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Editorial on the Research Topic

Genetic basis of tolerance induction defects underlying the develop-
ment of autoimmune pathologies
In our initial call for review articles for the Research Topic “Genetic Basis of Tolerance

Induction Defects Underlying the Development of Autoimmune Pathologies” we

envisioned four areas of interest for this Research Topic: Area 1 - the genetic basis for

tolerance induction defects underlying any single or multiple autoimmune disease states;

Area 2 - the controversy concerning how well some animal models, in particular mice,

inform the basis of various autoimmune pathologies in humans; Area 3 - how gene

variants disrupt Treg/Breg development or activity resulting in autoimmune disease

states; and Area 4 - genes x environment interactions contributing to various

autoimmune states.

For anyone involved in autoimmunity research, it is not surprising to find the usual

suspects in the three review articles that fall under Area 1 of this Topic: MHCs/HLAs,

PTPN22, PTPN2, CTLA4, IFIH1 etc. The editors are grateful to the contributing authors

for presenting these common players from differing perspectives using both overlapping

and unique sources. Here, we would like to call out discussed allelic variants unique to

each of the reviews. Kissler’s “Genetic Modifiers of Thymic Selection and Central

Tolerance in Type 1 Diabetes” presents a section on TAGAP which may be of interest

for those studying thymic migration of developing T-cells. Hocking and Buckner’s

“Genetic basis of defects in immune tolerance underlying the development of

autoimmunity” presents a section on PADI2 and PADI4 variants in rheumatoid

arthritis (RA). PADI2 and PADI4 are enzymes responsible for the conversion of

arginine to citrulline. Recent work has indicated that post translational modifications
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like citrullination can cause the creation of neoepitopes in type 1

diabetes [T1D) (reviewed in (1, 2)]. Finally, Gootjes et al.’s

“Functional Impact of Risk Gene Variants on the Autoimmune

Responses in Type 1 Diabetes” has a section dedicated to CD226.

Researchers investigating the CD226 versus TIGIT axis may find

this section of interest. Additionally, much of this section focuses

on a particular CD226 associated SNP (rs763361) which has

been implicated in multiple autoimmune disorders.

T1D researchers have long had to balance the power of the

NODmouse for dissecting the genetic and cellular contributions to

T1D with the difficulty in clinical translation [reviewed 19 years

apart in (3, 4)]. Three review articles submitted to this Research

Topic loosely fall into the parameters of Area 2. Two of the most

common complaints of the NOD mouse are: 1) The ease in

preventing T1D development and 2) additional autoimmune

manifestations beyond T1D. Aubin et al.’s “The NOD Mouse

Beyond Autoimmune Diabetes” focuses on these other

autoimmune manifestations, especially in the context of

experimental manipulations that render the strain T1D-resistant.

This review argues for the utility of the NOD as a model for

understanding a diverse range of autoimmune disorders. Harley

et al.’s “Polygenic autoimmune disease risk alleles impacting B cell

tolerance act in concert across shared molecular networks in mouse

and in humans” focuses on the use of risk-gene network analyses

impacting B-cell tolerance utilizing T1D and SLE as models. This

review showcases how network analyses can pinpoint where

monogenic and polygenic versions of these diseases overlap, as

well as the extent and areas human and murine disease networks

may be similar or different. Additionally, the authors provide

multiple possible explanations for the translation gap between

mouse and humans with heavy focus on the limited

environmental diversity presented to experimental mouse

colonies versus the great variability in patients (Topic Area 4).

Finally, Rojas et al.’s “The long and winding road: From mouse

linkage studies to a novel human therapeutic pathway in type 1

diabetes1” bridges Topic Areas 1, 2 and 3. Much of this review

focuses on the still ongoing journey of identification of a T1D-

susceptibility gene in NOD mice to developing and testing a

putative future clinical therapeutic.

Two review articles in this Research Topic focus on the biology

of Tregs with a special emphasis on their stability. Roach and

Morel’s2 article “Genetic Variations Controlling Regulatory T Cell

Development and Activity in Mouse Models of Lupus-Like

Autoimmunity” focuses on this topic in the context of SLE. One

section that may be of particular interest delves into the genes that

regulate Treg metabolism and how this may affect their

functionality. Raugh et. al.’s “Nature vs. nurture: FOXP3, genetics,
1 Yi-Guang Chen, a co-author on this editorial, is also a co-author on

this cited review.

2 Laurence Morel is also a co-author on this editorial.
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and tissue environment shape Treg function” provides a deep dive

into the biology of Tregs covering diverse topics from their

heterogeneity, to the genetic, epigenetic, and non-coding RNA

control of the development and activity of these cells. Topic Area

4 is also touched upon, as the role of microenvironmental cues, such

as microbiome, is briefly covered. Finally, this review discusses how

these areas impact possible Treg-based therapy development.

Finally, while we set out to focus solely on review articles for

this Topic, two primary research articles were submitted that the

Editors felt sufficient to include within the scope of our original

goals for this Topic. Di Lorenzo et al.’s “Natural history of type 1

diabetes on an immunodysregulatory background with genetic

alteration in B-cell activating factor receptor: A case report”

details the identification of a clinical case of T1D and common

variable immunodeficiency in a patient with a low T1D-risk

score putatively caused by the monoallelic H159Y mutation in

TNFRSF13C (BAFFR). Zhong et al.’s “Herpesvirus entry

mediator on T cells as a protective factor for myasthenia gravis:

A Mendelian randomization study” utilized Mendelian

Randomization to identify two SNPs (rs1886730 and

rs2227313) in TNFRSF14 associated with herpesvirus entry

mediator (HVEM) expression on T-cells and protection from

myasthenia gravis. This adds to the growing body of evidence on

the role of HVEM - BTLA interactions in modulating

autoimmune diseases, just recently reviewed in (5).

Together, the articles in this Research Topic provide an up-

to-date overview on genetic contributions to immune tolerance

pathways and autoimmunity.
Author contributions

JJR, LM, Y-GC, DVS were all Topic Editors for this Research

Topic and contributed to the preparation of this Editorial. All

authors contributed to the article and approved the

submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.886736
https://doi.org/10.3389/fimmu.2022.874769
https://doi.org/10.3389/fimmu.2022.953439
https://doi.org/10.3389/fimmu.2022.953439
https://doi.org/10.3389/fimmu.2022.918837
https://doi.org/10.3389/fimmu.2022.887489
https://doi.org/10.3389/fimmu.2022.887489
https://doi.org/10.3389/fimmu.2022.911151
https://doi.org/10.3389/fimmu.2022.952715
https://doi.org/10.3389/fimmu.2022.931821
https://doi.org/10.3389/fimmu.2022.1069232
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Racine et al. 10.3389/fimmu.2022.1069232
References
1. Rodriguez-Calvo T, Johnson JD, Overbergh L, Dunne JL. Neoepitopes in type
1 diabetes: Etiological insights, biomarkers and therapeutic targets. Front Immunol
(2021) 12:667989. doi: 10.3389/fimmu.2021.667989

2. Yang ML, Sodre FMC, Mamula MJ, Overbergh L. Citrullination and PAD
enzyme biology in type 1 diabetes - regulators of inflammation, autoimmunity,
and pathology. Front Immunol (2021) 12:678953. doi: 10.3389/fimmu.2021.678953

3. Atkinson MA, Leiter EH. The NODmouse model of type 1 diabetes: As good
as it gets? Nat Med (1999) 5:601–4. doi: 10.1038/9442
Frontiers in Immunology 03
6

4. Chen YG, Mathews CE, Driver JP. The role of NOD mice in type 1
diabetes research: Lessons from the past and recommendations for the
future . Front Endocr ino l (Lausanne) (2018) 9 :51 . do i : 10 .3389/
fendo.2018.00051

5. Wojciechowicz K, Spodzieja M, Lisowska KA, Wardowska A. The
role of the BTLA-HVEM complex in the pathogenesis of autoimmune
d i s e a s e s . C e l l I mmu n o l ( 2 0 2 2 ) 3 7 6 : 1 0 4 5 3 2 . d o i : 1 0 . 1 0 1 6 /
j.cellimm.2022.104532
frontiersin.org

https://doi.org/10.3389/fimmu.2021.667989
https://doi.org/10.3389/fimmu.2021.678953
https://doi.org/10.1038/9442
https://doi.org/10.3389/fendo.2018.00051
https://doi.org/10.3389/fendo.2018.00051
https://doi.org/10.1016/j.cellimm.2022.104532
https://doi.org/10.1016/j.cellimm.2022.104532
https://doi.org/10.3389/fimmu.2022.1069232
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology | www.frontiersin.

Edited by:
David Serreze,

Jackson Laboratory, United States

Reviewed by:
Carolin Daniel,

Helmholtz Association of German
Research Centres (HZ), Germany

*Correspondence:
Stephan Kissler

stephan.kissler@joslin.harvard.edu

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 04 March 2022
Accepted: 21 March 2022
Published: 07 April 2022

Citation:
Kissler S (2022) Genetic Modifiers of

Thymic Selection and Central
Tolerance in Type 1 Diabetes.
Front. Immunol. 13:889856.

doi: 10.3389/fimmu.2022.889856

MINI REVIEW
published: 07 April 2022

doi: 10.3389/fimmu.2022.889856
Genetic Modifiers of Thymic
Selection and Central Tolerance
in Type 1 Diabetes
Stephan Kissler1,2*

1 Section for Immunobiology, Joslin Diabetes Center, Boston, MA, United States, 2 Department of Medicine, Harvard Medical
School, Boston, MA, United States

Type 1 diabetes (T1D) is caused by the T cell-driven autoimmune destruction of insulin-
producing cells in the pancreas. T1D served as the prototypical autoimmune disease for
genome wide association studies (GWAS) after having already been the subject of many
linkage and association studies prior to the development of GWAS technology. Of the
many T1D-associated gene variants, a minority appear disease-specific, while most are
shared with one or more other autoimmune condition. Shared disease variants suggest
defects in fundamental aspects of immune tolerance. The first layer of protective tolerance
induction is known as central tolerance and takes place during the thymic selection of T
cells. In this article, we will review candidate genes for type 1 diabetes whose function
implicates them in central tolerance. We will describe examples of gene variants that
modify the function of T cells intrinsically and others that indirectly affect thymic selection.
Overall, these insights will show that a significant component of the genetic risk for T1D –

and autoimmunity in general – pertains to the earliest stages of tolerance induction, at a
time when protective intervention may not be feasible.

Keywords: type 1 diabetes, GenomeWide Association Study (GWAS), thymic selection, autoimmunity, mousemodel
INTRODUCTION

Type 1 diabetes (T1D) is caused by the autoimmune destruction of pancreatic beta cells that
produce insulin. The etiology of T1D has been investigated for more than 50 years (1). Animal
models for autoimmune diabetes have been available for more than 40 years (2). And yet, the precise
events that lead to beta cell autoimmunity remain incompletely understood. It is clear that T
lymphocytes are key drivers of beta cell killing, as evidenced by genetic data, histological
observations and mechanistic studies. However, a discrete trigger for beta cell autoimmunity, if it
exists, is still being searched for. Environmental factors undoubtedly play a role in sensitizing
individuals to type 1 diabetes. Both commensal microbes and viral infections have been implicated
in diabetes etiology (3, 4). Not surprisingly, disease risk is also heavily modulated by genetic
variants. The most prominent genetic risk factor for T1D is the highly polymorphic MHC region,
driven by several high-risk HLA haplotypes (5, 6). In addition, a significant number of non-HLA
genetic loci contribute to the heritable component of diabetes risk (7, 8). Linkage and association
studies in the pre-genomic era uncovered the first non-HLA risk variant for T1D in the Insulin locus
(9). This was followed a decade later by a risk variant in the CTLA4 gene (10). In the early 2000’s, a
org April 2022 | Volume 13 | Article 88985617
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handful of additional risk gene variants were discovered that
included the CD25, PTPN22 and IFIH1 loci (11–13). In 2007, the
results from the first genome wide association study (GWAS)
conducted for an autoimmune disease revealed a much vaster
landscape of risk variants for T1D across the genome (14).
Subsequent GWAS with increasing statistical power have now
brought the total of T1D-associated loci to more than 60 (7, 8,
15). Many GWAS for other autoimmune diseases followed the
first T1D GWAS. A key insight from these association studies
was that a large number of risk loci are shared between immune-
mediated diseases. Only a minority of disease-associated genetic
variants appear to be specific for T1D, while the majority seem to
pertain more broadly to the risk of autoimmunity overall. This
feature of shared genetic risk between diseases pointed to the fact
that many disease variants impact basic immune regulatory
mechanisms. Despite the enormous progress that GWAS have
enabled in our understanding of disease genetics, it has been
challenging to conclusively ascribe a function to individual
disease variants. Notwithstanding, functional studies have
highlighted the potential role of several T1D candidate genes
in fundamental aspects of immune tolerance. This review will
highlight several genes associated with the risk of T1D that
impinge on the selection of the T cell repertoire in the thymus.

The development of T cells entails the migration of T cell
progenitor cells from the bone-marrow into the thymic cortex,
where the cells mature through several stages of CD4-CD8-

(double-negative or DN) thymocytes into CD4+CD8+ (double-
positive or DP) cells. These DP thymocytes undergo a process of
positive selection conditional on productive antigen-receptor
interactions with thymic antigen presenting cells that include
thymic epithelial cells (TECs). Positively selected cells further
mature into single-positive (CD4SP or CD8SP) T cells that go on
to migrate into the thymic medulla, the compartment where
most of the negative selection takes place and that curates the T
cell repertoire to eliminate highly self-reactive clones. Fully
mature thymocytes that have undergone selection in the cortex
and medulla then enter the circulation to become part of the
immune surveillance machinery. The process of thymic selection
that bars many, though not all, self-reactive clones from exiting
the thymus is a key component of central tolerance – a protective
quality control that occurs in a central location prior to mature T
cells interacting with other cells throughout the body.

Defects in central tolerance lead to autoimmunity. In the most
severe cases, single gene mutations can cause multiple immune
pathologies. For example, mutations in the FOXP3 gene prevent
the induction of functional regulatory T cells in the thymus that
are critical to the control of immunity. As a result, individuals
with a mutant FOXP3 allele develop the Immune dysregulation,
Polyendocrinopathy, Enteropathy, X-linked (IPEX) syndrome
that includes type 1 diabetes (16, 17). Another example is the
AIRE gene whose disruption diminishes the expression of tissue-
restricted antigens (TRAs) within the medullary thymic
epithelium (18). TRA expression is necessary for the deletion
of tissue-reactive T cell clones during thymic selection. Patients
with deleterious AIRE mutations develop Autoimmune
Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy
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(APECED) that presents with multiple pathologies, often
including type 1 diabetes (19, 20). The monogenic diseases
IPEX and APECED are extreme examples of pathologies that
arise as a consequence of defective central tolerance.

In this review, we will discuss more common gene variants
associated with autoimmune disease including T1D. These
common variants cause a much more subtle perturbation of
central tolerance. However, even minor effects contribute to the
overall risk of autoimmunity when compounded with other
defects in immune tolerance.

GENETIC MODIFIERS OF
THYMOCYTE FUNCTION

Among the genes implicated in disease risk, several pertain to
antigen receptor or cytokine receptor signaling. Changes in
stimulatory cues that thymocytes receive during thymic
selection significantly impact their developmental trajectory.

The first two examples of genes that modify thymocyte
signaling encode the phosphatases PTPN2 and PTPN22. Both
belong to the protein tyrosine phosphatase non-receptor family
and impact key signaling events involved in the positive selection
of thymocytes.

PTPN2
The first GWAS for autoimmunity identified the single nucleotide
polymorphism (SNP) rs2542151 located 5.5kb upstream of the
PTPN2 on chromosome 18p11 (14, 21). A subsequent study
further dissected this region and associated two intronic SNPs in
the PTPN2 gene with T1D (22). Both these SNPs are in strong
linkage disequilibrium with rs2542151. Because PTPN2 is the only
gene in this region, it emerged as the strongest causal candidate for
this particular disease association.

PTPN2 encodes a phosphatase, and its expression is not
restricted to immune cells. In fact, like many T1D-associated
genes, PTPN2 is pleiotropic and affects the function of multiple
cell populations including beta cells (23, 24). The phosphatase
PTPN2 attenuates receptor signaling by desphosphorylating
either receptors directly (e.g. InsR, EGFR), or their signaling
transducers (e.g. SRC family kinases, JAKs, STATs). Most
relevant to thymocyte development, PTPN2 decreases T cell
receptor signaling via dephosphorylation of FYN and LCK, but
also STAT5 phosphorylation that mediates IL-2 signaling.

Changes in PTPN2 function were shown to modify
thymocyte development, positive selection and thymic lineage
commitment of ab TCR versus gd TCR T cells (25, 26).
Together, these effects have implications for the functionality
of the T cell repertoire. Exactly how PTPN2 variants skew T cells
towards autoreactivity is difficult to dissect owing to the gene’s
role in both thymocyte development, in the function of mature
peripheral T cells and in the biology of multiple other cell
populations relevant to T1D.

PTPN22
PTPN22 is another tyrosine phosphatase associated with T1D
(12), but in this case, expression is restricted to lymphocytes.
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PTPN22 encodes the lymphoid-associated phosphatase LYP that
interacts with several mediators of antigen receptor signaling,
including LCK, ZAP70 and TCRz. Of interest, the genetic variant
associated with T1D is located in the coding region of PTPN22.
This is unusual because most disease-associated variations are
intergenic or intronic, making it difficult to study their function.
In contrast, the effects of the PTPN22 disease-associated allele
has been studied in more detail and have even been replicated in
rodent models using genetic engineering.

The risk variant is a C to T substitution at position 1858 of the
coding region, effecting an amino acid change in the protein
sequence of LYP (R620W). This mutation has a direct
implication for LYP function. The R620W substitution was
shown to disrupt LYP’s interaction with a kinase, CSK, that
negatively regulates phosphatase activity (12). This would be
consistent with the first functional description of the risk variant
that suggested a gain of function (27). The precise effect of the
R620W mutation has been debated, however. Researchers
modelled this mutation in mice by introducing an equivalent
R619W substitution in PEP, the mouse ortholog of LYP (28).
Data from this model initially suggested that mutant PEP was
prone to faster degradation. This interpretation was later
disputed and the preponderant hypothesis remains that the
risk variant of PTPN22 is a gain-of-function allele (29).

Additional studies in Ptpn22 knockout and knockdown
animals showed that the loss of PEP increased the frequency of
regulatory T cells (Tregs) and suggested that animals were
protected against autoimmunity (30, 31). These data were
supported by the observation that the disease variant of
PTPN22 was associated with the frequency of circulating Tregs
in human (32). Notably, Ptpn22 deficiency increased the
frequency of Tregs in the thymus (30), and this could relate to
increased TCR signaling in the absence of the phosphatase that
skews thymocytes towards a Treg transcriptional program.
Extra-thymic effects of Ptpn22 variation were also observed in
both T and B lymphocytes, as could be expected given the
phosphatase’s role in antigen-receptor signaling (29, 33).
Ultimately, it is difficult to establish with certainty which
immune cell population is most affected by PTPN22 variation.
Notwithstanding, the risk variant of PTPN22 has a strong effect
on thymic selection, with implications for the effectiveness of
central tolerance.

IL2RA
IL2RA encodes the high-affinity a chain of the IL-2 receptor and
is also known as CD25. IL-2 signaling is critical to T cell
development and function. Significantly, IL-2 is pivotal in the
lineage commitment of Tregs in the thymus (34). Tregs are a key
modifier of disease risk, and a target of experimental therapies
for autoimmune disease. For example, low-dose IL-2
administration has been shown to expand Tregs in both
humans and animal models (35, 36), where IL-2 therapy is a
potent therapy of autoimmune diabetes.

IL2RA risk variants diminish IL-2 signaling (37, 38). This
effect can be predicted to diminish both the development and
maintenance of a functional Treg compartment that relies on
IL-2 signaling both in the thymus and periphery. Complete IL-2
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deficiency does not prevent T cell development (39) but causes
severe inflammatory disease including colitis (40). While T1D-
associated IL2RA variants lead to much more subtle changes in
signaling, the gene has a central impact on immune regulation,
starting with the generation of Tregs in the thymus.

TAGAP
The signals that developing thymocytes receive and that direct
their fate are tightly regulated. Part of this regulation relies on the
spacial segregation of cues that guide positive selection versus
negative selection. The first stages of thymocyte maturation occur
in the thymic cortex. Once DP cells have been positively selected,
they migrate into the thymic medulla to interact with a variety of
antigen presenting cells that include medullary TECs (mTECs)
presenting TRA for negative selection. The migration of
thymocytes from the cortex to the medulla depends on both
chemokines and adhesion molecules (41). TAGAP, the candidate
gene for a genomic region associated with multiple immune
diseases including T1D (15), plays a key role in releasing
thymocytes from their cortical niche and allowing migration
into the thymic medulla (42). This was demonstrated in a study
of Tagap deficient mice, where thymocytes that recently
underwent positive selection as measured by their expression of
CD69 were retained in the thymic cortex. Tagap was found to
mediate plexinD1 signaling that releases b1 integrin-dependent
adhesion in the cortex (42). PlexinD1 is upregulated on the surface
of positively selected thymocytes, allowing its ligand, sema3a, to
facilitate chemotaxis towards the thymic medulla (43). A decrease
in TAGAP expression diminishes the propensity of thymocytes to
migrate from the cortex into the medulla. Longer dwell times in
the cortex may allow maturation of the cells in an environment
where they do not undergo the stringent negative selection
imposed onto them in the medulla. This would lead to deficient
tolerance induction by failing to delete autoreactive clones or to
select Tregs that depend on interactions with medullary antigen
presenting cells. Changes in the selection of thymocytes were
observed in Tagap deficient mice, pointing to a role for this T1D
risk gene in central tolerance (42).

The genes described above all relate to thymocyte-intrinsic
pathways involved in the responsiveness to extracellular cues.
Gene variants associated with T1D modify the sensitivity of
thymocytes to TCR stimulation, cytokine stimulation and to
chemotactic cues. Together, these effects can significantly
redirect the fate of developing T cells with autoreactive
potential and diminish either their deletion or their inclusion
into the Treg compartment. Next, we will discuss disease risk
genes that operate extrinsically by modifying the antigenic
landscape that thymocytes navigate during selection.
GENETIC MODIFIERS OF
ANTIGEN PRESENTATION

A key function of the thymus is the selection of a TCR repertoire
that is functional (through positive selection) and not harmful
(through negative selection). Negative selection in particular
relies on the presentation of antigens that T cell may
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encounter in various tissues (44). Many of these antigens are
encoded by genes whose expression is restricted to specialized
cell types. Most relevant for type 1 diabetes is insulin, one of a key
antigens driving beta cell autoimmunity. More generally, tissue
restricted antigens (TRAs) need to be presented within the
thymus to allow central tolerance to take effect against these
gene products. TRA presentation in the thymic medulla relies on
three components. First, the antigen itself needs to be expressed
within the thymus. Second, the antigen processing machinery
needs to generate peptides from this antigen. Third, MHC
molecules need to be present that are able to bind particular
peptides so they can be presented on the cell surface. All three of
these steps are subject to genetic control, as illustrated by T1D-
associated genes discussed below.

INS
A genomic region that included the insulin gene was the first
non-HLA locus associated with T1D almost 30 years ago (9). The
disease-associated haplotype encompasses a variable number of
tandem repeats (VNTR) region 5’ of the INS gene. Initial
analyses of the effect of the different VNTR alleles, termed
class I, II and III based on their length, described a very small
change in insulin expression associated with this polymorphism
in fetal pancreas (45). How this subtle change would impact
disease risk was unclear. Upon replication of this finding, Todd
and colleagues speculated that the polymorphism may impact
insulin expression in the thymus, rather than in the pancreas
itself (46). Two studies published back to back in 1997
corroborated this hypothesis. The two independent papers
reported that the protective haplotype that contains class III
VNTR increased insulin expression in the thymus by 2-3 fold
(47, 48).

In support of the hypothesis that VNTR alleles affected
central tolerance, mouse models provided evidence that thymic
expression of insulin had a strong effect on disease risk (49, 50).
Unlike humans, mice harbor two insulin genes on separate
chromosomes. While Insulin 2 is expressed in both thymus
and pancreas, Insulin 1 is only expressed in beta cells. Deleting
Insulin 2 does not cause insulin insufficiency, because Insulin 1 is
fully functional and able to regulate glycemia on its own.
However, in the absence of Insulin 2, thymic tolerance against
insulin is severely impaired and the risk of diabetes is increased.
While direct evidence in human for insulin’s role in central
tolerance is lacking, it is also known that thymic INS expression
is dependent on AIRE (51), whose deficiency leads to multiple
pathologies that include T1D. Together, these observations
support a key role for thymic insulin expression in establishing
central tolerance to beta cell antigen.

CLEC16A
TRA expression in the thymus is not sufficient in itself to ensure
presentation of relevant peptides. Antigens need to be processed
prior to being loaded onto MHC molecules for presentation on
the surface of thymic epithelial cells or hematopoietic antigen
presenting cells. One of the pathways involved in intracellular
antigen processing and delivery to MHC compartments is
autophagy (52). While MHC class I peptides are typically
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generated by the proteosome, MHC class II antigens rely on
lysosomal degradation pathways. In this context, autophagy can
shuttle endogenous proteins towards the lysosomal
compartment for digestion and subsequent loading onto MHC
class II molecules. The importance of autophagy for central
tolerance had first been demonstrated by Klein and colleagues
(53). TECs have remarkably high levels of constitutive
autophagy. Disruption of autophagy in thymic epithelium
caused multi-organ inflammation, indicative of defective
central tolerance. This study demonstrated the importance of
autophagy for antigen presentation in the thymic epithelium
whose TRA expression is indispensable to central tolerance.

CLEC16A was shown to modulate autophagy, and the first
indication of the gene’s function came from Drosophila studies
where the CLEC16A ortholog Ema was implicated in the
endolysosomal pathway (54), with subsequent data indicating a
role in autophagy (55). Knockdown of CLEC16A was found to be
highly protective in the NOD mouse model for type 1 diabetes
(56). In this study, protection was not derived from Clec16a
deficiency in immune cells but rather from gene knockdown in
thymic epithelium. The loss of Clec16a diminished TEC
autophagy and had repercussions for thymic selection and for
the reactivity of the T cell repertoire (56).

CLEC16A is a prime example of a gene whose function is not
obviously related to immune function. Yet, many cellular
pathways contribute to robust thymic function that is critical for
the establishment of central tolerance. It is likely that other T1D-
associated genes whose function is not yet well characterized could
affect immune tolerance in similarly unexpected ways.

MHC Region
The final component of antigen presentation is the MHC
molecule itself, encoded by HLA genes on Chromosome 6.
When a TRA is expressed and processed into peptides suitable
for MHC loading, the repertoire of peptides that are presented on
the surface of thymic antigen presenting cells depends not only
on the pool of peptides available but also from the binding
preference of different HLA alleles. The HLA locus is the
strongest genetic determinant for T1D risk (57). A handful of
HLA haplotypes confer very high risk, while a few haplotypes are
protective (58, 59). It is difficult to ascertain the stage at which
HLA polymorphism most impacts pathogenesis, because MHC
molecules are required throughout the lifetime of T lymphocytes.
MHC/peptide complexes are required for T cell selection in the
thymus, T cell maintenance in the periphery, and for the
initiation of T cell responses in secondary lymphoid organs by
antigen presenting cells bearing MHC class I and class
II molecules.

The strongest T1D association in the HLA region derives
from the HLA-DQ haplotype that encode MHC class II
molecules. HLA-DQ2 (linked to HLA-DR3) and HLA-DQ8
(linked to HLA-DR4) are the most significant determinants of
disease risk. Both haplotypes increase risk on their own,
particularly in homozygous individuals. But their effect is even
stronger in combination (when both HLA-DQ2 and -DQ8 are
present) (60). This synergy is thought to be caused by trans-
heterodimers, where the alpha and beta chains of the two
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different alleles (DQ2 and DQ8) are combined to form an alpha/
beta heterodimer different from either DQ2 or DQ8 cis-
heterodimers (61). One possible explanation for the high risk
conferred by these particular HLA heterodimers is their
preferential binding of peptides from beta cell antigens in a
manner that is ineffective to enforce central tolerance yet
sufficient to drive an immune response in the pancreas.
Evidence for this mechanism lead to the hypothesis that
peptide-HLA interactions in the low affinity range may be
more likely to promote autoimmunity than high affinity
binding peptides (62). Consistent with this notion, the T cell
receptor of several CD4+ autoimmune T cell clones bind peptide-
HLA complexes in unconventional, suboptimal conformations
(63). While this weaker binding may derive in part from the TCR
structure itself, the data support an overall model where the
strength of interaction between autoreactive clones and their
cognate peptide-HLA complexes is pivotal in bypassing negative
selection. Therefore, the structure of HLA molecules, dictated by
their genetic sequence, is central to the development of
autoreactive clones in the thymus.

The same principles apply to MHC class I required for thymic
selection of CD8+ T cells. Again, the structure of MHC class I
molecules determines the pool of peptides that can be presented to
developing thymocytes and the avidity of the TCR-MHC/peptide
interactions at play during selection. MHC class I molecules are
encoded by HLA-A, -B and -C genes. Rigorous analyses of the
MHC region have shown that both HLA-A and HLA-B
polymorphisms associate with the risk of T1D independently of
the major effect of the MHC class II region (64). Subsequent
experiments where the high-risk alleles HLA-B*39 or HLA-A*02
were expressed in transgenic mice devoid of endogenousMHC class
I showed that these MHC alleles significantly changed the selection
of the TCR repertoire (65). These data lend further support to a
model where particular HLA alleles promote the thymic selection of
an autoreactive repertoire prone to causing T1D.
CONCLUSIONS

The list of disease-associated regions described in this brief review
is not exhaustive, and other type 1 diabetes risk gene variants are
likely to affect thymocyte selection by a variety of mechanisms.
The examples cited above illustrate the wide range of mechanisms
by which gene variations can modify T cell selection. Some risk
genes operate cell intrinsically to desensitize thymocytes to
negative selection or to diminish their likelihood of adopting a
regulatory program. Other risk variant act extrinsically to shape
the MHC/peptide landscape that fine-tunes the TCR repertoire
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and directs thymocytes to different selection trajectories. Most of
these risk loci, whether they mediate intrinsic or extrinsic effects,
have pleiotropic effects that can not only span the lifetime of a T
cell but also alter the biology of other immune cell types. The result
is a complex interplay of changes at many stages of immune
function. To dissect individual components and to ascribe causal
function to single gene variants remains exceedingly difficult and
uncertain. Notwithstanding, our understanding of the genetics of
autoimmunity and of T1D in particular have made great strides in
the past 15 years. We now have a better grasp of the many
fundamental changes in immune development and function that
underlie autoimmunity. Defective central tolerance is almost
certainly an important prerequisite for autoimmune diabetes,
and one that is subject to genetic control by common variants.

When GWAS for T1D were first performed, they held much
promise to yield new insight into disease etiology. In addition, there
was hope that new knowledge of risk genes would lead to the
rational design of novel interventions. This optimism has been
significantly dampened by the realization that 1) identifying exact
causal variants for disease-associated regions is often very difficult,
2) the precise functional contribution to pathogenesis of the many
risk genes is still largely unresolved, and 3) pleiotropic effects of
many causal variants would decrease the specificity of an
intervention that targets these T1D risk genes. In the context of
central tolerance, an additional challenge is that many of the
changes described herein occur early in development, with long-
lasting effects for immune function. Targeting thymic selection for
disease prevention is possible in experimental models. This was
shown by intrathymic islet transplantation in very young NOD
mice (66, 67). However, this approach is unlikely to be effective at
late pre-diabetic stages or in newly diagnosed patients, where islet
autoimmunity is already established and ongoing. Notwithstanding,
the development of an immune intervention for T1D based on
disease genetics remains an enticing idea. Ultimately, only a better
understanding of causal gene variants can help turn this idea into a
testable clinical intervention.
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Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the
pathophysiology of this disease shares many similarities with human type 1 diabetes.
Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain,
has represented the gold standard of spontaneous disease models, allowing to
investigate autoimmune diabetes disease progression and susceptibility traits, as well
as to test a wide array of potential treatments and therapies. Beyond autoimmune
diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of
autoimmune thyroiditis and Sjögren’s syndrome. Genetic manipulation of the NOD strain
has led to the generation of new mouse models facilitating the study of these and other
autoimmune pathologies. For instance, following deletion of specific genes or via insertion
of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune
diabetes; yet the newly generated diabetes-resistant NOD strains often show a high
incidence of other autoimmune diseases. This suggests that the NOD genetic
background is highly autoimmune-prone and that genetic manipulations can shift the
autoimmune response from the pancreas to other organs. Overall, multiple NOD variant
strains have become invaluable tools for understanding the pathophysiology of and for
dissecting the genetic susceptibility of organ-specific autoimmune diseases. An
interesting commonality to all autoimmune diseases developing in variant strains of the
NODmice is the presence of autoantibodies. This review will present the NODmouse as a
model for studying autoimmune diseases beyond autoimmune diabetes.

Keywords: NOD mice, polyautoimmunity, thyroiditis, neuropathy, biliary disease
HIGHLIGHTS

1. The Non-Obese Diabetic (NOD) mouse as a model of multiple autoimmune diseases
2. Congenic and transgenic NOD mice represent relevant models of human pathologies
3. Spontaneous occurrence of autoimmune thyroiditis, neuropathy and biliary diseases
4. The NOD mouse can be used to study polyautoimmune phenotypes
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INTRODUCTION TO THE NON-OBESE
DIABETIC MOUSE STRAIN

Since its first description by Makino et al. in 1980 (1), the Non-
Obese Diabetic (NOD) mouse strain represents the only mouse
model that spontaneously develops autoimmune diabetes (2–4).
The NOD strain is originally derived from Cataract Shinogi (CTS)
mice, an inbred subline of the outbred ICR mouse strain, which
develop cataracts (1, 2). In an effort to generate a mouse model for
insulin-dependent diabetes, CTS mice with either low or high
fasting glucose levels were further interbred. Eventually, mice from
the ‘normoglycemic’ colony presented with diabetic symptoms,
namely polyuria and glycosuria. These mice were selected for
breeding, establishing the original NOD mouse colony (1, 5).
Importantly, the autoimmune diabetes pathology in NOD mice
shares several characteristics with human type 1 diabetes (T1D) (1,
3, 6, 7). For instance, the major histocompatibility class (MHC)
locus is a defining autoimmune diabetes susceptibility factor in
bothmice and humans, with a common amino acid substitution in
an MHC class II gene (4, 8). Studying the NOD mouse has
considerably improved our understanding of this autoimmune
disease, facilitating the identification of genetic variants
contributing to disease susceptibility, of various immune cells
causing pancreatic b-cell destruction, and of environmental
contributors to disease susceptibility (6, 7, 9, 10). For further
information on the use of NOD mice in dissecting the
pathophysiology of autoimmune diabetes, the readers are
referred to the following reviews on the topic (2–4).

This review will instead focus on the other organ-specific
autoimmune diseases that spontaneously develop in NOD mice
as well as in genetically manipulated NODmice. Specifically, several
NOD congenic mice and NOD genetic knockout mice are protected
from autoimmune diabetes. In these diabetes-resistant mice, other
autoimmune diseases spontaneously arise, such as autoimmune
thyroiditis, autoimmune polyneuropathies, and autoimmune biliary
disease. The use of the NOD mouse and its variants to study
polyautoimmune syndromes will also be discussed. While
autoantigen-specific T cell responses are a critical part of the
pathology in autoimmune diabetes (6, 11), this review will more
broadly discuss the presence of immune cells in the target tissues as
well as the presence of autoantibodies in variants of the NODmouse
model, for each autoimmune pathology.
AUTOIMMUNE THYROID DISEASE

Autoimmune thyroid disease (AITD) includes Hashimoto’s
thyroiditis, Graves’ disease (autoimmune hyperthyroidism),
neonatal Graves’ disease, and postpartum thyroiditis (12). All
forms of AITD are characterized by the presence of immune
infiltrates (in variable amounts) in the thyroid gland and
particularly by the presence of IgG class autoantibodies directed
towards specific thyroid autoantigens, namely thyroglobulin,
thyroid peroxidase (TPO), and the thyrotropin receptor (TSHR)
(13). Of note, while some of these autoantibodies are present in the
serum of many individuals with normal thyroid function, the
Frontiers in Immunology | www.frontiersin.org 215
presence of TPO is significantly associated with thyroid disease
(14). Interestingly, the prevalence of AITD is more frequent in
people living with T1D (PWT1D) than in the general population
(15–18). Based on the study of Hwang et al., the prevalence of
thyroglobulin and TPO thyroid autoantibodies in PWT1D is
around 30% (19), whereas the prevalence in the general
population is approximately 10% (14).

The NOD Mouse as a Model of
Autoimmune Thyroiditis
As in PWT1D, NOD mice can develop spontaneous
autoimmune thyroiditis (SAT). In NOD mice, the cumulative
incidence at one year ranges from ~5% to ~15% (20, 21). In both
humans and mice, an iodine-rich diet accelerates the
development of the disease (21, 22). The iodide excess is toxic
for thyroid cells by a mechanism involving oxidative stress (23).
This parallel between humans and mice highlights the relevance
of the NOD mouse model for understanding autoimmune
thyroiditis pathology (24). However, there are limits associated
with the use of the NOD mice for the study of SAT. For one,
NOD mice have a high incidence of autoimmune diabetes,
especially in females where it reaches 70 to 90% by 30 weeks
(25). This presents a challenge when attempting to isolate the
immunological factors that specifically drive SAT independently
of the immune response to autoimmune diabetes. In addition,
the incidence of SAT is low in NOD mice in absence of an
iodine-rich diet (20), such that very large cohorts of mice must be
used to characterize the progression of the pathophysiology.
Currently, an autoimmune diabetes-resistant genetic derivative
of the NOD mouse model, the NOD.H2h4 congenic mouse, is
more commonly used to study SAT.

NOD.H2h4 congenic mice were originally generated to
determine the impact of the MHC class II locus on diabetes
and insulitis development (26, 27). Specifically, the NOD.H2h4

bears the thyroiditis-prone H2h4 MHC locus from the B10.A(4R)
mouse strain, composed of H-2Kk and H-2Db for MHC class I,
and I-Ak for MHC class II (26) (Figure 1). In contrast to the low
~5% to ~15% incidence of SAT in NOD mice, 50%-70% of
NOD.H2h4 congenic mice develop SAT (21, 26, 28). Moreover,
subjecting the mice to an iodine-rich diet enhances the severity
and the incidence of thyroid lesions in both NOD and
NOD.H2h4 congenic mice, which can reach an incidence of
nearly 100% in both strains (21, 22, 24, 28–30).

While NOD.H2h4 mice develop SAT, this strain is completely
protected from diabetes onset (21, 26, 28). This suggests that the
progression to diabetes is not necessary for SAT development,
and that the break of tolerance towards thyroid autoantigens is
favored by the H2h4 MHC haplotype, while the H2g7 MHC
haplotype is necessary for diabetes onset. This observation also
revealed that the organ-specific autoimmune susceptibility
determined by the NOD genetic background can be shifted to
other organs by modification of different genetic loci. In other
words, different MHC loci in NOD mice can predispose to
different organ-specific autoimmune diseases. Studies in
families with T1D and AITD also revealed a strong genetic
link to the MHC class II locus (17, 31, 32). Specifically, the MHC
April 2022 | Volume 13 | Article 874769
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class II haplotype DR3-DQB1*0201 is a risk haplotype shared by
both T1D and AITD (17, 31), while HLA-DR3 is specifically
linked to T1D susceptibility (31, 32). Therefore, in both mice and
humans, the MHC locus shifts the autoimmune response
towards given target organs.

To assess the contribution of the MHC locus in thyroiditis
development in mice, a comparative study was done using the
NOD.H2h4 mouse and the NOD.H2k mouse (28). The primary
difference between the NOD.H2h4 and NOD.H2k mice is the
presence of I-E MHC class II molecule in the H2k locus (26,
28). After exposure to an iodine-rich diet, the extent of the
autoimmune thyroiditis and the levels of thyroglobulin and TPO
autoantibodies were higher in the NOD.H2h4 mice than in the
NOD.H2k mice, in which TPO antibodies were essentially absent
(28). This suggests that variants in the MHC locus between these
two mouse strains influence the thyroid autoantibody profile (28).
Consequently, the NOD.H2h4 mouse, which develops both
thyroglobulin and TPO autoantibodies, is arguably the most
representative mouse model of human AITD pathology (28).

Immune Cells Infiltration Within the
Thyroid Gland
One of the key characteristics shared between AITD in humans
and SAT in the NOD.H2h4 mouse is the infiltration of immune
Frontiers in Immunology | www.frontiersin.org 316
cells within the thyroid gland. The recruitment and migration of
lymphocytes in this gland is supported by adhesion molecules
expressed on endothelial cells (33). Of interest, whereas NOD
mice express high levels of ICAM-1 on thyrocytes, CBA/J, A/J,
BALB/c, and C57 mice show little to no expression of ICAM-1
(33). The high expression of ICAM-1 on thyrocytes driven by the
NOD genetic background (and thus also present in NOD.H2h4

mice), is a genetic risk factor to SAT. ICAM-1 promotes the
recruitment of immune cells into the thyroid, which then target
specific thyroid autoantigens (33).

In the NOD.H2h4 mouse model, as in people living with
AITD, the thyroid immune cell infiltrate is predominantly
composed of CD4+ and CD8+ T cells, B cells, macrophages,
natural killer cells, and dendritic cells (34). Still, in humans,
information regarding the kinetics of the infiltration within the
thyroid is limited. To better understand the kinetics of thyroid
cell infiltration, Bonita et al. took advantage of the NOD.H2h4

mouse model (34). They show that the immune cell infiltration
in the NOD.H2h4 thyroid begins with CD4+ T cells, followed by
CD8+ T cells and macrophages, and finally by B cells (34).
CD4+ and CD8+ T Cells
T cells are part of the adaptive arm of the immune response and
self-reactive T cells are necessary and sufficient for onset and
FIGURE 1 | The NOD.H2h4 congenic mouse model. Representation of the mouse chromosome 17 from the parental B10.A(4R) (left), parental NOD (middle), and
congenic NOD.H2h4 (right) strains. By backcrossing NOD mice to B10.A(4R), the thyroiditis-prone H2h4 MHC locus from chromosome 17 of the parental B10.A(4R)
mouse has been selected at each backcross generation to replace in the NOD-derived H2g7 MHC locus, resulting in the NOD.H2h4 congenic mouse.
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progression of many autoimmune diseases (35–38). Elimination
of CD4+ and CD8+ T cells completely prevents thyroiditis
development by suppressing thyroid infiltration and thyroid
autoantibody production in the NOD mouse, even on iodine-
supplemented diet (24). This suggests that T cells are necessary
for SAT (24). In addition to promoting thyroid autoantibody
production by B cells (30, 34), CD4+ T cells are also required for
the maintenance of inflammation in the thyroid gland (30). IFN-
g, secreted by CD4+ T cells, damages thyrocytes (30, 34) and
induces the expression of MHC class II and adhesion molecules
on thyrocytes, ultimately resulting in the recruitment of other
immune cells, such as CD8+ T cells, macrophages, B cells, and
plasma cells (30, 34). CD8+ T cells also contribute to disease
progression by secreting cytokines, namely IFN-g and TNFa
(34), and by mediating perforin/granzyme-dependent lysis of
thyrocytes, resulting in severe damage to the thyroid gland (34).

iNKT Cells
Invariant Natural Killer T (iNKT) cells have first been identified
as an unusual T cell population expressing both T cell receptors
(TCR) and the NKmarkers (NK1.1, NKG2D, and Ly49) (39–41).
iNKT cells recognize antigens by the non-polymorphic MHC
class I-like molecule CD1d (39–41). These cells exhibit a wide
array of immunological functions such as the production of
chemokines and cytokines, cytolytic activity, and activation and
recruitment of other cell types (39, 41). Of interest, an indirect
pathogenic role of iNKT cells has been suggested in autoimmune
thyroiditis (42). Sharma et al. generated two iNKT cell lines
derived from NOD.H2h4 splenocytes (42). After stimulation with
thyroglobulin, these iNKT cell lines produce cytokines such as
IFN-g, TNF-a, IL-2, IL-4, and IL-10 (42). The adoptive transfer
of thyroglobulin-stimulated iNKT cell lines enhanced
autoimmune thyroiditis in NOD.H2h4 mice fed with an iodine-
rich diet (42), suggesting that iNKT cells enhanced autoimmune
thyroiditis in NOD.H2h4 mice. In addition, it was reported that
the spleen of NOD.H2h4 mice contains more iNKT cells than
BALB/c mice (43), suggesting a link between iNKT cell
abundance and SAT susceptibility. With the availability of
CD1d-tetramers allowing to quantify iNKT cells more
precisely, we revisited this concept. In contrast to the previous
report (43), we observed a higher percentage and number of
iNKT cells in the spleen of BALB/c mice when compared to
NOD.H2h4 mice (Figure 2). Further studies are required to
understand the true implication of these cells in the
development of autoimmune thyroiditis.

Regulatory T Cells (Treg) and T-Helper (Th) Cells
Tregs are immunomodulatory cells that prevent autoimmune
responses and thus could be used as a therapeutic in
autoimmune diseases (44). Accordingly, a depletion of CD25+

Tregs before subjecting the mice to an iodine-rich diet increases
the severity of thyroiditis in NOD.H2h4 mice (45), suggesting an
important role for Tregs in the control of autoimmune thyroiditis.

Apart from Tregs, other Th subsets differentiated from naïve
CD4+ T cells include Th1, Th2 and Th17, which are primarily
distinguished based on the expression of specific transcription
factors and their cytokine profile (46). Th1, Th2 and Th17
Frontiers in Immunology | www.frontiersin.org 417
respectively express T-BET, GATA-3 and RORgt and secrete
IFN-g, IL-4 and IL-17 as their prototypical cytokine (47). In
NOD.H2h4 mice, the presence of IFN-g in the thyroid before the
onset of lesions suggests that Th1 cytokines may play an
important role in the initiation of autoimmune thyroiditis (30,
34). In addition, Th2 cytokines, such as IL-4 and IL-13, are
maximal after thyroid lesions develop suggesting that these
cytokines are involved in the late chronic phase of the disease,
maintaining the thyroid inflammatory response (30). Moreover,
NOD.H2h4-IFN-g-/-, NOD.H2h4-IFN-gR-/-, and NOD.H2h4-IL-17-/-

are resistant to the development of thyroiditis (48, 49),
suggesting that both Th1 and Th17 profiles contribute to the
pathology (50).

