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Editorial on the Research Topic

Revisiting the thymus: the origin of T cells
T cells are crucial components of adaptive immunity, playing an indispensable role in

protecting against external pathogenic agents and maintaining immunological

homeostasis. T cell development in the thymus involves a series of highly structured

procedures, including lineage commitment, T cell receptor (TCR) rearrangement, positive

and negative selection, and other checkpoints (1). Disruption in this process can lead to T

cell dysfunction, potentially leading to severe immunodeficiency or autoimmune diseases.

Numerous studies have demonstrated that T cell development is a complex process,

regulated by multiple factors and intricate signaling pathway networks (1, 2). Despite

significant advancements in this field, unraveling the underlying mechanisms for T cell

development remains a formidable challenge. Therefore, the purpose of this Research

Topic was to collect evidence for a deeper understanding of underlying mechanisms

involved in thymocyte development as this will not only expand our knowledge of cell fate

determination through gene regulatory networks but also could pave the way for potential

immunotherapeutic strategies.

The thymus provides a microenvironment to support T cell development, including

stromal cells, primarily thymic epithelial cells (TECs), and other immune cells. Although

TECs have been extensively studied for their role in T cell selection, the contribution of

other immune cells such as macrophages and dendritic cells (DCs), to T cell development

remains to be elucidated. Wang et al. provided a systemic review of the heterogeneity of DC

and macrophage subpopulations in the thymus and their potential roles in T cell selection

and maintenance of thymic homeostasis. Original research by Hou and Yuki showed that

CD11c, a surface marker of DCs, is important for maintaining T cell survival as Itgax

(encodes CD11c) deficiency leads to increased apoptosis of DP, CD4SP, and CD8DP T

cells. These findings suggest that thymic DCs may contribute to supporting T cell survival

through CD11c.

T cell development is regulated by multiple levels, including gene mutation,

transcriptional regulation, epigenetic modification, and post-translational modifications.

Gene mutations can affect T cell development, especially some key mutations that can lead

to severe combined immunodeficiency (SCID). Sertori et al. explored a causal etiology in a
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patient with T-B+NK+ immunodeficiency and found the

MED14V763A variant that may be responsible for the disease.

However, this deficiency can be observed in neither male siblings

of the proband nor mouse models carrying the same variant.

Therefore, one possibility is that the MED14V763A variant may

contribute to the disease, but the degree and direction of this effect

may be modulated by specific modifier genes that interact with

MED14 to enhance or suppress its expression or function. Another

possibility is that the disease may result from another unknown

noncoding mutation. Transcription factors play a critical role in T

cell development by regulating the expression of target genes

involved in cell differentiation, proliferation, survival, and

maturation. Bao et al. provided a comprehensive review of key

transcription factors and epigenetic regulatory factors in each stage

of T cell development, including both classic transcription factors

such as T-cell-specific transcription factor (TCF-1) and Runx

transcription factor family, and some newly reported

transcription factors such as Zinc finger protein Yin Yang 1

(YY1). However, the roles of newly discovered transcription

factors are less clear. Ji et al. demonstrated the importance of

serine/arginine-rich splicing factor 1 (SRSF1) in T cell

development by regulating the expression of the key transcription

factor Runx3. Specifically, they show that the selective knockout of

SRSF1 in the DP stage (SRSF1fl/flCD4cre) results in decreased

CD8SP cell numbers and maturation defects, which can be

partially rescued by the overexpression of Runx3. However, the

exact mechanism by which SPSF1 regulates the expression of Runx3

requires further investigation. In addition, as an important form of

post-translational modification, protein ubiquitination regulates

various biological processes, including T cell development. Zhong

et al. reviewed the molecular mechanisms and cellular pathways

that regulate thymocyte ubiquitination and focused on the roles of

E3 ligases and deubiquitinating enzymes (DUBs).

Previous studies primarily focus on transcriptional regulation

and post-translational modification. However, recent research

highlights the importance of cell metabolism and metabolic

reprogramming during T cell development in adapting to specific

functional requirements. Zhang et al. provided an overview of the

metabolic changes that occur during T cell development and

summarized key metabolic regulators and regulation mechanisms.

Furthermore, mitochondrial oxidative phosphorylation (OXPHOS)

is central to cell metabolism and regulates various critical cellular

processes, including proliferation, apoptosis, and differentiation by

supplying energy and metabolites. The original research from Limper

et al. reported that maintaining a high-fidelity replication of mtDNA

is crucial for T cell development. They found that accumulated

mtDNA mutations can impede proliferation during the DN stage

and decrease mitochondrial density. This may be attributed to the

dependence on mitochondria to provide energy and substrates

during the highly proliferative DN3 stage and mitochondrial

function is impaired by accumulated mtDNA mutations.

The interaction between major histocompatibility complex

(MHC) and TCR is a critical link in T cell development. TCR

signaling strength contributes to the determination of the fate of
Frontiers in Immunology 026
thymocytes. The E protein is one of the key transcription factors

involved in T cell development and is negatively regulated by the Id

protein, but the specific regulatory mechanism remains unclear.

Anderson proposed the “Clutch”model to describe this process and

discussed how Id3 participates in the development of T cells by

regulating the activity of the E protein. They proposed that Id3

changes the accessibility of E protein target genes and guides T cells

into different developmental pathways. During T cell development,

the activity of Id3 is mainly regulated by the strength of the TCR

signal. For example, pre-TCR transmits weaker TCR signals, which

reduces the activity of Id3 and promotes the development of abT
cells. In contrast, gd-TCR transmits stronger TCR signals and

guides thymocytes to develop into gdT cells. Besides, CD4/CD8

lineage fate determination is also regulated by TCR signals. Stronger

TCR signaling favors CD4 T cell development, whereas weaker TCR

signaling favors CD8 T cell development.

It is widely accepted that MHC restriction is the key to T cell

development, leading to the selection of functional and self-tolerant

T cells. However, recent studies have shown that MHC restriction

may not always be necessary for abT cell development. Van

Laethem et al. revealed the mechanism of MHC-independent

abTCR selection and the potential non-MHC ligands that may be

involved in this process. DP thymocytes require TCR signals to

maintain their survival after TCR rearrangement, but the initiation

of abTCR signaling relies on Lck tyrosine kinase, which binds to the

coreceptors CD4 and CD8. Lck is typically sequestered by the

coreceptors and TCRs can recruit Lck and initiate downstream

signaling only when they bind to MHC-antigen peptide complexes

corresponding to the coreceptors. However, without coreceptors

sequestered, TCRs can recognize non-MHC ligands, such as

CD155, CD102, and CD48, and complete signal transduction

through free Lck to guide the development and maturation of

MHC-independent abT cells. However, it is worth noting that free

Lck is not capable of transmitting high-affinity TCR signals

effectively; therefore, it may not effectively clear self-reactive T cells.

In addition to the factors discussed earlier, sex steroids are

found to play a role in T cell development as well. However, the

direct effects of sex steroids on thymocytes and underlying

mechanisms remain unclear. Taves and Ashwell concluded on the

expression of sex steroid receptors on thymic cells and TECs and

the mechanisms by which sex steroids regulate T cell development.

In this review, they emphasized the suggestive finding of sex steroid

production within the thymus itself.

The thymus not only contributes to central immune tolerance

but also plays a critical role in establishing immune tolerance by

generating immunosuppressive T cell subsets that migrate to the

periphery. Regulatory T cells (Tregs) are a critical subset of these T

cells that play a crucial role in maintaining immune homeostasis by

suppressing effector T cells. While Tregs can differentiate from CD4

+ T cells in the periphery, most Tregs are generated directly in the

thymus, but their development is not completely understood. While

TCR/CD28 co-stimulation and cytokine IL-2 are thought to be

involved, a recent review by Tang et al. discussed the role of

cytokines in thymic Treg (tTreg) development. The development
frontiersin.org
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of TCRab+CD8aa+ and TCRgd+CD8aa+ intest ina l

intraepithelial lymphocytes (IELs), which play a role in the

intestinal immune barrier and immune regulation, also originates

in the thymus. Gui et al. concluded that the pivotal molecules and

their functions are involved in the development process of these two

specific IEL subsets.

In summary, these findings underscore the intricate and

dynamic nature of T cell development, emphasizing the

importance of a comprehensive understanding of the mechanisms

governing this process.
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SRSF1 Deficiency Impairs the
Late Thymocyte Maturation and
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Fate Decision
Ce Ji1†, Li Bao2†, Shunzong Yuan3†, Zhihong Qi1, Fang Wang1, Menghao You1,
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Mingxia Feng1, Feng Chen4, Youmin Kang1* and Shuyang Yu1*
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Peking University, Beijing, China

The underlying mechanisms of thymocyte development and lineage determination remain
incompletely understood, and the emerging evidences demonstrated that RNA binding
proteins (RBPs) are deeply involved in governing T cell fate in thymus. Serine/arginine-rich
splicing factor 1 (SRSF1), as a classical splicing factor, is a pivotal RBP for gene
expression in various biological processes. Our recent study demonstrated that SRSF1
plays essential roles in the development of late thymocytes by modulating the T cell
regulatory gene networks post-transcriptionally, which are critical in response to type I
interferon signaling for supporting thymocyte maturation. Here, we report SRSF1 also
contributes to the determination of the CD8+ T cell fate. By specific ablation of SRSF1 in
CD4+CD8+ double positive (DP) thymocytes, we found that SRSF1 deficiency impaired
the maturation of late thymocytes and diminished the output of both CD4+ and CD8+

single positive T cells. Interestingly, the ratio of mature CD4+ to CD8+ cells was notably
altered and more severe defects were exhibited in CD8+ lineage than those in CD4+

lineage, reflecting the specific function of SRSF1 in CD8+ T cell fate decision.
Mechanistically, SRSF1-deficient cells downregulate their expression of Runx3, which is
a crucial transcriptional regulator in sustaining CD8+ single positive (SP) thymocyte
development and lineage choice. Moreover, forced expression of Runx3 partially
rectified the defects in SRSF1-deficient CD8+ thymocyte maturation. Thus, our data
uncovered the previous unknown role of SRSF1 in establishment of CD8+ cell identity.
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INTRODUCTION

T cell development occurs in the thymus and consists of several
ordered processes, such as T cell lineage commitment, T cell
receptor (TCR) rearrangements, expression of diverse TCR
repertoire, positive and negative selection, and the terminal
maturation for acquisition of their functions as helper,
cytotoxic or regulatory T cells (1–4). A lymphoid precursor
developing into a mature abT cell undergoes three major
sequential phases defined by the CD4 and CD8 expression,
including CD4−CD8− double negative (DN), CD4+CD8+

double positive (DP), and either CD4+CD8− or CD4−CD8+

single positive (SP) stages (2, 5). The dynamic expression of
cell surface markers which are related to functional alterations is
essential to delineate the stages of thymocyte development (6).
For instance, the thymocytes are stratified into distinct
developmental stages defined by the expression of TCRb (or
CD3e) and the activation marker CD69, representing
preselection (TCRbloCD69lo), initial stage of selection
(TCRbintCD69lo), undergoing selection (TCRbintCD69hi), post
selected immature (TCRbhiCD69hi), and post selected mature
(TCRbhiCD69lo) thymocytes, respectively (7–9). In addition, SP
thymocytes are also a heterogeneous population which gradually
proceed to downregulate heat-stable antigen (HSA, CD24) and
upregulate Qa2 before entry into the periphery T cell pool (6, 10).
Hence, the post selected TCRbhi thymocytes can be further
compartmentalized by the dynamic expression level of CD69,
CD24, CD4 and CD8 on their cell surface, reflecting the
heterogeneity and defining the developmental stages of late
thymocytes (11, 12).

DP thymocytes first express the mature abTCR complex
which allows the engagement by intrathymic peptide major
histocompatibility complex (MHC) ligands and interact with
stromal cells that are localized in the cortex for positive and
negative selection (13). After positive selection, DP cells
expressing MHC class I- or MHC class II-TCRs selectively
differentiate into either conventional CD4+ helper or CD8+

cytotoxic T cells, which is a critical developmental event
known as the CD4/CD8 lineage choice. Based on the theory of
the kinetic signaling model, most of positively selected DP
thymocytes must pass through an intermediate CD4+CD8lo

stage and both duration and intensity of TCR signaling exert
essential impact on cell fate decision (14). To comprehend the
underlying intracellular mechanisms involved in the CD4/CD8
lineage commitment, a few transcription factors have been
identified, such as Thpok, Runx3, Mazr, Myb, Bcl11b, Gata3,
Tox, Tcf1/Lef1, and Tle factors (11, 12, 15–21). Among them,
Thpok and Runx3 are critical for specification of CD4+ helper or
CD8+ cytotoxic cells, respectively, and play central roles in
controlling CD4/CD8 lineage choice (22). To date, a complete
understanding of the process awaits elucidation of the precise
mechanisms involved in the extensive regulatory network.

The RNA-binding protein serine/arginine splicing factor 1
(SRSF1, also named ASF/SF2) belongs to the highly conserved SR
protein family which functions as a key regulator in most cell types
via mediating mRNA metabolism, such as constitutive and
alternative splicing, RNA polymerase II transcription, nuclear
Frontiers in Immunology | www.frontiersin.org 29
export of mature mRNA and translation, and genomic stability
(23–27). Our recent studies have demonstrated that SRSF1 not only
plays a critical role in the late stage development of conventional T
cells by controlling the expression of Il27ra and Irf7 transcripts (28),
but also serves as an important post-transcriptional regulator in
promoting the development and functional differentiation of iNKT
cell via balancing the abundances of two transcriptional isoforms of
Myb (29). These findings suggest that SRSF1 is profoundly involved
in the development and function of both conventional and
unconventional T cells.

In this study, we employed Srsf1fl/flCd4-Cre mice to investigate
the potential role of SRSF1 in determination of CD4/CD8 lineage
fate by specific ablation of SRSF1 in DP thymocytes. The ratio of
mature CD4+ to CD8+ cells was notably altered and more severe
defects were exhibited in CD8+ lineage, albeit the maturation of
both CD4+ and CD8+ SP T cell was impaired in SRSF1-deficient
mice, suggesting the specific function of SRSF1 in CD8+ T cell fate
decision. Moreover, SRSF1-deficient cells exhibit the reduced
abundance of Runx3 and forced expression of Runx3 partially
rectifies the defects in CD8+ lineage proportion.
RESULTS

Conditional Ablation of SRSF1 at DP
Stage Impairs the Maturation
of Late Thymocytes
Our recent study has shown that SRSF1 regulates the terminal
maturation of thymocytes by post-transcriptionally regulating the
abundances of Il27ra and Irf7 functional transcripts via alternative
splicing (28). By reviewing the phenotype of thymocytes from
Srsf1fl/flLckCre/+ mice, we found that the numbers of CD8 single-
positive (SP) cells are more severe reduction than those of CD4+

SP cells, resulting in the substantially altered ratio of CD4+ to
CD8+ cells (Figures S1A–C). In addition, we performed gene set
enrichment analysis (GSEA) by using our published RNA-seq data
(GSE141349). The results indicated that CD8+ cell-specific genes
were enriched in wild-type DP cells relative to SRSF1-deficient DP
cells, suggesting that the differentiation capacity of DP cell toward
CD8+ SP was more significantly reduced in absence of SRSF1,
although both CD4+ and CD8+ SP thymocyte-related genes
exhibited the enrichment in wild-type DP cells (Figure S1D).
To address the potential role of SRSF1 involved in the lineage
choice of CD4-versus-CD8 thymocytes, we established the genetic
mouse model with conditional inactivation of SRSF1 in DP stage
by crossing Srsf1fl/fl mice with Cd4-Cre mice (30), which is widely
applied for the lineage determination analysis of late thymocytes
(Figure S2A). The deletion efficiency of SRSF1 was further
confirmed in district subsets along with the sequential
developmental phases, indicating the effective deletion of Srsf1
was achieved in DP and CD4/CD8 SP thymocytes from Srsf1fl/
flCd4-Cre mice compared with those in their littermate control
mice (henceforth called Control) (Figure S2B).

We next analyzed the phenotype of these conditional knock
out mice. Compared with their controls, Srsf1fl/flCd4-Cre mice
exhibited comparable size and cellularity of thymus and spleen,
but diminished cell number in lymph nodes (Figures 1A, B).
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The frequency of both CD4+ and CD8+ thymocytes from SRSF1-
deficient mice was significantly decreased (Figures 1C, D),
whereas the percentage of DP thymocytes was correspondingly
increased, reflecting a blockade of DP thymocyte development.
The cell numbers of CD8+ thymocytes in SRSF1-deficient mice
were significantly reduced, but no statistical difference in
absolute numbers of DP and CD4+ thymocytes was observed.
The ratio of CD4+ cells to CD8+ cells was notably altered
(Figure 1E), implying more severe impacts on CD8+ lineage
development caused by conditional Srsf1 deletion in DP
thymocytes. To determine the specific developmental stage of
thymocytes that was impaired in Srsf1fl/flCd4-Cre mice, we
carved up thymocytes at five distinct developmental phases
defined by the expression of TCRb and the activation marker
CD69 as previous described (8, 9, 31) (Figure 1F). There was no
significant difference observed from populations 1 to 3 between
Srsf1fl/flCd4-Cre mice and their controls, implying the
DP thymocytes at pre-selection and the initial stage of positive
selection were not affected in absence of SRSF1 (Figures 1F, G).
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In contrast, Srsf1fl/flCd4-Cre mice had significantly fewer cells in
populations 4 to 5 which include post-selected DP, immature SP,
and mature SP thymocytes, respectively. These results indicate
that ablation of SRSF1 at DP thymocytes mainly impairs the T
cell development beyond the post-selection phase.

SRSF1 Deficiency Alters the Ratio of CD4+

to CD8+ Cells in TCRbhi Thymocytes
We next focused on the post-selection TCRbhi thymocytes with
an additional maturation marker CD24 staining combined with
the activation marker CD69 of thymocytes as previously
described (28). The frequency and cell numbers of
TCRbhiCD69-CD24- mature subset were decreased from
Srsf1fl/flCd4-Cre mice compared with those from Controls
(Figures 2A, B). The frequency of TCRbhiCD69+CD24+

immature T cell exhibited a relative increase, but the numbers
were slightly diminished (Figures 2A, B). By further analysis of
the expression of CD4 and CD8 in TCRbhiCD69+CD24+

immature subsets, we found that the frequency and numbers
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FIGURE 1 | Srsf1fl/flCd4-Cre mice exhibits defects in the maturation of late thymocytes. (A) Images of Thymus (Thy), spleen, and lymph nodes (LNs) from Control
and Srsf1fl/flCd4-Cre mice were shown (n = 3 per group). (B) Total cell numbers of Thy, spleen, and LNs from Control and Srsf1fl/flCd4-Cre mice were shown (n = 9).
(C–E) Flow cytometry analysis of CD4+, CD8+, and CD4+CD8+ double positive (DP) thymocytes. Representative pseudocolor plots show the indicated populations in
Control and Srsf1fl/flCd4-Cre mice in (C), and the frequency and numbers of indicated populations were shown in (D), accordingly. The ratio of frequency between
CD4+, and CD8+ thymocytes was calculated and shown in (E) (n = 6). (F, G) Flow cytometry analysis of the sequentially developmental stages. (F) Representative
pseudocolor plots show five subsets, including population 1 (P1: TCRbloCD69lo), population 2 (P2: TCRbintCD69lo), population 3 (P3: TCRbintCD69hi), population 4
(P4: TCRbhiCD69hi), and population 5 (P5: TCRbhiCD69lo) in Control and Srsf1fl/flCd4-Cre mice. The frequency and numbers of indicated subsets were shown in (G)
(n = 6). Data were collected from at least three independent experiments. The error bars are means ± standard deviation (SD). Statistical significance was determined
by one-tailed Student’s t-test. ns, not statistically significant; *P < 0.05, **P < 0.01, and ***P < 0.001.
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of DP, CD4+CD8lo intermediate cells, and CD4+ SP subsets
were not significantly alerted, but the frequency and numbers
of CD8+ SP were remarkably decreased in Srsf1fl/flCd4-Cre mice
(Figures 2C, D). In SRSF1-deficient TCRbhiCD69-CD24- mature
population, the numbers of CD4+ and CD8+ SP were
dramatically diminished, though the frequency of CD4+ SP
cells was increased whereas the frequency of CD8+ SP cells was
reduced (Figures 2C, D). Moreover, the ratio of CD4+ to CD8+

SP cells was notably increased in both TCRbhiCD69+CD24+

immature and TCRbhiCD69-CD24- mature thymocytes from
Srsf1fl/flCd4-Cre mice (Figure 2E). Collectively, these data
indicated that SRSF1 deficiency impaired the terminal
maturation of both CD4+ and CD8+ SP cells, and led to the
aberrant ratio of CD4+ to CD8+ SP cells.

SRSF1 Deficiency Disturbs the Proportion
of CD4+ to CD8+ Cells in Periphery
T Cell Pool
We next checked whether the peripheral T cell pool was affected
in Srsf1fl/flCd4-Cre mice. The mature CD4+ and CD8+ T cell
populations in spleens, LNs and PBCs were remarkably
diminished in Srsf1fl/flCd4-Cre mice (Figures 3A, B).
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By further analysis of the proportion of CD4+ to CD8+ cells
in peripheral tissues, we found the frequency of CD4+ T cells
was increased in SRSF1-deficient TCRb+ cells, and the ratio of
CD4/CD8 in peripheral tissues was increased, accordingly
(Figures 3C–E). These results suggested the critical
requirement of SRSF1 in maintaining the numbers of mature T
cells, especially CD8+ cells in periphery T cell pool.

SRSF1 Regulates the Maturation of Late
Thymocytes in a Cell-Intrinsic Manner
To determine whether the developmental defects in Srsf1fl/flCd4-
Cre were T cell autonomous, we generated bone marrow
chimeric mice as described in Figure 4A. We found
thymocytes derived from Srsf1fl/flCd4-Cre mice had a
phenotype identical to that of thymocytes in primary SRSF1-
deficient mice as described above (Figures 4B–H). The severe
defects were detected in population 4 and 5 of thymocytes
derived from Srsf1fl/flCd4-Cre mice (Figures 4B, C), and the
frequency of TCRbhiCD69-CD24- mature population was
substantially reduced (Figures 4D, E). In chimeric mice
transplanted with Srsf1fl/flCd4-Cre donor cells, the frequency of
donor-derived CD8+ SP cells was remarkably reduced in both
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FIGURE 2 | Ablation of SRSF1 severely hinders the maturation of CD8 single-positive thymocytes. (A–D) Characterization of the post-selection thymocytes. (A) TCRbhi

thymocytes (populations 4 and 5 in Figure 1F) were further fractionated into CD69+CD24+ immature (IM) and CD69−CD24− mature (M) subsets. The immature subsets
were subdivided into CD4+, CD4+CD8lo (CD8lo), DP, and CD8+ sub-populations (clockwise from top left in the top row), and the mature subsets were further subdivided
into CD4+ and CD8+ populations (bottom row) (C). The frequency and numbers of indicated subsets were shown in (B, D), respectively. (E) The ratio of CD4+ to CD8+

thymocytes was calculated and shown (n = 6). Data were collected from at least three independent experiments. The error bars are means ± SD. Statistical significance
was determined by one-tailed Student’s t-test. ns, not statistically significant; *P < 0.05, **P < 0.01, and ***P < 0.001.
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TCRbhiCD69+CD24+ immature and TCRbhiCD69-CD24-

mature thymocytes, and the ratio of CD4+ to CD8+ SP cells
was notably increased, accordingly (Figures 4F–H). These data
thus demonstrated the impacts on maturation of late thymocytes
and CD8 lineage fate were T cell intrinsic.

SRSF1 Contributes to the Lineage
Determination of CD4-Versus-CD8
Thymocytes
To further evaluate how SRSF1 contributes to CD8+ lineage
choice, we crossed Srsf1fl/flCd4-Cre mice with MHC class II-
deficient (H2ab1-/-) mice, which lack mature CD4+ SP
thymocytes (Figure 5A). We found the frequency of CD8+ SP
cells in both immature and mature thymocytes from H2ab1-/-

Srsf1fl/flCd4-Cre mice was substantially lower compared with those
in their control mice (Figure 5B). The frequency of CD4+ SP cells
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in mature thymocytes from H2ab1-/-Srsf1fl/flCd4-Cre mice was
significantly higher than those from their control mice
(Figure 5B). The number of both mature and immature CD8+

SP cells was dramatically lower in H2ab1−/−Srsf1fl/flCd4-Cre mice,
accordingly (Figure 5C). In contrast, the number of immature
CD4+ SP cells was comparable fromH2ab1−/−Srsf1fl/flCd4-Cre and
Control mice, whereas the number of mature CD4+ SP cells was
diminished in H2ab1−/−Srsf1fl/flCd4-Cre due to SRSF1 deficiency
(Figure 5C). These data collectively indicated that SRSF1
deficiency impaired the CD8 lineage identity. We next detected
the expression of genes involved in lineage selection in immature
TCRb+ DP, CD4+CD8lo, and mature CD8+ SP thymocytes,
including Runx3, Thpok (Zbtb7b), Tle3, Bcl11b, Tcf7, Tox,
Gata3, IL7Ra and Mazr. The abundance of CD8 master
regulator Runx3 was substantially reduced in all three stages,
and the significant elevation of Tox and Mazr was observed in
A B
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FIGURE 3 | The proportion of peripheral CD4+ to CD8+ T cells was disturbed in Srsf1fl/flCd4-Cre mice. (A, B) Flow cytometry analysis of T cells in peripheral
tissues. (A) Representative pseudocolor plots show CD4+ and CD8+ T cells in PBC, spleen, and LNs from Control and Srsf1fl/flCd4-Cre mice. The frequency and
numbers of indicated subsets in spleen, and LNs were shown in (B), accordingly (n = 6). (C–E) Analysis of the ratio of frequency between peripheral CD4+ T
cells and CD8+ T cells. (C) Representative pseudocolor plots show CD4+ and CD8+ T cells from TCRb+ populations in PBCs, spleen, and LNs. The frequency
and numbers of indicated subsets were shown in (D) (n = 6), and the ratio of frequency between CD4+ T cells to CD8+ T cells was calculated and shown in (E),
respectively. Data were collected from at least three independent experiments. The error bars are means ± SD. Statistical significance was determined by one-
tailed Student’s t-test. *P < 0.05 and ***P < 0.001.
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DP stage but no changes in CD4+CD8lo and mature CD8+ SP
thymocytes in SRSF1-deficient cells (Figure 5D). Although the
expression of Tle3, Bcl11b, and IL7Ra was dramatically decreased
in CD8+ SP thymocytes, most of detected lineage commitment-
related genes were not altered in the essential transient stages (DP
and CD4+CD8lo), such as Thpok, Tcf7, Tle3, Bcl11b, and Gata3
(Figure 5D). These results imply that SRSF1 may contribute to the
CD8 lineage fate by primarily controlling Runx3 expression.
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Overexpression of Runx3 Partially
Rectify the Ratio of CD4+ to CD8+

Cells in Srsf1fl/flCd4-Cre Mice
We next attempted to explore whether enforced expression of
Runx3 could rectify the defects in the CD8 lineage fate caused by
SRSF1 deficiency. To achieve this goal, the retrogenic mouse
models were established and analyzed as described in the
flowchart (Figure 6A). We confirmed the transduced efficiency
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FIGURE 4 | SRSF1 intrinsically regulates the maturation of late thymocytes. (A) The scheme of bone marrow chimeric mice generation. A 1:1 mixture of bone
marrow cells from Control or Srsf1fl/flCd4-Cre mice (CD45.2+) together with protector bone marrow cells from B6.SJL wild-type (CD45.1+) was transplanted into
lethally irradiated B6.SJL recipients (CD45.1+). The thymocyte development of recipients was analyzed 10 weeks post transplantation. (B, C) Flow cytometry
analysis of the sequentially developmental stages of donor-derived thymocytes. (B) Representative pseudocolor plots show five subsets, including population 1
(P1: TCRbloCD69lo), population 2 (P2: TCRbintCD69lo), population 3 (P3: TCRbintCD69hi), population 4 (P4: TCRbhiCD69hi), and population 5 (P5: TCRbhiCD69lo)
in donor-derived thymocytes from Control and Srsf1fl/flCd4-Cre mice, respectively. The frequency of indicated subsets was shown in (C) (n ≥ 3). (D–H) Analysis
of the post-selection TCRbhi thymocytes from donor-derived mice. (D)TCRbhi thymocytes [populations 4 and 5 in (B)] were further fractionated into
CD69+CD24+ immature and CD69−CD24− mature subsets. (F) The immature subsets were subdivided into CD4+, CD4+CD8lo (CD8lo), DP, and CD8+ sub-
populations (clockwise from left in the top row), and the mature subsets were further subdivided into CD4+ and CD8+ populations (bottom row). The frequency
of indicated subsets was shown in (E, G), accordingly. (H) The ratio of CD4+ and CD8+ thymocytes was calculated and shown (n ≥ 3). Data are representative
from at least two independent experiments. The error bars are means ± SD. Statistical significance was determined by one-tailed Student’s t-test. ns, not
statistically significant; **P < 0.01 and ***P < 0.001.
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of BM LSK cells was more than 50% before transplantation
(Figure S3) to ensure the successful construction of chimeric
mice. By analyzing donor-derived TCRbhi post-selection
thymocytes, we found that the reduction of mature
(TCRbhiCD69−CD24−) thymocytes was substantially restored
by forced expression of SRSF1, but not by forced expression of
Runx3 compared with those derived from Control-MigR1 or
Frontiers in Immunology | www.frontiersin.org 714
Srsf1fl/flCd4-Cre-MigR1 donors (Figures 6B, C). Meanwhile,
the ectopic expression of SRSF1 also rectified the ratio of CD4+

to CD8+ SP cells in both TCRbhiCD69+CD24+ immature and
TCRbhiCD69−CD24− mature thymocytes (Figures 6D–F).
However, overexpression of Runx3 could largely restore the
ratio of CD4+ to CD8+ SP cells in TCRbhiCD69−CD24−

mature stage while no rescue was observed in the
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FIGURE 5 | SRSF1 is involved in the lineage selection of CD4-versus-CD8 T cells. (A) The scheme shows the generation of H2ab1-/-Srsf1fl/flCd4-Cre mice.
(B, C) Analysis of the post-selection TCRbhi thymocytes from H2ab1-/-Srsf1fl/flCd4-Cre mice. The immature (TCRbhiCD69+CD24+) subsets were subdivided into
CD4+, CD4+CD8lo, DP, and CD8+ sub-populations (clockwise from left in top row), and the mature (TCRbhiCD69−CD24−) subsets were further subdivided into
CD4+ and CD8+ populations (bottom row). The frequency and numbers of indicated subsets were shown in (C), respectively (n ≥ 6). (D) Analyzing the
expression of Runx3, Thpok (Zbtb7b), Tle3, Bcl11b, Tcf7, Tox, Gata3, IL7Ra and Mazr in immature TCRb+ DP, CD4+CD8lo, and mature CD8+ SP thymocytes
from Control or Srsf1fl/flCd4-Cre mice. The relative expression of Srsf1 transcript in indicated T cell subsets (after normalization to Gapdh) in Control cells was
set as 1, and its relative expression in cells from Srsf1fl/flCd4-Cre mice was normalized, accordingly. Data were collected from at least two independent
experiments. The error bars are means ± SD. Statistical significance was determined by one-tailed Student’s t-test. ns, not statistically significant; *P < 0.05,
**P < 0.01, and ***P < 0.001.
January 2022 | Volume 13 | Article 838719

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ji et al. SRSF1 Controls CD8 Cell Fate
TCRbhiCD69+CD24+ immature stage (Figures 6D–F). These
data collectively revealed that Runx3 serves as a regulator
downstream SRSF1 for CD8 lineage fate decision, but other
regulators and more complicated mechanisms may involve in
the SRSF1-dependent regulatory network of late thymocyte
maturation and lineage fate decision.
DISCUSSION

The lineage commitment of T cell to either CD8+ or CD4+ lineage
before egress from thymus has been a fundamental research
interest in the field of immunology, but the precise mechanism
remains incompletely understood. Increasing evidences
demonstrate that RBPs are indispensable for the development
and function of immune cells by modulating gene expression
through mRNA destabilization or stabilization, or by controlling
Frontiers in Immunology | www.frontiersin.org 815
translation (32–34), which provide a new direction to decode the
complicated regulatory network in T cell fate decision. As a
prototypical splicing factor, SRSF1 is well characterized for its
roles in the maintenance of genomic stability, cell viability and
cell-cycle progression (23, 35, 36), over the past twenty years,
SRSF1 has been extensively investigated owing to its critical
involvement in multiple cancers and autoimmune diseases (37–
41). However, the roles of SRSF1 in T cell development and
function have not been exposited until we recently found that it
serves as a key posttranscriptional regulator in sustaining both the
conventional T cell development and iNKT cell differentiation
(28, 29).

As a follow-up study of the work by Qi et al. (28), we here
report that conditionally targeting SRSF1 in DP thymocytes
impairs the post selected T cell development and CD8+ T cell
fate decision. Although previous study established the
importance of SRSF1 in late thymocyte development and
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FIGURE 6 | Overexpression of Runx3 partially rescues the defects of CD8+ T proportion in Srsf1fl/flCd4-Cre mice. (A) The flow chart shows the experimental design
of bone marrow chimeric mice by using Runx3- or Srsf1-contained retroviral transduction. (B) Analysis the post-selection thymocytes from chimeric mice. TCRbhi

thymocytes were further fractionated into CD69+CD24+ immature and CD69−CD24− mature subsets. (C) The frequency of indicated subsets in (B) was shown,
accordingly (n ≥ 4). (D) The immature subsets were subdivided into CD4+, CD4+CD8lo, DP, and CD8+ sub-populations (clockwise from top left in the top row), and
the mature subsets were further subdivided into CD4+ and CD8+ populations (bottom row). (E) The frequency of indicated subsets in (D) was shown, respectively.
(F) The ratio of CD4+ to CD8+ cells from immature and mature subsets of TCRbhi thymocytes was calculated and shown, accordingly (n ≥ 4). Data were collected
from at least two independent experiments. The error bars are means ± SD. Statistical significance was determined by one-tailed Student’s t-test. ns, not statistically
significant; *P < 0.05 and **P < 0.01.
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terminal maturation by using Srsf1fl/flLckCre/+ mice (28), the
altered ratio of CD4+ to CD8+ cells has not been specifically
addressed. To avoid the impacts caused by SRSF1 deletion at
early stage, we employed Srsf1fl/flCd4-Cre mice to investigate the
stage-specific role of SRSF1 in lineage choice in current study.
We found the phenotypic defects were weaker in late stage of
thymocyte development and maturation from Srsf1fl/flCd4-Cre
mice than those from Srsf1fl/flLckCre/+ mice. Consistent with
previous results from Srsf1fl/flLckCre/+ mice, the peripheral T
cells were substantially decreased from Srsf1fl/flCd4-Cre mice,
and most of the existing mature T cells were escapees in
secondary lymphatic organ, which was caused by increased
apoptosis and the shortened lifespan of SRSF1-deficient cells
(28). Despite the substantial reduction of CD8+ SP cells was
exhibited in both TCRbhiCD69+CD24+ immature and
TCRbhiCD69−CD24− mature thymocytes, the CD4+ SP cells
were only notably reduced in TCRbhiCD69−CD24− mature
stage, suggesting SRSF1 deficiency has more severe effects in
CD8+ lineage differentiation.

To inspect whether SRSF1 contributes to the lineage choice of
post selected DP thymocytes, we crossed the Cd4-Cre-mediated
SRSF1 deletion mouse strain with the MHC-II-deficient
H2ab1−/− mice. As expected, post selected mature thymocytes
from control mice were largely restricted to the CD8+ T cell
lineage because of the defective MHC-II expression. In contrast,
mature thymocytes from H2ab1−/−Srsf1fl/flCd4-Cre mice
contained fewer CD8+ SP cells but more CD4+ SP cells,
indicating MHC-I–selected thymocytes are redirected from
CD8+ to CD4+ T cell lineage in the absence of SRSF1. For
potential targets involved in lineage choice and CD8 cell identity
downstream SRSF1, we measured the well-established lineage
commitment-related genes in three sequential developmental
stages DP, CD4+CD8lo, and mature CD8+ T cells. In SRSF1-
deficient cells, we found significant reduced expression of Runx3
in three sequential developmental stages, and elevated expression
of Tox andMazr in only DP, but not CD4+CD8lo stage, which is
an essential transient population from DP thymocytes to either
CD4+ or CD8+ SP cells (14). In addition, the expression of Tle3,
Bcl11b, and IL7Rawas only reduced in CD8+ SP cells, which may
miss the critical time point for lineage selection but affect the
CD8 cell terminal maturation and survival. The dysregulation of
lineage commitment-related genes leads to the aberrant
differentiation of CD8+ SP thymocytes and jointly contributes
to the abnormal ratio of CD4 to CD8 cells in Srsf1fl/flCd4-Cre
mice, and Runx3 plays a central role downstream of SRSF1,
particularly. However, overexpression of Runx3 could rectify the
ratio of CD4+ to CD8+ SP cells in TCRbhiCD69−CD24− mature
stage, but not completely rescue the defects in SRSF1-deficient
mice, suggesting the complex mechanisms involved in the
defective identity of CD8+ T cell in absence of SRSF1.
Therefore, further understanding of how SRSF1 controls the
expression of Runx3 as well as CD8 cell fate decision is required
in future study.

In summary, our data revealed that SRSF1 exerts its
developmental stage-specific effects in late thymocytes and
contributes to CD8+ T cell lineage fate decision and identity.
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This study represents an important step to further decipher the
physiological functions of SR proteins, providing new insights of
RBPs in regulating T cell development and lineage commitment.
MATERIALS AND METHODS

Animals
All mice used in this study were between 7 and 10 weeks of age
on a fully C57BL/6J background. Srsf1fl/fl mice were kindly
provided by Dr Xiang-Dong Fu (University of California, San
Diego). Cd4-Cre and H2ab1−/− mice from Jackson Laboratories
were maintained in the animal facility of China Agricultural
University. Mice were housed in specific pathogen-free
conditions under controlled temperature (22 ± 1°C) and
exposed to a constant 12-hour light/dark cycle. All institutional
and national guidelines for the care and use of laboratory animals
were followed and all animal protocols used in this study were
approved by the Institutional Animal Care and Use Committee
at China Agricultural University.

Flow Cytometry
Single cell suspensions obtained from thymus (Thy), spleen,
lymph node (LN), and peripheral blood cells (PBCs) were stained
with fluorochrome-conjugated antibody as described previously
(42). The fluorochrome-conjugated antibodies listed below: CD4
(RM4-5), CD8a (53-6.7), CD24 (M1/69), CD69 (H1.2F3), TCRb
(H57-597), B220 (RA3-6B2), CD11b (M1/70), CD11c (N418),
CD45.1 (A20), CD45.2 (104), CD49b (DX5), Gr.1 (RB6-8C5),
TER119 (TER-119), TCRgd (GL-3), ScaI (D7), cKit (2B8) and
7AAD (00-6993-50) were purchased from eBiosciences. The
fluorochrome-conjugated streptavidin (554063) was purchased
from BD Biosciences. Samples were acquired on a LSRFortessa
or FACSVerse (BD Biosciences) and analyzed with FlowJo
software v10.4.0 (Tree Star, Inc.). For cell sorting, cells were
surface-stained with indicated fluorochrome-conjugated
antibodies and subjected to sorting on a FACSAria II
(BD Biosciences).

Gene Expression Analysis
The gene expression was measured by qPCR as previously
described (43). Briefly, total RNA was extracted from sorted
cells using RNasey Mini Kit (Cat. # 74106, Qiagen) according to
manufacturer’s instructions. FastQuant RT Kit (Cat. # KR106-
02, Tiangen) was used to synthesize cDNA. Quantitative RT-
PCR (qPCR) was performed with SYBR Green Master Mix (Cat.
# FP205-02, Tiangen) using CFX96 Connect™ Real-Time
System (Bio-Rad). The primers were shown in Supplementary
Table 1. Fold differences in expression levels were calculated
according to the 2−DDCT method and the relative expression of
indicated genes was normalized to Gapdh.

BM Chimeras
The BM chimeric mice were generated as previously described
(44). Briefly, the lethally irradiated B6.SJL (CD45.1+) mice were
transferred intravenously with a 1:1 mixture of 1 × 106 BM cells
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from Srsf1fl/flCd4-Cre (CD45.2+) or control mice together with
BM cells from congenic B6.SJL (CD45.1+) mice. After 10 weeks
reconstitution, recipients were sacrificed and analyzed.

Retroviral Transduction
The retrogenic chimera mouse models were generated by a
modified protocol as previously described (28, 45). Briefly,
retroviral packaging was carried out by transfection of HEK293T
cells with Runx3 cDNA bearing retroviral vector or empty pMigR1
vector along with pCLeco using Lipofectamine 2000 (Cat. #
11668019, Invitrogen), and the retrovirus-containing medium
was collected at 24- and 48-hours post-transfection. After being
filtered by 0.45 µm filters, the retrovirus-containing medium was
loaded and centrifuged onto RetroNectin-coated [10 mg/mL (Cat. #
T100A, TaKaRa)] non-tissue culture 24 well plates (Cat. # 351147,
Falcon). BM cells from Control and Srsf1fl/flCd4-Cre mice were
depletedof lineage positive cells and cultured for 24hours in IMDM
medium in the presence of thrombopoietin (20 ng/mL), stem cell
factor (50 ng/mL), 15% FBS, 2-mercaptoethanol (50 µm),
streptomycin and penicillin (100 mg/mL) in retrovirus contained
RetroNectin plate as described above. Then, cells were infectedwith
fresh retrovirus-containing medium in the presence of 8 mg/mL
Polybrene (Cat. # H9268, Sigma-Aldrich) by centrifuging at 1,000
rcf for 90 min at 32°C. Subsequently, the cells were cultured for 2
hours at 37°C 5% CO2 incubator and resuspended in IMDM
medium supplemented with components and cytokines as above.
On the next day, the cells were spino-infected again. The infected
cells were collected and analyzed by flow cytometry 24 hours later,
and then these cells containing 5,000 GFP+ lineage−ScaI+cKithi

(LSK) cells were transplanted into lethally irradiated (7.5 Gray)
recipients (CD45.1+). The recipients were sacrificed to analyze at 8
weeks after transplantation.

Gene Set Enrichment Assay
GSEA (v4.0.2) was used to analyze RNA-Seq data (GSE141349)
from the GEO database, and the gene sets used in the article were
obtained from MSigDB.

Statistical Analysis
Statistical analysis was carried out through using GraphPad Prism
software (version 8.0). Statistical significance was determined by
one-tailed Student’s t-test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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CD4+CD25+Foxp3+ Regulatory (Treg) T cells are mainly generated within the thymus.
However, the mechanism of thymic Treg cell (tTreg cell) generation remains to be fully
revealed. Although the functions of TCR/CD28 co-stimulation have been widely accepted,
the functions of cytokines in the generation of tTreg cells remain highly controversial. In this
review, we summarize the existing studies on cytokine regulation of tTreg cell generation.
By integrating the key findings of cytokines in tTreg cell generation, we have concluded
that four members of gc family cytokines (IL-2, IL-4, IL-7 and IL-15), transforming growth
factor b (TGF-b), and three members of TNF superfamily cytokines (GITRL, OX40L and
TNF-a) play vitally important roles in regulating tTreg cell generation. We also point out all
disputed points and highlight critical scientific questions that need to be addressed in
the future.

Keywords: tTreg cells, IL-2, IL-15, TGF-b, gc family cytokines, TNF superfamily, TNFRSF
INTRODUCTION

CD4+ Regulatory T (Treg) cells that express IL-2 receptor a-chain (CD25) and the transcription
factor forkhead box P3 (Foxp3) are the major cell population that maintains immune tolerance (1–6).
Since these cells were identified in 1995 (2), Treg cells have been demonstrated to play extremely
important roles in maintaining tolerance to auto-antigens (7, 8) and commensal microbiota (9, 10),
controlling maternal-fetal immune interactions (11, 12), and suppressing overactive immune responses
during infection (13, 14). On the other hand, Treg cell-mediated immune suppression can also promote
tumor immune escape (15, 16). Therefore, targeting Treg cells could be a promising strategy to treat
autoimmune disorders, maternal-fetal conflict, infections, and malignant tumors.

A majority of Treg cells are generated in the thymus (thymic Treg cells, tTreg cells), however
some Treg cells can also be generated in periphery (pTreg cells) (17). Although it has been well
documented that tTreg cells are generated during CD4+ thymocyte development, the clear
mechanisms of tTreg cell development is still not completely understood. Since T-cell receptor
(TCR) stimulation from self-antigens and CD28 co-stimulation during thymocyte development are
indispensable for tTreg cell generation (18–20), the mainstream view once believed that high-
affinity TCR signal is the main driving force for inducing Treg cell differentiation (21–23). However,
later studies demonstrated that tTreg cells could be generated from developing CD4+ thymocytes
org March 2022 | Volume 13 | Article 883560120
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expressing TCRs with a broad range of self-reactivity (24, 25),
showing that the self-reactivity of the TCR signal is not the
deciding factor for tTreg cell generation.

In contrast, a two-step model of tTreg cell generation is
gaining acceptance (26–29). The first step is driven by self-
antigen induced TCR stimulation and CD28 co-stimulation,
which leads to differentiation of CD4+ CD8- Foxp3- CD25+

tTreg cell precursors (CD25+ Foxp3- tTreg precursors) and
CD4+ CD8- Foxp3+ CD25- Treg cell precursors (Foxp3+ CD25-

tTreg precursors) from developing CD4+ CD8- thymocytes. The
second step relies on IL-2, which leads to the generation of
CD25+Foxp3+ mature tTreg cells from CD25+ Foxp3- tTreg
precursors and Foxp3+ CD25- tTreg precursors. This model
proposes that both precursor populations are induced by TCR/
CD28 co-stimulation, and both precursor populations rely on IL-
2 to differentiate into mature tTreg cells. However, one recent
study indicated that CD25+ Foxp3- tTreg precursors and Foxp3+

CD25- tTreg precursors are generated through two distinct
developmental programs (30), suggesting that besides TCR/
CD28 co-stimulation, some other key factors must be involved
during development of these two tTreg precursor populations.
All this evidence shows that this model stil l needs
further refinements.

Besides TCR/CD28 co-stimulation, the most probable factors
that mediate the distinct developmental programs of tTreg cell
are different cytokines. Other than IL-2 and IL-15, three
members of the tumor necrosis factor (TNF) superfamily
cytokines (GITRL, OX40L and TNF-a) were demonstrated to
promote tTreg generation (31). Moreover, TGF-b has also been
shown to be important for tTreg cell generation (25, 32). In this
review, we summarize the existing studies showing the important
functions of cytokines in tTreg cell generation. We conclude that
IL-2, IL-7, IL-15, IL-4, TGF-b, GITRL, OX40L, and TNF-a all
play important roles in regulating tTreg cell generation, although
regulation mechanisms of these cytokines have yet to
be confirmed.
FOUR gC FAMILY CYTOKINES
(IL-2, IL-7, IL-15 AND IL-4)

Function of IL-2, IL-7, IL-15 and IL-4 in
tTreg Cell Generation
Before Treg cells were well identified, it was determined that
mice deficient in IL-2 (33–35), IL-2 receptor a chain (IL-2Ra,
also called CD25) (36) or IL-2 receptor b chain (IL-2Rb, also
called CD122) (37) would develop severe autoimmunity. It was a
surprising finding since IL-2 was found to be a critical T cell
growth factor (38–40). Since Treg cells have been identified,
CD25 was proven to be a surface marker of Treg cells (2), and
then it was determined that Treg cell-deficient scurfy mice
develop severe autoimmunity as well (3–5, 41). These findings
suggested that IL-2 might play a vital role in Treg cell generation.

However, the function of IL-2 in tTreg cell generation is still
contentious. Some studies are against the idea that IL-2 is key for
tTreg cell generation, because a significant number of CD4+
Frontiers in Immunology | www.frontiersin.org 221
CD8- CD25- FOXP3+ thymocytes were still present in IL-2
knockout (Il2-/-) mice, and these cells could still suppress
inflammation in adaptive transfer mice model (42–44),
although CD25- FOXP3+ thymocytes were defined as tTreg
precursors in the two-step model (29). Moreover, a recent
study found that IL-2 could modulate the tTreg cell epigenetic
landscape by targeting genome wide chromatin accessibility (45).
These studies showed that IL-2 is dispensable for tTreg cell
development, but important for mature tTreg cell survival, tTreg
cell stabilization, and tTreg cell suppression function. Consistent
with this idea, it was determined that Foxp3 is a proapoptotic
protein and these Foxp3+ CD25- tTreg precursors completed for
the limited IL-2 to support their survival (28). In contrast, some
studies found that although mice deficient in IL-2 or IL-2Ra had
a certain number of Foxp3+ cells, their tTreg cells were not
mature, and mice deficient in IL-2Rb were shown to have a
significant decrease in Treg numbers (44, 46), suggesting IL-2
should be important for tTreg cell development. Consistent with
this idea, in the two-step model of tTreg cell development, it was
found that CD25+ FOXP3- tTreg precursors needed IL-2 to
convert to mature tTreg cells (26, 27).

IL-2 receptor g chain (IL-2Rg), also known as the common
cytokine receptor g chain (gc) or CD132, is a common
component of the receptors for IL-2, IL-4, IL-7, IL-9, IL-15,
and IL-21 (gc family cytokines) (47, 48). Therefore, besides IL-2,
functions of other gc family cytokines in tTreg cell generation
have also attracted a lot of attention. Importantly, mice deficient
in IL-2Rb resulted in a large reduction in the number of tTreg
cells, whereas mice deficient in IL-2 or IL-2Ra still have high
Foxp3 expression (42, 44, 46). IL-2Rb is the receptor for both IL-
2 and IL-15, so the function of IL-15 in tTreg cell generation was
determined. Indeed, IL-2 and IL-15 double knockout (Il2-/-

xIl15-/-) mice have a significant decrease in Treg numbers
compared with Il2-/- mice (44), showing that IL-2 and IL-15
are important for tTreg cell generation. Moreover, mice deficient
in IL-2Rg were shown to be devoid of tTreg cells and have no
expression of Foxp3 (42, 49), suggesting other gc family
cytokines might also be important for tTreg cell generation.
After in-depth research and verification, IL-7 was proven to be
important for tTreg cell generation (50, 51). Moreover, IL-2Rb
and IL-7 receptor subunit a (IL-7Ra, also known as CD127)
double knockout (Il2rb-/-xIl7ra-/-) mice were also devoid of tTreg
cells, just like mice deficient in IL-2Rg (50). Further studies
proved that IL-2, IL-7, and IL-15 induces STAT5
phosphorylation and this process is indispensable for tTreg cell
generation (49, 50), as STAT5 phosphorylation is critical for
tTreg cell development by regulating Foxp3 expression (52–55).
Taken together, three gc family cytokines, IL-2, IL-7, and IL-15
are essential for Treg cell generation (Figure 1). However, it
remains to be confirmed whether these cytokines mainly induce
tTreg cell development, promote tTreg cell survival, and/or
maintain tTreg cell stabilization.

In the beginning, another gc family cytokine IL-4 was thought
to be not important for tTreg cell generation as mice deficient in
IL-4 receptor a (IL-4Ra) had absolutely normal tTreg cell
generation (50). Moreover, IL-4 was actually shown to
suppress Treg cell generation and induce T helper-9 cells (Th9
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cells) in periphery and in vitro (56–58). However, The same
research team corrected the views (59), as they found that IL-4
could promote tTreg cell generation from Foxp3+ CD25- tTreg
precursors, although IL-4 could not support tTreg cell generation
from CD25+Foxp3- tTreg precursors (30). This evidence shows
that IL-4 plays a role in tTreg cell development from
Foxp3+CD25- tTreg precursors.

Source of IL-2, IL-7, IL-15 and IL-4
in the Thymus
Determining the cellular sources of IL-2, IL-7, and IL-15 within
the thymus are important in revealing the generation of tTreg
cells, and it is also important for autoimmunity treatment
through the manipulation of tTreg cells. It has been shown
that tTreg cells could not produce IL-2 to support tTreg cell
development and survival because Foxp3 represses expression of
IL-2 (3, 60). More than that, in IL-2 wild type (Il2+/+) and Il2-/-

bone marrow chimera mice, tTreg cell generation was totally
rectified in Il2-/- thymocytes and these bone marrow chimera
Frontiers in Immunology | www.frontiersin.org 322
mice did not develop autoimmunity (20). Therefore, tTreg cell
generation mainly relied on IL-2 produced by non-Treg cells.

