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Editorial on the Research Topic
Chronic inflammation and pharmacological interventions in
cardiovascular diseases

Introduction

Cardiovascular diseases (CVDs) are a group of complex and multifactorial disorders
and their pathogenesis is still not completely understood. It is recognized that inflammation,
especially the chronic inflammation is a common pathogenesis of many CVDs, such as
atherosclerosis, myocardjal infarction and stroke. Continuous inflammation causes a series
of pathological changes of hearts and blood vessels. Clinical trials and basic studies have
shown that inflammatory inhibition by pharmacological and other interventions can
markedly reduce the degree of pathological changes of hearts or blood vessels, and
decrease the morbidity and mortality of CVD events. Thus, the advance of therapies
direct or indirect modulating chronic inflammation is an important approach for the
prevention and treatment of CVDs.

Pharmacological interventions are the primary therapeutic approaches for CVDs. In
the past few decades, plenty of drugs for different targets including anti-inflammatory
agents have been developed and used to prevent and treat different CVDs in the clinic. In
the past few years, the flood of new drugs including chemical-based drugs and natural
herbal products have provided more choices to the treatment of CVDs. Recently,
biotherapies and molecular targeted therapies utilizing cell-based products such as
stem cells, exosomes, immune cells, cytokines, peptides and monoclonal antibodies
have also been used to treat CVDs, and some of them specifically target to
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Inflammatory signaling pathways and pharmacological interventions in cardiovascular diseases. *Different types of drugs that interfere with
cardiovascular inflammation covered in the research theme; ®New diagnostic method for cardiovascular diseases; #*Cellular and molecular

mechanisms involved in chronic inflammation in cardiovascular diseases.

inflammation. The purpose of this Research Topic was to provide
interested readers with new advances on prevention and
treatment of CVDs, especially on the new therapies targeting
chronic inflammation.

The Research Topic themed “Chronic inflammation and
pharmacological interventions in cardiovascular diseases” presents
a series of articles that highlight the latest studies and strategies that
overcome current obstacles in treating chronic inflammation and
pharmacological interventions in cardiovascular diseases. This issue
collates 30 selected peer-reviewed articles (including 20 original
research articles and 10 reviews) covering molecular mechanisms of
therapeutic targets, drug intervention targets, and novel diagnostic
approaches to cardiovascular diseases (Figure 1).

Related inflammatory pathways in
Cardiovascular Diseases

Atherosclerosis is a serious clinical manifestation of
cardiovascular disease (Soehnlein and Libby, 2021), which is the
leading cause of premature death in humans (Valanti et al., 2021).
Chronic inflammatory response is an important risk factor for the
initiation and development of atherosclerosis (Yang et al., 2019),
but the inflammatory molecular mechanisms in the occurrence
and development of atherosclerotic plaques are not well
understood. There are several articles in this Research Topic
showed that some chronic inflammatory pathways play critical
roles in cardiovascular diseases. Although increasing evidence
indicates that genetic factors, particularly the transforming
growth factor B (TGF-P) signaling pathway is involved in the
development of aortic aneurysms (AAs), the specific action of
TGF-p signaling in AAs remains controversial (Thatcher, 2016;
Tzavlaki and Moustakas, 2020). The review by Chen and Chang

Frontiers in Pharmacology

focused on the role of canonical TGF-{ signaling pathway related
to core genes such as TGFBRI,TGFBR2, SMAD2, SMAD3,
SMAD4, and SMAD6 in aortic diseases. This review further
clarified that the activation of classical TGF-p signaling pathway
is a determinant of a series of aortic diseases. Wang et al. revealed
that liver kinase B1 (LBP1), a serine threonine kinase, played an
important role in arteriosclerosis by regulating vascular
macrophages after phosphorylation of activating adenosine
monophosphate-activated protein kinase (AMPK). Periodontitis
is a common chronic disorder that involves oral microbe-related
inflammatory bone loss and local destruction of the periodontal
ligament and is a risk factor for atherosclerosis (Naderi and
Merchant, 2020). Periodontal pathogens produce pathogen
associated molecular patterns (PAMPs), including
lipopolysaccharide (LPS), PGN, and CpG DNA. Periodontal
infection activates neutrophils to form neutrophil extracellular
traps (NETs), which together with high mobility group box-1
(HMGBI) and alarmins released by damaged periodontal cells
constitute damage-associated molecular patterns (DAMPs) (Gu
and Han, 2020). Zhu et al. reported that PAMPs and DAMPs could
activate excessive innate immunity by acting on Toll-like receptors
(TLRs) and NOD-like receptors (NLRs) in arterial tissue, leading to
foam cell formation, endothelial cell and vascular smooth muscle
cell dysfunction, and promoting the massive release of
inflammatory factors, which all contribute to atherosclerosis.
Diabetic cardiomyopathy (DCM) is one of the serious
complications of diabetes, and increasing evidence supports that
myocardial inflammation is a key player in the development of DCM
(Dillmann, 2019). Pyroptosis is a type of programmed cell death that
involves the release of cell contents and inflammatory mediators
upon activation, leading to a powerful inflammatory response
(Wang et al, 2020). While accumulating evidence implicates
pyroptosis as a critical contributor to myocardial inflammation in
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the progress of DCM (Yang et al, 2019; Zeng et al, 2020), the
molecular mechanisms of cell pyroptosis and its involvement in
DCM are not fully understood. Cai et al. reviewed the recent progress
in this research field and discussed three main signaling pathways to
potentially trigger DCM: 1) Toll like receptor 4 (TLR4)/nuclear factor
kappa B (NF-kB) inflammasome/NOD-like receptor, pyrin domain-
containing 3 (NLRP3) inflammasome signaling pathway; 2) AMPK/
ROS/TXNIP/NLRP3 inflammasome signaling pathway; and 3)
AMPK/SIRT1/Nrf2/HO-1/NF-kB
pathway, all of which could be the possible therapeutic targets for
the treatment of DCM in the future. Meanwhile, Gao et al. analyzed
the beneficial effect of Cycloxanthine D (CVB-D) on cardiomyocyte
pyroptosis associated with DCM, and explored its molecular
regulatory mechanism. Their results demonstrated that CVB-D
could ameliorate DCM by inhibiting cardiomyocyte pyroptosis

inflammasome  signaling

via NLRP3 signaling in vivo and in vitro. These studies once
again suggest that the signaling pathways of inflammatory
response induced by cell pyroptosis play important roles in
cardiovascular diseases.

Natural drug intervention in
cardiovascular diseases

Pharmacological interventions are the main treatment for
cardiovascular diseases, and a variety of drugs have been
developed for the prevention and treatment of different
cardiovascular ~ diseases. Chinese medicine has its unique
advantages since it treats patients holistically as well as
individually based on the personalised interventions (Fu et al,
2021). In this area, scholars reviewed the effects of traditional
Chinese medicine Chuanxiong on cardiovascular and
cerebrovascular diseases (Li et al.) and Uramine on heart diseases
(Wen et al.). For example, the traditional Chinese medicine is
effective to treat heart failure by targeting heat shock proteins
(Wen et al), as well as to treat atherosclerosis and other
cardiovascular diseases by promoting blood circulation together
with aspirin (Zhao et al.). Some researchers have further explored
the signaling pathways of its action. Zhang et al. reported that
lithospermic acid (LA) protected against myocardial ischemia-
reperfusion (MI/R)-induced cardiac injury by promoting eNOS
and Nrf2/HO-1 signaling via phosphorylation of AMPKa. Zhou
et al. elucidated the molecular mechanism of action of a Chinese
traditional medicine Farrerol (FA) in ischemia-reperfusion (I/R)
injury. Their findings showed that FA indirectly protected
cardiomyocytes by targeting macrophages, without relying on
Nrf2-dependent or autophagy-dependent pathways, but indirectly
protected cardiomyocytes through the inhibition of the interaction of
NEK?7 and NLRP3, thereby abolishing the assembly and activation of
NLRP3 inflammasome, resulting in an effective inhibition to
alleviate MI/R injury. Liu et al. investigated the effects and
mechanisms of Honokiol (HL) in a rabbit atrial fibrillation (AF)
model and found that the activation of Sirt3-dependent pathway
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participated in atrial metabolic remodeling during AF, which could
be inhibited by HL via regulating the Sirtuin-3 (Sirt3) dependent
pathway. Sirt3 is widely recognized to be critically involved in diverse
cardiovascular  diseases including cardiac and vasculature
remodeling (Dikalova et al., 2020; Tomczyk et al,, 2022). Lu et al.
reported that giligiangxin (QL) ameliorated ventricular remodeling
and heart failure (HF) to some extent in rats by modulating the gut
microbiota and NLRP3 inflammasome. Based on network
pharmacology and experimental pharmacological analysis, Jing
et al. identified that Astragaloside IV, a main active compound
from Astragalus membranaceus, could be a promising agent to
improve L-NAME-induced hypertensive heart disease partly via
modulation of eNOS and oxidative stress. In addition, Zhang
et al. found that water-soluble tomato extract fruitflow could
inhibit platelet activation, which is beneficial to people who are at
risk for platelet hyperactivity-associated thrombosis.

Molecular targeted therapy in
cardiovascular diseases

Recently, molecular targeted therapies have been broadly
applied to treat CVDs, which include protein and peptide drugs,
nucleic acid drugs, and gene editing technologies (Xu and Song,
2021). Apart from Chinese herbal medicine as stated above, the
more targeted therapies including peptides have also been
studied in the treatment of cardiovascular diseases and
chronic inflammation. Yang et al. demonstrated that Oxytocin
(OT) ameliorated cardiac hypertrophy by inhibiting PI3K/Akt
pathway via IncRNA GAS5/miR-375-3p/KLF4 axis. Based on in
Silico analysis, Chang et al. highlighted the importance of the
multitarget therapeutic peptide KCF18 which could alleviate
inflammation by blocking the interactions of TNF-a, IL-6, and
IL-13 with their cognate receptors, thus reducing the
translocation of NF-kB and decreasing the inflammatory gene
expressions. By lowering the release of cytokines in plasma and
directly affecting vascular cells, KCF18 was shown to significantly
attenuate vascular inflammation. The property of KCF18 to
prevent inflammation may hold a promise as a new treatment
strategy for sepsis and other inflammatory vascular diseases.

New diagnostic methods in
cardiovascular diseases

Ischemic stroke is a common serious disease caused by
arteriosclerosis (Banerjee and Chimowitz, 2017). Accurate and
timely diagnosis of ischemic stroke is the key for the subsequent
treatment. Prior studies on biomarkers for ischemic stroke have
focused on proteins in plasma such as neuron-specific enolase and
interleukin (Tiedt, Prestel et al., 2017). Recently, the applications of
miRNAs as the sensitive biomarkers have also attracted significant
research attention in a variety of disease settings (Rupaimoole and
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Slack, 2017). However, there is scarcely any research to investigate
the potential of exosome miRNAs as the diagnostic biomarkers for
ischemic stroke. In this issue, Niu et al. reported for the first time
that circulating exosome miRNAs including miR-369-3p, miR-
493-3p, miR-379-5p, and miR-1296-5p could be the novel
biomarkers with higher efficiency compared to conventional
plasma factors in the diagnosis of large-artery atherosclerosis
stroke (LAA). This is of great interest considering the method
as time saving and cost saving. The authors hoped that exosomal
miRNAs as new biomarkers can be applied for the prognosis
analysis of LAA stroke, which may be helpful to improve the
quality of life of stroke patients in the future.

Summary

The pathogenesis of cardiovascular diseases is complex and
interlinked, involving central mechanisms such as cardiomyocyte
hypertrophy and death as well as systemic mechanisms such as
chronic inflammation. Over last decades, significant evidence from
both pre-clinical and clinical studies strongly indicates that targeting
inflammation either locally or globally is an effective means for the
prevention and treatment of cardiovascular diseases. Here, it is
exciting to witness the latest advance, the beautiful works
published in this issue elucidate some novel molecular
mechanisms, identify some promising peptides, cytokines and
natural products, and therefore provide the new insight into the
pathogenic role of chronic inflammation in cardiovascular diseases. It
is expected that this will continue to be a hot research area, the more
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Platelet hyperactivity is a risk factor for cardiovascular disease and thrombosis. Recent
studies reported that the tomato extract Fruitflow inhibited platelet function, but the
molecular mechanism is still unclear. The present study used proteomics to
quantitatively analyze the effect of fruitflow on the inhibition of collagen-stimulated
platelets and validated the involvement of several signaling molecules. Fruitflow
significantly inhibited human platelet aggregation and P-selectin expression that were
induced by collagen. Proteomics analysis revealed that compared fruitflow-treated
collagen-stimulated platelets with only collagen-stimulated platelets, 60 proteins were
upregulated and 10 proteins were downregulated. Additionally, 66 phosphorylated
peptides were upregulated, whereas 37 phosphorylated peptides were downregulated.
Gene Ontology analysis indicated that fruitflow treatment downregulated phosphoinositide
3-kinase (PIBK)/protein kinase B and guanosine triphosphatase-mediated signal
transduction in collagen-activated platelets. Biological validation indicated that fruitflow
decreased Akt, glycogen synthase kinase 3B, p38 mitogen-activated protein kinase
(MAPK), and heat shock protein (Hsp27) phosphorylation in collagen-stimulated
platelets. Fruitflow recovered cyclic adenosine monophosphate levels in collagen-
activated platelets and reduced protein kinase A substrate phosphorylation that was
induced by collagen. These findings suggest that fruitflow is a functional food that can
inhibit platelet function, conferring beneficial effects for people who are at risk for platelet
hyperactivity-associated thrombosis.

Keywords: fruitflow, platelets, phosphoproteomics, P-selectin, Akt, GSK3p

INTRODUCTION

Platelets are anucleate cells that play diverse roles in hemostasis and thrombosis and also contribute
to immunity, inflammation, and wound healing. Platelet hyperactivity is related to hypertension,
diabetes, and cardiovascular diseases (Martin et al., 2012; Thomas and Storey, 2015a; Gaiz et al.,
2017). Under pathological conditions, platelets promote vascular damage and chronic inflammation
by releasing various inflammatory mediators (Rendu and Brohard-Bohn, 2001; Golebiewska and
Poole, 2015; Bakogiannis et al., 2019). Accumulating evidence shows that the inhibition of platelet
function can decrease biological mediators of platelet secretion. The inhibition of platelet function
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has become an effective strategy for reducing the risk of
cardiovascular disease (Duchene and von Hundelshausen,
2015; Kirichenko et al., 2016).

Studies of platelet proteomics revealed that platelets contain
more than 4,000 proteins, and more than 300 protein products
are released when platelets are activated (Burkhart et al., 2012).
Proteomics can identify quantitative changes in the abundance
and localization of thousands of proteins and various
modifications,  including  phosphorylation,  acetylation,
methylation, and glycosylation (Burkhart et al, 2014;
Aebersold and Mann, 2016; Manes and Nita-Lazar, 2018). The
modification of phosphorylated proteins is an important
biological process during platelet activation. Phosphorylated
proteomics can provide useful biological information for drug
target screening (Cohen, 2000; Garcia et al., 2005; Dittrich et al.,
2008). Quantitative proteomics that uses high-resolution liquid
chromatography tandem mass spectrometry (LC-MS/MS) can
elucidate cellular signaling cascades. Label-free proteomics utilize
the signal intensity and spectral counting of peptides to quantitate
both relative and absolute protein abundance, which improves
the accuracy and depth of phosphoproteomics research (Megger
et al,, 2013; Anand et al., 2017; Manes and Nita-Lazar, 2018).

Tomatoes are one of the main vegetables in the Mediterranean
diet. Tomatoes contain various nutrients that are beneficial to
health. Recent studies demonstrated that the cardioprotective
effects of tomato extracts are linked to the modulation of platelet
function. Fruitflow is a water-soluble concentrate that mainly
contains flavone, adenosine, and chlorogenic acid. O’Kennedy
et al. reported that fruitflow reduced human platelet aggregation
by 8-23% in an ex vivo preparation 3h after administration
(O’Kennedy et al., 2006; O’Kennedy et al., 2017a). Another study
showed that tomato juice consumption increased erythrocyte
antioxidant enzymes and decreased serum malondialdehyde in
overweight and obese females (Ghavipour et al, 2015). These
studies suggest that the active ingredients of tomatoes can provide
health benefits. However, the inhibitory mechanism of action of
fruitflow on platelet function is not fully understood.

Collagen is a powerful platelet activator that plays a critical
role in thrombosis. There are three types of collagen receptors
on the platelet membrane: glycoprotein Ib, glycoprotein VI,
and integrin-a2fBl. Collagen receptor-mediated signal
transduction has been shown to be involved in platelet
activation (Barnes et al.,, 1998; Clemetson and Clemetson,
2001; Farndale, 2006; Surin et al., 2008). To obtain further
biological information about the effects of fruitflow on platelet
function, we used LC-MS/MS to perform a proteomics and
phosphoproteomics analysis of the effects of fruitflow in
collagen-activated platelets.

METHODS

Ethics Statement

Blood was collected from healthy donors, from whom we received
written informed consent. The experiments were conducted
according to the principles of the Declaration of Helsinki. The
blood samples were used for the in vitro study. The present study

Fruitflow Alters the Phosphoproteomics in Collagen-Stimulated Platelets

was approved by the Ethics Committee of Beijing Hospital (no.
2018BJYYEC-195-02).

Materials

Fruitflow (FF) was provided by By-Health Co., Ltd. (Zhuhai,
Guangdong, China). The main biologically active ingredients of
FF are adenosine, flavonoids, chlorogenic acid, phytosterols and
phenolic acids, etc. (O’Kennedy et al., 2017a).

Collagen was purchased from Chrono-Log Corporation
(Havertown, PA, United States). Monoclonal anti-Hsp27 and
phospho-Hsp27antibodies were purchased from Abcam (Boston,
MA, United States). Monoclonal anti-glycogen synthase kinase f3
(GSK3B), phospho-GSK3p, monoclonal anti- Akt, phospho-Akt,
monoclonal anti-p38 MAPK, phospho-p38 MAPK, and
phospho-protein kinase A (PKA) substrate (RRXS*/T*)
antibodies were purchased from Cell Signaling Technology
(Danvers, MA,  United States). Cyclic adenosine
monophosphate (cAMP) kits were obtained from R&D
Systems (Minneapolis, MN, United States).

Platelet Preparation

Venous blood was drawn from health donors who had not taken
any medication in the previous 2 weeks. The blood samples were
immediately mixed with 3.8% sodium citrate (1 volume of
sodium citrate/9 volumes of blood) as an anticoagulant. The
blood samples were then centrifuged at 500 x g for 15 min to
obtain platelet-rich plasma. The platelet-rich plasma was diluted
1:1 with Tyrode’s/HEPES buffer (128 mM NaCl, 2.8 mM KCl,
1 mM MgCl,, 5mM glucose, 12mM NaHCO;, and 0.4 mM
NaH,PO,4, pH 7.2). To prevent platelet activation we added
2 mM ethylene glycol tetraacetic acid (EGTA) and ACD (1:10)
in platelet suspension during centrifugation. The platelet
suspension was centrifuged at 400 x g for 10 min. Platelet
pellets were resuspended in Tyrode’s/HEPES buffer and
centrifuged under the same conditions for 10 min. The platelet
concentration was measured by ABX/HORIBA ABX Diagnostics
(Montpellier, France). For Western blot, the platelet
concentration was 3 x 10’ cells/ml.