Of interest, there is an interplay between Tregs and Th cells in
immune responses (51). This holds true in susceptibility to
thyroiditis. Indeed, while both NOD.H2h4.IL-17-/- and
NOD.H2h4 IFN-gR-/- mice are resistant to thyroiditis, depletion
of CD25+ Tregs induces thyroiditis in NOD.H2h4.IL-17-/- mice
but not in NOD.H2h4 IFN-gR-/- mice (50). This suggests that
Tregs may more effectively control Th1-driven thyroiditis than
Th17-driven pathology. Altogether, these observations point to a
key role for Th cells in the development and progression of
thyroiditis. Knowing that Th subsets facilitate the humoral
response (46), they may effectively contribute to autoantibody
production in thyroiditis.

B Cells
By producing antibodies, B cells can provide immune protection
against infections (52). However, B cells can also have pathogenic
roles in autoimmune diseases by producing autoantibodies, by
promoting immune complexes deposition, antibody dependent
cell cytotoxicity (ADCC), and as antigen-presenting cells (APCs)
(53). Indeed, B cells are important players in SAT in the
NOD.H2h4 mouse. This is exemplified in the NOD.H2h4-m-/-

mouse, devoid of B cells, as well as in NOD.H2h4 mice treated
with anti-IgM or anti-CD20 antibodies, to deplete B cells (54–56).
In these models, B cell depletion results in a decrease in the
severity of thyroid lesions, as well as undetectable levels of thyroid
autoantibodies (54–56). Further characterization of B cells in
NOD.H2h4 mice revealed that expression of costimulatory
molecules, such as CD80 and CD86, is increased on B cells
following SAT onset (56). In addition, these B cells produce
proinflammatory cytokines such as TNF-a and IL-6 (56). By
providing costimulatory signals and secreting proinflammatory
cytokines, it was suggested that B cells act as APCs, promoting the
activation and expansion of autoreactive T cells (54–56). This
model proposes a central role for B cells in autoimmune thyroiditis
via their involvement in the activation of pathogenic T cells and
their production of autoantibodies (Figure 3). Incidentally, B cells
are essential for the development of Graves’ disease in which
hyperthyroidism is directly caused by thyroid stimulating
antibodies that target the TSHR (13).

Production of Thyroid Autoantibodies
In addition to immune infiltration, the breakdown of tolerance
towards thyroid autoantigens is shared between autoimmune
thyroiditis in humans and NOD.H2h4 mice, as shown by the
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presence of autoantibodies. In both species, the major thyroid
autoantigens are thyroglobulin (13), the predominant component
of the thyroid gland, and TPO; both thyroglobulin and TPO are
involved in the process of thyroid hormones synthesis (57). The
break of tolerance towards these two thyroid autoantigens can be
explained by their immunogenicity (13). For example, the
abundance and size of the thyroglobulin and TPO proteins
promote the generation of a large pool of peptides, which can be
presented on MHC to T cells (57). In mice, thyroglobulin
autoantibodies appear first followed by TPO autoantibodies (28,
29), suggesting that thyroglobulin is one of the first targeted
autoantigens (57). The NOD.H2h4 mouse, when exposed to
iodine-supplemented diet, develops thyroglobulin-antibodies of
subclasses IgG1 and IgG2b (30). IgG2b thyroglobulin antibodies
correlate with thyroid lesions and could therefore represent a
biomarker for predicting thyroiditis (29). Of interest, treating
NOD.H2h4 mice with blocking antibodies to PD-1 and to
CTLA-4 markedly enhances thyroiditis and autoantibodies to
thyroglobulin and TPO (58).
Frontiers in Immunology | www.frontiersin.org 518
In humans, antibody levels to thyroglobulin and TPO are twice
as high in women than in men, with reported values of 15.2 U/ml
in women vs 7.6 U/ml in men for thyroglobulin and 17 U/ml in
women compared to 8.7 U/ml in men for TPO (14). However, in
NOD.H2h4 mice, the levels of thyroglobulin antibody levels are
higher in males than females (22), whereas TPO antibody levels
are higher in females than males (22). Thus, the presence of TPO
antibodies in NOD.H2h4micemore closely resembles the situation
in humans than the presence of thyroglobulin antibodies (22). Of
note, autoantibodies to thyroglobulin or to TPO in NOD.H2h4

mice are species specific, and do not cross-react with human
thyroglobulin or human TPO (30, 57). Importantly, most humans
with autoantibodies to thyroglobulin and TPO are euthyroid.
Hypothyroidism is only manifest after extensive thyroid
lymphocytic infiltration and thyroid tissue damage depletes the
substantial thyroid hormone reserves and overwhelms the capacity
of TSH to restore thyroid function (14, 59). Consequently, like
NOD.H2h4 mice, most patients with autoantibodies to
thyroglobulin and/or TPO have subclinical disease (14). It
A

B C

FIGURE 2 | iNKT cell abundance in the spleen. Spleen of NOD/ShiLtJ, NOD.H2h4, and BALB/c mice were stained with antibodies to TCRb and with CD1d tetramer
(NIH Tetramer Core Facility). Data was acquired on BD FACSCanto II flow cytometer and analyzed with FlowJo. (A) Representative flow cytometry profiles of iNKT
(TCRb+CD1d-Tet+) cells in the spleen of NOD/ShiLtJ, NOD.H2h4, and BALB/c mice. (B) Compilation of the percentage of iNKT cells in the spleen of NOD/ShiLtJ,
NOD.H2h4, and BALB/c mice (n = 4). (C) Compilation of absolute number of iNKT cells in the spleen of NOD/ShiLtJ, NOD.H2h4, and BALB/c mice (n = 4). One-way
ANOVA tests were performed for statistical analysis. Non-significant, NS; P-value > 0.05, and *; P-value = 0.03.
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should be emphasized that autoantibodies to thyroglobulin and
particularly to TPO are markers of thyroid lymphocytic
infiltration and are a risk factor for the development of
hypothyroidism (60, 61). Of note, as for autoimmune diabetes,
the presence of autoantibodies directed towards thyroid antigens
reflects an ongoing humoral response. Yet, the direct pathogenic
potential of these autoantibodies has not been clearly
demonstrated, except for thyroid stimulating antibodies that
target the TSHR in Graves’ disease (13). To that effect,
transgenic expression of the human TSHR A-subunit at low
levels in the thymus enables hTSHR/NOD.H2h4 females,
exposed to iodine-supplemented diet, to develop stimulating
antibodies to the TSHR, the hallmark of Graves’ disease (62).
These TSHR antibodies stimulate cAMP production by human-
TSHR-expressing cells in a bioassay. However hTSHR/NOD.H2h4

mice do not develop hyperthyroidism, because the antibodies
target human TSHR and do not cross react with the mouse
TSHR (63).

Overall, the NOD.H2h4 mouse has presented itself as an
invaluable mouse model for the study of AITD and
manifestations of this disease, such as immune cell infiltration
and autoantibody production; these traits are similar to those
observed in people living with AITD. The NOD.H2h4 mouse
strain therefore represents an excellent animal model for the
dissection of the mechanisms leading to AITD (30) and for the
Frontiers in Immunology | www.frontiersin.org 619
investigation of potential therapies against autoimmune
thyroiditis (21, 22, 28, 45, 64). Moreover, manipulation of this
mouse model has revealed that thyroiditis results from complex
immune responses, where T cells are necessary for disease
progression. Still, the humoral arm of the immune response
plays a clear role in this pathology, as the presence of
autoantibodies precedes disease diagnosis and eliminating B
cells dampens the pathology. There is also evidence to support
a role for B cells in antigen presentation to T cells. All of these
traits are reminiscent of autoimmune diabetes progression in
NOD mice, suggesting a parallel between the organ-specific
immune mechanisms leading to these two pathologies.
NEUROPATHIES

In the general population, the prevalence of neuropathy, also
called peripheral neuropathy, is around 2% and increases with
age up to 8% in people older than 55 years old (65). Peripheral
neuropathy is characterized by damage to the axon or myelin of a
neuron (66). In contrast, polyneuropathy (PNP) describes a
pathology where several nerves of the peripheral nervous
system are damaged, such as sensory, motor, and/or
autonomic nerves (66). PNPs, with a prevalence of ~5% to 8%
(67), are the most common type of peripheral nervous system
FIGURE 3 | The central role of B cells in autoimmune thyroiditis. By producing anti-thyroglobulin (Tg) and anti-TPO autoantibodies, by activating autoreactive T cells, and by
promoting antibody dependent cell cytotoxicity (ADCC), B cells play an important role in the onset and the progression of autoimmune thyroiditis in the NOD mouse.
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disorder and are caused by various factors, such as chronic
alcoholism, chemotherapeutic drugs, genetic factors, and
vitamin deficiency or overdose (66, 67). In Europe and North
America, diabetes remains the most common cause of PNP, with
diabetic patients representing from 30% to 66% of all PNP cases
(65–67). Notably, more people are affected by diabetic
neuropathy (DN) than all other types of PNP, including
Charcot-Marie-Tooth, Guillain-Barré syndrome, and chronic
inflammatory demyelinating polyneuropathy (65–67). Indeed,
DN affects from 200 to 600 individuals per 100 000 people each
year, whereas the prevalence is less than 15 in 100 000 individuals
for all other PNPs combined (66).

DN is a painful disease defined by loss of sensory function and
sensation of numbness, prickling, or burning in the distal lower
extremities (66, 68). In people living with diabetes, the exact cause
of these neuropathic symptoms is unknown, but some hypotheses
involve metabolic, neurovascular or autoimmune pathways (69–
71). The more common hypothesis suggests that chronic elevation
of glucose level in the blood of people living with diabetes leads to
redox imbalance and ultimately to oxidative stress (71, 72). This
oxidative stress leads to glycation and oxidation of proteins, as well
as dyslipidemia characterized by low levels of high-density
lipoprotein cholesterol and high levels of total cholesterol,
triglycerides, and low-density lipoprotein cholesterol.
Dyslipidemia reduces blood flow and nerve perfusion, possibly
resulting in neuropathic symptoms (71).

It is estimated that around 50% of people living with diabetes
will develop DN (68). Concomitant with the increase in diabetes
prevalence, the prevalence of DN is also increasing (73) but
remains similar between PWT1D (11–50%) and people living
with type 2 diabetes (PWT2D) (8–51%) (68). The incidence of
DN is higher in PWT2D (6,100 per 100,000 person-years) than
in PWT1D (2,800 per 100,000 person-years) (68). This difference
between prevalence and incidence occurring in PWT1D and
PWT2D could be due to several factors like differences in the age
of diabetes development (68).

The NOD Mouse as a Model of
Autoimmune Neuropathy
As for PWT1D, NOD mice are also prone to develop
autoimmune damage to the nervous system. Indeed,
autoimmune reactions occurring in NOD mice can shift from
the pancreatic islets towards nervous tissues after inhibition or
disruption of costimulatory pathways, cytokines, or transcription
factors that are important in the maintenance of immune
tolerance. Here we will discuss some genetically modified NOD
mice that develop autoimmune neuropathy and therefore
represent a tool for the study of this disease.

Disruption of Immune Tolerance Leading
to Autoimmune Neuropathy
T cell activation requires three different signals: signal 1; TCR
signaling via recognition of peptides presented by MHC, signal 2;
costimulatory molecules, and signal 3; cytokines (74, 75). As
mentioned, T cells are necessary for autoimmune diabetes
progression in NOD mice. In trying to understand how T cells
contribute to autoimmune diabetes, various NOD mouse models
Frontiers in Immunology | www.frontiersin.org 720
where genetically engineered to specifically target signal 1, 2 or 3.
Altering either signal 1, 2 or 3 in NOD mice appears to shift the
pancreatic b cell-specific autoimmune response towards the
nervous system (Figure 4).

AIRE Transcription Factor: An Indirect Impact
on Signal 1
The transcription factor AIRE promotes the ectopic expression
of tissue-restricted antigens in the thymus (76, 77). The
presentation of these self-antigens allows for the negative
selection of self-reactive thymocytes and favors the generation
of Tregs that mediate peripheral tolerance (78–80). The
NOD.AireGW/+ mouse has a dominant G228W mutation in the
gene coding for AIRE causing a partial loss of function, such that
expression levels of tissue restricted antigens is reduced by 10%
relative to NOD mice (81, 82). Of interest, the NOD.AireGW/+

mouse shows a decrease in the thymic expression of myelin
protein 0, one of the major autoantigens of the peripheral
nervous system, representing more than 50% of the peripheral
myelin protein content (83, 84). In addition to revealing that
myelin protein 0 expression in the thymus is regulated by AIRE,
it also explains the loss of tolerance to this protein in the
NOD.AireGW/+ mouse (82, 83). Indeed, the partial loss of
AIRE function in NOD.AireGW/+ mice promotes the escape of
myelin protein 0 self-reactive T cells into the periphery, which
target nervous system elements but also pancreatic tissue (82).
This results in the development of autoimmune peripheral
neuropathy, similar to human chronic inflammatory
demyelinating polyneuropathy, as well as autoimmune diabetes
(82, 83). Therefore, a slight shift in the abundance of self-antigen
expression in the thymus of NOD.AireGW/+ mice indirectly
impacts signal 1, by not providing sufficient self-antigen
presentation to the developing thymocytes. This, in turn,
allows for the escape of self-reactive T cells, some of which
target the nervous system, causing peripheral neuropathy.

Costimulatory Pathways: Signal 2
Costimulatory molecules are expressed at the surface of immune
cells and enhance the intracellular signal provided by signal 1.
CD28 is the prototypical costimulatory molecule for naïve T cell
stimulation (85, 86). It is constitutively expressed on T cells and
binds to the CD80 and CD86 receptors expressed on APCs (87).
ICOS, a member of the CD28 family, is expressed on activated T
cells and binds ICOSL on APCs (88). The interaction of ICOS
with ICOSL and/or of CD28 with CD80 and CD86 triggers a co-
stimulatory signaling cascade, which facilitates T cell activation
(87). Of relevance, these costimulatory pathways are involved in
autoimmunity (88, 89).

To define the involvement of ICOS and CD28 costimulatory
pathways in T1D, genetic deletion of ICOS, ICOSL or CD86 was
performed in NOD mice. Interestingly, NOD.ICOS-/-,
NOD.ICOSL-/-, and NOD.CD86-/- mice are all protected from
diabetes, suggesting an important role for these costimulatory
pathways in autoimmune diabetes (90, 91). However,
autoimmune neuropathies spontaneously developed in all of
these strains (90, 91). Specifically, the NOD.ICOS-/- and
NOD.ICOSL-/- mice show neuromuscular autoimmunity
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characterized by hind leg paralysis and immune infiltration of T
cells, macrophages and granulocytes in the peripheral and
central nervous system (PNS, CNS), including peripheral
nerves, sensory ganglia, muscles, brain, and spinal cord (91).
The reason for the autoimmunity deviation from the pancreas to
nervous tissue in the NOD.ICOS-/- and NOD.ICOSL-/- mice
remains unknown (91). Analogously, the NOD.CD86-/- mouse
develops a spontaneous autoimmune peripheral polyneuropathy
(SAPP) (90). And, as for NOD.AireGW/+ mice, NOD.CD86-/-

mice display a break of tolerance towards myelin protein 0, the
dominant autoantigen in the peripheral nervous system (83, 84).
The reasons for the shift in target organ for the autoimmune
response may be explained, in part, by the fact that CD86 genetic
deletion leads to overexpression of CD80 on myeloid dendritic
cells infiltrating the peripheral nerves (90, 92). The
overexpression of CD80 on these APCs leads to activation of
myelin-specific T cells, myelin sheet destruction and SAPP
development (90). In addition, disruption of the CD28
costimulatory pathway leads to a reduction in Treg number,
which could ultimately enhance susceptibility to SAPP (93).
Exploiting genetically modified NOD mice will help dissect
how disruptions in signal 2 facilitate a shift in the autoimmune
response towards a different target organ. This is especially
important when considering therapeutic approaches that target
these pathways, to avoid treatment of T1D that would instead
lead to the development of neuropathy.

Although autoimmune diabetes and neuropathy are
characterized by different manifestations, the genetic factors
Frontiers in Immunology | www.frontiersin.org 821
promoting these two diseases on the NOD genetic background
partially overlap. The H2g7 MHC haplotype of NOD mice not
only plays an important role in autoimmune diabetes but is also
necessary for the development of autoimmune neuropathy in the
NOD.CD86-/- mouse (94). This suggests that the H2g7 haplotype
promotes self-reactivity against various organs. The genetic
susceptibility overlap can also be attributed to non-MHC loci.
For example, diabetes resistance loci were introduced in
NOD.CD86-/- mice to generate NOD.CD86-/–Idd3/5 and
NOD.CD86-/–Idd3/10/18 congenic mice. These congenic mice
are completely protected from both autoimmune diabetes and
neuropathy (94). Thus, genetically modified NOD mice allow to
study mechanisms as well as genetic factors promoting the
development of autoimmune neuropathy.

Cytokines: Signal 3
T cell activation is modulated by the presence of cytokines, which
represent the third signal for T cells activation (75). Unbalanced
cytokine production is deleterious and may lead to the
development of autoimmunity (95–97). A key cytokine in
modulating T cell function is IL-2; it facilitates the proliferation
of T cells and is involved in immune tolerance by allowing the
homeostatic maintenance of Tregs (98–100). Similar to NODmice
with targeted disruption of costimulatory molecules, autoimmune
peripheral neuropathy has been described in NOD mice deficient
in IL-2 (98). While intraperitoneal injection of anti-IL-2
monoclonal antibodies in NOD mice accelerates diabetes onset,
it also induces the development of autoimmune peripheral
FIGURE 4 | Disruption of T cell activation signals induce autoimmune neuropathy in the NOD mouse. Autoimmune neuropathy can be induced in the NOD mouse
after modulation of one of the three T cell activation signals. More specifically, mutations in AIRE transcription factor expression in medullary thymic epithelial cells
(mTECs) indirectly impact signal 1. In addition, disruptions in co-stimulation signals, such as ICOS/ICOSL and CD28/CD80-86 (signal 2), or neutralization of IL-2
(signal 3) induce autoimmune neuropathy in the NOD mouse.
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neuropathy in more than 50% of the treated mice (98). This
neuropathy is characterized by ataxia and paralysis of the limbs
due to demyelination of the peripheral nerves (98). Anti-IL-2
treatment in NODmice enhances autoimmunity by reducing Treg
number, their activation, and their suppressive function (98). Of
interest, IL-2 is one of the key candidate genes in the Idd3
susceptibility locus (101, 102). Idd3, and thus IL-2 variants, may
generally predispose NOD mice to autoimmune diseases by
altering the function and development of Treg cells (98).

Altogether, genetic manipulations leading to alterations in T
cell signal 1, 2 or 3 in NOD mice can shift the immune response
from pancreatic b cells towards the nervous system. This break in
T cell tolerance allows for infiltration of autoreactive T cells in
the peripheral nerves, which ultimately leads to the production of
autoantibodies targeting myelin protein 0 by self-reactive B cells
(84). Of note, autoantibodies targeting myelin protein 0 have also
been found in serum from individuals diagnosed with Guillain-
Barré syndrome and chronic inflammatory demyelinating
polyneuropathy (103, 104).

Production of Autoantibodies Targeting
Nervous System Antigens
Pancreatic islets are surrounded by cells of the autonomous
nervous system (105). In addition, pancreatic b-cells and
neuronal cells share some autoantigens such as GAD, ICA515,
and the neuronal type III intermediate filament protein, peripherin
(105, 106). These autoantigens of the pancreatic nervous system are
targeted by islet-infiltrating autoreactive T cells as well as
autoantibodies (105). The production of autoantibodies against
pancreatic nervous system antigens occurs in the early phase of
diabetes and could explain certain neurological pathologies
occurring in the prediabetic stage in humans and mice (105). In
addition, B cell producing peripherin autoantibodies have been
isolated directly from the pancreatic islets of NOD mice (106).
Altogether, these observations point to a potential cross-reactive
autoimmune response to both pancreatic b cells and neuronal cells,
resulting in the production of autoantibodies as a reflection of an
ongoing humoral immune response, which likely contributes to
the pathology.

To specifically study the impact of peripherin-specific B cells
in diabetes and neuritis, a BCR-transgenic mouse model (NOD-
PerIg) was generated (106). In this mouse, B cells express the H
and L chain Ig transgene from the peripherin-specific hybridoma
clone H280, isolated from the pancreas of NOD mice (107).
Compared to non-transgenic NOD mice, NOD-PerIg mice
develop early onset diabetes, with an expansion of diabetogenic
T cells, revealing an important association between the pancreas
and the nervous system (107). Genetic manipulation of B cell
responses in the NOD mouse has identified a clear link between
autoimmune diabetes and neuropathy. This link between
autoimmune diabetes and neuropathy has also been observed
in non-NOD mouse models of autoimmune diabetes (108).

In sum, as for thyroiditis, manipulating the NOD mouse has
informed us on cellular processes and genetic pathways linking
autoimmune diabetes to peripheral neuropathies. As multiple
immune characteristics are shared between autoimmune
neuropathy in NOD mice and humans, the genetically
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modified NOD mice described above continue to be useful to
improve our knowledge on autoimmune neuropathy, as well as
the connection between the pancreas and the nervous system.
AUTOIMMUNE BILIARY DISEASES

Primary biliary cirrhosis (PBC), primary sclerosing cholangitis
(PSC), and IgG4-associated cholangitis (IAC) represent the three
main forms of autoimmune biliary diseases (ABD) (109, 110). All
ABD share specific symptoms such as bile duct obliteration and
cholestasis, characterized by a strong reduction of bile flow (111–
114). Here we will focus on the most common form of ABD
which is PBC, with an overall prevalence of ~19 to ~40 cases per
100 000 individuals depending on the geographic location (110).
PBC is a chronic autoimmune cholestatic liver disease most
frequently observed in middle-aged women (115), and is
characterized by lymphocytic infiltration of the liver portal
tracts, destruction of the epithelial cells of the intrahepatic bile
duct, and serologic hallmarks of antimitochondrial
autoantibodies (AMA) (116). Notably, 90-95% of people living
with PBC (PWPBC) will develop AMA; these autoantibodies
long precede clinical symptoms of PBC, often for many years,
and yet represent one of the three criteria for the definitive
diagnosis of PBC (117).

The NOD Mouse as a Model of ABD
In an attempt to understand the contribution of genetic loci linked
to autoimmune diabetes susceptibility in NOD mice, the congenic
NOD.c3c4 mouse carrying resistance alleles on chromosomes 3
(Idd3, Idd10, Idd17, Idd18) and 4 (Idd9.1, Idd9.2, Idd9.3), was
generated (118, 119). The NOD.c3c4 mouse does not show signs
of autoimmune diabetes (119), but about half of the female and a
quarter of the male mice spontaneously develop a fatal form of
ABD (118). Similar to human PBC, NOD.c3c4 mice exhibit
lymphocyte infi l trat ion in the l iver , production of
autoantibodies, biliary obstruction, and finally liver failure
leading to death (118–120). Of interest, the NOD.c3c4 strain
was the first mouse model of human PBC (119).

T Cell Infiltration in the Liver
In NOD.c3c4 mice, abundant T cell infiltration can be observed in
the liver, with CD4+ and CD8+ T cells primarily located in the
biliary epithelium (119). CD4+ T cells in the liver produce pro-
inflammatory cytokines such as IFN-g and IL-2 (119). Importantly,
antibody-mediated depletion of T cells leads to a significant
reduction in disease onset in NOD.c3c4 mice (119). Moreover,
transfer of CD4+ T cells from a NOD.c3c4 mouse to a lymphopenic
NOD.c3c4-scid mouse is sufficient to induce ABD development
(119). Altogether, these observations demonstrate that T cells are
necessary and sufficient for ABD in NOD.c3.c4 mice.

The role of T cells in ABD development has also been
investigated in a new congenic mouse model of PBC, the
NOD.ABD mouse, derived from the NOD.c3c4 mouse (120).
This congenic subline, with shorter resistance loci on
chromosomes 3 and 4 than those in NOD.c3c4 mouse,
develops ABD as well as autoimmune diabetes (120). This
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suggests that these two autoimmune diseases are not mutually
exclusive in the NOD.ABD congenic mouse model. Of interest,
the development of both T1D and PBC has also been reported in
humans (121). The NOD.ABD mouse model develops a similar
form of ABD as the NOD.c3c4 mouse characterized by common
bile duct (CBD) dilation, immune cell infiltration, and biliary
epithelial proliferation resulting in cyst formation (120). Of note,
NOD.ABD mice show an accumulation of central and effector
memory CD8+ T cells in the liver, which effectively produce IFN-
g and TNF-a (120). Additionally, the transfer of NOD.ABD
CD8+ T cells alone or with CD4+CD25- T cells into NOD.c3c4-
scid mice promotes ABD development in these recipients,
suggesting an important role of autoreactive CD8+ T cells in
ABD (120). Overall, studies in NOD.ABD and NOD.c3c4
congenic mice highlight an important pathogenic role of T
cells in ABD development.

Production of Autoantibodies in ABD
As mentioned above, the presence of autoantibodies, particularly
of AMA, is a strong serologic hallmark of disease, with 90-95% of
PWPBC presenting with these autoantibodies (117, 122). In
NOD.ABD mice, AMA were shown to bind the E2 subunit of
the pyruvate dehydrogenase complex (PDC-E2), part of the
mitochondrial 2-oxoacid dehydrogenase complexes (120).
While PDC-E2 is a ubiquitous autoantigen expressed in all
nucleated cells in the body, in PWPBC, only bile duct
epithelial cells are targeted (119). The reason for the specific
targeting of bile duct epithelial cells is unclear; it suggests that
other components are at play, and that the presence of AMAmay
be secondary to tissue destruction. Of interest, anti-PDC-E2
antibodies are present in both NOD.c3c4 and NOD.ABD
mouse models of PBC (119, 120). However, the proportion of
NOD.ABD mice presenting with these autoantibodies is rather
low, and, in contrast to PWPBC, anti-PDC-E2 antibody-positive
mice increases with disease severity and age (120). Still, anti-
PDC-E2 antibodies appear before detectable liver immune cells
infiltration in both PWPBC and NOD congenic mice (119, 122).

In addition to anti-PDC-E2 antibodies, antinuclear antibodies
(ANAs) and anti-Smith antibodies (anti-Sm) are also observed in
the sera from PWPBC but at a lower incidence (48% of PWPBC
develop ANAs vs 24% for anti-Sm) (123). Notably, the presence
or absence of ANAs and anti-Sm varies among the different
NOD mice congenic for chromosomes 3 and/or 4. In contrast to
NOD and NOD.ABD mice which do not develop ANAs and
anti-Sm autoantibodies, these autoantibodies are found in the
serum of NOD.c3c4 and other congenic lines (118, 120). Further
investigation of congenic sublines suggests that the Idd9.3 locus
is sufficient for ANAs and anti-Sm autoantibody production
(120, 124). Within the Idd9.3 locus, there is a candidate gene
encoding for CD137 (4-1BB), an inducible costimulatory
molecule on T cells (124, 125). A three amino acid difference
in CD137 between NOD and B10 mice results in a lower CD137
costimulatory signal in NOD mice (124, 126). This may explain
why NOD mice carrying non-NOD alleles at this locus show an
increased production of autoantibodies, via the enhanced
CD137-mediated costimulation between T cells and B cells
(124, 126).
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Overall, the NOD.c3c4 congenic mouse is a relevant model of
PBC; it shares significant characteristics with PBC including key
aspects of the humoral autoantibody response (127, 128)
(Figure 5). In addition, NOD.ABD congenic subline allows to
investigate the relationship between ABD and autoimmune
diabetes. These NOD congenic mice further allow the
identification of relevant and possibly clinically targetable
molecular pathways for the development of new treatments.
POLYAUTOIMMUNITY IN NOD MICE

The termpolyautoimmunity is used to describe the presence ofmore
than one autoimmune disease in the same individual (129–131). For
instance, a given NOD mouse can simultaneously present with
multiple autoimmune diseases, such as autoimmune diabetes and
thyroiditis (20, 132). Thepolyautoimmunitydoesnotneed to include
autoimmunediabetes. In fact,NOD.CCR7-/-mice are protected from
diabetes, but develop multiple autoimmune phenotypes, including
immune infiltration in the thyroid, sciatic nerve, lung, stomach,
intestine, uterus, and testis, among others (133). Notably, the thyroid
pathology in these mice most closely resembles the primary
hypothyroidism observed in humans (133). In addition,
autoimmune diabetes-resistant NOD.H2h4 and NOD.H2h4-IFN-g-/-

CD28-/- mice spontaneously develop thyroiditis and Sjögren’s
syndrome (SS) (134–136). While these findings further highlight
the remarkable autoimmune-prone background of theNODmouse,
we will mostly focus our discussion to polyautoimmune phenotypes
that include autoimmune diabetes.

In addition to autoimmune diabetes and thyroiditis (20, 132),
NODmice canpresentwith both autoimmunediabetes and SS (137–
143). T1D and SS can also co-occur in humans, with up to 55% of
PWT1D exhibit symptoms of SS, such as keratoconjunctivitis sicca
(dry eyes) and xerostomia (dry mouth) (144). SS is a chronic
autoimmune exocrinopathy disorder characterized by lymphocyte
infiltrationandprogressivedamage to theexocrineglands,mainly the
lacrimal and salivary glands (145, 146). These damages lead to
decreased tears and saliva secretion, which ultimately result in
keratoconjunctivitis sicca and xerostomia (145, 146). SS is notably
defined by important B cell alterations of the humoral immunity
which result in a polyclonal B cell activation and antibodies
production (135, 147). In fact, one of the main hallmarks of SS is
the presence of lymphocyte infiltration in the exocrine glands which
formed organized lymphoid structures called ectopic follicles (148).
In these ectopic follicles, all subsets of B cells are present, including
antibody-secreting B cells which produce pathogenic antibodies that
are useful for SS diagnosis (135, 148). These autoantibodies, which
target non-organ-specific antigens, are Rheumatoid factor, anti-
double stranded DNA, ANA, anti-Ro, and anti-La (147–149). Of
note, thepresenceof anti-Roandanti-La is a criterion forSSdiagnosis
(149). A study in NOD.H2h4 mice reveals that anti-Ro and anti-La
appearbefore thedevelopmentof ectopic follicles in the salivarygland
whereas antibodies to double stranded DNA only develop after the
appearance of ectopic follicles (148). These observations are
consistent with anti-Ro and anti-La being the hallmark of SS and
particularly as markers identifying patients in the active stage of the
disease. SS is most prevalent in women aged between 30 to 60 years
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old, with a female to male ratio from 20:1 to 9:1 (137, 146, 150). In
NOD mice, as in humans, the development of SS seems to be
influenced by sex hormones because SS in NOD mice is
significantly higher in females than males (137).

Another example of polyautoimmune traits present in
humans is T1D and multiple sclerosis (MS) (151). MS is an
autoimmune inflammatory disease of the central nervous system
characterized by autoimmune responses against the protective
myelin sheaths around nerve fibers, leading to severe and
progressive neurological impairment (152). PWT1D have a 3
to 20 times higher risk of developing MS compared to the general
population (151, 153–156). In addition, these two autoimmune
diseases share some genetic and environmental susceptibility
factors (151). Exposure to vitamin D seems to protect against the
onset of MS and T1D (157). Interestingly, immune responses
against pancreatic islet have been observed in people with MS,
and, conversely, PWT1D show immune responses against
central nervous system antigens (158). In addition to T1D and
MS polyautoimmunity, T1D can also be observed in association
with other autoimmune diseases such as AITD and DN in the
same individual (15–18, 68).

The polyautoimmunity observed in NOD mice allows
investigation of the mechanisms underlying this complex trait.
Indeed, polyautoimmunity in NOD mice can be exacerbated by
genetic manipulation and/or modulation of immune functions
Frontiers in Immunology | www.frontiersin.org 1124
(Figure 6). For instance, targeting PD-1, AIRE, IL-2 or performing
thymectomy in NOD mice promotes polyautoimmunity, as
discussed below.

PD-1 Driving Polyautoimmunity
PD-1, which is coded by the Pdcd1 gene, is an immunoreceptor
involved in the regulation of peripheral tolerance by inducing and
maintaining T cell clonal anergy and homeostatic control of B cells
and myeloid cells (159–163). The interaction of PD-1 with its
ligands, PD-L1 and PD-L2, suppresses immune responses like
autoimmunity and sustained inflammation (163, 164). As such,
PD-1 deficiency on the NOD genetic background accelerates the
onset and incidence of autoimmune diabetes, with an onset at 5
weeks instead of 12-17 weeks in NOD mice, and an incidence
reaching100%by10weeks (164). Sialadenitis is also acceleratedand
more severe,with significantlygreater pathological scores at 6weeks
of age in NOD.Pdcd1-/- relative to NOD mice (164). Sialadenitis is
an inflammation of the salivary glands caused by an increase in the
activation and effector functions of autoreactive T cells (165). The
NOD.Pdcd1-/- mouse, which presents a rapid onset of both
autoimmune diabetes and sialadenitis, can thus be used to study
polyautoimmunity. The early onset of autoimmune diabetes in the
NOD.Pdcd1-/- mice is in part due to early and severe insulitis,
resulting in rapid destruction of pancreatic b-cells (164). As for
NOD mice, insulitis and autoimmune diabetes in NOD.Pdcd1-/-
FIGURE 5 | The immunopathogenesis of autoimmune biliary disease. In the NOD congenic mice, T cells play an important role in ABD by activating B cells which
will eventually produce AMA, ANA, and anti-Sm autoantibodies.
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mice is dependent on the H2g7 MHC locus. Indeed, as for NOD-
H2b/bmice (26),NOD-H2b/b.Pdcd1-/-miceare completelyprotected
from insulitis and autoimmune diabetes (160, 166). This indicates
that the H2g7 haplotype is absolutely required for autoimmune
diabetes development, even inNOD.Pdcd1-/-mice (26, 160). Rather
than developing autoimmune diabetes, the NOD-H2b/b mice
develop SS (141, 167–169), whereas the NOD-H2b/b.Pdcd1-/-

female mice are polyautoimmune; they develop spontaneous
peripheral polyneuropathy, sialadenitis, pancreatitis, vasculitis,
and gastritis (160, 166). This polyautoimmunity is likely due to a
break inT cell tolerance as a consequence of a disruption of the PD-
1 pathway (160). To identify the genetic factors that drive this
polyautoimmune phenotype, Jiang et al. performed a genetic
linkage analysis between NOD-H2b/b.Pdcd1-/- and C57BL/
6.Pdcd1-/- mice (166). They identified 14 non-MHC quantitative
trait loci linked to these autoimmune traits (166). These studies
highlight the relevance of using geneticallymanipulatedNODmice
to study polyautoimmunity to identify additional genetic variants
linked to autoimmune diseases (160, 166).

AIRE Transcription Factor as a
Prototypical Factor Causing
Polyautoimmunity
As mentioned above, the AIRE transcription factor has an
important role in maintaining self-tolerance and preventing
autoimmunity (78, 170–173). The polyautoimmune syndrome
Frontiers in Immunology | www.frontiersin.org 1225
resulting from AIRE mutations is a rare autosomal recessive
disease called autoimmune polyendocrinopathy-candidiasis-
ectodermal dystrophy (APECED) or autoimmune polyendocrine
syndrome type-1 (174–176). In addition to developing chronic
mucocutaneous candidiasis, hypoparathyroidism, and primary
adrenal insufficiency, people living with APECED also develop
several organ-specific autoimmune manifestations including T1D,
autoimmune thyroiditis, gastritis, and hepatitis (170, 177, 178). As
in people living with APECED, AIRE deficiency in mice from
various genetic backgrounds, including NOD.Aire-/- mice, have
circulating autoantibodies targeting multiple organs and
lymphocytic infiltration in various tissues, representing a good
model for APECED studies (178, 179). Of note, NOD.Aire-/- mice
are protected from autoimmune diabetes but exhibit thyroiditis,
pancreatitis, pneumonitis, gastritis, and autoimmune peripheral
neuropathy accompanied by the development of some SS
symptoms (146, 167, 180). As mentioned above, the
NOD.AireGW/+ mouse is also polyautoimmune in that it
develops autoimmune peripheral neuropathy and autoimmune
diabetes (82, 83). Thus, both the NOD.Aire-/- and NOD.AireGW/+

mice are relevant models to study polyautoimmunity.
To study the impact of the humoral response in

polyautoimmunity, Gavanescu et al. compared NOD.Aire-/-

and NOD.Aire-/-mMT mice, and showed that the lack of B cells
in AIRE-deficient mice strongly reduces autoimmune
manifestations such as organ inflammation (179). In addition,
FIGURE 6 | Polyautoimmunity in the NOD mouse. The NOD mouse can spontaneously develop autoimmune diabetes, autoimmune thyroiditis, and Sjögren’s
syndrome (green). Disruptions in peripheral (blue) and central tolerance (pink) exacerbate or induce a wide spectrum of other organ-specific autoimmune diseases.
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depleting B cells in a variant of the NOD.Aire-/- model
significantly reduced inflammation and destruction of the
pancreas (179). These results suggest that B cells contribute to
APECED pathology and that anti-B cell therapies could help
alleviate symptoms in people living with APECED (179).

IL-2 and Polyautoimmunity
Polyautoimmunity is also observed in NOD mice treated with
IL-2 neutralizing antibodies (98, 166). These mice show an
exacerbation of autoimmune diabetes and develop a wide
spectrum of organ-specific autoimmune diseases such as
gastritis, thyroiditis, SS, and peripheral neuropathy (98). This
is likely due to the fact that IL-2 neutralizing antibodies broadly
reduce Treg number, as well as their suppressive functions (98–
100, 181).

Thymectomized NOD Mice Develop
Polyautoimmunity
As for PD-1 deficiency, AIRE mutations, and IL-2 neutralization,
thymectomy (Tx) performed at three days of age (d3-Tx) in NOD
mice leads to the development of polyautoimmunity (182). While
d3-Tx in NOD mice does not impact autoimmune diabetes onset,
it concomitantly results in autoimmune gastritis development
(182). Autoimmune gastritis is a CD4+ T cell-mediated disease
mainly characterized by lymphocytic infiltration in the gastric
mucosa and the production of autoantibodies against the parietal
cell H+/K+ ATPase proton pump (183–185). The BALB/c mouse
is particularly susceptible to autoimmune gastritis (183). D3-Tx
BALB/c mice develop autoimmune gastritis that closely resembles
human disease and for which the pathologic score is higher than in
d3-Tx NOD mice (183). Interestingly, susceptibility loci linked to
autoimmune gastritis, namely Gasa1 and 2, are located on mouse
chromosome 4 (184, 185) and overlap with the Idd11 and Idd9
loci, respectively (183–185). This suggests a strong genetic
association between autoimmune gastritis and diabetes (186).
Notably, the prevalence of autoimmune gastritis in PWT1D is
3-to-5-fold higher than in the general population (187). The
polyautoimmunity developing in Tx mice is thus relevant to
autoimmune gastritis and diabetes.

Overall, disturbances in various components affecting T cell
tolerance exacerbates polyautoimmunity in NOD mice,
providing clues to the development of polyautoimmunity and
potentially revealing therapeutic targets to alleviate the severity
of the pathologies.
THE NOD MOUSE AS A RELEVANT TOOL
BEYOND SPONTANEOUS
AUTOIMMUNITY

Unarguably, the NOD mouse model is a useful tool to study
autoimmune diabetes. By genetic manipulation, derivatives of the
NOD mouse model represent relevant spontaneous models for
multiple human autoimmune pathologies. However, one cannot
ignoreotherhighly relevantusesof theNODmousemodel. Forone,
intravenous injection of pertussis toxin in NOD mice induces the
Frontiers in Immunology | www.frontiersin.org 1326
development of experimental autoimmune encephalitis (158). This
new induced model exhibits phases of remission, and closely
mimics clinical and histopathological properties of MS; it may
help to determine the genetic and environmental factors that
promote the progression of MS (158). In addition, following
injection of heat-killed bacillus Calmette-Guérin, NOD mice
develop a non-organ specific autoimmune rheumatic disease
similar to SLE (188–190), creating yet another relevant induced
model to study the progression of a human pathology.

Apart from autoimmune diseases, the NOD strain has been
used for studying human cells. Indeed, due to a polymorphism in
CD172a, the NOD strain allows for better engraftment of human
hematopoietic cells than other mice (191, 192). The strong
interaction between the CD172a protein on the NOD
macrophages and CD47 on human cells leads to a negative
regulation of macrophage phagocytosis (193). Engraftment of
human cells is typically performed in NOD.SCID, NOD.Rag-/-,
NOD.SCID.IL2Rg-/- or NOD.Rag-/-.IL2Rg-/- mice, deficient in
various components of the adaptive immune system, to further
facilitate xenogeneic engraftment (194–199). Additional NOD
mouse models are constantly being created to enhance human
cell engraftment or to study specific diseases (200–206). For
instance, the Human Immune System (HIS)-DRAGA (HLA-
A2.HLA-DR4.Rag1-/-.IL-2Rgc-/-.NOD) mouse, grafted with
human epithelial cells expressing the human angiotensin-
converting enzyme 2 (hACE2) receptor in their lungs, was
generated for COVID-19 research (207). Following immune
reconstitution with human HLA-matched hematopoietic stem
cells and intranasal infection with SARS-CoV-2, the HIS-
DRAGA mouse exhibits T cell infiltration in the lungs and
develops the different forms of severity of COVID-19 disease,
as seen in the human population (207). The HIS-DRAGA mouse
strain provides an important model for studying SARS-CoV-2
infection, as well as the immune responses generated against this
virus, and can be used to test potential therapeutics and
vaccines (207).
CONCLUSION

The NODmouse remains one of the best models to study T1D. It
is useful to study autoimmune susceptibility as well as genetic
and cellular factors contributing to breakdowns of immune
tolerance. Genetic manipulation of the NOD mouse has
generated excellent models for studying spontaneous organ-
specific autoimmune diseases other than diabetes such as
thyroiditis, neuropathies, ABD and even polyautoimmunity.
The manifestation of these autoimmune diseases in the NOD
variant strains share many characteristics with human diseases,
particularly immune cell infiltration in the targeted organ and a
strong humoral response involving the generation of
autoantibodies. Although pancreatic b cells have been shown
to be particularly fragile in NOD mice (208), the exact reasons
why the NOD mouse develops autoimmune diabetes whereas
genetically modified NOD mice spontaneously develop
autoimmune responses to other target organs remain
unknown. In addition to organ-specific autoimmune diseases,
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disturbances in peripheral or central tolerance in NODmice lead
to polyautoimmunity, providing key information on the
importance of these immune tolerance mechanisms for
maintaining health. All in all, the NOD mouse, along with the
several NOD congenic mice and NOD genetic knockout mice
that have been generated over the years, represent indispensable
tools in research that may be exploited for applications much
broader than the study of type 1 diabetes. With their close
parallel to various human autoimmune pathologies, these
models should be exploited to increase our understanding of
these specific pathologies as well as to design and test
novel therapeutics.
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Type 1 diabetes (T1D) is an autoimmune disease that develops in the interplay between
genetic and environmental factors. A majority of individuals who develop T1D have a HLA
make up, that accounts for 50% of the genetic risk of disease. Besides these HLA
haplotypes and the insulin region that importantly contribute to the heritable component,
genome-wide association studies have identified many polymorphisms in over 60 non-
HLA gene regions that also contribute to T1D susceptibility.

Combining the risk genes in a score (T1D-GRS), significantly improved the prediction of
disease progression in autoantibody positive individuals. Many of these minor-risk SNPs
are associated with immune genes but how they influence the gene and protein
expression and whether they cause functional changes on a cellular level remains a
subject of investigation. A positive correlation between the genetic risk and the intensity of
the peripheral autoimmune response was demonstrated both for HLA and non-HLA
genetic risk variants. We also observed epigenetic and genetic modulation of several of
these T1D susceptibility genes in dendritic cells (DCs) treated with vitamin D3 and
dexamethasone to acquire tolerogenic properties as compared to immune activating
DCs (mDC) illustrating the interaction between genes and environment that collectively
determines risk for T1D. A notion that targeting such genes for therapeutic modulation
could be compatible with correction of the impaired immune response, inspired us to
review the current knowledge on the immune-related minor risk genes, their expression
and function in immune cells, and how they may contribute to activation of autoreactive T
cells, Treg function or b-cell apoptosis, thus contributing to development of the
autoimmune disease.

Keywords: type 1 diabetes, risk gene variants, immunoregulation, Tregs, tolerogenic dendritic cells, vitamin D
INTRODUCTION

For several decades the incidence of Type 1 diabetes (T1D) has been increasing worldwide (1). This
disease is characterized by the infiltration of immune cells in the islets of Langerhans (2, 3)
ultimately leading to the loss of insulin producing b-cells with insulin replacement as the only
available option to prevent fatal outcomes in all patients. Curative treatments are lacking for several
reasons, one being that the events in humans leading to a selective b-cell dysfunction and loss is
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hard to detect. Although the analyses of fresh and cryopreserved
tissues in the past decade, enabled by the nPOD initiative (www.
JDRFnPOD.org), have significantly contributed to our
understanding of the important local players in the process (2–
5), many questions remain. So far, adaptive immune cells are
indisputably involved in the b-cell destruction by their tissue
specificity. The clinically approved therapies modulate immunity
in general, the more preferable antigen-specific immune
therapies show promising results but are not ready for general
clinical application (6).

While autoimmune T1D is not completely inherited and
environmental factors show a significant contribution to the
pathogenesis (7), certain genetic polymorphisms do critically
increase the predisposition for T1D (8). Polymorphisms in HLA
and insulin (INS) regions were first described and contribute
strongly to the disease risk (9, 10). Later, genome-wide association
studies (GWAS) have identified many additional SNPs in so called
non-HLA risk genes, which show a small but clear individual
contribution to the increased risk for T1D (11). When included
in a cumulative score (T1D-GRS), it significantly improved the
capacity to discriminate T1D from T2D or healthy subjects, and to
discriminate monogenic from autoimmune T1D (12–14). The exact
functional contribution of many of these SNPs to the T1D-GRS
remains to be characterized. We have observed a positive
correlation between the non-HLA genetic risk, in addition to, but
independently of HLA, and the intensity of the peripheral
autoimmune response in T1D patients (15). Indeed, many of the
associated T1D risk genes are controlled by lymphoid enhancers or
involved in immune networks (11, 16). Our studies focusing on the
differential transcriptome of tolerogenic (tolDC) versus
inflammatory dendritic cells (mDCs) showed that a tolerogenic
modulation of monocytes by 1,25(OH)2 vitamin D3 (VitD3)
induced a stable change in the expression of sets of these non-
HLA risk genes (17, 18), inspiring a hypothesis that quantitative
and/or qualitative effects of the SNPs on the related gene products
may reflect in a change of the immune regulatory vs. an immune
activating balance. Here, we aim to review the knowledge of
functional consequences of T1D risk SNPs on the regulation,
expression and function of linked risk genes and further
contemplate how this may impact the functionality of the effector
vs. regulatory T cells, changing the balance between immune
activation and suppression in the pancreas that is critical to
attenuate chronic inflammation and an uncontrolled damage of
insulin producing b-cells.
IMMUNOPATHOGENESIS OF T1D, HOW
MUCH DO WE ACTUALLY KNOW?

