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Editorial on the Research Topic

Metabolic estimates during glucose challenge tests and continuous

glucose monitoring—Innovative and broad approaches to assessing

glucose and insulin metabolism in diverse populations

Introduction

Identifying early signs of metabolic dysfunction is crucial for preventing and

delaying type 2 diabetes (T2D). As such, glucose challenge tests that assess fasting and

postprandial glucose and related hormonal factors (e.g., insulin/C-peptide, glucagon)

provide critical information on pathophysiological mechanisms of type 2 diabetes

(T2D). Glucose challenge tests range in complexity from intravenous glucose

tolerance tests (IVGTT) that are technically challenging and require specialized

metabolic testing centers to mixed meal and oral glucose tolerance tests (OGTT)

that can be conducted in outpatient settings. While existing simple mathematical

indices (e.g., insulinogenic index (IGI), oral disposition index, HOMA-IR, and
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Matsuda index [1, 2] are widely used in clinical and

epidemiological studies, more complex mathematical

models of glucose challenge tests are emerging as sensitive

and precise markers for beta-cell function and insulin

sensitivity [3, 15, 16]. Recently, continuous glucose

monitoring (CGM)-derived metabolic parameters, including

mean amplitude of glycemic excursions (MAGE), offer

pragmatic alternatives to assess metabolic risk and status [4].

The development of new measures for quantifying data

from glucose challenge tests and CGM is necessary to support

clinical practice and promote scientific understanding. This

Research Topic sought to highlight new and emerging modeling

approaches and markers based on data from glucose challenge

tests and CGM with the potential for advancing the field of

diabetes risk prediction and assessment especially in diverse

populations. Given the variability in metabolic responses

associated with age, sex, and race/ethnicity, mathematical

models and diagnostic markers must be tested in a wide

range of patient populations [10]. Moreover, the application

of these approaches in varied populations often requires re-

examination of the assumptions and application of

mathematical models and diagnostic markers. In particular,

several articles address the promising possibilities raised by

analysis of CGM data. We provide an overview of the published

articles below.

Novel modeling approaches

Minimal models have been widely used in mathematical

modeling of metabolism [15]. However, in cases where more

data are available, models that incorporate additional

metabolites provide insights into specific aspects of

metabolic dysregulation. Several articles in this Research

Topic proposed novel mathematical models of the

interacting dynamics of different metabolites. Subramanian

et al. introduced a model of coupled glucose-insulin-

glucagon dynamics during an isoglycemic intravenous

glucose infusion (IIGI) experiment designed to mimic an

OGTT. This model was used to identify several differences

between participants with T2D relative to weight matched

control participants without diabetes. Abohtyra et al.

described a model-based method for inferring a

parameterization of insulin secretion rate using glucose,

insulin, and C-peptide data from an OGTT even when

sampling of these data was sparse. Hampton et al. presented

a mathematical model of glycerol-insulin dynamics that

considered how the dynamics of glycerol suppression and

recovery probe the function of adipose tissue and its

response to insulin in adolescent girls. They found that the

dynamics of glycerol differ from the dynamics of glucose in this

population, thereby emphasizing the need to consider age/life-

stage in metabolic assessments.

Markers for improving diabetes screening
and treatment

There is much effort focused on improving T2D screening

and understanding diabetes progression. Several papers in this

Research Topic addressed this question while considering the

modifying factors of demographics and genetics. Shi et al.

investigated the prevalence and significance of low muscle

mass and its relationship to glycemia. Low muscle mass was

associated with glycemic excursions in males but not females.

Richter et al. used a data assimilation approach to predict

glycemic states in adolescents following bariatric surgery. They

first estimated parameters in a mechanistic model using data

assimilation on clinical OGTT data [11]; then they applied

logistic regression models with variables including these

parameters as well as clinical data from the electronic health

record to predict post-surgical glycemic control. Vejrazkova et al.

analyzed OGTT data and found that the G allele of the

rs10830963 polymorphism is associated with impaired early

phase of beta cell function. Interestingly, this impairment was

present even in healthy individuals with normoglycemia.

Karamched et al. described the concept of delay-induced

uncertainty (DIU) and the implications of DIU for glucose

fluctuations. They established that DIU was present in large

regions of parameter space for an established model of glucose-

insulin dynamics [13, 14], and they argued that DIU is

pathogenic for obesity and type 2 diabetes. These theoretical

models are important as they explore diagnostic screening tools

as well as mechanisms for diabetes progressions. Additional

experimental data are needed to evaluate these provocative

model predictions.

Markers of glucose fluctuations

There has been much effort to find markers of glucose

excursions [5, 6, 7, 12] to identify patients who are at high

risk for progression to diabetes and its complications [8, 9]. In-

line with one of the goals of this Research Topic, novel metabolic

markers or model parameters of glucose challenge tests, the

following two articles found novel markers of glucose

fluctuations. Ha et al. showed that the discrepancy between

glucose management indicator and HbA1c is a good predictor

for intensive care unit (ICU) stay and mortality. Jagannathan

et al. Identified that elevated 1-h glucose at the time of remission

of T2D dysglycemia is a risk factor for T2D relapse among Black

patients with obesity. However, large fluctuations in blood

glucose concentrations are not the only indicators for high

risk for worsened glycemia and diabetic complications:

glucose variability may also play a role. New methods

leveraging CGM hold much promise for the screening and

monitoring of diabetes with a focus on glucose variability.

Wang et al. used CGM data to relate glucose variability to
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risk for nocturnal hypoglycemia in patients with T2D. Similarly,

in another article, Wang et al. used CGM data to compare the

effects of basal insulin vs. premixed insulin on glucose variability

and hypoglycemia in T2D patients. However, Faerch et al. found

that there was poor agreement between measurements from

venous blood plasma and CGM during an OGTT. More work

is needed to understand the relationship between CGM data and

typical plasma-based measures of glucose dynamics.

Conclusion and future directions

In conclusion, the fields of method and model development

to understand glucose and related hormone dynamics are active,

with new emerging ideas. The articles in this Research Topic

highlighted novel modeling approaches and markers based on

data from glucose challenge tests and CGM that could improve

T2D risk prediction, screening, and glucose control. The primary

need for the future will be to determine how to translate the

research based-methods presented here into simpler models with

broadly clinically relevant endpoints. This will require additional

studies of glucose metabolism in the postprandial state. Ideally,

this would allow for more sophisticated risk assessments of

dysglycemia and clinical methods for assessing beta-cell

function relative to insulin sensitivity. Such methods could be

translated to large epidemiologic studies and move us closer to

clinical precision medicine.
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Discordance Between Glucose
Levels Measured in Interstitial Fluid
vs in Venous Plasma After Oral
Glucose Administration: A Post-Hoc
Analysis From the Randomised
Controlled PRE-D Trial
Kristine Færch1,2*, Hanan Amadid1, Lea Bruhn1, Kim Katrine Bjerring Clemmensen1,
Adam Hulman3, Mathias Ried-Larsen4,5, Martin Bæk Blond1,2, Marit Eika Jørgensen1,6

and Dorte Vistisen1,7

1 Steno Diabetes Center Copenhagen, Gentofte, Denmark, 2 Department of Biomedical Sciences, University of
Copenhagen, Copenhagen, Denmark, 3 Steno Diabetes Center Aarhus, Aarhus, Denmark, 4 Centre for Physical Activity
Research, Rigshospitalet, Copenhagen, Denmark, 5 Institute of Sports and Clinical Biomechanics, University of Southern
Denmark, Odense, Denmark, 6 University of Southern Denmark, Copenhagen, Denmark, 7 Department of Public Health,
University of Copenhagen, Copenhagen, Denmark

Aims: The oral glucose tolerance test (OGTT) is together with haemoglobin A1c (HbA1c)
gold standard for diagnosing prediabetes and diabetes. The objective of this study was to
assess the concordance between glucose values obtained from venous plasma versus
interstitial fluid after oral glucose administration in 120 individuals with prediabetes and
overweight/obesity.

Methods: 120 adults with prediabetes defined by HbA1c 39-47 mmol/mol and overweight
or obesity who participated in the randomised controlled PRE-D trial were included in the
study. Venous plasma glucose concentrations weremeasured at 0, 30, 60 and 120minutes
during a 75 g oral glucose tolerance test (OGTT) performed on three different occasions
within a 26 weeks period. During the OGTT, the participants wore a CGM device (IPro2,
Medtronic), which assessed glucose concentrations every five minutes.

Results: A total of 306 OGTTs with simultaneous CGM measurements were obtained.
Except in fasting, the CGM glucose values were below the OGTT values throughout the
OGTT period with mean (SD) differences of 0.2 (0.7) mmol/L at time 0 min, -1.1 (1.3) at
30 min, -1.4 (1.8) at 60 min, and -0.5 (1.1) at 120 min). For measurements at 0 and
120 min, there was a proportional bias with an increasing mean difference between CGM
and OGTT values with increasing mean of the two measurements.
n.org October 2021 | Volume 12 | Article 75381018
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Conclusions: Due to poor agreement between the OGTT and CGM with wide 95% limits
of agreement and proportional bias at 0 and 120 min, the potential for assessing glucose
tolerance in prediabetes using CGM is questionable.
Keywords: oral glucose challenge test, continuous glucose monitor system, prediabetes, Bland-Altman,
proportional bias
INTRODUCTION

The oral glucose tolerance test (OGTT) provides important
information about fasting and post-challenge glucose
metabolism and is together with haemoglobin A1c (HbA1c)
gold standard for diagnosing prediabetes and diabetes (1).
However, because the OGTT is inconvenient and time
consuming it is seldom used in clinical practice. The use of
HbA1c for diagnosing diabetes and especially prediabetes is also
challenging, as HbA1c levels in the non-diabetic range is affected
by several factors not related to glycaemia (e.g. genetics, iron-
deficiency, anaemia, etc.) (2, 3).

In recent years, continuous glucose monitoring (CGM) has
become widely used for clinical purposes, because it replaces self-
monitoring of glucose among diabetes patients and gives detailed
information on glucose excursions during free-living conditions.
As such, glucose concentrations measured by a glucose sensor
(CGM) placed in the subcutaneous tissue for several days may be
more physiologically and clinically relevant for assessing glucose
tolerance than a single OGTT. Glycaemic variability assessed by
the CGM is associated with the development of diabetic
complications even in people with well-controlled HbA1c

levels (4), which makes the CGM relevant as a monitor of
cardiometabolic risk.

Because glucose concentrations during an OGTT are measured
in venous blood and glucose concentrations using CGMs are
measured in the interstitial fluid, differences in glucose
concentrations between the two methods are expected, but
knowledge on the magnitude of the difference and the time-
lag between the measures are still limited, especially among
people without diabetes. Studies have found the time-lag in
glucose readings from CGMs compared to plasma glucose
concentrations to be of approx. 5-10 min during hyperglycaemic
excursions using data from 14 people with type 1 diabetes (5, 6).
In another study of 15 healthy individuals subjected to OGTTs,
the time-lag was on average 15 min (7). Also, using model
simulations, it has been suggested that CGMs overestimate low
glucose values, but underestimate high glucose values, leading to
an underestimation of both hypo- and hyperglycaemic events in
people with diabetes (6). In healthy non-diabetic individuals,
CGMs also seem to underestimate plasma glucose levels during
hyper-insulinemic conditions (8). Studies of the relationship
between interstitial and plasma glucose concentrations during
glucose stimulation in individuals with prediabetes are lacking.
Thus, the objective of this study was to assess the concordance
between glucose values obtained from venous plasma versus
interstitial fluid after oral glucose administration in 120
individuals with prediabetes and overweight/obesity who had
n.org 29
three repeated measures over 6 months. Specifically, we
examined: 1) the time-lag in interstitial glucose compared with
blood glucose during an OGTT and 2) the concordance between
blood and interstitial glucose concentrations after taking the time-
lag into account.
METHODS

Participants and Setting
We used data from a randomised, multi-arm, parallel, controlled
trial, the PRE-D Trial (9, 10). Between February 2016 and July
2019, 120 men and women with BMI ≥25 and HbA1c levels in the
prediabetic range (5.7-6.4%/39-47 mmol/mol) were randomised
to one of four interventions for 13 weeks: 1) dapagliflozin (10 mg
once daily); 2) metformin (850 mg twice daily); 3) exercise
(interval training, 30 min, 5 times per week); or 4) control
(habitual living). The 13 weeks of intervention were followed
by another period of 13 weeks where no interventions were
provided. The PRE-D Trial is described in detail elsewhere (9,
10). The study was conducted in accordance with the Helsinki II
declaration and Good Clinical Practice. The protocol was
approved by the Ethics Committee of the Capital Region (H-
15011398) and the Danish Medicines Agency (EudraCT number:
2015-001552-30). Approval for data storage was obtained from
the Danish Data Protection Board (2012-58-0004). All
participants provided written informed consent before taking
part in the study.

Examinations
At baseline and at 13 and 26 weeks, the participants attended the
research facility at Steno Diabetes Center Copenhagen, Gentofte,
Denmark, for a clinical examination after an overnight fast of ≥8
hours. Upon arrival between 08:00-9:00 AM on the day of the
clinical examination, the participants had a CGM attached
(iPro2 CGM with Enlite sensor, Medtronic Denmark A/S,
Copenhagen, Denmark), which was used to assess glucose
concentrations every five minutes during the following six
days. The CGM was calibrated after one and two hours.
After the second calibration, 75 g glucose was administered
orally and venous blood samples for assessment of plasma
glucose concentrations were drawn at 0, 30, 60, and 120 min.
Questionnaires on socio-economic factors, health, and disease
were filled in during the OGTT. During the test day,
measurements of height, body weight, waist and hip
circumference, and blood pressure were also performed,
and body composition was measured by Dual-Energy X-ray
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Absorptiometry (Discovery DXA System, Hologic, Marlborough,
Massachusetts, USA).

Following each test day (baseline, 13 weeks, 26 weeks),
interstitial glucose levels were monitored for six consecutive
days during free-living with the CGM system. The CGM
provided glucose measurements every 5 min during the entire
measurement period (both during the OGTT and free living). To
calibrate the CGMs, the participants measured blood glucose
levels at home four times a day (before breakfast, before lunch,
before dinner, and before bedtime) for the following 6 days using
a glucometer (Contour XT, Ascensia Diabetes Care Denmark
ApS, Copenhagen, Denmark).

Biochemical Analysis
Samples for biochemical analysis of plasma glucose
concentrations were put on ice immediately following
sampling. Samples were centrifuged shortly after collection at
4000 rpm for 15 minutes (Sigma 4K15, Osterode Am Harz,
Germany), except for samples used for analysis of HbA1c and
serum insulin concentrations. Samples for analysis of serum
insulin concentration were centrifuged 30 minutes after
collection. The samples were stored in a refrigerator for the
remainder of the test day. Serum insulin was analysed using
electro-chemiluminescence immunoassay (Cobas e411, Roche
Diagnostics, Switzerland). HbA1c was measured by High
Performance Liquid Chromatography (Tosoh G8, Tosoh
Corporation, Japan). Plasma glucose, total cholesterol, HDL
cholesterol, and triglycerides were analysed by cholometric
analysis (Vitros 5600, Ortho Clinical Diagnostics, USA).
Plasma VLDL cholesterol was calculated as plasma
triglycerides (mmol/l) divided by 2.2, and plasma LDL
cholesterol was calculated based on the Friedewald equation
Frontiers in Endocrinology | www.frontiersin.org 310
(11). Estimated glomerular filtration rate (eGFR) was calculated
using the CKD-epi formula (12).

Data Management, Calculations
and Definitions
Raw data from the CGM and glucometer were downloaded from
the online system CareLink™ (Medtronic MiniMed, Northridge,
CA, USA). The mean amplitude of glycaemic excursions
(MAGE), a measure of glycaemic variability, was calculated by
taking the arithmetic mean of the blood glucose increases or
decreases when both ascending and descending segments
exceeded the value of one standard deviation of the blood
glucose during a 24-hour measurement period. Data from the
free-living measurement period was used for calculating MAGE.

Statistical Analysis
Linear mixed-effects analysis with a participant-specific random
intercept was used to estimate population mean levels of plasma
glucose at each CGM and OGTT time-point. For all participants,
we matched each of their post-challenge OGTT values to their
least deviating CGM value in the period 0-15 min after the
OGTT sample was obtained. In Figure 1, this method is
illustrated for one of the participants. Because the CGM
provided glucose measurements every 5 min, the time of best
match was at 0, 5, 10 or 15 min after the OGTT sample. For the
best matching CGM value, the corresponding time-lag and
observed difference in glucose level between the CGM and
OGTT was recorded.

To examine the agreement between glucose concentrations
obtained from subcutaneous tissue versus venous plasma, Bland-
Altman plots (13) were performed for each time point during the
OGTT using the best matching CGM value. Potential
FIGURE 1 | An example of (plasma glucose levels) measured during the OGTT (large blue points) and simultaneously by the continuous glucose monitoring device
(black points) in a person. The light grey areas indicate the 0-15 min period after the OGTT measurements, and the dotted blue lines point to the best CGM match
within the 15 min period.
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heteroscedasticity was assessed graphically. We estimated limits
of agreement and tested for proportional bias using linear mixed-
effects analysis with a participant-specific random intercept.

We assumed that the association between glucose levels
measured by the OGTT and CGM was unaffected by the
interventions. However, in a sensitivity analysis, we studied the
potential confounding effect of the different interventions on the
relationship between CGM and OGTT glucose data by repeating
all analyses including only data from the baseline visit.

Statistical analyses were performed in R version 3.5.2 (The R
Foundation for Statistical Computing).
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RESULTS

Clinical Characteristics
The median (Q1; Q3) age of the study population was 63 (54; 68)
years, BMI was 30.8 (27.4; 34.3) kg/m2, and 44% were men. A
total of 306 OGTTs with simultaneous valid CGM
measurements were obtained. In Table 1, the characteristics of
the study participants are shown.

Time-Lag Between CGM and OGTT
Figure 2 shows the distribution of possible time-lags (0, 5, 10 or
15 min) of the corresponding CGMmeasurement for each of the
post-challenge OGTT glucose values. For the OGTT value at
30 min, there was a 15 min lag-time in CGM measurements for
more than 60% of the participants. For the OGTT values at 60
and 120 min, the best match of CGM measurements was at the
same time as the OGTT measurements for approximately half of
the participants, but in 33% and 26% of the participants, a 15 min
lag-time in CGM measurements at 60 and 120 min, respectively,
was present.

Concordance Between Blood and
Interstitial Glucose Concentrations
Figure 3 illustrates the population mean plasma glucose levels
measured during the OGTT and simultaneously by the CGM
device. Except in the fasting state, the mean CGM glucose values
were on average below the mean OGTT values throughout the
120 min period, and this was especially pronounced at 60 min.
The mean (SD) differences between observed CGM and OGTT
glucose concentrations were 0.2 (0.7) mmol/L (equivalent to 3.2
(13.4)%) at time 0 min, -1.1 (1.3) mmol/L (-12.2 (15.4)%) at
30 min, -1.4 (1.8) mmol/L (-13.3 (18.2)%) at 60 min, and -0.5
(1.1) mmol/L (-3.9 (14.9)%) at 120 min.

The Bland-Altman analyses at time points 0, 30, 60 and
120 min are presented in Figure 4. For the measurements at 0
TABLE 1 | Characteristics of study participants at baseline (n = 120).

Age (years) 62.6 (54.0,68.0)
Men (n, %) 53 (44)
Current smoker (n, %) 13 (11)
Family history of diabetes (n, %) 64 (53)
Family history of CVD (n, %) 70 (58)
Antihypertensive medication (n, %) 32 (27)
Lipid-lowering medication (n, %) 28 (23)
Systolic blood pressure (mmHg) 131 (122,144)
Diastolic blood pressure (mmHg) 85 (79,90)
Body weight (kg) 91 (82,104)
BMI (kg/m2) 30.8 (27.4,34.3)
Waist circumference (cm) 104 (98,113)
Body fat (%) 40 (31,44)
eGFR (ml/min/1.73 m2) 88.5 (80.6,97.5)
Total cholesterol (mmol/l) 5.1 (4.3,5.9)
LDL cholesterol (mmol/l) 3.1 (2.4,3.7)
HDL cholesterol (mmol/l) 1.3 (1.1,1.5)
Triglycerides (mmol/l) 1.3 (0.9,1.8)
HbA1c

mmol/mol 41 (39,43)
% 5.9 (5.7,6.1)

Fasting plasma glucose (mmol/l) 5.6 (5.2,5.9)
Fasting serum insulin (pmol/l) 71.5 (48.0,98.5)
MAGE (mmol/l) 1.6 (1.4,2.2)
Data are medians (Q1;Q3) or numbers (%).
FIGURE 2 | Distribution of possible time-lags (0, 5, 10 or 15 min) of the corresponding CGM measurement for each of the post-challenge OGTT glucose values.
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and 120 min there was a proportional bias with an increasing or
decreasing mean difference between CGM and OGTT values (y-
axis) with increasing mean of the two measurements (x-axis)
(0 min: P <0.001, 120 min: P <0.001). Hence, during fasting
conditions, the CGM particularly overestimated glucose values
for high mean values (slope 0.6 per mmol/L), and at 120 min the
CGM greatly underestimated glucose at high mean values (slope
-0.3 per mmol/L). There was no sign of heteroscedasticity with
limits of agreement being overall parallel to the mean curve in
any of the plots in Figure 4. The sensitivity analysis including
only data from the baseline visit showed similar results
(Electronic Supplementary Material).
DISCUSSION

The use of glucose sensors to inform diabetes management
decisions has become part of most practices during recent
years (14). In contrast, the potential usefulness of CGMs to
guide diagnostic decisions has received less attention. In this
analysis of 120 individuals with prediabetes and overweight or
obesity, we show that glucose levels obtained by CGMs during an
OGTT are on average 12-13% lower at 30 and 60 min and 4%
lower at 120 min after oral glucose administration than those
measured in venous plasma – even when taking individual time-
lag in sensor glucose measurements into account.

Plasma and interstitial fluid are both part of the body’s
extracellular fluid, and interstitial fluid can be considered the
ultrafiltrate of plasma, which transports nutrients, including
glucose, from the blood stream to the cells and back.
Therefore, using glucose concentrations determined from
CGMs with real-time feedback seems highly relevant in
evaluation of glucose tolerance in individuals at a high risk for
diabetes (15). However, there is a lack of studies with
concomitant analysis of OGTT and CGM data. Previous
studies on CGM accuracy compared to blood glucose
Frontiers in Endocrinology | www.frontiersin.org 512
concentrations have included people with diabetes during a
liquid meal test (5), insulin-induced hypoglycaemic conditions
(16), or during a 24-hour hospital stay (16) (not OGTT). Also,
one study of 11 young healthy adults found 15% lower interstitial
glucose concentrations than plasma glucose concentrations
concomitantly measured during a stepped euglycemic-
hypoglycaemic-hyperglycaemic insulin clamp (8). Another
study in 15 healthy overweight men subjected to an OGTT
found that the time to peak of glucose was significantly delayed
for the interstitial fluid measurement compared to the plasma
glucose measurement and that body fat percentage was related to
the time to peak (7). Using Bland-Altman plots, the study also
suggested that the differences between the plasma glucose and
interstitial fluid measures increased with increasing level of
circulating glucose (7), which is in alignment with our
findings. Together, our findings and findings from other
studies underscore that interstitial glucose concentrations do
not sufficiently capture plasma glucose when glucose levels are
acutely changed. This is not surprising as several factors
contribute to the concentration difference and time-lag
between glucose measured in the venous plasma and the
interstitial fluid, including the rate of glucose diffusion, the
magnitude of concentration differences in various tissues,
blood flow, blood vessel permeability to glucose, and acute
changes in the release of insulin and glucagon (17, 18). Also,
the fact that the OGTT was performed within the first 24 hours
of the CGM measurement period may have contributed to the
limited agreement between the two measures, because the
accuracy of the CGM may be lower on the first day
of measurement.

A strength of this analysis was the availability of up to three
pairwise measures of CGM and OGTT data for 120 participants
within 26 weeks, enabling us to study the difference between
venous plasma glucose and interstitial glucose during a dynamic
but standardised change of glucose concentration. The different
interventions are not likely to affect the association between
FIGURE 3 | Mean (95%-CI) plasma glucose levels measured during the OGTT (blue points) and simultaneously by the continuous glucose monitoring device (black
curve) in 120 persons with prediabetes examined three times over 26 weeks.
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glucose measured in venous plasma and in the interstitial fluid,
and our sensitivity analysis showed that analysis of baseline data
produced comparable results. A limitation of our study was that
we only studied individuals with prediabetes and overweight or
obesity. Accordingly, we were not able to test the potential of the
CGM to distinguish between individuals with normoglycaemia
and prediabetes – an aspect which has been addressed in
previous studies with emphasis on the role of glycaemic
variability (19–21). Another limitation is related to the type of
CGM used in this study. Our findings may be specific to the
iPro2 sensor and may not be generalised to other types of
sensors, for instance the FreeStyle Libre Flash CGM system by
Abbott, which is now more commonly used in clinical settings.
The FreeStyle Libre Flash only assesses glucose concentrations
every 15 min as compared to the IPro2 where glucose
concentrations are assessed every 5 min, which is an additional
challenge. Therefore, more studies using different types of CGMs
together with the OGTT are warranted.

Not unexpectedly the CGM systematically underestimated
the glucose level when compared to plasma samples with 13%
discrepancy between observed OGTT and CGM levels.
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In general, there is a high intra-individual variation in fasting
glucose (15%) and 2-hour glucose (46%) concentrations during
an OGTT (22). We also found a large interindividual variation in
the difference between the results for the two methods. However,
more critically we found a proportional bias in the difference
between OGTT and CGM levels and inter-individual differences
in the time-lag, making it unlikely that the IPro2 can be used as a
substitute for plasma samples when performing an OGTT. As
such, crude CGMmeasures may not be accurate enough to assess
glucose tolerance among individuals with prediabetes. Further
investigations are needed to assess the link between CGM
measures and long-term outcomes before CGMs can be used
for diagnostic purposes.
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Metabolic Diseases, Xiamen Diabetes Prevention and Treatment Center, Fujian Key Laboratory of Diabetes Translational
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Aims:Nocturnal asymptomatic hypoglycemia (NAH) is a serious complication of diabetes,
but it is difficult to be detected clinically. This study was conducted to determine the
largest amplitude of glycemic excursion (LAGE) to predict the episodes of NAH in
outpatients with type 2 diabetes.

Methods: Data were obtained from 313 outpatients with type 2 diabetes. All subjects
received continuous glucose monitoring (CGM) for consecutive 72 hours. The episodes of
NAH and glycemic variability indices (glucose standard deviation [SD], mean amplitude of
plasma glucose excursion [MAGE], mean blood glucose [MBG]) were accessed via CGM.
LAGE was calculated from self-monitoring blood glucose (SMBG).

Results: A total of 76 people (24.3%) had NAH. Compared to patients without NAH,
patients with NAH showed higher levels of glucose SD (2.4 ± 0.9 mmol/L vs 1.7 ± 0.9
mmol/L, p <0.001), MAGE (5.2 ± 2.1 mmol/L vs 3.7 ± 2.0, p<0.001) and LAGE (4.6 ± 2.3
mmol/L vs 3.8 ± 1.9 mmol/L, p=0.007), and lower level of MBG (7.5 ± 1.5 mmol/L vs 8.4 ±
2.2 mmol/L, p=0.002). LAGE was significantly associated with the incidence of NAH and
time below rang (TBR) in model 1 [NAH: 1.189 (1.027-1.378), p=0.021; TBR: 0.008
(0.002-0.014), p=0.013] with adjustment for age, BMI, sex, work, hyperlipidemia,
complication and medication, and in model 2 [NAH: 1.177 (1.013-1.367), p=0.033;
TBR: 0.008 (0.002-0.014), p=0.012] after adjusting for diabetes duration based on
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model 1, as well as in model 3 [NAH: 1.244 (1.057-1.464), p=0.009; TBR: 0.009 (0.002-
0.016), p=0.007] with further adjustment for HbA1c based on model 2. In addition, no
significant interactions were found between LAGE and sex, age, HbA1c, duration of
diabetes, BMI and insulin therapy on the risk of NAH. The receiver operator characteristic
(ROC) curve shows the ideal cutoff value of LAGE for the prediction of NAH was 3.48
mmol/L with 66.7% sensitivity, 50% specificity and 0.587 (95% CI: 0.509-0.665) of area
under the ROC curve.

Conclusions: High glycemic variability is strongly associated with the risk of NAH. The
LAGE based on SMBG could be an independent predictor of NAH for outpatients with
type 2 diabetes, and LAGE greater than 3.48 mmol/L could act as a warning alarm for high
risk of NAH in daily life.
Keywords: nocturnal asymptomatic hypoglycemia, largest amplitude of glycemic excursion, self-monitoring blood
glucose, continuous glucose monitoring, outpatients with type 2 diabetes
INTRODUCTION

Hypoglycemia is a serious complication of diabetes mellitus, which
could contribute to “dead in bed” syndrome, neurological damage
(poorer cognitive function, spatial memory dysfunction, neuron
damage, and epilepsy), and psychological impact (negative
psychosocial consequences, undesirable compensatory behaviors,
unforeseen anxiety, and poor sleep) (1). With the implementation
of intensive glucose control over the years, the morbidity of
hypoglycemia is relatively higher (2, 3). Accordingly, high rates
of different degrees of hypoglycemia episodes, namely severe
events [1.0~16.9% (4–8)], moderate severity events [17~46% (4–
7)] and mild events [46~58% (5–7)] have been reported.
Simultaneously, hypoglycemia was assigned as the cause of
death in 4% (9), 7% (10), and 10% (11) in population-based
registers. As almost 50% of all severe hypoglycemia episodes occur
at nighttime during sleep with unawareness, nocturnal
asymptomatic hypoglycemia (NAH) has been especially
emphasized (12). Recurrent episodes of asymptomatic
hypoglycemia can increase the risk of severe hypoglycemic
episodes (13), contributing to life-threatening events, such as
major macrovascular events, major microvascular events, death
from cardiovascular disease, and death from any cause (14).
Actually, the incidence of NAH is far more than these due to
recall bias, missing detection, and underreporting. Especially for
outpatients who manage blood glucose with the target of normal
glycemic level, the risk of hypoglycemia will inevitably increase,
which is less likely to be recognized and concerned without timely
medical guidance. Hence, in view of its universality and
perniciousness, predicting the episodes of NAH to minimize
hypoglycemic events is significantly meaningful for better
diabetes management.

Continuous glucose monitoring (CGM), which provides
maximal information about glucose fluctuation levels
throughout the day (15), provides an improved opportunity to
capture NAH events. CMG has been proved to be superior to
daily self-monitoring blood glucose (SMBG) in the detection of
hypoglycemia. In hospitalized patients with type 2 diabetes, the
n.org 217
detection rates of hypoglycemia by CMG ranges from 1.6-fold
(16), 2.5-fold (17), 4-fold (18) than those by point-of-care
capillary glucose testing (POC). Additionally, compared with
SMBG, significantly higher percentages of hypoglycemic
episodes [(3.8% vs 1.7%) (19); (4.35% vs 1.5%) (20); (90.4% vs
38.5%) (21); (52 vs. 3 events/patient-year) (22)] were detected by
CGM, particularly in terms of asymptomatic and nocturnal
hypoglycemia (19, 21, 22). Nonetheless, probably due to high
cost and technical complexity (23), CGM is still underutilized in
the real world. SMBG, on the other hand, remains the basic
approach for glycemic management in daily life, which is widely
used because of its familiarity, convenience and relatively low
cost for long-term daily diabetes management (23). We propose
that by combining the advantages of CGM and SMBG, that is,
based on precisely capturing hypoglycemia by CGM, predicting
the episodes of hypoglycemia through glycemic indicators
monitored by SMBG may be possible to prevent hypoglycemia
with accuracy and convenience.

Glycemic variability, characterized by extreme glucose
excursions, is associated with the risk of overall symptomatic,
nocturnal symptomatic and severe hypoglycemia in patients with
diabetes (24), and different indices of glycemic fluctuations have
been used to predict hypoglycemia (25–27). However, most of
these predictors are obtained by CGM data, and the majority of
subjects are hospitalized patients. Relatively few studies focus on
outpatients, and efforts are needed to provide easily acquired
indictors for outpatients to warn and prevent NAH. In this study,
we used CGM device to continuously monitor blood glucose in
outpatients with type 2 diabetes to access the episodes of NAH
and glycemic variability indices, including glucose standard
deviation (SD), mean amplitude of plasma glucose excursions
(MAGE) and mean blood glucose (MBG). Simultaneously, the
largest amplitude of glycemic excursion (LAGE) was acquired by
SMBG without changing patients’ lifestyle and medications. We
aimed to clarify the associations of glucose fluctuations and NAH
of outpatients with type 2 diabetes, and to explore whether LAGE
could independently predict the episodes of NAH, providing a
relatively convenient warning index for daily NAH prevention.
April 2022 | Volume 13 | Article 858912
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METHODS

Participants
In this study, 313 out-patients with type 2 diabetes who were
admitted to the First Affiliated Hospital of Xiamen University
from January 2018 to June 2021 were included. All participants
wore CGM device at the outpatient clinic, during which
medication use was not affected. Pregnant and perioperative
patients were excluded. Body mass index (BMI) was calculated as
the weight in kilograms divided by the square of height in meters.
HbA1c and C-peptide were detected by the Laboratory
Department of the First Affiliated Hospital of Xiamen
University. This study was approved by the ethics committees
of the First Affiliated Hospital of Xiamen University. Written
informed consent was obtained from all subjects.

Continuous Glucose Monitoring
A iPro™2 CGM system (Medtronic, Minimed, Inc. Northridge,
CA), which is extensively used in detecting low glucose levels
with validated reproducibility and reliability (28), was used in
this study to monitor glucose fluctuations. After wearing the
CGM device, participants returned home and resumed normal
activities for consecutive 72 hours. NAH was defined as
hypoglycemia (<3.9mmol/L) occurring between 0 am and 6
am. We obtained glycemic variability indices from CGM,
including glucose SD, MAGE, MBG, time in range (TIR; 3.9-
10.0 mmol/L), time below range (TBR; <3.9 mmol/L).

Self-Monitoring Blood Glucose
The OneTouch UltraVue® (Johnson and Johnson K.K., Tokyo,
Japan) device and ACCU-CHEK Performa (Roche, Switzerland)
glucometer were used for SMBG. Each subject used the same
glucometer during the 72-h study period. Participants were
guided to conduct blood glucose self-monitoring four times daily
- prior to meals and bedtime. The maximum range of daily blood
glucosefluctuationwas obtained by subtracting theminimum from
the maximum value, and then the daily maximum ranges of the 72
hours were equilibrated to obtain the LAGE value.

Statistical Analyses
Data were expressed as mean ± standard deviation (SD) for
normally distributed variables, median (25th percentile, 75th
percentile) for non-normally distributed variables, and
percentages for categorical variables. The significance of
differences between the two groups was assessed using t test or
Kruskal-Wallis test for quantitative data, and Chi-square test for
categorical data. The associations between LAGE and the
incidence of NAH and TBR were analyzed by a logistic
regression model and a linear regression model, respectively.
The interaction of LAGE and potential risk factors of NAH was
performed by logistic regression analysis as well. We run receiver
operating characteristic (ROC) curve analysis to demonstrate the
sensitivity, specificity and optimal cut-off value of LAGE for
predicting NAH. The predictive validity was quantified as areas
under the ROC curve. A P<0.05 was considered to be statistically
significant. All statistical analyses were conducted with SAS
version 9.3.
Frontiers in Endocrinology | www.frontiersin.org 318
RESULTS

Clinical Characteristics and Blood Glucose
Monitoring Results
Table 1 shows the characteristics of total 313 outpatients with
type 2 diabetes, including 76 patients with NAH and 237 patients
without. There were no significant differences in age, duration of
diabetes, BMI, HbA1c, concentration of C-peptide, and drug
uses (metformin, dipeptidyl peptidase-4 inhibitor, alpha-
glucosidase inhibitors, thiazolidinedione, glucagon-like peptide-
1 receptor agonists, sulfonylurea, sodium–glucose cotransporter
2 inhibitors, long-acting insulin, premixed insulin, short-acting
insulin) between the two groups. Further, we found that diabetic
comorbidities (hypertension, hyperlipidemia, fatty liver, cardio-
cerebral vascular disease) and diabetic complications (diabetic
retinopathy, diabetic peripheral neuropathy, diabetic peripheral
vascular disease, diabetic nephropathy, diabetic foot) were not
statistically different. The glycemic variability indices, including
glucose SD (2.4 ± 0.9 mmol/L vs 1.7 ± 0.9 mmol/L, p<0.001),
MAGE (5.2 ± 2.1 mmol/L vs 3.7 ± 2.0 mmol/L, p <0.001) and
LAGE (4.6 ± 2.3 mmol/L vs 3.8 ± 1.9 mmol/L, p=0.007), were
higher in patients with NAH than those in patients without,
while MBG (7.5 ± 1.5 mmol/L vs 8.4 ± 2.2 mmol/L, p=0.002) was
lower. TIR [0.8 (0.7,0.9) vs 0.9 (0.7,1.0)] did not differ statistically
in subjects with or without NAH.
Association Between LAGE and the
Incidence of NAH and TBR
In Table 2, the associations of LAGE with the incidence of NAH
and TBR were elucidated by a logistic regression model and a linear
regression analysis, respectively. TBR is a key metric for evaluating
the degree and severity of hypoglycemia (29), which is more
relevant for capturing hypoglycemic events and quantifying their
magnitude and duration (30). In model 1 with adjustment for age,
BMI, sex, work, hyperlipidemia, complication and medication,
LAGE was significantly associated with the increased risk of
NAH, with the incidence of NAH [1.189 (1.027-1.378), p=0.021]
and TBR [0.008 (0.002-0.014), p=0.013]. In model 2 after adjusting
for diabetes duration based on model 1, the same significant result
was seen, with the incidence of NAH [1.177 (1.013-1.367), p=0.033]
and TBR [0.008 (0.002-0.014), p=0.012]. In model 3 with further
adjustment for HbA1c based on model 2, the incidence of NAH
increased 1.244-fold (95% CI: 1.057-1.464, p=0.009) and TBR
increased 0.009 (95% CI: 0.002-0.016, p=0.007) for 1 mmol/L
increase of LAGE.
Association Between LAGE and Potential
Risk Factors on the Risk of NAH
In order to further determine whether LAGE was
independently correlated with NAH, the logistic regression
model was further performed according to potential risk
factors. Table 3 shows that no significant interactions were
found between LAGE and sex (p for interaction= 0.732), age (p
for interaction= 0.187), HbA1c (p for interaction= 0.877),
duration of diabetes (p for interaction= 0.734), BMI (p for
April 2022 | Volume 13 | Article 858912
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interaction= 0.864) and insulin therapy (p for interaction=
0.474) on the risk of NAH.
ROCCurve of LAGE for the Prediction of NAH
The ideal cutoff value of LAGE for the prediction of NAH was
3.48 mmol/L with 66.7% sensitivity and 50% specificity. The area
under the ROC curve (AUC) was 0.587 (95%CI: 0.509-0.665).
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DISCUSSION

In this study, we clarified that higher levels of glucose SD,
MAGE and LAGE and lower levels of MBG were strongly
associated with NAH in outpatients with type 2 diabetes, and
demonstrated that LAGE may be an independent predictor of
NAH, irrespective of HbA1c level and other potential
risk factors.
TABLE 1 | Clinical characteristics and blood glucose monitoring results.

Without NAH With NAH P value
(n = 237) (n = 76)

Age (years) 55.4 ± 14.1 51.7 ± 15.5 0.058
Duration of diabetes (years) 6.0 (2.0,11.0) 5.0 (3.0,13.0) 0.445
BMI (kg/m2) 23.2 ± 3.1 22.6 ± 3.2 0.217
HbA1c (%) 7.0 ± 1.5 7.0 ± 1.5 0.933
C-peptide (ng/mL) 1.5 (0.9,2.3) 0.9 (0.3,1.9) 5.691
Medication (%)
Metformin 64 (28.2) 21 (29.2) 0.873
DPP-4i 34 (15) 11 (15.3) 0.951
a-GI 46 (20.3) 11 (15.3) 0.348
TZD 5 (2.2) 3 (4.2) 0.368
GLP-1RA 4 (1.8) 1 (1.4) 0.830
SU 49 (21.6) 18 (25) 0.545
SGLT-2i 8 (3.5) 2 (2.8) 0.759
Long-acting insulin 50 (22.0) 15 (20.8) 0.831
Premixed insulin 27 (11.9) 6 (8.3) 0.401
Short-acting insulin 38 (16.7) 11 (15.3) 0.770
Comorbidity (%)
Hypertension 28 (12.3) 9 (12.5) 0.970
Hyperlipidemia 35 (15.4) 12 (16.7) 0.800
Fatty liver 11 (4.9) 5 (6.9) 0.491
CCVD 19 (8.4) 7 (9.7) 0.723
Complication (%)
DR 31 (13.7) 13 (18.1) 0.359
DPN 31 (13.7) 9 (12.5) 0.802
DPVD 10 (4.4) 4 (18.1) 0.687
DN 11 (4.9) 4 (5.6) 0.810
DF 2 (0.9) 0 (0) 0.424
CGM data
SD (mmol/L) 1.7 ± 0.9 2.4 ± 0.9 <0.001
MBG (mmol/L) 8.4 ± 2.2 7.5 ± 1.5 0.002
MAGE (mmol/L) 3.7 ± 2.0 5.2 ± 2.1 <0.001
TIR (%) 90 (70,100) 80 (70,90) 9.895
SMBG data
LAGE (mmol/L) 3.8 ± 1.9 4.6 ± 2.3 0.007
April 2022 | Volume 13 | Article
NAH, nocturnal asymptomatic hypoglycemia; BMI, body mass index; HbA1c, glycated hemoglobin; DPP-4i, dipeptidyl peptidase-4 inhibitors; a-GI, alpha-glucosidase inhibitors; TZD,
thiazolidinedione; GLP-1RA, glucagon-like peptide-1 receptor agonists; SU, sulfonylurea; SGLT-2i, sodium–glucose cotransporter 2 inhibitors; CCVD, cardio-cerebral vascular disease;
DR, diabetic retinopathy; DPN, diabetic peripheral neuropathy; DPVD, diabetic peripheral vascular disease; DN, diabetic nephropathy; DF, diabetic foot; CGM, continuous glucose
monitoring; SD, glucose standard deviation; MBG, mean blood glucose; MAGE, mean amplitude of plasma glucose excursion; TIR, time in range (3.9–10.0 mmol/L); SMBG, self-
monitoring blood glucose; LAGE, largest amplitude of glycemic excursion. P < 0.05 was considered significant.
TABLE 2 | Associations between LAGE and the incidence of NAH and TBR.

The incidence of nocturnal asymptomatic hypoglycemia TBR

OR (95% CI) P value Estimateb (95% CI) P value

Model 1 1.189 (1.027-1.378) 0.021 0.008 (0.002-0.014) 0.013
Model 2 1.177 (1.013-1.367) 0.033 0.008 (0.002-0.014) 0.012
Model 3 1.244 (1.057-1.464) 0.009 0.009 (0.002-0.016) 0.007
TBR, time below range (<3.9 mmol/L); CI, confidence interval. P < 0.05 was considered significant. Model 1 was adjusted for age, BMI, sex, work, hyperlipidemia, complication and
medication. Model 2 was further adjusted for diabetes duration based on model 1. Model 3 was further adjusted for HbA1c based on model 2.
858912
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It has been shown that frequent hypoglycemia often occurred
with a greater level of glucose fluctuations (31). In addition,
glycemic variability has been suggested to be a potential indicator
of diabetes complications (32) and severe hypoglycemia (25).
Through re-analyzing the Diabetes Control and Complications
Trial (DCCT) data, Kilpatrick et al. found that MBG and
glycemic variability each have an independent role in increased
risk of hypoglycemia in type 1 diabetes. The incidence of time to
first hypoglycemic event increased 1.05-fold for each 1 mmol/l
decrease in MBG and 1.07-fold for every 1 mmol/l increase in
glucose SD. After adjusting for HbA1c, a 1 mmol/l increase in SD
was associated with a 1.09-fold increased risk of a first event (26).
Saisho et al. reported that glucose SD and other glycemic
variability indices were more strongly correlated with
hypoglycemia compared with MBG, and the combination of
MBG and glucose SD was useful for predicting hypoglycemia in
diabetes patients (33). Service et al. suggested that a high MAGE
was a vital characteristic of glucose instability, which was more
accurate than other indexes of glycemic fluctuation (34). Another
study of 5-day consecutive CGM showed that hypoglycemic
patients had lower MBG and higher glucose SD compared to
non-hypoglycemic patients, with no statistical difference of
HbA1c (35), which is consistent with our research. In this
study, patients with NAH manifested as higher levels of SD,
MAGE and LAGE and lower level of MBG. After adjusting for
possible interference factors, there were still significant
associations of LAGE with NAH and TBR. Moreover, no
significant interactions were observed between LAGE and
potential risk factors, indicating that LAGE could be an
independent predictor of NAH in patients with type 2
diabetes. According to the CGM data conducted by Zhou el al.
in Shanghai, China, MAGE <3.9 mmol/L and SD <1.4 mmol/L
were recommended as the normal reference ranges for glycemic
variability in Chinese adults (36), and LAGE <5.7mmol/L was
recommended in normal glucose tolerance people (37). To the
Frontiers in Endocrinology | www.frontiersin.org 520
best of our knowledge, the value of LAGE in determining the risk
of NAH has not been reported. Here, we showed that LAGE
greater than 3.48 mmol/L could act as a warning alarm for high
risk of NAH in outpatients with type 2 diabetes.

Although the diabetes management has focused on HbA1c, as
an index reflecting recentaveragebloodglucose levels,HbA1ccould
not accurately portray the frequency of hypoglycemia and glucose
fluctuations (35). HbA1c was reported to minimally contributes to
hypoglycemia risk in type 2 diabetes and has no relation to
hypoglycemia in type 1 diabetes, while the variability in glucose
levels showed great promise as better predictors (38).In this study,
HbA1c did not differ between the two groups, whichwas consistent
with other researches (28, 35), confirming the ability of LAGE
beyond HbA1c for predicting NAH.

Our research has the following strengths. Firstly, the subjects in
this study are outpatients with type 2 diabetes, the diabetic condition
of whom are generally considered to be in stable, so NAH is not
seriously concerned among these individuals. In addition, as they
usually aim for normal blood glucose level, NAH is more likely to
occur and leads to serious complications without timely medical
assistances. Therefore, the prediction and prevention of NAH is
extremelymeaningful in suchapopulation. Secondly, in spiteof some
advantages of CGM, long-term wearing of CGM devices for
outpatients is currently impractical. Nevertheless, LAGE based on
SMBG is easily calculated and convenient tomake a rapid assessment
for NAH risk. Thirdly, all data were acquired without changing
patients’ lifestyle and medications, which reflects the true daily
glucose fluctuations, improving the reliability of LAGE as an
independent predictor of NAH.

Several limitations of this study should be noted. Firstly, the
sample size included in this study is relatively small. A study with
a larger sample size and longer duration is needed to further
consolidate the results of this study. Secondly, subjects included
in this study are patients with type 2 diabetes, thus our findings
may not be applicable to all diabetes patients, especially patients
TABLE 3 | Association between LAGE and potential risk factors on the risk of NAH.

With nocturnal asymptomatic hypoglycemia

Total OR (95% CI) P value Interaction

Sex 0.732
Men 175 1.36 (1.04-1.77) 0.023
Women 138 1.19 (0.95-1.48) 0.130
Age(years) 0.187
<55 163 1.41 (1.09-1.82) 0.009
≥55 150 1.13 (0.88-1.46) 0.357
HbA1c (%) 0.877
≤7 217 1.35 (1.04-1.74) 0.025
>7 96 1.27 (0.99-1.62) 0.059
Duration of diabetes (years) 0.734
≤5 164 1.20 (0.90-1.61) 0.218
>5 149 1.32 (1.06-1.64) 0.014
BMI (kg/m2) 0.864
<24 216 1.09 (0.86-1.39) 0.471
≥24 97 1.38 (1.04-1.83) 0.024
Insulin therapy
With 96 1.39 (1.07-1.81) 0.123 0.474
Without 217 1.13 (0.89-1.44) 0.313
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with type 1 diabetes. Thirdly, other factors that may affect
glycemic variability, such as exercise, food intake and beta-cell
function, were not investigated in the current study. In the near
future, we will continue to study with a larger sample size and try
to combine these factors for analysis to improve the specificity
and sensitivity of the prediction of NAH. Finally, severe
hypoglycemia (<3.0 mmol/L) is also critical. Because there
were only 30 patients with severe hypoglycemia in this study,
which may affect statistical power, there was no statistical
difference between LAGE and severe hypoglycemia (data not
shown). Our subsequent studies will also include more patients
with blood glucose less than 3.0 mmol/L to clarify the association
between LAGE and severe hypoglycemia.

CONCLUSIONS

In conclusion, our study showed that higher glycemic variability is
strongly associated with higher risk of NAH, and proposed LAGE
could be an independent predictor of NAH for outpatients with
type 2 diabetes. LAGE greater than 3.48 mmol/L could act as a
warning alarm for high risk of NAH. Taking the convenience and
feasibility of SBMG into account, a real-time alarm based on
LAGE may minimize NAH exposure to further achieve better
diabetes management. We hope our research can serve as a
reference that helps in hypoglycemia prevention.
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Basal Insulin Reduces Glucose
Variability and Hypoglycaemia
Compared to Premixed Insulin in
Type 2 Diabetes Patients: A Study
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Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China

Aims: To examine the glycaemic variability and safety of basal and premixed insulin by
using continuous glucose monitoring (CGM) systems.

Methods: 393 patients with type 2 diabetes mellitus (T2DM) treated with basal or
premixed insulin for more than 3 months were enrolled. Patients were classified into a
basal insulin group or premixed insulin group according to their insulin regimens. CGMs
were used for 72 h with their previous hypoglycaemic regimen unchanged. The following
glycaemic parameters were calculated for each 24 h using CGM data.

Results: Despite similar HbA1c and fasting C-peptide concentrations, glycaemic
variability (GV), including the mean amplitude of glycaemic excursion (MAGE), standard
deviation (SD) and coefficient of variation (CV), and the time below range (TBR) were
significantly lower in the basal insulin group than these in the premixed insulin group.
Night-time hypoglycaemia was lower in the basal insulin group than that in the premixed
insulin group (p<0.01). Among participants with haemoglobin A1c (HbA1c) < 7%, the GV
and TBR were higher in the premixed insulin group than that in the basal insulin group.

Conclusion: Compared with basal insulin, the patients who use premixed insulin had
higher GV, smaller TIR and an increased incidence of hypoglycaemia. For patients who
use premixed insulin and with HbA1c < 7%, more attention needs to be given to
hypoglycaemic events and asymptomatic hypoglycaemia.

Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03566472.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM), characterized by insulin
resistance and insulin secretion deficiency (1), is rising at an
alarming rate. The prevalence of diabetes in China has increased
from 0.67% in 1980 to 12.8% in 2017 (2). In China, all diabetes
care is provided by hospital specialists. The current treatment
paradigm of T2DM is gradual regimens intensification (3).
When lifestyle modification and oral antidiabetic drugs fail to
achieve adequate glycaemic control, many patients eventually
require and benefit from insulin therapy (4).

Guidelines recommend that insulin therapy should be
initiated timely in patients with a long duration of diabetes,
use of oral hypoglycaemic drugs that fail to achieve goals and
poor islet function. It is known that Chinese diets are
carbohydrate-heavy, and b-cell function is generally poorer in
Chinese individuals (5). Depending on the patient’s illness and
the physician’s practice, premixed insulin therapy and basal
insulin therapy are both recommended for initiation for initial
insulin therapy to maintain their blood glucose concentrations in
the target range in China (6, 7). Due to its lower price than basal
insulin, premixed insulins are more widely used as the starting
insulin therapy in clinical practice (8, 9).

In an attempt to reach glycaemic targets, patients who are
treated with premixed insulin usually require an increased number
of injections. Unfortunately, researchers found that a high
proportion of patients still did not achieve the goal that HbA1c
levels are lower than 7%, and this treatment regimen might be
associated with a higher risk of hypoglycaemic episodes and weight
gain (10). A randomized clinical trial reported that T2DM patients
who were treated with premixed insulin had glycaemic control
similar to that of patients treated with a basal insulin regimen but
had a significantly higher frequency of hypoglycaemia (11).

Continuous glucose monitoring (CGM) systems have been
recognized as an ideal method of monitoring glycaemic control
in diabetic patients (12). The data of rigorous 24 h glucose
profiles from CGM allowed the calculation of glycaemic
variations, detection of asymptomatic hypoglycaemia (Without
typical symptoms of hypoglycaemia but plasma glucose
measurements ≤ 3.9 mmol/L) and accurately depict the
characteristics of blood glucose fluctuations (13). At present,
few studies have reported the use of CGM to observe the effects
of basal insulin and premixed insulin on the glycaemic profile in
T2DM patients. Thus, this study was conducted to investigate the
differences in glycaemic variability and hypoglycaemia between
basal insulin and premixed insulin by using CGM.
PATIENTS AND METHODS

Participants
In this cross-sectional observation study, 393 outpatients with
T2DM who had been treated with basal insulin or premixed
insulin were enrolled at Nanjing First Hospital from July 2019 to
December 2020.

