with reduced performance
in cognition at 2 years of age. Serial total brain volumes of
d-TGA infants were recently shown to be predictive of 18-
month outcomes (Lim et al., 2019). Focal WMI is defined
as punctate hyperintensity punctate periventricular fronto-
parietal white matter lesions on 3D-T1 peri-operative imaging
or “focal non-cystic coagulative necrosis,” involving long-range
connectivity crossing-fibers (Beca et al., 2009, 2013; Petit et al.,
2009; Block et al., 2010; McQuillen and Miller, 2010; Gaynor
et al., 2016; Peyvandi et al., 2019), in full-term CHD neonates.
Focal WMI has been shown to be predictive of short-term motor
impairment in CHD (Beca et al., 2009, 2013; Petit et al., 2009;
Block et al., 2010; McQuillen and Miller, 2010; Brambrink et al.,
2012; Gaynor et al., 2016).

When the clinical risk factors were assessed against
conventional DTI tractography, microstructural dysmaturation
correlated strongly with birth weight and percentile of weight,
length, and head circumference across multiple white matter
tracts, suggesting that even among term CHD neonates there is
range of brain maturation which varies with the child’s biometry
and physical maturation. Reduced FA, and radial and axial
diffusivity of the left FOF was correlated with cardiopulmonary
bypass time, in line with piglet models of cardiopulmonary
bypass using similar techniques (Stinnett et al., 2017), and
reductions of all 3 DTI metrics in the corpus callosum with
aortic cross-clamp time.

It was not surprising that when brain injury was utilized
as an exposure for the connectome metrics, punctate WMI
on preoperative scan predicted reduced cost and stroke on
postoperative scan predicted reduced cost and global efficiency;
however, these alterations were only seen on a macrostructural
level, in the adjacency matrix, and no connectome alterations
were seen by the other weighted methods. Of note, the
previously discussed connectome analysis excluded patients
with injury, so grossly visible injury was not the underpinning
of our connectome results discussed above.

Subcortical brain dysplasia associations with connectome
alterations included (1) cerebellar dysplasia associating with
reduced cost by all three weighted methods, (2) reduced global
efficiency in the volume-based number of tracts analysis, and
(3) hippocampal dysplasia predicting reduced global efficiency
on a macrostructural level, in the adjacency connectome.
Additionally, hippocampal, cerebellar, and olfactory dysplasia

predicted multiple regional patterns of inefficiency on a
nodal level, suggestive of regional brain reorganization.
Taken together with the associations seen between subcortical
dysplasia and tractography analyses, including abnormalities
of the hippocampus, cerebellum, and overall BDS predicting
widespread microstructural dysmaturation in all white
matter tracts evaluated, shared genetic underpinnings to
abnormalities of subcortical structure and white matter
microstructure are likely.

Limitations and future work

There were several limitations to our study. First, we had a
heterogenous group of CHD patients, although they all required
neonatal surgery and we subcategorized them into various
conceptual categories (single ventricle, arch obstruction, TGA,
heterotaxy), a larger sample size of individual defects would
help better describe the differences in the brain’s connectome.
Additionally, we did not have a healthy control group, rather
we compared groups to each other by looking at the clinical
variable of interest. We also had normal values for brain network
topology from previous studies as well as our previous study
comparing CHD to controls that we utilized. In addition, while
most of our newborns were not sedated for the MRI, some
were sedated for clinical reasons, and we do not know what
effect sedation has on brain network topology. Lastly, it will be
important to correlate our neuroimaging findings with longer
term neurodevelopmental outcomes. How these connectome
metrics impact longer-term neurocognition is an important
knowledge gap that our study could address with longitudinal
follow-up of this enrolled cohort.

With regards to statistical considerations, despite FDR
correction of each individual independent model proposed,
our study did have a large number of models related to both
the exposure/predictors (40 separate clinical risk factors and 7
components of the BDS) and primary neuroimaging outcomes
for reach of the three weight [global efficiency (total # of
individual model = 141)] and nodal efficiency (total # of
individual models/node = 141). We did also explore secondary
neuroimaging outcomes including other global connectome
metrics (total # of individual model = 141/metric including
cost, transitivity, modularity, assortativity) and 11 exploratory
tractography measures (total # of individual models = 44/tract).
Despite this, our findings are in alignment with existing
connectome-related and DTI literature in neonates/infants
with CHD as detailed above. Importantly, future work is
needed to replicate these findings with larger-scale more
focused multi-center studies, particularly if any of the most
promising metrics are eventually incorporated into clinical trials
of neuroprotection in CHD. Future work machine learning
techniques may be needed to help establish more succinct
models. Future work is also needed to understand how these
MR brain studies should become part of clinical practice in
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the management of these high-risk neonates and be potentially
standardized with neurodevelopmental testing.

Conclusion

In summary, our work suggests that microstructural
brain connectivity is disrupted in neonates with complex
CHD. Prenatal clinical risk factors (heart lesion subtype
and prenatal cerebral substrate delivery alterations), major
intra and postoperative events (cardiopulmonary bypass time,
ECMO time, and seizures) and preclinical CHD-derived
subcortical dysplasia were the most predictive of connectome-
based neuroimaging outcome measures relative to other pre
and postoperative period clinical risk factors, while patient-
specific anthropometric measurements (weight, length, and
head size percentiles) predicted tractography outcomes. This
is in alignment with the evolving literature that most
of the neurodevelopmental impairment in CHD is related
to patient-specific, prenatal, and unknown genetic factors.
Postoperative factors with implications for high neurological
severity, including seizures and time on ECMO, were highly
predictive of diffuse connective nodal efficiency, identifying high
risk patients with poor outcomes. In addition, intraoperative
factors (including cardiopulmonary bypass and aortic cross-
clamp times) correlated with reduction in tractography metrics,
recapitulating microstructural diffusion correlations of white
mater injury seen in developmental piglet models of cardiac
surgery. Lastly, preclinical-CHD-derived subcortical brain
dysplasia scoring predicted more distinct, localized structural
network topology patterns in conjunction with tractography-
based diffuse microstructural changes, likely reflecting genetic
pathways that are known to impact the connectome and alter
the organization of white matter development in CHD.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved by the University of Pittsburgh. Written informed
consent to participate in this study was provided by the
participants or their legal guardian/next of kin.

Author contributions

JV-S, JG, AH, AP, and CL contributed to the conception
and design of the study. NT, SK, EH, TB, and JJ contributed

to the subject recruitment. VL, VR, GG, WR, BM, and RC
contributed to the data analysis. VL and VS organized the
database and performed the statistical analysis. AP and JV-S
wrote the first draft of the manuscript. JV-S, JG, AH, SC, and GG
wrote sections of the manuscript. All authors contributed to the
manuscript revision, read, and approved the submitted version.

Funding

This work was supported by the Department of Defense
(W81XWH-16-1-0613), the National Heart, Lung, and Blood
Institute (R01 HL152740-1 and R01 HL128818-05), and the
National Heart, Lung and Blood Institute with National Institute
on Aging (R01HL128818-05 S1). Southern California Clinical
and Translational Sciences Institute (NCATS) through Grant
UL1TR0001855. We also acknowledge Additional Ventures for
support (AP, VR, and RC). VR was supported by the Saban
Research Institute, Additional Ventures Foundation and NIH-
NHLBI K01HL153942. NT was supported by the Children’s
Hospital Los Angeles Clinical Services Research Grant and the
NINR K23 Grant 1K23NR019121-01A1.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Author disclaimer

Its contents are solely the responsibility of the authors and
do not necessarily represent the official views of the NIH.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnins.2022.952355/full#supplementary-material

Frontiers in Neuroscience 22 frontiersin.org

118119

https://doi.org/10.3389/fnins.2022.952355
https://www.frontiersin.org/articles/10.3389/fnins.2022.952355/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2022.952355/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-952355 November 18, 2022 Time: 10:52 # 23

Votava-Smith et al. 10.3389/fnins.2022.952355

References

Alcauter, S., Lin, W., Smith, J. K., Gilmore, J. H., and Gao, W. (2015). Consistent
anterior–posterior segregation of the insula during the first 2 years of life. Cereb.
Cortex 25, 1176–1187. doi: 10.1093/cercor/bht312

Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde,
F., et al. (2010). Disrupted modularity and local connectivity of brain functional
networks in childhood-onset schizophrenia. Front. Syst. Neurosci. 4:147. doi: 10.
3389/fnsys.2010.00147

Bajic, D., Moreira, N. C., Wikström, J., and Raininko, R. (2012). Asymmetric
development of the hippocampal region is common: A fetal MR imaging study.
Am. J. Neuroradiol. 33, 513–518. doi: 10.3174/ajnr.A2814

Bajic, D., Wang, C., Kumlien, E., Mattsson, P., Lundberg, S., Eeg-Olofsson,
O., et al. (2008). Incomplete inversion of the hippocampus—a common
developmental anomaly. Eur. Radiol. 18, 138–142. doi: 10.1007/s00330-007-0735-
6

Barkovich, A. J., Millen, K. J., and Dobyns, W. B. (2007). A developmental
classification of malformations of the brainstem. Ann. Neurol. 62, 625–639. doi:
10.1002/ana.21239

Barkovich, A. J., and Raybaud, C. (2012). Pediatric Neuroimaging. Philadelphia:
Lippincott Williams and Wilkins.

Bassett, D. S., and Bullmore, E. (2006). Small-world brain networks.
Neuroscientist 12, 512–523. doi: 10.1177/1073858406293182

Beca, J., Gunn, J., Coleman, L., Hope, A., Whelan, L. C., Gentles, T., et al.
(2009). Pre-operative brain injury in newborn infants with transposition of the
great arteries occurs at rates similar to other complex congenital heart disease and
is not related to balloon atrial septostomy. J. Am. Coll. Cardiol. 53, 1807–1811.
doi: 10.1016/j.jacc.2009.01.061

Beca, J., Gunn, J. K., Coleman, L., Hope, A., Reed, P. W., Hunt, R. W., et al.
(2013). New white matter brain injury after infant heart surgery is associated
with diagnostic group and the use of circulatory arrest. Circulation 127, 971–979.
doi: 10.1161/CIRCULATIONAHA.112.001089

Bellinger, D. C., Bernstein, J. H., Kirkwood, M. W., Rappaport, L. A., and
Newburger, J. (2003). Visual-spatial skills in children after open-heart surgery.
J. Dev. Behav. Pediatr. 24, 169–79. doi: 10.1097/00004703-200306000-00007

Bellinger, D. C., Jonas, R. A., Rappaport, L. A., Wypij, D., Wernovsky, G., Kuban,
K. C., et al. (1995). Developmental and neurologic status of children after heart
surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass.
N. Engl. J. Med. 332, 549–555. doi: 10.1056/NEJM199503023320901

Bellinger, D. C., Newburger, J. W., Wypij, D., Kuban, K. C., duPlesssis, A. J.,
and Rappaport, L. A. (2009). Behaviour at eight years in children with surgically
corrected transposition: The Boston Circulatory Arrest Trial. Cardiol. Young 19,
86–97. doi: 10.1017/S1047951108003454

Bellinger, D. C., Wypij, D., Rivkin, M. J., DeMaso, D. R., Robertson, R. L.
Jr., Dunbar-Masterson, C., et al. (2011). Adolescents with d-transposition of the
great arteries corrected with the arterial switch procedure: Neuropsychological
assessment and structural brain imaging. Circulation 124, 1361–1369. doi: 10.
1161/CIRCULATIONAHA.111.026963

Bhroin, M. N., Seada, S. A., Bonthrone, A. F., Kelly, C. J., Christiaens, D., Schuh,
A., et al. (2020). Reduced structural connectivity in cortico-striatal-thalamic
network in neonates with congenital heart disease. NeuroImage 28:102423 doi:
10.1016/j.nicl.2020.102423

Block, A. J., McQuillen, P. S., Chau, V., Glass, H., Poskitt, K. J., Barkovich,
A. J., et al. (2010). Clinically silent preoperative brain injuries do not worsen with
surgery in neonates with congenital heart disease. .J. Thorac. Cardiovasc. Surg. 140,
550–557. doi: 10.1016/j.jtcvs.2010.03.035

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Stat. Mech. 2008:10008. doi:
10.1088/1742-5468/2008/10/P10008

Blustajn, J., Kirsch, C., Panigrahy, A., and Netchine, I. (2008). Olfactory
anomalies in CHARGE syndrome: Imaging findings of a potential major
diagnostic criterion. Am. J. Neuroradiol. 29, 1266–1269. doi: 10.3174/ajnr.A1099

Brambrink, A. M., Back, S. A., Riddle, A., Gong, X., Moravec, M. D., Dissen,
G. A., et al. (2012). Isoflurane-induced apoptosis of oligodendrocytes in the
neonatal primate brain. Ann. Neurol. 72, 525–535. doi: 10.1002/ana.23652

Brambrink, A. M., Evers, A. S., Avidan, M. S., Farber, N. B., Smith,
D. J., Zhang, X., et al. (2010). Isoflurane-induced neuroapoptosis in the
neonatal rhesus macaque brain. Anesthesiology 112, 834–841. doi: 10.1097/ALN.
0b013e3181d049cd

Bullmore, E., and Sporns, O. (2012). The economy of brain network
organization. Nat. Rev. Neurosci. 13, 336–349. doi: 10.1038/nrn3214

Cassidy, A. R., White, M. T., DeMaso, D. R., Newburger, J. W., and Bellinger,
D. C. (2015). Executive Function in Children and Adolescents with Critical
Cyanotic Congenital Heart Disease. J. Int. Neuropsychol. Soc. 21, 34–49. doi: 10.
1017/S1355617714001027

Ceschin, R., Zahner, A., Reynolds, W., Gaesser, J., Zuccoli, G., Lo, C. W.,
et al. (2018). A computational framework for the detection of subcortical brain
dysmaturation in neonatal MRI using 3D Convolutional Neural Networks.
NeuroImage 178, 183–197. doi: 10.1016/j.neuroimage.2018.05.049

De Asis-Cruz, J., Donofrio, M. T., Vezina, G., and Limperopoulos, C. (2017).
Aberrant brain functional connectivity in newborns with congenital heart disease
before cardiac surgery. NeuroImage 17, 31–42. doi: 10.1016/j.nicl.2017.09.020

Feldmann, M., Guo, T., Miller, S. P., Knirsch, W., Kottke, R., Hagmann, C., et al.
(2020). Delayed maturation of the structural brain connectome in neonates with
congenital heart disease. Brain Commun. 2:fcaa209 doi: 10.1093/braincomms/
fcaa209

Fernandez-Miranda, J. C., Pathak, S., Engh, J., Jarbo, K., Verstynen, T., Yeh,
F. C., et al. (2012). High-definition fiber tractography of the human brain:
Neuroanatomical validation and neurosurgical applications. Neurosurgery 71,
430–453. doi: 10.1227/NEU.0b013e3182592faa

Gabriel, G. C., Salamacha, N., Reynolds, W. T., Tan, T., Liu, X., Yagi, H.,
et al. (2018). Characterization of Neurodevelopmental Defects Associated With
a Mouse Model of Hypoplastic Left Heart Syndrome. Circulation 138, A16609–
A16609.