Although dendritic cells (DCs) and B cells were shown to be
able to produce IL-2, mice that have selectively deleted IL-2 in
DCs and B cells had been shown to have normal tTreg cell
development and homeostasis (61, 62), showing DCs and B cells
are not the major cellular sources of IL-2 in the thymus. In
contrast, tTreg cell development was largely impaired in Il2f/f

CD4-Cre mice, suggesting T cells are the key cellular source of
IL-2 in the thymus (62). Moreover, a recent study determined
that cells that secrete IL-2 are predominantly mature CD4+ CD8-

(CD4SP) thymocytes in the thymus; it has further been identified
that IL-2 is mainly produced by self-reactive CD4SP thymocytes
through single-cell RNA sequencing analysis (63). This evidence
shows that self-reactive CD4SP thymocytes are the major cellular
sources of IL-2 in the thymus.

Unlike IL-2, the major cellular sources of IL-7 and IL-15 are
not T cells. It was determined that both cortical thymic epithelial
cells (TECs) and medullary TECs express high levels of IL-7, and
FIGURE 1 | Cytokines that are important for tTreg cell generation. Four gc family cytokines (IL-2, IL-4, IL-7, and IL-15), Three TNF superfamily cytokines (GITRL, OX40L,
and TNF-a) and TGF-b have been determined to be important for tTreg cell generation. There may be other cytokines that are important for tTreg cell generation but have
not yet been identified. It has been proven that CD4+CD8-Foxp3-CD25+ thymocytes and CD4+CD8-Foxp3+CD25- thymocytes are two populations of tTreg cell precursors
that generated through two distinct developmental programs, but the regulatory network of these cytokines in the development of these two precursor populations and
mature tTreg cell has not been fully revealed.
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IL-7 expression in cortical TECs is even higher than in medullary
TECs (64). However, medullary TECs that highly expressed
MHC class II were the major cellular source of IL-15 (65).
Interestingly, it is well documented that tTreg cells are mainly
generated in the medulla (66–69), suggesting it might be why IL-
7 is not as important as IL-2 and IL-15 during tTreg cell
generation in thymus. So far, the major cellular source of IL-4
in the thymus has not been determined (30).
TGF-b

Function of TGF-b in tTreg Cell Generation
Although it has been determined that TGF-b is the key inducer
of Foxp3 in periphery and in vitro (70, 71), the function of TGF-
b in tTreg cell generation is still in dispute. During early research,
TGF-b was thought to be dispensable for tTreg cell development,
because TGF-b1 deficient (8-10 days old) mice (Tgfb1-/-) had
normal frequency of tTreg cell in thymus (72), and T cell-specific
TGF-b receptor II-deficient mice (Tgfbr2f/f x CD4-Cre) did not
change the frequency of tTreg cell in thymus (12-14 days old
mice) either (73, 74). In contrast, it was shown that TGF-b is
critical for tTreg cell stabilization and regulatory function (72–
74). Although the same research team repudiated their earlier
study and thought TGF-b was not important for tTreg cell
function and stabilization (75, 76), a recent study determined
that TGF-b is critical for tTreg cell function in specific tissue
environments, but not important for tTreg cell stabilization (77).

Surprisingly, TGF-b was identified to be important for tTreg
cell development by studying tTreg cell generation in 3-5 days
old neonatal mice (32, 78). It was shown that deletion of TGF-b
receptor I (Tgfbr1f/f x Lck-Cre) in T cells blocks tTreg cell
development largely in 3-5 days old neonatal mice, then tTreg
cell frequency was recovered and became even higher in thymus
of 3-4 weeks old Tgfbr1f/f x Lck-Cre mice than that in WT mice
(32). It was then shown that tTreg cell frequency was increased in
thymus due to increased tTreg cell proliferation in Tgfbr1f/f x
Lck-Cre mice, as thymocytes lacking TGF-b receptor I produced
more IL-2 and tTreg cells lacking TGF-b receptor I proliferated
much faster in response to IL-2 (32). More importantly, further
deletion of IL-2 in Tgfbr1f/f x Lck-Cre mice (Tgfbr1f/f x Lck-Cre x
Il2-/-) blocked tTreg cell development and expansion totally, as 3-
4 weeks old Tgfbr1f/f x Lck-Cre x Il2-/- mice were devoid of tTreg
cells as well (32).

The other group also reported a lack of tTreg cells in the
thymus of 3-5 days old neonatal Tgfbr2f/f x CD4-Cre mice, but
they proposed that this was due to increased tTreg cell apoptosis
caused by the deletion of TGF-b signaling (78). Since TGF-b
promotes thymocyte cell survival (79), a Treg cell-specific TGF-b
receptor I-deficient mice (Tgfbr1f/f x Foxp3-Cre) was generated
to determine whether the main function of TGF-b is to promote
tTreg cell survival in the thymus (25). Surprisingly, it was found
that tTreg cell frequency and number in Tgfbr1f/f x Foxp3-Cre
mice did not decrease at all (25), and the aged Tgfbr1f/f x Foxp3-
Cre mice had even more tTreg cells (77), showing the main
function of TGF-b in tTreg cell generation is not to support tTreg
Frontiers in Immunology | www.frontiersin.org 423
cell survival. Existing mechanism studies have found that Smad3
could bind at the conserved noncoding sequence 1 (CNS1) of
Foxp3 enhancer and induce Foxp3 expression (80, 81), but it was
argued that Smad3 binding to the foxp3 enhancer was
dispensable for tTreg cell development (82). Taken together,
these findings show that TGF-b is critical to tTreg cell
development, although the exact mechanisms need to be
further identified (Figure 1).

Source of TGF-b in the Thymus
Thymocyte apoptosis has been identified to increase by day 2 after
birth (83), TGF-b level was found to increase significantly in the
thymus by day 3 after birth (25), and tTreg cells were shown to
appear in large numbers in the thymus by day 3 after birth (84).
This evidence suggests that tTreg cell generation, thymocyte
apoptosis, and TGF-b production are highly correlated. Indeed,
one study showed that the intrathymic concentration of TGF-b is
highly dependent on thymocyte apoptosis (25). However, the
major cellular source of TGF-b in the thymus has not been
uncovered. Based on the existing studies, TGF-b is likely to be
released from two possible cellular sources. The first possible
source is apoptotic T cells that release TGF-b directly (85), and
the second possible source is phagocytes that release TGF-b after
these cells phagocytize apoptotic cells (86, 87).

It is worth mentioning that TGF-b is secreted into the
extracellular matrix in an inactive latent form (latent TGF-b)
and needs to be activated to produce bioactive TGF-b (88, 89).
By now, it has not been determined how TGF-b is activated in
the thymus. One possible mechanism for the activation of TGF-b
in the thymus is through apoptotic cell-released ROS, as
apoptotic thymocytes could release a high level of ROS (85),
and ROS has been shown to induce TGF-b activation and
promote Treg cell generation in periphery (90–92).
THREE TNF SUPERFAMILY CYTOKINES
(GITRL, OX40L AND TNF-a)

Function of GITRL, OX40L, and TNF-a in
tTreg Cell Generation
The tumor necrosis factor (TNF) superfamily is a protein
superfamily originally produced as type-II transmembrane
proteins, but these proteins can function as cytokines once
they are cleaved off the cell membrane by metalloproteinases
(93). The receptors of the TNF superfamily are tumor necrosis
factor receptor superfamily (TNFRSF) (94). It has been
determined that CD25+ Foxp3- tTreg precursors and mature
tTreg cells express high levels of TNFRSF members called
Glucocorticoid-induced tumor necrosis factor receptor-related
protein (GITR, also known as CD357 or TNFRSF18), OX40 (also
known as CD134 or TNFRSF4) and TNFR2 (also known as
CD120b or TNFRSF1B) (26, 31, 95). Moreover, it was found that
a TNF superfamily member, TNF-a, a ligand of TNFR2, could
promote Treg cell expansion in vivo (96–98). These findings
suggest that the TNF superfamily might be important for tTreg
cell generation.
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Three TNF superfamily members, GITRL, OX40L, and TNF-a
have been identified to promote tTreg cell generation (31, 99). One
study reported that deficiency in TNFR2 reduced tTreg cell
generation significantly (99). Another study showed that
deficiency in all three of the TNFRSF members GITR, OX40,
and TNFR2, or neutralization of TNF superfamily members
GITRL, OX40L, and TNF-a together, markedly inhibited the
generation of tTreg cells (31) (Figure 1). It was shown that
GITRL, OX40L, and TNF-a could convert CD25+ Foxp3- tTreg
precursors into mature Foxp3+ Treg cells at very low dose of IL-2
(31), showing these three TNF superfamily members promote
tTreg cell mature from CD25+ Foxp3- tTreg precursors. However,
it is still not clear whether TNF superfamily members and IL-2
complement each other, or TNF superfamily members just
function as compensatory signals of IL-2 signal.

Source of GITRL, OX40L and TNF-a in
the Thymus
Although the major cellular sources of GITRL, OX40L, and
TNF-a have not been well defined, it was identified that
medullary TECs expressed GITRL, OX40L, and TNF-a, while
conventional dendritic cells (cDCs) and plasmacytoid dendritic
cells (pDCs) expressed only GITRL and TNF-a (31). Further
studies are needed to determine which kind of APCs are the
major cellular source of GITRL, OX40L, and TNF-a. Moreover,
whether membrane-bound or soluble GITRL, OX40L, and TNF-
a play a more important role in tTreg cell generation has not yet
been determined either.
CONCLUSIONS AND
FUTURE PERSPECTIVE

By summarizing the existing studies of cytokines in tTreg cell
generation, we conclude that four members of gc family
cytokines (IL-2, IL-4, IL-7 and IL-15), transforming growth
factor b (TGF-b), and three members of TNF superfamily
cytokines (GITRL, OX40L, and TNF-a) play vitally important
roles in regulating tTreg cell generation, although regulation
mechanisms of these cytokines have yet to be confirmed.
Functions of these cytokines in tTreg cell generation are still
divisive. For example, opinions are still divided on the functions
of TGF-b and IL-2, whether they are important for tTreg cell
development, survival, and/or proliferation are still controversial.

On the other hand, when and how cytokines interact with
each other and mediate tTreg cell generation in the thymus
Frontiers in Immunology | www.frontiersin.org 524
remains to be fully revealed. Also, when and how these cytokines
take effect during tTreg cell development is still unclear.
Therefore, future studies should focus on why developing
tTreg cells are divided into two populations of tTreg
precursors. Since CD25+ Foxp3- tTreg precursors and Foxp3+

CD25- tTreg precursors are generated through two distinct
developmental programs (30), it is very likely that cytokines
play key roles in inducing these two precursor populations
besides TCR/CD28 co-stimulation. So far, it has been proven
that IL-4 can support tTreg cell generation from Foxp3+ CD25-

tTreg precursors (30), and TNF superfamily cytokines (GITRL,
OX40L and TNF-a) can support tTreg cell generation from
CD25+ Foxp3- tTreg precursors (31). These findings can partially
explain the differences of CD25+ Foxp3- tTreg precursors and
Foxp3+ CD25- tTreg precursors. However, the regulatory
network of these cytokines during the development of tTreg
precursors and mature tTreg cell has not yet been fully revealed.
It is beyond all doubt that answering these basic questions is
extremely important for fully disclosing the generation of
tTreg cells.
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T-lymphocytes play crucial roles for maintaining immune homeostasis by fighting against
various pathogenic microorganisms and establishing self-antigen tolerance. They will go
through several stages and checkpoints in the thymus from progenitors to mature T cells,
from CD4-CD8- double negative (DN) cells to CD4+CD8+ double positive (DP) cells, finally
become CD4+ or CD8+ single positive (SP) cells. The mature SP cells then emigrate out of
the thymus and further differentiate into distinct subsets under different environment
signals to perform specific functions. Each step is regulated by various transcriptional
regulators downstream of T cell receptors (TCRs) that have been extensively studied both
in vivo and vitro via multiple mouse models and advanced techniques, such as single cell
RNA sequencing (scRNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-
seq). This review will summarize the transcriptional regulators participating in the early
stage of T cell development reported in the past decade, trying to figure out cascade
networks in each process and provide possible research directions in the future.

Keywords: transcriptional regulators, T-lymphocytes, double negative (DN) cells, double positive (DP) cells, single
positive (SP) cells, T cell receptor (TCR)
INTRODUCTION

T cells widely participate in the innate and adaptive immune responses throughout the lifetime. T
cell development is tightly regulated by numerous factors including transcriptional and epigenetic
regulators. The proper development and differentiation of thymocytes is the foundation for the
function of the immune system.

There is no doubt that the thymus is the fundamental place of thymocytes development that is
highly organized, where thymocytes go through several stages and checkpoints before maturation
and under-control of a network of multiple players (1, 2). Thymocyte development is driven by TCR
activation and can be disrupted by defects in signaling components involved in the TCR signaling
pathways (3, 4).

The early thymic precursor (ETPs) that come from bone marrow will go through different
thymocyte developmental stages including CD4-CD8- double negative (DN), CD4+CD8+ double
positive (DP) and CD4+CD8- or CD4-CD8+ single positive (SP). Then, mature SP cells will migrate to
the periphery. Particularly, the DN population can be divided into four stages according to the
expression of CD25 and CD44, starting from DN1 (CD44+CD25-), followed by DN2 (CD44+CD25+),
org March 2022 | Volume 13 | Article 884569128
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DN3 (CD44-CD25+) and DN4 (CD44-CD25-) (5). In addition, the
DN1 cells are known as ETPs. There are several check points
during T cell development. b-selection is the first major checkpoint
occurs at the DN3 stage. At this stage, a properly rearranged TCRb
chain will be produced that mediated by recombinant activating
genes 1 and 2 (RAG1 and RAG2). Cells with successful b-selection
downregulate the expression of CD25 and become DN4 cells,
which then progress to the DP cells through the immature CD8
single positive (ISP) stage. In contrast, unsuccessful b-selection of
DN3 cells will undergo apoptosis.

At the DP stage, TCRa gene rearrangements initiate and
mature ab-TCR will be produced. Subsequently, thymocytes
must pass through both positive and negative selections to
become mature T cells. Thymocytes with functional TCRs
interact with the major histocompatibility complex (MHC) on
cortical epithelial cells (cTECs) presenting foreign antigens will
survive (6). Thus, positive selection is vital for MHC restrictions.
During negative selection, thymocytes respond to self-antigens
presented by mTECs (medullary epithelial cells) will be
eliminated. Finally, the selected thymocytes differentiate into
mature SP cells, emigrate out of thymus to periphery, and then
differentiate into distinct functional subsets such as regulatory T
cells (Treg), helper T cells (Th) and cytotoxic T cells. Less than
5% DP thymocytes will survive during all the checkpoints.

Each developmental step requires the participants of
transcriptional regulators that have been elucidated through
advanced genomic techniques to identify the binding sites (7–9).
The transcription factors bind to regulatory elements of target genes,
such as promoters, enhancers or silencers, to regulate the gene
expression. In this review, we will briefly summarize the critical
transcriptional factors and related epigenetic regulators during the
T-lymphocyte development reported in the past decade and provide
a comprehensive understanding of the thymocytes regulation.
DN STAGES

Notch signaling is one of the most important pathways to initiate
the transcriptional program of the progenitor cells (10). Firstly,
Notch signaling induces T cell-specific transcription factor TCF-1
(T cell factor 1, encoded by Tcf7 gene) expression at the ETP stage.
Then lead to the activation of two major target genes, Gata3 and
Bcl11b (B-cell lymphoma/leukemia 11B) (11). Three waves of
chromatin remodeling were observed at the ETP, DN2b and SP
stage respectively. TCF-1 is enriched at recognition sites and
regulatory regions that become accessible during the ETP and
DN2b wave and persist until maturation in both humans andmice
(12, 13). TCF-1 deficiency at distinct phases redirects bifurcation
among divergent cell fates and subdivide the DN cells to different
clusters via scRNA-seq. In addition, TCF-1 directly binds and
mediates chromatin accessibility contributing to tumorigenesis
(14). Moreover, TCF-1 is also found to directly interact with actin-
nucleating factor WASp by ChIP-seq to promote T cell
development (15). Most recently, Notch1 target genes HES1 and
HES4 have been reported to be upregulated in a Notch-dependent
manner promoting early T-cell development (16). Collectively,
Frontiers in Immunology | www.frontiersin.org 229
these studies emphasize the essential role of TCF-1 and Notch
signaling in regulating T cell development.

Gata3 and Bcl11b are the major targets of TCF-1. Gata3 is a
member of the Gata transcription factor family, plays multiple
roles in the transcriptional network of thymocyte development.
Gata3 deficiency will affect T-cell survival, growth, commitment
and progression into mature cells. Gata3 has been proved to be
additionally required at the earliest stage of thymopoiesis for the
development of ETP population and DN2 to DN4 stages, since the
mRNA levels of Gata3 are gradually increased between the ETP
and DN3 stages and slightly diminish again in DN4 cells (7, 17). In
mouse DN4 cells, Gata3 is bound by F-box protein Fbw7 and
augmented in Fbw7-deficient thymocytes (18), while it is
negatively regulated by E-box binding protein HEB via Notch1
(19). Furthermore, Gata3 positively regulates Bcl11b at the
transition stage of T cell commitment. Over 10 years ago, the
important roles of Bcl11b in the differentiation and survival of DN
cells have been revealed (20–22). It is stimulated not only by Notch
signaling but also by MAP kinase-and Gsk3-dependent signaling.
The kinetic modifications of Bcl11b in DN cells are somewhat
different from the patterns observed in DP cells, suggesting the
essential function of Bcl11b in DN to DP transition (23). In
addition, the expression of Bcl11b is impaired in CD147 deficient
mice which results in failed T cell identity determination (24).
More interestingly, the intraepithelial lymphocytes are decreased
when Bcl11b is deficient (25). Cooperating with Bcl protein,
transcription factor NFATc1 also plays a critical role in DN
thymocytes survival and differentiation (26). It is activated by
IL-7-Jak3 signals during the DN1 to DN3 stages (27, 28).

The function of each RUNT-related transcription factors (Runx)
family member is still poorly understood based on current studies.
Nevertheless, it is well known that Runx family members, including
Runx1, Runx2 and Runx3 are another crucial transcription factors
facilitating early T cell development. The activity of Runx1 has been
highlighted in the relationship with other key transcription factors
such as Bcl11b and Pu.1, which regulate the dynamic changes of
transcriptional signatures before and after T cell commitment
respectively. In addition, enforced expression of Runx2 affects b-
selection resulting in an expansion of DN cells (29). The intronic
silencer (S4) of Cd4 gene cooperates with RUNX which is involved
in T-helper inducing POZ-Kruppel factor (ThPOK) pathway (30).
Herein, Runx family members are involved in various stages such as
b-selection of double-negative thymocytes (22). The hypomorphic
mutation of Runx component core-binding factor b (Cbfb) results
in a consecutive differentiation block within the DN population, as
evidenced by a decrease of ETP followed by an inefficient ETP-to-
DN2 transition as well as DN2-to-DN3 transition (22, 31).
DN-TO-DP TRANSITION

T cells that have formed a functional pre-TCR complex, consisting
of CD3, TCRb, and pre-TCRa, can develop into DP cells. As a
consequence, pre-TCR signaling is required for thymocyte
development from DN to DP cells, following by dozens of
transcriptional responses to pre-TCR signaling (32, 33).
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Moreover, pre-TCR signaling leads to increased expression of the
transcriptional repressor Bcl6 which is required for differentiation to
DP cells (34). Another member of the Bcl family is the antiapoptotic
molecule Bcl2, whose down regulation induces enhanced apoptosis
during the transition from the DN3 to the DN4 stage and contribute
to DN4 cell number reduction. While the proliferation of ISP
thymocytes is compensated, the number of ISP cells is normal
eventually (35, 36). The successful assembly of pre-TCR promotes
rapid self-renewal of DN3b cells and sequentially differentiate into
cycling DN4, CD8 ISP and early DP (eDP) blast cells, then stop
proliferating to become quiescent late DP (lDP) cells (37). TCR has
multiple gene segments as alpha, beta, gamma and delta (Tcra, Tcrb,
Tcrg and Tcrd). Murine Tcra and Tcrd are organized into a single
genetic locus (Tcra/Tcrd locus) that undergoes V(D)J
recombination in DN thymocytes to assemble the Tcrd gene and
in DP thymocytes to assemble Tcra gene, to generate diverse TCR
repertoires (38, 39). In addition, the formation of a functional VDJ
join signals is required for robust proliferation of DN thymocytes
and their differentiation into DP cells, whereas Tcrb recombination
is suppressed by allelic exclusion (40).

Subsequently, pre-TCR complexes activate Notch1, whose
activation is essential for generating the huge pool of DP
thymocytes as physiological Notch1 signals are highest
expressed in DN3 cells and decreased in DP cells. Thus,
Notch1 signaling is crucial and transiently upregulated in DN-
to-DP transition. There are two types of Notch1 related
transcriptional regulators which are activators and repressors.
Notch1 can be activated by Delta-like Notch ligands such as DL4,
which is critically regulated by Lunatic Fringe (Lfng) (41, 42).
Another activator is Zmiz1, which is a stage-specific cofactor of
Notch1. Withdrawal of Zmiz1 at the later pre-T cell stage impairs
the DN-to-DP transition by inhibiting proliferation.
Furthermore, the Zmiz1-deficient DN-to-DP defect can be
rescued by enforced activation of Notch1 or its target gene
(43). However, DN4 and DP cells will be oncogenic when
Notch1 is activated inappropriately (44). The repressors of
Notch1 are vital for homeostasis. It is confirmed that Notch1
signaling can be attenuated by Bcl6 (34), NKAP (45) and Early
growth response 2 (Egr-2) (46) in ISP thymocytes. Forced
expression of these repressors may result in a severe reduction
of DP cells in the thymus. Furthermore, downstream
transcriptional factors of Notch1 also influence DN-to-DP
transition. Induced TCF-1 form complex with b-catenin that
will lead to transcriptional activation of cell-fate specific target
genes in the transition and DP thymocytes survival via canonical
Wnt pathway. On the contrary, TCF-1 interacts with co-
repressors such as Groucho/Transducin-like enhancer (GRG/
TLE) and turns off-target gene expression in the absence of Wnt
signals. In the absence of TCF-1, ISP thymocyte development is
blocked which contributes to DP thymocytes reduction (47).

As we mentioned in the previous section, Runx1 binds to the
CD4 silencer and represses transcription factors in immature DN
thymocytes followed by CD8 expression to promote DN-to-DP
transition, then down regulate in DP stage (48). The growth rate of
DN4 cells and the transition of DN4 to the DP stage are impaired by
overexpressed Runx1, resulting in the substantial reduction of DP
Frontiers in Immunology | www.frontiersin.org 330
thymocytes (49). Coincidentally, a sequence-specific transcription
factor Ets1 specifically associates with Runx1 in DN and TCF-1 in
DP cells by binding distal nucleosome-occupied and depleted
regions respectively (50). Another critical transcription factors
family is Ikaros which transiently increased from DN to DP
developmental stage (51). Nevertheless, Ikaros maybe not a
conventional activator or repressor according to defined sets of
genes (52). As a tumor suppressor, Ikaros directly repress most
Notch target genes through genome-wide analyses, such as ChIP-
seq (53). Furthermore, a newly reported transcriptional regulator,
Zinc finger protein Yin Yang 1 (YY1), is functional in DN
thymocytes survival and apoptosis by suppressing the expression
of p53, which can eliminate thymocytes that fail to pass b-selection.
Early ablation of YY1 caused severely impaired development to DP
cells due to increased apoptosis of DN thymocytes that prevented
the expansion of post-b-selection thymocytes (54). Nevertheless, the
comprehensive mechanism of YY1 in thymocyte development
remains unclear though it is essential for iNKT cell development
by ChIP-seq analysis (55).
DP-TO-SP TRANSITION

DP Survival
Appropriate TCR signaling is crucial for the survival of DP
thymocytes and determines positive or negative selection (56).
Without proper selective signaling, DP cells will be eliminated by
apoptosis within 3~4 days during this pre-selection period.

RORgt is one of the most important survival transcription
factors in pre-selective DP cells that activates the gene encoding
the antiapoptotic protein Bcl-xL. It is well-known that the gc
cytokine receptor subunit provides critical signals for T cell
survival and differentiation. Recently, it is found that RORgt is
abundant in immature DP thymocytes and act through Bcl-xL to
reduce the surface expression of gc. More importantly, Ligons et
al. demonstrate that loss of RORgt in mouse DP thymocytes is
associated with increased gc surface abundance and this
phenomenon can be restored by forced expression of Bcl-xL in
RORgt-deficient thymocytes (57). Moreover, RORgt can be
upregulated by TCF-1. Both TCF-1 and RORgt-knockout DP
thymocytes undergo similarly accelerated apoptosis, while only
in the presence of RORgt, the activation of TCF-1 by stabilized b-
catenin can enhance DP thymocyte survival. Specifically, RORgt
overexpression could rescue TCF-1 deficient DP thymocytes
from apoptosis but overexpressed TCF-1 in RORgt-/- DP
thymocytes doesn’t show any rescue, which indicate that
RORgt acts downstream of TCF-1. In addition, TCF-1 directly
interacts with the promoter region of RORgt and induces its
activity (58, 59). According to the most recent studies, TCF-1
may cooperate with transcription factors Zeb family member
Zeb1 to participate in the cell cycle and TCR signaling by
transcriptomic analysis (60).

Both Bim (Bcl2l11) and Nur77 are TCR-induced proteins
with pro-apoptotic function. Bim is important for clonal deletion
whereas Nur77 is often dispensable but able to influence late DP
thymocytes apoptosis (61, 62).
March 2022 | Volume 13 | Article 884569

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bao et al. T-Lymphocyte Development
Interestingly, nuclear speckle-related protein 70 (NSrp70) is
selectively expressed on developing thymocytes and highest at
DP stage. NSrp70 could regulate cell cycle and survival of
thymocytes by governing the alternative processing of various
RNA splicing factors, such as oncogenic serine/arginine-rich
splicing factor SRSF1 (63). This finding may provide a new
angle to dig up larger scale of transcription network in
DP survival.

Positive Selection
The DP thymocytes will undergo positive selection in the
cortex of the thymus by recognizing antigen-MHC complex
presented by cTECs and transducing intra-thymic TCR
signals, then become CD4+ or CD8+ expressing SP cells.
Calcium flux signaling is required for positive selection of T
cells. Our results demonstrate a newly discovered adaptor
named Tespa1 (Thymocyte-expressed, positive selection-
associated 1) is essential for positive selection by modulating
the interaction with a Ca2+ release channel - inositol 1,4,5-
trisphosphate receptor (IP3R) which express on ER
membranes (64–66).

The positive selection is also induced by forkhead box (Fox)
family. In a way, the pioneer transcription factors Foxa1 and
Foxa2 (forkhead box protein A) regulate alternative RNA
splicing during thymocyte positive selection. Another Fox
protein Foxo1 may induce the selection and maturation of DP
thymocytes that can be accelerated in the deficiency of
transcription repressor Gfi1(Growth factor independent 1).
Thus, the Gfi1-Foxo1 axis shapes the proper generation of SP
cells (67, 68). Additionally, Egr-2 also regulates the survival of
stage-specific thymocytes and enhanced the maturation of DP
cells into SP cells in thymus (46, 69).

Lastly, the achievement of positive selection is inseparable
from epigenet ic regulat ion which cross-work with
transcriptional signals. HDAC7 (Histone deacetylase 7) has
been reported exporting from the cell nucleus during positive
selection in mouse thymocytes and modifying genes to mediate
the coupling between TCR engagement and downstream events
that determine cell survival including MAPK activity (70).

Negative Selection
Negative selection is critical to delete highly self-reactive
thymocytes to prevent autoimmunity. The thymocytes who
pass the negative selection will become mature T cells with low
self-reactivity and export to periphery immune organs.

The proceed of negative selection depends on functional
mTECs, whose development is powerfully promoted by
transcription factors Foxn1 (forkhead box family N1)
and Aire (autoimmune regulator), which control the
differentiation and maturation repectively (71). Conditional
Foxn1 knockout results in defective negative selection
contribute to less clonal deletion of autoreactive thymocytes
(72), which possibly attribute to abnormal mTECs. Therefore,
the Foxn1-TEC axis has been considered to repair negative
selection and rejuvenation of thymic involution which is critical
for counteracting inflammaging (73). Foxn1 is also the
downstream target of Wnts which are a large family to secret
Frontiers in Immunology | www.frontiersin.org 431
glycoproteins and participate in cell fate determination,
migration, proliferation, polarity and death in TECs. Existing
evidences show Wnt4 and Wnt5b regulate Foxn1 expression in
TECs through TCF-4 and LEF-1 by both autocrine and
paracrine manners (74).

On the other hand, the function of mTECs is highly
dependent on their characteristic features such as ectopic
expression of tissue-restricted antigens (TRAs) and their
master regulator Aire, whose expression is restricted to a
mature subset of mTECs. Aire induces tissue-specific antigens
to ensure negative selection by directly binding the promoter of
the target gene within the medulla (75, 76). The transcriptional
function of Aire in the process of mTECs adhesion is
reconfirmed by CRISPR/Cas9 technology (77). Subsequently, it
is shown that Aire targets 5’-URR (5’-untranslated regulatory
region) of immune checkpoint HLA-G lead to increased
intracellular HLA-G protein expression in TECs (78).
Surprisingly, Aire can bind to sequence-independent epigenetic
tags, such as unmethylated histone 3, and be recruited to a locus.
After demethylation and Aire binding, Aire either directly
enhances transcription or recruits other transcriptional
activators (75).

In addition to the promoters, the transcriptional repressors of
negative selection are indispensable. NCoR1 is a nuclear receptor
co-repressor to connect repressive chromatin-modifying
enzymes to gene-specific transcription factors. NCoR1 restrains
negative selection by repressing pro-apoptotic factor Bim
expression, which is expressed elevated in the absence of
NCoR1. NCoR1-null thymocytes show excessive negative
selection and reduced mature SP thymocytes (79–81). NCoR1
interacts with a predominant member of the HDAC family
named HDAC3 which is a major and specific molecular switch
that is crucial for mTECs differentiation and highly specific to
histone deacetylases (82). Capicua (CIC) (83) and
Sphingomyelin microdomains (SM) (84) also work as
repressive factors together to ensure the proper negative
selection and prevent autoimmunity.
DISCUSSION

We conclude the map of T-lymphocyte development in the
thymus and related transcriptional regulators that have been
reported in the past decade (Figure 1), hoping to give some
clues or inspiration to the future research. These selected
regulators may have redundant or opposite functions in the
thymocyte’s maintenance, proliferation, differentiation and
maturation. Indeed, our understanding of the early stage of T
lymphocytes development is still limited yet, the modulators we
reviewed here are still poorly understood. Surprisingly, in
recent years, more and more advanced techniques including
various sequencing are invented or improved in order to
elucidate the function of transcription factors involved in T
cell development. However, the regulatory network among
them and the precise mechanism stil l need further
investigation both in vivo and vitro using ingenious animal
models and molecular biological approaches.
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also poorly understood.
March 2022 | Volume 13 | Article 884569

https://doi.org/10.1007/s00281-020-00830-z
https://doi.org/10.1007/s00018-015-1864-8
https://doi.org/10.1146/annurev-cellbio-111315-125324
https://doi.org/10.1146/annurev-cellbio-111315-125324
https://doi.org/10.1016/j.it.2014.05.003
https://doi.org/10.1201/9781315371689-1
https://doi.org/10.1201/9781315371689-1
https://doi.org/10.3389/fimmu.2020.01838
https://doi.org/10.3389/fimmu.2020.01838
https://doi.org/10.1038/s41598-018-23774-9
https://doi.org/10.1038/s41598-018-23774-9
https://doi.org/10.1016/j.immuni.2020.03.019
https://doi.org/10.1016/j.immuni.2020.03.019
https://doi.org/10.1038/s41467-020-20306-w
https://doi.org/10.1038/s41577-020-00426-6
https://doi.org/10.1038/s41577-020-00426-6
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bao et al. T-Lymphocyte Development
11. Garcia-Perez L, Famili F, Cordes M, BrugmanM, van EggermondM,WuH, et al.
Functional Definition of a Transcription Factor Hierarchy Regulating T Cell
Lineage Commitment. Sci Adv (2020) 6:1–14. doi: 10.1126/sciadv.aaw7313

12. Visan I. Establishing T Cell Lineage Identity. Nat Immunol (2018) 19:316. doi:
10.1038/s41590-018-0077-3

13. Johnson JL, Georgakilas G, Petrovic J, Kurachi M, Cai S, Harly C, et al.
Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic
Identity of T Cells. Immunity (2018) 48:243–257 e210. doi: 10.1016/
j.immuni.2018.01.012

14. Wang F, Qi ZH, Yao YP, Yu GT, Feng T, Zhao TY, et al. Exploring the Stage-
Specific Roles of Tcf-1 in T Cell Development and Malignancy at Single-Cell
Resolution. Cell Mol Immunol (2021) 18:644–59. doi: 10.1038/s41423-020-
00527-1

15. Kuznetsov NV, Almuzzaini B, Kritikou JS, Baptista MAP, Oliveira MMS,
Keszei M, et al. Nuclear Wiskott-Aldrich Syndrome Protein Co-Regulates T
Cell Factor 1-Mediated Transcription in T Cells. Genome Med (2017) 9:91.
doi: 10.1186/s13073-017-0481-6

16. De Decker M, Lavaert M, Roels J, Tilleman L, Vandekerckhove B, Leclercq G,
et al. HES1 and HES4 Have Non-Redundant Roles Downstream of Notch
During Early Human T-Cell Development. Haematologica (2021) 106:130–
41. doi: 10.3324/haematol.2019.226126

17. Hosoya T, Maillard I, Engel JD. From the Cradle to the Grave: Activities of
GATA-3 Throughout T-Cell Development and Differentiation. Immunol Rev
(2010) 238:110–25. doi: 10.1111/j.1600-065X.2010.00954.x

18. Kitagawa K, Shibata K, Matsumoto A, Matsumoto M, Ohhata T, Nakayama
KI, et al. Fbw7 Targets GATA3 Through Cyclin-Dependent Kinase 2-
Dependent Proteolysis and Contributes to Regulation of T-Cell
Development. Mol Cell Biol (2014) 34:2732–44. doi: 10.1128/MCB.01549-13

19. Braunstein M, Anderson MK. HEB-Deficient T-Cell Precursors Lose T-Cell
Potential and Adopt an Alternative Pathway of Differentiation. Mol Cell Biol
(2011) 31:971–82. doi: 10.1128/MCB.01034-10

20. Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y, et al.
Bcl11b is Required for Differentiation and Survival of ab T Lymphocytes. Nat
Immunol (2003) 4:533–9. doi: 10.1038/ni927

21. Inoue J, Kanefuji T, Okazuka K, Watanabe H, Mishima Y, Kominami R.
Expression of TCR Alpha Beta Partly Rescues Developmental Arrest and
Apoptosis of Alpha Beta T Cells in Bcl11b-/- Mice. J Immunol (2006)
176:5871–9. doi: 10.4049/jimmunol.176.10.5871

22. Naito T, Tanaka H, Naoe Y, Taniuchi I. Transcriptional Control of T-Cell
Development. Int Immunol (2011) 23:661–8. doi: 10.1093/intimm/dxr078

23. SelmanWH, Esfandiari E, Filtz TM. Alteration of Bcl11b Upon Stimulation of
Both the MAP Kinase- and Gsk3-Dependent Signaling Pathways in Double-
Negative Thymocytes. Biochem Cell Biol (2019) 97:201–13. doi: 10.1139/bcb-
2018-0132

24. Treanor LM, Zhou S, Janke L, Churchman ML, Ma Z, Lu T, et al. Interleukin-
7 Receptor Mutants Initiate Early T Cell Precursor Leukemia in Murine
Thymocyte Progenitors With Multipotent Potential. J Exp Med (2014)
211:701–13. doi: 10.1084/jem.20122727

25. Mondoon S, Shibata K, Yoshikai Y. In Vivo Blockade of T Cell Development
Reveals Alternative Pathways for Generation of Intraepithelial Lymphocytes
in Mice. Immunol Lett (2017) 191:40–6. doi: 10.1016/j.imlet.2017.09.008

26. Klein-Hessling S, Rudolf R, Muhammad K, Knobeloch KP, Maqbool MA,
Cauchy P, et al. A Threshold Level of NFATc1 Activity Facilitates Thymocyte
Differentiation and Opposes Notch-Driven Leukaemia Development. Nat
Commun (2016) 7:11841. doi: 10.1038/ncomms11841

27. Macian F. Noncanonical NFATc1 Activation in DN Thymocytes. Nat
Immunol (2013) 14:116–7. doi: 10.1038/ni.2522

28. Patra AK, Avots A, Zahedi RP, Schuler T, Sickmann A, Bommhardt U, et al.
An Alternative NFAT-Activation Pathway Mediated by IL-7 is Critical for
Early Thymocyte Development. Nat Immunol (2013) 14:127–35. doi: 10.1038/
ni.2507

29. Vaillant F, Blyth K, Andrew L, Neil JC, Cameron ER. Enforced Expression of
Runx2 Perturbs T Cell Development at a Stage Coincident With Beta-
Selection. J Immunol (2002) 169:2866–74. doi: 10.4049/jimmunol.169.6.2866

30. Chong MM, Simpson N, Ciofani M, Chen G, Collins A, Littman DR.
Epigenetic Propagation of CD4 Expression is Established by the Cd4
Proximal Enhancer in Helper T Cells. Genes Dev (2010) 24:659–69. doi:
10.1101/gad.1901610
Frontiers in Immunology | www.frontiersin.org 633
31. Talebian L, Li Z, Guo Y, Gaudet J, Speck ME, Sugiyama D, et al. T-Lymphoid,
Megakaryocyte, and Granulocyte Development are Sensitive to Decreases in
CBFbeta Dosage. Blood (2007) 109:11–21. doi: 10.1182/blood-2006-05-
021188

32. Sahni H, Ross S, Barbarulo A, Solanki A, Lau C, Furmanski A, et al. A Genome
Wide Transcriptional Model of the Complex Response to Pre-TCR Signalling
During Thymocyte Differentiation. Oncotarget (2015) 6:28646–60. doi:
10.18632/oncotarget.5796

33. Harker N, Garefalaki A, Menzel U, Ktistaki E, Naito T, Georgopoulos K, et al.
Pre-TCR Signaling and CD8 Gene Bivalent Chromatin Resolution During
Thymocyte Development. J Immunol (2011) 186:6368–77. doi: 10.4049/
jimmunol.1003567

34. Solanki A, Yanez DC, Lau CI, Rowell J, Barbarulo A, Ross S, et al. The
Transcriptional Repressor Bcl6 Promotes Pre-TCR-Induced Thymocyte
Differentiation and Attenuates Notch1 Activation. Development (2020) 147:
dev192203. doi: 10.1242/dev.192203

35. Lauritsen JP, Boding L, Buus TB, Kongsbak M, Levring TB, Rode AK, et al.
Fine-Tuning of T-Cell Development by the CD3gamma Di-Leucine-Based
TCR-Sorting Motif. Int Immunol (2015) 27:393–404. doi: 10.1093/intimm/
dxv022

36. Sionov RV, Kfir-Erenfeld S, Spokoini R, Yefenof E. A Role for Bcl-2 in
Notch1-Dependent Transcription in Thymic Lymphoma Cells. Adv Hematol
(2012) 2012:435241. doi: 10.1155/2012/435241

37. Boudil A, Matei IR, Shih HY, Bogdanoski G, Yuan JS, Chang SG, et al. IL-7
Coordinates Proliferation, Differentiation and Tcra Recombination During
Thymocyte Beta-Selection. Nat Immunol (2015) 16:397–405. doi: 10.1038/
ni.3122

38. Hao B, Krangel MS. Long-Distance Regulation of Fetal Vd Gene Segment
TRDV4 by the Tcrd Enhancer. J Immunol (2011) 187:2484–91. doi: 10.4049/
jimmunol.1100468

39. Chen L, Carico Z, Shih HY, Krangel MS. A Discrete Chromatin Loop in the
Mouse Tcra-Tcrd Locus Shapes the TCRdelta and TCRalpha Repertoires. Nat
Immunol (2015) 16:1085–93. doi: 10.1038/ni.3232

40. Majumder K, Rupp LJ, Yang-Iott KS, Koues OI, Kyle KE, Bassing CH, et al.
Domain-Specific and Stage-Intrinsic Changes in Tcrb Conformation During
Thymocyte Development. J Immunol (2015) 195:1262–72. doi: 10.4049/
jimmunol.1500692

41. Yuan JS, Tan JB, Visan I, Matei IR, Urbanellis P, Xu K, et al. Lunatic Fringe
Prolongs Delta/Notch-Induced Self-Renewal of Committed Alphabeta T-Cell
Progenitors. Blood (2011) 117:1184–95. doi: 10.1182/blood-2010-07-296616

42. Visan I, Yuan JS, Liu Y, Stanley P, Guidos CJ. Lunatic Fringe Enhances
Competition for Delta-Like Notch Ligands But Does Not Overcome Defective
Pre-TCR Signaling During Thymocyte Beta-Selection In Vivo. J Immunol
(2010) 185:4609–17. doi: 10.4049/jimmunol.1002008

43. Wang Q, Yan R, Pinnell N, McCarter AC, Oh Y, Liu Y, et al. Stage-Specific
Roles for Zmiz1 in Notch-Dependent Steps of Early T-Cell Development.
Blood (2018) 132:1279–92. doi: 10.1182/blood-2018-02-835850

44. Gerby B, Tremblay CS, Tremblay M, Rojas-Sutterlin S, Herblot S, Hebert J,
et al. SCL, LMO1 and Notch1 Reprogram Thymocytes Into Self-Renewing
Cells. PloS Genet (2014) 10:e1004768. doi: 10.1371/journal.pgen.1004768

45. Zhang X, Dong X, Wang H, Li J, Yang B, Zhang J, et al. FADD Regulates
Thymocyte Development at the Beta-Selection Checkpoint by Modulating
Notch Signaling. Cell Death Dis (2014) 5:e1273. doi: 10.1038/
cddis.2014.198

46. Li S, Symonds AL, Zhu B, Liu M, Raymond MV, Miao T, et al. Early Growth
Response Gene-2 (Egr-2) Regulates the Development of B and T Cells. PloS
One (2011) 6:e18498. doi: 10.1371/journal.pone.0018498

47. Tiemessen MM, Baert MR, Schonewille T, Brugman MH, Famili F, Salvatori
DC, et al. The Nuclear Effector of Wnt-Signaling, Tcf1, Functions as a T-Cell-
Specific Tumor Suppressor for Development of Lymphomas. PloS Biol (2012)
10:e1001430. doi: 10.1371/journal.pbio.1001430

48. Egawa T, Tillman RE, Naoe Y, Taniuchi I, Littman DR. The Role of the Runx
Transcription Factors in Thymocyte Differentiation and in Homeostasis of
Naive T Cells. J Exp Med (2007) 204:1945–57. doi: 10.1084/jem.20070133

49. Wong WF, Nakazato M, Watanabe T, Kohu K, Ogata T, Yoshida N, et al.
Over-Expression of Runx1 Transcription Factor Impairs the Development of
Thymocytes From the Double-Negative to Double-Positive Stages.
Immunology (2010) 130:243–53. doi: 10.1111/j.1365-2567.2009.03230.x
March 2022 | Volume 13 | Article 884569

https://doi.org/10.1126/sciadv.aaw7313
https://doi.org/10.1038/s41590-018-0077-3
https://doi.org/10.1016/j.immuni.2018.01.012
https://doi.org/10.1016/j.immuni.2018.01.012
https://doi.org/10.1038/s41423-020-00527-1
https://doi.org/10.1038/s41423-020-00527-1
https://doi.org/10.1186/s13073-017-0481-6
https://doi.org/10.3324/haematol.2019.226126
https://doi.org/10.1111/j.1600-065X.2010.00954.x
https://doi.org/10.1128/MCB.01549-13
https://doi.org/10.1128/MCB.01034-10
https://doi.org/10.1038/ni927
https://doi.org/10.4049/jimmunol.176.10.5871
https://doi.org/10.1093/intimm/dxr078
https://doi.org/10.1139/bcb-2018-0132
https://doi.org/10.1139/bcb-2018-0132
https://doi.org/10.1084/jem.20122727
https://doi.org/10.1016/j.imlet.2017.09.008
https://doi.org/10.1038/ncomms11841
https://doi.org/10.1038/ni.2522
https://doi.org/10.1038/ni.2507
https://doi.org/10.1038/ni.2507
https://doi.org/10.4049/jimmunol.169.6.2866
https://doi.org/10.1101/gad.1901610
https://doi.org/10.1182/blood-2006-05-021188
https://doi.org/10.1182/blood-2006-05-021188
https://doi.org/10.18632/oncotarget.5796
https://doi.org/10.4049/jimmunol.1003567
https://doi.org/10.4049/jimmunol.1003567
https://doi.org/10.1242/dev.192203
https://doi.org/10.1093/intimm/dxv022
https://doi.org/10.1093/intimm/dxv022
https://doi.org/10.1155/2012/435241
https://doi.org/10.1038/ni.3122
https://doi.org/10.1038/ni.3122
https://doi.org/10.4049/jimmunol.1100468
https://doi.org/10.4049/jimmunol.1100468
https://doi.org/10.1038/ni.3232
https://doi.org/10.4049/jimmunol.1500692
https://doi.org/10.4049/jimmunol.1500692
https://doi.org/10.1182/blood-2010-07-296616
https://doi.org/10.4049/jimmunol.1002008
https://doi.org/10.1182/blood-2018-02-835850
https://doi.org/10.1371/journal.pgen.1004768
https://doi.org/10.1038/cddis.2014.198
https://doi.org/10.1038/cddis.2014.198
https://doi.org/10.1371/journal.pone.0018498
https://doi.org/10.1371/journal.pbio.1001430
https://doi.org/10.1084/jem.20070133
https://doi.org/10.1111/j.1365-2567.2009.03230.x
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bao et al. T-Lymphocyte Development
50. Cauchy P, Maqbool MA, Zacarias-Cabeza J, Vanhille L, Koch F, Fenouil R,
et al. Dynamic Recruitment of Ets1 to Both Nucleosome-Occupied and
-Depleted Enhancer Regions Mediates a Transcriptional Program Switch
During Early T-Cell Differentiation. Nucleic Acids Res (2016) 44:3567–85.
doi: 10.1093/nar/gkv1475

51. Mitchell JL, Seng A, Yankee TM. Expression and Splicing of Ikaros Family
Members in Murine and Human Thymocytes. Mol Immunol (2017) 87:1–11.
doi: 10.1016/j.molimm.2017.03.014

52. Arenzana TL, Schjerven H, Smale ST. Regulation of Gene Expression
Dynamics During Developmental Transitions by the Ikaros Transcription
Factor. Genes Dev (2015) 29:1801–16. doi: 10.1101/gad.266999.115

53. Geimer Le Lay AS, Oravecz A, Mastio J, Jung C, Marchal P, Ebel C, et al. The
Tumor Suppressor Ikaros Shapes the Repertoire of Notch Target Genes in T
Cells. Sci Signal (2014) 7:ra28. doi: 10.1126/scisignal.2004545

54. Chen L, Foreman DP, Sant’Angelo DB, Krangel MS. Yin Yang 1 Promotes
Thymocyte Survival by Downregulating P53. J Immunol (2016) 196:2572–82.
doi: 10.4049/jimmunol.1501916

55. Ou X, Huo J, Huang Y, Li YF, Xu S, Lam KP. Transcription Factor YY1 is
Essential for iNKT Cell Development. Cell Mol Immunol (2019) 16:547–56.
doi: 10.1038/s41423-018-0002-6

56. Overgaard NH, Jung JW, Steptoe RJ, Wells JW. CD4+/CD8+ Double-Positive
T Cells: More Than Just a Developmental Stage? J Leukoc Biol (2015) 97:31–8.
doi: 10.1189/jlb.1RU0814-382

57. Ligons DL, Hwang S, Waickman AT, Park JY, Luckey MA, Park JH.
RORgammat Limits the Amount of the Cytokine Receptor Gammac
Through the Prosurvival Factor Bcl-xL in Developing Thymocytes. Sci
Signal (2018) 11:eaam8939. doi: 10.1126/scisignal.aam8939

58. Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, et al. T Cell Factor 1 Regulates
Thymocyte Survival via a Rorgt-Dependent Pathway. J Immunol (2011)
187:5964–73. doi: 10.4049/jimmunol.1101205

59. Alberola-Ila J, Sharma A, Berga-Bolaños R, Sen JM. T Cell Factor-1 Controls
the Lifetime of CD4+ CD8+ Thymocytes In Vivo and Distal T Cell Receptor
a-Chain Rearrangement Required for NKT Cell Development. PloS One
(2014) 9:e115803. doi: 10.1371/journal.pone.0115803

60. Zhang J, Wencker M, Marliac Q, Berton A, Hasan U, Schneider R, et al. Zeb1
Represses TCR Signaling, Promotes the Proliferation of T Cell Progenitors
and is Essential for NK1.1(+) T Cell Development. Cell Mol Immunol (2021)
18:2140–52. doi: 10.1038/s41423-020-0459-y

61. Hu QN, Suen AYW, Henao Caviedes LM, Baldwin TA. Nur77 Regulates
Nondeletional Mechanisms of Tolerance in T Cells. J Immunol (2017)
199:3147–57. doi: 10.4049/jimmunol.1701085

62. Stritesky GL, Xing Y, Erickson JR, Kalekar LA, Wang X, Mueller DL, et al.
Murine Thymic Selection Quantified Using a Unique Method to Capture
Deleted T Cells. Proc Natl Acad Sci USA (2013) 110:4679–84. doi: 10.1073/
pnas.1217532110

63. Kim C-H, Park S-M, Lee S-j, Kim Y-D, Jang S-H, Woo S-M, et al. NSrp70 is a
Lymphocyte-Essential Splicing Factor That Controls Thymocyte
Development. Nucleic Acids Res (2021) 49:5760–78. doi: 10.1093/nar/gkab389

64. Wang D, Zheng M, Lei L, Ji J, Yao Y, Qiu Y, et al. Tespa1 is Involved in Late
Thymocyte Development Through the Regulation of TCR-Mediated
Signaling. Nat Immunol (2012) 13:560–8. doi: 10.1038/ni.2301

65. Liang J, Lyu J, Zhao M, Li D, Zheng M, Fang Y, et al. Tespa1 Regulates T Cell
Receptor-Induced Calcium Signals by Recruiting Inositol 1,4,5-Trisphosphate
Receptors. Nat Commun (2017) 8:15732. doi: 10.1038/ncomms15732

66. Lyu J, Wang P, Xu T, Shen Y, Cui Z, Zheng M, et al. Thymic-Specific
Regulation of TCR Signaling by Tespa1. Cell Mol Immunol (2019) 16:897–907.
doi: 10.1038/s41423-019-0259-4

67. Lau CI, Rowell J, Yanez DC, Solanki A, Ross S, Ono M, et al. The Pioneer
Transcription Factors Foxa1 and Foxa2 Regulate Alternative RNA Splicing
During Thymocyte Positive Selection. Development (2021) 148:dev199754.
doi: 10.1242/dev.199754

68. Shi LZ, Saravia J, Zeng H, Kalupahana NS, Guy CS, Neale G, et al. Gfi1-Foxo1
Axis Controls the Fidelity of Effector Gene Expression and Developmental
Maturation of Thymocytes. Proc Natl Acad Sci USA (2017) 114:E67–74. doi:
10.1073/pnas.1617669114

69. Lawson VJ, Weston K, Maurice D. Early Growth Response 2 Regulates the
Survival of Thymocytes During Positive Selection. Eur J Immunol (2010)
40:232–41. doi: 10.1002/eji.200939567
Frontiers in Immunology | www.frontiersin.org 734
70. Kasler HG, Young BD, Mottet D, Lim HW, Collins AM, Olson EN, et al.
Histone Deacetylase 7 Regulates Cell Survival and TCR Signaling in CD4/CD8
Double-Positive Thymocytes. J Immunol (2011) 186:4782–93. doi: 10.4049/
jimmunol.1001179

71. Michel C, Miller CN, Kuchler R, Brors B, Anderson MS, Kyewski B, et al.
Revisiting the Road Map of Medullary Thymic Epithelial Cell Differentiation.
J Immunol (2017) 199:3488–503. doi: 10.4049/jimmunol.1700203

72. Coder BD, Wang H, Ruan L, Su DM. Thymic Involution Perturbs Negative
Selection Leading to Autoreactive T Cells That Induce Chronic Inflammation.
J Immunol (2015) 194:5825–37. doi: 10.4049/jimmunol.1500082

73. Oh J, Wang W, Thomas R, Su DM. Thymic Rejuvenation via FOXN1-
Reprogrammed Embryonic Fibroblasts (FREFs) to Counteract Age-Related
Inflammation. JCI Insight (2020) 5:e140313. doi: 10.1172/jci.insight.140313

74. Sun L, Luo H, Li H, Zhao Y. Thymic Epithelial Cell Development and
Differentiation: Cellular and Molecular Regulation. Protein Cell (2013)
4:342–55. doi: 10.1007/s13238-013-3014-0

75. Danso-Abeam D, Humblet-Baron S, Dooley J, Liston A. Models of Aire-
Dependent Gene Regulation for Thymic Negative Selection. Front Immunol
(2011) 2:14. doi: 10.3389/fimmu.2011.00014

76. Yamaguchi Y, Takayanagi A, Chen J, Sakai K, Kudoh J, Shimizu N. Mouse
Thymic Epithelial Cell Lines Expressing "Aire" and Peripheral Tissue-Specific
Antigens Reproduce In VitroNegative Selection of T Cells. Exp Cell Res (2011)
317:2019–30. doi: 10.1016/j.yexcr.2011.05.002

77. Speck-Hernandez CA, Assis AF, Felicio RF, Cotrim-Sousa L, Pezzi N, Lopes
GS, et al. Aire Disruption Influences the Medullary Thymic Epithelial Cell
Transcriptome and Interaction With Thymocytes. Front Immunol (2018)
9:964. doi: 10.3389/fimmu.2018.00964

78. Melo-Lima BL, Poras I, Passos GA, Carosella ED, Donadi EA, Moreau P. The
Autoimmune Regulator (Aire) Transactivates HLA-G Gene Expression in
Thymic Epithelial Cells. Immunology (2019) 158:121–35. doi: 10.1111/
imm.13099

79. Wang J, He N, Zhang N, Quan D, Zhang S, Zhang C, et al. NCoR1 Restrains
Thymic Negative Selection by Repressing Bim Expression to Spare
Thymocytes Undergoing Positive Selection. Nat Commun (2017) 8:959. doi:
10.1038/s41467-017-00931-8

80. Muller L, Hainberger D, Stolz V, Hamminger P, Hassan H, Preglej T, et al. The
Corepressor NCOR1 Regulates the Survival of Single-Positive Thymocytes. Sci
Rep (2017) 7:15928. doi: 10.1038/s41598-017-15918-0

81. Muller L, Hainberger D, Stolz V, Ellmeier W. NCOR1-A New Player on the
Field of T Cell Development. J Leukoc Biol (2018) 104:1061–8. doi: 10.1002/
JLB.1RI0418-168R

82. Goldfarb Y, Kadouri N, Levi B, Sela A, Herzig Y, Cohen RN, et al. HDAC3 Is a
Master Regulator of mTEC Development. Cell Rep (2016) 15:651–65. doi:
10.1016/j.celrep.2016.03.048

83. Park GY, Park JS, Park J, Hong HYL. Regulation of Positive and Negative
Selection and TCR Signaling During Thymic T Cell Development by Capicua.
Elife (2021) 10:e71769. doi: 10.1101/2021.07.11.451936

84. Toshima K, Nagafuku M, Okazaki T, Kobayashi T, Inokuchi JI. Plasma
Membrane Sphingomyelin Modulates Thymocyte Development by Inhibiting
TCR-Induced Apoptosis. Int Immunol (2019) 31:211–23. doi: 10.1093/
intimm/dxy082

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bao, Qin, Lu and Zheng. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
March 2022 | Volume 13 | Article 884569

https://doi.org/10.1093/nar/gkv1475
https://doi.org/10.1016/j.molimm.2017.03.014
https://doi.org/10.1101/gad.266999.115
https://doi.org/10.1126/scisignal.2004545
https://doi.org/10.4049/jimmunol.1501916
https://doi.org/10.1038/s41423-018-0002-6
https://doi.org/10.1189/jlb.1RU0814-382
https://doi.org/10.1126/scisignal.aam8939
https://doi.org/10.4049/jimmunol.1101205
https://doi.org/10.1371/journal.pone.0115803
https://doi.org/10.1038/s41423-020-0459-y
https://doi.org/10.4049/jimmunol.1701085
https://doi.org/10.1073/pnas.1217532110
https://doi.org/10.1073/pnas.1217532110
https://doi.org/10.1093/nar/gkab389
https://doi.org/10.1038/ni.2301
https://doi.org/10.1038/ncomms15732
https://doi.org/10.1038/s41423-019-0259-4
https://doi.org/10.1242/dev.199754
https://doi.org/10.1073/pnas.1617669114
https://doi.org/10.1002/eji.200939567
https://doi.org/10.4049/jimmunol.1001179
https://doi.org/10.4049/jimmunol.1001179
https://doi.org/10.4049/jimmunol.1700203
https://doi.org/10.4049/jimmunol.1500082
https://doi.org/10.1172/jci.insight.140313
https://doi.org/10.1007/s13238-013-3014-0
https://doi.org/10.3389/fimmu.2011.00014
https://doi.org/10.1016/j.yexcr.2011.05.002
https://doi.org/10.3389/fimmu.2018.00964
https://doi.org/10.1111/imm.13099
https://doi.org/10.1111/imm.13099
https://doi.org/10.1038/s41467-017-00931-8
https://doi.org/10.1038/s41598-017-15918-0
https://doi.org/10.1002/JLB.1RI0418-168R
https://doi.org/10.1002/JLB.1RI0418-168R
https://doi.org/10.1016/j.celrep.2016.03.048
https://doi.org/10.1101/2021.07.11.451936
https://doi.org/10.1093/intimm/dxy082
https://doi.org/10.1093/intimm/dxy082
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Bin Zhao,

Central South University, China

Reviewed by:
Avinash Bhandoola,

National Institutes of Health (NIH),
United States

*Correspondence:
Juan Carlos Zúñiga-Pflücker
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The thymus is a crucial organ for the development of T cells. T cell progenitors first migrate
from the bone marrow into the thymus. During the journey to become a mature T cell,
progenitors require interactions with many different cell types within the thymic
microenvironment, such as stromal cells, which include epithelial, mesenchymal and
other non-T-lineage immune cells. There are two crucial decision steps that are required
for generating mature T cells: positive and negative selection. Each of these two
processes needs to be performed efficiently to produce functional MHC-restricted T
cells, while simultaneously restricting the production of auto-reactive T cells. In each step,
there are various cell types that are required for the process to be carried out suitably,
such as scavengers to clean up apoptotic thymocytes that fail positive or negative
selection, and antigen presenting cells to display self-antigens during positive and
negative selection. In this review, we will focus on thymic non-T-lineage immune cells,
particularly dendritic cells and macrophages, and the role they play in positive and
negative selection. We will also examine recent advances in the understanding of their
participation in thymus homeostasis and T cell development. This review will provide a
perspective on how the thymic microenvironment contributes to thymocyte differentiation
and T cell maturation.