The exact order of immune events that cause human T1D has not
been established. Hurdles such as that circulating blood cells poorly
represent what is going on in the human pancreas, as well as the
inability to directly analyze the target organ have significantly
delayed our understanding of this autoimmune disease. Literature
supports different scenarios describing the initiating events,
Frontiers in Immunology | www.frontiersin.org 234
involving an altered thymic selection of T cells that recognize b-
cell antigens, viral infections that mark b-cells as the targets for
destruction, enhanced expression of neo-antigens by b-cells due to
cell stress, or an increased sensitivity of b-cells to inflammation
(19–21). In all cases, b-cells seem critically involved in the process
while the (auto)immune system is essential to execute the
destructive insult resulting eventually in disease (22). The
proposed initiating events are not mutually exclusive and likely
cause the exposure of b-cell (neo-)antigens, which are taken-up by
antigen presenting cells and presented to T cells in the context of
high-risk human leukocyte antigen (HLA) molecules. The ‘first hit’
could occur when such presentation of b-cell antigens activates a
destructive autoimmune response that may inflict some damage in
the pancreatic islets but the disease is delayed as long as the
immune regulation keeps the autoimmunity in check. The ‘second
hit’ may occur when a regulatory checkpoint is bypassed such as
upon an anti-cancer stimulating immunotherapy by check point
inhibition or when the stressed (or infected) islets of Langerhans
start releasing cytokines and chemokines, attracting immune cells
where they target and eliminate functional b-cells to the point of
no return.

T1D patients donating tissues for research helped to collect a
significant evidence that T1D pathogenesis can follow different
individual scenarios but also that mechanisms described in
animal models are not all or not just as strongly present in the
human immune system. For example, the infiltration of immune
cells around the islet of Langerhans, designated as insulitis, in
which activated CD4+ T cells control macrophages to induce
killing of the b-cells by cytokines and reactive oxygen species, is
clearly evident in mice (23) but not evident in human pancreas
(24, 25). Cytotoxic CD8+ T cells are essential for the ultimate
destruction of b-cells, while their antigen specificity varies
between patients (4, 26). Hypothetically, techniques that
discriminate relevant antigens and cells in the target tissue,
allowing to separate primary immune aggressors from those
only guilty by association will help solve this puzzle. Such
bystanders may be the autoantibodies, which role in the
immunopathology of human T1D is proved dispensable
although they represent a good biomarker of an ongoing and
in time often increasingly complex autoimmunity (27, 28). These
antibodies can be found months to years before the clinical
symptoms (29), help an early diagnosis of the disease and may
prove valuable to identify individuals that will benefit from new
curative treatments.

Time will tell whether the knowledge on the specificity of T1D
autoantibodies to insulin (INS), 65 kDa glutamic acid
decarboxylase (GAD65), insulinoma-associated protein2 (IA2)
and zinc transporter 8(Znt8) (30) has helped or derailed the
investigation of the b-cell specific targets of T cell autoimmunity
(26, 31). More recent findings point to alternative transcripts and
(neo-)antigens created by stressed or damaged b-cells, which are
normally invisible to the immune system, as more likely to drive
the T-cell mediated pathogenic destruction (21, 32–37). The
contribution of the originally described antigens could be
different, namely to secure immune regulation through a
negative selection of high-affinity autoreactive T cells (38), or
May 2022 | Volume 13 | Article 886736
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to establish peripheral tolerance through low-affinity self-peptide
recognizing regulatory T cells (Tregs) (39, 40). The existence of
autoantibodies may hence be a sign of a regulation ‘gone wrong’
as a consequence of a genetically imprinted or environmentally
caused impaired T cell selection, effector activation or reduced
Treg function, such as demonstrated in T1D patients (41, 42).
THE IMPACT OF MAJOR T1D RISK
GENES ON IMMUNE CELLS

Certain genetic polymorphisms associate with a higher risk to
develop an autoimmune disease, which is most often expressed
as an odds ratio (OR) that measures the strength of association
between carrying a gene variant X (exposure) and development
of T1D (outcome) (43). Specific HLA haplotypes and SNPs in the
insulin gene (INS) strongly increase the odds to develop T1D and
are hence designated as major susceptibility genes (44, 45). The
HLA region was first associated with the risk of developing T1D,
which is in line with a critical role of HLA in shaping the adaptive
immunity (46). In the population of Caucasian origin, more than
90% of patients that develop T1D before puberty are carriers of
one or both HLA haplotypes, namely HLA-DR3/DQ2
(DRB1*0301-DQA1*0501-DQB1*0201) or HLA-DR4/DQ8
(DRB1*0401-DQA1*0301- DQB1*03020 (47). In fact,
heterozygotes carriers of both DRB1*03 and DRB1*04 carry up
to 40 times higher risk to develop T1D than individuals with
other HLA genotypes (48, 49). This synergic effect is likely
caused by the formation of highly susceptible trans-encoded
HLA-DQ (a1, b1) heterodimer molecules (48, 50), which
efficiently bind and present b-cell derived peptides, increasing
the number of different peptides that could trigger a pathogenic
CD4+ T cell responses (51). Furthermore, the risk variant
specific epigenetic modulation of the HLA expression could
contribute to the disease pathogenesis (52).

A stable HLA molecule on the cell surface, however, does not
exist without a peptide. Hence the contribution of HLA should
be considered in combination with antigens/peptides that they
present. The so far well-established b-cell antigens that are
targeted by both B and T cell responses are INS, GAD65, IA2
and Znt8 but the list of target antigens is increasing (34, 35, 53).
Of the b-cell proteins targeted as autoantigens, only SNPs in the
INS gene are associated with an increased risk for T1D. The
increased risk was first attributed to the polymorphism in
variable number of tandem repeats (VNTR) in the insulin
promotor (54, 55), determining the differential insulin
expression between thymus and islets and leading to a faulty
selection of the autoreactive T cells in thymus. While this may
explain a part of the association, alternatives have been also
explored, one being that other SNPs in the 3’ UTR of the INS
gene (rs3842752 (56) and rs3842753 (57)) actually functionally
contributes to the increased risk. Namely, these SNPs are
expressed when an alternative translation start in the INS
mRNA is used, creating a new protein sequence called INS-
DRIP. Interestingly, a few T1D patients carrying the protective
allele (C-H) demonstrated no autoreactivity to INS-DRIP unlike
Frontiers in Immunology | www.frontiersin.org 335
the carriers of the susceptible (R-P) version (36). Which insulin-
related SNP is causal and whether the increased risk is a
consequence of the expression of 3’SNPs in INS-DRIP or it
reflects the 5’ INS promotor polymorphism remains unresolved,
given the strong linkage disequilibrium between the 5’and 3’
regions of INS, and the exact underlying mechanism is currently
under investigation.

Despite the critical role of CD8+ T cells, the contribution of
HLA class I molecules to the disease propensity is less obvious
and affected by the high linkage disequilibrium between HLA
class I and II genes. For instance, 50-70% of T1D patients carry
HLA-A2 (0201), which turns this HLA class I allele as the most
frequent amongst patients; yet, this variant is also present in 30-
40% of the general population, affecting the statistical
significance. HLA-B*39 has been identified as single HLA class
I allele standing out in its association with T1D, but this variant is
relatively rare (58). In our view, this indicates a more important
role of HLA class II and antigen presentation in establishing and
control of the immune regulation than in the actual b-
cell destruction.
MINOR T1D RISK SNPS WITH
A FUNCTIONAL IMPACT ON
IMMUNE CELLS

For many risk genes variants, there is still insufficient
understanding of whether and how they functionally impact
the initiation and progression of the autoimmune process
causing T1D. The functional outcomes of the coding T1D risk
variants have been reviewed recently (59), and a fine mapping of
the 10 known susceptibility regions combined with functional
analyses provided further insight in potentially causal missense
and non-coding SNP variants (60). Many of these risk genes were
differentially expressed in dendritic cells upon tolerogenic
modulation (17, 18). Hence, we here consider the functional
roles in immune regulation of the minor T1D risk genes as such
or when influenced by the SNP. We mainly focus on the genes
for which functional data on human cells are available to allow a
discussion on the consequences of the causal SNPs for the
autoreactive T cell activation, Treg function or b-cell apoptosis
that may support the autoimmune disease (Table 1
and Figure 1).
PTPN22

Protein tyrosine phosphatase, non-receptor type 22 (PTPN22)
encodes protein Lymphoid-tyrosine phosphatase (LYP) (81).
The PTPN22 allele C1858T has a single amino acid
substitution R620W (arginine to tryptophan; rs2476601, OR=
1.890), and has been associated with T1D, Hashimoto’s
thyroiditis, rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE), vitiligo and Graves disease (82). The
linkage with several autoimmune diseases and the observation
that individuals with this variant are protected from pulmonary
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tuberculosis or cancer (83, 84), suggests a role in promoting
effector responses at cost of immune regulation (85–88). LYP
protein inhibits T cell and B cell activation by dephosphorylation
of tyrosine residues in Src family kinases. The interaction
between C-terminal Src kinase (CSK) and the P1 motifs on
LYP are important to regulate the inhibitory activity of LYP.
Next to lymphocytes, LYP plays a role in the control of activation
and migration of innate myeloid cells (monocytes, macrophages,
DCs and neutrophils) (89–91).

The molecular consequences of the PTPN22 mutation and
the impact on T1D risk have been discussed extensively before
(92, 93). The debate regarding the impact of the T1D risk variant
on T cells remains as the results support both gain-of-function
and loss-of-function as a mechanism (94). Following the gain-of-
function hypothesis, the R620W mutation blunts the TCR
signaling allowing autoreactive thymocytes to escape selection
(95). The same group reported later that R620W is located in the
P1 motif and prevents the binding of LYP to CSK (96), directing
towards a loss-of-function hypothesis that may affect TCR
signaling and certainly applies for the regulation of LFA-1
signaling. A deletion of Ptpn22 in mice, mimicking the loss-of-
function, demonstrated increased Treg levels (97) which is in line
with a study that shows a direct correlation between having the
PTPN22 R620W variant and elevated circulating Treg frequency
in humans (98). Recently, Perry et al. showed a higher expression
of PTPN22 in Tregs than in conventional T cells (Tconv) at rest
irrespective of the genotype, but a lower impact of the risk
variant on the suppression of distal TCR signaling in both
subsets and permitting a stronger proliferation of Tconvs. The
consequences for Tregs in this study were less evident implying a
differential contribution of PTPN22 risk variant to Tconv and
Treg (99).
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Inmyeloid cells, PTPN22 is involved in the downstream signaling
of TLR4, TLR7/8, NOD2 and cytokine receptors (reviewed in (92)).
In this case, LYP does not work as a phosphatase but promotes
TRAF3 ubiquitination and TLR-induced upregulation of type I
interferons (IFNs). The PTPN22 R620W variant failed to support
this type I IFN response (100). Additionally, antigen presenting cells
with the PTPN22 R620W variant are more sensitive to NLRP3 and
secrete more IL-1b in response to TLR-stimulation (101). Combined
with the dampened type I IFN signal, this could affect the response of
myeloid cells to infections (102) and the subsequent activation of
T cells.
PTPN2

Protein Tyrosine Phosphatase, Non-Receptor Type 2 (PTPN2) is
ubiquitously expressed, including b-cells and hematopoietic
cells. PTPN2 takes part in a broad range of signaling pathways
regulating the response to hormones, cytokines and
inflammation (93, 103–105). The b-cells upregulate PTPN2 in
response to cytokines or polyI:C (mimicking viral infection)
(106, 107). Judging by the effects of knockdown in primary
rats and human b-cells, which exacerbated cytokine induced
pro-apoptotic signaling via STAT1, JNK1, and BIM and
enhanced apoptosis, PTPN2 plays a protective and anti-
apoptotic role in b-cells (106–108). The risk SNP rs1893217
(OR=1.210) is an intronic non-coding variant which may
contribute to the sensitivity of b-cells to immune- or virus-
mediated apoptosis (107).

The risk variant of PTPN2 is associated with decreased PTPN2
expression in CD4+ memory T cells and reduced IL-2 receptor
signaling via STAT5 phosphorylation, which correlated with
TABLE 1 | Risk gene variants associated with T1D (discussed in this review). For each gene variant the variant ID, risk allele frequency and odd ratio are presented.

Gene Variant ID (RSID) OriginalPub.* Frequency** Odds Ratio Assoc. p-value Publication***

HLA class II DRB1* 04:05-DQA1*03:02-DQB1*03:02 11.370 4.000 x 10^-5 Erlich H et al., 2008 (61)
DRB1* 04:01-DQA1*03:01-DQB1*03:02 8.390 6.000 x 10^-36 Erlich H et al., 2008 (61)
DRB1* 03:01-DQA1*05:01-DQB1*02:01 3.640 2.000 x 10^-22 Erlich H et al., 2008 (61)
DRB1* 04:02-DQA1*03:01-DQB1*03:02 3.630 3.000 x 10^-4 Erlich H et al., 2008 (61)

INS rs689 (62) A –> T T: 68% 2.256 2.161 x 10^-135 Inshaw JRJ et al., 2021 (63)
rs3842752 (56) G –> A A: 20% 0.600 2.310 x 10^-14 Reddy et al., 2011 (56)
rs3842753 (57) T –> G G:70% 0.580 2.180 × 10-32 Howson et al., 2009 (57)

PTPN22 rs2476601 (64) A –> T T: 9% 1.890 1.000 x 10^-100 Onengut-Gumuscu S et al., 2015 (11)
PTPN2 rs1893217 (65) A –> G G: 15% 1.210 1.200 x 10^-15 Onengut-Gumuscu S et al., 2015 (11)
IFIH1 rs2111485 (66) A –> G G: 57% 1.171 1.892 x 10^-10 Forgetta V et al., 2020 (67)

rs1990760 (68) C –> T T: 57% 1.180 2.000 x 10^-11 Todd JA et al., 2007 (69)
rs3747517 (66) T –> C C: 71% 1.700 6.000 x 10^-4 Liu S el al., 2009 (70)
rs13422767 (70) G –> A A: 15% 1.799 1.000 x 10^-4 Zurawek M et al., 2015 (71)

CTLA4 rs231775 (72) A –> G G: 37% 2.000 1.000 x 10^-2 Goralczyk A et al., 2018 (73)
rs5742909 (74) C –> T T: 8% 1.500 2.000 x 10^-2 Chen S et al., 2019 (75)
rs3087243 (69) G –> A A: 44% 0.840 7.400 x 10^-21 Onengut-Gumuscu S et al., 2015 (11)

IL2RA rs11594656 (76) T –> A T: 77% 1.220 1.920 x 10^-28 Lowe CE et al., 2007 (76)
rs2104286 (77) T –> C C: 24% 0.880 2.100 x 10^-2 Espino-Paisan L et al., 2011 (78)
rs12722495 (79) T –> C C: 8% 0.620 1.740 x 10^-30 Smyth DJ et al., 2008 (79)
rs61839660 (76) C –> T T: 9% 0.620 2.800 × 10^−39 Onengut-Gumuscu S et al., 2015 (11)

CD226 rs763361 (69) C –> T T: 48% 1.120 1.000 x 10^-9 Plagnol V et al., 2011 (80)
Ma
Data in this table has been collected using the database on https://platform.opentargets.org for type 1 diabetes mellitus. Genetic associations were selected as data type and Immune
system as pathway types. Per gene variant the odds ratio is derived from the study listed in the OT Genetics Portal. *The original paper reporting the association between the risk variant
and T1D. **Frequency of a risk allele in the world. ***Publications have been cited which reported the OR and p-value in the table.
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reduced FOXP3 expression in Tregs (109) suggesting that PTPN2
indirectly modulates IL-2 responsiveness in T cells and thus can
work independent of the susceptible IL2RA gene variant. This
dysregulation of Tregs can contribute to the faulty maintenance
of autoreactive T cells and B cells and thus sustain the vicious circle
of uncontrolled autoimmune response (93). Indeed, antigen-specific
effector T cells (Th1 and Tfh) in Ptpn2 deficient mice show
increased proliferation (110). Cell cultures of human myeloid cells
showed that a loss of PTPN2 enhances IFN-g, IL-6 and MCP-1
secretion (103), implicating PTPN2 in the regulation of
inflammation through antigen presenting cells as well.

IFIH1

Interferon Induced with Helicase C Domain 1 (IFIH1) encodes for
melanoma differentiation-associated gene 5 (MDA5). MDA5 is a
Frontiers in Immunology | www.frontiersin.org 537
cytoplasmic receptor for double stranded RNA (dsRNA) and
detects viral RNA (106, 111, 112). Detection of dsRNA will
activate a cascade of antiviral responses in the innate immune
system by the production of IFN (113, 114). There are four SNPs in
the IFIH1 gene (rs1990760, OR=1.180; rs3747517, OR=1.700;
rs2111485, OR=1.171; and rs13422767, OR=1.799) which are
associated with T1D (70, 71). Variants rs2111485 and rs13422767
are located in an intergenic region of the 2q24 locus (13–23 kb 3′
of IFIH1), but it is not known whether the DNA sequences in this
region act as a transcriptional silencer or enhancer. Winkler et al.
showed that children at risk and islet-autoantibody positive with the
rs2111485 variant genotype progressed faster to T1D (115). The
contribution of other SNPs in the disease progression was not
validated in this study. Variants rs1990760 and rs3747517 are
located within the binding site of transcription factors and could
therefore influence the expression of IFIH1 (116).
FIGURE 1 | Model of the discussed effects of T1D risk variants on cellular functions. The figure depicts our interpretation of the consequences for effector T cell
(Teff), regulatory T cell (Tregs), and b-cells of the described or assumed change in the gene function caused by a T1D risk variant (RV) as compared to the non-risk
variant (NRV) SNP as discussed in the manuscript. While the LYP protein normally controls the effector T cells by a downstream signaling inhibition, the risk variant
(rs2476601) induces a change in PTPN22 that promotes Teff responses. The functional effects of PTPN22 remain unclear. The PTPN2 protein plays an anti-
apoptotic role in b-cells and controls T cells via IL-2, which may favor Tregs due to a strong sensitivity to IL-2. Indirectly, a good activity of Tregs keeps the effector
T cells under control. The PTPN2 risk variant (rs1893217) causes a decrease in PTPN2 expression and contributes to the sensitivity of b-cells to immune- or virus-
mediated apoptosis. The risk variant also reduces IL-2 receptor signaling, which decreases FOXP3+ Tregs in T1D patients, and thus dysregulating Treg function. The
PTPN2 deficiency (mimicking the rs1893217 variant) results in increased Teff proliferation. The MDA5 (encoded by IFIH1) normally functions to activate stress- and
anti-viral response, and by increasing the activity of MDA5, the risk variant (rs1990760) increases the basal IFN-I production leading to b-cell apoptosis. CTLA-4
functions normally to promote Treg function and inhibit Teff activation. The risk variant for CTLA4 (rs231775) results in decreased expression of CTLA-4 on T cells,
releasing the control of a Teff cell activation and reducing the suppressive Treg potency. The IL2RA risk variants impair the expression of CD25 and thus the IL-2
response and with the associated lower FOXP3 expression impacts primarily Tregs and their suppressive function. The resulting reduced Treg potency will indirectly
release the control on Teff promoting the activation. The CD226 is an activating T cell molecule that promotes the inflammatory activity of Teff and reduces the
suppression of Tregs. The CD226 risk variant (rs763361) results in an isoform of CD226 with increased activity, which further increases Teff and CD226+ Tregs,
thereby further reducing the overall suppressive capacity of Tregs.
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Human PBMCs and cell lines with the IFIH1 rs1990760
variant (coding an amino acid substitution A946T) have
heightened basal and ligand-triggered IFN-I production (117).
This SNP was thus characterized as a gain-of-function variant
with a capacity to protect the carriers against specific viral
challenges while promoting the risk for autoimmune diseases.
This confirmed a hypothesis based on the results from previous
studies in healthy individuals carrying the rs1990760 variant and
animal models (118, 119), that this variant enlarges the risk for
autoimmune disease by increasing the basal activity of IFN-
stimulated genes through the recognition of self-dsRNAs without
the need for a concomitant viral challenge.

MDA5 activation in DCs mediates cell maturation, increasing
antigen processing and presentation through the expression of
MHC class I chemokine receptors and co-stimulatory molecules
(120), thus promoting the activation and expansion of
inflammatory T cells (119). Hence, a heightened MDA5
activation can support the induction of autoimmunity via
agitated DCs presenting the islet antigens to T cells in a pro-
inflammatory rather than an anti-inflammatory context.

Next to the viral or cytoplasmic dsRNA, mitochondrial
dsRNA released after b-cell stress could trigger the production
of proinflammatory cytokines in individuals carrying the IFIH1
risk variants (70, 121). Namely, the normal processing of the
transcribed mitochondrial genome increases under stress causing
a leakage of the mitochondrial dsRNA remnants into the cytosol
(121, 122), where MDA5 recognizes these as damage-associated
molecular patterns (DAMP). Hence, metabolic stress in b-cells
that causes mitochondrial dysfunction might also contribute to
the heightened IFN response and apoptosis of b-cells (123).
CTLA4

The Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4)
genes encodes a transmembrane co-receptor expressed on the
surface of T cells. CTLA-4 functions as a negative regulator of T
cell activation which can mediate T cell regulation or apoptosis
by interacting with B7, a co-stimulatory molecule present on
antigen presenting cells (124–127).

Genetic studies on CTLA4 in T1D have been focusing on
three gene variants: the A49G SNP (rs231775, OR=2.000) in
exon 1, the SNP rs3087243 (OR=0.840) which is in high linkage
disequilibrium with the dinucleotide (ATn) repeat in the 3’-
untranslated regions (UTR) and the coding C318T SNP
(rs5742909, OR=1.500) in the CTLA4 promotor (128).

The first SNP rs231775 is in exon 1 at position 49 from A to G
(A49G) of the CTLA4 gene (129, 130). Meta-analysis of 76
studies showed that the rs231775 variant is more prevalent in
T1D patients with Caucasian and South Asian origin and is
associated with Type 2 Diabetes (T2D) in East Asians and South
Asians (75). The A49G SNP causes the amino acid replacement
of threonine to alanine and influences the posttranslational
modification of CTLA-4. These modifications result in an
inefficient CTLA-4 glycosylation and decreased expression of
CTLA-4 on T cells, leading to uncontrolled T cell activation,
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including the autoreactive T cells (75, 131). The rs231775 variant
was also associated with reduced production of soluble CTLA-4
(sCTLA-4), which can inhibit T cell proliferation by binding/
blocking B7 (132). This has been confirmed in Ctla4 KO NOD
mice (133), in which the posttranscriptional silencing of sCTLA-
4 reduced Treg potency and accelerated T1D onset. Interestingly,
sCTLA4 suppressed proliferation of committed islet autoreactive
T cell clones isolated from the blood of T1D patients in a dose-
dependent manner, but it was unable to suppress naïve
alloreactive T cells in an MLR (134), indicating a differential
role for sCTLA4 in the control of memory versus primary
immune responses.

The second SNP rs3087243 affects the size of dinucleotide
(AT)n repeats in the 3’-UTR and the CTLA4 mRNA stability
through a post-transcriptional control (135), influencing the rate
of translation (38, 136, 137). De Jong et al. showed that
autoreactive T cells with long variants of the (AT)n repeat in
the 3’-UTR region have reduced CTLA4mRNA levels (138), thus
variations in the length of (AT)n repeats influence CTLA4
expression contributing to the development of T1D. Also a
rare genetic variation (rs13384548) within the 3’-UTR of the
CTLA4 mRNA disrupted the miR-302a* binding site reducing
the capacity to control CTLA4 mRNA (139).

The SNP rs5742909 in the CTLA4 promotor region cause a C
to T mutation at position 318. Individuals carrying the minor
318T allele have a higher promotor activity than the 318C allele,
resulting in an increased expression of CTLA-4 by T cells (140).
While this suggests that the C to T transition increases a
regulatory function, the consequences for the T cell response
and the effect of this gene variant on the development of T1D is
not clear yet.
IL2RA

The protein IL-2Ra (CD25) is a high-affinity subunit of the IL-2
receptor that forms a complex with IL-2Rb- and g-chain to
activate intracellular signaling upon interaction with IL-2 (141).
IL-2RA is constitutively expressed on Tregs and can be induced
upon activation in other (effector) T cells (142). Polymorphisms
in the genes encoding for the IL-2 receptor, IL2RA (rs2104286,
rs61839660, rs10795791, and rs41295121) and IL2RB
(rs743777), are associated with T1D (69, 76, 143, 144). DNA
methylation at CpGs (−373 and −456) within the promotor of
the IL2RA gene was slightly higher in T1D patients than in
controls (142), indicating that epigenetic changes in the IL2RA
promotor might participate in the IL2RA risk allele for T1D.
Indeed, methylation at CpG-373 was correlated with 16 SNPs in
the IL2RA gene, both with the protective alleles (rs12722495,
rs2104286, rs61839660) and the susceptible allele at rs11594656
(Table 1) (11, 69, 145, 146).

Regarding the functional consequences for T cells, Dendrou
et al. showed that individuals with the SNP rs12722495
(OR=0.620) had a higher CD25 expression on CD4+ memory
T cells, while the carriers of the SNP rs2104286 (OR=0.880)
showed a lower CD25 expression on naïve CD4+ T cells,
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compared to the non-carriers (147). They further demonstrated
that individuals with the protective variant (rs12722495)
consistently had higher proportion of activated IL-2 producing
CD69+ CD4+ memory T cells compared to individuals with a
susceptible allele, supporting the hypothesis that cells with a
higher surface CD25 are more responsive to IL-2R mediated
activation (147). This is consistent with the earlier observed
defects in IL-2 production in T1D patients (148, 149). Cerosaletti
et al. challenged the view that expression levels of CD25
functionally contribute to the susceptibility and showed a
reduced signaling from IL-2R (measured by a phosphorylation
of STAT5) in CD4+ CD25hi T cells of T1D patients and healthy
individuals carrying the rs2104286 risk haplotype (150). The
unexpected higher expression of CD25 on naive Tregs in T1D
patients and healthy controls with the rs2104286 risk haplotype
compared to the carriers of the protective variant, was not
explained in this study. The rs2104286 haplotype also
correlated with increased soluble IL-2RA levels, suggesting that
shedding of the IL-2RA may account for the reduced IL-2R
signaling in these individuals. Alternative hypothesis explaining
the protective effect of the SNP rs12722495 and the contribution
of polymorphisms in IL-2R-pathway in general was through the
effects on nTregs (151). Given their constitutive expression of
CD25 and a strong sensitivity to IL-2, lower IL-2 signaling
measured by the STAT5 phosphorylation reduces the IL-2
response, impacting the FOXP3 expression and thereby
affecting the inhibitory function of Tregs (151, 152).

The SNP rs61839660 (OR=0.620) is located within the IL2RA
gene and it is a non-coding causal SNP variant for T1D (11, 60).
This SNP is co-inherited with a so-called group-A protective
T1D haplotype that also includes the rs12722495 (153).
Interestingly, a rare variation in the group-A haplotype causing
the loss of the protective allele only at SNP rs61839660 was
sufficient to counteract the high IL2RAmRNA and surface CD25
expression (153). The mechanistic studies revealed that the
minor SNP variant reduces the IL2RA enhancer activity (154,
155), which is stimulation-responsive causing a delay in CD25
expression upon T cell activation, and that a deletion of this
enhancer diverted the effective Treg polarization in mice (155).

Monocytes-derived and myeloid DCs express CD25 both as a
surface-bound and soluble molecule when stimulated with
prostaglandin E2 (PGE2) (156). Also, tumor-associated DCs
co-express CD25 and the inhibitory molecule IDO (156). In
our hands, tolDC express lower IL2RA mRNA and lack the
surface-bound CD25 compared to mDCs (17). We did not
measure whether tolDC also release less soluble CD25. Taken
together, the surface-bound CD25 may enable mDCs to catch IL-
2 and use it to stimulate T cells, while the soluble CD25 molecule
could work to block IL-2 and help the regulation of T cell
responses (157). The contribution of IL2RA risk variants to the
DC function has not been investigated. As the effects described so
far in T cells predominantly impact the downstream IL-2R
signaling and DCs do not express other two proteins of the IL-
2R complex, the functional contribution of genetic
polymorphisms in IL2RA is more likely to show through the
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surface expression or production of soluble IL-2RA than to
impact DC differentiation.
CD226

CD226 or DNAX-accessory molecule-1 (DNAM-1) is a
transmembrane receptor expressed on T cells, NK cells, NKT
cells, platelets and a subset of B cells (69, 158), and aids their
activation and differentiation through co-stimulation (159). The
inhibitory counterpart of CD226 is T cell Immunoreceptor with
Ig and ITIM domains (TIGIT), which is a negative regulator
molecule expressed in Tregs and NK cells (160). TIGIT binds
CD155 on DCs, driving them towards a tolerogenic phenotype.
Disturbance of the TIGIT/CD226 axis could therefore contribute
to the development of autoimmunity (161).

The SNP rs763361 (Gly307Ser, OR=1.120) in the CD226 gene
is associated with multiple autoimmune diseases, such as T1D,
multiple sclerosis (MS), autoimmune thyroid disease, RA, SLE
and systemic sclerosis (162). This SNP results in a missense
mutation at position 307 (glycine to serine) and is located in two
intracellular phosphorylation sites of the protein (residue 322
and 329) (159, 163). The SNP rs763361 may alter RNA splicing
by disrupting splice site enhancers or silencers, resulting in an
isoform of CD226 with altered function (69, 159, 163) and
increased CD226 activity in T cells (164).

Indeed, Gaud et al. showed that in vitro anti-CD226 and anti-
CD3 co-activation of human primary CD4+ T cells of individuals
carrying the rs763361 risk variant induces enhanced p-ERK
(164). The ERK pathway regulates T cell activation and
differentiation. The rs763361 variant is associated with skewing
to Th17 and Th17.1 cells after stimulation in vitro (164). Indeed,
T1D patients carrying the rs763361 risk variant had greater
frequency of GAD antibody and low C-peptide levels,
reflecting a more aggressive disease pattern in a Brazilian
population (165). Wallace et al. observed that the rs763361 risk
variant correlated with reduced CD226 mRNA levels in
monocytes and which could reduce cell activation and thus
alter the interactions between monocytes and lymphocytes
(166). When Cd226 was deleted in NOD mice, this decreased
disease incidence and insulitis as compared to WT mice (167),
but the deletion also increased the number of CD8+ thymocytes
and splenocytes. The CD226 deficient CD8+ T cells showed
decreased reactivity to the b-cell specific antigen IGRP, from
which Shapiro et al. concluded that CD226 plays a role in the
development of T1D by modulating thymic selection and
affecting activation of CD8+ T cells (167). The effect of the
rs763361 risk variant has not been studied in human CD8+ T
cells or Tregs. The majority of human Tregs highly express
TIGIT, but a Treg subset co-expresses CD226 (168). These
CD226+ Tregs were associated with reduced suppressive
capacity. Hypothetically, the rs763361 variant, which increases
CD226 activity in T cells, will increase the proportion of CD226+
Tregs and thereby reduce the overall suppressive capacity of
Tregs. Studying further the expression and function of CD226 in
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humans is needed for a better understanding of whether the
rs763361 risk variant contributes through T cell activation only
or also by affecting the interaction between monocytes
and lymphocytes.
TOLEROGENIC MODULATION OF
DENDRITIC CELLS AND THE IMPACT ON
THE MINOR RISK GENES

Gene expression can be changed by genetic engineering or using
bioactive small molecules, for which aim the specific targeting of
the scarce autoreactive T cells seems difficult. The targeting
through DCs seems more viable and allows also antigen-
specific immune modulation (169). The active form of VitD3
functions as a transcription factor upon binding to the vitamin D
receptor (VDR) (170), creating a complex that binds with
retinoid-X receptor (RXR) to enable the attachment to vitamin
D response elements (VDRE) (171, 172). The VDR complex has
a large effect on more than 3000 target genes, which includes
forty-seven transcription factors and thus leaving hardly any
immune pathway unaffected by VitD3 (173). This natural
immunomodulator influences the development and function of
T cells, B cells and monocytes (172, 174, 175), and controls the
ability of the immune system to dampen inflammation. In two
independent studies we found that about a third of the
transcripts encoded by non-HLA T1D risk genes were
differentially expressed between inflammatory mDCs and
VitD3-derived tolDCs (17, 18). Interestingly, only five of these
genes were also reported as direct targets of VDR (170), leaving
others to an indirect control by VDR-targeted transcription
factors. Of the direct VitD3-targets, the expression of
ORMDL3, SH2B3, IKZF1, PTPN2 and IFIH1 genes was lower
in tolDC while RAC2 and PTPN22 were higher in tolDC than in
the inflammatory mDCs (17, 18).

The protein encoded by ORMDL3 is an enzyme involved in
sphingolipid synthesis and lipid metabolism without a clear
function in the immune response but interestingly the T1D
patients who were the carriers of the linked polymorphism
(rs12150079) showed a lower intensity of autoreactive T cell
responses in T1D (11, 60, 176). The SH2B3 encodes LNK
(lymphocyte adaptor protein) that takes parts in several
signaling pathways controlling the hematopoiesis, cytokine and
integrin signaling and cell migration (177). The functional
consequences of the T1D risk variant (rs3184504) that causes a
missense mutation remain speculative (11, 59, 146), one study
using human cells that reports an augmented lymphocyte
proliferation that correlates with the predisposing gene variant
(178) Interestingly though, a recent study shows that the T1D
risk-gene variant associates with a reduced mortality from sepsis
in individuals with a European decent and suggest based on a
mouse model that augmented phagocytosis and myelopoiesis
may be underlying mechanisms (179). The gene IKZF1 codes for
the transcription factor Ikaros (180), and the associated SNPs
(rs10277986, rs62447205) are protective for T1D (11). How these
SNPs affect the expression or function of Ikaros has not been
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described. Ikaros is a regulator of dendritic cell differentiation
and immune homeostasis, and IKZF1 deficiency causes less
inflammatory cytokines secrection by human monocytes (181),
which is in line with the observed lower expression in our
tolDCs. Finally, RAC2 encodes a protein from a Rho family of
GTPases involved in cytoskeletal reorganization (e.g. needed for
phagocytosis) but the effect of the described SNP variant
(rs229533) increasing the risk for T1D is still unknown (11).
CAN A MODEL BASED ON AN
INTEGRATED VIEW ON THE GENETIC
RISK HELP US TREAT PATIENTS?

In our view, the polymorphisms in immune genes as are
discussed in this review can influence both immune activation
and regulation through a change in gene expression or in
function (Figure 1). The consequences may differ between the
cell types depending on the expression level or an implicated
cellular function of a given gene. Indeed, by changing the
expression of a target protein, some risk variants cause
different functional effects in conventional T cells, Tregs or b-
cells, depending on the implicated cellular function (Figure 1).
For most of the evaluated genes, both the non-risk variant and
the risk variant show opposing functional consequences in
conventional T cells compared to Tregs. Namely, the risk
genes for which a non-risk variant supports immune
regulation (PTPN2, CTLA4 and IL2RA) are indeed activating
for Tregs and work to suppress the effector T cells. The risk-
variant SNPs of these genes change the function in the same
manner irrespective of the cell type but the end result differs so
the lower expression and signaling through PTPN2, CTLA-4 or
IL-2RA will simultaneously impair the function of Tregs and
release the tight control of the effector T cell. Similarly, the
activation-promoting function of CD226 in effector T cells,
enhanced by the risk-SNP, suppressed the inhibitory function
of Tregs. Further, based on the regular function of LYP
(PTPN22) to control the post-TCR signaling events, the
activating contribution of the risk mutation in Teff is evident
but the consequences for the human Tregs remain to be
confirmed. The risk-SNP induced modulation of PTPN2 and
IFIH1 will increase b-cell apoptosis, which increases the antigen
release, and thus contribute to the development of T1D. In DCs
the PTPN22 risk variant fails to promote upregulation of type I
IFN which might result in diminished human host-protecting
responses when dealing with viral infections. The PTPN2 risk
variant may dysregulates the production of inflammatory
cytokines and thus the maintenance of immune tolerance by
DCs. The IFIH1 risk variants causes an increased IFN response,
stimulating antigen presentation, while the IL2RA risk variant
may inhibit the capacity of DCs to suppress T cell proliferation
and cytokine production. In summary, the functional
consequences of the causal T1D-risk variants have been
extensively investigated and seem to paint a clear picture
regarding the individual contributions but it is difficult from
this information to consider how the polymorphisms may
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cumulatively modify the cell interactions that promote the
impaired b-cell specific immune responses in individuals with
high T1D risk-scores.

At the moment, no therapies have been developed that target
PTPN22, PTPN2, IFIH1 and CD226. Therapies targeting CTLA4
(CTLA-4-Ig, abatacept) has been proven as safe and efficient to
inhibit naïve T cell activation and therefore this approach is more
selective namely inhibiting only T cell responses as compared to
general/broad immunosuppression. The safety of abatacept as a
subcutaneous (SC) and intravenous (IV) therapy is evaluated in
RA (182, 183) and T1D patients, reporting no therapy-specific
adverse effects (184, 185). Abatacept treatment showed good
efficacy in prevention complete loss of b-cell function in T1D
patients as is shown by preservation of C-peptide levels and
insulin sensitivity improvement (184, 186, 187).

To compensate for the impaired IL-2 signaling due to lower
expression or dysfunction of the IL2R gene, specifically in Tregs,
ultra-low-dose IL-2 therapy has been tested, thus avoiding
potential toxic effects of systemic IL-2. A phase II study has
already been completed to determine the optimal IL-2 dose to
use as a treatment in T1D patients (188). Participants did not
exhibit severe adverse effects, a minimal NK cell expansion was
observed after IL-2 treatment and no detrimental changes in
glucose metabolism were observed, guaranteeing the safe use of
IL-2 (188). Also, there was a dose-dependent increase in Tregs in
all patients, and the low dose of IL-2 upregulated CD25 and
FOXP3 expression on Tregs while CD4+ T effector memory cells
were unchanged (189). Even though the latter trial showed some
interesting effects of IL-2 therapy, the insulin secretion was not
measured so the clinical efficacy of this therapy (i.e. on b-cell
preservations) could not be determined. A newer alternative to
avoid the influence on effector T cells uses the IL-2 mutant
proteins (190), which has advanced to the clinical testing in
GvHD (ClinicalTrials.gov Identifier: NCT03422627), though it
remains a systemic antigen-independent approach.

Even though these therapies targeting CTLA4 and IL2RA
seem promising, it remains to be seen whether they are beneficial
for all patients or only those carrying the affected variant, and to
what extent such therapies may influence the immune system
and health in general given the generic and pleiotropic effects of
IL-2. It is tempting to investigate whether therapies targeting
specific pathways in which a risk gene of interest is involved or
epigenetic targeting of a single of multiple risk gene variants will
be more beneficial.

A treatment that simultaneously tackles multiple changes in
the risk genes allowing a correction towards the non-risk variant
function could potentially aid as curative intervention. The
natural immunomodulator VitD3 seems a good candidate
since it reduced the expression of IKZF1, PTPN2, IL2RA,
CD226 and IFIH1 while increased RAC2, and PTPN22 in
tolDC as compared to mDC. Considering the effects of the
discussed risk-SNPs in these genes, the modulating action of
VitD3 could counteract the immune-activating effects of risk-
mutations in IL2RA, CD226, IFIH1 and PTPN22 while
supporting the protective effects of IKZF1.
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The potential clinical benefit of the treatment with Vitamin
D, has been recognized earlier. The initial trial with VitD3-
modulated tolDC in T1D patients confirmed safety and the
clinical benefit of the treatment remains to be tested (191).
VitD3 modulates T cells (172, 175, 192, 193) and a trial testing
the combined treatment of T1D patients with VitD3 and GAD
antigen did not show significant change overall but a particular
b-cell preservation in individuals with the HLA DR3-DQ2
haplotype (194). Trials testing vitamin D supplementation
(195–200), showed some clinical benefit such as improving
diabetes control (HbA1c or insulin dose), reducing
complications (195, 196), some indications of b-cell protection
or immune regulation (197, 198), none of the study monitored
the clinical and immunological effect simultaneously. Finally,
VitD3 can contribute to T1D prevention since early postnatal
VitD3 administration seems to protect from T1D (199), even
though reduced circulating VitD3 levels do not increase T1D
risk (200).
CONCLUSIONS AND PERSPECTIVES

Understanding the role of genetic risk-variants in the T1D
pathogenesis can have important implications for better
understanding disease pathogenesis and heterogeneity, as well as
the development of specific/selective disease intervention strategies.
Models have been generated suggesting that different T1D risk-loci
contribute to successive pathogenic checkpoints, which detection
could allow timely and appropriate modulation of the
autoimmunity and increase the chance for curative interventions.
The mechanisms involved in the immunotherapy of cancer (201,
202), teach us about genetic variants that increase the risk for the
development of autoimmune disease but positively impact the
survival after cancer treatment (203). Hence, polygenic risk scores
(204) not only help to predict disease but also to predict when a
specific patient is more or less likely to respond to immunotherapy
directed at the involved pathways.

The genetic risk score could allow early identification of
individuals who will develop T1D allowing earlier curative
interventions. Butty et al. studied the frequency of non-HLA
risk alleles among individuals at risk of developing T1D (DTP-1
trial), of which about one-third progressed to the clinical disease
(205). They concluded that immune risk gene variants more
likely condition the initial development of autoimmunity,
resulting in a detectable auto-Ab response, but less critically
contribute to the events leading to disease onset (205). Hence
immune modulation therapy makes more sense prior to the
onset of autoimmunity, which will be possible when a prediction
of T1D is improved. The recently reported improved cumulative
risk score (T1D-GRS2) that includes 67 SNPs (all HLA-DQ
haplotypes, non-DR-DQ loci within the HLA region and non-
HLA loci) indeed enabled a sensitive discrimination of T1D from
T2D and controls (13), but also improved the prediction of future
T1D in infants. Still, around 10% of all infants would have to be
monitored to capture 77% of future T1D cases. In this study it
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remains unclear whether successive application of the HLA-
score, followed by a non-HLA score would have further
improved the prediction sensitivity. Importantly, this GRS
failed to predict T1D in patients with different ethnicities,
underscoring the need to study all-inclusive cohorts (206).

Alternatively, fine mapping genetic studies of previously
known autoimmune loci will also help to find relevant genetic
variants with strong effect on the development of T1D (11, 60,
207). The availability of large human whole-genome sequencing
data sets, also allows detecting rare SNPs with large effect size on
complex traits (208, 209). Forgetta et al. recently discovered three
novel risk gene variants in large human whole-genome
sequencing data sets of T1D patients (67). Hence, studying the
human whole-genome sequencing data might lead to the
discovery of gene variants, which will give a better
understanding of the genetics behind the development of T1D
and possibly predict therapy responses.

Taken together, current literature only partially explains the
functional implications of the risk-SNPs to the development of
autoimmunity in T1D. The efficient in-depth analyses of the
immune response that can detect and monitor low-frequent
autoantigen-specific cells and a better understanding of
immune tolerance are needed to investigate and understand
the functional contributions of genetic polymorphisms in
different cells of the immune system. The same polymorphism
can have opposing functional consequences depending on the
cell in which the linked gene is expressed. Gaining insight into
Frontiers in Immunology | www.frontiersin.org 1042
how the human genetics impacts functional immunity is
therefore important to allow discrimination of relevant and
treatable targets and for selecting proper immunotherapy
strategies with the most benefit for patients or individuals at
risk of developing T1D.
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Immune homeostasis is a constant balancing act between effector T cells and regulatory T
cells defined by Foxp3 expression, the transcription factor that drives their differentiation
and immunosuppressive activity. Immune homeostasis is altered when Treg cells are not
generated or maintained in sufficient numbers. Treg cells rendered unstable by loss of
Foxp3 expression, known as ex-Treg cells, gain pro-inflammatory functions. Treg cells
may also become dysfunctional and lose their suppressive capabilities. These alterations
can cause an imbalance between effector and regulatory subsets, which may ultimately
lead to autoimmunity. This review discusses recent studies that identified genetic factors
that maintain Treg cell stability as well as preserve their suppressive function. We focus on
studies associated with systemic lupus erythematosus and highlight their findings in the
context of potential therapeutic gene targeting in Treg cells to reverse the phenotypic
changes and functional dysregulation inducing autoimmunity.

Keywords: regulatory T cells, Foxp3, autoimmunity, lupus, genetics
INTRODUCTION

Regulatory T cells maintain immune homeostasis and prevent autoimmune diseases by limiting the
responses of proinflammatory and autoimmune T cells. Several subsets of Treg cells have been
characterized, among which the classical Foxp3+ CD4+ T cells, referred to here as Treg cells, play an
essential role. The mechanisms by which these cells maintain immune homeostasis involve
inhibitory cytokines, cytolysis, and metabolic disruption of effector T (Teff) cells (1). Treg cells
are defined by the stable expression of Foxp3, a forkhead/winged helix transcription factor, and high
levels of the high affinity interleukin-2 receptor (IL-2R) a chain (CD25) on their surface (2), which
are the main genes required for Treg cell development, maintenance, and function (3). There are
two major types of Treg cells: thymus Tregs (tTregs) that develop in the thymus, and peripheral
Treg (pTregs) cells that are generated in peripheral sites. In addition, studies have been conducted
on induced Treg (iTregs) cells that are induced in vitro by T cell receptor (TCR) activation in the
presence of TGFb (4). Treg cell stability, i.e. the maintenance of their transcriptional program, is
indispensable for the preservation of their function. Furthermore, unstable or “ex-Treg” cells induce
inflammation not just by a lack of suppression but also in a direct manner by secreting
inflammatory cytokines (5).
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DEFECTIVE NUMBER OR FREQUENCY
OF TREGS LEAD TO AUTOIMMUNE
DISEASES

Numerical and/or functional Treg anomalies contribute to
autoimmune diseases such as type 1 diabetes (6), rheumatoid
arthritis (7), and systemic lupus erythematosus (SLE) (8). The
absolute number of circulating Treg cells is decreased in SLE
patients with active disease as compared to healthy controls
(9–13). The number of Treg cells was shown to have a strong
inverse correlation with SLEDAI (Systemic Lupus Erythematosus
Disease Activity Index) scores, showing the lower numbers of
Treg cells corresponding to increased disease severity (11, 12).
Controversially, other studies have reported increased (14–16) or
similar (17, 18) Treg cell numbers in SLE patients as compared to
healthy controls. The discrepancy between these studies has been
attributed to different definitions and gating strategies for Treg
cells, including the fact that expression of Foxp3 alone is not a
reliable marker for human Treg cells, further complicating
analyses of their function and stability (12, 19). Variations in
the treatment regimen with immunosuppressive drugs may also
contribute to the large variations in relative Treg cell frequencies
in SLE patients. Dysfunctional Treg cells have also been reported
in SLE patients (8), including the expansion of a Treg population
with a low CD25 expression (20).