Gao, W., Alcauter, S., Smith, J. K., Gilmore, J. H., and Lin, W. (2014).
Development of human brain cortical network architecture during infancy. Brain
Struct. Funct. 220, 1173–1186. doi: 10.1007/s00429-014-0710-3

Gao, W., Gilmore, J. H., Giovanello, K. S., Smith, J. K., Shen, D., Zhu,
H., et al. (2011). Temporal and spatial evolution of brain network topology
during the first two years of life. PLoS One 6:e25278. doi: 10.1371/journal.pone.
0025278

Gao, W., Gilmore, J. H., Shen, D., Smith, J. K., Zhu, H., and Lin, W. (2013). The
synchronization within and interaction between the default and dorsal attention
networks in early infancy. Cereb. Cortex 23, 594–603. doi: 10.1093/cercor/bhs043

Gaynor, J. W., Stopp, C., Wypij, D., Andropoulos, D. B., Atallah, J., Atz, A. M.,
et al. (2015). Neurodevelopmental outcomes after cardiac surgery in infancy.
Pediatrics 135, 816–825. doi: 10.1542/peds.2014-3825

Gaynor, J. W., Stopp, C., Wypij, D., Andropoulos, D. B., Atallah, J., Atz, A. M.,
et al. (2016). Impact of operative and postoperative factors on neurodevelopmental
outcomes after cardiac operations. Ann. Thorac. Surg. 102, 843–849. doi: 10.1016/
j.athoracsur.2016.05.081

Harbison, A. L., Votava-Smith, J. K., Del Castillo, S., Kumar, S. R., Lee,
V., Schmithorst, V., et al. (2017). Clinical Factors Associated with Cerebral
Metabolism in Term Neonates with Congenital Heart Disease. J. Pediatr. 183,
67–73.e1. doi: 10.1016/j.jpeds.2016.12.061

Hetts, S. W., Sherr, E. H., Chao, S., Gobuty, S., and Barkovich, A. J. (2006).
Anomalies of the corpus callosum: An MR analysis of the phenotypic spectrum of
associated malformations. Am. J. Roentgenol. 187, 1343–1348. doi: 10.2214/AJR.
05.0146

Humphries, M. D., and Gurney, K. (2008). Network ’small-world-ness’: A
quantitative method for determining canonical network equivalence. PLoS One
3:e0002051. doi: 10.1371/journal.pone.0002051

Jenkins, K. J., Gauvreau, K., Newburger, J. W., Spray, T. L., Moller, J. H., and
Iezzoni, L. I. (2002). Consensus-based method for risk adjustment for surgery for
congenital heart disease. J. Thorac. Cardiovasc. Surg. 123, 110–118. doi: 10.1067/
mtc.2002.119064

Ji, W., Ferdman, D., Copel, J., Scheinost, D., Shabanova, V., Brueckner, M.,
et al. (2020). De novo damaging variants associated with congenital heart diseases
contribute to the connectome. Sci. Rep. 10:7046. doi: 10.1038/s41598-020-63928-
2

Li, Y., Klena, N. T., Gabriel, G. C., Liu, X., Kim, A. J., Lemke, K., et al. (2015).
Global genetic analysis in mice unveils central role for cilia in congenital heart
disease. Nature 521, 520–524. doi: 10.1038/nature14269

Licht, D. J., Shera, D. M., Clancy, R. R., Wernovsky, G., Montenegro, L. M.,
Nicolson, S. C., et al. (2009). Brain maturation is delayed in infants with complex
congenital heart defects. J. Thorac. Cardiovasc. Surg. 137, 529–36. doi: 10.1016/j.
jtcvs.2008.10.025

Lim, J. M., Porayette, P., Marini, D., Chau, V., Au-Young, S. H., Saini, A., et al.
(2019). Associations between age at arterial switch operation, brain growth, and

Frontiers in Neuroscience 23 frontiersin.org

119120

https://doi.org/10.3389/fnins.2022.952355
https://doi.org/10.1093/cercor/bht312
https://doi.org/10.3389/fnsys.2010.00147
https://doi.org/10.3389/fnsys.2010.00147
https://doi.org/10.3174/ajnr.A2814
https://doi.org/10.1007/s00330-007-0735-6
https://doi.org/10.1007/s00330-007-0735-6
https://doi.org/10.1002/ana.21239
https://doi.org/10.1002/ana.21239
https://doi.org/10.1177/1073858406293182
https://doi.org/10.1016/j.jacc.2009.01.061
https://doi.org/10.1161/CIRCULATIONAHA.112.001089
https://doi.org/10.1097/00004703-200306000-00007
https://doi.org/10.1056/NEJM199503023320901
https://doi.org/10.1017/S1047951108003454
https://doi.org/10.1161/CIRCULATIONAHA.111.026963
https://doi.org/10.1161/CIRCULATIONAHA.111.026963
https://doi.org/10.1016/j.nicl.2020.102423
https://doi.org/10.1016/j.nicl.2020.102423
https://doi.org/10.1016/j.jtcvs.2010.03.035
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.3174/ajnr.A1099
https://doi.org/10.1002/ana.23652
https://doi.org/10.1097/ALN.0b013e3181d049cd
https://doi.org/10.1097/ALN.0b013e3181d049cd
https://doi.org/10.1038/nrn3214
https://doi.org/10.1017/S1355617714001027
https://doi.org/10.1017/S1355617714001027
https://doi.org/10.1016/j.neuroimage.2018.05.049
https://doi.org/10.1016/j.nicl.2017.09.020
https://doi.org/10.1093/braincomms/fcaa209
https://doi.org/10.1093/braincomms/fcaa209
https://doi.org/10.1227/NEU.0b013e3182592faa
https://doi.org/10.1007/s00429-014-0710-3
https://doi.org/10.1371/journal.pone.0025278
https://doi.org/10.1371/journal.pone.0025278
https://doi.org/10.1093/cercor/bhs043
https://doi.org/10.1542/peds.2014-3825
https://doi.org/10.1016/j.athoracsur.2016.05.081
https://doi.org/10.1016/j.athoracsur.2016.05.081
https://doi.org/10.1016/j.jpeds.2016.12.061
https://doi.org/10.2214/AJR.05.0146
https://doi.org/10.2214/AJR.05.0146
https://doi.org/10.1371/journal.pone.0002051
https://doi.org/10.1067/mtc.2002.119064
https://doi.org/10.1067/mtc.2002.119064
https://doi.org/10.1038/s41598-020-63928-2
https://doi.org/10.1038/s41598-020-63928-2
https://doi.org/10.1038/nature14269
https://doi.org/10.1016/j.jtcvs.2008.10.025
https://doi.org/10.1016/j.jtcvs.2008.10.025
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-952355 November 18, 2022 Time: 10:52 # 24

Votava-Smith et al. 10.3389/fnins.2022.952355

development in infants with transposition of the great arteries. Circulation 139,
2728–2738. doi: 10.1161/CIRCULATIONAHA.118.037495

Limperopoulos, C., Majnemer, A., Shevell, M. I., Rohlicek, C., Rosenblatt, B.,
Tchervenkov, C., et al. (2002). Predictors of developmental disabilities after open
heart surgery in young children with congenital heart defects. J. Pediatr. 141, 51–8.
doi: 10.1067/mpd.2002.125227

Limperopoulos, C., Tworetzky, W., McElhinney, D. B., Newburger, J. W.,
Brown, D. W., Robertson, R. L. Jr., et al. (2010). Brain volume and metabolism
in fetuses with congenital heart disease: Evaluation with quantitative magnetic
resonance imaging and spectroscopy. Circulation 121, 26–33. doi: 10.1161/
CIRCULATIONAHA.109.865568

Mahle, W. T., Clancy, R. R., Moss, E. M., Gerdes, M., Jobes, D. R., and
Wernovsky, G. (2000). Neurodevelopmental outcome and lifestyle assessment
in school-aged and adolescent children with hypoplastic left heart syndrome.
Pediatrics 105, 1082–1089. doi: 10.1542/peds.105.5.1082

Mahle, W. T., Tavani, F., Zimmerman, R. A., Nicolson, S. C., Galli, K. K., Gaynor,
J. W., et al. (2002). An MRI study of neurological injury before and after congenital
heart surgery. Circulation 106, I109–14. doi: 10.1161/01.cir.0000032908.
33237.b1

Marelli, A., Miller, S. P., Marino, B. S., Jefferson, A. L., and Newburger, J. W.
(2016). Brain in Congenital Heart Disease Across the Lifespan The Cumulative
Burden of Injury. Circulation 133, 1951–1962. doi: 10.1161/CIRCULATIONAHA.
115.019881

Marino, B. S., Lipkin, P. H., Newburger, J. W., Peacock, G., Gerdes, M.,
Gaynor, J. W., et al. (2012). Neurodevelopmental outcomes in children with
congenital heart disease: Evaluation and management: A scientific statement from
the American Heart Association. Circulation 126, 1143–1172. doi: 10.1161/CIR.
0b013e318265ee8a

McQuillen, P. S., Goff, D. A., and Licht, D. J. (2010). Effects of congenital heart
disease on brain development. Prog. Pediatr. Cardiol. 29, 79–85. doi: 10.1016/j.
ppedcard.2010.06.011

McQuillen, P. S., and Miller, S. P. (2010). Congenital heart disease and brain
development. Ann. N Y Acad. Sci. 1184, 68–86. doi: 10.1111/j.1749-6632.2009.
05116.x

Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying
triple network model. Trends Cogn. Sci. 15, 483–506. doi: 10.1016/j.tics.2011.08.
003

Meunier, D., Lambiotte, R., and Bullmore, E. T. (2010). Modular and
hierarchically modular organization of brain networks. Front. Neurosci. 4:200.
doi: 10.3389/fnins.2010.00200

Meyers, B., Lee, V. K., Dennis, L., Wallace, J., Schmithorst, V., Votava-Smith,
J. K., et al. (2022). Harmonization of multi-center diffusion tensor tractography
in neonates with congenital heart disease: Optimizing post-processing and
application of ComBat. Neuroimage 2:100114. doi: 10.1016/j.ynirp.2022.100114

Miller, S. P., McQuillen, P. S., Hamrick, S., Xu, D., Glidden, D. V., Charlton,
N., et al. (2007). Abnormal brain development in newborns with congenital heart
disease. N. Engl. J. Med. 357, 1928–1938. doi: 10.1056/NEJMoa067393

Montenegro, M. A., Kinay, D., Cendes, F., Bernasconi, A., Bernasconi, N., Coan,
A. C., et al. (2006). Patterns of hippocampal abnormalities in malformations of
cortical development. J. Neurol. Neurosurg. Psychiatry 77, 367–371. doi: 10.1136/
jnnp.2005.070417

Morton, P. D., Korotcova, L., Lewis, B. K., Bhuvanendran, S., Ramachandra,
S. D., Zurakowski, D., et al. (2017). Abnormal neurogenesis and cortical growth in
congenital heart disease. Sci. Transl. Med. 9:eaah7029. doi: 10.1126/scitranslmed.
aah7029

Mussatto, K. A., Hoffmann, R. G., Hoffman, G. M., Tweddell, J. S., Bear, L., Cao,
Y., et al. (2014). Risk and prevalence of developmental delay in young children
with congenital heart disease. Pediatrics 133, e570–e577. doi: 10.1542/peds.2013-
2309

Panigrahy, A., Ceschin, R., Lee, V., Beluk, N., Khalifa, O., Zuccoli, G., et al.
(2014). Respiratory Ciliary Motion Defect Predict Regional Brain Abnormalities
and Increased Extra Axial CSF Fluid in Neonates With Complex Congenital Heart
Disease. Circulation 130, A16570–A16570.