Keywords: thymus, macrophage, dendritic cell, T cell development, positive selection, negative selection,
thymus repair
INTRODUCTION

The thymus is an essential organ for T cell development (1). It is home to many cell types, such as
stromal and immune cells, which not only aid in T cell development, but are also integral to thymus
homeostasis (2–4). During T cell development, bone marrow-derived early thymic progenitors
(ETPs) first seed the thymus where they receive Notch signals from cortical thymic epithelial cells
(cTECs) and are signaled to enter the T-lineage differentiation pathway (5). These early progenitor
T cells are double negative (DN) for CD4 and CD8 expression and their T cell receptor (TCR) genes
have not yet undergone V(D)J rearrangement (6). At this stage, DN cells rearrange their g, d and b
TCR gene loci, and following successful TCRb gene assembly gain CD4 and CD8 expressions, a
checkpoint termed b-selection, and advance to the CD4 and CD8 double positive (DP) stage. Cells
that properly rearrange their gd TCRs mature into the gd-T cell lineage (7). However, the majority of
org April 2022 | Volume 13 | Article 885280135

https://www.frontiersin.org/articles/10.3389/fimmu.2022.885280/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.885280/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.885280/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jczp@sri.utoronto.ca
https://doi.org/10.3389/fimmu.2022.885280
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.885280
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.885280&domain=pdf&date_stamp=2022-04-08
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cells become DP cells, and following rearrangement of their
TCRa gene loci are subjected to positive selection, which is
conducted by cTECs presenting peptide self-antigens on their
major histocompatibility complex (MHC) class I and MHC class
II molecules to DP cells (8).

Proper TCR-MHC interactions predicate whether DP cells
are allowed to differentiate to the next stage of ab-T cell
development. Conversely, DPs with non-functional TCR-MHC
interactions undergo death by neglect, which occurs for over 95%
of DPs (9, 10). Following positive selection, DPs migrate to the
thymus medullary region and undergo negative selection against
strong TCR-MHC interactions. This process, which helps to
ensure self-tolerance, is conducted by medullary thymic
epithelial cells (mTECs), which under the regulation of
autoimmune regulator (AIRE) express a vast array of self-
antigens, and with the help from other thymic antigen
presenting cells (APC), such as dendritic cells (DCs)
(Figure 1) (11–13). The purpose of this process is to eliminate
potential self-reactive T cells, which could lead to autoimmune
diseases if released into the periphery. In total, it is estimated that
only 3-5% of developing thymocytes become mature CD4 or
CD8 single positive (SP) T cells and exit the thymus (14).
Frontiers in Immunology | www.frontiersin.org 236
The two-step selection process is repeated every day in the
thymus and is only diminished during thymus aging or due to
external injuries, such as irradiation and inflammatory stress (12, 15,
16). One necessary aspect of the selection process, which is critical to
ensure that randomly generated TCRs are both able to properly
interact with self-MHC and not lead to autoimmunity, is the need to
eliminate a vast number of potentially useless or harmful cells on a
continuous basis. Due to the daily massive cell death during T cell
selection, thymic homeostasis needs to be strictly maintained by
other cell types. Thymic macrophages are immune cells that are
crucial for clearing apoptotic thymocytes in the thymus.
Remarkably, thymic macrophages only make up 0.1% of all cells
in the thymus (17). This suggests that they are highly efficient in
efferocytosis since there are over 50 million DPs generated in a
mouse thymus every day, a majority of which are likely destined for
cell death and need to be cleared by thymic macrophages (13).
These cells have also been shown to play a role in maintaining
thymus homeostasis and thymus repair after injuries (18). As for the
negative selection process, thymic DCs are also present in the
medulla and have been shown to play a pivotal role in T cell
selection alongside mTECs to curtail the generation self-reactive T
cells and promote central tolerance (19). In this review, we will focus
FIGURE 1 | Schematic depiction of T cell development in the thymus. Early thymic progenitors (ETP), arriving from the bone marrow, seed the thymus and receive
Notch signals from thymic epithelial cells (TECs) to differentiate into CD4-CD8- double negative (DN) T-lineage cells. DN cells that have undergone successful V(D)J
rearrangement at TCRb gene loci differentiate into CD4+CD8+ double positive (DP) cells. After completing TCRa rearrangements and successfully undergoing positive
selection, DPs migrate to the thymus medullary region and are subjected to negative selections while DPs that fail positive selection will be programmed for
apoptosis. Cells that successfully passed these checkpoints will exit the thymus as CD4 or CD8 single positive (SP) T cells.
April 2022 | Volume 13 | Article 885280
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on these two important cell types in the thymus, DCs and
macrophages, by examining their developmental origin,
localization, function, and recent advances on their role in T cell
selection and thymus repair post injury.
THYMIC DENDRITIC CELLS

DCs in the thymus make up 0.5% of thymus cellularity and are
mainly composed of three different groups: plasmacytoid DCs
(pDCs), CD8+SIRPa- (CD8+ DCs), and CD8-SIRPa+ (SIRPa+

DCs) (20). SIRPa+ DCs and pDCs are migratory DCs that
developed in the bone marrow and migrate from the periphery
to the thymus, while a small fraction of CD8+ DCs originate
intrathymically from a common T/DC progenitor, majority of
CD8+ DCs develop outside the thymus (21–26). Typically, mature
SIRPa+ DCs are located in the cortico-medullary perivascular
space, CD8+ DCs are located within the medulla, and pDCs are
located at the cortical-medullary junction (CMJ) (27–29). A recent
paper published by Sarah Teichman’s group using single-cell (sc)
RNA-sequencing (seq) of human thymus cells, allowed them to
identify a new subtype of DCs, which they named as activated DCs
(aDCs), due to their high expression in costimulatory molecules
(30). These aDCs could be further clustered into aDC1, aDC2, and
aDC3 subsets, where aDC1 and aDC2 expressed similar gene
profile as CD8+ DCs and SIRPa+ DCs, respectively. While the
aDC3 cluster expressed lower levels of co-stimulatory molecules
compared with other aDCs, suggesting that these are post-
activated aDCs. The distinct gene expression profiles from the
different aDCs subsets suggests they are derived from different
DCs population. This new aDC subtype is located at the center of
the medulla, and uniquely expresses LAMP3 and CCR7, which are
not found in other DC subtypes in the thymus. Their data also
showed that aDCs can recruit naïve and regulatory T cells (Treg)
into the thymus medullary through CCR7:CCL19 and CCR4:
CCL17/CCL22 interactions, respectively. Interestingly, some
aDCs also expressed AIRE, which validated other group’s
previous findings (31, 32). It has been proposed that AIRE can
regulate intercellular transfers of self-antigen from mTECs to
thymic DCs to promote thymic tolerance (32, 33). Combined
with their high costimulatory molecule expression and their
interaction with developing T cells, these aDCs may play a role
in T cell negative selection, however, functional analyses are
needed to further determine the exact role that aDCs may play
in T cell selection. Furthermore, whether these aDCs share a
common developmental origin as CD8+ DCs and SIRPa+ DCs, or
whether aDCs merely represent an activate stage of conventional
DCs in the thymus requires further elucidation.
THYMIC DENDRITIC CELLS ON T
CELL SELECTION

Thymic DCs are known to express high levels of class I and II
MHC molecules (34). It has been well established that thymic
Frontiers in Immunology | www.frontiersin.org 337
DCs play a role in central tolerance and clonal deletion during T
cell development (35). Particularly, SIRPa+ DCs have been
shown to transport antigens through blood and induce Treg
development in mice (36). Further validating this point,
Dominik Filipp’s group recently found a novel CD14+SIRPa+

monocyte DCs (moDCs) subset in the thymus that was
important for the generation of Tregs (37). While moDCs
expressed some genes overlapping with SIRPa+ DCs, they also
expressed high levels of monocyte associated genes (Mafb, Apoe,
and Csf2ra), which are absent in the SIRPa+ DC subset,
indicating that moDCs are likely a distinct population. Their
findings suggested that the TLR9/MyD88 pathway induced
mTECs to express chemokines that promoted the recruitment
of moDCs to the thymus. These moDCs could also acquire
antigens from mTECs. However, whether these or other DCs are
able to transfer self-antigens expressed by medullary fibroblast,
which were recently shown to express TRAs that contribute to
central tolerance was not addressed (38, 39). Of note,
MyD88DTEC mice that conditionally lacked MyD88 in mTECs,
there was a decrease in moDCs populations in the thymus,
leading the impaired generation of Tregs, and those Tregs that
were generated displayed reduced suppressive capacity. The
same group also found specific DCs subsets in the thymus
have a preference in antigen transfer from different TEC
subsets (40). Notably, moDCs were most efficient in antigen
transfer compared with all other thymic DC subsets, and moDCs
were able to acquire antigens from multiple mTECs. However,
the mechanism of how these cells acquire self-antigens for T cell
negative selection remained unclear.

Attempting to answer the above questions, Charles J Kroger
et al. illustrated how thymic DCs can acquire MHCmolecules from
TECs through intercellular transfer (41). By coculturing thymic
DCs from NOD mice and TECs from BALB/c mice that express
H2-Dd (an MHC class I antigen) and IEd (an MHC class II
antigen), the authors found thymic DCs, compared with splenic
DCs, had a higher efficiency in acquiring H2-Dd and IEd. The
capacity for MHC molecules uptake by thymus CD8+ DCs and
SIRPa+ DCs were similar. However, this intercellular transfer
ability was only found between thymic DCs and TECs, and not
with other APCs, such as B cells, when cocultured with thymic
DCs. Using qRT-PCR, the authors identified that this intercellular
antigen transfer process was correlated with the unique expression
of the epithelial marker EpCAM only in DCs found in the thymus.
Thymic DCs were previously thought to acquire EpCAM protein
from TECs, while this paper showed that both thymic CD8+ DCs
and SIRPa+ DCs can express EpCAM, while SIRPa+ DCs
expressed the highest level of EpCAM compared with all other
DC subtypes in the thymus (42). This intercellular transfer ability
in DCs is organ specific and is regulated differently between the
different subsets of DCs in the thymus. This was shown when the
authors blocked PI3K signaling and the transfer of MHC antigens
to CD8+ DCs was reduced, while transfer to SIRPa+ DCs was not
impacted. This work provided new insights on how thymic DCs
can specifically acquire antigens from neighboring TECs in the
thymus, and the mechanism for antigen transfer in thymus DCs
subtypes are regulated by different pathways. Further studies can be
April 2022 | Volume 13 | Article 885280
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done to determine the exact mechanism that regulates intercellular
antigen transfer between TECs and SIRPa+ DCs in the thymus
since these DCs are known to play a role in the generation of Tregs.

Because a majority of thymic DCs are periphery-derived that
migrate to the thymus, they also have the capacity to carry
antigens from the periphery to the thymus for T cell selection
(35). However, the specific molecules that each thymic DCs
subtype carries remains unclear. A recent paper from Ulrich von
Adrian’s group found a new population of DCs that expresses
CX3CR1 in both human and mice, which they named
transendothelial DCs (TE-DCs) (43). Using multi-photon
intravital microscopy, they found that these TE-DCs are
located between the microvessels and the thymus where they
can transport blood born proteins into the thymus and then use
it for T cell selection (Figure 2). They also reported that these
TE-DCs are a heterogeneous population of DCs, a majority of
which are composed of SIRPa+ DCs, followed by pDCs. Only a
Frontiers in Immunology | www.frontiersin.org 438
small fraction of TE-DCs was identified as CD8+ DCs. This
finding was supported by previous research that looked at the
origin of thymic DCs and showed that SIRPa+ DCs and pDCs
were migratory DCs from the periphery, while CD8+ DCs can be
intrathymically derived. This new antigen transport system by
CX3CR1 TE-DCs depends on its ligand CX3CL1, which is
expressed by thymus endothelial cells. Recent work by
Gretchen Diehl’s group also showed CX3CR1

+ DCs can
capture microbial antigens, present these antigens to
developing T cells, and induce microbial-specific T cell
expansion (44). Altogether, these findings introduced a new
model for T cell selection by thymic DCs where a specialized
subset of CX3CR1

+ DCs, located at microvessels, are actively
taking up blood born antigens and transporting them into the
thymus for T cell selection. However, whether these CX3CR1

+

DCs have distinct developmental origin and what signals are
responsible for the polarization of CX3CR1 DCs are still unclear.
FIGURE 2 | Localization of dendritic cell and macrophage subsets in the thymus. There are 6 subsets of dendritic cells (DCs) and 2 subsets of macrophage (MФ) in
the thymus. SIRPa+ DCs and pDCs are located closely to the cortical-medullary junction (CMJ), CD8+ DCs, activated DCs (aDCs), and CD14+SIRPa+ moDCs
(moDCs) are located within the medullary region, and transendothelial DCs (TE-DCs) are located between the microvessels in the thymus. Timd4+ macrophages are
located within the cortex and uniquely express Spic and Vcam1, while CX3CR1

+ macrophages are located at the CMJ expressing Runx3 and antigen presenting
genes, such as H2-Q7.
April 2022 | Volume 13 | Article 885280
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THYMIC DENDRITIC CELLS IN
POST INFECTION

It has been shown that the generation of mature T cells from the
thymus is attenuated during and post infections (45, 46). Since a
majority of thymic DCs come from the periphery, whether migratory
DCs play a role in thymus damage post infection was unclear. A
recent publication by HaojieWu et al. showed that mature DCs from
the circulation can enter the thymus and induce thymus involution
through the Notch signaling pathway (47). Upon activation by
antigens such as lipopolysaccharide and ovalbumin, DCs have been
shown to enhance Jagged1 expression (48, 49). Their work showed
that these activated DCs expressing Jagged1 can bind to Notch3-
expressing mTECs and this interaction through the Notch signaling
pathway induces apoptosis in mTECs. This in turn led to the
disruption in SP cell generation in the thymus. However, this
finding needs to be validated in disease models, such as post viral
infections. Nonetheless, this work provided a new perspective on
thymic atrophy upon infection by activated DCs, suggesting that DCs
in the thymus may play a deleterious role during an infection, which
as previously thought that this may be critical to prevent the thymus
from inducing self-tolerance against virally encoded antigens. It
would also be interesting to test whether blocking DCs infiltration
into the thymus post infection could prevent thymic atrophy.
THYMIC MACROPHAGES

During T cell development, cells that do not pass positive or
negative selection undergo apoptosis (50). It is estimated that over
95% of cells undergo apoptosis in the thymus every day (50, 51).
However, when isolating cells from the thymus of healthy adult
mice, one typically finds that nearly all the thymocytes are live cells,
suggesting that apoptotic cells within the thymus are actively and
effectively cleared (52, 53). The clearing of apoptotic cells is done by
intrathymic macrophages (9, 30, 50, 54–56). For many years,
macrophages in the thymus have not been well characterized nor
understood, due to technical limitations in analyzing these cells and
performing functional studies. There are only a few well known
macrophage markers that have been found to be expressed on
thymic macrophages (ED1 and ED2 in rats, CD68, F4/80 and
CD11b in mice) making it difficult to study the origin of these
thymic macrophages and identify their heterogeneity in the thymus
(57–60). With the advent of scRNA-seq technology, characterizing
small cell populations, and performing ontogeny analysis on
thymic macrophages have become possible.

A recent publication by Tyng-An Zhou et al. identified two
macrophage subsets (Timd4+ and CX3CR1

+) in the thymus of
adult mice using scRNA-seq (Figure 2). Both populations of
thymic macrophages were found to developed during embryonic
life, and the authors found Timd4+ thymic macrophages were
derived from CX3CR1

+ cells during embryogenesis. The two
different subsets of thymic macrophages showed distinct gene
expression profiles, where Timd4+ thymic macrophages expressed
high levels of SpiC, MafB, and Vcam1, which showed high
similarity with the transcriptomic landscape of spleen red pulp
Frontiers in Immunology | www.frontiersin.org 539
macrophages (61, 62). While CX3CR1
+ thymic macrophages had

high expression of Runx3 (which is important for cytotoxic CD8+

T cell development), and genes involved in antigen presentation
(B2m, H2-M2, H2-K1, and H2-Q7) (63–66). These two tissue
resident macrophage subsets found in the thymus agreed with
recent findings by Slava Epelman’s group, in which they showed
Timd4+ and CX3CR1

+ tissue resident macrophages were found
across many organs (heart, liver, lung, kidney, and brain) in
mice (67).

The distinct gene profile for these two subsets of thymic
macrophages suggested they may have different functions within
the thymus. Using immunofluorescence to examine thymic
histological sections, Zhou et al. found that Timd4+

macrophages are found mainly in the cortex, while CX3CR1
+

macrophages are localized in the CMJ. In combination with their
transcriptomic profile, this suggests that Timd4+ thymic
macrophages are the main cells performing efferocytosis of
apoptotic thymocytes. Their findings were also supported by
Catherine C. Hedrick’s group who demonstrated that Timd4+F4/
80+ thymic macrophages have the highest phagocytic efficiency
compared with other macrophage subsets, and that the depletion
of these macrophages accelerated thymic involution, suggesting
an important role in thymic homeostasis (68).

Conversely, CX3CR1
+ thymic macrophages may play a role in

T cell negative selection. This is supported by their location at the
CMJ, which is where negative selection initiates, as positively
selected thymocytes migrate into the medulla. Combined with
their gene expression profile and migratory ability, these thymic
macrophages may have the potential to carry self-antigen through
blood vessels and present them to developing T cells for negative
selection and tolerance induction. However, further studies need
to be performed to validate their potential functions in vivo (69).
THYMIC MACROPHAGE IN T
CELL SELECTION

As the findings from Zhou et al. suggest, thymic macrophages may
play a role in T cell selection by their antigen presenting ability.
Other groups have shown Timd4+ cells in the thymus can also
present MHC-I peptides and induce negative selection of CD8+ T
cells (70, 71). However, as these authors mentioned, Timd4 can also
be expressed on thymic DCs, thus it is difficult to distinguish whether
Timd4+ thymic macrophage are the true players for culling self-
reactive CD8+ T cells and whether they play a defining role in
presenting antigens to developing T cells during negative selection.
These data contrast the scRNA-seq results presented by Zhou’s
group, where CX3CR1

+ thymic macrophages by their location and
gene expression profile were suggested to have a higher probability in
presenting self-antigens for negative selection.

Vijay K. Kuchroo’s group generated a Timd4-/- mice, and found
that Timd4-deficient mice had hyperactive T and B cells, as well as
displaying an impairment in efferocytosis by peritoneal
macrophages (70). However, the absolute cell number of
thymocytes in Timd4 deficient mice did not differ from control
wild-type mice, which contrasts other group’s findings, where the
April 2022 | Volume 13 | Article 885280

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang and Zúñiga-Pflücker Intrathymic Myeloid Cells Serve and Clean-up
depletion of thymic macrophage led to an acceleration of thymic
involution, and hence decreasing the size of the thymus (68, 71).
This could be attributed by the compensation from other
phagocytes in the thymus of Timd4-/- mice to maintain thymus
homeostasis. This was evidenced in other organs where depletion of
a specific subset of tissue resident macrophages led to empty niches
in the organ where infiltrating monocytes or other tissue resident
macrophages quickly occupied these niches and performed
functions similar to the original tissue resident macrophage
(72–74). Thus, whether thymic macrophages play a role in T cell
selection remains to be elucidated.
THYMIC MACROPHAGE DURING
THYMUS INJURY

In addition to efferocytosis, phagocytosis and antigen presentation,
tissue resident macrophages have been shown to play a crucial role in
tissue repair across many organs (75–77). After tissue injury, tissue
residentmacrophages can secrete cytokines (IL-10 and TGFb), growth
factors (FGF, TGFa, and PDGF), and exosomes to promote cell
differentiation and suppress inflammation (78). Depletion of tissue
resident macrophages in the heart and liver were shown to impair
organ healing (67, 76, 79–81). However, whether thymic macrophages
can play a similar role in thymus repair is still unclear.

One clinically relevant source of injury to the thymus is
irradiation, a process that some cancer patients are subjected to as
part of their treatment (82, 83). The rate of recovery is crucial as the
thymus is integral for generating T cells that form an immune
response. Several groups have sought new approaches to improve
thymic recovery post irradiation treatment (84–86). A recent
publication by Gen Yamada’s group used a MafB/green
fluorescent protein knock-in (MafB+/GFP) mouse to demonstrated
that MafB expressing cells in the thymus play a crucial role in
thymus repair after irradiation. When comparing thymus recovery
post irradiation betweenMafB+/+ andMafB+/GFP, the authors found
that there was a decrease in immature TECs (Krt5+FoxN1+)
generated in the MafB+/GFP thymus. The organization of the
medulla was also found to be abnormal post-irradiation injury,
where mTECs in the MafB+/GFP thymus formed only one
prominent medullary compartment, while MafB+/+ maintained
multiple medullary compartments after recovery. Since MafB is a
commonmarker used to identify macrophage populations, it stands
to reason that a majority of the cells expressingMafB in the thymus
are likely macrophages (17, 18, 87). This new finding showed that
thymic macrophages may play a role in thymus repair, potentially
by engulfing apoptotic cells and controlling inflammation in the
thymus. These results also suggested that post thymic injury,
Frontiers in Immunology | www.frontiersin.org 640
macrophages are important for the repair of the thymus
architecture and supporting the regeneration of thymic
endothelial cells. However, exactly which of the two thymic
macrophage populations is playing a role in thymus repair after
injury remains unclear. Further studies are needed to assess the role
of the two thymic macrophage subsets, Timd4+ and CX3CR1

+, in
clinically relevant injury models.
CONCLUSION

The thymus is a sophisticated organ that is important for
generating T cells, which play a critical role in immune
function. As a result, severe consequences can arise if thymic
homeostasis is not properly regulated. This therefore demands
the need to have a thorough understanding of the thymus
environment that induces and support T cell development.
Although the T cell selection process by TECs has been well
studied, whether thymic DCs and macrophages are important
players in T cell development, selection and thymus homeostasis
remain to be further elucidated. With scRNA-seq technology,
several groups have been able to identify new populations of DCs
in the thymus (aDCs, TE-DCs, and CX3CR1

+ DCs), each of
which appears to serve distinct functions. Macrophage
heterogeneity in the thymus was also elucidated using this
technology, and we can now appreciate that there are two
macrophage populations in the thymus, Timd4+ and CX3CR1

+.
However, there are still many questions remaining, such as
which thymic macrophage subset plays a role in thymus
repair? Do thymic macrophages play a role in the negative
selection of T cells, if so, which subset? By addressing these
questions, we can pave the way to promoting new clinical
therapies for the repairing of the thymus post injuries.
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Neglect: Contribution of Engulfing Macrophages. Eur J Immunol (2012) 42
(7):1662–7. doi: 10.1002/eji.201142338

10. Huesmann M, Scott B, Kisielow P, von Boehmer H. Kinetics and Efficacy of
Positive Selection in the Thymus of Normal and T Cell Receptor Transgenic
Mice. Cell (1991) 66(3):533–40. doi: 10.1016/0092-8674(81)90016-7

11. Perniola R. Twenty Years of AIRE. Front Immunol (2018) 9. doi: 10.3389/
fimmu.2018.00098

12. Palmer D. The Effect of Age on Thymic Function. Front Immunol (2013) 4.
doi: 10.3389/fimmu.2013.00316

13. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and Negative Selection
of the T Cell Repertoire: What Thymocytes See (and Don't See). Nat Rev
Immunol (2014) 14(6):377–91. doi: 10.1038/nri3667

14. Palmer E. Negative Selection–Clearing Out the Bad Apples From the T-Cell
Repertoire. Nat Rev Immunol (2003) 3(5):383–91. doi: 10.1038/nri1085

15. Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP. The Role of the
Thymus in Immune Reconstitution in Aging, Bone Marrow Transplantation,
and HIV-1 Infection. Annu Rev Immunol (2000) 18:529–60. doi: 10.1146/
annurev.immunol.18.1.529

16. Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front
Immunol (2021) 12:652538. doi: 10.3389/fimmu.2021.652538

17. Zhou T-A, Hsu H-P, Tu Y-H, Lin C-Y, Chen N-J, Tsai J-W, et al. Thymic
Macrophages Consist of Two Populations With Distinct Localization and
Origin. bioRxiv (2021), 2021.11.04.467238. doi: 10.1101/2021.11.04.467238

18. Hashimoto D, Colet JGR, Murashima A, Fujimoto K, Ueda Y, Suzuki K, et al.
Radiation Inducible MafB Gene Is Required for Thymic Regeneration. Sci Rep
(2021) 11(1):10439–. doi: 10.1038/s41598-021-89836-7

19. Guerri L, Peguillet I, Geraldo Y, Nabti S, Premel V, Lantz O. Analysis of APC
Types Involved in CD4 Tolerance and Regulatory T Cell Generation Using
Reaggregated Thymic Organ Cultures. J Immunol (2013) 190(5):2102–10. doi:
10.4049/jimmunol.1202883

20. Wu L, Shortman K. Heterogeneity of Thymic Dendritic Cells. Semin Immunol
(2005) 17(4):304–12. doi: 10.1016/j.smim.2005.05.001

21. Wu L, Vremec D, Ardavin C, Winkel K, Suss G, Georgiou H, et al. Mouse
Thymus Dendritic Cells: Kinetics of Development and Changes in Surface
Markers During Maturation. Eur J Immunol (1995) 25(2):418–25. doi:
10.1002/eji.1830250217

22. Li J, Park J, Foss D, Goldschneider I. Thymus-Homing Peripheral Dendritic
Cells Constitute Two of the Three Major Subsets of Dendritic Cells in the
Steady-State Thymus. J Exp Med (2009) 206(3):607–22. doi: 10.1084/
jem.20082232

23. Bell JJ, Bhandoola A. The Earliest Thymic Progenitors for T Cells Possess
Myeloid Lineage Potential. Nature (2008) 452(7188):764–7. doi: 10.1038/
nature06840

24. Schlenner SM, Madan V, Busch K, Tietz A, Laufle C, Costa C, et al. Fate
Mapping Reveals Separate Origins of T Cells and Myeloid Lineages in the
Thymus. Immunity (2010) 32(3):426–36. doi: 10.1016/j.immuni.2010.03.005

25. Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y, et al. Adult T-
Cell Progenitors Retain Myeloid Potential. Nature (2008) 452(7188):768–72.
doi: 10.1038/nature06839

26. De Obaldia ME, Bell JJ, Bhandoola A. Early T-Cell Progenitors Are the Major
Granulocyte Precursors in the Adult Mouse Thymus. Blood (2013) 121(1):64–
71. doi: 10.1182/blood-2012-08-451773

27. Baba T, Nakamoto Y, Mukaida N. Crucial Contribution of Thymic Sirp Alpha
+ Conventional Dendritic Cells to Central Tolerance Against Blood-Borne
Frontiers in Immunology | www.frontiersin.org 741
Antigens in a CCR2-Dependent Manner. J Immunol (2009) 183(5):3053–63.
doi: 10.4049/jimmunol.0900438

28. Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Jeker LT, et al. Aire-
Dependent Production of XCL1 Mediates Medullary Accumulation of
Thymic Dendritic Cells and Contributes to Regulatory T Cell Development.
J Exp Med (2011) 208(2):383–94. doi: 10.1084/jem.20102327

29. Hadeiba H, Lahl K, Edalati A, Oderup C, Habtezion A, Pachynski R, et al.
Plasmacytoid Dendritic Cells Transport Peripheral Antigens to the Thymus to
Promote Central Tolerance. Immunity (2012) 36(3):438–50. doi: 10.1016/
j.immuni.2012.01.017

30. Park JE, Botting RA, Dominguez Conde C, Popescu DM, Lavaert M, Kunz DJ,
et al. A Cell Atlas of Human Thymic Development Defines T Cell Repertoire
Formation. Science (2020) 367(6480):101–17. doi: 10.1101/2020.01.28.911115

31. Fergusson JR, Morgan MD, Bruchard M, Huitema L, Heesters BA, van Unen
V, et al. Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express
AIRE in the Absence of Tissue Restricted Antigens. Front Immunol (2018)
9:2902. doi: 10.3389/fimmu.2018.02902

32. Hubert FX, Kinkel SA, Webster KE, Cannon P, Crewther PE, Proeitto AI, et al.
A Specific Anti-Aire Antibody Reveals Aire Expression Is Restricted to
Medullary Thymic Epithelial Cells and Not Expressed in Periphery.
J Immunol (2008) 180(6):3824–32. doi: 10.4049/jimmunol.180.6.3824

33. Hubert FX, Kinkel SA, Davey GM, Phipson B, Mueller SN, Liston A, et al. Aire
Regulates the Transfer of Antigen From mTECs to Dendritic Cells for
Induction of Thymic Tolerance. Blood (2011) 118(9):2462–72. doi: 10.1182/
blood-2010-06-286393

34. Ardavin C, Shortman K. Cell Surface Marker Analysis of Mouse Thymic
Dendritic Cells. Eur J Immunol (1992) 22(3):859–62. doi: 10.1002/
eji.1830220334

35. Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, von Andrian
UH. Clonal Deletion of Thymocytes by Circulating Dendritic Cells Homing to
the Thymus. Nat Immunol (2006) 7(10):1092–100. doi: 10.1038/ni1385

36. Proietto AI, van Dommelen S, Zhou P, Rizzitelli A, D'Amico A, Steptoe RJ,
et al. Dendritic Cells in the Thymus Contribute to T-Regulatory Cell
Induction. Proc Natl Acad Sci USA (2008) 105(50):19869–74. doi: 10.1073/
pnas.0810268105

37. Voboril M, Brabec T, Dobes J, Splichalova I, Brezina J, Cepkova A, et al. Toll-
Like Receptor Signaling in Thymic Epithelium Controls Monocyte-Derived
Dendritic Cell Recruitment and Treg Generation. Nat Commun (2020) 11
(1):2361. doi: 10.1038/s41467-020-16081-3

38. Nitta T, Tsutsumi M, Nitta S, Muro R, Suzuki EC, Nakano K, et al. Fibroblasts
as a Source of Self-Antigens for Central Immune Tolerance. Nat Immunol
(2020) 21(10):1172–80. doi: 10.1038/s41590-020-0756-8

39. Nitta T , Takayanagi H. Non-Epithelial Thymic Stromal Cells: Unsung Heroes
in Thymus Organogenesis and T Cell Development. Front Immunol (2020)
11:620894. doi: 10.3389/fimmu.2020.620894
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MHC-independent abT cells:
Lessons learned about thymic
selection and MHC-restriction

François Van Laethem1,2*, Abhisek Bhattacharya1,
Marco Craveiro1, Jinghua Lu3, Peter D. Sun3 and Alfred Singer1

1Lymphocyte Development Section, Experimental Immunology Branch, National Cancer Institute,
National Institutes of Health, Bethesda, MD, United States, 2Department of Biological Hematology,
Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France, 3Structural Immunology
Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Rockville, MD, United States
Understanding the generation of an MHC-restricted T cell repertoire is the

cornerstone of modern T cell immunology. The unique ability of abT cells to

only recognize peptide antigens presented by MHC molecules but not

conformational antigens is referred to as MHC restriction. How MHC

restriction is imposed on a very large T cell receptor (TCR) repertoire is still

heavily debated. We recently proposed the selection model, which posits that

newly re-arranged TCRs can structurally recognize a wide variety of antigens,

ranging from peptides presented by MHC molecules to native proteins like cell

surface markers. However, on a molecular level, the sequestration of the

essential tyrosine kinase Lck by the coreceptors CD4 and CD8 allows only

MHC-restricted TCRs to signal. In the absence of Lck sequestration, MHC-

independent TCRs can signal and instruct the generation of mature abT cells

that can recognize native protein ligands. The selection model thus explains

how only MHC-restricted TCRs can signal and survive thymic selection. In this

review, we will discuss the genetic evidence that led to our selectionmodel. We

will summarize the selection mechanism and structural properties of MHC-

independent TCRs and further discuss the various non-MHC ligands we

have identified.

KEYWORDS

thymic selection, MHC restriction, T cell receptor, tyrosine kinases, Lck, coreceptors,
T cell repertoire
Introduction

Adaptive immunity depends on the ability of T lymphocytes to recognize foreign

antigens. The last three decades have brought tremendous insight into the antigen

recognition properties of abT cells. Experiments performed by Zinkernagel and Doherty
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more than forty years ago documented the ability of abT cells

from lymphocytic choriomeningitis virus (LCMV)-infected

mice to kill in vitro LCMV-infected target cells only if the T

cells and the target cells shared at least one H-2 antigen (1–3).

Their observations and interpretation led them to their 1996

Nobel Prize award for discovering major histocompatibility

complex (MHC) restricted antigen recognition, now a well-

established T cell immunology hallmark (4, 5). The

simultaneous recognition of antigenic peptides with self-MHC

molecules highlights a unique receptor-ligand interaction that is

unparalleled in biology. A fragile balance in this unusual

interplay is required to control T cell immunity, providing

effective protection from infection while avoiding T cell

mediated autoimmunity.

Both T and B lymphocytes use the same gene reco0mbination

machinery to create their antigen receptor diversity, but those

receptors recognize their ligands in fundamentally different ways

(6). Antibodies generated by B cells recognize a wide array of three-

dimensional epitopes on native antigenic proteins or glycolipids (7).

Somatic recombination of the TCR loci generates tremendous

diversity, but abTCRs focus only on foreign and self-peptides

presented by self MHC molecules (8). Thymocytes rearrange

genomic regions on both TCRa and TCRb loci, generating in the

process diverse de novo segments called complementarity

determining regions 3 (CDR3) that are responsible for peptide

recognition (9, 10), with diversity being further enhanced by

random addition and deletion of nucleotides. The other two

regions, CDR1 and CDR2, are germline-encoded and carry limited

diversity which is encoded in the variable domains of both a and b
TCR chains (11).

On the other side of the equation, MHC proteins present

peptides to T cells to discriminate between self and non-self.

Immune evasion by pathogens is rendered more difficult by two

major characteristics of the MHC loci. First, the MHC is

polygenic and contains several different MHC-I and MHC-II

genes so that each individual possesses a set of MHC molecules

with different ranges of peptide-binding specificities. Second, the

MHC genes show the greatest degree of polymorphism in the

human genome (12). Multiple variants of the same gene exist

within the population as a whole and therefore the extent of

peptides presented to T cells is virtually unlimited. This

heterogeneity of MHC alleles at the individual and population

levels provides the immune system a robust mechanism to

counteract pathogens evading MHC presentation and T

cell responses.

During T cell development in the thymus, positive and

negative selection allow immature thymocytes to be screened

for ligand specificity. To survive selection and undergo

differentiation, thymocytes must express TCRs that engage

intra-thymic ligands and successfully generate intracellular

signals. This process is crucial for thymic selection, as the vast

majority of T cell precursors bear “useless” TCRs that are
Frontiers in Immunology 02
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incapable of producing signals and therefore undergo death

by neglect.

A few years ago, we proposed the selection model to describe

the molecular basis of MHC restriction (13). In the selection model,

nothing intrinsic to the TCR structure imposes MHC restriction on

the randomly generated abT cell repertoire (Figure 1). Like

antibodies generated by the same recombination machinery, the

pre-selection abTCR repertoire can recognize a wide variety of

antigens, including MHC and non-MHC ligands but only MHC-

restricted abTCRs can signal in the thymus. The TCR itself does

not possess intrinsic signaling capabilities but requires the co-

engagement of coreceptors to initiate signaling. TCR ligation

leads to the tyrosine phosphorylation within immunoreceptor

tyrosine-based activation motifs (ITAMs) on all TCR-associated

CD3 chains (14). This phosphorylation is carried out by the tyrosine

kinases of the Src family of kinases, i.e. Lck and Fyn. Subsequently,

another tyrosine kinase, ZAP-70, is recruited to the TCR/CD3

complex, where it binds the phosphorylated ITAMs and can now be

phosphorylated and activated by Lck. The adaptor proteins LAT

and SLP-76 are then phosphorylated by active ZAP-70 and recruit

mediators to propagate downstream signaling pathways.

Additionally, signaling initiation is strictly dependent on

coreceptor binding to its specific MHC.

Thus, the fact that coreceptors only recognize MHC ligands

invokes the hypothesis that MHC restriction is directly imposed by

the TCR signaling requirements for thymic selection (Figure 1).

After recalling fundamental aspects of early TCR signaling,

we will review experimental evidence in favor of the selection

model of MHC restriction.
LCK and TCR signaling

Lck is a member of the Src family of protein tyrosine kinases

first identified in the 1980s and plays a crucial role in initiating

the TCR signaling cascade (15, 16). Lck is critically important

during T cell development and T cell activation. Germline Lck-

deficient mice or immune-deficient patients with Lck mutations

show profound T cell developmental defects (17, 18). The

function of Lck and its conformational state are regulated by

several tyrosine kinases and phosphatases acting on its

phosphorylation status (19, 20). The phosphorylation of the

activating tyrosine (Y394) in the catalytic domain results in an

open conformation of Lck and therefore induces its kinase

activity, whereas the phosphorylation of tyrosine (Y505) at the

C-terminal domain is thought to induce a closed conformation

and therefore inhibits Lck activity (21). Collectively, the activity

of Lck is tightly regulated by a great number of biochemical

modifications, conformational changes and signaling circuits.

These complicated regulatory mechanisms highlight the

importance of Lck in the initiation of the proximal signaling

events downstream of the TCR and consequently, T cell
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responses. It is therefore not surprising that the absence of Lck in

both humans and murine models results in significant defects in

immune functions whereas deregulation of Lck activity is often

associated with cellular transformation. All these observations

further emphasize the crucial role played by this kinase.
LCK and coreceptors

Lck binds to the coreceptors CD4 and CD8 via a cytoplasmic

“zinc clasp” formed by the double cysteine motif found in the

coreceptor tails and the cysteines in Lck’s SH4 domain (22). The

association of Lck with coreceptors is essential for coreceptor

function as transgenic T cells or T cell hybridomas with

truncated coreceptor tails, lacking the Lck binding domain,

have diminished responses in vitro (23–31). How much Lck is

physically bound to coreceptors is still debated and likely

depends on the type of T cell studied (immature vs. mature,
Frontiers in Immunology 03
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for example). Early studies using co-immunoprecipitation assays

showed a significant fraction of cytoplasmic Lck bound to

coreceptors (32, 33). However, more recent experiments

showed much lower Lck to coreceptor occupancy, notably

between 6 and 37% for CD4-Lck interactions in CD4+ single-

positive (SP) cells (34, 35). Even lower occupancy values were

found for CD8 SP cells and double-positive (DP) thymocytes.

Targeting of Lck to membranes (plasma, vesicles, Golgi or ER

membranes) is mediated by myristylation and palmitoylation

modifications and preventing these modifications drastically

impairs membrane targeting and TCR signaling (36).

Consequently, an unknown amount of Lck is associated with

plasma membranes versus internal membranes that do not

contain coreceptors and these would appear in anti-coreceptor

immunoprecipitates as “coreceptor-free’ Lck. As a result,

immunoprecipitation experiments invariably under-estimate

the true fraction of coreceptor-associated Lck in plasma

membranes. Even so, the majority of Lck in immature double
FIGURE 1

Selection model and MHC-independent abT cell selection. In immature DP thymocytes, the protein kinase Lck is sequestered by the CD4 and
CD8 coreceptors. In the presence of coreceptors (right side of panel), MHC-independent abTCRs cannot receive any Lck-mediated signaling
and therefore cannot be selected. In the absence of coreceptors (left side of the panel), MHC-independent abTCRs have access to Lck
(coreceptor-free and TCR-associated) and can be signaled and selected. Lck sequestration by CD4 and CD8 coreceptors ensures that only
MHC-specific abTCRs can be signaled and selected.
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positive thymocytes is coreceptor-bound and that genetic

knockdown of one the coreceptors leads to a dramatic increase

in Lck associated with the remaining coreceptor (37). More

precise biochemical or imaging techniques will be needed to

settle the substantial discrepancies in Lck-coreceptor occupancy.
Selection model

The selection model proposes that the delivery of Lck by the

coreceptors during thymic development is the critical factor in

imposing MHC restriction. Coreceptors play two fundamental

roles; first, their specificity for invariant regions on MHC

molecules allows tethering of the TCR to MHC, and second,

their association with Lck allows the delivery of this kinase to the

TCR-pMHC complexes to initiate signal transduction. Because

all available Lck is bound to coreceptors in immature

thymocytes, TCRs can only be signaled if they engage the

same pMHC complexes as the coreceptors (CD4 for pMHCII-

TCR complexes and CD8 for pMHCI-TCR complexes). TCRs

that are specific for non-MHC ligands would not be signaled

because Lck would not be recruited. Our model emphasizes that

the sequestration of Lck away from the TCRs by the coreceptors

ensures that only MHC-restricted TCRs can signal and be

selected in the thymus (Figure 1).
In vivo evidence of the selection
model

To test the selection model, we generated several genetically

manipulated mice. By disabling coreceptor-mediated Lck

sequestration through germline deletion of both CD4 and CD8

coreceptors or by transgenic expression of a mutant Lck that cannot

bind to coreceptors, we tested the hypothesis that non-MHC

specific TCRs could signal in the thymus by “free” Lck and be

positively selected to generate matureMHC-independent abT cells.

We called such mice Quad-KO mice since they are deficient for

both CD4 and CD8 coreceptors and also lack MHC class I and II

expression (38). Thymocytes in these mice were strongly signaled in

vivo as shown by very high-level surface CD5 expression.

Importantly we confirmed that MHC-independent signaling in

vivo required the expression of abTCR and Lck proteins as

thymocytes deficient in TCRa, RAG2, pTa (unpublished data)

and Lck showed reduced or absent CD5 upregulation (39).

Furthermore, by forcing or preventing Lck sequestration through

transgenic expression of wildtype or tailless CD4 proteins that

encode either full-length CD4 or CD4 lacking the cytosolic tail, we

confirmed that Lck sequestration significantly impairs TCR

signaling in the absence of MHC (39). Importantly, deleting both

coreceptors allowed the generation of mature abT cells that were

non-MHC specific (38). Notably, these TCRs had antibody-like
Frontiers in Immunology 04
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properties in that they recognized conformational antigens with

high affinity and in the absence of any antigen processing (40).

We have characterized in detail various MHC-independent

abTCRs isolated from Quad-KO mice. In our original studies, two

of the Quad-KO TCRs recognized CD155, the mouse homolog of

the poliovirus receptor, in its unprocessed form, independently of

MHC and with affinities close to 200nM (40). These affinities are

approximately 10- to 100-fold higher than conventional

micromolar affinities of MHC-restricted TCRs (41, 42). As one of

the TCRs we isolated used the same Vb8 gene segments that

contain germline-encoded residues and have been shown to contact

MHC in crystal structures (43), we tested if the same residues were

involved in non-MHC specific signaling and in vivo selection (39,

40). We found that the same germline-encoded CDR2 residues

were also required for the thymic selection of the CD155-specific

MHC-independent abTCRs (39). These residues within the

antigen-binding pocket are likely involved in contacting any

protein, including, in this case, CD155. This result argues strongly

against the model that these evolutionary conserved germline CDR

residues enforce MHC binding (9, 44).
Selection of MHC-independent
abTCRS

Our in vivo experiments showed that thymic signaling by

CD155-specific abTCRs occurred in the absence of any MHC

and coreceptors, demonstrating the presence of abTCRs that do
not require MHC for their selection. Surprisingly, both CD155-

specific TCRs absolutely required the presence of intra-thymic

CD155 to signal thymic positive selection (39). These

observations sharply contrast with conventional MHC-

restricted abTCRs, which require very low affinity ligand

engagements for positive selection and for which very few

selecting ligands have been identified (45–48). Our studies

were the first to show a loss of function for a positively

selecting ligand for any given TCRs that induce positive

selection (39). Interestingly, using a series of mixed bone-

marrow chimaeras, we demonstrated that the selection of

mature CD155-specific abT cells was achieved by all thymic

elements (radio-resistant and radio-sensitive cells) and

correlated with the amount of CD155 expressed (39). Ligands

expressed on lymphoid elements in the thymus have been shown

to select innate-like T cells, cells that can be characterized by the

expression of the transcription factors PLZF for NKT cells or

Sox13 for gd-lineage T cells (49–51). None of our CD155-

selected T cells expressed either PLZF or Sox13, confirming

that CD155-specific peripheral T cells were neither innate-like

NKT cells nor gd-lineage T cells (39). As a matter of fact,

thymocyte differentiation and lineage specification occurred

normally in Quad-KO mice, as evidenced by CD4 reporter or

TCR transgenic mice in which CD4 and CD8 abT cells
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expressed the appropriate helper- and cytotoxic-lineage genes

(38, 39). In our Quad-KO TCR transgenic mice, transgenic TCR

expression occurs early at the DN stage and could have led to

aberrant gdT cell differentiation. However, neither transgenic

thymocytes nor peripheral Quad-KO abT cells expressed

specific gdT-lineage genes. Moreover, premature expression of

a wildtype CD4 transgene, enabling CD4-mediated Lck

sequestration at the DN stage, dramatically impaired positive

selection (39). In summary, MHC-independent abTCRs require
in vivo expression of their cognate ligand for thymic selection,

and they can be selected in vivo in the absence of coreceptors and

MHC. This contrasts sharply with conventional MHC-restricted

TCRs for which no defined in vivo ligands have been described

to date and that MHC-restricted TCRs require coreceptor and

MHC molecules for their selection.
Diversity of MHC-independent
abTCRS

It was surprising that our first described MHC-independent

abTCRs were all specific for the same adhesion molecule CD155

and that both engaged CD155 with such high affinity. We therefore

decided to test if CD155 was the only ligand for MHC-independent

TCRs and if high affinity ligand engagement were a general feature

of MHC-independent TCRs (52). Our first observation showed that

Quad-KO mice that also lacked CD155 had the same number of

peripheral MHC-independent abT cells as did CD155-sufficient

Quad-KO control mice, demonstrating that, in vivo, CD155 was not

the sole thymic selecting ligand. We isolated and fully characterized

additional Quad-KO TCRs that displayed high-affinity recognition

of cell surface antigens CD155, CD102, and CD48. These native

self-proteins normally function as low-affinity cell adhesion

molecules. Like CD155 recognition, these newly isolated Quad-

KO abTCRs bind to and can be signaled by native unprocessed

CD102 and CD48 in the absence of MHC (52). We used T-cell

specific transgenic expression for one of those TCRs (specific to

mouse CD102) and showed that this TCR signaled in vivo selection

in the absence of coreceptors and MHC. Importantly, like the

previously described CD155-specific TCRs, thymic positive

selection required the expression of the native self-ligand CD102

(52). It was surprising to find that all the ligands identified for our

MHC-independent TCRs were involved in cell adhesion. One

reason could be that adhesion proteins are generally highly

expressed on thymic cells (thymocytes and epithelial cells),

increasing the likelihood of productive selecting signals (53, 54).