This review discusses recent studies that have identified
intrinsic genetic factors maintaining Treg cell stability as well
as preserving their suppressive function. We focus on studies
associated with systemic lupus erythematosus pathogenesis, or
with a lupus-like phenotype, and we highlight their findings in
the context of potential therapeutic gene targeting in Treg cells to
reverse the phenotypic changes and functional dysregulation
inducing systemic autoimmunity. The many studies that have
reported gene targeting affecting Treg cells in other autoimmune
diseases such as arthritis, uveitis or experimental autoimmune
encephalomyelitis are not included in this review. Additionally,
other studies that have reported deletions of specific genes in
other cell types, such as dendritic cells, that affect Treg cell
development and function are also not mentioned in this review.
SINGLE GENE DETERMINANTS OF TREG
CELL HOMEOSTASIS

Scrufy mice do not produce Treg cells due to a mutation in
Foxp3, causing them to develop a severe inflammatory disease
with autoimmune components, including lupus-like
manifestations (21). A large number of studies have now
defined Foxp3 as the master regulator of Treg cell
differentiation and functions (3). A recent study has shown
that Foxp3 sustained expression is also necessary to maintain
Treg functions once they have differentiated (22). Reverse genetic
approaches have identified several genes that control Treg cell
number, stability and/or functions through Foxp3 expression,
and whose deficiency or overexpression lead to autoimmunity or
lupus-like manifestations.
Frontiers in Immunology | www.frontiersin.org 250
Negative Regulators of Foxp3 Expression
The AP1 transcription complex is comprised of a network of
heterodimers formed by proteins of the Jun, Fos, ATF, and MAF
families. Fos/Jun dimers promote the expression of Foxp3
through direct binding to its promoter in response to TCR
signaling (23). Within this transcription complex, Fos-like 2
(Fosl2) inhibits Treg development in a cell-intrinsic manner (24).
Fosl2 transgenic mice develop spontaneous autoimmunity and
systemic inflammation with disease phenotypes resembling that
of Treg-deficient IPEX patients and scurfy mice. On the other
hand, mice lacking Fosl2 in CD4+ T cells display less severe
disease phenotypes. Mechanistically, Fosl2 interrupts Treg
development by repressing the expression of Foxp3 as well as
that of other genes involved in Treg differentiation or
function (24).

NFIL3 (Nuclear factor Interleukin 3 regulated, also known as
E4 binding protein 4, E4BP4) represses numerous genes and
regulates diverse biological processes (25, 26). In the immune
system, NFIL3/E4BP4 has a vital role for many cell types
including Th1, Th2, NKT and Treg cells by regulating the
plasticity of cytokine production (27, 28). Treg cells are the T
cell subset with the lowest Nfil3 expression, and its
overexpression attenuated the suppressive ability and stability
of these cells (29). Not only does NFIL3 binds directly to the
Foxp3 promoter reducing Foxp3 expression, but it also
downregulates the promoter activity of Treg hallmark genes
such as Icos, Tnfrsf18, Ctla4, and Il2ra, in both Foxp3-
independent and dependent pathways (29). Accordingly, Nfl3-
deficiency in T cells increased Foxp3 expression, but decreased
the frequency of Foxp3-expressing follicular regulatory T (Tfr)
cells, resulting in an expansion of follicular helper T (Tfh) cells
and the production of autoantibodies (30). Tfr cells are a
specialized subsets of tissue Treg cells that work to constrain
the activity of Tfh cells and germinal center (GC) B cells with
whom they share the Bcl6 transcription factor (31). A decreased
relative frequency of Tfr cells has been correlated with disease
activity in SLE patients (32). NFIL3 expression was increased and
its phosphorylation was decreased in CD4+ T cells from patients
with SLE with a positive correlation to disease activity (30).
These alterations were associated with the characteristic
expansion of Tfh cells in SLE. It would be of great interest to
follow up this study with an analysis of the impact that NFIL3
increased expression and decreased phosphorylation has on Treg
and Tfr cell numbers and functions in SLE.

Positive Regulators of Foxp3 Expression
NF-kb is one of the multi-molecular complexes that interacts
with Foxp3 to control Treg cell transcriptional programs and
biology. c-Rel, one of its subunits activated by TCR signaling,
supports tTreg development and Foxp3 expression by binding to
its promoter and one of its regulatory non-coding sequences
(CNS3) (33). NF-kb maintains the stability of mature Treg cells
by preventing them from converting into effector-like T cells
through mechanisms involving IKKa and IKKb kinases, which
are upstream activators of the NF-kb pathway (34, 35). Foxp3
forms a complex with Rel-A, one of the most abundant NF-kb
May 2022 | Volume 13 | Article 887489
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subunits in conventional T cells, and with other transcription
factors including Helios and p300, leading to its full functionality
as a transcriptional activator (36). Foxp3-Cre mediated depletion
of Rel-A in established Treg cells resulted in defective effector
Treg cells that led to the development of an autoimmune
syndrome characterized by a massive T cell activation, immune
infiltrations of several tissues, as well as the production of
inflammatory cytokines, and autoantibodies (36, 37).
Furthermore, Rel-A deficient Treg cells were unstable and lost
Foxp3 expression becoming ex-Tregs expressing high amounts of
proinflammatory cytokines IFNg and TNFa (36).

Bcl10 is a gene in the Carma1-Bcl10-Malt1 (CBM) signaling
complex that controls NF-kB and MAPK activation in T cells
following TCR activation (38). Bcl10 is necessary for the
development of Treg cells and their suppressive function.
Bcl10-deficient Treg cells converted in proinflammatory
effector T cells secreting IFNg, leading to a fatal systemic
autoimmunity (39). This indicated that Bcl10-mediated NF-kB
activation is required for Treg cell development and function.
Previous studies have reported that HIF1-a directly binds to the
IFNg promoter in VHL-deficient Treg cells, a model described
later in the text, provoking an increased IFNg production and
impairing Treg cell function (40). This phenotype is also
displayed in Bcl10-deficient Treg cells (39).

Sclerostin domain-containing protein 1 (SOSTDC1) is
selectively expressed in Tfh cells (41), which secretes this factor
once they have lost the ability to help GC B cells (42). SOSTDC1
deficiency greatly reduced the generation Tfr cells, which in turn
enhanced humoral immunity against viruses (42) .
Mechanistically, SOSTDC1 inhibits the canonical WNT-b-
catenin pathway (43), which in turn inhibits Treg cell
differentiation (44, 45). It should be noted that an autoimmune
phenotype was not reported in these mice. This implies that
although the differentiation of tTreg cells into Tfr cells was
impaired, Treg cells themselves were functional and the effect
of SOSTDC1 secreted by Tfh cells is confined to the GCs.
Inhibition of Tfr cell differentiation in SOSTDC1-deficient
mice was mediated by the stabilization of b-catenin (42). As a
negative feedback loop, late-stage Tfh cells secrete SOSTDC1,
which commits Treg cells in the GC to the Tfr fate by blocking
WNT stimuli. Uncontrolled WNT-b-catenin signaling plays a
role in autoimmune diseases (46), which may be due, at least in
part, to defective Treg and Tfr cell differentiation.
GENES REGULATING TREG CELL
FUNCTION AND STABILITY THROUGH
THEIR METABOLISM

Mammalian target of rapamycin corresponds to two kinase
complexes, mTORC1 and mTORC2, which function as a
central metabolic checkpoint. The functional links between
metabolism and effector functions has been dissected in T cells,
in which the integration by mTOR of the stimulatory signals and
the energy status of the cells plays a critical role (47). Treg cells
display diminished activity of the mTOR pathway as compared
Frontiers in Immunology | www.frontiersin.org 351
to Teff cells (46, 47), and increased mTOR activity negatively
affects the generation and function of Treg cells (48–51).
However, mTORC1 deficiency profoundly impairs Treg
development and function (52). Mechanistically, mTORC1
enables cholesterol synthesis and lipid metabolism that are
triggered by IL-2 signaling, both for which being required for
Treg cell proliferation and the upregulation of suppressive
molecules. mTOR signaling is required for the generation and
function of both tTregs and pTregs, and its Foxp3-driven
deletion impairs mitochondrial metabolism and oxidative
phosphorylation, which is the main source of energy in Treg
cells (53). Accordingly, Treg-specific deletion of the
mitochondrial transcription factor Tfam severely impaired
Treg suppressive functions (53). A recent genome-wide
CRISPR/Cas9 screen combined with in silico analyses of
protein-protein interaction networks identified novel
regulatory modules that mediate mTORC1 signaling in Treg
cells (54). The requirement for the expression of Sec31a and
Ccdc101, two key genes in these modules, was validated when
their deficiency in Treg cells impaired their suppressive functions
and led to inflammatory phenotypes. SEC31A promotes
mTORC1 activation by interacting with the GATOR2
component SEC13 to protect it from SKP1-dependent
proteasomal degradation. Therefore, SEC31A expression is
necessary to maintain mTORC1 activation in Treg cells. On
the other hand, CCDC101 is a member of the SAGA complex, a
potent inhibitor of mTORC1. Therefore, CCDC101 limits the
expression of glucose and amino acid transporters and maintains
a relative metabolic quiescence that characterizes Treg cells.
Ccdc101-deficiency impairs Treg cells by unleashing an
overreactive mTORC1. Additionally, Lamtor1, a lysosomal
scaffold protein for mTORC1 is also important for Treg cell
survival. Mice with Lamtor1-deficient Treg cells develop severe
autoimmunity showing that Lamtor1 is a vital intrinsic factor for
Treg suppressive functions, but not for their development and
survival (55).

PP2A is a serine-threonine phosphatase composed of a
catalytic C subunit PP2Ac, a scaffold A subunit PP2AA and a
regulatory B subunit PP2AB (56). PP2A is highly expressed in
Treg cells, and mice with a Treg-specific deletion of a member of
the PP2AA subunit developed multi-organ autoimmunity with
similarities to the scurfy phenotype (57). This indicated that
PP2A activity is required to maintain Treg cells. PP2AA-
deficiency increased mTORC1 activity in Treg cells, resulting
in enhanced glycolysis and oxidative phosphorylation (57), a
phenotype that was reversed by a treatment with mTOR
inhibitor rapamycin. Therefore, PP2A activity is necessary to
prevent mTORc1 overactivation, a process essential for
suppressive function of Treg cells. In addition, PP2Ac is
required for Treg cell to function by preventing the loss of
expression of the IL-2Rb chain, enabling IL-2 signaling (58).
PPP2R2D is a regulatory subunit of PP2A whose expression is
increased in T cells from patients with SLE. Mice with PPP2R2D-
deficient T cells developed a reduced systemic autoimmunity in
response to TLR7 activation (59). Furthermore, PPP2R2D-
deficiency enhanced the suppressive function of Treg cells,
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which was supported by an increased IL-2 transcription in
conventional T cells, a process that is negatively regulated by
PPP2R2D (59). Therefore, PPP2R2D regulates Treg cells
through PP2A in a cell-extrinsic manner (IL-2 secretion from
conventional T cells), as opposed to PP2A controlling Treg
function through mTORC1 in a cell-intrinsic manner.

HIF-1a and HIF-2a are two master transcription factors
responsible for the physiological responses to hypoxia (60).
Under normoxic conditions, prolyl hydroxylase domain
proteins (PHD2/PHD3) hydroxylate HIF-1a and HIF-2a
allowing for their recognition by von-Hippel Lindau tumor
suppressor (VHL)-containing E3 complex, ubiquinating the
transcription factors for proteasomal degradation. This process
is interrupted under hypoxic conditions, allowing the
accumulation of HIF-1a and HIF-2a (61). In immune cells
under normoxic conditions, the expression of HIF-1a can also
be increased by mTOR activation (62) and induce glycolysis (63).
Germline Hif1a-deficiency promoted the differentiation of Treg
cells over Th17 cells (64, 65). Mechanistically, HIF-1a promotes
Foxp3 degradation by the proteasome (64). Germline Hif1a
deficiency also inhibited glycolysis in favor of mitochondrial
metabolism, which promoted Treg cell differentiation (65).
Interestingly, Hif1a-deficiency in established Treg cells
(through Foxp3-Cre mediated deletion) did not impair Treg
cell function (66). This indicated that HIF-1a regulates Treg cell
differentiation but not their maintenance and function. Hif2a-
deficiency in established Treg cells impaired their suppressive
activity despite normal Foxp3 expression (66). Moreover, Hif2a-
deficient Treg cells showed an enhanced secretion of IL-17 (66).
Importantly, patients with SLE and associated lupus nephritis
have increased numbers of IL-17-producing Treg cells in their
peripheral blood (67). These studies demonstrate a complex
crosstalk between HIF-1a and HIF-2a in Treg cells in which
HIF-1a prevents their differentiation and HIF-2a stabilizes
their function.

VHL-deficiency in Treg cells impaired their suppressive
activity and stability leading to massive inflammation (40).
VHL-deletion induced a HIF-1a-mediated expression of
glycolytic enzymes in Treg cells that promoted Th1
differentiation. Moreover, HIF-1a directly activates the Ifng
promoter. These results contrast with the lack of phenotype
resulting from direct deletion of Hif1a in Treg cells (59), and
suggest that HIF-2a constitutive expression in VHL-deficient
Treg cells is likely to play a role.

Serine/Arginine-rich splicing factor 1 (SRSF1) is the
prototype member of the highly conserved serine 1 arginine
(SR) family of RNA-binding proteins (68). SRSF1 expression was
decreased in the T cells of SLE patients with severe disease
showing an overactive T cell phenotype (69). Deletion of SRSF1
in T cells led to systemic autoimmunity and lupus nephritis that
was associated with mTOR activation in T cells (70). Treg-
specific deletion of SRSF1 also led to systemic autoimmunity
with Treg cells losing their suppressive function and producing
proinflammatory cytokines (70). As with pan-T cell deletion,
SRSF1-deficient Tregs displayed a highly glycolytic metabolism
and mTOR activation.
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TREG CELL REGULATION IN
SPONTANEOUS MOUSE MODELS
OF LUPUS
Many studies have documented alterations in Treg numbers and
functions in spontaneous mouse models of lupus (71). Multiple
mechanisms are responsible for these phenotypes, with a major
contribution of the inflammatory milieu created by cytokines
such as Type 1 IFN and IL-6. Whether the genetic susceptibility
that drives lupus pathogenesis in these models affects
intrinsically Treg cells, at least in part, is less understood. The
frequency of Treg cells varies across a wide range in mice and
humans without pathogenic consequences (72). NZW mice do
not develop autoimmunity, but their genome contains lupus
susceptibility genes that are revealed when combined with other
genomes such as NZB or BXSB (73). NZW mice present a low
frequency of Treg cells, which was found to be cell-intrinsic and
due to a low Foxp3 expression leading to a poor stability of the
Treg program (72). Although NZW Treg cells express a
distinctive transcriptional profile, it could not be attributed to
a single genetic defect. Therefore, the NZW Treg phenotype is
likely to be supported by a complex polygenic inheritance,
similar to lupus susceptibility as a whole in NZW-derived
strains (74). However, we propose that these intrinsically
defective NZW Treg cells become pathogenic when combined
with other immune defects induced by alleles from lupus-
prone strains.

The (NZB x NZW) F1-derived NZM2410 strain is a model of
lupus in which an analysis of genetic susceptibility has been
conducted, and genes regulating T cell function have been
identified (74). NZM2410 mice carry three major susceptibility
loci associated with lupus nephritis, Sle1, Sle2, and Sle3 (75).
Congenic strains carrying separately each of these loci on a non-
autoimmune C57BL/6 (B6) background present distinct
autoimmune endophenotypes that correspond in combination
to the lupus phenotype of the parental strain (76). Sle1 had the
strongest linkage to lupus nephritis and its expression is
necessary for the development of autoimmunity in NZM2410
mice (77). Sle1 regulates the function of T cells (78) in a cell-
intrinsic manner (79), and it decreases the number and function
of Treg cells (78). Sle1 corresponds to at least three sub-loci,
Sle1a, Sle1b, and Sle1c (80). Within Sle1a, genetic linkage analysis
identified an interacting locus Sle1a1 responsible for expanding
the number of activated CD4+ T cells while reducing the
frequency of pTreg cells (81). Sle1a1 only contains one
functional gene, Pbx1 (81), a transcription factor required for
mammalian organogenesis (82). Pbx1 is required for the
development of B cells and the function of hematopoietic stem
cells (83, 84), but its function in T cells had not been
characterized. Sle1a1 corresponds to the overexpression of the
truncated splice isoform Pbx1-d over Pbx1-b, the normal
isoform, in T cells (85). Pbx1-d lacks both the DNA-binding
and HOX-binding domains and functions as a dominant
negative (86). The mouse and human PBX1 proteins share
complete homology, and PBX1-D was found more frequently
in the CD4+ T cells from SLE patients than healthy controls (85).
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Furthermore, PBX1-D expression in human CD4+ T cells is
associated with defective Treg cells (87). Mice overexpressing
Pbx1-d in T cells replicated the phenotypes of B6.Sle1a1
congenic mice as previously mentioned (88). Pbx1-d transgenic
overexpression in T cells impaired iTreg differentiation as well as
the induction or maintenance of pTreg cells in a cell-intrinsic
manner (88). On the other hand, Pbx1-d overexpression in CD4+

T cells expanded Tfh cell differentiation (88). These results
suggest that Pbx1 regulates the balance between Treg and Tfh
cells, and that Pbx1-d contributes to autoimmunity by tilting the
balance in favor of Tfh over Treg cells. This impaired Pbx1-d-
mediated T cell homeostasis has consequences on lupus
associated atherosclerosis, with chimeric atherosclerosis-prone
Frontiers in Immunology | www.frontiersin.org 553
mice carrying Pbx1-d expressing T cells developing more severe
lesions than mice carrying Pbx1-b expressing T cells (89).
Furthermore, there is evidence that dyslipidemia and Pbx1-d
expression synergized to impair Treg cell functions. The
mechanism by which Pbx1 and its dominant negative Pbx1-d
isoform regulate T cell function has not been established yet.
Interestingly, Pbx1 directly upregulates NFIL3 expression (90),
and NFIL3 regulates the expression of Foxp3 and other Treg-
associated genes (29). A disruption of the Pbx1/NFIL3 axis is
therefore a potential mechanism by which Pbx1-d may alter the
Treg/Tfh cell balance in favor of autoimmunity.

Within the Sle1c locus (91), recombinant congenic analysis
mapped an activated CD4+ T cell phenotype to the Sle1c2 sub-
FIGURE 1 | Schematic view of genes regulating Treg cell development, function, and/or stability. The genes are presented according to their effect on Treg cells. (A)
Negative regulators whose over expression leads to an expansion of Tfh cells or inhibition of Tfr cells (Green arrows indicates gene overexpression).? indicates that
the Pbx1-d direct target is unknown. (B) Positive regulators whose deletion leads to the inhibition of Tfr cells or the generation of ex-Treg cells producing IFNg and
TNFa (Red X indicates gene deletion). (C) Genes regulating Treg cells through their metabolism by way of mTOR, glycolysis and/or mitochondria metabolism leading
to decreased immunosuppressive activity. Red arrows between genes and their target indicate an enhancing effect with expression of the target being decreased by
the gene deletion. Red blocked arrows indicate an inhibitory effect with expression of the target being increased by the gene overexpression. Figure created with
BioRender.com.
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locus and the estrogen-related receptor gamma (Esrrg) gene it
contains (91). Esrrg is essential in maintaining mitochondrial
metabolism through activation of oxidative phosphorylation, the
electron transport chain and ATP production in multiple cell
types (91), but its function in T cells was unknown. Esrrg
expression is reduced in the CD4+ T cells of B6.Sle1c2
congenic mice, in association with altered mitochondrial
functions and a decreased mitochondrial mass (91). This
phenotype is consistent with that of CD4+ T cells of SLE
patients in which mitochondrial defects have been described
(92). Esrrg deletion in Treg cells altered the expression of genes
involved in mitochondrial and Treg programs (93). This led to
impaired suppressive function as well as differentiation into Tfr
cells, which allowed for greater Tfh cell and humoral responses.
These results suggest that the hypomorph Esrrg lupus
susceptibility allele contributes to autoimmune pathogenesis by
reducing the metabolic fitness of Treg cells.
CONCLUSION

In summary, several genes have been identified as being
responsible for sustaining the differentiation, function, and
stability of Treg cells. The most common approach has been
reverse genetics. Only a few Treg-specific studies have been
conducted, but continued analyses of selective gene knockouts
or overexpression models could advance our knowledge of novel
genes that negatively or positively control Treg cells. However,
CRISPR/Cas9 screens such as the one recently performed for
mTORC1 activation in Treg cells (54) are likely to accelerate the
speed of discovery and uncover novel genetic pathways through a
less biased evaluation than classical reverse genetic approaches.
The dissection of genetic susceptibility in a spontaneous mouse
model of lupus has identified two genes that directly impact Treg
cell homeostasis. So far, genetic loci associated with human lupus
susceptibility, or susceptibility to other autoimmune diseases, have
not been linked with Treg phenotypes. It is therefore unknown if
Frontiers in Immunology | www.frontiersin.org 654
allelic variations directly impacting Treg phenotypes confer
autoimmune susceptibility in human populations.

The majority of genes that have been identified to regulate
Treg cells either directly control Foxp3 expression or their
cellular metabolism (Figure 1). Treg cells are highly sensitive
to mTOR activation, requiring “just the right amount” for
optimal differentiation and suppressive function. Several genes
have been identified in mice to maintain this “Goldilocks”
homeostasis. The maintenance of mitochondrial metabolism or
glycolysis, which is partially under mTORC1 control, is also
required by Treg cells. It is predicted that other metabolic genes
are also involved, and in silico analyses of protein-protein
networks may be useful in pinpointing critical nodes in
these networks.

Adoptive Treg cell therapies are being evaluated in clinical
trials for autoimmune diseases and transplantation (94). The
identification of regulatory networks that ensure their stability
hand functions has great translational potentials to maximize
these approaches. This knowledge could also benefit efforts to
deactivate Treg cells in the tumor microenvironment to
potentiate immunotherapies. This will require a comprehensive
validation of these genetic pathways in human Treg cells,
although the restraints of the read-out to in vitro suppression
greatly limit the scope and the interpretation of these
translation studies.
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The long and winding road:
From mouse linkage studies
to a novel human therapeutic
pathway in type 1 diabetes

Manuel Rojas1,2, Luke S. Heuer1, Weici Zhang1,
Yi-Guang Chen3,4 and William M. Ridgway1*

1Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis,
CA, United States, 2School of Medicine and Health Sciences, Doctoral Program in Biological and
Biomedical Sciences, Universidad del Rosario, Bogota, Colombia, 3The Max McGee Research Center
for Juvenile Diabetes, Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI, United States,
4Division of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin,
Milwaukee, WI, United States
Autoimmunity involves a loss of immune tolerance to self-proteins due to a

combination of genetic susceptibility and environmental provocation, which

generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte

autoreactivity at the level of central tolerance (e.g., defective, or incomplete

MHC-mediated negative selection of self-reactive T cells) and peripheral

tolerance (e.g., failure of mechanisms to control circulating self-reactive T

cells). T regulatory cell (Treg) mediated suppression is essential for controlling

peripheral autoreactive T cells. Understanding the genetic control of Treg

development and function and Treg interaction with T effector and other

immune cells is thus a key goal of autoimmunity research. Herein, we will

review immunogenetic control of tolerance in one of the classic models of

autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune

Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how

one susceptibility gene, Cd137, (identified originally via linkage studies) affects

both the immune response and its regulation in a highly complex fashion. The

CD137 (present in both membrane and soluble forms) and the CD137 ligand

(CD137L) both signal into a variety of immune cells (bi-directional signaling).

The overall outcome of these multitudinous effects (either tolerance or

autoimmunity) depends upon the balance between the regulatory signals

(predominantly mediated by soluble CD137 via the CD137L pathway) and the

effector signals (mediated by both membrane-bound CD137 and CD137L). This

immune balance/homeostasis can be decisively affected by genetic

(susceptibility vs. resistant alleles) and environmental factors (stimulation of

soluble CD137 production). The discovery of the homeostatic immune effect of

soluble CD137 on the CD137-CD137L system makes it a promising candidate

for immunotherapy to restore tolerance in autoimmune diseases.
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NOD, T1D (type 1 diabetes), t cell, treg cells, CD137, CD137L
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Introduction

Autoimmune diseases (ADs) are a chronic and clinically

heterogeneous group of diseases affecting up to 5% of the world

population (1, 2), and their incidence is rising (3). Different ADs

share risk factors (e.g., environmental and genetic) and

immunological mechanisms (4). A single autoimmune disease

may manifest with autoantibodies of diverse organ specificities

(i.e., latent polyautoimmunity) (5–7). Polymorphisms in HLA-

DRB1, HLA-DQB1, CD226, PTPN22, STAT4, GPR103,

TNFAIP3, and LRP1/STAT6 are associated with multiple ADs

(8, 9), including systemic and organ-specific ADs (10).

Therefore, the study of autoimmunity is complex and requires

the analysis of multiple genes with diverse immunological effects.

A commonality among ADs is the failure to control

peripheral autoreactive T cells, and most ADs exhibit

dysfunctional T regulatory cells (Tregs) (11). This T cell

population constitutively and highly expresses CD25 (IL-2

receptor a chain) (12), and more specifically, Tregs express

the transcription factor Forkhead box P3 (FOXP3) (13–15). The

clinical relevance of FOXP3 was demonstrated in patients with

the immune dysregulation polyendocrinopathy enteropathy X-

linked (IPEX) syndrome (16). More than 70 mutations in

FOXP3 have been described in these patients (17), and they

exhibit a high frequency of polyautoimmunity, such as

autoimmune thyroid disease, autoimmune cytopenia, or type 1

diabetes (T1D) (18). Polymorphisms in other genes implicated

in Treg function, such as IL2RA and CTLA4, have also been

associated with the development of endocrinological and

rheumatic ADs (19, 20). This evidence highlights the crucial

role of Tregs in the disrupted immune homeostasis characteristic

of autoimmunity.

The current management of ADs is centered on

immunosuppression. Multiple non-specific immune-

suppressive therapies are used to ameliorate autoreactivity/

tissue damage (i.e., methotrexate, leflunomide). More recently,

antibody-based therapies target specific molecules or cells

involved in the immune response (i.e., anti-CD20 for depleting

B cells) (21). However, these approaches have a major undesired

effect: increased susceptibility to infections. Recently, new

therapeutics focusing on Tregs have emerged. For example,

administration of IL-2 in patients with systemic lupus

erythematosus (SLE) ameliorated disease via the expansion of

Tregs without an increased risk of infection, and low dose IL-2
Abbreviations: ADs, Autoimmune diseases; APCs, Antigen-presenting cells;

CD, Cluster of differentiation; CD137L, CD137 Ligand; Foxp3, Forkhead box

P3; Idd, Insulin-dependent diabetes loci; IPEX, Immune dysregulation

polyendocrinopathy enteropathy X-linked; mCD137, Membrane-bound

CD137; NK, Natural killer; NOD, Non-obese diabetic; NON, Non-obese

non-diabetic; sCD137, Soluble CD137; sCTLA4, Soluble CTLA4; SLE,

Systemic lupus erythematosus; SNPs, Single nucleotide polymorphisms;

T1D, Type 1 diabetes; Tregs, T regulatory cells.
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therapy is being investigated in T1D (22–25). Restoring Treg

function might treat autoimmunity while reducing the risk of

life-threatening adverse effects. However, abnormal Treg

function and conversion of Tregs to pathogenic Th17 cells are

complications in Treg therapeutics (26–28).Thus, deeper

knowledge of Treg biology is needed.

T1D is one of the most common ADs in children,

characterized by the autoimmune destruction of insulin-

producing b cells (29). T1D incidence is increasing rapidly,

implying increasing environmental factors interacting with

genetic risk loci (HLA and non-HLA genes) (29–31). Antigen-

presenting cells (APCs) initiate pancreatic inflammation by

producing inflammatory cytokines such as TNF-a (32, 33).

The presentation of pancreatic antigens by APCs then leads to

the activation of autoreactive CD4+ and CD8+ T cells, which

perpetuate insulitis and the destruction of b cells (34, 35). Treg

failure to maintain peripheral tolerance of these autoreactive T

cells due to Treg dysfunction is critical in the persistence of

inflammation and islet destruction (36).

Phase 1 clinical trials on early-onset T1D showed that the

administration of autologous expanded CD4+CD25+CD127−

Tregs was associated with a reduced requirement of exogenous

insulin and preservation of b-cell function, with this effect

persisting for up to 1 year after infusion without severe adverse

reactions (37, 38). In a similar study, adult patients showed

stable levels of C-peptide and insulin use for up to 2 years (39).

However, this Treg strategy would necessitate periodic re-

transfusions of Tregs to maintain the immune response, and

autologous transplantations of Tregs may be difficult in low-

income settings. In addition, these studies are in their infancy

(i.e., phases 1 and 2), and the estimated magnitudes of the effect

of these approaches were low. Thus, other strategies are needed

to boost the peripheral Treg response to restore homeostasis.
The NOD strain and its implications
for T1D research

The non-obese diabetic (NOD) mouse, which spontaneously

develops autoimmune T1D, has long served as a model to

delineate both genetic and immune mechanisms of T1D and

its treatment. This model was established in 1980 by Makino

et al. (40) and emerged from breeding a mouse strain that

spontaneously developed cataracts (i.e., CTS strain) (41). Two

groups of mice emerged: males with glucose intolerance but

without glucosuria, later known as the non-obese non-diabetic

(NON) strain, and females with polyuria, ketoacidosis, and

glucosuria, subsequently known as the NOD strain (41).

Histological examinations of NOD mice demonstrated

lymphocyte infiltration in pancreatic islets (insulitis), as well

as a decrease in the number of b-cells and islet size

(Figure 1A) (40).
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Typically, 80% of female NODmice develop insulitis at three

weeks and T1D at ~20 weeks (42). The H2g7 MHC haplotype

essential for T1D development in NOD mice has the unique I-A

allele (I-Ag7). I-Ag7 encodes histidine and serine at positions 56

and 57 instead of the two usually conserved proline and aspartic

acid residues found in other mouse strains (43). The

diabetogenic variants of the human class II HLA-DQb
homolog also have non-aspartic acid substitutions at residue

57 (44). The genetic association of both MHC class I and class II

with disease supports the pathogenic role of CD8+ and CD4+ T

cells in the destruction of b-cells in humans and mice (45–48).

Multiple autoantigens are targeted by autoreactive T cells (e.g.,

GAD, insulin, or HSP) (49). However, while the MHC II I-Ag7 is

a major susceptibility allele, it is not sufficient for the

development of diabetes, as shown by complete T1D resistance

in B10 mice expressing I-Ag7 molecules (50). In B6 congenic

mice expressing I-Ag7, circulating T cells can react with the same

b-cell autoantigens as in NOD mice; however, no autoimmunity

results. These B6.G7 congenic mice confirm the importance of

non-MHC genes in controlling autoimmunity in NOD genetic

background (51, 52).

In addition to CD4+ and CD8+ T cell autoreactivity, Tregs

are involved in suppressing the development of T1D in NOD

mice. CD4+CD25+ Treg cell depletion at critical time points can

accelerate T1D progression (53). Ablation of essential

proliferative or co-stimulatory signals required for Treg cells,

such as IL-2 or CD28, exacerbates T1D (54). NOD Treg quantity

and functional capability are reduced, and increasing NOD Treg
Frontiers in Immunology 03
60
cell activity can prevent diabetes (55–57). These studies

suggested that in addition to the crucial role of T cell

autoreactivity, immunological pathways related to Tregs could

be genetically determined in the NOD model. Further studies

showed shared susceptibility genes affecting Treg function

between mice and humans for T1D (e.g., IL2 and CTLA-4)

(58–60). Thus, the study of NOD Treg function and control may

allow the implementation of novel therapeutics in humans.

These considerations highlight the significance of identifying

non-HLA genes implicated in immune regulatory function, Treg

function and development, and T1D pathogenesis (60).

Identifying genes in the B6/B10 genetic background that can

control autoimmunity has thus been a major goal in this field.
Immunogenetic studies of NOD and
Human T1D and translation to novel
therapeutics

Before the advent of whole-genome sequencing, many non-

HLA genomic regions associated with T1D were discovered by

linkage analysis of the NOD genome (61–63). Identified genetic

regions were confirmed to play a role in T1D pathogenesis

through the construction of congenic mice (64). Congenic mice

were constructed by introgression of resistant insulin-dependent

diabetes (Idd) loci/regions onto the NOD background.

Backcrossing of NOD with B6 (C57BL/6J), B10 (C57BL/10Sn),
BA

FIGURE 1

NOD and NOD Congenic mice. (A) Effects of congenic intervals on the clinical and histological phenotypes of NOD mice. (B) Breeding of NOD
and B10 mice to produce congenic mice with Idd9 regions. Chr, Chromosome; NOD, Non-obese diabetic; T1D, Type 1 diabetes.
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and other T1D resistant strains demonstrated that over 30

murine recessive Idd loci were associated with protection from

spontaneous diabetes (65) (Figure 1B). These studies allowed the

classification of Idd intervals into two groups: those that confer

both insulitis and diabetes resistance and a second group that

protects against T1D but has no effect on insulitis (62)

(Figure 1A). For example, the Idd3 locus on chromosome 3

was implicated in the protection from insulitis and T1D, whereas

the Idd4 locus on chromosome 11 did not protect from insulitis

but prevented T1D (61). It suggested that genes within these

regions exhibited differential effects on T1D development (i.e., T

cell migration, cytotoxicity, or Treg function). The next step was

to identify and confirm candidate genes within the introgressed

genetic regions. This confirmation process ultimately has taken

decades of work and the development of new technologies (e.g.,

whole-genome sequencing, CRISPR).

One of the first identified non-HLA candidate genes encodes

interleukin 2 (IL-2). IL-2 is located in the Idd3 region and has

profound effects on T cell and Treg function, and was thus a

good candidate gene for T1D (66). NOD produces an altered IL-

2 protein compared to the protective B10 allele, with a shortened

tandem repeat sequence encoding a poly-glutamine stretch, plus

an extra four amino acid insert, in the N-terminal coding region

of IL-2 (62). These immunogenetic studies uncovered evidence

of multiple genes with multiplicative effects on the immune

response. For example, the Idd3/Idd5 double congenic mice,

comprising the Il2 and Ctla4 candidate genes, were completely

protected from T1D, whereas when studied alone, only ~20%

and ~50% rates of protection were observed, respectively (60,

67, 68).

Genetic studies in the mouse were compared to human T1D

genetic studies, and marked similarities were uncovered. The

genetic architecture of mouse and human T1D is remarkably

similar, with variants affecting multiple immune genes and

pathways in common between both species, including IL-2, IL-

2 receptor, CTLA-4, IL-10, the HLA region, PTPN22, and IL-7R

(69, 70) For example, single nucleotide polymorphisms (SNPs)

in the human homologous Il2 region were also associated with

T1D susceptibility, identifying the IL-2 pathway as potentially

shared in the pathogenesis of disease in both species (71). The

NOD Il2 gene variant resulted in decreased production of IL-2,

and elegant engineering of Il2 gene haplodeficency reproduced

the NOD effect and resulted in functionally deficient Tregs (71).

Low dose IL-2 therapy increased Tregs in mouse models, and

this led to human trials of low dose IL-2; however, while this

boosted human Treg numbers, it did not affect T1D outcome in

initial trials (72). A variety of approaches have tried to optimize

immune modulation effects via IL-2. IL-2 induced in vitro

expansion of Tregs is one approach that was effective in NOD

mice, tying the IL-2 immunogenetic effects to the enhancement

of Treg deficiencies in T1D (73). Large numbers of Tregs are

needed for human trials, and in vitro expansion may overcome

some of the deficiencies of earlier Treg trials (74). Clinical trials
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in human T1D are ongoing with low-dose IL-2 therapy (75) and

Treg therapy (76) which have built upon these earlier results.

CTLA-4 is another critical immune molecule with variants

identified in mice and humans. The mouse locus (Idd5) was

noted to overlie the orthologous human IDD12 locus (67). T1D

susceptibility was subsequently mapped to a non-coding region

of human CTLA-4 that resulted in lower levels of the CTLA-4

soluble splice variant; the mouse gene also demonstrated

alterations in CLTA4 splicing (77). Human trials targeting

CTLA-4 with a soluble form that blocks T cell activation

appear promising (78). These therapies may be effective even

though the human disease demonstrates remarkably different

patterns of insulitis than the mouse, with much less exuberant

immune infiltrates (79). The difference in b cell immune

infiltration may explain why prevention of diabetes NOD is

very easily achieved, whereas, in humans, prevention trials have

until recently failed. One successful approach to the prevention

of human T1D has been achieved using anti-CD3 antibodies,

which preferentially target CD8 effector cells (80). Notably, anti-

CD3 antibodies were discovered in NOD mice to reverse

established disease (not simply prevent disease), demonstrating

the usefulness of therapeutic trials of acute T1D in NOD mice.

Overall, these examples illustrate the rich insights and potential

therapies resulting from T1D immunogenetic studies. The latest

large-scale study identified 78 genetic regions linked to T1D

(including 36 novel loci) and confirmed the strong association

with immune function and potential for clinical therapeutics

(81). Thus much more work can be done to apply

immunogenetic studies to novel therapeutic pathways.

Our labs have been investigating immunogenetic control of

T1D, initially using NOD and NOD congenic mice, for over 20

years. In the rest of this review, we will detail the lengthy

investigation of the immune effects of the Idd9 genetic region

and our studies which demonstrated that Cd137 is the essential

T1D susceptibility gene in this region. These studies have

revealed many surprises about the function of an Idd gene in

T1D immunology and have ultimately led to novel

immunotherapy based on the immune function of CD137.
The role of Idd9 and its main
candidate gene, Cd137, in NOD T1D

After identifying the Idd9 region in linkage studies, the

Wicker group constructed congenic mice with the B10 Idd9

region introgressed onto the NOD background. The B10 Idd9

region prevented the onset of spontaneous diabetes in NOD

mice (less than 5% of female mice developed T1D) (82).

However, most mice still developed insulitis caused by T cells

expressing CD30, producing high amounts of IL-4 (82)

(Figure 1A). This confirmed that genes associated with

lymphocyte infiltration were outside the Idd9 interval but
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s u g g e s t e d t h a t s ome g en e s w i t h i n t h i s r e g i o n

halted autoimmunity.

This hypothesis was validated in double congenic mice

comprising B6 (Idd3, Idd17, Idd10, and Idd18) from

chromosome 3 and B10 (Idd9) regions (also known as the

NOD.c3c4 strain). NOD.c3c4 mice were completely protected

from diabetes, and only 10% of mice developed insulitis (82)

(Figure 1A). This confirmed that spontaneous diabetes is a

complex trait in which the epistasis of multiple genes (HLA

and non-HLA) is critical for its development, but it also

suggested that the Idd9 interval contained genes associated

with T cell activation and modulation.

The Idd9 region, a 48 cM interval, was fine-mapped into

three intervals (i.e., the Idd9.1, 9.2, and 9.3), with seven candidate

genes (i.e., Jak1, Lck, Cd30, Tnfr2, Cd137, Wsl1, and Ox40) (66).

TheWsl1, Cd137, and Ox40 were initially proposed as candidate

genes within the Idd9.3 locus (82). However, B6 Wsl1 did not

exhibit sequence variations compared to NOD, and Ox40 was

subsequently found to be located outside of the Idd9.3 region

and was excluded as a candidate gene (82). Thus, Cd137

remained the key candidate for T1D protection within the

Idd9.3 locus. Jumping ahead 15 years, it was recently
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confirmed by using combined congenic mapping and

nuclease-based gene targeting that Cd137 is the susceptibility

gene within the Idd9.3 locus critical for modulation of T1D

(82, 83).

Cd137 is located at 1.217-Mb of the Idd9 locus (i.e., Idd9.3)

(84), and Idd9.3 conferred ~40% protection for T1D (82).

Analysis of coding variants demonstrated two synonymous

SNPs in NOD vs. B10 Cd137: a valine to alanine substitution

at position 24 and leucine to proline substitution at position 211

(near the transmembrane domain). There is also alanine

insertion in NOD between amino acids 174 and 175 (82)

(Figure 2A). These structural modifications suggested that

CD137(4-1BB) could be hypofunctional in NOD mice (82).

Cd137 (4-1bb or Tnfrsf9) codes for two CD137 isoforms:

membrane-bound (mCD137) and soluble (sCD137) forms

(Figure 2B) (85). Membrane mCD137 is mostly found on

CD4+ and CD8+ T cells, whereas the sCD137 is produced by

Tregs (86). The ligand for both isoforms, CD137L, is coded by

Tnfsf9 on chromosome 17 and is expressed on APCs and

activated T cells (86).

Since the NOD Cd137 SNPs suggested that mCD137 was

hypofunctional compared to the NOD.B10 strain (82), Cannons
B

C

A

FIGURE 2

Biology and function of sCD137. (A) Non-synonymous SNPs of NOD vs. B6 Cd137. (B) membrane vs. soluble (alternatively spliced) CD137.
(C) Tregs produce sCD137 with a dimeric structure. sCD137 induces altered CD137L signaling in APCs and autoreactive T cells (compared to
membrane CD137), reducing inflammation and damage in the pancreas. In contrast to sCD137, although anti-CD137 antibodies activate Tregs (a
strong immune regulatory effect), they may also increase autoreactive T cell survival and proliferation, thus perpetuating inflammation and
autoimmunity. APCs, Antigen-presenting cells; CD137L, CD137 Ligand; mCD137, Membrane-bound CD137; NOD, Non-obese diabetic; sCD137,
Soluble CD137; SS, signal sequence; STP, Ser/Thr/Pro-rich; T1D, Type 1 diabetes; TM, Transmembrane domain; Tregs, T regulatory cells.
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et al. (84) evaluated T cells activation and proliferation to test

this hypothesis. They confirmed that NOD and NOD.B10 mice

showed similar mCD137 expression after stimulation with anti-

CD3 in Th1 and Th2 culture conditions. However, when T cells

from NOD mice were costimulated with CD137L, they

proliferated less and produced a reduced level of IL-2 than T

cells from mice carrying the B10 allele of Cd137. This strongly

suggested that the NOD SNPs lead to a hypo-functional

mCD137 protein, which could play a role in T1D

pathogenesis. Over the last 15 years, our work has begun to

delineate the complex immune biology of CD137 and CD137L

in T1D.
CD137 and CD137L: A double-edged
sword in autoimmunity

CD137 is a glycoprotein belonging to the TNF receptor

superfamily, and the membrane form is expressed on activated

CD4+ and CD8+ T lymphocytes (87), Tregs (88–94), and natural

killer (NK) cells (95). CD137 is also constitutively expressed on a

subset of Tregs (93). CD137L (4-1BBL), its ligand, belongs to the

TNF superfamily and is expressed on activated APCs such as

macrophages, B cells, and dendritic cells (96–98). Activated T

cells also upregulate and express CD137L (99). mCD137 has no

intrinsic enzymatic activity in its intracellular domain and

functions by binding TRAF1 and TRAF2 adaptor proteins that

enhance K63 polyubiquitination processes in the CD137

signalosome (100, 101). CD137L trimerization, in response to

interaction with mCD137, causes mCD137 receptor clustering

and TRAF-mediated activation of the ERK, JNK, p38, NF-kB,

and MAPK intracellular signaling pathways, resulting in cell

activation, proliferation, and T cell survival (102–109). Notably,

signaling in the CD137:CD137L pathway is bidirectional: both

the receptor and ligand signal into their respective cells (110,

111). This bidirectional signaling adds an additional layer of

complexity to the analysis of the biological function of

the pathway.

The effects of CD137 in T cell biology are diverse but with

specific implications for inflammation and immune regulation.

TCR-induced proliferation and cytokine production were

enhanced after T cells were stimulated with agonistic anti-

CD137 antibodies (also known as 3H3), independent of B7-

CD28/CTLA-4 interactions (112, 113). mCD137 signaling

results in NF-kB activation that promotes the expression of

antiapoptotic genes encoding Bcl-xL and Bfl-1 (114, 115) and

mitochondrial function and biogenesis, which improves T cell

survival (116, 117).

mCD137 has a prominent role in CD8+ T-cell costimulation,

influencing cytotoxicity in an IL-2-independent manner.

Furthermore, CD8+ T cells produce a greater amount of IFN-g
after mCD137 activation (118). In vivo experiments showed that

knockout mCD137/CD137L mice exhibited a reduced memory
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CD8+ T cell response to viruses (119–121) and decreased T cell

survival (122). These findings pointed to a costimulatory

involvement of mCD137 in long-lasting memory T-cell

activation and enhancement of cytotoxicity and founded the

basis for CD137-based therapies for cancer (85, 123–126). In

contrast to these effects, when knockout mice were stimulated

with CD3, T cells showed hyperresponsiveness, which indicated

an additional immunosuppressive role of CD137 (105).

The expression of CD137L on APCs is increased at sites of

inflammation in vivo (127, 128). Activating APCs by CD137L

upregulated B7-1 and B7-2, and increased IL-6 and IL-12

secretion (127). CD137L is upregulated on activated T cells,

and CD137L signaling is critical for CD8+ T cell survival via

STAT3- and FAS-mediated pathways (129). CD4+ T cell

activation can also be modulated by CD137L-expressing APCs

(via APC CD137L signaling through T cell CD137) that

stimulate IL-2 and IL-4 T cell production (112, 113).

This data established that CD137L on APCs affects the

cytotoxic immune response and is critical for the survival of

CD8+ and CD4+ T cells. This also confirmed that inhibition of

mCD137 or CD137L might reduce inflammation via CD8+ T

cells but may at the same time also affect CD4+CD25+CD137-

expressing Tregs. Indeed, Cd137 is upregulated by Foxp3 (130).

CD137 is expressed by Tregs infiltrating the islets in T1D,

suggesting an immunoregulatory role for CD137+ Tregs (131).

Thus attempting to modulate CD137 or CD137L action on T

effector cells could potentially decrease immunosuppression via

Tregs, illustrating the intricacies of this pathway and the

potential for double-edged effects.

Type 1 regulatory T (Tr1) cells are another type of regulatory

T cell characterized by the production of IL-10 and lack of

constitutive Foxp3 expression (132). Despite the evidence of

CD137L mRNA expression after stimulation (133), it is

unknown whether these cells also exert their suppressive

function by sCD137 or their role in NOD mice during T1D

pathogenesis. Since Cd137 is upregulated by Foxp3 (130), Tr1

cells may not produce large quantities of sCD137. Further

studies of this cell subset and their involvement in the

mCD137/CD137L axis are warranted.