The inclusion criteria were as follows (1): patients diagnosed
with T2DM as defined by the World Health Organization in
Frontiers in Endocrinology | www.frontiersin.org 224
1999; (2) patients aged ≥ 18 years; (3) body mass index (BMI)
between 19 and 35 kg/m2; (4) patients using basal insulin or
premixed insulin (daily dose > 0.2 IU/kg/day) for more than 3
months; (5) patients with relatively consistent diet and exercise
habits during the study period.

The following patients were excluded: (1) patients with type 1
diabetes mellitus; (2) patients with serious acute and/or chronic
complications, including ketoacidosis, hyperosmolar state, end-
stage renal disease, and severe cardiovascular diseases; (3) patients
with severe infectious diseases; (4) patients with known cancers;
(5) patients with cognitive disorders, drug abuse, or alcoholism.

Study Design
Written informed consent has signed by each participant. The
study protocol was conducted in accordance with the 1964
Helsinki Declaration and its later amendments or comparable
ethical standards. General information (such as age, sex,
duration of T2DM, types and dosage of oral hypoglycaemic
medication, insulin type and insulin dose) of the patients was
collected by trained doctors (Figure 1).

393 patients who used basal insulin or premixed insulin for
more than 3 months were classified into the basal insulin group
(199 cases) or premixed insulin group (194 cases) according to
their insulin regimen. The basal insulin used in this study is
insulin glargine, including Basalin and Lantus, both of which are
insulin analogues. Insulin types of premixed insulin group were
Mixed Protamine Zinc Recombinant Human Insulin Injection,
Biosynthetic Human Insulin Injection, Insulin Aspart 30
Injection, Mixed Protamine Zinc Recombinant Human Insulin
Lispro Injection (50R), Mixed Protamine Zinc Recombinant
Human Insulin Lispro Injection (25R) respectively. Blood
samples from all patients were collected after fasting more than
10 h overnight. HbA1c was measured using a high-performance
liquid chromatography assay (Bio-Rad Laboratories, Inc. CA,
USA), C-peptide was assessed by ECLIA immunoassay analyzer
Elecsys170 (Roche, Germany). Each sample for insulin
antibodies measurement was run in duplicate, and optical
density (OD) by ECLIA semi-quantitative assay. An index
identified as COI was calculated based on the average of the
results of each sample for Ins-Ab: COI = OD/CO (OD of test
sample)/(OD of average absorbance of negative control) using a
previously described method with some modification (14). The
reference range of normal values for antibody is <1 COI.

The CGM in this study were retrospective CGM (Medtronic
Mini Med), which were worn for 72 h. All patients were educated
and provided with the CGM device by endocrine specialist
nurses. Glucose values of peripheral blood were entered into
CGM to calibrate device four times a day. The data of CGM was
blinded to all the subjects. The patients maintained consistent
diet and exercise habits, and recorded any incidences of
hypoglycaemia (blood glucose level < 3.9 mmol/L), allergic
reactions, and other abnormalities during the study period.
Patients were advised to eat if they experienced asymptomatic
hypoglycaemia or symptomatic hypoglycaemia (Typical
symptoms of hypoglycaemia with plasma glucose concentration
≤ 3.9 mmol/L). If severe hypoglycaemia (Require help from
others to administer glucose, inject glucagon, or take any other
April 2022 | Volume 13 | Article 791439
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corrective action) occurred, the researchers would adjust the
insulin dose of the participants.

To improve statistical power, we combined all patients and
divided all patients (both the basal insulin group and premixed
insulin group) into three groups according to the level of HbA1c,
namely as HbA1c < 7%, 7% ≤HbA1c ≤ 9%, HbA1c > 9%. At last,
we sub-divided patients according to HbA1c within the basal
insulin group (HbA1c < 7% and HbA1c ≥ 7%) and premixed
insulin group (HbA1c < 7% and HbA1c ≥ 7%).

CGM
Data was collected from 00:00 to 24:00 on the second day of
CGM. The following parameters were calculated: 1) 24-h mean
blood glucose (MBG); 2) the mean fluctuation amplitude value
from peak to valley every 24 h (24-h MAGE); 3) Standard
deviation of blood glucose (24-h SDBG); 4) Percentage of time
in the range of 3.9–10 mmol/L: time in range (TIR); 5) Percentage
of time < 3.9 mmol/L or < 3.0 mmol/L: time below range (TBR);
6) Percentage of time > 13.9 mmol/L: time above range (TAR).

Statistical Analysis
Data were analysed using SPSS software (version 21.0, SPSS, Inc,
Chicago, USA). All data were recorded and exported from the
Frontiers in Endocrinology | www.frontiersin.org 325
CGM 3.0 software analysis system (Medtronic Mini Med, USA).
Normally distributed and continuous variables are presented as
the mean (standard deviation, SD). Nonnormally distributed
variables are presented as medians (interquartile ranges). An
independent samples t-test and a rank sum test were used to
compare difference between the groups for normally and non-
normally distributed data, respectively. P values were two tailed
with a significance level of 5%.
RESULTS

Baseline Characteristics
The mean age of patients in the basal insulin group was 59.40 ±
11.88 years, and that of the premixed insulin group was 63.14 ±
9.51 years. The percentage of achieving HbA1c <7% in the basal
insulin group was 35.1% and that in the premixed insulin group
was 34.7%. The clinical and demographic characteristics of both
groups were similar, except for the duration of insulin, insulin
dose and insulin antibody level, which were all increased in the
premixed insulin group (Table 1). Patients who were treated
with insulin combined with oral agents are shown in Table 2.
TABLE 1 | Baseline characteristics of patients.

Group Basal Insulin Group
(N=199)

Premixed Insulin Group
(N=194)

p value

Sex (M/F) 125/74 113/81 0.83
Age (years) 59.40 ± 11.88 63.14 ± 9.51 0.68
HbA1c (%) 7.90 ± 1.69 7.69 ± 1.43 0.33
BMI (kg/m2) 24.92 ± 4.56 24.82 ± 3.10 0.61
Duration of T2DM (years) 15.0 (10.00, 16.50) 13.00 (9.00, 20.00) 0.51
Duration of insulin (years) 5.23 (3.00, 7.71) 6.42 (5.57, 11.00) <0.01**
Insulin dose (IU/kg/day) 0.30 ± 0.10 0.53 ± 0.17 <0.01**
Fasting C-peptide (ng/ml) 1.20 ± 1.00 1.38 ± 0.99 0.07
Ins-Ab (COI) 4.69 (1.91, 10.02) 10.57 (3.95, 28.07) <0.01**
April 2022 | Volume 13 | Article
Data was shown as mean ± SD or median (first quartile, third quartile). M, male; F, female; HbA1c, glycated haemoglobin; BMI, body mass index; **p < 0.01. Ins-Ab, insulin antibody;
COI, OD/CO; OD, absorbance; CO, average absorbance of negative control; The reference range of normal values for antibody is <1 COI.
FIGURE 1 | Flow chart.
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There is a significantly greater frequency of use of insulin
secretagogues in the basal insulin group than in the premixed
insulin group.

The Glucose Profiles
TheMBG of the basal insulin group was 9.27 ± 2.38 mmol/L, and
that of the premixed insulin group was 8.92 ± 2.74 mmol/L; there
was no significant difference between the two groups. The 24-h
glucose profiles recorded by CGM during the use of basal insulin
and premixed insulin are shown in Figure 2.

Glycaemic Variability
The glycaemic variability, including value of MAGE, SD and CV,
was significantly lower in the basal insulin group than these in
the premixed insulin group (p<0.01) (Figure 3A and Table 3).

Time in Range
The TIR (3.9–10.0 mmol/L) was significantly higher in the basal
insulin group compared to the premixed insulin group (64.9% ±
29.3% vs 59.8% ± 23.8%, p=0.01) (Figure 3B and Table 3). The
frequency of achieving TIR > 70% had significantly increased in
the basal insulin group compared to the premixed insulin group
(51.8% vs 40.2%, p<0.01).
Frontiers in Endocrinology | www.frontiersin.org 426
Time Below Range
There were no severe hypoglycaemic events reported or dose
adjustment issues occurred during the whole study. TBR < 3.9
mmol/L and < 3.0 mmol/L were significantly lower in the basal
insulin participants compared to the premixed insulin
participants, especially at night (0:00–05:59 h) (p<0.01)
(Figure 3C and Table 3).

Time Above Range
TAR>13.9 mmol/L was significantly higher in the premixed
insulin group (3.82 (0.00, 16.15) vs 0.00 (0.00, 15.97), p=0.01)
compared to the basal insulin group (Figure 3D and Table 3).

Intergroup Clinical Characteristics of
Patients With Different HbA1c Values
For the subgroups with HbA1c <7%, the value of MAGE was
decreased in basal insulin group compared to premixed insulin
group (4.72 ± 2.53 and vs 5.36 ± 2.09, p<0.01). TBR<3.9mmol/L
in basal insulin group was lower compared to premixed insulin
group (0.00 (0.00,0.35) vs 9.38 (1.04, 18.06), p < 0.01). For the
subgroups with 7% ≤ HbA1c ≤ 9%, the GV and TBR of the
premixed insulin group showed a significant increase than those
in the basal insulin group (p<0.05), as well as the insulin
antibody level. For the subgroups with HbA1c > 9%, there was
no significant difference in CGM parameters between the two
groups (Table 4).

Intragroup Clinical Characteristics of
Patients With Different HbA1c Levels
In the basal insulin group and premixed insulin group, there was
no significant difference in clinical characteristics between
patients with HbA1c < 7% and patients with HbA1c ≥ 7%
(Tables 5, 6).
FIGURE 2 | Graph presents the glucose profiles of basal insulin and premixed insulin. The vertical coordinates show the mean glucose ± SD per hour for all patients
in each group. The 24 points in each group are connecting to visualize the 24-hour glucose fluctuations in this group of patients. The horizontal coordinates are
spaced at 2-hour intervals for each point.
TABLE 2 | Drugs used in addition to insulin.

Group Basal
Insulin Group

(N=199)

Premixed
Insulin Group

(N=194)

p value

Metformin (%) 59.3% 63.9% 0.58
a-glucosidase inhibitor (%) 73.4% 71.1% 0.61
Insulin secretagogues (%) 40.9% 7.8% <0.01**
DPP-4 inhibitor (%) 9.5% 6.7% 0.48
**p < 0.01.
April 2022 | Volume 13 | Article 791439
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DISCUSSION

In this cross-sectional study, our results showed although
there was not a gap of actual HbA1c between the two groups,
TIR in the basal insulin group was greater than that in the
premixed insulin group. Although the MBG of both groups
Frontiers in Endocrinology | www.frontiersin.org 527
were similar, the basal insulin group had lower GV, overall
hypoglycaemia and nocturnal hypoglycaemia than the premixed
insulin group.

In the present study we found that the basal insulin group had
similar levels of C-peptide as the premixed insulin group. C-
peptide is produced with an equal amount of insulin and is the
A

B

D

C

FIGURE 3 | (A) GV (MAGE, SD, CV) of the basal insulin group and the premixed insulin group within the full 24-hrs. (B) Percentage of TIR (3.0~10 mmol/L) of the
basal insulin group and the premixed insulin group within the full 24-hrs and nighttime (00:00–05:59) periods. (C) TBR (<3.9 and <3.0 mmol/L) of the basal insulin
group and the premixed insulin group within the full 24-hrs and nighttime (00:00–05:59) periods. (D) TAR (>13.9 mmol/L) of the basal insulin group and the premixed
insulin group within the full 24-hrs and nighttime (00:00–05:59) periods. ***p < 0.001, ****p < 0.0001.
TABLE 3 | CGM index between two groups.

Group Basal Insulin Group
(N=199)

Premixed Insulin Group
(N=194)

p value

MBG (mmol/L) 9.27 ± 2.38 8.92 ± 2.74 0.078
GV MAGE (mmol/L) 4.72 ± 2.53 5.36 ± 2.09 0.035*

SD (mmol/L) 1.82 ± 0.78 2.54 ± 0.77 <0.01**
CV (%) 22.87 ± 9.03 36.08 ± 9.77 <0.01**

TIR (%) (3.9-10mmol/L) 64.9 ± 29.3 59.8 ± 23.8 <0.01**
TAR (%) >13.9mmol/L 0.00 (0.00, 0.00) 0.00 (0.00, 5.12) <0.01**
TBR (%) <3.9mmol/L 0.00 (0.00, 0.35) 9.38 (1.04, 18.06) <0.01**
TBR (%) <3.0mmol/L 0.00 (0.00, 0.00) 1.74 (0.00, 7.38) <0.01**
April 2022 | Volume 13 | Article
*p < 0.05, **p < 0.01. Data was shown as mean ± SD or median (first quartile, third quartile). MBG, 24-hour mean blood glucose; GV, Glycaemic variability; MAGE, 24-hour mean amplitude
of glycaemic excursion; SD, Standard deviation of blood glucose; CV, coefficient of variation; TIR, time in range (3.9-10 mmol/L); TAR, time above target range (>13.9 mmol/L); TBR, time-
below-target ranges (<3.9 mmol/L or <3.0 mmol/L).
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best measure of endogenous insulin secretion in patients with
diabetes (15). The key current clinical role of C-peptide is to
assist classification and management of insulin-treated patients.
C-peptide is inversely associated with glycaemic variability and
post-meal glucose rise in both Type 1 and Type 2 diabetes (16)
and is inversely associated with response to prandial insulin in
experimental conditions in a mixed population with diabetes.
Given that low C-peptide is associated with higher glucose
variability, the absence of statistically significant difference in
C-peptide between basal insulin and premixed insulin groups
suggests that residual beta-cell function was not responsible for
the CGM differences observed in this study.

Severe hypoglycaemia causes patients to show signs of an
insufficient energy supply to the central nervous system, such as
drowsiness, disturbance of consciousness, nonsense, and even
coma and death (17). It was reported that 80% of diabetes
specialists feel they are unable to proactively treat the disease
because of the risk of hypoglycaemia (18); thus, treatment that
does not result in hypoglycaemia is very important for diabetic
patients. Basal insulin treatment has a lower risk of
hypoglycaemia, which enables more aggressive treatment and
is easier to use with less variation (19). In this study,
symptomatic hypoglycaemia and severe hypoglycaemia did not
occur, but the TBR < 3.9 mmol/L and TBR < 3.0 mmol/L were
significantly higher in the premixed insulin group than in the
basal insulin group. More importantly, nocturnal hypoglycaemia
also causes severe damage to patients if it recurs and is
undetectable, and even mild asymptomatic episodes can lead to
further impairment and defective counterregulatory responses to
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TABLE 5 | Clinical characteristics of patients with subdivided basal insulin group.

Basal Insulin HbA1c<7%
(N=69)

HbA1c≥7%
(N=130)

p value

Age (years) 59.64 ± 10.22 59.28 ± 12.71 0.83
Fasting C-peptide (ng/ml) 1.20 ± 0.08 1.20 ± 0.10 0.98
Ins-Ab (COI) 7.7 ± 0.99 9.12 ± 1.32 0.39
Duration of T2DM (years) 14.24 ± 6.02 13.21 ± 6.13 0.25
Duration of insulin (years) 5.76 ± 3.12 5.20 ± 3.18 0.22
Insulin dose (IU/kg/day) 0.28 ± 0.08 0.32 ± 0.13 0.12
April 2022 |
 Volume 13 | Article
Data was shown as mean ± SD. HbA1c, glycated haemoglobin; Ins-Ab, insulin antibody;
COI, OD/CO; OD, absorbance; CO, average absorbance of negative control; The
reference range of normal values for antibody is <1 COI.
TABLE 6 | Clinical characteristics of patients with subdivided premixed insulin
group.

Premixed Insulin HbA1c<7%
(N=68)

HbA1c≥7%
(N=126)

p value

Age (years) 63.09 ± 9.32 63.15 ± 9.09 0.86
Fasting C-peptide (ng/ml) 1.32 ± 0.09 1.43 ± 0.10 0.48
Ins-Ab (COI) 17.01 ± 2.27 18.36 ± 1.73 0.64
Duration of T2DM (years) 12.75 ± 6.92 14.07 ± 6.82 0.20
Duration of insulin (years) 7.91 ± 6.78 7.59 ± 5.95 0.73
Insulin dose (IU/kg/day) 0.49 ± 0.02 0.47 ± 0.02 0.63
Data was shown as mean ± SD. HbA1c, glycated haemoglobin; Ins-Ab, insulin antibody;
COI, OD/CO; OD, absorbance; CO, average absorbance of negative control; The
reference range of normal values for antibody is <1 COI.
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subsequent events (20). In addition to an increased risk for future
episodes, the effects of nocturnal hypoglycaemia that occur
during the day, such as fatigue, impaired mood and higher
calorie intake and weight gain, considerably lower quality of
life (21). Our study found the TBR < 3.9 mmol/L and TBR < 3.0
mmol/L in the premixed insulin group at night were both higher
than those in the basal insulin group.

In addition, in this study, we divided patients according to the
level of HbA1c across the two groups. For the subgroups with
HbA1c <7%, the GV, TBR < 3.9 mmol/L and TBR < 3.0 mmol/L
of the premixed insulin group were higher than those in the basal
insulin group. Patients in the premixed insulin group do not have
lower C-peptide levels compared to the basal insulin group and
have elevated insulin antibody (IA), as well as a higher incidence
of hypoglycaemia. Longer duration of insulin use which made
possible exposure to more types of insulin are potential causes
for significantly greater insulin antibody levels in the premixed
insulin group. Administration of exogenous animal insulin for
the treatment of diabetes often induces the production of IA (22).
In recent years, the usage of recombinant human insulin
preparations and human insulin analogues has significantly
reduced but not entirely suppressed the incidence of IA
development. These antibodies might affect a patient’s
glycaemic control due to their tendency to bind and/or release
insulin in an unpredictable fashion. The higher circulating IA
was associated with increased MAGE in T2DM patients (23),
thus greater GV may be due to greater IA levels in the premixed
insulin group potentially, which indicate that those patients with
elevated IA levels should receive GV assessment and
individualized treatment. For the subgroups with HbA1c <7%
and 7% ≤HbA1c ≤ 9%, patients who use premixed insulin have a
higher IA level, the TIR was not higher than patients in the basal
insulin group, however the incidence of hypoglycaemia and GV
were both higher in premixed insulin group. For the subgroups
with HbA1c > 9%, the MBG and TIR of patients in both groups
did not meet the standard, and the C-peptide levels of patients
who use basal insulin were not high.

C-peptide measurement is critical in insulin selection for it
can reflect islet function of patients, the regimen for patients who
use premixed insulin could be considered to use basal insulin if
they present higher incidence of hypoglycaemia, greater GV and
better islet function. CGM is an important device on detection of
asymptomatic hypoglycaemia and hypoglycaemia, and should be
fully considered when choosing an insulin regimen. Although
the lower price of premixed insulin is one of the reasons for
Chinese patients and physicians tend to use premixed insulin. It
is still important not to be price oriented when making the choice
of insulin type, as the above mentioned, islet function, frequency
of hypoglycaemia, and GV are all factors to be considered.

Limitations should also be addressed. Firstly, findings using a
larger sample size may be more convincing. Secondly, the
differential use of insulin secretagogues, insulin dosing, and
duration of insulin use between the two groups could partly
contribute to result bias. Thirdly, the cross-sectional study design
is insufficiently to answer persistent effects on the glycaemic
control process of the same individual with premixed insulin or
Frontiers in Endocrinology | www.frontiersin.org 729
basal insulin therapy. Finally, our study was limited to a single
centre, which should be expanded. We hope to follow up these
subjects and expand the sample in the future.
CONCLUSIONS

In summary, compared with basal insulin, the patients who
currently use premixed insulin had more severe GV, a smaller
TIR and a higher incidence of hypoglycaemia. Among people
who use premixed insulin and have an HbA1c < 7%, more
attention needs to be paid on hypoglycaemic events and
asymptomatic hypoglycaemia. If necessary, the insulin regimen
should be adjusted.
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Aim: We explored the prospective relationship between continuous glucose monitoring
(CGM) metrics and clinical outcomes in patients admitted to the intensive care unit (ICU).

Materials and Methods: We enrolled critically ill patients admitted to the medical ICU.
Patients with an Acute Physiology and Chronic Health Evaluation (APACHE) score ≤9 or
ICU stay ≤48 h were excluded. CGMwas performed for five days, and standardized CGM
metrics were analyzed. The duration of ICU stay and 28-day mortality rate were evaluated
as outcomes.

Results: A total of 36 patients were included in this study (age [range], 49–88 years; men,
55.6%). The average APACHE score was 25.4 ± 8.3; 33 (91.7%) patients required
ventilator support, and 16 (44.4%) patients had diabetes. The duration of ICU stay
showed a positive correlation with the average blood glucose level, glucose management
indicator (GMI), time above range, and GMI minus (-) glycated hemoglobin (HbA1c). Eight
(22.2%) patients died within 28 days, and their average blood glucose levels, GMI, and
GMI-HbA1c were significantly higher than those of survivors (p<0.05). After adjustments
for age, sex, presence of diabetes, APACHE score, and dose of steroid administered, the
GMI-HbA1c was associated with the risk of longer ICU stay (coefficient=2.34, 95% CI
0.54-4.14, p=0.017) and higher 28-day mortality rate (HR=2.42, 95% CI 1.01-5.76,
p=0.046).

Conclusion: The acute glycemic gap, assessed as GMI-HbA1c, is an independent risk
factor for longer ICU stay and 28-day mortality rate. In the ICU setting, CGM of critically ill
patients might be beneficial, irrespective of the presence of diabetes.

Keywords: blood glucose, diabetes mellitus, glucose, hospitals, intensive care units, technology
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INTRODUCTION

Acute hyperglycemia is commonly encountered in critically ill
patients admitted to the intensive care unit (ICU), regardless of
the presence of diabetes mellitus (DM) (1). Hyperglycemia is
induced by acute stress and is also associated with the prognosis
of severely ill patients (2). In addition, these patients are
vulnerable to hypoglycemia, both iatrogenic and idiopathic,
and several studies have suggested that hypoglycemia is an
independent risk factor for mortality. Recent guidelines
recommend that the goal of glycemic control in the ICU is
140–180 mg/dL, although there are controversies about the
appropriate target range. These findings emphasize the
importance of glucose monitoring and management in
critically ill patients. However, point-of-care (POC) blood
glucose monitoring has limitations in ICU settings, such as
missing or not being able to predict hypoglycemia or
hyperglycemia. In addition, though glycated hemoglobin
(HbA1c) is an important indicator of the condition of diabetic
patients and the risk of long-term diabetic complications (3), this
may be insufficient to optimally induce personalized treatment
changes, especially in patients using insulin, as the degree or
timing of hypoglycemia, and the presence of clinically significant
glucose variability or hyperglycemic patterns are unknown.
Previous studies have demonstrated glucose variability with
mean amplitude of glucose excursion (MAGE), continuous
overall net glycemic action (CONGA), and M-values (4–6).
However, these require the use of a special calculation program
and are difficult to calculate and apply immediately in ICU
patients. On the other hand, continuous glucose monitoring
(CGM) is a great help in evaluating blood glucose variability as it
can easily obtain sufficient data (7).

CGM is a powerful tool with the potential to transform the
management of individuals with diabetes. In real time, CGM can
show trends in hypoglycemia, hyperglycemia, and glucose
variability, some of which warrant immediate therapeutic
action (8, 9). In other words, CGM helps individuals with
diabetes and clinicians optimize diabetes management
strategies. CGM is strongly recommended in clinical situations
requiring intensive glucose monitoring, such as patients
receiving multiple insulin injections (10–12). The benefits of
CGM include the prediction and prevention of rapid glycemic
changes, which cannot be recognized with POC, HbA1c, glycated
albumin, or fructosamine, and this technology will be accepted in
various situations including in-hospital care (13, 14).

CGM has also been highlighted as an attractive alternative to
hourly POC in the ICU and shows high accuracy and reliability
in patients admitted to cardiac, surgical, and medical ICUs, as
well as patients with coronavirus disease 2019 (15–18). The use
of CGMmetrics for remote blood glucose monitoring in the ICU
has been approved due to the recent coronavirus disease 2019
pandemic (19, 20). However, little is known about the clinical
usefulness or implications of CGM metrics in ICU settings.
Therefore, we aimed to investigate the correlation of CGM
metrics with clinical outcomes in critically ill patients admitted
to the medical ICU. In addition, we attempted to devise a novel
Frontiers in Endocrinology | www.frontiersin.org 232
index based on conventional CGM metrics to predict the
prognosis of patients admitted to the ICU.
MATERIALS AND METHODS

Study Design and Patient Selection
This prospective observational study enrolled critically ill patients
admitted to the medical ICU of Yeungnam University Hospital,
Daegu, South Korea, between June 2020 and February 2021. The
study was conducted after the patient or legal representative
provided written informed consent. We initially selected 52
patients and examined their eligibility. The inclusion criteria were
as follows: 1) patients aged >45 years and 2) critically ill patients
who were admitted due to pneumonia, septic shock, or acute
respiratory distress syndrome (ARDS). The exclusion criteria were
as follows: 1) patients whose expected the duration of ICU stay was
≤48 h, 2) patients with an Acute Physiology and Chronic Health
Evaluation (APACHE) II score ≤9, 3) patients with chronic disease
who were less likely to be resuscitated, and 4) patients with a high
risk of bleeding during CGM (platelet count < 50,000/µL). A total of
36 patients were included in the final analysis. The study protocol
adhered to the tenets of the Declaration of Helsinki and was
reviewed and approved by the Institutional Review Board of
Yeungnam University Hospital (approval no. 2019-07-043).

Clinical and Biochemical Measurements
Disease severity was assessed using the APACHE II score (21).
Higher scores (range, 0–71) are closely correlated with the
subsequent risk of in-hospital death: an APACHE II score ≥10
reflects an estimated in-hospital mortality of >15%. ARDS was
diagnosed according to the Berlin definition (22). Septic shock
was defined according to the Third International Consensus
Definitions for Sepsis and Septic Shock (Sepsis-3) (23). Data on
ventilator support and administration of steroids or insulin
during ICU care were collected.

Waist circumference and blood pressure were measured by
trained staff members. All laboratory parameters were evaluated
at the central laboratory of Yeungnam University Hospital. The
white blood cell and platelet counts, and hemoglobin (Hb), C-
reactive protein (CRP), procalcitonin, glycated hemoglobin
(HbA1c), fasting glucose, fasting insulin, total cholesterol,
triglyceride, high-density lipoprotein cholesterol, and creatinine
levels were measured.

The diagnostic criteria for DM were as follows: 1) previous
diagnosis by a doctor or 2) satisfying the following conditions:
fasting plasma glucose ≥ 126 mg/dL and HbA1c ≥ 6.5% (24).

CGM and Initiation of Insulin Infusion
For glucose monitoring, a CGM system (Dexcom G5, Dexcom, San
Diego, USA) was attached for 5 days immediately after the
admission, and calibration was performed using the same self-
monitoring glucometers at least twice a day to increase the accuracy
of the data. Venous blood glucose levels were checked to ensure that
the CGM system was functioning properly. The transmitter was
removed during radiography or computed tomography.
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Irrespective of the presence of DM, patients with two or more
instances of blood glucose levels > 180 mg/dL were initiated on
the Yale ICU insulin infusion protocol (25). The target blood
glucose range was 140–180 mg/dL. Based on the International
Consensus statement, the following key CGM metrics were
collected (26): average blood glucose level, glucose
management indicator (GMI), coefficient of variation (CV),
time in range (TIR, 70–180 mg/dL), time above range (TAR,
> 180 mg/dL), and time below range (TBR, < 70 mg/dL). In
addition, we analyzed the difference between GMI and HbA1c
levels (GMI-HbA1c) (8). We also calculated other CGM-derived
metrics such as MAGE, CONGA, and M-values using EasyGV
software (www.phc.ox.ac.uk/research/resources/easygv).

Outcomes
The outcomes evaluated were the duration of ICU stay and 28-
day mortality rate. Post-hoc power was calculated using
previously published data (27) as known population, and the
post-hoc power of our study was 50.7%.

Statistical Analysis
All statistical tests were performed using R software (version
3.6.3, R Foundation, Vienna, Austria). Baseline characteristics
are expressed as mean ± standard deviation for continuous
variables and as numbers and percentages for categorical
variables. Differences between groups were assessed using the
Mann–Whitney U test for continuous variables and chi-square
tests for categorical variables. Spearman’s correlation analysis
was used to assess the correlation between CGM metrics and
duration of ICU stay. Linear regression analysis was used to
assess the effects of CGM metrics on the duration of ICU stay.
Cox regression analysis was used to assess the effects of CGM
metrics on 28-day mortality rate. Hazard ratios (HRs) were
reported with 95% confidence intervals (CIs). Statistical
significance was set at P < 0.05.
RESULTS

Baseline Characteristics
Baseline characteristics and their comparisons between patients
with and without diabetes are presented in Table 1.

The mean age was 71.0 ± 9.9 years (range, 49–88 years), and
the male-to-female ratio was 1.25:1. The most common diagnosis
at the time of admission was pneumonia (58.3%), followed by
septic shock (22.2%) and ARDS (19.4%). The mean APACHE
score was 25.4 ± 8.3. The CGM system was attached for 5.5 ± 0.8
days and activated for 98.5% ± 3.1% of time. Thirty-three
patients (91.7%) required ventilator support. Steroids were
administered to 75% of patients, and insulin was administered
to 66.7% of patients. The average duration of ICU stay was 10.8 ±
7.6 days, and 8 patient (22.2%) died within 28 days.

Among all patients, 16 (44.4%) had DM. Thirteen patients
were previously diagnosed by a doctor; however, 10 of them did
not receive anti-hyperglycemic treatment. Three patients were
newly diagnosed at the time of admission. Age, sex, diagnosis,
Frontiers in Endocrinology | www.frontiersin.org 333
and disease severity at the time of admission were not different
between patients with and without DM. The white blood cell
count and levels of CRP and procalcitonin were increased in
patients with and without DM without statistically significant
differences. The average HbA1c level of patients with DM was
8.0%, and that of patients without DM was 5.9% (p<0.001).
Compared to patients with DM, the average blood glucose level
(150 mg/dL vs. 177 mg/dL, p=0.030), GMI (6.9% vs. 7.8%,
p=0.033), CV (25.1% vs. 32.0%, p=0.028), and TAR (22.5% vs.
38.8%, p=0.030) were significantly lower, and the TIR (76.5% vs.
60.0%, p=0.039) and GMI-HbA1c (1.0% vs. -0.2%, p=0.020)
were significantly higher in non-diabetic patients. Treatment,
including ventilator support, steroids, and insulin, and clinical
outcomes (ICU stay and 28-day mortality rate) did not differ
significantly between patients with and without DM.

Association Between CGM Metrics
and Duration of ICU Stay
The correlation analysis for CGM metrics and ICU stay is
presented in Table 2. The average blood glucose level (r=0.532,
p<0.001), GMI (r=0.545, p<0.001), TAR (r=0.457, p=0.005), and
GMI-HbA1c (r=0.533, p<0.001) were positively associated, and
TIR (r=-0.435, p=0.008) was negatively associated with the
duration of ICU stay. GMI-HbA1c was positively correlated
with duration of ICU stay in both patients without DM
(r=0.66, p=0.002) and patients with DM (r=0.59, p=0.016;
Figure 1). However, the correlation between duration of ICU
stay and CV or TBR was not significant. Other CGM-derived
parameters, such as MAGE, CONGA, and M-value, were also
not correlated to ICU stay length (Supplementary Table 1).

Association Between CGM Metrics
and 28-Day Mortality Rate
Clinical characteristics of the survivors and non-survivors at 28
days are presented in Table 3. Eight patients died within 28 days.
There were no differences in age, sex, presence of DM, and
APACHE scores between survivors and non-survivors. In non-
survivors, the prevalence of ARDS was significantly higher (75%
vs. 3.6%, p=0.001), and a higher dose of steroid was administered
(61.7 mg/day vs. 25.6 mg/day, p=0.007) than in survivors.
Among CGM metrics, the average blood glucose level (188.8 ±
35.6 vs. 154.6 ± 42.7, p=0.021), GMI (8.2 ± 1.3 vs. 7.0 ± 1.5,
p=0.024), and GMI-HbA1c (2.0 ± 1.3 vs. 0.0 ± 1.6, p<0.001) were
significantly higher in non-survivors than in survivors. The
GMI-HbA1c was significantly higher in non-survivors than in
survivors in both patients without DM (2.3 ± 1.6 vs. 0.6 ± 0.9,
p=0.025) and patients with DM (1.6 ± 0.7 vs. -0.7 ± 2.0, p=0.008;
Figure 2). M-value was also marginally higher in the non-
survivor group (p=0.059), but MAGE was not different
between group (Supplementary Table 1).

The Effect of CGM Metrics
on Clinical Outcomes
The effects of HbA1c, fasting glucose, and CGM metrics on the
duration of ICU stay and 28-day mortality rate were analyzed
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using linear regression analysis and Cox regression analysis,
respectively. Age, sex, presence of DM, APACHE score, and
dose of steroid administered were considered as covariates.
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Before adjustments, HbA1c, average glucose level, GMI, TAR,
TIR, and GMI-HbA1c were significant risk factors for ICU stay
(all p<0.05). After adjustments for covariates, GMI-HbA1c
TABLE 2 | Correlation between CGM metrics and ICU stay.

Correlation coefficients p

Average glucose, mg/dL 0.532 <0.001
GMI, % 0.545 <0.001
CV, % 0.051 0.767
TAR, % 0.457 0.005
TIR, % -0.435 0.008
TBR, % -0.213 0.212
GMI-HbA1c, % 0.533 <0.001
May 2022 | Volume 13 | Article
The correlation coefficients are presented as Spearman r.
CV, coefficient of variation; DM, diabetes mellitus; GMI, glucose management indicator; HbA1c, glycated hemoglobin; TAR, time above range; TBR, time below range; TIR, time in range.
TABLE 1 | Comparison of baseline characteristics between patients with and without diabetes.

Overall (n=36) non-DM (n=20) DM (n=16) p-value

Age, years 71.0 ± 9.9 69.5 ± 11.0 72.9 ± 8.1 0.305
Men, n (%) 20 (55.6) 11 (55.0) 9 (56.2)
Diagnosis at ICU admission
Pneumonia, n (%) 21 (58.3) 11 (55.0) 10 (37.0) 0.711
Septic shock, n (%) 8 (22.2) 4 (20.0) 4 (14.8)
ARDS, n (%) 7 (19.4) 5 (25.0) 2 (7.4)

Disease severity at ICU admission
APACHE 25.4 ± 8.3 25.1 ± 8.8 25.8 ± 7.9 0.765

Laboratory data
Waist circumference, cm 89.5 ± 11.2 89.3 ± 10.7 89.9 ± 12.2 0.959
Systolic BP, mmHg 118.7 ± 25.8 118.2 ± 27.1 119.4 ± 25.0 0.694
Diastolic BP, mmHg 86.8 ± 91.4 97.6 ± 121.7 73.2 ± 19.4 0.962
WBC, x109/L 12.3 ± 5.8 12.3 ± 6.2 12.2 ± 5.5 0.814
Hb, g/dL 11.2 ± 1.9 11.5 ± 1.9 10.8 ± 2.0 0.237
Platelet, x109/L 241.1 ± 93.9 252.2 ± 86.2 227.2 ± 103.9 0.626
CRP, mg/dL 16.9 ± 11.9 16.1 ± 12.3 18.0 ± 11.8 0.604
Procalcitonin, mg/dL 5.8 ± 12.9 4.9 ± 11.9 6.8 ± 14.4 0.249
HbA1c, % 6.8 ± 1.7 5.9 ± 0.5 8.0 ± 2.0 <0.001
Fasting glucose, mg/dL 194.2 ± 85.4 194.8 ± 85.2 193.4 ± 88.4 0.987
Fasting insulin, uIU/mL 37.1 ± 52.3 39.7 ± 55.4 33.9 ± 49.7 0.178
Total cholesterol, mg/dL 116.9 ± 53.8 128.4 ± 64.6 102.5 ± 32.8 0.305
Triglyceride, mg/dL 129.8 ± 82.8 138.1 ± 100.9 119.4 ± 53.8 0.838
HDL cholesterol, mg/dL 29.1 ± 13.7 32.1 ± 15.7 25.3 ± 10.0 0.149
Creatinine, mg/dL 1.4 ± 1.2 1.1 ± 0.8 1.8 ± 1.6 0.095

CGM metrics
Days CGM worn, days 5.5 ± 0.8 5.5 ± 0.8 5.4 ± 0.8 0.369
Time CGM is Active, % 98.5 ± 3.1 98.4 ± 2.3 98.6 ± 3.9 0.479
Average glucose, mg/dL 162.2 ± 43.2 150.2 ± 40.6 177.2 ± 42.8 0.030
GMI, % 7.3 ± 1.5 6.9 ± 1.4 7.8 ± 1.5 0.033
CV, % 28.2 ± 9.1 25.1 ± 7.3 32.0 ± 9.9 0.028
TAR, % 29.8 ± 26.5 22.5 ± 25.9 38.8 ± 25.0 0.030
TIR, % 69.2 ± 26.2 76.5 ± 25.5 60.0 ± 24.8 0.039
TBR, % 1.1 ± 2.3 1.0 ± 2.2 1.2 ± 2.5 0.814
GMI-HbA1c, % 0.4 ± 1.7 1.0 ± 1.3 -0.2 ± 2.0 0.020

Treatment
Ventilator care, n (%) 33 (91.7) 19 (95.0) 14 (87.5) 0.574
Steroid, n (%) 27 (75.0) 14 (70.0) 13 (81.2) 0.7
Insulin, n (%) 24 (66.7) 11 (55.0) 13 (81.2) 0.192

Outcome
ICU stay, days 10.8 ± 7.6 10.2 ± 6.5 11.6 ± 8.9 0.789
28-day mortality rate, n (%) 8 (22.2) 5 (25.0) 3 (18.8) 0.709
APACHE, Acute Physiology and Chronic Health Evaluation; ARDS, acute respiratory distress syndrome; BP, blood pressure; CGM, continuous glucose monitoring; CRP, C-reactive
protein; CV, coefficient of variation; DM, diabetes mellitus; GMI, glucose management indicator; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; ICU, intensive care unit; TAR,
time above range; TBR, time below range; TIR, time in range; WBC, white blood cell.
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(adjusted coefficient = 2.34; 95% CI 0.54–4.14; p=0.017)
remained as an independent risk factor for ICU stay (Table 4).

In the aspect of 28-day mortality, before adjustments, GMI-
HbA1c was an only significant risk factor (p=0.003). After
adjustments for covariates, HbA1c (adjusted HR=0.13; 95% CI
0.02-0.99; p=0.049) and GMI-HbA1c (adjusted HR=2.42; 95%
CI 1.01–5.76; p=0.046) were significant risk factors for 28-day
mortality rate (Table 5).
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DISCUSSION

We demonstrated that poor CGM metrics were associated with
longer ICU stay and higher 28-day mortality rate. In particular,
GMI-HbA1c, which indicates the acute glycemic gap (8), was
associated with prolonged ICU stay and was higher in non-
survivors than in survivors in both patients without DM (0.6 vs.
2.3%, p=0.025) and with DM (-0.7 vs. 1.6, p=0.008). For every 1%
TABLE 3 | Comparison of characteristics according to mortality within 28 days.

Survivor (n=28) Non-survivor (n=8) p-value

Age, years 70.9 ± 10.1 71.2 ± 9.7 0.537
Men, n(%) 16 (57.1) 4 (50.0) 1
DM, n(%) 13 (46.4) 3 (37.5) 0.709
Diagnosis at ICU admission
Pneumonia, n (%) 20 (71.4) 1 (12.5) 0.001
Septic shock, n (%) 7 (25.0) 1 (12.5)
ARDS, n (%) 1 (3.6) 6 (75.0)
Disease severity at ICU admission
APACHE 25.2 ± 8.5 26.2 ± 8.1 0.668

HbA1c, % 7.0 ± 1.9 6.2 ± 0.5 0.236
Fasting glucose, mg/dL 183.6 ± 77.5 231.2 ± 106.2 0.339
Fasting insulin, uIU/mL 32.4 ± 42.8 53.6 ± 78.7 0.668
CGM metrics
Average glucose, mg/dL 154.6 ± 42.7 188.8 ± 35.6 0.021
GMI, % 7.0 ± 1.5 8.2 ± 1.3 0.024
CV, % 27.6 ± 9.6 30.2 ± 7.1 0.339
TAR, % 25.5 ± 26.2 44.6 ± 22.8 0.099
TIR, % 73.2 ± 26.0 55.1 ± 22.8 0.099
TBR, % 1.3 ± 2.6 0.3 ± 0.5 0.466
GMI-HbA1c, % 0.0 ± 1.6 2.0 ± 1.3 <0.001

Treatment
Ventilator care, n (%) 25 (89.3) 8 (100.0) 1
Steroid, n (%) 21 (75.0) 6 (75.0) 1
Steroid dose, mg/day* 25.6 ± 24.8 61.7 ± 25.8 0.007
Insulin, n (%) 17 (60.7) 7 (87.5) 0.224
Insulin dose, IU/day 50.8 ± 61.2 71.7 ± 62.2 0.383
May 2022 | Volume 13 | Article
Converted to methylprednisolone.
APACHE, Acute Physiology and Chronic Health Evaluation; ARDS, acute respiratory distress syndrome; CGM, continuous glucosemonitoring; CV, coefficient of variation; DM, diabetesmellitus;
GMI, glucose management indicator; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; ICU, intensive care unit; TAR, time above range; TBR, time below range; TIR, time in range.
FIGURE 1 | Scatter plot of the relationship between GMI-HbA1c and ICU stay. The correlation coefficients are presented as Spearman’s r.
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increase in GMI-HbA1c, the duration of ICU stay was prolonged
by 2.3 times and the 28-day mortality rate was increased 2.4
times, irrespective of age, sex, presence of DM, APACHE score,
and dose of steroid administered.

Traditional POC glucose measurements are considered to be
accurate and reliable and have the advantage of providing quick
results compared to central laboratory measurements (28).
CGM in critically ill patients is not only as effective as POC,
but also reduces hypoglycemic events (29, 30) and nursing
workload, and is cost effective (31, 32). It may be argued that
Frontiers in Endocrinology | www.frontiersin.org 636
placing a subcutaneous CGM can be disadvantageous in some
clinical scenarios that may occur in the ICU setting, such as
hypoperfusion. In fact, an intravascular microdialysis CGM
showed superior accuracy compared to the subcutaneous CGM
in cardiac surgery (33). Recently, however, the results of
subcutaneous CGM are reported to be consistent irrespective
of the use of vasopressors, mechanical ventilation, high-dose
glucocorticoids, renal replacement therapy, and anasarca and
even after surgery (34, 35). In respect of accuracy, the mean
absolute relative difference (MARD) in this study was 15.5%
TABLE 4 | Effect of CGM metrics on ICU stay.

Crude coeff. (95%CI) CrudeP value Adjusted coeff. (95%CI) adjusted P value

HbA1c 0.03 (0, 0.06) 0.049 -0.79 (-2.9, 1.31) 0.466
Fasting glucose -0.36 (-1.81, 1.09) 0.63 0.03 (-0.01, 0.07) 0.11
Average glucose 0.06 (0.01,0.12) 0.04 0.06 (-0.01, 0.13) 0.089
GMI 1.76 (0.18,3.34) 0.036 1.84 (-0.16, 3.85) 0.082
CV 0.04 (-0.24, 0.32) 0.774 -0.04 (-0.39, 0.31) 0.83
TAR 0.10 (0.01, 0.19) 0.034 0.11 (-0.01, 0.22) 0.071
TIR -0.10 (-0.19, -0.01) 0.041 -0.1 (-0.22, 0.01) 0.086
TBR -0.64 (-1.72, 0.44) 0.255 -0.67 (-1.87, 0.52) 0.664
GMI-HbA1c 1.68 (0.33, 3.02) 0.02 2.34 (0.54, 4.14) 0.017
May 2022 | Volume 1
Linear regression analysis was performed. In the adjusted model, age, sex, presence of DM, APACHE score, and steroid dose (mg/day) were adjusted for each metrics.
CGM, continuous glucose monitoring; CI, confidence interval; CV, coefficient of variation; DM, diabetes mellitus; GMI, glucose management indicator; HbA1c, glycated hemoglobin; TAR,
time above range; TBR, time below range; TIR, time in range.
FIGURE 2 | Difference in GMI-HbA1c between survivors and non-survivors. *p < 0.05, **p < 0.01.
TABLE 5 | Effect of CGM metrics on 28-day mortality rate.

Crude HR (95%CI) CrudeP value Adjusted HR (95%CI) adjusted P value

HbA1c 0.65 (0.31, 1.34) 0.245 0.13 (0.02, 0.99) 0.049
Fasting glucose 1.01 (1, 1.01) 0.13 1 (0.99, 1.01) 0.922
Average glucose 1.01 (1.00,1.03) 0.052 1.01 (0.99, 1.03) 0.451
GMI 1.46 (1.00,2.15) 0.053 1.25 (0.7, 2.24) 0.453
CV 1.03 (0.96,1.10) 0.430 1.02 (0.93, 1.13) 0.656
TAR 1.02 (1.00,1.05) 0.076 1.01 (0.98, 1.05) 0.386
TIR 0.98 (0.95,1.00) 0.088 0.99 (0.95, 1.02) 0.429
TBR 0.69 (0.30,1.54) 0.363 0.67 (0.25, 1.77) 0.418
GMI-HbA1c 1.92 (1.25,2.96) 0.003 2.42 (1.01, 5.76) 0.046
A Cox regression analysis was performed. In the adjusted model, age, sex, presence of DM, APACHE score, and steroid dose (mg/day) were adjusted for each metrics.
CGM, continuous glucose monitoring; CV, coefficient of variation; DM, diabetes mellitus; GMI, glucose management indicator; Hba1c, glycated hemoglobin; HDL, high-density lipoprotein;
HR, hazard ratio; TAR, time above range; TBR, time below range; TIR, time in range.
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(data not shown), which was higher than the recommended
cut-off (9%) in general population, but consistent to the
previously reported MARDs in ICU setting: 13.9% in Dexcom
G6 (Dexcom, San Diego, USA) (36), 7.0% to 30.5% in FreeStyle
Navigator or FreeStyle Libre (Abbott Diabetes, Alameda, USA)
(37), and 14.0% to 23.7% in Guardian REAL-Time (Medtronic,
Californea, USA) (37). In April 2020, the US FDA exercised
enforcement discretion for the temporary use of inpatient CGM
during the pandemic, and a recent report suggested an
acceptable accuracy of CGM in critical care setting (36).
Therefore, CGM can be an accurate, reliable, and practical
method for glucose monitoring in an ICU setting (38–40).

A recent study using CGM technology concluded that 10–14
days of CGM data provide a good estimate of CGM metrics for
a 3-month period (41). In this study, we only attached CGM for
5.5 ± 0.8 days, which was insufficient to determine long term
glycemic control. However, we presented a new indicator,
GMI-HbA1c, and its potential as a key clinical prognostic
factor in acutely ill phase. Critically ill patients admitted to
the medical ICU had high levels of inflammatory markers;
accordingly, their blood glucose levels were also high. In
addition, the use of high-dose steroid might have induced
acute glycemic gap. Even after adjusting for these
confounders, our results suggested that favorable outcomes
can be achieved by reducing acute glycemic gap derived from
GMI-HbA1c. GMI is an estimated A1c, which is calculated
from a formula derived from the regression line computed from
a plot of mean glucose concentration points on the x-axis and
contemporaneously measured A1C values on the y-axis (8).
Indeed, 22% of subjects showed discordance between GMI and
HbA1c of >1% (3). Contrary to our expectations, there was no
difference in HbA1c between survivors and non-survivors (7.0
± 1.9 vs. 6.2 ± 0.5, p>0.05). Rather, the GMI-HbA1c was
revealed to be a more reliable predictor for 28-day mortality.
Therefore, understanding the differences between CGM-
derived GMI and laboratory HbA1c may aid in safe and
effective clinical management (42). GMI-HbA1c is easy to
calculate, can assess acute or dramatic changes in blood
glucose levels, and can be used as an index for personalized
glucose management (8). Stringent glucose control is required
if GMI is higher than HbA1c, to minimize excessive
hyperglycemia. Conversely, if GMI is lower than HbA1c, less
stringent glucose control may be needed to avoid hypoglycemic
events (43). One thing to note is that the GMI-HbA1c should be
interpretated considering various physical and biological
factors. The GMI formula was derived from a cohort of adult
patients mainly affected by Type 1 diabetes (8), and the
hemoglobin glycosylation and red blood cell survival alter in
the critically ill phase. Therefore, further clinical studies
assessing GMI-HbA1c in various patient groups might reveal
the effect of acute hypo- or hyperglycemic gaps on
clinical outcomes.

We demonstrated that acute hyperglycemia and larger
glycemic gap reflected by CGM metrices increased ICU stay
and 28-day mortality rate in patients with and without DM.
Newly diagnosed hyperglycemia affects in-hospital mortality and
Frontiers in Endocrinology | www.frontiersin.org 737
functional outcomes, regardless of a history of DM (44). In a
study of patients with DM who underwent ICU care, the
glycemic gap (mean blood glucose level during the first 7 days
after admission to ICU minus the HbA1c-derived average blood
glucose level) was an independent risk factor for 28-day
mortality rate (27). Another study of patient without DM who
underwent percutaneous coronary intervention, glycemic
variability, based on the MAGE, increased the risk of 3-month
major adverse cardiovascular events and mortality (45). Taken
all, glucose monitoring using CGM metrics, and its appropriate
management are required for critically ill patients, even those
without DM.

The main strength of this study is that it documents the effect
of the acute glycemic gap (GMI-HbA1c) on the risk of ICU stay
and 28-day mortality rate, which has been less explored. In
addition, this study showed the clinical implications of CGM in
non-diabetic patients in the ICU setting. Despite these strengths,
this study had several limitations. First, the number of patients
was relatively small, and the patients enrolled were limited to
those with medical conditions (especially respiratory disease);
thus, selection bias may exist. Second, the recruited patients were
infected, and hypoglycemic events did not occur; the TBR of all
patients was approximately 1%. Third, since GMI is meant to
represent the recent 10-14 days average glucose levels, it is
required for the acquisition of CGM data for at least 10 days.
However, we wanted to employ early phase ‘GMI’ within the first
3-days following admission to provide additional information for
acutely ill patients - even if this did not mean the ‘average
glucose’ indicator for a couple of weeks, as it intends to be used.
Previous studies also consistently demonstrated the usefulness of
the first 3- 5 days CGMS metrics in acute-ill patients (13, 29, 31).
Further large and prospective studies using CGMS are warranted
whether tight glycemic control is beneficial or not, or novel
metrics for predicting mortality in medical or surgical
ICU settings.

In conclusion, the acute glycemic gap (GMI-HbA1c)
increased the risk of ICU stay and 28-day mortality rate
irrespective of the presence of DM. CGM of critically ill
patients in ICU settings is useful, and CGM metrics need to be
studied in more detail.
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Glucose Monitoring in Acute Coronary Syndrome. Arch Cardiol Mex
(2013) 83(4):237–43. doi: 10.1016/j.acmx.2013.08.001

14. Goldberg PA, Siegel MD, Russell RR, Sherwin RS, Halickman JI, Cooper DA,
et al. Experience With the Continuous Glucose Monitoring System in a
Medical Intensive Care Unit. Diabetes Technol Ther (2004) 6(3):339–47. doi:
10.1089/152091504774198034

15. Perez-Guzman MC, Shang T, Zhang JY, Jornsay D, Klonoff DC. Continuous
Glucose Monitoring in the Hospital. Endocrinol Metab (Seoul) (2021) 36
(2):240–55. doi: 10.3803/EnM.2021.201

16. Schuster KM, Barre K, Inzucchi SE, Udelsman R, Davis KA. Continuous
Glucose Monitoring in the Surgical Intensive Care Unit: Concordance With
Capillary Glucose. J Trauma Acute Care Surg (2014) 76(3):798–803. doi:
10.1097/TA.0000000000000127
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Objective: Approximately 50% of obese Black patients with unprovoked diabetic
ketoacidosis (DKA) or severe hyperglycemia (SH) at new-onset diabetes achieve near-
normoglycemia remission with intensive insulin treatment. Despite the initial near-
normoglycemia remission, most DKA/SH individuals develop hyperglycemia relapse
after insulin discontinuation. Traditional biomarkers such as normal glucose tolerance at
the time of remission were not predictive of hyperglycemia relapse. We tested whether 1-h
plasma glucose (1-h PG) at remission predicts hyperglycemia relapse in Black patients
with DKA/SH.