Measurement of Platelet Aggregation
Platelet aggregation was measured in a washed platelet
suspension using a Chrono-Log aggregometer (Chrono-Log
corporation, Havertown, PA, United States). Fruitflow was
dissolved in 0.9% NacCl solution to prepare stock solution. The
platelet suspension (1 x 10°) was incubated with fruitflow
(100 pug/ml) for 10 min, and the cuvette was then stirred at
1,000 rotations per minute (rpm). Collagen (5 ug/ml) was
added to the cuvette for 10 min at 1,000 rpm to induce platelet
aggregation.

Western Blot Analysis

The platelet suspension was incubated with 100 pg/ml fruitflow
for 10 min before being stimulated with 5 pug/ml collagen for
10 min on a Chrono-Log aggregometer. Platelet lysates were
analyzed by 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and wet electrotransferred to polyvinylidene
fluoride membranes. The membranes were blocked with 1%
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bovine serum albumin and then incubated with specific primary
antibodies overnight. After three washes in PBS that contained
0.5% Tween-20, the membranes were incubated with horseradish
peroxidase-conjugated secondary antibodies in TPBS for 2 h.
Bands were detected by electrochemiluminescent reagent and
the EvolutionCapt system (Vilber Lourmat) and quantified using
Image-Pro Plus software.

Flow Cytometry Analysis of P-Selectin

Expression

The washed platelet suspension (1 x 10°/ml) was treated with or
without fruitflow (100 pug/ml) for 10 min. Afterward, collagen
(5 pg/ml) was added for another 10 min at 37°C. The platelets
were fixed by the addition of 4% paraformaldehyde for 10 min.
After washing three times, the platelets were incubated with PE-
conjugated CD62P and FITC-conjugated CD61 for 30 min. The
platelets were analyzed on a FACScan flow cytometer (BD
Bioscience) with 10,000 events per gate and analyzed using
FlowJo software.

Preparation and Digestion of Proteins
Washed platelets were used in the present study. The platelet
suspension (1 x 10°cell/ml) was incubated with 100 pg/ml
fruitflow for 10 min, and then 5 pg/ml collagen was added for
10 min. The samples were centrifugated at 16,000 x g for 3 min at
4°C and resuspended in 500 uL cold phosphate-buffered saline
(PBS), repeated twice, and then 500 pl UA lysis buffer (8 M Urea
and 150 mM Tris-HCl, pH 8.0) was added to the samples,
followed by storage at —80 °C.

Phosphopeptides Enrichment and LC-MS/
MS Analysis

Label-free proteomics analysis was performed by Applied Protein
Technology (Shanghai, China). LC-MS/MS spectra were searched
using a Q Exactive HF/HFX mass spectrometer coupled to Easy
nLC (Thermo Fisher Scientific), which is controlled by
IntelliFlow  technology. = Immobilized  metal  affinity
chromatography (IMAC) was used to enrich phosphopeptides.
According to the manufacturer’s instructions (Thermo
Scientific), the enrichment was carried out using High-
SelectTM Fe-NTA Phosphopeptides Enrichment Kit. The MS
raw data for each sample were combined and searched using
MaxQuant 1.5.3.17 software for the identification and
quantification analysis. A false discovery rate <1% was applied.
Proteomic samples were analyzed by LC-MS/MS as described in
Supplement S1. Gene Ontology analysis was performed at
https://david.ncifcrf.gov/home.jsp.

Measurement of cAMP by Enzyme-Linked
Immunosorbent Assay

Washed platelets were treated with or without fruitflow (100 pg/
ml) for 10 min, and then collagen (5 pg/ml) was added for 10 min.
After centrifugation at 9,600 g for 10 min, the supernatant was
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collected to measure cAMP using enzyme-linked immunosorbent
assay (ELISA) kits according to the manufacturer’s instructions.

Statistical Analysis

Quantitative data are presented as the mean + SEM. Significant
differences between two groups were analyzed using two-tail
paired Student’s t-test. All of the analyses were performed
using Prism 8.3 software (GraphPad, San Diego, CA,
United States). Values of p < 0.05 were considered statistically
significant.

RESULTS

Fruitflow Inhibited Platelet Aggregation and
P-Selectin Expression in

Collagen-Stimulated Platelets

Platelet aggregation and P-selectin expression are important
biological processes in platelet activation. We first determined
the effect of fruitflow on platelet aggregation and P-selectin
expression in collagen-activated platelets. Based on our pre-
experiments, in which fruitflow (1, 10, 30, and 100 pg/ml)
dose-dependently  inhibited  collagen-induced  platelet
aggregation, we used 100 pg/ml fruitflow in the present study.
As shown in Figure 1, 100 pug/ml fruitflow significantly inhibited
platelet aggregation, in which the aggregation ratio decreased by
60.7 £ 9.7%. We also analyzed the effect of fruitflow on P-selectin
using flow cytometry. Collagen increased P-selectin expression by
87.9% on the platelet membrane, whereas 100 pg/ml fruitflow
completely suppressed P-selectin expression that was induced by
collagen.

Proteomics Analysis of Fruitflow Treatment
and No Treatment in Collagen-Activated

Platelets

To explore the mechanism of action fruitflow on platelet
function, we performed proteomics analysis of fruitflow
treatment and no treatment in collagen-activated platelets.
Platelets were pretreated with fruitflow for 10min, and
collagen was then added for 10 min. The proteomics analysis
identified 3,856 proteins, and 3,182 proteins were quantified.
Different proteomic profiles were found between fruitflow
treatment and no treatment in collagen-stimulated platelets.
As shown in Figure 2, compared fruitflow-treated collagen-
stimulated platelets with only collagen-stimulated platelets, 60
proteins were upregulated and 10 proteins were downregulated
(p < 0.05). The Gene Ontology analysis showed different
biological processes that were associated with fruitflow
treatment and no treatment in collagen-stimulated platelets.
Upregulated  biological =~ processes  included  platelet
degranulation, nucleophage/autophagosome assembly,
fibrilysis, blood coagulation, negative regulation of platelet
activation, and negative regulation of fibrinolysis, etc. Detailed
data was shown in Supplement S2 Table 1.

Frontiers in Pharmacology | www.frontiersin.org

12

September 2021 | Volume 12 | Article 746107


https://david.ncifcrf.gov/home.jsp
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Zhang et al.

Fruitflow Alters the Phosphoproteomics in Collagen-Stimulated Platelets

1
A _ n

X I &
= TN S
= N N’
2 \ e 100 pg/ml FF + collagen =
g g
Q -
5 |50% \ 3
3 \ 2
e )

o «

S
s veh + collagen

00+

80+

60+

40+

20+

0
0

PE-CD62P

10*

10

10?

10

1 min

control

collagen (5 pg/ml)
FF (png/ml)

0 100

collagen

FF+collagen

Q2
34.3

10*

10

10?

Ql
0.64

Q3
65.7

10

10°

Q4
123

Q2
71.2

10*

Q1
0.012

10

10?

Q2
28.0

10!

Q3
718

P-selectin expression

0.0-
collagen (2 pg/ml)

##

A%

+ +

10* 10°

10*
FF (100 pg/ml) - - +

FITC-CD61

FIGURE 1 | Fruitflow inhibited platelet aggregation and P-selectin expression in collagen-stimulated platelets. Platelets were treated with vehicle (0.9% NaCl) or FF

(100 pg/ml) for 10 min, and then collagen was added for another 10 min. (A) Fruitflow inhibited platelet aggregation that was induced by collagen. Ordinate value is
aggregation ratio and abscissa value is time (min). (B) Flow cytometry analysis of P-selectin expression. Fruitflow inhibited P-selectin expression that was induced by
collagen. The data represent three independent experiments. *p < 0.05, *p < 0.01, significant difference between FF-treated collagen-activated platelets and
collagen-activated platelets alone. #p < 0.05, significant difference between collagen-treated platelets and control.

Phosphoproteomics Analysis of Fruitflow
Treatment and No Treatment in
Collagen-Activated Platelets

To explore the effect of fruitflow on collagen-stimulated platelets,
we conducted a quantitative phosphosproteomics analysis. The
quantitative analysis detected 2,099 phosphorylated peptides and
2,376 phosphorylated sites in 1,051 phosphorylated proteins. As
shown in Figure 3, a significant difference was found between
fruitflow treatment and no treatment in collagen-activated
platelets. Compared FF-treated collagen-stimulated platelets with
only collagen-stimulated platelets, 66 phosphorylated peptides
were upregulated two time, whereas 37 phosphorylated peptides
were downregulated 0.5 times. As shown in Table 1, vasodilator-
stimulated phosphoprotein (VASP) phosphorylation levels were
upregulated in FF-treated platelets. VASP is a substrate of protein
kinase G activation, and it interacts with nitric oxide through the
soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate
(cGMP) pathway (Li et al, 2003). Most of the phosphorylated
proteins that increased are related to calcium mobilization
(calcium/calmodulin-dependent ~ protein  kinase, CAMKI,
tyrosine  phosphatase ~ (PTPR], PTPN12) and actin
polymerization (Rho-associated protein kinase, ROCK). The
phosphorylated proteins that decreased included serine/

threonine kinase (STK10), thromboxane receptor (TBXA2R),
and heat shock 27 kDa protein 1 (HSPB1, Hsp27). Interestingly,
INPP5D (namely SH2 domain-containing inositol-5'-phosphatase
1, SHIP1) and INPPLI (namely SH2 domain-containing inositol-
5'-phosphatase 2, SHIP2) only existed in fruitflow-treated
collagen-stimulated platelets, but not in collagen-stimulated
platelets (in Supplement 4 Table 3). The function of INPPL1 is
to specifically hydrolyze the 5-phosphate of phosphatidylinositol-
3,4,5-trisphosphate (PtdIns [3,4,5]P;) to produce PtdIns(3,4)P,,
thereby negatively regulating the phosphoinositide-3 kinase (PI3K)
pathway (Backers et al., 2003; Durrant et al,, 2017; Fu et al., 2019).
This suggests that inhibition of the PI3K/protein kinase B (Akt)
pathway might be an important mechanism by which fruitflow
suppresses platelet function. Detailed phosphoproteomic data was
shown in Supplement 3 Table 2 and Supplement 4 Table 3.

Validation of the Effect of Fruitflow in
Collagen-Stimulated Platelets

Based on the research background of collagen-mediated signaling
pathway upon platelet activation and the phosphoproteomics data,
we verified some important molecular. The phosphoproteomics
showed that several phosphorylated peptides were linked to
PI3K/Akt pathway. Therefore, we determined the effect of
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FIGURE 2 | Identification of proteins with and without FF treatment in collagen-stimulated platelets. Washed human platelets were incubated with FF (100 ug/ml)

for 10 min, and then collagen (5 pg/ml) was added for 10 min. (A) Heatmap of the identification and quantification of proteins in FF-treated collagen-stimulated platelets
and collagen-stimulated platelets alone. (B) Volcano map of the identification and quantification of proteins in FF-treated collagen-stimulated platelets and collagen-
stimulated platelets alone. Red, blue, and gray clusters indicate up-, down-, and unregulated proteins, respectively. (C) Biological processes identified by Gene
Ontology enrichment analysis of collagen-stimulated platelets with and without FF treatment.
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fruitflow on the phosphorylation of Akt and its downstream Moreover, there were four phosphorylated peptides of the MAPK
molecular GSK3p. As shown in Figure 4, 100 ug/ml fruitflow  families presented in Supplement 3 Table 2. They were MAPKAPK?2,
pretreatment  completely  suppressed Akt and GSK3p  MAPKI14, MAPKAPI1 and MAP4K2. We validated the phosphorylation
phosphorylation that was induced by collagen. of p38 MAPK and its downstream molecular HSPB1(Hsp27).
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TABLE 1 | Different phosphorylated proteins in FF + collagen-vs collagen-treated
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The same dose of fruitflow effectively inhibited p38

platelets. MAPK and Hsp27 phosphorylation that was induced by
Uniprot Gene Site Regulation collagen.
8;2;‘?2 gggg gqu‘; up Fruitflow Recovered cAMP Levels and
er up _ .
Q7LDG7 RASGRP?2 Ser116 up Inhibited the Phosphorylatlon of PKA
22252%3 ¥¢§Z12 gefjgg@efm up Substrates in Collagen-Stimulated Platelets
015117 v 82:329 Eg The phosphoproteomics revealed that several substrates of PKA
075563 SKAP2 Ser286/Ser283 up were significantly different between the FF-treated collagen-
Q684P5 RAP1GAP2 Ser574 up stimulated platelets and the collagen-stimulated platelets alone.
P49841 GSK3B Thr390 up They were VASP (vasodilation stimulating protein), FLNA
8;23;; E;T(FS;JC) ger]gﬁ up (filament protein A), HSP27 (heat shock protein 27) and
er up . . .
Q07960 ARHGAPT Sor51 up Rap1GAP2 (actlva.tor Protem of GTPgse—Raplb) (in Supplement
Q14012 CAMK1 Ser363 up 3 Table 2). Protein kinase A (PKA) is a downstream molecule
Q13496 MTM1 Ser18 up regulated by cyclic adenosine monophosphate (cAMP). cAMP is a
Q9BZL6 PRKD2 Ser214 up second messenger that plays a negative regulatory role in platelet
Eilgi; gifgm gerigi govvn activation (Fuentes and Palomo, 2014; Raslan and Naseem, 2014).
er: own . . .
Q14155 ARHGEF7 Ser650 down We investigated whether fruitflow can affect cAMP/PKA pathway.
Q9BB97 SH3KBP1 Ser230 down As shown in Figure 5, collagen stimulation decreased cAMP levels,
094804 STK10 Ser454/Ser417 down and fruitflow treatment restored cAMP levels that were decreased by
P04792 HSPB1 Ser15 down collagen. Collagen stimulation increased the phosphorylation of
043182 ARHGAP6 Ser105 down . .
Q14644 RASA3 Ser830 down PKA substr.ates, and 100 pg/ml fruitflow abolished the
phosphorylation of PKA substrates.
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FIGURE 4 | Validation of effect of FF on Akt, GSK3p, p38 MAPK, and Hsp phosphorylation in collagen-stimulated platelets. (A) Fruitflow suppressed Akt, GSK3B,
p38 MAPK, and Hsp phosphorylation in collagen-stimulated platelets. (B) Density analysis of Akt phosphorylation in FF-treated collagen-stimulated platelets and
collagen-stimulated platelets alone. (C) Density analysis of GSK3p phosphorylation in FF-treated collagen-stimulated platelets and collagen-stimulated platelets alone.
(D) Density analysis of p38 MAPK phosphorylation in FF-treated collagen-stimulated platelets and collagen-stimulated platelets alone. (E) Density analysis of Hsp
phosphorylation in FF-treated collagen-stimulated platelets and collagen-stimulated platelets alone. The data represent three independent experiments. *p < 0.05,
significant difference between FF-treated collagen-stimulated platelets and collagen-stimulated platelets alone. *p < 0.05, significant difference between collagen-
treated platelets and control.
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FIGURE 6 | Potential mechanism of action of fruitflow in collagen-stimulated platelets.

DISCUSSION

Several recent studies reported that the water-soluble tomato extract
fruitflow inhibits platelet aggregation (Uddin et al., 2018; O’Kennedy
et al, 2017b). In the present study, we confirmed that fruitflow
inhibited platelet aggregation and P-selectin expression in collagen-
activated platelets. P-selectin is an important marker of platelet
activation that acts as a bridging molecule to recruit inflammatory
cells to adhere to endothelial cells (Thomas and Storey, 2015b;
Kappelmayer and Nagy, 2017). Compared with resting platelets,
collagen-stimulated platelets exhibited a decrease in cAMP levels
and an increase in the phosphorylation of PKA substrates, and

fruitflow reversed these changes. However, the mechanism by which
cAMP/PKA signaling regulates platelet function remains unclear.
Interestingly, our results revealed a significant difference in
phosphoproteomic profiles between fruitflow treatment and no
treatment in collagen-stimulated platelets. The upregulated
biological processes included cell-cell adhesion, protein
phosphorylation, Rho protein signal transduction, and actin
polymerization. The downregulated biological processes
included positive regulation of GTPase activity, positive
regulation of substrate adhesion-dependent cell spreading, and
platelet aggregation. The phosphoproteomics analysis also
revealed protein modification-related biological processes, cell
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composition changes, and more protein phosphorylated sites. We
verified several GTPase signal transduction and PI3K/Akt
pathway-related kinase signaling molecules by Western blot.
Collagen stimulation increased Akt, GSK3B, p38 MAPK, and
Hsp27 phosphorylation, and fruitflow treatment significantly
inhibited their phosphorylation. Previous studies showed that
Akt, GSK3p, p38 MAPK, and Hsp27 are involved in collagen- and
thrombin-induced platelet activation (O’Brien et al., 2012; Moore
etal, 2013; Liu et al., 2018; Saklatvala et al., 1996). These findings
were consistent with the phosphorylated proteomics analysis. The
Gene Ontology analysis revealed that fruitflow treatment
downregulated GTPase-mediated signal transduction. This
indicates that fruitflow inhibits platelet function through multiple
targets. The quantitative phosphoproteomics analysis by MS further
provided important biological information to understand the
mechanism by which fruitflow inhibits platelet activation.
However, the mechanism of action of fruitflow on interactions
between signaling molecules needs further investigation.

Tomatoes are the most popular vegetable worldwide, especially in
Mediterranean countries. Tomatoes contain various biologically
active ingredients, among which lycopene has been shown to
exert a protective effect on the enlarged prostate (Campbell et al,
2004; Mordente et al,, 2011). Previous studies showed that daily
65 mg fruitflow administration partly suppressed platelet function
(O’Kennedy et al., 2017b). Our previous clinic trial showed that daily
150 mg fruitflow intervention for 7 days could reduce ADP and
collagen-induced platelet aggregation by 7.7 and 10.2% in elderly
subjects. Fruitflow was the first product in Europe to obtain an
approved, proprietary health claim under Article 13 (5) of the
European Health Claims Regulation 1924/2006 on nutrition and
health claim made on foods (19). A previous study showed that an
aqueous extract of tomato dose-dependently inhibited plasma anti-
antitensin converting enzyme factor (Biswas et al., 2014). Our data
provide some novel evidence of the inhibition of platelet function by
fruitflow.

The limitation of the present study was that we have only verified
the phosphorylation changes of a few molecules, but the interaction
between these proteins is still unclear. The results of proteomics also
suggest that fruitflow may affect calcium mobilization, and this
mechanism needs to be further explored.