Agonistic anti-CD137 antibodies induced the proliferation

of CD4+CD25+ Tregs with the maintenance of their suppressive

activity (92). Interestingly, the effects of agonistic anti-CD137

antibodies are diverse and dependent on the target and the

disease. Activating CD8+ T cells by anti-CD137 antibodies in

cancer models leads to tumor cell elimination. In sharp contrast,

in models of autoimmunity, e.g., murine models of SLE (134,

135), experimental autoimmune encephalomyelitis (136),

collagen-induced arthritis (122, 137), Sjögren’s syndrome-like

sialadenitis (138), and inflammatory bowel disease (139), anti-

CD137 antibody treatment leads to immunoregulation and

disease amelioration. For example, anti-CD137 administration

in the SLE murine model reversed disease and reduced

autoantibody production (i.e., dsDNA antibodies) and
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immune complex deposition (135). Induction of T cell anergy by

anti-CD137 antibodies might play a role in some of these models

(135, 140).
Anti-CD137 antibodies prevented
T1D via Treg expansion but
accelerated T1D in the
absence of Tregs

Since Cd137 was a candidate gene in T1D, we started our

investigation of the role of CD137 in T1D with agonistic anti-

CD137 antibodies. We showed that anti-CD137 antibodies in

NOD mice prevented the development of T1D but did not

ameliorate insulitis, which is consistent with the findings of

residual insulitis in NOD congenic mice protected from T1D by

the B10 Idd9.3 region (93). We found that anti-CD137 expanded

CD4+CD25+ Tregs, and their transfer to NOD-scid mice

completely prevented T1D (93). However, T1D progressed

more rapidly when NOD-scid mice were treated with anti-

CD137 after pathogenic CD4+ and CD8+ T cell transfer in the

absence of Tregs. Therefore, in the absence of Tregs, mCD137

stimulation could potentially potentiate pancreatic destruction

via CD8+ T cytotoxicity. This is similar to the effect of anti-

CD137 administered in the context of autoimmune thyroiditis,

which worsens the disease (141).

Due to this dual effect, activation of effector T cells in acute

autoimmunity may prohibit the use of agonistic CD137

antibodies in clinical autoinflammatory states, including T1D,

because activated T cells have upregulated mCD137 in these

settings. In contrast, CD137 antibodies in non-inflammatory

states (e.g., pre-diabetes) might prevent autoimmunity since it

targets Tregs constitutively expressing mCD137 without

activating T cell effector cells. This dual effect led us to look

for alternate ways to therapeutically target the mCD137/CD137L

pathway in T1D.

We turned our attention to sCD137, which is formed by

alternative splicing (99, 142) (Figure 2B), and exists as a dimer

(143). sCD137 was found in the supernatants of splenic and

bone marrow-derived dendritic cells (144). Murine sCD137

differs from humans. In mice, only the exon coding for the

transmembrane domain of CD137 is spliced out, whereas, in the

latter, two splice variants are observed (145). sCD137 is

preferentially secreted by CD4+ T cells, whereas CD8+ T cells

express higher amounts of mCD137 (146). We found that the

major source of sCD137 is CD4+CD25+CD137+ Tregs (94).

Spliced variants are critical for the modulation of immune

response (147). The induction of alternative splicing is poorly

understood but may occur as a response to environmental

signals. In autoimmunity, splicing also occurs in the modulation

of immune responses (147). Changes in the immunological

environment (i.e., T cell autoreactivity and pro-inflammatory
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milieu) induce the production of sCD137 by Tregs. We have

demonstrated that activating Treg cells increases the production

of sCD137 by Tregs inmice and humans (148). Thus, inflammatory

environmental changes may partly explain the origin of spliced

variants of CD137 from Tregs as a homeostatic response to

ameliorate inflammation. A similar process is seen with soluble

CTLA4 (sCTLA4), a spliced variant of membrane-bound CTLA4

mainly produced by Foxp3+ Tregs (149). sCTLA4 suppresses early

T-cell activation by preventing the interaction of CD80/CD86 with

the costimulatory receptor CD28 (150). In addition, it inhibits IFN-

a, IL-2, IL-7, and IL-13 production while activating TGF-b and IL-

10 release (151). Silencing sCTLA-4 mRNA by RNA interference

accelerated the onset of T1D in NODmice and impaired the ability

of Tregs to downregulate dendritic cell costimulation (149). Both

spliced variants, sCTLA4 and sCD137, may be critical for effective

Treg function in the pathogenesis of T1D.

What is the role of sCD137? Our hypothesis was that

sCD137, similar to sCTLA4, functions as a negative feedback

mechanism to downregulate immune response mediated by

mCD137 and CD137L (85, 152). sCD137 reduces the

production of IL-10 and IL-12 from activated splenocytes

(146). In addition, T cell proliferation and IL-2 release were

inhibited when sCD137 was administered to these cells (153).

These initial reports clarified the effects of CD137 in different

conditions (i.e., cancer and autoimmunity) and suggested that

the sCD137 was the missing link in understanding the dual

effects of the mCD137/CD137L axis.

To confirm the role of CD137 in the Idd9.3 locus, we

evaluated the function (immunosuppressive effects) and

quantity of CD137+ Treg cells in NOD.Idd9.3 congenic mice

(94). When compared to NOD mice, the NOD.Idd9.3 strain had

significantly higher percentages of CD4+CD25+CD137+Foxp3+

Tregs in the thymus and spleen, and the numbers increased with

age. This supported the hypothesis that the hypofunctional NOD

CD137 allele led to decreased Treg survival, consistent with the

known effects of mCD137 on cell survival. CD137+ Tregs showed

superior immunosuppression compared to CD4+CD25+CD137-

Tregs, directly showing an effect of CD137 on Treg function.

Thus, increased numbers of CD137 Tregs, mediated by the

protective allele, led to increased overall suppressive capacity.

Importantly, CD137+ Tregs showed suppressive capability in an

independent contact assay. This supported our continued focus

on the possible immunosuppressive role of sCD137 in T1D.
sCD137 is produced by Tregs and
inhibits T cell autoreactivity in a
paracrine fashion

We first confirmed that sCD137 was mainly produced by

CD4+CD25+CD137+ Tregs and in a higher amount in

NOD.Idd9.3 congenic mice (94). Next, we demonstrated that
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sCD137 primarily exists as a ~55 kDa homodimer under non-

reducing and a ~35 kDa monomer under reducing conditions

(143). The existence of sCD137 as a dimer, rather than as a

trimer as described for mCD137, suggested a structural reason

for how sCD137 might suppress T cell function while mCD137

activated T cell function (143). Next, we showed that the

administration of recombinant sCD137 to NOD mice

prevented diabetes and reduced insulitis by preserving insulin+

islets (143). Since CD4+CD25+CD137+ Tregs inhibited T cells in

a contact-independent manner (94), we evaluated the role of

sCD137 in T cell inhibition. We demonstrated that sCD137

inhibited activated T cells by binding to CD137L (143). In

addition, sCD137 can directly stop the proliferation of effector

CD4+CD25-CD137- T cells in the absence of APCs, and without

inducing cell death (143) (Figure 2C).

In add i t ion to the cruc ia l ro le o f sCD137 in

immunosuppression, additional reports suggest that

mCD137, like other costimulatory molecules, has a

nonredundant role in maintaining the pathogenic activity of

b cell-autoreactive T cells in NOD mice. We found that,

compared to wild-type mice, T1D development is reduced in

NOD.Cd137-/- and their T cells are less capable of inducing

T1D in NOD.Rag1-/- recipients (154). This, at first, seemed

contradictory to our data on the immunoregulatory properties

of CD137+ Tregs and sCD137. As sCD137 produced by Tregs is

suppressive, evaluating the distinctive role of mCD137 in CD4+

and CD8+ T cells was crucial. Isolated T cells from NOD and

NOD.Cd137-/- mice were transferred into NOD.Rag1-/-

recipients. The T cell adoptive transfer studies revealed that

CD137 expression in CD8+ T cells was required to develop

T1D in NOD mice, but CD137 expression in CD4+ T cells was

diabetes-protective (155). Specifically, CD137 expression in

CD4+ Tregs is important for their T1D suppression function.

We further demonstrated that CD137 cell-intrinsically

stimulates the accumulation and proliferation of autoreactive

CD8+ T lymphocytes within the islets, pointing to a role of

mCD137 on the diabetogenic activity of CD8+ T cells.

However, sCD137 suppressed the proliferation of CD8+ T

cells. These experiments supported the concept that the T1D

protection conferred by the Idd9.3 locus is mediated through

the production of sCD137 by Tregs.

As the sCD137/CD137L interaction is implicated in the

modulation of effector CD8+ T cells, clarifying the role of

CD137L in the immunomodulation of T1D is essential.

CD137L-deficient NOD mice were shown to exhibit less

insulitis and delayed onset of T1D (156). Interestingly,

CD137L expression on myeloid APCs appeared to be

necessary for the survival of b-cell–autoreactive CD8+ T cells

and T1D progression, but CD137L has no effect on the

formation or homeostasis of Foxp3+ Tregs (156). It remains to

be determined if mCD137 in Tregs modulates their function and

whether Tregs capable of producing sCD137 but not mCD137

are sufficient to suppress T1D.
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sCD137 induces T cell anergy and
can act therapeutically to halt acute
autoimmunity

It is relatively easy to prevent T1D in NODmice, and a much

more stringent target is the reversal of actual acute T1D. Thus we

treated NOD mice with new-onset T1D with recombinant

sCD137 (148). This experiment confirmed that sCD137 could

not only prevent T1D but also halt acute T1D and avert the

development of end-stage diabetes. In effectively treated mice, b
cell immunohistochemistry revealed considerable preservation

of insulin+ b cells and a rise in insulin+ islets (148). In this

setting, T cells showed downregulation of mTORC1, developed

an anergic phenotype (reversed by IL-2), as well as the ability of

sCD137 to suppress antigen-experienced and activated memory

T cells. CD8+ effector memory cells also showed a reduction in

the production of inflammatory cytokines in the presence of

sCD137 (i.e., IFN-g) (148).
In human pediatric T1D patients, we found low levels of

sCD137 compared to non-diabetic age-matched controls during

acute flares (hospital admission for hyperglycemia). We also

confirmed that human Tregs were the primary source of sCD137

(148). Furthermore, human peripheral activated CD4+ T cells

were inhibited by sCD137. These results were analogous to those

in NOD congenic strains, supporting the notion that these

murine models are useful and relevant to affecting the

autoimmune phenomena driving human T1D. This evidence

showed that sCD137 is associated with autoimmunity in T1D

humans, and low sCD137 could be a biomarker in T1D. Further

studies are required to confirm the role of sCD137 in reverting

established destructive insulitis and the pathways associated with

this phenomenon.

Surprisingly, sCD137 is reported to be increased in patients

with rheumatoid arthritis (145, 157, 158), and multiple sclerosis

(159); and the levels were directly correlated with the severity of

the disease (157). Increased levels of sCD137 could be a

homeostatic attempt by Tregs to modulate inflammation in

these conditions. However, it also raises the possibility that in

the presence of a substantial inflammatory substrate, the

stoichiometric ratio of sCD137 to CD137L could be reduced,

thus reducing the efficacy of sCD137 or possibly indicating that

higher sCD137 doses would be required. New strategies

improving the half-life and potency of sCD137 could be

cr i t i ca l to enhanc ing the i r therapeu t i c e ff e c t in

human autoimmunity.
Summary and prospects

Linkage studies and the construction of congenic mice

allowed the identification of candidate genes with implications

for the pathogenesis of T1D. The cumulative evidence suggests
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that Cd137 and its coding isoforms are crucial in the

development of T1D, and the CD137-CD137L pathway is a

good target for therapeutic modulation. Treg-generated sCD137

modulates the mCD137/CD137L axis, reduces insulitis, and

halts T1D in the NOD mouse. The ability to effectively halt

acute T1D with exogenous sCD137 is an exciting development

with attractive therapeutic potential. Prevention studies in

humans are difficult to implement, and those attempted so far

have failed (160). Therefore, treating acute disease is a more

appealing strategy, but the current landscape of approved

therapeutics is limited. The use of antibodies to target the

CD137-CD137L axis is appealing; however, while anti-CD137

antibodies are protective in some models of autoimmune

diseases due to activation of Tregs, they can also enhance

CD8+ T cell killing activity in the absence of Tregs. sCD137,

on the other hand, only acts to suppress CD4+ and CD8+ T cell

activation and may therefore be safer than an anti-CD137 based

approach. In human studies, low levels of sCD137 during T1D

flares, and the inhibition of activated CD8+ T cells in vitro after

sCD137 stimulation, supports its further translational use.

Soluble CD137 suppresses autoreactive CD8+ T cells through

induction of anergy. However, little is known about the activity of

sCD137 on innate immunity. The mechanistic role of sCD137 on

CD137L-expressing myeloid APCs should be explored to

determine if there will be lasting effects on innate immune

function. In addition, it is unknown whether mCD137 on Tregs

drives their differentiation to a more robust inhibitory phenotype.

This could have therapeutic implications, particularly for the

pharmacokinetics and pharmacodynamics of human sCD137.
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38. Marek-Trzonkowska N,MyśliwiecM, Dobyszuk A, GrabowskaM, Derkowska I,
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Genetic basis of defects
in immune tolerance
underlying the development
of autoimmunity

Anne M. Hocking and Jane H. Buckner*

Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle,
WA, United States
Genetic variants associated with susceptibility to autoimmune disease have

provided important insight into the mechanisms responsible for the loss of

immune tolerance and the subsequent development of autoantibodies, tissue

damage, and onset of clinical disease. Here, we review how genetic variants

shared across multiple autoimmune diseases have contributed to our

understanding of global tolerance failure, focusing on variants in the human

leukocyte antigen region, PTPN2 and PTPN22, and their role in antigen

presentation and T and B cell homeostasis. Variants unique to a specific

autoimmune disease such as those in PADI2 and PADI4 that are associated

with rheumatoid arthritis are also discussed, addressing their role in disease-

specific immunopathology. Current research continues to focus on

determining the functional consequences of autoimmune disease-associated

variants but has recently expanded to variants in the non-coding regions of the

genome using novel approaches to investigate the impact of these variants on

mechanisms regulating gene expression. Lastly, studying genetic risk variants in

the setting of autoimmunity has clinical implications, helping predict who will

develop autoimmune disease and also identifying potential therapeutic targets.

KEYWORDS

genetic variants, autoimmunity, immune tolerance, HLA, PTPN2, PTPN22, INS-
VNTR, PADI
Introduction

Development of autoimmunity and progression to autoimmune disease occurs on a

continuum with the complex interplay of genetic factors and environmental factors over

time (Figure 1). Genetic risk variants and epigenetic alterations predispose to loss of

immune tolerance and the subsequent development of autoantibodies, tissue damage,

and onset of clinical disease. Environmental factors are less understood but are thought
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to act as triggers that initiate and promote disease progression.

To date, viral infection, tissue injury, diet, and stress have all

been implicated in this process suggesting that there may be a

“threshold effect” involving multiple triggers rather than a single

trigger for autoimmunity. Time is also important with growth,

maturation, and aging tuning the rate and direction of disease

progression. In this review, we focus on the role of genetic

variants, specifically how they contribute to failed immune

tolerance in autoimmunity. We describe how they have

enabled us to identify the molecular and cellular mechanisms

underlying immune tolerance. We also provide an update on

how genetic variants have helped predict disease development

and have facilitated the identification of new therapeutic targets

for treatment and prevention of autoimmune disease, including

in the setting of personalized/precision medicine.
Role of genetics in development
of autoimmunity

Immune tolerance is defined as the state of unresponsiveness to

molecules that have the potential to induce an immune response

and ensures that the immune system does not mount a response

against self-antigens. Importantly, failure of tolerance contributes

to induction of autoimmunity (reviewed in (1)). Tolerance is

achieved through both central and peripheral tolerance

mechanisms (reviewed in (2)). Central tolerance occurs in the

thymus for T lymphocytes and the bonemarrow for B lymphocytes

and acts primarily through negative selection by eliminating

immature T and B lymphocytes that recognize self-antigens (2).

Peripheral tolerance takes place after the T andB lymphocytes leave
Frontiers in Immunology 02
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the primary lymphoid organs. Mechanisms through which

tolerance is maintained in the periphery include: apoptosis,

anergy, and regulatory T cell (Treg)-mediated suppression (1, 2).

Studies of monogenic disorders have been critical to

understanding tolerance mechanisms (Figure 2). For example,

autoimmune polyendocrine syndrome type-1 (APS-1) caused by

mutations in the gene autoimmune regulator (AIRE) has provided

key insight into central tolerance (3). Specifically, AIRE expression

bymedullary thymic epithelial cells promotes the display of tissue-

specific antigens to developing T cells, a key step in negative

selection of autoreactive T cells. This lack of central tolerance

results in the development of multiple autoimmune diseases

including type 1 diabetes (T1D), hypothyroidism, adrenal

insufficiency, alopecia, and vitiligo. Conversely, studying both

autoimmune lymphoproliferative syndrome (ALPS) and

immune dysregulation, polyendocrinopathy, enteropathy, X-

linked (IPEX) syndrome have increased our understanding of

mechanisms of peripheral tolerance. ALPS caused by mutations in

the first apoptosis signal receptor (FAS) gene demonstrates how

failed apoptosis drives autoimmunity (4). IPEX syndrome, a

multi-organ autoimmune disease from birth, caused by

mutations in the transcription factor forkhead box P3 (FOXP3)

that result in either a lack of Tregs or impaired Treg function,

highlights the importance of Tregs in maintaining peripheral

tolerance (5). Other rare monogenic forms of autoimmunity are

also instructive including LPS-responsive and beige-like anchor

protein (LRBA) deficiency, CD25 deficiency and signal transducer

and activator of transcription 3 (STAT3) gain-of-function, all of

which impair Treg cell function (6, 7).

The majority of autoimmune diseases are polygenic and

genome-wide association studies (GWAS) have identified
FIGURE 1

Development of autoimmunity and progression to autoimmune disease. Genetic factors predispose to loss of immune tolerance and the
subsequent development of autoantibodies, tissue damage, and onset of clinical disease. Environmental factors act as triggers that initiate and
promote disease progression. Growth, maturation, aging and comorbidities contribute to the rate of progression from loss of tolerance to
autoimmune disease.
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genetic variants shared across multiple autoimmune diseases as

well as variants unique to specific autoimmune diseases. Both

types of variants have been informative providing insight into

the signaling pathways and immune cell types involved in

induction and maintenance of tolerance. The shared variants

have been most instructive for our understanding of the global

tolerance failure underlying autoimmunity whereas disease-

specific variants have been more useful defining disease-

specific immunopathology. However, defining the functional

impact for both shared and disease-specific variants remains

challenging since an individual variant may be expressed in

multiple immune cell types at different developmental stages

and/or at discrete phases of the immune response and may also

be influenced by environmental factors. In addition, growing

evidence indicates that genetic risk variants synergize with each

other to promote autoimmunity (8, 9).

Understanding interactions between genetic risk variants is

also important for the development of polygenic risk scores to

predict disease susceptibility and disease progression and inform

treatment options. In type 1 diabetes (T1D), these scores are

being used to predict progression of islet autoimmunity and

development of clinical disease in the at-risk population (10, 11).

More recently, a combined risk score for T1D has been

developed that integrates genetics, autoantibodies, and clinical

factors (12). Genetic risk scores for predicting clinical outcomes

are also being investigated in the setting of rheumatoid arthritis

(RA) and systemic lupus erythematosus (SLE). In RA, a
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polygenic risk score has recently been developed to predict

severity of radiographic progression (13) and in SLE, a high

genetic risk score was associated with organ damage and renal

dysfunction (14).
Shared genetic variants across
autoimmune disease

Over time multiple approaches have been undertaken to

identify the genetic underpinnings of autoimmunity. These

studies included targeted assessments of families with

autoimmunity as well as case control association studies of

candidate genes. These approaches successfully identified

genes with a strong association with autoimmunity, including

the HLA locus (reviewed in (15)) and the coding variant

PTPN22 (16). The sequencing of the human genome and

development of GWAS chip led to the ability to screen large

numbers of affected and unaffected individuals. This allowed the

identification of common variants that associated with risk

for autoimmunity.

A key observation from the initial GWAS studies was that

many genetic risk variants are shared across autoimmune

diseases (17, 18). Notably, these shared genetic variants

highlight the vital role of antigen processing and presentation,

T cell activation, cytokine signaling, as well as innate sensing

mechanisms in induction and maintenance of immune tolerance
FIGURE 2

Genetic variants underlying failed immune tolerance and development of autoimmunity. Schematic showing where each of the discussed
variants contribute to the loss of tolerance both in the thymus and the periphery.
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(19, 20). The breadth of information on the many genetic

variants associated with autoimmunity is beyond the scope of

this review. Instead, we will focus on two protein tyrosine

phosphates, PTPN2 and PTPN22, due to their association with

multiple autoimmune diseases and the evidence of their role in

multiple aspects of immune tolerance, while also discussing

human leukocyte antigen (HLA), the region most strongly

linked to autoimmunity (Figure 2).
Human leukocyte antigen class II alleles

The HLA region, a large polymorphic region on

chromosome 6, encodes HLA Class II molecules, which

function to present processed antigens to CD4 T cells

(reviewed in (15)). The HLA Class II molecules are

heterodimers composed of an alpha and beta chain expressed

on the surface of antigen-presenting cells. Importantly the HLA

Class II molecules contain a peptide-binding groove that allows

formation of a trimolecular complex between the HLA Class II

molecule, its bound peptide and the T cell receptor on T cells.

The HLA Class II region has the strongest genetic association

with human autoimmune diseases (15), underscoring the

importance of antigen presentation for immune tolerance.

HLA class II alleles are primarily associated with autoimmune

diseases characterized by autoantibodies such as T1D, RA and

SLE (15, 21–23). Notably, the HLA locus is highly polymorphic,

and the allelic associations differ across autoimmune diseases

suggesting that HLA is also involved in the tissue specificity of

the immune response. Additionally, HLA alleles may be

associated with protection as well as risk. T1D is an example

where both are seen, HLA DR4, DR3 and DQ0302 are each

associated with disease, whereas DQ0602 is protective (23). HLA

alleles are also associated with disease characteristics. For

example, HLA-DRB1 alleles encoding the shared epitope a

“shared” motif (QKRAA, QRRAA or RRRAA in positions 70–

74 of the DRB1 chain) that is found on DR1 and DR4 alleles

associated with a distinct subset of individuals with RA,

specifically those who have anti-citrulline antibodies (ACPA)

or ACPA+ RA (reviewed in (24)). It is also important to note

that the region linked to HLA risk on chromosome 6 includes

additional genes with immunologic significance, and there is

growing evidence that they too may impart risk for

autoimmunity (25, 26).
PTPN2

The PTPN2 gene encodes protein tyrosine phosphatase non-

receptor type 2, which has a regulatory role in a variety of

signaling pathways including T cell receptor signaling, IL-2

signaling, and JAK/STAT signaling (27). There are three

autoimmune disease-associated variants in the PTPN2 gene
Frontiers in Immunology 04
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shared across T1D, Crohn’s disease, and RA: rs2542151 in the

coding region and rs1893217 and rs478582 both in the non-

coding region (27). The rs1893217 variant is associated with

decreased PTPN2 mRNA levels in human T cells (28). Carriers

of the rs1893217 variant also show impaired T cell responses to

IL-2 as measured by pSTAT5 (28) and the rs478582 variant is

associated with reduced stability of Tregs (29, 30). In murine

models, PTPN2 expression is linked to T cell lineage

commitment (31), proliferation and survival (32), and Treg

stability (33). Yet as a broader understanding of the impact of

altered PTPN2 expression is gained, its role in autoimmunity has

extended beyond T cells. In murine models, PTPN2 has been

shown to negatively regulate IL-21 signaling and B cell responses

(34), in humans the PTPN2 risk variant rs1893217 is associated

with the loss of B cell anergy (35). PTPN2 is also important in

dendritic cell-mediated immune tolerance, partial depletion of

PTPN2 in dendritic cells (DCs) results in spontaneous

inflammation, altered immune cell composition, increased

accumulation of conventional type 2 DCs (cDC2) in organs,

and expansion of IFNg-producing effector T cells (36). Notably,

the variants of PTPN2 associated with autoimmunity are quite

common (the minor allele frequency (MAF) of rs1893217 risk =

0.1196) and the increase in risk is modest (the odds ratios for

T1D and Crohn’s are 1.3 and 1.25 respectively (27)) indicating

that the risk variants contribute through modest alterations in

multiple aspects of immune regulation.
PTPN22

The rs2476601 variant in the coding region of the protein

tyrosine phosphatase non-receptor type 22 (PTPN22) gene is

one of the most strongly associated risk variants shared across

autoimmune diseases including RA, T1D, and SLE (37).

PTPN22 is notable for its role across multiple immune cell

types including lymphocytes, natural killer (NK) cells,

neutrophils, monocytes, macrophages, and DCs (37). In T and

B cells, PTPN22 regulates antigen receptor signaling (38),

making it a major focus of studies investigating its role in

autoimmunity risk. The minor allele of the rs2476601 variant

is associated with autoimmunity and has a thymine substituted

for a cytosine at nucleotide 1858 (PTPN22 C1858T) resulting in

a change from arginine (R) to tryptophan (W) at amino acid

position 620. This amino acid change results in modest

alterations in the function of PTPN22 but importantly alters

the character and function of immune cells. Examples of this

include alterations in the composition of the B cell compartment

and increases in polyreactive and autoreactive B cells in

PTPN22620W/W carriers, indicating a failure of B cell tolerance

(39, 40). Notably, murine modeling of this variant recapitulates

autoimmunity and confirms that a multiplicity of mechanisms is

involved in this process (41, 42). Human studies have also shown

that the rs2476601 variant influences T cell maturation including
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increased CD4 memory T cells (43) and an increase in Th1 cells

(44). In addition, this variant impacts TCR signaling, although

the jury is still out as to whether it is a gain- or loss-of-function

mutation, and this is likely dependent on context (37). This

PTPN22 variant has also been recently implicated in cDC2

homeostasis because expression of the orthologous

polymorphism in mice lead to expansion of cDC2 (45). Thus,

similar to PTPN2, the PTPN22 variant which is broadly

associated with autoimmunity, likely does not confer risk

through one pathway, but through a combination of modest

alterations, that lead to failures in tolerance checkpoints in both

T and B cell compartments and promote the development of

pathogenic responses.
Synergy between autoimmune disease-
associated variants

Dissecting how autoimmune disease-associated variants

interact with each other to promote susceptibility to

autoimmunity is a critical next step for understanding how

genetic variants contribute to the loss of tolerance. Although,

this is challenging to do, it is possible using well-defined cohorts

controlled for the genotypes of interest, and/or crossing knockin

mouse models expressing the variants of interest. CRISPR/cas9

genome editing is also being utilized to express the variants of

interest in primary human immune cells (46–48). Here, we

highlight two studies investigating the interactions between

genetic variants in the setting of autoimmune disease. The first

analyzed a large cohort of individuals with RA and determined

that there was synergistic interaction between the PTPN22

s2476601 variant and the HLA-DRB1 shared epitope alleles in

participants who were positive for both antibodies to cyclic

citrullinated peptides and antibodies to citrullinated a-enolase
(49). Interestingly, the combined effect of the PTPN22 s2476601

variant and the HLA-DRB1 shared epitope alleles was further

enhanced by smoking (49), underscoring the importance of

gene-environment associations for the development of

autoimmunity. The second study crossed knockin mice to

investigate the interaction between the rs1990760 variant in

IFIH1 and the rs2476601 in PTPN22 (8). The IFIH1 variant

rs1990760 is associated with risk of T1D, SLE, RA, and multiple

sclerosis (MS) (50) and results in an amino acid change from

alanine to threonine at position 946 in the C-terminal of the

interferon-induced helicase C-domain containing protein 1

(IFIH1 also known as MDA5). IFIH1 is a pattern recognition

receptor for dsRNA that induces a type I interferon response to

RNA viruses (51). In both humans and mice, the IFIH1

rs1990760 variant acts as a gain-of-function mutation that

increases the interferon response (8). When both the IFIH1

rs1990760 and PTPN22 rs2476601 variants were introduced into

a murine model of T1D, an additive effect was observed with

increase in the rate and time to onset of diabetes (8). These
Frontiers in Immunology 05
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studies are examples of the interaction across genetic variants

and indicate such interactions may amplify disease risk.
Variants unique to a disease reveal
disease-specific immune alterations

There are also genetic variants that are only associated with a

single autoimmune disease. Interestingly, these variants typically

target a pathway or process that is unique to the underlying

pathogenesis of disease such as the antigen targeted in

autoimmunity. As noted above, the HLA locus is associated

with many autoimmune diseases, but the associated alleles may

differ- arguing that the link at this level may be specific to the

autoantigen being targeted. Other variants that are disease-

specific and associated with specific antigen targets include the

insulin variable number of tandem repeats (INS-VNTR) variant

associated with T1D and the peptidylarginine deiminase (PADI)

2 and 4 variants associated with RA.
INS-VNTR

The polymorphic insulin gene variable number of tandem

repeats (INS-VNTR) is associated with the proinsulin gene

promoter region. Variants in this region, specifically the

VNTR III haplotype, are associated with a 3- to 4-fold relative

protection from diabetes (52). This haplotype is associated with

elevated expression levels of proinsulin in the thymus (53, 54)

and a decrease in the frequency of high avidity pro-insulin-

specific CD4+ T cells in comparison to the diabetes susceptibility

haplotype VNTR I (55). Thus, in a manner similar to the AIRE

mutation that limits expression of self-antigens in the thymus,

this genetic risk variant may act by specifically impeding the

expression of pro-insulin in the thymus resulting in a tissue-

specific failure of central tolerance which can contribute to the

development of pathogenic proinsulin-specific T cells and

ultimately the development of T1D.
PADI2 and PADI4 variants

Genetic variants in PADI2 and PADI4 have been associated

with ACPA positive-RA (56), although these associations appear

to be strongest in Asian populations (57). The functional impact

of these variants is still unclear yet the role of peptidylarginine

deiminases (PADs) in RA makes this association of particular

interest. PADI2 and PADI4 encode (PADs) 1 and 4 respectively,

enzymes that catalyze the post-translation conversion of

arginine to citrulline by calcium-dependent deamination (58).

Given that ACPA are present in 80% of individuals with RA,

PADs are likely to play a central role in disease pathogenesis due

to their ability to generate citrullinated proteins. This is further
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supported by the presence of PAD2 and PAD4 in the synovial

fluid of patients with RA (59–61). In addition, PADs are

involved in immune ce l l processes impl ica ted in

autoimmunity, including neutrophil net formation (netosis)

(62) and anti-PAD4 antibodies have been detected in patients

with RA and are associated with disease severity (63). Also

intriguing is a recent study reporting an association with PADI4

variants in Caucasian individuals who smoked and carried risk

alleles for both HLA-DRB1*04 and PTPN22 (64). A potential

explanation for this synergy is the discovery that PTPN22

interacts with and inhibits PAD activity, but the PTPN22620W

risk variant (rs2476601) disrupts this interaction leading to

enhanced citrullination and netosis (65).
Future directions

The next frontier in the field of autoimmune disease-

associated genetic variants is understanding the functional

impact of non-coding variants located in regulatory regions of

the genome. New discovery opportunities are now possible due to

advances in approaches to interrogate the 3-dimensional

architecture of the genome including chromatin conformation

capture techniques and increasingly sophisticated profiling

methods integrating epigenetics, transcriptomics, and

proteomics. In addition, there have been substantial

improvements in the assays used to elucidate the function of a

variant with massively parallel reporter assays (MPRA) and

CRISPR-Cas genome editing facilitating high throughput

screening. These approaches are now being applied to

autoimmune disease-associated variants. A CRISPR activation

screen identified a risk variant in an enhancer region of the IL2RA

gene (47) and more recently MPRA was used to prioritize

approximately 18,000 autoimmune disease associated-variants

based on how they perturb regulatory elements in T cells (66).

Expression quantitative trait (eQTL) analysis has also been

helpful in linking non-coding variants to nearby genes (67).

Two recent studies applying single cell eQTL analysis to T cells

highlighted the importance of both activation state and cell type

on the effects of autoimmune disease-associated variants (68, 69).

Another priority is identifying genetic variants that are

associated with either disease progression or response to

treatment. This is an emerging field, but the power of this

approach has been demonstrated by a study comparing good

and poor prognosis in Crohn’s disease (70). Notably, variants

were identified that were specifically associated with prognosis

rather than susceptibility (70). Screening for genetic variants that

influence response to therapy has also been limited, but there

have been some genetic associations identified for response to

TNFa blockade in RA. The biggest challenge for any of these

studies is defining the cohort given the heterogeneity with

respect to stage of disease and the therapies administered. This

type of work will require strong collaborative efforts to assess
Frontiers in Immunology 06
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clinical outcomes for large numbers of patients with studies of

mechanistic outcomes; large undertakings with important

potential to improve the way we provide healthcare to

individuals at risk for and with autoimmune diseases.
Clinical implications

Identification of genetic variants has been important for the

development of immunotherapies aimed at achieving immune

tolerance. For example, knowing the HLA haplotype is crucial

for many antigen-specific therapies including peptide

immunization and engineered Treg cell therapy. Genetic

variants in the IL-2 signaling pathway such as those in IL2RA

and PTPN2 also need to be considered for IL-2-mediated

therapy. Likewise for the IL-6 pathway where single nucleotide

polymorphisms in the IL-6 receptor may influence the response

to IL-6 blockade therapies. Tyk2 inhibitors are now in clinical

trials, with initial encouraging results in psoriasis with the

potential to be extended to other autoimmune diseases,

particularly those associated with protection from the loss-of-

function variant, including SLE and MS (71). Collectively, these

studies underscore the value of autoimmune-associated genetic

variants for development of personalized/precision medicine for

the prevention and treatment of autoimmune disease.
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Background and objectives: Myasthenia gravis (MG) is a T cell-driven,

autoantibody-mediated disorder affecting transmission in neuromuscular

junctions. The associations between the peripheral T cells and MG have been

extensively studied. However, they are mainly of observational nature, thus

limiting our understanding of the effect of inflammatory biomarkers on MG risk.

With large data sets now available, we used Mendelian randomization (MR)

analysis to investigate whether the biomarkers on T cells are causally associated

with MG and further validate the relationships.

Methods: We performed a two-sample MR analysis using genetic data from

one genome-wide association study (GWAS) for 210 extensive T-cell traits in

3,757 general population individuals and the largest GWAS for MG currently

available (1,873 patients versus 36,370 age/gender-matched controls) from US

and Italy. Then the biomarkers of interest were validated separately in two

GWASs for MG in FIN biobank (232 patients versus 217,056 controls) and UK

biobank (152 patients versus 386,631 controls).

Results: In the first analysis, three T-cell traits were identified to be causally

protective for MG risk: 1) CD8 on terminally differentiated CD8+ T cells (OR

[95% CI] = 0.71 [0.59, 0.86], P = 5.62e-04, adjusted P =2.81e-02); 2) CD4+

regulatory T proportion in T cells (OR [95% CI] = 0.44 [0.26, 0.72], P = 1.30e-03,

adjusted P =2.81e-02); 3) HVEM expression on total T cells (OR [95% CI] = 0.67

[0.52, 0.86], P = 1.61e-03, adjusted P =2.81e-02) and other eight T-cell

subtypes (e.g., naïve CD4+ T cells). In particular, HVEM is a novel immune

checkpoint on T cells that has never been linked to MG before. The SNPs on the

TNFRSF14 per se further support a more direct link between the HVEM and MG.

The validation analysis replicated these results in both FIN and UK biobanks.

Both datasets showed a concordant protective trend supporting the findings,

albeit not significant.
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Conclusion: This study highlighted the role of HVEM on T cells as a novel

molecular-modified factor for MG risk and validated the causality between T

cells and MG. These findings may advance our understanding of MG’s

immunopathology and facilitate the future development of predictive

disease-relevant biomarkers.
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Introduction

Myasthenia gravis (MG) is an autoimmune disease that

main ly affects the postsynapt ic membrane at the

neuromuscular junction. Fatigability and weakness in skeletal

muscles are the representing clinical features. Immune

dysregulation in MG mainly involves malfunctioned T cells,

autoreactive B cells, and autoantibody production (1).

Autoantibodies that were against postsynaptic membrane

components mainly consist of the anti-acetylcholine receptor

(AChR), anti-muscle specific kinase (MuSK), and lipoprotein-

related protein 4 (LRP4) antibodies (2).

The thymus is a gland where T cells differentiate and mature.

The removal of thymus (thymectomy) brought long-term

benefits by improving the clinical outcome in thymomatous

and non-thymomatous MG patients (3, 4) . In the

immunological pathogenesis of AChR-associated MG, the

thymus releases AChR autoreactive T cells to activate

peripheral AChR-directed B cells (5). Besides, chronic

inflammation maintained by circulating T helper 17 (Th17)

cells, autoantibody production promoted by follicular T (Tfh)

cells, and impaired rebalancing function of regulatory T (Treg)

cells contribute to the MG exacerbation (6). In contrast, CD8+ T

cells were involved in MG pathogenesis, and there are relatively

very few studies investigating the exact correlations (7). Current

studies on T cells and MG were mainly conventional

and observational.

Mendelian randomization (MR) uses genetic variants as the

exposure proxy of the exposure to examine the causal effect of

that exposure on the outcome (8). The correlations between

genetic variants and MG have been explored in several genome-

wide association studies (GWASs) and human leukocyte antigen

(HLA) haplotype analysis, by which T-cell relevant genes,

including CTLA4, TNFRSF11A, PTPN22, and the HLA

haplotypes, have been implicated in the pathogenesis of MG

(9–12). With now available large data sets, MR analysis may be

an elegant tool to explore the novel biomarkers from T cells with

causal impacts on MG risk, which has rarely been performed in

this field.
02
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We hypothesized that molecules in peripheral T cell traits

have direct causal effects on MG risk. A two-sample MR study

was performed to determine this causal relationship by

leveraging extensive T-cell traits from 3,757 general

population-derived individuals and the largest GWAS on MG

with 1,873 patients and 36,370 age- and gender-matched healthy

controls. The results were further replicated in both FIN biobank

with 217,288 individuals and UK biobank with 386,783

individuals. This study may establish causal links between the

T-cell relevant molecules and MG development.
Materials and methods

Data sources

The current study applied a two-sample MR method to

analyze causal relationships between 210 T-cell traits and MG.

The data sources were chosen from studies with publicly

available summary GWAS data, and detailed information

about different GWAS datasets is displayed in Table 1. The

extensive T-cell traits (listed in Supplementary File 1) were

derived from the SardiNIA project composed of GWAS data

from 3,757 general population individuals who are native to the

central east coast of Sardinia, Italy (13). These T-cell traits

included subtypes in the T-cell panel (double negative, double

positive, CD4+, CD8+), regulatory T (Treg) panel, maturation

stages (central memory/effector memory/terminally

differentiated), and cell marker expression levels on different T

cells. As a primary analysis, the MG data were sourced from the

currently largest meta-GWAS conducted in the US and Italy

(1,873 patients versus 36,370 age/gender-matched controls)

(11). Only anti-acetylcholine receptor antibody-positive

(AChR+) MG patients were enrolled in this study, and

patients with positive test results for antibodies to muscle-

specific kinase (MuSK+) were excluded from the enrollment.

In the secondary analysis, the validation datasets include FIN

Biobank (https://gwas.mrcieu.ac.uk/datasets/finn-b-G6_
frontiersin.org
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MYASTHENIA/) (232 patients versus 217,056 controls) and

UK Biobank (http://www.nealelab.is/uk-biobank) (152

patients versus 386,631 controls). The MG phenotype was

ascertained from participants’ self-reported questionnaires;

information of MG subtypes is not applicable. All original

studies obtained ethical approval and informed consent from

the participants.
Instrument selection

For selecting the most unbiased and representing

instrumental genetic variables, a series of quality control

steps were conducted to determine eligible instrumental

SNPs (Figure 1). First, significant SNPs associated with

exposures with genome-wide significance (P < 5 × 10−8) and

minor allele frequency (MAF) > 0.01 were selected. Second,

given that many SNPs may locate adjacently in linkage

disequilibrium status in a GWAS, we performed a clumping

process (R2 < 0.001, window size = 10,000 kb) using European

reference samples from the 1000 genomes project and retained

only the SNP with the lowest P-value. Third, exposure SNPs

were extracted in the outcome GWAS summary data. If a

particular exposure SNP was not present in the outcome

GWAS, then a proxy SNP in linkage disequilibrium with the

exposure SNP (minimum LD r-squared value 0.8) was used.

Fourth, the exposure and outcome SNPs were harmonized, by

which ambiguous SNPs in which the effect allele cannot be

determined were removed. Palindromic SNPs were specifically

checked in original datasets to avoid unwanted reverse effects.

The strength of the genetic instrument was evaluated by F-

statistics, and a weak instrument with F-statistic < 10 was

removed. The calculation of the F statistic is F = R2(n-k-1)/k

(1-R2), where R2 represents the exposure variance explained by

the instrumental SNPs, n is the sample size, and k represents

the number of instrumental variables (14). These stringently

selected SNPs were used as the instrumental variables for the

subsequent two-sample MR analysis.
Frontiers in Immunology 03
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Two-sample MR analysis

Different MR methods were used to estimate the causative

effect of exposure variables on the outcome accordingly. The

Wald ratio method was used when only one instrumental SNP

was available, and the inverse variance weighting (IVW) method

was used when more than one SNP was presented. All causal

estimates were converted to odds ratios (ORs) for the outcome

which was a dichotomous phenotype. For exposure with more

than three SNPs available, sensitivity analyses were performed
TABLE 1 GWAS datasets used in this Mendelian randomization (MR) study.

Dataset Phenotype/
variable

First
author
(year)

Sample
size (cases/
controls)

Population Sex Phenotype ascertainment

Exposure 1 210 kinds of
T-cell traits
and markers

Orrù
(2020)

3,757 Sardinian
(Italy)

57.0%
female

Normal individuals’ peripheral blood was antibody-stained and processed for flow
cytometry

Outcome 1 Myasthenia
gravis

Chia
(2022)

38,243 (1,873/
36,370)

US and Italian 47.2%
female

Patients diagnosed in myasthenia gravis clinics: characteristic fatigable weakness
and electrophysiological and/or pharmacological abnormalities and confirmed by
the presence of anti-acetylcholine receptor antibodies

Outcome 2 Fin
biobank

217,288 (232/
217,056)

Finnish Mixed Self-reported phenotype (myasthenia gravis subtype information are not
applicable)

Outcome 3 UK
biobank

386,783 (152/
386,631)

UK Mixed Self-reported phenotype (myasthenia gravis subtype information are not
applicable)
FIGURE 1

The workflow of instrumental SNP selection and Mendelian
randomization (MR) analysis.
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using different MR methods which hold different assumptions at

the cost of reduced statistical power, including weighted median

(15), weighted mode (16), simple mode, MR Egger regression

(17), and MR-PRESSO (18). The Steiger directionality test was

performed in those significant results to validate whether the

assumption that exposure causes outcome is valid (19). For

exposures with less than three instrumental SNPs, pleiotropy

analysis was performed using the PhenoScanner database to

query additional associated traits found in previously published

GWASs (20). Finally, statistical power for each exposure was

calculated with a two-sided type-I error rate a = 0.05 (21).
MR assumptions

Three core instrumental variable assumptions for this study

were specifically considered: 1) Relevance: instrumental SNPs are

associated with the exposure of T-cell signatures. The genetic

bases for T-cell functions and subtypes have been fully

investigated, and genetically engineered T-cell immunotherapies

have provided remarkable clinical success (22). We also calculated

the F-statistic for each T-cell signature, and only those

instrumental SNPs with F-statistic > 10 were considered

qualified. 2) Independence: there is no confounder between the

instrumental SNPs and the outcome. Only genetic data sourced

from European ancestry and both-sex populations were used in

this study to avoid common confounders due to demographic

variety. 3) Exclusion restriction: instrumental SNPs affect the

outcome exclusively through their potential effects on the

exposure T-cell signatures. The pathological mechanisms of how

irregulated T cells cause MG have been explained in the

introduction. To identify potential horizontal pleiotropy, we also
Frontiers in Immunology 04
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searched the PhenoScanner database to find other impacts that

might be caused by those instrumental SNPs.
Statistical analysis

We performed the MR analyses in the R, version 4.1.2 (R

Foundation for Statistical Computing, Vienna, Austria), with the

TwoSampleMR package (23). Other packages used for

processing data and generating figures include Tidyverse,

Rsnps, and Forestplot. Since exposures (T-cell traits) were

repeatedly compared with each outcome (MG), the P-values

were adjusted by the false discovery rate (FDR) method.
Results

The detailed characteristics of the instrumental SNPs

associated with 210 T-cell traits (SNP n = 630) used in this

study are displayed in Supplementary File 1. The MR findings

between them and the outcome in each dataset are displayed in

Supplementary File 2. The pleiotropy analysis results for those

significant results are displayed in Supplementary File 3.
Primary analysis: The US and
Italian cohorts

In the primary analysis, after FDR adjustment, the top 15

significant variables are as specifically displayed in Figure 2. All

selected instrumental variants showed strong F statistics

(median 223.24, IQR 1167.90) with the exposure, and the
FIGURE 2

MR result in primary analysis (US and Italian patients). SNP N, number of SNP. The top 12 ranked T-cell traits by P value show protective effect
on MG risk after false discovery rate (FDR) adjustment.
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powers of all MR analyses were relatively large (median 1.00,

IQR 0.03), as shown in Table 2. We identified three T-cell traits

of interest which had protective effects on the risk of MG: 1)

CD8 on terminally differentiated CD8+ T cells (OR [95%

CI] = 0.71 [0.59, 0.86], P = 5.62e-04, adjusted P =2.81e-02); 2)

CD4+ Tregs proportion in T cells (OR [95% CI] = 0.44 [0.26,

0.72], P = 1.30e-03, adjusted P =2.81e-02); 3) HVEM on total T

cells (OR [95% CI] = 0.67 [0.52, 0.86], P = 1.61e-03, adjusted

P =2.81e-02) and other eight T-cell subtypes (naive CD4+ T cells,

terminally differentiated CD4+ T cells, CD8+ T cells, effector

memory CD4+ T cells, CD4 regulatory T cells, effector memory

CD8+ T cells, central memory CD4+ T cells, CD45RA- CD4+ T

cells). The Steiger directionality test showed that all results

conformed to the right exposure to outcome direction.