Panigrahy, A., Lee, V., Ceschin, R., Zuccoli, G., Beluk, N., Khalifa, O., et al.
(2016). Brain Dysplasia Associated with Ciliary Dysfunction in Infants with
Congenital Heart Disease. J. Pediatr. 178, 141–148.e1. doi: 10.1016/j.jpeds.2016.
07.041

Panigrahy, A., Schmithorst, V. J., Wisnowski, J. L., Watson, C. G., Bellinger,
D. C., Newburger, J. W., et al. (2015a). Relationship of white matter network
topology and cognitive outcome in adolescents with d-transposition of the great
arteries. NeuroImage Clin. 7, 438–448. doi: 10.1016/j.nicl.2015.01.013

Panigrahy, A., Votava-Smith, J., Lee, V., Gabriel, G., Klena, N., Gibbs, B., et al.
(2015b). Abnormal Brain Connectivity and Poor Neurodevelopmental Outcome
in Congenital Heart Disease Patients With Subtle Brain Dysplasia. Circulation 132,
A16541–A16541. doi: 10.1161/circ.132.suppl_3.16541

Patt, E., Singhania, A., Roberts, A. E., and Morton, S. U. (2022). The genetics
of neurodevelopment in congenital heart disease. Can. J. Cardiol. [Epub ahead of
print]. doi: 10.1016/j.cjca.2022.09.026

Petit, C. J., Rome, J. J., Wernovsky, G., Mason, S. E., Shera, D. M., Nicolson,
S. C., et al. (2009). Preoperative brain injury in transposition of the great arteries
is associated with oxygenation and time to surgery, not balloon atrial septostomy.
Circulation 119, 709–16. doi: 10.1161/CIRCULATIONAHA.107.760819

Peyvandi, S., Latal, B., Miller, S. P., and McQuillen, P. S. (2019). The
neonatal brain in critical congenital heart disease: Insights and future directions.
Neuroimage 185, 776–782. doi: 10.1016/j.neuroimage.2018.05.045

Pike, N. A., Woo, M. A., Poulsen, M. K., Evangelista, W., Faire, D., Halnon,
N. J., et al. (2016). Predictors of memory deficits in adolescents and young adults
with congenital heart disease compared to healthy controls. Front. Pediatr. 4:117.
doi: 10.3389/fped.2016.00117

Rajagopalan, V., Votava-Smith, J. K., Zhuang, X., Brian, J., Marshall, L.,
Panigrahy, A., et al. (2018). Fetuses with single ventricle congenital heart disease
manifest impairment of regional brain growth. Prenat. Diagn. 38, 1042–1048.
doi: 10.1002/pd.5374

Ramirez, A., Peyvandi, S., Cox, S., Gano, D., Xu, D. Y., Tymofiyeva, O., et al.
(2022). Neonatal brain injury influences structural connectivity and childhood
functional outcomes. PLoS One 17:e0262310. doi: 10.1371/journal.pone.0262310

Righini, A., Zirpoli, S., Parazzini, C., Bianchini, E., Scifo, P., Sala,
C., et al. (2006). Hippocampal infolding angle changes during brain
development assessed by prenatal MR imaging. Am. J. Neuroradiol. 27,
2093–2097.

Rollins, C. K., Watson, C. G., Asaro, L. A., Wypij, D., Vajapeyam, S., Bellinger,
D. C., et al. (2014). White Matter Microstructure and Cognition in Adolescents
with Congenital Heart Disease. J. Pediatr. 165, 936–44.e1–2. doi: 10.1016/j.jpeds.
2014.07.028

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: Uses and interpretations. Neuroimage 52, 1059–1069. doi: 10.1016/
j.neuroimage.2009.10.003

Sananes, R., Goldberg, C. S., Newburger, J. W., Hu, C., Trachtenberg, F., Gaynor,
J. W., et al. (2021). Six-year neurodevelopmental outcomes for children with
single-ventricle physiology. Pediatrics 147:e2020014589. doi: 10.1542/peds.2020-
014589

Sato, N., Hatakeyama, S., Shimizu, N., Hikima, A., Aoki, J., and Endo, K. (2001).
MR evaluation of the hippocampus in patients with congenital malformations of
the brain. Am. J. Neuroradiol. 22, 389–393.

Schiller, R. M., van den Bosch, G. E., Muetzel, R. L., Smits, M., Dudink, J.,
Tibboel, D., et al. (2017). Neonatal critical illness and development: White matter
and hippocampus alterations in school-age neonatal extracorporeal membrane
oxygenation survivors. Dev. Med. Child Neurol. 59, 304–310. doi: 10.1111/dmcn.
13309

Schmithorst, V. J., Panigrahy, A., Gaynor, J. W., Watson, C. G., Lee, V., Bellinger,
D. C., et al. (2016). Organizational topology of brain and its relationship to ADHD
in adolescents with d-transposition of the great arteries. Brain Behav. 6:e00504.
doi: 10.1002/brb3.504

Schmithorst, V. J., Votava-Smith, J. K., Tran, N., Kim, R., Lee, V., Ceschin,
R., et al. (2018). Structural network topology correlates of microstructural brain
dysmaturation in term infants with congenital heart disease. Hum. Brain Mapp.
39, 4593–4610. doi: 10.1002/hbm.24308

Shi, F., Wang, L., Peng, Z., Wee, C.-Y., and Shen, D. (2013). Altered modular
organization of structural cortical networks in children with autism. PLoS One
8:e63131. doi: 10.1371/journal.pone.0063131

Shi, F., Yap, P.-T., Wu, G., Jia, H., Gilmore, J. H., Lin, W. Y., et al. (2011).
Infant brain atlases from neonates to 1-and 2-year-olds. PLoS One 6:e18746. doi:
10.1371/journal.pone.0018746

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E.,
Mackay, C. E., et al. (2006). Tract-based spatial statistics: Voxelwise analysis
of multi-subject diffusion data. Neuroimage 31, 1487–1505. doi: 10.1016/j.
neuroimage.2006.02.024

Stinnett, G. R., Lin, S., Korotcov, A. V., Korotcova, L., Morton, P. D.,
Ramachandra, S. D., et al. (2017). Microstructural Alterations and
Oligodendrocyte Dysmaturation in White Matter After Cardiopulmonary
Bypass in a Juvenile Porcine Model. J. Am. Heart Assoc. 6:e005997.
doi: 10.1161/JAHA.117.005997

Frontiers in Neuroscience 24 frontiersin.org

120121

https://doi.org/10.3389/fnins.2022.952355
https://doi.org/10.1161/CIRCULATIONAHA.118.037495
https://doi.org/10.1067/mpd.2002.125227
https://doi.org/10.1161/CIRCULATIONAHA.109.865568
https://doi.org/10.1161/CIRCULATIONAHA.109.865568
https://doi.org/10.1542/peds.105.5.1082
https://doi.org/10.1161/01.cir.0000032908.33237.b1
https://doi.org/10.1161/01.cir.0000032908.33237.b1
https://doi.org/10.1161/CIRCULATIONAHA.115.019881
https://doi.org/10.1161/CIRCULATIONAHA.115.019881
https://doi.org/10.1161/CIR.0b013e318265ee8a
https://doi.org/10.1161/CIR.0b013e318265ee8a
https://doi.org/10.1016/j.ppedcard.2010.06.011
https://doi.org/10.1016/j.ppedcard.2010.06.011
https://doi.org/10.1111/j.1749-6632.2009.05116.x
https://doi.org/10.1111/j.1749-6632.2009.05116.x
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.1016/j.ynirp.2022.100114
https://doi.org/10.1056/NEJMoa067393
https://doi.org/10.1136/jnnp.2005.070417
https://doi.org/10.1136/jnnp.2005.070417
https://doi.org/10.1126/scitranslmed.aah7029
https://doi.org/10.1126/scitranslmed.aah7029
https://doi.org/10.1542/peds.2013-2309
https://doi.org/10.1542/peds.2013-2309
https://doi.org/10.1016/j.jpeds.2016.07.041
https://doi.org/10.1016/j.jpeds.2016.07.041
https://doi.org/10.1016/j.nicl.2015.01.013
https://doi.org/10.1161/circ.132.suppl_3.16541
https://doi.org/10.1016/j.cjca.2022.09.026
https://doi.org/10.1161/CIRCULATIONAHA.107.760819
https://doi.org/10.1016/j.neuroimage.2018.05.045
https://doi.org/10.3389/fped.2016.00117
https://doi.org/10.1002/pd.5374
https://doi.org/10.1371/journal.pone.0262310
https://doi.org/10.1016/j.jpeds.2014.07.028
https://doi.org/10.1016/j.jpeds.2014.07.028
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1542/peds.2020-014589
https://doi.org/10.1542/peds.2020-014589
https://doi.org/10.1111/dmcn.13309
https://doi.org/10.1111/dmcn.13309
https://doi.org/10.1002/brb3.504
https://doi.org/10.1002/hbm.24308
https://doi.org/10.1371/journal.pone.0063131
https://doi.org/10.1371/journal.pone.0018746
https://doi.org/10.1371/journal.pone.0018746
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.1016/j.neuroimage.2006.02.024
https://doi.org/10.1161/JAHA.117.005997
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-952355 November 18, 2022 Time: 10:52 # 25

Votava-Smith et al. 10.3389/fnins.2022.952355

Subramanian, S., Soundara Rajan, D., Gaesser, J., Wen-Ya Lo, C., and Panigrahy,
A. (2019). Olfactory bulb and olfactory tract abnormalities in acrocallosal
syndrome and Greig cephalopolysyndactyly syndrome. Pediatr. Radiol. 49, 1368–
1373. doi: 10.1007/s00247-019-04480-8

Sun, L., Macgowan, C. K., Sled, J. G., Yoo, S. J., Manlhiot, C., Porayette, P.,
et al. (2015). Reduced fetal cerebral oxygen consumption is associated with smaller
brain size in fetuses with congenital heart disease. Circulation 131, 1313–1323.
doi: 10.1161/CIRCULATIONAHA.114.013051

Tabbutt, S., Nord, A. S., Jarvik, G. P., Bernbaum, J., Wernovsky, G., Gerdes, M.,
et al. (2008). Neurodevelopmental outcomes after staged palliation for hypoplastic
left heart syndrome. Pediatrics 121, 476–483. doi: 10.1542/peds.2007-1282

Telesford, Q. K., Joyce, K. E., Hayasaka, S., Burdette, J. H., and Laurienti,
P. J. (2011). The ubiquity of small-world networks. Brain Connect. 1, 367–375.
doi: 10.1089/brain.2011.0038

Thomason, M. E., Brown, J. A., Dassanayake, M. T., Shastri, R., Marusak,
H. A., Hernandez-Andrade, E., et al. (2014). Intrinsic functional brain architecture
derived from graph theoretical analysis in the human fetus. PLoS One 9:e94423.
doi: 10.1371/journal.pone.0094423

Thomason, M. E., Grove, L. E., Lozon, T. A. Jr., Vila, A. M., Ye, Y., Nye, M. J.,
et al. (2015). Age-related increases in long-range connectivity in fetal functional
neural connectivity networks in utero. Dev. Cogn. Neurosci. 11, 96–104. doi:
10.1016/j.dcn.2014.09.001

Uehara, T., Tobimatsu, S., Kan, S., and Miyauchi, S. (2012). Modular
Organization of Intrinsic Brain Networks: A Graph Theoretical Analysis of Resting-
state fMRI. Kobe: IEEE. doi: 10.1109/ICCME.2012.6275597

van der Linde, D., Konings, E. E., Slager, M. A., Witsenburg, M., Helbing,
W. A., Takkenberg, J. J., et al. (2011). Birth prevalence of congenital heart disease
worldwide: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 58,
2241–2247. doi: 10.1016/j.jacc.2011.08.025

Volpe, J. J. (2014). Encephalopathy of Congenital Heart Disease- Destructive
and Developmental Effects Intertwined. J. Pediatr. 164, 962–965. doi: 10.1016/j.
jpeds.2014.01.002

Votava-Smith, J. K., Schmithorst, V. J., Tran, N., Soleymani, S., Abbott, J., Lee,
V., et al. (2017). Impaired Pre-Operative Cerebral Autoregulation is Associated
With Functional Brain Dysmaturation in Neonatal Congenital Heart Disease.
Circulation 136, A15580–A15580.