In conclusion, the present study showed that fruitflow inhibited
platelet aggregation and P-selectin expression in collagen-stimulated
human platelets. We first applied proteomics and phosphoproteomics
approaches to comprehensively investigate the effect of fruitflow on
collagen-activated platelets. Proteomics analysis revealed that
compared fruitflow-treated collagen-stimulated platelets
with only collagen-stimulated platelets, 60 proteins were
upregulated and 10 proteins were downregulated.
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Astragaloside IV (AS-IV) has been used to treat cardiovascular disease. However,
whether AS-IV exerts a protective effect against hypertensive heart disease has not
been investigated. This study aimed to investigate the antihypertensive and
cardioprotective effects of AS-IV on L-NAME-induced hypertensive rats via network
pharmacology and experimental pharmacology. The network pharmacology and
bioinformatics analyses were performed to obtain the potential targets of AS-IV and
hypertensive heart disease. The rat hypertension model was established by
administrated 50 mg/kg/day of L-NAME for 5weeks. Meanwhile, hypertension rats
were intragastrically administrated with vehicle or AS-IV or fosinopril for 5weeks.
Cardiovascular parameters (systolic blood pressure, diastolic blood pressure, mean
arterial pressure, heart rates, and body weight), cardiac function parameters (LVEDd,
LVEDs, and fractional shortening), cardiac marker enzymes (creatine kinase, CK-MB,
and lactate dehydrogenase), cardiac hypertrophy markers (atrial natriuretic peptide
and brain natriuretic peptide), endothelial function biomarkers (nitric oxide and eNOS),
inflammation biomarkers (IL-6 and TNF-a) and oxidative stress biomarkers (SOD, MDA,
and GSH) were measured and cardiac tissue histology performed. Network
pharmacological analysis screened the top 20 key genes in the treatment of
hypertensive heart disease treated with AS-IV. Besides, AS-IV exerted a beneficial
effect on cardiovascular and cardiac function parameters. Moreover, AS-1V alleviated
cardiac hypertrophy via down-regulating the expression of ANP and BNP and
improved histopathology changes of cardiac tissue. AS-IV improved endothelial
function via the up-regulation of eNOS expression, alleviated oxidative stress via
increasing antioxidant enzymes activities, and inhibited cardiac inflammation via
down-regulating IL-6 and TNF-a expression. Our findings suggested that AS-IV is a
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potential therapeutic drug to improve L-NAME-induced hypertensive heart disease
partly mediated via modulation of eNOS and oxidative stress.

Keywords: cardiac damage, astragaloside IV, hypertensive heart disease, network pharmacology, inflammation,

antioxidant

INTRODUCTION

Hypertension is a common cardiovascular disease and a primary
contributory factor for pathological cardiac dysfunction and
remodeling, which seriously harms the structure and function
of the heart (Santos and Shah, 2014). Besides, persistent
hypertension may cause fibrosis and left ventricle hypertrophy,
which even resulting in heart failure and renal injury (Gradman
and Alfayoumi, 2006; Uraizee et al., 2013). Loss of nitric oxide
(NO) bioavailability and deficiency in endogenous NO synthesis
are thought to underlie functional and histological cardiac injury
during this process (Yang et al., 2015). Abnormal changes in NO
bioavailability or synthesis evokes endothelial dysfunction, which is
also related to the progression of diabetes, heart failure, and
hypertension (Moncada, 1992). It has been reported that NO
exerts the cardioprotective effect by alleviating cardiac apoptosis
and remodeling after myocardial infarction via inhibition of
oxidative stress (Smith et al., 2005). Moreover, Up-regulation of
eNOS expression declined fructose-evoked insulin resistance and
hypertension in rats (C. X. Zhao et al., 2009). The pathogenesis of
hypertension involves complex interplays of pathophysiologic,
environmental, and genetic factors. Oxidative stress plays a vital
role in the pathophysiologic process of hypertension (Touyz et al.,
2020). It contributes to renal injury and vascular dysfunction
associated with hypertension (Small et al, 2018). Besides,
oxidative stress could decrease the bioavailability of NO, leading
to vasoconstriction, which could even cause hypertension
(Harrison et al., 2003). The increasing evidence indicated that
inflammatory cytokines, including IL-6, TNF-a, IFN-y, and IL-17
secreted from T cells, contributed to both vascular and renal injury
and dysfunction, causing organ injury, high blood pressure, and
oxidative stress (McMaster et al., 2015; Zimmer et al., 2020). N“-
nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase
inhibitor, obviously causes NO deficiency and evokes high blood
pressure in an animal model (Biwer et al, 2013). Chronic
administration of L-NAME could cause cardiac hypertrophy via
up-regulation of brain natriuretic peptide (BNP) and atrial
natriuretic peptide (ANP) in vivo (Suo et al, 2002). Treating
rats with L-NAME could induce vascular endothelial injury,
and this animal model is widely used in the study of
cardiovascular and hypertension diseases (Ribeiro et al., 1992).
Additionally, declined antioxidant defense systems and increased
production of reactive oxygen species are present in L-NAME-
induced hypertensive rat model (Rincon et al., 2015; Zambrano
et al, 2013). Therefore, developing new active ingredients with
antioxidant effects that could improve endothelial function, and
reduce oxidative stress and inflammation might be beneficial for
preventing and treating hypertensive heart disease.

Astragaloside IV (AS-1IV) is a major active compound of
Astragalus membranaceus. It has been useful in the treatment

of nonalcoholic fatty liver disease via regulating inflammatory
cytokines (Liu et al., 2020). Additionally, it has been reported that
AS-IV  could decrease obesity-associated hypertension via
improving leptin resistance and suppressing inflammatory
reactions (Jiang et al., 2018). AS-IV could alleviate cardiac
hypertrophy and improve cardiac function via activating Nrf2
(Nie et al, 2019). However, the effects of AS-IV against
hypertension-associated ~ cardiac ~ damage are  poorly
investigated. Thus, the antihypertensive and cardioprotective
effects of AS-IV were explored in the L-NAME-evoked
hypertensive model, and the underlying mechanism actions of
protection effects were evaluated by measuring oxidative stress
and endothelial dysfunction-related biomarkers.

MATERIALS AND METHODS

Prediction of AS-IV-Associated Targets

The CTD database (http://ctdbase.org/), PubChem database
(https://pubchem.ncbi.nlm.nih.gov),  and  Swiss  Target
Prediction  database  (http://www.swisstargetprediction.ch/)
were used to identify potential targets of AS-IV.

Prediction of Hypertensive Heart

Disease-Associated Targets

The CTD database (http://ctdbase.org/) and Genecards database
(https://www.genecards.org/) were used to identify potential
targets of hypertensive heart disease. The hypertensive heart
disease-associated targets were obtained by searching the
keyword “hypertensive heart disease” in these databases.

Construction of protein-protein interaction (PPI) network
and core genes identification.

A Venny2.1.0 tool was used to collect the common targets of
the AS-IV and hypertensive heart disease. Then, the PPI network
of these common targets was constructed using the STRING
database (https://stringdb.org/). Then, Cytoscape software (www.
cytoscape.org/) was used to visualize and integrate the topological
parameters of common targets in the PPI network. The degree of
each protein node was calculated using the CytoHubba plugin.
Then, the top 20 genes were identified as core genes.

Enrichment Analysis and Construction of
the Compound-Targets-Pathways-Disease

Network

KEGG pathway analysis was performed using the Metascape
platform (http://metascape.org/gp/#/main/stepl) to obtain the
AS-TV-mediated pathways against hypertensive heart disease.
Cytoscape software (www.cytoscape.org/) was used to
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construct a compound-targets-pathways-disease network based
on the results of PPI and KEGG analysis.

Experimental Verification

Animal Experimental Protocol

Male Sprague-Dawley rats (6-8 weeks old and 180-220 g) were
purchased from the animal center of Harbin Medical University
and housed under temperature- and humidity-controlled animal
room, with 12 h light-dark cycles and free access to food and
water. All animal experiments were performed by National
Institutes of Health guidelines and approved by the Animal
Ethics Committee of the First Affiliated Hospital of Harbin
Medical University.

After 1week of acclimation, all animals were randomly
divided into the five groups (n = 8 for each group) and
treated as follows: Control group (CON), rats only received
carboxymethyl cellulose solution (1%) daily; CON + HAS-IV
group, rats in the CON group received a high dose of AS-IV
(40 mg/kg) daily; L-NAME group (LN), rats received 50 mg/kg of
L-NAME in carboxymethyl cellulose solution (1%) daily for
5 weeks to evoke hypertension (Berkban et al, 2015); LN +
LAS-IV group, rats in the LN group received a low dose of
AS-IV (20 mg/kg) daily; LN + HAS-IV group, rats in the LN
group received a high dose of AS-IV (40 mg/kg) daily. LN +
fosinopril group, rats in the LN group received fosinopril
(4.67 mg/kg) daily. The doses of AS-IV and fosinopril were
selected according to the previous report (Jiang et al., 2018;
Wang et al., 2020). Drugs were suspended in carboxymethyl
cellulose solution (1%). Carboxymethyl cellulose solution (1%) or
drugs were intragastrically administered daily for 5 weeks.

Measurement of Cardiovascular

Parameters

After 5 weeks of continuous administration, a non-invasive blood
pressure measurement and analysis system (ALC-NIBP,
ALCBIO, China) were used to measure the systolic blood
pressure (SBP), diastolic blood pressure (DBP), mean arterial
pressure (MAP), and heart rates (HR) in conscious rats based on
manufacturer’s instruction.

Assessment of Cardiac Function

At the end of the experiment, the rats were fasted for 18 h and
anesthetized with 40 mg/kg of sodium pentobarbital by
intraperitoneal injection. The Doppler echocardiography
(Agilent Sonos5500) was used to measure the left ventricular
end-diastolic dimension (LVEDA), left ventricular end-systolic
dimension (LVEDs), and fractional shortening (FS) of
each group.

Collection of Tissue and Blood Samples

At the end of the experiment, rats were anesthetized with
40 mg/kg of sodium pentobarbital by intraperitoneal injection
and euthanized by inhaling CO,. Then, the blood samples were
rapidly collected from the abdominal aorta. Hearts and thoracic
aortas were rapidly harvested and stored at —20°C for further
analysis.

AS-IV Prevents Hypertensive Heart Disease

Measurement of Cardiac Marker Enzymes
Activities

Collected blood samples were centrifuged at 3,000 r/min for
15min at 4°C and the serum was obtained. The activities of
creatine kinase (CK), creatine kinase-MB (CK-MB), and lactate
dehydrogenase (LDH) were measured using commercially
available kits (Jiancheng Bioengineering, Nanjing, China)
based on the manufacturer’s instruction.

Assay of Endothelial Function Biomarkers
The plasma, aortic and cardiac NO levels and the eNOS activity
were measured by commercially available kits (Jiancheng
Bioengineering, Nanjing, China) based on the manufacturer’s
protocol.

Measurement of Oxidative Stress

Biomarkers

The heart and aorta tissues were homogenized in ice physiological
saline using a homogenizer and then centrifuged at 5,000 r/min
for 10 min. The supernatant was collected and the protein
concentration was measured by the BCA method. The
activities of SOD, GSH, and MDA levels in the aortic and
cardiac homogenate were measured by corresponding kit
(Jiancheng Bioengineering, Nanjing, China) based on the
manufacturer’s protocols.

Histopathological Analysis

The cardiac tissue was collected and washed by ice physiological
saline, and then fixed by 10% formalin and embedded in paraffin.
The pathological changes of the heart were examined using
hematoxylin and eosin staining reagent. Cardiomyocyte injury
and interstitial edema were evaluated for cardiac pathological
score, in which the score was 0 for normal, 1 for mild, 2 for
moderate, and 3 for severe damage.

Cell Experiment

Rat HIC2 cells were purchased from China Infrastructure of Cell
Line Resources (Chinese Academy of Medical Sciences) and cultured
in Dulbecco’s modified Eagle’s medium, containing antibiotics and
10% fetal bovine serum at 37°C, 95% air, and 5% CO,. We changed
the medium daily until the HOC2 cells were at 80-90% confluence.
HIC2 cells (3 x 10* cells/ml) were inoculated into a 96-well plate,
and then added different concentrations of AS-IV (20, 40, and 80 pg/
ml) in the absence or presence of L-NAME (1 mM) for 24 h. Then,
cell Counting Kit-8 (CCK-8, Dojindo, Japan) was applied for
measuring cell viability.

Quantitative Real-Time Polymerase Chain

Reaction

The whole RNA of HIC2 cells, heart, and aorta tissues was extracted
by the TRIzol reagent (Invitrogen, United States ) following the
manufacturer’s protocol. Then, the extracted total RNA was used for
cDNA synthesis by the Prime Script RT reagent kit (Takara Biolnc,
Japan) according to the manufacturer’s protocol. qRT-PCR was
carried out in the ABI StepOnePlus system (Applied Biosystems,
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FIGURE 1 | Analysis of the potential genes of AS-IV for the treatment of hypertensive heart disease. Venn diagram of 51 potential common genes (A). Construction
of a PPI network of those common genes. (B) PPI network construction of hub genes (C), the darker color means the more important in the network.
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hypertensive heart disease; green nodes represent 20 genes; red nodes represent seven potential signaling pathways; these lines indicate the interactions

United States ) using the Sybergreen™ reactions. The primers used
in the present study were listed in supplementary file
Supplementary Table S1. The results of mRNA were quantified
using the delta Ct method and normalized to glyceraldehyde 3-
phosphate dehydrogenase (GAPDH).

Data Analysis
GraphPad Prism Version (version 7.0) software was used for

all data analyses and all results were given as mean + standard
deviation (SD). Significant differences were analyzed by one-
way analysis of variance (ANOVA) followed by the Mann
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FIGURE 3| Effects of Astragaloside IV (AS-IV) on cardiovascular parameters in L-NAME-treated rats. The SBP (A), DBP (B), MAP (C), HR (D), body weight (C), and
HW/BW (F) was measured at the end of experiment. Results were showed as mean + SD (n = 6 for each group). ##p < 0.001 versus CON group; *p < 0.01 versus LN
group; *p < 0.01 versus LN group; **p < 0.001 versus LN group.

Whitney test. A value of p < 0.05 was considered statistically
significant.

RESULTS

Targets Screening of AS-IV and

Hypertensive Heart Disease

As shown in Figure 1A, we collected potential genes of AS-IV
from CTD, PubChem, and Swiss Target Prediction databases.
Those genes were combined and we removed the overlap
genes. Then, 54 genes associated with AS-IV were obtained.
Besides, potential targets of hypertensive heart disease were
predicted from the Genecards and CTD databases. We
combined those potential genes and removed the overlap
ones. Then, 7,900 hypertensive heart disease-associated
genes were collected. Finally, 51 common genes were
obtained as potential genes in the therapeutic effect of AS-
IV against hypertensive heart disease.

PPI Network Construction and Hub Genes

Screening

As shown in Figure 1B, the string database was used to
construct the PPI network of 51 common targets. Then,
Cytoscape software was used to rearrange those 51 common
genes based on the degree value, and the top 20 genes of high-

node degree were selected as the hub genes (Figure 1C).
Interestingly, we found the inflammation-related (TNF, IL-
1B, and IL6) and oxidative stress-related (SOD1 and SOD2)
genes in the hub genes.

Enrichment Analysis of Common Genes
The KEGG enrichment analysis indicated how AS-IV acts on
this pathway, thus exerting a therapeutic effect in hypertensive
heart disease. In the present study, the top 20 hub genes were
selected for enrichment analysis, and the top 20 signaling
pathways were screened for further analysis based on
p-Value. These signaling pathways were shown in
Figure 2A. Among them, the IL-17 signaling pathway, TNF
signaling pathway, NOD-like receptor signaling pathway, and
Toll-like receptor signaling pathway as the top ones.

Compound-Targets-Pathways-Disease
Network

As shown in Figure 2B, a multidimensional network of
“compound-targets-pathways-disease” was constructed by
Cytoscape software, which included 29 nodes (1 compound,
20 genes, 7 signaling pathways, and 1 disease). The purple
node is AS-IV; the yellow node is hypertensive heart disease;
the green nodes represent 20 genes; the pink to red nodes
represent 7 potential signaling pathways; these lines indicate
the interactions between them. These findings indicated that

Frontiers in Pharmacology | www.frontiersin.org

24

November 2021 | Volume 12 | Article 755653


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Jing et al. AS-IV Prevents Hypertensive Heart Disease

l\ ) E3 0.8

—_ = 0.6

£ £

L L

° 0 0.4

g g

3 3 0.2

0.0-

FIGURE 4 | Effects of Astragaloside IV (AS-IV) on LVEDd (A), LVEDs (B), FS (C) values in L-NAME-treated rats. Results were showed as mean + SD (n = 6 for each
group). ##p < 0.001 versus CON group; *p < 0.01 versus LN group; **p < 0.01 versus LN group; ***p < 0.001 versus LN group.

CK (IU/L)

Relative ANP mRNA level

S

MMM g

FIGURE 5 | Effects of Astragaloside IV (AS-1V) on cardiac marker enzymes and cardiac hypertrophy in L-NAME-treated rats. The serum CK (A), CK-MB (B), LDH
(C) activities were measured by commercially available kits. The cardiac tissue ANP (D), BNP (E) mRNA expression levels were measured by gRT-PCR. Results were
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the AS-IV could alleviate hypertension heart disease via
regulating multi-targets and multi-signaling pathways.

Effects of AS-IV on Cardiovascular
Parameters and Cardiac Function in
L-NAME-Treated Rats

As shown in Figure 3, administration of L-NAME for 5 weeks
evoked a significant increase in SBP, DBP, MAP, HR, and HW/

BW compared to the CON group. Treatment with a high dose of
AS-IV (40 mg/kg) significantly decreased all these cardiovascular
parameters in hypertensive heart disease rats. Fosinopril exerted
similar effects as AS-IV (40 mg/kg). It’s worth noting that, a low
dose of AS-IV (20 mg/kg) also decreased SBP, DBP, and HR in
LN + LAS-IV group. Besides, our results indicated that the values
of LVEDd and LVEDs in the LN group increased when compared
with the CON group, accompanied by a significant decrease of FS
(Figure 4). After AS-IV (40 mg/kg) or fosinopril treatment,
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FIGURE 6 | Effects of Astragaloside IV (AS-1V) on cardiac tissue histopathological changes in hypertensive rats. Results were shown as mean + SD (n = 6 for each
group). ##p < 0.001 versus CON group, “*p < 0.01 versus LN group. Hematoxylin and eosin staining method was used to evaluate the cardiac tissue histopathological
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LVEDd and LVEDs were decreased, while FS was increased,
implying remarkable cardioprotection of AS-IV against
L-NAME-induced hypertensive heart disease.