Methods: Secondary analysis was performed of two prospective randomized controlled
trials in 73 patients with DKA/SH at the safety net hospital with a median follow-up of 408
days. Patients with DKA/SH underwent a 5-point, 2-h 75-g oral glucose tolerance test
after hyperglycemia remission. Hyperglycemia relapse is defined by fasting blood glucose
(FBG) > 130 mg/dl, random blood glucose (BG) >180 mg/dl, or HbA1c > 7%.

Results: During the median 408 (interquartile range: 110–602) days of follow-up,
hyperglycemia relapse occurred in 28 (38.4%) participants. One-hour PG value ≥199
mg/dl discriminates hyperglycemia relapse (sensitivity: 64%; specificity: 71%). Elevated
levels of 1-h PG (≥199 mg/dl) were independently associated with hyperglycemia relapse
(adjusted hazard ratio: 2.40 [95% CI: 1.04, 5.56]). In a multivariable model with FBG,
adding 1-h PG level enhanced the prediction of hyperglycemia relapse, with significant
improvements in C-index (D: +0.05; p = 0.04), net reclassification improvement (NRI:
48.7%; p = 0.04), and integrated discrimination improvement (IDI: 7.8%; p = 0.02) as
compared with the addition of 2-h PG (NRI: 20.2%; p = 0.42; IDI: 1.32%; p = 0.41) or
HbA1c (NRI: 35.2%; p = 0.143; IDI: 5.8%; p = 0.04).

Conclusion: One-hour PG at the time of remission is a better predictor of hyperglycemia
relapse than traditional glycemic markers among obese Black patients presenting with
n.org June 2022 | Volume 13 | Article 871965140
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DKA/SH. Testing 1-h PG at insulin discontinuation identifies individuals at high risk of
developing hyperglycemia relapse.
Keywords: diabetic ketoacidosis, 1-h and 2-h glucose values, stress hyperglycemia, oral glucose tolerance, net
reclassification improvement, ROC (receiver operating characteristic curve)
INTRODUCTION

Approximately 50% of obese Black patients with new-onset,
unprovoked diabetic ketoacidosis (DKA) or severe
hyperglycemia (SH) achieve near-normoglycemia remission
(defined as fasting blood glucose [FBG] <130 mg/dl, random
blood glucose (BG) <180 mg/dl, and HbA1c < 7% while off
insulin for at least 1 week) with aggressive insulin treatment (1).
These patients exhibit clinical, metabolic, genetic, and
autoimmune features consistent with type 2 diabetes. Although
exact pathophysiologic mechanisms are unknown, near-
normoglycemia remission is achieved in this patient
population due to improved pancreatic beta (b)-cell function
and insulin sensitivity (2–4). Glycemic control after near-
normoglycemia remission is variable. Over the long-term, most
patients experience pancreatic b-cell function failure resulting
in the need for antidiabetic medications (4–6), while less than
10% of patients are able to maintain remission without
medication over ~8 years (3). Despite the initiation of
antidiabetic medications, 73% experience hyperglycemia
relapse, and even DKA (4). Therefore, predictors of glycemic
failure at the time of near-normoglycemia remission are
needed to see which patients should have more aggressive
treatment. We and others have shown that glycemic control
consistent with glucose levels at near-normoglycemia remission
can be maintained with monotherapy up to a median of
480 days (2, 6).

At near-normoglycemia remission, the clinical presentation
and oral glucose tolerance test (OGTT) are heterogeneous, with
12%–17% having normal glucose tolerance (3, 7). However,
normal glucose tolerance did not predict time in glycemic
control (3, 7). Accumulating longitudinal evidence from
epidemiological studies shows that a 1-h plasma glucose load
(1-h PG) level >155 mg/dl during OGTT is a better predictor of
type 2 diabetes and cardiovascular disease mortality than fasting
glucose 2-h PG load or HbA1c (8–10). In addition, an elevated 1-h
PG level is associated with decreased insulin secretion and
sensitivity (11), impaired hepatic enzymes (12), and increased
accentuation of reactive oxygen species generation (13, 14).
However, the association of 1-h PG with hyperglycemia relapse
in patients with DKA and SH at new-onset diabetes was
never studied. In this study, we evaluated the association of
the 1-h PG with the incident hyperglycemia relapse in obese
Black patients presenting DKA and SH at new-onset diabetes
over a mean follow-up period of 3 years. We also evaluated
whether adding 1-h PG significantly improves the prediction of
hyperglycemia relapse compared to glucose levels at other time
points during the OGTT and HbA1c levels at the time of
insulin discontinuation.
n.org 241
MATERIALS AND METHODS

Participants
This study combined participants from two randomized
controlled studies (NCT01099618 and NCT00426413)
conducted between 2007 and 2014. The study design inclusion/
exclusion criteria are detailed elsewhere (6, 7). Briefly, for both
studies, participants with no prior history of diabetes presenting
with DKA as defined by the American Diabetes Association
(ADA) and SH (blood glucose >400 mg/dl without ketoacidosis)
have consented during hospital admission. All subjects had
glutamic decarboxylase-65 antibody measured to exclude
autoimmune diabetes.

Study Protocol
The Institutional Review Board at Emory University approved
the combined analysis for both studies. After acute resolution of
DKA or SH, all participants were treated intensively with
subcutaneous insulin to a target fasting and pre-meal BG
between 70 and 130 mg/dl (3.9–7.2 mmol/L). Insulin was
titrated to achieve near-normoglycemia remission defined as
FBG < 130 mg/dl (7.2 mmol/L) and random BG <180 mg/dl
(10 mmol/L) and HbA1c < 7% (53 mmol/L) while off insulin
therapy for at least 1 week. All participants then received a 75-g
120-min OGTT. After the OGTT, in one study (NCT01099618),
participants were randomized into three groups: sitagliptin 100
mg daily (n = 16), metformin 1,000 mg daily (n = 17), or placebo
(n = 15) (6). In the second study (NCT00426413), participants
were randomized into two groups, pioglitazone 30 mg daily (n =
22) or placebo (n = 22), and followed up till hyperglycemia
relapse (defined as FBG > 130 mg/dl (7.2 mmol/L), random BG
>180 mg/dl (10 mmol/L) for a period of two consecutive days, or
HbA1c ≥ 7% (53 mmol/L)). All participants were followed up
until hyperglycemia relapsed or till the end of the study duration
(~3 years) (2, 7).

Study Measurements
Patient demographics and clinical characteristics were obtained
from the electronic medical record and medical history during
study visits. OGTTs were performed after at least an 8-h
overnight fast. After fasting insulin and glucose levels were
measured, 75 g of anhydrous glucose was ingested within
1 min. Glucose and insulin levels were then measured at 15,
30, 60, 90, and 120 min. Analyses of post-load glucose levels were
focused on measurements at 1 h.

Outcomes and Calculations
Hyperglycemia relapse was defined as FBG > 130 mg/dl, random
BG >180 mg/dl on at least 2 consecutive days, or HbA1c > 7%.
June 2022 | Volume 13 | Article 871965
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Glucose and insulin levels were used to calculate insulin
sensitivity and secretion. Insulin sensitivity (Si) was calculated
using oral minimal model analysis (6). Insulin secretion was
calculated as the incremental area under the curve (AUCi) from
insulin levels during the OGTT (6). The disposition index was
calculated as the product of Si and AUCi.

Statistical Analysis
Baseline characteristics of participants were expressed as means
with SD or medians with interquartile ranges (IQRs) for
continuous variables and numbers (proportions) with
percentages for categorical variables. Since previous studies did
not find a significant difference in insulin secretion and
sensitivity after insulin discontinuation (6, 7), the data for this
study were combined. Because this post-hoc analysis’s primary
objective was to assess the predictive power of 1-h PG on
incident hyperglycemia relapse, both control (placebo) and
intervention groups (metformin, sitagliptin, or pioglitazone)
were examined as a single cohort. For the time-to-event
analysis, the follow-up length was calculated as the time from
near-normoglycemia remission to the date of the first occurrence
of hyperglycemia relapse or the last follow-up with the last
censoring date of February 2014. To evaluate the optimal
threshold of 1-h PG levels to predict hyperglycemia relapse,
the 1-h PG levels were identified for the maximum of Youden’s
Index, a summary statistic of the receiver operating characteristic
(ROC) curve defined as (sensitivity + specificity − 1) (15). To
minimize overfitting and to quantify optimism, specificity and
sensitivity of the thresholds given were computed with 1,000
stratified bootstrap replicates with a 95% CI. The cutoff value of
1-h PG was appraised according to the least distance from the
upper-left corner of the ROC curve. The Kaplan–Meier curves
were generated to estimate the cumulative incidence of
hyperglycemia relapse by the identified 1-h PG categories at
the time of insulin discontinuation; a log-rank test was computed
to compare survival distributions. For each subject, Cox
proportional hazards models were used to estimate hazard
ratios (HRs) and corresponding 95% CIs for incident
hyperglycemia relapse associated with the baseline levels of 1-h
PG levels. Proportionality hazard assumption in Cox models for
all predictors and covariates in a fully adjusted multivariable
model was assessed using the Schoenfeld residuals regressed
against follow-up time; no violation of proportionality was
observed. The biologically relevant or statistically significant
variables in univariate analysis for the multivariable-adjusted
models were chosen.

The incremental benefit of 1-h PG, 2-h PG, or HbA1c above
and beyond the traditional risk factors (age, sex, body mass index
(BMI), treatment allocation, and FBG) for predicting the risk of
hyperglycemia relapse in patients with DKA/SH were assessed
using a model fi t , cal ibration, discrimination, and
reclassification. Model fit was determined using the deviance
analysis, with lower deviance, which means better model fit.
Model calibration was determined using the Hosmer–Lemeshow
goodness-of-fit test, with larger p-values (>0.05) indicating good
agreement between observed and predicted outcomes. The AUC
of the ROC was used to compute model discrimination.
Frontiers in Endocrinology | www.frontiersin.org 342
Improvement in AUC after adding the 1-h PG, 2-h PG, or
HbA1c was estimated using the method of DeLong et al. (16, 17)
Finally, continuous/category-free net reclassification
improvement (NRI > 0) and absolute integrated discrimination
improvement (IDI) was assessed to ascertain the enhanced
predictability of glucose biomarkers on the hyperglycemia
relapse outcomes (18).

A two-sided p-value of less than 0.05 was considered
significant. Statistical analyses were performed using the
survminer (version 0.4.7) (19), survival (version 3.2-3) (20),
optimal cut points, PredictABEL (version 0.1), and tableone
(version 0.10.0) packages in R (version 3.3.1).
RESULTS

Cohort Description
Seventy-three participants with DKA (n = 40) and SH (n = 33)
with near-normoglycemia remission who had OGTTs performed
after insulin discontinuation were included in the analysis. The
mean age was 46.9 ± 10.3 years, 26 (35.6%) were women, and the
mean BMI was 36.1 ± 9.5 kg/m2. Based on the fasting and 2-h PG
levels, 9 (12.1%) had normal glucose tolerance, 34 (45.9%) had
prediabetes, and 30 (41.2%) had diabetes as defined by the ADA
guidelines (21).

Association of 1-h Plasma Glucose Levels With
Incident Hyperglycemic Relapse
During the median 408 (IQR: 110–602) days of follow-up,
hyperglycemia relapse occurred in 28 (38.4%) participants. The
cumulative incidence of hyperglycemia relapse was lower in
those who received oral antidiabetic agents [pioglitazone,
metformin, or sitagliptin; 14 (28.0%)] than in controls
[placebo; n = 14 (60.9%)]. There was no significant difference
in age, BMI, and the proportion of smokers and family history of
diabetes between those who did and did not have hyperglycemia
relapse. Participants who progressed to hyperglycemia relapse
outcome had higher baseline values of FBG and 15-min, 1-h, and
2-h PG. In the crude model, the unadjusted HR per 1 SD change
in plasma 1-h PG was 1.88 [95% CI: 1.25, 2.82] (Table 1) for
hyperglycemia relapse. In the fully adjusted model including age,
sex, randomization group (placebo vs. treated), BMI, and
baseline diagnosis (DKA vs. SH), the independent association
between 1-h PG and incident hyperglycemia relapse remained
significant [adjusted HR (aHR): 1.98 (95% CI: 1.27, 3.09)].

1-h Plasma Glucose Optimal Cut Point to Predict
Hyperglycemia Relapse
Based on Youden’s analysis, a 1-h PG cutoff of 11.0 mmol/L (199
mg/dl) was found to differentiate the individuals with/without
the development of hyperglycemia relapse. The sensitivity and
specificity of the optimal cutoff value [11.0 mmol/L (199 mg/dl)]
were 64% and 71%, respectively. Then, we dichotomize the 1-h
PG values and estimated the association of 1-h PG categories
[1-h PGHigh ≥11.0 mmol/L [≥199 mg/dl); 1-h PGNormal <11.0
mmol/L (<199 mg/dl)] on the risk of developing hyperglycemia
June 2022 | Volume 13 | Article 871965
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relapse (Table 1). The aHR shows a 2.5-fold incidence of
hyperglycemia relapse with a 1-h PGHigh compared to 1-h
PGNormal. Characteristics of participants according to the 1-h
PG cut point are shown in Table 2. Participants who were in the
1-h PGHigh category were significantly older and had higher FBG
and 15-min, 30-min, and 2-h PG levels. Furthermore, the levels
of Si were 76.8% (1.42 vs. 0.33), and DI was 70.0% (0.63 vs. 0.19)
lower in individuals with 1-h PGHigh than in those with 1-h
PGNormal. We did not observe any significant differences in other
variables between the 1-h PGHigh and 1-h PGNormal groups.

Hazard Risk
The Kaplan–Meier plot shows the unadjusted hyperglycemia
relapse-free survival stratified based on 1-h PG levels (Figure 1).
Individuals with 1-h PGNormal (<199 mg/dl) had ~3 months of
delayed median time to onset of hyperglycemia relapse than those
Frontiers in Endocrinology | www.frontiersin.org 443
with 1-h PGHigh (≥199 mg/dl; log-rank test p = 0.02). Congruent
with the above, both crude [HR: 2.50 (95% CI: 1.15,5.43)] and
aHRs for the development of hyperglycemia relapse were
significantly greater in the 1-h PGHigh group [aHR: 2.40 (95%
CI: 1.04, 5.56)] versus the 1-h PGNormal (<199 mg/dl) group.
Discriminative Ability
The results of five multivariate prognostic models [traditional
(model 1) and traditional+1-h PG (model 2), traditional+2-h
PG (model 3), traditional+HbA1c (model 4), and traditional+1-
h PG+2-h PG (model 5)] are shown in Table 3. The addition of
the 1-h PG to the traditional model containing age, sex, BMI,
gender, treatment group, baseline diagnosis, and FBG improved
model fit (D deviance: −5.60, p = 0.018), calibration (Hosmer–
Lemeshow test, p > 0.05; Supplementary Figure 1),
discrimination (AUC increase from 0.84 to 0.89, DC: +0.05; p =
0.039; Table 3), and risk classification (Supplementary Figure 2).
On the contrary, adding 2-h PG did not improve the model fit
(traditional+2-h PG; D deviance: −1.31; p = 0.25; DC: +0.01). The
addition of HbA1c marginally improved the model fit (traditional
+HbA1c; D deviance: −4.17; p = 0.041; DC: +0.04). The addition of
both 1-h and 2-h PG did not improve the predictive utility.
Furthermore, 1-h PG improved risk classification when added to
the traditional model [overall NRI 48.7 (1.2; 96.2); IDI 7.8 (1.4;
14.1)]. However, the addition of HbA1c did not improve the other
metrics, and only marginal improvement was observed in IDI,
whereas 2-h PG did not improve the discriminative ability
appreciably in predicting hyperglycemia relapse in this
patient population.
TABLE 2 | Baseline characteristics of the study population, stratified according to 1-h plasma glucose challenge 199 mg/dl.

1-h plasma glucose challenge

Normal (<199 m/dl, 11.0 mmol/L) n = 42 High (≥199 mg/dl, 11.0 mmol/L) n = 31

Age, years 44.43 (11.44) 50.23 (7.59)
Gender, male, n (%) 25 (59.5) 22 (71.0)
BMI, kg/m2 36.81 (10.65) 35.06 (7.62)
Family history of diabetes, n (%) 35 (83.3) 26 (83.9)
Baseline diagnosis, n (%)
Severe hyperglycemia 22 (52.4) 18 (58.1)
Diabetic ketoacidosis 20 (47.6) 13 (41.9)
Treatment with an oral antidiabetic agent, n (%)
No (placebo) 11 (26.2) 12 (38.7)
Yes (sitagliptin, pioglitazone, or metformin) 31 (73.8) 19 (61.3)
Glucose, mg/dl (mmol/L)
Fasting 98 ± 15.41 (5.4 ± 0.8) 117 ± 18 (6.5 ± 1.0)
15 min 110 ± 20 (6.1 ± 1.1) 131 ± 33 (7.3 ± 1.8)
30 min 135 ± 29 (7.5 ± 1.6) 174 ± 41 (9.7 ± 2.3)
120 min 163 ± 42 (9.0 ± 2.3) 222 ± 55 (12.3 ± 3.1)

AUCi 5416.50 [2538.30, 7845.19] 4384.50 [2868.00, 6132.38]
Si 1.42 [0.56, 3.49] 0.33 [0.00, 0.84]
Di 0.63 [0.36, 1.43] 0.19 [0.00, 0.38]
Hyperglycemia relapse during follow-up, n (%) 10 (23.8) 18 (58.1)
The median time to hyperglycemia relapse, days (IQR) 427.50 [102.75, 598.75] 336.00 [116.00, 580.00]
Continuous variables are shown as mean ± SD or medians (IQR). Data for the categorical variables (gender, active smoking, family history of diabetes, and baseline diagnosis) are
presented as counts and corresponding percentages.
IQR, interquartile range; BMI, body mass index; AUCi, area under the curve of insulin; Si, insulin sensitivity from the minimal model; and Di, disposition index.
TABLE 1 | Hazard ratio for 1-h PG levels and hyperglycemia relapse.

Model 1-h PG as a continuous variable (per SD
change)

1-h PG (≥199 vs. <199
mg/dl)

1 1.88 [1.25, 2.82] 2.50 [1.15, 5.43]
2 1.97 [1.27, 3.05] 2.43 [1.05, 5.62]
3 2.02 [1.29, 3.15] 2.42 [1.04, 5.61]
4 1.98 [1.27, 3.09] 2.40 [1.04, 5.56]
Data are expressed as hazard ratio (HR) (95% CI). The given HR is for 1 SD change in 1-h
PG or 1-h PG categories (≥199 vs. <199 mg/dl) and continuous covariates in multivariable
Cox regression analysis. Model 1, crude model; model 2, adjusted for age, sex, and
intervention group; model 3, further adjusted for BMI; and model 4, further adjusted for
baseline diagnosis (severe hyperglycemia vs. diabetic ketoacidosis).
PG, plasma glucose; BMI, body mass index.
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DISCUSSION

This is the first study to determine the association of 1-h PG with
the incidence of hyperglycemia relapse among obese Black
patients presenting with DKA/SH who achieve near-
normoglycemia remission. We showed that 1-PG was an
independent predictor of hyperglycemia relapse in this patient
population. Specifically, 1-h PG ≥199 mg/dl at the time of insulin
discontinuation, even after adjustment for age, BMI, gender,
presentation with DKA or SH, and HbA1c levels, was
independently associated with hyperglycemia relapse. Overall,
1-h PG levels were able to predict the incidence of hyperglycemia
relapse or glycemic failure better than traditionally used glucose
markers such as fasting or 2-h PG levels or HbA1c.

In our analysis, 1-h PG was an independent predictor of
hyperglycemia relapse even after adjusting for treatment with an
oral antidiabetic agent after insulin discontinuation. Prior studies
in our population of patients with DKA and SH showed that
normal glucose tolerance status as defined by the ADA was not a
predictor of prolonged remission (3, 7). Despite the differences in
the initial presentation, the long-term clinical course between
DKA and SH does not seem to differ in our previous studies (3, 6,
22). In this current study, despite adjustment for DKA and SH,
a high 1-PG was predictive of hyperglycemia relapse. In our
Frontiers in Endocrinology | www.frontiersin.org 544
previous publication, we found that intervention with oral
antidiabetic medication at the time of insulin discontinuation
or near-normoglycemia remission predicted longer
hyperglycemia relapse-free survival. However, this current
study showed that 1-h glucose was predictive of future
hyperglycemia relapse independent of having an intervention
with an antidiabetic agent. Use of only fasting and 2-h glucose
levels in this population may miss abnormalities detected by 1-h
PG levels. Insulin secretory abnormalities are present with an
abnormal 1-h PG even with normal 2-h PG levels in several
different populations (23–25). A recent study showed that the
rate of oral glucose absorption is one of the precipitating factors
of 1-h PG excursions (26). Oral glucose absorption can be
decreased by increased gastric emptying time (27), and gastric
emptying time can be reduced by incretin mimetics such as
glucagon-like peptide-1 receptor agonists (27, 28). While the oral
glucose absorption rate has not been determined in this
population, it is possible that people with the higher 1-h PG
may be optimally treated with a glucagon-like peptide-1 receptor
agonist (GLP-1RA).

The 1-h PG is both practical and cost-effective. The national
average time for visits is 84 min (29), which lends that this testing
method could potentially be implemented during a routine visit
without any increase in appointment duration. As a potential
TABLE 3 | Prognostic performance of 1-h PG levels for hyperglycemia relapse.

C index DC index Net reclassification index Integrated discrimination improvement

% (95% CI) p % (95% CI) p

Traditional model 0.84 – – – – –

+1-h PG 0.89 0.05 48.7 [1.2; 96.2] 0.04437 7.8[1.4; 14.1] 0.01616
+2-h PG 0.85 0.01 20.2 [−28.0; 68.7] 0.41584 1.32 [−1.8; 4.4] 0.40757
+ HbA1c 0.88 0.04 35.2 [−11.9; 82.2] 0.14311 5.8 [0.3; 11.4] 0.03992
+1-h PG and 2-h PG 0.89 0.05 39.2 [−8.8; 87.2] 0.10961 7.7 [1.3; 14.1] 0.01761
June 2022 | Volume 13
The traditional model refers to age, sex, randomization group, BMI, and baseline diagnosis (HG vs. DKA) (model 4 in Table 2) + fasting plasma glucose.
PG, plasma glucose; DKA, diabetic ketoacidosis; BMI, body mass index.
FIGURE 1 | Kaplan–Meier curve of hyperglycemia relapse based on 1-h plasma glucose challenge categories. A 1-h plasma glucose challenge level ≥199 mg/dl is
associated with longer hyperglycemia relapse-free survival, p = 0.02.
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method, a 75-g glucose drink could be administered by clinic staff
after patient check-in, followed by the collection of the glucose
level 1 h later (30). Additionally, glucose challenge testing with 1-h
PG is cost-effective compared to the 2-h OGTT as a gold standard
for hyperglycemia screening (31). Since there is no standard of
care for optimal follow-up and treatment in our current
population after insulin discontinuation, the 1-h PG could be
used to determine which patients may needmore intensive follow-
up and earlier addition of intensification of antidiabetic therapy.

A 1-h PG >155 mg/dl has been proposed as the cutoff
associated with metabolic abnormalities in several studies.
However, a majority (~70%) of the participants in our study
had a 1-h PG >155 mg/dl. Therefore, we performed ROC
analysis to predict which 1-h PG level predicted hyperglycemia
relapse with a 64% sensitivity for BG > 199 mg/day. This glucose
level is potentially too high, and 1 h PG >155 mg/dl leads to
metabolic abnormalities. However, 155 mg/dl was validated in
patients without diabetes, and therefore, patients with diabetes
may need different targets for 1-h glucose levels. Further, our
definition of near-normoglycemia remission was chosen to
reflect glycemic goals for people with diabetes. The definition
of near-normoglycemia remission is variable depending on the
study, with some studies in patients with DKA and SH using the
definition of HbA1c < 6.3% and off medications for 3 months (4,
22). It is possible that a more stringent definition of near-
normoglycemia remission in our study could have resulted in
more participants with a 1-h PG <155 mg/dl.

The ADA published a consensus statement in 2021 defining
remission as HbA1c < 6.5% and off medications for >3 months
(32). We were unable to assess remission as per the ADA
definition, as this study was a post-hoc analysis of 2
randomized controlled studies that randomized subjects to a
drug or a placebo. Therefore, we used hyperglycemia relapse-free
survival in this study. However, even a more rigorous HbA1c
cutoff for initial remission showed that most people had
dysglycemia on OGTT based on fasting and 2-h PG levels (3,
4). Further, we found that having normal glucose tolerance
during OGTT does not predict time in remission while an
intervention did (7). The findings from our study highlight
that traditional markers used to define remission are not
sufficient to predict future hyperglycemia relapse.

In conclusion, 1-h PG of ≥199 mg/dl was independently
associated with hyperglycemia relapse in obese Black patients
presenting with DKA/SH at the time of diagnosis of diabetes. In
clinical use, adopting a 1-h PG check within 1 to 2 weeks after
insulin discontinuation may offer a more effective strategy to
determine which patients need an aggressive antidiabetic
treatment regimen. Future studies in this population will need
to be performed where the definition of remission is more
stringent and includes 1-h PG and whether treatments targeted
to reduce 1-h PG levels will prevent hyperglycemia relapse.
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Daniela Vejrazkova1*, Marketa Vankova1, Josef Vcelak1, Hana Krejci2,
Katerina Anderlova2, Andrea Tura3, Giovanni Pacini3, Alena Sumova4,
Martin Sladek4 and Bela Bendlova1

1 Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czechia, 2 Department of Obstetrics and
Gynecology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia,
3 Metabolic Unit, Institute of Neuroscience, National Research Council, Padova, Italy, 4 Laboratory of Biological Rhythms,
Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia

Background: TheMTNR1B gene encodes a receptor for melatonin, a hormone regulating
biorhythms. Disruptions in biorhythms contribute to the development of type 2 diabetes
mellitus (T2DM). Genetic studies suggest that variability in the MTNR1B gene affects T2DM
development. Our aim was to compare the distribution of the genetic variant rs10830963
between persons differing in glucose tolerance in a sample of the Czech population
(N=1206). We also evaluated possible associations of the polymorphism with insulin
sensitivity, beta cell function, with the shape of glucose, insulin and C-peptide trajectories
measured 7 times during a 3-hour oral glucose tolerance test (OGTT) and with glucagon
response. In a subgroup of 268 volunteers we also evaluated sleep patterns and biorhythm.

Results: 13 persons were diagnosed with T2DM, 119 had impaired fasting blood glucose
(IFG) and/or impaired glucose tolerance (IGT). 1074 participants showed normal results
and formed a control group. A higher frequency of minor allele G was found in the IFG/IGT
group in comparison with controls. The GG constellation was present in 23% of diabetics,
in 17% of IFG/IGT probands and in 11% of controls. Compared to CC and CG genotypes,
GG homozygotes showed higher stimulated glycemia levels during the OGTT.
Homozygous as well as heterozygous carriers of the G allele showed lower very early
phase of insulin and C-peptide secretion with unchanged insulin sensitivity. These
differences remained significant after excluding diabetics and the IFG/IGT group from
the analysis. No associations of the genotype with the shape of OGTT-based trajectories,
with glucagon or with chronobiological patterns were observed. However, the shape of
the trajectories differed significantly between men and women.

Conclusion: In a representative sample of the Czech population, the G allele of the
rs10830963 polymorphism is associated with impaired early phase of beta cell function,
and this is evident even in healthy individuals.

Keywords: type 2 daibetes mellitus, insulin sensitivity, beta cell function, MTNR1B gene, rs10830963, OGTT
trajectories, glucose tolerance
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INTRODUCTION

The MTNR1B (melatonin receptor 1B) gene encodes a receptor
for melatonin, a hormone that controls biorhythms. The gene is
expressed primarily in the brain, but its expression has also been
described in pancreatic cells (1). Genetic studies suggest that
variability in the MTNR1B gene is one of the factors influencing
the pathophysiology of type 2 diabetes mellitus (T2DM), with the
single nucleotide polymorphism rs10830963 showing the
strongest association (2–4).

It has been well documented that melatonin inhibits insulin
secretion (5). This inhibition is more pronounced in carriers of the
minor variant G of the rs10830963 C/G polymorphism. The
reason is that minor variant G confers increased expression of
the melatonin receptor in the human pancreas and leads to
increased melatonin signaling (5). This poses a higher risk of
T2DM in these individuals. The mechanism by which this intronic
variant affects enhancer binding, thereby significantly altering
gene expression, has already been explained (6). In addition, it
has been found that acute melatonin administration leads to
impaired glucose tolerance in certain circumstances, depending
on the time of administration. Melatonin administered in the
morning increased the area under the glycemic curve (AUC)
during the OGTT by 186% and maximal glucose concentration
during the OGTT by 21% in comparison with placebo
administration, while melatonin administered in the evening
increased AUC by 54% and maximal glucose concentration by
27% compared to placebo (7). Moreover, this impairment of
glucose tolerance was exacerbated in carriers of the minor allele
G of the rs10830963 polymorphism. As regards morning
administration, the effect of melatonin was six times higher in G
allele carriers. In the evening, the effect of melatonin did not differ
significantly between G allele carriers and non-carriers (8).

Based on these findings, our aim was to build on our work of
2014 (9) and compare the distribution of the genetic variant
rs10830963 between persons differing in glucose tolerance.
Subjects with impaired fasting blood glucose (IFG) and/or
impaired glucose tolerance (IGT) during a 3-hour oral glucose
tolerance test (OGTT) were compared with healthy controls. The
genotypes were then assessed in terms of insulin sensitivity (IS),
beta cell function, glucagon response, hepatic extraction and
other characteristics of glucose metabolism. The novelty of the
study lay in the evaluation of possible associations of the
polymorphism with the shape of glucose, insulin and C-
peptide trajectories (monophasic, biphasic, triphasic, or more
complex) formed on the basis of seven measurements during the
OGTT, and also with glucagon dynamics (four measurements
during the test). There are several current approaches for
assessing glucose tolerance, IS and beta cell function in vivo.
Of these, OGTT and the derived equations (IS and insulin
secretion indices) is generally considered the most suitable
approach for epidemiological studies. As OGTT provides
diagnostic information limited to specific time points, a novel
method of monitoring the entire curve has begun to be used to
reflect an individual´s metabolic information, such as abnormal
IS and impaired insulin secretion. This new method is based on
evaluations of the shape of the glucose curve after a fixed oral
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dose of glucose (10). Glycemia is measured in 30 min intervals
during the standard 2-hour OGTT or during the prolonged 3-
hour OGTT. In this study, 3-hour trajectories of glucose and also
of insulin and C-peptide were monitored with sampling at 0, 30,
60, 90, 120, 150 and 180 min of the test.

It has been postulated that melatonin might influence insulin
secretion through a paracrine effect of glucagon (1). Therefore,
glucagon was sampled four times at 60 min intervals (0, 60, 120
and 180 min) during the 3-hour OGTT in order to gain a deeper
insight into the glucose metabolism of the subjects.

As low first-pass insulin extraction by the liver is considered a
risk factor for insulin resistance (11), hepatic extraction was also
included in the calculations and analyzed in relation to the
variability of the MTNR1B gene.

Melatonin is a hormone that controls sleep and biorhythms
and disruption of its natural secretory rhythmicity is considered
to be one of the causes of impaired glucose metabolism.
Therefore, a pilot study evaluating a possible association of
melatonin receptor polymorphism with sleep and chronotype
was performed in a subgroup of 268 volunteers.

The whole study was performed on a cohort of the Czech
population, for which the rs10830963 polymorphism has not yet
been evaluated in detail. Unlike many other European countries,
the genographic variability of the Czech population is
considerable, because as a country in the middle of Europe it
has been affected by many different human migrations that have
passed through Europe over time. The highest proportion of
Czech people have Slavic origin (approximately 45%), followed
by those with Germanic origin (25%) and then Scandinavian and
Mediterranean (represented by 7 and 6%, resp.). In short, all
study participants represent a combination of Eastern and
Western Europeans of Caucasian descent.
MATERIALS AND METHODS

Study Subjects
In the years 2001–2020, adult volunteers with varying degrees of
glucose tolerance were continuously examined at the Institute of
Endocrinology in Prague. Examinations were based on genetic,
anthropometric and biochemical characterization, including the
3-hour OGTT with 75g of glucose load. Exclusion criteria were
the presence of serious diseases where passing a glucose test
would pose a health risk, and pregnancy, as it is associated with
specific changes in glucose metabolism. We also did not include
people previously diagnosed with T2DM. Over the 20 years of
assembling this cohort, we have used the same protocol and the
same or very comparable methods. A total of 1206 volunteers
were examined in the study: 985 women (mean age ± SD=32.8 ±
9.35 years, mean BMI ± SD=24.5 ± 5.21 kg/m2) and 221 men
(mean age ± SD=34.2 ± 11.88 years, mean BMI ± SD=25.1 ± 4.09
kg/m2).
Ethics Approval Statement
The study protocol was in accordance with the institutional
ethics committee (Ethics committee of the Institute od
June 2022 | Volume 13 | Article 868364
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Endocrinology EK_EÚ_10062019) and national legislation
complying with the principles laid down in the Declaration of
Helsinki. Written consent to participate in the study was
obtained from all participants.

Genotyping
DNA was extracted from peripheral leukocytes (QIAamp DNA
Blood Kit, QIAGEN, Germany). Genotyping of rs10830963 in
the MTNR1B gene was performed using ABI TaqMan SNP
Genotyping Assays (LightCycler 480 System, Roche).

Clinical and Biochemical Characterization
Basic anthropometric characteristics were determined to
calculate the body mass index (BMI), waist to hip ratio
(WHR), and the body adiposity index (BAI) estimating the
amount of total body fat (12).

Venous blood samples were taken at 8 a.m. after overnight
fasting. During the 3-hour OGTT (75g of glucose in 250 ml of
water), 7 samples were collected in 30 min intervals and blood
glucose (enzymatic reference method with hexokinase, Roche),
C-peptide (ECLIA, Roche) and insulin concentrations (ECLIA,
Roche) were measured. Glucagon (EURIA glucagon
radioimmunoassay, EuroDiagnostica AB, Sweden) was
measured four times in 60 min intervals (at 0, 60, 120 and
180 min) during the OGTT. The areas under the glycemic
(AUCGlc), insulin (AUCIns) and C-peptide (AUCC-pep) curves
were calculated with the trapezoidal rule. Trajectories of blood
glucose, insulin and C-peptide were analyzed according to Tura
et al. (10). Fasting IS was assessed by HOMA-R and QUICKI,
while dynamic IS was evaluated by ISIcomp also known as the
Matsuda index, OGIS and PREDIM (13, 14). Beta cell function
was evaluated by HOMA-B at fasting state and by the
insulinogenic index IGI in dynamics (15). Further indices of
beta cell function (in relation to IS) are the disposition index DI
(16) computed as OGIS × AUCIns and the adaptation index AI
(17) computed as OGIS × AUCC-pep. Hepatic insulin extraction
was evaluated according to Tura et al. (18).

Classification of Glycemic, Insulin and
C-peptide Curves During the OGTT
The 3-hour glucose, insulin and C-peptide trajectories were
monitored in 30 min intervals (at 0, 30, 60, 90, 120, 150 and
180min) of the OGTT. The shape of the glucose curve was classified
as monophasic when glycemia simply increased and then gradually
decreased (one peak). The curve was biphasic when glycemia
showed a further increase following the decrease. A three-phase
shape was characterized by two complete peaks. In the prolonged 3-
hour OGTT, much more complex and heterogeneous curve shapes
were observed. In some people, there were also four- and five-phase
curves with 3 and 4 complete peaks, respectively. These were
classified together as multiphasic glycemic curves. Glucose
variations were considered significant if the difference was at least
2% (this criterion was necessary to avoid the detection of false
minima and maxima in the glucose curve). For the curves of insulin
and C-peptide, criteria with higher requirements for significant
variability (5%) were used.
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Chronotype Assessment
Sleep patterns and biorhythms in a pilot subgroup of 268
volunteers were assessed using questions from Munich
ChronoType Questionnaire (19) translated into the Czech
language. The chronotype was calculated from the mid-sleep
phase corrected for sleep debt accumulated during working days,
adjusted for age and gender (20). Apart from using sleep phase,
circadian preferences were also determined on the basis of self-
assessment, asking the subjects to indicate the interval during
which they experience the highest cognitive alertness (maximum
activity/performance), from which we calculated its midpoint.

Statistical Analysis
To assess deviations from the Hardy-Weinberg equilibrium of
genotype frequencies, the Chi-square test was used. Allele/
genotype frequencies were compared between groups by the
Chi-square test. Odds ratios and 95% Confidence Intervals were
calculated in MedCalc Software. Differences in biochemical and
anthropometric data between groups were tested by the non-
parametric Mann-Whitney test owing to the non-normal data
distribution. The Kruskal-Wallis Z-Value Test with Bonferroni
correction was used for multiple comparisons. The power
analysis was conducted using the NCSS2020/PASS software.
The p-values <0.05 (two tailed) were considered significant.
RESULTS

Glucose Metabolism
According to the results of the 3-hour OGTT, participants were
divided into three groups: 13 persons were newly diagnosed with
T2DM (fasting glycemia ≥7 mmol/l or/and glycemia at 120 min
of the test ≥11.1 mmol/l) and formed a T2DM group (21). 119
persons had IFG (fasting glycemia ≥5.6 mmol/l) or IGT
(glycemia at 120 min of the test ≥7.8 mmol/l) or these
probands met both of the criteria and together they formed an
IFG/IGT group. 1074 participants showed normal results
(fasting glycemia <5.6 mmol/l and at the same time plasma
glucose at 120 min of the test did not rise to 7.8 mmol/l or above)
and formed the control group.
Genotypic Frequencies
The distribution of MTNR1B rs10830963 genotypic frequencies
did not deviate from Hardy-Weinberg equilibrium (Chi2 = 0.825,
p=0.36). The frequency of the minor allele G in the whole cohort
was 33.2%. A higher frequency of minor allele G was found in the
IFG/IGT group compared to controls (40.7% vs. 32.4%, p=0.01),
OR=1.57, CI 95% [1.06; 2.33], pOR=0.03). The GG constellation
was present in 23% of diabetics, in 17% of the IFG/IGT probands
and in 11% of controls (Chi2 = 11.2. p=0.02).

Raw genotype data and complete genotypic and allelic
frequencies of our cohort of 1206 participants were published
in public repository Figshare.com (22), item. “The rs10830963
SNP of the MTNR1B gene in the Czech cohort” with DOI for
public link: 10.6084/m9.figshare.16586039.
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Comparisons of Biochemical Parameters
Between the Genotypes
Anthropometric characteristics of the compared genotypic
groups are shown in Table 1. The female to male ratio was
comparable in all genotypic groups. Furthermore, no clinically
significant differences between the groups were observed in age,
BMI or in body adiposity measured by BAI, or in body fat
distribution monitored by WHR. These observations fulfill an
important condition for comparing biochemical data.

Parameters of glucose metabolism depending on the
MTNR1B rs10830963 genotype are listed in Table 2 and
Figure 1. The GG genotype showed slightly higher basal
glycemia compared to the CC genotype. GG homozygotes also
showed higher stimulated glycemia (AUCGlc) during the OGTT
in comparison with CC homozygotes and with heterozygotes
(Figure 1A). The time points showing the most significant
differences were at 30 min (CC vs. GG: p=5x10-5, CC vs. CG:
p=0.004) and at 60 min (CC vs. GG: p=6x10-5, CC vs. CG:
p=6x10-4), weaker but still highly significant differences were at
90 min of the test (p<0.01 for both comparisons). Insulin
sensitivity indices (fasting and dynamic) were not different
between the genotype groups (Table 2 and Figure 1B).
Homozygous as well as heterozygous carriers of the G allele
showed lower HOMA-B and IGI indices of beta cell function in
comparison with wild-type CC homozygotes (Figures 1C, D),
signifying reduced insulin secretion since the hepatic extraction
did not differ between the three genotypes (Table 2). This
assumption strongly supports the observation of the
significantly reduced secretion of both insulin and C-peptide at
30 min of the OGTT in G allele carriers compared to the CC
genotype (p=0.03 and 0.02, resp.), although the overall 3-hour
insulinemia and C-peptidemia measured by AUCIns and AUCC-

pep did not mirror impaired beta cell response. This indicates that
the very early phase of insulin secretion is attenuated or delayed
in G allele carriers, which then translates into higher blood
glucose during the first two hours of the test.

The differences observed between the genotypes in AUCGlc

and in the indices of beta cell function (HOMA-B, IGI) remained
statistically significant after excluding diabetics from the analysis.
Moreover, all the described differences remained fully preserved
even after the exclusion of the IFG/IGT group, which indicates
the effect of the G allele in completely healthy individuals in
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terms of glucose control. Within the IFG/IGT group alone, the
effect of the allele was systematically evident, but as this group
was less numerous compared to controls, the differences were
not significant.

Evaluations of the relationship between the polymorphism
and glucagon levels showed no association with either fasting
glucagon or post-glucose glucagon response at 60, 120 or
180 min of the OGTT. In addition, no association of the
genotype with hepatic extraction was observed in either the
overall cohort or in any of the subgroups.

Comparisons of Glycemic, Insulin and
C-peptide Curves Between the Genotypes
Analysis of theMTNR1B rs10830963 in relation with trajectories
of glucose, insulin and C-peptide showed that the three
genotypes are distributed equally within the four different
types of curves (monophasic, biphasic, triphasic, or more
complex), Table 3.

However, a different distribution of men and women was
observed in the particular categories of glycemic curves, Table 4.
Significantly more men had a biphasic curve (the percentage of
men showing biphasic glucose response was double that of
women), and significantly more women had a triphasic curve.
This finding was independent of genotype, the difference
between the genders was significant within all three genotypes,
as shown in Table 5.

Graphs and tables showing medians of glucose, insulin, C-
peptide as well as glucagon dynamics at all time points measured
during the OGTT for each genotype are available in the
Supplementary Material A.

Comparisons of Sleep Regime and
Chronotype Between the Genotypes
In the subcohort of 268 volunteers who completed the
questionnaire data for this pilot study, minor variant G was
present in a heterozygous constellation in 124 participants (46%)
and in a homozygous constellation in 26 (10%) with an allelic
frequency of 33%. The remaining 118 individuals (44%) were
homozygous in the common variant C. The average age and the
ratio of women/men did not differ significantly between the
compared genotype groups. The average duration of sleep on
weekdays and days off did not differ between the genotypes, nor
June 2022 | Volume 13 | Article 868364
TABLE 1 | Anthropometric characteristics depending on the MTNR1B rs10830963 genotype.

CC (n=545) CG (n=521) GG (n=140) p-level<0.05

Males proportion 103 (19%) 96 (18%) 22 (16%) ns
Age (years) 32.0 [30.8; 32.5] 32.0 [30.8; 32.5] 31.1 [29.3; 32.9] ns
Body Weight (kg) 69.3 [67.8; 71.3] 67.3 [64.9; 69.0] 67.9 [63.7; 70.6] ns
Body Heigh (cm) 170 [169; 171] 169 [168.1; 170] 168.6 [167.6; 170.5] ns
Waist circumference (cm) 77.7 [76.2; 79.0] 75.6 [74.5; 76.6] 74.9 [73.5; 79.0] ns
Abdominal circumference (cm) 85.4 [84.2; 86.9] 84.0 [82.3; 85.4] 84.5 [81.5; 87.5] ns
Hip circumference (cm) 100 [99.1; 101.0] 98.5 [98.0; 99.7] 99 [97.5; 101.0] CCxCG p=0.01
BMI (kg/m2) 23.8 [23.4; 24.4] 23.2 [22.7; 23.6] 23.5 [22.2; 24.6] ns
WHR 0.78 [0.77; 0.79] 0.77 [0.77; 0.78] 0.77 [0.76; 0.79] ns
BAI (%) 26.8 [26.3; 27.1] 26.7 [26.3; 27.1] 26.9 [25.5; 28.2] ns
Data are given as medians [95% LCL; 95% UCL], p-level according to Kruskal-Wallis Z-Value Test with Bonferroni correction.
ns, not significant.
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did the mid-sleep phase on weekdays and days off. The
chronotype calculated from the mid-sleep phase corrected for
sleep debt accumulated during working days and adjusted for age
and gender was also comparable. The time of subjective
maximum daily activity and performance (best alertness
midpoint) was similar in all three genotype groups, with a
median at 11 a.m. The social jet lag resulting from the
discrepancy between the natural biorhythm and work/social
duties averaged 0.85 ± 0.698 h regardless of genotype. Graphs
showing medians of sleep and biorhythm patterns for each
genotype of the MTNR1B rs10830963 SNP are available in the
Supplementary Material B.
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DISCUSSION

Meta analyses have indicated relationships between the rs10830963
minor allele G and T2DM, with the G allele associated with higher
fasting blood glucose levels in Cuacasians and Asians (23–27).
However, limited cross-ethnicity has been observed as regards the
effect of the allele on insulin sensitivity, beta cell function (28–31), or
whether a minor allele dose effect is apparent. A dose effect of the G
allele on the ability of beta cells to maintain blood glucose levels was
described in a recent study conducted on almost 190 thousand
participants of European descent, and each additional risk allele was
associated with 10% higher odds of T2DM (32). A genome-wide
A

B D

C

FIGURE 1 | Comparisons of glucose metabolism between the MTNR1B genotypes. Area under the glycemic curve (A), HOMA-B (C), PREDIM index of IS (B),
Insulinogenic index (D). ns, not significant.
TABLE 2 | Parameters of glucose metabolism depending on the MTNR1B rs10830963 genotype.

CC (n=545) CG (n=521) GG (n=140) p-level<0.05

Basal glycemia (mM/l) 4.7 [4.6; 4.7] 4.7 [4.7; 4.8] 4.8 [4.7; 4.9] CCxGG p=0.01
Basal insulinemia (mIU/l) 6.3 [5.9; 6.5] 5.9 [5.5; 6.2] 5.65 [4.9; 6.4] ns
AUCIns (pM x min/l) 33201 [31464; 34893] 31248 [30267; 33489] 35752.5 [31977; 39870] CGxGG p=0.04
Basal C-peptide (nM/l) 0.61 [0.59; 0.63] 0.57 [0.55; 0.60] 0.57 [0.54; 0.62] ns
AUCC-pep (pM x min/l) 3.7x105 [3.5x105, 3.8x105] 3.5x105 [3.4x105; 3.7x105] 3.9x105 [3.5x105; 4.2x105] CGxGG p=0.01
HOMA-R (mIU x mM/l2) 1.30 [1.23; 1.36] 1.25 [1.18; 1.32] 1.24 [1.04; 1.36] ns
HOMA_B (mIU/mM) 112.5 [106.7; 118.2] 98.8 [94.7; 106.2] 93.8 [80.0; 106.7] CCxCG p=0.002

CCxGG p=0.003
QUICKI 0.37 [0.36; 0.37] 0.37 [0.37; 0.37] 0.37 [0.36; 0.38] ns
OGIS180min (ml/min/m2) 506.3 [497.9; 511.9] 511.1 [503.7; 517.9] 519.3 [495.5; 534.2] ns
ISICOMP ([(mg/dl)2(mU/ml)2]-1/2) 8.78 [8.24; 9.20] 8.89 [8.55; 9.35] 8.76 [7.72; 9.48] ns
Ins0min/Glc0min (pM/mM) 8.09 [7.63; 8.50] 7.47 [7.00; 7.96] 7.13 [6.24; 7.60] CCxCG p=0.04

CCxGG p=0.02
Disposition Index DI 1.7x107 [1.6x107; 1.8x107] 1.6x107 [1.5x107; 1.7x107] 1.8x107 [1.6x107; 2.0x107] CGxGG p=0.04
Adaptation Index AI 1.9x108 [1.8x108; 1.9x108] 1.8x108 [1.8x108; 1.9x108] 1.9x108 [1.9x108; 2.1x108] CGxGG p=0.01
Hepatic insulin extraction (%) 69.2 [68.2; 69.8] 70.1 [69.2; 70.9] 69.5 [67.1; 70.9] ns
Basal glucagonemia (pM/l) 36.5 [35.2; 37.5] 37.05 [36.5; 37.9] 37.5 [34.8; 40.2] ns
June 2022 | Volume 13
Data are given as medians [95% LCL; 95% UCL], p-level according to Mann-Whitney test.
ns, not significant.
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association study evaluating IVGTT-based measures of first-phase
insulin secretion revealed a strong association of the G allele with a
lower first-phase insulin response and also with insulin secretion rate
in several different ethnic groups (29). Also, previous data from the
OGTT-based Botnia Study showed that the G variant of MTNR1B
has the strongest effect on beta cell function in nondiabetic
participants from the Botnia region of western Finland (30).
Accordingly, our data demonstrate lower beta cell function
assessed by HOMA-B and IGI indices in homozygous and
heterozygous carriers of the G allele. This impairment was not
detected by overall 3-hour AUCIns or AUCC-pep, as only data at
30 min directly demonstrated that carriers of the G allele show a
reduced secretion of both insulin and C-peptide. During the rest of
the OGTT, this effect was no longer noticeable. On the contrary,
increasing glycemia led to a gradual compensatory increase in insulin
secretion starting with the second hour of the test. It can only be
assumed that even more significant differences in insulin secretion
between the genotypes would be detected at 15 min. Thus, the early
phase of the pancreatic beta cell response to a glucose stimulus,
which is attenuated or delayed in G allele carriers, is likely crucial for
understanding and interpreting our results. To this end, we are
currently adjusting the examination protocol, to evaluate glycemia,
insulinemia and C-peptide levels at the 15 min of the OGTT.

The dominant effect of the G allele observed in beta cell
function was not apparent in insulin sensitivity. Based on
values of the PREDIM index, considered a valuable index due
to the close correlation with the clamp method, IS was not
reduced in homozygous or heterozygous G allele carriers. In
general, beta cell function is the actual discriminant between
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the genotype groups, as demonstrated by the HOMA-B, IGI,
DI and AI indices. This leads to a conclusion useful for
clinical practice, supported by the results of previous
studies (33, 34). Individuals carrying the G allele could
benefit greatly from adjusting their lifestyle so that they are
not forced to have breakfast early in the morning, when their
melatonin levels are still high, due to work and social
responsibilities. These people have a delayed morning drop
in melatonin (34). High levels of melatonin disrupt insulin
secretion. In addition, G allele carriers are significantly more
vulnerable due to increased melatonin signaling (5) and
impaired early insulin secretion capacity, and the long-term
regular need for insulin secretion due to early morning food
intake could expose this group to a greater risk of developing
glucose tolerance disorders. The already mentioned shift in
melatonin secretion towards a later rise in the evening and a
slower decline in the morning in G allele carriers led us to the
idea of testing whether the sleep regime and the setting of the
entire chronotype are not shifted as well. The results of
the pilot study do not yet indicate this, which may be due
to the relatively small number of individuals involved. We
will continue to test this hypothesis on larger groups.

One of the main benefits of this study is the original data from
the Czech population analyzed in a representative cohort that is
unique in its size and in the detailed biochemical examinations in
the Czech Republic. We comprehensively assessed relationships
between the genetic variant in the melatonin receptor and
glucose metabolism using both standard and novel indices of
inulin sensitivity and beta cell function, as well as by C-peptide
and glucagon dynamics during a prolonged OGTT. All the
conclusions are based on robust non-parametric evaluations.
Innovative is the evaluation of the genetic variant in relation to
the shapes of the glucose, insulin and C-peptide trajectories
based on sampling before the glucose load and then at 30, 60, 90,
120, 150 and 180 min after it, as studies based on a two-hour
OGTT have limited potential to evaluate the shape of the curves.
Nevertheless, despite thorough analysis, no effect of the SNP on
the shape of the trajectories was apparent. Interestingly, however,
we found that twice the percentage of men had a biphasic
glycemic curve during the 3-hour OGTT, while a triphasic
TABLE 4 | Gender proportions depending on the shape of glycemic curves.

Gender proportion (%) Statistics

Glycemic curve Females Males

monophasic 49 41 Chi2 = 63.4
biphasic 17 40 power=1.00
triphasic 28 14 p-level<0.000001
multiphasic 6 5
Statistically significant results are in bold.
TABLE 3 | Proportions of the MTNR1B rs10830963 genotype depending on the shape of glycemic, insulinemic and C-peptide curves.

MTNR1B genotype (%) STATISTICS

Glycemic curve CC CG GG
monophasic 48 45.5 56 Chi2 = 5.9
biphasic 21 22.5 16.5 power=0.40
triphasic 26 26 21.5 p-level=0.43
multiphasic 5 6 6
Insulinemic curve CC CG GG
monophasic 69.5 67 72 Chi2 = 1.85
biphasic 6.5 6.5 6 power=0.14
triphasic 22 24.5 20 p-level=0.93
multiphasic 2 2 2
C-peptide curve CC CG GG
monophasic 80 77 81 Chi2 = 5.11
biphasic 1 2 1 power=0.34
triphasic 18 20 18 p-level=0.53
multiphasic 1 1 0
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curve was significantly more common in women. This clearly
shows that gender should always be taken into account when
evaluating the shapes of glucose trajectories and other related
parameters during the OGTT. In this context, the question arises
as to whether the blood glucose levels at 120 min of the OGTT
represent the optimal criterion for impaired glucose tolerance
(21) for both genders, as the different shape of the glycemic
trajectory in women and men may require a distinct approach.
This issue has not been elaborated in detail in the literature and
will be the subject of our research in the future.