Moreover, we have previously observed that some molecules

including adhesion molecules like CD155 are downregulated

during T-hybridoma fusions (unpublished data). Downregulation

of these molecules impairs the fratricide of T-hybridomas

expressing TCRs with those ligand specificities and allows their

recovery during T-hybridoma fusions.
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Other naturally occurring MHC-independent TCRs have

been described over the years. These abTCRs were also obtained
from mature T cells but showed lower affinities (55–59). Because

of their low affinity, it has been argued that their non-MHC

ligands might not be their primary specificities (9). However,

these TCRs were obtained from mature abT cells that had

undergone MHC-specific thymic selection and may cross-react

incidentally with MHC-independent ligands. In Quad-KO mice,

MHC-independent TCRs were signaled and selected by self-

ligands with much higher affinity than those observed by

conventional MHC-restricted TCRs.

The presence of high-affinity self-reactiveabTCRs in Quad-KO
mice raises the possibility that signaling with free Lck prevents

efficient clonal deletion. However, the reactivity of Quad-KO T cells

selected in the presence or absence of the anti-apoptotic transgenic

Bcl-2 (Bcl-2Tg) that is known to rescue deletion was identical to self

and allogenic spleen stimulator cells. Irrespective of the transgenic

Bcl-2Tg expression, Quad-KO abT cells were self-reactive as they

proliferated in the presence of syngeneic (own Quad-KO)

stimulator cells as well as against third party C57BL/6 and B10.A

or BALB/c allogeneic splenic stimulator cells (52). We think that

signaling by free Lck in the absence of coreceptor sequestration is

inefficient in transducing high-affinity TCR signals to efficiently

delete autoreactive thymocytes and prevent their emergence in the

peripheral organs.
Repertoire analysis of quad-KO T
mice

Positive selection in the absence of MHC requires high-affinity

TCR-ligand engagement, which could strongly affect the self-

reactivity and diversity of the mature abTCR repertoire. To test

this hypothesis and learn what molecular constraints distinguish

MHC-independent and MHC-restricted repertoire selection, TCR

repertoire sequences in pre-selection thymocytes, mature MHC-

restricted abT cells, and MHC-independent abT cells from Quad-

KO mice were compared (60). Interestingly, we found that

molecular constraints are imposed on hypervariable CDR3

segments during thymic selection of conventional MHC-selected

repertoires. The length and amino acid composition of CDR3

segments were the primary parameters distinguishing both MHC-

restricted and MHC-independent TCR repertoires (60). CDR3

lengths are known to vary greatly among abTCRs, gdTCRs cells
and immunoglobulins (61). Indeed, whereas CDR3s of both IgH

and TCRd are more variable in size and are longer than those in IgL

and TCRg chains, TCRa and TCRb have almost identical CDR3

length, which is usually shorter than that of gdTCR and

immunoglobulins. Interestingly, these differences are in

accordance with their profoundly different recognition properties

and requirements, both gdTCR and immunoglobulins functioning

independently of MHC-and are, therefore, not constrained by the
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size of theMHC peptide binding groove. The conserved structure of

peptide-MHC complexes limits the length of CDR3 on TCRs to

favor shorter CDR3s, usually 8-13 amino-acids. TCRs with longer

CDR3 structurally impair the contacts of their CDR1 and CDR2

withMHC. The position of the CDR3a and CDR3b at the center of
the TCR-MHC contact interface requires the movement of the

exterior CDR1 and CDR2 regions to accommodate longer CDR3s.

In addition to peripheral MHC-independent TCRs, preselection

thymocytes from normal MHC-expressing mice also contained

TCRs with longer CDR3s, suggesting that MHC-dependent

selection prevents the selection of TCRs with long CDR3s (60).

Longer CDR3 could either signal MHC-specific clonal deletion or

might fail to produce any MHC-specific signal and induce death by

neglect. In fact, preventing clonal deletion in the thymus by

introducing a Bcl-2 transgene did not result in the appearance of

TCRs with longer CDR3 segments in the periphery MHC positive

animals. Therefore, longer CDR3s does impair MHC binding and

TCR signaling of MHC-specific positive selection in the thymus.

The usage of specific amino acids in CDR3s also puts some

constraints on MHC-specific TCRs. For example, positively

charged amino-acids (such as Lysine, Histidine or Arginine)

were disfavored in CDR3 FGb loops during MHC-restricted

selection (60). The mature TCR repertoire is also controlled by

clonal deletion, thereby eliminating TCRs with an excessive

affinity for self-peptide/MHC ligands. Interestingly, we

observed that clonal deletion during MHC-specific selection

eliminated TCRs containing cysteines in their FG-loops (60).

In fact, cysteines were present in 1-3% of TCRs in pre-selection

and MHC-independent repertoires. Cysteines were, however,

absent from mature MHC-restricted repertoires but were

present in mice expressing the Bcl-2 transgene that prevents

clonal deletion. Cysteines present in MHC-specific FG-loops

would be crosslinked by MHC-presented peptides and induce

clonal deletion (60). Interestingly, surface ligands recognized by

MHC-independent TCRs do not contain free cysteines but

rather have disulfide-linked cysteines (Figure 2). Such surface

ligands would, therefore, not interact with the FG-loop cysteines

from MHC-independent TCRs. Cysteines have a unique and

critical role in protein function, structure, and stability. For

extracellular and secreted proteins such as immunoglobulins,

disulfide bonds formed between cysteine residues regulate

protein scaffolding that allows proteins to maintain their

three-dimensional structure (62, 63). Non-canonical cysteines

can be found, although rarely, in immunoglobulins, even in the

variable regions and are thought to participate in the generation

of repertoire diversity (64) (Figure 2). Interestingly, Daley and

colleagues found increased CDR3 cysteine usage in CD8aa
intraepithelial T cells and their thymic precursors compared to

regulatory T cells and conventional T cells (65). Thus, the

presence of cysteine in the FG-loops serves as a TCR-intrinsic

motif that could mark immature pre-selection thymocytes or
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some T cells with specific selection, such as the intraepithelial T

cell or T cells selected by MHC-independent selection.

The comparison of TCR sequences from MHC-restricted

and MHC-independent (both pre-selection cells and peripheral

Quad-KO abT cells) T cell populations allowed us to propose

the important structural requirements of CDR3 for MHC-

restricted and MHC-independent selection. The selection of

MHC-independent TCRs seems to be largely unrestrained

compared to the much more restrained selection of MHC-

restricted TCRs. MHC restriction favors shorter than 13

amino-acids CDR3, prevents cysteine inclusion, and limits

positively charged and hydrophobic amino acids in the

CDR3b regions. The presence of conserved positively charged

residues near CDR3b contact sites on both MHCI and MHCII

molecules likely interferes with positively charged amino acids in

the TCRb sequences, inducing an electrostatic repulsion and

preventing productive TCR-MHC interactions (60).

Intriguingly, rare TCRs with longer CDR3a and multiple

positively charged residues in CDR3b have been observed to

bind MHC in a reversed orientation (66, 67). This reversed

polarity could potentially be explained by the inability of the

highly positively charged CDR3 FGb loops and positive charges

on MHC to form the canonical binding mode.

We also analyzed if thymic selection affected the usage of

germline-encoded V- and J-genes and, their pairings.

Interestingly, we observed similar frequencies of Va-, Vb-, Ja-
and Jb-genes between pre-selection, MHC-restricted and MHC-

independent repertoires and animals of the same strain exhibited

the highest similarities. The VJ pairing also showed similar

frequencies among all groups (60). We concluded that neither

V- and J-gene usages nor their pairing is significantly affected by

thymic selection.

To assess the size of the TCR repertoire from Quad-KO

mice, deep RNA sequencing of individual TCRa and TCRb
chains in Quad-KO mice was performed and compared with

those from MHC-restricted wild-type strains. Importantly,

wildtype mice had much greater repertoire overlap compared

to Quad-KO mice. Common sequences were also shared among

MHC-restricted strains but not among individual Quad-KO

mice (60). We concluded that MHC-restricted repertoires

show significantly higher sequence conservation than MHC-

independent repertoires. The lack of shared sequences in the

Quad-KO mice resembles that of antibody repertoires. Sequence

diversities of the TCRa and TCRb chains from MHC-restricted

and MHC-independent TCRs were also analyzed. In fact, TCRs

selected in the absence of MHC had dramatically lower (10- to

50-fold less) diversity compared to those from TCRs selected in

the presence of MHC.

Overall, our repertoire analysis has shown that MHC-

restriction severely constraints the length and composition of

the hyper-variable CDR3 segments. In addition, positive
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selection by high affinity TCR-ligand interactions, such as those

observed for MHC-independent TCRs, has dramatic effects on

TCR repertoire diversity. Therefore, the presence of coreceptors

during thymic selection permits the selection of a great variety of

diverse TCRs with low affinity to self-peptide/MHC complexes.
Structural analysis of MHC-
independent abTCRS

To gain further insight into the biophysical properties of

MHC-independent ligand interactions, we generated the first
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crystal structures of two MHC-independent abTCRs and

described their conformational epitopes on their ligand

(CD155). Both TCRs (A11 and B12A) showed very high

binding affinity to their CD155 ligand (230-280nM), values

much higher than those typically observed for typical TCR-

MHC binding (40, 68). A V-domain single chain of one TCR

was sufficient to bind to CD155 with a 400nM binding affinity, a

value only slightly lower than that of the two V-C domains. The

B12A V-domain alone is, therefore, sufficient to recognize

CD155. The structures of both abTCR A11 and B12A abTCR
heterodimers were nearly identical and exhibited canonical

structures when superimposed on the structure of an MHC-
B

C

D

A

FIGURE 2

Presence or absence of cysteines in immune receptors. (A) Cysteines can be found in the FG loops of preselection TCRs. (B) MHC-restricted
TCRs that contain cysteines in their FG loops are clonally deleted because cysteines will form disulfide-bonds with free cysteines in MHC-bound
peptides present in the thymus. (C) MHC-independent ligands are extra-cellular proteins that very rarely possess free cysteines that could
potentially link cysteines present in FG loops of MHC-independent TCRs. MHC-independent TCRs, just like antibodies (D), do contain cysteines
in their variable antigen-binding sites.
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restricted TCR (68). Domain swapping experiment with murine

and human CD155 revealed that both A11 and B12A TCRs

required both D1 and D2 domains on CD155. This finding was

confirmed using negative staining electron microscopy images of

B12A TCR and murine CD155 and modeled in Figure 3. These

images suggested that the CDR3s regions of B12A docked onto

the D1 domain of CD155. Additionally, mutational experiments

showed that A11 and B12A TCRs recognize two closely related

but distinct epitopes on the D1 domain of CD155, a domain

involved in binding to the poliovirus in humans (68).

Interestingly, a third CD155-specific TCR (TCR 25) showed a

different recognition motif (52), with domain swapping

experiments for this TCR revealing that TCR-25 recognizes a

novel epitope formed by all three external CD155 domains.

Structural experiments have provided evidence that some

evolutionarily conserved residues (Y48 and E54) in the CDR2
Frontiers in Immunology 08
51
region of Vb8 TCR were necessary to engage MHC and impose

MHC specificity on thymic selection (9, 43, 69). If these residues

were conserved to engage MHC molecules, we would predict

that such conserved CDR2 germline-encoded residues would

not promote TCR selection by non-MHC ligands. However, we

showed that the selection of an MHC-independent TCR

containing Vb8 also required the presence of the same

conserved residues (39). These residues may have evolved for

reasons unrelated to MHC binding but could possibly be

involved in maintaining the integrity of the TCR combining

site. It was also recently shown that an MHC-restricted TCR

repertoire was still generated without the conserved germline-

encoded CDR1 and CDR2 sequences (70). Dyson and colleagues

replaced the TCRb germline CDR1 and CDR2 regions with

TCRg chain CDRs (70). The resulting gbTCR hybrids paired

with endogenous TCRa chains, provided efficient recognition of

MHC and did not alter positive selection or CD4/CD8 lineage

commitment. Receptors on gdT cells do not recognize MHC

class I and II as natural ligands and, therefore, their germline

encoded CDRs have not coevolved with MHC molecules. They

concluded that T cell selection is not dependent on germline

TCR structures and that the TCR can embrace antibody like

strategies to engage MHC-peptide complexes. These

observations were further confirmed by replacing the TCRb
germline CDRs with immunoglobulin (Ig) heavy and light chain

germline CDRs, the resulting hybrid TCRs also led to the thymic

selection of both CD4 and CD8 abT cell repertoires (70). A

novel population of naturally occurring T cells expressing a

hybrid Vg-Cb TCR together with a TCRa has also been

described (71). It suggests that the entire Vb domain can be

dispensable for MHC recognition. In summary, biophysical

experiments have shown that, unlike conventional TCRs that

only recognize peptide fragments complexed to MHCmolecules,

MHC-independent TCRs recognize a broad spectrum of

conformational antigens. The combination of high-affinity

binding and a variety of conformational antigens are typical

characteristics of antibody recognition.
Timing of coreceptor expression
and LCK expression

Unconventional T cells such as mucosal-associated invariant

T (MAIT) cells, natural killer T cells (NKT) and gdT cells are

stimulated by lipid or metabolite antigens presented by

monomorphic MHC-like molecules such as CD1 and MR1.

Structural analyses have shown that the main characteristics of

conventional TCR/MHC binding, namely the TCR conserved

docking polarity of the TCR in which the TCR is placed over the

peptide and simultaneously binds both MHC the peptide cargo,

is also seen in unconventional TCR recognition of non-classical

MHC molecules. Recognition of CD1 molecules, however, is
FIGURE 3

Surface representation of the MHC-independent B12A TCR with
murine CD155. TCR B12A a b chains, and mCD155 are displayed
as cartoons in orange, pink and green, respectively. CDR3 loops
of TCR B12A are highlighted in blue and its binding epitopes on
mCD155, revealed by mutagenesis studies, are highlighted as red
surface.
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inconsistent as some TCRs bind only to CD1 and not the lipid

antigen. Interestingly, gdT cells, known to interact with ligands

independently of MHC, have also been shown to interact with

CD1d with a conserved polarity and docking angle.

As mentioned above, gdTCRs are mostly MHC-independent

and are selected in the thymus before the DP stage (72–74). This

early selection before the DP stage allows them access to free Lck

(Figure 4). In normal conditions, all TCRs that are signaled and

selected in the thymus before Lck sequestration by the coreceptors,

such as gdTCRs, are MHC-independent. Early CD4 transgenic

expression at the DN stage dramatically impairs the generation of

gdT cells (39). We therefore think that the timing of endogenous gd
and abTCR expression is precisely adjusted. This timing has

evolved to permit different TCR complexes to selectively access

either coreceptor-free or coreceptor-associated Lck so that ligand

recognition by gdTCRs would be MHC-independent and ligand

recognition by abTCR would be MHC-restricted (Figure 4).

Therefore, the appearance of coreceptors and the subsequent

sequestration of Lck at the DP stage prevents positive selection

signaling by MHC-independent ligands.
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Conclusions

A lot of information has been gathered since the first

description of MHC restriction by Zinkernagel and Doherty

more than 40 years ago (3). Recent experimental evidence

supports both the germline-encoded and selection models, and

both likely play a role in shaping an MHC-restricted TCR

repertoire. The preselection repertoire may contain some

proportion of MHC-biased TCRs but the requirement of Lck-

coreceptor associations only permits and enhances the selection

of a diverse but MHC-centric T cell repertoire. We think CD4

and CD8 play a central role in dictating the MHC specificity of

the T cell repertoire and may have driven the co-evolution of

abTCRs with MHC. In other words, CD4 and CD8 coreceptors

bestow the evolutionary pressure to skew germline TCR

sequences toward MHC recognition. A better understanding

of the biology of MHC-independent T cells will offer alternative

therapeutic strategies, for example in immunotherapy. In

conclusion, we think that MHC restriction of abT cells is the

consequence of thymic selection that imposes MHC-specificity
FIGURE 4

Timing of Lck expression during T cell development. During DN stages, Lck is necessarily coreceptor-independent (free). When coreceptors
start being expressed at the DP stage, Lck becomes coreceptor-bound. In the absence of coreceptors at the DN stage, Lck can signal TCRs
directly and signals independently of MHC (pre-TCR signaling at the DN to DP transition and during gdTCR selection). Once coreceptors
sequester Lck, TCR signaling requires coreceptor engagement and is MHC-restricted.
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by precisely timed expression of both CD4 and CD8 coreceptors

on thymocytes.
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T cell development in the thymus is tightly controlled by complex regulatory

mechanisms at multiple checkpoints. Currently, many studies have focused on

the transcriptional and posttranslational control of the intrathymic journey of

T-cell precursors. However, over the last few years, compelling evidence has

highlighted cell metabolism as a critical regulator in this process. Different

thymocyte subsets are directed by distinct metabolic pathways and signaling

networks to match the specific functional requirements of the stage. Here, we

epitomize these metabolic alterations during the development of a T cell and

review several recent works that provide insights into equilibrating metabolic

quiescence and activation programs. Ultimately, understanding the interplay

between cellular metabolism and T cell developmental programs may offer an

opportunity to selectively regulate T cell subset functions and to provide

potential novel therapeutic approaches to modulate autoimmunity.

KEYWORDS

T cell development, thymocytes, T cell metabolism, thymus, thymocyte metabolism
Introduction

T cell development is tightly regulated by multiple checkpoints and proliferative

events before the emergence of naive T cells from the thymus (1–3). Early thymic

progenitors (ETPs), also known as double-negative 1 (DN1) cells, differentiate into

DN2 thymocytes in the thymic parenchyma, gaining T-lineage commitment (4, 5). A

paramount event in T cell development called b-selection occurs during the DN3 stage,

and thymocytes that successfully assemble the pre-T cell receptor (TCR) hasten to the

DN4 phase and initiate rapid cell cycling governed by complex regulatory metabolism

(6, 7). Additionally, gd and ab T cell lineages diverge at the DN3 stage (8, 9).

Thymocytes return to a quiescence state in double-positive (DP) stage, undergoing
frontiersin.org01
56

https://www.frontiersin.org/articles/10.3389/fimmu.2022.946119/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.946119/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.946119&domain=pdf&date_stamp=2022-07-25
mailto:binzhao@csu.edu.cn
mailto:bin.zhao@live.com
mailto:jiaqi.huang@csu.edu.cn
mailto:jiaqi.huang@live.com
https://doi.org/10.3389/fimmu.2022.946119
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.946119
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2022.946119
positive/negative selection and DP to single-positive (SP)

transition before becoming mature CD4+ or CD8+ T cells (3,

10, 11).

Cellular metabolism integrates multiple pathways and large

networks of chemical reactions, and plays a critical role in

regulating almost all cellular processes (12). Different thymocyte

subsets have distinct metabolic patterns tailored to meet

the bioenergetic demands required at each stage (13–15).

In summary, catabolic metabolism of amino acids and

glucose promotes the energy and biosynthesis that quiescent

thymocytes require, whereas the transition from resting cells

into highly activated phenotypes requires substantial metabolic

reprogramming comprising aerobic glycolysis (Warburg effect),

glutaminolysis, and mitochondrial biogenesis, which expedites

oxidative phosphorylation (OXPHOS) and one-carbon

metabolism (10, 15–17). These metabolic alterations constitute

complex signaling mechanisms that connect external signals with

transcriptional events and fate verdicts (17, 18). Here, we

summarize recent findings on the metabolic control of T cell

development, and highlight the roles of cell-intrinsic and cell-

extrinsic metabolic factors involved in these processes.
Thymocytes are relatively quiescent
before b-selection

ETPs settling in the thymus are quiescent before the first

run of proliferation (11). Cytokines, such as Interleukin-7 (IL-

7), Kit, and C-X-C motif chemokine receptor 4 (CXCR4), as

well as Notch and Wnt signaling, account for the proliferation

of thymocytes before b-selection (6, 19–29). During the four

DN stages, Notch and IL-7 signaling drive the maturation of

thymocytes and regulate cellular metabolism by interacting

with the phosphatidylinositol-3-kinase/protein kinase B/

mammalian target of rapamycin (PI3K/Akt/mTOR) signaling

pathway (18, 21, 30–38). Before accelerating the multiplication

at the DN3b stage, thymocytes are quiescent and primarily rely

on OXPHOS to maintain bioenergetic homeostasis. AMP-

activated protein kinase (AMPK) is a major regulator of

metabolism that senses bioenergetic undulation and

maintains energy homeostasis in cells (39–41). AMPK works

in concert with liver kinase B1 (LKB1) to suppress biosynthesis

and energy production, such as glycolysis and lipid synthesis,

to restrain the anabolic growth of thymocytes (41–43). Loss of

LKB1 leads to thymocyte developmental block and reduction

of peripheral T cells (44, 45). Fatty acid-binding protein 3

(FABP3) regulates cellular lipid metabolism by binding to

polyunsaturated fatty acids (PUFAs), such as w-6 PUFAs.

Recently, it has been shown that loss of FABP3 redirects

DN2 thymocytes to pathogenic Vg4+ gd T cells (46).

Mitochondrial metabolism also plays a role in thymocyte

development. For example, the Janus mitochondrial protein
Frontiers in Immunology 02
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apoptosis-inducing factor (AIF) has been shown to affect

thymocyte transitions from DN1 to DN4 by modulating

mitochondrial metabolism (47).
b-selected thymocytes exhibit
robust cell proliferation and
metabolic reprogramming

Transition from the DN3 to the immature single-positive

(ISP) phase, thymocytes undergo V(D)J rearrangement and b-
selection. This exclusive selection event then gives rise to robust

cell growth and proliferation in which cells have to thoroughly

alter their metabolism to meet the increased energy demand.

Energy generation by cycling thymocytes after b-selection is

largely dependent on aerobic glycolytic metabolism for

prioritizing efficient and rapid biosynthesis of intracellular

constituents, including nucleic acids and lipids (3, 11). The

metabolic switch is mainly triggered by pre-TCR signaling (6,

48–50). Signaling of pre-TCR, Notch, and IL-7 converges to

activate PI3K signaling, which stimulates the transition to

anabolic metabolism, especially glycolysis. Glucose transporter

type 1 (Glut1), an important glucose transporter, is induced at

these phases, and its expression level is dependent on the

activation of PI3K-Akt signaling (51–54).

The PI3K-phosphoinositol-dependent protein kinase-1

(PDK1)-Akt axis plays a critical role in thymocyte maturation

(55, 56). In addition to their well-described role in protein

synthesis via mTOR signaling, PI3K dominates aerobic

glycolysis and glucose metabolism in a variety of biological

processes (57, 58). PDK1 regulates the expression of key

amino acid and iron transporters and controls the switch of

glucose metabolism from aerobic oxidation to glycolysis in the

thymus (55, 59). Loss of PDK1 impairs nutrient receptor

expression and hence renders metabolically deficient to meet

the energy demands from the DN to DP stage transition (55, 60).

Furthermore, Akt signaling is a major stimulus of anabolism (21,

61, 62). Deletion of Akt alters thymocyte subsets with a

development blocked after DN3 stage (56, 63). Similar to

AKT, PIM kinases are also linchpins that regulate the

expansion of thymocytes undergoing b-selection (64–66). Of

note, the lipid kinase inositol-trisphosphate 3-kinase B (Itpkb)

affects b-selection by restricting metabolic activation in DN3

thymocytes. The deficiency of Itpkb leads to accelerated

development from DN3 cells to DP cells by activating Akt-

mTOR signaling and breaking the balance between Notch and

pre-TCR signaling (67).

As a master regulator of cell growth and metabolism, mTOR

regulates multiple metabolic pathways, such as glutaminolysis,

glycolysis, mitochondrial biogenesis, and protein synthesis

(68, 69). It has been shown that mTOR signaling regulates

thymocyte proliferation, anabolism, and development via
frontiersin.org
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integrated signals from TCRs, costimulatory molecules, cytokines,

and nutrients (70–72). mTOR forms two structurally and

functionally distinct complexes, mTOR complex 1 (mTORC1)

and mTORC2 (71). Specifically, mTORC1 could integrate TCR

and Notch signaling and induce the expression of transcription

factors such as cellular myelocytomatosis oncogene (c-Myc) and

Sterol-regulatory element binding proteins (SREBPs) for lipid

synthesis and ROS production (71, 73). It has been reported

that mTORC1 is involved in the reciprocal development of two

fundamentally distinct T cell lineages, ab and gd T thymocytes

(70). Loss of Raptor-mediated mTORC1 activity impairs the

development of ab T cells but promotes gd T cell generation

(70, 74). In addition, hypoxia-inducible factor 1-a (HIF1a)
induced by mTORC1 signaling could increase glycolysis

metabolism and the pentose phosphate pathway by controlling

the production of glycolytic cascade members such as hexokinase

2 (HK2) and PDK1 (75–78). On the other hand, mTORC2

regulates glycolysis by activating Akt (61, 63, 79). Deletion of

the mTORC2 component Rictor leads to thymocyte

developmental blocks at the ISP phase, resulting in a reduction

of DP cells (80, 81). Thymocyte specific ablation of Sin1, an

important component of mTORC2, leads to developmental block

at the DN3 to DN4 transition due to impaired proliferation and

reduced expression of the glycolytic enzyme pyruvate kinase M2

(PKM2) through mTORC2-peroxisome proliferator-activated

receptor g (PPAR-g)-PKM2 axes (82, 83). Taken together, the

distinct regulation of thymocyte metabolism between mTORC1

and mTORC2 warrants further biological validation.

Myc expression is transcriptionally induced in thymocytes to

facilitate the developmental progression from the DN to the DP

stage (84–87). AsMyc downstream target genes, the thioredoxin-1

(Trx1) system is a biosensor of glucose and energy metabolism

that maintains cellular redox balance. Recent data from an animal

study have shown that deletion of thioredoxin reductase-1

(Txnrd1), which is critical for the last step of nucleotide

biosynthesis, precludes the expansion of DN cells (88). c-Myc

gene expression is also regulated by bromodomain protein 4

(BRD4), which is a transcriptional and epigenetic regulator with

functions throughout the cell cycle for proliferative regulation

(89–93). It has been shown that BRD4 governs the development

and differentiation of ISP thymocytes by modulating metabolic

pathways and cell cycle progression (94). Deletion of BRD4 in ISP

cells leads to a block in the transition to the DP phase, as well as

inhibition of glycolysis (94). The mitochondrial protein Optic

atrophy 1 (Opa1) was demonstrated to regulate OXPHOS and

was required for thymocyte development during b-selection at the
DN3 stage (37). The absence of Opa1 damages cellular respiration

and induces apoptotic cell death. Mothe-Satney and collaborators

found that overexpression of the transcription factor peroxisome

proliferator-activated receptor b (PPARb) increases fatty acid

oxidation instead of glucose oxidation, hence restricting the

expansion of DN4 cells (95). Furthermore, Zhao et al.

demonstrated that PPARb regulates the expression of the key
Frontiers in Immunology 03
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genes and enzymes in glycolysis, oxidative phosphorylation, and

lipogenesis in b-selected thymocytes. PPARbmut mice exhibited a

reduction in thymocyte cell number starting at the DN4 stage

(96). Recent laboratory work demonstrated that depletion of

mitochondrial pyruvate carrier (MPC) 1, an MPC transporter

subunit responsible for moving pyruvate into mitochondria, led to

impaired b-selection and decreased abT cells due to upregulated

glycolysis and reduced OXPHOS (97). MicroRNAs and other

noncoding RNAs have also been documented to be involved in T

cell development as regulators of anabolism and catabolism (98–

103). For example, as an important regulator of PI3K, miR-181

has been shown to regulate T cell development, including

conventional and unconventional T cells (104–108). The

transition from the DN to DP stage was severely impaired in

miR-181-deficient mice (109). Single-cell RNA data showed that

key genes of the glycolytic, pentose phosphate, and nucleotide

biosynthetic pathways were deregulated in miR-181a1b1-deficient

DP cells (104). Furthermore, miR-146a, a suppressor of nuclear

factor-kappa B (NF-kB) signaling, participates in the regulation of

thymocyte positive selection and amino acid metabolism (110).

Metabolic programming has been proposed to govern

distinct immune cell lineages and functions, whereas gd T cell

metabolism is still poorly understood (70, 111). gd T cells express

mature gdTCR complex and undergo extensive proliferation

comparable to ab T cells (112–114). Unlike conventional T

cells that exit the thymus as naïve T cells and further differentiate

in peripheral organs upon activation, a large portion of gd T cells

commits to producing either IL-17 or IFN-g during the

development in the thymus, called the IL-17-producing gd T

cell (gdT17) and the IFN-g-producing gd T cell (gdT1),
respectively (115–117). The two have intrinsically different

metabolic requirements. Notably, the TCRgd signaling appears

to be more favorable for the metabolic transition of thymic gd
progenitors to gdT1 cells that are highly glycolytic. In contrast,

gdT17 mainly engages OXPHOS (118). The metabolic

dichotomy established in the thymus has a significant impact

on the expansion and function of gdT1/17 cells, which could be

used in tumor and autoimmune disease therapies (118–123).

Yang et al. demonstrated that both gdT1 and gdT17 cells require
mTORC1 for proliferation and survival, whereas mTORC2 is

only essential for gdT17 cells. In Raptor KO mice, gdT17
differentiation was impaired due to suppressed glycolysis. In

contrast, mTORC2 potentiated gdT17 induction by reducing

mitochondrial ROS production (122). Moreover, nitric oxide

synthase 2 (NOS2) deficient mice exhibited substantially

reduced glycolysis and proliferation of gd T cells (124).

Glutaminase 1-mediated glutaminolysis was aberrantly activated

and promoted gdT17 differentiation, thereby resulting in the

development and immune imbalance of psoriasis (125). A

recent study revealed a key role of c-Maf in regulating the

function of gdT17 effectors through IDH2-mediated metabolic

reprogramming (126). In conclusion, thymocyte development is

orchestrated by these key metabolic regulators in the thymus.
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Thymocytes return to a resting state
from the small DP stage to CD4 or
CD8 SP stage

After massive proliferation, DP thymocytes return to a

resting state and initiate rearrangement of the Tcra gene for

positive and negative selection. When quiescence occurs along a

continuum as thymocytes differentiate from DP cells into SP

cells, glucose metabolism must drastically decrease and revert to

mitochondrial oxidative metabolism for maximal ATP

generation (10, 127). Key metabolic regulators, such as c-Myc

and HIF1a, need to be downregulated to safeguard the transition
from the DP blast to the resting small DP stage (77, 84, 128).

Moreover, the rise in metabolic activity in SP cells after the DP

late stage could be due to functional TCR signaling that

promotes the restoration of sensitivity to cytokines that fine-

tune cellular metabolism (129, 130).

Although apoptosis of those DP cells that fail to be selected is

crucial for thymocyte maturation program, it is also essential for

pre-selection thymocytes to maintain a relatively low metabolic

state to survive long enough waiting to be tested for their

responses to self-peptide/MHC. Retinoid-related orphan

nuclear receptor gt (RORgt) belongs to the nuclear hormone

receptor superfamily of transcription factors and serves as a

signaling node to connect lipid metabolism, inflammation, and

immune cell responses (131). It has been demonstrated that

RORgt expression reduces the abundance of cytokine receptors

of the common chain (gc) and suppresses cellular metabolism

and mitochondrial biogenesis in preselection DP thymocytes.

DP thymocytes lacking RORgt exhibit features identical to

pers is tent T cel l expansion (132) . O- l inked b-N-

acetylglucosamine protein O-GlcNAcylation shows a

concomitant dynamic regulation with consecutive phases of T

cell development and is controlled by Notch, c-Myc, and the T

cell antigen receptors (133). O-GlcNAc transferase (OGT) acts

as a signaling hub to integrate thymocyte responses to

developmental stimuli through modifying changes in glucose

and glutamine supply (134). An interesting finding has been

shown that Ogt-/-CD4cre/+ mice had normal numbers of DP

thymocytes but failed to differentiate into mature CD4+ or CD8

+ SP thymocytes (134, 135). Pyruvate dehydrogenase (PDH) is

required for thymocytes to regulate metabolic processes such as

the tricarboxylic acid (TCA) cycle, redox homeostasis,

glutathione levels, and pyruvate accumulation (136–138).

Thymocytes can oxidize more glucose in the TCA cycle

through PDH, and loss of PDH decreases the number of DP

cells (139). Heme (iron-protoporphyrin IX) is an essential

cofactor and signaling molecule involved in a vast array of

biological processes, including cellular metabolism (140).

Philip et al. reported a surprising finding that feline leukemia

virus subgroup C receptor (FLVCR), the major facilitator

superfamily (MFS) metabolite transporter and the heme
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exporter, was required for thymocyte development beyond the

DP stage by supporting heme metabolism (141, 142). With

FLVCR deletion during the DN stage, mice had a complete

block in ab T cell development at the DN-DP transition,

whereas loss of FLVCR at the DP stage affects peripheral T

cell proliferation and apoptosis (143).

THEMIS, a T cell specific protein that is highly expressed in DP

cells, directly regulates the catalytic activity of SHP-1 by promoting

ROS-mediated oxidation of the SHP-1 active site cysteine to

facilitate thymic positive selection (144). N-linked glycosylation

(NLG) also has an important impact on thymocyte selection. On

the one hand, NLG negatively regulates the activity of high-affinity

TCR, allowing thymocytes with these receptors to survive during

negative selection. On the other hand, NLG increases expression of

the CD4/CD8 co-receptors, allowing thymocytes with low-affinity

TCR to survive during positive selection (145, 146).

Thymocyte egress is a crucial determinant factor of T cell

homeostasis and adaptive immunity (147). Recently, protein

geranylgeranyltransferase type I catalytic b-subunit (Pggt1b) has

been shown to be involved in thymocyte egress by maintaining

mevalonate metabolism–fueled posttranslational modification. Du

et al. demonstrated that the expression of Pggt1b was upregulated in

SP cells in comparison with DP cells, and deletion of Pggt1b

impaired thymocyte egress, resulting in severe peripheral T cell

lymphopenia but the accumulation of mature SP thymocytes in the

thymus (148). Ultimately, CD4+ or CD8+ single-positive cells exit

the thymus and circulate to peripheral organs, such as the spleen

and lymph node.

The development of invariant natural killer T (iNKT) cells is

more sensitive to changes in mitochondrial electron transport

chain function than conventional abT cells (149). There have

been several informative reviews recently, so we won’t go over

those details here (150–152).
Conclusion and perspective

In the past few years, extensive studies have largely focused on

the metabolic regulation of T cell differentiation and responses.

However, our knowledge of how cellular metabolism modulates

thymocyte maturation in response to developmental signaling

pathways and microenvironmental cues remains limited.

Emerging studies using gene knockout mouse models have

demonstrated that key metabolic regulators and enzymes are

involved in different stages of thymocyte maturation by

modulating the metabolic pathways and signaling networks to

match the specific functional requirements of the stage (Figures 1

and 2). Recent progress in single-cell metabolomics, CRISPR/Cas9,

and spatially resolved metabolomics will continue to add valuable

findings to this field (10, 153). Future work on the molecular

mechanisms of cell context-dependent regulation of these metabolic

processes will not only enhance our understanding of the interplay

between cellular metabolism and T cell developmental programs
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FIGURE 1

Overview of metabolic regulators in T cell development. Thymocytes display distinct metabolic profiles depending upon their states of
development. DN1 and DN2 T cells are metabolically quiescent and adopt a basal level of nutritional intake, relying on OXPHOS as the primary
approach of ATP production. Upon proliferation, T cells from the DN3b stage to early DP stage shift to a state of metabolic activation
characterized by incremental nutrient uptake and elevated glycolysis. Then, T cells return to a resting state from the small DP stage to CD4
+/CD8+ SP stage. The letters in the yellow box represent glycolysis regulators, and the letters in the blue box represent OXPHOS regulators.
FIGURE 2

Metabolic programs match expansion demands of thymocytes. Blue cells on the left represent the quiescent thymocytes, and red cells on the
right represent proliferative thymocytes. OXPHOS, oxidative phosphorylation; FAO, fatty acid oxidation; ROS, reactive oxygen species; ATP,
adenosine triphosphate; PPP, pentose phosphate pathway; TCA, the tricarboxylic acid.
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but also provide potential novel therapeutic strategies to modulate

immune responses.

Author contributions

JH and BZ: conceptualization and guidance. MZ wrote and

edited the manuscript. All authors contributed to the article and

approved the submitted version.

Funding

This study was supported by the National Natural Science

Foundation of China (grant numbers 82170795 and 82100949),

and the Outstanding Young Investigator of Hunan Province

(2022JJ10094).
Frontiers in Immunology 06
61
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References

1. Kumar BV, Connors TJ, Farber DL. Human T cell development, localization,
and function throughout life. Immunity (2018) 48(2):202–13. doi: 10.1016/
j.immuni.2018.01.007

2. Hosokawa H, Rothenberg EV. How transcription factors drive choice of the T
cell fate. Nat Rev Immunol (2021) 21(3):162–76. doi: 10.1038/s41577-020-00426-6

3. Balyan R, Gautam N, Gascoigne NRJ. The ups and downs of metabolism
during the lifespan of a T cell. Int J Mol Sci (2020) 21(21):7972. doi: 10.3390/
ijms21217972

4. Park JE, Botting RA, Dominguez Conde C, Popescu DM, Lavaert M, Kunz
DJ, et al. A cell atlas of human thymic development defines T cell repertoire
formation. Science (2020) 367(6480):eaay3224. doi: 10.1126/science.aay3224

5. Famili F, Wiekmeijer AS, Staal FJ. The development of T cells from stem cells
in mice and humans. Future Sci OA (2017) 3(3):FSO186. doi: 10.4155/fsoa-2016-
0095

6. Dutta A, Zhao B, Love PE. New insights into tcr beta-selection. Trends
Immunol (2021) 42(8):735–50. doi: 10.1016/j.it.2021.06.005

7. Chen H, Yang T, Zhu L, Zhao Y. Cellular metabolism on T-cell development
and function. Int Rev Immunol (2015) 34(1):19–33. doi: 10.3109/
08830185.2014.902452

8. Ciofani M, Zuniga-Pflucker JC. Determining gammadelta versus alphass T
cell development. Nat Rev Immunol (2010) 10(9):657–63. doi: 10.1038/nri2820

9. Xiong N, Raulet DH. Development and selection of gammadelta T cells.
Immunol Rev (2007) 215:15–31. doi: 10.1111/j.1600-065X.2006.00478.x

10. Sun V, Sharpley M, Kaczor-Urbanowicz KE, Chang P, Montel-Hagen A,
Lopez S, et al. The metabolic landscape of thymic T cell development in vivo and in
vitro. Front Immunol (2021) 12:716661. doi: 10.3389/fimmu.2021.716661

11. Chapman NM, Boothby MR, Chi H. Metabolic coordination of T cell
quiescence and activation. Nat Rev Immunol (2020) 20:55–70. doi: 10.1038/s41577-
019-0203-y

12. Hu Z, Zou Q, Su B. Regulation of T cell immunity by cellular metabolism.
Front Med (2018) 12(4):463–72. doi: 10.1007/s11684-018-0668-2

13. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T
lymphocytes. Annu Rev Immunol (2013) 31:259–83. doi: 10.1146/annurev-
immunol-032712-095956

14. Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell
activation and lineage differentiation. Semin Immunol (2016) 28(5):514–24.
doi: 10.1016/j.smim.2016.10.009

15. Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM. Glucose
metabolism regulates T cell activation, differentiation, and functions. Front
Immunol (2015) 6:1(1). doi: 10.3389/fimmu.2015.00001

16. Geltink RIK, Kyle RL, Pearce EL. Unraveling the complex interplay between
T cell metabolism and function. Annu Rev Immunol (2018) 36:461–88.
doi: 10.1146/annurev-immunol-042617-053019
17. van der Windt GJW, Pearce EL. Metabolic switching and fuel choice during
T-cell differentiation and memory development. Immunol Rev (2012) 249(1):27–
42. doi: 10.1111/j.1600-065X.2012.01150.x

18. Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function.
Trends Immunol (2012) 33(4):168–73. doi: 10.1016/j.it.2012.01.010

19. Barata J, Durum S, Seddon B. Flip the coin: Il-7 and il-7r in health and
disease. Nat Immunol (2019) 20(12):1584–93. doi: 10.1038/s41590-019-0479-x

20. Boudil A, Matei IR, Shih HY, Bogdanoski G, Yuan JS, Chang SG, et al. Il-7
coordinates proliferation, differentiation and tcra recombination during thymocyte
beta-selection. Nat Immunol (2015) 16(4):397–405. doi: 10.1038/ni.3122

21. Ciofani M, Zuniga-Pflucker JC. Notch promotes survival of pre-T cells at the
beta-selection checkpoint by regulating cellular metabolism. Nat Immunol (2005) 6
(9):881–8. doi: 10.1038/ni1234

22. Akashi K, Weissman IL. The c-kit+ maturation pathway in mouse thymic T
cell development: Lineages and selection. Immunity (1996) 5(2):147–61.
doi: 10.1016/s1074-7613(00)80491-4

23. Buono M, Facchini R, Matsuoka S, Thongjuea S, Waithe D, Luis TC, et al. A
dynamic niche provides kit ligand in a stage-specific manner to the earliest
thymocyte progenitors. Nat Cell Biol (2016) 18(2):157–67. doi: 10.1038/ncb3299
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Investigation of the causal
etiology in a patient with
T-B+NK+ immunodeficiency
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Sadhna Rana3, Andrew Sharo4, Majid Kazemian5,
Uma Sunderam3, Mark Andrake6, Susan Shinton1,
Billy Truong1, Roland M. Dunbrack6, Chengyu Liu7,
Rajgopol Srinivasan3, Steven E. Brenner4,
Christine M. Seroogy8, Jennifer M. Puck9,
Warren J. Leonard2* and David L. Wiest1*

1Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA,
United States, 2Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung,
and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States, 3Innovation
Labs, Tata Consultancy Services, Hyderabad, India, 4Center for Computational Biology, University of
California, Berkeley, CA, United States, 5Departments of Biochemistry and Computer Science,
Purdue University, West Lafayette, IN, United States, 6Molecular Therapeutics Program, Fox Chase
Cancer Center, Philadelphia, PA, United States, 7Transgenic Core, National Heart, Lung, and Blood
Institute, National Institutes of Health (NIH), Bethesda, MD, United States, 8Department of
Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United
States, 9Department of Pediatrics, University of California San Francisco and UCSF Benioff
Children’s Hospital, San Francisco, CA, United States
Newborn screening for severe combined immunodeficiency (SCID) has not

only accelerated diagnosis and improved treatment for affected infants, but

also led to identification of novel genes required for human T cell development.

A male proband had SCID newborn screening showing very low T cell receptor

excision circles (TRECs), a biomarker for thymic output of nascent T cells. He

had persistent profound T lymphopenia, but normal numbers of B and natural

killer (NK) cells. Despite an allogeneic hematopoietic stem cell transplant from

his brother, he failed to develop normal T cells. Targeted resequencing

excluded known SCID genes; however, whole exome sequencing (WES) of

the proband and parents revealed a maternally inherited X-linked missense

mutation in MED14 (MED14V763A), a component of the mediator complex.

Morpholino (MO)-mediated loss of MED14 function attenuated T cell

development in zebrafish. Moreover, this arrest was rescued by ectopic

expression of cDNA encoding the wild type human MED14 ortholog, but not

byMED14V763A, suggesting that the variant impaired MED14 function. Modeling

of the equivalent mutation in mouse (Med14V769A) did not disrupt T cell

development at baseline. However, repopulation of peripheral T cells upon

competitive bone marrow transplantation was compromised, consistent with

the incomplete T cell reconstitution experienced by the proband upon

transplantation with bone marrow from his healthy male sibling, who was

found to have the same MED14V763A variant. Suspecting that the variable

phenotypic expression between the siblings was influenced by further
frontiersin.org01
65

https://www.frontiersin.org/articles/10.3389/fimmu.2022.928252/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.928252/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.928252/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.928252&domain=pdf&date_stamp=2022-07-29
mailto:David.wiest@fccc.edu
mailto:leonardw@nhlbi.nih.gov
https://doi.org/10.3389/fimmu.2022.928252
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.928252
https://www.frontiersin.org/journals/immunology


Sertori et al. 10.3389/fimmu.2022.928252

Frontiers in Immunology
mutation(s), we sought to identify genetic variants present only in the affected

proband. Indeed, WES revealed a mutation in the L1 cell adhesion molecule

(L1CAMQ498H); however, introducing that mutation in vivo in mice did not

disrupt T cell development. Consequently, immunodeficiency in the proband

may depend upon additional, unidentified gene variants.
KEYWORDS

immunodeficiency, newborn screening, zebrafish, thymus, MED14, T cell
lymphopenia, severe combined immunodeficiency (SCID)
Introduction

Primary immune deficiencies are rare, with severe combined

immunodeficiency (SCID) occurring approximately 1/66,000

live births in the United States (1). SCID is defined as the

absence of T lymphocytes and absent or nonfunctional B

lymphocytes (2). Historically, SCID was diagnosed when

patients manifested life-threatening infections in the first few

months of life (3); however, in 2005, a newborn screening

approach was developed that enabled reliable identification of

patients with SCID prior to the onset of infections (4). The

newborn screening assay measures the presence of T cell

receptor excision circles (TRECs) in dried blood spots from

peripheral blood. TRECs are a biproduct of T cell receptor

(TCR) gene rearrangement and constitute a biomarker for

normal T cell development in the thymus. TREC-based

newborn screening, now adopted throughout the United States

and several countries, afforded two significant benefits. First,

earlier diagnosis of SCID enables the initiation of treatment

prior to the onset of infection, thereby markedly increasing

treatment efficacy (5, 6). Second, TREC screening has facilitated

efforts to establish the molecular etiology of T cell lymphopenic

conditions, leading to identification of a number of novel

regulators of T cell development (7–10). Specifically,

identifying the causative mutation in a T lymphopenic patient

entails the targeted resequencing of known immunodeficiency

genes to determine if disease results from a mutation in a known

gene. Upon exclusion of known causes, whole exome sequencing

(WES) is performed on the patient and parents to identify

candidate variants, which then must be functionally studied to

identify the causal variant. The zebrafish model is useful to

evaluate human candidate variants, having high conservation of

genes and processes controlling hematopoiesis and immune cell

development (11) and ease of genetic manipulation through

direct injection of embryos (12).
Here we describe a male proband identified by newborn

screening as having low TRECs and reduced T lymphocytes.

After exclusion of known causes of immunodeficiency, WES

revealed a missense mutation in a component of the Mediator
02
66
Complex, MED14, which is inherited in an X-linked manner.

The multiprotein mediator complex is required for gene

transcription by RNA polymerase II, and has been shown to

influence epigenetic regulation, transcriptional elongation,

termination, mRNA processing, noncoding RNA activation,

and super-enhancer formation, making it a critical regulator of

development and lineage determination (13, 14). MED14

functions as a backbone of the complex, and loss of MED14 is

lethal (15, 16). Functional screening of the patient MED14

variant suggested that it may have contributed to the

patient’s disease.
Materials and methods

Human subjects and genomic analysis

Immunodeficiency was identified in the male proband by

routine newborn SCID screening of a blood filter card (17).

Research activities were performed with parental informed

consent under protocols approved by the institutional review

boards (IRBs) at the University of California, San Francisco and

National Heart, Lung, and Blood Institute (NHLBI), National

Institutes of Health (NIH), Bethesda, MD. Research-based WES

was performed on cells from the patient and parents with

bioinformatic analysis and variant calling as described (7).

Additional WES was performed using genomic DNA (gDNA)

from EBV lines derived from the patient and his parents and

PBMC from his healthy brother. Briefly, gDNA (3 mg) was

fragmented by sonication to generate 100-500 bp fragments. The

DNA fragments were then end-repaired, 3’ dA overhangs were

added, and adaptors were ligated per the manufacturer’s

instructions. After removing free adaptors using Agencourt

AMPure XP beads, the DNA fragments were amplified by 6

cycles of PCR. The exons and UTRs were enriched using Exon

V4 plus UTR (SureSelectXT Target Enrichment System for

Illumina, Agilent Technologies); the enriched DNA was

additionally amplified by 12 cycles of PCR, and 250-400 bp

fragments were purified by 2% E-gel (ThermoFisher) and Gel
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Purification Kit (Zymo Research) and sequenced on a HiSeq

platform (Illumina). Sequencing reads were mapped to hg19

using Bowtie2 and BWA using default parameters. Aligned reads

were piled up by Samtools Mpileup using the following

parameters: (-A -B -Q 30 -q 20 -d 10000 -L 1000 -h 50 -o 10

-e 17 -m 3). The output was converted to VCF file using Bcftools

(view -vcg) and was converted to Annovar format for annotation

using Convert2annovar.pl. All common variants (AF>0.0001) in

the ExAC database were filtered. Remaining variants were

annotated using Annovar, and non-exonic variants were

removed. Nonsynonymous variants were categorized as X-

linked, de-novo, or autosomal recessive (AR). X-linked

variants hemizygous in the proband and heterozygous or

absent in the mother were examined, as were autosomal de-

novo variants absent in either parent and AR variants that were

heterozygous in each parent, heterozygous or absent in the

unaffected s ib l ing , but homozygous or compound

heterozygous in the proband.
Animals

Tuebingen long fin zebrafish were maintained at 28.5°C

under standard aquaculture conditions. Animal housing and

handling were all performed in accordance with the approved

protocols from the Fox Chase Cancer Center Institutional

Animal Care and Use Committee (IACUC). Likewise, mouse

experiments were performed under the auspices of IACUC-

approved animal protocols, and all mouse strains were housed in

accredited facilities at either Fox Chase Cancer Center or NIH.

All experiments using mice at NHLBI were performed using

protocols approved by the NHLBI Animal Care and Use

Committee and followed NIH guidelines for use of animals in

intramural research.
Ortholog analysis

Genomic sequences were obtained by searching the NCBI

and ENSEMBL databases. Multiple alignments of human, mouse

and zebrafish MED14 and SMARCAL1 amino acid sequences

were obtained using Clustal X. Clustal X was also used for a

multiple species alignment of human, mouse, rat, bovine, frog,

zebrafish, worm and fly sequences.
Structural modeling

To assess the extent to which the V763A MED14 patient

variant alters MED14 structure, we performed structural

modeling by surveying all PDB structures that contain

MED14, including the following PDB codes: 7EMF, 7ENA,

7ENC, 7ENJ (18), 7LBM (19), and 7NVR (representative of 9
Frontiers in Immunology 03
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other companion structures from the same paper) (20). The

PDB structure code 7ENA (MED14 is author chain n) was

chosen as the representative structure. The topology and overall

conformation of amino acids 637-884 of the protein were

conserved for all the structures examined, making it suitable

for a computational analysis of the missense change V763A. In

the MED14 fragment containing amino acids 637-884, the

Valine at position 763 was substituted with Alanine using a

backbone dependent rotamer library employed in the UCSF

Chimera 1.15 software package (21, 22). Both the wildtype and

V763A versions of this MED14 fragment were subjected to two

different protein relaxation methods using the Rosetta molecular

modeling suite to optimize side chain packing and to obtain an

energy score that would reflect the stability of the V763A variant

compared to wildtype MED14 (23). Either a coordinate-

constrained method of relaxation or a full atom relax were

employed alone or in combination, to allow for backbone

movement in addition to side chain packing steps (24, 25).

The stability of the V763A variant compared to wildtype was

assessed by the All-Atom Rosetta energy scoring function of the

conserved fragment from amino acids 637 to 884 (26). The same

modeling analysis was also performed on the murine equivalent

(V769A) to the human V763A MED14 variant. As there were

two chain breaks in the coordinates of the mouse MED14 in the

PDB entry 6W1S (chain I), we submitted the equivalent

fragment of mouse MED14 (residues 643 to 890) to the

ColabFold advanced version python notebook (27).
Zebrafish experiments

The zebrafish orthologs of candidate patient variants,

MED14 (med14; NM_212765.2) and SMARCAL1 (smarcal1;

NM_001127466.1), were identified by homology and synteny

as described (28). We designed and obtained antisense

morpholino (MO) oligonucleotides to block the pre-mRNA

splicing of zebrafish med14 and smarcal1 from Gene Tools

(Table 1). MO dose was established by injecting titrated

quantities of MO into one-cell zebrafish embryos, following

which MO efficacy was assessed by reverse-transcriptase (RT)–

PCR as described using the indicated primers (Table 1) (12, 29).

The effect of MO knockdown on T cell development was

assessed by whole mount in situ hybridization (WISH) as

described (30), using the following probes: lck, ikaros, tcrd and

foxn1 (28, 31). The stained embryos were photographed using a

Nikon SMZ1500 stereomicroscope equipped with DS-Fi1 digital

camera and Nikon Ar imaging software. Image J software was

used to measure integrated staining density of zebrafish thymi.