Among them, no exposure has instrumental SNPs of more

than 2. Then the Wald ratio or IVW methods were used to

conduct the MR analysis, and no proxy SNP was used in these

exposures. Two instrumental SNPs (rs2571390, rs2523887) for

exposure “CD8 on terminally differentiated CD8+ T cell” were

not located on any known genes. Three SNPs corresponding to

HVEM expression levels on T subsets were located on the

HVEM encoding gene, TNFRSF14 perse (rs1886730,
Frontiers in Immunology 05
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rs2227313), and a non-coding RNA gene LOC100996583

(rs2182176). One SNP was related to the exposure “CD4

regulatory T cell %T cell” and was located on splicing factor

45 encoding gene RBM17 (rs1571025). Notably, HVEM is a

novel immune checkpoint that has never been linked with MG

before. The SNPs found on the TNFRSF14 per se indicate a more

direct link between the HVEM on T cells and MG.
Secondary analysis: Validations in FIN
and UK biobanks

Since MG is a rare autoimmune disease with a low

prevalence (around 12 per 100,000 population) (24), and

another GWAS dataset with a large sample size of patients was

not available, hence we conducted this replication in publicly

available FIN and UK biobanks (Figure 3). Before P-value

adjustment, the exposure “CD8 on Terminally Differentiated

CD8+ T cell” in the UK biobank barely reached significance in

MR analysis (OR [95% CI] = 0.61 [0.37, 1.00], P =5.01e-02),

while after FDR adjustment, all results in both datasets showed a

similar protective tendency with the primary analysis but did not
TABLE 2 Detailed MR result in the primary analysis (the US and Italian cohorts).

Exposure Method SNP
N

OR r2.exposure r2.outcome P value
(adjusted)

Power F statistic Correct
causal

direction

Steiger
pval

CD8 on terminally
differentiated CD8+ T cell

Inverse variance
weighted

2 0.71 4.21E-02 3.11E-04 2.81E-02 0.83 82.46 TRUE 4.12E-23

HVEM on naive CD4+ T cell Wald ratio 1 0.60 3.30E-02 3.11E-04 2.81E-02 0.98 128.21 TRUE 8.12E-09

HVEM on terminally
differentiated CD4+ T cell

Wald ratio 1 0.59 5.61E-02 6.11E-04 2.81E-02 1.00 223.24 TRUE 5.59E-14

HVEM on CD8+ T cell Wald ratio 1 0.61 6.83E-02 6.11E-04 2.81E-02 1.00 275.09 TRUE 3.59E-17

HVEM on effector memory
CD4+ T cell

Wald ratio 1 0.65 4.15E-02 3.01E-04 2.81E-02 0.96 162.47 TRUE 5.15E-11

CD4 regulatory T cell %T cell Wald ratio 1 0.44 2.00E-02 5.41E-04 2.81E-02 1.00 76.69 TRUE 2.25E-11

HVEM on effector memory
CD8+ T cell

Wald ratio 1 0.67 2.42E-01 1.56E-03 2.81E-02 1.00 1196.25 TRUE 4.36E-67

HVEM on central memory
CD4+ T cell

Wald ratio 1 0.67 2.55E-01 1.56E-03 2.81E-02 1.00 1286.80 TRUE 6.24E-72

HVEM on CD45RA- CD4+ T
cell

Wald ratio 1 0.68 2.75E-01 1.56E-03 2.81E-02 1.00 1423.66 TRUE 3.66E-79

HVEM on T cell Wald ratio 1 0.67 2.43E-01 1.56E-03 2.81E-02 1.00 1208.15 TRUE 1.00E-67

HVEM on CD4+ T cell Wald ratio 1 0.67 2.66E-01 1.56E-03 2.81E-02 1.00 1362.65 TRUE 5.93E-76

HVEM on central memory
CD8+ T cell

Wald ratio 1 0.69 2.96E-01 1.56E-03 2.81E-02 1.00 1578.89 TRUE 3.11E-87

CD4 regulatory T cell %CD4+
T cell

Inverse variance
weighted

2 0.59 3.81E-02 5.76E-04 1.38E-01 0.99 74.38 TRUE 1.77E-22

CD4 on HLA DR+ CD4+ T
cell

Wald ratio 1 1.63 1.32E-02 1.50E-04 2.46E-01 0.66 50.04 TRUE 4.35E-08

Effector memory CD8+ T cell
%T cell

Inverse variance
weighted

2 1.25 2.65E-02 1.56E-04 2.75E-01 0.33 51.15 TRUE 1.71E-17
front
R2.exposure and R2.outcome represent the phenotype variance which can be explained by the corresponding instrumental SNPs.
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reach significance. In the FIN biobank, the CD4+ regulatory T

cell% T cell OR [95% CI] is 0.81 [0.15, 4.42], and HVEM on

overall T cells is 0.83 [0.44, 1.56]. In the UK biobank, the CD4+

regulatory T cell% T cell OR [95% CI] is 1.05 [0.27, 4.04], and

HVEM on overall T cells is 1.00 [0.52, 1.93]. This may be due to

the much lower power in the FIN (median 0.09, IQR 0.04) and

UK biobanks (median 0.03, IQR 0.04), as shown in Tables 3, 4.

Still, the Steiger directionality test showed that all results were

consistent with the same exposure to outcome direction.
Discussion

This is the first MR study exploring the causal effects of risk

factors on MG to the best of our knowledge. MR uses genetic

variants as instrumental variables, fixed at conception, to

conduct causal inferences about the impact of modifiable risk

factors, which can overcome some types of confounding (25).

This study was reported in accordance with the Strengthening

the Reporting of Observational Studies in Epidemiology Using

Mendelian Randomization (STROBE-MR) Statement (26). Our

primary analysis extensively evaluated the causality between T-

cell traits and MG, and three protective factors were identified in

our study.

The first trait is the higher CD8 expression on terminally

differentiated CD8+ T cells, the most mature CD8+ T cells

residing in the periphery. Previous studies found that CD8

expression levels were lower in CD8+ T cells of chronic graft-

versus-host disease and terminally differentiated effector
Frontiers in Immunology 06
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memory T-cell (TEMRA) autoimmune lymphoproliferative

syndrome (27, 28). CD8 is a coreceptor for the antigen-

presenting process when activating T cells, and its

downregulation on tissue-resident T cells has been postulated

as a natural desensitization mechanism for prolonged antigen

activation (29), which is common in the context of MG per se

and its comorbidity with other autoimmune diseases (30).

Higher CD8 expression levels on terminally differentiated CD8

+ T cells represent an inert activated status. These inert CD8+ T

cells are less likely to be activated by MG-related autoantigens,

hence a less likely inclination to develop MG.

The second protective trait is a higher proportion of CD4+

Tregs, which is in accordance with previous studies. Previous

GWASs on MG have identified the correlations between variants

in genes (e.g., CTLA4 and PTPN22) with MG risk, which

directly modulates the proportion or function of CD4+ Tregs

(9, 11). Biological evidence from experimental autoimmune MG

(EAMG) models has explained the potential mechanisms in

which CD4+ Tregs suppressed the abnormal proliferation of T

effector cells in response to MG-related antigens (31, 32). Our

MR analysis validated the causality between CD4+ Tregs and

MG, which supported the hypothesis that individuals with more

CD4+ Tregs would be less likely to develop MG.

Interestingly, the third protective trait is the higher HVEM

expression on various T-cell subtypes. HVEM, which belongs to

the tumor necrosis factor receptor (TNFR) superfamily, has been

recognized as a novel immune checkpoint in recent years (33).

HVEM is expressed primarily on immune cells and functions as

a ligand to activate the B- and T-lymphocyte attenuator (BTLA)
FIGURE 3

MR result in secondary analysis (FIN and UK Biobanks). Before P value adjustment, only the first ranked exposure “CD8 on terminally
differentiated CD8+ T cell” barely showed significance in the UK biobank dataset. However, after FDR adjustment, no exposures reach
significance, but the tendencies of which are basically in accordance with the primary analysis (as protective factors). This can be explained by
the low powers in all analysis due to paucity in patients.
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on other immune cells (34). Two categories of BTLA are CTLA-

4/CD28/CD80/CD86 (function at the early phase of T-cell

activation) and PD-1/PD-L1/PD-L2 (control the effector phase

of the immune response in peripheral tissues) (35). The former

(CTLA-4) expression has been found lower in MG patients, and

the latter (PD-1) has been linked with immune checkpoint

inhibitor-related myasthenia gravis (36, 37). As an immune

inhibiting ligand, higher HVEM expression on T cells may be

a protective factor for MG. The other function of HVEM is that

it mediates the entry of herpes simplex virus type 1 (HSV-1) and

HSV-2 into cells, which do not include other subtypes such as

Epstein–Barr (EB) virus and varicella zoster virus (VZV) (38).

We think that this might explain why fewer HSV-infected MG

patient cases were reported than those EB and VZV cases in

clinical settings (39, 40). However, studies with larger sample

size and stringent design are needed to validate this in future.

Noted that MG is a rare neuromuscular disease; the sample

size derived from now available GWAS datasets is still not
Frontiers in Immunology 07
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satisfactory for data-driven analysis. However, we attempted to

replicate the findings in another two independent biobanks. In

the replication process, only similar protective tendencies, albeit

not significant, were found in these exposures, which is

restrained by the small power due to paucity in patients. Given

that our results can explain the potential biological mechanism

underlying T cells in MG genesis, this MR analysis basically

satisfied the required assumptions in MR studies (relevance,

independence, and exclusion restriction) (25).

There are several limitations in this study: 1) The primary

results were derived from AChR+ MG patients, and the secondary

results derived fromMGwith unknown subtypes. Hence, caution is

needed to interpret the results. 2) There is insufficient validation in

large exposure and outcome datasets. 3) The participants of the FIN

and UK biobanks were enrolled by self-reported results, which may

introduce biases in the results. 4) Horizontal pleiotropy was found

in selected SNPs with other autoimmune diseases, which may

interfere with MG pathogenesis by other immunological
TABLE 3 Detailed MR result in the secondary analysis (FIN biobank).

Exposure Method SNP
N

OR r2.exposure r2.outcome P value
(adjusted)

Power F statistic Correct
causal

direction

Steiger
pval

CD8 on terminally
differentiated CD8+ T cell

Inverse variance
weighted

2 0.76 4.21E-02 7.75E-05 6.96E-01 0.13 82.46 TRUE 4.58031E-
25

HVEM on naive CD4+ T cell Wald ratio 1 0.71 3.30E-02 2.28E-05 6.96E-01 0.15 128.21 TRUE 5.39004E-
10

HVEM on terminally
differentiated CD4+ T cell

Wald ratio 1 0.74 2.81E-02 1.67E-05 6.96E-01 0.12 108.40 TRUE 1.07591E-
08

HVEM on CD8+ T cell Wald ratio 1 0.76 3.41E-02 1.67E-05 6.96E-01 0.12 132.69 TRUE 2.30064E-
10

HVEM on effector memory
CD4+ T cell

Wald ratio 1 0.81 4.15E-02 1.23E-05 6.96E-01 0.10 162.47 TRUE 1.89862E-
12

CD4 regulatory T cell %T cell Wald ratio 1 0.81 1.00E-02 1.59E-06 8.18E-01 0.05 37.96 TRUE 2.82692E-
08

HVEM on effector memory
CD8+ T cell

Wald ratio 1 0.83 4.03E-02 9.47E-06 6.96E-01 0.08 157.55 TRUE 3.68938E-
12

HVEM on central memory
CD4+ T cell

Wald ratio 1 0.83 4.25E-02 9.47E-06 6.96E-01 0.09 166.83 TRUE 8.65081E-
13

HVEM on CD45RA- CD4+ T
cell

Wald ratio 1 0.83 4.58E-02 9.47E-06 6.96E-01 0.09 180.31 TRUE 1.0565E-
13

HVEM on T cell Wald ratio 1 0.83 4.06E-02 9.47E-06 6.96E-01 0.08 158.78 TRUE 3.0409E-
12

HVEM on CD4+ T cell Wald ratio 1 0.83 4.44E-02 9.47E-06 6.96E-01 0.09 174.38 TRUE 2.66275E-
13

HVEM on central memory
CD8+ T cell

Wald ratio 1 0.84 4.93E-02 9.47E-06 6.96E-01 0.09 194.87 TRUE 1.09886E-
14

CD4 regulatory T cell %CD4+
T cell

Inverse variance
weighted

2 0.86 2.35E-02 2.17E-06 8.18E-01 0.05 45.13 TRUE 1.04689E-
17

CD4 on HLA DR+ CD4+ T
cell

Inverse variance
weighted

2 2.34 2.47E-02 2.76E-04 6.96E-01 0.53 47.52 TRUE 5.01601E-
14

Effector memory CD8+ T cell
%T cell

Inverse variance
weighted

2 1.05 2.65E-02 7.35E-06 8.18E-01 0.03 51.15 TRUE 1.54993E-
19
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pathways, not only through T cells. 5) The ancestry of GWAS data

used in this study is mainly of European origin, and further GWASs

from other races are needed to validate the results.

Conclusions

In conclusion, we found three T-cell-related traits as

potential protective factors for the risk of MG in the primary

analysis: 1) CD8 on terminally differentiated CD8+ T cells, 2)

CD4+ regulatory T cell% T cells, and 3) HVEM on overall T cells.

In the future, these factors may serve as biomarkers for

forecasting MG development and provide new insights into

the underlying mechanism.
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TABLE 4 Detailed MR result in the secondary analysis (UK biobank).

Exposure Method SNP
N

OR r2.exposure r2.outcome P value
(adjusted)

Power F statistic Correct
causal

direction

Steiger
pval

CD8 on terminally
differentiated CD8+ T cell

Inverse variance
weighted

2 0.61 4.21E-02 1.09E-05 7.52E-01 0.24 82.46 TRUE 3.72264E-
28

HVEM on naive CD4+ T cell Wald ratio 1 0.75 3.30E-02 1.52E-06 9.96E-01 0.10 128.21 TRUE 1.30105E-
10

HVEM on terminally
differentiated CD4+ T cell

Wald ratio 1 0.83 2.81E-02 5.54E-07 9.96E-01 0.06 108.40 TRUE 3.14977E-
09

HVEM on CD8+ T cell Wald ratio 1 0.84 3.41E-02 5.54E-07 9.96E-01 0.06 132.69 TRUE 5.56983E-
11

HVEM on effector memory
CD4+ T cell

Wald ratio 1 0.82 4.15E-02 9.42E-07 9.96E-01 0.07 162.47 TRUE 4.52695E-
13

CD4 regulatory T cell %T cell Wald ratio 1 1.05 1.00E-02 1.36E-08 9.96E-01 0.03 37.96 TRUE 4.94225E-
09

HVEM on effector memory
CD8+ T cell

Wald ratio 1 1.00 4.03E-02 5.05E-11 9.96E-01 0.03 157.55 TRUE 7.87879E-
13

HVEM on central memory
CD4+ T cell

Wald ratio 1 1.00 4.25E-02 5.05E-11 9.96E-01 0.03 166.83 TRUE 1.72983E-
13

HVEM on CD45RA- CD4+ T
cell

Wald ratio 1 1.00 4.58E-02 5.05E-11 9.96E-01 0.03 180.31 TRUE 1.92226E-
14

HVEM on T cell Wald ratio 1 1.00 4.06E-02 5.05E-11 9.96E-01 0.03 158.78 TRUE 6.43707E-
13

HVEM on CD4+ T cell Wald ratio 1 1.00 4.44E-02 5.05E-11 9.96E-01 0.03 174.38 TRUE 5.04944E-
14

HVEM on central memory
CD8+ T cell

Wald ratio 1 1.00 4.93E-02 5.05E-11 9.96E-01 0.03 194.87 TRUE 1.80808E-
15

CD4 regulatory T cell %CD4+
T cell

Inverse variance
weighted

2 0.77 2.35E-02 2.81E-06 9.96E-01 0.07 45.13 TRUE 4.98314E-
19

CD4 on HLA DR+ CD4+ T
cell

Inverse variance
weighted

2 0.96 2.47E-02 1.11E-05 9.96E-01 0.03 47.52 TRUE 1.3121E-
17

Effector memory CD8+ T cell
%T cell

Inverse variance
weighted

2 0.83 2.65E-02 9.55E-06 9.96E-01 0.06 51.15 TRUE 5.80203E-
21
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environment shape
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The importance of regulatory T cells (Tregs) in preventing autoimmunity has

been well established; however, the precise alterations in Treg function in

autoimmune individuals and how underlying genetic associations impact the

development and function of Tregs is still not well understood. Polygenetic

susceptibly is a key driving factor in the development of autoimmunity, and

many of the pathways implicated in genetic association studies point to a

potential alteration or defect in regulatory T cell function. In this review

transcriptomic control of Treg development and function is highlighted with

a focus on how these pathways are altered during autoimmunity. In

combination, observations from autoimmune mouse models and human

patients now provide insights into epigenetic control of Treg function and

stability. How tissue microenvironment influences Treg function, lineage

stability, and functional plasticity is also explored. In conclusion, the current

efficacy and future direction of Treg-based therapies for Type 1 Diabetes and

other autoimmune diseases is discussed. In total, this review examines Treg

function with focuses on genetic, epigenetic, and environmental mechanisms

and how Treg functions are altered within the context of autoimmunity.

KEYWORDS

Treg - regulatory T cell, T cell, autoimmunity, type 1 diabetes, genetic, FOXP3
Introduction

At the crossroads of autoimmunity and health are regulatory T cells (Tregs) - a

crucial immune cell involved in tolerance towards self and suppression of auto-antigen

specific T cells. Tregs were first identified as a subpopulation of CD4 T cells that

expressed the high affinity IL-2 receptor chain CD25 (1). However, it took several more

years to identify the lineage specific transcription factor, Forkhead Box Protein 3

(FOXP3), that is a core regulator of suppressive Treg function (2–4), and acts as both
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a positive and negative regulator of gene expression (2–4). For

example, FOXP3 directly upregulates CD25 expression, but

suppresses IL-2 production (5). With the knowledge of how to

identify Tregs and a basic understanding of their function, the

field was propelled towards key findings regarding their

developmental source, suppressive mechanisms, and

therapeutic potential (6–8).

While the transcription factor FOXP3 was initially

considered the “master regulator” of CD4 Treg development

and function (7, 8) we now understand that a more complex

system is at work. Rather than a single element, the Treg

suppressive program is regulated by a combination of

transcription factors, genetic and epigenetic elements, as well

as tissue-microenvironment cues. Due to the complexity that

underlies the Treg suppressive phenotype, it has become

apparent that loss of Treg lineage commitment can occur

through either loss of FOXP3 or through a number of

alternative genetic and/or transcriptional dysregulations.

However, the precise alterations that occur in autoimmune

individuals that affect Treg-mediated tolerance, and how

underlying genetic variations impact the development and

function of Tregs during autoimmunity are only partially

elucidated. Polygenetic susceptibly is a key driving factor of

many autoimmune diseases. However, while genome wide

association studies (GWAS) alone were suggestive, they were

not sufficient to formally link Treg dysfunction to disease.

Integration of GWAS studies with functional and other omics-

data now implicate alterations or defects in regulatory T cell

function in autoimmune pathogenesis (9–11).

In this review we consider the function and regulation of

FOXP3 both during homeostasis and autoimmunity, as well as

how FOXP3 and mutations in key Treg genes influence Treg

function and stability. In addition, we examine epigenetic

modifications that regulate FOXP3 activity and how

inflammation in the surrounding tissue environment impacts

Tregs. Finally, we feature how Treg based therapies for

autoimmunity have changed since their inception as well as

factors that need to be improved in order to make these therapies

efficacious as treatments for autoimmunity.
Mutations in the FOXP3 gene

Immune dysregulation, polyendocrinopathy, enteropathy X-

linked (IPEX) syndrome is a rare disorder that often results from

mutations within the FOXP3 gene (2, 12, 13). However, in a

cohort of 173 patients with IPEX syndrome symptoms, only

50.9% had direct mutations in FOXP3, underscoring the fragility

of Treg function and its sensitivity to modulation of alternative

pathways (14). Of the 85 patients that had no discernable FOXP3

mutation, 25% had mutations in key Treg genes such as LRBA,

STAT1, STAT3, CTLA4, IL2RA, STAT5B, and DOCK8 which are

responsible for various aspects of Treg differentiation and
Frontiers in Immunology 02
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function. This suggests that although FOXP3 is critical for

Treg mediated tolerance, other factors also participate in

maintaining a functional Treg population (Figure 1A). For

example, mice lacking the inhibitory molecule CTLA4 develop

severe lymphoproliferative disease reminiscent of Foxp3 mutant

mice (37, 38). Furthermore, another study of 15 IPEX patients

bearing FOXP3 mutations revealed that Treg signature genes

were still expressed, although with variable expression levels,

indicating that Tregs can still maintain partial lineage

characteristics after loss of FOXP3 expression (28). A

transcriptomic disease signature was observed across both

Tregs and conventional CD4 cells and was likely induced by

global immune dysregulation. To put it differently,

transcriptomic changes occur as a result of both cell-intrinsic

and cell-extrinsic mechanisms, where Tregs first have

dysregulated core genes involved in Treg stability and

suppressive function (i.e. Il2ra, Tnfrsf4, Tnfrsf9, Tnfrsf18,

Capg, Ikzf2, and Ctla4), which in turn alter the tissue

environment, ultimately leading to enhanced broad

transcriptomic changes affecting all T cells (28). In the absence

of cell-extrinsic inflammatory signals in heterozygous mothers

of IPEX patients, patient FOXP3 mutations impacted only a

narrow set of genes directly under FOXP3 control. In

combination, these observations point to limited direct

impacts of FOXP3 mutations and an increased role for

activation of inflammatory feedback loops leading to

cumulative dysregulation of both regulatory and effector T

cells. This further underscores the importance of Tregs’ ability

to integrate information from their environment and alter their

subsequent functions.

FOXP3 has four structural domains that are used to interact

with diverse binding partners to exert transcriptional regulation.

The examination of FOXP3 mutations in IPEX patients and in

mouse models has provided important insights into the function

of the specific domains within FOXP3. Mutations in FOXP3

identified in IPEX patients have been localized to all four

structural domains of the transcription factor, although to

some level they are concentrated in the DNA-binding FKH

domain (29). For example, identification of a patient with a

mutation within the dimerization motif in the FKH domain of

FOXP3 showed that FOXP3’s domain swap interface is crucial

for restricting Th2 immune responses in Tregs. When the

domain swap interface is mutated, FOXP3 interacts with Th2

specific loci inducing expression of Th2 signature cytokines that

are normally repressed in Tregs (29).

While most mutations within FOXP3 result in systemic

immune dysregulation and global autoimmune manifestations,

partial disruption of interactions between FOXP3 and its

binding partners can have understated effects on FOXP3-

driven gene activity. Foxp3-GFP reporter mice that express

GFP fused to Foxp3 at its N-terminus provided a system to

observe how subtle changes can have disease-specific impacts

(30, 31). The Foxp3-GFP reporter mouse shows no abnormal
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Treg function on the C57BL/6 genetic background; however,

when backcrossed to the NOD autoimmune-susceptible strain it

resulted in rapidly accelerated autoimmune diabetes

development (30, 31). Foxp3-GFP showed reduced interaction

with several binding partners involved in Foxp3 gene regulation,

suggesting Foxp3 instability and loss of Treg function under

increased inflammatory stress (30). Interestingly, the GFP-

modified Foxp3 was protective in a model of arthritis due to

disruption in HIF1a binding and increasing Foxp3 interactions

with Interferon Regulatory Factor 4 (IRF4) leading to improved

Treg control of Th2 and Th17 responses (31). Perturbations in

Treg function were observed in autoimmune prone, but not

autoimmune resistant mice suggesting that the genetic or

inflammatory environment has a direct influence on the

ultimate functionality of Tregs. The loss of Treg stability under

inflammatory conditions has been a concern in situations of

chronic autoimmunity and has been directly observed in mouse

models of autoimmune diabetes, multiple sclerosis, and

rheumatoid arthritis (32–34). Loss of Foxp3 expression in

these situations resulted in the formation of ‘ex-Tregs’ that

acquired an effector pro-inflammatory phenotype (Figure 1B).

However, such ex-Tregs have not been directly observed in
Frontiers in Immunology 03
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human autoimmune conditions, and if they exist are more

likely to be localized directly in inflammatory tissues.
Polygenetic susceptibilities and
Treg function

Autoimmune manifestations that result from direct

mutations of the FOXP3 gene and related Treg functional

genes, such as CTLA4, can be traced to loss of Treg numbers

and/or function (38–40). However, it has been more challenging

to infer the target immune cell population in polygenetic

autoimmune susceptibilities. HLA alleles associated with

autoimmunity contribute the largest risk for development of

autoimmunity, including type 1 diabetes (9). For some HLA

alleles, such as DQ8 and DQ2, loss of self-tolerance is thought to

be prompted by the structure of the peptide binding grooves,

which lead to increased selection or peripheral activation of

autoimmune T cells (41). Many other T1D associated SNPs are

located in close proximity to immune genes, such as CTLA4, and

components of the IL-2 and TCR signaling pathways among

others. The cytokine IL-2 binds to CD25 (IL2RA) and signals
BA

FIGURE 1

Tregs encounter increased stressors during autoimmunity. A) During homeostasis, Tregs are stimulated through TCR activation and proliferate
using IL-2 from the surrounding environment (1, 5), allowing downstream transcription factor complexes to bind to a hypomethylated Foxp3
and enact critical Treg functions such as suppressive capabilities and repression of Teff programming (15–18). B) In contrast, Tregs found during
autoimmunity often have intrinsic defects in addition to environmental stressors (2, 12–14, 19–23). For example, non-coding RNAs can be
dysregulated during autoimmunity (24–26) leading to a dysregulated epigenetic signature with increased methylation of the Foxp3 Treg Specific
Demethylated Region (TSDR) which can cause a loss of Foxp3 (27). In addition, a tissue environment rich in inflammatory cytokines can convert
Tregs into Th17-like cells leading to the creation of ex-Tregs and decreased Treg stability (32–34). Furthermore, these stressors encountered
during autoimmunity can also lead to perturbations in FOXP3 isoform ratios (35, 36) and expression of inflammatory cytokines (32, 33) which in
turn leads to decreased Treg stability.
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through STAT5 to regulate FOXP3 expression in Tregs

(Figure 1A) (42). Complete IL2RA deficiency can lead to

severe autoimmunity with IPEX like symptoms (43), and

IL2RA variants have been associated with reduced Treg

numbers, suboptimal Treg function, and an increased risk for

development of T1D (44). Since HLA alleles, CTLA4, and IL2RA

among others are implicated in both T effector (Teff) and Treg

function, the ultimate impact on either population is difficult to

determine. Nevertheless, several T1D related SNPs have been

connected to Treg function (45–47) and the Treg to T effector

cell ratio (48). Additionally, evidence suggests that Tregs from

T1D patients may not be as suppressive and may have a more

inflammatory phenotype (49). Therefore, there is a growing

consensus that Treg function is altered in T1D, and Treg

dysregulation might be in part due to genetics.

In many other autoimmune and inflammatory disorders it is

not so clear whether there is an underlying defect in regulatory T

cells. Many polymorphic variants are shared between several

autoimmune diseases, including PTPN22 (TCR signaling),

TKY2 (cytokine signaling), and TNFAIP3 (TNF signaling)

among others (50, 51). These variants point to genes besides

FOXP3 that could influence T cell and Treg function during

autoimmunity. For example, in the context of rheumatoid

arthritis there is still an ongoing debate regarding Treg

dysfunction. There are a number of conflicting observations

on whether Treg frequency decreases or remains stable (52–55),

whether there are changes in Treg suppressive capability, or the

relative expression of Treg associated regulatory molecules, such

as CTLA-4 (52, 56, 57). The markers used to define Tregs as well

as disease severity should be carefully considered in these

studies, and could potentially explain some of the

discrepancies in observations. Nevertheless, the lack of clear

loss in Treg number or function in RA supports the idea that

Treg dysfunction is disease specific.

The majority of disease-associated genetic variants defined

by GWAS studies are found in non-coding areas of the genome,

which presents a challenge in determining the ultimate

relationship between SNPs, gene expression, and downstream

effects on cellular function. Importantly, many disease associated

SNPs are mapped to regulated chromatin regions and enhancers,

i.e. epigenetically regulated transcription factor binding sites

(58–60). Several mechanisms for non-coding regions’ impact

on immune genes have been described. These range from direct

disruption of transcription factor binding at SNPs located within

enhancer regions (61) to distal effects mediated by genomic

misfolding and interconnection of enhancers in 3D chromatin

organization (62). Recent studies have coupled epigenetic profile

analyses of isolated T cell populations to determine the effects of

particular SNPs on chromatin accessibility in the context of T

cell populations. Interestingly, the chromatin accessibility at

these loci is preferentially associated with naive and activated

Tregs, rather than conventional T cells (10, 63, 64). These

observations imply that genetic susceptibility disproportionally
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effects Treg function compared to effector T cells in the context

of autoimmunity. Based on cumulative genetic studies we can

infer that genetic polymorphisms have connections to FOPX3+

Treg function and predisposition to autoimmunity (9, 44–48).

Therefore, it is critical to examine the transcriptional regulation

of the Treg lineage and the factors that impinge on Treg stability.
Genetic regulation of the
FOXP3 locus

Genetic control and regulation of FOXP3 plays a major role

in Treg development and function during both homeostasis and

disease. While several FOXP3 isoforms have been identified in

humans, there are two distinct isoforms that are necessary for

optimal Treg function; the full length FOXP3 isoform and the

alternatively spliced FOXP3 isoform which lacks exon 2

(FOXP3D2) (65). The full length FOXP3 isoform has recently

been identified as a critical component of regulating FOXP3

activity and maintaining Treg stability (66). FOXP3D2 on the

other hand, has been shown to be upregulated during Treg

activation, and is linked to transcription of the transmembrane

protein, Glycoprotein A Repetitions Predominant (GARP),

which tethers TGFb to the cell membrane and potentiates cell-

contact dependent TGFb function (67, 68). While both isoforms

are necessary for optimal Treg function (65), regulation of

FOXP3 isoform ratios appears to alter the disease course in

some autoimmune diseases (Figure 1B) (35, 36).

Regulation of the FOXP3 locus is multifaceted and involves

several key enhancer regions that recruit a number of regulators

that control Treg development and stabilize the Treg lineage

(Figure 1A). The FOXP3 locus has four enhancer regions

known as conserved non-coding sequences (CNS; CNS0, CNS1,

CNS2, and CNS3) that work in tandem to drive FOXP3

transcription and downstream gene expression necessary for

Treg stability (15–17, 69, 70). These enhancer regions are

embedded throughout upstream-promoter and intronic regions

of FOXP3 (71, 72) and alter FOXP3 transcription and activity by

controlling methylation status, chromatin accessibility, and act as

docking sites for unique sets of binding partner complexes (15–17,

73, 74). For example, the transcription factor SATB1 binds CNS0

(18) which along with the transcription factor HIVEP2 co-

regulates pathways involved in Treg immunosuppression (75).

SATB1 is an important transcription factor in regulating T cell

differentiation (76); however, it is repressed by FOXP3 in Tregs to

balance Treg proliferation and function. Loss of SATB1 increases

Treg frequency but diminishes Treg suppressive function (77, 78).

In Tregs, SATB1 is epigenetically regulated through histone

trimethylation and acetylation changes, as well as by

microRNAs such as mir-155, mir-21a, mir-7, mir-34a, and mir-

18a (79). During development, IL-2 signaling directs the pioneer

factor SATB1 to bind nucleosome dense regions in Tregs leading

to chromatin remodeling and accessibility of critical Treg
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signature genes (77). This is aided by the transcription factor

Foxp1 which enhances IL-2 signaling and Foxp3 expression (78),

making IL-2 signaling a critical step in differentiating Tregs from

CD25+Foxp3- Treg precursors in the thymus (15).

CNS1 is primarily associated with peripheral induction of Tregs

and is bound by several transcription factors including AP-1,

NFAT, Foxo1, Hhex, Batf3, and importantly Smad3 induced by

TGFb signaling. Batf3 represses FOXP3 expression and

downregulates the differentiation of naïve CD4 T cells into Tregs

(80). In addition, Hhex (Hematopoietically expressed homeobox) is

a transcription factor that binds to CNS1/CNS2 and represses

FOXP3 expression; particularly under inflammatory conditions

(81). CNS2 is a critical response element during thymic Treg

development, and is bound by Ets-1, CREB, Stat5, NFAT, c-Rel,

Runx, Foxp3, and AP-1. Importantly, CNS2 contains the

Regulatory T cell Specific Demethylated Region (TSDR) (82),

which maintains FOXP3 expression in Tregs and allows FOXP3

to positively regulate its own transcription even in the absence of

TCR signaling (18). Lastly, CNS3 is another region important for

the development of thymic Tregs and can bind Foxo and c-Rel (17,

83–85). These transcription factor binding complexes can alter

FOXP3 activity, downstream targets of FOXP3, and additional

pathways involved in Treg function (75). In addition, CNS

regions CNS0 and CNS3, were recently determined to be sites

that help initiate Treg development when bound by transcription

factor complexes that allow chromatin remodeling and drive

FOXP3 transcription (16). Beyond FOXP3 enhancer regions,

transcription of Treg signature genes is also regulated by

cooperation of Foxp3 and one of the five transcription factors

Eos, IRF4, GATA-1, Lef1, and Satb1. These cofactors, referred to as

the “quintet”, enhance Foxp3 activity by ‘locking in’ and stabilizing

Foxp3 to its binding sites (18).

Furthermore, demethylation status of the FOXP3 TSDR was

determined to be key for maintaining FOXP3 expression and

stabilizing Treg identity. However, while demethylation of the

TSDR is enough to stabilize FOXP3 expression in Tregs, it is not

enough to confer suppressive function (86). This suggests that

Treg suppressive function is not solely linked to FOXP3

expression, and that additional transcription factors are

required. As an example, the transcription factor Helios is

expressed in approximately 70% of Tregs and helps to

maintain Treg stability by controlling certain aspects of Treg

function, differentiation, and survival (87). However, mice

lacking Helios are still able to convert naïve T cells into

functional Tregs; indicating a level of redundancy in

transcriptional regulation of Treg function (88).
Heterogeneity within the
Treg population

The FOXP3+ Treg population exhibits phenotypic and

functional complexity driven by tissue and context specific
Frontiers in Immunology 05
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transcription factors. Similar to conventional T cells (Tconv),

the majority of lymphoid derived thymic Tregs maintain a non-

activated phenotype, characterized by expression of CD62L,

CCR7 and TCF1 (a transcription factor associated with

stemness) (89). However, Tregs can also be derived from naïve

CD4 T cells in the periphery through TGFb signaling (90, 91)

(Figure 2). TGFb signal can be provided in the form of latent

TGFb on the cell surface of tTregs, which leads to induction of

additional Foxp3+ T cells (pTregs), in a process that is described

as “infectious tolerance” (Figure 2) (98). Upon differentiation

from naïve T cells, in vivo induced pTregs repress CD4 effector T

cell programming, stabilize expression of FOXP3, and maintain

a fully demethylated TSDR, similar to tTregs (92–94). In

addition, recent work suggests that type 1 interferons can

stabilize expression of STAT3, STAT5, and FOXP3 in

peripheral CD4 T cells allowing their differentiation into

pTregs (Figure 2) (99). However, Type 1 interferons have been

shown to have opposing effects on Tregs depending on the

timing of exposure. In the short-term, Type 1 interferons lead to

decreased Treg frequency and function; however, in the long run

they can stabilize expression of FOXP3 and promote Treg

expansion (100). Nevertheless, since no definitive markers of

pTregs have been identified, the functional importance of pTregs

during autoimmunity is still heavily debated (101–103).

The widely accepted approach to induce Treg differentiation

in vitro relies on a combination of TCR ligation in the context of

TGFb and high concentrations of IL-2 (Figure 2) (104). While

studies show that iTregs have suppressive function both in vitro

and in vivo, their long-term stability is more controversial (93,

105). Stability is measured by quantification of methylation at

the TSDR region, and TCR and IL-2 stimulation can promote

demethylation of TSDR in iTregs, thus stabilizing the lineage

(106, 107). However, iTregs that have a hypermethylated TSDR

can still be functional (108, 109).

As Tregs migrate from lymphoid organs to peripheral tissues

they accumulate a common tissue-resident signature and are

further differentiated into unique phenotypes dependent on

tissue-specific signals. These tissue-resident Tregs (tissue

Tregs) have the potential to be derived from both tTregs and

pTregs, with the change from a lymphoid-resident phenotype to

a tissue-resident phenotype, a process that is mediated by a

combination of transcriptional regulators (Figure 3) (111, 112).

In the spleen and lymph nodes, the transcription factor BATF

drives the stepwise progression of tissue Treg precursors into

tissue Tregs by increasing chromatin accessibility of tissue

specific Treg genes (113). Repression of BATF impairs tissue

Treg function and contributes to induction of autoimmunity

(120). In addition, tissue Tregs often exhibit specialized

functions associated with upregulation of tissue specific

transcription factors, such as PPARg in visceral fat tissue and

Eos in the skin (89, 110). Although, more recently PPARg has
been linked to skin and liver Tregs as well (121, 122).

Interestingly, upregulation of IL-33R (ST2) and its
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downstream target cytokine, amphiregulin, is a trait shared

among many Tregs that are transitioning towards tissue

phenotype; indicative of an acquired ability to participate in

tissue repair in response to inflammation or injury (Figure 3)
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(89, 123–125). The growth factor amphiregulin is expressed by

tissue Tregs in response to alarmin cytokines released by injured

tissue cells, including IL-33 (114–116). The ramifications of this

discovery show that Tregs upregulate receptors necessary to
FIGURE 2

Induced regulatory T cells. In the periphery, T lymphocytes can encounter stimuli that turn on downstream signaling leading to genetic
reprogramming and a regulatory phenotype (90, 91). pTregs which have the capacity to be immunosuppressive and traffic to inflamed tissue
sites are differentiated from CD4 naïve T cells under inflammatory conditions (92–94). A rare and unique subpopulation of Tregs is the CD8
+Foxp3+ Treg. In the periphery, when naïve CD8 Tconv cells encounter TGFb, pSmad3 binds to CNS1 of Foxp3, and along with transcription
factors Runx3 and Gata3 promote expression of Foxp3 (95–97). CD8+Foxp3+ Tregs express similar markers as CD4 Tregs and have
immunosuppressive functions.
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sense the tissue microenvironment in order to rapidly respond to

environmental changes.

In addition, CD4 T-helper lineage defining transcription

factors can shape Treg responses during inflammation. A prime

example of this is T-bet, which in addition to being the major

Th1 lineage-defining transcription factor, provides Tregs with

increased ability to suppress Th1 effectors (117). T-bet is

upregulated in Tregs in response to IFNg and TCR ligation

and is directly responsible for the upregulation of chemokine

receptor CXCR3, allowing Tregs to traffic to sites of

inflammation (Figure 3) (118, 119).

Furthermore, CD8+FOXP3+ regulatory T cells constitute a

smaller proportion of the Treg compartment but are still

functional contributors to the regulatory arm of the immune

system. They are transcriptionally similar to CD4+FOXP3+ T

cells; and although they seem to be less potent than CD4

+FOXP3+ Tregs they have been shown to be effective in

models of GVHD and lupus (126, 127). In contrast to CD4

+FOXP3+ T cells, CD8 Treg suppressor programs are controlled

by the transcription factors RUNX3 and GATA3 (Figure 2). In

naïve CD8 T cells, GATA3 binds to the CNS1 region of FOXP3

to inhibit FOXP3 expression, however in CD8 Tregs, GATA3

binds to the CNS2 region to maintain FOXP3 expression (95).
Frontiers in Immunology 07
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Furthermore, RUNX3 binds to the promoter region of FOXP3 to

initiate transcription, and under conditions with high levels of

TGFb, Smad3 is phosphorylated and binds to CNS1 inducing

FOXP3 expression (Figure 2). nCD8+CD25+ Tregs are also

somewhat functionally similar to CD4+FOXP3+ Tregs as they

express suppressive markers such as GITR and CTLA4 (96), as

well as cytokines such as IL-10 and TGFb (Figure 2) (95, 97).
Epigenetic regulation of
Treg lineage

Epigenetic regulation of gene expression can have major

consequences for cells. During development, thymocytes that are

fated to become Tregs undergo a series of epigenetic

modifications to CNS regions of FOXP3 to activate

transcription of FOXP3 and downstream Treg signature genes.

At the same time, T cell effector cellular differentiation programs

are repressed (Figure 1A) (128, 129). Stepwise histone tail

acetylation at the FOXP3 promoter initiates chromatin

remodeling and FOXP3 transcription (130). FOXP3 histone

tail acetylation allows ten-eleven translocation (TET)-mediated

DNA demethylation to occur in the CNS2 region of the FOXP3
FIGURE 3

Inflammatory and tissue specific signals shape Treg responses. Tissue Tregs are poised to respond to inflammatory tissue environments. In the
presence of alarmin cytokines, tissue Tregs expressing the transcriptional regulators Batf and PPARg (89, 110–113) secrete the wound repair
factor Amphiregulin (114–116). Inflammatory cytokines that normally drive T-helper lineage specific factors like T-bet can similarly induce T-
helper transcription factor expression in Tregs. IFNg and TCR stimulation induce T-bet expression in Foxp3+ Tregs, which provides them with
increased ability to suppress Th1 effector T cells (117–119).
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locus and maintains FOXP3 transcription by increasing

chromatin accessibility; thus, removing the need for further

histone acetylation (130). Positive regulation of Treg lineage is

also accomplished by repression of alternative T-helper lineage

programs. Polycomb-repressive complexes (PRC) are multi-

protein enzymes that transcriptionally silence genes through

histone H2A ubiquitylation and H3K27 methylation (131).

PRCs silence Th17 related genes and enhance the Wnt

signaling pathway to favor Treg development and stability

(132, 133).

Once chromatin remodeling and access to core Treg genes is

achieved, additional epigenetic changes occur that maintain

stable chromatin accessibility. For example, the protein

ubiquitin like with PHD and ring finger domains 1 (Uhrf1) is

an epigenetic regulator that recruits DNA methyltransferases

(Dnmt) such as Dnmt1, Dnmt3a, and Dnmt3b to stabilize

methylation patterns (134–137) during Treg development

(Figure 1A), as well as following TCR engagement in the

periphery (138). Similarly, ablation of Dnmt1 in Tregs severely

impairs their funct ion through global changes in

methylation (139).

However, many of these normal epigenetic modifications fail

to function and/or maintain Treg stability during autoimmunity,

as Tregs derived from autoimmune patients often have

epigenetic and transcriptomic changes. For example, effector

Tregs derived from juvenile idiopathic arthritis patients present

with consistent changes that include methylation changes in

enhancer regions, as well as upregulation of functional and core

Treg genes (140). The upstream regulatory elements that are

dysregulated can be numerous due to the complexity of

epigenetic mechanisms that control Treg lineage. For instance,

in a model of multiple sclerosis, methylation of CNS2 normally

repressed by Dnmt3a and controlled by Blimp1 is disrupted and

leads to loss of Treg identity (141). There are indications that

similar disruptions occur in human autoimmunity. The

chromatin-modifying enzyme Ezh2 maintains Treg identity

after activation, and its reduction is observed in RA patients

(Figure 1B) (142, 143). Moreover, tissue antigens themselves can

produce variable epigenetic responses in antigen-specific Tregs.

For example, Tregs expanded in vitro using APCs expressing

insulin B:9-23 peptide were found to have transcriptomic and

epigenetic signatures representative of highly suppressive Tregs

compared to Tregs expanded using whole insulin peptide (144).

This provides evidence for the importance of T cell receptor

signaling and antigen specificity in the development of optimally

functional and stable Tregs.

Understanding the epigenetic changes that Tregs undergo

during chronic inflammation is important for gaining new

targeting strategies for autoimmune therapies. Tregs function

differently during homeostasis and acute infection compared to

chronic inflammatory conditions, implying context and

inflammation specific Treg functional programs potentially
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regulated at the epigenetic level (19–21). In addition, Treg

frequency and core signature gene expression mainly

associated with DNA accessibility, transcription, translation,

signal transduction, and cytokine receptors are prone to

changing throughout the span of autoimmune disease

pathology (145).

Microbiota have also been shown to influence Treg function

and stability. Interestingly, some microbial-derived signals

directly engage with Treg epigenetic elements (146). While still

a new field of study, there is increasing evidence that short chain

fatty acids (SCFA), such as butyrate, can be produced by

commensal bacteria and positively regulate Treg differentiation

(147). This appears to be CNS1 dependent, and is mediated by

enhanced acetylation at the FOXP3 locus (148, 149). However, it

is still unclear whether SCFAs are the key signal for pTreg

induction in the mesenteric lymph nodes (150). Importantly, gut

dysbiosis is a feature of several autoimmune diseases such as

IBD, SLE, RA, Graves’ Disease and T1D, and it might contribute

to disbalance of immune homeostasis (Figure 1B) (151–

156).Thus, it is relevant to ask if inflammation or other

microenvironmental cues at tissue sites can play a direct role

in changing Treg function through epigenetic and/or

transcriptomic changes.
Shifting the Treg/Teff equilibrium

A major question that remains regarding Tregs in

autoimmunity is how they inevitably fail throughout the course

of disease. One hypothesis is a decrease in the ratio of Tregs : Teffs,

which can be seen in several autoimmune diseases (157–160). The

shifts seen in this equilibrium could be the result of direct mutations

in FOXP3 such as in IPEX syndrome, other polymorphisms that

affect Treg function or stability, or could occur due to the influence

of the surrounding tissue environment, since normal cellular

mechanisms of differentiation and function that work to maintain

the Treg : Teff balance are often dysregulated during

autoimmunity (Figure 1).

For example, a major pathway that diverts CD4 T cells away

from Treg differentiation and towards a Th17 program is the IL-

6/STAT3 pathway commonly associated with inflammation.

Dysregulation of the IL-6/STAT3 pathway seen in patients

with gain of function mutations in STAT3 is correlated with

increased susceptibility to T1D; most likely related to the Treg :

Th17 imbalance seen in these patients (22). Inflammatory

environments high in IL-6 have been shown to increase the

Th17 transcription factor RORgt in both tTregs and pTregs (23),

and lead to the creation of ex-Tregs that are capable of secreting

inflammatory cytokines (32, 33). These ex-Treg cells lose FOXP3

expression and convert into pathogenic Th17 cells capable of

producing IFNg and destabilizing Tregs in the surrounding

environment (33, 161–163). Formation of ex-Tregs promotes a
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shift in the Treg : Teff ratio skewed towards destructive Teff cells.

Treg-derived IFNg can also act as a negative feedback regulator

of Treg stability and lead to further loss of suppressive function,

indicating an important role for the environment in continually

shaping and sometimes destabilizing Treg responses (164).