One disadvantage of our study was the significantly lower
number of individuals with impaired glycemic control compared
to healthy controls. The relatively low average age of the participants
also contributes to this disparity. However, while maintaining the
current longitudinal character of our research, which has been going
on for over 20 years, it will be possible to verify existing data on
significantly older participants, in whom the proportion of people
with glucose metabolism disorders will be significantly higher.
Furthermore, a lower proportion of men compared to women
can also be considered a weakness. Although we addressed a similar
number of men as women, their willingness to participate in clinical
trials was significantly lower. However, the gender ratio did not
differ in the compared genotype groups, so the impact of this
imbalance on the study results is minimized.

In a representative sample of the Czech population, we
demonstrated the association of the minor allele G of the
rs10830963 polymorphism in the MTNR1B gene with glucose
metabolism. The G allele was more frequent in people with
impaired glucoregulation. Homozygous carriers of this allele
showed higher blood glucose levels during the OGTT. Since there
were no differences in insulin sensitivity between the genotypes, the
higher glycemia was due to lower beta cell function, especially early
insulin secretion, observed in homozygous as well as in
heterozygous G allele carriers. This association with impaired
early pancreatic function was significant even in individuals with
Frontiers in Endocrinology | www.frontiersin.org 753
healthy glucose processing. As such, the G allele is a factor that may,
under certain circumstances, promote higher glucose levels and
contribute to the development of glucose intolerance.
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Objective: Studies have shown that sex differences in lean mass, concentrations of sex
hormones, and lifestyles influence cle health and glucose metabolism. We evaluated the
sex-specific association between low muscle mass and glucose fluctuations in
hospitalized patients with type 2 diabetes mellitus (T2DM) receiving continuous
subcutaneous insulin infusion (CSII) therapy.

Methods: A total of 1084 participants were included. Body composition was determined
by dual-energy X-ray absorptiometry. Intraday blood glucose fluctuation was estimated by
the Largest amplitude of glycemic excursions (LAGE) and standard deviation of blood
glucose (SDBG).

Results: The prevalence of low muscle mass was higher in males than in females
(p<0.001). There was a significant sex-specific interaction between the status of low
muscle mass and glucose fluctuations (LAGE and SDBG) (p for interaction=0.025 and
0.036 for SDBG and LAGE, respectively). Among males, low muscle mass was
significantly associated with a higher LAGE and SDBG (difference in LAGE: 2.26 [95%
CI: 1.01 to 3.51], p < 0.001; difference in SDBG: 0.45 [95% CI: 0.25 to 0.65], p < 0.001)
after adjustment for HbA1c, diabetes duration, hyperlipidemia, diabetic peripheral
neuropathy, diabetic nephropathy, and cardiovascular disease. These associations
remained significant after further adjustment for age and C-peptide. Among females,
low muscle mass was not associated with LAGE or SDBG after adjustment for all
covariates.

Conclusion: The prevalence of low muscle mass was higher in males than in females.
Low muscle mass was significantly associated with higher LAGE and SDBG among
males, but not females.

Keywords: lowmuscle mass, glucose fluctuations, sex-specific, type 2 diabetesmellitus, continuous subcutaneous
insulin infusion
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INTRODUCTION

Diabetes is a major public health challenge in the world due to its
high and increasing prevalence and related risk of chronic
complications and mortality. Accumulating evidence indicates
that glucose fluctuations are more harmful in the occurrence and
development of diabetic chronic complications compared to
constant hyperglycemia (1–3). Generalized and progressive
skeletal muscle function disorder is the definition of sarcopenia,
which includes progressive loss of muscle mass and function
leading to adverse outcomes such as functional decline, frailty,
falls, andmortality (4). The prevalence of sarcopenia is significantly
higher in type 2 diabetes mellitus (T2DM) than in non-diabetic
individuals (5–7). Sarcopenia has been implicated as both a cause
and consequence of T2DM (8, 9). The progressive loss of the
skeletal muscle might lead to diminished insulin-mediated glucose
disposal and exacerbated insulin resistance, resulting in severe
glucose abnormalities (10). It has been demonstrated that not
only the glycosylated hemoglobin A1c (HbA1c) level but also
glucose fluctuations were significantly related to sarcopenia (11).

Lean mass, body fat composition and distribution, hormone
concentrations, and lifestyles showed a difference between males
and females, which influenced muscle health and glucose
metabolism (12). Lean mass, which is generally greater in men,
may play an important role in mediating the regulation of
glucose metabolism by skeletal muscle. However, to the best of
our knowledge, no study focusing on the potential impact of sex
differences on the relationship between low muscle mass and
glucose fluctuations has been reported.

In this study, we aimed to assess the sex-specific relationship
between low muscle mass and glucose fluctuations in
hospitalized patients with T2DM undergoing continuous
subcutaneous insulin infusion (CSII) treatments.
MATERIALS AND METHODS

Study Design and Participants
The study was performed following the rules of the Declaration
of Helsinki, and the protocol was approved by the ethics
committee of the First Affiliated Hospital of Xiamen
University. All participants provided written informed consent
before participating in the study. We included 1084 hospitalized
patients for hyperglycemia in the Department of Endocrinology
and Diabetes, First Affiliated Hospital, Xiamen University,
Xiamen, China from 2017 to 2019. The included criteria for
patients were as follows: patients aged 35 years or older with
T2DM which was defined as having either fasting plasma glucose
(FPG)≥7.0mmol/l or 2-h PG ≥11.1 mmol/l according to the
World Health Organization definition. The exclusion criteria
were as follows (1): serious health conditions, such as diabetic
ketoacidosis, severe hepatic insufficiency, moderate to severe
renal insufficiency, cardiac insufficiency, or stroke affected daily
activities (2); cognitive disability or an inability to cooperate with
the examination (3); pregnant or contemplating pregnancy.

All patients were managed according to established protocols
for performing CSII with a length of 7 days, glucose monitoring,
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and dual-energy X-ray absorptiometry. Diabetes-associated
chronic complications were evaluated for the coexistence of
neuropathy, retinopathy, and nephropathy.

Glucose Control
On the first day of hospitalization, oral hypoglycemic agents used
were stopped, then Humalog rapid-acting insulin (insulin lispro;
Eli Lilly, Indianapolis, IN, USA) with the insulin pump
(MiniMed Paradigm 722, Medtronic, Northridge, CA, USA)
was used among all patients used. The initial insulin dosage
was 0.7 unit × body weight (kg) and total daily doses were
divided into 50% of basal and 50% of bolus injections. The dawn
phenomenon and nocturnal hypoglycemia were taken into
account, and the basal rate was fixed depending on the period:
basal insulin dose/24 × 0.8 between 2200 and 0300 hours; basal
insulin dose/24 × 1.2 between 0300 and 0700 hours; basal insulin
dose/24 × 1.0 between 0700 and 2200 hours. The basal and bolus
doses of insulin infusion were tailored every 2 days by one doctor
by 0.3 unit/h and 3 units, respectively, according to the capillary
blood glucose (BG) level to achieve the glycemic target (fasting
BG<7.0 mmol/L and average postprandial BG <10.0 mmol/L).
All patients received the same education for lifestyle
management, and they were fed by the hospital nutrition
canteen during the hospitalization.

BG was monitored 7 times per day (before and 2 h after each
meal and at bedtime) by a trained nurse using a unified
glucometer (Johnson & Johnson, New Brunswick, NJ, USA).
Hypoglycemia was defined as a glucose level less than 3.9 mmol/
L, and the presence or absence of hypoglycemic symptoms was
recorded at every BG measurement point.

Date Collection
Data were collected from electronic health records in the
hospital. The clinical condition and medical history of all
participants were obtained, including smoking, alcohol
consumption habit, medical history (cardiovascular disease,
hypertension, diabetic neuropathy, diabetic retinopathy, and
diabetic nephropathy), previous hospitalizations, as well as
regular antidiabetic drugs, etc. Blood and urine samples were
taken the day following admission after overnight fasting. The
following biochemical parameters were obtained: HbA1c, C-
peptide, triglyceride (TG), total cholesterol (TC), high-density
lipoprotein cholesterol (HDL-c), and low-density lipoprotein
cholesterol (LDL-c), serum albumin, alanine aminotransferase
(ALT), aspartate aminotransferase (AST), and urinary albumin.

Anthropometric and Body
Composition Measurements
Height and weight were measured by trained nurses according to
the standard protocol and body mass index (BMI) was calculated
as weight (kilograms) divided by height (meters) squared. BMI
was further categorized into four groups:<18.5, 18.5–23.9, 24.0–
27.9, and ≥28.0 kg/m2, according to the Chinese BMI cut-offs
(13). Blood pressure was measured with a standard electronic
sphygmomanometer on the right arm 5 minutes after sitting for
rest. Body composition was determined by dual-energy X-ray
absorptiometry (HOLOGIC Discovery A) on the first day of the
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hospitalization. The appendicular skeletal muscle mass index
(ASMI) was calculated by dividing the appendicular skeletal
muscle mass by the height squared (kg/m2).

Evaluation of Low Muscle Mass, Glucose
Fluctuation, and Pancreatic
b-Cell Function
The Asian specific cutoff point for diagnosis of low muscle mass
was according to the recommendation of the Asian Working
Group for Sarcopenia (AWGS) in 2014 (14). Participants with an
ASMI less than 7.0 Kg/m2 for men or 5.4 Kg/m2 for women were
considered to have low muscle mass. The largest amplitude of
glycemic excursions (LAGE), mean blood glucose (MBG), the
standard deviation of blood glucose (SDBG), postprandial
glucose excursion (PPGE) and were indicators for estimating
intraday blood glucose fluctuations (3, 14). The MBG was the
average glucose for 7 days. SDBG was calculated as the square
root of the variance of the daily blood glucose for a whole day
during the 7 days of hospitalization, respectively (15). LAGE was
determined based on the mean of the diurnal range from
minimum glucose levels to maximum glucose levels of BG for
7 days. PPGE was calculated based on the mean of the difference
between pre-prandial and 2-h postprandial glucose. C-peptide
was a more accurate marker of endogenous insulin secretion
than insulin (16, 17). Fasting plasma C-peptide was measured to
represent an index of pancreatic b-cell function.

Statistical Analysis
To assess our hypothesis that the sex-specific association
between low muscle mass and glucose fluctuations in
hospitalized patients with T2DM with CSII therapy, several
analyses were performed. Data were summarized using
frequencies and counts for categorical variables and means and
standard deviations for continuous variables. Student’s t-tests or
the Mann-Whitney U test for continuous variables and Chi-
square (c 2) test for categorical variables were performed to
compare the difference in baseline characteristics between
diabetic patients with low muscle mass and diabetic patients
with non-low muscle mass. An a priori sex-specific association
between glucose fluctuations and sarcopenia was examined. We
used multiple linear regression models to examine the
association between low muscle mass and glucose fluctuations
(SDBG and LAGE), after adjustment for HbA1c, diabetes
duration, hyperlipidemia, diabetic peripheral neuropathy,
diabetic nephropathy, and cardiovascular disease in Model 1.
We further adjusted for age in Model 2. To further explore
whether the relationship was independent of C-peptide, we
additionally controlled for diabetes duration in Model 3.

Potential modification effects were assessed through a
stratified analysis by the following factors: age (<65 or ≥65),
BMI (<18.5, 18.5-23.9, 24.0-27.9, ≥28.0), diabetes duration (<5,
5-9.9, ≥10), diabetic peripheral nephropathy (yes or no), diabetic
neuropathy (yes or no), and cardiovascular disease (yes or no).
We evaluated the potential effect of modification by modeling the
cross-product term of the stratifying variable with low
muscle mass.
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Two-tailed p-value < 0.05 was considered statistically
significant. The data analysis for this article was conducted
using SAS version 9.4.
RESULTS

Overall, the prevalence of low muscle mass was 31.2% in all
diabetic participants. The prevalence of low muscle mass was
higher in males than in females (39.9% vs 18.0%, p<0.001)
(Figure 1). The characteristics of participants were shown in
Table 1 according to the status of low muscle mass and sex of
patients. For males, participants with low muscle mass were
older, and more likely to have a lower BMI, lower SBP and DBP,
longer diabetes duration, higher LDL-c, LAGE, MBG, SDBG,
and PPGE, lower TG and C-peptide, and higher prevalence of
diabetic neuropathy and hypoglycemia compared with patients
without low muscle mass. For females, BMI, SBP, DBP, C-
peptide, TG, ALT, and AST were lower in patients with low
muscle mass than in those without low muscle mass.

We observed a significant and sex-specific interaction
between the status of low muscle mass and glucose fluctuations
(LAGE and SDBG) (p for interaction=0.025 and 0.036 for SDBG
and LAGE, respectively). In Table 2, Among males, low muscle
mass was significantly associated with a higher LAGE and SDBG
(difference in LAGE: 2.26 [95% CI: 1.01 to 3.51], p < 0.001;
difference in SDBG: 0.45 [95% CI: 0.25 to 0.65], p < 0.001) after
adjustment for HbA1c, diabetes duration, hyperlipidemia,
diabetic peripheral neuropathy, diabetic nephropathy, and
cardiovascular disease (Model 1). These associations remained
significant after further adjustment for age (difference in LAGE:
2.17 [95% CI: 0.92 to 3.41], p < 0.001; difference in SDBG: 0.41
[95% CI: 0.21 to 0.61], p < 0.001 in Model 2), and C-peptide
(difference in LAGE: 1.18 [95% CI: 0.51 to 3.11], p = 0.006;
difference in SDBG: 0.31 [95% CI: 0.11 to 0.52], p = 0.003 in
Model 3) (Table 2). However, among females, no significant
association between low muscle mass and LAGE, or SDBG was
observed after adjustment for all covariates.

In the stratified analysis (Table 3), the associations between
low muscle mass and LAGE and SDBG were not modified by risk
factors in both males and females, including age, BMI, diabetes
duration, diabetic nephropathy, diabetic peripheral neuropathy,
or cardiovascular disease.
DISCUSSION

In the present study, based on the included 1084 hospitalized
patients with T2DM receiving CSII therapy, we found the
prevalence of low muscle mass was higher in males than in
females and a significant sex-specific association between low
muscle mass and glucose fluctuations (LAGE and SDBG). Low
muscle mass was significantly associated with a higher LAGE and
SDBG for males after adjustment for HbA1c, diabetes duration,
hyperlipidemia, diabetic peripheral neuropathy, diabetic
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nephropathy, cardiovascular disease, age, and C-peptide, but not
for females.

Our findings were in line with a previous study that showed that
glucose fluctuations were related to lowmuscle mass. In the study of
Frontiers in Endocrinology | www.frontiersin.org 459
69 T2DMpatients diagnosed with or without cognitive impairment,
glucose fluctuations were found to be independently associated with
sarcopenia, even after adjusting for HbA1c levels and associated
factors among patients with cognitive impairment (11).
TABLE 1 | Characteristics of the T2DM participants in the Low muscle mass group and non- Low muscle mass group stratified by sex.

Female Male

Non- Low muscle mass Low muscle mass p value Non- Low muscle mass Low muscle mass p value

N 355 78 391 260
Age, mean (SD), y 56.1 (11.5) 57.4 (14.5) 0.369 50.7 (11.7) 53.2 (13.6) 0.014
BMI, mean (SD), kg/m2 25.0 (3.9) 19.8 (2.1) <0.001 26.2 (3.2) 21.6 (2.5) <0.001
Systolic BP, mean (SD), mmHg 134.4 (20.7) 123.6 (19.0) <0.001 130.3 (16.9) 126.4 (18.0) 0.006
Diastolic BP, mean (SD), mmHg 80.6 (10.3) 73.7 (9.0) <0.001 81.9 (9.8) 78.1 (10.6) <0.001
Diabetes duration, mean (SD), y 8.5 (2.3) 8.5 (2.8) 0.552 8.1 (2.4) 8.5 (3.0) 0.045
HbA1c, mean (SD), % 9.6 (2.3) 9.8 (2.6) 0.589 9.7 (2.4) 10.2 (9.8) 0.053
C-peptide 1.4 (1.0 to 2.0) 1.0 (0.7 to 1.7) <0.001 1.5 (1.0 to 2.1) 0.9 (0.5 to 1.5) <0.001
Total cholesterol, mean (SD), mmol/L 5.2 (1.3) 5.2 (1.5) 0.983 5.1 (1.4) 5.0 (1.4) 0.700
HDL cholesterol, mean (SD), mmol/L 1.3 (0.3) 1.3 (0.4) 0.115 1.2 (0.4) 1.2 (0.3) 0.703
LDL cholesterol, mean (SD), mmol/L 3.0 (1.1) 3.2 (1.2) 0.166 2.7 (2.3) 3.1 (1.1) 0.008
ALT, mean (SD), U/L 25.6 (18.2) 17.9 (14.6) 0.001 33.4 (38.4) 28.1 (29.3) 0.087
AST, mean (SD), U/L 22.0 (12.2) 17.5 (7.8) 0.003 24.1 (19.5) 22.8 (20.0) 0.454
Triglycerides, median (IQR), mmol/L 1.6 (1.2 to 2.4) 1.1 (0.9 to 1.7) <0.001 1.6 (1.1 to 2.6) 1.1 (0.8 to 1.6) <0.001
Heart failure, n (%) 14 (3.9) 2 (2.6) 0.559 14 (3.6) 11 (4.2) 0.672
Coronary heart disease, n (%) 97 (27.3) 22 (28.2) 0.875 114 (29.2) 92 (35.40 0.094
Diabetic nephropathy, n (%) 89 (25.1) 13 (16.7) 0.113 83 (21.2) 49 (18.9) 0.46
Diabetic retinopathy, n (%) 174 (49.0) 42 (53.9) 0.44 164 (42.0) 125 (48.1) 0.123
Diabetic peripheral neuropathy, n (%) 97 (27.3) 20 (25.6) 0.762 99 (25.3) 87 (33.5) 0.024
Hypoglycemia, n (%) 41 (11.6) 11 (14.1) 0.530 36 (9.2) 39 (15.0) 0.023
MBG, mean (SD), mmol/L 10.2 (1.9) 10.2 (2.0) 0.865 9.9 (1.7) 10.3 (1.7) 0.003
PPGE, mean (SD), mmol/L 2.8 (0.9) 2.9 (0.7) 0.135 2.9 (1.0) 3.2 (1.0) 0.002
LAGE, mean (SD), mmol/L 13.1(3.4) 13.0 (3.7) 0.816 12.9 (3.2) 14.2 (3.1) <0.001
SDBG, mean (SD), mmol/L 3.0 (0.9) 3.1(1.0) 0.620 3.1 (0.9) 3.4(0.9) <0.001
Insulin dosage (units per day per kg) 0.73 (0.2) 0.72 (0.3) 0.312 0.73 (0.2) 0.72 (0.3) 0.398
July 202
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Values are mean (SD), or median [IQR] for continuous variables, and N (%) for categorical variables. BMI, body mass index; MBG, mean blood glucose; PPGE, postprandial glucose
excursion; LAGE, large amplitude of glycemic excursions; SDBG, standard deviation of MBG.
FIGURE 1 | The prevalence of low muscle mass among all patients, male and female, male vs female:
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However, the study was based on small sample size and whether
the association of glucose fluctuations with sarcopenia among
diabetes patients with cognitive impairment was modified by sex
was unclear. In addition, previous studies have shown that poor
glycemic control was associated with poor lower-limb muscle
quality, physical performance, and knee extensor strength
(18, 19).

To the best of our knowledge, there was no study performed
to explore the role of sex-dependent differences in the
relationship between low muscle mass and glucose fluctuations.
In our study including 1084 hospitalized patients with T2DM
receiving CSII therapy, we found that the association between
low muscle mass and glucose fluctuations was sex-specific. Low
muscle mass was significantly associated with a higher LAGE and
SDBG for males after adjustment for HbA1c, diabetes duration,
hyperlipidemia, diabetic peripheral neuropathy, diabetic
nephropathy, and cardiovascular disease. A significant
relationship has been repeatedly reported for association
between sarcopenia and age in T2DM individuals (7, 20).
Pancreatic b-cell function is an established risk factor for
glucose fluctuations (3, 21, 22). To assess the association
between low muscle mass and glucose fluctuations, we adjusted
age and C-peptide further. Those associations were also
significant after adjustment for age and C-peptide. Those
associations were also significant after adjustment for age and
C-peptide. But among females, low muscle mass was not
associated with LAGE or SDBG after adjustment for all
covariates. Low muscle mass is the key component of
sarcopenia. There are interactions between T2DM and
sarcopenia, and the existence of one disease may increase the
risk of developing the other (8, 9). T2DM can negatively affect
muscle health through insulin resistance (23, 24), advanced
glycat ion end-products (AGEs) accumulat ion (25),
inflammation (26, 27), oxidative stress (25), impaired protein
metabolism (19, 28), vascular mitochondrial dysfunction, and
cell death (9). In addition, glucose fluctuation is a greater trigger
of oxidative stress and inflammation than sustained
hyperglycemia (3, 29, 30) and may be involved in the
development and progression of low muscle mass. Low muscle
mass induced altered glucose disposal (10) and inter and
intramuscular adipose tissue accumulation increased local
Frontiers in Endocrinology | www.frontiersin.org 560
inflammation (31), furthermore, sarcopenia may result in
deterioration for the development and progression of T2DM.

In our study, the prevalence of low muscle mass was higher in
males than in females. Low muscle mass was significantly
associated with a higher LAGE and SDBG for males, but not
for females. Previous researchers have revealed a sex gap in
metabolic regulation, diabetes susceptibility and risks for
sarcopenia amongst community-dwelling older adults,
according to which, males were more likely to be diabetes and
sarcopenic (32, 33). The underlying mechanism for such sex
difference in the association between low muscle mass and
fluctuations is unclear, whereas several potential biological
mechanisms may contribute. Firstly, sex hormones play diverse
roles in maintaining skeletal muscle homeostasis. Testosterone
could exert an anabolic effect on skeletal muscle and estrogens
have a protective effect on skeletal muscle. Age-induced sex
hormone changes contribute to muscle wasting (34). During
the aging process, levels of testosterone and insulin-like growth
factor-1 could significantly decrease in males that leading to a
rapid loss of muscle mass and strength, which significantly
increase the risk of sarcopenia (35). As the largest organ
responsible for insulin-induced glucose disposal in humans,
the rapid loss of the skeletal muscle in males might lead to
diminished insulin-induced glucose disposal and exacerbated
insulin resistance, resulting in severe glucose abnormalities
(36). Secondly, there are sex differences in metabolic adaption
and diabetes susceptibility. Males are more likely to develop
obesity, insulin resistance, and hyperglycemia than females in
response to nutritional challenges (12). Besides, future studies are
required to explore how sex differences contribute to the special
association between low muscle mass and glucose fluctuations,
further investigations could explore other mechanisms.

A major strength of this study is a large sample of hospitalized
T2DM patients receiving CSII therapy was included and the
monitoring of capillary blood glucose and tailoring of insulin
dosage was conducted following the standard protocol by trained
doctors and nurses. There are several limitations in our study.
Firstly, due to the limitation of observational studies, they could
not control factors that might affect the results of the study, and
therefore, we could not identify a causal relationship between low
muscle mass and glucose fluctuations in males. Secondly, some
TABLE 2 | Association of low muscle mass with glucose fluctuations (LAGE and SDBG) among participants with type 2 diabetes receiving CSII therapy.

Model 1 Model 2 Model 3
Estimate b (95%Cl) p value Estimate b (95%Cl) p value Estimate b (95%Cl) p value

Female
LAGE -0.83 (-3.96 to 2.30) 0.603 -1.18 (-4.35 to 1.99) 0.465 -1.37 (-4.74 to 2.00) 0.426
SDBG -0.08 (-0.52 to 0.36) 0.724 -0.07 (-0.51 to 0.38) 0.775 -0.13 (-0.60 to 0.34) 0.593
Male
LAGE 2.26 (1.01 to 3.51) <0.001 2.17 (0.92 to 3.41) <0.001 1.18 (0.51 to 3.11) 0.006
SDBG 0.45 (0.25 to 0.65) <0.001 0.41 (0.21 to 0.61) <0.001 0.31 (0.11 to 0.52) 0.003
July 2022 | Volume 13 | Article
Model 1: adjusted for HbA1c, diabetes duration, hyperlipidemia, diabetic peripheral neuropathy, diabetic nephropathy, and cardiovascular disease;
Model 2: adjusted for covariates in Model 1 + age;
Model 3: adjusted for covariates in Model 2+ C-peptide.
Reference: non- Low muscle mass.
P interaction for between the status of low muscle mass and sex of patients on glucose fluctuations for (LAGE and SDBG) (p for interaction=0.021 and 0.029 for SDBG and LAGE, respectively).
CSII, continuous subcutaneous insulin infusion.
The bold values indicates the significant associations (P < 0.05).
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detailed information, such as physical activity and low muscle
strength which may impact glucose control, was not available in
this study. Thirdly, standard capillary blood glucose monitoring
was applied to evaluate glucose levels, while continuous glucose
Frontiers in Endocrinology | www.frontiersin.org 661
monitoring (CGM) might represent a more accurate glucose
profile. However, the cost of CGM is too high to apply in routine
clinical practice in China. Self-monitoring of blood glucose is still
commonly used to determine glycemic variability indices,
TABLE 3 | Subgroup analyses of associations of low muscle mass with glucose fluctuations (LAGE and SDBG) among participants with type 2 diabetes receiving CSII
therapy.

Female Male
N Estimate b (95%Cl) p value p interaction N Estimate b (95%Cl) p value p interaction

LAGE
Age 0.566 0.160
<65 326 -0.27 (-4.17 to 3.62) 0.890 546 1.07 (0.06 to 2.08) 0.017
≥65 107 -2.79 (-9.82 to 4.25) 0.438 105 5.09 (-0.70 to 10.90) 0.085
SDBG
Age 0.434 0.173
<65 326 0.08 (-0.52 to 0.69) 0.793 546 0.22 (0.03 to 0.41) 0.023
≥65 107 -0.46(-1.28 to 0.36) 0.270 105 0.83 (0.05 to 1.61) 0.037
LAGE
BMI 0.214 0.664
<18.5 39 1.11 (-0.95 to 3.18) 0.291 61 11.29 (-1.06 to 22.98) 0.073
18.5-23.9 209 -0.445 (-1.62 to 0.73) 0.459 278 -0.25 (-1.01 to 0.51) 0.523
24.0-27.9 127 -3.96 (-9.27 to 1.35) 0.143 218 5.70 (2.35 to 9.05) <0.001
≥28.0 58 -3.99 (-10.10 to 1.70) 0.312 94 2.71 (-3.34 to 8.76) 0.390
SDBG
BMI 0.674
<18.5 39 0.30 (-0.09 to 0.69) 0.131 0.188 61 1.62 (0.10 to 3.16) 0.037
18.5-23.9 209 0.01 (-0.29 to 0.31) 0.960 278 -0.04 (-0.25 to 0.31) 0.709
24.0-27.9 127 -1.05 (-2.47 to 0.36) 0.146 218 0.62 (0.13 to 1.10) 0.012
≥28.0 58 -1.01 (-2.65 to 0.69) 0.204 94 0.59 (-0.99 to 2.18) 0.562
LAGE
Diabetes duration 0.946 0.441
<5 20 5.84 (4.64 to 7.04) <0.001 20 4.07 (1.13 to 7.01) 0.007
5-9.9 280 -1.51 (-5.62 to 2.59) 0.469 485 1.96 (0.32 to 3.59) 0.019
≥10 133 -1.67 (-8.53 to 5.20) 0.634 146 1.65 (-0.47 to 0.45) 0.141
SDBG
Diabetes duration 0.967 0.491
<5 20 1.64 (0.90 to 2.31) <0.001 20 -2.81 (-2.87 to -2.75) <0.001
5-9.9 280 -0.26 (-0.89 to 0.37) 0.419 485 0.36 (0.10 to 0.62) 0.006
≥10 133 -0.09 (-0.92 to 0.74) 0.824 146 0.33 (-0.04 to 0.71) 0.083
LAGE
Diabetic nephropathy 0.483 0.228
No 331 -0.77 (-3.93 to 2.37) 0.628 519 2.15 (0.49 to 3.82) 0.011
Yes 102 -2.48 (-13.59 to 9.80) 0.661 132 0.22 (-0.91 to 1.45) 0.724
SDBG
Diabetic nephropathy 0.340 0.283
No 331 -0.03 (-0.52 to 0.46) 0.906 519 0.35 (0.10 to 0.60) <0.001
Yes 102 -0.36 (-1.78 to 1.06) 0.620 132 0.09 (-0.25 to 0.42) 0.615
LAGE
Diabetic peripheral neuropathy 0.308 0.562
No 316 -0.89 (-3.85 to 2.07) 0.555 465 0.84(-0.61 to 2.29) 0.257
Yes 117 -0.76(-1.81 to 1.49) 0.467 186 0.85 (-0.60 to 2.29) 0.253
SDBG
Diabetic peripheral neuropathy 0.647 0.820
No 316 0.17 (-0.04 to 0.38) 0.120 465 0.32 (0.08 to 0.56) 0.009
Yes 117 0.17 (-0.04 to 0.38) 0.116 186 0.33 (-0.04 to 0.08) 0.100
LAGE
Cardiovascular disease 0.232 0.567
No 314 -0.09 (-3.67 to 3.50) 0.962 445 1.89 (0.06 to 3.72) 0.043
Yes 119 -2.25 (-10.46 to 5.95) 0.591 206 1.49 (0.02 to 2.96) 0.046
SDBG
Cardiovascular disease 0.153 0.606
No 314 0.10 (-0.46 to 0.65) 0.734 445 0.34 (0.05 to 0.62) 0.019
Yes 119 -0.45 (-1.42 to 0.53) 0.370 206 0.26 (-0.003 to 0.52) 0.052
July 2022 | Vo
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Adjusted for HbA1c, diabetes duration, hyperlipidemia, diabetic peripheral neuropathy, diabetic nephropathy, cardiovascular disease, age, and C-peptide.
CSII, continuous subcutaneous insulin infusion.
Reference: non- Low muscle mass.
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especially in developing countries (37–39). We measured glucose
levels 7 times per day by a trained nurse using a unified
glucometer on 7 separate days during the in-hospital period,
our data could reflect the characteristics of glucose profiles over
this period. Finally, major participants were Chinese, further
study should be generalized to other populations.
CONCLUSION

In the present study based on hospitalized patients with T2DM
receiving CSII therapy, we found the prevalence of low muscle
mass was higher in males than in females and a significant sex-
specific association between low muscle mass and glucose
fluctuations (LAGE and SDBG). Low muscle mass was
significantly associated with a higher LAGE and SDBG for
males, but not for females. The findings suggest that we should
pay more attention to glucose fluctuations in male T2DM
patients with low muscle mass when using medication to
control glucose in clinical practice.
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The insulin secretion rate (ISR) contains information that can provide a personal,
quantitative understanding of endocrine function. If the ISR can be reliably inferred
from measurements, it could be used for understanding and clinically diagnosing
problems with the glucose regulation system.

Objective: This study aims to develop a model-based method for inferring a
parametrization of the ISR and related physiological information among people with
different glycemic conditions in a robust manner. The developed algorithm is
applicable for both dense or sparsely sampled plasma glucose/insulin measurements,
where sparseness is defined in terms of sampling time with respect to the fastest time scale
of the dynamics.

Methods: An algorithm for parametrizing and validating a functional form of the ISR for
different compartmental models with unknown but estimable ISR function and absorption/
decay rates describing the dynamics of insulin accumulation was developed. The method
and modeling applies equally to c-peptide secretion rate (CSR) when c-peptide is
measured. Accuracy of fit is reliant on reconstruction error of the measured
trajectories, and when c-peptide is measured the relationship between CSR and ISR.
The algorithm was applied to data from 17 subjects with normal glucose regulatory
systems and 9 subjects with cystic fibrosis related diabetes (CFRD) in which glucose,
insulin and c-peptide were measured in course of oral glucose tolerance tests (OGTT).

Results: This model-based algorithm inferred parametrization of the ISR and CSR
functional with relatively low reconstruction error for 12 of 17 control and 7 of 9 CFRD
subjects. We demonstrate that when there are suspect measurements points, the validity
of excluding them may be interrogated with this method.

Significance: A new estimation method is available to infer the ISR and CSR functional
profile along with plasma insulin and c-peptide absorption rates from sparse
measurements of insulin, c-peptide, and plasma glucose concentrations. We propose
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a method to interrogate and exclude potentially erroneous OGTT measurement points
based on reconstruction errors.

Keywords: estimation algorithm, ISR function, compartment models, insulin and C-peptide, OGTT, and CSR/ISR
molar ratio

1 INTRODUCTION

Insulin is the essential hormone that regulates cellular energy
supply and the intracellular transport of glucose into muscle and
adipose tissues (Wilcox, 2005). The endogenous insulin secretion
rate (ISR) quantifies the amount of insulin the body is able to
produce as a function of glucose concentration in the blood,
providing important information for understanding how an
individual’s endocrine system is able to use insulin to regulate
glucose regulation. The primary physiological stimulation for
insulin secretion from beta-cell is elevated blood glucose levels
following nutrition intake and glucose bolus (Ahrén and Pacini,
2004).

The objective of this work is to provide a methodology to infer
the functional form of the ISR from insulin and glucose
measurements at a personalized level that is robust to outliers.

Our motivation for this objective is threefold: First, from a
clinical diagnostic standpoint, the ISR is a measure of the input/
output function of a segment of the glucose regulation system -
the pancreatic beta cells - and therefore would allow monitoring
of their health or disease progression; second, accurate
parametrization of the functional performance of the beta cells
will allow more accurate modeling of the glucose regulation
system and therefore understanding of normal and abnormal
glucose regulation; and third, personalized ISR estimation
combined with better modeling will allow for better
interpretation of aberrant dynamics observed in standard
glucose monitoring protocols.

In addition, glucose tolerance tests are intrusive and
burdensome for subjects and have a relatively high rate of
error due to outliers which limits their usefulness at a
population scale. The development of an ISR estimation
method that is robust to outliers, or able to identify and
exclude outliers, increases the practical applicability of such tests.

Computational models of glucose regulation do already exist
and have embedded in them model components for beta-cell
function. But different models invoke significantly different
functions for the ISR, as illustrated in the Figure 1A for the
studies in (Tolić et al., 2000; Liu et al., 2009; Ha et al., 2016). These
different ISR functions lead to significantly different glucose
dynamics if used interchangeably within the same glucose
regulation model for the same system input, as illustrated in
the Figures 1B,C. Note that the functional forms change both the
height and time course of the blood glucose response.

The most common methods to estimate ISR utilize plasma
insulin and c-peptide concentration measurements. C-peptide
(connecting peptide) is an amino acid polypeptide that is
released, along with insulin, from the pancreatic beta cells
when proinsulin is split into insulin and c-peptide (Steiner
et al., 1967; Rigler et al., 1999), at a molar release ratio of 1:1

(ISR to c-peptide secretaoin rate CSR) (Lebowitz and Blumenthal,
1993). C-peptide is often used to distinguish insulin produced by
the body from injected insulin to estimate ISR, to determine
insulin resistance, and to indicate a differential diagnosis of
fasting hypoglycemia with hyperinsulinism. Pancreatic beta
cells release both insulin and c-peptide directly into the blood
stream in the portal vein, which then passes through the liver and
then combines with the rest of the circulating blood. Insulin is
sensed by hypatocrytes, and signals them to start glucose uptake,
and inhibit gluconeogenesis, glycogenolysis, and ketogenesis
(Brundin, 1999), and at high levels to activate carcino-
embryonic antigen-related cell adhesion molecule 1
(CEACAM1) to increase hypatic insulin clearance (Najjar and
Perdomo, 2019). In contrast to insulin, c-peptide is primarily
degraded by the kidneys (Jones and Hattersley, 2013). Insulin is
degraded within 15–30 min in the bloodstream (Farris et al.,
2003), while c-peptide degradation is longer (Leighton et al.,
2017).

Glucose tolerance, insulin resistence, and insulin secretion in a
clinical setting are generally measured with various types of
glucose tolerance tests. These tests include the intravenous
glucose tolerance test (IVGTT) (Bergman et al., 1981), fasting
glucose assessment (Matthews et al., 1985; Pacini and Mari,
2003), and the oral glucose tolerance test (OGTT) (Ferrannini
and Mari, 2004). IVGTT are less frequently performed because
they are invasive and challenging to endure to the patient and
expensive to achieve (Lotz et al., 2009) because of the frequent
sampling protocols of the c-peptide up to every minute during an
IVGTT. The more commonly used OGTT requires fasting
patients to ingest a drink with a fixed amount of glucose
followed by glucose measurements every 15–30 min over the
subsequent two to 4 hours (Reaven et al., 1993).

Several model-based estimation methods have been developed
to estimate ISR in the sense of the time course of insulin
production. One approach is to estimate from insulin and
c-peptide measurements (Watanabe et al., 1998; Watanabe and
Bergman, 2000; Kjems et al., 2001; Venugopal et al., 2021). These
multiple compartment methods treat ISR as an unknown time
trajectory either without a priori knowledge of its secretion rate
function or with different functions to describe the secretion rate.
For example, in (Kjems et al., 2001), the deconvolution method is
used to estimated ISR by modeling ISR with two exponential
functions (biexponential model) with unknown parameters.
Another approach that has both one-compartment model
(Watanabe et al., 1998) and two-compartment model
(Watanabe and Bergman, 2000) forms is used to estimate the
time traces of ISR using a smoothed c-peptide profile generated
by cubic spline interpolation. More recently, Venugopal et al.
(2021) developed a method to estimate ISR using the Oral
c-peptide Minimal Model (OCMM). This method describes
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the ISR function by two rates proportional linearly with the
c-peptide and glucose concentrations. Another recent estimation
approach based on OGTTmeasurements of insulin and c-peptide
has been developed to estimate the ISR time traces using two
different models, for insulin and c-peptide (Schiavon et al., 2021).

To this end, we develop a new estimation algorithm to infer the
ISR from glucose/insulinmeasurements such as OGTT data. Using
a compartmental model for the accumulation/degradation of
insulin similar to (Tolić et al., 2000; Liu et al., 2009; Ha et al.,
2016), this new method begins with a parametrization of the form
of the ISR function that takes glucose concentration as an input and
then estimates the parametrization parameters by minimizing the
difference between the model output and insulin measurements.
The same accumulation/degradation model and inference method
can be used to independently infer the c-peptide secretion rate
from glucose/c-peptide data when available.

We note that the method we derive is not reliant on the
experimental protocol being an OGTT, nor that all the data are
measured densely with respect to the fastest time scale of the
glucose or insulin dynamics. This time is estimated in the
literature to be on the order of 8–20 min for circulating
glucose/insulin dynamics, and faster if one is trying to resolve
the pulsitivity of insulin production. In this sense it works with
sparsely sampled data. This definition is in contrast to terms in
the literature that refer to OGTTs with less than 7, and as little as
3, measurement points as ‘sparse OGTTs’.

When both insulin and c-peptide are available, because the ISR
and CSR functionals are independently inferred, we can use the
expected 1:1 M ratio to validate the estimates and to identify data-
related errors.

Our approach provides physiological insights into beta-cell
secretion rates for people with different ISR health conditions.
We validate the performance of the approach using OGTT
clinical data for control and CFRD subjects.

2 MATERIALS AND METHODS

The proposed algorithm uses parametric models including a
single and a two-compartment model, and ISR and CSR
function forms with physiological parameters. The parameters
of these models and ISR/CSR functions are assumed unknown,
but can be inferred from patient data, including plasma glucose,
insulin, and c-peptide measurements. We test the performance of
this algorithm using OGTT clinical data collected from control
and CFRD subjects.

2.1 Human Oral Glucose Tolerance Test
Data
Data used is a subset of data collected under the GlycEmic
Monitoring in CF (GEM-CF, NCT02211235), a study of early
glucose abnormalities in youth with cystic fibrosis. The study was
approved by the Colorado Multiple Institutional Review Board
(Aurora, CO), and informed consent and assent obtained.
Collection details have been previously published in
(Tommerdahl et al., 2021; Chan et al., 2022).

In short, inclusion criteria for participants with CFRD included
a confirmed diagnosis of CFRD by newborn screen, sweat chloride
testing, or genetic testing. Exclusion criteria for participants with
CFRD included known Type 1 or Type 2 diabetes, use of
medications affecting glucose (eg, insulin, systemic steroids) in
the prior 3 months, hospitalization in the prior 6 weeks, or
pregnancy. For this report, n = 9 youth with CFRD were
included. N = 3 (33%) were male. CFRD individuals were an
average age of 14.6 ± 3.2 years with amean BMI of 19.0 ± 2.7 kg/m2

and BMI z-score of - 0.28 ± 0.53. Glucose tolerance categories by
OGTT were as follows—6 CFRD patients had CFRD based on 2 h
OGTT glucose > 200 mg/dl and 3 were classified as NGT. The CF
cohort had an average A1C of 5.7 ± 0.2%.

Healthy controls without CFRD were identified using
recruitment flyers and emails at the University of Colorado
Anschutz Medical Campus. Exclusion criteria for healthy
controls (HCs) included diagnoses of diabetes or prediabetes,
overweight (defined as BMI ≥85th% by the Centers for Disease
Control and Prevention BMI growth charts in youth), chronic
disease, acute illness, or pregnancy. A total of n = 17 HCs were
included of which n = 9 (53%) were male. HCs had an average age
of 13.3 ± 3.6 years, BMI of 18.5 ± 2.9 kg/m2, and BMI z-score of
−0.20 ± 0.68. The HCs had an average A1C of 5.3 ± 0.2%.

Subjects underwent a standard OGTT protocol, with blood
drawn at times.ti ∈ { − 10, 0, 20, 30, 60, 90, 120, 150, 180} min, and
assayed for plasma glucose, insulin, and c-peptide concentrations.

2.2 Insulin and C-peptide Models
The twomodels, described in Figure 2, are used in the algorithm to
reconstruct ISR andCSR. Thesemodels, include a single and a two-
compartment model both of which use the same ISR and CSR
function but with different parameters to describe the time
evolution of plasma insulin and c-peptide. The single

FIGURE 1 | Three different ISR functions (A) generate blood glucose
variations, in long time course (B) and short time course (C) simulated using
the model developed by Topp et al. (2000) with a meal; u1 is the ISR function
adopted from Liu et al. (2009); u2 is the ISR used in Tolić et al. (2000), and
u3 is the ISR function used in the model of Ha et al. (2016).
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compartment model consists of a single plasma pool with a
degradation time for plasma insulin and c-peptide. On the
other hand, the two-compartment model tracks insulin and
c-peptide concentrations in both plasma and interstitial
compartments.

2.2.1 Single Compartment Model
The detail of the single model (Figure 2 Top) is parameterized
as follows. The pancreatic beta-cell, which has a nonlinear
output secretion function, is denoted by uj, the subscript j is
an index that takes I for insulin and Cpep for c-peptide, and
releases insulin and c-peptide using various physiological
parameters. The subscript p denotes plasma, τpI and τCpep
denote the degradation time for the plasma insulin and
c-peptide, respectively. The single compartment model is
given by the equation:

_xpj � uj t( ) − xpj/τpj (1)

where xpj is plasma insulin or c-peptide, and τpj is the associated
degradation time.

Following (Tolić et al., 2000; Liu et al., 2009), we use a
sigmodal function, which is glucose dependent, for both ISR
(upI) and CSR (upC) are given by

uj gp t( )( ) � Km

1 + e α C0−gp t( )( )( ). (2)

Here, gp(t) (mg/dl) is the plasma glucose concentration at a given
time t (min), Km represents a maximum production rate for
insulin (μU/ml/min) or c-peptide (ng/ml/min), C0 refers to a
glucose mid-point (mg/dl), and α represents 1/width (dl/mg) of
the sigmoid curve.

We combine the unknown parameters of the single
compartment model in this vector Θs:

Θs � τpj, Km, C0, α[ ]T. (3)

2.2.2 Two Compartment Model
The two compartmental model, as shown in Figure 2 (Bottom), is
comprised of two equations:

_xpj � uj + q2xij − q1 + 1/τpj( )xpj (4a)
_xij � q1xpj − q2 + 1/τij( )xij (4b)

where xpj and xij represent the insulin (or c-peptide)
concentrations in the plasma (p) and interstitial (i)
compartments; q1 and q2 represent the mass transport
between these two compartments; τpj and τij refer to the
degradation time for insulin or c-peptide in the plasma and
interstitial spaces. The values of q1 = 0.0473 (min−1) and q2 =
0.0348 (min−1) are adopted from the transport model of (Eaton
et al., 1980). Alternatives to this model include the diffusive
transport used, for example, in the ultradian model (Tolić et al.,
2000). We combine the unknown parameters of the two
compartment model in this vector Θm:

Θm � τpj, τij, Km, C0, α[ ]T (5)
Finally, we provide a summary for the two models given in Eq.

1 and Eq. 4, as follows:

• The accumulation dynamics of the insulin and c-peptide use
the same compartment models but with different
parameters.

• u uses the same function for both ISR and CSR, and this
function depends only on the blood glucose values.

• The function of u(�g) is given by a sigmoid Eq. 2 as a
function of interpolated (at 1 min) blood glucose values �g,
described in the next section.

• The parameters of u (Km, C0, α), along with degradation
time (τpj, τij), are unknown and estimated independently
from insulin and c-peptide measurements.

2.2.3 Compact Form Model
It is convenient and, as we’ll show, computationally efficient to
express these compartmental models in a compact state-space
model form:

_x � A Θ( )x + Bu Θ, gp( ) (6a)
y � Cx (6b)

where x,A, B,C, andΘ are specificmodel state and parameters. For
the single compartment model (2), we have x = xpj, A = 1/τpj, B = 1,
C = 1, and Θ = Θs, which is defined in Eq. 3. For the two
compartment model (4), we have x � [xpj, xij]T,

A � − q1 + 1/τpj( ) q2
q1 − q2 + 1/τij( )⎡⎣ ⎤⎦ (7)

B = [1,0]T, C = [1, 0], and Θ = Θm defined in Eq. 5.
Since we use discrete-time data, the state space model, (6), is

discretized at a sampling rate of Ts = 0.1 min and then given by

xk+1 � Φ Θ( )xk + Γ Θ( )uk Θ, �g( ) (8a)
yk � Cxk (8b)

where Φ = eAT and Γ � ∫T

0
eATsdsB. The input uk is the ISR or

CSR, which is a function of both Θ and the interpolated glucose
values �g generated from cubic interpolation method.

FIGURE 2 | Schematic representations for the single-compartment
model (Top) used to describe plasma insulin and c-peptide, and two-
compartment model (Bottom) used to describe both plasma and interstitial
insulin and c-peptide.
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3 RESULTS

The main contribution of this paper is the development of a new
estimation approach to infer the ISR from data. The uncertainty in
the estimation is studied based on random initial conditions used
with the proposed approach to optimize the unknown parameters.

3.1 The Estimation Algorithm
Our new estimation method utilizes the above state space model,
(8), and is based on the nonlinear least square method (Hansen
et al., 2013) to optimize parameters that provide the best fit
between the model’s output (blood insulin or c-peptide) and data.
The proposed algorithm uses interpolated blood glucose values as
an input to the algorithm.

In practice, the time intervals of the measured blood glucose varies
between 10 and 30min, and are assumed to sufficiently cover shape of
the glucose dynamics. This allows us to interpolate the glucose
dynamics in order to resample the glucose values with sufficient
time resolution to integrate the insulin or c-peptide dynamics, for
which these measured time intervals are too long (sparse). We use
cubic interpolation to resample the blood glucose values between the
actual measurements to generate an interpolated glucose trajectory
(�g) with a time step T = 1min. This input glucose trajectory is used
within the ISR or CSR function u(Θ, �g) to integrate the model
forward generating amodel insulin or c-peptide trajectory y (Θ, t).We
take values from this trajectory at tk, which are the times of the actual
insulin or c-peptide measurements, and use them in the algorithm to
optimize the parameters.

For given measurements of glucose and blood insulin or
c-peptide: z (1), z (2), . . ., z(n), we minimize following least
squares objective function J(Θ) to obtain Θ̂:

J Θ( ) � ∑N
k�0

z k( ) − y Θ, tk( )( )2 (9)

where y (Θ, tk) is the model output (blood insulin or c-peptide)
generated by �g, and z(k) is a measured insulin or c-peptide value.
Note that insulin and c-peptide are optimized independently. In
Figure 3, we provide a schematic representation for our
Algorithm 1. The algorithm consists of two nested loops: the
outer one loops over a random set of initial conditions {Θn,0}, and
the inner loop is based on the Levenberg-Marquardt method
where the value Θn is updated on the ith cycle by Θn,i+1 = Θn,i −
∇n,iwhere ∇n,i uses the steepest descent method (Marquadt, 1963;
Levenberg, 1944). We use the MATLAB function ‘lsqcurvefit’ to
implement this inner loop.

3.1.1 Uncertainty Quantification
The method as described is a nonlinear optimization process. It is not
knownor proven that for this process there is either a globalminimum,
or only one localminimum, of the objective function (Eq. 9). Therefore
there is potential sensitivity to the initial conditions (initial guess forΘ).
To address this, and to provide uncertainty quantification for the
inferred parameterization, we adopt a bootstrap method.

We therefore explore the distribution of inferred parameters Θ̂
from a large (1,000) randomly sampled initial conditions drawn
from a range of allowed parameters defined within

physiologically plausible ranges. In this analysis, τpx ∈ [10,
180] min, C0 ∈ [200, 1,500] mg/L, Km ∈ [1, 350] mU/l/min,
and α ∈ [0.015, 0.045] L/mg.

For each initial parameterΘ0 the algorithm seeks a final parameter
Θf that minimizes J (Eq. 9) within the boundaries. If theminimization
process reaches the allowed boundaries, the result is excluded.

Each solution in Θf is used within the ISR/CSR function to
simulate ISR and CSR trajectories and then generate plasma
insulin and c-peptide trajectories by integrating the model, (8),
forward using the interpolated glucose values as an input.
Finally, we use these trajectories to compute the average and
standard deviation (Mean ± SD). These steps are illustrated in
Algorithm 1.

3.2 Computational Method Validation
We validate the inference method by applying the algorithm to
model-generated data sets. We then compare the inferred ISR

FIGURE 3 | Schematic representation for the estimation algorithm.
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parametrization, and decay constant, to the model parameters
used to generate the data.

Data sets were generated with the model described in Liu et al.
(2009), with the published parameters unless otherwise noted.
The ISR used matched the functional form in Eq. 2, with
parameters Km = 0.6 (mU/l/min), C0 = 1,000 (mg/L), α = 0.01
(L/min). Data sets were generated for each of the following
insulin degradation rates τpI ∈ {10, 15, 30, 60, 90, 120} min.
The model was driven with an OGGT type feeding function,
glucose and insulin values sampled at discrete times Ti ∈ { − 10, 0,
10, 20, 30, 60, 90, 120, 150, 180} min, and 20% random noise
was added.

The inferred values of τpI matched the ideal (generating)
values within 1.8% (i.e., |τpI,i − τpI|/τpI < 1.8%), and the other
parameters (Km, C0, α) within a roughly average error of 1.2% of
the generating parameter value.

We note that we achieved a very high level of accuracy in
inference of these parameters almost independent of how sparsely
the data was sampled with respect to the insulin dynamics (τpI,
and robust to the presence of significant (20%) added
measurement noise.

3.3 Application to Oral Glucose Tolerance
Test Data
We use this method with clinically measured OGTT data,
including plasma glucose, insulin, and c-peptide
measurements, to parametrize the ISR/CSR functions (Θ̂).

These measurements are taken from normal and CFRD
subjects at times ti = { − 10, 0, 20, 30, 60, 90, 120, 150, 180}
min. The glucose values are interpolated at 1 min intervals using
cubic interpolation and then used as an input for estimation, and
as described Θ̂ is the mean parameters over minimizations of the
cost function J(Θ) (Eq. 9).

Given that insulin and c-peptide are secreted in a 1:1 M ratio
(Lebowitz and Blumenthal, 1993), we expect that the
parametrized functionals ISR and CSR should follow a similar
linear relationship. Note that in the presented units for ISR (μ
U/ml-min) and CSR (ng/ml-min), a 1:1 M ratio corresponds to
0.056 = ng/μ U. We therefore also fit the relation between CSR
and ISR with a linear fit to get C̃SR(ISR).

Shown in Figure 4 are stereotypical results for control (upper
group) and CFRD subjects (lower panels). The actual glucose
measurements (blue circles) and interpolated glucose (magenta),
used as an input to the algorithm, are shown in the Figure 4A.
Also, the measured c-peptide (red circles) and estimated
c-peptide (magenta with standard deviation (±SD) black,
green) are presented in the Figure 4B. Histograms of the
inferred degradation times are shown for both c-peptide
(Figure 4C) and insulin (Figure 4D). Measured insulin (red
circles) and estimated insulin (magenta) are shown (with ±SD
black, green) in the Figure 4E. Estimated ISR and CSR are
presented with ±SD (black, green) are shown in the Figures
4F,G for the time points at which data was taken.