Effects of AS-IV on Cardiac Marker
Enzymes and Cardiac Hypertrophy in

L-NAME-Treated Rats

As shown in Figures 5A-C, after administration of L-NAME for
5 weeks, the activities of CK, CK-MB, and LDH were significantly
increased in the LN group compared to the CON group. Treatment
with a high dose of AS-IV (40 mg/kg) or fosinopril significantly
reduced these cardiac marker enzymes activities in the model
group. ANP and BNP are natriuretic peptides, play a major role
in the regulation of cardiovascular, and as markers of myocyte
hypertrophy (Gardner, 2003; Kohno et al, 1995). After
administration of L-NAME for 5 weeks, the mRNA expression
of ANP and BNP were significantly up-regulated in the LN group
compared to the CON group (Figures 5D,E). Treatment with AS-
IV (40 mg/kg) or fosinopril significantly reduced these cardiac
hypertrophy markers expressions in the model group. Besides,
hematoxylin-eosin (HE) staining was used to evaluate the
pathologic features of cardiac tissue. Figure 6 showed an
enlarged cross-sectional area of cardiomyocytes, cardiomyocyte
injury, and interstitial edema in the cardiac sections of the LN
group. Treatment with AS-IV (40 mg/kg) or fosinopril significantly
alleviated these histopathological changes and decreased heart
pathology score in the model group (Figures 6A,B). However,
the low dose of AS-IV (20 mg/kg) has no effect on cardiac

hypertrophy parameters and cardiac damage in L-NAME-
treated rats. These findings revealed that the potential protective
effects of AS-IV in the treatment of cardiac hypertrophy.

Effects of AS-IV on Endothelial Function

Biomarkers in L-NAME-Treated Rats
Chronic administration of L-NAME for 5 weeks, the levels of
NOx and eNOS in plasma, heart, and aorta were significantly
decreased in the LN group compared to the CON group
(Figure 7). Treatment with AS-IV (40 mg/kg) or fosinopril
significantly increased these endothelial function biomarkers in
the hypertensive heart disease group.

Effects of AS-IV on Inflammation
Biomarkers in L-NAME-Treated Rats

Chronic administration of L-NAME for 5 weeks, the expression
levels of IL-6 and TNF-a in the heart and aorta were significantly
increased in the LN group compared to the CON group
(Figure 8). Hypertensive heart disease rats treated with AS-IV
(40 mg/kg) or fosinopril had significantly down-regulated IL-6
and TNF-a expression levels compared with the LN group.

Effects of AS-IV on Oxidative Stress
Biomarkers in L-NAME-Treated Rats

Chronic administration of L-NAME for 5 weeks, the activities of
SOD and GSH in the heart and aorta were significantly decreased
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FIGURE 7 | Effects of Astragaloside IV (AS-IV) on endothelial dysfunction in hypertensive rats evoked by L-NAME. The plasma NOx (A), aortic NOx (B), cardiac NOx

(C), cardiac eNOS activity (D), aortic eNOS mRNA expression (E), cardiac eNOS mRNA expression (F) in CON, CON + HAS-IV, LN, LN + LAS-IV, LN + HAS-IVand LN +
fosinopril groups. Results were showed as mean + SD (n = 6 for each group). ##p < 0.001 versus CON group, *p < 0.01 versus LN group; **p < 0.01 versus LN group;
***p < 0.001 versus LN group.
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FIGURE 8 | Effects of Astragaloside IV (AS-IV) on inflammation biomarkers in hypertensive rats evoked by L-NAME. The mRNA expression levels of IL-6 (A) and
TNF-a (B) in CON, CON + HAS-IV, LN, LN + LAS-IV, LN + HAS-IV and LN + fosinopril groups. Results were shown as mean + SD (n = 6 for each group). ##p < 0.001
versus CON group, *p < 0.01 versus LN group; **p < 0.01 versus LN group; **p < 0.001 versus LN group.

in the LN group compared to the CON group (Figures 9A,B).  decreased MDA level compared with the LN group. It’s worth
Besides, the levels of MDA were significantly increased in the LN noting that, a low dose of AS-IV (20 mg/kg) also decreased MDA
group compared to the CON group (Figure 9C). Hypertensive  levels in LN + LAS-IV group. In addition, the qRT-PCR results
heart disease rats treated with AS-IV (40 mg/kg) or fosinoprilhad ~ indicated that AS-IV or fosinopril inhibited the down-regulation
significantly increased SOD and GSH activities and a significantly ~ levels of SOD1 and SOD2 induced by L-NAME (Figure 9D,E).
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AS-IV Increased Cell Viability in

L-NAME-Stimulated H9C2 Cells

As shown in Figure 10A, treatment with AS-IV (20-80 pug/ml)
alone did not cause a decrease in cell viability of HOC2 cells. The
HIC2 cells were exposed to L-NAME caused the decline of cell
viability (Figure 10B). Treatment with AS-IV (40-80 pg/ml)
improved cell viability in L-NAME-stimulated HIC2 cells.

The Protective Effect of AS-IV Against
L-NAME-Induced Inflammation and
Oxidative Stress in H9C2 Cells

The cells experiment was performed to further validate the results
of network pharmacology and animal experiment. As shown in
Figure 11, the expression of ANP, BNP, and IL-6 was up-
regulated in L-NAME-stimulated H9C2 cells. AS-IV
significantly down-regulated the expressions of ANP, BNP,
and IL-6. The expressions of eNOS and SOD1 were down-
regulated in L-NAME-stimulated H9C2 cells. AS-IV
significantly up-regulated the expressions of eNOS and SOD1.

DISCUSSION

Hypertensive heart disease is induced by chronic pressure
overload and multiple mechanisms are involved in the
progression of this disease (Slivnick and Lampert, 2019).
Hyperphosphorylation of titin protein, microtubule disarray,
and abnormal calcium handing are involved in this
pathological process (Borbély et al., 2009; Shah et al., 2014).
Therefore, the detailed etiology of hypertensive heart disease is

not fully understood. Because there is no specific drug to treat
hypertensive heart disease; therefore, developing novel agents is
very necessary.

Over the past few decades, natural compounds extracted from
herbs or Chinese herbal medicine have been one of the most
primary resources for drug research and development, especially
in the treatment and prevention of cardiovascular disease. AS-IV
is the primary active compound extracted from Astragalus
membranaceus. Previous reports have indicated that AS-IV
exerts various protective activities in the brain, kidney, lung,
and cardiovascular, and these pharmacological activities are
related to multiple signaling pathways, such as Nrf2
antioxidant signaling pathways, NF-xB signaling pathway, and
EGFR-Nrf2 signaling pathway (J. Zhang et al., 2020a). However,
the underlying mechanism actions of AS-IV against hypertensive
heart disease have not been fully understood. Network
pharmacology integrates omics, network visualization, and
other methods to establish the system network model based
on the theory of systems biology (Li and Zhang, 2013). The
complex relationship among drugs, diseases, targets, and
pathways was revealed via network pharmacology analysis,
which is of great significance for understanding the
mechanism of action of traditional Chinese medicine, the basis
of the medicinal substance, and the research and development of
new drugs (Hao da and Xiao, 2014). In the present study, the
network pharmacology was used to investigate the therapeutic
effect of AS-IV in the treatment of hypertensive heart disease and
an animal experiment was performed to verify our speculation.

First, we used network pharmacology and bioinformatics
methods to construct a “compound-targets-pathways-disease”
network. Our findings indicated that the targeted genes of AS-
IV against hypertensive heart disease are involved in oxidative
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FIGURE 10 | Effect of Astragaloside IV (AS-1V) on the cell viability in L-NAME-stimulated HIC2 cells. HOC2 cells were stimulated with different concentrations of AS-
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FIGURE 11 | The protection effect of Astragaloside IV (AS-1V) against L-NAME-induced inflammation and oxidative stress in HIC2 cells. HOC2 cells were stimulated
with different concentrations of AS-IV (40 and 80 ug/ml) in the absence or presence of L-NAME (1 mM) for 24 h mRNA expression of ANP (A), ABP (B), eNOS (C), IL-6
(D), and SOD1 (E) were measured by gRT-PCR. Results were presented as mean + standard deviation (SD). n = 4. *p < 0.05, **p < 0.01, **p < 0.001.

stress and inflammation, including SOD2, SOD1, IL-6, TNF, and et al,, 2011; Lee et al., 2016). Previous reports have indicated that
IL-1B. Next, we investigated the antihypertensive and  the suppression of eNOS resulted in hypertension and high
cardioprotective effects of AS-IV in L-NAME-induced  vascular resistance (Nyadjeu et al, 2013; Selamoglu Talas,
hypertensive heart disease models. And our results revealed  2014). Blockade NO synthesis in L-NAME-induced high blood
that these beneficial effects of AS-IV may be related to the  pressure is related to the down-regulation of eNOS expression
down-regulation of IL-6 and TNF-a and up-regulation of and elevation of MDA level (Fu et al., 2011; Jan-On et al., 2020).
SOD1 and SOD2. The L-NAME-induced hypertension heart disease model is

At present, multiple mechanisms have been proposed for the  similar to that of patients with vascular endothelial
etiology of hypertensive heart disease. One of the most important  dysfunction, who also experience structural and functional
is the reduction of NO bioavailability or NO synthesis (Davel = cardiac dysfunction due to the loss of bioavailability of NO
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(Ndisang et al., 2014). In vivo, our findings showed that
hypertension heart disease was induced by a decrease of NOx
level and an increase of oxidative stress. Administration of AS-IV
decreased high blood pressure, increased eNOS expression as well
as attenuated cardiac dysfunction in the hypertensive heart
disease model. Meanwhile, MDA level and oxidative stress
markers were also alleviated in the model group after AS-IV
administration. Thus, antioxidant properties may be one of the
mechanisms by which AS-IV inhibited the progression of
hypertensive heart disease. Moreover, the administration of
L-NAME also leads to cardiomyocytes injury that induces the
secretion of cardiac enzymes (LDH, CK-MB, and CK). The
previous report showed that chronic depletion of NO by
L-NAME resulted in a significant increase in CK, CK-MB, and
LDH levels (Kumar et al., 2014). Consistent with the previous
report, our findings of cardiac enzyme measuring and H&E
staining showed that the L-NAME administration caused the
increase of cardiac enzymes (CK, CK-MB, and LDH) and cardiac
structural abnormalities. In the present study, administration of
AS-IV reversed those abnormalities induced by L-NAME,
implying that AS-IV alleviated symptoms of hypertensive
heart disease in L-NAME-treated rats.

Inflammation is a primary factor in the occurrence of disease
(Nathan and Ding, 2010). The findings of the PPI network
indicated that IL-6, TNF, IL-1p, and NFKBIA were predicted as
the main genes of AS-IV against hypertensive heart disease and
the KEGG pathways analysis showed that TNF signaling
pathway was its key pathway. It has been reported that
hypertensive caused chronic systemic inflammation, which
stimulates the secretion of pro-inflammatory factors that
lead to cardiac damage (Mouton et al, 2020). Chronic
cardiac inflammation is involved in the aggravation of
cardiac remodeling in hypertensive heart disease (Kai et al.,
2009). AS-IV alleviates mechanical stress-induced myocardial
hypertrophy via decreasing inflammation (T. Zhang et al,
2020b).  AS-IV  prevents lipopolysaccharide-induced
gestational hypertension via the suppression of inflammatory
responses (Tuerxun et al., 2021). Therefore, we speculated that
AS-IV may alleviate systemic inflammation in hypertensive
heart disease. In the present study, AS-IV down-regulated the
expression of IL-6 and TNF and inhibited the progression of
inflammation. This finding explained that AS-IV alleviated
cardiac inflammation in hypertensive rats evoked by L-NAME.

Oxidative stress is also one of the pathogenic factors of
hypertensive heart disease (Mi et al, 2019). Cardiac oxidative
stress induced by excess reactive oxygen species has been
indicated to be implicated in the occurrence and development
of high blood pressure and pressure overload-induced cardiac
damage (W. Zhao et al., 2008). It has been reported that oxidative
injury was present in hypertensive myocardial tissue (Worou
et al, 2011). Besides, the expression of SOD2 significantly
changed in the hypertension-induced cardiac dysfunction
(Koyanagi et al, 2008). Therefore, inhibition of oxidative
stress is a novel method to treat hypertensive heart disease.

AS-IV Prevents Hypertensive Heart Disease

AS-IV alleviates myocardial ischemia injury via suppressing
reactive oxygen species burst and improving antioxidant
potential (Luo et al, 2019). The findings of the PPI network
indicated that SOD1 and SOD2 were predicted as the potential
genes of AS-IV in the treatment of hypertensive heart disease.
And the network pharmacological results were verified by in vivo
and in vitro experiments. In the present study, we found that AS-
IV up-regulated the expression of SOD1 and SOD2, improved the
activities of SOD and GSH, and decreased the MDA level,
indicating that AS-IV  inhibited the progression of
hypertensive heart disease via inhibition of oxidative stress.

CONCLUSION

In the present report, the network pharmacology and
experimental validation were performed to investigate the
therapeutic effects of AS-IV against hypertensive heart disease.
Our findings demonstrated that AS-IV prevents the progression
of hypertensive heart disease via activation of eNOS and
inhibition of oxidative stress. Our results not only provide a
theoretical foundation for exploring the mechanism actions of
AS-IV against hypertensive heart disease but also develop a
promising treatment for hypertensive heart disease.
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" Department of Neurology, The Affiiated Hospital of Qingdao University, Qingdao, China, 2Institute of Cerebrovascular Diseases,
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Recently, exosomal miRNAs have been reported to be associated with some diseases,
and these miRNAs can be used for diagnosis and treatment. However, diagnostic
biomarkers of exosomal miBRNAs for ischemic stroke have rarely been studied. In the
present study, we aimed to identify exosomal miRNAs that are associated with large-artery
atherosclerosis (LAA) stroke, the most common subtype of ischemic stroke; to further
verify their diagnostic efficiency; and to obtain promising biomarkers. High-throughput
sequencing was performed on samples from 10 subjects. Quantitative real-time
polymerase chain reaction (QRT-PCR) was performed on exosomes and plasma in the
discovery phase (66 subjects in total) and the validation phase (520 subjects in total). We
identified 5 candidate differentially expressed miBRNAs (miR-369-3p, miR-493-3p, miR-
379-5p, miR-1296-5p, and miR-1277-5p) in the discovery phase according to their
biological functions, 4 of which (miR-369-3p, MiR-493-3p, MiR-379-5p, and miR-
1296-5p) were confirmed in the validation phase. These four exosomal miRNAs could
be used to distinguish LAA samples from small artery occlusion (SAO) samples, LAA
samples from atherosclerosis (AS) samples, and LAA samples from control samples and
were superior to plasma miRNAs. In addition, composite biomarkers achieved higher area
under the curve (AUC) values than single biomarkers. According to our analysis, the
expression levels of exosomal miR-493-3p and miR-1296-5p were negatively correlated
with the National Institutes of Health Stroke Scale (NIHSS) score. The four identified

Abbreviations: AS, atherosclerosis; AUC, area under the curve; CTA, computed tomography angiography; CAMs, cell ad-
hesion molecules; CT, computed tomography; FC, fold change; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; FDR, false discovery rate; LAA, large-artery atherosclerosis stroke; MRI, magnetic resonance imaging; MRA,
magnetic resonance angiography; NPV, negative predictive value; NIHSS score, National Institutes of Health Stroke Scale score;
NTA, nanoparticle tracking analysis; PPV, positive predictive value; PBS, phosphate-buffered saline; QRT-PCR, quantitative
real-time polymerase chain reaction; ROC, receiver operating characteristic curves; SAO, small artery occlusion stroke; SD,
standard deviation; TOAST, Trial of Org 10,172 in Acute Stroke Treatment; TEM, transmission electron microscopy; TPM,
transcripts per million.
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Exo-miRNAs as Biomarkers for LAA

exosomal miRNAs are promising biomarkers for the diagnosis of LAA stroke, and their
diagnostic efficiency is superior to that of their counterparts in plasma.

Keywords: ischemic stroke, biomarkers, exosomes, miRNA, atherosclerosis

INTRODUCTION

Stroke is the leading cause of long-term disability and one of the
leading causes of death worldwide and is a growing global burden
(Barrington et al., 2017; Ornello et al., 2018; Raju et al., 2020; Zuo
et al., 2020). Ischemic stroke accounts for 80% of stroke incidence
(Tiedt et al., 2017). According to the Trial of Org 10,172 in Acute
Stroke Treatment (TOAST), large-artery atherosclerosis (LAA)
stroke is the most common type (Ornello et al, 2018). The
primary cause of this type of ischemic stroke is narrowing or
obstruction of the main brain trunk or cortical artery branches
due to atherosclerosis (AS) (Adams et al., 1993). AS is a condition
in which fatty and/or fibrous material accumulates in the lining of
the arteries (Lu and Rothenberg, 2018). Proper diagnosis of
ischemic stroke is important for subsequent treatment
(Prabhakaran et al., 2015; Powers, 2020).

Previous studies have found that miRNAs play important roles
in a variety of diseases (Rupaimoole and Slack, 2017). The
expression of miRNAs varies greatly between normal and
pathological states and can be disease-specific (Liu et al,
2019). miRNAs are endogenous molecules with lengths of
20-25 nucleotides that regulate gene expression after
transcription (Lu and Rothenberg, 2018; Treiber et al.,, 2019).
miRNAs have a wide range of functions in cells and can be
released into the peripheral circulation in small extracellular
vesicles or bound to proteins (Tiedt et al., 2017). miRNAs can
serve as valuable diagnostic biomarkers in a variety of diseases,
but studies have rarely been conducted on their use as biomarkers
in ischemic stroke (Tiedt et al., 2017). In addition, miRNAs are
unstable in the presence of RNase and are therefore easily
degraded in plasma (Matsuura et al.,, 2016; Min et al.,, 2019).
However, exosomes provide a relatively stable environment for
miRNAs and can protect miRNAs from degradation, which has
attracted considerable research interest (van Niel et al., 2018;
Kalluri and LeBleu, 2020).

Exosomes are endosomal-derived phospholipid bilayer
vesicles that are 40-160 nm (on average 100 nm) in diameter.
Exosomes play very important roles not only in physiological
processes, such as cell-to-cell communication, material transport,
and the immune response, but also in pathological processes,
such as cardiovascular and cerebrovascular diseases (Tiedt et al.,
2017; van Niel et al., 2018; Kalluri and LeBleu, 2020). Exosomes
contain a variety of substances, including noncoding RNAs such
as miRNAs, mRNAs, and proteins (van Niel et al., 2018; Kalluri
and LeBleu, 2020). However, scarcely any research has been
performed on diagnostic biomarkers for ischemic stroke in
exosomes (Kalluri and LeBleu, 2020).

The purposes of our study were to verify the association of
exosomal miRNAs with LAA stroke, the major subtype of
ischemic stroke, and to find promising diagnostic biomarkers.
In this study, we characterized total miRNA profiles in plasma

exosomes of LAA stroke patients and healthy controls using high-
throughput sequencing. Furthermore, we identified exosomal
miRNAs that distinguish LAA stroke patients from controls,
validated these biomarkers in a large independent cohort, and
compared their diagnostic performance with plasma miRNAs.