Additionally, antigen exposure and/or scarcity can impact the

balance between Th17 and Treg differentiation (165). Recent

evidence suggests that T cells can trogocytose MHCII molecules

from APCs displaying specific antigens, and subsequently

display the MHCII to other antigen-specific T cells. When

differentiation is favored towards Tregs there is a high APC:T

cell ratio, however, when the reverse occurs (high T cell:APC

ratio) differentiation is skewed towards Th17 cells (166).

These inflammatory pathways implicated in Treg lineage

destabilization can be effectively targeted for therapeutic

purposes. Small molecule targeted inhibition of IL-6 or STAT3

promotes Treg development and leads to the establishment of

homeostasis between Treg and Th17 cells in a model of multiple

sclerosis (MS) (167, 168). MS patients often exhibit dysregulated

cytokine levels - including an increase in IL-6 in their cerebral

spinal fluid, which could be targeted with the goal of shifting the

balance between anti- and pro-Treg micro-environment cues

(169). However, blocking the IL-6R in early onset T1D patients

with a mAb did not prevent or delay beta cell loss (170),

illuminating the limitations of therapies that target a single

inflammatory pathway.
Non-coding RNAs during
autoimmunity

Evidence shows dysregulated microRNA (miRNA) and long

non-coding RNA (lncRNA) expression is also associated with

many autoimmune diseases (24, 25). miRNAs are small non-

coding RNAs that regulate proteins largely by binding to the 3’

UTR of mRNA and preventing translation, or by targeting the

mRNA for degradation. Similarly, lncRNAs modulate chromatin

architecture and mRNA stability (171). Both miRNA and

lncRNA can impact Treg genetic regulation by altering

expression of epigenetic regulators, directly targeting FOXP3,

and by altering the signaling pathways that allow Tregs to

respond to the surrounding microenvironment. Through these

mechanisms, miRNAs influence Treg frequency and modify

Treg functional capabilities.

Further, miRNAs can play an important role in regulating

Treg epigenetics. For example, miR-142-3p, which is

upregulated during T1D in humans and mice, can bind to

lysine demethylase 6A (KDM6A) and demethylate H3K27me3

in Tregs leading to increased autophagy, decreased apoptosis,

and increased Treg function (172). While two different Treg-

specific miR-142 deficient mouse models showed impaired Treg

function, whether or not Treg frequency is altered in these mice
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remains unclear since the two studies showed conflicting results

(173, 174). Furthermore, miR-142-3p function in Tregs may

operate through multiple pathways as miRNA142-3p also

destabilizes Tregs by interacting with TET2 to alter Treg

methylation in both humans and mice (27).

In addition to modifying Treg epigenetic signatures, non-

coding RNAs can target FOXP3 and other Treg signature genes.

In humans, several miRNAs including, mi-R206, miR-133a, miR-

133b, and miR-31 have been identified that directly target the 3’

UTR of FOXP3 mRNA leading to FOXP3 translational

downregulation (175, 176). miR-31 is among the better studied

miRNAs that target FOXP3 and has been implicated in numerous

autoimmune diseases. In murine models of autoimmunity, mi-R31

is upregulated upon TCR stimulation, but is inhibited by TGFb/NF-
kB signaling (177). miR-31 functions by directly targeting FOXP3,

and also acts indirectly by promoting HIF1a and downregulating

Nrp1 and retinoic acid-inducible protein 3 (Gprc5a) (178). miR-31

also inhibits carcinoembryonic antigen related cell adhesion

molecule 1 (CEACAM1)-S, which represses Treg development in

a model of murine liver autoimmunity but promotes Treg

development in peripheral blood mononuclear cells (PBMCs)

isolated from systemic lupus erythematosus (SLE) patients (179).

The ultimate effect of miR-31 on Treg development and frequency

depends on the balance between its inhibitory and enhancer

functions. However, the factors that determine this require

further investigation.

In addition, miRNAs can also influence FOXP3 by targeting

pathways that regulate its expression. miR-21, which is among

the best studied miRNAs that regulate Tregs in this manner, is

dysregulated in several autoimmune disorders in both humans

and mice. miR-21 acts indirectly to positively regulate Foxp3

expression (180); however, in autoimmunity, reduced miR-21

expression is correlated with increased STAT3 and reduced

STAT5 and Foxp3 expression (26, 181–183). miR-21 directly

targets STAT3 resulting in its downregulation and subsequently

reduces effector molecules IL-17 and IL-22 (182, 184). Maresin 1

(MaR1) and the EGF/c-Jun pathway have both been shown to

induce miR-21, restore Treg : Teff ratios through FOXP3

induction, and reduce autoimmunity (183, 185).

While some studies show that transfection of naïve human

CD4 T cells with miR-21 is sufficient to induce Treg

development by increasing Foxp3, TGFb, and IL-10, another

study found that miR-21 promotes RORgt and suppresses Foxp3
and IL-10 (180, 186, 187). Indeed, Treg specific depletion of

miR-21 in mice induced the expression of both IL-17 and IL-10

indicating that miR-21 may play a role in opposing pathways

(184). In line with these opposing observations, increased miR-

21 expression inhibited FOXP3+ Tregs in human gastric cancer

(188) whereas it induced FOXP3 in human and mouse

autoimmunity (182, 183). Interestingly, LPS stimulation of

PBMCs from RA patients down-regulated miR-21; however,

PBMCs from healthy controls responded to LPS in the opposite
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fashion by up-regulating miR-21 (175). The opposite regulation

and effects of miR-21 in autoimmune patients compared to

healthy controls and in cancer settings suggests that a complex

network of factors determines whether miR-21 promotes or

inhibits Treg stability and function.

Furthermore, lncRNAs can also modulate Treg epigenetics.

For example, FOXP3 long intergenic noncoding RNA, Flicr,

reduces chromatin accessibility to the CNS3/Accessible Region 5

in mature Tregs and represses FOXP3 expression in both

humans and mice. Knockout of Flicr on the NOD mouse

background results in stabilized Foxp3 expression with a

reduction in diabetes incidence (25). Additionally, in both

humans and mice the lncRNA lnc-Smad3 interacts with the

histone deacetylase HDAC1 to silence SMAD3 transcription.

Upon TGFb stimulation SMAD3 inhibits lnc-Smad3, thus

allowing for greater SMAD3 transcription (189).

lncRNAs are also integral in regulating key Treg

transcription factors. For example, Homeobox D gene cluster

antisense growth-associated long noncoding RNA (HAGLR) is

another lncRNA involved in autoimmunity. In human Tregs,

HAGLR suppresses RUNX3 expression resulting in reduced

Treg frequency (190). Additionally, lncRNA DQ786243

induces FOXP3 expression in human Tregs and promotes

Treg suppressive function (191).

Noncoding RNAs are also important participants in

regulating and responding to environmental cues. In

inflammatory environments rich in IL-6 and TNFa, NF-kb
upregulates the expression of miR-34a in humans and mice

(192), which attenuates FOXP3 expression and can result in a

shift of the Treg : Teff ratio. miR-124, which is dysregulated in

numerous autoimmune diseases (24, 26), inhibits IL-6/STAT3

signaling and promotes Treg development (193). Similarly, miR-

146a normally targets STAT5b to enhance Treg function and

differentiation, but loss of miR-146a during inflammatory

conditions leads to reduced FOXP3 expression and reduced

Treg frequency. IL-2 represses Flicr thus removing Flicr’s

inhibition of FOXP3 expression, while TGFb inhibits the

Foxp3-repressive noncoding RNAs miR-31 and lnc-Smad3

(194). The anti-inflammatory molecules MaR1 and EGF

promote miR-21 (183, 185). The field of noncoding RNAs and

their role in Treg development and function is growing, but

additional studies are still required to reveal the full extent they

may have in autoimmunity.
Treg-based therapies

With the central role for regulatory T cells in autoimmune

diseases, it is unsurprising that investigation is underway as to

how Tregs can be used therapeutically (195). One example is the

use of Tregs as a treatment for T1D. The current standard of care

for T1D patients is exogenous replacement of insulin. When

managed well, the administration of synthetic insulin results in
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more stable blood glucose levels but does not entirely negate the

risk of comorbidities (196). Thus, having an immunomodulatory

therapy that prevents, attenuates, or reverses the course of

pancreatic islet destruction is crucial.
Altering Treg to Teff ratio using
immunomodulation

Due to potential imbalance in the Treg : Teff homeostasis seen

during T1D, much attention has been focused on changing the

ratio either by depleting effector T cells or expanding the Treg

population. One of the earliest immunomodulatory therapies

attempted in T1D patients was the use of anti-CD3 antibodies

(197–199). Even a single dose of anti-CD3 lessened T1D

progression and allowed reduction or complete withdrawal from

exogenous insulin replacement therapy in some patients (197).

Following initial positive observations in early diagnosed patients,

anti-CD3 mAb therapy was used in a clinical trial of relatives of

T1D patients who had at least two diabetes related auto-antibodies

and confirmed dysglycemia prior to the start of the trial (200). A

subgroup of participants in the treatment arm of the trial displayed

delayed onset of T1D compared to controls, showing that

modulation of T cell function after loss of tolerance but prior to

overt disease can influence disease outcomes. Anti-CD3 antibodies

appear to function by altering the ratio of Tregs : Teffs, as Teffs

are susceptible to depletion by anti-CD3, whereas Tregs are more

resistant (201). Additionally, following anti-CD3 mAb therapy a

temporary increase in PD1+FOXP3+ Tregs was seen that

paralleled a rise in anergic/exhausted CD4 and CD8 Teff cells

(202). While early versions of anti-CD3 mAbs resulted in

significant side effects that limited their use, genetic engineering

and proteolytical removal of Fc domains alleviated many of the

side effects (203, 204). The recent successes obtained with the anti-

CD3 mAb therapy in T1D allow us to conclude that (1)

immunotherapeutic interventions can be successful in T1D, (2)

timing of immunotherapy is important, but success can be achieved

even after anti-beta cell responses are detected, and (3) shifting the

balance between inflammatory and regulatory pathways might be

sufficient to acquire long-term tolerance. Although anti-CD3 mAb

therapy is highly promising, it is not effective for ~25% of T1D

patients and its positive effects can be temporary, which necessitates

further investigation of the mechanisms underlying persistence of

autoimmune T cells and their resistance to anti-CD3 therapy in

certain individuals (197, 198).
Direct expansion of Tregs

Another avenue to address Treg frequency is by isolating

and expanding endogenous Tregs from T1D patients directly in

vitro followed by adoptive transfer back into the patient

(Figure 4) (196). One way to expand Tregs utilizes the IL-2
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pathway. For example, several studies have used low-dose IL-2 as

a way to expand Tregs in vivo and increase their suppressive

function (223, 224). Careful dosing of IL-2 in this approach is

critical since high-dose IL-2 also expands effector T cells and

other immune cell populations. Recent studies have addressed

this dosing issue and improved upon this approach by modifying

the IL-2 cytokine so that it selectively binds to Tregs (225–227).

Targeting the IL-2 pathway is logical, as the decrease in Tregs

seen during NOD diabetes progression is thought to be due to

dysregulated IL-2 production within the pancreatic islets leading

to loss in Treg function and survival (158), and IL-2R

dysfunction is implicated in development of T1D (9).

However, combining IL-2 therapy with autologous polyclonal

expanded Treg infusion can have the potential to induce more

harm than good. When IL-2 and Tregs are concomitantly

administered to T1D recipients, IL-2 induces the proliferation

not only of Tregs, but also of potentially cytotoxic cells,

highlighting the need for Treg specific IL-2 (228). Although,

low-dose IL-2 was well tolerated and specifically expanded Tregs

in individuals of other autoimmune diseases (229).
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An additional caveat to Treg therapy is how Tregs may change

during the manufacturing process, i.e., expansion of Tregs ex vivo.

While ex vivo-expanded Tregs maintain suppressive capacity

(205), they can also upregulate inflammatory effector T cell-

associated cytokines, such as IFNg, which can lead to loss of

Treg stability (Figure 4) (207). Genome wide DNA methylation

sequencing on Tregs undergoing in vitro expansion show

increased methylation in enhancer and promoter regions of

genes associated with T cell activation and function, as well as

hypomethylation of genes associated with T cell exhaustion. These

results are donor independent and are consistent throughout

manufacturing runs (206), raising the question of whether Tregs

expanded under current in vitro protocols are poised for long term

function in vivo, regardless of their transcriptomic landscape or

suppressive capacities at the end of expansion. Findings such

as this could elucidate why current Treg therapies often fail to

suppress disease long term. Fortunately, recent experiments have

shown that the Cas9/CRISPR system can be used for

targeted TET-mediated demethylation of the Treg TSDR (220);

potentially providing a solution for Treg manufacturing
FIGURE 4

Tailoring Treg therapies for improved efficacy. Using human autologous Tregs is a promising approach for treatment of autoimmune and
inflammatory disorders (196); however, the efficacy of such approaches depends on several factors. Loss of Treg suppressive capacity, stability,
or stemness could be a side effect of in vitro expansion protocols (205–207). The potential inherent defects in Tregs, lack of antigen specificity
(208–211), TSDR methylation status post expansion (206), and long-term functionality must also be considered. Potential solutions include
engineering antigen specific TCRs (212), TRuCs (213–215), and CARs (216–219), utilizing Cas9/CRISPR technology for targeted demethylation of
the TSDR (220), and using cytokine cocktails to optimize Treg expansion and functionality long-term (221, 222). Furthermore, clinical studies
should be focused on accurately assessing the long-term in vivo Treg lineage stability, survival and disease-specific Treg suppressive
mechanisms.
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complications. Indeed, simply using a chemical inducer of

TSDR demethylation was shown to decrease NOD diabetes

disease (230).

Another standard approach for in vitro expansion of T cells,

including Tregs, is based on anti-CD3/CD28 crosslinking that

leads to engagement of TCR and co-stimulatory pathways.

However, strong and continuous TCR stimulation might result

in loss of Treg stability or lead to Treg exhaustion. As an

alternative to using anti-CD3/CD28, a combination of

cytokines and CD28 superagonist antibodies (CD28SA) can

induce robust Treg expansion while maintaining superior Treg

stability (221, 222). Collectively, these findings suggest that a

more tailored approach is necessary to create Treg-based

treatments, and that increased Treg frequency, while helpful,

needs to be accompanied by a high suppressive capacity in order

to fully curtail disease.
Antigen specificity in Treg therapy

Another important consideration for effective Treg therapy

is their tissue antigen specificity, which was shown to be

necessary for optimal Treg function in mouse models of T1D

(209, 211). Indeed, islet auto-antigen specific, but not polyclonal

Tregs transferred into NOD mice are capable of engrafting and

expanding following anti-CD3 Ab treatment (208). This may be

due to antigen specific Tregs’ ability to traffic to the site of

autoimmune inflammation more efficiently than polyclonal

Tregs. For example, a clinical trial that recently concluded in

MS patients saw that ex vivo expanded polyclonal CD4

+CD25highCD127-FoxP3+ Tregs injected intrathecally, but not

intravenously, had the ability to reduce disease severity,

suggesting that inflammatory signals alone are not sufficient

for recruitment of Tregs to the autoimmune tissue (210).

Various approaches have been in development to increase

antigen specific Tregs. One approach involved expansion of

antigen specific Tregs in vitro using CD8+ splenic dendritic

cells presenting islet antigens. Islet-antigen specific Tregs

generated using this method had the ability to suppress

diabetogenic T cells (231). Antigen specific Tregs can also be

induced directly in vivo, as was observed in a recent clinical trial

that utilized the in vivo delivery of beta cell peptide antigens

(232). One potential problem that exists with this approach,

however, is that some patients have inherent defects in their Treg

populations, and thus it may be difficult to increase the number

of functional Tregs. To address a potential lack of Treg

precursors, one approach is to insert an enhancer before the

FOXP3 coding region in bulk CD4 T cells (233). This approach

overcomes epigenetic repression of the FOXP3 gene and can be

used on antigen-specific CD4 conventional T cells (Figure 4). In

addition, these edited Tregs express Treg signature genes and

have a similar suppressive potential as naturally derived

tTregs (234).
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Understanding and identifying various subpopulations of

Tregs is an important step to improving Treg-based therapies for

autoimmune diseases, as the ability to isolate highly functional

Tregs would be beneficial in enriching potentially more

efficacious Tregs. As an example, TIGIT+ human Tregs

posit ively correlate with stable FOXP3 expression

(demethylated TSDR) while CD226+ Tregs are associated with

effector cytokine expression and increased TSDR methylation

(235). Furthermore, additional Treg subpopulations have been

identified, that may increase our understanding of Treg biology

and function (236).

Another approach to conferring antigen specificity to Tregs

is with engineered TCRs, TCR-fusion constructs (TRuCs), or

chimeric antigen receptors (CARs) (Figure 4). As the name

suggests, engineered TCR Tregs are Tregs transfected with an

antigen-specific TCR, however this approach may not create

TCRs with a high enough affinity to be effective in resolving

autoimmunity (212). Alternatively, CD4+FOXP3+ T cells can be

transduced with a high affinity CAR specific for an autoimmune

antigen (216, 217). Current results suggest that CAR Tregs

specific for autoimmune antigens can traffic to the correct

tissue site and maintain suppressive function (218, 219).

TRuCs on the other hand, are tissue-protein specific antibody

fragments fused to TCR, allowing for antigen recognition to be

combined with natural TCR signaling (214). This approach may

be superior to CAR Tregs when there is low density of the

antigen available at the tissue site (213, 215).
Discussion

Understanding the genetic elements that lead to loss of

regulatory T cell function in autoimmunity requires a

foundational understanding of Treg function in a homeostatic

environment. Control of Treg lineage and stability often revolve

around the transcription factor FOXP3, although FOXP3

activity only accounts for a part of all Treg signature gene

expression. Recent evidence has shown that FOXP3 expression

and activity is tightly controlled through many different cis- and

trans-regulatory factors including enhancer regions,

transcription factor complexes, and epigenetic modifications.

In turn, these regulatory factors can be influenced by the

surrounding tissue environment, allowing for tight control of

tolerance in healthy individuals. Thus, ultimate Treg function is

a matter of both nature and nurture.

Genetic mutations leading to IPEX syndrome and polygenetic

autoimmune susceptibilities revealed through GWAS analyses (9–

11) converge on several pathways crucial to Treg stability and

function and imply their dysregulation during autoimmunity.

The dysregulation can be caused by mutations in FOXP3 itself,

mutations in Treg functional genes, or SNPs that affect regulatory

elements such as enhancer regions or genes critical for proper

Treg function. In addition, transcription factor complexes that
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associate with CNS regions of FOXP3, are another component

that give Tregs a ‘manual’ for how they should function in

maintaining immune tolerance. However, this so-called manual

often becomes distorted or destroyed during pathological

autoimmunity, which might be attributed to chronic

inflammation present in the tissue environment.

We know that Tregs are poised to interact with their

environment and to make functional changes in response to

seemingly minute alterations; especially compared to their

effector T cell counterparts. The ability for a lymphoid resident

Treg to undergo transcriptional reprogramming in order to

become a tissue Treg is only one example of such functional

changes. Additional evidence can be found in the sensitivity Tregs

have to IL-2 in their surrounding environment, and the ability of

Tregs to utilize unique metabolites (237–239). The idea that Tregs

are influenced by their environment is not novel; however, there is

growing appreciation that the environment or so-called ‘nurture’

can impose permanent changes in Treg nature.

GWAS and other -omics studies point to Treg defects as a

partial contribution to autoimmune susceptibility. However, the

ultimate trigger that destabilizes the immune system and leads to

autoimmunity is hard to define. Do Tregs become dysfunctional

due to the tissue environment created during inflammation or

autoimmune attack, or are they dysfunctional prior to the initial

triggering event? Perhaps, Tregs in autoimmune patients may be

poised for dysregulation, but are only partially impaired and

progressively lose function in response to specific environmental

changes. Perturbations in the environment might provoke a

series of downstream events related to epigenetic and

transcriptomic changes of Tregs; ultimately leading to a loss of

function and self-tolerance.
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160. Erikçi AA, Karagöz B, Bilgi O. Regulatory T cells in patients with idiopathic
thrombocytopenic purpura. Turk J Hematol (2016) 33:153–5. doi: 10.4274/
tjh.2015.0335

161. Duhen T, Duhen R, Lanzavecchia A, Sallusto F, Campbell DJ. Functionally
distinct subsets of human FOXP3+ treg cells that phenotypically mirror effector Th
cells. Blood (2012) 119:4430–40. doi: 10.1182/blood-2011-11-392324

162. Koenecke C, Lee C-W, Thamm K, Föhse L, Schafferus M, Mittrücker H-W,
et al. IFN-g production by allogeneic Foxp3+ regulatory T cells is essential for
preventing experimental graft-versus-Host disease. J Immunol (2012) 189:2890–6.
doi: 10.4049/jimmunol.1200413

163. Pandiyan P, Zhu J. Origin and functions of pro-inflammatory cytokine
producing Foxp3+ regulatory T cells. Cytokine (2015) 76:13–24. doi: 10.1016/
j.cyto.2015.07.005

164. Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA,
Shayan G, et al. Interferon-g drives treg fragility to promote anti-tumor
immunity. Cell (2017) 169:1130–1141.e11. doi: 10.1016/j.cell.2017.05.005

165. Su LF, del Alcazar D, Stelekati E, Wherry EJ, Davis MM. Antigen exposure
shapes the ratio between antigen-specific tregs and conventional T cells in human
peripheral blood. Proc Natl Acad Sci (2016) 113:E6192–8. doi: 10.1073/pnas.1611723113
Frontiers in Immunology 17
105
166. Boccasavia VL, Bovolenta ER, Villanueva A, Borroto A, Oeste CL, van
Santen HM, et al. Antigen presentation between T cells drives Th17 polarization
under conditions of limiting antigen. Cell Rep (2021) 34:108861. doi: 10.1016/
j.celrep.2021.108861

167. Aqel SI, Kraus EE, Jena N, Kumari V, Granitto MC, Mao L, et al. Novel
small molecule IL-6 inhibitor suppresses autoreactive Th17 development and
promotes treg development. Clin Exp Immunol (2019) 196:215–25. doi: 10.1111/
cei.13258

168. Aqel SI, Yang X, Kraus EE, Song J, Farinas MF, Zhao EY, et al. A STAT3
inhibitor ameliorates CNS autoimmunity by restoring Teff:Treg balance. JCI
Insight (2021) 6:e142376. doi: 10.1172/jci.insight.142376

169. Maimone D, Gregory S, Arnason BGW, Reder AT. Cytokine levels in the
cerebrospinal fluid and serum of patients with multiple sclerosis. J Neuroimmunol
(1991) 32:67–74. doi: 10.1016/0165-5728(91)90073-g

170. Greenbaum CJ, Serti E, Lambert K, Weiner LJ, Kanaparthi S, Lord S, et al.
IL-6 receptor blockade does not slow b cell loss in new-onset type 1 diabetes. JCI
Insight (2021) 6:e150074. doi: 10.1172/jci.insight.150074

171. Yao R-W, Wang Y, Chen L-L. Cellular functions of long noncoding RNAs.
Nat Cell Biol (2019) 21:542–51. doi: 10.1038/s41556-019-0311-8

172. Gao J, Gu J, Pan X, Gan X, Ju Z, Zhang S, et al. Blockade of miR-142-3p
promotes anti-apoptotic and suppressive function by inducing KDM6A-mediated
H3K27me3 demethylation in induced regulatory T cells. Cell Death Dis (2019)
10:332. doi: 10.1038/s41419-019-1565-6

173. Anandagoda N, Willis JCD, Hertweck A, Roberts LB, Jackson I, Gökmen
MR, et al. microRNA-142–mediated repression of phosphodiesterase 3B critically
regulates peripheral immune tolerance. J Clin Invest (2019) 129:1257–71.
doi: 10.1172/jci124725

174. Wang W-L, Ouyang C, Graham NM, Zhang Y, Cassady K, Reyes EY, et al.
microRNA-142 guards against autoimmunity by controlling treg cell homeostasis
and function. PloS Biol (2022) 20:e3001552. doi: 10.1371/journal.pbio.3001552

175. Li J, Zhang H, Liu M, Xiang Y, Li H, Huang F, et al. miR-133a-3p/FOXP3
axis regulates cell proliferation and autophagy in gastric cancer. J Cell Biochem
(2020) 121:3392–405. doi: 10.1002/jcb.29613

176. Ye X, Lu Q, Yang A, Rao J, Xie W, He C, et al. MiR-206 regulates the Th17/
Treg ratio during osteoarthritis. Mol Med (2021) 27:64. doi: 10.1186/s10020-021-
00315-1

177. Zhang L, Ke F, Liu Z, Bai J, Liu J, Yan S, et al. MicroRNA-31 negatively
regulates peripherally derived regulatory T-cell generation by repressing retinoic
acid-inducible protein 3. Nat Commun (2015) 6:7639. doi: 10.1038/ncomms8639

178. Wu Y, Mealer C, Schutt SD, Wilson CL, Bastian D, Sofi MHH, et al.
MicroRNA-31 regulates T-cell metabolism via HIF1a and promotes chronic
GVHD pathogenes is in mice . Blood Adv (2022) . do i : 10 .1182/
bloodadvances.2021005103

179. Liu Y, Li C, Yang Y, Li T, Xu Y, Zhang W, et al. The TGF-b/miR-31/
CEACAM1-S axis inhibits CD4+CD25+ treg differentiation in systemic lupus
erythematosus. Immunol Cell Biol (2021) 99:697–710. doi: 10.1111/imcb.12449

180. Rouas R, Fayyad-Kazan H, Zein NE, Lewalle P, Rothé F, Simion A, et al.
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Polygenic autoimmune disease
risk alleles impacting B cell
tolerance act in concert across
shared molecular networks in
mouse and in humans

Isaac T. W. Harley1,2,3* , Kristen Allison1,2 and R. Hal Scofield4,5,6

1Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine,
Aurora, CO, United States, 2Human Immunology and Immunotherapy Initiative (HI3), Department
of Immunology, University of Colorado School of Medicine, Aurora, CO, United States,
3Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical
Center, Aurora, CO, United States, 4Department of Medicine, University of Oklahoma Health
Sciences Center, Oklahoma City, OK, United States, 5Arthritis & Clinical Immunology Program,
Oklahoma Medical Research Foundation, Oklahoma City, OK, United States, 6Medical/Research
Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
Most B cells produced in the bone marrow have some level of autoreactivity.

Despite efforts of central tolerance to eliminate these cells, many escape to

periphery, where in healthy individuals, they are rendered functionally non-

responsive to restimulation through their antigen receptor via a process termed

anergy. Broad repertoire autoreactivity may reflect the chances of generating

autoreactivity by stochastic use of germline immunoglobulin gene segments or

active mechanisms may select autoreactive cells during egress to the naïve

peripheral B cell pool. Likewise, it is unclear why in some individuals

autoreactive B cell clones become activated and drive pathophysiologic

changes in autoimmune diseases. Both of these remain central questions in

the study of the immune system(s). In most individuals, autoimmune diseases

arise from complex interplay of genetic risk factors and environmental

influences. Advances in genome sequencing and increased statistical power

from large autoimmune disease cohorts has led to identification of more than

200 autoimmune disease risk loci. It has been observed that autoantibodies are

detectable in the serum years to decades prior to the diagnosis of autoimmune

disease. Thus, current models hold that genetic defects in the pathways that

control autoreactive B cell tolerance set genetic liability thresholds across

multiple autoimmune diseases. Despite the fact these seminal concepts were

developed in animal (especially murine) models of autoimmune disease, some

perceive a disconnect between human risk alleles and those identified in

murine models of autoimmune disease. Here, we synthesize the current

state of the art in our understanding of human risk alleles in two prototypical

autoimmune diseases – systemic lupus erythematosus (SLE) and type 1

diabetes (T1D) along with spontaneous murine disease models. We compare

these risk networks to those reported in murine models of these diseases,

focusing on pathways relevant to anergy and central tolerance. We highlight

some differences between murine and human environmental and genetic
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factors that may impact autoimmune disease development and expression and

may, in turn, explain some of this discrepancy. Finally, we show that there is

substantial overlap between the molecular networks that define these disease

states across species. Our synthesis and analysis of the current state of the field

are consistent with the idea that the same molecular networks are perturbed in

murine and human autoimmune disease. Based on these analyses, we

anticipate that murine autoimmune disease models will continue to yield

novel insights into how best to diagnose, prognose, prevent and treat human

autoimmune diseases.
KEYWORDS

systemic lupus erythematosus (SLE), autoimmune type 1 diabetes mellitus (T1D),
polygenic, monogenic, genome-wide association study (GWAS), autoimmune
disease mouse model, central and peripheral tolerance (anergy), B cell receptor
(BCR) signaling pathway
Introduction: B cell development,
autoimmunity and autoimmune
pathology

Upwards of 75% of bone marrow produced B cells express

B cell antigen receptors (BCRs) that bind self-antigen (1–8).

Several mechanisms conspire to remove these autoreactive

BCRs from the diverse repertoire needed to provide effective

protective humoral immunity without autoimmunity. These

mechanisms act both centrally by receptor editing and clonal

deletion and peripherally by anergy (7). Central tolerance

mechanisms typically remove clones from the wild type

repertoire with the most avid interaction with autoantigens.

However, peripheral tolerance or anergy is the operative

mechanism that silences most autoreactive B cells (3–6).

Anergy arises as a consequence of chronic antigen receptor

stimulation in the absence of second signals (4, 7, 8). It is

defined by non-responsiveness to re-stimulation through the

BCR. Importantly, in several B-cell dependent human

autoimmune diseases, most individuals with clinically

apparent autoimmune disease develop serologically

detectable autoantibodies prior to clinical diagnosis (9–13).

While we would define B cell dependence as the ability of a B

cell depleting therapy to prevent or treat human disease, the

inclusion of type 1 diabetes and multiple sclerosis as a B-cell

dependent diseases is not universally accepted. However,

paired with the clinical efficacy of B-cell targeted therapies

either in prevention or treatment of diverse autoimmune

pathologies (11, 13–29) these observations implicate

dysregulation of central tolerance mechanisms, peripheral

tolerance mechanisms or both in the etiopathogenesis of
02
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these diseases. Evidence supporting regulatory defects in both

central (30–33) and peripheral (31, 32) tolerance mechanisms

have been described in numerous human autoimmune

pathologies. Central B cell tolerance defects have been

described in human SLE (34–36), T1D (37), RA (38, 39) and

Sjogren’s Syndrome (40). Peripheral B cell tolerance defects

have been described in T1D (41), Autoimmune Thyroid

Disease (AITD) (42), SLE (43–46), RA (47–49) and anti-

neutrophil cytoplasmic antibody (ANCA)–associated

vascluitis (AAV) (50). Current immunologic paradigms hold

that immune systems have been selected to balance response to

pathogens with damage to self (51–53). If this dominant

theoretical framework of immunology is correct, the

observation that such high levels of autoreactivity are the

norm in some ways challenges our teleology of (auto-)

immunity. Indeed, this apparent paradox is perhaps not

surprising, as our aim is to reduce a complex system that has

evolved to specifically, efficiently and flexibly respond to a

universe of molecules with a range of approximately quintillion

possibilities (54) to a simple and understandable set of rules.

There are obvious (and non-obvious) differences and

drawbacks inherent in extrapolating principles to human

pathologies from animal model systems (55). Nevertheless,

our understanding of the mechanisms that regulate both

central (33) and peripheral B cell tolerance (3, 56, 57)as well

as the development of autoreactive B-cell dependent

autoimmune pathologies (58–61) has been informed by

frameworks developed in murine animal models. Indeed, our

current models of the etiopathogenesis of human autoimmune

pathology largely consist of a consilience of inductions from

both observation and experimentation on living humans,

model systems comprised of human tissues/cells and study of
frontiersin.org
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murine model systems. However, several have challenged the

use of animal models to understand autoimmune pathologies

(55). One reason cited for this challenge is that advanced tools

for studying human immune responses (62–66) (i.e. CyToF,

single cell RNA-sequencing, spectral flow cytometry) now

allow more precise definition of human immune responses.

Another reason cited for this challenge are high-profile failures

in translating findings from animal model of autoimmune

disease to humans (67, 68) (some oft cited failures in

translation include: oral tolerance with insulin in type 1

diabetes prevention (69), subcutaneous administration of

partial agonists to induce antigen-specific T cell tolerance in

multiple sclerosis (70–72), the use of interferon gamma (73)

and inhibition of TNF-alpha (74, 75) in multiple sclerosis).

Importantly, the most often cited high-profile failures in

translation have arisen from observations in the EAE

(Experimental Autoimmune/Allergic Encephalitis) murine

model of multiple sclerosis. Notwithstanding the difference

between mice and human beings, challenges in translation are

perhaps not surprising, given that clinically defined human

phenotypes may well represent congeries of etiopathogenic and

pathogenetic mechanisms (76–78). That is, in these diseases

each individual actually takes a single path to disease

development out of many possible routes. Likewise, each

murine model system of autoimmune pathology may well

represent a single pathogenetic route to disease development.

Here we synthesize the recent advances in our understanding

of the complex genetic basis of two paradigmatic human B-cell

dependent autoimmune diseases: Systemic Lupus Erythematosus

(SLE) and Type 1 Diabetes Mellitus (T1D). SLE is the prototypical

protean multi-system autoimmune disease, whereas type 1

diabetes is the prototypical organ-specific autoimmune disease

invariably leading to pancreatic beta-cell destruction. Importantly,

both of these disease states have long been modeled with mouse

strains that spontaneously develop disease features that closely

resemble several of the key phenotypes and pathophysiologies of

the human diseases being modeled. Because of the long history of

investigation of the cellular and molecular mechanisms of these

models, we expect that models of these two diseases are likely to

have a more complete list of the genetic contributors and

understanding of the relevant cellular and molecular

mechanisms leading to murine autoimmune disease.

To address this overlap, we also synthesize what is known

regarding the function of putative causal genes across murine

models of both systemic autoimmune pathologies (SLE and

T1D) and autoreactive B cell tolerance. We discuss several

plausible potential explanations for the non-monotonic

relationship between currently known human and murine

autoimmune risk alleles. Through this analysis, we show that

the molecular networks comprised of putative human and

murine risk alleles for B-cell dependent autoimmunity and

autoimmune pathology substantially overlap. Finally, we

propose a framework for steps toward more successful
Frontiers in Immunology 03
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translation of findings from murine model systems to clinical

application in humans.
SLE and T1D: Heritability and
epidemiology

In humans both SLE and T1D have heritable component

with sibling recurrence risk ratios (lambda S) indicating a

substantive genetic contribution (Lambda S SLE = 20, Lambda

S T1D = 15) (79). Both are incompletely penetrant, with the

monozygotic twin concordance rate estimated to be at most 40-

50% but likely substantially lower for both diseases (79). Thus,

for both of these autoimmune pathologies, non-heritable factors

also impact disease development. These non-heritable risk

factors are often assumed to represent exposure to one or

more environmental triggers. Other stochastic events, such as

somatic mutation or particular antigen receptor rearrangement

towards a pathologic autoantigen could also plausibly

contribute. In SLE the non-heritable component has been

estimated to account for ~56% of disease risk (80) and in

T1D, this has been estimated at ~34% (81).

In terms of epidemiology, SLE is both more prevalent and

more severe in several populations of predominately non-

European ancestry than in populations with European

ancestry (82). A recent cause of death analysis puts these

differences in stark contrast (83). Whereas SLE is the 10th

leading cause of death in all female persons aged 15-24 in the

US, it is the 5th leading cause of death in African American and

Hispanic female persons. Similarly, a recent population-based

registry reported approximately 30%mortality within 10 years of

diagnosis in Black SLE patients, whereas white SLE patients from

the same population exhibited approximately 10% mortality.

These differences are likely due to a complex mixture of factors.

Potential contributions to these disparities likely include

systematic population level differences in access to healthcare

and possibly also genetic variants that are exclusive to a

particular ancestral group (84, 85). However, population level

genetic differences explain only 16% of genetic variability in

human populations (86). Therefore, systemic population level

differences in access to care may have a greater impact on

outcome differences in SLE. A recent report estimates that SLE

occurs in US male persons at a rate of 8 to 53 per 100 000 and US

female persons at a rate of 84 to 270 per 100 000, depending on

the population (87). Importantly, SLE exhibits sexual

dimorphism, occurring more commonly in female persons at

rate of 9:1 (87). A caveat to the studies referenced above is that

they rely on medical record abstraction and administrative data

analysis methods that by their nature preclude obtaining sex,

gender, race and ethnicity self-identification.

In terms of epidemiology, T1D is reported to be more

prevalent in persons who self-identify as non-Hispanic white,

followed by non-Hispanic black, Hispanic and other racial/
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ethnic identities (0.35 to 2.55 per 1 000) with approximately

equal prevalence in boys and girls in the US (1.93 per 1 000) (88).

T1D incidence increases with age, peaking between 10-14 years

of age. Notably, cases with onset < six months of age are not

entirely uncommon (89). However, for reasons that remain

incompletely clear, the overall incidence of T1D is increasing

according to several studies performed in the US (90–92). As a

result, based on anticipated demographic shifts, the prevalence is

projected to increase from 2.13 per 1 000 in 2010 to 5.20 per 1

000 by 2050 (88). Increasing incidence in recent decades is not

unique to type 1 diabetes amongst other autoimmune

diseases (93).

When taken together with the observations that different

geographies have different rates of autoimmune diseases (94)

and autoimmunity (at least the rate of antinuclear antibody

seropositivity) has also increased over the same time course (95),

these data have been interpreted to strongly imply a changing

autoimmunity/autoimmune disease risk environmental

exposure has change in recent decades, as the kinetics seem

too fast for a genetic explanation.

Several environmental factors have been associated with

SLE, including smoking, silica exposure, exogenous sex

hormones and infection, especially prior Epstein-Barr virus

infection (96, 97). Similarly, in T1D, microbiome,

micronutrient, diet, early life metabolism and immune stimuli

(infection and vaccination) have been implicated with risk for

incident disease (98).

In sum, both SLE and T1D in humans are complex diseases

where both genetic and environmental factors contribute both to

disease development and disease manifestations.

Nosology and classification
– Autoimmune T1D and the
heterogeneity of SLE

Both SLE and autoimmune type 1 diabetes pose practical

challenges in disease definition, diagnosis and classification that

should be considered when evaluating the utility and

applicability of any disease model. One cannot evaluate

whether a model recapitulates human disease pathogenesis if

the definition of disease is unclear.

The particular nomenclature of autoimmune type 1 diabetes

may strike the reader as oddly redundant, but it makes the point

that type 1 diabetes is a clinical diagnosis. This diagnosis is made

in part through typical seropositive autoimmunity to several

pancreatic islet expressed proteins (insulin, ZnT8, IA-2, GAD65)

(9) in the setting of insulin deficiency. This clinical scenario has

been alternately referred to as type 1a diabetes or as immune-

mediated type 1 diabetes (99–101). However, a small proportion

of individuals clinically diagnosed with type 1 diabetes in large

cohort studies have been found to have an alternative etiology

for their disease that is non-autoimmune. These individuals
Frontiers in Immunology 04
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commonly have either childhood onset monogenic type 2

diabetes (102) or fulminant onset diabetes with non-

autoimmune beta-cell destruction. This latter category of

disease has been alternatively referred to as type 1b diabetes,

idiopathic type 1 diabetes or nonautoimmune diabetes plus IS

(Insulin Sensitivity) (99–101). In some type 1 diabetes cohorts

this proportion may be as high as 10% (103). Prior decades of

careful phenotyping and molecular characterization has led to

description of several subphenotypes of what would have

previously considered either type 1 diabetes (young onset,

insulin sensitive and autoimmune) or type 2 diabetes (later

onset, insulin resistant non-autoimmune). These include latent

autoimmune diabetes of adults (LADA), type 1.5 diabetes,

ketosis-prone type 2 diabetes and maturity-onset diabetes of

the young. See (104) for an excellent review of the nosological

challenges of clinical diabetes classification. Our distinction in

nomenclature seeks to differentiate monogenic causes of clinical

type 1 diabetes with pathologic autoimmunity from monogenic

causes of diabetes that clinically resemble autoimmune type 1

diabetes, but arise from non-autoimmune causes. This

distinction is clinically important, as management is

substantially different (insulin replacement vs. sulfonylureas

and other therapies) (105). Indeed, cohorts clinically

diagnosed and treated as type 1 diabetics with potential

alternative etiologic explanations have been described (106).

There is a growing body of literature that using polygenic risk

scores (106) and/or sequencing panels of non-autoimmune

monogenic risk alleles can help distinguish these two

phenotypes. This approach may even be cost effective in select

situations (107). Further highlighting the potential for case

misclassification in type 1 diabetes cohorts, several recent

studies applied type 1 diabetes polygenic risk scores (PRS) to

define individuals with clinical type 1 diabetes with low genetic

risk (108–110). As expected, these analyses identified rare T1D

risk variants in or near genes with well-known effects on

immune responses. In addition, these studies identified several

rare risk variants in genes with metabolic function or impacts on

obesity and no known function in immune responses. Taken

together, they suggest that many of the type 1 diabetes cohorts

used for GWAS studies likely include a mixture of individuals

with autoimmune type 1 diabetes (T1aD) and individuals with

non-autoimmune type 1 diabetes (T1bD).

By the same token, SLE is a clinical diagnosis. In order to

develop homogeneous patient populations for clinical studies,

several iterations of classification criteria have been developed

(111–115). The most recent revision was published in 2019

(115). However, most studies of SLE in the past two decades

defined SLE cases according to the 1997 revised classification

criteria (113). It has been observed that the 1997 criteria lead to

330 possible combinations of clinical manifestations that could

satisfy SLE classification (76). Thus, despite being unified by

anti-nucleic acid/anti-nucleoprotein autoimmunity (116),

human SLE remains a clinically heterogenous disease state.
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Since particular patients differ in which features of SLE they

manifest, attention must be paid to which features of human SLE

a particular murine model recapitulates.

Genetic structure: The usual
structure of human autoimmune
diseases is polygenic

It is becoming increasingly clear that in most humans who

develop autoimmune disease, disease most commonly arises

from a complex interplay between many polygenic risk factors

and one or more environmental triggers (79). Decreased cost of

genotyping and the increasing size of autoimmune disease

genetic cohorts has led to a seemingly ever-increasing list of

disease risk loci. Indeed, for several common autoimmune

diseases, the number of risk genetic loci across the genome

now exceeds 200 (117). Each of these loci makes at most a

modest contribution to relative risk of disease (odd ratio < 1.2)

(117) and most are favored to act by regulating target causal

genes (118–120). Together these risk alleles are thought to set a

liability threshold that allows the development of autoimmune

pathology in certain circumstances. These rules for human

autoimmune pathologies appear to generally apply in the case

of SLE and T1D with some subtle differences (caveats)?. One

notable difference is that of association genetic association with

the Major Histocompatibility Complex (MHC)/Human

Leukocyte Antigen(HLA) Locus. In T1D, specific HLA alleles

are associated with disease. Together, three amino acid variants

account for nearly 30% of the phenotypic variance in T1D in

European ancestry populations (121). This is similar to the case

in RA, where specific HLA alleles have been shown to facilitate

binding and presentation of the classic RA autoantigen,

citrullinated peptides (122). In SLE, on the other hand, the

major contribution to genetic association with the MHC/HLA

locus has been mapped to Complement component 4 (C4A &

C4B) gene copy number (123). Both C4A and C4B are genes that

lie within the SLE association interval within the MHC/HLA

locus. It has been shown that, in contrast to RA and T1D, the

contribution of amino acid sequence variants to the SLE

association at the MHC/HLA locus is minimal. HLA is not

uninvolved in SLE etiopathogenesis, as there are additional

contributions to SLE risk at this complex genetic locus that are

attributable to regulation of MHC class II expression (123).

However, the bulk of the risk from HLA in SLE arises from

regulation of the complement system and not specific MHC

alleles (123).

In terms of genetic structure, SLE is most commonly

polygenic (117), but numerous monogenic forms of SLE have

been described, 51 of which we are aware (124–196).

Monogenic SLE presents more commonly with childhood

onset and a severe disease phenotype (117, 124–126). It

appears that in addition a minority of childhood onset cases,
Frontiers in Immunology 05
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currently estimated at approximately 15% exhibit a probable

mix of monogenic and polygenic genetic etiologies (197, 198).

Ongoing studies suggest that rare or private mutations also

partially contribute to risk in multipatient SLE pedigrees.

However, the extent to which such mutations contribute to

SLE risk is still being defined (199). To synthesize what is

known about polygenic causes of SLE, we applied a previously

described approach to published SLE risk variants in the

NHGRI-EBI GWAS catalog (117). First, we grouped SLE risk

variants listed in the GWAS catalog (200) into loci/regions,

then integrated published results the from Open Targets

Genetics (201) Locus to Gene (L2G) (202) algorithm. L2G is

a machine learning pipeline that predicts a causal gene by

integrating several sources of evidence. These sources include

distance from causal credible set variants to gene, molecular

QTL co-localisation, chromatin interaction data and where

applicable variant pathogenicity prediction from the variant

effect predictor algorithm. This evidence is then weighted by

gold-standard functionally demonstrated causal variants from

different GWAS studies. For loci where L2G was able to be

confidently annotate a likely causal gene, that gene was

included in the molecular network. This list is not

comprehensive. Our approach to region definition obscures

several known regions with multiple independent genetic

effects. Despite this, we find 182 polygenic human SLE

risk loci. By applying the L2G automated machine learning

pipeline and manual annotation our final list includes 109

loci with assignable putative causal genes within these

loci (Supplementary Table 2A).

In contradistinction to SLE, only very few (8 of which we are

aware – Supplementary Table 1B) monogenic causes of

autoimmune type 1 diabetes have been described (203–213).

Monogenic autoimmune T1D arises in genetic syndromes of

polyendocrinopathy. These autoimmune diseases are

characterized by autoimmunity that adversely impacts multiple

endocrine organs, not merely the pancreas. Only eight

monogenic routes to autoimmune diabetes have been

described provides a contrast to SLE. This may be in part due

to the diffuse, systemic nature of SLE versus the more narrow

target organ range of T1D. While SLE exhibits considerable

clinical and phenotypic heterogeneity (214) that is unified

around anti-nucleic acid/anti-nucleoprotein autoimmunity

(116), type 1 diabetes leads to autoimmune pancreatic beta cell

destruction. So, it may merely be that in this case there are more

opportunities to develop an immune dysregulation syndrome

resembling one or more features of SLE, as the manifestations of

SLE are both numerous and diverse.