In both examples, the relationship between CSR and ISR
closely matches a linear fit, with slope of order the expected
value of 0.056 = ng/μU.

3.3.1 Quantification of Goodness of Fit
We quantify the goodness of fit of three different features of these
fits the measured values; how well the trajectory of the modeled
insulin (I (t|Θ)) fits the measured values, how well the trajectory
of the modeled c-peptide (C (t|Θ) fits the measured c-peptide
values; and goodness of the linear fit between the CSR and ISR,
C̃SR(ISR). In each of these cases, we use normalized root-mean-
square (RMS) errors:

RMSIk �
1

Ik

�������������∑
k

Ik − I tk|Θ̂( )2√
(10a)

RMSCk
� 1

Ck
�

��������������∑
k

Ck − C tk|Θ̂( )2√
(10b)

RMSCSR ISR( ) � 1
CSRk,max

������������������������∑
k

CSR tk( ) − C̃SR ISR tk( )( )2
√

(10c)

where �Ik is the mean of the measured insulin values, �Ck is the
mean of the measured c-peptide values, and CSRk, max is the
maximum CSR value.

Estimation results are obtained and evaluated for all control
and CFDR subjects. Based on the goodness of fit values (Eq. 10),
our algorithm achieved relatively good estimates of ISR and CSR
for 12 of 17 (71%) control subjects and 7 of 9 (78%) CFRD
subjects. Error estimates are shown in Figure 5 plotted for the
output for each of the control subjects (filled circles). As can be
seen in the left panel, four subjects had very high RMS error in
reconstruction of both insulin trajectories (red). In addition, at
least one subject’s fit had especially poor linear relationship
between CSR and ISR (blue).

3.3.2 Identification of Potential Outlier Data
Points
We hypothesize that for these data sets, approximately 30% of
the subjects’ data have at least one outlier data point that is
sufficient to corrupt the inference. Such outliers would also
interfere with clinical diagnostics, and therefore the ability to
identify and correct for these outliers would be a substantial
gain.

In the five poorly estimated control subjects, we observed
glucose values that had rather severe dip at 60 min, and then a
recovery to a middle value, as illustrated in Figure 6A, which we
suspect may be in error.

To test our interpretation for poor estimates, we consider one
control subject with an uncertain glucose measurement that
dropped at 60 min, from 140 mg/dl to 85 mg/dl. We then
removed this 60 min glucose value and the associated insulin
and c-peptide measurements. Since we use glucose interpolation
as an input to the model, the gap between the glucose values
between 30 and 90 min is filled by the interpolated glucose values,
as shown in Figures 6A,B. Without the value at 60min, the
insulin and c-peptide measurements are used to re-estimate the
parameters. As shown in (D, F), the computed insulin and
c-peptide trajectories better match the residual measured
values, and the relationship between CSR and ISR is better fit
by a line (H).
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Quantitatively, all three of the RMS errors improved for this
subject, as did the errors for all five subjects whose fits were
previously identified as having high error. The improvement is
illustrated by the green diamonds in Figure 5. The green lines link
the improved error values with the error values prior to this analysis.

In contrast, for all other subjects, if the same 60 min time point
was left out the errors did not significantly degrade.

Note that the objective function (Eq. 9) that is minimized with
the optimization is only sensitive to the model reconstructed
values at the measured times. The model dynamics (insulin or
c-peptide accumulation) are substantially only sensitive to the ISR
or CSR within approximately one degradation time constant (τx),
which for controls is of order 15 min. Therefore the optimization
is primarily sensitive to the interpolated glucose trajectory (�g)

FIGURE 4 | Estimation results, using the algorithm with the single compartment model, for a single control (Top) and a single CFDR (Bottom) subject. Each
composite includes (A) glucose measurements (blue circles) and the interpolated glucose (magenta line) used as model input (B) measured c-peptide (circles) and
model-generated mean c-peptide (magenta line) and ±standard deviation (black, green lines); histograms of inferred degradation time for c-peptide (C) and insulin (D);
(E) measured insulin (red circles) and estimated insulin trajectory (magenta with ±SD black, green); mean inferred ISR (F) and CSR (G) (red with SD black, green);
and (H) CSR/ISR relationship.
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over approximately τx ahead of measured data points. This means
that as long as the measurements sufficiently sample the glucose
dynamics, this method should be robust to dropping out
individual data points.

This suggests that the poor estimate comes from the data, not
the method.

In contrast, for in the two poorly estimated CFRD subjects,
the glucose value dramatically increased to greater than
250 mg/dl within 40 min. This sharp increase in glucose

level reduces the amount of time at intermediate glucose
levels. As a consequence, it makes estimating ISR difficult at
those intermediate values.

3.3.3 Inferred Parameters
In Table 1, we provide a summary for the 12 normal and 7 CFRD
subjects who were estimated well, including the ISR average
values of the estimated parameters presented by the mean and
95% confident interval, slope, and the ISR evaluated at the glucose

FIGURE 5 |Goodness of Fits for normal subjects. Red points indicate have relatively poor reconstruction of insulin measurements, and the blue point has relatively
poor linear relation between CSR and ISR. These metrics for these poor reconstructions are all improved (green points) when the data point at 60 min is left out.

FIGURE 6 | Improvement for the estimation results of plasma insulin ((D) versus (C)), c-peptide ((F) versus (E)), and slope ((H) versus (G)) by removing the uncertain
blood glucose value at 60 min (A), and using the interpolated glucose values in the gap between the glucose values at 30, 90 min (B).
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value of 140 mg/dl. Note that only 9 of 13 control subjects have
peak glucose values that reached 140 mg/dl, whereas all of the 7
CFRD had blood glucose of 140 mg/dl or greater.

As a final external validation of the method, we were able to
differentiate CFRD from normal patients in two ways. First, as
shown in Table 1, the ISR at a glucose of 140 mg/dl is higher for
the control subjects than the CFRD subjects. This result indicates
the ability of the beta-cells for healthy subjects to produce more
insulin to mitigate the increased glucose level. Second, the
estimated τpI for CFRD subjects is larger than the control
subjects, as shown in Table 1. This result reflects physiological
insights for CFRD that insulin takes a longer time to accumulate
and reach a high value than in the control subjects, due to Lower
production in beta cells and lower peripheral degradation rate.
Therefore, the increased glucose values in CFRD subjects provide
better dynamics for estimation that allows the algorithm to
estimate τpI more precisely.

The peak of the ISR can be estimated if the glucose range is
wide, e.g., 100–350 mg/dl. However, in a short glucose range of
100–140 mg/dl, accurate estimation of the peak is not guaranteed.
This observation means it is more likely for CFRD subjects to
capture the ISR peak than the control subjects due to the high
glucose range in these individuals. We found that two CFRD
subjects from among the CFRD group had a glucose range that
allowed us to estimate the ISR peak and hence the full ISR
functional shape. In these two CFRD subjects, the blood glucose
range is between 100–400 mg/dl. On the other hand, the blood
glucose range for control subjects is between 95–140 mg/dl, which
makes estimating the ISR peak hard to achieve. However, we found
only one control subject that the ISR peak was nearly estimated.
The glucose range in this control subject is between 95–180 mg/dl.
Therefore, we conclude that the peak of the ISR can be better
estimated for CFRD subjects, in which the range of blood glucose
is wide.

To compare the normal and CFRD subjects, we evaluated the
estimated ISR at the glucose value of 140 mg/dl for subjects with
good estimation in the two groups. After removing the poorly fitted
subjects and the control subjects that had not reached the glucose
value of 140 mg/dl, we obtained 12 control subjects and 7 CFRD
subjects out of 17 and 9 subjects, respectively. The results are
presented using the empirical cumulative distribution function
(ECDF), in Figures 7A,B. Therefore, we found that the ISR
values of the normal subjects were with 50% that the ISR exceeds
the rate of 100 μU/ml/min. Whereas, the CFRD subjects were
with 50% that the associated ISR value around 15 μU/ml/min.
These results indicate that the pancreatic beta-cell of the CFRD
cannot produce enough insulin due to the dysfunction of these
beta-cells. On the other hand, these beta-cells can produce more
insulin at the value of glucose (140 mg/dl) in normal subjects.

The estimated slope between the estimated ISR and CSR was
also used to characterize these two groups. The slope (CSR/ISR)
between the estimated CSR and ISR for both normal and CFRD
subjects was plotted in Figures 7C,D, as ECDF. In both control and
CFRD subjects we observed a straight line describing the
physiological relationship between ISR and CSR. The slope is in
the unit of ng/μU. When both units are converted to moles, the
expected conversion factor is 0.056. In Figures 7C,D, we plotted
this value (0.056) as a vertical (dashed-red) line to illustrate how
these slopes, which are predictions of the expected value 0.056, are
close to this expected value. As shown in Figure 7C, the predicted
slope of the control subjects was around the expected value of
0.056. On the other hand, the wide glucose range in the CFRD
subjects used to estimate both ISR and CSR, which gives more
information to estimate ISR and CSR trajectories (e.g., ISR
secretion and peak regions), increased the uncertainty in the
estimated slope, as shown in Figure 7D.

3.3.4 Two-Compartment Model
Note that the above fits and figures were obtained using the
single-compartment model. However, comparable results can be
obtained when incorporating the two-compartment model with
the algorithm. But, it is a significant to note that, when the single
model cannot estimate the patient’s ISR and CSR, adding a
second compartment is not helpful. For a comparison between
the two models, the ISR was evaluated at the glucose value of
140 mg/dl, and the slope between ISR and CSR was estimated, for
control subjects, using our algorithm incorporating the two
models. Therefore, shifting to the two-compartment model,
the control subjects’ data gives a fraction difference of absolute
mean error for the ISR at glucose value of 140 mg/dl provided by
(Mean ± SD) 0.32 ± 0.2. In contrast, the fraction difference of the
absolute average error of the slope is given by 0.14 ± 0.15. These
results indicate that adding more compartments and unknown
parameters is unnecessary to estimate reliable ISR. Instead, a
simple model can be incorporated with our method to estimate
ISR for people with different beta-cell functions.

4 DISCUSSION

We developed a new estimation approach for inferring the ISR
from plasma insulin and c-peptide measurements. We validated
this method with synthetic data and nominal physiological
parameters and were able to reconstruct these values from
generated ground truth data with 20% noise is added to each
data point for both plasma glucose and insulin. Then the
algorithm was applied to OGTT clinical data for both control
and CFRD subjects. We use the estimated slope between ISR and

TABLE 1 | A summary for the normal and CFRD subjects, including the ISR average values of the estimated parameters, presented by the mean and 95% confident interval,
slope, and the ISR evaluated at the glucose value of 140 mg/dl.

Parameter τPI Km C0 α Slope ISR(140 mg/dl)

Control Subject 15 ± 5 123 ± 57 209 ± 39 0.06 ± 0.02 0.06 ± 0.01 128 ± 57
CFDR Subject 28 ± 12 75 ± 60 600 ± 240 0.014 ± 0.01 0.14 ± 0.06 73 ± 60
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CSR to evaluate the estimation for both normal and CFRD
groups, as well as the RMS between the observations and the
model-estimated values.

We hypothesize that to estimate ISR, it is not necessary to use
an OGTT, IVGTT, or other glucose tolerance test. Instead, it can
be estimated by knowing glucose values and a nonlinear function
of the secretion rate with unknown parameters. Therefore, we
specifically implemented a sigmoid function to model the ISR and
CSR and then estimate them independently from insulin and
c-peptide data. The ISR peak can be estimated, using this
function, if the glucose value is high enough to capture the
peak. Using our method, we expect to estimate the baseline of
the secretion rates if we have more sampled data, especially at the
beginning of the test.

4.1 Validation
Our validation test uses the equal molar ratio between plasma
insulin and c-peptide secretion rates. Even though the CFRD
and control subjects have different physiology and the ISR and
CSR have various physiological parameters and nonlinear
relations with plasma glucose concentration, our algorithm
recovers the linear relationship between ISR and CSR for both
groups. This result indicates the accuracy of the estimation of
the algorithm. Another test uses the normalized root-mean-
square (RMS) error between the estimation and the measured
values. We showed that the estimation, in the two groups, in
which the relationship between ISR and CSR is linear, the RMS
error between modeled insulin or c-peptide and estimated
ones is small. This observation reflects the consistency in our
results showed by these two validation tests used in our
method.

4.2 Phenotype
We were able to differentiate the normal and CFRD diabetes
phenotypes. We show that the ISR for individuals with CFRD is
statistically significantly lower than the ISR for individuals’
normal glucose regulatory systems (see Table 1). However,
the ISR peak for the two groups did not differentiate them
because the peak ISR was often not observable or computable for
normal patients. In addition, due to the high glucose dynamics
and slow insulin accumulation in the CFRD subjects, which
reveals more information about the insulin degradation time
(τpI), the estimated τpI was larger in this group than the control
subjects.

4.3 Identifying Potentially Erroneous Data
Points and Improving Reliability
As shown in Section 3.3.2, this inference method may be able to
identify erroneous data points. In the example shown (Figure 6,
and green point in Figure 5), such identification leverages three
separate components: the goodness of fit of the insulin trajectory,
the goodness of fit of c-peptide trajectory, and the linear
relationship between ISR and CSR. Because both ISR and CSR
are inferred independently, these three are independent
measures.

The inference relies on the physiological knowledge that ISR is
primarily a function of plasma glucose concentration, and the
linear relation embodies the physiological fact that c-peptide and
insulin are released in a 1:1 molecular ratio. Such use of external
knowledge - that ISR is primarily a function of plasma glucose,
and that CSR is proportional to ISR - is a simple and principled
pathway to identifying data errors.

FIGURE 7 | A comparison between the normal and CFRD subjects, using the probability of empirical cumulative distribution function (ECDF), for the ISR value (A,B)
evaluated at the glucose value of 140 mg/dl (horizontal) and the slope between ISR and CSR (C,D), the vertical axis is the probability (ECDF); the expected value is 0.056
for the slope (red line (C,D)).
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We note also that because the underlying model for plasma
insulin or c-peptide accumulation includes a degradation time
that appears to be in the range of τI 5–15 min, the model is in
effect only dependent on the interpolated glucose values within τI
or τC ahead of each data point, and for the distally separated
points residual after removal of the point at 60 min, this time is
relatively small.

If proven reliable in future studies, we anticipate that such
analysis - and removal of erroneous points - could make clinical
testing more reliable by increasing the amount of diagnostic
information that can be extracted from a single diagnostic test,
and decrease the need for multiple diagnostic tests using model-
based inference. Currently, the ADA recommends four pathways
for diagnosing pre-diabetes and type-2 diabetes, one of which
includes an OGTT (Davidson et al., 2021b). Similarly, the
recommendation to diagnose gestational diabetes is via a GTT
or OGTT (Davidson et al., 2021a). In both cases, a diagnosis
requires two tests. By using inference paired with the information
in the dynamics of the OGTT rather than a single value, we suspect
it would be possible, as we show in this work (Figure 6), to remove
inaccurate outliers and accurately estimate ISR and other
diagnostic quantities. If corroborated with further studies, this
should motivate quantification of both insulin and c-peptide from
blood draws during such clinical measures.

4.4 Inferring Pancreatic Health
Additionally, the model provides a platform for extracting
additional information. For example, here we estimate the
entire ISR curve, increasing accuracy and explainability of the
context of the patient state, leading to quantified information
regarding howmuch of the ISR was observed for observed glucose
levels and how much excess capacity for insulin production the
patient may have, leading to more accurate diagnosis of the
patient’s endocrine state.

Considering the above results and discussion, we now have a
suitable method with physiological insights about estimating ISR
for subjects with different physiological conditions. Furthermore,
we showed that using a simple model is good enough to estimate
ISR rather than a more complex model with more compartments
and unknown parameters. Moreover, we found that using the two
compartment, when the single compartment failed to estimate the
ISR and CSR correctly, is not useful. These results allow us to
implement the estimated ISR function into glucose models with
various fidelity and complicity to understand better the glucose
regulation system for patients with different pancreatic beta-cell
functions.

4.5 Hepatic Insulin Degradation
We note that in this modeling we have lumped all insulin and
c-peptide degradation to a general degradation rate, and have not
tried to differentiate hepatic degradation or its effects. In the ISR
literature (i.e., Watanabe et al., 1998; Watanabe and Bergman,
2000), such efforts are motivated because the pancratic beta-cells
secrete insulin and c-peptide into the portal vein blood stream. The
portal vein then passes through the liver and some insulin (up to
80%) is immediately degraded by the hepatocrytes (Najjar and
Perdomo, 2019). If this process were simply proportional to plasma

insulin concentration, then the one-compartment model for
insulin would be modified to:

_xpi � ui,p t( ) 1 − αh( ) − κi + βportαh( )xpi (11)
Here ui,p is the ISR at the pancrease into the portal vein, αh is the

absorption proportionality αh ∈ (0 : 1), and βport is the ratio of the
portal blood flow rate to the total blood volume, which for adult
humans βport ∈ (0.15–0.4)/s. Likewise, κi is the degradation
proportionality due to other processes. The addition to the
standard degradation rate comes because the liver cannot
distinguish between freshly secreted insulin and circulating insulin.

For the work as described, the ISR inferred is effectively the
rate of insulin secretion into the circulation system following
transit through the liver, i.e., ui,inferred = ui,p(t) (1 − αh). Because
c-peptide is not primarily degraded in the liver, this correction
factor doesn’t apply. Therefore in cases where both insulin and
c-peptide are measured, the slope of the linear relation between
parametrized CSR and ISR should be equal to 1/(1 − αh) (after
unit conversion to molar units). For normal subjects, the majority
of subjects therefore had hepatic absorption ratios of αh < 0.4
(Figure 7C). But the CFRD subjects had wider range of slopes,
consistent with values as high as αh < 0.8.

Because our inference method also estimates the insulin
degradation rate for an individual, this model implies that
βportαh < 1/τpI. The inferred fit for normal subjects, with
degradation times are of order τpI are of order 10−15 min and
αh 0.1, are consistent with this inequality and reasonable values of
βport. But, for example, the CFRD subject whose data is shown in
Figure 4, has an αh 0.8 and τpI ~50 min, which is not consistent
with normal portal blood flow values.

In future work with larger data sets we will investigate these
observations as a function of subject health.

We further note that this linear model (11) for hepatic insulin
degradation has limitations. In particular, the insulin-receptors
on the hepatocytes then signal insulin endocytosis and
degradation (Najjar and Perdomo, 2019). Therefore the rate of
degradation is insulin dependent.

4.6 Study Limitations
This work represents a first attempt to apply this modeling approach
to infer the parametrization of the ISR from clinical data. Here we
have applied this approach to rather small data sets for both control
and CFRD subjects. We anticipate that the distribution of normal
and abnormal ISR functions will only be clear frommuch larger sets.
We note that this effort fall short in terms of the aim of establishing
functional shape for control subjects. This method can only infer the
ISR function over the range expressed during the clinical
measurement, and the maximum glucose level for control
subjects represented here was well below 150mg/ld - and the
inferred ISRs were far from saturated.

5 CONCLUSION

This study presents a new approach for estimating ISR using
plasma insulin and c-peptide measurements. Our approach uses
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simple insulin and c-peptide models and applies both insulin
and c-peptide measures. This algorithm can infer ISR and CSR
from OGTT data. Additionally, the method provides a deeper
interpretation of the OGTT and a measure of the robustness and
accuracy in both the inference and data.

We validate the estimation results in three ways. First, we
validate the results by estimating the plasma insulin and c-peptide
and comparing RMS between measurements and modeled
responses of these variables. Second, we use the 1:1 M ratio
between ISR and CSR to assess the estimation results. We
showed that a linear relationship between ISR and CSR can be
observed when they are estimated correctly. This result is
confirmed in both CFRD and normal subjects. Third, we
showed that our algorithm can differentiate between subjects
with different beta-cell phenotype-related diseases. Moreover, we
showed that the ISR level in CFDR subjects is lower than the ISR
level in normal subjects. However, since the variation in blood
glucose is high in CFRD patients, the peak of ISR and plasma
degradation time of insulin and c-peptide are estimated more
precisely. Further, we showed that the estimation of ISR utilizing
the single-compartment model is very similar to the results using
the two-compartment model. This indicates different models the
robustness of our approach in estimating the ISR using different
models’ complicity and confirms that the ISR can be estimated
precisely using only a simple model with less parameters. We also
tested our model by treating uncertain measured values in the
data. Finally, we provided a physiological interpretation that our
method can handle the uncertainty in measured values and
improve the estimation of ISR.

The immediate impact of this work is the development of a
new approach for estimating ISR, which is now available for
determining the beta-cell secretion rates for people with different
conditions. This method is ready to implement into glucose
models providing a better understanding of the glucose
regulation system and monitoring people with diabetes.
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Mathematical modeling reveals
differential dynamics of insulin
action models on glycerol and
glucose in adolescent girls with
obesity
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Under healthy conditions, the pancreas responds to a glucose challenge by

releasing insulin. Insulin suppresses lipolysis in adipose tissue, thereby decreasing

plasma glycerol concentration, and it regulates plasma glucose concentration

through action in muscle and liver. Insulin resistance (IR) occurs when more

insulin is required to achieve the same effects, and IR may be tissue-specific. IR

emerges during puberty as a result of high concentrations of growth hormone

and is worsened by youth-onset obesity. Adipose, liver, and muscle tissue exhibit

distinct dose-dependent responses to insulin in multi-phase hyperinsulinemic-

euglycemic (HE) clamps, but the HE clamp protocol does not address potential

differences in the dynamics of tissue-specific insulin responses. Changes to the

dynamics of insulin responses would alter glycemic control in response to a

glucose challenge. To investigate the dynamics of insulin acting on adipose tissue,

we developed a novel differential-equations based model that describes the

coupled dynamics of glycerol concentrations and insulin action during an oral

glucose tolerance test in female adolescents with obesity and IR. We compared

these dynamics to the dynamics of insulin acting on muscle and liver as assessed

with the oral minimal model applied to glucose and insulin data collected under

the same protocol. We found that the action of insulin on glycerol peaks

approximately 67min earlier (p < 0.001) and follows the dynamics of plasma

insulin more closely compared to insulin action on glucose as assessed by the

parameters representing the time constants for insulin action on glucose and

glycerol (p < 0.001). These findings suggest that the dynamics of insulin action

show tissue-specific differences in our IR adolescent population, with adipose

tissue responding to insulin more quickly compared to muscle and liver.

Improved understanding of the tissue-specific dynamics of insulin action may

provide novel insights into the progression of metabolic disease in patient

populations with diverse metabolic phenotypes.
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Introduction

The obesity epidemic now affects a significant portion of the

world, causing insulin resistance and metabolic dysregulation in

multiple organs of the body. The worldwide prevalence of

overweight and obesity has approximately doubled from

1980 to 2015, affecting adults and children of all ages, and is

forecasted to reach levels over 50% by 2030 (Kelly et al., 2008;

Chooi et al., 2019). The metabolic syndrome as defined in the

National Health and Nutrition Examination Survey (NHANES)

is related to insulin resistance (IR) and shows an increased risk

for developing type 2 diabetes and cardiovascular disease. The

metabolic syndrome was calculated to affect 34.7% of the U.S.

population in 2016, with a significant increase in the incidence in

young adults from 2011 to 2016 (Aguilar et al., 2015; Hirode and

Wong, 2020). Related to this obesity and metabolic dysfunction,

approximately 34.2 million adults in the United States have type

2 diabetes (T2D) (Centers for Disease Control and Prevention,

2020), and among youth the incidence rate of T2D is also

increasing and expected to quadruple from 2010 to 2050

(Imperatore et al., 2012; Mayer-Davis et al., 2017; American

Diabetes, 2020). Of grave concern, T2D appears to be muchmore

aggressive in youth than in adults, including poor response to

interventions effective in adults, and early onset of diabetes

complications (RISE Consortium and Investigators, 2019;

Group et al., 2021; Utzschneider et al., 2021). Even when

dysglycemia is already present, adolescents secrete much

higher concentrations of insulin than adults, likely driven by

their marked IR (RISE Consortium, 2018; Utzschneider et al.,

2020). This highmorbidity and the unique physiologic features of

insulin sensitivity and secretion in youth drive the necessity to

specifically investigate the systems involved in metabolic disease

development in youth. By better understanding the unique

pathology of metabolic disease in youth, better treatments can

be developed and personalized for individuals.

Metabolic dysregulation often arises from an imbalance in

energy consumption and expenditure. During fasting, energy is

primarily provided from energy stored in adipose and hepatic

tissue. In a healthy individual, when energy is acquired through

ingesting food, the mechanisms that provide endogenous energy

sources are suppressed, so that the ingested fuel can be used and

stored. Insulin facilitates the transition from an endogenous to

exogenous energy source, and it manages glycerol, free fatty acid

(FFA), and glucose systems across different metabolic states. In

addition to suppressing the release of glucose from the liver and

stimulating glucose uptake in hepatic and peripheral tissues

(Petersen and Shulman, 2018), insulin is the most potent

antilipolytic hormone: it suppresses lipolysis, and reduces the

use of FFA as an energy source. IR is defined as a decreased

biological response to insulin, which leads to increased insulin

secretion, eventually causing pancreatic β-cell failure and T2D

(Ronald Kahn, 1978; Arner, 2002; Cree-Green et al., 2019a). IR is

tissue specific, and it may manifest in individual tissues at

different points in disease progression. It is hypothesized that

the development of IR in adipose tissue, resulting in excess

circulating FFA and glycerol, may induce IR in other tissues

(Arner and Rydén, 2015). Elevated FFA concentrations may

contribute to dysglycemia in multiple ways, including

impairing β-cell insulin secretion and vascular function, and

directly inducing hepatic and skeletal muscle IR (Arner, 2001;

Arner, 2002; Arner and Rydén, 2015; Sondergaard et al., 2017),

thereby emphasizing the importance of characterizing

adipose IR.

The gold standard in assessing insulin action on adipose

tissue is a low dose hyperinsulinemic euglycemic (HE) clamp

with stable isotope tracers. The HE clamp determines the steady

state concentration of insulin, that is, necessary to suppress FFA

and/or glycerol release into circulation. Using different insulin

infusion rates as part of a multi-step clamp with glucose and

glycerol tracers, the insulin sensitivity of adipose, liver, and

peripheral tissue can be determined (Conte et al., 2012).

While effective at quantifying some aspects of adipose health,

the HE clamp is resource intensive and narrow in application as it

relies on steady state values produced from glucose and insulin

infusions rather than the coordinated physiologic response that

occurs with oral nutrient ingestion (Sondergaard et al., 2017).

Moreover, the HE clamp does not provide insight into the

dynamics of insulin action on adipose, liver, or muscle tissue.

An insulin-modified frequently sampled intravenous glucose

tolerance test (IM-FSIVGTT) is a dynamic test where glucose

is administered intravenously followed by an insulin bolus,

showing metabolic dynamics under non-physiologic

circumstances. An oral glucose tolerance test (OGTT) is a

more physiologically complete dynamic test where

participants ingest glucose orally through a sugary drink,

allowing for the contribution of multiple gut hormones that

may also play a role in the coordinated response to nutrition.

Therefore, to focus on the dynamic response of adipose, liver, and

muscle tissue to insulin under a more physiologic state, we

quantify the dynamics of insulin action on glycerol and

glucose during an oral glucose tolerance test (OGTT).

Both glycerol and FFA are released during lipolysis, but

glycerol is a better marker of lipolysis due to differences in

recycling between glycerol and FFA. FFA can either be

released from adipose cells into the bloodstream or be

recycled within adipose cells in a process by which the FFA

are reincorporated into triacylglycerides and absorbed by

neighboring cells prior to entry to the bloodstream (Coppack

et al., 1999; Landau, 1999; Reshef et al., 2003; Wolfe and Chinkes,

2005; Magkos et al., 2012; Cree-Green et al., 2016; Cree-Green

et al., 2019a; Cree-Green et al., 2019b). The process of

intracellular and intratissue recycling complicates the

dynamics of FFA and must be considered when evaluating

adipose metabolism with FFA. In contrast, because adipose

tissue lacks the expression of glycerol kinase (Steinberg et al.,

1961), glycerol is not recycled in adipose tissue as it cannot be
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reincorporated into triacylglycerides. Instead, circulating glycerol

produced by lipolysis is taken up primarily by the liver via hepatic

glycerol kinase expression, allowing glycerol to be

phosphorylated and reincorporated into triacylglycerides

(Coppack et al., 1999; Jensen, 1999; Landau, 1999). The

absence of local glycerol recycling in adipose makes glycerol

an appealing metabolite to track adipose metabolism. Whereas

lipolysis from adipose tissues is the primary source for

intravascular glycerol, a small proportion of glycerol is also

produced via glycogenolysis and gluconeogenesis (Rotondo

et al., 2019). These synthetic processes are regulated by

glycerol-3-phosphate phosphatase and phosphoglycolate

phosphatase which control the amount of glycerol made by

glycogenolysis in the fasting state, and then gluconeogenesis

in the fed state (Possik et al., 2022). It is estimated that up to

10%–15% of intravascular glycerol during prolonged fasting may

be attributed to these processes, but the proportion attributed in

the fed state is not as clear. The fasting contribution from

glycogenolysis is higher with long fasting durations. In our

study, participants had a monitored fast of 12 h, so the

contribution from glycogenolysis is expected to be low. The

contribution from gluconeogenesis is related to serum glucose

concentrations. As none of our participants had diabetes, the

contribution from this pathway is also expected to be low.

Therefore, we consider changes in glycerol concentration to

primarily reflect insulin-mediated changes in lipolysis.

Mathematical models of glucose metabolism have

contributed a fundamental understanding of interactions in

glucose and insulin dynamics (Ajmera et al., 2013; Cobelli

et al., 2014). These models describe how insulin induces

glucose uptake by peripheral tissue and reduces glucose

production from endogenous sources under different

experimental conditions, and the Oral Minimal Model

(OMM) describes glucose dynamics during an OGTT

(Bergman et al., 1979; Bergman, 1989; Dalla Man et al., 2002;

Ha et al., 2016; Bartlette et al., 2021). Although insulin

concentrations may be modeled directly (Bergman RNB et al.,

1981; Picchini et al., 2005; Ramos-Roman et al., 2012; Ha et al.,

2016), an intermediate variable of insulin action is often

introduced to account for the delay between changes in

insulin concentrations and observed effects on glucose

concentrations (Bergman, 1989; Dalla Man et al., 2002), and

this delay may increase as insulin sensitivity decreases. The

concepts of glucose metabolic modeling have also been

extended to other tissues and metabolic systems including

adipose tissue (Roy and Parker, 2006; Periwal et al., 2008;

Ramos-Roman et al., 2012; Thomaseth et al., 2014; Li et al.,

2016; Young and Periwal, 2016). In previous work we modeled

glycerol dynamics with an implicit insulin effect on the glycerol

rate of appearance that was estimated using glycerol stable

isotope tracer data (Diniz Behn et al., 2020). Periwal and

colleagues proposed a model of interacting FFA and insulin

dynamics to measure adipose metabolism during an IM-

FSIVGTT (Periwal et al., 2008). Their model used a Hill

function to represent insulin action-dependent lipolysis and

described both glucose and FFA dynamics using a single

insulin action term, suggesting that the dynamics of insulin

action on glucose and FFA were similar in this study. These

models have been successfully employed to assess adipose

metabolism in translational studies utilizing IVGTTs (Adler-

Wailes et al., 2013; Levine et al., 2020).

To characterize the dynamics of orally-stimulated adipose

metabolism, we develop a differential-equations based

mathematical model that describes the interaction between

glycerol and insulin concentrations during an OGTT. We use

the modeling infrastructure of existing FFA models as a basis for

our glycerol-insulin model, and we explicitly represent the effects

of insulin on lipolysis. We apply the glycerol-insulin model and

the OMM to OGTT data from a population of obese and

overweight adolescent girls with and without polycystic ovary

syndrome (PCOS). This population is characterized by a

significant degree of IR and metabolic dysregulation (Bartlette

et al., 2021; Ware et al., 2022). To quantify tissue-specific insulin

action, we compare simulation results and model parameters

associated with the glycerol model and the OMM. The

differences in the dynamics of insulin action on glycerol and

glucose systems were the primary focus of this study.

Methods

Participants

The development of the glycerol model and analysis of

insulin action dynamics was conducted on data collected in

the APPLE (Androgens and Post-Prandial LivEr metabolism:

liver and fat regulation in overweight adolescent girls;

NCT02157954) study. This study was performed to explore

metabolic abnormalities associated with PCOS and develop

new adolescent specific models to understand IR. It was

approved by the Colorado Multiple Institutional Review

Board. All participants provided informed consent if they

were 18–21 years old or parental consent and participant

assent if they were 12–17 years old.

The participants were recruited for this cross-sectional study

from pediatric clinics at Children’s Hospital Colorado. The

inclusion criteria were age 12–21 years, female sex,

postpubertal Tanner Stage 5 status, at least 18 months post-

menarche, and overweight/obese status (BMI ≥ 90th percentile

for age and sex). The participants had a sedentary lifestyle (<3 h
routine exercise per week, validated with both a 3-day activity

recall and 7-day accelerometer use). The exclusion criteria were a

confirmed diagnosis of diabetes (HbA1c ≥ 6.5%), pregnancy,

anemia, liver diseases other than non-alcoholic fatty liver disease

(NAFLD), an alanine transferase (ALT) level greater than

125 IU/L, and use of medications known to affect insulin
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sensitivity or glucose metabolism (including systemic steroids

and antipsychotics) in the last 6 months. Metformin and oral

contraceptives were excluded in all participants except in

metformin (n = 6) and contraceptive (n = 10) sub-cohorts.

Participants with PCOS were defined according to the NIH

criteria: 1) an irregular menstrual cycle and 2) clinical and/or

biochemical evidence of hyperandrogenism (Zawadzki JD, 1992).

Total body fat and fat free mass percentages was assessed by

standard DEXA methods (Hologic, Waltham, MA).

From the ninety-two studied participants, the population

analyzed in this paper was a subset of sixty-six participants

(18 with normal menses and forty-eight with PCOS, described

in Table 1). Of the ninety-two study participants the following

were excluded: Sixteen with missing OGTT time points

precluding modeling and 10 participants randomized to

receive exanatide during the OGTT, because exenatide is

known to alter insulin dynamics.

Protocol

Each participant had two study-visits: 1) an initial

consent/screening for eligibility; 2) an overnight monitored

fast during the follicular phase of the menstrual cycle followed

by a six-hour OGTT. Before the metabolic study visit,

participants refrained from physical activity for 3 days. The

afternoon and evening prior to the OGTT, each participant

consumed an isocaloric diet (65% carbohydrate, 15% protein,

20% fat). After the evening meal, each participant refrained

from activity and followed a monitored inpatient 12-h fast,

followed by a frequently sampled OGTT. Baseline fasting

metabolite concentrations were determined prior to the

OGTT. At 8 a.m., participants ingested 75 g glucose and

25 g of fructose. Fructose was included to distinguish

abnormal hepatic fat metabolism. The drink was consumed

in a three-minute window at time 0 and blood samples were

taken at the following time points: −20, −10, 0, 10, 20, 30, 45,

60, 75, 90, 105, 120, 135, 150, 165, 180, 210, 240, 300, and

360 min. Blood glucose was measured at the bedside with the

StatStrip® Hospital Glucose Monitoring System (Novo

Biomedical, Waltham, MA, United States). Serum insulin

was measured with radioimmunoassay (Millipore, Billerica,

MA, United States). Serum glycerol concentrations were

obtained from an ELISA assay (R-Biopharm, Washington,

MO, United States).

Oral minimal model for glucose dynamics

OGTT glucose dynamics for each participant were described

using the Oral Minimal Model (OMM) (Dalla Man et al., 2002), a

one-compartment mathematical model that describes the effect

of insulin on glucose and provides an estimate of whole-body

insulin sensitivity (SI), as reported previously (Bartlette et al.,

2021). Figure 1 is a schematic that shows how insulin action

affects the uptake term of the glucose dynamics.

The oral minimal model equations are

_G � −[SG +XG]G + SGGb + Rameal

V
(1)

_XG � { −pG
2 XG , I(t)< Ib

−pG
2 XG + p3(I(t) − Ib) , I(t)≥ Ib

(2)

TABLE 1 Population description. These values are reported as
population numbers or means ± the standard deviation.

Variable Values

Physical characteristics

Number (n) 66

Age (years) 15.6 ± 2

Race (n) White/Black 59/7

Ethnicity (n) Hispanic/non-Hispanic 35/31

Disease State (n) Obese Control/PCOS/PCOS + drug 18/33/15

BMI (kg/m2) 35.5 ± 5.7

Weight (kg) 95.8 ± 16.9

Fat Free Mass (kg) 49.6 ± 7.3

Fat Mass (kg) 42.9 ± 10.8

Height (cm) 164.1 ± 7.1

Waist Circumference (cm) 106.5 ± 11.9

Metabolic Characteristics

6h Insulin Sensitivity (dL/kg/min per μU/mL) 2.9 ± 2.4 × 10–4

Fasting glucose (mg/dl) 90 ± 9

2-h glucose (mg/dl) 142 ± 25

Fasting glycerol (μmol/L) 118 ± 26

Fasting FFA (μmol/L) 625 ± 139

Fasting Insulin (μU/mL) 26 ± 15

Peak Insulin (μU/mL) 361 ± 207

Peak Insulin Time (min) 84 ± 47

FIGURE 1
Schematic of oral minimal model (OMM).
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where G(t) is glucose concentration in mg/dL; XG(t) is insulin
action on glucose; I(t) is the insulin concentration; Gb and Ib are

basal glucose and insulin concentrations, respectively; SG is the

glucose effectiveness; pG
2 is a time constant of insulin action; p3 is

a constants of insulin action clearance and appearance; and

Rameal(α, t) is a piecewise-linear function describing the rate

of appearance of exogenous glucose in the bloodstream. The

initial values for the OMM are G(0) � Gb and XG(0) � 0. Six-

hour OGTT data from this population were fit to the OMM

implemented in SAAM II (SAAM II software v 2.2, The Epsilon

group, Charlottesville, VA, United States) as we previously

detailed in Bartlette et al. (2021). The parameters we

determined in this prior study were used to model the glucose

dynamics for all participants in the present study. The insulin

action profiles generated from the best-fit parameters were the

focus of comparison between insulin-mediated glucose and

glycerol dynamics.

Glycerol dynamics model

Informed by models of FFA dynamics, we developed a

differential equations-based model for glycerol dynamics that

utilizes the concept of insulin action as an intermediate variable

between measured insulin and its action on adipose tissue.

Figure 2 is a schematic of insulin action on glycerol dynamics

that illustrates insulin action on glycerol production. By contrast

with insulin action’s role to activate glucose uptake in OMM,

insulin action in the glycerol model suppresses glycerol

production. The equations for the glycerol model are as follows:

_g � −Sgg + l0 + l2

1 + (Xg

X2
)A (3)

_Xg � { −pg
2 Xg , I(t)< Ib

−pg
2 Xg + pg

2 (I(t) − Ib) , I(t)≥ Ib
(4)

where g(t) is the concentration of glycerol in μ mol/L; Xg(t) is
insulin action on glycerol; pg

2 is a time constant of insulin action;

I(t) is the insulin concentration; Ib is the basal insulin

concentration; Sg is the effectiveness of glycerol uptake; l0 is

the insulin independent lipolysis rate; l2 is the insulin dependent

(suppressible) lipolysis rate; X2 scales insulin action; and A

affects how aggressively changes in insulin action result in

changes of lipolysis suppression. Lipolysis is modeled as the

sum of an insulin independent lipolysis rate, l0, and a Hill

function representing insulin action-dependent lipolysis and

describing the transition from maximum lipolysis rate, l0 + l2,

to the minimum lipolysis rate, l0, as insulin action increases. The

Hill function is the functional form that was determined to best

fit the dynamics of FFA suppression (Periwal et al., 2008).

Glycerol model fitting process

Before the glycerol model was fit to glycerol data for each

participant, the data were truncated to reflect the time period

from the drink ingestion (t = 0) to the time at which the

participant’s glucose concentration reached a nadir

concentration following the glucose excursion induced by the

drink. The choice to fit data from t = 0 to the glucose

concentration nadir avoided physiological complications due

to the high prevalence of reactive hypoglycemia in this

population, and it provided a standard check point by which

to compare participants. More details are included in the

Discussion.

The basal concentration of insulin was determined by

averaging the concentrations at timepoints −20, −10, and

0 min. The model was then fit to the truncated data in

MATLAB (Mathworks, Natick, MA) using the interior point

algorithm FMINCON and the built-in ode solver ODE23S with

an absolute tolerance of 1e-10. The FMINCON algorithm

minimized an objective function analogous to the objective

function described in Periwal et al. (2008); Li et al. (2016).

Briefly, this objective function uses single spectrum analysis

with only one eigenvalue retained to generate a representative

smoothing of the data. Variance of the data is calculated by

squaring the standard deviation of the squared difference

between the experimental data and the representative smooth

curve generated from the single spectrum analysis. The error

term is the sum of the square differences between the

experimental data and the numeric solution produced by

ODE23S divided by the calculated variance. As in previous

work, we fixed the parameter A to 2 because the model was

not sensitive to this parameter and fixing it improved model

identifiability (Li et al., 2016).

Lipolysis parameters were seeded in a physiological range

between 0 and approximately 200% of the analogous parameter

values reported by Periwal and colleagues (Periwal et al., 2008).

The Sg and pg
2 parameters were seeded between 0 and 1. If the

initial parameters did not produce a valid model state (i.e., model

states were not real or positive), all parameters would be

FIGURE 2
Schematic of glycerol model.
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randomly reseeded until the initial model state was valid. For the

optimization, all parameters were constrained to be nonnegative

and parameters representing proportions, Sg and pg
2 were

restricted to range between 0 and 1. The glycerol and insulin

concentration data for each participant were fit with FMINCON

75 times. The solution with the lowest objective function value of

the 75 runs was selected as the best fit parameter set.

Analysis of insulin action dynamics

All analysis was done in MATLAB (Mathworks, Natick,

MA). To quantify the differences in insulin action dynamics

associated with glucose and glycerol, we defined three metrics on

the insulin action profiles. The first metric determines the

difference in time between the insulin action peak for each

metabolite and the peak insulin concentration. The

magnitudes of each delay were computed for both glucose

and glycerol for all participants and compared with a

Wilcoxon signed rank test. The Wilcoxon test was chosen to

compare the two distributions because the data are paired and

not normally distributed. Since the dynamics of glucose and

glycerol come from the same participant, using the same insulin

concentrations as a forcing function, the samples are not

independent.

The second metric determines the difference in time between

the insulin action peak for glucose and the insulin action peak for

glycerol. This measure describes the relative timing of insulin

action for each metabolite. The difference in timing for glucose

and glycerol action was evaluated using a one-sample Student’s

t-test to establish if the difference was equal to zero. The third

metric determines the difference in the normalized insulin

actions at the time point associated with the glucose nadir

(i.e., the lowest glucose value after the glucose peak). This

measure quantifies the relative strength of insulin on the

glucose system compared to the glycerol system at the time of

the glucose nadir. To compute this measure, the insulin action

curves for each metabolite were normalized by the peak insulin

action values, respectively, and then the insulin action values at

the time point associated with the glucose nadir were determined.

The normalized glycerol insulin action nadir value was

subtracted from the normalized glucose insulin action nadir

value to obtain the relative difference in insulin actions at the

nadir. The relative difference in the normalized insulin actions at

the nadir was evaluated with a one-sample Student’s t-test to test

if the difference was equal to zero.

In addition to these metrics comparing the insulin action

profiles, and we also compared the estimated parameters pG
2 and

pg
2 that govern the insulin action dynamics for glucose and

glycerol, respectively. Qualitatively, larger insulin action time

constants reflect smaller delays from the insulin concentration

profile while smaller insulin action time constants reflect larger

delays from the insulin concentration profile. Since the insulin

action time constants have an exponential effect on insulin

action, we compared the magnitude of time constant values

for each metabolic system using log10(pG
2 ) and log10(pg

2 ). The
log10(pg

2 ) and log10(pG
2 ) parameter distributions were not

approximately normal. We compared log10(pG
2 ) and

log10(pg
2 ) with a Wilcoxon signed rank test.

Results

Mathematical modeling of glucose and
glycerol dynamics

For each participant we fit OMM and the glycerol model to

OGTT data. Following ingestion of the drink, glucose and insulin

concentrations increased and glycerol concentrations decreased

for all participants. Although the functional form for insulin

action was the same for both models, we found that obtaining

good fits to the glucose and glycerol data required separate

representations of the dynamics of insulin action on each

metabolite. Figure 3 shows the OMM and glycerol model fits

to glucose and glycerol dynamics, respectively, for two

representative individuals from our cohort. These participants

were selected to show different dynamic features associated with

varying degrees of glycemic dysregulation in this population. The

first participant’s insulin profile has a single insulin peak (SIP).

The second participant’s insulin profile has a secondary peak

prior to the main peak resulting in a double insulin peak (DIP).

The SIP participant reaches peak insulin concentration at 75 min

while the DIP participant’s insulin peaks at 90 min. The

magnitude of the insulin response for the DIP participant is

large compared to that of the SIP participant, more than doubling

peak insulin from the approximately 300 μ U/mL in the SIP

participant to approximately 700 μ U/mL in the DIP participant.

In addition, the DIP participant exhibits an insufficient initial

insulin response, an extended period of hyperglycemia, and an

excursion below the basal glucose level to a nadir glucose level of

58 mg/dl of glucose, all indicators of poor control of central

metabolism. The DIP participant is one a subset of individuals in

our cohort who exhibits a hypoglycemic response. Both

participants show an increase in glycerol concentrations above

basal levels after the glucose nadir.

Dynamics of glucose insulin action are
delayed relative to dynamics of glycerol
insulin action

Each simulated glucose and glycerol profile has a

corresponding insulin action profile. Insulin action profiles for

the representative participants are shown in Figure 4. Both

glucose and glycerol insulin action time traces rely on the

same insulin concentration time series as a forcing function,
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FIGURE 3
Numerical solutions and OGTT data for glucose and glycerol in two representative participants. (A,B). The numerical solutions for glucose
(black) are shown relative to the data (blue) and insulin (red) concentrations for two representative participants demonstrating a single insulin peak (A)
and a double insulin peak (B), respectively. (C,D). The numerical solutions for glycerol (black) are shown relative to the data (blue) and insulin (red)
concentrations for the same representative participants and show the suppression of glycerol concentrations in response to insulin
concentrations. The lowest glucose concentration following the glucose excursion is taken to be the end point for the glucose and glycerol
numerical solutions for each individual.

FIGURE 4
Time courses of insulin action on glucose and glycerol for two representative participants. (A,B). The time course of insulin action on glucose
plotted against insulin concentrations for two representative participants demonstrating a single insulin peak (A) and a double insulin peak (B),
respectively. (C,D). The time course of insulin action on glycerol plotted against insulin concentrations for the same two representative participants.
All insulin action concentrations are normalized by their maximum value. Insulin concentrations not normalized, and the DIP participant has
higher insulin secretion compared to the SIP participant.
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but distinct dynamics for glucose and glycerol in response to

insulin give rise to qualitatively different insulin action time

traces. For both individuals, the glucose insulin action time trace

shows a greater delay relative to the insulin time trace while the

dynamics of the glycerol insulin action time trace follow insulin

dynamics more closely. This observation that glucose insulin

action has a greater delay relative to changing insulin

concentration than the glycerol insulin action is consistent

throughout the population and can be quantified using several

metrics.

The results from three metrics comparing distinct features of

the insulin action profiles for glucose and glycerol in all

participants are depicted in the histograms in Figure 5. The

differences between glucose insulin action and insulin peak

timing are larger and more variable compared to the

differences between glycerol insulin action and insulin peak

timing (Wilcoxon signed rank test, p < 0.001) reflecting the

relatively later timing of the glucose insulin action peak (Figures

5A,B). This relatively later timing of glucose insulin action is also

seen in the difference in the timing of insulin action peaks for

glucose and glycerol, where the glycerol insulin action peak time

is subtracted from the glucose insulin action peak time

(Figure 5C). The glycerol insulin action peak time was

determined to be earlier compared to the glucose insulin

action peak time with a difference between peak times

significantly different from 0 (Student’s t-test, p < 0.001, 95%

confidence interval: 67.38 ± 13.52). The normalized glucose

insulin action is greater than the normalized glycerol insulin

action at the glucose concentration nadir (Figure 5D). The

difference in normalized insulin action was positive and

significantly different from 0 (Student’s t-test, p < 0.001, 95%

confidence interval: 0.3120 ± 0.0736). This difference indicates

that glycerol insulin action terminates earlier compared to

glucose insulin action relative to the timing of the glucose

excursion. All of these metrics suggest that the timing of

insulin action differs between tissues: glycerol insulin action

on adipose tissue initiates and terminates earlier relative to

glucose insulin action on hepatic tissue and muscle.

Differences in the insulin action time
constant

For glucose and glycerol insulin action models, the insulin

action time constant parameters, pG
2 and pg

2 , respectively, govern

the dynamics of insulin action. As the insulin action time

constant parameters approach one, the insulin action curve

approaches the plasma insulin curve. When the distributions

FIGURE 5
Metrics comparing the dynamics of insulin action on glucose and glycerol across all participants. (A,B). Histograms of the differences between
glucose (A) and glycerol (B) insulin action peak timing from insulin peak timing show that insulin peaks are closer to glycerol insulin action peaks
compared to glucose insulin action peaks (Wilcoxon signed rank test, p < 0.001). (C). A histogram of the differences between glucose and glycerol
insulin action peak timing show that this difference is significantly greater than 0 (Student’s t-test, p < 0.001, 95% confidence interval: 67.38 ±
13.52), indicating that peak glucose insulin action occurs at a later time compared to peak glycerol insulin action. (D). A histogram of the differences
between normalized insulin actions for glucose and glycerol at the glucose nadir shows that the normalized insulin action for glucose is greater than
the normalized insulin action for glycerol at this time point (Student’s t-test, p < 0.001, 95% confidence interval: 0.3120 ± 0.0736) and indicates that
insulin action on glucose has stronger relative action at the glucose nadir.
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of pG
2 and pg

2 were compared across all participants, the pg
2 values

for the glycerol model were much greater and were distributed

across the range 0–1. To evaluate the effect of pG
2 and pg

2 on each

model, the parameters were base 10 log transformed and

compared. The distribution of the log transformed pG
2 and pg

2

values in all participants are shown in Figure 6. The estimates of

the log-transformed parameters were significantly different

(Wilcoxon signed rank test, p < 0.001) and show a distinct

difference in magnitude with pg
2 approximately two orders

larger in magnitude than pG
2 . The difference in estimated

glycerol pg
2 and glucose pG

2 parameters indicates that insulin

has a more immediate effect on glycerol insulin action than on

glucose insulin action.

Summary of differences in insulin action
dynamics

To illustrate how insulin action changes relative to each

metabolite, trajectories were considered in the metabolite-

insulin action phase plane. Phase planes for each

representative participant are shown in Figure 7. In each

FIGURE 6
Histograms of insulin action time constants for glucose and glycerol across all participants. The time constants for insulin action on glucose, pG

2 ,
(A) are consistently smaller than the time constants for insulin action on glycerol, pg

2, (B) (Wilcoxon signed rank test, p < 0.001). This indicates that the
time course of insulin action on glucose is more delayed than the time course of insulin action on glycerol relative to insulin concentration data.

FIGURE 7
Metabolite phase plane trajectories summarize qualitative differences in glucose and glycerol dynamics relative to insulin action. Plotting
normalizedmetabolite concentrations against normalized insulin action concentrations for the representative participants SIP (A) and DIP (B) reveals
that glycerol concentrations change in a diagonal out-and-back pattern while the glucose concentrations change in a cyclic clockwise pattern
reflecting the different dynamics of the responses.
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phase plane, the insulin action and metabolite were normalized

by their maximum value. The phase planes show that changes in

glycerol tracked more closely with changes in glycerol insulin

action compared to changes in glucose and glucose insulin

action. Specifically, the trajectory for the glycerol model

showed an out and back diagonal path with glycerol and

glycerol insulin action changing together. By contrast, the

trajectory for the glucose model showed a cyclic path

reflecting a time lag in changes in glucose insulin action

relative to changes in glucose concentration.

Discussion

Summary of results

This study introduced a model of interacting glycerol and

insulin dynamics in response to an OGTT and compared the

dynamics of insulin acting on glucose and glycerol in a population

of adolescent girls with obesity and with or without PCOS. To our

knowledge, this glycerol model is the first mathematical model to

describe interactions between glycerol and insulin dynamics. It

successfully simulated glycerol concentration data over time from

the ingestion of the drink to the post-excursion glucose nadir, and

it demonstrated a suppression in glycerol concentrations in

response to insulin action. Comparison of results from the

glycerol model to results from OMM simulations of glucose

and insulin dynamics showed that the dynamics of insulin

action on glucose were delayed when compared to the

dynamics of insulin action on glycerol.