Wernovsky, G., and Licht, D. J. (2016). Neurodevelopmental Outcomes
in Children With Congenital Heart Disease-What Can We Impact?
Pediatr. Crit. Care Med. 17, S232–S242. doi: 10.1097/PCC.000000000000
0800

Zahid, M., Bais, A., Tian, X., Devine, W., Lee, D. M., Yau, C., et al. (2018). Airway
ciliary dysfunction and respiratory symptoms in patients with transposition
of the great arteries. PLoS One 13:e0191605. doi: 10.1371/journal.pone.019
1605

Frontiers in Neuroscience 25 frontiersin.org

121122

https://doi.org/10.3389/fnins.2022.952355
https://doi.org/10.1007/s00247-019-04480-8
https://doi.org/10.1161/CIRCULATIONAHA.114.013051
https://doi.org/10.1542/peds.2007-1282
https://doi.org/10.1089/brain.2011.0038
https://doi.org/10.1371/journal.pone.0094423
https://doi.org/10.1016/j.dcn.2014.09.001
https://doi.org/10.1016/j.dcn.2014.09.001
https://doi.org/10.1109/ICCME.2012.6275597
https://doi.org/10.1016/j.jacc.2011.08.025
https://doi.org/10.1016/j.jpeds.2014.01.002
https://doi.org/10.1016/j.jpeds.2014.01.002
https://doi.org/10.1097/PCC.0000000000000800
https://doi.org/10.1097/PCC.0000000000000800
https://doi.org/10.1371/journal.pone.0191605
https://doi.org/10.1371/journal.pone.0191605
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-932386 November 21, 2022 Time: 18:15 # 1

TYPE Original Research
PUBLISHED 25 November 2022
DOI 10.3389/fnins.2022.932386

OPEN ACCESS

EDITED BY

Dan Wu,
Zhejiang University, China

REVIEWED BY

Linda De Vries,
Leiden University Medical Center
(LUMC), Netherlands
Tengda Zhao,
Beijing Normal University, China

*CORRESPONDENCE

Jessica Dubois
jessica.dubois@centraliens.net

†These authors have contributed
equally to this work and share first
authorship

SPECIALTY SECTION

This article was submitted to
Neurodevelopment,
a section of the journal
Frontiers in Neuroscience

RECEIVED 29 April 2022
ACCEPTED 10 November 2022
PUBLISHED 25 November 2022

CITATION

Neumane S, Gondova A, Leprince Y,
Hertz-Pannier L, Arichi T and Dubois J
(2022) Early structural connectivity
within the sensorimotor network:
Deviations related to prematurity
and association
to neurodevelopmental outcome.
Front. Neurosci. 16:932386.
doi: 10.3389/fnins.2022.932386

COPYRIGHT

© 2022 Neumane, Gondova, Leprince,
Hertz-Pannier, Arichi and Dubois. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Early structural connectivity
within the sensorimotor
network: Deviations related to
prematurity and association to
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1Inserm, NeuroDiderot, Université Paris Cité, Paris, France, 2CEA, NeuroSpin UNIACT, Université
Paris-Saclay, Paris, France, 3School of Biomedical Engineering and Imaging Sciences, Centre for the
Developing Brain, King’s College London, London, United Kingdom, 4Paediatric Neurosciences,
Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London,
United Kingdom

Consisting of distributed and interconnected structures that interact through

cortico-cortical connections and cortico-subcortical loops, the sensorimotor

(SM) network undergoes rapid maturation during the perinatal period

and is thus particularly vulnerable to preterm birth. However, the impact

of prematurity on the development and integrity of the emerging SM

connections and their relationship to later motor and global impairments are

still poorly understood. In this study we aimed to explore to which extent

the early microstructural maturation of SM white matter (WM) connections

at term-equivalent age (TEA) is modulated by prematurity and related with

neurodevelopmental outcome at 18 months corrected age. We analyzed

118 diffusion MRI datasets from the developing Human Connectome Project

(dHCP) database: 59 preterm (PT) low-risk infants scanned near TEA and a

control group of full-term (FT) neonates paired for age at MRI and sex. We

delineated WM connections between the primary SM cortices (S1, M1 and

paracentral region) and subcortical structures using probabilistic tractography,

and evaluated their microstructure with diffusion tensor imaging (DTI) and

neurite orientation dispersion and density imaging (NODDI) models. To

go beyond tract-specific univariate analyses, we computed a maturational

distance related to prematurity based on the multi-parametric Mahalanobis

distance of each PT infant relative to the FT group. Our results confirmed

the presence of microstructural differences in SM tracts between PT and FT

infants, with effects increasing with lower gestational age at birth. Maturational

distance analyses highlighted that prematurity has a differential effect on

SM tracts with higher distances and thus impact on (i) cortico-cortical

than cortico-subcortical connections; (ii) projections involving S1 than M1

and paracentral region; and (iii) the most rostral cortico-subcortical tracts,

involving the lenticular nucleus. These different alterations at TEA suggested

that vulnerability follows a specific pattern coherent with the established
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WM caudo-rostral progression of maturation. Finally, we highlighted some

relationships between NODDI-derived maturational distances of specific

tracts and fine motor and cognitive outcomes at 18 months. As a whole, our

results expand understanding of the significant impact of premature birth and

early alterations on the emerging SM network even in low-risk infants, with

possible relationship with neurodevelopmental outcomes. This encourages

further exploration of these potential neuroimaging markers for prediction

of neurodevelopmental disorders, with special interest for subtle neuromotor

impairments frequently observed in preterm-born children.

KEYWORDS

brain development, tractography, diffusion MRI (dMRI), Diffusion Tensor Imaging
(DTI), NODDI (neurite orientation dispersion and density imaging), multivariate
Mahalanobis distance, preterm at term-equivalent age, white matter microstructure
maturation

Introduction

The cerebral somatosensory and motor systems consist of
distributed networks of specialized interconnected cortical and
subcortical gray matter (GM) regions, interacting through white
matter (WM) tracts, that support a wide variety of sensory
and motor functions that are essential for nearly every human
behavior across the lifespan. In somatosensation, inputs from
peripheral receptors are first conveyed by peripheral nerves,
then through the spinal cord to the brainstem dorsal column
nuclei. These nuclei further connect to the thalamus which
sends projections to cortical somatosensory areas, particularly
the primary somatosensory cortex (S1) located on the postcentral
gyrus. On the other hand, the primary motor cortex (M1) in
the precentral gyrus, is critical for motor behavior, exerting
its influence over the body’s muscles through its output to
a variety of descending pathways, the main being the direct

Abbreviations: AD, axial diffusivity; BG, basal ganglia; BSID-III, Bayley
Scales of Infant and Toddler Development, 3rd edition; Bstem, brainstem;
Caud, caudate nucleus; CLD, chronic lung disease; CSF, cerebrospinal
fluid; CST, corticospinal tract; cUS, cranial ultrasonography; dHCP,
developing Human Connectome Project; dMRI, diffusion-weighted MRI;
DTI, diffusion tensor imaging; FA, fractional anisotropy; FDR, false
discovery rate; FT, full-term born infants [FTEVCt, “extreme to very
preterms” matched FT controls, FTMLCt, “moderate to late preterms”
matched FT controls]; GA, gestational age; GM, gray matter; IMD,
index of multiple deprivation; IUGR, intrauterine growth restriction;
Lenti, lenticular nucleus; M1, lateral portion of the primary motor
cortex (precentral region); mCA, months of corrected age; MD, Mean
diffusivity; MRI, magnetic resonance imaging; NDI, neurite density
index; NEC, necrotizing enterocolitis; NICU, neonatal intensive care
unit; NODDI, neurite orientation dispersion and density imaging; ODI,
orientation dispersion index; ParaC, medial portions of the primary
sensori-motor cortices (paracentral region); PMA, post-menstrual age;
PT, preterm infants [PTEV, extreme to very preterms, PTML, moderate
to late preterms]; RD, radial diffusivity; ROIs, regions of interest;
ROP, retinopathy of prematurity; S1, lateral portion of the primary
somatosensory cortex (postcentral region); SES, socio-economic status;
Thal, thalamus; TEA, term-equivalent age; wGA, weeks of GA; WM, white
matter.

cortical innervation of motoneurons via the corticospinal tract
(CST). S1 and M1 are reciprocally connected, directly via
short-range intra-hemispheric and homotopic interhemispheric
pathways, and indirectly via some cortico-subcortical pathways
predominately involving the thalamus and the basal ganglia
(BG). The BG notably include the caudate nucleus, putamen
and globus pallidus: the first two functionally constitute the
striatum (receiving most of the BG inputs), while the last two are
grouped anatomically in the lenticular nucleus, with the globus
pallidus representing one of the key output structures of the BG
(Leisman et al., 2014).

Interactions between somatosensory and motor systems,
observable in mature brains (Hatsopoulos and Suminski, 2011;
Tomasino and Gremese, 2016), are particularly important
during the early stages of neurodevelopment. The late second
and third trimesters of gestation, as well as the neonatal period,
are a critical time for the dynamic refinement and maturation
of brain networks through several complex processes (Dubois
et al., 2014; Kostović et al., 2019), laying the foundations of
structural connectivity that underlie later neurodevelopment
(Gilmore et al., 2018). As projection and interhemispheric
tracts show rapid growth before 28 weeks of gestational age
(wGA) (Keunen et al., 2017; Kostović et al., 2019), the general
architecture of the sensorimotor (SM) network is already
established during the preterm period, making it one of the
earliest brain systems to mature (Dubois et al., 2014; Ouyang
et al., 2019; Machado-Rivas et al., 2021). It may therefore play
a pivotal role for the optimal development of secondary and
associative networks in their earliest stages and for organizing
the structural and functional connectome throughout the
neonatal period (Ball et al., 2014; van den Heuvel et al., 2015;
Zhao et al., 2019).

This crucial maturation phase is also highlighted by
the adverse effects of preterm birth (before 37wGA) on
neurodevelopment. The sudden need to adapt to extra-
uterine life does not provide the optimal conditions for
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physiological neurodevelopmental mechanisms, resulting in
variable structural and/or functional abnormalities (Suzuki,
2007). The related diffuse cerebral dysmaturation (Back, 2015;
Volpe, 2021) alters the integrity of the emerging neural networks
(Suzuki, 2007; Back, 2015), with early maturing regions suffering
the largest adverse effects with a greater degree of prematurity
(lower GA at birth) (Knight et al., 2018).

Magnetic resonance imaging (MRI) including diffusion
MRI (dMRI) has been extensively used to evaluate the
consequences of preterm birth on brain development. Even in
the absence of focal cerebral lesions, prematurity is associated
with disturbances in brain growth, in particular in GM
structures including the BG and thalamus (Keunen et al.,
2012; Padilla et al., 2015; Loh et al., 2020), and pervasive
widespread abnormalities in GM and WM microstructure,
maturation and connectivity (Ball et al., 2013b; Batalle et al.,
2018). In particular, the WM of preterm infants at term-
equivalent age (TEA) has a more “immature” microstructural
profile compared with term-born neonates, consistent with
delayed and/or disrupted WM development and maturation
(Thompson et al., 2011; Kelly et al., 2016a, 2020). The extent
of early WM abnormalities (even in the absence of overt brain
lesion) has been related to poorer neurodevelopmental outcome
(Duerden et al., 2015; Barnett et al., 2018; Kelly et al., 2020;
Pannek et al., 2020). Preterm infants are also at higher risk
of impaired neuromotor function (Williams et al., 2010; Odd
et al., 2013; Spittle and Orton, 2014), that can manifest as poorer
fine and gross motor skills compared with term-born controls
(Evensen et al., 2020). Although long-lasting WM alterations
in SM tracts have been observed during childhood and
adolescence in these populations (Groeschel et al., 2014; Dewey
et al., 2019; Thompson et al., 2020), the relationship between
neonatal SM network structural alterations and neuromotor
impairment in low-risk preterm infants (including moderate
to late preterm and/or preterm babies without perinatal brain
injury) has been less systematically explored. Also, assessing
early WM maturational delays across the different SM tracts and
analyzing the correlation with outcome would enable a better
understanding of the pathophysiology of the disorders resulting
from deviations in typical developmental processes.

In this study, we thus aimed to assess how preterm
birth impacts SM network maturation at TEA in the absence
of overt cerebral lesions, and the potential effect on later
neurodevelopmental outcome. We hypothesized that SM
network would show significantly altered microstructure in
preterm infants compared to full-term neonates, with distinct
patterns of maturation delay across the SM tracts, and
that these alterations are associated with motor and global
neurodevelopmental outcomes. For this purpose, we studied
a large cohort of low-risk preterm infants at TEA and full-
term neonates from the developing Human Connectome Project
(dHCP) (Edwards et al., 2022), and investigated the effects
of prematurity on WM microstructure and maturation of SM

tracts using complementary approaches based on diffusion
MRI data and tractography (Dubois et al., 2014, 2016; Ouyang
et al., 2019). We dissected an unprecedented set of SM
cortico-cortical and cortico-subcortical tracts and computed
quantitative metrics from two complementary models: the
widely used Diffusion Tensor Imaging (DTI) model (Dubois
et al., 2014; Pecheva et al., 2018; Ouyang et al., 2019) and
the more specific 3 tissue compartments model of neurite
orientation dispersion and density imaging (NODDI) (Zhang
et al., 2012; Kunz et al., 2014; Batalle et al., 2017; Kimpton et al.,
2021). To overcome the limitations inherent to univariate dMRI
approaches which cannot reflect the inter-related complexity
of processes involved in early brain maturation, we used the
multivariate Mahalanobis distance approach to compare the
preterm and full-term groups (Kulikova et al., 2015; Dean
et al., 2017; Li et al., 2022). This allowed us to consider
multiple metrics and to quantify the tract-specific maturational
gap at TEA between a preterm infant and the reference
group of full-term neonates, with the added advantage of
taking into account inter-subject variability in the reference
group, as well as correlations between input metrics. Moreover,
using the Mahalonobis distance measure with different sets of
DTI and NODDI complementary metrics allowed the effect
of maturation and complex underlying WM microstructural
processes to be accounted for. Finally, we evaluated the
relationships between the aforementioned distances for the
different SM connections and neurodevelopmental outcome at
18 months of corrected age (mCA).

Materials and methods

Subjects

This study included a sample of preterm and full-term
neonates taken from the dHCP cohort, collected at St Thomas’
Hospital London, UK from 2015 to 2020.1 This project received
UK NHS research ethics committee approval (14/LO/1169,
IRAS 138070), and written informed consent was obtained from
the parents of all participant infants. From the overall cohort,
we identified 59 preterm (PT) infants (33 males, gestational
age at birth – GA at birth: median 31.7 weeks, range [23.7w–
36.0w]) scanned near TEA (median post-menstrual age –
PMA: 41.3w, range [38.4w–44.9w]), and a control group of
59 full-term born (FT) infants (GA at birth: median 40.1w,
range [37.4w–42.3w]) matched to the preterm population on
age at MRI and sex. Preterm infants were subdivided into
infants born extremely to very preterm (GA at birth < 32w,
N = 33; PTEV group) or moderate to late preterm (GA at
birth ≥ 32w, N = 26; PTML group). The corresponding controls

1 http://www.developingconnectome.org/
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are subsequently noted FTEVCt and FTMLCt, respectively. All
included infants were deemed healthy at TEA, i.e., were without
major brain focal lesions or any overt abnormality of clinical
significance on structural MRI as evaluated by an expert
pediatric neuroradiologist (dHCP radiological score in the range
1–3).2

Neonatal characteristics at birth
Obstetric factors (i.e., multiple pregnancy status, intrauterine

growth restriction –IUGR, maternal antenatal steroids and
magnesium therapy, delivery method) as well as infant
characteristics at birth (i.e., Apgar scores at 1 and 5 min, birth
weight, length, and head circumference) were extracted from
the dHCP records.