MATERIALS AND METHODS

Participant Information and Sample

Collection

A total of 596 subjects recruited from the Affiliated Hospital of
Qingdao University Neurology Department from June 2018 to
March 2020 were included in our study, including 10 for high-
throughput sequencing, 66 for the discovery phase, and 520 for the
validation phase. Patients were enrolled in our study cohort within
72h of symptom onset when computed tomography (CT) or
magnetic resonance imaging (MRI) demonstrated a new
infarction. Patient diagnosis was based on the TOAST criteria
and a combination of CT, MRI, and magnetic resonance
angiography (MRA)/CT angiography (CTA) findings. The
inclusion and exclusion criteria are shown in the Supplementary
Materials (Glisic et al., 2018; Fernandez et al., 2019; Shen et al., 2019;
Zuo et al, 2020). Informed consent was obtained from all
participants. This study was approved by the ethics committee of
Qingdao University Affiliated Hospital. All procedures followed
were in accordance with the ethical standards of the responsible
committee on human experimentation (institutional and national)
and with the Helsinki Declaration as revised in 2013. Peripheral
blood samples from each participant were collected in EDTA tubes
following a regular venipuncture procedure in the morning under
fasted conditions without water intake within 24 h of hospital
admission. After centrifugation at 3,000 xg for 15 min at 4°C, the
plasma was immediately stored at —80°C until use.

Exosome Isolation

For exosome isolation, we used total exosome separation
reagent for plasma (Cat 4484450, Invitrogen Carlsbad,
United States) (Tian et al, 2020). In brief, each plasma
sample was centrifuged at room temperature for 20 min at
2000 x g to remove cells and debris and then centrifuged at
10,000 xg for 20 min to remove debris for a second time. Then,
1 ml of plasma was added to 0.5 ml of phosphate-buffered saline
(PBS). The sample was vortexed for thorough mixing; then,
50 ul of proteinase K was added to the mixture, and the mixture
was incubated at 37°C for 10 min. Next, 300 ul of exosome
precipitation reagent was added to the supernatant. After
thorough mixing, the mixture was incubated for 30 min at
4°C and then centrifuged at 10,000 xg for 5 min. The isolated
exosomes were contained in the pellet at the bottom of the tube.
Finally, the pellet was resuspended in PBS.
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Transmission Electron Microscopy
Exosome-enriched solution was placed on a copper grid and

incubated at room temperature for 2 min. Then, the exosomes
were placed in 2% phosphotungstic acid for 2 min and washed
with sterile distilled water. The morphology of the exosomes was
observed by using TEM (Hitachi, Tokyo, Japan) (Min et al,
2019).

Nanoparticle Tracking Analysis

Exosome pellets were resuspended in 1 ml of PBS and examined
with a ZetaView PMX 110 instrument (Particle Metrix,
Meerbusch, Germany). We used NTA software (ZetaView) to
analyze the particle size and quantity (Min et al., 2019).

Western Blot Analysis

We extracted total protein from exosomes with RIPA and PMSF
buffers at a ratio of 99:1 (MCE, United States), and the
concentration of the total protein was normalized after a BCA
assay was performed. The protein samples were then subjected to
10% SDS-PAGE and transferred onto a membrane. The PVDF
membrane was incubated with primary antibodies against CD9,
CD63, TSG101 and GRP94 (ab92726, ab134045, ab125011, and
ab238126, respectively; Abcam, Cambridge, United Kingdom) at
4°C overnight and then with HRP-conjugated secondary
antibodies (Abcam, Cambridge, United Kingdom) for an hour.

RNA Isolation and RNA Analysis

According to a published protocol, we used an miRNeasy Serum/
Plasma Advanced kit to extract and purify total RNA from
plasma exosome-enriched fractions (Androvic et al, 2019;
Peng et al, 2020). RNA concentration, purity, and integrity
were assessed using the RNA Nano 6000 Assay Kit of an
Agilent Bioanalyzer 2,100 System (Agilent Technologies, CA,
United States) (Min et al., 2019).

Library Preparation and Sequencing
A total of 5 ug of RNA was used as input material for RNA libra
preparation. Sequencing libraries were created with an NEBNext
Ultra™ Directional RNA Library Prep Kit for Illumina R (NEB,
United  States)  according to  the  manufacturer’s
recommendations. First-strand cDNA was synthesized using
random hexamer primers and M-MuLV Reverse transcriptase
(RNase H). Then, second-strand cDNA was synthesized by using
DNA polymerase I and RNase H. Once the 3’ ends of the DNA
fragments were adenylated, they were attached to NEBNext
adaptors with hairpin loop structures to prepare for
hybridization. The library fragments were purified using an
AMPure XP system (Beckman Coulter, Beverly, United States),
and cDNA fragments with a length of 150-200 bp were selected.
PCR was then performed using Phusion High-Fidelity DNA
polymerase, universal PCR primers, and Index (X) primers.
Finally, the products were purified (AMPure XP system), and
the library quality was evaluated by using the Agilent Bioanalyzer
2,100 system.

The index-encoded samples were clustered using a cBot
Cluster Generation System with a TruSeq PE Cluster Kit V3-
cBot-HS (Illumina) according to the manufacturer’s instructions.

Exo-miRNAs as Biomarkers for LAA

After cluster generation, the Illumina HiSeq 4,000 platform was
used for sequencing, and 150 bp paired-end reads were generated.

miRNA Quantification and Differential

Expression Analysis

First, the transcripts per million (TPM) values were used to
normalize the raw counts. Transcripts with a padj (p-value
after adjust) < 0.05 and a fold change (FC) > 2.0 or < -2.0
were considered to be differentially expressed. The differentially
expressed miRNAs were visualized with volcano plots.

Target Gene Prediction and Gene Ontology/
Kyoto Encyclopedia of Genes and Genomes

Pathway Enrichment Analysis

For all miRNAs that were differentially expressed between LAA
stroke samples and control samples, the potential target genes
that were predicted by both miRanda and RNAhybrid were
included in subsequent analyses. We used DAVID and
KOBAS to enrich the biological functions of the target genes
(Low et al,, 2019; Min et al.,, 2019).

Quantification of miRNA Expression With
gRT-PCR

Total RNA was extracted and purified from plasma exosomes
according to the manufacturer’s protocols (Androvic et al., 2019).
Reverse transcription of miRNAs was performed using a Mir-X
miRNA First-Strand Synthesis Kit (Takara, Japan). TB-Green
Premix Ex Taq™ II (Takara, Japan) was used for quantitative
amplification. The expression levels of U6 were used to normalize
the relative expression levels of miRNA, and the 2"**“" method
was used for quantification (Raoof et al., 2018). The primer
sequences are listed in the Supplementary Materials.

Statistical Analysis

Statistical analyses were performed using SPSS 22.0. The false
discovery rate (FDR) was controlled for multiple comparisons,
and p < 0.05 was considered to indicate a significant difference.
Normally distributed data was presented as the mean + standard
deviation (SD) while non-normally distributed data was
presented as the median (interquartile range). Statistical
significance (p < 0.05) was determined by means of
independent-samples t-tests, chi-square tests and Kruskal-
Wallis tests. We constructed the regression model by binary
logistic regression. Receiver operating characteristic (ROC)
curves were generated, and the area under the curve (AUC)
was also calculated to assess the diagnostic efficiency of candidate
miRNAs.

RESULTS

Participant Characteristics
In this study, a total of 596 subjects were recruited. Of these
participants, 348 patients were diagnosed with ischemic stroke at
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TABLE 1 | Demographic and clinical characteristics of the subjects. (TG, triglycerides; TC, total cholesterol; LDL, low-density lipoprotein; HDL, low-density lipoprotein).

Characteristic LAA (n = 193) SAO (n = 155) As (n = 105) Controls (n = 143) p-val
Age, mean (SD), y 62.9 (10.5) 62.9 (11.8) 63.4 (9.6) 64.7 (8.9) 0.38
Female, n (%) 88 (45.6%) 69 (44.5%) 55 (52.4%) 65 (45.5%) 0.61

Risk factors, n (%)

Hypertension 122 (63.2%) 91 (568.7%) 57 (54.3%) 99 (69.2%) 0.08
Smoking history 58 (30.1%) 52 (33.5%) 28 (26.7%) 35 (24.5%) 0.34
Drinking history 56 (29.0%) 36 (23.2%) 23 (21.9%) 31 (21.7%) 0.37
Diabetes mellitus 57 (29.5%) 38 (24.5%) 26 (24.8%) 29 (20.3%) 0.27
TG, mean (SD) 1.4 (1.2 1.3(0.8) 1.5(1.1) 1.4 (0.7) 0.06
TC, mean (SD) 4.3(1.2) 4.2 (1.1) 4.8 (1.1) 4.7 (1.1) <0.01
LDL, mean (SD) 2.4 (0.8 2.6 (0.9 2.5 (0.3 2.9 (0.9 <0.01
HDL, mean (SD) 1.2 (0.3 1.3 (0.3 2.6 (0.9 1.3 (0.3 <0.01
Hypertension med use (%) 18 (9.3%) 17 (11.0%) 35 (33.3%) 29 (20.3%) <0.01
Diabetes med use (%) 11 (5.7%) 15 (9.7%) 21 (20.0%) 8 (5.6%) <0.01
Lipid-lowing drug (%) 1(0.5%) 3 (1.9%) 6 (5.7%) 4 (2.8%) 0.04
Anti-platelet drugs (%) 6 (3.1%) 1 (0.6%) 6 (5.7%) 10 (7.0%) 0.02
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FIGURE 1 | Characteristics of plasma exosomes from participants. (A). TEM images showing that the exosomes were bilayer vesicles (left image: wide field
containing multiple exosomes; right: close-up image of a single exosome). (B). NTA results showing that the diameter of the enriched plasma exosomes was
approximately 30-150 nm. (C). Western blot showing that CD9, CD63 and TSG101 were detected in the enriched exosome samples isolated from plasma, while the
negative exosomal marker GRP94 was not detected in these samples.

a tertiary hospital, among which 193 patients were diagnosed  age or sex distributions of the participants, which was consistent
with LAA and 155 patients were diagnosed with small artery ~ with the clinical manifestations (p > 0.05).

occlusion (SAO). Another 105 patients were diagnosed with AS

but did not develop stroke, and 143 of the subjects were healthy ~ Characteristics of Exosomes

controls. The demographics and clinical features of the subjects ~ According to previous literature, we verified the enriched
are shown in Table 1. There were no significant differences inthe =~ exosomes via TEM, NTA, and western blot analysis. We
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FIGURE 2 | Workflow and RNA sequencing results. Target analysis of miRNAs differentially expressed in enriched exosome fractions from LAA and control plasma
samples. GO/KEGG enrichment was performed on differentially expressed miRNAs identified in exosome-enriched plasma, and miRNA analysis was performed. (A).
Volcano map showing the high-throughput sequencing results for LAA vs. healthy control samples; red indicates upregulation, and green indicates downregulation. (B).
Bubble plot of the KEGG pathway enrichment results. (C). Bar plot of the GO enrichment results (biological process, cellular component, and molecular function

categories).

cc

Frontiers in Pharmacology | www.frontiersin.org

37

November 2021 | Volume 12 | Article 791644


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Niu et al.

Exo-miRNAs as Biomarkers for LAA

A exosomal miR-369-3p

Relatively abundance
»

exosomal miR-379-5p

*
(]
2
£°]
c
3
2
© 4
>
[
2
s 29
]
* i
0 T T
&
\}? &‘o
00
exosomal miR-369-3p
) *
44 . *
—_—
&

Relatively abundance
N

L

o 9 @
\),Y' g ¥ &

Relatively abundance
i i
——
odr—

the validation phase (median + interquartile range, Mann-Whitney U test. *p < 0.05).
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extracted and identified total plasma-derived exosomes
according to the methods recommended by the
International Society for Extracellular Vesicles (Théry et al.,
2018). In this study, the exosomes we extracted were observed
via electron microscopy to be phospholipid bilayer vesicles

with an average diameter of 100 nm, and NTA showed that
exosomes in diameter were 30-150nm (Figures 1A,B).
Western blotting verified 3 positive markers of exosomes
(CD9, CD63, and TSG101) (van Niel et al., 2018; Kalluri
and LeBleu, 2020). In addition, a negative marker of
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exosomes, GRP94, was absent (Figure 1C). The above findings
suggested that we successfully obtained exosomes.

RNA Sequencing Analysis

To obtain overall profiles of the miRNAs derived from exosomes in
plasma, we performed high-throughput sequencing on 10 samples
(5 LAA samples and 5 control samples) and obtained 830 miRNAs.
Among the miRNAs there were 18 differentially expressed
miRNAs (16 miRNAs were downregulated, and 2 miRNAs
were upregulated) (Figure 2A). The functions of the genes
targeted by these miRNAs were analyzed with the KEGG
database, and the top 20 functions were enriched (Figure 2B).
As shown in the figure, the function terms associated with the
genes targeted by these miRNAs included the metabolic pathways,
cell adhesion molecules (CAMs), and insulin signaling pathway
terms, which suggests that the genes may be associated with the
occurrence of disease. Through GO analysis, we found enrichment
of numerous terms in the biological process category, such as the
organonitrogen  compound  metabolic  process  and
phosphorylation terms. The enriched terms in the cellular
component category included the intracellular part, cytoplasm,
membrane-bounded organelle and intracellular organelle terms. In
the molecular function category, the enriched terms included the
transcription factor binding and RNA polymerase II transcription
factor binding terms (Figure 2C).

Expression of Candidate miRNAs in

Exosomes in the Discovery Phase

In this study, we selected 5 miRNAs according to their biological
functions and differential expression in the discovery phase: miR-
369-3p, miR-493-3p, miR-379-5p, miR-1296-5p, and miR-1277-
5p (Jlog2(EC)|>1, p < 0.05). These five miRNAs were all
downregulated on the basis of previous sequencing results. A
total of 66 subjects were recruited in the discovery phase (33 LAA
subjects, 33 controls). Interestingly, we found significant
differences in expression between the two groups for all
miRNAs except miR-1277-5p (Figure 3A, Supplementary
Figure S1). The other four miRNAs derived from exosomes
were able to distinguish LAA subjects from control subjects
(unadjusted raw p-value < 0.05) (Figure 3A). The sequencing
results were verified with experiments in the discovery phase.

Identification of Exosomal miRNAs as
Candidate Biomarkers in the Validation

Phase

In the validation phase, we verified the four exosomal miRNAs
screened out as potential biomarkers in the discovery phase. miR-
1277-5p was excluded because it did not perform well in
differentiating the LAA group from the control group in the
discovery phase. miR-369-3p, miR-493-3p, miR-379-5p, miR-
1296-5p were ultimately selected for verification in 520
participants (310 ischemic stroke patients, 105 AS patients,
and 105 healthy controls), and their expression levels were
analyzed by qRT-PCR. To obtain the most robust and reliable
biomarker, we further subdivided the stroke group into two

Exo-miRNAs as Biomarkers for LAA

groups: the LAA group (155 patients) and the SAO group
(155 patients). In addition, we performed ROC curve analysis
and calculated the AUC values to further confirm the diagnostic
efficiency of these biomarkers. The results obtained were
consistent with those from previous experiments: all four of
the miRNAs could distinguish the LAA subjects from control
subjects. Moreover, significant differences in the expression of
exosome-derived miR-369-3p were observed in the LAA group
vs. the SAO group and in the LAA group vs. the AS group.
Likewise, exosomal miR-493-3p, miR-379-5p, miR-1296-5p
showed the same differential expression patterns (p < 0.05)
(Figure 3B). Intergroup analysis of exosomal miRNAs in LAA
and SAO groups ruled out such changes due to acute ischemic
stroke. While analysis of LAA and AS groups demonstrated that
the differential expression of exosomal miRNAs was probably
due to the rupture of atherosclerotic plaques.

In addition, we calculated the AUC values for the four
miRNAs. The AUC values for exosomal miR-369-3p, miR-
493-3p, miR-379-5p and miR-1296-5p were 0.841, 0.852,
0.857, and 0.838, respectively (95% CI, 0.783-0.898;
0.793-0.910; 0.801-0.913; 0.777-0.900; p < 0.05) (78.46% PPV
and 76.18% NPV; 83.15% PPV and 75.62% NPV; 80.82% PPV
and 77.28% NPV; 81.23% PPV and 78.65% NPV) (Figure 4),
which shows the potential value of these four miRNAs as
biomarkers for discriminating patients with LAA from other
groups.

Comparison of Exosomal miRNAs and

Plasma miRNAs

We also tested the expression of miRNAs in plasma via qRT-PCR.
According to the correlation analysis, there was no correlation
between the expression of exosomal miRNAs and the expression
of their counterparts in plasma (p > 0.05) (Figure 5). Plasma
miR-369-3p, miR-493-3p, and miR-379-5p failed to distinguish
between the LAA group and the control group (Figure 6A). In
addition, miR-1296-5p in plasma exhibited an AUC of 0.611
(95% CI, 0.542-0.680), while the exosomal miRNA exhibited an
AUC of 0.838 (NRI = 0.36) (Figure 6B). Thus, the diagnostic
efficiency of miRNAs in exosomes is better than that of miRNAs
in plasma.

Diagnostic Efficiency of Composite

Biomarkers

Considering that a single marker is not typically used for the final
diagnosis in clinical practice, we tested the diagnostic efficiency of
composite biomarkers by using a logistic model and ROC curve
analysis (Min et al., 2019). The AUCs of exosomal miRNAs were
as high as 0.867 (95% CI, 0.812-0.922) when different
combinations of two biomarkers were used, higher than the
value achieved for a single miRNA. Further, a combination of
three miRNAs achieved an AUC of 0.872 (95% CI, 0.819-0.925);
thus, adding miRNAs improved the diagnostic efficiency of a
single biomarker to some extent. However, the AUC did not
increase further a fourth miRNA was added (0.868 (95% CI,
0.813-0.922)) (Figures 7A-C).
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FIGURE 4 | Diagnostic efficiency of exosomal miRNAs in the validation phase. ROC curve analyses were performed. The AUCs of the 4 exosomal miRNAs were
calculated and are shown in red.

Correlations Between miRNA Expression
Levels and NIHSS Scores

In addition, we analyzed the relationship between NIHSS score and
miRNA expression in exosomes. Patients” conditions were clinically
evaluated according to their NIHSS scores: a higher score indicated a
more serious condition (Kwah and Diong, 2014). We classified
patients according to their NIHSS scores as having mild stroke
(NIHSS<5) or moderate to severe stroke (NIHSS score > 5) (Kvistad
et al, 2019; Johnston et al., 2020). Spearman rank correlation was
used to analyze the relationships between NTHSS scores and miRNA
expression levels (Matsuura et al., 2016). The results suggested that
the expression levels of exosomal miR-493-3p and miR-1296-5p
were negatively correlated with the NIHSS score. Interestingly,
exosomal miR-493-3p and miR-1296-5p expression was lower in
patients with moderate to severe stroke than in patients with mild
stroke (p < 0.05) (Figure 8).