Differential dynamics for glucose and
glycerol in adolescent girls

We quantified the dynamics of insulin action on glucose and

glycerol based on model parameters and characteristics of the

modeled insulin action using several metrics. All of these metrics

showed that the dynamics of insulin action on glucose were

delayed relative to the dynamics of insulin action on glycerol

during the OGTT, and distinct representations of insulin action

on glucose and glycerol were necessary to describe the metabolite

data from our adolescent cohort.

Although we represent adipose metabolism through glycerol

instead of FFA, the difference in dynamics we observe for insulin

acting on glucose compared to insulin acting on glycerol likely

reflects the extreme IR with compensatory hyperinsulinemia in

our adolescent cohort. Our cohort has a significant degree of IR,

accompanied by impaired glucose tolerance, with an average two-

hour glucose measurement ≥ 140 mg/dl. Low insulin sensitivity

suggests a slower insulin response, possibly increasing the delay in

insulin action on the glucose system compared to the action of

insulin on the glycerol system. The delayed timing of the insulin

peaks in our cohort reflects extreme IR consistent with similar

populations of adolescents with dysmetabolism (Cree-Green et al.,

2018a; RISE Consortium, 2018). In normoglycemic non-obese

youth, peak insulin concentrations occur at 30 min post drink,

while the insulin peak is at 120 min in adolescents with prediabetes

and diabetes (RISE Consortium, 2018; Tommerdahl et al., 2021).

Our cohort has an insulin peak at 84 ± 47 min. However, the

higher insulin concentrations required as a result of IR may also

play a role in the observed delay of insulin action on the glucose

system. The average peak insulin concentration for a healthy

adolescent insulin profile is approximately 55 μ U/mL

(Tommerdahl et al., 2021). The individuals in our cohort have

an average peak insulin concentration of 361 μU/mL.Whereas the

insulin concentration needed to suppress lipolysis in this

population, 40–50 μ U/mL, is reached quickly after consuming

the drink, there is a much longer delay associated with reaching the

peak insulin concentration which drives maximal glucose uptake

(Cree-Green et al., 2016).

Adolescents have different metabolic characteristics compared

to adults due to pubertally-mediated changes in insulin sensitivity,

which present in addition to effects of obesity (RISE Consortium,

2018). Growth hormone alters both lipolysis and glucose

metabolism, reducing insulin sensitivity in muscle and

peripheral tissue, with concentrations peaking during the rapid

growth phase of puberty (Moller and Jorgensen, 2009; Kim and

Park, 2017). Growth hormone may preferentially influence IR in

glucose metabolism compared to adipose metabolism producing a

distinct metabolic phenotype in adolescents compared to

phenotypes where IR is induced by other metabolic pathways.

A tissue-specific difference in IR in adolescents could produce

differential metabolic dynamics and is consistent with our findings

that data in this cohort requires separate models for insulin action

on glucose and glycerol during an OGTT.

By contrast, Periwal and colleagues described glucose and

FFA dynamics in an IM-FSIVGTT and a mixed meal tolerance

test (MMTT) in African American and Caucasian

premenopausal women using a single model with one form of

insulin action (Periwal et al., 2008; Li et al., 2016). In addition to

the dissimilarities between study populations, distinct dynamics

of glucose, insulin, glycerol and FFA among experimental

protocols may contribute to the differences in our findings. In

an IM-FSIVGTT, plasma glucose concentrations peak at the

beginning of the protocol, and the initial early peak in insulin

reflects the injection of exogenous insulin and may interact with

the endogenous glucose-insulin dynamics and diminish

endogenous insulin release. In an OGTT, ingested glucose is

slowly absorbed and typically peaks at least 20 min after the

administration of the drink (Cree-Green et al., 2018b; RISE

Consortium, 2018); endogenous insulin is released in response

to increased plasma glucose concentrations and acts on glycerol

and glucose in a concentration-dependent manner. In an

MMTT, the absorbance of glucose is slower compared to an

OGTT due to the presence of fat and protein (Li et al., 2016).
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Thus, although, the glucose and FFA model captured the

dynamics of two very disparate methods of increasing glucose

and insulin in an adult population, the temporality of changes in

glucose, insulin, and FFA were similar within each protocol (all fast

in an IM-FSIVGTT and all slow in aMMTT). By contrast, anOGTT

may highlight distinct dynamics between adipose and glucose

metabolism by producing physiologic interactions between

glucose and endogenous insulin dynamics in the context of

glucose absorbance, that is, slower compared to an IM-FSIVGTT

and faster compared to an MMTT. Thus, differences in study

populations and protocols likely contributed to the differences in

temporality and rate of changes between glucose, insulin, and

glycerol and necessitated distinct representations of insulin action

on glucose and glycerol in our study compared to previous work

with FFAs (Periwal et al., 2008; Li et al., 2016).

Possible physiologic basis for difference in
dynamics

Insulin regulation of the metabolic pathways for glucose and

glycerol occurs through distinct mechanisms. The elevation of

glucose concentration triggers the release of insulin. The insulin

then acts so that glucose concentrations decrease back to basal

levels. When glucose concentrations return to normal, insulin

secretion also decreases. Thus, the interaction between glucose

and insulin is bidirectional. Conversely, the interaction between

glycerol and insulin is unidirectional. Insulin induces the

suppression of lipolysis by regulating the activity of hormone

sensitive lipase (Stralfors and Honnor, 1989; Arner, 2001). When

insulin concentrations decrease, activation of hormone sensitive

lipase stops, and glycerol concentrations increase. However,

glycerol concentration has no effect on insulin concentration.

Limitations

This model makes several simplifying assumptions about

glycerol biochemistry. First, although we expect lipolysis to be

the primary source of glycerol in our protocol, glycolysis may

play a role (Rotondo et al., 2019). Second, the structure of this

glycerol model assumes that the maximum lipolysis rate occurs in

the initial fasted state, and, therefore, it cannot describe rebounds in

glycerol concentrations above basal levels. In many participants in

our cohort (both SIP and DIP), glycerol concentrations post-

suppression rose above basal levels, suggesting the involvement of

other metabolic pathways. This post-suppression rebound was

particularly pronounced in the approximately 10% of participants

demonstrating reactive hypoglycemia (RHG) (Ware et al., 2022).

Hypoglycemia is characterized as a condition where blood sugar falls

below 60 mg/dl, resulting in warning symptoms and the secretion of

counterregulatory hormones working to rapidly increase blood

sugar levels (Desouza et al., 2010; Casertano et al., 2021; Ware

et al., 2022). Along with glucagon, catecholamines are released

during a RHG response, stimulating lipolysis (Fanelli et al.,

2020). The current glycerol model does not account for these

additional metabolic pathways, so we truncated the data at the

glucose nadir to avoid trying to represent two distinct physiological

conditions (the initial glucose excursion and the recovery of lipolysis

above basal rates) with a single set of parameters. Future work

should consider extensions of the glycerolmodel that account for the

counterregulatory response.

There are several additional limitations to this study. This

model was developed in a highly IR population of adolescent girls

with a high incidence of non-alcoholic fatty liver disease

(NAFLD), a condition associated with adipose dysmetabolism.

Application of the model to data from healthy populations as well

as other IR or dysglycemic populations is important to verify the

generalizability of this glycerol-insulin model to the range of

dynamics associated with adipose metabolism. For example, in a

healthy individual, glycerol may be suppressed earlier in response

to a smaller plasma insulin peak.

Summary and implications

In summary, we have proposed a novel differential equations-

basedmodel of interactions between glycerol and insulin dynamics

that provides a better understanding of glycerol dynamics relative

to other metabolic processes like glucose metabolism. In addition,

this model demonstrates that during an OGTT, insulin action on

glucose is more delayed compared to insulin action on glycerol in

our cohort of IR adolescent girls. Although tissue-specific actions

of insulin are known to be concentration dependent, to our

knowledge this is the first study to establish a difference in the

dynamics of distinct insulin actions. Future work examining the

mechanisms implicated in this difference and the significance of

altered relative glycerol and glucose dynamics to metabolic disease

development and progression is needed to alleviate the growing

burden of metabolic dysregulation.
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We have recently shown that physiological delay can induce a novel form of

sustained temporal chaos we call delay-induced uncertainty (DIU) (Karamched

et al. (Chaos, 2021, 31, 023142)). This paper assesses the impact of DIU on the

ability of the glucose-insulin system to maintain homeostasis when responding

to the ingestion of meals. We address two questions. First, what is the nature of

the DIU phenotype? That is, what physiological macrostates (as encoded by

physiological parameters) allow for DIU onset? Second, how does DIU impact

health? We find that the DIU phenotype is abundant in the space of intrinsic

parameters for the Ultradian glucose-insulin model—a model that has been

successfully used to predict glucose-insulin dynamics in humans.

Configurations of intrinsic parameters that correspond to high characteristic

glucose levels facilitate DIU onset. We argue that DIU is pathogenic for obesity

and type-2 diabetes mellitus by linking the statistical profile of DIU to the

glucostatic theory of hunger.

KEYWORDS

delay-induced uncertainty, glucostatic hypothesis, lyapunov exponent, obesity, shear,
theory of rank-one maps, type-2 diabetes mellitus, ultradian model

1 Introduction

Clinical and laboratory practice throughout biomedicine and biochemistry proceeds

from the assumption that the dynamics of measured quantities are predictable. For

instance, a clinician administers medication to a patient based on the supposition that the

medical intervention will not induce an unexpectedly erratic response. The presence of

sustained temporal chaos would fundamentally undermine the assumption of

predictability. Such chaos has been observed in certain classical physiological models
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(Abarbanel et al. (1993); Li and Yorke (2004); Mackey and Glass

(1977); Glass et al. (1988); Glass and Malta (1990)).

We recently proposed a novel route through which

physiological delay can induce sustained temporal chaos for

concrete dynamical systems of interest in biomedicine

(Karamched et al. (2021)). We termed the resulting chaos

delay-induced uncertainty (DIU). We argued that DIU is

relevant for glycemic management in the intensive care

unit by exhibiting it for the Ultradian model, an archetypal

model of glucose-insulin dynamics (Sturis et al. (1991);

Drozdov and Khanina (1995)). Tools from the general

theory of nonuniformly hyperbolic dynamical systems and

the theory of rank-one maps yielded a precise characterization

of the dynamical and statistical profiles of DIU. Clinicians

may find DIU difficult to interpret because these profiles can

be subtle.

DIU is potentially relevant for any physiological system

wherein delayed regulatory feedback controls try to maintain

healthy homeostasis. Examples include pulmonary and

respiratory dynamics (Mackey and Glass (1977); Sottile

et al. (2018)), cardiac dynamics (Christini and Glass

(2002)), female endocrine dynamics (Graham et al. (2020);

Urteaga et al. (2019)), and neurological dynamics (Stroh et al.

(2020); Claassen et al. (2013); Hodgkin and Huxley (1952)).

Indeed, the use of mathematical physiology within medicine

has broad potential (Albers et al. (2018a); Zenker et al.

(2007)).

This paper is a first attempt to assess the impact of DIU on

the ability of the glucose-insulin system to maintain homeostasis

when responding to the ingestion of meals. We work with the

Ultradian model as we did before (Karamched et al. (2021)), but

in a different regime. Our previous work focused on glycemic

management in the intensive care unit (ICU) and therefore

considered the regime wherein the intrinsic (unforced) system

admits a glycemic oscillation (limit cycle). Here, we work in the

regime wherein the intrinsic system admits a stable stationary

state. In this regime, meals (glucose kicks) move trajectories away

from the stationary point. After each kick, the glucose-insulin

control system tries to efficiently return to the fixed point. We are

therefore interested in how DIU impacts return to equilibrium.

In the context of return to equilibrium, the recipe for DIU has

three ingredients. First, delay renders the unforced system

excitable by weakening the stability of the stationary point.

Second, shear is present near this stationary point. One can

think of shear as velocity gradients. Third, external forcing

(glucose kicking) interacts with shear during the relaxation

phase between kicks. This interaction stretches and folds the

phase space, creating hyperbolicity in the dynamics and

producing sustained temporal chaos.

Here, we show that the physiological architecture of the

glucose-insulin system possesses all three ingredients in the

DIU recipe. We offer substantial evidence for the following

two conjectures.

1) The DIU phenotype is abundant in the space of intrinsic

parameters. In other words, a variety of physiological

macrostates (as encoded by intrinsic parameters) lead to

DIU emergence.

2) DIU is pathogenic for obesity and type-2 diabetes mellitus

(T2DM).

This paper is a call to action—a first step toward verifying

these conjectures.

Given the importance of elucidating obesity pathogenesis

(Schwartz et al. (2017)), the DIU pathogenicity conjecture is the

primary contribution of this work. The two-part argument

supporting it links the statistical distribution of glucose that DIU

induces to the glucostatic theory (Chaput and Tremblay (2009);

Mayer (1955)). First, when DIU is present, glucose level dips below

its mean more frequently. Second, glucostatic theory asserts that

such dips induce hunger. See Figure 1 for an illustration of this two-

part argument. This conjectured form of obesity pathogenesis acts

on long timescales (months and years). As we will show, DIU

becomesmore probable as intrinsic parameters move into regions of

parameter space that correspond to elevated characteristic glucose

levels. Development of early-stage obesity and T2DM would

therefore act as a feedback mechanism by promoting DIU,

leading to disease progression.

We work with the Ultradian model for two primary reasons,

validity and flexibility. The model includes two major negative

feedback loops describing effects of insulin on glucose use and

glucose production. Both loops include glucose-based stimulation of

insulin secretion. External forcing can include both meal ingestion

and glucose infusion. The Ultradian model can be tuned so that the

unforced system admits a limit cycle, as in (Karamched et al. (2021)),

or a stationary state. Importantly, it has been used to accurately

predict glucose dynamics in humans (Albers et al. (2017)).

2 The Ultradian model

In this section we describe the Ultradian glucose-insulin

model (Sturis et al. (1991); Drozdov and Khanina (1995);

Keener and Sneyd (1998)), the external forcing drive that we

use for simulations, and intrinsic system parameters that we

hypothesize can facilitate DIU onset.

The Ultradian model is a compartment model with three

state variables: plasma glucose (G), plasma insulin (Ip), and

interstitial insulin (Ii). See Figure 2 for the model schematic.

These three state variables are coupled to a three-stage linear

delay filter, producing a six-dimensional phase space. The model

includes two major negative feedback loops describing effects of

insulin on glucose use and glucose production. Both loops

include glucose-based stimulation of insulin secretion. The

Ultradian model includes physiologic delay, but the system is

finite-dimensional because the delay assumes the form of a three-

stage linear filter.
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The full model is given by

dIp
dt

� f1 G( ) − E
Ip
Vp

− Ii
Vi

( ) − Ip
tp

(1a)

dIi
dt

� E
Ip
Vp

− Ii
Vi

( ) − Ii
ti

(1b)

dG
dt

� f4 h3( ) + IG t( ) − f2 G( ) − f3 Ii( )G (1c)

dh1
dt

� 1
td

Ip − h1( ) (1d)
dh2
dt

� 1
td

h1 − h2( ) (1e)
dh3
dt

� 1
td

h2 − h3( ), (1f )

where f1(G) represents the rate of insulin production, f2(G) represents

insulin-independent glucose use, f3(Ii)G represents insulin-dependent

glucose use, and f4 (h3) represents delayed insulin-dependent glucose

use. The functional forms of f1, f2, f3, and f4 are given by

f1 G( ) � Rm

1 + exp −G
VgC1

+ a1( ) (2a)

f2 G( ) � Ub 1 − exp
−G
C2Vg

( )( ) (2b)

f3 Ii( ) � 1
C3Vg

U0 + Um − U0

1 + κIi( )−β( ) (2c)

f4 h3( ) � Rg

1 + exp α h3
C5Vp

− 1( )( ), (2d)

with

κ � 1
C4

1
Vi

− 1
Eti

( ). (3)

Table 1 summarizes the meaning of each model parameter

and provides the set of nominal parameter values.

2.1 Pulsatile glucose forcing drives

The term IG(t) in Eq.1c represents the external nutritional

drive. We call system (1) without this term the intrinsic system or

FIGURE 1
HowDIUmay be pathogenic for obesity and T2DM. When DIU is present, glucose level dips below its meanmore frequently (bottom row). The
glucostatic hypothesis asserts that such dips induce hunger. DIU would therefore impute elevated hunger frequency, leading to obesity on long
timescales.

FIGURE 2
Schematic for the Ultradian model of glucose-insulin
dynamics. Note the important delayed regulatory feedback
between Ip and G.
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unforced system. In this paper, we consider an idealized

nutritional drive IG(t) that consists of pulsatile kicks. This

drive models meals that are eaten and digested

instantaneously. That is, we assume that the nutritional

content of each meal immediately affects the glucose state

variable in the Ultradian system. The idealized nutritional

drive is given by

IG t( ) � ∑∞
n�1

Anδ t − Tn( ), (4)

where δ(t) is the Dirac delta distribution (unit impulse), Tn is

the time of meal n, and An is the amount of carbohydrate in

meal n. Importantly, this pulsatile drive does not

overwhelm the intrinsic dynamics. On the contrary, it can

interact subtly with intrinsic shear to produce DIU, as we

will see.

The form of IG(t) in Eq. 4 induces the following dynamics.

Between two consecutive kicks (Tn−1 < t < Tn), Ultradian

dynamics evolve according to system (1) with IG(t) = 0. At

time Tn of meal n, the glucose state variable, G, undergoes the

instantaneous changeG↦G +An. That is, at time Tnwe pause the

flow generated by the intrinsic system and apply the

diffeomorphism

Ip, Ii, G, h1, h2, h3( ) ↦ Ip, Ii, G + An, h1, h2, h3( ) (5)

to the phase space. We call this diffeomorphism followed by flow

of the intrinsic system cycle the kick-relaxation cycle.

In reality, meals produce glucose perturbations that are

temporally localized but not instantaneous. Nevertheless, we

have strong evidence that the emergence of DIU (or the

absence of such emergence) is sensitive to neither the exact

timing of the pulses nor to their shape. In previous work

(Karamched et al. (2021)), we examined the emergence of

DIU for the Ultradian model when the delay parameter td is

tuned so that the intrinsic system admits a limit cycle (sustained

oscillatory dynamics). There, we showed that DIU can emerge

when each inter-meal time is drawn from an exponential

distribution (Poissonian inter-meal timing) and when the

drive 4) is replaced with square pulses of duration 30 min that

arrive at 8 a.m., noon, and 6 PM. Here, we elect to work with

drive 4) and consider only periodic pulsing (Tn = nT, where

T ∈ R>0 is the inter-kick time) with constant kick amplitude

(An = A for all n ∈ ZP0) in order to focus on how intrinsic

parameters impact DIU emergence. Our previous work indicates

that our new results for periodic pulsatile forcing will continue to

hold for more complex forcing drives.

TABLE 1 Full list of intrinsic parameters for the Ultradian glucose-insulin model (Albers et al. (2017)). Note that IIGU and IDGU denote insulin-
independent glucose utilization and insulin-dependent glucose utilization, respectively.

Ultradian model parameters

Name Nominal value Meaning

Vp 3 L plasma volume

Vi 11 L interstitial volume

Vg 10 L glucose space

E 0.2 L min−1 exchange rate for insulin between remote and plasma compartments

tp 6 min time constant for plasma insulin degradation (via kidney and liver filtering)

ti 100 min time constant for remote insulin degradation (via muscle and adipose tissue)

td 10.5 min delay between plasma insulin and glucose production

Rm 209 mU min−1 linear constant affecting insulin secretion

a1 6.6 exponential constant affecting insulin secretion

C1 300 mg L−1 exponential constant affecting insulin secretion

C2 144 mg L−1 exponential constant affecting IIGU

C3 100 mg L−1 linear constant affecting IDGU

C4 80 mU L−1 factor affecting IDGU

C5 26 mU L−1 exponential constant affecting IDGU

Ub 72 mg min−1 linear constant affecting IIGU

U0 4 mg min−1 linear constant affecting IDGU

Um 94 mg min−1 linear constant affecting IDGU

Rg 180 mg min−1 linear constant affecting IDGU

α 7.5 exponential constant affecting IDGU

β 1.772 exponent affecting IDGU
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2.2 Key intrinsic parameters for DIU
emergence

We hypothesize that intrinsic (unrelated to the forcing drive)

parameters directly linked to G, the glucose state variable, play a

key role in DIU onset. This hypothesis is partially inspired by

recent work that established a positive correlation between mean

glucose levels and glucose variance (Albers et al. (2018b)). Our

numerical experiments examine the impact of the following

parameters on DIU emergence.

• Rg - the uninhibited hepatic glucose production rate

• Ub - the maximal insulin-independent glucose usage rate

• U0 - the basal insulin-dependent glucose usage rate

• α - the inhibition of hepatic glucose production

• a1 - the basal glucose-based insulin inhibition

• C1 - the sensitivity of insulin production to glucose

Importantly, each of these intrinsic parameters has a concrete

physiological interpretation.

3 Methods

The maximal Lyapunov exponent as a diagnostic tool. We

use the maximal Lyapunov exponent, Λmax, as a DIU diagnostic:

Λmax > 0 indicates DIU whereas Λmax < 0 indicates its absence.

Computing Λmax requires solving system (1). We do this in the

following way. During the relaxation intervals (Tn−1, Tn) between

kicks, we integrate the unforced differential equations using the

MATLAB ode23s solver. At kick times Tn, we pause the

differential equation solver and apply the diffeomorphism of

phase space induced by the kick (see Eq. 5).

We compute the maximal Lyapunov exponent in the

following way. We track two solutions to system (1), initially

separated by d0 = 10–8. One of these solutions can be thought of as

a base solution and the other as a perturbation. After the first

kick-relaxation cycle, we compute the separation d1 between the

solutions and store the quantity log (d1/d0) in a vector. We then

renormalize by rescaling the secondary orbit so that the distance

between the solutions resets to d0. We proceed in this manner for

105 kick-relaxation cycles. This produces a vector containing 105

values of log (d1/d0). Averaging over the vector produces Λmax.

The maximal Lyapunov exponent consequently quantifies the

amount of expansion per kick-relaxation cycle.

4 Results

We have designed our numerical experiments to support two

primary conjectures. These conjectures are the animating force

behind this paper.

1) The DIU phenotype is abundant in the space of intrinsic

parameters. In other words, a variety of physiological

macrostates (as encoded by intrinsic parameters) lead to

DIU emergence.

2) DIU is pathogenic for obesity and T2DM.

4.1 Numerical experiments: Design,
rationale, and expectations

Tuning of intrinsic parameters. To support the conjecture

that the DIU phenotype is abundant in the space of intrinsic

parameters, we begin by setting the intrinsic parameters in the

unforced Ultradian model to the nominal values listed in Table 1.

Crucially, the delay timescale td acts as a bifurcation parameter

for the intrinsic system. There exists a value td* at which the

intrinsic system undergoes a supercritical Hopf bifurcation. The

intrinsic system admits a stable stationary point (Ip,eq, Ii,eq, Geq,

h1,eq, h2,eq, h3,eq) for td < td* (homeostasis) that gives birth to a

stable limit cycle (glycemic oscillation) for td > td* . For our

numerical experiments, we set td to the nominal value

10.5 min, a value strictly less than td* , thereby placing the

intrinsic system in the stable stationary point regime. This is

the appropriate regime for our current study because we are

interested in how the dynamical variables relax to homeostatic

levels between glucose kicks.

Using the nominal values of the intrinsic parameters as a

starting point, we look for DIU along six one-dimensional slices

of parameter space. We select a parameter from the list given in

Section 2.2 and then vary this parameter while holding all other

intrinsic parameters fixed.

Testing for DIU onset. Having set the intrinsic parameters,

we test for DIU onset by tuning the external pulsatile forcing

drive (4). For the sake of simplicity, we select a kick amplitude A

and set An = A for all n ∈ ZP0. We work with periodic kicks, so

we set Tn = nT, where T is the time between consecutive kicks.

The forcing drive 4) for the experiments is therefore given by

IG t( ) � A∑∞
n�1

δ t − nT( ). (6)

To test for DIU onset, we compute the maximal Lyapunov

exponent Λmax as a function of T.

Expectations. DIU may or may not emerge as T increases,

depending on the dynamics of the intrinsic flow near the

stationary point. If contraction to the stationary state is strong

and shear near the stationary state is weak, DIU will not emerge.

The maximal Lyapunov exponent Λmax will indicate this by

remaining negative as T increases. In fact, Λmax will decrease

as T increases because the phase space has more time to contract

between kicks as T increases.

On the other hand, if contraction to the stationary state is

weak and shear near the stationary state is strong, then DIU can
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emerge as T increases. This can happen because when T is large,

shear has a long time to act between kicks. Shear causes the phase

space to stretch and fold, thereby producing DIU. In our

experiments, a transition from Λmax < 0 to Λmax > 0 as T

increases indicates that DIU has emerged.

4.2 The DIU phenotype is abundant in the
space of intrinsic parameters

Figure 3 illustrates how Λmax varies with T as we individually

tune each of the six parameters identified in Section 2.2. Each

panel corresponds to tuning a single parameter while holding all

other intrinsic parameters fixed at the nominal values.

Importantly, DIU emerges in every one of the six panels

when we tune the selected parameter so as to increase

characteristic glucose levels in the intrinsic dynamics.

Figure 4 confirms the expected link between strength of

contraction to the stationary point, shear near the stationary

point, and DIU emergence. For Figure 4, we replace the periodic

pulsatile forcing used to generate Figure 3 with a forcing signal

that consists of three kicks (meals). After the final kick, the

glucose variable converges to the equilibrium level Geq as t→∞.

The panels in Figure 4 indicate that our experiments have

captured two behaviors. Either we see rapid convergence to

Geq (as in Figure 4D (top)), or we see slow convergence to

Geq by way of a damped oscillation (as in Figure 4D (bottom)).

Notice that in each panel of Figure 4, we tune the same parameter

that we tune in the corresponding panel of Figure 3, while

holding all other intrinsic parameters fixed at the nominal values.

Comparing Figures 3, 4 shows that without exception, the

geometry of the glucose trajectory predicts whether or not DIU will

emerge. If we observe rapid convergence to Geq, as in Figure 4D

(top) for instance, then DIU does not emerge. If, however, we

observe slow convergence to Geq by way of a damped oscillation,

as in Figure 4D (bottom) for instance, then DIU emerges.

Figure 5 illustrates the DIU dynamical profile and acts as a

companion to Figure 4. Each glucose trajectory in Figure 5 results

from forcing with periodic pulsatile kicks 6) and corresponds to a

companion glucose trajectory in Figure 4 (produced by applying

only three kicks). When contraction toward the equilibrium

glucose level Geq is strong (Figures 4A–F (top)), driving with

periodic pulsatile kicks produces rhythmic behavior (Figures

5A–F (top)). When periodic pulsatile kicks produce DIU,

glucose trajectories exhibit sustained temporal chaos (Figures

5A–F (bottom)).

FIGURE 3
TheDIU phenotype is abundant in the space of intrinsic parameters. Plots show themaximal Lyapunov exponentΛmax as a function of inter-kick
time T for the time-T map induced by the Ultradian system (1) with T-periodic pulsatile forcing (6). DIU is present when Λmax > 0 and absent when
Λmax < 0. As T increases, DIU emerges when intrinsic parameters are tuned so as to increase characteristic glucose levels. Intrinsic parameters are set
to the nominal values in Table 1 except for the single intrinsic parameter that is tuned in each panel: (A) Rg; (B)Ub; (C)U0; (D) α; (E) a1; (F)C1. Kick
amplitude: A = 10 mg/dl.
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4.3 DIU is pathogenic for obesity and
T2DM

We have established that the DIU phenotype is abundant in

the space of intrinsic parameters for the Ultradian model. But

why does this matter? Delayed regulatory feedback pathways are

common in mathematical physiology. Since DIU emerges in a

natural way for the Ultradian model, it may appear in a variety of

physiological models. When present, DIU can profoundly impact

medical practice because medicine proceeds from the assumption

that the outcome of an intervention can be predicted when the

state of the patient at the time of intervention is known. Sustained

temporal chaos undercuts this assumption. See (Karamched et al.

(2021)) for an assessment of the impact of DIU on glycemic

management in the intensive care unit.

Here, we conjecture that DIU is pathogenic for obesity and

T2DM. This conjecture is based on how the statistical signature

of DIU links to the glucostatic theory. The glucostatic theory

asserts that drops in blood glucose levels induce hunger and

therefore energy intake (Chaput and Tremblay (2009); Mayer

(1955)). If such drops are frequent in time and sizable in

magnitude, excess energy intake could result.

Figure 6 shows that DIU induces frequent, sizable drops in

blood glucose levels! We start with all intrinsic parameters set at the

nominal values and we then tune Rg, the uninhibited hepatic glucose

production rate. Figure 6 shows glucose distributions for the time-T

map induced by Ultradian dynamics 1) with T-periodic pulsatile

forcing (6). That is, each histogram gives the distribution of

G nT( ): n ∈ ZP0{ } (7)

for a different value of Rg. We set T = 100 min. When Rg =

120 mg/min (Figure 6A), a value for which DIU is absent, the

glucose distribution is essentially a Dirac measure concentrated

at the mean. (Blue indicates the mean of the glucose distribution

and orange indicates the distribution itself.) However, when Rg =

180 mg/min (Figure 6B), a value for which DIU is present, the

glucose distribution is approximately Gaussian. This is as it

should be—the mathematical theory behind DIU predicts

Gaussian statistics when DIU is present. Notice that the

variance of the approximately Gaussian distribution is large.

This means that the glucose level frequently drops well below

its mean. In light of glucostatic theory, this observation directly

supports the conjecture that DIU is pathogenic for obesity

and T2DM.

FIGURE 4
Glucose trajectories generated by the Ultradian system (1) with forcing that consists of three glucose kicks spaced 100 min apart. After the final
kick, the glucose level converges to the equilibrium value Geq. Convergence is either rapid (top of each panel) or via a slow damped oscillation
(bottom of each panel). Intrinsic parameters are set to the nominal values in Table 1 except for the single intrinsic parameter that is tuned in each
panel: (A) Rg; (B) Ub; (C) U0; (D) α; (E) a1; (F) C1. Kick amplitude: A = 10 mg/dl.
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FIGURE 5
Sustained temporal chaos associated with DIU. Plots show glucose trajectories produced by the Ultradian system (1) with T-periodic pulsatile
forcing (6). Each trajectory in Figure 5 corresponds to a companion trajectory in Figure 4. When DIU is absent, T-periodic pulsatile forcing results in a
rhythmic glucose signal (top of each panel). When DIU is present, we observe sustained temporal chaos (bottom of each panel). Intrinsic parameters
are set to the nominal values in Table 1 except for the single intrinsic parameter that is tuned in each panel: (A) Rg; (B) Ub; (C) U0; (D) α; (E) a1; (F)
C1. Forcing parameters: A = 10 mg/dl, T = 100 min.

FIGURE 6
Support for the conjecture that DIU is pathogenic for obesity and T2DM. Distributions of the glucose variable (7) for the time-Tmap induced by
the Ultradian system (1) with T-periodic pulsatile forcing (6). Blue bar indicates mean. (A) When Rg = 120 mg/min, DIU is absent and the glucose
distribution concentrates at the mean. (B)When Rg = 180 mg/min, DIU is present. Consistent with the mathematical structure of the DIU profile, the
glucose distribution is approximately Gaussian. All of the other intrinsic parameters are set to the nominal values in Table 1. Forcing parameters:
A = 10 mg/dl, T = 100 min.
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4.4 DIU emerges for generic pulsatile meal
drives

Our results do not depend on the precise form of the pulsatile

forcing that appears in (6). The forcing need not be periodic, and

it need not consist of δ-pulses. DIU should emerge for a generic

pulsatile forcing drive as long as the forcing interacts with

intrinsic shear1.

To support this claim, we have varied the intrinsic parameter

Rg to test for DIU emergence after replacing 6) with

IG t( ) � A∑∞
n�1

Θ t −mn( )e−υ t−mn( ), (8)

where A > 0 denotes meal amplitude, Θ(t) is the Heaviside

function, υ > 0 is a constant, and mn denotes the time of meal n.

For this set of experiments, meals are consumed daily at 8 a.m.,

noon, and 6 p.m. Figure 7A shows Λmax as a function of meal

amplitude A for three values of Rg. For two of the three values of

Rg, the top Lyapunov exponent becomes positive as A increases,

indicating DIU onset. For Figure 7bc, we replace (8) with a single

day of meals (three meals) in order to show that the nature of

return to equilibrium correlates with DIU onset. Rapid return to

equilibrium correlates with the absence of DIU (Figure 7B), while

slow, oscillatory return to equilibrium correlates with the

presence of DIU (Figure 7C).

5 Discussion

We have found that DIU is abundant in the space of

parameters for the Ultradian glucose-insulin model. Such DIU

could result in obesity and T2DM if induced low-glucose

excursions produce excess hunger frequently enough, but

much work remains to verify the conjecture that DIU is

pathogenic for obesity and T2DM. Crucially, DIU and the

theory behind it must be anchored to data. Methods for DIU

detection directly from data should be developed for the clinical

and self-care settings. The impact of DIU on the techniques by

which models are fit to data should be assessed.

We have assumed in this paper that the intrinsic parameters

in the Ultradian model do not vary over time. On long timescales,

however, DIU may affect physiological state. At the modeling

level, this would correspond to DIU causing intrinsic model

parameters to drift (perhaps slowly) over time. Such drift might

enhance the pathogenicity of DIU through a feedback

mechanism: When DIU is present, intrinsic parameters may

slowly drift into a region of parameter space that is even more

favorable for DIU. A mathematical investigation of this

phenomenon would involve developing a theory of DIU for

nonstationary dynamical systems.

We have shown here that the DIU phenotype is abundant in

the space of intrinsic parameters for the Ultradian model. An

important next step will be to precisely characterize the DIU

phenotype in terms of physiological architecture. Such a

characterization may reveal the most essential physiological

mechanisms that lead to DIU onset. Mathematically speaking,

FIGURE 7
DIU phenotype for a realistic nutritional driver. (A) We have replaced (6) with the exponential-type drive in (8). Meals are consumed daily at
8 a.m., noon, and 6 p.m. Plot shows Λmax as a function of meal amplitude A for three values of Rg (B,C)We replace (8) with a single day of meals (three
meals). Rapid return to equilibrium correlates with the absence of DIU, while slow, oscillatory return to equilibrium correlates with the presence of
DIU. Here, A = 50 mg/(dL · min) and υ = 1/120 min−1.

1 Here we compute Λmax by averaging over time intervals of length 12 h.
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we must quantify shear near stationary states of flows. Shear near

limit cycles has received considerable attention (Ott and

Stenlund (2010); Wang and Young (2003)). Shear near

stationary states, though, has only been quantified in

dimension two (Ott (2008)).

The rigorous mathematical theory behind DIU is known as

the theory of rank-one maps. This theory has been developed for

finite-dimensional dynamical systems (Wang and Young (2001,

2008; 2013)). The Utradian model is finite-dimensional as a

dynamical system because the delay in the Ultradian model takes

the form of a three-stage linear filter. The theory of rank-one

maps therefore characterizes the sustained temporal chaos that

we see in the Ultradian model. However, models that include

explicit delays—systems of nonlinear delay differential

equations—permeate mathematical physiology. Models that

include explicit delays are infinite-dimensional when viewed

as dynamical systems. Important infinite-dimensional analogs

of the Ultradian model have been studied (Li et al. (2006); Li and

Kuang (2007)). The theory of rank-one maps must be extended

to infinite-dimensional dynamical systems in order to analyze

delay differential equations in the DIU context. See (Lu et al.

(2013)) for an approach that combines the existing theory of

rank-one maps with invariant manifold techniques.

When assessing the impact of DIU on a given

physiological system, one should ask the following

questions. Are we interested in precisely predicting the

temporal evolution of individual orbits, or do we care more

about the statistics of the system? What are the relevant

timescales? For the glucose-insulin system, we have now

studied two contrasting settings. In the ICU context, we

showed that DIU can disrupt single-orbit prediction on

short timescales (Karamched et al. (2021)). In the present

paper, we have argued that over long timescales, DIU-induced

glucose statistics may be pathogenic for obesity and T2DM.
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Type 2 diabetes (T2D) is a pathophysiology that is characterized by insulin

resistance, beta- and alpha-cell dysfunction. Mathematical models of various

glucose challenge experiments have been developed to quantify the

contribution of insulin and beta-cell dysfunction to the pathophysiology of

T2D. There is a need for effective extendedmodels that also capture the impact

of alpha-cell dysregulation on T2D. In this paper a delay differential equation-

based model is developed to describe the coupled glucose-insulin-glucagon

dynamics in the isoglycemic intravenous glucose infusion (IIGI) experiment. As

the glucose profile in IIGI is tailored to match that of a corresponding oral

glucose tolerance test (OGTT), it provides a perfect method for studying

hormone responses that are in the normal physiological domain and without

the confounding effect of incretins and other gut mediated factors. The model

was fit to IIGI data from individuals with and without T2D. Parameters related to

glucagon action, suppression, and secretion as well as measures of insulin

sensitivity, and glucose stimulated response were determined simultaneously.

Significant impairment in glucose dependent glucagon suppression was

observed in patients with T2D (duration of T2D: 8 (6–36) months) relative to

weight matched control subjects (CS) without diabetes (k1 (mM)−1: 0.16 ± 0.015

(T2D, n = 7); 0.26 ± 0.047 (CS, n = 7)). Insulin action was significantly lower in

patients with T2D (a1 (10 pM min)−1: 0.000084 ± 0.0000075 (T2D); 0.00052 ±

0.00015 (CS)) and the Hill coefficient in the equation for glucose dependent

insulin response was found to be significantly different in T2D patients relative

to CS (h: 1.4 ± 0.15; 1.9 ± 0.14). Trends in parameters with respect to fasting

plasma glucose, HbA1c and 2-h glucose values are also presented. Significantly,

a negative linear relationship is observed between the glucagon suppression

parameter, k1, and the three markers for diabetes and is thus indicative of the

role of glucagon in exacerbating the pathophysiology of diabetes (Spearman

Rank Correlation: (n = 12; (−0.79, 0.002), (−0.73,.007), (−0.86,.0003))

respectively).
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1 Introduction

Glucose homeostasis is maintained primarily by the action of

the two pancreatic hormones, insulin and glucagon, in

conjunction with a host of other modulators. (Röder et al.,

2016). Beta- and alpha-cell dysfunction both contribute to the

pathophysiology of type 2 diabetes (T2D). (Burcelin et al., 2008;

Ashcroft and Rorsman, 2012; Cryer, 2012; Cerf, 2013; Godoy-

Matos, 2014; Moon andWon, 2015; Eizirik et al., 2020). Reduced

insulin secretion from the pancreatic beta-cells and reduced

insulin sensitivity in various tissues in the body lead to high

postprandial glucose excursions. (DeFronzo and Tripathy, 2009;

Montanya, 2014; Titchenell et al., 2016; Santoleri and Titchenell,

2019). In addition, higher basal levels of glucagon and impaired

suppression of glucagon secretion is implicated in elevated

fasting and post-prandial glucose levels in individuals with

T2D. (Unger and Orci, 1975; Gerich, 1988; Dunning and

Gerich, 2007; Lee et al., 2011). Theoretical models of glucose,

insulin and glucagon dynamics can be used to quantify the extent

of dysregulation in hormonal control of glucose homeostasis in

T2D by fitting the models to data from various glucose challenge

experiments. (Bergman et al., 1979; Bergman et al., 1981; Mari

et al., 2002a; Dalla Man et al., 2002; Ferrannini et al., 2005; Dalla

Man et al., 2006; Panunzi et al., 2007; Palumbo et al., 2013; Kelly

et al., 2019; Bergman, 2021; Morettini et al., 2021).

The oral glucose tolerance test (OGTT) and the intravenous

glucose tolerance test (IVGTT) have been used to quantify

different aspects of plasma glucose regulation. (Panunzi et al.,

2007; Cobelli et al., 2014; Bergman, 2021). The advantage of the

OGTT is that it represents a physiological response to oral

ingestion of nutrients. The challenge from a mathematical

modeling point of view is that stimulation of the gut results

not only in glucose dependent insulin secretion but also

numerous confounding factors, e.g., the incretin effect. (Nauck

et al., 1986; Knop et al., 2007; Nauck and Meier, 2016). Gut

mediated effects do not come into play when glucose is

administered intravenously. In a typical IVGTT, both first

phase and second phase insulin secretion are observed in

response to glucose challenge. (Bergman et al., 1981; Caumo

and Luzi, 2004). Another method for studying glucose-insulin-

glucagon dynamics is the isoglycemic intravenous glucose

infusion (IIGI), which matches the glucose excursion observed

during an OGTT but does not stimulate incretin secretion.

(Bagger et al., 2011; Bagger et al., 2014; Nauck and Meier,

2016). Historically, IIGI has been used to obtain a quantitative

measure of the incretin effect based on the differential insulin

response observed in the OGTT and the corresponding IIGI

experiment. In an IIGI, the typical first phase insulin response

followed by the slower second phase of the bolus IVGTT is not

observed. Instead, a single phase that tracks glucose

concentration is observed. The shape of the insulin response

is closer to that observed during oral ingestion because the

delivery of glucose to the beta cells mimics normal

physiological graded delivery from oral glucose

administration. (Caumo and Luzi, 2004). Thus, the data from

such experiments can be used to estimate parameters of glucose

dependent insulin response in addition to insulin sensitivity by

fitting a suitable minimal model of glucose regulation without

confounding factors from the gut.

While the role of insulin mediated regulation of glucose

homeostasis is well established and the contribution to the

pathophysiology of T2D has been extensively quantified (Mari

et al., 2002b; Panunzi et al., 2007; Cobelli et al., 2009; Cobelli et al.,

2014; Bergman, 2021), the role of glucagon and alpha-cell

dysregulation is less well studied from a computational

perspective. Models have been developed to study glucagon

secretion from the alpha cells or pancreatic islets addressing

glucose dependent intrinsic and paracrine regulation.

(Diderichsen and Göpel, 2006; Fridlyand and Philipson, 2012;

Watts and Sherman, 2014; Briant et al., 2016; Watts et al., 2016;

Briant et al., 2018; Zmazek et al., 2021). At the whole-body

systems level, glucagon dynamics has been included in complex

models that describe regulation of glucose homeostasis by the

interplay between different organ systems. (Cobelli et al., 1982;

Sulston et al., 2006; Kim et al., 2007; De Gaetano and Hardy,

2019). These models included many coupled differential

equations and large number of parameters which make them

less amenable to validation based on data from glucose challenge

experiments for example. On the other hand, minimal models

such as those developed for assessing insulin sensitivity and beta

cell function are particularly useful in highlighting the

contribution of specific impairments to the pathophysiology of

diabetes and are more easily validated with data. (Bergman et al.,

1979; Mari et al., 2002a; Dalla Man et al., 2002; Ferrannini et al.,

2005; Panunzi et al., 2007; Bergman, 2021). The drawback with

the glucose-insulin models is that they do not include the

dynamics of the counter-regulator glucagon in establishing

glucose homeostasis. A more complete minimal model which

includes glucagon dynamics coupled to insulin and glucose

dynamics would be self-consistent and yield information on

glucagon action, secretion and suppression in addition to

insulin related parameters. A few minimal models have

included glucagon dynamics during IVGTT and OGTT

respectively. (Kelly et al., 2019; Morettini et al., 2021).

Glucagon dynamics has been described differently in each of

the previous models (complex and minimal) particularly with

respect to the regulation of glucagon secretion and suppression.

In the paper by Morettini et al. (2021), a glucagon-c-peptide
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coupled model which did not include glucose dynamics was

developed to describe suppression of glucagon secretion during

OGTT. As the model did not include glucose dynamics,

parameters related to glucagon action and secretion, insulin

sensitivity, and secretion could not be determined

simultaneously. In the IVGTT minimal model, (Kelly et al.,

2019), the dynamics of glucose, insulin and glucagon were all

included. In the description of glucagon dynamics, glucagon

suppression is assumed to be linearly dependent on plasma

insulin concentration and glucagon secretion occurs only

when glucose levels drop below baseline. Experimental

evidence from human islet level studies indicates that

glucagon suppression at low glucose is controlled primarily

through intrinsic regulation by glucose. (Tian et al., 2011;

Walker et al., 2011; Yu et al., 2019). At high glucose, the

intrinsic regulation is modulated by glucose dependent

paracrine effects mediated by somatostatin. (Briant et al.,

2016; Briant et al., 2018). In the paper by Elliot et al., (Elliott

et al., 2015), insulin and somatostatin have been shown to act

synergistically in regulating glucagon concentrations at high

glucose in human islets. In the hypoglycemic range Bolli et al.

(1984) have shown that glucagon secretion is regulated

exclusively by glucose. Though the nature of paracrine

regulation and the factors that mediate it are uncertain there

is consensus on the observation that it occurs in a glucose

dependent manner. In the OGTT model, (Morettini et al.,

2021), glucagon suppression is attributed exclusively to

insulin, ignoring intrinsic regulation by glucose. In the IVGTT

minimal model, (Kelly et al., 2019), glucagon suppression is again

attributed to insulin at glucose levels above baseline. In the

comprehensive models, insulin dependent hyperbolic tangent

functions, (Cobelli et al., 1982), quadratic functions, (Kim et al.,

2007), and inverse functions (Sulston et al., 2006) have been used

to describe glucagon suppression but it is unclear why the

particular forms were chosen.

In this paper, a parsimonious model based on delay

differential equations, that extends previous insulin-glucose

models (Panunzi et al., 2007) was developed to include

glucagon dynamics. The coupled model allows for the

determination of parameters related to both insulin and

glucagon regulation of glucose homeostasis in one

step. Glucagon and insulin response to glucose are modeled

on dose response data from human islet level studies of alpha and

beta cell secretion in contrast to previous models. (Walker et al.,

2011). The glucagon dynamics is described by a

phenomenological model based on the data from IIGI

experiments. Glucagon secretion and suppression are shown

to be regulated by glucose as in reference (Walker et al., 2011;

De Gaetano and Hardy, 2019) but the magnitude of the

suppression is varied during the course of the dynamics. This

allows for the description of the prolonged suppression of

glucagon secretion and resulting delayed recovery to baseline

as observed in the data which is likely due to paracrine effects.

The model thus incorporates intrinsic and possible paracrine

regulation in a glucose dependent manner and is described in

detail in the methods section.

The model developed is fit simultaneously to glucose, insulin

and glucagon data from IIGI experiments on individuals with

T2D and without diabetes (CS) previously published in the

papers by Bagger et al. among others. (Bagger et al., 2011;

Mari et al., 2013; Bagger et al., 2014; Alskär et al., 2016;

Guiastrennec et al., 2016; Røge et al., 2017; Tura et al., 2017).

There are significant advantages of fitting IIGI over OGTT data

namely: 1) there are fewer parameters in the model as exogenous

glucose arrival is a known quantity unlike in an OGTT; 2)

hormone secretory and suppression parameters determined

are free of gut mediated effects; 3) parameters that could not

be estimated from fitting OGTT data, because of gut stimulation

can be determined from IIGI, such as the Hill coefficient in the

glucose dependent insulin response; 4) the data from the IIGI

experiments also reveal unusual behavior in the insulin response

in T2D patients such as significant time delays in insulin

secretion, quantification of which would give another tool to

distinguish between T2D and control subjects (CS); and 5) there

have also been questions regarding insulin response contributing

to post prandial glucose lowering below baseline, a phenomenon

observed particularly when exogenous glucose loads are high.

(Saha, 2006; Parekh et al., 2014). A related pathophysiology is

reactive hypoglycemia where glucose levels drop well below

baseline and patients present with the Whipple’s triad.

(Ahmadpour and Kabadi, 1997; Brun et al., 2000; Suzuki

et al., 2016). If there is a lag in insulin return to baseline,

i.e., if high levels of insulin secretion persist after plasma

glucose levels start dropping, then it would explain

postprandial glucose lowering. Modeling the glucose

dependent insulin response using a hysteresis model should

reveal if a lag in insulin recovery to baseline levels exists and

causes postprandial hypoglycemia.

In this paper, the role of alpha- and beta-cell dysfunction in

T2D is quantified and highlighted. The question of whether

hysteresis in insulin secretion plays a role in postprandial

hypoglycemia is also addressed. In addition, correlations

between the parameters determined and the hallmarks of

T2D, fasting plasma glucose (FPG), hemoglobin A1c (HbA1c)

and 2-h plasma glucose (2 h PG) values are presented and

highlighted.

2 Modeling and data analysis

2.1 Glucose-insulin-glucagon model

In this paper, a parsimonious model that includes glucagon

dynamics was developed to describe the coupled glucose-insulin-

glucagon system and is presented in Eqs 1–3. The model is an

extension of the delay differential equation model of Panunzi
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et al. (Panunzi et al., 2007; De Gaetano et al., 2008). Equation 1

describes glucose dynamics. The rate of change of glucose is given

by a source term depending on glucagon and the exogenous

glucose infused during the IIGI experiment and clearance terms

depending on glucose and insulin. The first term in Eq. 1

represents glucose dependent glucose clearance as in the

Bergman model (Bergman et al., 1979) and is first order in

glucose with rate constant SG. The second term represents insulin

dependent glucose clearance and is first order in insulin and

glucose. The rate constant a1 gives a measure of insulin

sensitivity; it is analogous to the parameter SI in the Bergman

minimal model and KxgI in the paper by Panunzi et al. Hepatic

glucose production is assumed to be driven primarily by

glucagon and is given by the third term in Eq. 1. It is first

order in glucagon concentration and the rate constant a2 gives a

measure of glucagon action in the liver. Hepatic glucose

production would likely also depend on other substrates such

as glycogen in glycogenolysis, but they are assumed to be in

excess and the pseudo first order (Keeler et al., 2018) dependence

on glucagon used should be sufficient. In the model of De

Gaetano et al., (De Gaetano and Hardy, 2019), glucagon is

included in the fast dynamics, but they use saturation kinetics

to describe glucagon-dependent hepatic glucose production

while a first order dependence is used in the paper by Kelly

et al. (2019) As the extent of insulin dependent suppression of

hepatic glucose production is uncertain, it was not included in

this model (Gastaldelli et al., 2001; Adkins et al., 2003; Kaplan

et al., 2008). The rate of glucose arrival in the plasma, RIIGI, is

determined from the glucose infusion rate, Ginfusion, during the

IIGI as shown in Eq. 6. In the underlying experiments, the

glucose infusion was manually adjusted in the IIGI protocol

to match the OGTT profile. The average amount of glucose

infused every 15 min was used to approximate the actual glucose

infusion rate which involved adjustments every 5 min.

In Eq. 2 describing insulin dynamics, n1 is the insulin

degradation constant, γ1 is a measure of insulin secretion and

ψ(G[t]) is the dose-response relationship for glucose-dependent

insulin secretion. Two models were used to describe insulin

dynamics. The dose-response function, ψ(G[t]), is represented

by a Hill function, Eq. 4a, in Model 1. While the Hill function has

been used by other researchers, (Panunzi et al., 2007), the

parameter K in Eq. 4 in this paper is fixed at the value

obtained by fitting dose-response data from in vitro human

pancreatic islet level studies (Walker et al., 2011) and is set at

17 mM.

As some researchers (Mari et al., 2002a; Keenan et al., 2012;

Parekh et al., 2014) have raised the possibility of hysteresis-like

behavior in insulin secretion in response to exogenous glucose

influx, in Model 2, Eq. 4b was used to fit the IIGI data. In the

hysteresis model, insulin secretory response to glucose depends

on whether glucose levels are increasing or decreasing. The Hill

coefficient h1 controls the response when glucose levels are

increasing and h2 describes the secretory response when

glucose levels are decreasing. C1 is an adjustment constant

determined to make the two curves meet at the hysteresis

point, (Ghyst, thyst). A sample plot showing hysteretic dose-

response is shown in Figure 1. Here h1 is set to be lower than

h2. Two Hill equations are used here as studies at the islet level

indicate that the physiological dose-response shows this

behavior. Logistic functions have been used in the paper by

Keenan et al. to model hysteresis in c-peptide secretion. (Keenan

et al., 2012). Changes in insulin secretory patterns with time have

also been modeled using different potentiation factors as in the

work by Mari et al. which is in turn derived from deconvolution

of c-peptide kinetics. (Mari et al., 2002a).