Specific postnatal risk factors previously recognized to be
related with neonatal brain abnormalities, including diffuse
and regional WM microstructural alterations (Pogribna et al.,
2013; Brouwer et al., 2017; Barnett et al., 2018; Parikh et al.,
2021), were also considered. These included NICU variables
(i.e., total duration of ventilatory support and oxygen therapy,
and parenteral nutrition) which were binarized using thresholds
established in previous studies (need of mechanical ventilation
beyond 7 days, and of parenteral nutrition longer than 21 days)
(Brouwer et al., 2017). Sepsis was considered as any situation
where an infant received antibiotics, as there was not enough
information to retain only confirmed episodes of postnatal
sepsis. Additionally, we derived a neonatal morbidities binary
factor to summarize the presence of at least one of the
following 4 morbidities associated with prematurity (or the
absence of all 4): chronic lung disease, necrotizing enterocolitis
(NEC), retinopathy of prematurity (ROP) and abnormal cranial
ultrasonography (cUS). Of note, detailed neonatal medical
records were available only for infants admitted to the neonatal
intensive care unit (NICU) after birth: 51 PT (86%) and
2 FT (3%, admitted for sepsis treatment, without further
complications).

Comparisons between PT and FT groups in terms of the
described variables and factors were performed with suitable
tests (Wilcoxon rank sum test for ordinal and continuous
variables; Fisher’s exact test for binary factors; Pearson’s Chi-
squared test for non-binary nominal factors) in R (version
4.0.5, 2021.03.31).

Outcome assessment and infant characteristics
at 18 months

Family socio-economic status (SES) was measured using
the index of multiple deprivation (IMD) which is a UK
geographically defined composite social risk score comprising
data on income, employment, health, education, living
environment, and crime calculated from the mother’s home
address at the time of birth.

2 https://biomedia.github.io/dHCP-release-notes/download.html

Neurodevelopmental outcome was assessed at St Thomas’
Hospital, London by two experienced assessors using the Bayley
Scales of Infant and Toddler Development, Third Edition –
BSID-III (Bayley, 2006). We only considered assessments
performed at around 18 mCA (between 17 and 21 m), which
was available for 44 (75%) PT infants and 53 (90%) FT infants
(median age: 18.3 m). Five distinct developmental categories
(cognition, receptive and expressive language, and fine and
gross motor function) were assessed yielding age-standardized
respective scaled scores (mean 10, SD 3), with higher values
indicating better infant development and scores lower than 7
indicating developmental delay in that domain.

Comparisons between PT and the FT groups were
performed with t-tests corrected for multiple comparisons using
Benjamini–Hochberg false discovery rate (FDR) correction
across scores. The effect of sub-groups (PTEV, PTML, FTEVCt,
and FTMLCt) on neurodevelopmental outcomes was assessed
using one-way ANOVA.

Of note, the 5 BSID-III scaled scores can be summarized
into the widely used 3 composite cognitive, language, and motor
scores (mean 100, SD 15). The results of the entire analyses
performed using them can be found in the Supplementary
materials: BSID-III composite score results section.

Magnetic resonance imaging data
acquired at term-equivalent age

Magnetic resonance imaging (MRI) data was acquired using
a Philips 3-Tesla Achieva scanner (Philips Medical Systems,
Best, Netherlands). All infants were scanned during natural
sleep using a neonatal head coil and imaging system optimized
for the dHCP study as previously described (Hughes et al., 2017).

We used anatomical and diffusion MRI data available
in its pre-processed state from the dHCP database (third
release) (Edwards et al., 2022). The structural data was
a result of acquisition and reconstruction using optimized
protocols (Cordero-Grande et al., 2018) leading to super-
resolved T2w images with an isotropic spatial voxel size
of 0.5 mm. Processing followed a dedicated pipeline for
segmentation and cortical surface extraction for T2w images
of neonatal brains (Makropoulos et al., 2018), with bias-
correction, brain extraction, and segmentation using Draw-
EM (Developing brain Region Annotation with Expectation
Maximisation) algorithm (Makropoulos et al., 2014). White
matter surface (inner cortical surface) meshes provided within
the dHCP database were used for the segmentation of cortical
regions of interest (ROIs), while volumetric segmentations were
directly used to extract subcortical ROIs (cf. section Selection
and delineation of regions of interest). Additionally, derived
hemispheric, WM and cortical masks (also referred to as cortical
ribbons) were also used for the tractography analysis (cf. section
SM connectivity reconstruction).
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Acquisition and reconstruction of the diffusion data
followed a multi-shell high angular resolution diffusion
imaging (HARDI) protocol with 4 b-shells (b = 0 s/mm2: 20
repeats; and b = 400, 1,000, 2,600 s/mm2: 64, 88, and 128

directions, respectively) (Hutter et al., 2018) and was pre-
processed with correction for motion artifacts and slice-to-
volume reconstruction using the SHARD approach, leading
to an isotropic voxel size of 1.5 mm (Christiaens et al., 2021).

FIGURE 1

Regions of interest, sensorimotor tracts, and diffusivity metrics for a representative full-term infant (GA at birth 40.4w, PMA at MRI 44.1w). (A)
Visualization of the cortical and subcortical ROIs used as tractography seeds. (B) List of the SM tracts of interest. (C) 3D reconstructions of SM
tracts. (D) Metric maps resulting from DTI (AD, RD, MD, FA) and NODDI (NDI, ODI) models. GA, gestational age (in weeks); PMA, post-menstrual
age (in weeks); ROIs, regions of interest; SM, sensorimotor; S1, lateral portion of the primary somatosensory cortex (postcentral gyrus); M1,
lateral portion of the primary motor cortex (precentral gyrus); ParaC, medial portions of the primary sensorimotor cortices (paracentral area);
Bstem, brainstem; Thal, thalamus; Caud, caudate nucleus; Lenti, lenticular nucleus; L, left; R, right. ∗Intra-hemispheric tracts, evaluated in left
and right hemispheres separately. DTI, diffusion tensor imaging; metrics: AD, axial diffusivity; RD, radial diffusivity; MD, mean diffusivity; FA,
fractional anisotropy; NODDI, neurite orientation dispersion and density imagingmetrics; NDI, neurite density index; ODI, orientation dispersion
index.
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Pre-processed data was used for the fitting of diffusion
models (cf. section Estimation of diffusion models) and
for the tractography analysis (cf. section SM connectivity
reconstruction).

Assessment of sensorimotor network
microstructure

To estimate WM microstructural characteristics within
the SM network, we first quantified complementary diffusion
metrics from the available diffusion data. Structural connections
between pairs of anatomically defined SM regions, including
cortical primary SM cortices and key sub-cortical structures,
were delineated using probabilistic tractography. The diffusion
metrics were then extracted for the selected connections of
interest and used to study developmental differences between
the cohort subgroups.

Estimation of diffusion models
The DTI model was fitted to the diffusion data using a single

shell (b = 1,000 s/mm2) and calculated with FSL’s DTIFIT. The
choice of using only a single b-value was made because the
utility of including more diffusion directions may be outweighed
by the non-Gaussian contribution of high b-value acquisitions
(Pines et al., 2020). DTI maps were computed for four metrics:
fractional anisotropy (FA) and Mean Diffusivity (MD) which are
a composite of axial diffusivity (AD) and radial diffusivity (RD).

Additionally, multi-shell diffusion data were used to derive
the NDI and ODI maps from the NODDI model (Zhang
et al., 2012) using the CUDA 9.1 Diffusion Modelling Toolbox
(cuDIMOT) NODDI Watson model implementation for GPUs
(Hernandez-Fernandez et al., 2019). We used the MCMC
optimization algorithm and default settings to fit the NODDI
model to our infant data. The NODDI-derived maps were then
post-processed to reduce the observed noise. Briefly, we used
ODI maps to detect possible errors using an alpha-trimming
strategy. The voxels presenting values outside the threshold
range (fixed upper value of 0.95 and the lower limit being
the first groove of the histogram of values) were either (i)
normalized by the immediate surrounding values (i.e., the mean
of the voxel’s immediate environment after the removal of
extreme values), or (ii) set to 0, if no voxels in the “normal” range
were found in their environment. The same erroneous voxels
were also corrected in NDI maps in the same fashion.

Selection and delineation of regions of interest
Pre-processed structural data was used to parcellate 13 ROIs

(6 in each hemisphere and 1 bilateral, Figure 1A) relevant
for the developing SM network, focusing on the primary
core of cortical and deep GM structures. Regarding cortical
regions, we considered primary sensory and motor cortices
which are essential for processing peripheral somatosensory

inputs and for initiating and controlling motor behaviors,
through cortico-subcortical loops including thalamus, BG and
brainstem. We then disregarded non-primary cortical areas,
which mature later during typical development. Three cortical
ROIs were thus defined on the cortical surface of each
hemisphere using the M-CRIB-S surface-based parcellation tool
optimized for the term-born neonates (Adamson et al., 2020)
whose labeling scheme replicates the Desikan-Killiany-Tourville
(DKT) atlas (Klein and Tourville, 2012): the postcentral gyrus
as the anatomical proxy of the lateral portion of the primary
somatosensory cortex (hereafter referred to as S1 for the sake
of simplification), the precentral gyrus as the lateral portion
of the primary motor cortex (referred to as M1), and the
paracentral lobule (referred to as ParaC) corresponding to the
medial surface of the hemisphere in the continuation of the
precentral and postcentral gyri, including the medial portions
of the primary SM cortices. The central sulcus was required
as a landmark to delineate these pre- and post-central regions,
explaining the choice of a surfacic parcellation tool. Individual
surface ROIs were then projected to the cortical ribbon defined
in the anatomical volumes, and further dilated by one voxel into
the WM to ease the tractography process.

Regarding sub-cortical structures, the most relevant to be
studied at early developmental stages are the main input/output
and relay structures, implicating in particular the brainstem, the
thalamus, the dorsal striatum (composed of the putamen and
caudate nucleus) that can be considered as the main BG input
structure for SM projections, and the internal segment of the
globus pallidus (GPi), one of the major output structures of
the BG (Leisman et al., 2014). Identifying these specific GM
structures on MR images is quite challenging in infants due to
the inter-subject variability and rapid changes in morphological
characteristics and sizes during the perinatal period. In addition,
the precise segmentation of structures of interest also depends
on the possibilities offered by the tool validated for neonatal
population. The subcortical ROIs were thus defined using
a volumetric GM parcellation based on Draw-EM algorithm
segmentation (Makropoulos et al., 2014) provided within the
dHCP data release, namely medial brainstem (Bstem) and for
each hemisphere: thalamus (Thal, fusing high and low intensity
regions), caudate nucleus (Caud, part of the striatum) and
lenticular nucleus (Lenti, containing the putamen as well as the
GPi).

These cortical ROIs (bilateral M1, S1, and ParaC region)
and subcortical ROIs (brainstem and bilateral thalamus, caudate
and lenticular nuclei), used as seeds for the tractography, were
aligned to the diffusion space with FSL 6.0’s FLIRT.

Sensorimotor connectivity reconstruction
Individual dissections of SM connections, which to our

knowledge have never been achieved in neonates and infants
until now, were performed using an automated tractography-
based approach benefitting from multi-shell MRI data. For each
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subject, probabilistic tractography estimating multiple diffusion
orientations within a voxel (Behrens et al., 2007) was used
to reconstruct connections between the selected ROI pairs
(designated as tracts thereafter). Briefly, for each subject, we
first modeled crossing fibers within each voxel of the multi-
shell diffusion data using a GPU accelerated version of FSL’s
Bayesian Estimation of Diffusion Parameters Obtained using
Sampling Techniques modelling Crossing Fibres (BEDPOSTX),
with default settings apart from the deconvolution model with
zeppelins (Hernández et al., 2013). Then, the pre-selected ROIs
were used as seed masks to derive region-to-region structural
connections using the GPU implementation of the Probabilistic
Tractography with crossing fibers (ProbTrackX) available with
FSL 6.0 (Hernandez-Fernandez et al., 2019), and the default
(one-way) setting with a loop check. The resulting output
describe the density of WM connections between the ROI
pair.

To improve the tractography results, and to reduce the
incidence of erroneous streamlines, we employed exclusion
masks. These exclusion masks were based on a mask of
CSF created by thresholding the MD maps (voxels with
MD > 2.10−3mm2/s were considered as CSF) and corrected by
removing voxels with FA > 0.25 (which might correspond to
WM voxels in the corpus callosum but close to the ventricles
with CSF partial volume effects). The exclusion masks were
further adapted to exclude all other brain structures apart
from the considered ROIs pair. Additionally, where the pair
of ROIs were ipsilateral, i.e., in a single hemisphere, the entire
contralateral hemisphere was also excluded. No supplementary
constraints were included in the tractography runs.

Reconstructed tracts were then thresholded at 5% of the
maximum fiber density of the evaluated tract. This was not
performed for cortico-cortical inter-hemispheric tracts, whose
reconstructions were used in their original state due to low
streamline numbers.

The final list of SM tracts of interest (corresponding
to homotopic inter-hemispheric tracts, short-range S1–M1
intra-hemispheric tracts, and long-range intra-hemispheric
cortico-subcortical tracts) is described in Figure 1B We
visually validated the accuracy of the tracts reconstructions
for several subjects and observed expected topographies (e.g.,
the S1 and M1 projections toward the ventral anterior and
lateral portions of the thalami). Note that the (inter- and
intra-hemispheric) cortico-cortical tracts involving paracentral
regions could not be evaluated due to frequent and variable
tractography errors identified upon visual examination. Also,
connections between subcortical structures were not studied
because of their proximity which could alter the tractography
performance.