Experiments to assess the capacity of wild type and patient

variant MED14 (V763A) to rescue the arrest of T cell

development caused by MO depletion of endogenous med14

comprised heat-inducible re-expression as described (7). Wild

type and patient variant (V763A) human MED14 constructs
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were produced using Vector Builder, sequenced, and subcloned

into pSGH2. Ectopic expression of wild-type and mutant human

MED14 was achieved by injection of the heat-inducible pSGH2

vector into one-cell–stage embryos (32), following which re-

expression was induced by elevating the temperature to 37°C for

1 hour at 30 hours post fertilization (hpf). GFP+ embryos in

which re-expression of MED14 was induced were selected at 5

days post fertilization (dpf) for analysis by WISH using an lck

probe. Image J software was used to measure integrated staining

density of zebrafish thymi.
Construction of knockin mice

Med14V769A knockin mice were generated by the Fox Chase

Transgenic Mouse Facility using CRISPR-induced cutting and
Frontiers in Immunology 04
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HDR repair (33). Med14V769A mice were created using a single

guide RNA (sgRNA) close to the mutation site (all

oligonucleotides are listed in Table 1) and a 150 bp

oligonucleotide donor encoding the T to C change plus 5

silent mutations in the sgRNA binding site to prevent cutting

of the altered allele. The knockin mutation created a new Alu I

restriction enzyme site which was used for screening for the

allele. The L1camQ497H mouse line was also generated using the

CRISPR/Cas9 method. Briefly, an sgRNA (Table 1) designed to

cut near the L1cam mutation site was purchased from Synthego

(Menlo Park, CA). Cas9 mRNA was purchased from TriLink

BioTechnologies (San Diego, CA). Single strand donor

oligonucleotide for L1cam (Table 1) was used to introduce

point mutations (IDT, Coralville, IA). Besides the desired

nucleotide changes to convert the Q to H, four silent

nucleot ide substitutions that prevented Cas9 from

continuously cutting the DNA after donor knock-in were also

included in the donor oligonucleotides. For making the L1cam

knockin mouse line, the sgRNA (20 ng/ml) and its corresponding
donor oligonucleotides (100 ng/ml) were co-microinjected with

Cas9 mRNA (50 ng/ml) into the cytoplasm of zygotes from

C57BL/6 mice (Charles River Laboratory) and the resulting

embryos were implanted into the oviducts of pseudo-pregnant

surrogate mothers. Offspring born to the foster mothers were

genotyped by PCR and Sanger DNA sequencing and founders

with the desired nucleotide changes were identified. Founder

mice were backcrossed to C57BL/6J (JAX 000664) background

for 4-6 generations before using for experiments.
Flow cytometry

Single-cell suspensions from thymus and spleen were

stained, as indicated, with optimal amounts of the following

fluorochrome-conjugated antibodies: anti-CD3ϵ (145-

2C11), anti-CD4 (GK1.5), anti-CD8 (53-6.7), anti-CD24 (M1/

69), anti-CD25 (PC61), anti-CD44 (IM7), anti-CD62L (MEL-

14), anti-CD69 (H1.2F3), anti-CD73 (TY/11.8), anti-CD90.2

(30-H12) anti-B220 (RA3-6B2), anti-NK1.1 (PK136), anti-

CD122 (TM-b1), anti-TCRd (GL3), anti-TCRb (H57-597),

anti-IgM (RMM-1) and CFSE Cell Division Tracker Kit

423801. The antibodies were purchased from BD Biosciences,

eBioscience, BioLegend, or Tonbo Biosciences. Dead cells were

excluded from analyses using propidium iodide (PI). Data were

acquired on an LSRII flow cytometer (BD Pharmigen) or FACS

Canto II flow cytometer (BD Pharmingen) and analyzed with

Flowjo 9.96 software (Treestar, Inc.). CSFE dilution was

employed to monitor proliferation of splenic T cells from WT

or L1camQ497H mutant mice according to manufacturers

specifications (CellTracer CFSE Cell Proliferation Kit,

Invitrogen, Carlsbad, CA) following stimulation with 2 mg/ml

plate-bound anti-CD3 and 1 mg/ml soluble anti-CD28.
TABLE 1 Oligonucleotides used in this study.

Zebrafish med14 MO ACTGGGAGATAAATCACATACCGCA

Zebrafish smarcal1 MO GCTGAGTCTGTAAAGATGAGCATAA

Zebrafish med14 RT-PCR-
Fwd

GATGAAATCGCTTCCGCTG

Zebrafish med14 RT-PCR-
Rev

TTGACTCGTCCATTGGCCAC

Zebrafish smarcal1 RT-
PCR-Fwd

TTGTGTCAGTAAGCGCCTGT

Zebrafish smarcal1 RT-
PCR-Rev

CATCCCTTCCAGAGGTTTGA

Zebrafish actb2 RT-PCR-
Fwd

TGGCATCACACCTTCTAC

Zebrafish actb2 RT-PCR-
Rev

AGACCATCACCAGAGTCC

Mouse Med14 V769A
sgRNA

UUGAAAUGUUUCUUAATGAC

Mouse V769A mutant
sgRNA binding site HDR
donor oligo1

ACCATCCCGACATGTTTACCTGACGTATG
AAAATTTGTTGTCTGAACCTGTTGGTGGC
AGAAAAGTAGCTGAGATGTTCTTGAACGA
TTGGAGTAGCATTGCCCGTTTATACGAGTG
TGTGTTGGAATTTGCACGTTCTCTACCAGgta
CACTTGGGTGGCTGAATTAG

Mouse V769A genotyping GAGAAAGAGAGACTATACACTGCGG

Mouse V769A genotyping TGTTCTGGTCATTGGCAGCCTGG

Human MED14 PCR-Rev AAAGGAGATTATCTCCACACGTAC

Human MED14 PCR-Fwd GTATAACTGAGGAAACCCAAAAGG

Human L1CAM PCR-Rev TCTGAGTTGCATCTGAGGGTAA

Human L1CAM PCR-Fwd TTCAGTGGTGAGTGTCTCGTC

Mouse L1cam Q497H
sgRNA

GCCAATGGAACGCTGAGCATCAGAGACCTC
CAGGCCAA

Mouse L1cam Q497H
Donor Oligo

TGACACTGGACGCTATTTCTGCCAGGCCGCA
AACGATCACAACAATGTGACCATTTTGGCTA
ACCTACAGGTTAAAGGTTAGATGATGAGCAC
ACATGACTG

Mouse L1cam Q497H
PCR-Rev

ATCTCCACGCCAAGTGATGCT

Mouse L1cam Q497H
PCR-Fwd

AGTGGTGAGTGCCCATC
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Graphing and statistics

Graphical analysis was conducted using GraphPad prism V9

and statistical significance was calculated using one-way

ANOVA and student t tests. Significance values are indicated.
Results

Identification of a proband with
T lymphopenia

The male proband was born at term to nonconsanguineous,

healthy parents who had no known family history of

immunodeficiency, as described (patient #5) (17). Newborn SCID

screening was positive with a TREC level of 3, and confirmatory

testing showed T-cell lymphopenia with 1,021 T cells/ml, essentially
absent naïve T cells, and normal B and NK cell numbers (Table 2).

The patient had a non-dysmorphic appearance, had no syndromic

features, and negative testing included FISH for 22q11.2

microdeletion, ADA/PNP metabolites, and sequencing a panel of

previously reported SCID genes. Imaging analysis at age 6 months,

15 months, and 4 years detected tissue in the anatomic location of

the thymus, but it was diminished in size and displayed fatty

infiltration. T cell proliferation to mitogen was normal, but was
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severely impaired following TCR cross-linking. Testing formaternal

engraftment was negative. Thus, the immune phenotype was leaky/

atypical SCID per Primary Immune Deficiency Treatment

Consortium (PIDTC) criteria (35). The patient was closely

monitored in protective isolation, maternal breast milk was

discontinued, and IVIG and Pneumocystis jirovecci prophylaxis

were given. Low-level CMV was detected by PCR in the patient’s

blood at 10 months of age. The patient was asymptomatic, but was

subsequently treated with valganciclovir for persistent low-level

CMV viremia. At 14 months of age, EBV was detected by PCR

in the patient’s blood, again without signs or symptoms for EBV

infection. Because of the leaky/atypical SCID phenotype and

persistent CMV and EBV, an allogeneic conditioned

hematopoietic stem cell transplant (HSCT) was performed at 15

months of age using the patient’s healthy HLA-matched older

brother as the donor. The brother was in good health, had passed

the newborn SCID screen, and normal extended immune

phenotyping, normal quantitative immunoglobulins and robust

vaccine titers. The conditioned HSCT was uncomplicated, with

both T and myeloid donor engraftment (81% and >95%

respectively at Day +60) and undetectable levels of EBV and

CMV at Day +60 after HSCT. The patient’s T cell functional

studies normalized; however, his T lymphopenia did not improve

over time (Table 2). The patient remains alive and well off all

immune supportive therapies.
TABLE 2 Patient Immune Characteristics.

AGE Days
post-
HSCT

Abs. CD3
num./µL

(Ref. range)

Abs. CD4 T
cell num./µL
(Ref. range)

Abs. CD8 T
cell num./µL
(Ref. range)

Abs. B cell
(CD19+) num./
µL(Ref. range)

Abs. NK cell num.
(CD3-CD16+/CD56
+)/µL(Ref. range)

%CD3+CD4
+CD45RA

+(Ref. range)

TREC
level*

1 week n/a 1021
(2500-5500)

756
(1600-4000)

265
(560-1700)

1777
(300-2000)

869
(170-1100)

2 (64-95) 3

1
month

n/a 702 (2500-5500) 488
(1600-4000)

214
(560-1700)

1922
(300-2000)

397
(170-1100)

2 (64-95) 0

3
months

n/a 834
(2500-5500)

516
(1600-4000)

278
(560-1700)

2184
(300-2000)

953
(170-1100)

3 (64-95) n.d.

6
months

n/a 497
(1900-5900)

276
(1400-4300)

221
(500-1700)

1586
(610-2600)

390
(160-950)

6 (64-93) 0

12
months

n/a 708
(2100-6200)

248
(1300-3400)

425
(620-2000)

1876
(720-2600)

920
(180-920)

6 (63-91) 0

21
months

6
months

662
(2100-6200)

95
(1300-3400)

93
(620-2000)

761
(720-2600)

683
(180-920)

0 (63-91) n.d.

27
months

1 year 529
(1400-3700)

88
(700-2200)

382
(490-1300)

764
(390-1400)

176
(130-720)

1 (53-86) n.d.

39
months

2 years 347
(1400-3700)

95
(700-2200)

210
(490-1300)

599
(390-1400)

95
(130-720)

3 (53-86) 0

6 years 5 years 684 (1200-2600) 151
(650-1500)

456
(370-1100)

n.d n.d. 10 (46-77) 0

10
years

9 years 750 (1200-2600) 392 (650-1500) 303
(370-1100)

n.d. n.d. 6 (46-77) 98
(≥5270)
fronti
TREC level assayed by two methods: through newborn screening laboratory with blood filter card and liquid blood sample through CLIA laboratory,
n/a, not applicable.
n.d., not done.
Reference ranges (34).
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Identification of candidate variants by
exome sequencing

To determine the genetic cause for the patient’s disease, WES

was performed on genomic DNA from the proband and his

parents as described (7). The variants prioritized by our initial

analysis were an X-linked V763A variant in MED14 and a

homozygous autosomal R114H variant in SMARCAL1

(Figure 1A and Supplementary Figure 1A). SMARCAL1/

HARP is an annealing helicase that functions in the repair and

restart of damaged DNA replication forks and has been linked to

AR Schimke immuno-osseous dysplasia (SIOD), which can

cause T-cell immunodeficiency, but is also accompanied by

short stature and other phenotypes (36). The affected arginine

residue (R114) in SMARCAL1 was not conserved between

human, mouse, and zebrafish (Supplementary Figure 1A) and

its location in the SMARCAL1 protein was distinct from that of

reported pathogenic mutations that cause SIOD (37, 38).
Functional testing of candidate variants

To test in zebrafish the role of the smarcal1 gene in

supporting T cell development, expression of smarcal1 was
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knocked down using MO that disrupted pre-mRNA splicing,

following which the impact on T cell development was evaluated

by WISH using an lck probe to identify T cells (Supplementary

Figure 1B). Importantly, despite effective induction of smarcal1

mis-splicing, the development of T cells at 5 dpf was not

impaired, suggesting that smarcal1 was not essential for T cell

development in zebrafish and that the SMARCAL1 R114H

variant was unlikely to be responsible for the T lymphopenia

observed in the proband.

The other highly ranked variant was in MED14, an integral

component of the mediator complex that links the head and

neck of the complex (39). While mediator complex component

MED23 has been implicated in T cell activation, mediator

complex function has not been explored in T cell development

(40). The MED14 V763 residue that was mutated in the proband

was conserved from human to zebrafish (Supplementary Figure

2A). To explore the extent to which the V763A variant might

damage MED14 function, we performed structural modeling

using Rosetta to optimize side chain packing and obtain an

energy score reflective of the stability of the V763A variant

compared to wildtype MED14 (23, 25). The results showed that

the V763A substitution resulted in a decrease in hydrophobic

contacts between two key helices at the ‘elbow’ of MED14

between repetitive modules (RM) 5 and 6 (Figure 1B). V763
B

A

FIGURE 1

Identification of the MED14 missense mutation by next generation sequencing. (A) Screen shots of NGS sequencing runs of the proband and
parents are depicted. The A>G mutation is indicated by upper and lower case G. Dots or commas indicate wild type sequence. (B) Molecular
models of the wild type and variant MED14 proteins. Two views of wild type (orange) and V763A mutant (green) human MED14 are depicted.
The right half of each panel shows a zoomed in view of aa 763 with nearby residues on the opposing helix that are capable of making contacts
with the A or V763. The left panel shows wild type MED14 V763 from known PDB structure 7ENA chain n, residues 637 to 884. The right panel
shows the human V763A MED14 variant. Hydrophobic contacts are shown with purple lines.
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made 16 contacts to 4 different residues (L657, E660, L661,

L664), while the A763 variant made only 5 contacts to 2 residues

(E660, L664), decreasing the stability of the A763 variant by 7.9

Rosetta Energy Units (REU) (26), far more profoundly than V to

A substitutions in 11 other model proteins, which averaged

reductions of 2.4 kcal/mole (41). It was not clear whether the

reduction in hydrophobic contacts observed in the V763A

variant was sufficient to cause major changes in MED14

conformation, but it was likely to cause local structure

perturbation that could affect protein turnover and/or alter

conformational dynamics.

To investigate the role of Med14 protein in supporting T-cell

development in vivo, we performed MO knockdown of med14 in

zebrafish. The role of zebrafish med14 in T cell development had

not previously been evaluated because the zebrafish logeleimutant

(inmed14) arrests embryo development at 2 dpf (15). Knockdown

of med14 using splice-site blocking MO at the indicated dose

disrupted the splicing of med14 pre-mRNA, without generally

disrupting zebrafish development or altering morphology;

however, WISH using an lck probe to identify T cells in the
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thymus at 5 dpf revealed that med14 knockdown markedly

impaired T cell development (Figure 2A and Supplementary

Figure 2B). The decrease in Lck+ T cells indicated that Med14

plays a critical role in supporting T cell development in zebrafish.

To determine whether the specific V763A patient variant

(Figure 1A and Supplementary Figure 2A) would impair

MED14 function, as predicted by structural modeling

(Figure 1B), we performed rescue experiments. After knocking

down endogenous med14 expression using splice blocking MO,

wild type or patient variant human MED14 were re-expressed

using heat-mediated induction (7). Expression of the human

wildtype MED14 protein rescued the arrest in T cell

development caused by knockdown of endogenous med14,

indicating conservation of function between zebrafish and

human MED14 (Figure 2B and Supplementary Figure 2C).

Importantly, however, re-expression of the patient MED14V763A

variant failed to rescue the loss of endogenousmed14 (Figure 2B),

indicating that the MED14V763A variant significantly damaged

MED14 function. These findings suggested that the MED14V763A

variant might have caused the proband’s immunodeficiency.
B

A

FIGURE 2

Role of Med14 in Zebrafish T cell Development. (A) The effect of MO knockdown of med14 on T cell development at 5 dpf was assessed by
WISH using an lck probe to identify T cells. The numbers on the images reflect the fraction of the embryos with the depicted staining pattern.
Thymus staining is outlined by blue dashed ovals. The panel on the right confirms MO induced mis-splicing of med14 mRNA by RT-PCR at 1 dpf
with b-actin (actb2) as a loading control. (B) The ability of the wild type and human MED14 variant to rescue loss of endogenous zebrafish
med14 was assessed by heat-inducible re-expression of wild type or variant MED14. The effect on T cell development was assessed as above by
WISH using an lck probe. The integrated density of WISH staining was measured by ImageJ software and depicted graphically as box plots.
Significantly altered groups are indicated. Data are representative of 3 experiments. * p < 0.05, ** p < 0.01.
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Basis for impaired T cell development
upon Med14 loss

To determine how Med14 loss blocked zebrafish T cell

development, we examined whether other precursor and cell

populations were impacted. Because lck is expressed in all

T cell precursors, the reduction in the lck WISH signal

(Figure 3) indicated that overall thymic cellularity was reduced

in zebrafish in the absence of Med14. To determine if the

impairment of T cell development was restricted to the ab T

cell lineage or affected both ab and gd T lineage cells, we

performed WISH with a probe for tcrd, which marks gd T

lineage cells (Figure 3). The reduction of both lck- and tcrd-

marked T lineage precursors indicated that Med14 loss impaired

the development of both the ab and gd T cell lineages (Figure 3).

WISH employing a probe for ikaros to mark thymic seeding cells

revealed that the loss of Med14 reduced thymic seeding (Figure 3).

Finally, WISH using foxn1, which marks thymic stroma, revealed

reduced staining, suggesting that the thymic structure itself might

also have been disrupted (Figure 3). Importantly, similar results

were obtained when the zebrafishmed14 knockdown was replaced

with the MED14V763A variant, indicating that the patient variant

was unable to rescue the attenuation of thymic seeding or

perturbation of thymic stroma (Supplementary Figure 3). Taken

together, these observations indicated that loss of Med14 function

interfered with development by attenuating thymic seeding and

might involve impaired thymic organogenesis.
Frontiers in Immunology 08
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Effect of the MED14V763A mutation on
T cell development in mice

Because the zebrafish model did not allow one to ascertain

the precise stage of developmental arrest upon Med14 loss

or whether it was cell-autonomous, we next developed

a mouse model in which these questions could be addressed

by generat ing V769A knock-in mice (Med14V769A)

(Supplementary Figure 4). These mice were viable and fertile

and were analyzed after being outcrossed to C57BL/6 mice for at

least 4 generations. To determine if the Med14V769A variant

knock-in mice exhibited a defect in T cell development, we

performed flow cytometry on thymic and splenic explants

(Figure 4). Surprisingly, analysis of the thymus revealed no

reduction in cellularity in the Med14V769A knockin mice or in

the proportion of thymic subsets (Figure 4A). Moreover, there

was no change in splenic cellularity or the distribution of B, T, or

NK cells in the spleen, including in memory T cell subsets

defined by CD44 and CD62L (Figure 4B). However, competitive

transplantation analysis revealed that hematopoietic stem and

progenitor cells (HSPC) fromMed14V769A mice exhibited a mild

impairment of differentiation beyond the b-selection checkpoint

as evidenced by an accumulation of CD4-CD8-CD44-CD25+

(DN3) thymocytes, reduced DN3b (CD25+CD98+) and DN4

(CD44-CD25-), and strongly reduced T cell repopulation of the

periphery (Supplementary Figure 5). The reduction of peripheral

T cells was not associated with decreases in thymic emigrating
FIGURE 3

Role of MED14 in Development of Thymic Subpopulations in Zebrafish. The effect of med14 knockdown on cell subpopulations was evaluated
at 5 dpf by performing WISH on TLF zebrafish embryos with the indicated probes: lck marks most developing thymocytes, ikaros marks thymic
seeding progenitors, tcrd marks gd lineage progenitors, and foxn1 marks thymic epithelial cells. Blue ovals mark the thymus and frequencies of
embryos with the exhibited staining pattern are indicated at the lower left of each image. Data are representative of 3 experiments.
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cells (CD69-CD62L+S1PR1+) or reduced proliferation in the

periphery (Supplementary Figure 5).

The absence of a baseline defect in T cell development in the

Med14V769A mice prompted us to investigate whether the V to A

substitutions impacted the structure of mouse and human

MED14 protein differently. Consequently, we replicated the

structural modeling analysis that we had performed on

the human V763A variant (Figure 1B) using ColabFold (27).

The resulting AlphaFold 2 model had a complete chain structure

that was highly similar to the conformation of the PDB 6W1S

mouse MED14, with a root-mean-square deviation (RMSD) of

160 alpha carbons of 0.983 Å, and an overall RMSD of 228

protein structure pairs of 1.531 Å (Supplementary Figure 6). The

human and mouse sequences were highly conserved in this

region of MED14, with 98% identity. Only 4 positions in the

aligned fragment (residues 643 to 890) differed. Nevertheless, the

same coordinate-constrained Rosetta relaxation protocol (25, 26)
Frontiers in Immunology 09
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demonstrated that the murine V769A variant exhibited only a

minor reduction in predicted stability of 1.2 REUs relative to the

wildtype protein (Supplementary Figure 6). The difference

relative to human MED14 V763 was that murine MED14 V769

made 17 hydrophobic contacts (relative to 7 in the human

MED14 V763) with 4 different residues (L663, E666, L667,

L670) on the adjacent helix (Supplementary Figure 6). This

increase in contacts apparently rendered mouse MED14

resistant to the A substitution, consistent with a possible

difference in mouse versus human MED14 proteins harboring

the V763A change.

Sequence analysis of the unaffected
sibling

The inability of the murine Med14V769A variant to attenuate

baseline T cell development diminished the likelihood that this
BA

FIGURE 4

Phenotypic analysis of lymphoid development in Med14 mutant mice. (A) Histograms are displayed of flow cytometry analysis of thymic cell
suspensions from wildtype (+/f) and hemizygous Med14 mutant (V769A/f) mice. The following antibodies were used: CD4, CD8, CD44, and
CD25. Scatter plots of total thymic cellularity and the frequencies of the indicated populations are depicted. The following populations are
graphed: DN, CD4-CD8-; DP, CD4+CD8+; CD4+; CD8+; DN3, CD4-CD8-CD44-CD25+; DN4, CD4-CD8-CD44-CD25-. Proportion of DN3
and DN4 subpopulations among DN thymocytes is depicted graphically (B) Histograms are displayed that illustrate flow cytometric analysis of
the lymphoid content of spleens from +/f and V769A/f mice. The following antibodies were used: B220, Thy1.2, NK1.1, CD4, CD8, TCRb, CD44,
and CD62L. Scatter plots of total splenic cellularity and the frequencies of the indicated populations are depicted. Each symbol represents an
individual mouse. The proportions of CD4 and CD8 T cells among Thy1+ cells and the proportions of memory subsets among CD4+ and CD8+
subsets are depicted graphically. Data are representative of 3 experiments performed. No statistically significant differences were found in any of
the indicated populations.
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variant alone could fully account for the immunodeficiency in

the patient. To seek other potentially disease-causing candidate

gene(s), WES was repeated using the patient, his parents, and his

healthy brother, the HSCT donor. Unexpectedly, the brother

shared the same Med14V763A variant as the patient (Figure 5A),

indicating that this genotype alone could not explain the disease.

This raised the possibility that there was variable penetrance of a

phenotype due variable expressivity, in which identical

mutations may be associated with a spectrum of disease

severity due to the contributions of secondary mutations that

differ between patients (42–44). Another possibility was that a

gene other thanMED14 could be responsible for the disease (see

Discussion). Additional variants were indeed identified in 6

genes (Table 3), including an X-linked variant in L1CAM

(p.Q498H) present in the patient but not in his healthy

brother (Figure 5B). L1CAM is a transmembrane glycoprotein

belonging to the immunoglobulin superfamily of cell adhesion
Frontiers in Immunology 10
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molecules (45). It contains six immunoglobulin (Ig) and five

fibronectin III-like domains at the extracellular surface, a single-

pass transmembrane domain, and a short cytoplasmic domain

(46). The Q498H variant was located in the fifth Ig domain.

Mutation or deletion of L1CAM has been associated with an X-

linked recessive neurological disorder (47), with at least 248

variants/mutations having been identified (48), but the roles of

the variants, including the one in the proband, have not been

studied in the immune system. To further examine whether an

orthologous murine L1CAMQ497H variant (corresponding to

L1CAMQ498H in human) would result in T cell deficiency, we

generated L1camQ497H knock-in mice (Supplementary Figures

7A, B). However, no defects were observed, with normal

development of CD4+CD8+ (DP), CD4+ and CD8+ (SP), CD4-

CD8- (DN), DN1 (CD25-CD44+), DN2 (CD25+CD44+), DN3,

and DN4 (CD25-CD44-) cells in thymus (Figures 6A, B); normal

overall frequencies and numbers of T, B (B220+IgM+) and NK
B

A

FIGURE 5

Sanger sequence analysis of MED14 V763A and L1CAM Q498H variants in the patient, his parents, and his healthy brother. (A) The mother
carries both alleles with A and G The patient and his healthy brother inherited the same alleles with G, resulting in the same MED14 V763A
variant as indicated by red arrows. The PCR-Rev primer was used for sequencing. (B) Patient’s mother carries T and G alleles (red arrow). The
patient inherited the allele with G (red arrow), resulting in the L1CAMQ498H variant and his healthy brother inherited the allele with T (see black
arrow). His father’s allele also has a T (black arrow). PCR-Fwd primer was used for sequencing.
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(CD3-CD122+NK1.1+) cells in spleen (Figures 6C, D); and

normal memory T cell subsets (CD44+CD62L-) (Figures 6E, F).

In addition, the proliferative response to anti-CD3 plus anti-

CD28 was also normal (Supplementary Figure 7C). These data

showed that L1CAMQ497H in the mouse was not sufficient to

cause a defect in the development of T cells.
Discussion

Here we describe a male proband identified through newborn

screening who exhibited T-B+NK+ immunodeficiency. Informatic

analysis of our initial WES suggested that a missense mutation in

the X-linkedMED14 gene might be responsible for the disease. This

possibility is supported by functional analysis in zebrafish.

Nevertheless, subsequent introduction of the patient variant into

a knock-in mouse did not replicate the baseline T cell

developmental arrest observed in zebrafish, although HSPC from

these mice failed to fully reconstitute peripheral T cells in the

competitive transplant setting. These data were of interest because

the healthy male sibling of the proband also carried the

MED14V763A variant, and while he exhibited no signs of baseline

disease, his HSPC transplanted into the patient failed to generate

normal T cell numbers, leaving the patient profoundly T

lymphopenic (Table 2). These findings could be consistent with

theMED14V763A variant potentially contributing to T lymphopenia;

however, because both siblings shared theMED14V763A variant, that

variant alone was insufficient to explain the proband’s disease.

Consequently, variable expressivity, mediated by additional genetic

variants, was considered. A search for such variants resulted in

identification of a variant in the L1CAM gene in the proband, but

not his healthy sibling. Nevertheless, introduction of the L1cam

variant inmice had no effect on T cell development. Taken together,
Frontiers in Immunology 11
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these data raise at least two potential etiologies in this patient. First,

a distinct, yet unknown and undetected, gene mutation was actually

responsible for his T cell insufficiency. Alternatively, the

MED14V763A variant could underlie the patient’s T cell

insufficiency, but the developmental defect was not manifest in

the sibling because of variable expressivity (43, 44, 49).

Our analysis in zebrafish supported the interpretation that

the MED14V763A mutation damages MED14 function and

prevents it from supporting the development of Lck-

expressing T cell development in the thymus, most of which

are ab lineage (50). Nevertheless, baseline impairment of T cell

development was not observed in mice harboring the equivalent

mutation. Molecular modeling of the mouse Med14V769A

mutation suggested it might be less destabilizing than the

human orthologous variant, providing a potential explanation

for why the mouse Med14V769A mutation does not phenocopy

the baseline defect in T cell development observed in zebrafish.

Importantly, the murineMed14V769A variant impaired the ability

of HSPC to reconstitute peripheral T cells, indicating that this

variant is important for supporting development or

maintenance of T cells. This also provides a possible

explanation for the failure of the healthy sibling’s bone

marrow to fully restore T cell numbers upon transfer into the

proband. The mechanistic basis by which MED14 supports the

function of HSPC and their capacity to fully reconstitute

peripheral T cells remains unclear.
MED14 is a component of the 26-subunit Mediator Complex, a

transcriptional coactivator transmitting signals from transcription

factors to Polymerase II (Pol II) (13, 18, 19, 51). MED14 serves as a

crucial backbone of the Mediator Complex (52). Consequently, the

MED14 variant might compromise the capacity of the Mediator

Complex to cooperate with transcription factors and Pol II to

coactivate transcription, as exemplified by its critical role in
TABLE 3 List of potentially interesting variants identified by whole exome-sequencing.

Chr Start End Ref Alt Gene Location Domain snp138 D ConsSites Model Father Mother Child Broth

chrX 153134053 153134053 T G L1CAM Exon11-:
p.Q498H

C2 na 15.16 SOX9_B1 X-link 0% 46% 100% 0%

chr14 103571109 103571109 T C EXOC3L4 Exon5-:
p.I440T

Sec6 na 19.66 1 AR 53% 52% 100% 50%

chr14 104436947 104436947 C T TDRD9 Exon6:
p.R279C

DEXDc na 20.2 na AR 55% 64% 100% 27%

chr8 38091971 38091971 G T DDHD2 Exon3:
p.G94W

WWE rs202216406 17.17 na AR 37% 58% 100% 58%

chr9 113132258 113132258 C A SVEP1 Exon47:
p.V3547L

– rs192794123 12.6 na AR 52% 57% 100% 0%

chr1 55247289 55247289 C T TTC22 Exon7:
p.G446D

– na 27.5 na Denovo 0% 0% 47% 0%

chrX 40541932 40541932 A G MED14 Exon18:
p.V763A

– na 22.5 EN1_01 X-link 0% 45% 100% 100%
f
rontiers
er
Shown are either X-linked, Denovo, or autosomal recessive (AR) variants. Chr (Chromosome), Start (chromosomal start), End (chromosomal end), Ref (Refseq), Alt (alteration), Gene
(gene name), Location (chromosome location and corresponding protein sequence), snp138 (dbSNP buiding 138), CADD (combined annotation dependent depletion), ConsSites (target
gene per GSEA database), Model (type of variant), and the percentage of variants in each individual are shown, with 100% being homozygous and 50% or less being heterozygous.
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PPARg-dependent and glucocorticoid receptor-dependent

transactivation of targets (53, 54).

While the structural differences between mouse and human

MED14mightprovide an explanation for the absenceof aphenotype

in our mouse model, this does not explain why the patient’s sibling

also bears the same MED14V763A variant and yet is healthy. One

possibility is the phenomenon of variable expressivity, widely

observed in genetic disorders in which distinct individuals with

identical mutations manifest marked differences in disease severity,

even in siblings reared in the same environment (55–57). The

prevailing view is that variable expressivity occurs because different

complements of modifier gene variants influence disease penetrance

(49). For example, cartilage hair hypoplasia (CHH), caused by

mutations in the RMRP gene, which encodes an untranslated

multifunctional RNA gene product, can manifest immune
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phenotypes that range from no significant impairment to T cell

deficient typical SCID (58). Importantly, this variability is even

observed among patients with identical RMRP mutations,

presumably due to differences in modifier genes (43, 55, 59–63).

Likewise, differences in modifier genes might explain the distinct

disease penetrance between this patient and hismale siblingwith the

sameMED14V763A variant, assuming it is indeed responsible for the

disease. The seemingly healthy sibling may also be experiencing a

mild functional deficit in hematopoiesis given that his bone marrow

failed to correct the T cell insufficiency upon adoptive transfer into

the patient. The background variants potentially responsible are not

known. As noted, a patient L1CAM variant was tested, but did not

impair T cell development in a mouse model. Modifier genes

underlying variable expressivity may be exceedingly difficult

to identify.
B

C

D

E

F

A

FIGURE 6

Phenotypic analysis of the L1CAMQ497H knockin mice. (A) Flow cytometric analysis of the frequencies of thymocytes from wildtype (WT) and
hemizygous L1cam497H mutant mice. (B) The total and subpopulations of thymic cellularity are shown in bar graphs. The following populations
are graphed: DN, CD4-CD8-; DP, CD4+CD8+; CD4+; CD8+; DN1, CD4-CD8-CD25-CD44+; DN2, CD4-CD8-CD25+CD44+; DN3, CD4-CD8-

CD44-CD25+; DN4, CD4-CD8-CD44-CD25-. (C) Flow cytometry analysis of splenic CD4+ and CD8+ T cells, B (B220+IgM+) and NK (CD3-

CD122+NK1.1+) cells in WT and L1camQ497H mutant mice. (D) The total and subpopulations of splenic cellularity are shown in bar graphs. (E)
Flow cytometry analysis of CD44 and CD62L staining of CD4+ and CD8+ T cells. (F) The frequency of CD44+CD62L+ in CD4+ and CD8+ T cells
is shown in bar graphs. Data are representative of 2 independent experiments performed. No statistically significant differences were found in
any of the indicated populations.
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In summary, the current study used newborn screening coupled

with functional testing in zebrafish and in mice. While the X-linked

missense mutation inMED14 remains a potential candidate for the

disease-causing allele in this patient, presumably acting togetherwith

modifier gene variants through variable expressivity, the disease

might alternatively be caused by defects in another, as yet

undefined gene, and perhaps could be due to a mutation in a

noncoding (e.g., promoter or enhancer) element affecting gene

expression rather than in a coding region. While additional

investigations are required to determine the basis for the proband’s

disease, it is possible that further human cases of T lymphopenia

associated withMED14 variants could be found; such evidence from

multiple affected individuals would provide strong supporting

evidence for pathogenicity of this gene.
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SUPPLEMENTARY FIGURE 1

smarcal1 knockdown does not impair T cell development. (A)
Multisequence alignment of SMARCAL1 sequences with the patient

variant (R114H) shown in a red box. (B) Upper panel, effect of smarcal1
knockdown on T cell development as measured by WISH with an lck

probe. Blue ovals mark the thymus and the numbers on the images
indicate the frequencies of embryos with the depicted phenotype.

Lower panel, efficacy of the smarcal1 MO as indicated by mis-splicing
of the smarcal1 pre-mRNA by RT-PCR analysis. b-actin (actb2) serves as a

loading control. Results are representative of at least 3 experiments.

SUPPLEMENTARY FIGURE 2

Conservation of the MED14 variant. (A) Multiple sequence alignment of

human, mouse and zebrafish MED14. Valine 763 is boxed in red and
conservation indicated (identical *, highly similar: similar.). (B) Schematic

representation of themed14 gene structure with the position of the Exon
3-Intron 3 MO and primers for RT-PCR analysis indicated. Blue arrows

indicate primers and blue rectangle the morpholino binding site. (C) RT-
PCR analysis of the efficacy of med14 MO at 1 and 5 dpf of the rescue
experiment. RT-PCR analysis of both med14 and b-actin (actb2) are

shown. Results are representative of at least 3 experiments.

SUPPLEMENTARY FIGURE 3

Effect on re-expression of the MED14 variant on generation of thymic

subpopulations. A rescue experiments was performed as in Figure 2, and

the resulting embryos analyzed byWISHwith the indicated probes (lck, ikaros,
tcrd and foxn1) to evaluate the ability of the MED14 variant to rescue gd T cell

development, thymic seeding, and thymic architecture. Blue ovals mark the
thymus. Numbers on the figures represent the frequency of the depicted

phenotype. Results are representative of at least 3 experiments.

SUPPLEMENTARY FIGURE 4

Generation and sequence validation of MED14 V769A knockin mice. (A)
The sgRNA target sequence is shown with the sgRNA sequence indicated

and the region it binds highlighted in yellow, mutations in the protospacer
adjacent motif (PAM) to prevent re-cutting are colored red and newly

created restriction enzyme screening site is indicated in green. The
sequence trace files show PAM mutations, specific V769A mutation, and

silent mutations in male founder. An Alu I digest is shown with cleaved

bands indicating digestion of the mutant allele.
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SUPPLEMENTARY FIGURE 5

Assessment of Med14V769A/f hematopoietic progenitor function by
competitive bone marrow transplantation. 100x105 allotype marked wild

type (CD45.1) and Med14V769A/f mutant (CD45.2) lineage negative
hematopoietic stem and progenitor cells (HSPC) were combined and

transferred together into CD45.1 recipients that had been treated with
1100 rads (2x550r, 4h apart) 24h earlier. Recipient mice were placed on

antibiotic-treated water (polymyxin B sulfate and neomycin) for 3 weeks
and analyzed 6 weeks after transplantation. Single cell suspensions of

thymus (A) and spleen (B, C) were stained with CD45.1 and CD45.2

antibodies to distinguish the genotypes of transferred HSPC and with
the indicated lineage markers. Bromodeoxyuridine (BrdU) labeling was

conducted by staining permeabilized cells after 24h of labeling. Gate
frequencies were calculated and depicted as bar graphs of the mean +/-

standard deviation. Statistical significance were determined using the t-
test. P-values are indicated on the graphs. NS, not significant.

SUPPLEMENTARY FIGURE 6

Molecular modeling of the wild type and variant mouse MED14 proteins.

Two views of wild type (orange) and V769A mutant (green) mouse MED14
are depicted. The right half of each panel shows a zoomed in view of aa

769 with nearby residues on the opposing helix that are capable of making
contacts with the A or V769. The top panel shows wild typemouse MED14

V769 from known PDB structure 6W1S chain I, residues 643 to 890. The

bottom panel shows the mouse V769A MED14 variant. Hydrophobic
contacts are shown with purple lines.

SUPPLEMENTARY FIGURE 7

Construction and analysis of the the L1CAMQ497H knockin founder mice.
(A) Part of human and mouse L1CAM amino acid sequences were aligned

and Q498 in human and Q497 in mouse are highlighted and yellow. (B)
The founder mouse was identified by PCR using tail gDNA and Sanger
sequencing using PCR-Rev primer; black arrows indicate silent mutations

introduced to prevent from subsequently cutting by Cas9, which do not
change the amino acid and the red arrows indicate a G to C change to

make Q to H mutation in mouse. (C) In vitro proliferation assays were
performed using splenic T cells isolated from wild type littermates (WT)

and L1camQ497H (KI) mice, which were labeled with CFSE, stimulated with

2 mg/ml of plate-bound anti-CD3 and 1 mg/ml of anti-CD28 as indicated.
Cell proliferation was determined by CFSE dilution.
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Shifting gears: Id3 enables
recruitment of E proteins to
new targets during T cell
development and differentiation

Michele K. Anderson1,2*

1Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada,
2Department of Immunology, University of Toronto, Toronto, ON, Canada
Shifting levels of E proteins and Id factors are pivotal in T cell commitment and

differentiation, both in the thymus and in the periphery. Id2 and Id3 are two

different factors that prevent E proteins from binding to their target gene cis-

regulatory sequences and inducing gene expression. Although they use the

same mechanism to suppress E protein activity, Id2 and Id3 play very different

roles in T cell development and CD4 T cell differentiation. Id2 imposes an

irreversible choice in early T cell precursors between innate and adaptive

lineages, which can be thought of as a railway switch that directs T cells

down one path or another. By contrast, Id3 acts in a transient fashion

downstream of extracellular signals such as T cell receptor (TCR) signaling.

TCR-dependent Id3 upregulation results in the dislodging of E proteins from

their target sites while chromatin remodeling occurs. After the cessation of Id3

expression, E proteins can reassemble in the context of a new genomic

landscape and molecular context that allows induction of different E protein

target genes. To describe this mode of action, we have developed the “Clutch”

model of differentiation. In this model, Id3 upregulation in response to TCR

signaling acts as a clutch that stops E protein activity (“clutch in”) long enough

to allow shifting of the genomic landscape into a different “gear”, resulting in

accessibility to different E protein target genes once Id3 decreases (“clutch

out”) and E proteins can form new complexes on the DNA. While TCR signal

strength and cytokine signaling play a role in both peripheral and thymic

lineage decisions, the remodeling of chromatin and E protein target genes

appears to be more heavily influenced by the cytokine milieu in the periphery,

whereas the outcome of Id3 activity during T cell development in the thymus

appears to depend more on the TCR signal strength. Thus, while the Clutch

model applies to both CD4 T cell differentiation and T cell developmental

transitions within the thymus, changes in chromatin accessibility aremodulated

by biased inputs in these different environments. New emerging technologies

should enable a better understanding of the molecular events that happen

during these transitions, and how they fit into the gene regulatory networks

that drive T cell development and differentiation.
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Introduction

Conventional T cells acquire their functional properties in

two main phases. The first occurs in the thymus, as T cells transit

through successive stages that install the gene expression

programs that will run at steady state. The second phase of

differentiation occurs in the periphery after exposure to signals

that occur during an immune response. These signals activate

accessible but latent sub-routines that are kept in check prior to

the initiation of the immune response. Both processes depend on

the activity of E protein transcription factors and their

antagonists, the Id factors. One of the most intriguing aspects

of E proteins is their context-dependent use in many different T

cell lineages, and the propensity of T cell receptor (TCR)

signaling and Id3 activity, in collaboration with other

extracellular signals, to create those contexts. While TCR

signaling is required for peripheral CD4 T cell differentiation,

the specific functional pathways accessed in the periphery are

very sensitive to the cytokine milieu. By contrast, the progression

of T cell precursors into different pathways in the thymus

appears to be driven more by TCR signal strength. In both

cases, TCR-dependent upregulation of Id3 is important for

allowing changes in changes in chromatin remodeling and

gene expression that are needed to restrict E protein activity to

the appropriate targets.
T helper cell differentiation
and function

Conventional CD4 T cells emerge from the thymus as

“naïve” cells ready for activation. The functional T helper cell

differentiation pathways they take upon antigen encounter

depends on the types of inflammatory molecules produced

during the innate immune response (1) (Figure 1A). Each T

helper cell subset is dependent on a specific “master regulator”

transcription factor that directly induces the effector genes of

each program (2). The Th17 lineage, characterized by secretion

of IL-17A, IL-17F, and IL-22, is triggered by the innate response

to bacteria and fungi. RORgt (Rorc) is the Th17 master regulator.

Viruses and other intracellular pathogens induce differentiation

into the T-bet (Tbx21) dependent Th1 pathway, leading to IL-2,

TFNa, and IFNg production. Helminth infection induces the

Th2 fate, leading to secretion IL-4, IL-5, and IL-13, under the

control of GATA3 (3).

Other Th subsets generated in the periphery include Bcl6-

driven T-follicular helper cells (Tfh) (4), specialized for B cell

help in the germinal center, and induced T-reg cells, which, like

thymic-derived T-regs, depend on FoxP3 (5). In addition to

playing unique roles in immunity, Th subsets also have

pathogenic impacts when dysregulated (6). In general, Th1

and Th17 cells contribute to autoimmune pathology, Th2 cells
Frontiers in Immunology 02
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are largely responsible for allergic reactions, and T-regs inhibit

anti-cancer immunity (7, 8). Most Th subsets retain plasticity

after activation, and some can transdifferentiate from one type to

another (2). Additional Th subsets continue to be identified,

including Th22, Th9, Tfh13, and Tr1 cells, suggesting that the

networks controlling these effector functions are dynamic, and

represent more of a physiological state than a committed fate,

rendering them open to manipulation during an immune

response (9–11).
Transcriptional control of
Th differentiation

Differentiation of naïve CD4 T cells into the Th subsets is

coordinated by several sets of signal-dependent transcription

factors (12). Triggering of the ab TCR and co-stimulatory

receptors leads to activation of NFkB, NFAT, and IRF

transcription family members, as well as upregulation of AP1

transcription factor family members such as BATF and Jun (13,

14). Cytokine receptor signaling leads to the activation of

different sets of transcription factors, most notably members of

the STAT and SMAD families (15, 16). BATF, IRF4, and the

cytokine-responsive factors recruit chromatin remodeling

enzymes that provide access to genes of specific Th subsets,

while restricting access to genes of alternative Th subsets (13,

17). After chromatin remodeling, the master regulators are

induced, providing the final key needed for functional

activation during the immune response.

E proteins and Id proteins are involved in regulation of the

naïve CD4 T cell state, and in the differentiation of Th2, Th17,

and T-reg cells (18–20). In general, E protein activity is regulated

post-translationally by Id proteins, which sequester them in

inactive dimers. The requirement for E proteins for Th17

differentiation has been especial ly well studied. A

comprehensive study conducted by the Strober group in 2013

showed that mice carrying a conditional double HEB/E2A

deletion on a CD4-Cre background had a profound defect in

Th17 development in vitro, and compromised immune function

in vivo, using both autoimmunity and infection models (21).

This study also showed that HEB and E2A can directly bind and

activate the Rorc locus, but only in the context of Th17 cells, not

in naïve CD4 T cells. Studies of Id3-deficient mice suggest that E

proteins restrain the Th2 and Tfh lineages and promote the Th9

lineage, whereas Th1 cells appear to require Id proteins and to be

E protein independent (21–24). Interestingly, T-regs require

both Id3 and E2A in a sequential manner. TGFb induces

transient expression of Id3, which is needed to prevent

repression of the FoxP3 promoter (25). This repression is not

mediated directly by E proteins, but rather results from E

protein-mediated upregulation of GATA3. Subsequently, E2A

activity is required to directly activate the FoxP3 promoter.
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However, if E2A levels are too high, FoxP3 expression becomes

unstable in T-regs, emphasizing the importance of transcription

factors levels in maintaining stable outcomes (26).
The Clutch model of E protein/Id3
activity in T cell transitional states

The theme of transient Id3 expression followed by shifting E

protein target gene activation suggests what we term a “Clutch”

model of Th differentiation (Figure 1). In this model, Id3-
Frontiers in Immunology 03
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mediated pausing of E protein activity would act like the

clutch of a car, withholding access to the engine (E protein

activity) until the appropriate gear (chromatin context) is

engaged, and then allowing the engine to move the car (Th

differentiation) forward in a controlled fashion (Figure 1A). E

proteins bind to many effector genes in Th subsets. Therefore, it

is likely that restriction of E protein binding to the “right” set of

mediators within each lineage is essential for linking

environmental input to functional output in Th subsets. This

is clearly a strong paradigm for peripheral T cell differentiation

(27). The Clutch model also applies to T cell development in the

thymus, but with a twist, as described below (Figure 1B).
B

A

FIGURE 1

“Clutch” model of Id3-E protein mediated fate choice. (A) E proteins regulate a core CD4 T cell program in naïve T cells. Upregulation of Id3
causes a transient inhibition of E protein activity (red, clutch in), during which time initiating transcription factors provide access to Th subset-
specific genes. Once remodeling is finished, Id3 activity ceases and E protein activity resumes (green, clutch out). E proteins can then induce
master regulators and effector genes specific to each Th lineage. (B) Waves of graded Id3 (red) induction in response to TCR signaling pauses a
subset E protein activity (clutch in) followed by reassembly of E proteins at successive stages of T cell development (clutch out). Levels of Id3
dictate lineage choice, but E proteins are often engaged in both choices downstream of lineage commitment. Id2 (green) is responsible for
differentiation away from the adaptive T cell lineage and into the innate lymphoid cell lineage (ILC) or invariant natural killer T (iNKT) cell lineage.
DN=double negative CD4-CD8-, DP=double positive CD4+CD8+, gdT1 = IFNg-producing gd T cells, gdT17 = IL-17 producing gd T cells.
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Moreover, the role of Id2 in thymic T cell development exhibits

stark differences from Id3 during thymic development and does

not conform to the Clutch model.

Id2 regulates the innate/adaptive
fate choice in early T cell precursors

The earliest T cell progenitors (ETPs) to enter the thymus

are not yet committed to the T-cell lineage and have alternative

fates available to them depending on their access to

microenvironmental signals. One of the key molecular

switches that must be flipped to gain access to the T cell

pathway is to increase E protein activity. This occurs in at

least two different ways. The first is upregulation of E proteins

at the mRNA level, and the second is the downregulation of Id2

(28). Id2 is a critical mediator of the innate/adaptive lineage split

(18, 29). ETPs express “legacy genes”, thus termed because they

are expressed in hematopoietic stem cells (30). ETP legacy genes

include Id2, the Ets protein PU.1, and the Class II bHLH factor

SCL. All three of these factors can act in opposition to T-lineage

commitment: PU.1 drives expression of myeloid and B cell genes

(31), SCL can re-direct E proteins to stem cell gene loci and away

from T cell gene loci (32), and Id2 interferes with E protein

activity. E protein activity is essential for the expression of Rag

recombinase genes, which are necessary for the generation of

TCRs and thus T cells (33). Unlike Id3, Id2 does not appear to be

under the influence of transient signals during thymocyte

development but rather is subject to degradation in a cell

cycle-dependent manner (34, 35). Downregulation of PU.1

and upregulation of Bcl11b in early T cell development results

in the cessation of Id2 mRNA expression, which allows

upregulation of T-lineage E protein target genes (36, 37).

Conversely, Id2 expression is maintained in mature innate

cells including ILCs, NK cells, and myeloid cells, and appears

to support the maintenance of lineage fidelity.

Notch signaling shifts the E
protein-Id2 balance to allow
T cell development

As ETPs enter the thymus, they are exposed to Delta-like

(Dll) ligands of Notch receptors, resulting in strong Notch

signaling. Notch signaling is indispensable for T cell

specification and lineage commitment, acting upstream of an

elegant cascade of transcription factors that inhibits alternative

fates and induces T-cell genes (38). While Notch regulates a wide

swath of important target genes, one of the most important roles

plays in T-lineage commitment is by shifting the balance

between Id and E protein activity in ETPs, in three

complimentary ways. First, Notch redirects PU.1 away from

Id2 and towards more T-lineage friendly genes (39). Secondly,

Notch upregulates the E protein HEBAlt, increasing the overall E
Frontiers in Immunology 04
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protein availability (40). Thirdly, Notch directly upregulates

Bcl11b, which downregulates Id2 at the transcriptional level

(37). This delivers a one-two-three punch that directs cells

permanently away from Id2-dependent ILCs and into the T-

cell lineage. Thus, Id2 does not acts as a way station for changing

gene availability to E proteins, but instead is more akin to a

railroad switch that directs cells down one pathway or

another (Figure 2).
TCR signal strength determines
lineage outcomes during the
intrathymic T cell lineage choices

Once cells have been switched onto the T-lineage track, they

progress towards the first “checkpoint” of T cell development.

There are two main checkpoints that occur during T cell

development, so called because they serve as testing of the cells

for functional TCR rearrangement and function (Figure 1B).

During the first checkpoint, the TCRb chain pairs with the pre-

Ta chain to form a pre-TCR. The only requirement for the pre-

TCR to allow “passage” through the checkpoint is for it to

complex with CD3 chains and translocate to the cell membrane

long enough to invoke a weak set of signaling cascades (41).

Alternatively, the cell can rearrange and express a TCR

composed of TCRg and TCRd chains. In this situation, the gd
TCR/CD3 complex is stably expressed on the surface,

transmitting a stronger signal than that transduced by the pre-

TCR, which directs cells away from the ab T cell fate and into

the gd T cell fate (42, 43). After commitment to the ab T cell

lineage, cells expressing ab TCRs are subjected to second

“checkpoint” which vets these TCRs for their ability to bind to

MHC/peptide and assesses the affinity of the interaction. As with

the first checkpoint, this signal also serves as a lineage

branchpoint, with cells experiencing lower and briefer TCR

signaling adopting the CD8 fate, and cells experiencing longer

and stronger TCR signaling progressing into the CD4 T cell

lineage (44). This paradigm also applies to committed gd T cells

that progress along the IFNg-producing gdT1 fate or the gdT17
fate (45) (Figure 1B). Engagement of strong gd TCR ligands in

conjunction with co-stimulatory molecules results in strong

TCR signaling and the gdT1 developmental outcome, whereas

a less strong TCR signal leads to the gdT17 fate (46–48). All these
lineage choices are intimately associated with the balance

between Id3 and E proteins (49, 50).
Translation of TCR signal strength
into Id3 activity modulates E protein
target gene accessibility

As in peripheral CD4 T cells, TCR signaling in early

precursors leads to upregulation of Id3, and a pause in E
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protein activity allows chromatin remodeling and shifting of E

protein target availability. There may also be a role for TCR

signal strength during T helper cell differentiation, particularly

in combination with cytokine signaling (51). However, there is a

clear hierarchy of TCR signal strength that is induced at each

checkpoint in thymic T cell development (52). During T cell

development, TCR signaling may shift the balance between Id3

and E proteins to different degrees, allowing retention of E

protein occupancy on some sites but not others. E2A and HEB

are direct regulators of most of the genes needed for assembly of

the TCR genes and formation of the pre-TCR (53, 54). Id3 is also

induced in response to abTCR signaling at the DP stage, and is

necessary to overcome the gatekeeper function of E proteins at

the DP to SP transition (55, 56). However, past this checkpoint,

E proteins are required for the generation of CD4 SP cells (57). E

proteins also regulate genes in gd-T committed cells that dictate

functional programming, including Tcf7 (58). An elegant study

by Hosoya and colleagues shed considerable light on the

chromatin remodeling events that occur during ab T cell

development using ATAC-seq, which detects open chromatin

and predicts the presence of transcriptional complexes (59). This

study showed that the loci for both gd-lineage and ab-lineage
genes were accessible in DN thymocytes. However, as cells

transitioned from the DN to the DP stage and then to the

CD4 and CD8 stages, cis-regulatory elements with predicted

binding by the key gd-lineage factor Sox13 showed a dramatic
Frontiers in Immunology 05
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loss of accessibility. Likewise, predicted HEB sites shifted in

accessibility according to the stage of ab T cell development,

consistent with Id3-facilitated chromatin remodeling at these

transitions. This is doubtless just the beginning of this new phase

of our journey towards a deeper understanding of T cell

developmental transitions, and it will be exciting to learn how

E protein genomic site occupancy changes after they are

dislodged and then reassembled on different loci at progressive

stages of T cell development and differentiation.