DISCUSSION

In this study, we compared the diagnostic efficiency of miRNAs
in exosomes and plasma among LAA, SAO, AS, and control
groups. To the best of our knowledge, this is the first study to

show that exosomal miRNAs can be used as biomarkers with
better efficiency than plasma miRNAs for ischemic stroke. We
screened out four identified exosomal miRNAs, namely, miR-
369-3p, miR-493-3p, miR-379-5p, and miR-1296-5p, which are
promising biomarkers for the diagnosis of LAA stroke, and their
diagnostic efficiency is superior to that of their counterparts in
plasma. In addition, we found that the expression levels of
exosomal miR-493-3p and miR-1296-5p expression were
negatively correlated with NIHSS score.

Ischemic stroke is a very urgent, serious, and heterogeneous
disease, especially LAA stroke, which accounts for a considerable
proportion of the incidence of ischemic stroke (Ornello et al.,
2018). Therefore, proper identification and diagnosis of LAA are
of vital importance for the success of follow-up treatment and for
the quality of life of patients (Prabhakaran et al., 2015). The
etiological diagnosis of ischemic stroke is mainly based on
medical history, clinical evaluation, and cerebral angiography
etc. (Jauch et al,, 2017). When patients are unable to cooperate
with examinations, diagnostic biomarkers can help solve the
problem. Here, diagnosis of LAA stroke is undoubtedly time
saving and cost saving, which is of great significance for the
rational allocation of medical resources and further treatment (Tu
et al., 2017b). In addition, we report a noninvasive method that

Frontiers in Pharmacology | www.frontiersin.org

40

November 2021 | Volume 12 | Article 791644


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Niu et al.

Exo-miRNAs as Biomarkers for LAA

miR-369-3p
50
rho=0.132
P=0.117
& 40
o
@
!g 304
£
g 208
a A o°
®
0 c l’-‘e L} T o 1
10 15 20 25

Exosomal miR-369-3p

miR-379-5p
rho=-0.015
P=0.860
a
©Q
o
N~
?
x
IS
£
3 (e]
©
o (o]
: ?-\o o T T o 1
5 10 15 20

Exosomal miR-379-5p

Plasma miR-493-3p

)
g

-
[3,]
1

miR-493-3p

rho=0.072
P=0.347

o

Plasma miR-1296-5p
=

—0

FIGURE 5 | Correlation of exosomal miRNA expression levels with plasma miRNA expression levels as assessed using Spearman’s correlation coefficient (rho).

5 10 15 20
Exosomal miR-493-3p

miR-1296-5p

rho=0.121
o P=0.138

5 10 15 20
Exosomal miR-1296-5p

A plasma miR-369-3p
5 *
3 .
5 4
T
53
2
©
>
T2
2
5, i
® |
4 L
0 T 1
(] 2 @
N v

® *
2
% 3
e
3
o
© 2
>
2
£1
& I
0 T T
o 2 @
F & L
&
<

plasma miR-493-3p

a

3 —_—
2
1 —
3
2
© 2
e
©
2
g1 |
]
o 1
0 T
(¢] ] @
F & ¥
&
plasma miR-1296-5p
*
25 |
*
8 _—
5 2.0
°
5
315
©
>
< 1.0
£
k]
S5 |
< \,
0. T T
o G >
F & L

Sensitivity%

FIGURE 6 | Validation of plasma miR-369-3p, miR-493-3p, miR-379-5p, and miR-1296-5p. (A). gRT-PCR of miRNAs in plasma. (B). ROC curve of plasma miR-
1296-5p. The AUC was calculated and is shown in green (‘p < 0.05).

plasma miR-1296-5p

100+ 3
80- o L
60- e
o AUC=0.611
40+ i P<0.05
JH'J
20 FJ e
./
0 : : : T !
0 20 40 60 80 100

100% - Specificity%

Frontiers in Pharmacology | www.frontiersin.org

]

November 2021 | Volume 12 | Article 791644


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Niu et al.

Exo-miRNAs as Biomarkers for LAA

A exosomal miR-369-3p+miR-493-3p exosomal miR-369-3p+miR-379-5p
100 100
80 80
2 2
2 z
£ 5%
2z a4 2 AUC=0.863
5 4 AUC=0.859 5 ¢ Pe0.05
L P<0.05 L2 -
20 : 20
II) 20 40 60 80 100 0 20 40 60 80 100
100% - Specificity% 100% - Specificity%
exosomal miR-369-3p+miR-1296-5p exosomal miR-493-3p+miR-1296-5p
100 100
80 80
= =2
z z
9 %
2 2 AUC=0.848
g 40 AUC=0.849 g 40 P<0.05
» P<0.05 »
20 20
6 20 40 60 80 100 (:D 20 40 60 80 100
100% - Specificity% 100% - Specificity%
exosomal miR-493-3p+miR-379-5p exosomal miR-379-5p+miR-1296-5p
100 100
80 80
g 2
£ 60 £ 60
= p
2 4 AUC=0.867 2 40 AUC=0.857
3 P<0.05 & P<0.05
20 20
llJ 20 40 60 80 100 tl) 20 40 60 80 100
100% - Specificity% 100% - Specificity%
combination of four miRNAs.

FIGURE 7 | ROC curve analysis of composite biomarkers. (A). Different combinations of two miRNAs. (B). Different combinations of three miRNAs. (C) A

B exosomsl miR369-3p+miR 493-3p#miR 370-5p exosomal miR-369-3p+miR-493-3p+miR-1296-5p

100 100-
80 80

$ g

g 60 £ e

2 4 AUC=0.872 2 w0 AUC=0.858

3 P<0.05 ] P<0.05
20 20

100 0 20 40 60 80 100

100% - Specificity%

6 20 40 60 80
100% - Specificity%

exosomal miR-369-3p+miR-379-5p+miR-1296-5p
100

exosomal miR-493-3p+miR-379-5p+miR-1296-5p
100

80 80
2 2
£ 60 £ 60
H H
B % AUC=0.865
5 AUC=0.864 g 40 P<0.05
° P<0.05 L
20 20

100 II) 20 40 60 80
100% - Specificity%

lll 20 40 60 80
100% - Specificity%

100

exosomal miR-369-3p+miR-493-3p+miR-379-5p+miR-1296-5p

AUC=0.868
40 P<0.05

Sensitivity%

Ill 20 40 60 80
100% - Specificity%

100

can potentially be used for diagnosis. This method is feasible even
when clinical resources are limited.

Exosomes are involved in cell-to-cell communication, material
transport, immune responses, and other processes, and miRNAs
are involved in multiple processes associated with stroke
occurrence and progression (Krupinski and Slevin, 2013;
Mirzaei et al.,, 2018; Raju et al., 2020). miRNAs are selectively
packaged into exosomes, suggesting that they may carry specific
information, and the numbers of exosomes and miRNAs secreted
are affected by disease state and progression (Liu et al., 2019).
Prior studies have shown that about 70% of miRNAs are
expressed in the central nervous system, and a growing
number of exosomal miRNAs play an important role in
central nervous system diseases, such as ischemic stroke (Yu
et al., 2021).

Previous studies have
biomarkers for diagnosis
et al, 2019). In this

shown that miRNAs can serve as
of diseases, especially cancer (Min
work, we used high-throughput
sequencing to gain an overall understanding of miRNA
profiles. LAA is closely associated with inflammation and
involves a cascade of inflammatory cytokines (Wolf and Ley,
2019). GO and KEGG analyses were used to screen out 5 miRNAs
(miR-369-3p, miR-493-3p, miR-379-5p, miR-1296-5p, miR-
1277-5p) according to the functions of their targeting genes.
Among them, miR-369-3p is associated with low-density
lipoprotein and monocyte-to-macrophage differentiation. And
it has been reported to play a role in the inflammatory process,
and its targeted genes are associated with inflammatory cytokines

(Galleggiante et al., 2019). miR-1296-5p is associated with CAMs,
white blood cell migration across endothelial cells, which are
known as playing crucial roles in atherosclerosis (Libby et al.,
2019). LAA is associated with a chronic inflammatory process
involving CAMs (Zeng et al., 2021). Inflammatory cells can bind
to cell adhesion molecules expressed by endothelial cells. In
addition, during inflammation, cells migrate via chemotaxis in
response to inflammatory cytokines (del Zoppo et al., 2000; Libby
et al,, 2019; Wolf and Ley, 2019). In addition, miR-493-3p has
been found to modulate angiogenesis in a rat model of ischemic
stroke (Li et al., 2016). miR-379-5p and miR-493-3p are related to
metabolic pathways and fatty acid metabolism, which play
essential roles in the pathophysiology of LAA (Libby et al,
2019). Besides, miR-493-3p is also related to antigen
processing and presentation. Previous studies have shown that
atherosclerotic plaque rupture correlates with the level of
immune cells, and that antigen processing and presentation
play important roles in regulating the function and level of
immune cells (Kobiyama and Ley, 2018). In previous studies,
miR-379-5p has been reported to be associated with autoimmune
diseases of the central nervous system, multiple sclerosis, and its
target genes are associated with cell death and inflammation, and
miR-1296-5p inhibits liver cancer metastasis through the PI3K/
Akt pathway and is downregulated in breast cancer (Xu et al.,
2017; Baulina et al., 2018). What’s more, PI3K/Akt pathway has
been confirmed to be associated with ischemic stroke (Qi et al.,
2021). miR-1277-5p has been associated with inflammatory
response and oxidative stress in previous study (Zhou et al,
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2021). We speculate that the factors we screened play roles in the
occurrence and progression of LAA. In total, 4 miRNAs (miR-
369-3p, miR-493-3p, miR-379-5p, and miR-1296-5p) were
selected for a large-sample validation phase. These factors
have not often been studied in the context of cerebrovascular
diseases, including ischemic stroke. Although these miRNAs have
been identified as biomarkers for diagnosis and prognosis of other

diseases, we are the first to identify them as biomarkers for
ischemic stroke.

We analyzed our experimental results by calculating the
relative expression levels of miRNAs based on the study of
Rana Raoof et al (Raoof et al. (2018)). Our analysis revealed
that the intergroup differences for exosomal miR-369-3p, miR-
493-3p, miR-379-5p, and miR-1296-5p were significant. These
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miRNAs could distinguish the LAA group from the control group,
the LAA group from the SAO group, and the LAA group from the
AS group. The significant difference between the LAA and the
control group distinguished patients with ischemic stroke from those
without stroke. Differential expressions were also observed in LAA
and SAO groups. However, the presence or absence of vascular
stenosis was the main difference between the LAA and SAO groups,
and SAO usually shows no signs of cortical dysfunction (Adams
et al, 1993). Differentially expressed miRNAs between these two
groups can be helpful for the classification of ischemic stroke.
Additionally, LAA is generally caused by rupture of
atherosclerotic plaques, and our results showed a significant
difference between the LAA group and the AS group, which
consisted of patients with unruptured atherosclerotic plaques,
suggesting that plaques rupture may play a role in the
pathogenesis of stroke (Chistiakov et al., 2015). Identification of
the etiology of acute ischemic stroke (AIS) is of much importance for
guiding the secondary prevention. That is, candidate biomarkers are
important for early prevention, diagnosis and treatment of the
disease. The screened candidate diagnostic biomarkers can
potentially identify the etiology, in other words, the occurrence of
stroke events caused by ruptured atherosclerotic plaque, which is
helpful for early treatment of the etiology and guidance of clinical
medication.

Notably, the experimental grouping in this experiment was
more detailed than those in previous studies. Here, we included
ischemic stroke patients, patients with AS, and healthy controls.
Previous studies on ischemic stroke have divided participants into
two groups: a stroke group and a control group (Jickling et al., 2014;
Tiedt et al,, 2017). We further refined the groups in this study. Since
there are multiple subtypes of ischemic stroke, we focused on LAA
and SAO. Moreover, strict exclusion criteria were adopted in the
current study to ensure the rigor and accuracy of the experiment
(Tiedt et al., 2017; Jia et al., 2019; Min et al., 2019). It has been
previously reported that miRNAs in exosomes can be used as
biomarkers of atherosclerosis in cardiovascular diseases (Liu et al.,
2019). We made a more detailed grouping and applied exosomal
miRNAs to the diagnosis of LAA stroke. As a result, we identified
candidate biomarkers for LAA stroke. It is indicated that different
exosomal miRNAs could be used as diagnostic biomarkers and
play roles in different atherosclerotic diseases, while needs to be
further studied. In this study, we focus on the diagnostic value of
exosomal miRNAs in the acute stage of ischemic stroke. The
occurrence of an ischemic stroke usually indicates the need for
immediate evaluation of therapeutic interventions. Biomarkers,
especially in the acute phase, can play a valuable role in the
treatment of stroke. Longfei Jia, Steffen Tiedt, Li Min et al. have
conducted cross-sectional studies in their respective fields, and
similarly, we have adopted the same research methods to obtain
alternative diagnostic biomarkers.

In order to validate the results, we calculated the AUCs of the
four factors. The results suggested that compared with plasma
miRNAgs, the exosomal miRNAs (miR-369-3p, miR-493-3p, miR-
379-5p, and miR-1296-5p) showed greater diagnostic efficiency
with much higher AUCs. The AUC was also calculated for a panel
of four potential biomarkers. A large number of studies have
shown that the diagnostic efficiency of combined biomarkers is

Exo-miRNAs as Biomarkers for LAA

better than that of single biomarkers (Jia et al., 2019; Min et al.,
2019). In line with these findings, composite biomarkers achieved
higher AUCs than single biomarkers in this study. We verified the
diagnostic efficiency of the four miRNAs in exosomes with a
relatively large sample size of subjects to obtain clinical support. A
study by Li Min et al. has verified that exosomal miRNAs are
more effective than plasma miRNAs for the diagnosis of colon
cancer (Min et al, 2019). Consistent with this finding, our
experimental results showed that exosomal miRNAs were
superior to their plasma counterparts for the diagnosis of
LAA. In addition, there were significant differences in
exosomal miRNAs among the four groups. In contrast, plasma
miRNAs did not exhibit the same differential expression patterns,
confirming that exosomes protect miRNAs from RNA-degrading
enzymes in plasma. And according to our results, plasma
miRNAs were not correlated with exosomal miRNAs. Diehl
et al. found that miRNAs profiles in microvesicles were
significantly different from those in maternal cells, suggesting
that the selective packaging of miRNAs from cells into
microvesicles is an active mechanism, which may indirectly
prove the protective effect of exosomes, and partly explains
the incorrelation between plasma and exosomal miRNAs in
our results (Matsuura et al., 2016).

Prior studies on biomarkers for ischemic stroke have focused
on proteins in plasma such as neuron-specific enolase and
interleukin (AUC = 0.82 and 0.69 respectively) (Tiedt et al,
2017). According to Wang et al.’s study, exo-miRNAs perform
better than traditional protein biomarkers, such as CEA and
Cyfra21-1, in the diagnosis of non-small cell lung cancer (Wang
et al., 2020). By contrast, in our study, we focused on exosomal
miRNAs that can be used as diagnostic biomarkers in LAA stroke.
Compared with previous studies, we investigated new factors for
diagnostic biomarkers of LAA stroke that had not been previously
studied. It is indicated in previous literature that miRNAs in
plasma are easily degraded by RNase (Moreno-Moya et al., 2014).
As a result, we not only studied the potential value of new factors
in the diagnosis of ischemic stroke but also compared the
diagnostic power of plasma factors and exosomal factors. The
diagnostic efficiency of miRNAs in plasma vs. exosomes has been
reported before (Min et al., 2019). Our results indicated that the
diagnostic efficiency of exosomal miRNAs was superior to that of
plasma miRNAs for ischemic stroke. We confirmed the protective
effects of exosomes on miRNAs and the diagnostic value of
exosomal miRNAs for ischemic stroke. Furthermore, we
analyzed the identified miRNAs for the first time.

We also analyzed the correlations between miRNA expression
levels in exosomes and NIHSS scores according to the methods in
a previous study by Kentaro M. et al. (Matsuura et al., 2016). Early
in the disease, a higher NIHSS score usually predicts a poorer
prognosis to some extent (Powers, 2020). We classified ischemic
stroke patients according to their NIHSS scores and found that
exosomal miR-493-3p and miR-1296-5p levels were negatively
correlated with NIHSS score. Therefore, we speculate that the
expression levels of miRNAs in exosomes reflect the severity of
disease to some extent. Although the two correlations were weak,
the results provide new ideas for further exploration of the
expression of miRNAs in the future. miRNA expression
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decreased with increasing disease severity, which confirms that
miRNAs play important roles in disease progression. Our
findings provide insights for determination of disease severity
through quantitative detection of miRNAs in the future. Besides,
it has been previously reported that baseline NIHSS score is an
important parameter to predict the prognosis of acute ischemic
stroke (Tuetal., 2017a; Tu et al., 2017b). Therefore, we speculated
that exosomal miRNAs as biomarkers can be used for the
prognosis analysis of LAA stroke, which may be helpful to
improve the quality of life of stroke patients in the future.

There were some limitations to our study. First, we only included
Chinese Han ethnicity as the research object of our study, which
restricted the generalization of our experimental conclusions to other
populations. In addition, more clinical trials are needed to confirm
the diagnostic efficiency of the candidate miRNAs.

CONCLUSION

In summary, our study sheds new light on the use of exosomal
miRNAs as noninvasive diagnostic biomarkers for LAA. We also
provide a new alternative diagnostic method. Exosomal miR-369-
3p, miR-493-3p, miR-379-5p, and miR-1296-5p are potential
biomarkers, and composite biomarkers achieve higher diagnostic
efficiency than the single biomarkers, making them more suitable
for clinical diagnosis. In addition, we found that the NIHSS score
is negatively correlated with exosomal miRNA expression, which
provides a new perspective for future studies (Xu et al., 2019).
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Activation of Nrf2 by Lithospermic
Acid Ameliorates Myocardial Ischemia
and Reperfusion Injury by Promoting
Phosphorylation of AMP-Activated
Protein Kinase a (AMPKAq)

Min Zhang "??, Li Wei®?, Saiyang Xie ", Yun Xing"?, Wenke Shi'?, Xiaofeng Zeng'?,
Si Chen 2, Shasha Wang'?, Wei Deng"? and Qizhu Tang "?*

"Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China, 2Hubei Key Laboratory of Metabolic and
Chronic Diseases, Wuhan, China, *Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China

Background: As a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia
miltiorrhiza, lithospermic acid (LA) has been identified as the pharmacological management
for neuroprotection and hepatoprotection. However, the role and mechanism of
lithospermic acid in the pathological process of myocardial ischemia-reperfusion injury
are not fully revealed.

Methods: C57BL/6 mice were subjected to myocardial ischemia and reperfusion (MI/R)
surgery and pretreated by LA (50 mg/kg, oral gavage) for six consecutive days before
operation. The in vitro model of hypoxia reoxygenation (HR) was induced by hypoxia for
24 h and reoxygenation for 6 h in HOC2 cells, which were subsequently administrated with
lithospermic acid (100 uM). Nrf2 siRNA and dorsomorphin (DM), an inhibitor of AMPKa,
were used to explore the function of AMPKa/Nrf2 in LA-mediated effects.