Glucagon dynamics is described by Eq. 3 and is the sum of

two terms, a clearance term, and a glucose dependent response

term. Glucagon degradation or clearance is assumed to be first

order in glucagon with degradation constant, n2, which was

obtained from the literature. (Alford et al., 1976). The second

term describes the response to glucose. Islet level (Walker et al.,

2011) and other studies (De Gaetano and Hardy, 2019) indicate

that glucagon levels decrease exponentially as a function of

glucose elevation. Preliminary investigations while modeling

OGTT experiments showed that the glucagon dynamics shows

hysteresis like behavior in response to glucose challenge. The

suppression of glucagon in response to glucose challenge follows

a different glucose dependence than the recovery after the plasma

glucose level reaches a maximum. Thus, the glucagon dose-

response is given by two different exponential terms (Eq. 5),

one when glucose level is rising and a different one when glucose

level is falling. The change in behavior is assumed to occur at the

maximum of the glucose curve occurring at glucose

concentration Ghyst, and time thyst. Ghyst is determined by

finding the maximum of the plasma glucose profile, ie., the

FIGURE 1
The hysteresis behavior of the insulin dose-response in
Model 2. In this example, the Hill coefficient, h, is set at 1.3 during
the insulin release phase and set at 2.0 during the recovery phase.
The hysteresis turning point is set at the maximum of the
glucose profile in the IIGI experiment.
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IIGI data, numerically and thyst is the time at which themaximum

occurs (Wolfram Research, Inc, 2019). The reason for this slow

recovery of glucagon levels post glucose influx is uncertain but

likely due to paracrine modulation of glucagon secretion while

the early suppression is likely due to intrinsic regulation by

glucose. As both paracrine regulators, insulin and

somatostatin, are secreted in a glucose dependent manner,

here the paracrine modulation is also assumed to occur in a

glucose dependent manner without explicit dependence on

insulin or somatostatin concentration. The two exponential

glucose dependent response terms were able to capture

glucagon dynamics reasonably well during the 240 min

duration of the IIGI experiment as shown in the results

section. This persistent suppression of glucagon was also

observed by Gerich (Mitrakou et al., 1990; Gerich, 1993) and

in a larger study by Faerch et al. (Færch et al., 2016) The

suppression and recovery constants are k1 and k2 respectively.

The rate constant γ2 is a measure of glucagon secretion. The

parameters τ, τ1 and τ2 represent possible time delays in glucose

distribution, insulin secretion and glucagon suppression

respectively.

dG[t]
dt

� −(SG + a1I[t])G[t] + a2A[t] + RIIGI[t − τ]/V (1)
dI[t]
dt

� −n1I(t) + γ1ψ(G[t − τ1]) (2)
dA[t]
dt

� −n2A(t) + γ2ϕ(G[t − τ2]) (3)

ψHill �
1.5G[t]h
Kh + G[t]h (a)

ψHysteresis �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.5G[t]h1
Kh1 + G[t]h1 , t < thyst

C1G[t]h2
Kh2 + G[t]h2 , t ≥ thyst

(b) (4)

ϕ(G[t − τ2]) � { e−k1G[t−t2], t < thyst
e−k2G[t−t2] + yshif t, t ≥ thyst

(5)

yshift � e−k1Ghyst

RIIGImg(kg min)−1 � GInf usion(g)/15(min ) × 1000(subject weight (kg))
(6)

2.2 Parameter estimation and statistics

Models 1 and 2 were simultaneously fit to glucose, insulin and

glucagon data from IIGI tests on eight patients with diabetes (T2D)

and eight weight matched control subjects (CS) without diabetes.

(Bagger et al., 2011; Bagger et al., 2014). The glucose infusion in IIGI

was manually adjusted to obtain a glucose profile that matches the

OGTT glucose profile. The data available from the glucose infusion

was the total amount of glucose infused in 15-min blocks for a total

of 240 min. A uniform glucose infusion rate was thus used for every

15-min block of the infusion experiment as described in Eq. 6. This

approximates the actual infusion rate which was adjusted every

5 min. As this approximation was applied across all patients, trends

in estimated parameters within groups and between groups should

likely be unaffected.

The parameters that were determined from the fit are glucagon

action a2, secretion γ2 and suppression k1, insulin action a1, secretion
γ1 and the Hill coefficients h, or h1 and h2 depending on the model

used. As the exogenous glucose arrival, RIIGI is continuous but not

smooth, the time delay terms could not be estimated using the

Levenberg-Marquardt algorithm in all subjects. The times delays, τ,
τ1, τ2, were therefore adjusted manually. The glucagon recovery

parameter k2 was also adjusted manually. These parameters were

adjusted to obtain a reasonable visual fit before running the

Levenberg-Marquardt algorithm to estimate the other parameters.

The time delays as well as k2 were easy to setmanually as good visual

fits were obtained over a relatively narrow range of parameter values.

No constraints were set on the values. The parameters n1, n2 and SG
were obtained from the literature and set at 0.14 min−1, (Duckworth

et al., 1998), 0.08 min−1, (Alford et al., 1976; De Gaetano and Hardy,

2019; Grøndahl et al., 2021), and 0.014 min−1 (Dalla Man et al.,

2002) respectively. V was fixed at 1.35 dL/kg. (Man et al., 2005).

The fitting was done using the nonlinear regression package

NonLinearModelFit in Wolfram Mathematica, Version 12.0.

(Wolfram Research, Inc, 2019). The Levenberg-Marquardt

algorithm was used for the least-squares minimization. This

package also provides all the statistics related to the fits.

A weighted least-squares regression was used for some of the

subjects to improve the fits. The weights were determined using

the coefficient of variation (CV) for glucose, insulin, and

glucagon concentrations. The CVs used were 2%, 3% and

5.5% for glucose, insulin, and glucagon respectively. The

caveat with using a constant CV in least squares fitting is that

the fit is skewed heavily towards lower data values.

Significance of differences in parameters between groups (T2D

vs. CS) was tested using the non-parametric Mann-Whitney U test.

(MannWhitneyTest. Wolfram Research, 2010). The p values <0
.05 indicated significant differences between groups based on the

null hypothesis that the median difference is zero. Correlations

between parameters were determined using the nonparametric

Spearman Rank Test. Comparison of Model 1 and Model 2 was

done based on the Akaike Information Criterion corrected for small

sample size (AICc). (Akaike, 1974; Portet, 2020).

Identifiability of parameters determined was checked using

publicly available software, STRIKE-GOLDD Version 3.0.

(Villaverde et al., 2016; Villaverde et al., 2019). All parameters

in the model that were estimated using the least-squares fitting

were assessed to be locally structurally identifiable.

Model validation (Hasdemir et al., 2015) was carried out by

simulating data from IIGI experiments that matched OGTT

glucose profiles with varying glucose loads (Bagger et al.,

2014) on the same set of patients with T2D and CS as in this

study. The results are presented in the supplementary section.
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3 Experimental methods

The experimental methods are discussed in detail in the

paper by Bagger et al. (Bagger et al., 2011; Bagger et al., 2014) A

brief overview of the individuals and methods used is

presented here.

3.1 Subjects

Eight patients (3 male) with T2D [mean age, 57 (range

40–75) years.; body mass index (BMI), 29 (25–34) kg/m2;

duration of diabetes, 8 (6–36) months] and eight gender-, age-,

and BMI-matched healthy control individuals [age, 57 (38–74)

years.; BMI, 29 (26–33) kg/m2] were studied. All patients with T2D

were diagnosed based on the criteria of the World Health

Organization. (Expert Committee on the Diagnosis, 2003).

3.2 Experimental design

Participants were subject to OGTT followed by IIGI on a

subsequent day. The subjects were studied in the morning in a

recumbent position after an overnight fast (10 h) fast. On OGTT

days, the participants ingested 75 g glucose dissolved in 300 g

water. Blood samples were drawn 15, 10, 0 before and 5, 10, 15,

20, 25, 30, 35, 40, 45, 50, 60, 70, 90, 120, 150, 180, 240 min after

ingestion of glucose. IIGI was performed using a sterile 20% wt/

vol glucose infusion. The infusion rate was adjusted aiming at

duplication of the plasma glucose profiles determined on the

corresponding OGTT day. Blood was sampled as on the OGTT

days. Analytical methods used to determine glucose, insulin and

glucagon concentrations are described in Bagger et al. (Bagger

et al., 2014).

4 Results

In the first and second subsections, the fits obtained using

Model 1 for CS are discussed first, followed by the fits for

patients with T2D, and trends within groups presented. In

the third subsection, the parameters obtained for CS and

patients with T2D are compared. In the fourth subsection

correlations with hemoglobin A1c (HbA1c), fasting plasma

glucose (FPG) and 2-h plasma glucose (2 h PG) will be

presented and implications for categorizing patients with

T2D in terms of impaired glucagon suppression in addition

to insulin sensitivity will be discussed. In the fourth

subsection the question of possible hysteresis behavior in

glucose dependent insulin secretion will be explored by

comparing Models 1 and 2 of insulin secretion. The

implications with respect to postprandial glucose lowering

will be discussed.

4.1 Control subjects

The glucose infusion data was first converted to a plasma

glucose arrival profile using Eq. 6. The glucose arrival rate

profile in four CS subjects is plotted in Figure 2, panel A. This

figure highlights the significant variation in glucose arrival

profiles between the different subjects that could have an

impact on extent of glucose excursions post glucose

infusion. In addition, the shape of the plasma glucose

profile in IIGI is also dictated by the shape of the

exogenous glucose input, which in turn depends on the

glucose excursions during the prior OGTTs.

The coupled Eqs 1–3 with insulin response given by Eq. 4a)

were then fit to the data. A reasonable fit with low standard errors

was not obtained for CS 6. The IIGI experiments involve manual

adjustment of glucose infusion rates to obtain glucose profiles

that match the OGTT profiles which sometimes result in

overshoot in plasma glucose values that may trigger first

phase insulin secretion which is likely what happened in CS

6 and could not be fit with this model. This subject was excluded

from further study. The fits obtained for the remaining seven CS

subjects are presented in Figure 3 and the estimated and

manually adjusted parameters in Table 1. The fits were

uniformly good for CS subjects with high coefficient of

determination (adjusted R2) values >0 .97. The standard errors

in all the estimated parameters were low and the p-values for all

the parameters <0.05 except for a1 of patient 2. The average

values, standard errors of the mean and ranges of the parameters

are presented in Table 3.

The CS subjects showed a wide range of insulin sensitivities,

a1, 0.000055–0.0012. Subjects two and four showed lower insulin

sensitivity relative to other CS subjects. The range in insulin

sensitivities can be attributed to the fact that the CS subjects were

weight matched to the T2D group (average BMI � 29). The

glucose dependent insulin secretion parameter γ1 showedmodest

variation with one outlier, CS subject 4. The Hill coefficient, h,

was divided into two groups, one centered around h � 2.0 and

another around h � 1.35. Subjects with higher values of h have a

steeper insulin dose-response to glucose. In general, there were

no time delays in the CS subjects with respect to insulin secretion

or action except for a 12-min delay in insulin secretion in CS

2 who also had the lowest insulin sensitivity.

The glucagon suppression parameter k1 in CS subjects was

clustered around 0.26, close to the value of 0.25 determined from

human islet level studies. Only one subject, CS 2, had

anomalously low glucagon suppression. The average glucagon

recovery parameter k2 was 0.50 and shows that glucagon recovery

is much slower than suppression in CS subjects. The glucagon

action parameter, a2, which is a measure of glucagon effectiveness

in glucose release appeared to be significantly attenuated in CS

2 and 4 relative to the others; the average value was determined to

be 0.25. The glucagon secretion parameter γ2 in normal subjects

did not show a huge spread except for CS 4 who had a much
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higher value relative to others. No time delays, τ2, were observed
in glucagon suppression.

There was also a short time delay, τ, in RIIGI in CS subjects

two and three of 3 and 5 min respectively. This behavior was

observed in most patients with T2D.

4.2 Patients with T2D

The coupled Eqs. 1– 3 with the plasma glucose arrival

profile determined using Eq. 6 were fit to the data. The fits for

the patients with T2D are shown in Figure 4 and the estimated

parameters in Table 2. The adjusted R2 values for the fit were

high for all patients (>0.98). The SE values were low and p

values were <0.05 for all parameters except for the insulin

sensitivity parameter a1 in three patients. The fits for those

three patients were particularly sensitive to initial guess values

for the nonlinear least-squares regression. Possible reasons for

the difficulty in fitting these patients might be: 1) The baseline

glucagon data for subjects one and two did not match the

values on OGTT day indicating greater uncertainty in

glucagon data points. 2) T2D subject three had multiple

data values near the detection limit of glucagon. The

average values, standard errors of the mean and ranges of

the parameters are presented in Table 3. Of the eight patients

studied patient four could not be fit, likely due to the

overshoot in infused glucose as described previously and

was excluded from further study.

Patients with T2D showed a large delay in insulin

secretion, τ1, with a mean value of 26 min. The insulin

sensitivities, a1, in patients with T2D were narrowly

distributed around the mean value of 0.000084. The insulin

secretion parameter, γ1, had an average of value of 5.5 and a

narrow spread of 1.1. The Hill coefficient clustered around

two values, four patients around h � 1.75 and three patients

around h � 1.0.

The glucagon suppression parameter in patients with T2D

was below 0.2 for all subjects except subject 8. Values of glucagon

action, a2, were mixed with four subjects showing significantly

higher values than the other three. The glucagon secretion

parameters, γ2, were evenly distributed about the mean except

for subject 8. A time delay, τ2, of 5 minutes was observed in one

patient.

The glucose arrival rate RIIGI profile in four patients with

T2D is plotted in Figure 2, panel B. The infusion profiles are

unimodal and prolonged, extending to 180 min in some subjects.

The infusion profiles in T2D show less variability than the CS

subjects. Remarkably, a time delay, τ, had to be introduced in

RIIGI and had an average of 7 min with 12 min being the longest

delay.

4.3 Comparison of patients with T2D and
CS subjects

Mean values and ranges of the parameters for patients with

T2D and CS subjects are presented in Table 3. The Mann-

Whitney U test was used to compare the median differences

between T2D and CS parameters. The results of the comparison

test are presented in Table 4. There are significant differences

(p-value<0.05) between five of the T2D and CS parameters,

namely: the insulin sensitivity parameter, a1, the glucagon

suppression parameter k1, the Hill coefficient, h, in the insulin

dose-response curve and the time delays in insulin secretion and

exogenous glucose arrival.

Insulin sensitivity, a1, is much lower in patients with T2D

than CS subjects except for two outliers CS 2 and four who had

insulin sensitivities on par with patients with T2D. Homa-IR (84)

is a method of estimating insulin resistance from fasting glucose

and insulin levels. The insulin sensitivity parameters determined

using Model 1 showed a positive correlation with 1/HomaIR (n �
14 (CS and T2D patients), Spearman Rank Test correlation �

FIGURE 2
Glucose arrival profiles, RIIGI, determined using Eq. 6. There is significant difference between the profiles both within groups and between
groups. The profiles tend be more bimodal in CS subjects (A). The glucose arrival profile for T2D (B) is unimodal and more prolonged relative to CS.
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FIGURE 3
The fits obtained for the seven CS subjects are presented in panels (A–G). The adjusted R2 values were >0.97 for all the fits. The glucose profiles
were fit the best by the model. In some cases, the insulin recovery was not captured perfectly (D,E). Glucagon shows very slow recovery and is
captured reasonably well by the hysteresis model except for one subject (E).
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0.70, p value �.0056). The Hill coefficient, h, which is a measure

of the rapidity of the insulin response to glucose elevation, is

higher in CS subjects than T2D subjects. Insulin secretion is

delayed on average by 26 min in patients with T2D. In addition,

there was delay of ~10 min in RIIGI circulation in patients

with T2D.

The glucagon suppression constant k1 is significantly lower

in patients with T2D relative to CS. Glucagon action in the liver is

not significantly different between CS and T2D though there is

significant variation within groups. The glucagon secretion

parameter is not significantly different between T2D and CS

groups in this study.

The glucose infusion profiles are also different between the

two groups. The infusion profiles of the CS subjects are bimodal

(two peaks), shorter, and show more variability relative to

patients with T2D. The infusion profile in patients with T2D

is unimodal and more prolonged lasting up to 180 min in some

cases.

4.3.1 Trends in parameters
Fasting plasma glucose (FPG), HbA1c and 2 h OGTT plasma

glucose levels are all used to diagnose diabetes. (Diabetes

Association, 2022). The parameters obtained from the fits

were plotted against FPG, HbA1c and 2 h PG (which is

approximately matched to 2 h OGTT glucose) to see which

parameters correlated with these determinants of diabetes.

The contribution of parameters related to glucagon dynamics

to impaired FPG, HbA1c and 2 h PG levels is established. As this

model differs significantly from previously established models,

parameters related to insulin sensitivity and dose-response are

classified based on correlations with FPG, HbA1c and 2 h PG. As

the sample size is small, the cut-off valus separating T2D and CS

are tentatively assigned by visual inspection of Figure 5 and not

through statistical tools such as receiver operating characteristic

(ROC) curves.

In panel A, the glucagon suppression parameter, k1, is plotted

against HbA1c, FPG and 2 h PG. A linear trend was observed in

all three cases with glucose dependent glucagon suppression

constant decreasing with increasing A1c, FG and 2 h PG. Two

outliers are observed, CS subject 5 with very high suppression

and CS subject 2 with very low suppression. The patients with

T2D and CS subjects separate into two distinct non-overlapping

quadrants, particularly when plotted against 2 h PG. The k1 value

of 0.2 serves as the demarcation between CS and T2D groups.

The Spearman Rank Correlation Coefficient and the p-value

between k1 and HbA1c, FPG, and 2 h PG with and without the

two outliers are: (n = 14; (−0.46,0.1), (−0.67,.009), (−0.75, 0.002)),

and (n = 12; (−0.79, 0.002), (−0.73,.007), (−0.86,.0003))

respectively.

In panel B, the insulin sensitivity parameter, a1, is plotted

against HbA1c, FPG and 2 h PG. All patients with T2D show

uniformly low values of insulin sensitivity and again fall into a

separate quadrant. Two CS subjects overlap with patients with

T2D with respect to a1. The demarcation for a1 values between

T2D and CS is set at 0.0002 which would place CS 2 and 4 in the

diabetes group.

In panel C the glucagon action parameter, a2, is plotted

against HbA1c, FPG and 2 h PG. The action parameter is a

measure of glucagon dependent glucose release from the liver.

The glucagon action parameter is not significantly different

between the two groups. There are no clear trends with

respect to a2 though within the T2D group, 2 h PG values

increase linearly with increasing a2.

In panel D the Hill coefficient which describes the steepness

of the glucose dependent insulin response is plotted against

HbA1c, FPG and 2 h PG. The Hill coefficient decreases with

increasing HbA1c and FPG levels. A value of h � 2 appears to be

closer to normal secretory response and h � 1 appears to be the

low end of the response.

In Panel E, the total glucose infused in the IIGI experiment

is plotted against HbA1c, FPG and 2 h PG. The premise of the

IIGI experiment is that if the insulin response to glucose

challenge is entirely glucose dependent, with no incretin

effect, then the amount of glucose infused will be identical

to that of the OGTT glucose challenge experiment. In this case

it would be 75 g glucose as in the matching OGTT. The lower

the amount of glucose required, the greater the incretin effect.

(Nauck et al., 1986). A strong linear relationship is seen with

2 h PG levels particularly within the T2D group. The T2D

patient three who showed no incretin effect, had the highest

2 h PG level. The Spearman Rank Correlation Coefficient and

the p-value between GlucoseInfused and HbA1c, FPG, and

2 h PG are (0.74,.0025), (0.72,.0035), and (0.88,.000039)

respectively.

In Panel F insulin secretion parameter γ1 is presented. There
is no difference between the insulin secretion parameter between

the T2D and CS groups and no trends with respect to HbA1c,

FPG or 2 h PG. This implies that incretin effects are primarily

responsible for differences in insulin secretion between the two

groups under OGTT conditions.

TABLE 1 Parameters obtained from fitting the coupled Model 1 to the
seven CS subjects.

CS# Parameter

a1 a2 γ1 γ2 k1 k2 h τ τ1

1 0.00061 0.33 8.7 1.7 0.25 0.55 2.0 - -

2 0.000055 0.052 9.3 1.3 0.046 0.35 1.4 3.0 12

3 0.00071 0.20 8.7 3.6 0.27 0.55 2.2 5.3 -

4 0.00012 0.068 21 8.1 0.26 0.45 1.9 - -

5 0.00032 0.28 3.2 3.4 0.48 0.55 1.3 - -

7 0.0012 0.59 8.9 0.92 0.24 0.50 2.3 - -

8 0.00063 0.25 3.2 2.9 0.28 0.55 1.9 - -
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FIGURE 4
The fits obtained for the seven patients with T2D are presented in panels (A–G). The adjusted R2 values were >0.98 for all subjects. The glucose and
insulin profiles were fit best by the model. Glucagon recovery is slow as seen in panels (A–G) and again described reasonably well by the hysteresis model.
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In Panel G, the glucagon secretion parameter γ2 is plotted as a
function of HbA1C, FPG and 2 h PG. There is trend towards

increasing HbA1c and fasting glucose with increasing glucagon

secretion within the T2D group. No pattern was seen with respect

to 2 h glucose.

4.4 Hysteresis in insulin secretion

To assess the role of hysteresis in glucose dependent insulin

secretion, Model 1 without hysteresis, Eq. 4a was compared with

Model 2, where insulin secretion is described by Eq. 4b. In Model

1, the insulin secretion is described by a single Hill function with

coefficient h. In the hysteresis model, insulin secretion is

described by two Hill functions with coefficients h1 and h2.

The Hill coefficients h1 and h2 are varied between the rising

and recovery phases of insulin secretion, but the parameter K is

assumed to be constant and same in both models.

The results in Section 4, describe the fits obtained withModel

1 for CS and T2D subjects. The parameters obtained using the

hysteresis Model 2 are presented in Tables 5, 6. The fits are

presented in Supplementary Figures S3, 4. Visually the fits for the

different subjects are not very different for Model 1 and Model 2.

In Model 2, the Hill coefficients h2 is greater than h1 for all CS

subjects. Thus, insulin levels fall more steeply when glucose is

declining. In the patients with T2D h1 ~ h2 indicating there is no

hysteresis and the results are essentially equivalent to the Model

1. The values of h inModel 1 were comparable to h2 inModel 2 in

CS subjects. In patients with T2D, h was comparable to h1 and h2,

in other words, a single Hill equation is sufficient to describe

insulin dose-response.

In Model 1, h was significantly higher in CS subjects

compared to patients with T2D. In Model 2, h2 is significantly

higher in CS subjects relative to patients with T2D. So, both

models show a change in behaviour in patients with T2D.

Model comparison is made based on the Akaike

Information Criterion with small sample correction (AICc).

(Akaike, 1974). This criterion gives an estimate of whether the

model with more parameters reduces the error sufficiently to

justify the increase in complexity. The Akaike criterion can

only be used to compare models using the same data set, so the

AICc values are presented in Tables 7, 8 for individual CS and

T2D subjects respectively. The lower the AICc value, the

better the fit. The differences in AICc values are given in

column 4. The AICc differences were variable with some

subjects fit better by Model 1 and others by Model 2. The

criterion cannot therefore be used to pick one model over the

other.

5 Discussion

T2D is a disease that is manifested when insulin resistance

and beta- and alpha-cell dysfunction occur. (Topp et al., 2000;

Topp et al., 2007; Burcelin et al., 2008; Ashcroft and Rorsman,

2012; Ha et al., 2016). As these three determinants of diabetes

TABLE 2 Parameters obtained from fitting the coupled Model 1 to
patients with T2D.

T2D# Parameter

a1 a2 γ1 γ2 k1 k2 h τ τ1

1 0.00010 0.30 2.7 2.8 0.17 0.60 1.1 10 30

2 0.000085 0.50 4.2 3.6 0.17 0.45 1.7 8 30

3 0.000094 0.49 8.9 1.9 0.13 0.65 1.8 10 35

5 0.000072 0.29 4.6 4.0 0.14 0.33 1.6 12 30

6 0.000050 0.16 5.8 5.2 0.10 0.65 1.0 10 45

7 0.00011 0.18 2.0 1.4 0.16 0.45 1.0 - -

8 0.000080 0.11 10 8.6 0.23 0.45 1.9 - 15

TABLE 3 Average values, standard errors, and ranges of the parameters in patients with T2D and CS subjects.

ACT Mean SEM Range

T2D CS T2D CS T2D CS

a1 (×10
−5)

(10 pM min)−1 8.4 52 0.75 15 5.-11 5.5–120

a2 mg/dL (pM min)−1 0.29 0.25 0.059 0.069 0.11–0.5 0.052–0.59

γ1 10 pM min−1 5.5 9.0 1.1 2.2 2.0–10 3.2–21

γ2 pM min−1 3.9 3.1 0.92 0.92 1.4–8.6 0.92–8.12

k1 (mM)−1 0.16 0.26 0.015 0.047 0.1–0.23 0.046–0.48

k2 (mM)−1 0.51 0.50 0.046 0.029 0.33–0.60 0.35–0.55

h 1.4 1.9 0.15 0.14 1.0–1.9 1.3–2.3

τ1 (min)−1 26 1.7 5.5 1.7 0.-45 0.-12

τ (min)−1 7.1 1.2 1.9 0.80 0.-12 3.0–5.3
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are intrinsically coupled, it is important to quantify

parameters related to them in a self-consistent manner

without splitting the coupled dynamics into separate

subsystems. The parsimonious coupled system of delay

differential equations used in this paper allow for

estimation of all parameters in a single step. The coupled

glucose-insulin-glucagon model was used to fit data from

IIGI experiments to quantify glucagon action, suppression,

and secretion as well as insulin resistance and secretion,

without the confounding influence of incretins and other gut

mediated factors. The results presented in Section 4 show

that the model captures the coupled dynamics correctly and

yields parameters related to both alpha and beta cell

dysfunction and insulin resistance in one step. As this is a

new extended model based on delay differential equations,

some comparisons will be made with parameters related to

insulin resistance and secretion from the single delay

differential model of De Gaetano et al., where the coupled

insulin-glucose dynamics was studied. (Panunzi et al., 2007;

De Gaetano and Hardy, 2019).

Alpha cell dysfunction is known to contribute to both fasting

and postprandial hyperglycemia in T2D. (Dunning and Gerich,

2007; Burcelin et al., 2008; Lund et al., 2014). Increased glucagon

secretion, lowered glucagon suppression and differences in

glucagon action could contribute to elevated fasting glucose

levels and continued glucose production in the post prandial

state. In this study, the glucagon suppression parameter, k1, was

found to be significantly lower in patients with T2D relative to CS.

The parameter also showed clear linear relationship with respect to

HbA1c, FPG and 2 h PG values. There was strong negative

correlation with all three indicators of diabetes. HbA1c levels

have been shown to correlate better with post-prandial glucose

levels and less with fasting glucose levels. (Landgraf, 2004; Hershon

et al., 2019). Two hr PG values are reflective of postprandial

glucose excursions. This shows that glucagon suppression is

impaired in T2D and has an impact on both fasting and

postprandial glucose levels and likely exacerbates hyperglycemia

in patients with T2D.

The glucagon secretion parameter γ2 was not significantly
different between CS and patients with T2D in this study. In

the paper by Unger et al. (1970) similarly, statistically

significant differences were not observed in fasting

glucagon levels between CS and T2D subjects but when

hyperglycemia was induced by glucose infusion in the CS

so as to simulate the fasting hyperglycemia of T2D patients,

mean glucagon fell significantly below the T2D mean,

indicating the level of glucagonemia is high for the

prevailing glycemia in T2D. This is also in line with former

observations measuring hepatic glucose output using

radiolabeled isotopes showing a clear positive correlation

between baseline glucose and hepatic glucose output.

(Baron et al., 1987). Even with great basal variation in

basal glucagon the hepatic glucose output was suppressible

TABLE 6 Parameters determined from fitting the hysteresis Model 2 to
data frompatients with T2D. The parameters a1-k2 are comparable
to that for Hill Model 1. The value of h1 is approximately equal to h2 in
all subjects implying there is no hysteresis in diabetic subjects. Only
subject eight showed a significant drop in h2 compared to h1.

T2D# a1 a2 γ1 γ2 k1 k2 h1 h2 τ1/τ

1 0.000092 0.33 2.6 2.5 0.17 0.4 1.2 1.3 30/10

2 0.000075 0.57 4.5 3.6 0.18 0.35 1.4 2.0 30/8

3 0.000081 0.45 9.2 2.1 0.13 0.65 2.3 2.0 30/10

5 0.000072 0.26 4.5 4.5 0.14 0.41 1.5 1.4 30/12

6 0.0001 0.19 5.4 4.2 0.097 0.65 0.9 0.95 45/10

7 0.00011 0.18 2.0 1.1 0.15 0.45 1.1 0.90 −/−

8 0.00011 0.12 10 5.1 0.18 0.3 2.2 1.2 15/-

TABLE 5 Parameters determined from fitting the hysteresis Model 2 to
data fromCS subjects. The parameters obtained are similar to that
for Hill Model 1. The values of h1 are lower than h2 in all subjects
implying a steeper glucose dependent dose-response during the
insulin recovery phase.

CS# a1 a2 γ1 γ2 k1 k2 h1 h2 τ1/τ

1 0.00053 0.34 6.0 2.9 0.35 0.55 1.4 1.8 −/−

2 0.000058 0.092 9.0 2.0 0.077 0.35 1.3 1.8 14/3.5

3 0.00062 0.18 5.7 4.7 0.31 0.55 1.4 2.3 6./5

4 0.00011 0.070 16 8.8 0.28 0.55 1.1 2.2 −/−

5 0.00034 0.28 2.7 3.3 0.46 0.45 0.94 1.4 −/−

7 0.0011 0.58 8.6 0.96 0.24 0.55 2.2 2.4 −/−

8 0.00063 0.22 2.7 2.9 0.25 0.45 1.3 1.7 −/−

TABLE 4 Results of the Mann-Whitney U test. The insulin sensitivity
parameter, a1, the glucagon suppression parameter k1, the Hill
coefficient h, the insulin secretion time delay τ1 and the infused
glucose RIIGI time delay τ, are found to be significantly different
between the T2D and CS groups.

Parameter Mann-whitney U test
(T2D vs. CS)
p-value

a1 0.015

a2 0.70

γ1 0.28

γ2 0.37

k1 0.021

k2 0.95

h 0.039

τ 0.006

τ1 0.039
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by suppressing glucagon alone in pancreatic clamp

(using somatostatin and basal insulin infusion). (Baron

et al., 1987).

The glucagon action parameter, a2, which is a measure of how

effective it is in hepatic glucose production, is not significantly

different between the CS and T2D subjects and is thus not the

FIGURE 5
In the series of panels (A) through (G), the parameters related to glucagon suppression k1, insulin action a1, glucagon action a2, Hill coefficient h,
infused glucose, insulin secretion γ1 and glucagon secretion γ2 are plotted as a function of HbA1c, FPG and 2 h PG values. In panel (A) 1, 2, and 3, CS
and T2D subjects partition into distinct quadrants except for one CS subject. A linear relationship is observed between glucagon suppression and
HbA1c, FPG, and 2 h PG. The cutoff value separating patients with T2D, and CS subjects is set at 0.2. In Panel (B), the correlation with insulin
sensitivity parameter a1 is presented. CS subjects and patients with T2D again partition into two distinct quadrants except for CS 2 and 4. The cutoff
value separating patients with T2D, and CS subjects is 0.0002. In panel (C) no clear distinction between patients with T2D andCS subjects is observed
with respect to glucagon action parameter a2. In Panel (D), the Hill coefficient, h, is trending higher in CS subjects toward h � two and in patients with
T2D towards h � 1. In Panel (E), infused glucose, an indicator of the incretin effect, shows a linear trend with respect to HbA1C, FPG and 2 h PG,
particularly in patients with T2D. In panel (F), no difference in insulin secretion parameter, γ1, between CS and T2D is observed. In panel (G), patients
with T2D show a weak linear trend towards higher HbA1c and FPG values with increasing glucagon secretion parameter.
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likely cause of elevated fasting and post prandial plasma glucose

levels.

Modeling IIGI gives information regarding glucose

stimulated insulin secretion. In model 1, there are three

parameters describing insulin secretion: 1) a measure of

the magnitude of insulin secretion, γ1. 2) the steepness of

the response based on the Hill coefficient, h, in the dose-

response expression, ψ and 3) the time delay in insulin

response, τ1. A point to note is that differences in hepatic

insulin extraction (HPE) may exist between subjects and the

TABLE 7 Values of the Akaike Information Criterion corrected for small sample size (AICc) is presented for patients with T2D. Smaller AICc values
indicate a better fit. The AICc values are not uniformly less for one model over the other in all patients.

Pat#(T2D) Akaike information criterion (AICc) AICc difference (model
1-Model2)

Model 1 (Hill) Model 2 (hysteresis)

1 309 303 +6

2 318 317 +1

3 321 323 −2

5 296 301 −5

6 290 292 −2

7 232 233 −1

8 301 297 +4

FIGURE 5
coninued
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insulin secretion parameters determined are reflective of

post HPE plasma insulin levels. The differences in HPE

could also account for the some of the variation in plasma

insulin levels between subjects but is not considered here.

(Bojsen-Møller et al., 2018; Santoleri and Titchenell, 2019;

Piccinini and Bergman, 2020).

The parameter γ1 which is a measure of glucose

dependent insulin secretion was not significantly different

between T2D and CS subjects. There may be multiple reasons

for this observation. The patients with T2D in this study were

newly diagnosed and thus in the early stages of disease

progression. This result is also consistent with the

estimation of the incretin effects from the IIGI

experiments in this study which showed that the incretin

dependent insulin response is the dominant factor in

differentiating between the levels of insulin secretion in

CS and T2D subjects. The incretin dependent insulin

secretion was found to be significantly impaired in

patients with T2D. (Bagger et al., 2011).

Though the insulin secretion parameter was not

significantly different, the steepness of the insulin

response as reflected by the Hill coefficient, h, is

significantly different between the two groups. A value of

h � 2 appears to be closer to normal secretory response,

observed in CS subjects with higher insulin sensitivity and h

� 1 appears to be the low end of the response observed in T2D

subjects who have much lower insulin sensitivity. A point of

note is that the CS subjects in this study were weight matched

to the patients with T2D and the T2D patients were newly

diagnosed. It is possible that a clearer demarcation between

CS and T2D groups with respect to the Hill coefficient might

become evident when studying a wider spectrum of T2D and

CS subjects. In the paper by De Gaetano et al., the average

estimated value for the Hill coefficient in normal individuals

was 2.4.

Significant differences in time delay in glucose

stimulated insulin secretion, τ1, was observed between CS

and T2D subjects. There was a significant time delay in only

one CS subject who also had low insulin sensitivity whereas

most T2D had large time delays in insulin secretion. The

reason for the delay in insulin secretion is unclear but might

be partly related to the delay in exogenous glucose (RIIVG)

FIGURE 6
Simulations showing the effect of the exogenous glucose arrival RIIGI on the glucose profile. Parameters in the fit for CS 4 were substituted with
the values obtained from the CS 2 fit. Panel (A) shows the fit with all CS 4 parameters. Panel (B) shows the effect of substituting CS 2 glucose infusion,
RIIGI, in the simulation. Panel (C) shows the impact of substituting CS 2 insulin sensitivity parameter a1, glucagon secretion parameter k1 and glucagon
secretion parameter γ2 in addition to RIIGI on the CS 4 fit.

TABLE 8 Values of the Akaike Information Criterion corrected for small sample size (AICc) is presented for CS subjects. Smaller AICc values indicate a
better fit. The AICc values are not uniformly less for one model over the other.

Pat#(CS) Akaike information criterion (AICc) AICc difference

Model 1-model 2 Model 1 (Hill) Model 2 (hysteresis)

1 256 257 −1

2 299 305 −6

3 236 227 +9

5 279 268 +11

6 229 231 −2

7 253 256 −3

8 217 216 +1
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arrival observed in the patients with T2D. In the paper by De

Gaetano where they fit data from IVGTT on normal

subjects, a delay in the insulin secretion term had to be

introduced to produce the characteristic second phase

insulin secretion profile. This result is very different from

that observed in this IIGI study where no significant delays

were observed in glucose stimulated insulin secretion in the

CS subjects.

The insulin sensitivity parameter showed significant

differences between T2D and CS subjects following

established trends. The magnitude of the average insulin

sensitivity of 0.0005 (10 pM min)−1 in CS subjects is near the

lower end of the glucose sensitivity parameter estimates in

normal subjects in the paper by De Gaetano et al. In

addition, two CS subjects had insulin sensitivities that

were on par with T2D patients. This is likely because the

CS group was weight matched to the patients with T2D in

this study. In fact, some CS subjects showed very high levels

of insulin secretion indicative of the compensatory phase in

response to falling insulin sensitivities. A cut-off value of

0.0002 (10 pM min)−1 separating T2D and CS was

tentatively assigned though a much larger study would be

required to correctly identify the cut-off based on ROC

curves for example. The insulin sensitivity measures

determined in this study correlated well with HOMA-IR

values. Though HOMA-IR is considered to be a measure of

hepatic insulin resistance it has been found to correlate well

with insulin sensitivity measures from the

hyperinsulinemic-euglycemic clamp, for example.

(Matthews et al., 1985).

As seen in Figure 2, the exogenous glucose that is infused

has distinct profiles for the different subjects that is

particularly apparent in CS patients. To delineate the

influence of infused glucose on post infusion glucose

profiles, the effect of substituting RIIGI of one patient with

that of another was studied. In order to make a meaningful

inference, two CS subjects, 2 and 4, who had similar

parameters including similar amounts of total glucose

infused (Table 1; Figure 3 Panel B and D), but showed very

different post infusion glucose profiles were chosen for the

simulations. In Figure 6A, the fit obtained for CS 4 (light blue

solid line) as well as the glucose data for CS 2 and CS 4 are

shown. In the second simulation (Figure 6B), all parameters of

the CS 4 fit were retained but the exogenous glucose infusion

RIIGI of CS 2 was substituted. This causes the CS 4 glucose

profile to spike very much like that seen in CS 2. In Panel C,

4 parameters of CS 2 were substituted retaining only insulin

secretion and glucagon action parameters. It is shown that

patient four transitions to patient two completely. The effect

of the exogenous glucose profile is dramatic in this case.

This result indicates that rate of glucose arrival could have a

big impact on glucose dynamics. As IIGI is isoglycemic with

the corresponding OGTT this suggests that rate of glucose

arrival from the gut could play a role in glucose dynamics

post oral ingestion as well and account in part for the

differences in glucose excursions between subjects. The

role of gastric emptying in glucose homeostasis has been

studied by several researchers where this effect has been

observed, eg., Holst et al. and references therein. (Brener

et al., 1983; Horowitz et al., 1993; Holst et al., 2016). This

possibility has been suggested in the paper by Fiorentino

et al. where the role of sodium-glucose co-transporters is

investigated. (Fiorentino et al., 2017). This result may also

have direct relevance to the findings in the paper by

Utzschneider et al. where they made an association

between plasma glucose profile shape and beta cell

function in newly diagnosed T2D patients. (Utzschneider

et al., 2021).

A consequence of ingesting large glucose loads is often a

lowering of glucose to values below baseline levels or

postprandial hypoglycemia. (Saha, 2006; Parekh et al.,

2014). This phenomenon is seen in most of the subjects in

this study, particularly the CS subjects. One explanation

could be that delayed recovery of glucagon to baseline

levels causes the glucose levels in turn to fall below

baseline. In the paper by Wang, G., (Wang, 2014).,

hysteresis in insulin action is hypothesized to cause

postprandial hypoglycemia. As modeling in this study

with constant insulin action, a1, was able to reproduce the

plasma glucose profiles correctly, including the postprandial

dip, hysteresis behaviour in insulin secretion was considered

a possibility instead. If insulin secretion falls off more slowly

after glucose levels start falling, it could contribute to post-

prandial lowering of glucose below baseline. The fits of the

hysteresis model 2, showing h1<h2 in CS subjects, on the

contrary, predict insulin levels returning to baseline levels

more sharply than the rise. The hysteresis model of glucose

dependent insulin secretion thus does not appear to explain

post-prandial hypoglycemia. Secondly, the hysteresis model

2, with one extra parameter, did not provide a significantly

improved description of the dynamics relative to the Hill

model 1 as indicated by the AICc criterion.

Modeling IIGI is shown to reveal different levels of

impairment in alpha- and beta-cell function and insulin

action in T2D. The contribution of various parameters to

glucose homeostasis, particularly those related to glucagon

dynamics have been estimated. Quantification of the

significant impairment in glucagon suppression in

patients with T2D should help in classifying patients

based on alpha-cell dysregulation. Changes in insulin

dose-response parameters in T2D without the

confounding influence of incretins and other gut

mediated factors as well as first phase insulin release have

been determined. The importance of considering exogenous

glucose arrival on exacerbating postprandial glucose

excursions is highlighted using model simulations. In
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addition to T2D, the model developed was also used to

explore the role of hysteresis in insulin secretion in

explaining phenomena such as post prandial glucose

lowering and a related pathophysiology reactive

hypoglycemia. Results from this study show that

hysteresis in insulin secretion is not the likely cause of

postprandial glucose lowering. While the model

developed is shown to be very effective in determining

parameters related to the coupled dynamics from IIGI

data, shortcomings of fitting IIGI data are that some of

the parameters had to be adjusted manually. Future work

would include fitting the model to larger sets of data which

would allow for classification of patients based on cut-off

values of parameters related to both alpha- and beta-cell

impairment determined from ROC curves.
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Type 2 diabetes mellitus is a complex and under-treated disorder closely

intertwined with obesity. Adolescents with severe obesity and type 2

diabetes have a more aggressive disease compared to adults, with a rapid

decline in pancreatic β cell function and increased incidence of comorbidities.

Given the relative paucity of pharmacotherapies, bariatric surgery has become

increasingly used as a therapeutic option. However, subsets of this population

have sub-optimal outcomes with either inadequate weight loss or little

improvement in disease. Predicting which patients will benefit from surgery

is a difficult task and detailed physiological characteristics of patients who do

not respond to treatment are generally unknown. Identifying physiological

predictors of surgical response therefore has the potential to reveal both

novel phenotypes of disease as well as therapeutic targets. We leverage data

assimilation paired withmechanistic models of glucose metabolism to estimate

pre-operative physiological states of bariatric surgery patients, thereby

identifying latent phenotypes of impaired glucose metabolism. Specifically,

maximal insulin secretion capacity, σ, and insulin sensitivity, SI, differentiate

aberrations in glucose metabolism underlying an individual’s disease. Using

multivariable logistic regression, we combine clinical data with data assimilation

to predict post-operative glycemic outcomes at 12 months. Models using data

assimilation sans insulin had comparable performance to models using oral

glucose tolerance test glucose and insulin. Our best performing models used

data assimilation and had an area under the receiver operating characteristic

curve of 0.77 (95% confidence interval 0.7665, 0.7734) and mean average

precision of 0.6258 (0.6206, 0.6311). We show that data assimilation extracts

knowledge from mechanistic models of glucose metabolism to infer future

glycemic states from limited clinical data. Thismethod can provide a pathway to

predict long-term, post-surgical glycemic states by estimating the
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contributions of insulin resistance and limitations of insulin secretion to pre-

operative glucose metabolism.

KEYWORDS

type 2 diabetes, data assimilation, mechanistic models of glucose metabolism,
pediatrics, bariatric surgery, machine learning, obesity

1 Introduction

As obesity rates rise in the United States, so too does the

prevalence of type 2 diabetes mellitus (T2DM) in children and

adolescents (Skelton et al., 2009; Hales et al., 2017h). While a

number of pharmacotherapies exist to treat T2DM, there are

few options approved for use in younger patients, who

typically have more aggressive disease (TODAY Study

Group, 2021; American Diabetes Association Professional

Practice Committee, 2022). As such, bariatric surgery is

increasingly used as a treatment for severe obesity and

prevention or reversal of T2DM, despite risk of operative

complications (Hsia et al., 2012; Aung et al., 2016; Beamish

and Reinehr, 2017; Inge et al., 2018a; Armstrong et al., 2019;

Bolling et al., 2019; Karasko, 2019; Khattab and Sperling, 2019;

American Diabetes Association Professional Practice

Committee Draznin et al., 2022). Many patients benefit

with significant, sustained weight loss, improvement in

quality of life, and improvement of obesity-related

comorbidities (Inge et al., 2016; Rubino et al., 2016;

Beamish and Reinehr, 2017; Pedroso et al., 2018; Inge

et al., 2019). However, an ill-defined subset of this

population have sub-optimal outcomes (Montero et al.,

2011; Livhits et al., 2012; Toh et al., 2017; Inge et al.,

2018a; Inge et al., 2018b). Predicting which patients are

most likely to benefit from surgery and how they will

benefit is a current challenge aimed to minimize

unnecessary risk during a critical period of growth and

development.

The prevalence of impaired glucose metabolism (IGM)—

here referring to a heterogenous population with impaired

glucose tolerance (IGT), impaired fasting glucose (IFG),

prediabetes (preDM), or T2DM— is increasing in pediatric

populations, and may be underestimated (Sinha et al., 2002;

Lee et al., 2006; Nowicka et al., 2011; Buse et al., 2013; Dabelea

et al., 2014). IGM is progressive and often goes undiagnosed

until later in disease history. It is associated with insulin

resistance (IR), the need for more insulin to achieve

physiologic effects, i.e., peripheral glucose uptake and

suppression of hepatic glucose production (HGP). In the

obese state, IR is almost guaranteed as it is directly related

to visceral adiposity (Kahn and Flier, 2000), but the extent to

which the pancreas can compensate exists on a spectrum.

Insulin sensitivity (SI) is a measure of the effectiveness of

insulin in promoting glucose uptake. It is reciprocally related

to insulin resistance. In this context, T2DM is an example

extreme IGM, with significant IR coupled with β cell

dysfunction and resultant hyperglycemia (Prentki and

Nolan, 2006; American Diabetes Association Professional

Practice Committee, 2022). The extent to which function

can be rescued after progression to T2DM is modifiable to

some degree (Lim et al., 2011; Pajvani and Accili, 2015; Taylor

et al., 2019; Richter et al., 2020; Holst and Madsbad, 2021;

Bartolomé et al., 2022). Duration of disease negatively impacts

the probability of resolution, and lifestyle interventions

resulting in weight loss during the early prediabetic phase

are more likely to prevent progression (Knowler et al., 2002).

Reversal of preDM and prevention of T2DM are therefore

considered to be one of the major benefits of bariatric surgery

in this age group for which there are limited other options

(Aung et al., 2016; Armstrong et al., 2019; Bolling et al., 2019;

Khattab and Sperling, 2019; American Diabetes Association

Professional Practice Committee Draznin et al., 2022). Indeed,

when compared to pharmacologic or lifestyle interventions,

bariatric surgery is overall the most successful intervention

with respect to glycemic improvements and sustained weight

loss (Schauer et al., 2012; Courcoulas et al., 2014; Mingrone

et al., 2015). The specific surgery has clear impact on

outcomes. The three most prevalent bariatric surgeries in

the U.S. are adjustable gastric banding (AGB), Roux-en-Y

gastric bypass (RYGB), and vertical sleeve gastrectomy (VSG).

In AGB, an inflatable band is placed around the upper part of

the stomach creating a small pouch. In RYGB, the jejunum is

directly connected to a remnant small pouch of stomach,

thereby bypassing the majority of the stomach and the

duodenum. In VSG, the majority of the stomach is

removed along the greater curvature, creating a narrow

tube or sleeve. While AGB is thought to act through purely

restrictive mechanisms, VSG and RYGB restrict food intake

and increase malabsorption, alter secretion of gut hormones

related to satiety and insulin secretion, e.g., glucagon-like

peptide-1 (GLP-1) and ghrelin, and change bile acid

composition through the change in macronutrients present

in areas of the small intestine (Seeley et al., 2015; Mulla et al.,

2018; Akalestou et al., 2022). These differing effects can have

profound impact on insulin resistance in particular, and the

success of VSG and RYGB in comparison to AGB has led to

their increased usage (Mulla et al., 2018). Depending on how

remission is defined, meta-analyses have shown that 20–80%

of adults will have some degree of improvement in T2DM at

medium-to-long term follow up (Yip et al., 2013; Elbahrawy

et al., 2018; Tsilingiris et al., 2019; Purnell et al., 2021),
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although there is suggestion of continued impaired β cell

function and overestimation of success (Ramos-Levi et al.,

2013a; Laferrère and Pattou, 2018). Smaller prospective

studies focusing on adolescents suggest T2DM remission

may occur in up to 80–90% of patients and improvement

of preDM may occur in 70–80% of patients following Roux-

en-Y gastric bypass (RYGB), the most drastic surgery that is

recommended for adolescents with respect to metabolic

intervention and risk of complications (Inge et al., 2014;

Inge et al., 2017; Olbers et al., 2017; Stefater and Inge,

2017). However, small sample sizes and relatively

homogenous populations (> 70% non-Hispanic white) limit

generalizability of results. Predicting which patients are likely

to have remission or partial remission of IGM as a result of

surgery and thus not develop T2DM remains a challenging

task (Ramos-Levi et al., 2013b; Wang et al., 2015; Tsilingiris

et al., 2019).

Given the complexity of medical decision making in

adolescent bariatric surgery, accurately assessing benefits vs.

risks for an individual is critical for patients and their care

teams. Glucose dysregulation and obesity can compound

existing surgical risks and increase the chance of

complications. Although adolescents have lower complication

rates compared to their adult counterparts, they may still

experience wound infections, anastomotic strictures, leaks,

wound dehiscence, abdominal hernias, dehydration, and

venous thromboembolism (Lamoshi et al., 2020). In patients

with diabetes, poor wound healing and risk of infection are

serious considerations and can directly impact the success of the

surgery and need for revision (Keidar, 2011). In the long term,

patients also have significant malabsorption post-bariatric

surgery, resulting in multiple vitamin and mineral deficiencies

requiring lifelong supplementation (Bal et al., 2012; Lamoshi

et al., 2020). The consequences of this decreased nutrition can be

great in adolescents who are still undergoing their growth spurts

and accruing bone during their pubertal years (Lamoshi et al.,

2020; Weiner et al., 2020; Ou et al., 2022). Although

advancements have been made to minimize risk of post-

operative complications, improve wound healing, and

optimize post-operative nutrition, bariatric surgery remains an

aggressive measure taken to improve a patient’s health (Crossan

and Sheer, 2022; Dewberry et al., 2022). Therefore, providing

accurate information about a patient’s current diabetic state the

probability of improvement with surgery can allow for more

informed decision making.

Previous studies using statistical or traditional machine

learning techniques to predict T2DM outcomes have generally

focused on relatively homogenous adult populations who

underwent RYGB, with or without genetic information

included in analysis. Because available data are sparse,

these approaches are subject to error and are not often

validated in pediatric populations (Aminian et al., 2017;

Cao et al., 2020; Kam et al., 2020). Varying definitions of

what successful glycemic outcomes mean also complicate

prediction (Buse et al., 2009; Holst and Madsbad, 2021).

Outside of surgery type, other potential predictors include

anthropometrics (weight, height, body mass index [BMI]),

pre-operative disease severity, use of anti-diabetic

medications, and presence of comorbidities (DeMaria et al.,

2007; Livhits et al., 2012; Dixon et al., 2013; Robert et al., 2013;

Panunzi et al., 2015; Wang et al., 2015; Shen et al., 2019).

Associations are also seen with baseline biomarkers such as

fasting glucose, insulin, C-peptide, triglycerides (TG),

C-reactive protein (CRP), and hemoglobin A1c (HbA1c)

levels (Ortega et al., 2012; Courcoulas et al., 2013; Inge

et al., 2014; Pedersen et al., 2016; Yan et al., 2017). These

features, particularly pre-operative disease severity (as

measured by duration of disease, labs, and medications) are

more homogenous in adolescents, who frequently have

preDM rather than T2DM, and are therefore on fewer

medications, if any. Additionally, adolescents tend to have

lower HbA1c values at baseline prior to undergoing bariatric

surgery compared to their adult counterparts. As such,

features that are useful predictors in adult surgical response

are not necessarily translatable to adolescents.

To provide more personalized predictions, Pedersen, et al.

incorporated genetic and clinical information in an artificial

neural network to accurately predict short-term

discontinuation of diabetes medications at 30 days (Pedersen

et al., 2016). The majority of candidate genetic markers were

associated with insulin secretion, glucose clearance, or insulin

sensitization. While genetics certainly play a role in T2DM, pre-

operative genetic analyses are not currently practical for every

patient (Hatoum et al., 2011; Okser et al., 2013; Rouskas et al.,

2014).

These prior studies provide evidence that an individual’s

underlying physiology has long-term implications for

treatment outcomes, but existing methods to approximate

these physiological pathways may not be practical for use

in adolescents (Lee, 2007; Brown and Yanovski, 2014).

Glucose tolerance and insulin resistance are frequently

estimated using point or dynamic lab proxies due to the

expensive and invasive nature of the gold standard for

measurement, the hyperinsulinemic-euglycemic clamp

(Muniyappa et al., 2018). Oral glucose tolerance tests

(OGTTs) are one such approximation used to screen for

and diagnose dysglycemia (Olson et al., 2010; Muniyappa

et al., 2018; American Diabetes Association Professional

Practice Committee, 2022). After fasting (usually

overnight), patients are given a fixed dose of liquid glucose

(typically 75 g) after which glucose levels are measured at

timed intervals. OGTTs can vary in the types of labs drawn,

the frequency of sampling, and the duration of the procedure

(Muniyappa et al., 2018). In common clinical practice, glucose

is measured over two or three hours. Measurements of insulin

and C-peptide are not the standard of care; their assays are
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relatively costly and lack of standardization makes their

interpretation less straightforward (Manley et al., 2007;

Little et al., 2008; Miller et al., 2009; Tohidi et al., 2017).

As such, these labs are typically only collected in research

settings.