Limitations of the Clutch model of
Id3-facilitated shifts in E
protein targets

Like E proteins, Id3 is used widely in different contexts

outside of T cell development (60, 61). Clearly, the Clutch model

does not apply in all situations, but rather appears to be

restricted to certain types of cells and developmental

transitions. Moreover, an examination of E2A occupancy at

the DN3 to DN4 transition revealed both overlapping and

unique sites of E2A occupancy in both subsets, indicating that

E2A was only dislodged from a subset of sites during the

transition, while others were maintained (19). Release of E

proteins from specific sites likely depends on both the Id3/E

protein ratio and the availability of E protein binding partners.
BA

FIGURE 2

Railroad analogy of Id2 versus Id3 outcomes. (A) Id2 acts as a switch that diverts T cell precursors away from the adaptive fate and towards the
innate fate by permanently silencing E protein activity and E protein target gene expression. (B) Id3 serves as a way station (roundhouse) that
allows changes in accessibility of E protein target genes while E proteins are inactive, followed by E protein engagement with different E protein
target genes at the next stage of development. This occurs in both CD4 T cell differentiation (Naïve/Polarized) and multiple stages of thymic
differentiation (Stage 1/Stage 2). Blue-Yellow ovals = HEB/E2A. Black railroad ties = completely inaccessible genes; gray railroad ties = accessible
genes lacking the proper combination of transcription factors for induction; colored railroad ties = E protein target genes bound by HEB/E2A
and undergoing active transcription. Roundabout = Id3-mediated pause in E protein activity during which changes in accessibility of E protein
target sites occurs. Arrow with half circle = extracellular signaling inputs that direct which genes undergo changes in chromatin accessibility.
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For instance, the downregulation of Notch1 in response to pre-

TCR signaling would be predicted to increase the disengagement

of E proteins from sites that require both Notch factors and E

proteins, but not from other sites that maintain the core T-

lineage program. Importantly, E proteins themselves are

important mediators of chromatin remodeling, interacting

directly with both positive and negative regulators of

chromatin configuration such as p300, CHD4, LSD1, and

PRC2 (62–66). It is important to note that chromatin

remodeling in this context does not indicate simply a shift

between “open” and “closed” configurations, but also includes

the transition from “poised” to “active” states (67). This may be

mediated in part by fresh access to new binding partners that

become available after the transition. Furthermore, the plasticity

of CD4 T cell subsets suggests that lineage-specifying E protein

sites remain accessible during and after CD4 T cell

differentiation (68). A comprehensive understanding of global

E protein occupancy changes that occur during these processes

awaits further studies. Likewise, the relative contributions of

E2A versus HEB to these processes are not well understood.
Discussion

While it is well understood that Id proteins inhibit E protein

activity and interfere with the expression of E protein target

genes, much less is known about how E protein targets shift

during the developmental transitions that occur during Id3

expression, and the molecular events that underpin them.

Here, the Clutch model is presented as a conceptual scaffold

that will provoke questions and undergo modifications and

stratification as new data is obtained revealing E protein

chromatin occupancy before, during, and after T cell stages

transitions, and identifying stage-specific E protein partners.

Due to technical limitations, earlier studies largely relied on in

vitro models of T cell development or differentiation such as

OP9-DL co-culture derived T cell precursors or in vitro

polarization of naïve peripheral T cells (69, 70). While these

studies have provided a wealth of information into the global

events that orchestrate T cell development, they cannot

completely replicate the complex thymic niches that shift over

time as cells migrate through different niches in the thymus, nor

can they fully provide the complex medley of signals that

transpire during a coordinated immune response. The advent

of single cell RNA-seq, and multiomic approaches such as

scRNA-seq/ATAC-seq and CITE-seq that allows that require

fewer input cells are now providing unprecedented access to ex

vivo precursors and products that arise during T cell

development. Moreover, computational methods such as

pseudotime modeling and RNA velocity are further advancing

our understanding of transient states of development (71).

Importantly, there is a fourth dimension that is rarely

considered in these snapshot approaches: time. Single cell live
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imaging has revealed that Id3 transcription is “bursty”, occurring

in only a small number of cells within a population at any one

time, in the B cell lineage (72). It remains to be seen whether this

is true in T cell precursors, and whether TCR signaling can

synchronize cells into uniformly high Id3 expressers.

Alternatively, burstiness may contribute to the gradation of

Id3 that mediates intrathymic T cell fate choices. By contrast,

Id2 acts as a permanent switch into the innate lineage choice.

This distinction highlighting the unique nature of Id3 in

regulating fate choices by facilitating E protein target changes

as T cells journey through development in the thymus or

differentiate in the periphery during an immune response.
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Protein ubiquitination in
T cell development

Ting Zhong †, Kang Lei †, Xiaoxi Lin, Zhiguo Xie, Shuoming Luo,
Zhiguang Zhou, Bin Zhao*‡ and Xia Li*‡

National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology,
Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya
Hospital of Central South University, Changsha, China
As an important form of posttranslational modification, protein ubiquitination

regulates a wide variety of biological processes, including different aspects of T

cell development and differentiation. During T cell development, thymic

seeding progenitor cells (TSPs) in the thymus undergo multistep maturation

programs and checkpoints, which are critical to build a functional and tolerant

immune system. Currently, a tremendous amount of research has focused on

the transcriptional regulation of thymocyte development. However, in the past

few years, compelling evidence has revealed that the ubiquitination system also

plays a crucial role in the regulation of thymocyte developmental programs. In

this review, we summarize recent findings on the molecular mechanisms and

cellular pathways that regulate thymocyte ubiquitination and discuss the roles

of E3 ligases and deubiquitinating enzymes (DUBs) involved in these processes.

Understanding how T cell development is regulated by ubiquitination and

deubiquitination will not only enhance our understanding of cell fate

determination via gene regulatory networks but also provide potential novel

therapeutic strategies for treating autoimmune diseases and cancer.

KEYWORDS

T cel l development, thymocyte, ubiquit inat ion, E3 ubiquit in l igase,
deubiquitinating enzyme
Introduction

Ubiquitin is a highly conserved protein of 76 amino acids and a versatile

posttranslational modifier that is ubiquitously expressed in all eukaryotic cells (1).

Protein ubiquitination plays a crucial role in protein homeostasis, thus regulating a

vast array of biological processes, such as DNA damage and repair, cell cycle progression,

apoptosis and cellular signaling (2, 3). Ubiquitin is added to the protein substrate via a

subsequent enzymatic cascade by E1 ubiquitin-activating enzymes, E2 ubiquitin-

conjugating enzymes and E3 ubiquitin ligases (4). The specificity of ubiquitination is

mainly achieved by E3 ligases, which are responsible for substrate recognition via protein

interacting domains and motifs (5). Ubiquitin has seven lysine residues that can be used
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to assemble polyubiquitin chains: Lys6, Lys11, Lys27, Lys29,

Lys33, Lys48, and Lys63. A substrate can be polyubiquitylated or

monoubiquitylated via polyubiquitin chains, and the impact of

polyubiquitination on the target protein is greatly dependent on

the type of conjugated chain (6). For example, except for Lys63,

all six Lys linkages have been implicated in proteasomal

degradation, with Lys48 and Lys11 being the predominant

type of chains for substrate degradation in cells. Lys63-linked

chains are involved in multiple nonproteolytic functions,

including activation of NF-kB, DNA damage repair, and

regulation of endosomal sorting pathways (7). Ubiquitination

is a dynamic and reversible process, and ubiquitination induced

by ubiquitin ligases can be counteracted by deubiquitinating

enzymes (DUBs) to control the intensity and duration of

ubiquitin signaling (8).

The thymus is the primary site for T cell development,

thymic seeding progenitor cells (TSPs) arrive at the thymus from

the bone marrow and initiate multistep maturation programs

and checkpoints comprising lineage commitment, T cell

receptor (TCR) gene rearrangement, and positive and negative

selection. It is well established that thymocytes mature through

ordered progression, including double-negative (CD4–CD8–,

DN) stage, double-positive (DP) stage and CD4 or CD8

single-positive (SP) stages (9, 10). In the earlier DN1-3 stages,

proliferation and differentiation are mainly driven by Notch

signaling and cytokines such as c-kit and IL-7 (11). Then, cells

successfully assembled pre-T cell receptor (pre-TCR) complexes

will pass b-selection and transition from the DN3 to the DN4

stage. In DP stage, thymocytes undergo positive selection for

self-human leukocyte antigen (HLA) recognition under the
Frontiers in Immunology 02
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control of cortical thymic epithelial cells (cTECs) and negative

selection to remove strong self-reactive clones based on the

interaction with medullary thymic epithelial cells (mTECs) and

thymic DCs (tDCs), finally becoming CD4+ SP or CD8+ SP cells

(11). “Mature” SP thymocytes exit the thymus to the peripheral

lymphoid organs (9).

Ubiquitin signaling modulates a variety of pathways

involved in the T cell developmental process primarily

through proteolysis-dependent mechanisms, such as Notch,

pre-TCR signaling, Signal transducer and activator of

transcription 3 (STAT3)-mediated signaling, Wnt signaling,

and Nuclear factor kB (NF-kB) pathway (9, 12, 13). Here, we

summarize the interplay between the ubiquitination system and

T cell developmental programs (Figure 1). Specifically, we

highlight the roles of E3 ligases and DUBs involved in these

processes as well as the molecular mechanisms and cellular

pathways that regulate thymocyte ubiquitination (Table 1).
E3 ubiquitin ligases in
T cell development

E3 ligases are crucial components of the Ubiquitin

Proteasome System. Several classes of these enzymes have been

identified, known as the RING, U-box, HECT and RBR classes

(45). As the last component of an enzymatic cascade, E3 ligases

determine substrate specificity. Attaching ubiquitin to a protein

could have profound effects on the protein’s cellular localization,

protein-protein interactions or stability (46). Multiple E3 ligases

have been demonstrated to play a role in T cell development.
FIGURE 1

Overview of E3 ubiquitin ligases and DUBs in different stages of thymocyte development. The red letters in the black dotted box represent E3
ubiquitin ligases, and the blue letters represent DUBs. DN, double-negative; DP, double-positive; SP, single-positive.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.941962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2022.941962
NOTCH-regulating E3 ligases mainly
regulate the early stage of T cell
development

Notch signaling has been identified as a key signaling

pathway involved in the regulation of T cell development,

especial ly in thymocyte survival , proliferation and

differentiation (9, 47–49). E3 ubiquitin ligases that can catalyze

the ubiquitylation of Notch include Itch, Ligand of Numb-

Protein X (LNX), Deltex (DTX), Mind bomb (Mib) 1, Mib2,

Neuralized (Neur) 1, and Neur2 (15). Itch binds to the N-

terminal of the Notch intracellular domain via its WW domains

and promotes ubiquitination of Notch via K29-linked ubiquitin

chains, thus promoting its lysosomal degradation (50). Itch-/-

mice with an activated Notch1 transgene in their thymocytes
Frontiers in Immunology 03
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show a reduction of DP and an increase of DN T cells, with a

more severe autoimmune phenotype (14). Itch and Notch act in

the AKT signaling concurrently in the genesis of autoimmune

disease (14). In addition, Itch regulates Notch signaling via

interacting with some molecules, such as Numb and DTX.

Numb, an adapter protein, was initially identified as a

negative regulator of Notch signaling. Numb binds to Itch

WW domain and promotes ubiquitination and degradation of

Notch1 by Itch (51). DTX, an E3 ligase, has been shown to be an

itch homolog that plays a negative role in regulating

Notch receptor signaling, and can cooperate with Itch to

regulate NOTCH signaling via lysosomal degradation (52). In

addition, downregulation of DTX in hematopoietic progenitors

promotes T cell development in fetal thymic organ culture and

in vivo (53). DTX antagonizes Notch1 signals by inhibiting
TABLE 1 List of E3 ligases and DUBs that modulate T cell development.

Ubiquitinase Substrate Cko/ko mice Phenotype Ref.

E3 ligases

Itch Notch Itch-/-; Lck-Notch1 tg+ -reduces DP and increases DN thymocytes
-reduces apoptosis in the thymus and increases phospho-AKT signaling

(14)

Mib1 Dll1, Dll4 Mib1-/- -impairs Dll1 and Dll4 endocytosis
-reduces DP and increases DN thymocytes

(15)

Fbxw7 c-Myc Lck-Cre; Fbxw7fl/fl -promotes cell cycle exit
-leads to hyperproliferation in thymocytes
-increases DP thymocytes
-enforces GATA3 expression

(16)

Fbxl1 Cdkn1b Fbxl1-/- -resultes in an incomplete DN3-DN4 developmental block (17)

Fbxl12 Cdkn1b Lck-Cre; Fbxl12fl/fl -blocks DN3-DN4 transition (17)

TRIM21 SOCS3 TRIM21-/- -increases number of thymocytes -reduces frequency of DN cells (18)

GRAIL TCR-CD3 GRAIL-/- -upregulates the function of tTregs (19)

VHL HIF-1a Lck-Cre; Vhlfl/fl -increases cell death and caspase activity
-reduces TCR-mediated Ca2+ signaling

(20)

TRAF3 TCPTP Lck-Cre; TRAF3fl/fl -increases number of Treg cells in the thymus (21)

TRAF6 NF-kB essential modifier
(NEMO)

TRAF6-/- -reduces autoimmunity
-reduces Aire expression
-reduces Treg cells

(22)

c-Cbl CD5, TCRz, Zap-70, SLAP, BIM c-Cbl-/- -increases TCR signaling
-increases DP thymocytes
-increased expression of CD3, CD5, and CD69
-enhances positive Selection of CD4+ T Cells

(23, 24)

Cbl-b Foxp3, p85 Cbl-b-/- -regulates tTregs
-reduces mature SP thymocytes

(25)

MARCH1 MHCII MARCH1-/- -reduces tTregs (26)

DUBs

USP4 HUWE1 USP4-/- -induces IR-induced apoptosis in thymus (27)

USP7 Caspase 3 / -regulates the apoptosis of thymocytes via interacting with caspase 3 (28)

USP8 GADS, CHMP5 CD4-cre;USP8fl/fl -diminishes thymocyte proliferation (29–34)

USP9X Themis USP9X-/- -reduces thymic cellularity (35–39)

CYLD LCK CYLD-/- -regulates DP-SP transition (40)

MYSM1 IRF2, IRF8 MYSM1-/- -reduces thymus sizes and CD8+ T-cell numbers (41, 42)

A20 GITR CD4-cre;A20fl/fl -increases CD69 expression within NKT thymocytes (13, 43)

BAP1 H2AK119 Rosa26CreERT2; Bap1fl/fl -causes a block at the DN3 stage (44)
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coactivator recruitment (54) and restores DP thymocyte survival

from the glucocorticoid (GC)-induced apoptosis by repressing

SRG3 promoter activity (55). LNX can also cause proteasome-

dependent degradation of Numb and therefore enhance Notch

signaling (56). Mib1 modulates Notch signaling by

ubiquitinating the Notch receptors (Dll1 and 4), promoting

their endocytosis (57). Reciprocal bone marrow (BM)

transplantation experiments revealed that Notch signaling was

diminished in the DN thymocytes of Mib1 conditional KO

mice (15). Furthermore, knocking down Mib1 in the coculture

system causes a delay in T cell growth and a failure of Dll1

endocytosis (15).
SCF complexes play crucial roles in
thymic b-selection mediated
cell proliferation

The SCF (Skp1-cullin-F-box protein) complex is a well-

described multisubunit RING-finger E3 composed of Skp1,

Cdc53/cullin, and an F box protein (58). Fbxw7 (F-box and

WD-40 domain protein 7)—also known as Fbw7—is an SCF

ubiquitin ligase component reported to play a role in thymocyte

cell cycle progression by controlling the degradation of c-Myc, c-

Jun, cyclin E, and Notch (59). Fbw7 modulates cell cycle

progression by controlling c-Myc protein stability, and loss of

Fbxw7 leads to hyperproliferation of thymocytes (16). Moreover,

the SCF subunits Fbxl1 and Fbxl12, which are transcriptionally

induced by Notch and pre-TCR signaling respectively, function

identically but additively to promote the degradation of Cdkn1b

and proliferation of b-selected thymocytes (17, 60). Deletion of

Fbxl1 or Fbxl12 results in an incomplete DN3-DN4

developmental block and a reduced thymus size (17).
TRIM family proteins have crucial roles
during negative selection

As RING-type E3 ligases, tripartite motif (TRIM) proteins

have been demonstrated to regulate the innate immune response

(61, 62). However, recent studies suggest that TRIM21 alters T

cell development in the thymus (63). TRIM21−/− mice had an

increased number of thymocytes and a reduced frequency of DN

cells (18). TRIM21 targets suppressor of cytokine signaling-3

(SOCS3) for proteasomal degradation, thus impairing STAT3

activation in TECs (64). STAT3-mediated signaling has been

shown to promote quintessential growth of mTECs (but not

cTECs) (12, 65). Double-positive (DP) cells are selected by

cTECs to become CD4 or CD8 SP cells (66), while SP

thymocytes are further negatively selected in the medulla (67).

We can surmise that TRIM21 plays a crucial role during negative

selection in the thymus.
Frontiers in Immunology 04
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GRAIL and VHL regulate T cell
development during negative selection

Gene related to anergy in lymphocytes (GRAIL) is a RING-

type E3 ligase required for the initiation of CD4+ T cell anergy in

vivo. Previous studies considered GRAIL expression patterns in

murine CD4+ T cells as a defined anergic phenotype and a

negative regulator of the immune response (68, 69). Notably,

GRAIL expression is upregulated in tTregs, and its

overexpression in DO11.10 T cells convert these cells to a

regulatory phenotype (19). Nurieva et al. reported that GRAIL

regulates Treg cell function by mediating TCR-CD3 degradation

(70). Works are needed to delineate the mechanism(s) of how

GRAIL mediates its suppressor activity in the thymus. The von

Hippel-Lindau (VHL) is a RING-type E3 ligase that targets

hypoxia-inducible factor-1a (HIF-1a) for proteasomal

degradation (20). Vhl-deficient mice had a severe reduction in

thymus sizes and thymic cellularity due to enhanced caspase 8

activity in the apoptotic pathway, as a result of HIF-1a
accumulation (20).
TRAF family proteins regulate T cell
development during negative selection

Tumor necrosis factor receptor (TNFR)-associated factor 3

(TRAF3) is a member of the TRAF family of cytoplasmic

adaptor proteins and plays a role in modulating IL-2 signaling

in T cells. T cell conditional TRAF3 knockout mice resulted in

an increased number of Treg cells in the thymus (21) due to

more efficient conversion of CD25+ Foxp3– Treg precursors to

CD25+ Foxp3+ mature Treg cells (71). TRAF6 is another adaptor

E3 ligase that is involved in central tolerance by regulating the

development of thymic stroma. TRAF6−/− fetal thymic stroma

tissue fails to mediate negative selection (22). Furthermore,

specific deletion of TRAF6 in TECs hinders the growth of

mTECs (72). Several studies have suggested that TRAF6

regulates the establishment of thymic microenvironments

through manipulating RelB (73), RANK (74) and CD40

(75) expression.
Cbl family proteins regulate multiple
stages of T cell developmental processes

The Casitas B-lineage lymphoma (Cbl) family of proteins are

RING-finger domain containing E3 ubiquitin ligases (76, 77). In

mammals, two highly homologous adaptor proteins of the Cbl

family, c-Cbl and Cbl-b, are involved in the negative regulation of

the immune system (78, 79). Both c-Cbl and Cbl-b contain a highly

conserved amino-terminal tyrosine-kinase binding (TKB) domain,

a less conserved carboxyl-terminal proline-rich region (PRR) and a
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RING finger. Through their protein-protein interaction domains, c-

Cbl and Cbl-b form multiple complexes together with several

signaling molecules to regulate intracellular signaling events (80).

The first evidence indicating that Cbl proteins are associated with

thymic selection came from experiments showing that thymocytes

from c-Cbl-/- mice have increased signaling through the TCR and

CD4+ CD8+ DP thymocytes exhibited increased expression of CD3,

CD5, and CD69 in the c-Cbl knockout (KO)model (23). Moreover,

c-Cbl selectively inhibits thymic-positive selection of CD4 but not

CD8 T cells (23). This suggests that the positive selection of

thymocytes bearing MHC class II-restricted TCRs is negatively

regulated by c-Cbl. Mechanistically, c-Cbl modulates CD4+ T-cell

development by promoting TCR-z lysosomal degradation. In this

model, a transient trimolecular complex of TCRz-Zap-70-Cbl is
formed, and ubiquitin is then shifted from the Cbl-E2 complex to

TCRz (79, 81). In addition to Zap-70, Src-like adaptor protein

(SLAP) might also act as a bridge to bond TCRz and Cbl. In

support of this, SLAP-/- mice were shown to have a similar

phenotype to c-Cbl-/- mice (82–84). In addition to positive

selection, c-Cbl also regulates thymocyte negative selection,

probably by ubiquitinating and proteasomal degrading the pro-

apoptotic molecule B-cell lymphoma 2-interacting mediator of cell

death (BIM) (85). Furthermore, deactivation of c-Cbl reverses T cell

developmental detention in SLP-76-deficient mice, in which T cell

development is impeded at the DN3 stage (24). In conclusion, the c-

Cbl prote in modula tes mul t ip le s tages of T ce l l

developmental processes.

Analyses of Cbl-b KO mice resulted in no similar findings

(86). Given that the expression level of Cbl-b in thymocytes is

much lower than that of c-Cbl, it would not be surprising.

However, Zhao Y et al. reported that Cbl-b, together with Stub1,

regulates thymic-derived CD4+ CD25+ regulatory T cells

(tTregs) development by targeting Foxp3 for ubiquitination

and degradation in the proteasome (25). Moreover, Raberger J

et al. reported that the CD4/CD8 developmental profile was

noticeably altered and mature SP thymocytes were absent in

Vav1-/- or ITK-/- thymocytes (87), and the signaling defects in

Vav1-/- or ITK-/- thymocytes can be rescued upon deletion of

Cbl-b (87). These results indicate that Cbl-b alters

thymus development.
MARCH family E3 ligases modulate the
development of tTregs

Membrane-associated RING-CH1 (MARCH1) is an E3

ubiquitin ligase that regulates MHCII ubiquitination (26).

Thymocytes and TECs scarcely express MARCH1, while DCs

in the thymus express comparatively high levels of MARCH1

(26). MARCH1 deficiency results in an elevated level of MHCII,

which leads to a considerable decline in the number of thymic

Treg (tTreg) cells but not conventional CD4+ T cells in mice

(26). Another E3 ligase, MARCH8, is responsible for MHC II
Frontiers in Immunology 05
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ubiquitination specifically in thymic epithelial cells. In

MARCH8-/- mice, TECs express elevated levels of MHC II, but

the development of conventional CD4+ T cells or tTreg cells

remains unchanged. It is possible that tTreg development does

not require MHC II ubiquitination in TECs (88).
DUBs in T cell development

In addition to E3 ligases, the ubiquitin system is also

regulated by DUBs. Ubiquitin chains can be removed from the

substrate by DUBs, which are essential for the dynamic

regulation of the protein ubiquitination process (89, 90).

Several DUBs have been identified as regulators in the T cell

developmental program.
USP family proteases regulate multiple
stages of T cell developmental processes

Ubiquitin-specific proteases (USPs) are the largest subfamily

of DUBs and contain more than 100 members (91). Ubiquitin-

specific peptidase 4 (USP4) has been shown to inhibit p53

signaling through interacting with and stabilizing ARF-binding

protein 1 (ARF-BP1, also known as HUWE1), an E3 ligase for

p53 (24). USP4 knockout mice are viable and fertile but exhibit

enhanced ionizing radiation (IR)-induced thymocyte apoptosis

(27). In addition, USP4, a DUB with dual hydrolyzing activity

for K48- and K63-conjugated polyubiquitin chains, interacts

with the Nemo like kinase (Nlk) and T-cell factor (TCF) 4, two

known components of theWnt pathway that are essential for cell

development (92). USP7 (also known as HAUSP), which is

highly expressed in the thymus, also regulates the apoptosis of

thymocytes during negative selection via caspase-dependent

signaling (28). Likewise, the processing of HAUSP does not

occur in caspase 3-deficient thymocytes (28). Ubiquitin-specific

protease USP8 is a deubiquitinase involved in the endosomal

sorting complex required for transport (ESCRT) system (93). A

recent study reported that USP8 is involved in thymocyte

maturation and proliferation processes by modulating the

Foxo1-IL-7Ra axis (29). Moreover, the amino-terminal

SH3BM of USP8 binds with higher affinity to the TCR

adaptor GADS in a caspase-dependent manner (30–32).

Another study identified USP8 as a deubiquitinase for

CHMP5, a component of the ESCRT complex, and uncovered

the role of the CHMP5-USP8 complex in regulating thymic

positive selection (33, 34). Ubiquitin-specific protease

9X (USP9X) is a member of the peptidase C19 family

and encodes a protein similar in structure to ubiquitin-

specific proteases. Deletion of Usp9X resulted in an overall

reduction in thymic cellularity (35). Mechanistically, USP9X

interacts with and stabilizes Themis, an important TCR

signaling protein (36), by removing ubiquitin K48-linked
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chains on Themis upon TCR stimulation, thus affecting thymic

positive selection (37–39).
CYLD regulates T cell development
during negative selection

Cylindromatosis (CYLD) is a lysine 63-deubiquitinating

enzyme that positively regulates TCR signaling by promoting

the recruitment of Lck to its substrate, Zap70, in thymocytes

(40). CYLD-deficient mice displayed significantly fewer mature

CD4+ and CD8+ single-positive thymocytes (40). Previous

studies identified CYLD as a switch in T cell development

during the transition from double-positive to single-positive

thymocytes (40). Furthermore, S. Reissig et al. demonstrated

impaired negative selection in the thymus of CYLDex7/8 mice,

which overexpresses the naturally occurring CYLD splice variant

short CYLD (sCYLD), whereas full-length CYLD (FL-CYLD) is

absent (94, 95).
MYSM1, A20 and BAP1 modulate multiple
stages of T cell developmental processes

Other types of DUBs involved in T cell development include

Myb-like SWIRM and MPN domain containing 1 (MYSM1),

A20 and BRCA1-associated protein-1 (BAP1). Conditional

ablation of histone H2A deubiquitinase MYSM1 at late stages

of thymic development in a mouse model showed a severe

reduction in thymus sizes and CD8+ T-cell numbers,

indicating the critical role of MYSM1 in the positive selection

of CD8+ T cells (41, 42). A20, also known as TNF-a-induced
protein 3 (TNFAIP3), regulates tTreg development and

maturation by restraining the activation of NF-kB signaling

(13, 96). T lineage cell conditional A20 knockout mice showed

that tTreg cell compartments are quantitatively enlarged (13). In

addition, A20 specifically limits TCR-dependent activation of

NKT cells in the thymus (43). BAP1 is a member of the ubiquitin

C-terminal hydrolase (UCH) subfamily of DUBs and has been

shown to be involved in b-selection mediated cell expansion

(44). BAP1 deletion in adult mice led to serious thymic atrophy

and loss of cellularity due to defects in cell proliferation (97).

Likewise, BAP1 deficiency caused a block at the DN3 stage

before the pre-TCR checkpoint by facilitating the ubiquitination

of histone H2A at Lys119 (H2AK119) (97).
Conclusion

During the past few years, several lines of evidence have

shown that T cell development is regulated at multiple levels; in
Frontiers in Immunology 06
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addition to transcriptional control, posttranslational

regulation also plays a crucial role in those processes

(9, 98, 99). An increasing number of studies using transgenic

mouse models have demonstrated that E3 ubiquitin ligases

and DUBs are involved in specific stages of thymocyte

maturation by modulating the activity or stability of key

proteins during cellular signal transduction cascades (98, 99).

Technological advancements in single-cell proteomics, CRISPR/

Cas9 mutagenesis and mass cytometry will continue adding

valuable findings to this area of research. Future work on the

molecular mechanisms of ubiquitination and deubiquitination

in T cells will not only enhance our understanding of cell fate

determination via gene regulatory networks but also provide

potential novel therapeutic strategies for treating autoimmune

diseases and cancer.
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Notch and the pre-tcr coordinate thymocyte proliferation by induction of the scf
subunits Fbxl1 and Fbxl12. Nat Immunol (2019) 20(10):1381–92. doi: 10.1038/
s41590-019-0469-z

18. Gao Y, Liu R, He C, Basile J, Vesterlund M, Wahren-Herlenius M, et al.
Socs3 expression by thymic stromal cells is required for normal T cell development.
Front Immunol (2021) 12:642173. doi: 10.3389/fimmu.2021.642173

19. MacKenzie DA, Schartner J, Lin J, Timmel A, Jennens-Clough M, Fathman
CG, et al. Grail is up-regulated in Cd4+ Cd25+ T regulatory cells and is sufficient
for conversion of T cells to a regulatory phenotype. J Biol Chem (2007) 282
(13):9696–702. doi: 10.1074/jbc.M604192200

20. Biju MP, Neumann AK, Bensinger SJ, Johnson RS, Turka LA, Haase VH.
Vhlh gene deletion induces hif-1-Mediated cell death in thymocytes. Mol Cell Biol
(2004) 24(20):9038–47. doi: 10.1128/mcb.24.20.9038-9047.2004

21. Yi Z, LinWW, Stunz LL, Bishop GA. The adaptor Traf3 restrains the lineage
determination of thymic regulatory T cells by modulating signaling Via the
receptor for il-2. Nat Immunol (2014) 15(9):866–74. doi: 10.1038/ni.2944

22. Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, et al.
Dependence of self-tolerance on Traf6-directed development of thymic stroma.
Science (2005) 308(5719):248–51. doi: 10.1126/science.1105677
Frontiers in Immunology 07
94
23. Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, Thien CB,
et al. Tissue hyperplasia and enhanced T-cell signalling Via zap-70 in c-Cbl-
Deficient mice. Mol Cell Biol (1998) 18(8):4872–82. doi: 10.1128/mcb.18.8.4872

24. Chiang YJ, Sommers CL, Jordan MS, Gu H, Samelson LE, Koretzky GA,
et al. Inactivation of c-cbl reverses neonatal lethality and T cell developmental
arrest of slp-76-Deficient mice. J Exp Med (2004) 200(1):25–34. doi: 10.1084/
jem.20040262

25. Zhao Y, Guo H, Qiao G, Zucker M, Langdon WY, Zhang J. E3 ubiquitin
ligase cbl-b regulates thymic-derived Cd4+Cd25+ regulatory T cell development by
targeting Foxp3 for ubiquitination. J Immunol (2015) 194(4):1639–45.
doi: 10.4049/jimmunol.1402434

26. Oh J, Wu N, Baravalle G, Cohn B, Ma J, Lo B, et al. March1-mediated mhcii
ubiquitination promotes dendritic cell selection of natural regulatory T cells. J Exp
Med (2013) 210(6):1069–77. doi: 10.1084/jem.20122695

27. Zhang X, Berger FG, Yang J, Lu X. Usp4 inhibits P53 through
deubiquitinating and stabilizing arf-Bp1. EMBO J (2011) 30(11):2177–89.
doi: 10.1038/emboj.2011.125

28. Vugmeyster Y, Borodovsky A, Maurice MM, Maehr R, Furman MH, Ploegh
HL. The ubiquitin-proteasome pathway in thymocyte apoptosis: Caspase-
dependent processing of the deubiquitinating enzyme Usp7 (Hausp). Mol
Immunol (2002) 39(7-8):431–41. doi: 10.1016/s0161-5890(02)00123-2

29. Dufner A, Kisser A, Niendorf S, Basters A, Reissig S, Schönle A, et al. The
ubiquitin-specific protease Usp8 is critical for the development and homeostasis of
T cells. Nat Immunol (2015) 16(9):950–60. doi: 10.1038/ni.3230

30. Harkiolaki M, Lewitzky M, Gilbert RJ, Jones EY, Bourette RP, Mouchiroud
G, et al. Structural basis for Sh3 domain-mediated high-affinity binding between
Mona/Gads and slp-76. EMBO J (2003) 22(11):2571–82. doi: 10.1093/emboj/
cdg258

31. Kaneko T, Kumasaka T, Ganbe T, Sato T, Miyazawa K, Kitamura N, et al.
Structural insight into modest binding of a non-pxxp ligand to the signal
transducing adaptor molecule-2 src homology 3 domain. J Biol Chem (2003) 278
(48):48162–8. doi: 10.1074/jbc.M306677200

32. Brownlie RJ, Zamoyska R. T Cell receptor signalling networks: Branched,
diversified and bounded. Nat Rev Immunol (2013) 13(4):257–69. doi: 10.1038/
nri3403

33. Adoro S, Park KH, Bettigole SE, Lis R, Shin HR, Seo H, et al. Post-
translational control of T cell development by the escrt protein Chmp5. Nat
Immunol (2017) 18(7):780–90. doi: 10.1038/ni.3764

34. Watanabe M, Hatakeyama S. Fine-tuning of thymocyte development by
ubiquitination-mediated stability control of the escrt protein Chmp5. Cell Mol
Immunol (2017) 14(12):957–9. doi: 10.1038/cmi.2017.91

35. Naik E, Webster JD, DeVoss J, Liu J, Suriben R, Dixit VM. Regulation of
proximal T cell receptor signaling and tolerance induction by deubiquitinase
Usp9x. J Exp Med (2014) 211(10):1947–55. doi: 10.1084/jem.20140860

36. Paster W, Brockmeyer C, Fu G, Simister PC, de Wet B, Martinez-Riaño A,
et al. Grb2-mediated recruitment of themis to lat is essential for thymocyte
development. J Immunol (2013) 190(7):3749–56. doi: 10.4049/jimmunol.1203389

37. Fu G, Vallée S, Rybakin V, McGuire MV, Ampudia J, Brockmeyer C, et al.
Themis controls thymocyte selection through regulation of T cell antigen receptor-
mediated signaling. Nat Immunol (2009) 10(8):848–56. doi: 10.1038/ni.1766

38. Johnson AL, Aravind L, Shulzhenko N, Morgun A, Choi SY, Crockford TL,
et al. Themis is a member of a new metazoan gene family and is required for the
completion of thymocyte positive selection. Nat Immunol (2009) 10(8):831–9.
doi: 10.1038/ni.1769

39. Lesourne R, Uehara S, Lee J, Song KD, Li L, Pinkhasov J, et al. Themis, a T
cell-specific protein important for late thymocyte development. Nat Immunol
(2009) 10(8):840–7. doi: 10.1038/ni.1768

40. Reiley WW, Zhang M, Jin W, Losiewicz M, Donohue KB, Norbury CC, et al.
Regulation of T cell development by the deubiquitinating enzyme cyld. Nat
Immunol (2006) 7(4):411–7. doi: 10.1038/ni1315

41. Förster M, Boora RK, Petrov JC, Fodil N, Albanese I, Kim J, et al. A role for
the histone H2a deubiquitinase Mysm1 in maintenance of Cd8+ T cells.
Immunology (2017) 151(1):110–21. doi: 10.1111/imm.12710

42. Gatzka M, Tasdogan A, Hainzl A, Allies G, Maity P, Wilms C, et al.
Interplay of H2a deubiquitinase 2a-Dub/Mysm1 and the P19(Arf)/P53 axis in
hematopoiesis, early T-cell development and tissue differentiation. Cell Death Differ
(2015) 22(9):1451–62. doi: 10.1038/cdd.2014.231

43. Drennan MB, Govindarajan S, Verheugen E, Coquet JM, Staal J, McGuire C,
et al. Nkt sublineage specification and survival requires the ubiquitin-modifying
enzyme Tnfaip3/A20. J Exp Med (2016) 213(10):1973–81. doi: 10.1084/
jem.20151065
frontiersin.org

https://doi.org/10.1038/s41580-021-00448-5
https://doi.org/10.1038/s41418-021-00922-9
https://doi.org/10.1038/s41418-021-00922-9
https://doi.org/10.3389/fimmu.2020.01296
https://doi.org/10.3389/fimmu.2020.01296
https://doi.org/10.1016/j.bbcan.2022.188679
https://doi.org/10.1038/s41589-021-00952-x
https://doi.org/10.1038/s41589-021-00952-x
https://doi.org/10.1182/blood-2018-10-877563
https://doi.org/10.1182/blood-2018-10-877563
https://doi.org/10.1016/j.cell.2016.02.019
https://doi.org/10.1016/j.molcel.2021.10.027
https://doi.org/10.1016/j.molcel.2021.10.027
https://doi.org/10.1016/j.it.2021.06.005
https://doi.org/10.1016/j.it.2020.12.004
https://doi.org/10.1016/j.it.2020.12.004
https://doi.org/10.1146/annurev-immunol-101220-014126
https://doi.org/10.1371/journal.pgen.1005777
https://doi.org/10.4049/jimmunol.1602102
https://doi.org/10.1093/hmg/ddl425
https://doi.org/10.1084/jem.20081344
https://doi.org/10.1084/jem.20081344
https://doi.org/10.1128/mcb.01549-13
https://doi.org/10.1038/s41590-019-0469-z
https://doi.org/10.1038/s41590-019-0469-z
https://doi.org/10.3389/fimmu.2021.642173
https://doi.org/10.1074/jbc.M604192200
https://doi.org/10.1128/mcb.24.20.9038-9047.2004
https://doi.org/10.1038/ni.2944
https://doi.org/10.1126/science.1105677
https://doi.org/10.1128/mcb.18.8.4872
https://doi.org/10.1084/jem.20040262
https://doi.org/10.1084/jem.20040262
https://doi.org/10.4049/jimmunol.1402434
https://doi.org/10.1084/jem.20122695
https://doi.org/10.1038/emboj.2011.125
https://doi.org/10.1016/s0161-5890(02)00123-2
https://doi.org/10.1038/ni.3230
https://doi.org/10.1093/emboj/cdg258
https://doi.org/10.1093/emboj/cdg258
https://doi.org/10.1074/jbc.M306677200
https://doi.org/10.1038/nri3403
https://doi.org/10.1038/nri3403
https://doi.org/10.1038/ni.3764
https://doi.org/10.1038/cmi.2017.91
https://doi.org/10.1084/jem.20140860
https://doi.org/10.4049/jimmunol.1203389
https://doi.org/10.1038/ni.1766
https://doi.org/10.1038/ni.1769
https://doi.org/10.1038/ni.1768
https://doi.org/10.1038/ni1315
https://doi.org/10.1111/imm.12710
https://doi.org/10.1038/cdd.2014.231
https://doi.org/10.1084/jem.20151065
https://doi.org/10.1084/jem.20151065
https://doi.org/10.3389/fimmu.2022.941962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2022.941962
44. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. Bap1 and
cancer. Nat Rev Cancer (2013) 13(3):153–9. doi: 10.1038/nrc3459
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Effects of sex steroids on
thymic epithelium and
thymocyte development

Matthew D. Taves1,2* and Jonathan D. Ashwell1*

1Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute,
National Institutes of Health, Bethesda, MD, United States, 2Department of Neurobiology and
Behavior, Cornell University, Ithaca, NY, United States
Sex steroid hormones have major effects on the thymus. Age-related increases

in androgens and estrogens and pregnancy-induced increases in progestins all

cause dramatic thymic atrophy. Atrophy can also be induced by treatment with

exogenous sex steroids and reversed by ablation of endogenous sex steroids.

Although these observations are frequently touted as evidence of steroid

lymphotoxicity, they are often driven by steroid signaling in thymic epithelial

cells (TEC), which are highly steroid responsive. Here, we outline the effects of

sex steroids on the thymus and T cell development. We focus on studies that

have examined steroid signaling in vivo, aiming to emphasize the actions of

endogenous steroids which, via TEC, have remarkable programming effects on

the TCR repertoire. Due to the dramatic effects of steroids on TEC, especially

thymic involution, the direct effects of sex steroid signaling in thymocytes are

less well understood. We outline studies that could be important in addressing

these possibilities, and highlight suggestive findings of sex steroid generation

within the thymus itself.

KEYWORDS

thymocyte development, thymocyte selection, AIRE, androgens, estrogens, progestins
Introduction

The thymus

T cells are essential in the adaptive immune response to pathogens and tumors. Many

core T cell programs and characteristics underlying their responses in the periphery are

set during T cell development in the thymus. The thymus, therefore, is a key determiner

of quantitative and qualitative characteristics of the adaptive immune response. The

thymus is an encapsulated organ that is histologically divided into a cortex and medulla.

Thymic epithelial cells (TECs), dendritic cells, and fibroblasts form a stroma through

which developing T cells (thymocytes) migrate as they progress through various stages.
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The first step of T cell development involves the entry of

circulating bone marrow-derived early T-cell progenitors

(ETPs) into the thymus, via high endothelial venules. This

entry occurs at the corticomedullary junction, and is driven by

signals that include CCL25 (1). Cortical TEC (cTEC)-expressed

DLL4 and IL-7 then drive T lineage commitment and

proliferation of CD4-8- (double negative, or DN) thymocytes

as they migrate outward to the subcapsular zone (2, 3). DN4

thymocytes that have undergone successful T cell receptor

(TCR)-b selection upregulate CD4 and CD8 to become double

positive (DP) thymocytes, rearrange TCRa, and migrate inward

through the cortex. TCRs are tested against thymoproteasome-

and cathepsin L-generated peptides, which have unique cleavage

sites and maximize the survival (positive selection) of

thymocytes with functional TCRs (4–7). TCR signaling in

cortical DP thymocytes upregulates TCR and CCR7 expression

and trafficking to the thymic medulla. This coincides with the

phenotypic transition to the CD4+CD8- or CD4-CD8+ (single

positive) phenotype. In the medulla, medullary thymic epithelial

cells (mTEC) express antigens that are otherwise only found in

peripheral tissues (i.e., tissue-restricted antigens, or TRAs),

which are cross-presented by dendritic cells and test TCRs

against a broad array of self antigens. Strongly self-reactive

thymocytes that express high levels of TCR-induced proteins

such as Nur77 (8, 9) undergo negative selection (death) or strong

agonist selection (i.e., diversion into alternate lineages, such as

Treg) (10, 11), establishing central tolerance and prevention of

autoimmunity. TRA expression is driven by the transcriptional

regulators Aire and Fezf2, which stochastically drive ectopic

expression of thousands of genes in mTEC expressing high levels

of MHC class II (mTEChi) (12–14).
Steroids

Gonadal secretions, later identified as steroids, were among

the earliest classes of signaling molecules that were recognized to

have potent effects on the thymus (15–17). Steroids are small,

lipophilic hormones derived from cholesterol via the stepwise

action of a cascade of steroidogenic enzymes (Figure 1) (18). The

particular suite of available and active enzymes determines the

steroid products generated by a given tissue, with sex steroids

(estrogens and progestins in females, androgens in males)

classically produced by the gonads (female ovaries and male

testes), and corticosteroids (glucocorticoids, mineralocorticoids)

classically produced in the adrenal cortex. Gonad- and adrenal-

secreted steroids function as classic endocrine hormones,

circulating systemically to coordinate organismal development

or responses to various stimuli. Steroids act on target cells

primarily via binding to nuclear receptors, which are ligand-

activated transcription factors that regulate expression of large

portions of the genome. Steroids were initially categorized into

groups by their major actions in the body: androgens as
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‘masculinizing’ agents, estrogens as ‘feminizing’ agents,

progestins as gestation-promoting hormones, glucocorticoids

as energy-mobilizing hormones, and mineralocorticoids as

regulators of electrolyte balance. Because these activities are

mediated by genetically and functionally distinct receptors,

steroids are now broadly characterized by their primary

intracellular receptors, the androgen receptor (AR), estrogen

receptor (ER), progesterone receptor (PR), glucocorticoid

receptor (GR), and mineralocorticoid receptor (MR) (19).

Each of these steroid classes can also bind membrane-

associated receptors (e.g. the G protein-coupled estrogen

receptor, GPER1) to induce second messenger or protein

kinase cascades that have rapid nongenomic actions on target

cells (20). These are generally considered to be more

minor activities.

The initial identification and isolation of steroids in the

1930s was followed by studies examining their physiological

actions in animals, especially when given in large doses. One of

the most distinct and consistent results was the response of the

thymus to progestins, androgens, estrogens, and glucocorticoids.
FIGURE 1

A simplified model of the steroidogenic pathway, showing the
synthetic pathway of major steroid groups and their primary
receptors in parentheses.
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Large doses of these steroids resulted in a rapid and dramatic

reduction in thymus size (21–23); the degree of thymus

involution was even used as a bioassay to quantify steroid

samples of unknown concentrations (24). This led to the

notion of steroids as directly lymphotoxic molecules, which

was supported by observations that endogenous sex steroid

increases during puberty and pregnancy corresponded with

thymic involution.

Steroids are central drivers of sexual development, and the

types and concentrations of steroids in the blood are very different

in females and males. These differences correspond with striking

differences in immunity. Women compose the overwhelming

majority of patients with autoimmune disease (>80%) (25) and

are at greater risk of immune response-related pathology, whereas

males are more susceptible to cancer and infection (26). This has

long been attributed to the immunosuppressive actions of

androgens and immunostimulatory actions of estrogens in

peripheral immune responses. However, the dramatic

responsiveness of thymi to steroids also raised the possibility

that sex steroids might differentially affect the female and male

thymus. In addition to differences in overall thymic output (27),

recent data suggest there are important differences in the T cell

repertoire. Given that sex steroid receptors are widely and variably

expressed in thymic cell subsets (Table 1), it not surprising that

steroids would have pleiotropic effects on the thymus and T cell

development. In this minireview we provide an overview of the

ways in which sex steroids regulate thymocyte development and

the resulting composition of the peripheral T cell compartment.
Androgens

Androgens have historically been defined as steroids that

stimulate the development of male characteristics, and are

predominately produced by the testes. In males and females,
TABLE 1 Steroid receptor gene expression across different thymus cell subs

Steroid receptor gene (protein)

DN DP

Pgr (PR) + +

Nr1i2 (PXR) + +

Ar (AR) + +

Esr1 (ERa) ++ +

Esr2 (ERb) + +

Gper1 (GPR30) + +

Nr3c1 (GR) ++ +++

Nr3c2 (MR) + +

Gene expression of steroid receptors across major thymus cell subsets. Data are compiled from m
across subsets is normalized individually for each gene (i.e. “+” for two different genes does not
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however, androgens, especially inactive androgen precursors

such as dehydroepiandrosterone (DHEA), are also produced

by the adrenals and, in limited quantities, by the ovaries.

Androgens act primarily by binding the AR, although

androgen activation of membrane-associated receptors has

been reported (28). In the periphery, androgens are generally

thought of as being immunosuppressive, due in large part to

suppression of cytokine production and cytotoxic effector

function of activated T cells (29, 30). Furthermore, conditional

deletion of AR in Treg cells reduces their number and increases

Th2 cell numbers in allergic lung responses, implicating

androgens as important suppressors of allergic responses in

females and males (31). However, as detailed below, the

immunosuppressive effects of androgens in vivo are likely

largely due to their effects on thymocyte development

and selection.
Thymic involution

Exogenous and endogenous androgens have potent effects

on the thymus, with castration or inhibition of androgen

synthesis causing dramatic thymic enlargement, and treatment

with androgens causing atrophy (17, 21, 32). This is driven by

signaling through the classical AR, since AR-deficient (ARKO)

male mice have thymi that are twice the size of wild-type

controls (33, 34) and are completely refractory to treatment

with exogenous androgens (33, 35).

Androgen treatment in vitro causes DP thymocyte

apoptosis; this is largely mediated through induction of DP

TNFa production and is blocked by addition of anti-TNF

antibodies or knockout of Tnf (36). However, this does not

seem to be a major contributor to androgen-induced thymic

atrophy in vivo. Rather, experiments using radiation bone

marrow chimeras found that it is AR expressed by stromal
ets.

Expression level

CD4 CD8 cTEC mTEC

+ + +++ ++

+ + + +

+ + +++ ++

+ + ++ ++

+ + ++ +

+ + +++ ++

++ ++ +++ ++

+ + +++ ++

ultiple sources including the Immunological Genome Project database. Relative expression
indicate equivalent expression.
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cells, not thymocytes, that mediate the effect of androgens on

thymus size (33, 35). These findings were confirmed using AR

conditional knockout mice, in which the thymus was found to be

of normal size in thymocyte ARKO and fibroblast ARKO mice,

but much larger in TEC ARKO mice (33). It is the thymic

epithelial compartment, therefore, that drives androgen-induced

thymic involution. Of note, TEC ARKO thymi were not as large

as global ARKO thymi, which may have been due to poor

deletion of AR in cortical cTEC (34) or, perhaps, to

contributions by another cell type. Androgen signaling in TEC

appears to mediate changes in thymus size by inhibiting TEC

proliferation (37) and inhibiting TEC expression of molecules

that promote thymocyte survival and proliferation, such as Ccl21

and Il7 (33, 38).
Cortex

Androgens inhibit thymic seeding with ETPs, as there are

fewer ETPs in castrated male mice (39). This was not due to

effects on bone marrow hematopoiesis, as injection of T cell-

depleted congenic bone marrow into castrated male mice

resulted in increased numbers of DN thymocytes and later

increased numbers of DP thymocytes (39). This was due to

androgen inhibition of CCL25 expression by TEC, especially

mTEC (38, 39). Androgens also suppress TEC expression of

DLL4 (a Notch ligand critical for T lineage commitment) and IL-

7 (which promotes DN survival and proliferation) (38), and in

the case of the Dll4 but not Ccl25 and Il7 the presence of

androgen receptor binding sites in the promoter region.

Chromatin immunoprecipitation and reporter plasmid

experiments with the Dll4 promoter demonstrated that

binding of the liganded AR to androgen response elements

was sufficient to increase gene expression (38). Finally,

chemical inhibition of androgen production increased cTEC

Dll4 expression and thymocyte expression of Notch target

genes, aand resulted in maximal expansion of DN, DP, CD4

+CD8-, CD4+CD8- thymocyte numbers by 1, 2, 2, and 4 weeks,

respectively (38). Interestingly, castration of RAG1-deficient

mice causes a dramatic increase in the numbers of DN cells

but not cTECs (37), suggesting that the inhibitory roles of

androgens on early thymopoiesis are mediated largely by

effects on cTEC-expressed molecules and not cTEC

proliferation or survival.

Investigation of TEC ARKO thymi found no change in DP

thymocyte proliferation (measured by BrdU incorporation) but

a reduction in DP apoptosis (proportion of Annexin V+ cells) an

elevated proportions of DP CD69hi cells, an indication of TCR-

mediated signaling by self antigens (33). Together, these findings

suggested that the increased cellularity of TEC ARKO thymi is

due to enhanced positive selection. This was specifically tested by

generating TEC ARKO mice expressing the CD4-restricted

AND TCR transgene, a model of positive selection. These
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mice had a much larger thymus and increased proportions of

DP CD69+ and CD4+CD8- cells, all consistent with enhanced

positive selection (33). Female TEC ARKO mice expressing an

H-Y-specific TCR, in which thymocytes are positively selected

on MHC I, had a similar phenotype except that the results of

selection led to increases in CD4-CD8+ cells (33). These results

indicate that androgens, acting via as-yet unclear AR signaling

pathways in TEC, inhibit antigen-specific thymocyte

positive selection.
Medulla

The remarkable disparity in autoimmunity between females

and males led to the idea that negative selection in the medulla

might be affected by sex steroids. Early studies found that

mTEChi growth was especially sensitive to androgens and that

they rapidly proliferated after castration (37). Subsequently a

pair of intriguing studies showed that negative selection is in fact

dramatically responsive to sex steroids. Comparison of female

and male thymi found that expression of Aire and Aire-

dependent TRAs to be higher in males than in females, both

mouse and human (40, 41). Correspondingly, androgen

treatment of human TEC in vitro or mice in vivo upregulated

expression of Aire and Aire-dependent TRAs. Sex differences in

Aire expression were lost when castrated males were compared

with females. In cultured human cells, the liganded AR was

found to bind the Aire promoter and directly upregulate its

expression (41). Male mice are known to be less susceptible than

females in many models of autoimmunity, including

exper imental autoimmune encephal i t i s (EAE) and

experimental autoimmune thyroiditis (EAT). Remarkably, the

induction and severity of EAE (41) and EAT (40) were the same

in Aire-deficient male and female mice, demonstrating that, at

least in these models, the sex difference in the predisposition to

autoimmunity is entirely Aire-dependent (and therefore due to

sex differences in Aire expression). Furthermore, peripheral

administration of the androgen dihydrotestosterone protected

against EAE in control but not Aire-deficient mice (41).