Extraction of tract-specific metrics
DTI and NODDI-derived metrics (FA, MD, AD, RD, NDI,

ODI) were extracted from each individual tract by calculating

the weighted average value (metric X̄) using the following
equation:

X̄ =
∑

( di × Xi)∑
di

where i denotes the tract voxels, di is the fiber density at voxel
i of a tract, and Xi is value of the metric at voxel i (Hua
et al., 2008). This weighted approach gave more weight to the
central portion (with higher fiber density) compared to the tract
periphery, rendered the measures independent on the number
of streamlines assessed by the tractography algorithm, and
limited the effect of potential artifacts related to tractography
reconstruction.

Univariate tract-specific analyses

To investigate tract-specific relationships between the
diffusion metrics and subject characteristics (prematurity,
clinical factors, etc.), we performed three sets of univariate
analyses on the tract diffusion metrics (see Supplementary
materials: Descriptive univariate analysis section for the
methods and results). This allowed us to identify parameters
for the later multivariate analysis. In the univariate analyses,
we did not observe interaction between hemisphere and the
infant group for any of the six evaluated metrics justifying the
averaging of the diffusion metrics over the left and right tracts.
Additionally, evaluated clinical variables were not associated, or
were only weakly associated, with the diffusion metrics in the
PT group, which led us not to consider them as confounders.
In contrast, we observed a strong association between the tract-
specific diffusion metrics and (i) infant group (PTEV, PTML,
FT) or GA at birth; (ii) PMA at scan; and (iii) WM residuals
(estimated as the residuals of the linear model considering the
metric averaged over the whole WM mask as a function of GA
at birth and PMA at scan). The tract-specific diffusion metrics
were therefore adjusted for PMA at scan and WM residuals
in all the subsequent analyses that aimed to study the effect of
prematurity level or GA at birth. As a proxy of the maturational
gap between PT and FT, we calculated the relative percentage
difference in the metric values between each PT infant and its
matched FT control, and averaged this over the PTEV and PTML

groups independently.

Multivariate tract-specific analyses on
effects of prematurity

In order to characterize the potential difference at TEA
between the microstructural profiles of PT infants compared
to FT neonates for each tract, we used a previously proposed
multiparametric approach based on the Mahalanobis distance
(Kulikova et al., 2015). The goal was to evaluate the distance
between each individual PT infant and the FT group as a
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reference, by taking into account the inter-subject variability
within the FT group and the collinearity between a set of
diffusion metrics.

Firstly, we scaled each diffusion metric between [0; 1],
considering all tracts and the mean WM in all the PT and FT
infants. The tract scaled metrics were then corrected for GA at
birth, PMA at scan and WM residuals, considering each of the
three groups independently (PTEV, PTML, and entire FT group)
and keeping the respective group value means. Next, we divided
the PT and FT individual tract metric values by their respective
metric means from the FT group.

For the calculation of the Mahalanobis distance, it
is beneficial to choose independent metrics that provide
complementary information. With this in mind, we decided
to subset the six metrics into three parallel analysis streams
based on the nature of the metrics and models used to derive
them. AD and RD, which are direct measures of the diffusivity
within the tracts, were retained as set 1. More complex but
commonly used DTI metrics: MD and FA, formed set 2. Finally,
NODDI metrics (NDI and ODI) formed an independent set 3 to
dissociate them from the more widely established DTI metrics
and test their relevance for microstructure in the context of SM
network and prematurity.

For a given tract, the Mahalanobis distance (Dtract) for a
given PT individual was then computed using the following
equation:

Dtract (Ex) =

√
(Ex− Eµ)T S−1 (Ex− Eµ)

where Ex is a multivariate vector describing the PT individual
tract-specific metrics, Eµ = [1, . . ., 1] is the mean vector for
the corresponding FT group, and S is a covariation matrix for
diffusion metrics in FT infants.

In the interpretation, the smaller the distance, the closer
the individual preterm infant is to the distribution within the
control FT cohort. Differences in distances across tracts can
thus be interpreted as a differential, tract-specific effect of
prematurity on maturation.

Regarding statistical analyses, we first evaluated whether
the distances for each of the two PT subgroups were
significantly different from 0 (meaning that the PT subgroups
are different from the FT reference group) using one-sample
Wilcoxon signed rank tests corrected for multiple comparisons
(FDR) across all tracts and metric sets. We further evaluated
the effect of tracts and PT subgroups on the Mahalanobis
distances using global ANOVA modeling with these two factors.
We additionally compared distances between the two PT
subgroups based on unpaired t-tests with FDR correction
for multiple comparisons. Both ANOVA and t-tests were
performed after checking for normality of the Mahalanobis
tract values using Shapiro–Wilk test corrected for multiple
comparisons across sets.

To establish whether SM tracts were differentially affected
by the prematurity level, we compared all possible pairs of tracts

within each PT group, using paired t-tests corrected for multiple
comparisons (FDR) across all studied metric sets and tracts.

We finally evaluated the relationship between
this maturational distance related to prematurity and
neurodevelopmental outcome. For each tract, we evaluated
Pearson’s correlations between the Mahalanobis distances in
each metrics set and the 5 BSID-III scaled scores, considering
infants with outcome data in each group separately (PTEV

N = 24; PTML N = 20) given the between-subgroup differences
observed in distances but not BSID-III scores (see Results
section). The reported results were corrected for multiple
comparisons (FDR) across all tract and metric sets.

Statistical analyses were performed in R (version 4.0.5,
2021.03.31). Statistical tests throughout the analyses were
considered with a 0.95 significance level.

Results

Cohort characteristics

A summary of the demographic and clinical characteristics
for each group and detailed results of the group comparisons
are presented in Table 1. Obstetric factors, multiple pregnancies,
IUGR, and delivery by cesarean section were significantly more
frequent in the PT group compared to FT (30.5 vs 1.5, 31
vs 2, and 68 vs 49%, respectively). As expected, PT infants
differed significantly from FT group in weight, length, and
head circumference at birth, as well as Apgar scores. Among
the neonates admitted to NICU, only PT needed surfactant,
ventilatory support and parenteral nutrition, with 7 (13%)
infants needing mechanical ventilation >7 days and 4 (7.5%)
parenteral nutrition >21 days.

Morbidities linked to prematurity were seen in 25 PT infants
(56.8% of the 44 with available data), including chronic lung
disease for 18 infants (15 needing oxygen at discharge), 16
infants had an abnormality identified on cUS during NICU
period, 6 had NEC and 2 had ROP. Of note, weight, length,
and head circumference at TEA were not available in the dHCP
dataset for all infants.

As would be expected, some differences were observed in
Radiology scores at TEA between PT and FT babies, with more
PT infants having a neuroradiology score equal to 3.

Selected clinical descriptors for the 4 infant subgroups
included in the next descriptive analyses are presented in
Supplementary Table 1.

Neurodevelopmental outcome and
characteristics at 18 months

Significant differences were observed in IMD scores
reported at 18mCA (n = 96) (Supplementary Table 2), with
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TABLE 1 Detailed clinical and sociodemographic information for the 59 pairs of infants.

Preterm group (N = 59) Full-term controls (N = 59)

NA N (%) Median
(IQR)
[Range]

NA N (%) Median
(IQR)
[Range]

p

Obstetric factors

Multiple pregnancy, twins 18 (30.5) 1 (1.7) ****

IUGR, yes 4 17 (30.9) 2 1 (1.8) ****

Maternal antenatal steroids, given 48 (81.4) /

Maternal antenatal magnesium sulphate, yes 3 25 (44.6) /

Mode of delivery, cesarean section 40 (67.8) 29 (49.2) **

Newborn characteristics at birth

Gestational age (weeks) 31.7 (28.8; 34.1)
[23.7; 36.0]

40.1 (39.4; 41.1)
[37.4; 42.3]

****

GA grouping (by wGA)

Extremely PT (<28 w) 10 (16.9) 0

Very PT (≥28 to<32 w) 23 (39.0) 0

Moderate to late PT (≥32 to < 37 w) 26 (44.1) 0

Full-term birth (≥37 w) 0 59 (100)

Sex, male 33 (55.9) 33 (55.9) #

Birth weight (kg) 1.48 (1.10; 1.99)
[0.54; 3.06]

3.47 (3.24; 3.74)
[2.44; 4.14]

****

Birth length (cm) 38 44 (40; 47)
[29; 53]

11 52 (50; 54)
[46; 57]

****

Birth head circumference (cm) 2 29 (26; 31)
[21.5; 35]

1 35 (34; 35.5)
[31.5; 37]

****

Neonatal period factors

Admitted in NICU, yes 51 (86.4) 2 (3.4) ****

Apgar score at first minute 7 (5; 9)
[1; 10]

9 (8.5; 9)
[1; 10]

****

Apgar score at fifth minute 9 (8; 9.5)
[1; 10]

10 (10; 10)
[6; 10]

***

Surfactant, given 13 22 (47.8) /

Mechanical ventilation > 7 days 5 7 (12.9) 0 ***

Ventilatory support, total days 5 3.0 (1.0;19.5)
[0.0;90.0]

/

Oxygen needed, total days 5 1.0 (0.0;23.8)
[0.0;99.0]

/

Parenteral nutrition > 21 days 5 4 (7.4) 0 **

Parenteral nutrition, total days 5 5.0 (0.0;12.0)
[0.0;29.0]

/

Postnatal sepsis 14 (23.7) 4 (6.8) *

Neonatal morbidities, yes 15 25 (56.8) 0

CLD/O2 dependency at discharge 5 18 (33.3)/15
(27.7)

/

Necrotizing enterocolitis 5 6 (11.2) /

Retinopathy of prematurity 5 2 (3.7) /

Any abnormal cUS 16 14 (32.5) /

MRI scan around TEA

PMA (weeks) at MRI 41.3 (40.1; 42.1)
[38.4; 44.9]

41.3 (40.2; 42.1)
[38.3; 44.7]

#

Radiology score 2 (1; 3)
[1; 3]

1 (1; 2)
[1; 3]

*

1. Normal appearance for age 22 (37.3) 35 (59.3)

2. Incidental findings with unlikely
significance for clinical outcome or analysis

18 (30.5) 17 (28.8)

3. Incidental findings with unlikely clinical
significance but possible analysis significance

19 (32.2) 7 (11.9)

Median IQR: interquartile range (25%; 75%); range: [minimum; maximum]. NA: data not available (number of subjects).
Percentage over the available data (see NA for missing data). Comparisons were performed with suitable tests (Wilcoxon rank sum test for ordinal and continuous variables; Fisher’s

exact test for binary factors; Pearson’s Chi-squared test for non-binary nominal factors).
#No comparisons performed since these variables were used for pairing the full-term infants to preterm ones. cUS, cranial ultrasonography; CLD, chronic lung disease; FT, full-term
birth; IUGR, intrauterine growth restriction; NICU, neonatal intensive care unit; PMA, post-menstrual age; PT, preterm birth; TEA, term equivalent age; wGA, weeks of gestational age.
p-value ≤ 0.0001 [****], ≤0.001 [***], ≤0.01 [**], < 0.05 [*], <0.1 [.], ≥0.1 [ns].
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FIGURE 2

Outcome assessment at around 18 months of corrected age: BSID-III scaled scores distribution and comparisons between preterm and
full-term infant groups. The dotted line corresponds to the pathological threshold, with scores <7 (<-1 SD) indicating a developmental delay. Of
note, only one extreme PT (male, born at 27.6wGA) presented severe developmental delay (scores <-3SD) for cognitive and both
communication scores (with fine motor score at –2SD and gross motor score on the norm values). Reported p-values come from t-tests
corrected for multiple comparisons. See Supplementary Figure 1 for infant subgroup analysis using one-way ANOVA. BSID-III, Bayley Scales of
Infant and Toddler Development, Third edition. PT, preterm; FT, full-term. Cog, cognitive; RecCom, receptive communication; ExpCom,
expressive communication; FineMot, fine motor; GrossMot, gross motor scaled scores; ns, non-significant.

PT families tending to live in more deprived areas than
the FT ones (quintiles ≤ 3 for 64.3 vs 29.6%, respectively,
data not shown).

Among the 97 infants with available BSID-III data,
no significant differences between PT and FT controls
were observed for the corrected age at assessment. Paired
t-tests on scaled scores showed no significant differences
between PT and FT groups after correcting the results for
multiple comparisons (Figure 2). BSID-III scaled scores across
PTEV, PTML FTEVCt and FTMLCt subgroups (presented in
Supplementary Figure 1) also showed no significant group
effect.

Over the whole cohort, only a small number of infants
showed scaled scores indicating a developmental delay
(scores below 7 and corresponding to < -1SD), with no
significant difference between PT and FT. These consisted
of developmental delay in 30.9% of infants for expressive
communication (N = 30, 19 PT), 14.4% for receptive
communication (N = 14, 7 PT), 11.3% for gross motor
(N = 11, 5 PT), 6.2% for fine motor (N = 6, 4 PT) and cognition
(N = 6, 4 PT).

Sensorimotor tract reconstructions

Visual inspection of the automated reconstructions for all
tracts was performed on some randomly selected infants which
allowed us to evaluate the quality of reconstructions for all the

15 tracts of interest, in a similar way across PT and FT infants.
Examples of individual tract reconstructions and diffusion
metric maps are shown in Figures 1C,D for a representative FT
infant.