Results: LA pretreatment attenuates infarct area and decreases levels of TnT and CK-MB
in plasm following MI/R surgery in mice. Echocardiography and hemodynamics indicate
that LA suppresses MI/R-induced cardiac dysfunction. Moreover, LA ameliorates oxidative
stress and cardiomyocytes apoptosis following MI/R operation or HR in vivo and in vitro. In
terms of mechanism, LA selectively activates eNOS, simultaneously increases nuclear
translocation and phosphorylation of Nrf2 and promotes Nrf2/HO-1 pathway in vivo and
in vitro, while cardioprotection of LA is abolished by pharmacological inhibitor of AMPK or
Nrf2 siRNA in H9C2 cells.

Conclusion: LA protects against MI/R-induced cardiac injury by promoting eNOS and
Nrf2/HO-1 signaling via phosphorylation of AMPKa.

Keywords: lithospermic acid, myocardial ischemia-reperfusion injury (MIRI), Nrf2, oxidative stress, ampka

Abbreviations: AMI, Acute myocardial infarction; AMPKa, AMP-activated protein kinase alpha; DHE, Dihydroethidium;
DM, Dorsomorphin; eNOS, Endothelial nitric oxide synthase; 4-HNE, 4-Hydroxynonenal; HO-1, Heme oxygenase-1; HR,
Hypoxia reoxygenation; LA, Lithospermic acid; MI/R, Myocardial ischemia and reperfusion; NS, Normal saline; Nrf2, Nuclear
factor E2-related factor 2; ROS, Reactive oxygen species.
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1 INTRODUCTION

Myocardial ischemia-reperfusion (MI/R) injury has a significant
impact on the prognosis of patients with revascularization
(Jennings, 2013). Moreover, MI/R injury largely contributed to
cardiac dysfunction through additional oxidative stress and
apoptosis in the heart (Lu et al, 2018; Chen et al, 2019).
Therefore, reducing MI/R injury following acute myocardial
infarction (AMI) greatly improves morbidity and mortality.
Unfortunately, the pathogenesis and molecular mechanisms of
MI/R injury in the heart are poorly understood (Lejay et al,
2016). A considerable number of patients with MI/R injury still
have a poor prognosis after conventional treatment. Hence, a
better understanding of the mechanism of MI/R injury would
make it possible to propose more effective interventions.

As a well-known Chinese herbal medicine, Salvia miltiorrhiza
has been widely utilized to prevent cardiovascular diseases
(CVDs) in China and Asia (Wang et al., 2017; Jia et al.,, 2019).
Lithospermic acid (LA), a catechol derivative extracted from
Salvia miltiorrhiza, is a natural compound with diversified
biological activities. Cheng et al. revealed that LA attenuated
diabetes and target organ damage in rats (Jin et al, 2014).
Moreover, LA has been suggested to prevent Parkinson’s
disease by suppressing apoptosis and inflammation in the
nervous system (Lin et al, 2015). In addition, LA has been
shown to exert a hepatoprotective effect against carbon
tetrachloride (CCly)-induced hepatic oxidative damage (Chan
and Ho, 2015). Importantly, previous clinical trials showed
that LA injection improved coronary heart diseases angina
pectoris (Zhang et al., 2006). However, the exact contribution
of LA in MI/R injury following AMI remains largely elusive.

As a master transcription factor expressed in multiple tissues,
nuclear factor erythroid 2-related factor 2 (Nrf2) is implicated in
antioxidant defense mechanisms in the myocardium, which is
usually activated by increased reactive oxygen species (ROS)
production (Chen and Maltagliati, 2018; Vashi and Patel,
2020). Nrf2 upregulates detoxicant genes in response to the
stimulatory signal, leading to cardioprotection (Boo, 2020).
Accumulating evidence reveals that Nrf2 reduces oxidative
stress and myocardial inflammation in heart tissues by
activation of the Nrf2-antioxidant response element (ARE)
pathway (Buendia et al, 2016; Guo and Mo, 2020). Previous
studies have also uncovered the cardioprotection of the Nrf2
pathway. Most recently, Guo et al. reported that inhibition of the
Nrf2-ARE pathway promoted oxidative stress-induced necrosis
and ischemia/reperfusion injury (Guo et al., 2020). Furthermore,
activation of the Nrf2-ARE pathway suppresses oxidative stress,
and ameliorates isoproterenol-mediated pathological cardiac
hypertrophy progression (Velusamy et al.,, 2020). Additionally,
phosphorylation of Nrf2 has been suggested to inhibit oxidative
stress and apoptosis in human dermal fibroblasts (Huang et al.,
2019). Manuel et al. suggested that AMP-activated protein kinase
(AMPK) triggered phosphorylation of Nrf2 and promoted
transactivation of antioxidative genes (Matzinger et al., 2020).

In the present study, we demonstrate that LA improves cardiac
function and attenuates myocardial injury during MI/R.
Moreover, LA suppresses oxidative stress and apoptosis by
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promoting activation of endothelial nitric oxide synthase
(eNOS) and Nrf2/HO-1 pathway via phosphorylation of
AMPKa in MI/R injury.Table

2 METHODS

All animal experimental procedures followed the National
Institutes of Health (NIH) guidelines and were approved by
the Animal Care and Use Committee of Renmin Hospital of
Wuhan University. Lithospermic acid (>98% purity, CAS. 28831-
65-4) was obtained from Shanghai Winberb Medical Technology
Co., Ltd (Shanghai, China).

2.1 Animals

C57BL/6 male mice (2 months old, 24.5 + 2.0 g), obtained from
the Institute of Laboratory Animal Science, Chinese Academy of
Medical Sciences (Beijing, China), were randomly separated into
4 groups: Sham-NS (normal saline) (n = 10), Sham-LA (n = 10),
MI/R-NS (n = 15) and MI/R-LA (n = 15). Mice were pretreated
with LA (50 mg/kg, oral gavage) for six consecutive days before
MI/R surgery or sham, and poured into the normal saline control
group processing.

A myocardial ischemia-reperfusion mouse model was
constructed as previously described (Fan et al., 2017). Briefly,
mice were anesthetized with pentobarbital (50 mg/kg, i.p.).
Afterward, mice subjected to skin preparation were intubated
and connected to a small animal ventilator. Subsequently, surgical
scissors were used to cut the fourth intercostal space on the left
side to fully expose the heart. Then, the left anterior descending
coronary artery (LAD) was ligated with 6-0 silk thread at 2 mm
below the left atrial appendage. Mice were exposed to 45 min of
LAD occlusion, followed by 24 h of reperfusion. Meanwhile, the
small animal electrocardiogram (ECG) monitoring system was
utilized to record ST-segment elevation. Finally, the rodents were
euthanized with an overdose of pentobarbital (200 mg/kg, i.p.),
and their hearts were harvested for further analysis.

2.2 Echocardiography and Hemodynamics
Mice subjected to 24h of reperfusion were anesthetized by
inhalation of 1.5-2% isoflurane (Fan et al., 2017). The cardiac
structure and function were monitored using a MyLab 30CV
system (Biosound Esaote, Inc.) equipped with a 15 MHz probe in
a small animal ultrasound instrument. Parameters were obtained
from more than three beats and then averaged. Left ventricular
internal diameter at end-diastole (LVIDd), left ventricular
internal diameter at end-systole (LVIDs) and left ventricular
fractional shortening (LVES) were tested. Hemodynamic
parameters were obtained using a 1.4-French catheter-tip
micromanometer catheter (SPR-839; Millar Instruments,
Houston, TX, United States ), which was inserted into the left
ventricle (LV) through the right carotid artery. Subsequently,
pressure-volume parameters were recorded using an ARIA
pressure-volume conductance system (MPVS-300 Signal
Conditioner, Millar Instruments, Houston, TX, United States)
coupled to a Power Lab/4SPA/D converter, and then analyzed by
Lab Chart 8 software.
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2.3 Histological Analysis
Double staining with Evans blue and 2,3,5-triphenyltetrazolium

chloride (TTC) was utilized to determine the area at risk and
infarcted area following MI/R operation. More details are
provided in the supplement material. The isolated heart tissue was
immobilized with 4% paraformaldehyde and dehydrated with
gradient alcohol. Then, 5um-thick sections were paraffin-
embedded. Immunohistochemistry (IHC) of 4-hydroxynonenal
and Nrf2 was performed to detect oxidative stress and the
location of Nrf2 in the heart. Dihydroethidium (DHE)
fluorescence was also performed to assess oxidative. Moreover, a
terminal-deoxynucleotidyl transferase-mediated nick end labeling
(TUNEL) assay was used to determine apoptotic cells in the heart
after MI/R surgery. The density of IHC and DHE staining was
assessed using Image-Pro Plus version 6.0. More details are provided
in the supplement material.

2.4 Western Blot

The heart sample was collected after reperfusion for 24 h. Protein was
extracted from heart homogenates by radioimmunoprecipitation
assay (RIPA) lysis buffer. Nuclear protein was obtained in vivo and
in vitro using the Nuclear and Cytoplasmic Protein Extraction kit
(P0028, Beyotime, Shanghai, China) and protein concentration was
determined by bicinchoninic acid assay (Thermo Scientific, 23,227).
Subsequently, 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) was performed to separate protein
samples (40 pug), and then proteins transferred  to
polyvinylidene difluoride (PVDF) membranes. After incubation
with blocking buffer and targeted antibodies overnight, the PVDF
membranes were subsequently incubated with a corresponding
secondary antibody. Afterward, targeted protein bands were
examined using a chemiluminescence method, and the density of
target bands was evaluated by AlphaFaseFC software processing
system (Bio-Rad, ChemiDoc XRS) and Image Lab software.
Primary antibodies used in this study are provided in Supplement
Table S1.

were

2.5 Real-Time Polymerase Chain Reaction
(RT-PCR)

Total RNA was extracted from mouse hearts and HIC2 cells
using Trizol reagent (Invitrogen, 15596-026) and cDNA was
produced using the Transcriptor First Strand cDNA synthesis
kit (04897030001, Roche Diagnostics, Basel, Switzerland).
Meanwhile, SYBR Green (04707516001) was utilized to
amplify transcripts, and GAPDH was the endogenous
reference. All primers used are listed in Supplement Table S2.

2.6 Culture and Treatment of

Cardiomyocytes

H9C2 cells were obtained from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China) and cultured in
Dulbecco’s modified Eagle’s medium (DMEM, GIBCO,
C11995). Afterward, H9C2 cells in good growth condition
were divided into 4 groups: Normoxia (Nor)-PBS group, Nor-
LA group, hypoxia-reoxygenation (HR)-PBS group and HR-LA

Lithospermic Acid Prevents MI/R Injury

group. For Nor, cells were incubated under 5% CO, at 37°C,
whereas for HR, cells were subjected to hypoxia for 24h and
reoxygenation for 6 h with 5% CO,, 94% N, and 1% O, at 37°C in
tri-gas incubators. HOC2 cells in the LA group were subjected to
LA (100 uM) treatment for 24 h after Nor or HR.

For small interfering RNA (siRNA)-mediated knockdown
experiments, Nrf2-siRNA (sc-156128) or Scr-siRNA was
transfected with Lipofectamine 6,000 (lipo6000, Beyotime,
C0526) at 40 nM concentration in culture medium following
the manufacturer’s protocol. Western blot analysis was
performed to assess the efficiency of knockdown. For the
AMPK inhibitor, dorsomorphin (DM, 10 uM, Cat No. HY-
13418A, purchased from MedChemExpression) was incubated
with H9C2 cells for 18 h after Nor or HR. Immunoblotting was
performed to assess the efficiency of blockage.

2.7 Cellular Immunofluorescence

After washing with phosphate-buffered saline (PBS), HOC2 cells were
fixed by 4% paraformaldehyde for over 15min. Afterward,
permeabilization was performed with 0.1% Triton X-100 (Amresco)
in PBS. Then cells were incubated with 10% goat serum and
subsequently stained with anti-Nrf2 overnight at 4°C. Next, cells
scrubbed with PBS were then subjected to the secondary antibody
goat anti-rabbit Alexa Fluor™ 488 (Invitrogen, A10266) for 1h.
SlowFade® Gold anti-fade reagent with DAPI (Invitrogen, S36939)
was utilized for mounting as previously described (Wu et al., 2018).

2.8 Data and Statistical Analysis

Data are expressed as mean + standard error of the mean (SEM)
and evaluated using SPSS version 22.0 (SPSS Inc, Chicago).
Comparison of multiple groups was performed using one-way
analysis of variance (ANOVA) and two group comparisons were
analyzed by unpaired Student’s t-test. A p-value <0.05 was
considered statistically significant.

3 RESULTS

3.1 LA Ameliorates MI/R-Induced
Myocardial Injury in vivo

MI/R injury is characterized by a significant increase in oxidative
stress, inflammation and apoptosis in the heart tissues (Sun et al.,
2021). LA has been previously verified as a potential antioxidant
drug (Kang et al., 2021). To determine whether LA might reduce
myocardial injury, plasma levels of troponin T (TnT) and creatine
kinase MB (CK-MB) and myocardial infarct area were measured.
It was found that the myocardial infarct area was reduced
following MI/R surgery, suggesting a cardioprotective effect of
LA (Figures 1A-C). In addition, plasma levels of TnT and CK-
MB were elevated following MI/R operation, which were
significantly reduced by LA pretreatment (Figures 1D,E).

3.2 LA Improves MI/R-Mediated Cardiac

Dysfunction in vivo
To determine the effects of LA on cardiac function,

echocardiography and hemodynamic assessment were
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FIGURE 1| LA ameliorates MI/R-induced myocardial injury (A). Left ventricular (LV) tissue sections of both LA and NS pretreated mice stained with Evans blue and
2,3,5-triphenyltetrazolium chloride (TTC) at 24 h after MI/R, in order to delineate the area at risk (AAR) and the infarcted region (Scale bar, 1 mm) (B,C). The ratios of AAR/
LV and infarct area/AAR were compared between LA and NS pretreated mice (n = 6) (D,E). The enzyme activity of CK-MB and TnT in serum were accessed in LA and NS
pretreated mice 24 h after MI/R operation by Elisa assay (n = 6). Data are presented as the mean + SEM, with each point representing a mouse. * indicates p < 0.05,
** indicates p < 0.001, ns indicates no significance.

performed in mice. It was found that LA attenuated MI/
R-induced left ventricle systolic dysfunction (Figure 2A;
Table 1). However, LA pretreatment partly restored LVEF,
LVFS and LVIDs after MI/R surgery (Figures 2B-D).
Moreover, LA administration significantly attenuated MI/
R-mediated disturbance in hemodynamic parameters; the left
ventricular pressure-volume (P-V) loop, end-systolic volume
(ESV) and end-diastolic volume (EDV) remained relatively
unchanged (Figures 2E-G). However, LA administration had
a limited effect on hemodynamic parameters in sham mice
(Supplementary Figure S1). Collectively, these data indicated
that LA ameliorated MI/R-mediated cardiac dysfunction in vivo.

3.3 LA Attenuates Oxidative Stress and
Apoptosis in the Heart Following MI/R
Surgery

To evaluate whether LA regulates oxidative stress and apoptosis
in the MI/R heart, immunohistochemistry staining of 4-
hydroxynonenal (4-HNE) in the heart section was performed.
The results showed a higher expression of 4-HNE after MI/R
operation, which was significantly suppressed by LA
pretreatment (Figures 3A,B). Similarly, DHE staining showed
that LA pretreatment reduced MI/R-mediated ROS production
(Figures 3A,C). Next, protein and transcriptional levels of
oxidative stress markers investigated. Immunoblot
analysis revealed that p47 phox and GP91 were upregulated,
whereas anti-oxidative marker SOD2 in mitochondria was
decreased in response to MI/R in the heart. However,
pretreatment with LA conferred protective effects against

were

oxidative stress (Figures 3D,E). Likewise, RT-PCR analysis
showed increased expression of oxidative factors such as
GP91, NOX4 and p67 phox, while anti-oxidative markers such
as Gpx, SOD2 and NQOI1 were downregulated following MI/R
surgery. However, LA treatment promoted the transcription of
anti-oxidative genes and blocked the expression of oxidative
genes in the heart (Supplementary Figure S2).

TUNEL staining was employed to determine the role of LA
MI/R-induced apoptosis in heart tissues. TUNEL-positive cells
were remarkably increased after MI/R surgery; however, LA
treatment attenuated MI/R-induced apoptosis in the heart
(Figures 3F,G). Subsequently, Caspase-3 activity was
exanimated, and it was found that LA treatment reduced
Caspase-3 activity following MI/R operation in the heart
(Figure 3H). Similarly, immunoblotting analysis revealed that
LA treatment alleviated MI/R-induced expression of cleaved
Caspase-3 and Bax and contributed to Bcl2 production in the
heart (Figures 3LJ). As expected, RT-PCR analysis revealed that
LA treatment decreased mRNA levels of Bax and promoted
transcription of Bcl2 in the heart (Supplementary Figure S3).
These data suggested that LA treatment attenuated oxidative
stress and apoptosis after MI/R surgery in the heart.

3.4 LA Counters Oxidative Stress and
Apoptosis in Hypoxia Reoxygenation (HR) in
H9C2 Cells

To further explore the role of LA in H9C2 cells, in vitro

experiments were performed with the HR model
(Supplementary Figure S3). ROS levels were assessed using
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FIGURE 2 | LA improves MI/R-induced cardiac dysfunction in vivo. LA and NS pretreated mice were subjected to MI/R operation or sham (A). Representative
M-mode and B-mode echocardiography of left ventricular chamber (B-D). Measurement of left ventricle ejection fraction (LVEF), left ventricle fraction shortening (LVFS)
and left ventricular end systolic diameter (LVIDs), n = 10-11 per group (E). Representative PV loops of LA and NS pretreated mice following MI/R, and (F,G). analysis of
end systolic volume (ESV) and end diastolic volume (EDV) (n = 10). Data are presented as the mean + SEM, with each point representing a mouse. * indicates p <

the 2',7'-dihydro-dichlorofluorescein diacetate (DCFH-DA)
probe in H9C2 cells. It was found that HR contributed to
ROS production, whereas LA pretreatment decreased the
expression of ROS in cardiomyocytes (Figures 4A,B).
Similarly, Western blotting indicated that HR elevated the
levels of p47 phox and GP91, and suppressed protein levels of
SOD2 in HI9C2 cells. Consistent with in vivo experiments, LA
decreased protein levels of p47 phox and GP91 and promoted
SOD2 production inside mitochondria in cardiomyocytes
(Figures 4C,D). In addition, LA attenuated HR-induced

upregulation of GP91 and p67 phox and triggered the
transcription of SOD2 in HI9C2 cells (Supplementary Figure S4).