Therefore it is androgen signaling in the thymus, and not

suppression of the peripheral immune response, that appears

to be the primary driver of sex differences in autoimmunity.
Estrogens

Estrogens are generally defined as steroids that regulate the

development and activity of the female reproductive system and

secondary sex characteristics. Estrogens, especially 17b-estradiol
(estradiol), the most potent form, are primarily produced by the

ovaries, although they can be produced in other tissues such as

the brain (42). Estrogens signal via multiple receptors: the

nuclear receptors ERa (Esr1) and ERb (Esr2), and the
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membrane G-protein coupled receptor GPER1 (Gper1). In

peripheral T cells, estrogens are primarily immuno-enhancing

at low concentrations inducing T cell expression of T-bet and

IFNg (43) to promote Th1 responses, and at higher

concentrations inducing Gata3 and IL-4 to promote Th2

responses (44). This skewing toward Th1 versus Th2 is

considered a central driver of the female bias in autoimmunity.
Thymic involution

Both exogenous and endogenous estrogens affect thymus

size, with oophorectomy or estrogen synthesis blockade resulting

in thymic hypertrophy in females and estrogen treatment

causing atrophy in females and males (17, 21, 45, 46). This is

primarily due to signaling via ERa, as Esr1 knockout mice are

partially resistant to thymic involution caused by exogenous

estrogen administration (47, 48). Male and female Esr2 KOmice,

on the other hand, are similar to wild-type in their response to

administered estrogen (49). Gper1 KO mice have an

intermediate phenotype, with a moderate reduction in thymus

size in response to exogenous estrogens (47). It appears,

therefore, that ERa and GPER1 both contribute to regulating

thymus size.

As with androgens, estrogen effects on thymus cellularity

appear to occur predominantly by signaling via the stromal

compartment. Radiation bone marrow chimera experiments

have shown normal thymus size in male WT recipients

reconstituted with Esr1 KO bone marrow but dramatically

reduced thymus size in male Esr1 KO recipients receiving WT

bone marrow (48). Complementary radiation bone marrow

chimera experiments found that exogenous estradiol caused

thymic involution by signaling in both the stromal and

hematopoietic compartments, as Esr1 KO recipients of WT

bone marrow had greater reduction in thymus cellularity than

Esr1 KO recipients of Esr1 KO bone marrow (48). Importantly,

these chimera experiments were not performed in female mice,

in which endogenous estrogens would presumably contribute,

especially in the absence of exogenous estradiol.
Cortex

Surprisingly, Esr1 KO male and female mice have reduced

thymus size (47, 48), indicating that basal estrogens actually play

a role in promoting normal thymus growth. In spite of this,

exogenous estradiol inhibits early stage thymocyte development,

with accumulation of DN1 thymocytes and depletion of DN2,

DN3, and DP thymocytes (47). This is not mediated in the same

way as by androgens, as estrogens have little or no effect on

Notch signaling (50). Instead, ERa (but not ERb or GPER1)

reduces IkB phosphorylation in DN cells, promoting IkB
sequestration and inhibition of NF-kB signaling (47). As NF-
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kB signaling promotes survival and proliferation of b-selected
thymocytes, its inhibition by liganded ERa may contribute to

developmental arrest at this checkpoint (50). Exogenous

estradiol also increases the proportion of apoptotic DN

TCRblow thymocytes, an effect that is lost in Gper1 KO but not

Esr1 KO or Esr2 KOmice (47). Consistent with this, activation of

GPER1 by a selective estrogen agonist induced moderate thymic

involution and thymocyte apoptosis, but did not lead to

developmental block of DN cells (47). Therefore the nuclear

and membrane estrogen receptors have distinct functions:

signaling via ERa inhibits cortical DN development whereas

signaling via GPER1 selectively promotes DN cell apoptosis.
Medulla

As mentioned above, Aire and Aire-dependent TRA

expression are higher in males than females, and estrogen

treatment downregulates expression of Aire and Aire-

dependent TRA genes (40, 41). Estrogen was shown to induce

methylation of the Aire promoter and reduce its expression

whereas dihydrotestosterone had no effect (40). Dose-response

studies with human TEC found that the androgen:estrogen ratio

determined whether Aire is up- or down-regulated, and at least a

10-fold higher concentration of androgens was required to

overcome estradiol-mediated downregulation (40). To extend

these findings in vivo, fragments from the same male or female

human thymus were grafted to female and male mice and

relative AIRE gene expression was quantified. At day 4 AIRE

expression was similar in human thymus fragments grafted to

either sex. However, at 20 days AIRE expression in the human

thymus was much lower in female than male mice. Consistent

with a more potent effect of estrogens, AIRE expression in male

recipients was similar at 4 and at 20 days, but AIRE expression in

female recipients dropped dramatically from 4 to 20 days (40).

These data show that androgen and estrogen signaling

antagonize each other, with directly opposing effects on Aire

expression and activity. Differences in antigen presentation may

be further exacerbated by the fact that estrogen signaling reduces

TEC expression of MHC (51).

Estrogen treatment increases disease severity in EAT, which

has been attributed to signaling in peripheral T cells, in particular

ERa- and ERb-mediated induction of Th1 and Th17 responses

via upregulation of Tbx21 (encoding T-bet), Rorc (encoding

RORgt), Il17, and Il21 (52, 53). These in turn are proposed to

drive increases in autoantibody production (52). However,

thymectomy abolished the disease-enhancing effect of estrogens

without affecting autoantibody titers (40). To test the specific

contribution of Aire to EAT severity, 7-week-old male mice

received intrathymic injections of recombinant adeno-associated

virus (AAV) miRNA to knock down endogenous Aire expression.

Anti-AiremiRNA treatment reducedAire transcript abundance in

the male thymus by approximately 80% compared to control
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miRNA, which resulted in EAT pathology similar to that in

females as quantified by autoantibody titers and numbers of

thyroid-infiltrating CD8+ T cells (40). Together, these data

indicate that inhibition of Aire expression and medullary

negative selection, at least in this model, is a primary

mechanism of estrogen-induced immunoenhancement. An

overview of androgen versus estrogen effects on Aire and

thymocyte selection is shown in Figure 2.
Progestins

Progestins, in particular progesterone, are defined as steroids

that support gestation. Progestins are primarily generated in the

ovary and to a lesser extent in the adrenals, brain, and adipose

tissue (18). During pregnancy the placenta is a major source of

progesterone. Progesterone acts primarily by binding the

intracellular PR, but also signals via membrane PRs and the

cytosolic pregnane X receptor (PXR). In the periphery,

progestins are well known to be immunosuppressive,

antagonizing TCR signaling, suppressing expression of
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pro inflammatory cy tok ines , and promot ing Treg

differentiation (54–56). Treg differentiation in particular

appears to be a critical tolerogenic mechanism in pregnancy,

with PR-deficient mice having dramatically lower maternal

immune tolerance to the fetus (57).
Thymic involution

Exogenous (21, 58) progesterone potently induces thymic

involution, as does the elevated level of endogenous

progesterone during pregnancy (58–60). Unlike androgens and

estrogens, however, progestins do not seem to be a major

contributor to age-related involution. Pregnancy-driven

involution is mediated via signaling through the canonical

intracellular PR (gene name Pgr), as thymi of Pgr-deficient

mice are refractory to pregnancy-induced involution (58).

Within the thymus, studies of radiation bone marrow

chimeras have shown that stromal cells, rather than

thymocytes, are the primary target of progesterone in driving

involution (58). Very little pregnancy-induced thymic

involution occurs in mice with TEC-specific Pgr KO,

confirming that involution is almost completely mediated by

PR signaling in TEC (59). Involution is global, with little or no

change in the frequencies of different thymocyte subsets (59).
Cortex

Progesterone reduces homing of ETPs to the thymus (60),

which appears to be at least in part due to reduction in the

homing chemokine CCL25 produced by epithelial cells (60).

Elevated progesterone in pregnancy downregulates DLL4

expression (60), reducing Notch signaling and T lineage

commitment of the few ETPs that do enter the thymus. Once

committed, however, subsequent thymocyte developmental

progresses without any major blocks (58, 59).
Medulla

Pregnancy is a unique immunological context, and

maintenance of pregnancy is dependent on an appropriately

selected TCR repertoire and sufficient induction of thymus- and

peripheral-derived Treg cells (61). Interestingly, PR expression

in the non-hematopoietic thymic compartment is necessary for

normal fertility, as determined by the number of viable versus

unimplanted and resorbed embryos (58). A few experiments

have found that progesterone, like estradiol, reduces mTEC

expression of Aire in vitro (40, 41), raising the possibility that

PR-mediated decreases in Aire expression might reduce negative

selection. However, a recent study reported that Aire and Fezf2

expression were actually increased during pregnancy, and that
FIGURE 2

Model of steroid effects in the thymic medulla, especially on
medullary thymic epithelial cells (mTEC). Androgens or
estrogens bind the androgen receptor (AR) or estrogen
receptor (ER), respectively, and up- or down-regulate
expression of Aire. Aire in turn promotes, to a greater or lesser
degree, expression of tissue restricted antigen (TRA) genes,
generating an array of self-peptides presented on the surface
of the cell bound to MHC molecules. Thymocytes with TCRs
recognizing TRAs (shown as color-matched TRA, peptide
antigen, and thymocyte) undergo negative selection and are
absent from the mature TCR repertoire.
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this increase was lost in mice with TEC-specific Pgr KO (59). In

vivo, therefore, it appears that progesterone signals through PR

to increase Aire expression, presumably enhancing negative

selection and possibly even promoting agonist selection of

Treg cells to result in immunological tolerance of the fetus.

Whether progesterone regulation of Aire plays any role in fetal

tolerance remains to be tested. An additional possible

contributor to fetal tolerance (and the TCR repertoire in non-

pregnant female and male mice) is the role of PR signaling

within thymocytes themselves. Careful in vitro experiments

using PR-deficient and GR-deficient thymocytes have shown

that progesterone binds and activates the thymocyte GR (62).

GR signaling is known to antagonize TCR signaling in

thymocyte negative selection by opposing Nur77 and Helios

expression (63), and progesterone appears to antagonize

thymocyte TCR signaling in a very similar way (62). Paired

with high levels of progesterone within the thymus (64, 65),

these data raise the intriguing possibility that progesterone can

regulate antigen-mediated selection by inhibition of Aire

expression and by antagonism of thymocyte TCR signaling.

However, experiments will be necessary to specifically test

each of these possibilities and their biological relevance in vivo.
Future directions and conclusions

The studies described above have clearly identified effects of sex

steroids on thymus involution, TEC gene expression and
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proliferation, and thymocyte survival and apoptosis (Table 2).

However, there are many important questions that remain. For

example, AR directly upregulates Tcf7 (TCF-1) (29, 30), which

promotes DN thymocyte expression of RAG genes and TCR

components as well as DP thymocyte survival. This suggests that

androgens may act directly on thymocytes at early stages of

commitment and differentiation. Sex steroid receptors in

thymocytes may also play a role TCR signaling and thymocyte

selection, although this also is largely unknown. Both AR and ERs

have been shown to interact with and inhibit Nur77 (66, 67), which

is induced by TCR signaling in thymocytes and promotes negative

selection (8, 9). Similar interaction between the GR and Nur77

contributes to mutual antagonism between glucocorticoids and

TCR signaling (63), and raises the possibility that in addition to

altering Aire expression in mTEC, androgens and estrogens might

also antagonize biological responses downstream of TCR signaling.

As with glucocorticoid signaling, this could result in an altered TCR

repertoire without obvious differences in thymocyte numbers.

Indeed, the altered selection of the AND and H-Y transgenic

TCRs in the absence of sex steroid signaling (33) is consistent

with such an effect. Another interesting possibility is that of sex

steroid production directly within the thymus. Thymic epithelial

cells can synthesize glucocorticoids de novo from cholesterol (68–

70), and much of the enzymatic machinery that functions in

glucocorticoid synthesis also functions in synthesis of

progesterone and androgen and estrogen precursors (18).

Together with the finding that the thymus has locally elevated

concentrations of progesterone (64, 65), this raises the intriguing
TABLE 2 Overview of steroid effects on thymus cells.

Steroid class Cell type Action

cTEC ↓ CCL25, DLL4

Progestins mTEC ↑ Aire & TRA expression

thymocytes ↓ ETP homing
↓ negative selection?

cTEC ↓ CCL25, DLL4, IL-7 expression

Androgens mTEC ↑ Aire & TRA expression

thymocytes ↓ ETP homing, T lineage commitment, positive selection
↑ negative selection

cTEC ?

Estrogens mTEC ↓ Aire & TRA expression

thymocytes ↓ NF-kB signaling & DN development, ↑ DN apoptosis
↑ negative selection

cTEC ?

Glucocorticoids mTEC ?

thymocyte ↓ TCR signaling & negative selection

cTEC ?

Mineralocorticoids mTEC ?

thymocytes ?
↓, decrease; ↑, increase; ?, unknown.
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possibility of sex steroid production by the thymus itself. If so, this

might suggest a role for paracrine sex steroid signaling within

the thymus.
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role of notch and IL-7 signaling in early thymocyte proliferation and
differentiation. Eur J Immunol (2005) 35:1292–300. doi: 10.1002/eji.200425822

3. Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, Pierres M,
et al. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T
cell lineage commitment. J Exp Med (2008) 205:2515–23. doi: 10.1084/
jem.20080829

4. Honey K, Nakagawa T, Peters C, Rudensky A. Cathepsin l regulates CD4+ T
cell selection independently of its effect on invariant chain: A role in the generation
of positively selecting peptide ligands. J Exp Med (2002) 195:1349–58. doi: 10.1084/
jem.20011904

5. Nakagawa T, RothW, Wong P, Nelson A, Farr A, Deussing J, et al. Cathepsin
l: critical role in ii degradation and CD4 T cell selection in the thymus. Science
(1998) 280:450–3. doi: 10.1126/science.280.5362.450

6. Sasaki K, Takada K, Ohte Y, Kondo H, Sorimachi H, Tanaka K, et al.
Thymoproteasomes produce unique peptide motifs for positive selection of CD8
(+) T cells. Nat Commun (2015) 6:7484. doi: 10.1038/ncomms8484

7. Xing Y, Jameson SC, Hogquist KA. Thymoproteasome subunit-b5T
generates peptide-MHC complexes specialized for positive selection. Proc Natl
Acad Sci U.S.A. (2013) 110:6979–84. doi: 10.1073/pnas.12222441

8. Baldwin TA, Hogquist KA. Transcriptional analysis of clonal deletion in vivo.
J Immunol (2007) 179:837–44. doi: 10.4049/jimmunol.179.2.837

9. Calnan BJ, Szychowski S, Chan FK, Cado D, Winoto A. A role for the orphan
steroid receptor Nur77 in apoptosis accompanying antigen-induced negative
selection. Immunity (1995) 3:273–82. doi: 10.1016/1074-7613(95)90113-2

10. Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC. Aire regulates negative
selection of organ-specific T cells. Nat Immunol (2003) 4:350–4. doi: 10.1038/ni906

11. Malchow S, Leventhal DS, Lee V, Nishi S, Socci ND, Savage PA. Aire
enforces immune tolerance by directing autoreactive T cells into the regulatory T
cell lineage. Immunity (2016) 44:1102–13. doi: 10.1016/j.immuni.2016.02.009

12. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, et al.
Projection of an immunological self shadow within the thymus by the aire protein.
Science (2002) 298:1395–401. doi: 10.1126/science.1075958

13. Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay
IC, Deadman ME, et al. Population and single-cell genomics reveal the aire
dependency, relief from polycomb silencing, and distribution of self-antigen
expression in thymic epithelia. Genome Res (2014) 24:1918–31. doi: 10.1101/
gr.171645.113

14. Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, et al.
Fezf2 orchestrates a thymic program of self-antigen expression for immune
tolerance. Cell (2015) 163:975–87. doi: 10.1016/j.cell.2015.10.013
15. Henderson J. On the relationship of the thymus to the sexual organs: I. the
influence of castration on the thymus. J Physiol (1904) 31:222–9. doi: 10.1113/
jphysiol.1904.sp001032

16. Hatai S. The growth of organs in the albino rat as affected by gonadectomy. J
Exp Zool (1915) 18:1–67. doi: 10.1002/jez.1400180102

17. Masui K, Tamura Y. The effect of gonadectomy on the weight of the kidney,
thymus, and spleen of mice. J Exp Biol (1926) 3:207–23. doi: 10.1242/jeb.3.3.207

18. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology
of human steroidogenesis and its disorders. Endocr Rev (2011) 32:81–151. doi:
10.1210/er.2010-0013

19. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor
structure: Implications for function. Annu Rev Physiol (2007) 69:201–20. doi:
10.1146/annurev.physiol.69.031905.160308

20. Schwartz N, Verma A, Bivens CB, Schwartz Z, Boyan BD. Rapid steroid
hormone actions via membrane receptors. Biochim Biophys Acta (2016)
1863:2289–98. doi: 10.1016/j.bbamcr.2016.06.004

21. Chiodi H. The relationship between the thymus and the sexual organs.
Endocrinology (1940) 26:107–16. doi: 10.1210/endo-26-1-107

22. Korenchevsky V, Dennison M, Simpson SL. The prolonged treatment of
male and female rats with androsterone and its derivatives, alone or together with
oestrone. Biochem J (1935) 29:2534–52. doi: 10.1042/bj0292534

23. Selye H. Variations in organ size caused by chronic treatment with adrenal
cortical compounds: An example of a dissociated adaptation to a hormone. J Anat
(1941) 76:94.

24. Dorfman RI. Bioassay of steroid hormones. Physiol Rev (1954) 34:138–66.
doi: 10.1152/physrev.1954.34.1.138

25. Lleo A, Battezzati PM, Selmi C, Gershwin ME, Podda M. Is autoimmunity a
matter of sex. Autoimmun Rev (2008) 7:626–30. doi: 10.1016/j.autrev.2008.06.009

26. Wilkinson NM, Chen H-C, Lechner MG, Su MA. Sex differences in
immunity. Annu Rev Immunol (2022) 40:75–94. doi: 10.1146/annurev-immunol-
101320-125133

27. Pido-Lopez J, Imami N, Aspinall R. Both age and gender affect thymic
output: more recent thymic migrants in females than males as they age. Clin Exp
Immunol (2001) 125:409–13. doi: 10.1046/j.1365-2249.2001.01640.x

28. Kalyvianaki K, Panagiotopoulos AA, Malamos P, Moustou E, Tzardi M,
Stathopoulos EN, et al. Membrane androgen receptors (OXER1, GPRC6A AND
ZIP9) in prostate and breast cancer: A comparative study of their expression.
Steroids (2019) 142:100–8. doi: 10.1016/j.steroids.2019.01.006

29. Kwon H, Schafer JM, Song N-J, Kaneko S, Li A, Xiao T, et al. Androgen
conspires with the CD8+ T cell exhaustion program and contributes to sex bias in
cancer. Sci Immunol (2022) 7:eabq2630. doi: 10.1126/sciimmunol.abq2630

30. Yang C, Jin J, Yang Y, Sun H, Wu L, Shen M, et al. Androgen receptor-
mediated CD8+ T cell stemness programs drive sex differences in antitumor
immunity. Immunity (2022) 55:1268–83. doi: 10.1016/j.immuni.2022.05.012
frontiersin.org

https://doi.org/10.1084/jem.20082502
https://doi.org/10.1002/eji.200425822
https://doi.org/10.1084/jem.20080829
https://doi.org/10.1084/jem.20080829
https://doi.org/10.1084/jem.20011904
https://doi.org/10.1084/jem.20011904
https://doi.org/10.1126/science.280.5362.450
https://doi.org/10.1038/ncomms8484
https://doi.org/10.1073/pnas.12222441
https://doi.org/10.4049/jimmunol.179.2.837
https://doi.org/10.1016/1074-7613(95)90113-2
https://doi.org/10.1038/ni906
https://doi.org/10.1016/j.immuni.2016.02.009
https://doi.org/10.1126/science.1075958
https://doi.org/10.1101/gr.171645.113
https://doi.org/10.1101/gr.171645.113
https://doi.org/10.1016/j.cell.2015.10.013
https://doi.org/10.1113/jphysiol.1904.sp001032
https://doi.org/10.1113/jphysiol.1904.sp001032
https://doi.org/10.1002/jez.1400180102
https://doi.org/10.1242/jeb.3.3.207
https://doi.org/10.1210/er.2010-0013
https://doi.org/10.1146/annurev.physiol.69.031905.160308
https://doi.org/10.1016/j.bbamcr.2016.06.004
https://doi.org/10.1210/endo-26-1-107
https://doi.org/10.1042/bj0292534
https://doi.org/10.1152/physrev.1954.34.1.138
https://doi.org/10.1016/j.autrev.2008.06.009
https://doi.org/10.1146/annurev-immunol-101320-125133
https://doi.org/10.1146/annurev-immunol-101320-125133
https://doi.org/10.1046/j.1365-2249.2001.01640.x
https://doi.org/10.1016/j.steroids.2019.01.006
https://doi.org/10.1126/sciimmunol.abq2630
https://doi.org/10.1016/j.immuni.2022.05.012
https://doi.org/10.3389/fimmu.2022.975858
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Taves and Ashwell 10.3389/fimmu.2022.975858
31. Gandhi VD, Cephus J-Y, Norlander AE, Chowdhury NU, Zhang J, Ceneviva
ZJ, et al. Androgen receptor signaling promotes treg suppressive function during
allergic airway inflammation. J Clin Invest (2022) 132:e153397. doi: 10.1172/
JCI153397

32. Gubbels Bupp MR, Jorgensen TN. Androgen-induced immunosuppression.
Front Immunol (2018) 9:794. doi: 10.3389/fimmu.2018.00794

33. Lai K-P, Lai J-J, Chang P, Altuwaijri S, Hsu J-W, Chuang K-H, et al. Targeting
thymic epithelia AR enhances T-cell reconstitution and bonemarrow transplant grafting
efficacy. Mol Endocrinol (2013) 27:25–37. doi: 10.1210/me.2012-1244

34. Wilhelmson AS, Lantero Rodriguez M, Johansson I, Svedlund Eriksson E,
Stubelius A, Lindgren S, et al. Androgen receptors in epithelial cells regulate
thymopoiesis and recent thymic emigrants in Male mice. Front Immunol (2020)
11:1342. doi: 10.3389/fimmu.2020.01342

35. Olsen NJ, Olson G, Viselli SM, Gu X, Kovacs WJ. Androgen receptors in
thymic epithelium modulate thymus size and thymocyte development.
Endocrinology (2001) 142:1278–83. doi: 10.1210/endo.142.3.8032

36. Patiño JAG, Ivanov VN, Lacy E, Elkon KB, Marino MW, Nikolić-Žugić J.
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CD11c, also named integrin aX, has been deemed solely as a dendritic cell

marker for decades while the delineation of its biological function was limited.

In the current study, we observed in mice that CD11c deficiency led to a defect

in T cell development, demonstrated by the loss of CD4+CD8+ double positive

(DP) T cells, CD4+CD8-, and CD4-CD8+ single positive (SP) T cells in the

thymus and less mature T cells in the periphery. By using bone marrow

chimera, we confirmed that CD11c regulated T cell development in the

thymus. We further showed that CD11c deficiency led to an accelerated

apoptosis of CD3 positive thymocytes, but not CD4-CD8- double negative

(DN) T cells. Overall, this study added one more layer of knowledge on the

regulatory mechanism of late-stage T cell development that the presence of

CD11c in the thymus is critical for maintaining T cell survival.

KEYWORDS

CD11c, thymus, dendritic cell, apoptosis, T cell development
Introduction

The thymus is the primary lymphoid organ that supports T cell development

consisting of three main stages (double negative (DN), double positive (DP), and

single positive) (1), during which a dynamic relocation of developing lymphocytes

within multiple architectural structures occurs (2). During the last two decades, it has

been well elucidated that two crucial decision steps, positive and negative selections, are

needed to produce functional major histocompatibility complex (MHC)-restricted T

cells, while simultaneously restricting the production of auto-reactive T cells (3, 4). The

traditional knowledge is that cortical thymic epithelial cells (cTECs) are involved in

thymocyte positive selection, and medullary thymic epithelial cells (mTECs) and

dendritic cells (DCs) are involved in negative selection (5, 6). While it is well known

that events, such as T cell receptor (TCR) b chain rearrangement (7, 8), proper TCR-

MHC affinity and signaling strengths (9–12), finely regulate positive and negative

selections, the regulation of late-stage T cell maturation, survival, and emigration in

the thymus is less studied (5).
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b2 integrins are called leukocyte integrins, exclusively

expressed on leukocytes (13–15). They consist of four

members CD11a/CD18 (aLb2), CD11b/CD18 (aMb2),
CD11c/CD18 (aXb2), and CD11d/CD18 (aDb2) (16). CD11c
has been deemed primarily as a dendritic cell (DC) marker (17–

19), and its physiological function hasn’t been extensively

explored. Our recent study revisited CD11c and discovered

that it is also expressed on hematopoietic stem and progenitor

cells (HSPCs), and its deficiency leads to the loss of HSPCs

through an enhanced apoptosis in sepsis and bone marrow

transplantation mouse models (20). In the study, we reported

that CD11c (aX) knockout (KO) mice showed lower CD3 T cell

counts in peripheral blood. Motivated by this clue, we further

explored the biological function of CD11c, and discovered that it

played a pivotal role in maintaining T cell survival at the late-

stage development in the thymus.
Results

We compared the peripheral blood leukocytes in naïve wild

type (WT thereafter) and CD11c KO mice, and found that, even

at steady status, CD11c deficiency led to a significant loss of CD4

and CD8 T cells (Figure 1A), which was also the case in the

spleen (data not shown). Since CD11c is a marker of DCs, on

which MHC-II molecules are expressed to critically maintain the

number of peripheral T cells (21), we examined the number of

DCs. Surprisingly, although CD11c KO mice had a relatively

smaller size of spleen, the number of splenic DCs including

conventional DC1 (cDC1, MHC-II+XCR1+CD8a+), cDC2

(MHC-II+XCR1-CD8a-SIRPa+CD11b+), and plasmacytoid DC

(pDC, PDCA+CD11b-Ly6C+) subsets was not different from that

of WT mice (Supplemental Figure 1, Figure 1A), suggesting that

CD11c deficiency didn’t abrogate DC development in vivo. We

then compared the thymus, the central lymph organ for T cell

development. Surprisingly, for the first time, we showed the T

cell development was defective in CD11c KO mice, manifested

by the smaller-sized thymus with the loss of cellularity

(Figure 1B). We performed detailed phenotyping of thymic T

cells at different developmental stages, which revealed that

CD11c deficiency was associated with the loss of DP, CD4 SP

and CD8 SP cells, but exerted no influence on the number of DN

cells (Figure 1C). Further analysis showed that, although less SP

CD4 and CD8 cells existed in the thymus of CD11c KO mice,

they were skewed toward more mature population,

demonstrated by a higher ratio of CD24lowQa2high cells

(Figure 1D). This result indicated that immature CD4 SP and

CD8 SP cells were particularly affected in the thymus of CD11c

KO mice. Despite that the ratio of mature population in total

CD4 SP was relatively higher, the absolute number of mature

CD4 cells in thymus of CD11c KO mice was still significantly

less than their WT counterpart (Figure 1D). CCR7 drives T cells
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from the cortex to the medulla (22, 23). CCR7 expression on

CD4 and CD8 SP cells was not different between the genotypes,

suggesting that the egress of T cells from the cortex to the

medulla was comparable between WT and CD11c KO mice

(Figure 1E). Strong TCR signal leads to negative selection, and

weak signal helps to generate conventional CD4 cells (24, 25).

Intermediate signal generates nTreg cells (26, 27). There was a

relatively higher percentage of nTreg (CD25+FoxP3+CD4) cells

in CD4 SP cells in the thymus of CD11c KO mice. This may

indicate that nTreg pathway was less affected in CD11c KO mice

compared to conventional CD4 pathway. Due to the lower

number of total CD4 SP cells, however, the absolute number

of nTreg in the thymus of CD11c KO mice was still less than the

counterpart in WT mice (Figure 1F).

To explore the underlying mechanism that led to less

thymocyte number in CD11c KO mice, we examined the

apoptosis of T cells in the thymus by staining cleaved caspase-

3 ex vivo. We found that CD11c deficiency significantly

increased the apoptosis of CD3-positive subsets (DP, CD4 SP

and CD8 SP cells), which are relatively more matured T cells in

the thymus (Figure 2A). The more occurrence of apoptosis in

CD3 positive cells was further confirmed by staining freshly

isolated thymocytes with Annexin V (Figure 2B). In sharp

contrast, the proliferation status was not different between the

genotypes, probed by Ki-67 expression (Figure 2C).

Successful TCRb chain rearrangement delivers proliferation

signals and instructs the transition of DN cells into DP cells. This

event is followed by positive selection by thymic epithelial cells

(TECs) in the cortex and negative selection by DCs in the

medullary region, responding to strong TCR-MHC

interactions (28). Those DP cells with non-functional TCR-

MHC interactions undergo death by neglect, which occurs for

over 95% of DPs (29). To dissect out the cell type primarily

responsible for the observed phenotype, we compared thymic

DC subsets between WT and CD11c KO mice and found the

number of three DC subset was comparable (Figure 3A).

Although TECs are important antigen presenting cells in the

thymus, no CD11c expression was detected on the surface of

TECs (Figure 3B). In addition, the number of TECs betweenWT

and CD11c KOmice was not different (Figure 3B). TECs contain

two subpopulations; Cortical thymic epithelial cells (cTECs,

Ly51+), which are the primary cell type involved in thymocyte

positive selection, and medullary thymic epithelial cells

(mTECs), which are involved in negative selection. We

compared these two subpopulations by probing Ly51

expression and didn’t observe the difference between the

genotypes (Figure 3B). Thus, TECs were excluded from the

potential contributor to the phenotype observed in CD11c KO

mice. CD11c was highly expressed on DCs, as expected

(Figure 3B). CD11c was not detected on DN, DP, and SP T

cells (data not shown). To further verify whether DCs in the

thymus were responsible for the T cell maturation defect in
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FIGURE 1

Thymic atrophy in CD11c KO mice. (A) Left: T and B cell counting in the peripheral blood in naïve WT and CD11c KO mice; Right: dendritic cell
subset counting in the spleen. cDC1 was gated as MHC-II+XCR1+CD8a+, cDC2 as MHC-II+XCR1-CD8a-SIRPa+CD11b+, and pDC as
PDCA+CD11b-Ly6C+. (B) Left: thymus image; Middle: representative FACS data, gated on total thymocytes of WT and CD11c KO mice; Right:
dot plots of thymocyte number. (C) Thymic T cell subset numbers. DN was gated as CD4-CD8-, DP as CD4+CD8+, CD4 SP as CD4+CD8-, and
CD8 SP as CD4-CD8+. (D) Left: representative FACS data showing maturation status of thymic CD4 SP and CD8 SP cells of WT and CD11c KO
mice; Middle: dot plot showing percentage of immature and mature subsets in total CD4 and CD8 SP cells; Right: dot plot showing absolute
number of mature CD4 SP cells; (E) Representative FACS data showing CCR7 expression on thymic CD4 SP and CD8 SP cells of WT and CD11c
KO mice; (F) Left: representative FACS data showing natural regulatory T cells (nTreg) in thymic CD4 SP cells of WT and CD11c KO mice; Right:
dot plots of both percentage and absolute number. nTreg cells were gated as CD25+FoxP3+CD4+ cells. Experiments were repeated at least 2-3
times with the same pattern. Student t test was performed for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2

Apoptosis and proliferation analysis in CD11cKO mice. (A) Up panel: representative FACS data gated on different thymic T cell subsets with active
cleaved caspase 3 expression; Bottom panel: Dot plots of percentage of CD3+Active-caspase3+ cells in indicated subsets. (B) Up panel:
representative Annexin-V staining overlay analysis, gated on different thymic T cell subsets; Bottom panel: MFI. (C) Representative Ki-67 staining
overlay analysis, gated on different thymic T cell subsets. Each symbol represents an individual mouse. Experiments were repeated at least 3 times
with the same pattern. (A) and (B), Student t test was used for statistical analysis. **p < 0.01, ***p < 0.001.
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CD11c KO mice, we created bone marrow (BM) chimera.

Recipient mice, either lethally irradiated WT or CD11c KO

mice were transplanted with either WT-derived or CD11c KO-

derived bone marrow cells. Six weeks after the transplantation,

peripheral blood leukocytes were monitored to ensure the

success reconstitution of hematopoietic system. Mice were

sacrificed at 8 weeks post BM transplantation. As shown in

Figure 3C, as long as the donor BM cells were derived from

CD11c KO mice, T cell development defect was observed
Frontiers in Immunology 05
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regardless of the background of recipient mice, consistent with

what we observed in CD11c KO mice. CD11c expression was

done in the thymus of chimeric mice (Figure 3D). To further

solidify our finding that CD11c-expressing cells in the thymus is

irradiation sensitive and also to exclude the error due to mouse

background, we also made the chimera mice in an opposite way.

We used CD45.1 WT as donor and CD45.2 WT as recipient

mice. We confirmed that all CD11c positive cells are donor

(CD45.1) derived ones (Figure 3E). Thus, combined with the
B

C

D

E

A

FIGURE 3

The role of CD11c in irradiation-sensitive hematopoietic cells in thymus. (A) thymic DC subset cell counting. cDC1 was gated as MHC-
II+XCR1+CD8a+, cDC2 as MHC-II+XCR1-CD8a-SIRPa+CD11b+, and pDC as PDCA+CD11b-Ly6C+. Gating strategy could be found in
Supplement Figure 1. (B) Left panel: representative FACS data showing CD11c expression pattern; Right-up panel: thymic TECs counting;
Right- bottom panel: Ly-51 staining overlay analysis of TECs. (C) Blood (up panel) and thymic (bottom panel) analysis of bone marrow
chimeric mice. (D) Representative FACS data showing CD11c expression pattern in thymocytes of chimeric mice described in (C). (E)
Representative FACS data showing CD11c expression pattern in thymocytes of chimeric mice by transferring CD45.1 WT bone marrow cells
into lethally irradiated CD45.2 WT recipient mice. Each symbol represents an individual mouse. Experiments were repeated at least 3 times
with the same pattern. (A, B), Student t test was used for statistical analysis; (C) One-way ANOVA with Bonferroni post hoc analysis was
performed. *p < 0.05, **p < 0.01, ***p < 0.001. n.s., no significant difference.
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result of CD11c expression analysis in the thymus of chimeric

mice (Figures 3D, E), we concluded that CD11c in irradiation-

sensitive hematopoietic cells unexpectedly played an essential

role in maintaining T cell survival in the thymus.
Discussion

The current study discovered that CD11c was essential in

regulating thymic T cell development by maintaining the

survival of T cells at later stages of the development, which

adds additional nodes to both T cell biology and DC function in

the thymus. While positive and negative selections are well

studied, late-stage T cell maturation in the thymus and its

emigration into the periphery are less examined. Herein, we

discovered that CD11c was critical in maintaining the survival of

T cells, preferably CD3-positive ones, thus adding one more

layer of knowledge on the regulatory mechanism of T cell

maturation in the thymus.

Regarding the role of DCs in thymic T cell development,

controversial reports have been made. On one side, thymic DCs

have been deemed as a major player that mediates negative

selection to induce the apoptosis of DP cells (28, 30, 31); on the

other side, thymic DCs were also reported to be involved in

positive selection, thus to maintain the survival of DP cells (32,

33). The discovery that CD11c plays an essential role in

maintaining the survival of T cells suggests that, in addition to

MHC-II molecule, DCs could use CD11c to maintain T cell

survival. Interestingly, we found that CD24hi immature CD4 T

cells were selectively depleted in CD11c KO mice. CD24hi

immature CD4 SP cells are defined as “semi-mature” and

susceptible to apoptosis when triggered through TCR (1, 34).

Thus, our data is in line with the previous reports describing that

CD24hi immature CD4 SP cells are more sensitive to apoptosis

over CD24lo mature CD4 SP cells.

Overall, this study highlights the role of CD11c as a

functional molecule to maintain the survival of T cells in the

thymic late-stage T cell development.
Methods

Mice

Animal studies were approved by the Institutional Animal

Care and Use Committee of Boston Children’s Hospital. Wild

type mice on the C57BL/6J background were purchased from

Jackson laboratory and acclimated in our animal facility before

use. CD11c germline knockout mice (CD11cKO mice) on the

C57BL/6J background were kindly given by Dr. Ballantyne

(Baylor University), as described in our previous publication

(20). For experiments, 7~10 week-old mice were used. Flow
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cytometry, and cell counting were performed as previously

described (35). Regarding TEC and DC detection, the thymus

was digested by type IV collagenase (0.5 mg/ml) and DNase I (50

unit/ml) in RPMI-1640 containing 5% FCS for 30 minutes at 37°

C, followed by washing and resuspension.
Chimera experiment

To generate single bone marrow chimeras, recipient mice on

the C57BL/6 background were irradiated with two doses of

550 rad with 4-hour intervals. WT or CD11c KO derived bone

marrow cells (total of 5 × 106 cells) were injected into the tail

vein of lethally irradiated recipients (WT or CD11c KO mice).

Mice were evaluated for the reconstitution of the immune

compartment after bone marrow transplantation. To prevent

bacterial infection, the mice were provided with autoclaved

drinking water containing sulfatrim for 1 week prior to and

for 4 weeks after irradiation.
Apoptosis analysis

Annexin-V staining method: Thymocytes were stained with

fluorochrome conjugated antibodies to surface marker including

CD3, CD4, CD8, and Annexin-V in the presence of Annexin-V

binding buffer. After washing, cells were resuspended in

Annexin-V binding buffer and collected freshly.

Active-caspase-3 method: Thymocytes were stained with

fluorochrome conjugated antibodies to surface marker

including CD3, CD4 and CD8. After washing, cells were fixed,

permeabilized and stained intracellularly with fluorochrome-

conjugated anti-active caspase 3-by using fixation/

permeabilization reagents and protocols from BD Bioscience.

In certain situation, intracellular Ki-67 staining was done

together with active caspase-3 staining.
Antibodies

Fluorochrome-conjugated antibodies or cell death related

dyes are: from Biolegend: FITC- or PE-Cy7-anti-mCD3 (145-

2C11), Pacific blue- or PE-Cy7- anti-mCD45.1 (A20), Pacific

blue- or FITC- anti-mCD45.2 (104), Pacific blue- or PE-anti-

mCD45 (30-F11), Pacific blue- or PE-Cy7- or APC- anti-

mCD4 (GK1.5), APC-Cy7-anti-mCD8 (53-6.7), PE-Cy7-

anti-mCCR7 (4B12), PE-Cy7-anti-mCD11b (M1/70), FITC-

anti-mLy6C (HK1.4), Pacific blue- anti-mI-A/I-E (M5/

114.15.2), APC-anti-mQa2 (695H1-9-9), APC-anti-mLy51

(6C3), PE-anti-mCD326 (Ep-CAM, clone G8.8), PE-anti-

mCD25 (3C7), Alexa Fluor488-antiFoxP3 (FJK-16s). From

eBioscience: PE-Cy7-anti-Ki67 (S01A15). From BD
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Biosciences: FITC-rabbit-anti-active caspase3 (C92-605),

FITC-Annexin V, Annexin V staining buffer, and BD

Cytofix/Cytoperm buffer. Cell counting was done by

app ly ing Sphero AccuCount beads (ACBP-50-10 ;

Spherotech Inc, Lake Forest, IL). Data were acquired on a

Canto II cytometer (BD Biosciences) and analyzed using

FlowJo software (Tree Star).
Statistical analysis

Statistical analyses were performed using Prism 4 (Graphpad

Software). Student’s t-test, unpaired and paired, and one-way

ANOVA were used according to the type of experiment. P value

< 0.05 was considered significant.
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The complexity of intestinal homeostasis results from the ability of the intestinal

epithelium to absorb nutrients, harbor multiple external and internal antigens,

and accommodate diverse immune cells. Intestinal intraepithelial lymphocytes

(IELs) are a unique cell population embedded within the intestinal epithelial

layer, contributing to the formation of themucosal epithelial barrier and serving

as a first-line defense against microbial invasion. TCRab+ CD4- CD8aa+

CD8ab- and TCRgd+ CD4- CD8aa+ CD8ab- IELs are the two predominant

subsets of natural IELs. These cells play an essential role in various intestinal

diseases, such as infections and inflammatory diseases, and act as immune

regulators in the gut. However, their developmental and functional patterns are

extremely distinct, and the mechanisms underlying their development and

migration to the intestine are not fully understood. One example is that Bcl-2

promotes the survival of thymic precursors of IELs. Mature TCRab+ CD4-

CD8aa+ CD8ab- IELs seem to be involved in immune regulation, while

TCRgd+ CD4- CD8aa+ CD8ab- IELs might be involved in immune surveillance

by promoting homeostasis of host microbiota, protecting and restoring the

integrity of mucosal epithelium, inhibiting microbiota invasion, and limiting

excessive inflammation. In this review, we elucidated and organized effectively

the functions and development of these cells to guide future studies in this field.

We also discussed key scientific questions that need to be addressed in this area.

KEYWORDS

intraepithelial lymphocytes (IELs), CD8aa+, intraepithelial lymphocytes precursors
(IELps), thymus, TCRab+ CD8aa+ IELs, TCRgd+ CD8aa+ IELs
Introduction

Intestinal intraepithelial lymphocytes (IELs) are embedded within the intestinal

epithelial layer of many species, including fish, pigs, mice, and humans (1, 2), although

their quantity and distribution varies among species (3). These cells were initially described

in 1847 as round cells within the epithelium of the small intestine and were defined as
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nutrition-absorbing cells (4). Later research suggested that they

are predominantly composed of T cells and play a role in dealing

with antigens from the intestinal lumen (4, 5). IELs were

previously divided into conventional and unconventional

subsets, with the former originating from CD4+ or T cell

receptor (TCR)ab+ CD8ab+ T cells and migrating from

peripheral lymphoid tissues, and the latter arising from CD4-

CD8ab- double-negative cells andmigrating from the thymus (5).

Further studies have identified several subsets of TCR-negative

cells and revealed that IELs are a heterogeneous cell population

that contains diverse TCR-positive and TCR-negative subsets (6).

TCR-IELs have been classified in recent years, including innate

lymphoid (ILC)-like cells, iCD8a cells, and other iCD3+ cells

(iCD8a cells are a special subtype of iCD3+ cells that express

CD8a homodimers) (6–9). TCR+ IELs are classified as induced

and natural IELs. Induced IELs are mostly either CD4+ or CD8ab+,
with a minority of CD8aa+ (6, 10); natural TCR+ IELs comprise

TCRab+ and TCRgd+ T cells along with CD8a homodimers, instead

of CD4 or CD8ab (10). TCRab+ CD4- CD8ab- CD8aa+ (hereafter

called TCRab+ CD8aa+ IELs) and TCRgd+ CD4- CD8ab- CD8aa+

(hereafter called TCRgd+ CD8aa+ IELs) cells are two subtypes of

natural IELs that decrease with age, also named natural CD8aa
IELs, because CD8aa is regarded as their hallmark (11).

Substantial evidence indicates that CD8aa IELs share specific

phenotypes, developmental pathways, migration patterns, gene

profiles, and functions with other IELs subsets. Although the two

CD8aa IELs subsets share multiple characteristics, and thus, can

sometimes be classified into the same population, several significant

differences were observed. To the best of our knowledge, TCRab+

CD8aa+ IELs and TCRgd+ CD8aa+ IELs are the two major cell

populations within the intestinal epithelium and account for the

majority of IELs. Recent studies have also partly uncovered their

role in immune surveillance, immune response, mucosal epithelial

protection and restoration, immune homeostasis, systemic

metabolism, and immune regulation in the local environment of

the intestine. This review focuses on TCRab+ CD8aa+ and

TCRgd+ CD8aa+ IELs and aims to reveal the unique pathways

of their development and functional characteristics.
Classification of IELs

TCR- IELs

TCR+ IELs have been investigated for several decades;

nevertheless, TCR- IELs have been recently discovered and

shown to comprise several cellular subsets (Figure 1). NKp44+

CD103+ ILC1 populations that express CD160 and CD101

(markers of intraepithelial lymphocyte) are embedded not only

within the intestinal epithelium of humans but their counterparts

have been identified in mice as cell populations expressing

CD160, NKp46, and NK1.1 (8). In addition, partial CD3- IELs

express CD56, NKp44, IL-23R, RORgt, and gut-homing
Frontiers in Immunology 02
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chemokine receptor CCR6, thus displaying the characteristics of

three cell subsets: NK cells, ILC1, and ILC3 (12). In a subsequent

study, a more comprehensive strategy for characterizing ILC was

established by suggesting that these are closely associatedwithNK

cells and are described as ILC-like cells (13).

In addition to ILC-like subsets, other special cell populations of

TCR- IELs have been recently identified: iCD3+ and iCD8a+

populations. iCD8a cells comprises a new innate TCR- IELs

population expressing CD8a as homodimers and was discovered

in both humans andmice (9). Similar toTCRab+CD8aa+ IELs and

TCR gd + IELs, the development of iCD8a cells also requires IL-15

and E8I enhancers (9). Another subset of TCR
- -IELs was further

identified to reside in both humans and mice. These cells display

hybrid characteristics of ILCs and T cells, express intracellular CD3,

and are named iCD3 cells (7),. This evidence suggests that iCD8a
cells might belong to the group of iCD3 cells (7).
TCR+ IELs

TCR+ IELs are a well-characterized population of cells (6)

and include diverse TCRab+ and TCRgd+ cells (Figure 1). They
can be classified into induced and natural IELs based on different

developmental origins and phenotypes (14). Induced IELs

primarily express CD4 or CD8ab, derive from conventional

TCR ab+ T cells of peripheral lymphoid tissues, and include

TCRab+ CD4+, TCRab+ CD8ab+, TCRab+ CD4+ CD8aa+,

and TCRab+ CD8ab+ CD8aa+ IELs (5, 6). In contrast to

induced IELs, natural IELs comprise TCRab+, TCRab+

CD8aa+, TCRgd+, and TCRgd+ CD8aa+ cells, and originate

from TCR ab+ CD4- CD8ab- and TCRgd+ CD4- CD8ab-

double-negative cells, respectively. The latter are able to

migrate to the intestinal epithelium after undergoing thymic

development and subsequently acquire the CD8aa phenotype

(5). Furthermore, TCR-IELs belong to natural IELs. In addition

to distinct developmental pathways, induced IELs are absent at

birth and increase with age, while natural IELs are present at

birth and decrease with age (5, 6). This suggests that the

reduction in natural IELs may be due to an increase in

induced IELs. TCRab+ CD8aa+ and TCRgd+ CD8aa+ IELs

are two important subsets of TCR+ IELs, which comprise a large

proportion of IELs and play critical roles in the intestinal

immune response and tolerance.

Development of natural
CD8aa+ IELs

TCRab+ CD8aa+ IELs

TCRab+ CD8aa+ IELs are first identified in mice and the

existence of them in humans remains controversial (4). Some

studies suggested that this population is present in gestation and
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rare in adult humans (4, 6). This group of cells are one of the

predominant populations in diverse IELs subsets. Nonetheless,

TCRab+ CD8aa+ IELs have a contentious origin. It was initially

thought that development and differentiation occur in the

thymus, but further studies reported the presence of TCRab+

CD8aa+ IELs in irradiated, neonatally thymectomized, and

athymic mice, thus suggesting that not all IEL populations are

developed by a functional thymus (15). In subsequent studies,

some researchers proposed that TCRab+ CD8aa+ IELs are

generated independently of the thymus, whereas the generation

of other subsets of IELs, including CD8 ab+ and CD4+CD8aa+,

is thymus-dependent (16). Meanwhile, precursors of CD8aa+

IELs are present in the gut, making some researchers believe that

the development and differentiation of CD8aa+ IELs occur in

the intestinal region (17). In subsequent studies on the

identification of iCD8a IELs, the hypothesis that the

precursors of conventional IELs were TCR- CD8a+ cells in

the intestinal epithelia, was controversial. Furthermore,

substantial evidence has indicated that both TCRab+ CD8aa+

and TCRgd+ CD8aa+ IELs originate from thymic cells,

suggesting that the potential precursors reside in double-

negative thymocytes. Meanwhile, athymic mice had a lower
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number of TCRab+ CD8aa+ IELs which could be restored

after transplanting the fetal thymus, confirming that the

majority of TCRab+ CD8aa+ IELs arose from the thymus,

while the extrathymic pathway may also provide such cells in

adults (Figure 2) (18–20).

Until now, thymus-dependent development of TCRab+

CD8aa+ IELs was mostly agreed upon, as the thymus is an

important organ for self-antigen recognition and selection of T

cells. After induction by TCRb, pre-TCR-CD3 signaling, and

other signaling molecules, a small fraction of CD4+ CD8ab+

CD8aa+ thymocytes (i.e., TP cells), were the post-selection

precursors of TCRab+ CD8aa+ IELs (21), which retained the

expression of CD8aa at the stage of positive selection (21). The

noncoding region of Cd8 gene, E8I, as well as the combination of

E8I and E8II (both CD8a enhancers) are also involved in the

expression of CD8aa and the suppression of the expression of

CD8ab in immature thymocytes (22–24). Recently, the specific

precursors of TCRab+ CD8aa+ IELs have been identified. Two

subsets of precursors of TCRab+ CD8aa+ IELs (hereafter called

IELps) were identified from the TCRb+ CD5+ CD122+ H-2Kb+

CD4- CD8- thymocytes: PD-1+ T-bet- cells (hereafter called PD-

1+ IELps) and T-bet+ PD-1- cells (hereafter called T-bet+ IELps)
FIGURE 1

The classification and location of intraepithelial lymphocytes (IELs). Gut epithelium is composed of a single layer of enteroendocrine cells
(intestinal epithelial cells). IELs are a group of heterogenous cells embedded within intestinal epithelium. Dependeing on the expression of TCR,
they can be divided into TCR+ and TCR- IELs. TCR+ IELs include ab and gd T cells. The former includes TCRab+ CD4+, TCRab+ CD8ab+, as well
as induced TCRab+ CD4+ CD8aa+ and TCRab+ CD8ab+ CD8aa+ cells. TCRab+, TCRab+ CD8aa+, gd IELs and TCR- IELs cells are natural
cellular subsets. gd IELs consists of TCRgd+ and TCRgd+ CD8aa+ cells, while TCR- IELs comprises ILC1-like, ILC3-like, and iCD3+ cells including
its special subset, iCD8a.
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(25). PD-1+ IELps are localized in the cortex and restricted by

classical major histocompatibility complex (MHC) molecules.

They are nascent and self-reactive, whereas T-bet+ IELps are

located in the medulla and restricted by non-classical MHC I

molecules, and their number increases with age (25). Meanwhile,

only T-bet+ IELps expressed the memory marker CD44 and

chemokine receptor CXCR3, while neither PD-1+ IELps nor T-

bet+ IELps expressed CCR7 (25). Although two kinds of IELps

could give rise to TCRab+ CD8aa+ IELs, evidence indicates that

T-bet+ IELps are preferentially retained in the thymus, and PD-

1+ IELps are the main precursors of TCRab+ CD8aa+ IELs (25).

In a subsequent study, CD122+ PD-1+ a4b7+ CD103- IELps and
CD122+ PD-1- a4b−

7 CD103+ IELps were identified, and it was

proposed that the former subset was congruent with PD-1+

IELps, whereas the latter was represented by T-bet+ IELps (26).

This further proves the presence of two types of thymic IELps. In

a recent study, researchers found a group of killer innate-like T

cells (ILTCks) could mediate cancer immunity, whereas showed

abILTCk-TCR expressing thymocytes co-expressed PD-1 and

CD122, which is similar to IELps, revealed the abILTCk-TCR
thymocytes could also differentiate into IELs (27).

Furthermore, IL-15 might participate in the differentiation of

TP precursors (21). The maturation of IELps is accompanied by the

upregulation of MHC class I molecules H-2Kb and CD122 (25, 28).

Jiang et al. proposed that c-Myc regulates the development of IELps

via IL-15- and Bcl-2-dependent survival (29). Agonist selection and

IL-15 receptor signaling can induce T-bet expression, indicating

that T-bet, TGF-b, and PD-1 are all involved in the development of

CD8aa+ IELs (Figure 2) (25, 30, 31). The development of thymic
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IELps does not depend on IL-15 (25, 32). Although researchers have

defined several characteristics of IELps, their maturation,

localization, and emigration patterns are still not fully understood.