Univariate tract-specific metrics

Tract-specific distributions of diffusion metrics across
the 4 infant groups are presented in Figure 3. Visual
assessment suggested important microstructural differences
between groups. Results of the univariate analyses are presented
in Supplementary materials: Descriptive univariate analysis
section. Interestingly, we observed that AD, RD, MD (controlled
for the effects of PMA at scan and WM microstructure)
decreased with GA at birth in all tracts, while corrected FA, NDI
and ODI increased.

The analysis of the relative percent difference in diffusion
metrics between the PT and paired FT neonates allowed
us to estimate a proxy of the maturational gap related to
prematurity for each PTEV and PTML group (Supplementary
Figure 2). Visual inspection suggested a larger gap in the
PTEV subgroup than in PTML, highlighting the effect of
prematurity degree on tract microstructural characteristics.
However, the observed variability between the metrics
rendered the interpretation of different maturational
patterns across tracts difficult, justifying the need for a
multivariate approach.
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Mahalanobis distance of preterm
subjects from the typical full-term
profile

To explore the impact of prematurity on tract-specific
microstructure, we computed multi-metric Mahalanobis
distances of PT subgroups (PTEV and PTML independently)
to all FT infants as reference, using the 3 metric sets: set 1
(AD and RD), set 2 (MD and FA), and set 3 (NDI and ODI)
(Figure 4). For a given tract, computed Mahalanobis distance
can be understood as a maturational distance for a given PT
infant compared to the FT group.

For both PT subgroups (PTEV and PTML), all sets and all
tracts, distances were highly significantly different from 0 as
assessed by Wilcoxon tests corrected for multiple comparisons
(all p < 0.001), suggesting that SM network microstructure is
affected by prematurity, even moderate/late. Considering all PT
infants, ANOVA modeling on distances for each set confirmed
the expected effects of group, tract, and the interaction between
group and tract for all three sets (Supplementary Table 3).
As expected, the distance increased with the prematurity
levels, with unpaired t-tests per tract comparing the two PT
subgroups revealing higher distances in PTEV than in PTML

(Figure 4A). In addition, the tracts were not affected in the

same manner: distances were different between PTEV and PTML

for all tracts except for ParaC-Caud in both DTI sets (1 and
2), and for set 3: S1-Bstem, M1-Bstem, ParaC-Bstem and M1-
Caud.

Tract-specific effects of prematurity
To further evaluate the differential effect of prematurity

on specific tracts, we subsequently compared distances for
each pair of tracts through paired t-tests in each PT
subgroup independently (Supplementary Figure 3). Many
more significant tract-by-tract differences were observed in the
PTEV than in the PTML group (69 vs 26/105 for set 1; 70 vs
22/105 for set 2; 61 vs 23/105 for set 3), but the trends were rather
consistent between the two PT subgroups.

Focusing on the PTEV subgroup, the significant differences
between tracts assessed by the paired t-tests allowed us to
propose an ordering of the tracts based on the relative effects
of prematurity on microstructural characteristics (Figure 4B).
For sets 1 and 2 (DTI sets), the orderings were highly similar,
with, somewhat schematically, the following tracts showing the
lowest to highest distances: (1) M1-Bstem; (2) ParaC-Bstem,
S1-Bstem, M1-Thal, ParaC-Thal, M1-Caud, ParaC-Caud; (3)
M1-Lenti, ParaC-Lenti, S1-Thal, S1-Caud; (4) S1-Lenti, S1L-
S1R, M1L-M1R; (5) S1–M1. For set 3 (NODDI set), the ordering
showed schematically, from the lowest to highest distances of

FIGURE 3

Diffusion metrics across tracts and cohort subgroups: extreme to very preterm group (PTEV, dark orange) compared to paired full-term controls
(FTEVCt, dark purple), and moderate to late preterm group (PTML, light orange) compared to paired controls (FTMLCt, light purple). Significances
are results of the tract-specific paired t-tests between paired groups, corrected for multiple comparisons. Only the comparisons between
PTEV – FTEVCt reached significance. Refer to Figure 1 legend for abbreviations and to Table 1 for p-value legend.
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FIGURE 4

(A) Multi-metric Mahalanobis distance across tracts and PT subgroups (PTEV and PTML with FT controls as reference) at TEA. The smaller the
distance, the less the microstructural profile of the PT infant differs from the FT reference group. Note that the effect of prematurity is globally
smaller for PTML than for PTEV infants across the studied SM tracts. Significances are results of the comparison of Mahalanobis distances (PTEV

vs PTML) with unpaired t-tests (p-values corrected for multiple corrections) for each set and each tract. For visualization purposes, outliers
(mean ± 3SD) were removed (6 points for PTEV, 3 for PTML infants). (B) Order of the SM tracts in the PTEV subgroup based on the Mahalanobis
distance per metrics set (higher values on the top), highlighting the differential effect of prematurity on SM tracts microstructure. The lines
represent the significant differences between tracts according to paired t-tests (corrected for multiple comparisons) over the PTEV group (for
visualization purposes, the statistical threshold was relaxed to p < 0.1). Metrics sets: 1 (AD, RD); 2 (MD, FA); 3 (NDI, ODI). Refer to Figure 1 legend
for ROIs color code and abbreviations.

tracts: (1) M1-Bstem, ParaC-Bstem; (2) S1-Bstem, M1-Thal,
ParaC-Thal, M1-Caud, ParaC-Caud, S1-Caud; (3) S1-Thal, M1-
Lenti, ParaC-Lenti, S1L-S1R, M1L-M1R; (4) S1-Lenti, S1–M1
(Figure 4B).

Despite a few differences in the ordering of a couple of
tracts, the results were quite consistent across the three sets
and revealed a differential impact of prematurity on the SM
tracts microstructure. Overall, the tract ordering based on
maturational distances highlighted a coherent caudo-rostral and
central-to-periphery pattern, with: the cortico-Brainstem tracts
presenting the lowest distances and thus the least impact of

prematurity; the cortico-Thalamic and cortico-Caudate tracts
showing “intermediate” distances; the cortico-Lenticular tracts
appearing with the highest distances among the cortico-
subcortical tracts; and the cortico-cortical tracts revealing the
highest prematurity impact. Inter-hemispheric tracts (S1L-
S1R and M1L-M1R) showed lower distances than the intra-
hemispheric tracts (S1–M1). S1 tracts generally had higher
distances than the M1 and ParaC tracts, both presenting
similar profiles.

This approach of tract ordering based on the maturational
distance related to prematurity was not considered for the PTML
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subgroup as tract pairwise comparisons were less systematically
significant than in the PTEV group and the ordering was more
difficult to synthesize. For this subgroup, the distances of all
tracts were more homogeneous (Supplementary Figure 3),
which may be associated with a lesser effect of prematurity on
the microstructural profiles of the SM tracts.

Tract-specific maturational distance associated
with neurodevelopmental outcome

Finally, we assessed whether maturational distances related
to prematurity at TEA might be related to outcome (BSID-III
scaled scores) at 18mCA, considering each PT subgroup
independently. Pearson correlations showed significant
results only in PTEV group (N = 24), for Set 3 (NODDI)
(Supplementary Table 4) and for specific tracts: M1-Bstem
and ParaC-Bstem distances were both negatively correlated
with Cognitive scaled score and Fine motor score, while M1-
Lenti, ParaC-Lenti and S1–M1 tracts were also negatively
correlated with Fine motor score (the lower the maturational
distance, the higher the score and thus the better the outcome)
(Figure 5). Interestingly, these five tracts showed different levels
of distances over the PTEV group, with M1- and ParaC-Bstem
having a distance closest to 0, whereas S1–M1 was the tract
with the highest distance; and M1- and ParaC-Lenti presented a
similar and intermediate distance.

Discussion

In this study, we considered an unprecedented set
of primary SM cortico-cortical and cortico-subcortical
tracts that are thought to underpin a wide range of early
SM experiences. We observed significant differences in
diffusion MRI derived metrics of WM microstructure
between low-risk PT and FT infants at TEA. Multi-
parametric assessment showed that the maturational gap
differs with the prematurity level and across SM tracts,
with alterations particularly affecting S1-related tracts and
more rostral tracts. Importantly, these findings are of
functional significance as correlations were also observed
between specific measures of microstructural maturation
within particular tracts and neurodevelopmental outcomes
evaluated at 18mCA.

Exploring the developing sensorimotor
network microstructure with diffusion
magnetic resonance imaging

A robust automated approach to delineate
primary sensorimotor tracts in neonates

After meeting the challenge of extracting reliable
individual SM tracts by optimizing the settings of an

automated tractography-based approach benefitting from
the dHCP multi-shell dMRI data, we explored the WM
maturational differences of low-risk preterm infants at
TEA compared to full-term neonates. We then quantified
the microstructure of each tract by extracting DTI and
NODDI-derived diffusion metrics using a weighting
approach which privileges the core of the tract and avoids
potential bias linked to some inter-individual differences
in tract volumes.

Relevance of diffusion MRI models to
characterize white matter maturation

DTI and NODDI models present different trade-offs
between complexity, biological plausibility, robustness, and
run-time duration (Jelescu and Budde, 2017). Despite its
widespread use in most studies of WM development (Dubois
et al., 2014; Ouyang et al., 2019), DTI-derived metrics can be
affected by several microstructural features and lack specificity
to disentangle the complex properties of voxels containing
crossing, kissing and fanning fibers (Zhang et al., 2012; Jeurissen
et al., 2013). In contrast, NODDI allows a more sophisticated
and biologically plausible multi-compartment model, relevant
for developmental studies (Chang et al., 2015; Genc et al., 2017;
Mah et al., 2017; Kimpton et al., 2021), but requires multi-
shell data and increased processing time. Although potentially
sub-optimal, we opted for default settings of diffusivities in
the NODDI model, which were optimized for the adult WM
but not for infants (Guerrero et al., 2019). In the absence of
gold standards for infant-specific NODDI fitting to evaluate the
metric maps, this was performed to maintain some consistency
with previous studies (Guerrero et al., 2019; Fenchel et al.,
2020).

Overall, the resulting metrics maps were consistent among
PT and FT subjects, and metric differences across tracts
were largely coherent between DTI and NODDI results in
all infants. Once controlled for the effects of PMA at scan
and global WM microstructure, we observed that AD, RD,
MD decreased with GA at birth in all tracts, while FA,
NDI and ODI increased. Globally, MD differences across
tracts presented an opposite pattern to NDI (Kimpton et al.,
2021), and differences in RD were highly similar to MD in
all tracts, and opposite to FA in cortico-subcortical tracts,
confirming that variations in MD and FA are likely largely
driven by RD. Such diverse profiles across tracts might result
from differences in both intrinsic microstructure (similar to
adults) and in maturation (according to different myelination
stages across tracts) (Dubois et al., 2014). During WM
development, MD tends to decrease and NDI to increase
with the growth of fibers and membranes, acting as barriers
to the random water motion, while FA tends to increase,
reflecting several factors including the presence of compact
fiber tracts and increasing myelination (Beaulieu and Allen,
1994; Batalle et al., 2017; Kimpton et al., 2021). ODI describes
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FIGURE 5

Significant correlations between Mahalanobis distances and neurodevelopmental scores at 18mCA, for NODDI set. Scatter plots of the
significant Pearson correlations between tract-specific maturational distance related to prematurity at TEA in PTEV group and BSID-III scores.
Cog, cognitive; FineMot, fine motor scaled scores. Refer to Figure 1 legend for abbreviations.

the orientational dispersion of fibers within a tract, which is
highly variable across tracts and likely changes during the
growth and maturation of crossing fibers (Raghavan et al.,
2021). Interestingly, in a few tracts, we did not observe
significant relationship between FA or ODI (corrected for
PMA at scan and WM residuals) and GA at birth, suggesting
that both metrics might be less sensitive to detect subtle
variations of microstructure in the settings of this study.
Further analyses (beyond the scope of this study) could be
performed to evaluate the potential correlations between all
these metrics, as performed in previous studies (Kunz et al.,
2014).

Moreover, the results of the maturational distance analyses
underlined a high coherence between DTI sets which seemed
fairly intuitive and in line with previous studies (Li et al.,
2022). The differences observed between the DTI and
NODDI sets (with NODDI set presenting more compact
and roughly lower Mahalanobis distances values across
tracts, with subtle variations in the main order of distances)
suggested that NODDI metrics provide complementary
information, probably due to their differing sensitivity to
neurites growth and maturation. Thus, in line with previous
studies (Batalle et al., 2017; Kimpton et al., 2021), our
results highlighted the complementarity of these models and
confirmed the relevance of NODDI-derived metrics for the
study of WM microstructure maturation in the context of
prematurity.

Studying the effects of prematurity on
sensorimotor network maturation at
term-equivalent age

Hypotheses about the differential effect of
prematurity across primary sensorimotor tracts

In contrast to the majority of previous studies, we focused
on low-risk PT infants without overt brain abnormality at TEA,
which is representative of the majority of children now born
preterm in developed countries. Despite the presence of specific
clinical risk factors in some of the PT infants (e.g., morbidities
related to prematurity), the absence of a significant difference
in the BSID-III outcome at 18 months of age between PT and
FT infants corroborated that the included PT infants were at
low-risk for neurodevelopment impairment.