Importantly, the extent of apoptosis in HIC2 cells following HR
was also assessed. TUNEL staining showed that LA alleviated HR-
induced apoptosis (Figures 4EJF). Subsequently, lactate
dehydrogenase (LDH) release assay showed that HR resulted in
the upregulation of LDH and LA protected against cell damage
(Figure 4G). Consistent with in vivo experiments, LA decreased the
expression of cleaved Caspase-3 and Bax and contributed to Bcl2
production in HOC2 cells following HR (Figures 4H,I). Moreover,
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TABLE 1 | Physiological, Echocardiographic and Hemodynamic parameters after MI/R

Sham-NS
(n = 10) Mean + SEM

Sham-LA
(n = 10) Mean + SEM

Physiological parameter

HW (mg) 126.52 + 7.24 128.36 + 5.03
BW (g) 2512 + 1.63 24.85 + 1.26
TL (mm) 18.24 + 0.26 18.59 + 0.15
HW/BW 4.95 +0.18 5.04 + 0.23
HW/TL 6.98 + 0.32 6.85 + 0.39
Echocardiographic and Hemodynamic parameters

HR, bpm 474 + 17 467 + 22
LVIDs, mm 2.35 + 0.08 2.33 + 0.11
IVSs, mm 0.69 + 0.11 0.71 + 0.09
EF (%) 80 + 1 79 +1

FS (%) 43 + 1 42 +2
CO (L) 10,644 + 3.56 10,574 + 3.32
ESP (mmHg) 92 +1.9 91 +23
dp/dt max (mmHg/s) 9,648 + 116 9,736 + 152
dp/dt min (mmHg/s) -9,726 + 129 -9,802 + 96

Lithospermic Acid Prevents MI/R Injury

MI/R-NS (n = 14) Mean + SEM MI/R-LA (n = 15) Mean + SEM

126.28 + 4.96 129.63 + 6.71
24.86 + 3.38 25.03 + 3.02
18.46 + 0.44 17.95 + 0.562
4.96 + 0.24 511+ 042
6.93 + 0.52 7.03 +0.47

475 + 24 464 + 28
3.71 £ 0.09* 3.09 + 0.09#
0.81 £ 0.11* 0.75 + 0.08#
54 + 2% 64 + 14
26 + 2* 32 + 14
5,854 + 3.39" 7,946 + 3.51#
121 +2.5% 122+ 27
6,036 + 106* 7,541 + 126#
-5,979 + 103" —7,265 + 131#

Mean + SEM., vs Sham-NS: *p < 0.05. vs MI/R-NS:*p < 0.05.; Abbreviations: HW: heart weight/tibial length; BW: body weight; TL. tibial length; HR, heart rate; left ventricular end-systolic
diameter; IVSs, interventricular septal thickness at end-systole; FS, fractional shortening; EF, ejection fraction; CO, cardiac output; ESP, end-systolic pressure.

LA prevented HR-induced upregulation of Bax and triggered the
transcription of Bcl2 in HIC2 cells (Supplementary Figure S5).

3.5 LA Promotes the Expression of eNOS in

vivo and in vitro

Furthermore, we investigated how LA alleviated oxidative stress
and apoptosis. LA administration promoted nitric oxide (NO)
production in heart tissues (Figure 5A), which was derived
mainly from several isoforms of NO synthase (NOS),
including neuronal NOS (nNOS), inducible NOS (iNOS) and
eNOS isoforms (Crane et al., 2010). Therefore, the expression of
iNOS, eNOS and nNOS in the heart was evaluated by RT-PCR. It
was found that LA selectively activated eNOS (Figure 5B).
Consistent Western blotting, LA increased the expression of
eNOS but not iNOS and nNOS in the heart following MI/R
surgery (Figures 5C,D). To assess the effects of LA on NOS in
HIC2 cells, mRNA levels of the three isoforms of NOS in the HR
model were measured by Western blotting and RT-PCR.
Congruent with in vivo experiments, it was found that LA
selectively increased transcription of eNOS in H9C2 cells
following HR (Figure 5E), which was also observed in protein
levels (Figures 5F,G). Overall, these data suggested that LA
selectively promoted the expression of eNOS in vivo and in vitro.

3.6 LA Contributes to the Activation of the
Nrf2/HO-1 Pathway and Nuclear

Translocation of Nrf2 in vivo and in vitro

To further elucidate how LA regulates oxidative stress, the role of
Nrf2 signaling, a transcriptional coactivator that mediates anti-
oxidative gene expression in the heart, was investigated (Dai
et al, 2020). Immunoblot analysis revealed that MI/R largely
contributed to the protein downregulation of Nrf2 and HO-1 in
the heart; however, LA treatment restored the expression of the Nf2/

HO-1 pathway (Figures 6A,B). The transcription activity of Nrf2 is
reported to depend largely on the nuclear translocation of Nrf2
(Silva-Islas and Maldonado, 2018), Hence, the nuclear translocation
of Nrf2 after MI/R and LA treatment was explored. IHC analysis
revealed that MI/R reduced the levels of Nrf2 in the nuclear, and LA
pretreatment partly restored the nuclear translocation of Nrf2 in the
heart (Figures 6C,D). Subsequently, nuclear protein from fresh
heart tissue was isolated and Western blotting showed that LA
triggered nuclear levels of Nrf2 in response to MI/R (Figure 6E).
Furthermore, the effects of LA on the Nrf2/HO-1 pathway in vitro
were evaluated. Congruous with in vivo experiments, Western
blotting showed that LA promoted the activation of the Nrf2/
HO-1 pathway in H9C2 cells under HR (Figures 6F,G).
Similarly, immunofluorescence of Nrf2 in H9C2 cells also
showed that LA increased nuclear levels of Nrf2 in response to
HR (Figure 6H). Additionally, Western blotting showed that LA
promoted nuclear translocation of Nrf2 in H9C2 cells under HR
(Figures 6L)). In summary, these data suggested that LA contributed
to the activation of Nrf2/HO-1 signaling and nuclear translocation of
Nrf2 in vivo and in vitro.

3.7 LA-Mediated Activation of Nrf2/HO-1
Pathway Depends on the Phosphorylation

of AMPK«

Previous studies reported that AMPK triggered phosphorylation
of Nrf2 and promoted the transactivation of antioxidative genes
(Matzinger et al., 2020). Herein, the effect of LA on the activation
of AMPKa and phosphorylation of Nrf2 was further investigated.
The results of Western blot showed that LA accelerated the
activation and phosphorylation of AMPKa, which further
resulted in phosphorylation of Nrf2 and activation of the
Nrf2/HO-1 pathway in vitro (Figures 7A,B). To verify the role
of Nrf2 and AMPKa in H9C2 cells, Nrf2 siRNA and DM, an
inhibitor of AMPKa, were used to explore the function of
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FIGURE 3| LA attenuates oxidative stress and apoptosis following MI/R operation in heart. LA and NS pretreated mice were subjected to MI/R operation or sham,
and then hearts were harvested for histology and molecular analysis (A-C). Representative immunohistochemistry of 4-hydroxynonenal and DHE staining in hearts, and
intensity analysis (n = 6). Scar bar: 100 pm (D,E). Representative western blot and analysis of p47 phox, SOD2 and GP91 in hearts, normalized to GAPDH (n = 4) (F,G).
Representative Tunel and positive cells analysis in hearts (n = 6). Scar bar: 100 um (H). Caspase-3 activity was tested in heart tissues (n = 6) (I,J). Representative
western blot and analysis of cleaved-caspase-3 (C-caspase-3), Bax and Bcl2 in hearts, normalized to GAPDH (n = 4). Data are presented as the mean + SEM, with each
point representing a mouse. * indicates p < 0.05, ** indicates p < 0.01, ** indicates p < 0.001.

AMPKa/Nrf2 in LA-mediated effects. We firstly tested ROS
production in H9C2 cells using the DCFH-DA probe and
found that LA-mediated blockage of ROS production was
abolished by silencing Nrf2 or inhibiting AMPKa in H9C2
cells under HR (Figures 7C,D and Supplementary Figure
S7A-D). Similarly, Western blotting revealed that inhibition of
AMPKa decreased phosphorylated-modification and nuclear
translocation of Nrf2 in H9C2 cells under HR (Figures 7E-G)
and blockage of AMPKa countered LA-mediated upregulation of
eNOS in response to HR (Supplementary Figure S7E,F). Overall,

these data indicated that LA-mediated activation of Nrf2/HO-1
signaling and nuclear translocation of Nrf2 depended on the
phosphorylation of AMPKa.

4 DISCUSSION

Morbidity and mortality from AMI remain high, and reperfusion
strategies are the current standard therapy for AMI. However, MI/R
injury leads to increased oxidative stress and apoptosis, which
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further contribute to cellular injury, exacerbating the final infarct size
(Toldo et al, 2018). Myocardial infarct size is a key factor of
prognosis in patients with AMI Therefore, cardioprotective
strategies aim to reduce the infarct size (Heusch, 2020). In
addition, LA has been considered as a potential antioxidant and
anti-apoptotic drug (Kang et al,, 2021). Herein, we found that LA
pretreatment alleviated oxidative stress and apoptosis and improved
cardiac function in the MI/R injury mouse model. LA may yield
novel interventional strategies attenuating reperfusion injury in
AMIL Lithospermic acid (LA) is a catechol derivative extracted
from Salvia miltiorrhiza, which is a traditional Chinese herb
widely used to treat multiple disorders (Shih et al, 2019). Liu
et al. showed that LA is an oxidase inhibitor that strongly exerts
anti-inflammatory and hypouricemic effects (Liu et al, 2008).

Izabela et al. demonstrated that LA exhibited cytotoxicity against
MCEF-7 cell lines and suppressed breast cancer growth and metastasis
(Berdowska et al., 2013). Furthermore, previous clinical trials showed
that LA injection improved coronary heart diseases angina pectoris
in a clinical trial (Zhang et al., 2006). The current study found that
LA prevented cardiac dysfunction in MI/R injury, and may provide a
potential therapeutic strategy for AMI treatment.

Recently, oxidative stress has been implicated in heart failure
in different sources of stress and characterized by overproduction
of ROS relative to anti-oxidant defenses (van der Pol et al., 2019;
Aimo et al, 2020). Moreover, increased production of ROS
caused cellular dysfunction such as lipid peroxidation, and
increased DNA damage, resulting in cell death (Seddon et al,
2007). H In the present study, LA significantly blocked oxidative
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stress in the MI/R mouse model. Besides, as an important free
radical, NO is synthesized by several NOS, and three isoforms of
NOS are produced in the heart (Tang et al., 2014). Interestingly, both
iNOS and eNOS were upregulated, and eNOS was unchanged in the
MI/R heart. However, LA pretreatment increased eNOS but not
iNOS or nNOS levels. Our previous study suggested that eNOS/Nrf2
pathway regulates pressure overload-induced cardiac remodeling
(Liu et al, 2019). In addition, previous studies reported that the

transcription activity of Nrf2 depends largely on the nuclear
translocation of Nrf2 (Silva-Islas and Maldonado, 2018).
Therefore, the effects of Nrf2 signaling on LA-mediated
cardioprotection in MI/R injury were investigated. As anticipated,
LA promoted the Nrf2/HO-1 pathway and contributed to the
nuclear translocation of Nrf2 in vivo and in vitro.

As a member of the serine/threonine (Ser/Thr) kinase group,
AMPK is widely distributed in various organs (Jiang et al., 2018).
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AMPK is closely associated with cellular metabolism and energy
status, which is characterized by increased AMP/ATP and ADP/
ATP ratios (Lin and Hardie, 2018). In addition, as a key controller
of cellular homeostasis, AMPK plays a critical role in
cardiovascular disease, diabetes and cancer (Qi and Young,
2015). A recent study suggested that AMPK-eNOS signaling

regulated endothelial dysfunction and hypertension in the
heart (Cheng et al, 2020). Moreover, AMPKa has been
reported to be highly expressed in the heart (Fan et al., 2018).
Therefore, the activation and phosphorylation of AMPKa were
assessed. It was found that LA promoted phosphorylation of
AMPKa and Nrf2 in vivo and in vitro, which corresponds with a
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recent study showing that AMPK triggered phosphorylation of
Nrf2 and promoted transactivation of antioxidative genes
(Matzinger et al., 2020). Furthermore, we demonstrated that
LA-mediated activation of Nrf2/HO-1 pathway and nuclear
translocation of Nrf2 depended on the phosphorylation of
AMPKa. Although LA countered oxidative stress and
apoptosis after MI/R by activating AMPKa/Nrf2 and eNOS
pathway, evidence on direct interaction between AMPKa and
Nrf2 warrants further exploration. Moreover, how AMPKa
regulates eNOS should be further investigated.

In summary, this study demonstrates that LA improves
cardiac function and attenuates myocardial injury in mice. It

also suppresses oxidative stress and apoptosis following hypoxia-
reoxygenation. Mechanistically, LA promotes the activation of
the eNOS and Nrf2/HO-1 pathway by enhancing
phosphorylation of AMPKa, providing a novel therapeutic
strategy for reperfusion in AMI patients.
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Wei Yang', Haixia Jiang', Ning Song’, Lan Liu? and Jingiao Qian*
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Pathology, Kunming Medical University, Kunming, China

Cardiac hypertrophy is caused by cardiac volume or pressure overload conditions and
ultimately leads to contractile dysfunction and heart failure. Oxytocin (OT), an endocrine
nonapeptide, has been identified as a cardiovascular homeostatic hormone with anti-
hypertrophic effects. However, the underlying mechanism remains elusive. In this study,
we aimed to investigate the role and mechanism of OT in cardiac hypertrophy. The rats with
cardiac hypertrophy induced by isoproterenol (ISO) were treated with or without oxytocin.
Cardiac functional parameters were analyzed by echocardiography. The changes in cell
surface area were observed using wheat germ agglutinin (WGA) or immunofluorescence
staining. The expressions of cardiac hypertrophy markers (B-Natriuretic Peptide, BNP and
B-myosin heavy chain, p-MHC), long non-coding RNA Growth (LcRNA) Arrest-Specific
transcript 5 (INcRNA GAS5), miR-375-3p, and Kruppel-like factor 4 (Kif4) were detected by
gRT-PCR. KLF4 protein and PIBK/AKT pathway related proteins were detected by Western
blot. The interactions among INCRNA GAS5, miR-375-3p, and Kif4 were verified by dual-
luciferase reporter assays. The findings showed that OT significantly attenuated cardiac
hypertrophy, increased expressions of INCRNA GAS5 and KLF4, and decreased miR-375-
3p expression. In vitro studies demonstrated that either knock-down of INcCRNA GAS5 or
Kif4, or over-expression of miR-375-3p blunted the anti-hypertrophic effects of OT.
Moreover, down-regulation of INcCRNA GAS5 promoted the expression of miR-375-3p
and inhibited KLF4 expression. Similarly, over-expression of miR-375-3p decreased the

Abbreviations: OT, oxytocin; ISO, isoproterenol; microRNA, miRNA; IncRNA, long non-coding RNA; GAS5, Growth Arrest-
Specific transcript 5; KLF4, Kruppel like factor 4; PI3K, phosphatidylinositol 3-kinase; AKT, Protein Kinase B; BNP,
B-Natriuretic Peptide; -MHC, B-myosin heavy chain; HF, heart failure; Angll, angiotensin II; OXTR, oxytocin receptor; I/R,
ischemia-reperfusion; ncRNAs, non-coding RNAs; H&E, hematoxylin-eosin; NRCMs, Neonatal rat cardiomyocytes; CMs,
Cultured cardiomyocytes; LV, left ventricular; LVPW(d, left ventricular posterior wall thickness at end-diastole; LVPWs, left
ventricular posterior wall thickness at end-systole; LVIDd, left ventricular internal diameter at end-diastole; LVIDs, left
ventricular internal diameter at end-systole; LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional shortening;
WGA, wheat germ agglutinin.
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Anti-Cardiac Hypertrophic Effects of Oxytocin

expression of KLF4. Dual-luciferase reporter assays validated that IncRNA GAS5 could
sponge mMiR-375-3p and Klf4 was a direct target gene of miR-375-3p. In addition, OT could
inactivate PIBK/AKT pathway. The functional rescue experiments further identified OT

regulated PISK/AKT pathway through

INcCRNA  GAS5/miR-375-3p/KLF4  axis. In

summary, our study demonstrates that OT ameliorates cardiac hypertrophy by inhibiting
PIBK/AKT pathway via INcRNA GAS5/miR-375-3p/KLF4 axis.

Keywords: oxytocin, cardiac hypertrophy, IncRNA GAS5, miR-375-3p, KLF4, PI3BK/AKT

INTRODUCTION

The prevalence of heart failure (HF) is increasing at an alarming
rate worldwide (Benjamin et al,, 2019). Pathological cardiac
hypertrophy is an independent predictor of HF, commonly
induced by hypertension, myocardial injury, valvular heart
diseases or neurohumoral stimulation. It is
characterized by myocardial fibrosis, apoptosis and necrosis,
leading to cardiac dysfunction and consequently to heart
failure (Azevedo et al., 2016). Alleviating pathological cardiac
hypertrophy is of great importance to postpone the progression of
heart failure. Although the current pharmaceutical therapies,
such as angiotensin-converting enzyme inhibitors, angiotensin
II (AnglI) type 1 receptor antagonists, and B-adrenergic receptor
blockers, exhibit some anti-hypertrophic effects (Mcnamara,
2008), the therapeutic effects are not satisfied in clinic practice.

Oxytocin (OT) is a pivotal cardiovascular homeostatic
hormone with definite regulation and
protection effects. Knowledge of the oxytocin and oxytocin
receptor (OXTR) system present in heart tissue suggests an
autocrine and paracrine roles of the hormone. Dozens of
researches have delineated the cardioprotective effects of this
endogenous hormone, including alleviation of ischemia-
reperfusion (I/R) injury (Alizadeh et al., 2010; Gonzalez-Reyes
et al,, 2015; Polshekan et al., 2019), cardiomyocyte hypertrophy
(Menaouar et al., 2014), myocardial infarction (Kobayashi et al.,
2009), and diabetic cardiomyopathy (Plante et al., 2015), as well
as mitigation of development of atherosclerosis (Wang et al,
2019). The cardioprotective properties of oxytocin make this
endogenous hormone of special potential to be a “natural
medicine” against cardiovascular diseases. However, due to
lack of deep knowledge of its molecular mechanism,
therapeutic potential of OT in treating cardiovascular disease
is largely unexplored.

Enormous studies have corroborated that non-coding RNAs
(ncRNAs) are quite indispensable epigenetic regulators which are
closely related to the occurrence and development of cardiac
hypertrophy (Jusic and Devaux, 2020; Zhu et al, 2021).
MicroRNAs (miRNA) and long non-coding RNAs (IncRNAs)
are well-known ncRNAs and implicated in the complex
pathophysiological process of cardiac hypertrophy. In the
nervous system, Almansoub et al. (2020) reported that miR-
26a is epigenetically tun