The development of different T cell lineages requires TCR

signals. Similar to regulatory T cells, TCRab+ CD8aa+ IELs are

self-reactive and require exposure to self-agonists in the thymus

(26, 33). PD-1+ IELps express PD-1, CD69, Nur77, and Egr2,

display signs of elevated TCR signaling (34), and are capable of self-

reactivity after undergoing positive agonist selection (35, 36).

However, the high affinity of TCRs for self-antigens or MHC is

removed to maintain self-tolerance. The number of PD-1+ IELps

increased in Bim-deficient mice, suggesting that IELps may also be

produced by clonal deletion (37). However, the mechanism by

which IELps escape deletions is not fully understood. Some DP

thymocytes survive by downregulating the expression of CD8b and
upregulating the expression ofCD8aa, CD8aa+ cells, whichwould

also activate an altered gene expression program (21, 38–41). These

results indicate a possible mechanism by which IELps survive.

Furthermore, RAS Guanyl Releasing Protein 1 (RasGRP1), a Ras

activator required to transmit weak TCR signals, is also an essential

molecule for the survival of TCRab+CD8aa+ IELps during agonist

selection (26). In addition, CD28-deficient mice have more PD-1+

IELps (25), and PD-1 can inactivate CD28 signaling (42),

suggesting that PD-1 and CD28 may play roles in the survival

and differentiation of IELps. Meanwhile, the anti-apoptotic protein

Bcl-2 promotes the survival of IELps andTCRab+CD8aa+ IELs by

antagonizing Bim (43).

Although recent evidence has shed light on the development

of TCRab+ CD8aa+ IELs, the different signals, gene programs,
FIGURE 2

The development, migration, maintenance, and proliferation of TCRab+ CD8aa+ and TCRgd+ CD8aa+ IELs. Both types arise from thymic IELps.
TP cells become DN cells by regulation from E8I, E8II, IL-15, Bcl-2, and RasGRP1. E8I and E8II can suppress the expression of CD8ab. RasGRP1
contributes to the transmission of weak TCR signals in the process of selection. Besides, c-Myc controls the development of TCRab+ CD8aa+

IELps via IL-15 and Bcl-2. After agonist selection, pre-mature TCRab+ CD8aa+ IELps further develop with the help of T-bet, TGF-b, and PD-1.
Mature TCRab+ CD8aa+ IELps migrate to the intestine directly with the help of S1PR1, a4b7, CD103, and CCR9. Besides these molecules,
TCRgd+ CD8aa+ IELps also require GPCR18 and GPCR55 for localization and regulation of their accumulation. After IELps arrive in the intestine,
the expression of CD5 and CD90 is downregulated, while the expression of T-bet is upregulated, exhibiting the phenotype of CD8aa.
Meanwhile, the crosstalk between commensal bacteria, IECs, and CD8aa IELs contributes to the maintenance and proliferation of CD8aa cells,
via NOD2 signaling, TLRs signaling, RIG-I signaling, IL-15, and other signaling pathways. In addition, BTNL1, BTLN3, BTNL6 and BTNL8 could
promote the maturation and expansion of gd IELs.
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and molecules involved in the development of these cells are not

fully understood.
TCRgd+ CD8aa+ IELs

gd T cells reside in various organs such as the intestine, skin,

vagina, gingiva, uterus, and tongue (44–48). Meanwhile, more gd
T cells reside in the intestinal intraepithelial tissue than in other

tissues. TCRgd+ CD8aa+ IELs are present in both humans and

mice. In humans, only 13% of IELs are gd T cells (49), whereas in

mice, the proportion of gdT cells is around 50-60% (6, 10, 49, 50).

Most gd IELs expressed CD8aa homodimers (hereafter TCRgd+

IELs referred to both TCRgd+ IELs and TCRgd+ CD8aa+ IELs).

The TCR specificity of TCRgd+ CD8aa+ IELs is unknown,

but seems similar to that of conventional peripheral gd T cells

(6). Comparable to TCRab+ CD8aa+ IELs, the origin and

development of TCRgd+ CD8aa+ IELs have been controversial

(Figure 2). Previous studies indicated that they developed in the

absence of the thymus, while others proposed they originate

from the thymus. Although the thymic precursors and

development of TCRgd+ CD8aa+ IELs remain poorly

understood, their development and differentiation are very

similar to those of TCRab+ CD8aa+ IELs, for example, in

terms of the expression of CD8aa as well as the suppression

of CD8b. Additionally, they may require the same molecules and

programs to develop, differentiate, and survive. Nonetheless, in

contrast to TCRab+ CD8aa+ IELs, the repertoire and

development of TCRgd+ CD8aa+ IELs seemed to be

unaffected by MHC antigens and RasGRP1 (26), and were

independent of microbial and food antigens (51).

Butyrophilin-like proteins (BTNL; members of the B7

superfamily of costimulatory receptors) are expected to act as

co-stimulators of IEL receptors. However, the functions of BTNL

members have not yet been elucidated. BTNL1, BTNL3, BTNL6,

BTNL8, BTN3A1, BTN3A2, and Skint1 are involved in the

regulation of TCR gd + cells, with BTNL1, BTNL4, and

BTNL6 being widely expressed in the mouse gut (52). The

number of TCRgd+ IELs is reduced in Btnl1-/- mice, suggesting

that BTNL1 expressed by the epithelial cells of small intestinal

villi, promotes the maturation and expansion of TCRgd+ IELs

(51). In addition, BTNL1 together with BTNL6 can induce TCR-

dependent stimulation of gd+ T cells (51). Further experiments

confirmed that BTNL6 and BTNL1 are required for the

development of TCR gd + IELs (53). Additionally, BTNL3 and

BTNL8 expressed in the human gut epithelium can regulate the

development of TCR Vg4 (51). Furthermore, Skint, a Btnl gene

expressed by thymic epithelial cells and suprabasal

keratinocytes, drives the maturation of progenitors of dendritic

epidermal T cells (DETCs) (54, 55), suggesting that this gene

may also facilitate the maturation of TCRgd+ IELs. However, this

is debatable, because Skint genes are only expressed in gd T cells

residing in the skin and thymus (55). Collectively, these results
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suggest that intestinal epithelial cells (IECs) may facilitate the

development and function of TCRgd+ CD8aa+ IELs.
Migration and maintenance of
natural CD8aa+ IELs

Conventional T cells arise from lymphoid precursors, which

are derived from pluripotent stem cells in the marrow and

migrate to the thymus. In the thymus, within the cortex, T cell

progenitors undergo positive selection and migrate to the

medulla for further differentiation, selection, and maturation,

which imply a delicate regulatory program. For example, the

expression of CCR7 is upregulated to facilitate migration. In

addition, TGF-b-activated kinase 1 (TAK1) facilitates the

functional maturation of T cells, and NF-kB signaling is

required for cell proliferation and egress (56, 57). After

acquiring the competence to proliferate and migrate, T cells

move from the perivascular spaces into the vasculature in

response to sphingosine-1 phosphate binding to sphingosine-1

phosphate receptor 1 (S1PR1; G-protein-coupled receptor) (58–

63). Like conventional T cells, IELps also express S1PR1,

indicating that they may employ a similar mechanism of

egress from the thymus (Figure 2). Mature IELps express

S1PR1 (59, 62, 63), confirming the hypothesis that IELps

depend on S1PR1 to enable thymic egress (64). After

migrating from thymus to vasculature, lymphocytes roll alone

the endothelial cells, then adhere to them and migrate across the

endothelium to emigrate from the vasculature into tissues (65).

Previous studies exhibited that a4b7 is a receptor to MAdCAM-

1, while MAdCAM-1 is expressed by mucosal venules to help

lymphocyte traffic into Peyer’s patches and the intestinal lamina

propria (LP), suggested a4b7 mediates the adherence of IELs to

intestinal epithelial (65–67). Integrins a4b7 and aEb7 (i.e.,

CD103, a hallmark of tissue-resident T cells), CD122, CD160,

and 2B4 are common molecules associated with gut-homing and

retention of cells (48, 66, 68–71); the expressions of a4b7,
CD103, and CCR9 direct competent IELps migrate, entry and

firmly attach to the gut epithelium (Figure 2) (14, 25, 30, 72, 73).

Meanwhile, recent study showed that transcription factor LRF

could promote the expression of integrin a4b7, control the late
differentiation and facilitate the gut-homing process of CD8aa
IELp (74). Meanwhile, mice lacking the vitamin D receptor

showed low expression of CCR9 (75), indicating that vitamin D

is also a factor affecting the migration of CD8aa+ IELs.

Furthermore, orphan receptor G protein-coupled receptor 18

(GPCR18) is required for the localization of CD8aa IELs,

especially TCRgd+ CD8aa+ IELs (Figure 2) (76). GPCR 55

negatively regulates the accumulation of TCRgd+ CD8aa+

cells (Figure 2) (77).

During the agonist-selection process, TP cells express high

levels of CD5 and CD90, indicating that these cells receive high

TCR activation signals and then become DN abT cells (30).
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After CD8aa+ IELs arrive in the gut, the expression of CD5 and

CD90 is downregulated and the expression of CD103 and

CD8aa is upregulated, and CD8aa+ IELs become resident

cells (Figure 2) (21, 30, 78). Meanwhile, CD8aa+ IELs also

upregulate the expression of T-bet, which could induce the

expression of CD8aa homodimers (Figure 2) (30). IL-15 is a

critical molecule that mediates the expression of T-bet and CD5,

and there is evidence that IL-15 is involved in the maintenance

and expansion of CD8aa+ IELs instead of their induction

(Figure 2) (21).

The development, survival, and maintenance of CD8aa+

IELs is affected by diverse molecules and factors (Figure 2).

Exposure to external food antigens or pathogens and different

gut environments can shape and maintain CD8aa+ IELs. Gut

bacteria can shape the differentiation of diverse T cells (79–84).

Cervantes-Barragan et al. showed that Lactobacillus reuteri (L.

reuteri) produced indole derivatives of tryptophan which

ac t iva te the ary l hydrocarbon recep tor , a l lowing

downregulation of the expression of T-helper-inducing POZ/

Krueppel-like factor (ThPOK), which is implicated in the

differentiation of CD4+ CD8aa+ double-positive IELs (DP

IELs) (85). This result suggests that ThPOK plays a role in

regulating the expression of CD8a and that microbial factors or

specific diets could promote the differentiation and maintenance

of IELs.

NOD2 signaling helps maintaining the homeostasis of

CD8aa+ IELs via the recognition of gut microbiota and IL-15

production (86). This further demonstrates that the gut

microbiota promotes the retention of CD8aa+ IELs.

Meanwhile, Yu et al. suggested that MyD88-dependent

signaling contributed to the maintenance of the number of

TCRab+ CD8aa+ IELs and TCRgd+ IELs via IL-15

production, which was influenced by the interaction between

commensal bacteria and IECs via TLRs signaling (87). As c-Myc

regulates the development of IELps via IL-15, and IL-15

mediates the expression of T-bet to induce the expression of

CD8aa homodimers and help maintain the homeostasis

through NOD2 and MyD88-dependent signaling, IL-15 is

considered to be involved in the development and

maintenance of TCRab+ CD8aa+ IELs. Meanwhile, as

another study showed that IECs, macrophages and DCs in the

intestine could express IL-15 (86), and enterocytes express

BTNLl1, BTNL3, BTNL6, and BTNL8 of the BTNL family to

promote the expansion of TCRgd+ CD8aa+ IELs (51), these

results indicated that IECs and other cells in intestine may help

the maintenance and expansion of TCRab+ CD8aa+ and

TCRgd+ CD8aa+ populations via expression of IL-15 and of

BTNL molecules. Commensal viruses and retinoic acid-

inducible gene I (RIG-I) signaling are essential for the

homeostasis of IELs (88). Furthermore, the thymus leukemia
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antigen, which is confined to the surface of IECs, functions as an

effective effector in modulating the IEL response (89). These

results suggested that multiple cells and viruses in the intestine

contribute to the survival and maintenance of CD8aa+ IELs.

Konijnenburg et al. revealed that the dynamic localization and

distribution, migration, scanning patterns, and energy utilization

of TCRgd+ IELs are driven by microbial density through the

sensing of IECs (3), which is a consequence of epithelial-immune

crosstalk. In a subsequent study, Jia et al. identified commensal

bacteria that contributed to gd IELs surveillance (90).

Furthermore, the development and homeostasis of TCRab+

CD8aa+ IELs requires b2m expression, not of classical class I

molecules K and D (70). Moreover, a recent study indicated that

the development and maintenance of CD8aa+ IELs partly

depend on low oxygenic conditions (91).
Function of various IELs in
gut epithelium

The gut epithelium is a unique immunological compartment

that is in contact with numerous external microorganisms and

environmental antigens and as well as with the internal

environment. The gut epithelium comprises a single layer of

IECs, with diverse IELs embedded between these cells, and

provides the first line of defense. This suggests that these cells

may undertake potentially essential functions, despite the small

total proportion of IELs. Considering this characteristic, the gut

mucosal immune system requires a delicate program to respond

to pathogens, while maintaining tolerance to innocuous

antigens. In mice, studies showed that IELs increase in the late

disease process of enteropathies such as CeD, graft vs. host

disease, allograft rejection, autoimmune (4). In human, TCRab+

CD8ab+ IELs and innate-like IEL lacking surface TCR

expression were involved in the development of villous

atrophy in patients with refractory CeD (4). CD8aa
homodimers decreased antigen sensitivity of the TCR and

acted as repressors to negatively regulate T cell activation (92).

CD8aa IELs are related to inflammatory bowel disease (IBD)

and infection and play a critical role in protection against

pathogens, as well as in controlling bacterial overgrowth. This

indicates their involvement in the promotion of mucosal defense

and epithelial homeostasis (89, 93–96). Besides, recent study

showed that integrin b7 deficiency protects mice from metabolic

syndrome and against atherosclerosis, whereas IELs in the small

intestine had the highest expression of b7, revealed that b7+

natural IELs could modulate systemic metabolism and accelerate

the progression of cardiovascular disease (97). Although most of

these functions are shared, the functions of the different subsets

of IELs differ slightly (Figure 3).
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Functions of TCRab+ IEL

The function of TCRab+ CD8aa+ IELs has not been

completely elucidated. In general, IELs expressing TCRab can

respond to pathogens. Global analysis revealed that this

population expressed NK receptor-related genes, such as

Ly49A, Ly49C, and Ly49E of the Ly49 family, and genes that

were expected to down-modulate their reactivity (70). These

cells also express fibrinogen-like protein-2, TGF-b3, LAG-3, and
genes associated with corresponding inhibitory or activation

functions, such as 2B4 (70). TCRab+ CD8aa+ IELs and NK cells

share similar characteristics, and TCRab+ CD8aa+, TCRab+

CD8ab+, and TCRgd+ CD8aa+ IELs have significantly different

functions. TCRab+ CD8aa+ IELs might have suppressive and

regulatory roles. Besides, this cellular population prevents

induced colitis, a role mediated by IL-10. This method of

protection is unique and differs from that of TCRgd+ and

TCRab+ CD8ab+ IELs (70, 98). Collectively, these results

indicate that TCRab+ CD8aa+ IELs contributes to the

maintenance of intestinal immunity and immune regulation.
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Functions of TCRgd+ IEL

TCRgd+ IELs were scattered predominantly in the central

and upper locations of the villi (3). Although TCRgd+ and

TCRab+ CD8aa+ IELs share similar developmental pathways

and expression of specific genes, these subsets are significantly

different. In contrast to TCRab+ CD8aa+ IELs, the TCRgd+

population did not show a significantly high expression of NK

receptor-related genes or of the other genes mentioned

previously (70).

Unlike ab T cells, gd T cells commonly contribute to the

maintenance and restoration of body-surface integrity.

Boismenu et al. proposed that activated TCRgd+ IELs produce

keratinocyte growth factor (an epithelial cell growth factor

belonging to the fibroblast growth factor family) and stimulate

the differentiation, regeneration, and migration of epithelial

cells, whereas TCRab+ IELs do not (99). Furthermore, a

substantial amount of TCRgd+ IELs was enriched around the

injured region in dextran sodium sulfate (DSS)-induced mouse

colitis (100). TCRgd+ IELs upregulated the expression of
FIGURE 3

The functions of CD8aa IELs. TCRab+ CD8aa+ IELs express Ly49A, Ly49C, Ly49E, and other genes of the Ly49 family, as well as 2B4,
fibrinogen-like protein-2, TGF-b3, and LAG-3, being involved in immune regulation. In contrast to TCRab+ CD8aa+ IELs, TCRgd+ IELs express
TGFb1, TGFb3, prothymosin b4, heat shock proteins, chemokine KC, and big-h3, being involved in injury healing and protection of the integrity
of epithelium. Meanwhile, these cells could also express cytokines KC, IL-1b, MIP2a, Cxc19, and Cxc116 thus recruiting various inflammatory
cells. Besides, they are characterized by a specific dynamic pattern to surveil and respond to pathogen invasion, undertaking diverse roles in
the intestine.
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cytoprotective factors such as heat shock proteins, chemokine

KC, and big-h3 to promote keratinocyte proliferation and

wound healing during DSS treatment (101). In addition,

TCRgd+ IELs secrete TGFb1, TGFb3, and prothymosin b4
which protect the intestinal epithelium (14). These studies

further confirmed that TCR gd+ IELs resolved inflammatory

lesions by secreting multiple factors. However, although studies

have shown that TCRgd+ IELs help maintain and restore the

integrity of intestinal epithelia in IBD (100, 102), the function of

TCRgd+ IELs in this pathology is not fully understood. TCRgd+

IELs also secrete proinflammatory factors which can induce or

aggravate colitis (103, 104). Park et al. showed that activation of

TCRgd+ IELs by commensal bacteria induces spontaneous colitis

(105). Nevertheless, this also indicates that T regulatory cells

could suppress TCRgd+ IELs via IL-10 to maintain intestinal

homeostasis (105).

In addition, TCRgd+ IELs upregulated the expression of

chemotactic molecules such as cytokines KC, IL-1b, MIP2a,
and Cxc19, for various inflammatory cells, and the expression of

microbial pattern recognition receptors such as TLR1 and CD4

in DSS-induced colitis (101). Meanwhile, they are accompanied

by increased complement components 1qa, 1qb, and lysozyme,

which are bactericidal proteins, and by increased expression of

RegIIIg (a pancreatitis-associated protein) (101). MyD88 is also

required for regulation of RegIIIg expression, and commensal

bacteria could regulate the response of TCRgd+ IELs to mucosal

damage through MyD88-dependent and MyD88-independent

pathways (101, 106). TCRgd+ IELs could also recruit

inflammatory cells, respond to bacteria, and be associated with

commensal bacteria. Activated TCRgd+ IELs could limit

bacterial penetration of resident microbiota or new organisms

from the environment (106).

In addition, several studies have revealed the cytotoxic

properties of activated TCRgd+ IELs. These cells produce

interferons, TNF-a, and antimicrobial proteins in response to

viral or bacterial infections (1, 107). At the same time, the

immune surveillance of TCRgd+ IELs follows a dynamic

migration pattern: they survey pathogen invasion by shifting

along the basement membrane, migrate into the lateral

intercellular space between two adjacent enterocytes and

change the pattern when pathogen invasion occurs (48).

Additionally, these cells facilitate tumor necrosis factor-

mediated shedding of apoptotic enterocytes with the help of

CD103-mediated extracellular granzyme release (108).

Collectively, although the functions and detailed molecular

mechanisms of TCRgd+ IELs have not been fully defined, current
evidence indicates their roles in preserving and restoring the

integrity of the intestinal epithelium, recruiting inflammatory

cells, surveilling, responding to enteric infection, maintaining

mucosal homeostasis, and facilitating pathological epithelial cell

shedding. These functions indicate the importance and delicate

regulatory traits of TCR gd + IELs.
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Conclusion and
unanswered questions

The gut is an essential nutrient absorption organ that directly

encounters multiple antigens in the gastrointestinal tract and

contains various immune cells with distinct functions and

distributions. IELs are a small number of heterogeneous cells

residing in the intestinal epithelium, undertaking the role of the

first line of defense of the immune system. Their functions also

include maintaining immune homeostasis, other possible

competencies. Besides, studies exhibited IELs are associated with

multiple disease such as CeD, tropical sprue and parasite infections.

Natural TCRab+ CD8aa+ and TCRgd+ CD8aa+ IELs are two

special populations of IELs that exhibit phenotypes and

characteristics that are different from conventional T cells or

other subsets of IELs. TCRab+ CD8aa+ IELs are capable of

immune regulation, whereas TCRgd+ CD8aa+ IELs can protect

the integrity of intestinal epithelia, heal injured mucosal epithelia,

maintain homeostasis of the resident microbiota, inhibit

microbiota invasion, respond to pathogens, and limit excessive

inflammation. Meanwhile, recent study revealed the role of natural

IELs in dietary metabolism, showed the potential research value of

these cells. In brief, a number of studies have highlighted the

importance of TCRab+ CD8aa+ and TCRgd+ CD8aa+ IELs,

indicating the possibility of taking advantage of these cells to

strengthen the understanding of intestinal immunity, metabolism

and cure diverse associated illnesses or infections.

However, the development, function, gene profiles of these

cells, as well as the regulatory mechanisms underlying their effect

against different conditions require further exploration. For

instance, although previous studies of TCRab+ CD8aa+ IELs

identified two thymic progenitors and revealed their distinct

features, migrating patterns, and some specific gene profiles, the

proportions and potential functional or phenotypic differences

between the two IELps are not fully understood. TCRab+

CD8aa+ and TCRgd+ CD8aa+ IELs have various roles under

normal or infectious/inflammatory conditions, their existence

being essential in organisms. However, the specific molecules

regulating their function are not clear, although several critical

transcription factors, cytokines, chemokines, and other

molecules involved in their development, maturation,

migration, and function, were identified. These unanswered

questions should be the focus of future research.
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Effective differentiation of double
negative thymocytes requires
high fidelity replication of
mitochondrial DNA in an age
dependent manner

Candice B. Limper1, Narda Bondah1, Daphne Zhu1,
Alanis N. Villanueva1, Uchenna K. Chukwukere1,
Weishan Huang1,2 and Avery August1,3*

1Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and
Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States, 2Department of
Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA,
United States, 3Cornell Center for Health Equity, Cornell University, Ithaca, NY, United States
One of the most proliferative periods for T cells occurs during their development

in the thymus. Increased DNA replication can result in increased DNA mutations

in the nuclear genome, but also in mitochondrial genomes. A high frequency of

mitochondrial DNA mutations can lead to abnormal mitochondrial function and

have negative implications on human health. Furthermore, aging is accompanied

by an increase in such mutations through oxidative damage and replication

errors. Increased mitochondrial DNA mutations cause loss of mitochondrial

protein function, and decrease energy production, substrates, and metabolites.

Here we have evaluated the effect of increased mitochondrial DNAmutations on

T cell development in the thymus. Using mice carrying a mutant mitochondrial

DNA polymerase g (PolG) that causes increased mitochondrial DNA mutations,

we show that high fidelity replication of mitochondrial DNA is pivotal for proper T

cell development. Reducing the fidelity of mitochondrial DNA replication results

in a premature age-dependent reduction in the total number of CD4/CD8

double negative and double positive thymocytes. Analysis of mitochondrial

density in thymocyte subpopulations suggests that this may be due to reduced

proliferation in specific double negative stages. Taken together, this work

suggests that T cell development is regulated by the ability of mitochondria to

faithfully replicate their DNA.

KEYWORDS

DNA polymerase g, mutator mice, T cell development, thymus, mitochondria,
aging, proliferation
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Introduction

T lymphocytes are a critical part of the adaptive immune

response, needed for protection from non-self, maintenance of

self-tolerance, and removing abnormal cell growth in an antigen

specific manner. T cells originate from stem cells in the bone

marrow, which migrate to the thymus to mature, and egress into

the periphery where they can perform their effector functions. Fully

functioning T cells can then proliferate and differentiate according

to appropriate immune responses. One of the most proliferative

periods for T cells occurs during development in the thymus.

Maturation of lymphoid precursors can occur in various stages

marked by CD4 and CD8 expression, i.e., CD4-CD8- double

negative (DN), CD4+CD8+ double positive (DP), CD4+CD8-

single positive or CD4-CD8+ single positive (SP). In addition, the

DN stage can be further compartmentalized into four major stages

based on expression of CD25 and CD44: CD44+CD25- (DN1),

CD44+CD25+ (DN2), CD44-CD25+ (DN3), and CD44-CD25-

(DN4). These different stages are defined based on different

phases of the T cell receptor b (TCRb) gene selection where the

most proliferative stage is just prior to the DP stage when

productive TCRb gene arrangement occurs (1). Such responses

require synchronous metabolic support through glycolysis and

oxidative phosphorylation which occur in the cytoplasm and the

mitochondria, respectively (2).

The mitochondrion is made up of around 1,000 different

proteins encoded by mitochondrial and nuclear genes (3).

Approximately ~99% of the proteins in this semi-autonomous

organelle are transcribed from nuclear genes. However,

mitochondrial function is dependent on the mitochondrial

genome. The mitochondrial genome is highly regulated to meet

cellular demands and makes copies irrespective of the cell

replication and in differentiating cells (4–6). Access to these genes

is imperative for normal mitochondrial function as they encode for

37 different mitochondrial proteins, all of which play a critical role

in normal mitochondrial physiology (7). As part of the aging

process mutations accumulate in these genes, and over time these

modifications of the mitochondrial genome can cause proteins to

lose their functional capacity. Robust mutation repair mechanisms

guard the nuclear genome of the cell (8). In contrast, there are fewer

mechanisms for correcting mitochondrial gene mutations, the most

important of which is carried out by the N-terminal “proofreading”

exonuclease domain of the mitochondria DNA (mtDNA)

polymerase g (PolG) (9, 10). PolG corrects mismatched

mitochondrial nucleotides, which if not corrected can result in

increased somatic mtDNA mutations and decreased production of

energy, substrates, and metabolites by the mitochondria (10–12).

Immune cells, including T cells, are highly dependent on these

products as they are some of the most dynamic cells in the body,

being among the most proliferative cells, requiring multiple rounds

of DNA replication, both nuclear and mitochondrion (13, 14).

In this study, we have evaluated the effect of increased mtDNA

mutations on T cell development. Using mice carrying the

PolGD257A mutation in the mtDNA polymerase g (PolG) that

causes increased mtDNA mutations (up to 500-fold higher

mutation burden than WT mice) (15), we show that high fidelity
Frontiers in Immunology 02126
replication of mtDNA is pivotal for proper T cell development.

Reducing the fidelity of mtDNA replication results in a premature

age-dependent reduction in the total number of CD4/CD8 double

positive and negative thymocytes (16). Analysis of mitochondrial

density in thymocyte subpopulations suggests that this may be due

to reduced proliferation in specific double negative stages. Taken

together, this work suggests that T cell development is regulated by

the ability of mitochondria to faithfully replicate their DNA.
Results

Low fidelity mtDNA polymerase impairs
thymocyte development in an age and
genotype dependent manner

To determine the effects of increased mtDNA mutations on T

cell development, we examined the low fidelity PolGD257A mouse

model at different ages, analyzing age groups previously shown in

the literature to represent young (1-3 months), mature (6-8

months) and old (11-13 months) mice (Figure 1A) (17, 18). We

weighed the thymi and counted the total number of thymocytes

from the three different age groups (young, mature, old) and

genotypes; wildtype (PolG+/+ or WT), heterozygous (PolGD257A/+),

and homozygous (PolGD257A/D257A). Consistent with previously

published results, we found that there is decreased weight and

total number of thymocytes (Figures 1B, C) in the PolGD257A/D257A

relative to WT in the mature mice (15). However, these differences

were not observed in the young or old groups. Furthermore, we

found that the PolG+/D257A mice shared the same phenotype as WT

mice in all age groups, suggesting that someWT polymerase may be

sufficient for the development of these cells. Examination of RNA-

Sequencing data for PolG expression in thymus samples of neonatal

and adult mice by RNA-revealed no age-related difference in

expression (Supplemental Figure 1).

We next used CD4 and CD8 to differentiate the thymocyte

stages utilizing flow cytometry (Figures 2A) (19). There was an

increase in the percent of the DN population in the mature and old

PolGD257A/D257A mice relative to WT mice (Figures 2B, C).

Furthermore, the total cell numbers also indicated that there was

fewer total number of DP and SP CD4+ and CD8+ T cells in the

mature PolGD257A/D257A group relative to the WT (Figure 2C).

Taken together, this suggests that dysfunctional PolG causes a

block at the DN developmental stage.

We sought to further investigate the DN populations with the

goal of determining the stage at which these cells are being

prevented from passing into the more mature stages, including

the DP stage. Therefore, we investigated the four identifiable double

negative populations: DN1-4, utilizing the expression patterns of

CD25 and CD44 as markers (Figures 2A, D). As expected, we

observed the greatest differences in the DN3 or DN4 populations,

the most proliferative stages during T cell development (Figures 2E,

F). We saw an increase in cell percentages of DN1, and decrease in

DN3 stages, in the mature PolGD257A/D257A (Figure 2F).

Furthermore, we saw a decrease in the total number of DN2 and

DN3 populations in mature PolGD257A/D257A mice relative to WT
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mice, as well as curiously, in young PolG+/D257A mice but not in

young PolGD257A/D257A mice. We also noted an increase in the

number of the DN4 population in old PolGD257A/D257A mice relative

to WT mice (Figure 2F). There was also what seemed like a

corresponding increase in the percentage of the DN1 population,

and a reduction in the percentage of DN3 population in mature

PolGD257A/D257A mice relative to WT mice. The old PolGD257A/D257A

mice had reduced percentages of DN1, DN2, and DN3 populations

and an increase in DN4 populations. This data suggests that the

presence of a low fidelity mtDNA polymerase resulted in an overall

decrease in the number of DN populations and stalled T cell

development, likely at the DN3 population in mature mice.
Expression of TCR transgene partially
rescues the DN population in PolGD257A/

D257A mice

To interrogate the effects of the fidelity of mtDNA replication

in a model of T cell development expressing a fixed TCR, we

crossed PolGD257A mice to OT-II transgenic mice which carry

rearranged TCR alpha and beta chains that are restricted to

major histocompatibility complex II (MHCII) Ab (and recognizes

the peptide 323-339 from the protein Ovalbumin) (20, 21).

The presence of the already rearranged TCR accelerates the

developmental stages through the DN3 when gene segments

encoding the TCR alpha and beta chains would usually rearrange

(22, 23). Using this transgenic T cell receptor (TgTCR) model, we

tracked the T cell development in the thymus, focusing on young

and mature groups given their differences in T cell development.
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We collected thymi from young or mature groups and analyzed

thymic weights and thymocyte number. We observed a strong

concordance between the TgTCR model and the non-TgTCR

PolGD257A/D257A, where we saw no significant differences in the

young mice, but a reduced thymic weight of mature OTII/

PolGD257A/D257A mice relative to the control (Figures 3A, B).

However, when we analyzed the percentage of DN and DP

populations in the OTII/PolGD257A/D257A mice relative to the

control, we observed an increased overall percentage of the DN

population in the OTII/PolGD257A/D257A, as was found in the non-

TgTCR model, along with a decrease in the percentage of the DP

population (Figure 3C). Closer examination of the DN populations

revealed a trend towards an overall decrease in the percentage of the

cells in the DN1-3 stages (significantly decreased in DN1), unlike

what we observed in the non-TgTCR model, but an increase in the

percentage of the DN4 population relative to the control

(Figure 3D). This data suggests that the presence of a low fidelity

mtDNA polymerase resulted in stalled T cell development at the

DN3 stage in mature mice, and this is altered in the transgenic

model with accelerated development through these stages.
Mature transgenic TCR T cells with low
fidelity mtDNA polymerase have
decreased mitochondrial density in
DN subpopulations and exhibit
less proliferation

We next wanted to explore whether the block in T cell

development observed in mature non-transgenic and OTII/
A

B C

FIGURE 1

Fidelity of mtDNA replication is important for normal thymocyte numbers. (A) Experimental outline of PolGD257A/D257A genotypes and age groups. (B) Thymi
from young, mature, and old PolGD257A/D257A mice were weighed and plotted as a percentage of body weight. (C) Thymocyte numbers from young, mature,
and old PolG+/+ and PolG+/D257A were determined and plotted. Data representative 11 independent experiments, n=5-24 mice per group. *p<0.05-.01.
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PolGD257A/D257A mice was associated with alterations in

mitochondrial density within the double negative population. We

first compared thymocytes from mature non-transgenic mice, and

used a mitotracker stain, to determine mitochondrial density, gating

on double negative subpopulations (DN1-4) (24). We found that

the DN1 stage exhiboted and 4 stages exhibited elevated

mitochondrial density, while the DN2 and 3 stages exhibited

reduced mitochondrial density in PolGD257A/D257A (Figures 4A, B).
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This correlated with the percentage of cells in each of these stages,

and for the DN2 and 3 stages, the number of these developing

PolGD257A/D257A thymocytes (see Figures 2F, E)

Since these DN populations are known to be highly proliferative,

we wanted to explore whether decreased mitochondrial density

negatively impact these highly proliferative stages of T cell

development in the mature non-transgenic mice (25–27).

Figure 4D shows an analysis that determines proliferation (based
D

A

B

E

F

C

FIGURE 2

Error prone mtDNA replication impairs thymocyte development in mature PolGD257A/D257A mice. (A) Gating scheme used to determine the
percentage (and number) of developing T cell populations. DN= double negative, DP= double positive, and SP=single positive. (B, C) Thymi from
young, mature, and old PolG+/+, PolG+/D257A, and PolGD257A/D257A mice were stained for CD4 and CD8 surface markers. The gating shows DP, CD4+

and CD8+ SP thymocytes. Heatmaps are a representative quantification that are normalized by the mean of the control, where red indicates an
increase and blue indicates a decrease. (D) Cartoon schematic showing the progression of T cell development in the DN stage. (E, F) Thymocytes
from PolG+/+, PolG+/D257A, and PolGD257A/D257A mice were stained for CD25 and CD44 to differentiate DN subpopulations, and percentages of the
DN1-4 stages determined. Data are displayed as mean ± standard error of mean and representative 11 independent experiments, n=7-24 mice per
group, where *p<0.05-.01, **p<0.01-0.001, ***p<0.001 based on multiple t tests.
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on cell size using FSC-A, since the larger cell size is associated with

cell cycle progression) (27, 28), where populations a and b are low

proliferation populations, and population c is high (Figure 4C). The

proportion of large (proliferating) cells (as determined by the increase

in cell size), particularly among the DN3 cells in mature thymocytes

was drastically decreased in PolGD257A/D257A mice relative to the

control (Figure 4D). Additionally, there was a decrease in the

mitochondrial density (shown as an increase in the cells in gate a)
Frontiers in Immunology 05129
in the DN3 population in PolGD257A/D257A mice relative to WT

(Figures 4D, E).

We next analyzed mitochondrial density within the double

negative population of mature OTII/PolGD257A/D257A mice, again,

using Mitotracker to determine mitochondrial density, gating on

double negative subpopulations (DN1-4) (24). Here, we found that

all four DN stages exhibited reduced mitochondrial density in

mature OTII/PolGD257A/D257A mice (Figure 5A), with the
D

A B

C

FIGURE 3

Mature OTII/PolGD257A/D257A mice have decreased thymi weight and increased DN populations relative to controls. (A) Thymi from mature OTII/
PolG+/+ OTII/PolGD257A/D257A mice were weighed and plotted as a percentage of body weight. (B) Thymocyte numbers from mature OTII/PolG+/+

OTII/PolGD257A/D257A mice were determined and plotted. p=0.06. (C) Thymocytes from mature OTII/PolG+/+ and OTII/PolGD257A/D257A mice were
stained for CD4 and CD8 and analyzed for CD4/CD8 expression. (D) Thymocytes from OTII/PolG+/+ and OTII/PolGD257A/D257A mice were stained for
CD25 and CD44 to identify DN1-4 subpopulations, and percentages of the DN1-4 stages determined. Heatmaps are a representative quantification
that are normalized by the mean of the control, where red indicates an increase and blue indicates a decrease. Data are displayed as mean ±
standard error of mean and representative of 2 independent experiments, n=3-5 mice per group, where *p< 0.05-.01, **p< 0.01-0.001, ***p<0.001
based on multiple t tests.
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difference increasing in the more mature stages towards DN4

(Figure 5B). Together this suggests that as thymocytes develop

along the DN1-4 stages, reduced fidelity of mtDNA replication in

the PolGD257A/D257A background may lead to progressively reduced

mitochondrial density.

We also analyzed these DN populations to determine whether

decreased mitochondria also negatively impact this highly proliferative

stage of T cell development in the mature OTII/PolGD257A/D257A mice

(25–27). Figure 5D shows a similar analysis that determines

proliferation (based on cell size using FSC-A, since the larger cell size

is associated with cell cycle progression) (27, 28), where populations a

and b are low proliferation populations, and population c is high (see

Figure 5C). The proportion of large (proliferating) DN3 and DN4 cells

in OTII/PolGD257A/D257A thymocytes (as determined by the increase in

cell size in gate c) was drastically decreased relative to the control

(Figure 5D). Additionally, there was a decrease in the mitochondrial

density (shown as an increase in the cells in gate a) in the OTII/

PolGD257A/D257A DN3, and again more drastically in DN4 populations

relative to OTII/PolG+/+ (Figures 5D, E).
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Mature OTII/PolGD257A/D257A T cells have
decreased mitochondrial density and
proliferation at the SP CD4+ T cell stage

Lastly, we wanted to determine whether the aberrant effects

observed in the mature thymocytes continued through the rest of T

cell development in the thymus. To determine this, we looked at

more mature DP and SPCD4 T cell populations in the thymus.

There was a decrease in the proliferating cells (larger cells in gate c)

in the OTII/PolGD257A/D257A relative to the control (Figure 6A),

although this was not seen in the non-transgenic PolGD257A/D257A

DP cells. Examination of the more mature DP and SPCD4 OTII/

PolGD257A/D257A T cell populations in the thymus revealed decreases

in the mitochondrial density (gates a and b), in CD4SP cells in both

non-transgenic PolGD257A/D257A and OTII/PolGD257A/D257A

thymocytes, which was less apparent in DP thymocytes (cf.

Figure 6B, vs A). Similar results were observed in CD4SP non-

transgenic PolGD257A/D257A thymocytes (Figure 6C. note that OTII

thymocytes develop into CD4SP, not CD8SP).
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FIGURE 4

Reduced mitochondrial density and proliferation in DN thymocytes in mature PolGD257A/D257A mice. (A) Thymocytes from PolG+/+ and PolGD257A/

D257A mice were stained for mitochondria, along with CD25 and CD44. Histograms depict mitochondria density in gated double negative
subpopulations: DN1, DN2, DN3, and DN4. (B) Geometric mean fluorescence intensity (gMFI) of mitochondria density staining in DN1-4 thymocytes
from PolG+/+ and PolGD257A/D257A mice. (C) Illustration of gating strategy used to discriminate larger proliferating cells and mitochondrial density and
(D, E) frequencies of size (FSC-A) and mitochondrial density (mitotracker stain) in DN1-4 populations as indicated. Heatmaps are a representative
quantification that are normalized by the mean of the control, where red indicates an increase and blue indicates a decrease. Data are displayed as
mean ± standard error of mean and representative of 1 independent experiment, n=3 mice, where *p< 0.05-.01, **p< 0.01-0.001, ***p<0.001 based
on multiple t tests.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1128626
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Limper et al. 10.3389/fimmu.2023.1128626
Discussion

The role of mitochondria in T cell development has only

recently been intensely investigated, and understanding the effects

of mtDNAmutations on this process is even more limited (2). Here,

we have explored the effects of reduced mtDNA replication fidelity,

which leads to increase in mtDNA mutations in mice carrying the

mutant PolGD257A, on T cell development. We found that

reducing the fidelity of mtDNA replication results in premature

age-dependent reduction in the total number of CD4/CD8 double

positive and negative thymocytes. This is likely due to reduced

proliferation in the highly proliferative double negative stages due

to reduced mitochondrial density and the accompanying effect on

mitochondrial products needed for appropriate function. Taken

together, this work suggests that T cell development is regulated by

the ability of mitochondria to faithfully replicate their DNA.

We examined the importance of the fidelity of the mtDNA

replication in T cell development and the significance of this process

in an age dependent manner, given that over time mtDNA

mutations accumulate naturally in WT mice and at an accelerated

rate (>500 fold) in PolGD257A mice (15). Others have previously
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shown that homozygous mutations in the exonuclease region of

PolGD257A result in premature aging phenotypes, including the

thymus, in 9-13 month old mice (15). Interestingly, 3 month old

mice have an increase in apoptosis in total thymi, suggesting that

there might be fewer thymocytes because of increased cell death

(15). Considering the age gap between 3- and 9-month-old mice, we

sought to determine whether these differences are detectable

between these ages, and whether these findings depend on the

dose of the PolGD275A mutant. Similar to previous findings, we

saw decreased weight and total cell number of thymocytes in the

mature PolGD257A/D257Amice (15, 29). That this observation was not

detected in the heterozygous group suggests that one functional

copy of the PolG gene may be sufficient to otherwise ameliorate

negative effects.

We further investigated the effects on various T cell

developmental stages. The DN stage includes TCR b chain-

selection, survival, differentiation, proliferation, and allelic

exclusion at the TCRb locus (30). We predicted that we would

see an increase in the DN stage in the mature PolGD257A/D257A mice

relative to the control because there would be higher mutations due

to the high proliferation rates, and the findings supported this
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FIGURE 5

Reduced mitochondrial density and proliferation in DN thymocytes in mature OTII/PolGD257A/D257A mice. (A) Thymocytes from OTII/PolG+/+ and
OTII/PolGD257A/D257A mice were stained for mitochondria, along with CD25 and CD44. Histograms depict mitochondria density in gated double
negative subpopulations: DN1, DN2, DN3, and DN4. (B) Geometric mean fluorescence intensity (gMFI) of mitochondria density staining in DN1-4
thymocytes from OTII/PolG+/+ and OTII/PolGD257A/D257A mice. (C) Illustration of gating strategy used to discriminate larger proliferating cells and
mitochondrial density and (D, E) frequencies of size (FSC-A) and mitochondrial density (mitotracker stain) in DN1-4 populations as indicated.
Heatmaps are a representative quantification that are normalized by the mean of the control, where red indicates an increase and blue indicates a
decrease. Data are displayed as mean ± standard error of mean and representative of 1 independent experiment, n=3 mice, where *p< 0.05-.01,
**p< 0.01-0.001, ***p<0.001 based on multiple t tests.
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prediction. There are different factors that distinguish progression

through the DN stage, discriminated between DN1-4 stages. DN1-2

stages or early thymic precursors are the earliest clearly identifiable

intrathymic stages (23). We observed an increase in the DN1

population in the mature PolGD257A/D257A mice relative to the

controls. This suggests that there may be a developmental stall in

the DN1 stage, thus reducing progression to the subsequent stages

and affecting further T cell development.

T cell commitment occurs at the end of the DN2 prior to entry

into the DN3, and during this stage they traverse a significant

proliferative expansion (31). We observed a decrease in the cell

number and percentage of DN3 population in the PolGD257A/D257A

mice, suggesting that the fidelity of mtDNA replication significantly

affects the highly proliferative cells in the DN3 stage. A possible

reason for the reduction in the number of these cells is increased cell

death, although this requires further investigation. This finding
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highlights the importance of functional mitochondria and

mitochondrial products in this highly proliferative stage, which

may be more sensitive to higher mtDNA mutational burden in the

PolGD257A/D257A mice.

The DP stage, which follows the highly proliferative DN stage, is

where the CD4 and CD8 co-receptors are upregulated and

expression of the rearranged TCRa and b chains occur (30).

Following which, T cells go through positive selection where the

TCRs are tested for having appropriate avidity for the MHC/

peptide. These stages do not require high proliferation like the

DN stage. Therefore, we predicted that we would not see a

difference in the percentage of these cells, but a decrease in the

cell number in the PolGD257A/D257A mice relative to the control, and

this conclusion aligned with the data.

We also examined the effect of increased mtDNA mutations on

T cell development in OTII/PolGD257A/D257A transgenic mice. The
A
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C

FIGURE 6

Single positive CD4+ T cells in mature OTII/PolGD257A/D257A mice have decreased mitochondrial density. (A) Thymocytes from PolG+/+, PolGD257A/

D257A, OTII/PolG+/+ and OTII/PolGD257A/D257A mice were stained for mitotracker, along with CD4 and CD8, and the frequencies of size (FSC-A). The
histograms represent mitochondrial density (mitotracker stain) in CD4/CD8 DP, (B) CD4 SP, or (C) or CD8 SP population plotted population plotted
(the PolG+/+ and PolGD257A/D257A mice only in (C)). Data are displayed as mean ± standard error of mean and representative of 1 independent
experiment, n=3 mice, where *p< 0.05-.01, **p< 0.01-0.001, based on multiple t tests.
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rationale for our analysis of OTII/PolGD257A/D257A mice was that the

presence of the already rearranged TCR accelerates the progress

through the DN developmental stages, when gene segments would

normally rearrange and encode the TCR alpha and beta chains.

Unlike the non-transgenic mice, T cell development in the

transgenic mice do not have to go through TCR gene

rearrangement in the same manner as non-transgenic mice, since

unlike the non-transgenic mice, T cells in the transgenic mice do

not have to go through TCR VDJ recombination at the alpha and

beta loci during their development (32). Thus, if the increased

proliferation during these stages was inordinately affected by the

low fidelity mtDNA replication, then these stages could potentially

be less affected in these transgenic thymocytes. Notably, we did not

see the same trend of increased numbers of thymocytes in the DN

stage in the OTII/PolGD257A/D257A mice. However, we found that

there was a block later in the DN stage, with an increase in the

percentage of DN4 in the mature OTII/PolGD257A/D257A mice

relative to the control.

We explored potential mechanisms for these observed defects in

T cell development in the mutant mice by analysis of mitochondrial

density and cell size, as a proxy for cell division. Abnormal mtDNA

replication can lead to altered expression of mitochondrial proteins

which are important for the electron transport chain and can cause

decreased oxidative phosphorylation and activate mitochondrial

degradation through mitophagy. If there are fewer mitochondria to

make appropriate substrates for cell replication, this can alter

metabolism and cause deleterious effects to cell proliferation (2).

Further analysis of the mitochondrial density indicated that

there was decreased in the DN2 and 3 populations in PolGD257A/

D257A mice compared to the controls. Furthermore, there is a

notable reduced proliferation in the DN3 population in the

PolGD257A/D257A relative to WT. This could be due to a buildup of

mtDNAmutations relative to the control at this stage. Furthermore,

it is possible that increased mtDNA mutation could result in

decreased mitochondrial function and increased mitophagy. By

contrast, the OTII/PolGD257A/D257A DN1-4 populations exhibited

decreased mitochondrial density compared to the controls.

Furthermore, there is a notable reduced proliferation in DN3 and

DN4 populations in the OTII/PolGD257A/D257A relative to WT. This

trend appeared to increase over differentiation stage, where the

largest differences between mitochondrial density and proliferation

were observed at the DN4 stage. This could also be a due to a larger

buildup of mtDNA mutations relative to the control at this stage,

and increased mitophagy. One major limitation to our findings is

that it is unclear whether they are influenced by non-T cell

dependent factors given that PolGD257A/D257A and OTII/PolGD257A/

D257A models are globally mutated. Therefore, future experiments

will need to be conducted to determine whether our observations

are due to T cell intrinsic effects.

Finally, our investigation of T cell developmental stages beyond the

DN stage in non-transgenic and OTII transgenic mice revealed that

while proliferation of DP thymocytes in mature non-transgenic

PolGD257A/D257A is not obviously affected compared to WT mice, this

is impaired in OTII/PolGD257A/D257A compared toWT OTII mice. This

suggests that the PolGD257A/D257A mutant cells are not all selectively

inhibited from further development given their presence, but that the
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rearranged transgene may affect their progression, as it does in the DN

stage. Notably however, there increased percentage of low

mitochondrial density in the mature non-transgenic PolGD257A/D257A

and OTII/PolGD257A/D257A SPCD4 (as well as SP CD8 in non-

transgenic mice, note that OTII thymocytes develop into CD4 SP

cells due to the nature of the rearranged TCR) with respect to the

controls. The observed low mitochondrial density may be an indicator

that there is a decreased capacity to quickly make new mitochondrial

due to possibly aberrant mitochondrial function. There were also

decreases in the total number of CD4+ and CD8+ T cells in the

lymph node of mature PolGD257A/D257A mice, but interestingly, not in

the spleen (Supplemental Figure 2). These findings suggest that the

mature T cells may be affected by reduced fidelity of mitochondrial

DNA replication, in an organ specific manner.

There are drugs with reported side effects of decreased mtDNA

content and mitochondrial functional impairment similar to what is

observed in the PolG mouse model (33, 34). One common

observation is mitochondrial toxicity seen with the use of reverse

transcriptase inhibitors which can resemble purines (adenosine and

guanosine) and pyrimidines (cytidine, thymine, and uridine),

known as nucleoside-analogue reverse-transcriptase inhibitor.

These inhibitors are widely utilized as an antiviral treatment with

patients who have viral infections (35). It is currently unclear

whether such drugs induce similar alterations as we observe in

the PolG mutant mice.

Altogether our data revealed that the fidelity of mtDNA

replication is critical to T cell development, affecting proliferation

in specific DN stages. This reduced proliferation and block in the

DN stages may be due to decreased mitochondrial density, resulting

in reduced proliferation and development of T cells. This study

contributes to our understanding of PolG and the fidelity of

mtDNA replication in T cell development, providing new insight

into how mitochondria affect this process.
Materials and methods

Mice

All mice were maintained and housed in specific pathogen-free

facilities and experiments were performed in accordance with

protocols that were approved by the Institutional Animal Care

and Use Committee at University of Cornell University. PolGD257A/

D257A mice have been previously described and obtained from the

Jax labs (15). Male PolG+/D257A and PolGD257A/D257A were

backcrossed with WT C57BL/6J, mice, to generate male and

female heterozygous and homozygous littermates which were

then crossed and used for this study. The presence of PolGD257A

knock-in mutation was determined by PCR using the following

primers in genotyping (5’ to 3’; reverse common: AGT CCT GCG

CCA ACA CAG; wildtype forward: GCT TTG CTT GAT CTC

TGC TC; mutant forward: ACG AAG TTA TTA GGT CCC TCG

AC). OTII transgenic mice were also obtained from the Jax labs and

crossed with PolGD257A/D257A and then the OTII/PolGD257A/+ were

crossed with OTII/PolGD257A/+ and the subsequent generation were

used for experiments.
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Antibodies for flow cytometry

The following antibodies were used for flow cytometry analysis:

PerCP-Cy5.5-anti-CD25, PE-anti-CD24, CD44-FITC, PE-CF594-

anti-CD4 (BD Biosciences, Inc.), PacificBlue-anti-CD4, PacificBlue-

anti-CD8a, eF506-viability dye (eBioscience Inc.), and AF700-anti-

CD8a, Pecy7-anti-TCRb (BioLegend). Mitotracker green (Cell

Signaling Technology) was used to detect mitochondrial density.
Flow cytometry

Organs were mechanically dissociated through 70 µM screen

placed in complete RPMI media while on ice. For surface staining,

cells were stained, washed, and all flow cytometry analysis was

conducted in the Cornell University Flow Cytometry Core Facility

using the Thermo Fisher Attune NxT and data was analyzed in

FlowJo (Tree Star, Ashland, OR) where all data were performed

gating on doublet excluded viable cells.
Data extraction and statistical analysis

Flow cytometry data was extracted and analyzed using code

through RStudio 2022.07.1 Build 554 (GitHub repository

TMPierpont/tmisBasic/Heatmap/R/timsDataLoader.R 2022). This

code was used RStudio to export percentages from FlowJo analysis

and to calculate total cell numbers. The flow cytometry gates show

average cell percentages, and heatmaps are a representative

quantification that are normalized by the mean of the control.

Statistical analyses were carried out utilizing Prism 9 (GraphPad,

San Diego CA) and RStudio. Statistical significance was set at

p<0.05, and all data are reported as a mean, plus and minus

standard error of the mean (SEM). Age and genotype were

compared by multiple t-tests.
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SUPPLEMENTARY FIGURE 1

No difference in PolG mRNA expression in neonatal an adult thymus. RNA-

Sequencing data from neonatal (6-8 days old) and adult gBT-1 thymocytes
(2-4 months old, GSE80597) was analyzed for expression of polg. Results not

statistically significant.

SUPPLEMENTARY FIGURE 2

Reduced number of T cells in Lymph nodes, but not spleen, in mature

PolGD257A/D257A mice. Lymph node and spleen cells were analyzed for
number of CD4+ and CD8+ T cells.
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