In this study, we hypothesized that WM microstructure
within SM tracts would show a significant maturational delay
at TEA in PT infants compared to FT neonates, with distinct
patterns as a function of GA at birth and across cortico-
subcortical and cortico-cortical tracts. This was based on the
assumption that early peripheral stimuli are essential for the
emerging SM network maturation, and that preterm birth is
associated with modified SM stimuli and experiences, notably
related to numerous and various procedures in NICU (Mörelius
et al., 2006; Gibbins et al., 2008), which might have a differential
effect on somatosensory and motor systems (Duerden et al.,
2018; Schneider et al., 2018; Jones et al., 2022). Of direct
relevance, previous studies have reported either higher tactile
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sensitivity in PT infants at TEA (André et al., 2020), tactile
hyporeactivity, lower brain responses (Maitre et al., 2017)
and/or undifferentiated integration of nociceptive versus non-
nociceptive stimuli (Fabrizi et al., 2011), in association with WM
abnormalities (Brummelte et al., 2012; Zwicker et al., 2013).

Approaching the effects of prematurity on WM
microstructure with univariate analyses

Univariate dMRI approaches, based on individual derived
metrics, are commonly applied to reveal WM developmental
changes in the neonatal brain (Kunz et al., 2014; Ouyang et al.,
2019). These analyses were thus used to evaluate the effects of
several factors on the diffusion metrics measured in SM tracts.

Firstly, these were not related to the infants’ sex in
our cohort. Combined with previous studies which showed
inconsistent results (Pannek et al., 2014; Barnett et al., 2018;
Kimpton et al., 2021), this observation suggests that sex effects
may vary according to the studied brain regions. Surprisingly,
we also observed no effect of main perinatal clinical risk factors
(including preterm morbidities), despite numerous studies
describing associations of WM abnormalities with obstetric,
neonatal and postnatal factors (Pogribna et al., 2013; Brouwer
et al., 2017; Barnett et al., 2018; Parikh et al., 2021), and with
exposure to cumulative risk factors (Barnett et al., 2018). These
negative results might be partly due to the specific study of
low-risk PT infants.

In line with previous literature, we observed that diffusion
metrics –even measured at TEA– were dependent on PMA at
MRI (de Bruïne et al., 2011; van Pul et al., 2012; Kimpton et al.,
2021) and were influenced by prematurity (Kunz et al., 2014;
Kelly et al., 2016a; Batalle et al., 2017; Thompson et al., 2019;
Dibble et al., 2021; Kimpton et al., 2021), with PTEV infants
showing more “immature” microstructural profiles (higher AD,
RD, MD, lower FA, NDI, ODI) than PTML and FT infants.
Interestingly, when group analyses were performed at the tract
level, PTML showed no difference with the FT paired group,
suggesting that the specific SM tracts studied here might not
contribute significantly to the well-described whole-brain WM
diffusion abnormalities in moderate-late PT (Kelly et al., 2016a;
Thompson et al., 2019).

Evaluating the maturational distances related
to prematurity with a multivariate approach

We then aimed to evaluate the maturational gap between
PT infants and their full-term peers, based on SM tracts
microstructural characteristics at TEA. Although univariate
dMRI approaches allow some inference about the effects of
prematurity on SM tract microstructure, they cannot reflect
the inter-related complexity of processes involved in early
brain maturation (Kostović et al., 2019), and are limited by
the difficulties interpreting findings related to single metrics
which are sensitive to different underlying microstructural
properties and maturational processes. Also, quantifying the

maturational degree across regions requires comparison of an
infant’s data with a mature reference to account for “intrinsic”
microstructural differences (Dubois et al., 2014). To overcome
these limitations, we implemented an original multivariate
approach already validated in neonatal and pediatric data
(Kulikova et al., 2015; Dean et al., 2017; Li et al., 2022), that
took advantage of the complementary information described
by different DTI and NODDI metrics, to enable better
characterization of SM tract maturation and the effects of
prematurity as compared to typical development. Multivariate
Mahalanobis distance was calculated in respect to a reference
group (FT neonates) which provided typical values for the
given tract. Importantly, this approach also allowed to take
into consideration both the inherent variability of the diffusion
metrics across tracts in the FT group and the correlations
between these metrics. For each tract, the resulting maturational
distance related to prematurity could be interpreted as a
developmental gap between a PT infant at TEA and the FT
control group.

Highlighting the tract-specific effects of
prematurity on SM network

Focusing on the PTEV group, the comparison of distances
across tracts highlighted the differential impact of prematurity
on the SM tracts at TEA. For all sets of diffusion metrics, the
impact increased in a caudo-rostral and central-to-peripheral
manner following the typical progression of WM growth
and myelination during infancy (Yakovlev and Lecours, 1967;
Dubois et al., 2014) and within the CST tract (Kimpton
et al., 2021), suggesting that early maturing tracts are
less impacted. Furthermore, while this spatial pattern is
globally consistent with previous studies of preterm infants
(Wu et al., 2017; Knight et al., 2018), our results raise
several interesting points regarding the functional role of
the different SM tracts and related GM structures during
development.

Firstly, we observed a differential impact of prematurity
among tracts related to different cortical seeds. S1-subcortical
tracts were systematically more impacted than M1- and ParaC-
subcortical tracts. This suggests that S1 tracts may have a specific
vulnerability to the deleterious effects of prematurity, possibly
due to the altered SM perceptions and experiences as a result
of early exposure to the ex-utero environment. Alternatively,
the observed differences may reflect compensatory faster and/or
more efficient maturational “catch-up” mechanisms in the
M1/ParaC-subcortical tracts during the first post-natal weeks
after preterm birth.

The similar profiles seen in the ParaC-subcortical tracts
and related M1-subcortical tracts are less straightforward to
interpret as the paracentral lobule includes both motor and
somatosensory regions. Given the somatotopic organization of
S1 and M1, this could suggest that connections related to the
lower limb representations are less impacted by prematurity,
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which may be linked to the possible advanced maturation of
these representations at early ages (Devisscher et al., 2021).
A further possible explanation is that a greater number of motor
fibers than sensory fibers were included in ParaC- tracts.

Secondly, the prematurity impact was also variable across
sub-cortical related tracts. Of these, the cortico-Brainstem tracts
appeared the least impacted. As these mainly correspond of
CST fibers that myelinate early, notably at the level of the
PLIC (Dubois et al., 2014; Kulikova et al., 2015; Kimpton
et al., 2021), this is consistent with connections that have
more advanced maturation at the time of birth being less
vulnerable to prematurity (Wu et al., 2017). In agreement with
the acknowledged vulnerability of thalamocortical connections
following preterm birth (Ball et al., 2013a), the cortico-Thalamic
tracts showed higher impact than cortico-Brainstem tracts,
giving an “intermediate” profile compared to other studied
tracts. The specific functional role of the thalamus, with
essential input and output projections to the different SM
regions, might help to modulate this vulnerability compared to
other sub-cortical structures (Duerden et al., 2018; Schneider
et al., 2018). Similarly, the cortico-Caudate tracts showed
“intermediate” profile. This might result from an interplay
between the high vulnerability of the caudate nuclei to
prematurity (Nosarti et al., 2014; Back, 2015; Loh et al.,
2017) and the adverse effects on the major efferent projections
(McClendon et al., 2014) compared with more “preserved”
afferent connections (from SM cortices). The cortico-Lenticular
tracts systematically presented the maturational distance profile
with the greatest impact of prematurity, suggesting their
specific vulnerability. In addition to the known structural
consequences of preterm birth on BG growth (Loh et al.,
2017, 2020), different hypotheses can be proposed to explain
this specific profile, especially knowing the anatomo-functional
particularities of these tracts. As the dissected tracts include
both (afferent) cortico-putaminal and (efferent) pallido-cortical
fibers, the observed alteration may involve both the input
(putamen) and output (GPi) structures of the BG, which
have different functions in cortico-BG loops. We hypothesize
that maturation of the efferent pallido-cortical fibers is
specifically altered by prematurity, with functional effects on
information reaching SM cortices, which might secondarily
induce alterations of the descending cortico-striatal and cortico-
pallidal fibers.

Finally, we observed the highest impact of prematurity in
the cortico-cortical tracts, suggesting a particular vulnerability of
these rostral structures, in line with the well-described caudo-
rostral maturational pattern. Inter-hemispheric tracts presented
lower impact than intra-hemispheric S1–M1 tracts, in line
with the late and protracted maturation of such short-range
connections (Kostović et al., 2019).

While interesting, the results should be interpreted
cautiously given the limitations of diffusion MRI and
tractography with relation to the image spatial resolution

and the size of neonatal structures, and the presence of crossing
fibers notably at the level of the corona radiata. However, the
rare high-quality of dHCP neonatal data, the use of HARDI
acquisition, the consistency of the tract’s delineation and the
multivariate approach allowed us to overcome, at least partially,
these limitations. In the future, it would be interesting to further
investigate whether the vulnerability of SM tracts to prematurity
is stable over development or whether “catch-up” development
is present for some tracts, either before or after TEA. This would
require the longitudinal evaluation of maturational distances
defined with similar settings.

Relating the early microstructure of
sensorimotor tracts with
neurodevelopmental outcome

The final aim of this study was to investigate the
relationship between SM microstructural characteristics at TEA
and neurodevelopmental outcome at 18mCA. In the specific
low-risk preterm cohort studied, no substantial developmental
delay or specific disability was expected, as confirmed by the
results in terms of BSID-III scores.

Nevertheless we hypothesized that correlations would exist
between diffusion metrics profiles and BSID-III scores based
on previous studies showing that, even in the absence of
overt brain lesions, neonatal microstructural WM measures
are associated with neurodevelopmental outcome in toddlers
and children (van Kooij et al., 2012; Duerden et al., 2015;
Barnett et al., 2018; Girault et al., 2019; Kelly et al., 2020;
Pannek et al., 2020; Parikh et al., 2021). In particular, reduced
neonatal FA (especially in the PLIC) has been associated with
delayed psychomotor development and motor disability at
different ages (Rose et al., 2007; Skranes et al., 2007; De Bruïne
et al., 2013; Groeschel et al., 2014; Kelly et al., 2016b), and
neonatal NODDI metrics have been found to relate to later
neurodevelopmental outcomes (Kelly et al., 2016b; Young et al.,
2019).

Our results showed negative correlations in PTEV infants
between maturational distances and Cognitive and Fine motor
scaled scores for a number of tracts in the NODDI set only. This
suggested that the early microstructural information as modeled
by NODDI is more sensitive than DTI based metrics such as
FA for detecting subtle WM tract alterations related to later
neurodevelopmental impairments in preterm infants (Batalle
et al., 2017; Kimpton et al., 2021). Moreover, early SM tract
microstructure was further correlated with cognitive outcomes,
confirming essential developmental interactions between the
SM system and higher-order functions, and the common
clinical overlap of motor and cognitive impairments in the PT
population.

Regarding the tracts concerned, we first observed that
fine motor score was related to five tracts with different
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maturational distance profiles: M1-Brainstem and ParaC-
Brainstem which were the least impacted by prematurity; M1-
Lenti and ParaC-Lenti with intermediate profile; and S1–M1
with the greatest impact. This suggested that the degree of
maturational gap at TEA by itself is not the only factor
explaining motor outcomes.

In the light of our results showing the high vulnerability
of lenticular tracts to prematurity, it is not surprising that
microstructural alterations in the motor tracts connected to this
key BG structure may underpin early SM impairments with
further consequences on fine motor skill acquisition (Leisman
et al., 2014). Likewise, as intra-hemispheric SM connections
contribute to improve SM integration and functions, the
correlation observed for S1–M1 tract suggests that early impact
of prematurity on these tracts may alter later neuromotor
development.

Maturational distances for M1-Brainstem and ParaC-
Brainstem tracts were also correlated with cognitive scores,
suggesting that early microstructural alterations in these tracts
might have global functional consequences, beyond motor skills.
Nevertheless, further studies are needed to better understand the
involvement in these developmental domains of the brainstem,
a complex structure that plays an essential role as a relay for a
large number of connections from the whole nervous system,
in addition to the functions associated with its many GM sub-
structures.

The observed relationships in PTEV infants between SM
tract microstructure at TEA and outcome at 18mCA are of
particular interest in the context of prematurity, as even low-
risk populations are at increased risk of –sometimes subtle–
neuromotor impairments (e.g., developmental coordination
disorder) (Edwards et al., 2011; Spittle and Orton, 2014;
Zwicker, 2014; Groeschel et al., 2019). These disorders
are generally not visible enough to be diagnosed until
much later (often at school age) (Williams et al., 2010;
de Jong et al., 2012; Van Hus et al., 2014), which underlines
the need for early diagnostic biomarkers. Thus, the specific
impact of prematurity on the five primary SM tracts previously
mentioned should be further explored, in order to investigate
their potential value as early markers of motor and/or
other neurodevelopmental disorders such as developmental
coordination disorder.

Nevertheless, whilst relating early brain markers and long-
term outcome has important clinical relevance, previous studies
have described that environmental factors (e.g., socio-familial)
could explain the greatest part of interindividual variability in
neurodevelopment later in childhood, with the influence of
perinatal risk factors diminishing over time (Thompson et al.,
1998; Miceli et al., 2000; Anderson and Doyle, 2008; Linsell
et al., 2015). Thus, future studies should incorporate more
accurate predictive models to intend to approach the complex
relationship between early brain characteristics, environmental
factors and outcome.

Conclusion

Using an unprecedented combination of diffusion
MRI data and innovative analysis methods, our results
confirmed that prematurity impacts early microstructural
development of the primary SM network, even in low-risk
preterm infants. We further found that these effects differ
according to the level of prematurity and across the SM
tracts, with the most rostral tracts as well as those involving
S1 showing the greatest vulnerability to prematurity at
TEA. Our study also showed the complementarity between
DTI and NODDI models as well as the interest of using
multiparametric approaches for assessing maturational
processes and microstructural developmental differences.
Longitudinal studies incorporating earlier MRI evaluation
as well as behavioral follow-up through to later childhood
would provide a better understanding of the impact of
early-life disturbances in SM tracts microstructure on
neurodevelopmental outcomes.
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