Fasting insulin and glucose measurements can be used to

calculate indices such as the homeostatic model assessment of

insulin resistance (HOMA-IR), which can approximate

parameters such as peripheral and hepatic insulin sensitivity

hepaSI as would be assessed in clamp studies or frequently

sampled intravenous GTTs (FSIVGTT), a silver standard

(Matthews et al., 1985; Bergman et al., 1987; Yeckel et al.,

2004). Interpretation of these indices can vary by patient

characteristics (e.g., age, sex, ethnicity, body habitus) (Wallace

et al., 2004; Gunczler and Lanes, 2006; Nathan et al., 2007; Shaibi

et al., 2011; Gutch et al., 2015; Arslanian et al., 2019; Tagi et al.,

2019; Kim et al., 2020). In particular, HOMA-IR may not be

sensitive to improvements in insulin sensitivity in adolescents

(Shaibi et al., 2011; Bryant et al., 2014).

Several mechanistic models of glucose and insulin

metabolism have been empirically developed and validated

against clamp or FSIVGTT studies to mathematically describe

glucose metabolism. Models such as the meal model (Dalla Man

et al., 2007), oral minimal model (Cobelli et al., 2014), and

ultradian model (Sturis et al., 1991) incorporate insulin

secretion rates and glucose elimination to estimate states over

varying timescales. Topp et al. developed a mechanistic model

that incorporates more granular β cell dynamics, which was

extended by Ha et al. to model the development of type 2 diabetes

over time and quantify the extent to which different insults in the

system contribute to disease (Topp et al., 2000; Ha et al., 2016; Ha

and Sherman, 2020). Represented as a system of ordinary

differential equations (ODEs), these models have the potential

to allow for patient-level characterization of glucose metabolism.

Extracting clinical knowledge from these models is not

straightforward, as both the models themselves and their

results are often viewed as too abstract for application in

clinical practice. However, within these mechanistic models

are clinically meaningful physiologic parameters when applied

to the appropriate problems, e.g. assessing insulin sensitivity’s

relationship with lipoprotein metabolism (Chung et al., 2022).

Furthermore, while clamp studies represent a patient’s

physiologic state and glucose excursions at a specific point in

time, mechanistic models have the potential to elucidate more

long-term physiologic states that are difficult to capture clinically.

Knowledge within mechanistic models of glucose

metabolism can be exploited via data assimilation, a family of

methods frequently used in meteorology and aerospace science

(Evensen, 2009; Law et al., 2015). Data assimilation leverages the

underlying information about the system contained in these

mechanistic models to update current and past states using

filtering and smoothing, updates that in turn provide the

ability to forecast future states by running the estimated

model forward in time. Various filters exist that allow for

parameterization and propagation of state uncertainty for

non-linear systems such as glucose homeostasis (Kalman,

1960; Wan et al., 2001; Julier and Uhlmann, 2004). In

previous work, we used the ultradian and meal models with

an unscented Kalman filter (UKF), a sequential method that

propagates uncertainty in non-linear systems, as well as

deterministic and stochastic optimization methods using

techniques such as Markov chain Monte Carlo (MCMC) to

estimate both states and parameters, generating a real-time,

personalized forecast from free-living data (Albers et al., 2017;

Levine et al., 2017). In the free-living data context where data are

sparse, we developed a constrained (Albers et al., 2019) version of

the ensemble Kalman filter (EnKF) method (Evensen, 2009) that

made state and parameter estimates more robust. We also

successfully applied these methods to real-time glucose

forecasting in the setting of T2DM with OGTT data

(Mulgrave et al., 2020). Whereas in the free-living case the

focus was accurate glucose state determination, the OGTT

case focused more on parameter estimates as a marker for

underlying disease.

Here, we take this prior work to further demonstrate the

validity of using physiologic parameters inferred from

mechanistic models of glucose metabolism to predict impaired

glucose metabolism (IGM) in adolescents at 12-months post-

bariatric surgery as compared to other clinical information. We

use data assimilation to estimate parameters from an extension of

the model initially proposed by Topp et al. incorporating β cell

mass (Ha and Sherman, 2020), partially represented in Figure 1.

We then train logistic regression models leveraging these

parameter estimates derived from data assimilation on a

cohort of adolescents who underwent vertical sleeve

gastrectomy (VSG) or laparascopic adjustable gastric banding

(AGB) at our institution between 2006 and 2020.

2 Materials and methods

2.1 Extraction of clinical data

Data were collected retrospectively from Columbia

University Irving Medical Center (CUIMC) from adolescent

patients aged 10–21 who had bariatric surgery between

2006 and 2020. Records were first selected based on the

presence of bariatric surgery procedure codes with a diagnosis

of obesity on the same day (n = 396), a 120-minute OGTT

measuring glucose and insulin (at 0, 30, 60, and 120 min) within

one year prior to surgery (n = 202), a pre-operative HbA1c within

120 days of the OGTT (n = 202), and at least one post-operative

outcome documented within 6–18 months post-surgery (n =

176). These patients were seen through the Center for

Adolescent Bariatric Surgery (CABS) at CUIMC. Patients with

diganosis codes associated with type 1, cystic fibrosis-related, or
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gestational diabetes mellitus were excluded. Features as outlined

above were extracted for patients who met criteria.

2.2 Data pre-processing and manual
feature selection

In addition to features necessary to include patients

(OGTT glucose and insulin measurements and HbA1c),

additional laboratory variables were selected a priori.

These labs were pre-operative thyroid stimulating

hormone (TSH), thyroxine (T4), free T4 (FT4),

triiodothyronine (T3), aspartate transaminase (AST),

alanine transaminase (ALT), total cholesterol (TC), high-

density lipoprotein (HDL), low-density lipoprotein (LDL),

triglycerides (TG), and C-peptide. Age was used as a

continuous variable. Categorical features included surgery

type, demographic data (self-reported race, ethnicity, and

sex), and pre-operative presence of specific comorbidities

associated with insulin resistance and T2DM: liver disease

(including non-alcoholic steatohepatitis [NASH] and non-

alcoholic fatty liver disease [NAFLD]), polycystic ovary

syndrome (PCOS), dyslipidemia, hypertension (HTN),

obstructive sleep apnea (OSA), thyroid disease, metabolic

syndrome (MetS), T2DM (by diagnosis code), and

abnormal glucose metabolism (by diagnosis code). To be

coded as having the comorbidity of interest without manual

chart review, at least 25% of all encounters within the

appropriate time window had to contain a related diagnosis

code (5 years pre-operative; 6–18 months post-operative)

(Perotte and Hripcsak, 2013). Features missing in more

than 25% of the sample were removed from analysis. The

closest labs obtained prior to surgery and the pre-operative

OGTT were included as features if there were multiple lab

results within the appropriate time window. HOMA-IR was

calculated using mass units (Matthews et al., 1985) as follows

in Eq. 1:

IRHOMA � G0 × I0
405

(1)

where G0 is fasting glucose in mg/dL and I0 is fasting insulin in

µIU/mL.

For continuous variables, outliers were defined as those

values outside 1.5× the interquartile range (IQR). However,

after manual chart review, none of the outliers were removed

as none were found to be spurious measurements.

FIGURE 1
Schematic of mechanistic models of glucose metabolism. Underlying physiologic processes are represented by a series of ordinary differential
equations (ODEs). Solutions lie on discrete spaces based on patient physiology at the time of measurements. In data assimilation, after reverse
parameter estimation at discrete time points (i.e., insulin secretion capacity, σ, and insulin sensitivity, SI), the system state is updated and the ODEs are
solved again. Figure adapted from Tokarz et al. (Tokarz et al., 2018) and created with BioRender.com. Relevant equations are outlined in
Methods and in Ha and Sherman 2020 (Ha and Sherman, 2020).
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Due to non-normal distributions of the majority of

continuous variables, numeric features were scaled and

standardized using power transformation with the Box-Cox

method (Box and Cox, 1964) prior to hyperparameter tuning.

Missing values (n = 7, all thyroid function tests) were imputed

using iterative imputation using five nearest features with

sampling from the prior distribution (Buck, 1960; Buuren and

Groothuis-Oudshoorn, 2011; Pedregosa et al., 2011).

In total, we used 21 continuous clinical variables,

23 categorical variables (three multinomial, 11 binary), and six

continuous parameter estimates from data assimilation (mean

and standard deviations of maximal insulin secretion capacity

[σ], insulin sensitivity [SI], and their product [σ*SI] for an

individual’s estimated distributions). Models including

HOMA-IR as a feature did not include data assimilation

estimates. After data pre-processing, a total of 49 features

were included in the most comprehensive model.

2.3 Outcome labelling

Patient post-operative outcome classification was coded as

a binary variable indicating the presence or absence of

impaired glucose metabolism (IGM) at 12 months. To be

classified as having IGM, patients could have any one of the

following criteria occur in the 6–18-month post-operative

window: ≥ 2 elevated HbA1c values, post-operative OGTT

G0 ≥ 100 mg/dL, post-operative OGTT G120 ≥ 140 mg/dL,

anti-diabetic drug use (including metformin), or presence of

diagnosis codes for T2DM or abnormal glucose metabolism

in ≥ 25% of encounters in the post-op window (American

Diabetes Association Professional Practice Committee, 2022).

If multiple specimens for the same lab were collected within

the 6-18-month window, the latest labs were used. Outcome

definitions are shown in Table 1.

2.4 Predictive model training and
evaluation

Regularized logistic regression models were trained to

predict impaired glucose metabolism (IGM) as a binary

outcome on varied subsets of the features as input. The

data were first split into 70–30 train-test sets.

Hyperparameters were tuned on the train set with stratified

nested k-fold cross-validation. Tuned hyperparameters

included regularization method (L2 vs. L1), regularization

constant (λ = α*n), learning rate [f(α)], and max iterations.

The loss function was binary cross-entropy loss with balanced

class weight. The optimizer was stochastic gradient descent

with an adaptive learning rate. To ensure model robustness to

random data splitting, we performed 30 independent train-test

splits and the results were averaged. The hyperparameters

associated with the minimum loss in training were selected for

model evaluation.

Because our dataset was imbalanced with respect to

outcomes, we chose class weights in the logistic regression

models that were inversely proportional to the class

frequency. To evaluate the performance of the prediction

models, we computed area under the Receiver Operating

Characteristic curve (AUROC), precision, recall, and

average precision (AP) on out-of-bag estimates from

1,000 bootstrapped samples (n = 176). Average precision

refers to the weighted mean of precision with respect to

recall at all probability thresholds for classification and

focuses on how well the models predict the positive class

(in our case, post-operative IGM). It is analogous to the area

under the precision-recall curve (AUPRC) and better suited

for imbalanced datasets compared to accuracy. Baseline

performance of a naïve classifier would have an AUPRC

equal to the proportion of the positive class in the data (here,

0.318).

TABLE 1 Outcome definitions for classification as having impaired glucose metabolism (IGM) or normal glucose metabolism (NGM) at 12 months
post-bariatric surgery.

Normal glucose
metabolism
(NGM)

Impaired glucose metabolism (IGM)

Prediabetes Type 2 diabetes
mellitus

HbA1c (%) < 5.7 5.7–6.4 ≥ 6.5

G0 (mg/dL) < 100 100–125 ≥ 126

G120 (mg/dL) < 140 140–199 ≥ 200

Anti-diabetic medications None Metformin or GLP-1a All other drug classes

Diagnosis codes in encounters within 6–18 months
post-op

None or < 25% Abnormal Glucose in ≥ 25% of
encounters

T2DM in ≥ 25% of encounters

G, glucose; GLP-1a, Glucagon-Like Peptide-1 agonist; OGTT, oral glucose tolerance test; OSA, obstructive sleep apnea; T2DM, type 2 diabetes mellitus.
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2.5 Mechanistic glucose metabolism
modeling

Relevant equations used in our study are briefly outlined

below, with a full description of the model available in the

supplemental materials of Ha and Sherman 2020 (Ha and

Sherman, 2020; Sherman, 2022).

Eq. 2 describes change in glucose over time as a function of

the glucose flux during the OGTT (OGTT), hepatic glucose

production (HGP), insulin sensitivity (SI), the insulin-

independent effectiveness of glucose (EG0), current glucose

(G), and insulin (I). It is given as:

dG

dt
� OGTT +HGP − (EG0 + SII)G (2)

where HGP is a decreasing function of I and hepatic insulin

sensitivity (hepaSI) and EG0 represents insulin-independent

glucose uptake by peripheral tissues, here fixed at 0.0118 min−1.

Eqs. 3, 4 describe change in insulin over time as a function of

β cell mass (β), volume of distribution (V), insulin secretion rate

(ISR), and insulin (I). ISR is a function of calcium ion

concentration in the β cell cytosol (CISR) and the number of

primed insulin vesicles at the β cell membrane (N5). They are

given as:

dI

dt
� β

V
ISR − kI (3)

ISR � CISRN5 (4)
where k is a rate constant of insulin clearance. The precise form of

CISR as a function of glucose (G) and ATP-dependent potassium

ion channel (K+-ATP) density (γ) can be determined by

expanding the equations derived from a slight modification of

the steady state of the previously published exocytosis model

(Chen et al., 2008).

Eq. 5 shows the change in γ, the density of the β cell

membrane ATP-dependent potassium ion channel (K+-ATP),

as an increasing function of glucose (G) on a scale of hours to

days. This describes the shift in glucose-dependent insulin

secretion in the setting of chronic hyperglycemia, where

increases in channel density lead to decreases in insulin

secretion. Because of the short time scale of the OGTT, γ
was fixed at –0.076 as in prior work (Sherman, 2022) and this

equation was not explicitly solved in our methods. It is

provided here for clarity on how chronic hyperglycemia

affects β cell structure and is given as:

dγ

dt
� γ∞(G) − γ

τγ
(5)

where γ∞(G) is an increasing sigmoidal function of glucose and

τγ is a time constant.

From the insulin exocytosis model, Eqs. 6, 7 describe the

change in the number of vesicles in the β cell granule-membrane

complex during docking and priming (N6 andN5, respectively) as

functions of K+-ATP channel density (γ), glucose (G), maximal

insulin secretion capacity (σ), and the baseline insulin vesicle

priming rate, r2
0 (Chen et al., 2008). These equations are given as:

dN5

dt
� C5,5N5 + C5,6N6 (6)

dN6

dt
� C6,0 + C6,5N5 + C6,6N6 (7)

where Ci,j represents the cytosol calcium ion concentration at a

given state in exocytosis: C5,5 is a function of G and γ; C5,6 and

C6,6 are functions of G, γ, and r20; C6,0 is a function of G, γ, and σ,
and; C6,5 is a constant.

Eq. 8 describes the change in the maximal insulin secretion

capacity, σ, to compensate for chronic hyperglycemia on a scale

of hours to days. It is a unitless scale factor. During the OGTT, σ
is assumed to be at steady state. σ is a function of insulin secretion
rate (ISR) and β cell metabolism (M), where σ increases with

increases in ISR and decreases as M increases.

dσ

dt
� σ∞(ISR,M) − σ

τσ
(8)

Parameters and non-estimated initial states were set according to

their values in previous research (Ha and Sherman, 2020; Sherman,

2022). In experiments where measured insulin values were not

included in the estimation optimization, I0 was set as 5.63 µIU/mL.

The parameters estimated without using a patient's insulin values are

denoted with an, σSI and σ*SI.

2.6 Estimating parameters using data
assimilation

In our methods, we estimated two parameters via data

assimilation, insulin sensitivity, SI, and maximal insulin secretion

capacity, σ. Ordinary differential equations were solved using a

Rosenbrock-W method (Rosenbrock23) (Rackauckas and Nie,

2017) within the bounds of [0.005, 3] for SI and [0.01, 10] for σ.
The posterior distributions of the parameters and the product σ*SI
were estimated based on a 500,000 iteration Random Walk

Metropolis-Hastings MCMC (Hastings, 1970) chain (excluding a

burn-in of 50,000 iterations), assuming a normal distribution error

model and uniform priors. A decrease in autocorrelation

approaching 0 was appreciated with increasing lags (k) near k =

500 to support chain convergence, and the number of iterations and

burn-in were selected to be orders of magnitude larger than k (Roy,

2019). Acceptance rate varied with each patient between 0.2–0.5.

Multiple independent chains for a subset of 10 patients provided

confidence in the reproducibility of the estimates. The means and

standard deviations of the parameters were calculated from the

remaining 450,000 iterations (Ge et al., 2018) in an individual’s

chain, and these summary statistics were included in logistic

regression models.
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2.7 Descriptive statistics

The majority of continuous features were not normally

distributed, so non-parametric methods were used to calculate

descriptive statistics on non-transformed data. These data are

reported as medians with 95% confidence intervals around the

median. The Mann-Whitney-U tests were used to compare

continuous variables under these circumstances. χ2 or Fisher’s

TABLE 2 Pre-operative demographic comparisons by binary post-operative outcome at 12 months. For continuous variables, medians with their 95%
CI are shown. Categorical variables are shown as a percentage and count. Significant p-values for Mann-Whitney-U tests after Bonferroni
correction are in bold (p < 0.001).

Variable Name − IGM n = 120 + IGM n = 56 p-value

Pre-operative IGM status# 45 (54) 83.9 (47) < 0.0001

Operation Age (years) 16.9 (16.6, 17.1) 16.8 (16.5, 17.5) 0.3034

Pre-operative BMI (kg/m2) 45.93 (44.66, 47.92) 48.25 (46.20, 51.24) 0.0712

Male (%) 27.5 (33) 33.9 (19) 0.4880

Race

Asian 0 (0) 3.6 (2) 0.1000

Black 17.5 (21) 28.6 (16) 0.1390

Native American 0 (0) 1.8 (1) 0.3180

Other 2.5 (3) 7.1 (4) 0.2110

Pacific Islander 0.8 (1) 0 (0) 1.0000

White 58.3 (70) 46.4 (26) 0.1890

Unknown 20.8 (25) 16.1 (9) 0.5890

Ethnicity

Hispanic 42.5 (51) 51.8 (29) 0.3220

Non-Hispanic 53.3 (64) 51.8 (29) 0.9760

Declined 1.7 (2) 1.8 (1) 1.0000

Unknown 9.2 (11) 1.8 (1) 0.1060

Surgery Type

Roux-en-Y (RYGB) 0.8 (1) 0 (0) 1.0000

Gastric Band (AGB) 42.5 (51) 60.7 (34) 0.0370

Sleeve Gastrectomy (VSG) 55.8 (67) 39.3 (22) 0.0600

Otherx 0.8 (1) 0 (0) 1.0000

ICD Codes

Abnormal Glucose° 13.3 (16) 33.9 (19) 0.0030

T2DM 8.3 (10) 23.2 (13) 0.0130

Dyslipidemia 29.2 (35) 35.7 (20) 0.4850

GERD 13.3 (16) 14.3 (8) 1.0000

Hypertension 21.7 (26) 41.1 (23) 0.0130

Liver Disease+ 17.5 (21) 21.4 (12) 0.6780

Metabolic Syndrome 29.2 (35) 32.1 (18) 0.8220

OSA 35 (42) 42.9 (24) 0.4030

PCOS (F, n = 87, 37) 19.5 (17) 48.6 (18) 0.0021

Thyroid Disease 4.2 (5) 8.9 (5) 0.2930

#Patients with pre-operative IGM had any one of the IGM definitions pre-operatively. This variable was not used in training any of the models.
xOther surgeries refers to non-specific procedure codes for restrictive bariatric surgery.
+Liver disease includes non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, and unspecified chronic liver disease.
°Abnormal glucose diagnosis codes exclude any kind of diabetes mellitus.

Abbreviations: BMI, body mass index; CI, confidence interval; GERD, gastroesophageal reflux disease; IGM, impaired glucose metabolism; OSA, obstructive sleep apnea; PCOS, polycystic

ovary syndrome; T2DM, type 2 diabetes mellitus.
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exact tests were used to compare categorical variables depending on

the frequencies of the categories. Two-tailed Student’s t-tests were

used to compare means and 95% confidence intervals of

bootstrapped coefficient estimates and scoring metrics.

3 Results

3.1 Description of data

Out of 396 adolescents who underwent bariatric surgery,

248 had pre-operative OGTTs. Of 202 patients without any

missing values in their pre-operative OGTT glucose and

insulin measurements, 176 had follow-up within the

appropriate time window and were further analyzed. All

potential classification methods for impaired glucose

metabolism (IGM) demonstrated class imbalance, with ~35%

(n = 56) of patients with meeting post-operative criteria for IGM

as outlined above. Pre-operative characteristics by group are

shown in Tables 2, 3. Using the same criteria to classify IGM

post-operatively, 101 of the 176 (57.4%)met criteria for IGM pre-

operatively. At baseline, patients who had higher probabilities of

having IGM post-operatively were more insulin resistant as

TABLE 3 Pre-operative laboratory value comparisons by binary post-operative outcome at 12 months. Medians with their 95% CI are shown.
Significant p-values for Mann-Whitney-U tests after Bonferroni correction are in bold (p < 0.002).

Variable Name − NGM n = 120 + IGM n = 56 p-value

Baseline HbA1c (%) 5.4 (5.3, 5.5) 5.8 (5.7, 6.0) < 0.0001

Baseline HOMA-IR 3.13 (2.76, 3.52) 4.53 (3.75, 5.57) 1.987 × 10–3

OGTT Measurements

G0 (mg/dL) 86.5 (84, 88) 87.5 (86, 93) 0.1081

G30 (mg/dL) 128 (123, 134) 140.5 (134, 146) 1.312 × 10–3

G60 (mg/dL) 115.5 (113, 121) 133.5 (127, 154) 2.2 × 10–4

G120 (mg/dL) 98 (93, 104) 113.5 (109, 122) 1.5 × 10–4

I0 (µIU/mL) 14.5 (13.0, 17.0) 20.0 (17.0, 24.0) 4.033 × 10–3

I30 (µIU/mL) 65.0 (52.0, 81.0) 70.5 (52.0, 87.0) 0.8265

I60 (µIU/mL) 63.0 (50.0, 72.0) 62.5 (49.0, 90.0) 0.9456

I120 (µIU/mL) 36.5 (27.0, 50.0) 58.5 (47.0, 94.0) 1.17 × 10–4

Other Labs

Total Cholesterol (mg/dL) 164 (159, 171) 164 (155, 170) 0.6057

HDL Cholesterol (mg/dL) 42 (41, 44) 43 (41, 47) 0.3700

HDL Cholesterol (mg/dL) (M, n = 33, 19) 39 (35, 44) 39 (34, 44) 0.9317

HDL Cholesterol (mg/dL) (F, n = 87, 37) 43 (42, 47) 46 (43, 51) 0.2019

LDL Cholesterol (mg/dL) 94 (92, 104) 101 (94, 105) 0.7447

Triglycerides (mg/dL) 103 (93, 113) 87.5 (78, 114) 0.4017

ALT (IU/L) 18.5 (16, 21) 20 (17, 25) 0.3676

AST (IU/L) 19 (18, 19) 18 (18, 21) 0.8286

TSH (µIU/L) 2.3 (2.0, 2.7) 2.8 (2.3, 3.7) 0.4416

Free T4 (ng/dL) 1.14 (1.1, 1.17) 1.16 (1.13, 1.22) 0.2113

Total T4 (µg/dL) 8.2 (8.0, 8.8) 8.7 (8.3, 9.3) 0.3143

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; CI, confidence interval; G, glucose; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; HOMA-IR,

homeostatic model assessment of insulin resistance; I, insulin; IGM, impaired glucose metabolism; LDL, low-density lipoprotein; NGM, normal glucose metabolism; OGTT, oral glucose

tolerance test; TSH, thyroid stimulating hormone; T4, thyroxine.

TABLE 4 Data assimilation-derived mechanistic model parameter
estimate comparisons by binary post-operative outcome at 12
months. The parameters SI, σ, and σ*SI refer to the means of the
posterior distributions for each patient. Overlined parameters were
estimated without insulin values. For comparisons, medians and
95% confidence intervals of the median are shown. All
comparisons had significant p-values for Mann-Whitney-U test
after Bonferroni correction (p < 0.008).

Parameter Name – IGM n = 120 + IGM n = 56 p-value

SI 0.403 (0.249, 0.571) 0.086 (0.054, 0.207) 1.70 x 10-5

SI 0.356 (0.284, 0.420) 0.155 (0.129, 0.178) < 0.0001

σ*SI 0.947 (0.651, 1.539) 0.207 (0.157, 0.379) < 0.0001

σ*SI 0.908 (0.763, 1.510) 0.255 (0.146, 0.547) < 0.0001

�σ 4.715 (4.414, 4.976) 4.083 (3.582, 4.399) 0.0011

σ 3.424 (2.627, 4.630) 1.596 (1.195, 3.169) 0.0003

Abbreviations: IGM, impaired glucose metabolism; σ, maximal insulin secretion

capacity; SI , insulin sensitivity.
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measured by HOMA-IR, had higher G30, G60, and G120 values,

and had higher I120 values.

A total of 202 patients met inclusion criteria, but 26 of

them did not have follow-up within 6–18 months of surgery.

One patient was lost to follow-up due to death

within three months of surgery. The proportions of patients

lost to follow-up were statistically different between those

with pre-operative IGM (Fisher’s exact test p = 0.035):

nine met two or more pre-operative IGM criteria

(three with elevated G0, one with elevated G120, six with

multiple elevated HbA1c values, one on anti-diabetic

medication).

3.2 Data assimilation results

Parameter estimates from data assimilation are

summarized in Table 4 and the probability distribution of

FIGURE 2
Scatter and 2D kernel density estimation plots, stratified by post-operative outcome at 12 months. Data are shown after Box-Cox
transformation for visualization. (A) Incorporating measured insulin measurements in the data assimilation estimations increases separation of the
estimated probability distributions of σ between groups, as compared to (B) without insulin, where SI is more separated but σ has more overlap. (C)
σ*SI had better separation compared to HOMA-IR when estimated bothwith and (D)without insulin. Blue triangles, normal glucosemetabolism
(–IGM); red circles, impaired glucose metabolism (+IGM).
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their means across the cohort as estimated by kernel density

estimation are shown in Figure 2. The post-operative + IGM

group had statistically significantly lower baseline insulin

sensitivity (SI) and maximal insulin secretion capacity

(σ) values compared to the post-operative − IGM

group, irrespective of inclusion of insulin in the data

assimilation.

The marginal posterior densities of the parameters were

estimated for each individual patient using MCMC. The

marginal posterior density of SI was sharply peaked away

from its bounds on manual inspection for a random subset of

patients, giving us confidence in its mean estimator. The density

for σ*SI was also sharply peaked away from its bounds (not

shown).

TABLE 5 AUROC comparisons between models trained on subsets of features with and without data assimilation. Models are presented in
alphabetical order with the better performing model on the left (Model A). Clinical Vars refers to all clinical features in Tables 2, 3 except pre-
operative IGM status and HOMA-IR. Clinical Vars–Ins refers to the same set of features in Clinical Vars after removing insulin measurements. Overlined
parameters were estimated without insulin values. Significant p-values for two-tailed Student’s t-test after Bonferroni correction are shown in bold
(p < 0.004).

Model A A AUROC Mean (95% CI) Model B B AUROC Mean
(95% CI)

p-value

1 Clinical Vars 0.7655 (0.7622, 0.7689) Clinical Vars–Ins + σ*SI 0.7511 (0.7475, 0.7547) < 0.0001

2 Clinical Vars + HOMA-IR 0.7659 (0.7625, 0.7692) Clinical Vars 0.7655 (0.7622, 0.7689) 0.8942

3 Clinical Vars–Ins + σ*SI 0.7511 (0.7475, 0.7547) Clinical Vars–Ins 0.7491 (0.7455, 0.7527) 0.4351

4 Clinical Vars + σ + SI + σ*SI 0.7678 (0.7644, 0.7713) Clinical Vars 0.7655 (0.7622, 0.7689) 0.3573

5 Clinical Vars + σ + SI + σ*SI 0.7678 (0.7644, 0.7713) Clinical Vars + HOMA-IR 0.7659 (0.7625, 0.7692) 0.4282

6 Clinical Vars + σ*SI 0.7700 (0.7665, 0.7734) Clinical Vars 0.7655 (0.7622, 0.7689) 0.0728

7 Clinical Vars + σ*SI 0.7700 (0.7665, 0.7734) Clinical Vars + HOMA-IR 0.7659 (0.7625, 0.7692) 0.0952

8 Glucose + Insulin + HbA1c
+ σ*SI

0.7627 (0.7594, 0.7659) Glucose + Insulin + HbA1c + σ + SI
+ σ*SI

0.7451 (0.7416, 0.7486) < 0.0001

9 Glucose + Insulin + σ + SI
+ σ*SI

0.7463 (0.743, 0.7496) Glucose + Insulin 0.7337 (0.7303, 0.7371) < 0.0001

10 σ*SI 0.7380 (0.7346, 0.7415) Glucose + Insulin 0.7337 (0.7303, 0.7371) 0.0790

11 σ*SI 0.7380 (0.7346, 0.7415) Glucose + Insulin + HOMA-IR 0.7317 (0.7283, 0.7350) 0.0089

Abbreviations: CI, confidence interval; HbA1c, hemoglobin A1c; HOMA-IR, homeostatic model assessment of insulin resistance; σ , maximal insulin secretion capacity; SI , insulin

sensitivity.

TABLE 6 Average precision comparisons between models trained on subsets of features with and without data assimilation. Models are presented in
the same order as in Table 5. Clinical Vars refers to all clinical features in Tables 2, 3 except pre-operative IGM status and HOMA-IR. Clinical
Vars–Ins refers to the same set of features in Clinical Vars after removing insulin measurements. Overlined parameters were estimated without insulin
values. Significant p-values for two-tailed Student’s t-test after Bonferroni correction are shown in bold (p < 0.004).

Model A A AP Mean (95% CI) Model B B AP Mean (95% CI) p-value

1 Clinical Vars 0.6200 (0.6148, 0.6252) Clinical Vars–Ins + σ*SI 0.613 (0.6074, 0.6185) 0.0700

2 Clinical Vars + HOMA-IR 0.6209 (0.6155, 0.6262) Clinical Vars 0.6200 (0.6148, 0.6252) 0.8200

3 Clinical Vars–Ins + σ*SI 0.613 (0.6074, 0.6185) Clinical Vars–Ins 0.6075 (0.6021, 0.6129) 0.1665

4 Clinical Vars + σ + SI + σ*SI 0.6253 (0.6197, 0.6308) Clinical Vars 0.6200 (0.6148, 0.6252) 0.8835

5 Clinical Vars + σ + SI + σ*SI 0.6253 (0.6197, 0.6308) Clinical Vars + HOMA-IR 0.6209 (0.6155, 0.6262) 0.2656

6 Clinical Vars + σ*SI 0.6258 (0.6206, 0.6311) Clinical Vars 0.6200 (0.6148, 0.6252) 0.1244

7 Clinical Vars + σ*SI 0.6258 (0.6206, 0.6311) Clinical Vars + HOMA-IR 0.6209 (0.6155, 0.6262) 0.1966

8 Glucose + Insulin + HbA1c + σ*SI 0.6156 (0.6105, 0.6207) Glucose + Insulin + HbA1c + σ + SI + σ*SI 0.5936 (0.5882, 0.599) < 0.0001

9 Glucose + Insulin + σ + SI + σ*SI 0.5841 (0.5791, 0.5892) Glucose + Insulin 0.5695 (0.5644, 0.5745) 0.0001

10 σ*SI 0.5990 (0.5939, 0.6041) Glucose + Insulin 0.5695 (0.5644, 0.5745) < 0.0001

11 σ*SI 0.5990 (0.5939, 0.6041) Glucose + Insulin + HOMA-IR 0.5662 (0.5611, 0.5713) < 0.0001

Abbreviations: AP, average precision; CI, confidence interval; HbA1c, hemoglobin A1c; HOMA-IR, homeostatic model assessment of insulin resistance; σ , maximal insulin secretion

capacity; SI , insulin sensitivity.
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3.3 Prediction model results

For the most complex model, data assimilation estimates

were negatively correlated with the probability of having post-

operative impaired glucose metabolism (IGM) at 12 months.

Across models that contained them, HbA1c and I120 were

positively correlated with the probability of having post-

operative IGM at 12 months. However, the model coefficients

were overall not significantly different from zero for all models

(not shown). When ranked bymagnitude, the largest coefficients,

when included, were coefficients for HbA1c, I120, and G60.

Selected AUROC and average precision score comparisons

are shown in Tables 5, 6, respectively.

The best performing model used all available clinical

variables (n features = 43) and σ*SI with an AUROC of 0.77

(95% CI 0.7665, 0.7734) and average precision of 0.6258 (95% CI

0.6206, 0.6311). Our most comprehensive models using all

clinical data had similar performances regardless of whether

data assimilation estimates or HOMA-IR were included

(Tables 5, 6, rows 1–7).

4 Discussion

4.1 Data assimilation estimates can add
clinical information that improves
prediction

Our best-performing model used the aforementioned

clinical variables combined with the product of maximal

insulin secretion capacity and insulin sensitivity, σ*SI, with
an AUROC of 0.77 (95% CI 0.7665, 0.7734) and average

precision of 0.6258 (95% CI 0.6206, 0.6311). This model

was nominally better than one using clinical variables alone

with an AUROC of 0.7655 (95% CI 0.7622, 0.7689) and

average precision of 0.6200 (95% CI 0.6148, 0.6252), but

the differences were not significant at p = 0.0728 and

0.1244, respectively (Tables 5, 6, row 6).

4.2 Data assimilation estimates can infer
missing information encoded in insulin
measurements

The comparability of our most comprehensive models

suggests that the information added by data assimilation is

captured in an extensive, but not exhaustive, clinical dataset.

Embedded in the electronic health record (EHR) data was a

powerful experiment where the effects of bariatric surgery

could be thoroughly investigated. Models incorporating

insulin, in general, outperformed models that did not

include it. However, when insulin measurements are

missing, data assimilation can add physiologic information

that approaches the predictive ability of the full clinical

dataset. For example, when using all other clinical features

except insulin, the model using the product σ*SI had

nominally improved performance to the model not

including any data assimilation estimates, although the

p-value was not significant (AUROC 0.7511 [0.7475,

0.7547] vs. 0.7491 [0.7455, 0.7527], respectively, p = 0.4351;

AP 0.6130 [0.6074, 0.6185] vs. 0.6075 [0.6021, 0.6129], p =

0.1665) (Tables 5, 6, row 3). While the performance of this

same model using σ*SI performed worse than the model using

the full clinical dataset including insulin (AUROC

0.7511 [0.7475, 0.7547] vs. 0.7655 [0.7622, 0.7689], p <
0.0001; AP 0.6130 [0.6074, 0.6185] vs. 0.6200 [0.6148,

0.6252], p = 0.0700) (Tables 5, 6, row 1), its AUROC was

non-inferior at 98.5% with p = 0.2326.

Our models further suggest that σ*SI, even when estimated

sans insulin, can represent the information within an OGTT

using glucose and insulin. When compared, our model trained

on only σ*SI had similar or better performance as compared to

models trained on the glucose and insulin measurements from an

OGTT (AUROC 0.7380 [0.7346, 0.7415] vs. 0.7337 [0.7303,

0.7371], p = 0.079; AP 0.5990 [0.5939, 0.6041] vs.

0.5695 [0.5644, 0.5745], p < 0.0001) (Tables 5, 6, row 10). The

predictive performance of σ*SI is demonstrated again in

comparison with the model incorporating HOMA-IR, which

requires a fasting insulin measurement (AUROC 0.7380 [0.7346,

0.7415] vs. 0.7317 [0.7283, 0.7350], p = 0.0089; 0.5990 [0.5939,

0.6041] vs. 0.5662 [0.5611, 0.5713], p < 0.0001) (Tables 5, 6,

row 11).

4.3 The mechanistic models were
validated using clinical data

The mechanistic models were able to be well estimated,

achieving a stable solution with a unique minimum, using our

clinical dataset. Furthermore, the mechanistic model output did

not contradict nor add unvalidated information, in that the

parameters estimated corresponded to variables associated

with glucose and insulin metabolism, and not to other clinical

variables (e.g., demographics, thyroid function).

4.4 Uncertainty of data assimilation
estimates results in reduced performance
in logistic regression

When included in the model, HbA1c and insulin measures

(particularly I120) were frequently ranked as the most

important predictors by magnitude. The improved

prediction ability using A1c or insulin was not replicated

by substituting them with data assimilation estimates not

using insulin (not shown). While not a complete substitute
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for the information contained in HbA1c or insulin, when

maximal insulin secretion capacity (σ), insulin sensitivity (SI),

or σ*SI are estimated using insulin measurements, they still

improve performance when added to models containing

OGTT insulin (AUROC 0.7463 [0.743, 0.7496] vs.

0.7337 [0.7303, 0.7371], p < 0.0001; AP 0.5841 [0.5791,

0.5892] vs. 0.5695 [0.5644, 0.5745], p = 0.0001) (Tables 5,

6, row 9).

Although in most models the feature coefficients were not

statistically different from zero (not shown), the standard

deviation of maximal insulin secretion capacity (σ) is given

more importance than the actual estimated parameters

themselves and HbA1c in the models using all three data

assimilation estimates. Furthermore, in the presence of insulin,

regularization consistently shrinks the coefficient for insulin

sensitivity (SI), whereas the coefficient for maximal insulin

secretion capacity (σ) increases. The variance in σ's estimation

and its overlapping distributions between groups compared to

that of SI, even when estimated using insulin measurements,

likely contributes to the loss of predictive power (Figure 2). Using

σ*SI in lieu of σ and SI separately improves model performance

(AUROC 0.7627 [0.7594, 0.7659] vs. 0.7451 [0.7416, 0.7486], p <
0.0001; AP 0.6156 [0.6105, 0.6207] vs. 0.5936 [0.5882, 0.599], p <
0.0001) (Tables 5, 6, row 8).

4.5 Disease subtypes can be described by
parameter estimates

Differences in pre-operative insulin sensitivity (SI) and

maximal insulin secretion capacity (σ) estimates were seen

between outcome groups when estimated both with and

without measured insulin (p < 0.05, Figure 2 and Table 4).

Regardless of a patient’s pre-operative glycemic status, SI
better distinguished those patients who would have post-

operative impaired glucose metabolism (IGM) compared to

either σ or σ*SI (Figure 2).

Those with post-operative IGM tended to have lower

baseline SI and σ values compared to those without it,

demonstrating that both may contribute to a patient’s disease,

although not necessarily equally. Additionally, those with post-

operative IGM had higher pre-operative HbA1c, G30, G60, and

G120 and I120 values (p < 0.05, Table 3). This may reflect defects in

second phase insulin secretion, which is associated with decreases

in insulin secretion capacity (Ha and Sherman, 2020). Notably,

σ*SI and SI values were not correlated with baseline BMI values,

demonstrating a seeming disconnect between whole-body

adiposity and insulin sensitivity (not shown). Other

physiologic parameters that were not estimated using data

assimilation in this study, such as insulin secretion rate (ISR)

and hepatic insulin sensitivity (hepaSI), may reveal other disease

phenotypes and patient characterizations that could be explored

in future work.

4.6 Fixed mechanistic model parameters
may differ between adolescents and
adults

Not all parameters in the mechanistic models can be

estimated simultaneously. All models have potential

limitations in generalizability beyond the populations studied

during initial development. Use of fixed parameters with values

derived from clinical studies in adults may not optimally estimate

parameters during pubertal states, where hormonal crosstalk

greatly influences energy homeostasis. For example,

adolescence is marked by a drastic decrease in insulin

sensitivity independent of adiposity; euglycemia is achieved by

a compensatory and proportional increase in insulin secretion

(Hannon et al., 2006). Insulin secretion rates will therefore be

elevated in this age group compared to their adult counterparts,

and estimated parameter bounds may differ considerably.

Other parameters which may be relatively constant in

adulthood might be more dynamic in adolescents. Obesity

and age impact β cell mass and proliferation, which were set

as fixed components of these mechanistic models (Saisho et al.,

2013; Michaliszyn et al., 2014). The fasting value of γ,
representing the K+-ATP channel density on the β cells, was

set to its example value of –0.076 (Sherman, 2022). However, γ
plays an important role in regulating β cell physiology and

glucose-mediated insulin secretion. Not properly tuning the

fasting value of γ may adversely affect the estimates of the

parameters regulating β cell physiology such as maximal

insulin secretion capacity (σ) and insulin priming rate (r2
0).

These effects likely reduced the prediction capabilities of our

estimates.

Finally, the assumption that estimates based on the 120-min-

OGTT approximate parameters as they would be estimated by a

hyperinsulinemic euglycemic clamp may be violated in

adolescents. Recently, validation of the oral minimal model in

adolescents showed that the 120-min-OGTT underestimates

insulin sensitivity compared to longer OGTTs, which is not

the case for adults (Bartlette et al., 2021). Complicating this

suboptimal approximation is the erratic behavior of OGTT

measurements, even in euglycemic patients. Glucose and

insulin assays can be imprecise, particularly in periods where

glucose and insulin are changing rapidly (i.e., after a meal), and

removing spurious OGTT measurements can improve

performance (Abohtyra et al., 2022).

4.7 Binary classification of outcomes
obscures a heterogenous population

Because of the relatively rare frequency of overt diabetes pre-

operatively and varying sensitivity of common measurements in

adolescents, the post-operative glucose metabolism outcome was

coded as a binary variable: normal glucose metabolism (NGM) or
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impaired glucose metabolism (IGM). However, there are likely

multiple sub-phenotypes present in these groups, which would

negatively impact prediction models.

Though the diagnostic threshold for T2DM is HbA1c ≥ 6.5%,

we used HbA1c ≥ 5.7%, the threshold for preDM, to indicate any

IGM to improve sensitivity for detecting T2DM in adolescents

(Nowicka et al., 2011). The exact interpretation of HbA1c must

be considered along with an individual’s hemoglobin

concentration and structure (Radin, 2014). In particular,

studies have shown that traditional HbA1c thresholds for

T2DM (≥ 6.5%) are imperfect for diagnosis in adults and may

significantly underestimate the prevalence of T2DM in

adolescents (Nowicka et al., 2011; American Diabetes

Association Professional Practice Committee Draznin et al.,

2022). Furthermore, given the frequency of anemia in

bariatric surgery patients, HbA1c may misrepresent average

blood glucose levels and thus, normal values are insufficient

to exclude IGM phenotypes. As such, HbA1c was used as a

feature in a logistic regression rather than as the outcome in a

linear regression.

All patients were included for analysis regardless of pre-

operative IGM status. Notably, neither hyperinsulinism nor

insulin resistance were used to code IGM. As insulin

resistance is tightly coupled with visceral adiposity, the

likelihood that all patients had insulin resistance as the only

manifestation of their IGM phenotype is high; this is supported

by the lower SI values and elevated HOMA-IR calculations of

patients at baseline (Kahn and Flier, 2000; Stern et al., 2005).

Nonetheless, the decision to focus on glucose rather than insulin

perturbations in outcome labeling likely impaired the ability of

our models to identify those with IGM-like phenotypes post-

operatively, particularly as the outcome is not granular enough to

distinguish this heterogenous population.

4.8 Limitations

4.8.1 Small sample size
Our methods were hindered by a small, imbalanced, and

homogenous sample from a single institution. In addition to

increasing sample size by using incomplete OGTT data, future

work could address class imbalance by under sampling the

majority class or removing redundant information. Our

sample size relative to features was exacerbated by patient

attrition, likely not at random.

4.8.2 Bias in clinical measures
Our cohort is more diverse with respect to ethnicity and

race compared to previously reported studies, which may

impact the ability of a model to predict outcomes when using

estimators such as HbA1c. Race differences in outcomes

have been seen in other studies and have been attributed to

poor calibration of models or measurements across

heterogenous populations (Wallace et al., 2004; Olson

et al., 2010; Tharakan et al., 2017). However, race

differences between Black and white adolescents have also

been noted in hyperinsulinemic-euglycemic clamp studies,

so the true difference in T2DM development is still unclear

(Michaliszyn et al., 2017).

4.8.3 Complexity and validation of electronic
health records

Our study did not occur in the context of a clinical trial and

is subject to the constraints of EHR data. The most effective use

of EHR data applies knowledge of how data are inputted into the

system while also understanding the underlying medical

decision making process. Improper automatic encoding of

features or outcomes could have negatively impacted our

models’ predictive abilities. In the case of our analyses,

features such comorbidities and drug information are less

reliable than laboratory values, and awareness of missing data

is not guaranteed—that is, the EHR datasets are not complete

(Weiskopf et al., 2013). For example, formal diagnoses of

obesity-related liver diseases (i.e., NAFLD and NASH) use a

liver biopsy to confirm pathology, which can be done while a

patient is undergoing bariatric surgery. However, the diagnosis

codes for suspected liver disease may not be reflected in the EHR,

and if they are inputted, they are done so irregularly. This was

the case in our patient sample, where many of the comorbidities

were mentioned within the patient assessment and/or radiology

impressions of notes, but not listed as a visit-associated diagnosis

code frequently enough to be marked as present by our criteria.

Relatedly, medication data are sparse and often inaccurate, with

unreliable start and stop dates. Diet information, which is

undoubtedly important in this context, is not typically

represented at all in structured datasets. Information about

mental health and psychiatric comorbidities is intentionally

difficult to access for secondary use, and social stigmas

surrounding mental health reduce confidence that, absent

documentation, no comorbidities are present. Similarly, social

determinants of health such as food insecurity, exposure to

discrimination, and exposure to adverse childhood events are

not captured in this dataset. Compounding these limitations are

existing health disparities in access bariatric surgery, leading to

selection bias (Tsui et al., 2021).

Manual chart review is the gold standard for extracting

clinical information, but this is time intensive and subject to

human error. It also cannot account for truly missing

information. As this relates to our methods, to avoid

misclassifying patients with post-operative IGM, we erred on

the side of underestimating the proportion of patients with

specific comorbidities by requiring at least 25% of encounters

to contain the relevant diagnosis codes and structured

documentation of medications. This may have classified

patients as not having IGM post-operatively when in fact they

did have some impaired metabolism.
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4.8.4 Limitations related to the use of
mechanistic models

The use of mechanistic models and oridnary differential

equations inherently limits the number of parameters that can

be estimated concurrently. Combined with the limitations related

to our retrospective, observational analysis, we are limited in our

ability to verify the estimated values with respect to a patient’s

true physiology. There are several physiologic estimates from

data assimilation that could be of use clinically, such as pre-

hepatic insulin secretion rate (ISR) or hepatic insulin sensitivity

(hepaSI). Both ISR and hepaSI are difficult to capture clinically,

and estimation using OGTTs is complex (Cauter et al., 1992;

Kjems et al., 2000). However, our choices to estimate maximal

insulin secretion capacity (σ) and insulin sensitivity (SI) limited

our ability to estimate other such important parameters.

Generally in our results, more information improved

predictions and model accuracy varied in a smooth and

logical way. While this does not prove that the ISR estimates

incorporated into σ are their true values, it demonstrates that

these imperfect features have potential utility in improving

patient-level predictions related to surgical outcomes.

Related to the limitations of mechanistic models, our

predictive models did not incorporate estimates of hepatic

insulin sensitivity (hepaSI) because hepaSI was necessarily fixed

in our equations to better estimate σ and SI. However, mismatch

between peripheral and hepatic insulin sensitivity may better

describe subgroups of adolescents with IGM compared to

peripheral insulin resistance alone, particularly in the setting

of physiologic pubertal insulin resistance (Hannon et al., 2006).

Future work should incorporate this critical component of

glucose-insulin metabolism into descriptions of patient

phenotypes.

Also absent in these models are the effects of circulating

incretins, i.e., glucagon-like peptide-1 (GLP-1) and glucose-

dependent insulinotropic polypeptide or gastric inhibitory

polypeptide (GIP). These gut-secreted, insulinotropic

hormones are implicated as one potential therapeutic

mechanism of action in metabolic surgeries through their

actions on insulin secretion and hepatic insulin clearance

(Fetner et al., 2005; Hutch and Sandoval, 2017). Supporting

this is the general success of novel classes of anti-diabetic

drugs leveraging GLP-1 receptor agonists to manage T2DM

and obesity in adults and adolescents (Kelly et al., 2020).

However, GLP-1 and GIP are not directly represented in the

mechanistic models we used, nor is it currently feasible to directly

measure their levels in an outpatient clinical setting. Changes in

incretins are indirectly reflected in changes in maximal insulin

secretion capacity, σ, where increases in GLP-1 lead to increases

in σ through the exocytosis model (Ha and Sherman, 2020). If

these mechanistic models are employed to predict future

physiologic states on a longer time scale, it is critical to

include models which incorporate incretin effects to better

model post-surgical physiology.

4.9 Future directions

Our model could not capture all features to confidently

predict post-surgical glycemic states as a dichotomous

outcome despite an extensive collection of laboratory data.

We do not believe that these estimates should be broadly

disseminated to preclude or exclude patients from receiving

indicated care. Rather, with future validation, parameters like

σ and SI could inform expectations with respect to potential

outcomes. Patients intending to have their prediabetic or diabetic

states completely reversed should be informed of the possibility

that they may not completely resolve with surgery alone.

Quantifying that uncertainty may be accomplished using

models like the ones described here. By providing more

informed consent, we hope that more patients will be able to

have meaningful discussions with their care teams to improve

long-term surgical outcomes.

Future studies can incorporate using more longitudinal data

to see the trends in insulin secretion capacity (σ) and insulin

sensitivity (SI) in the pre-, peri-, and post-operative periods.

Applying more granular outcome definitions on a continuous

scale may better capture patients who might improve in the

severity of their disease, but not sufficiently to resolve impaired

glucose metabolism. Alternatively, unsupervised machine

learning methods could be applied on a larger cohort of

patients to identify different pre-operative phenotypes.

Investigation into additional features that may improve

predictive performance can also inform future work. Focusing

on the direct effects of surgery itself may provide more insight

into patient outcomes, especially when certain surgeries (e.g.,

sleeve gastrectomy or RYGB) have larger metabolic impacts as

compared to relatively metabolically modest restrictive

procedures like gastric banding. Using models that directly

incorporate the effects of GLP-1 and its secretion in response

to glucose ingestion, such as that developed by De Gaetano et al.,

(De Gaetano et al., 2013) should be included in future work, as

should assessment of the change in GLP-1 secretion patterns

post-operatively. Prospective studies with larger sample sizes or

measurement of more stable insulin byproducts such as

C-peptide during OGTTs could improve model performance

both by adding a more specific feature and through improvement

of data assimilation estimates. Manual chart review can provide

information about pre- and post-operative anthropometrics to

better quantify adiposity. Alternatively, methods to estimate fat-

free body mass using more readily available clinical data could be

explored. Inclusion of other candidate biomarkers associated

with glucose and insulin metabolism such as incretins, growth

factors, inflammatory markers, and carrier proteins could be

added. Variables related to behaviors (including diet), mental

health, and social determinants of health should also be included

in future studies attempting prediction in this same population.

This research is a starting point for further investigation

into the use of mechanistic models and data assimilation
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applied to clinical problems. In addition to application of

similar techniques to clinical problems outside of prediction,

research focusing on solving strategies with sparse or

irregularly sampled clinical data could provide robust and

reliable methods for future studies.

5 Conclusion

We demonstrate that data assimilation captures predictive

information about glucose metabolism that is not readily

apparent from OGTT measurements alone. Further, we

validated that our chosen mechanistic model does not add

any additional information than it is meant to represent. The

clinical variables combined with the product of maximal insulin

secretion capacity and insulin sensitivity, σ*S1, produced the

best-performing model with AUROC = 0.77 and average

precision = 0.6258. This model was nominally better than one

using clinical variables alone with AUROC = 0.7655, but the

difference was not significant at p = 0.07. In some cases, using the

individual components of insulin secretion capacity (σ) and

insulin sensitivity (SI) along with their product reduced

prediction model performance.

Looking at whether insulin measurement can be replaced by

data assimilation, we found that the model using clinical

variables with insulin (AUROC = 0.7655) performed better

than the models using clinical variables without insulin but

combined with σ*SI (AUROC = 0.7511, p < 0.001). We also

found, however, that the difference was small and non-inferior at

98.5%, implying that similar performance can be achieved even

without insulin measurements.

If we limit our model inputs to OGTT glucose and insulin

values, we found adding data assimilation estimates of insulin

secretion capacity and insulin sensitivity (σ, SI, and σ*S)
significantly increased performance (p < 0.001). Models

using σ*SI alone, estimated without insulin, performed

marginally better than models using OGTT glucose and

insulin with respect to AUROC (0.7380 vs. 0.7337, p =

0.08) and had significant improvements in average

precision (0.5990 vs. 0.5695, p < 0.001).

While data assimilation alone does not significantly

improve prediction ability compared to a maximal dataset,

the separation of parameter distributions may provide insight

into how underlying physiologic processes contribute to a

patient’s disease. In this adolescent cohort, low insulin

sensitivity and low maximal insulin secretion capacity

distinguish those patients who are less likely to see

glycemic benefits from bariatric surgery. While knowing

the extent to which defects in glucose-insulin metabolism

contribute to disease is not sufficient to confidently predict

surgical outcomes, future research can leverage mechanistic

models to infer a patient’s physiology even when certain data

are absent.
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