In individuals with T1D, the disease more commonly arises

from the aggregate effects of polygenic risk alleles, just as with

SLE. Indeed, in the comprehensive review of monogenic

autoimmune type 1 diabetes to date reflects the experience of

approximately 500 individuals worldwide (203). Thus,

monogenic genetic effects or rare genetic effects of large effect
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size do not likely explain a significant proportion of type 1

diabetes patients and this also appears to be the case in several

autoimmune diseases (215). To explore this risk gene network

we applied the same approach to define a high confidence causal

polygenic risk gene network in human type 1 diabetes. This

analysis of type 1 diabetes risk loci from the GWAS catalog

yields a list of 131 polygenic human T1D risk loci. The L2G

algorithm was able to confidently identify 63 putative causal

genes within these loci (Supplementary Table 2B). Again, our

approach likely obscures the presence of multiple independent

signals in a particular region. A recent GWAS meta-analysis of

T1D reported that 33% of the independent association signals

occurred in loci with multiple independent association signals

within the same locus. These independent signals within the

same locus might exert their biological effects on disease risk

through the same gene. Alternately, these multiple independent

signals might exert their biological effects on disease risk through

multiple independent genes.

IL2RA stands out as an algorithmically defined putative

causal genes that is also present in the list of monogenic

autoimmune type 1 diabetes genes (Supplementary Table 1B)

as has been observed by others (216). Like SLE (Figure 1), the

monogenic and polygenic type 1 diabetes risk networks overlap

at this hub node (Figure 2). This suggests that these hub nodes

may be particularly attractive as targets that span disease states

based on their central location in both monogenic and polygenic

disease molecular networks. In sum, the overlap between

polygenic and monogenic disease genetic networks in both

human autoimmune Type 1 Diabetes and SLE indicates that
Frontiers in Immunology 06
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the monogenic forms of these diseases perturb the same diseases

networks as polygenic disease.

Beyond polygenic genetic structure:
Human autoimmune disease and the
omnigenic model

A few general points concerning polygenic genetic structure

should be considered. One objection that has been raised to

polygenic structure in complex human disease is that sporadic

cases are common. Sporadic refers to cases without a known

family history of disease. However, statistical genetic models

predict that sporadic cases of complex genetic disease will

commonly occur even in disease with a polygenic genetic

structure (217). Second, the bulk of polygenic risk alleles

reported to date in common autoimmune disease only have

small effects. In human SLE, as an example, only a handful of

common genetic risk factors (four that we know of) impact

disease relative risk from 2-10-fold (117). Applying knowledge

of population prevalence, the genetic factor with the largest effect

would change the absolute risk of SLE from approximately 0.1%

to 0.4% (117). This kind of polygenic genetic architecture is

present in many human phenotypes. This observation prompted

the proposal of the Omnigenic model of complex traits (218). In

this model, larger effect size variants (>1.1-fold increase in

relative risk) operate within core disease pathways. However,

thousands of loci with infinitesimally small effect size spanning

the entire genome change absolute genetic liability (218). In this
FIGURE 1

Monogenic and Polygenic human SLE risk gene networks overlap at hub genes. Light blue diamond – Monogenic human SLE genes; dark blue
hexagon – Polygenic human SLE genes; Yellow circles – overlapping genes. Downloadable/Interactive network diagram can be found at:
https://doi.org/10.18119/N9231T.
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model, the entire genome is ultimately involved in disease risk,

with each variation outside of the core disease pathway adding a

very tiny amount of residual risk. In simple terms, it seems

perhaps tautological to state that the whole genome is involved

in any given trait, even if only slightly changing the trait. It is

worth noting that predictions of this model appear to hold in

other complex human genetic traits, such as height (219).

As an aside, the omnigenic model provides a potential

explanation for why autoimmune disease genes have not been

eliminated via natural selection. If most of the hundreds of core

risk alleles are inherited independently (low correlation or

linkage disequilibrium) and they each have a small effect, then

selective pressure would not be expected to be strong in

individuals with polygenic autoimmune disease. By way of

analogy, being related to someone who wins the lottery does

not make winning the lottery more likely for you, unless you buy

more lottery tickets. On the other hand, many monogenic

disease genes represent either de novo mutations or recent

founder effects. Therefore, monogenic mutations have not had

a very long to be subject to natural selection. These observations

when combined with theoretical frameworks describing the

balance between host collateral damage from immune

responses and microbe clearance (51–53) may also explain the

retention of these alleles in the wider gene pool. That is, there are

several ways in which immune responses can be balanced to

avoid damage to host. Genetic variation that modulates an

immune response that is too weak or too strong for one

context, may, in another context or in another generation

better strike that balance.

If the omnigenic model is correct and thousands of risk loci

are involved in determination of common polygenic traits, then

sample sizes of > 1 000 000 affected individuals may be needed to

develop risk scores that capture enough variants to explain the

majority of variation in genetic risk (220). For most autoimmune

diseases, these samples exceed the total number of affected

individuals living on entire continents. If true, it would make
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systematically dissecting genetic network interaction with

environmental disease triggers so complicated as to be

potentially intractable. Our aim is to deconstruct disease

processes, in order to improve our ability to diagnose,

prognose, prevent and treat autoimmune diseases. Therefore,

we must reduce the complexity of the systems we aim to

deconstruct. In this way, we can build conceptual models of

autoimmune disease development and maintenance that we can

actually comprehend.

One approach is murine models. Such models may strike an

appropriate balance between over-simplification and a sufficient

degree of biological complexity such that core disease relevant

cellular and molecular networks are conserved. Thus, findings

can be expected to translate to humans. When proper controls

and careful attention to potential confounders is observed,

mouse models of disease have been very powerful in

advancing our understanding of autoimmune pathologies (59).

Even the lousiest models of
autoimmune disease would predict
success if considered in context

Having an intermediate model of sufficient biological

complexity is likely necessary for many types of causal

evidence that allow inference regarding mechanism in cellular

and molecular disease networks. In many cases this kind of

inference cannot be achieved for either ethical or technical

reasons in humans and are inadequately modeled in vitro.

Many therapies that are promising in vitro do not stand up to

testing in the more complex biological system that a whole

organism in vivo represents. One recent example of relevance to

autoimmune disease is that of hydroxychloroquine (a mainstay

of SLE and Rheumatoid Arthritis therapy (221)) in the treatment

of COVID-19. Indeed, hydroxychloroquine robustly inhibited

SARS-CoV-2 (and other coronaviruses) in vitro (222), but was
FIGURE 2

IL2RA is the link between Monogenic and Polygenic human type 1 diabetes risk gene networks; light orange parallelogram– human monogenic
autoimmune type 1 diabetes gene; dark orange octagon– human polygenic autoimmune type 1 diabetes gene; Yellow circles – overlapping
genes.Downloadable/Interactive network diagram can be found at: https://doi.org/10.18119/N94W34.
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shown to be ineffective in prevention of SARS-CoV-2 infection

and treatment of COVID-19 in randomized controlled trials in

humans (223–226). While it is a moot point now that the high-

quality human data exist, an intermediate in vivo model system

may have been able to predict and understand this therapeutic

failure and thereby reprioritized COVID-19 patients for more

suitable trials.

Several criticisms of mouse models of human autoimmune

pathologies specifically and human disease writ large (with the

use of SOD1-deficient mice in Amyotrophic Lateral Sclerosis

representing a high-profile model with several issues of

phenotypic non-correspondence) have been raised [notably

(55, 67, 227, 228)]. See section 5 for our attempt at a

comprehensive list of some key variables to consider in

modeling human autoimmune disease in mice.

One major criticism that has been raised for why mouse

models of human autoimmune disease are ‘lousy’ is failures in

translation from experimental autoimmune/al lergic

encephalomyelitis into successful therapy for multiple

sclerosis. However, we would submit that careful attention to

both the details of the murine and human pathology and careful

reexamination of models in light of the clinical, phenotypic,

cellular and molecular features of the human diseases we seek to

model would have predicted successful therapeutic targets even

in this ‘lousiest’ of autoimmune disease models.

Failed trials of TNF-alpha inhibitors as well as oral and IV

tolerance autoantigen-specific tolerance protocols that

succeeded in mice, but failed in MS patients are often cited.

Incidentally, TNF-alpha inhibition did not merely fail, but was

subsequently discovered to be a risk factor for incident

demyelination, just as it is a cause of drug-induced lupus. It is

worth noting that despite many high-profile therapeutic failures,

reassessment of successes, failures and refinement of models

have led to several successful novel therapeutic approaches for

MS treatment in the interim (68). Subsequently, phenomenally

successful trials of B cell-depleting monoclonal antibodies

directed against CD20 were performed in MS. In fact, B cells

are so important in this autoimmune disease, that B cell

depletion using anti-CD20 monoclonal antibodies is now the

mainstay of therapy. This is not necessarily a conclusion that

would have been reached by solely relying on data from the EAE

model (229–234), even though careful experimentation

ultimately revealed an important contributory role for B cells

once early studies demonstrated the efficacy of anti-CD20

therapies in human MS (235). Subsequent work by many

groups has demonstrated that antigen presenting B cells play a

central role in the pathogenesis of human MS (236). Building on

the principle of the oral tolerance studies in MS, re-enforcing

tolerance in formerly anergic B cells remains an active area of

investigation (237). More recent data has further advanced our

understanding of the role of B cells in MS, as prior Epstein-Barr

virus infection (but not other common latent viral infections)

was shown to be an independent risk factor for MS development
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(238), leading commenters to infer that “These findings provide

compelling data that implicate EBV as the trigger for the

development of MS” (239). These data led to pan-proteome

analysis of the auto-specificities of the pathognomonic

oligoclonal bands found in the CSF of MS patients.

Crossreactivity was shown between a human CNS autoantigen,

GlialCAM and the EB viral latency transcription factor EBNA-1

(240). Indeed, as a final attempt to prove etiopathogenesis of

EBV in MS – using a modified version of Koch’s postulates, the

authors of the latter paper immunized EAE mice and concluded

that “EBNA1 immunization aggravates EAE”. In doing so, they

have nominated yet another potential therapeutic approach for

MS that relies, in part, on the EAE model, the prevention of EB

virus infection. In retrospect, the story of the EAE model seems

to us more like the typical pattern of advances in science where

models are challenged by data and refined so that the model

predictions better fit the observed data. Indeed, it now appears

that the use of proper controls, challenging murine models with

ideas from human data and vice versa has an aggregate effect of

reducing the influence of potential confounders. In so doing this

approach would be expected to lead to a more accurate model

autoimmune etiopathogeneis than either approach would have

been able to do on its own (60). (many important potential

variables are detailed in section 5.)

Thus, despite oft being cited as a model of autoimmune

disease with high profile failures in translation, careful attention

to the human processes being modeled by the EAE model

continues to yield insight into MS pathology. In a similar

manner, we expect that careful attention to potential

confounders of lupus and T1D models, the use of multiple

models and iterative comparison to intermediate human disease

phenotypes would be expected to yield important insight into

these human autoimmune pathologies.
Gene networks for murine
autoimmune type 1 diabetes, lupus,
central and peripheral B cell
tolerance overlap

To better understand the relationship between human

autoimmune pathology and murine models of autoimmune

disease, we compared their respective gene networks. We have

focused on making our comparison in long-standing murine

disease models of two human autoimmune diseases that are

fairly-well characterized in terms of correspondence across

spontaneous disease models. For models of both diseases,

excel lent reviews of the convergent and divergent

immunopathogenic bases for disease development between

mice and humans have been written and we refer the

interested reader to read them: [murine lupus (60, 61, 241,

242): murine type 1 diabetes (243, 244)].
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https://doi.org/10.3389/fimmu.2022.953439
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Harley et al. 10.3389/fimmu.2022.953439
The prevailing model of autoimmune disease risk is that the

genetic networks regulating lymphocyte tolerance are core to

autoimmune disease and span multiple autoimmunities (56, 57,

245, 246). That is, human genetic risk alleles shared across

multiple autoimmune diseases perturb the normal function of

lymphocyte self-tolerance networks. To begin both to evaluate

this model more systematically and to more fully understand the

differences between the murine and human autoimmune disease

genetic risk networks, we reviewed the literature and collected

lists of putative causal genes in murine models of SLE and type 1

diabetes, as well as genes whose disruption lead to B cell central

or peripheral tolerance defects (247–450). Together, each of

these sets of genes comprise a molecular network and many of

the genes in each network overlap with those in the other

networks (Figure 3). Taken together, these data point towards

an important role of B cell central and peripheral tolerance

regulatory networks in murine models of type 1 diabetes

and SLE.
Risk gene networks for murine
autoimmune type 1 diabetes, lupus,
central and peripheral B cell
tolerance overlap with risk gene
networks for human SLE and
autoimmune type 1 diabetes

To understand how autoimmune disease gene networks

overlap, we merged the murine and human risk gene networks

for SLE and T1D in several ways. Our goal was to evaluate

whether the published studies support the prevailing model
Frontiers in Immunology 09
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– that the genes regulating tolerance induction and escape of

autoreactive B cells are central to the risk gene network of these

seropositive autoimmune diseases. First, we combined risk genes

from monogenic human SLE (Supplemental Table 1A),

polygenic human SLE (Supplemental Table 2A) and murine

Lupus genes (Supplemental Table 3) into a single network

(Figure 4). Second, we combined gene from monogenic

human T1D (Supplemental Table 1B), polygenic human T1D

(Supplemental Table 2B) and murine autoimmune diabetes

(Supplemental Table 3) genes into a single network (Figure 5).

Finally, we combined both of the disease-specific networks (from

Figures 4, 5) along with both B cell central (Supplemental

Table 3) and peripheral tolerance (Supplemental Table 3) gene

networks into a single network (Figure 6). Strikingly each of

these gene sets formed a distinct protein-protein interaction

network with greater overlap than expected by chance (Table 1).

Further, the human monogenic and polygenic and murine

genetic networks overlap 16-fold to 63-fold more than would

be expected by chance (Table 2). Likewise, these networks

overlap with one another or the overall B cell tolerance and

murine disease networks between 15-fold and 86-fold more

often than expected by chance (Table 3).

Overall, this analysis reveals a densely interconnected core

autoimmunity gene network centered around genes that regulate

B cell peripheral tolerance. This observation provides some

degree of support for the prevailing model in the field, that the

genes regulating tolerance induction and escape of autoreactive

B cells are central to the risk gene network of these seropositive

autoimmune diseases. Intermixed within this core are the

murine type 1 diabetes and lupus gene networks. While this

approach has utility in providing a high-level overview of

autoimmune disease risk regulatory networks, it does have
FIGURE 3

Murine autoimmune diabetes and lupus networks are densely connected to peripheral autoreactive B cell tolerance networks; dark green
triangle – murine lupus gene; light green rounded rectangle – murine peripheral B cell tolerance gene; Yellow circles – overlapping genes.
Downloadable/Interactive network diagram can be found at: https://doi.org/10.18119/N9161J.
frontiersin.org
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some drawbacks. In each particular network, there are several

putative causal genes that are not well connected to the central

network. Certainly, it is possible that these genes have yet to be

discovered function in the genesis of autoimmunity. However,

there are other potential explanations for lack of connection to

this central network. In some cases, these may represent

misattribution of causality. For example, while the L2G
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algorithm nominated PTTG1 as a putative causal gene for SLE,

we have previously shown that altered function of the

microRNA, MIR146A, likely better explains the observed

association with SLE at this locus (454). Alternately, these

genes may impact lupus function in a way that has not yet

been represented in the molecular networks of the STRING

database. For example, recent work has established DNASE1L3
FIGURE 4

Murine Lupus risk genes connect to Polygenic Human SLE risk genes at the periphery of the core network in a manner similar to the monogenic
risk SLE network; Light blue diamond – Monogenic human SLE gene; dark blue hexagon – Polygenic human SLE gene; dark green triangle
– murine lupus gene; yellow circles – Overlapping genes. Downloadable/Interactive network diagram can be found at: https://doi.org/10.18119/
N9WC8P.
FIGURE 5

Murine autoimmune diabetes risk genes connect to Polygenic Human T1D risk genes at the periphery of the core network in a manner similar
to the monogenic risk T1D network dark red inverted triangle – murine autoimmune type 1 diabetes gene; light orange parallelogram– human
monogenic autoimmune type 1 diabetes gene; dark orange octagon– human polygenic autoimmune type 1 diabetes gene. Downloadable/
Interactive network diagram can be found at: https://doi.org/10.18119/N9RP6S.
frontiersin.org
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as casual for SLE. First, non-synonymous coding changes in

DNASE1L3 explain the bulk of the genetic association with SLE

near the PXK locus (455). Second, germline mutations in this

gene have been described as a monogenic route to lupus (198,

456–458). Third, titers of autoantibodies against this enzyme

correlate with disease flare in patients with lupus nephritis (459).

Fourth, functional studies implicate the function of this secreted,

extracellular DNAse in digesting the nucleic acids present in

autoantigenic debris from dying cells (460–462). Thus, while the

role of DNASE1L3 in SLE risk is becoming abundantly clear, the
Frontiers in Immunology 11
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STRING database (451) has not yet codified this new

understanding. At the same time, there may be other

information missing from the gene network as we have

defined it. At this same locus, DNASE1L3-PXK, an additional

contribution to genetic association with SLE is seen (455). This

additional association is due to variation near PXK, a phox-

homology kinase implicated in B-cell receptor endocytosis (463).

There is evidence for a potential role of PXK in modulating B-

cell receptor signaling and generating autoreactivity. However,

the automated algorithmic approach that we used did not place
TABLE 1 Network characteristics.

Network #nodesa #edgesb degreec clusteringd exp. Edgese Pf

Monogenic SLE 54 169 6 0.65 33 1.0E-16

Polygenic SLE 127 497 8 0.44 107 1.0E-16

Monogenic T1D 8 12 3 0.64 3 2.8E-05

Polygenic T1D 70 140 4 0.37 22 1.0E-16

murine lupus 92 523 11 0.58 111 1.0E-16

murine T1D 20 31 3 0.58 3 1.0E-16

peripheral toleranceg 22 63 6 0.58 8 1.0E-16

central toleranceg 7 7 2 0.24 1 6.7E-04
frontier
Network characteristics for each string protein-protein interaction network reveals a highly connected disease network in each gene list.
a#nodes indicates the number of genes in the network. b#edges indicates the number of pairwise predicted protein-protein interactions according to the default settings in the string database
(http://www.string-db.org) (451). cDegree indicates average node degree. Per the string database manual: “The average node degree is a number of how many interactions (at the score
threshold) that a protein have on the average in the network”. dClustering indicates the average clustering coefficient. Per the string database manual: “The clustering coefficient is a measure
of how connected the nodes in the network are. Highly connected networks have high values”. eExp. Edges indicates “The expected number of edges gives how many edges is to be expected
if the nodes were to be selected at random.”. fP indicates the P value for enrichment of this protein-protein interaction network. “A small PPI enrichment p-value indicate that the nodes are
not random and that the observed number of edges is significant.” Note: the minimum enrichment p-value reported by string is 1E-16.gperipheral tolerance and central tolerance indicate
networks of genes implicated in peripheral and central B cell tolerance.
FIGURE 6

Murine autoimmune disease model genes center around the autoreactive B cell peripheral tolerance network in the middle of combined human
autoimmune disease polygenic risk networks. Light blue diamond – Monogenic human SLE gene; dark blue hexagon – Polygenic human SLE
gene; dark green triangle – murine lupus gene; light green rounded rectangle – murine peripheral B cell tolerance gene; light red rectangle
– murine central B cell tolerance gene; dark red inverted triangle – murine autoimmune type 1 diabetes gene; light orange
parallelogram– human monogenic autoimmune type 1 diabetes gene; dark orange octagon– human polygenic autoimmune type 1 diabetes
gene; yellow circles – Overlapping genes. Downloadable/Interactive network diagram can be found at: https://doi.org/10.18119/N9MW3G.
sin.org
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PXK within the polygenic SLE risk network. While this approach

provides a useful overview of the interrelationships between gene

networks, by its nature, it also provides an incomplete picture of

disease risk due to incomplete information.

On a more granular level, these analyses revealed

overlapping networks between monogenic and polygenic SLE.

This overlap was between complement, cytosolic nucleic acid

sensors, Ikaros and NF-kB pathways (Figure 1). In terms of

monogenic and polygenic autoimmune type 1 diabetes, not

surprisingly, there is limited overlap (Figure 2). However,

there is still more than expected by chance. This includes a

preponderance of key transcriptional regulators (STAT1, STAT3,

FOXP3, AIRE) that are central regulators of T lymphocyte

development in monogenic T1D. Close inspection of these

networks shows that they do not overlap at AIRE. This lack of

overlap highlights one of the drawbacks of the automated,

algorithmic approach to putative causal gene definition. A rare

variation in AIRE, rs74203920, was recently reported in a large

GWAS of human autoimmune type 1 diabetes (464). This non-
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synonymous variation results in an amino acid change that is

predicted to be deleterious. It has a minor allele frequency of

~2% in individuals with European continental ancestry in the

1000 Genomes project. Further, using Bayesian statistical

approaches, the authors report a posterior probability of

association > 99% (464). There are examples of non-

synonymous coding changes in GWAS genes whose biological

effects on disease risk may be through modulation of gene

expression (465). However, it seems most parsimonious to

conclude that AIRE is, in fact, the likely causal gene at this

T1D risk locus. That our approach using L2G did not identify

this particular variant and it therefore did not overlap with the

monogenic T1D risk network highlights one of the drawbacks of

this approach in terms of misattrubtion. It further suggests that

our overlaps are more likely to represent a lower bound on the

overlap between the true disease risk networks than an

upper bound.

Turning to the network that combnines murine lupus,

murine T1D and murine B cell tolerance gene networks, we
TABLE 3 Overlaps of disease networks supporting Figures 3 (Murine T1D, Lupus, Peripheral and Central tolerance) and Figure 6 (all 8 networks
combined).

Network Overlaps in Figure 3 Overlaps in Figure 6

Exp. Overlapsa Fold O-Rb Pc Exp. Overlapsa Fold O-Rb Pc

Monogenic SLE X X X 0.92 18 1.5E-17

Polygenic SLE X X X 2.17 15 1.5E-28

Monogenic T1D X X X 0.14 22 2.6E-04

Polygenic T1D X X X 1.19 16 4.3E-18

murine lupus 0.58 26 1.9E-17 1.57 16 1.9E-23

murine T1D 0.13 32 6.8E-06 0.34 26 1.6E-11

peripherald 0.14 86 1.5E-21 0.38 51 2.2E-31

centrald 0.04 45 8.2E-04 0.12 17 5.8E-03
frontier
Overlap of disease networks supporting Figures 3 (Murine T1D, Lupus, Peripheral and Central tolerance) and Figure 6 (all 8 networks combined). aExp. Overlaps indicate the number of
expected overlapping nodes. Assuming similar length lists were randomly selected from the genome (unassociated). bFold O-R indicates the fold over-representation compared to
expectation. cP indicates p-value for hypergeometric distribution assuming independence of the two networks. dperipheral and central indicate networks of genes implicated in peripheral
and central B cell tolerance. As a negative control, comparison was made to the L2G predicted causal genes in a large GWAS of osteoarthritis (452) and type 2 diabetes (453). In both cases,
overlap was substantially less than in the table above. A single putative causal gene out of 19 for osteoarthritis overlapped with the network in Figure 6. This corresponds to 3-fold
overrepresentation with P-value of 0.27. 17 putative causal gene out of 343 for type 2 diabetes overlapped with the network in Figure 6. This corresponds to 2.9-fold overrepresentation with
P-value of 9E-5. Of note, the overlapping genes were enriched for genes within apoptosis and cellular proliferation pathways. As these core cellular processes impact both the genesis of
autoimmune pathology and insulin resistance, this degree of overlap is perhaps not surprising.
OA network: https://version-11-5.string-db.org/cgi/network?networkId=bWV0Pd2gEYYx.
DM2 network: https://version-11-5.string-db.org/cgi/network?networkId=boNoFGYSyFUn.
TABLE 2 Disease Network Overlap.

Disease Exp. Overlapsa Fold O-Rb Pc

Human Polygenic: Monogenic Overlap SLE 0.35 26 6.8E-11

T1D 0.03 35 2.8E-02

Combined Human: Murine Overlap SLE 0.82 16 1.6E-12

T1D 0.08 63 1.2E-08
Overlap of disease networks supporting Figures 1, 2 (Human Polygenic: Monogenic Overlap) and Figures 4, 5 (Combined Human: Murine Overlap). aExp. Overlaps indicate the number of
expected overlapping nodes. Assuming similar length lists were randomly selected from the genome (unassociated). bFold O-R indicates the fold over-representation compared to
expectation. cP indicates p-value for hypergeometric distribution assuming independence of the two networks.
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also find substantial overlap. This overlap occurs within several

pathways: IL2 (IL2), BCR signaling (BLK, Lyn etc.), tolerance

response to nucleic acid (CD72, TLR7), tolerance to self-nucleic

acid and control of viral infection. These overlaps serve as

unifying pathways in these models of autoimmune pathology

(Figure 3). Overlap of murine and human lupus occurs at B-cell

signaling hubs involving BAFF, APRIL and B cell antigen

receptor signaling. Of note, despite its central importance in

SLE etiopathogenesis (117), TLR7 is absent from the human

disease networks, though its signaling intermediates remain.

Likewise, LYN is absent from the human disease networks

despite its identification as a likely causal gene for SLE in

GWAS follow-up studies. (Figure 4) Thus, our analysis likely

underestimates the true extent of overlap between these various

gene networks. Similar to Lupus, type 1 diabetes in mouse and

humans is unified by T-cell tolerance regulators (CTLA4, IL2RA,

CD226, AIRE, etc.) (Figure 5). Finally, peripheral B cell tolerance

is the most over-represented compared to no association when

looking at the unified network of all these states of pathologic

autoimmunity (Figure 6). The substantial overlap between these

different networks is consistent with a prominent role of

particular environmental drivers in specifying the target organ

focus of autoimmunity.

One question that arises is whether these associations

represent an increase over what would be expected by

chance. Indeed, overlap between the gene networks in type 2

diabetes (453) and osteoarthritis (452) are much less with these

non-autoimmune traits than any of the autoimmune pathology

networks (Table 3). Another question is how to address cell

type specificity of these networks. One might assume that these

gene networks only operate in concert within specific cell types.

PTPN22 may serve as a counterexample to this – a recent

review highlighted evidence for six independent mechanisms

of the PTPN22R620W variant each operating in different

cellular lineages (466). It may be that some autoimmune

disease risk alleles do act in a cell type and cellular context-

specific way. However, for many complex human traits, the

genetic structure predicted by the omnigenic model appears to

be the case. That is, hundreds to thousands of genetic variants

of (mostly) very small effect size act in aggregate to set a genetic

liability threshold. The central nodes in these disease gene

networks have the largest effect size and therefore likely a lower

statistical power requirement to demonstrate association.

Thus, like many pharmacotherapies (467), it may well be that

these core disease genes have multiple mechanisms through

which they modulate disease risk. Hence, they are centrally

located and have outsized effect sizes. Certainly, BLK, Lyn and

the BAFF family genes in these networks could be argued to

have effects selective to the B cell lineage. However, both BAFF

(468) and Lyn (469) have well described actions outside of B

cells. Likewise, BLK exhibits high expression in human

plasmacytoid dendritic cells (470, 471) and the most strongly

associated eQTL variants are within human fibroblasts. Both of
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these cell lineages are independent from B cells and have direct

relevance to SLE etiopathogenesis. A role for these three genes

acting to increase SLE risk within B cells is certainly more

parsimonious. Alternately, it has been argued that several of

the polygenic risk variants for human type 1 diabetes exhibit

opposite action in effector and regulatory T cells (472). That is,

several risk variants increase the likelihood of activation in

effector T cells and simultaneously increase the likelihood of

inhibition in regulatory T cells. Thus, even with specific cellular

mechanisms, the risk alleles of the strongest effect size may be

the most likely to have multiple mechanisms whereby they alter

disease risk. Cogent arguments can be made for the cellular

specificity of gene networks acting within a disease state.

However, much work remains to be done to convincingly

demonstrate cell-type specificity of genetic effects, over

against disease risk networks that span and exert their effects

within multiple cellular lineages.
Potential explanations for gaps
in translation

What are the explanations for challenges in translatability of

autoimmune disease mouse models?

We have discussed spontaneous, induced and humanized

murine autoimmune disease models above in general terms.

Here we focus on key potential differences that in our estimation

are likely to affect several spontaneous models of lupus, such as

those derived from the NZB/NZW F1 (BW) mice and the NOD

mouse model of type 1 diabetes.
Recombinant inbred mice/Polygenic
disease in Humans vs. Monogenic
disease in mice

The use of recombinant inbred mice more closely resembles

consanguinity that is seen more commonly the parents of

individuals with childhood onset autosomal recessive disease.

In this way, these murine models may offer more opportunities

to develop monogenic mutations and sub-strain differences can

profoundly alter physiology (473). One example sticks out in

particular. The most commonly used lab mouse strain, C57BL6/

J, developed a loss of function mutation in Nnt, the gene

encoding for the nicotinamide nucleotide transhydrogenase

(473). This mutant Nnt diverges from another commonly used

lab mouse strain C57BL6/NJ. Unfortunately, Nnt mutation

inadvertently serves as a model of familial glucocorticoid

deficiency, which has been described in mice and humans who

have mutant NNT (474). This could conceivably confound

interpretation of results obtained using models that have not

controlled for this mutation in lupus in particular, where

glucocorticoids are a mainstay of therapy. As another example,
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a body of literature describing functions previously attributed to

caspase-1 are in fact due caspase-11 deficiency due to

inadvertent gene-targeting leading to generation of caspase-1/

caspase-11 double knockout mice (475).
Genetic & evolutionary divergence of
both host and microbiota

Sixty-five million years of evolutionary history seems like a

long time. Certainly, it is long enough to develop changes in how

genes respond to the environment. As a stark example, Gout is a

disease of higher primates. It is one of the most common forms

of inflammatory arthritis and is estimated to affect 1 in 200

people worldwide. Gout occurs when uric acid levels are too high

and uric acid crystals precipitate out of the serum, driving acute

and chronic inflammation. Gout is thought to have arisen ~

twenty-two million years ago when one of a series of loss of

function mutations in uricase (which converts uric acid to the

much more water-soluble allantoin) and URAT1 and important

renal uric acid transporter. As this system non-redundantly

regulates blood pressure, it stands to reason that changes

across similarly complex immune networks could have also

developed differences in some critical regulatory genes. Indeed,

many immune phenotypes that diverge between mice and

humans have been described (476). Two select examples of

gene to phenotype non-correspondence include MyD88 and

STAT5B. MyD88 deficiency leads to early life susceptibility to

only pyogenic infections in humans whereas it leads to long

lasting susceptibility to a broad array of infections in mice (477).

STAT5B deficiency leads to different phenotypes in terms of

Treg generation, IL2R signaling and in vivo T cell effector

function in mice as compared with humans (478).
Environmental enrichment

While humans are housed in varied circumstances, housing

of mice is somewhat uniform. Environmental enrichment (EE)

makes mouse housing more “fun” and leads to reductions in a

variety of depressive/anxious behaviors and indicators of stress

response in mice (479). At the same time, there is evidence that

EE substantively impacts the antitumor response of NK cells and

immunotherapy treated anti-cancer T cells (480). Thus,

differences in the monotony and variety of environment may

be a factor that alters immune system responses and could

impact autoimmune disease pathways.
Thermoneutral housing

When given the option, mice, like humans tend to inhabit

places with comfortable ambient temperature or change their
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environment to maintain their own core temperature in the

thermoneutral zone. Humans do this by wearing clothes,

whereas mice tend to fill their burrows with bedding and

insulation. Observation of mice in the wild indicates that

during their l ight cyc le , mice tend to maintain a

thermoneutral zone of 30-32 degrees Celsius. For historical

reasons and for the comfort of clothed humans, most mouse

facilities house mice at room temperature 19-25 degrees

Celsius. Thus, mice are subjected to chronic “cold stress”

which carries with it attendant increased sympathetic

nervous system/beta-adrenergic tone and changes in whole

organism metabolism and physiology (481). Removal of this

cold stress through thermoneutral housing has been

demonstrated to impact several immune phenotypes,

including notably, induction of oral tolerance (482–485).

Further there is growing evidence that the parasympathetic

nervous system impacts autoimmune disease. For example,

vagal nerve (parasympathetic) (486) stimulation has led to

improvement of systemic inflammatory parameters in short-

term trials (487, 488).
Circadian rhythms

Mice are typically handled in the vivarium during daylight

hours, a period during which they commonly sleep in the wild.

Several autoimmune diseases are associated with sleep

disturbance (489) due to incompletely clear mechanisms.

Indeed, less than 7 hours of sleep is associated with the onset

of human SLE in longitudinal cohort studies (490). Further,

several reports indicate that systematically sleep deprived NZB/

NZWF (1) mice develop increased lupus activity (491, 492).

Thus, differences in circadian cycles may be an additional factor

to consider when modeling human autoimmune pathologies

in mice.
Microbiota/pet store mice

Our immune system gene networks have subject to

selective pressure for the sixty-five million years since

divergence from mice. At the same time, the mutualistic

relationship with our microbiota has been under pressure

from our immune system and vice versa. This may be another

important meta-genomic divergence that leads to non-

correspondence of murine models of human disease (59).

Following our reductionist tendencies, the character and

make up of mouse microbiota is being intensively defined

and simplified as specific-pathogen-free facilities are

increasingly used (493, 494). Normalizing the microbiome

to one that more closely resembles wild mice leads to several

substantial changes in immune response (495–498). Thus,

colonizat ion with comparatively non-immunogenic
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microbiota may be yet another factor that needs to be

accounted for when modeling human autoimmune disease

in mice.
Humans (usually) already have disease:
Early disease therapy vs. established
disease therapy

Most therapies given to people with autoimmune disorders

are usually administered to counter a matured, often chronic

disease. While prevention trials are underway in several human

autoimmune diseases (221), many therapies employed in mouse

models are preventive in nature. That is, intervention occurs

prior to the onset of disease.
Mice are not free to eat what they want
(but they can usually eat as much
as they want)

Many lab rodent diets contain substantial proportions of

alfalfa meal (499, 500). Alfalfa sprout consumption was long

ago associated with incident lupus-like disease in higher

primates and attributed to the presence of canavanine, a

non-canonica l arg in ine-re la ted amino ac id (501) .

Subsequent studies have also found epidemiological

evidence of association with lupus (502), to the point that a

commonly used Lupus pat i en t educat ion webs i te

recommends avoidance of alfalfa sprouts (503). Curiously,

anti-cyclic citrullinated peptide antibodies (against peptides

with the non-canonical arginine related amino acid citrulline)

are commonly seen in individuals with rheumatoid arthritis

as well as those with clinical features of both SLE and RA

(504). Recent work has also implicated peptide processing

that leads to hybrid-insulin peptide formation, generating a

neoepitope as etiologic in type 1 Diabetes (505). Protein

dietary and metabolic changes could theoretically alter the

generation of neoepitopes in alfalfa fed mice and more

broadly appear to have an important role in the genesis of

several autoimmune pathologies.
Humans are free

Established disease in humans almost always means

confounders – behav ior , medicat ions , adherence ,

understanding, communication, health literacy, numerical

literacy, risk perception and risk calculus [COVID-19

pandemic as a global example (506)], to name a few. There is

a situation when established disease in humans tends to go along

with fewer confounders – early life. However, ethical and

practical issues usually prevent trials in children for diseases
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that also develop in adults. Maybe it isn’t that mice are simple,

but that humans are just too complicated?
Mice are not free and cannot
access sunlight

Most research animal facilities, have strict policies against

taking mice out of the viviarium for a walk in the sun. This likely

lowers the risk for the skin manifestations of lupus, which are

importantly mediated by UV. While the artificial environment

of the vivarium can be addressed artificially with transient UV

exposure (507), vitamin D is also an independent protective

factor for lupus flares and the development of several

autoimmune disease (508–511).
Mice have fur

The absence of extensive hair follicles, dermal and epidermal

layers that are twice as thick and the absence of a specialized

muscle layer (Panniculus carnosus) all distinguish human from

murine skin (512–514). If histological differences do not pose a

sufficient challenge in modeling human skin pathologies in mice,

it has been observed that only ~30% of the top skin-expressed

genes overlap between mouse and human skin (515). Taken

together, these differences pose several problems in modeling

SLE, as autoimmune response in the skin is the first disease

manifestation in many affected humans.
Mice are not naturally susceptible to
infection by EBV

In addition to implication in MS (discussed above), EBV

infection in humans is associated with SLE. There are

mechanistic links implicating molecular mimicry by EBNA-1

(516) and substantial enrichment of EBNA-2, the latency

transcription factor, at GWAS loci for SLE and other

autoimmune diseases (516). There are also examples of allele

specific binding of EB viral transcription factors to causal risk

alleles. Howmight this confound translatability of murine model

data? The closest gammaherpes virus to EBV that infects mice is

murine gamma-herpesvirus 68. While murine gamma-

herpesvirus 68 does infect mice, it lacks several features of

EBV (517). If one of those divergent features omits a critical

step in the EBV-dependent development of autoimmune

disease, then this divergence would impact our ability to

model autoimmune disease development in a way that

parallels what is suspected to occur in humans.

In this section we point out some differences to consider

when interpreting murine model data in light of human

autoimmune pathology. There are several features of humans
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that make modeling an inherently error-prone process. These

complicating features are in addition to the potential

intractability of understanding gene X environment

interactions, if the omnigenic model proves true. Despite these

drawbacks, murine models of autoimmune diseases have

advanced our understanding of the gene networks that

regulate autoimmune pathologies. At the same time, efforts at

translation require both careful attention to potential

confounders and continual reexamination of our models in

light of the clinical, phenotypic, cellular and molecular features

of the human diseases we seek to model.
Implications and a potential path
towards translation

Simply put, the need for improved understanding and

more diverse and less toxic therapeutic options for SLE and

Type 1 diabetes is dire. The discrepant severity of SLE

outcomes between populations simply cannot be accepted in

a just society. To the extent that our lack of understanding

contributes to this discrepancy, it needs to be corrected. In a

similar manner, Type 1 diabetes disproportionately afflicts

some of the most vulnerable members of our society with a

burden of chronic disease and a concomitant burden of co-

morbidity and mortality. Despite life-saving advances in

therapy in the prior decades, the incidence of this disease is

rising. So, we must better understand its genesis in order to

more effectively intervene.

We need to understand disease mechanisms and define

causal genetic immunophenotypes in humans. For this

understanding to be certain regarding causal relationships,

parallel understanding of mechanism in model systems is

required for effective trial design. Mice have proven to be

excellent sacrificial companions on our collective journey of

disease deconstruction for both SLE and T1D. They have

facilitated perturbations of genes and environmental triggers,

allowing assessment of the impacts on murine intermediate

immune cellular and molecular phenotypes and correlates of

pathology. It continues to be prudent to advance therapies

that can prove efficacy in these model systems along the path

toward clinical application. However, careful attention to the

details of both the model system and the disease processes

being modeled is necessary to fully evaluate both therapeutic

candidate successes and failures. Nearly 90% of trialed

pharmaco-therapeutic candidates do not advance to the

FDA approval (518). These rates are better for biologics

than for small molecules at each stage of drug development,

possibly due to the more specifically targeted nature of

biologic therapies versus small molecules (519, 520). This

failure is despite the best efforts of many who are employed by

pharmaceutical companies. Our ability to fully understand
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these incredibly complex biological systems remains

incomplete. Thus, it is perhaps not surprising that there

have been several high-profi le fa i lures to develop

autoimmune disease therapy.

How best to evaluate therapeutic leads for autoimmune

diseases? Our proposed approach follows. Cellular/molecular

phenotypes and pathological correlates of disease would need

to be ameliorated by candidate therapeutic leads in murine

systems to a reasonable degree of certainty in terms of

causality. At the same time parallel approaches could be

validated in human in vitro (cell lines), ex vivo (primary

cells) or in vivo (hu-mice) reductionist model systems and

shown to return the cellular/molecular phenotypes and

pathologic correlates move to a healthier status with any

therapeutic lead. Therapies that pass this bar could be trialed

in first in human trials after primate evaluation or if

repurposing (if already FDA approved), moved directly to

phase 3 trials. Human trials based on the cellular, molecular

and pathologic frameworks derived from model systems would

need to include assessment of correlates of the postulated

mechanism. Additionally, evaluation of any competing

mechanisms would assist post-hoc evaluation of whether a

given trial represented a true trial of therapy. Indeed, two

recent (the first two since the 1950s) FDA-approved therapies

for SLE, belimumab (anti-BAFF) and anifrolumab (anti-

IFNAR1), both took approaches similar to the approach that

we lay out. Following identification of antigen-presentation by

B cells (521–528) as key in the genesis of murine autoimmune

type 1 diabetes there is now a focus on B cell tolerance

pa thways in human T1D (41 , 529–533) . Fur ther

characterization of the role of B cell tolerance (534) and

efforts to manipulate pathogenic autoantigen-reactive B cells

in type 1 diabetes promise (530) to bring therapeutic successes

in this disease, where T cells have long been the subject of focus.

Our analysis highlights a potential role for autoreactive B cell

tolerance in the development of multiple autoimmune

pathologies. In doing so, it adds to a growing body of work

that supports viewing seropositive autoimmunity as an

endophenotype of multiple autoimmune diseases (535–541).

As our efforts to more broadly understand autoimmune disease

polygenic genetic risk network impacts on B cell function

advance, we anticipate that murine disease models will

cont inue to be cr i t i ca l ly important to fur ther ing

understanding of autoimmune diseases and advancing the

goal of improved outcomes for patients.
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SUPPLEMENTARY TABLE 1A

Monogenic Routes to Human Lupus –Gene(s) refers to the gene or genes

that when mutated has been reported to lead to lupus or a lupus-like

phenotype. Gene name refers to the HGNC (HUGO Gene Nomenclature
Committee [https://www.genenames.org/]) official full name for that

gene. Locus refers to chromosome and cytoband for that gene. Protein
refers to the common protein name for a particular gene. Inheritance

indicates the mode of inheritance (if reported) according to the
abbreviations at the end of the table. Pathway refers to the reported

pathway disrupted by the mutation. Phenotype refers to the phenotype

observed, whether part of another defined genetic syndrome, such as
Noonan syndrome or whether part of bona fide SLE or another lupus-like

phenotype. Reference refers to numbered reference in the bibliography
of this publication. PMID or link refers to the pubmed.gov identifier (PMID)

for the publication or publications establishing the gene as a monogenic
route to lupus or a review of several publications.
SUPPLEMENTARY TABLE 1B

Monogenic Routes to Human autoimmune Type 1 Diabetes – Gene(s)
refers to the gene or genes that when mutated has been reported to lead

to lupus or a lupus-like phenotype. Gene name refers to the HGNC
(HUGO Gene Nomenclature Committee [https://www.genenames.org/])

official full name for that gene. Locus refers to chromosome and
cytoband for that gene. Protein refers to the common protein name for

a particular gene. Inheritance indicates the mode of inheritance (if

reported) according to the abbreviations at the end of the table.
Pathway refers to the reported pathway disrupted by the mutation.

Phenotype refers to the phenotype observed according to online
mendelian mutation in man (OMIM) [https://omim.org/]. Reference

refers to numbered reference in the bibliography of this publication.
PMID or link refers to the pubmed.gov identifier (PMID) for the

publication or publications establishing the gene as a monogenic route

to type 1 diabetes or a review of several publications.
SUPPLEMENTARY TABLE 2A

Human SLE Polygenic risk loci from GWAS catalog and putative causal
gene(s) as identified by OpenTargetsGenetics L2G pipeline – Variant &

Risk allele: the genetic variant with smallest reported P-value for

association with SLE by GWAS and the corresponding risk allele as
reported by the EBI/NHGRI GWAS catalog [https://www.ebi.ac.uk/

gwas/]. P-value: the p-value reported for that variant. P-value
annotation: commentary on the P-value reported for that variant as

reported in the EBI GWAS catalog (i.e. association in a specific
population, conditional logistic regression based on covariates, etc.)

RAF – risk allele frequency, if reported in the EBI GWAS catalog. OR
– reported odds ratio for the risk allele as reported in the EBI GWAS

catalog. Beta – effect size or natural logarithm of the odds ratio. CI – 95%

confidence interval of the estimated odds ratio (or beta where reported).
Mapped gene – contiguous or adjacent gene mapped to the location of

the lead genetic variant. Reported Trait – trait for the GWAS that reported
the lead marker from the EBI GWAS catalog. Only “Systemic lupus

erythematosus” is included in this table over against, i.e. “lupus
nephritis”. Trait(s) – trait or subphenotype. Only “systemic lupus

erythematosus” is included in this table over against, i.e. “neonatal

lupus”. Background trait – indicator of background trait (i.e. in the case
of lupus nephritis in a cohort of SLE patients, SLE would represent the
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background trait), if present. Study accession – GWAS catalog study
identifier. PubMed ID – pubmed ID of the study reporting association.

First Author (First author of the study in question). Location
– chromosome:position of the lead variant on human genome build 38

(hg38). P – P value converted from format in EBI GWAS catalog to
scientific notation. Chromosome – chromosome of lead variant.

Position (hg38) position in base pairs of the variant of the lead variant
on human genome build 38 (hg38). Region – numerical value of this

GWAS region as associated with SLE. Putative Causal gene as predicted by

open targets genetics L2G algorithm. Opentargets – link to opentargets
genetics prediction and evidence supporting this prediction for that

region. “NR” or “‘-” indicates value not reported in the EBI GWAS catalog.

SUPPLEMENTARY TABLE 2B

Human T1D Polygenic risk variants from GWAS catalog and putative

causal gene(s) as identified by OpenTargetsGenetics L2G pipeline

– columns are identical to Supplementary Table 2A, except that they
apply to type 1 diabetes and not Systemic lupus erythematosus.

SUPPLEMENTARY TABLE 3

Genes involved in lupus, type 1 diabetes, peripheral and central B cell
tolerance from mouse models – Murine locus – genetic locus, gene

name or common protein name of the gene. Gene location – murine

chromosome and cytoband of the gene in question. GL Murine – gene
location on chromosome in centimorgans. Human orthologue – where
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identifiable, the human orthlogue to the murine gene in question. Gene
location (human) chromosome and cytoband of that human gene. Gene

name –HGNC gene name of the gene where applicable. (HGNC =HUGO
Gene Nomenclature Committee [https://www.genenames.org/]). Protein

– abbreviation or common name for the protein encoded by the gene.
Pathway – pathway implicated in the function of this gene in the

corresponding class. Model – murine model where gene was
implicated. Phenotype – phenotype resulting from gene alteration.

Class – murine disease/model state implicated: either lupus, T1D,

peripheral tolerance, central tolerance or some combination.
PMID – PubMed ID of the publications supporting the link of the gene

with a particular class.

SUPPLEMENTARY TABLE 4

hyperlinks to Networks. This table consists of references to networks in

this paper along with links to permanent versions of the networks and

analyses that were used to develop the conclusions of this paper. Disease
network – disease network as referred to in this paper. Color – color

encoding of the disease network in question in –. Shape – shape
encoding of the disease network in question in –. URL (NDEX)

– universal resource locator for network @ http://www.ndexbio.org
URL(string-db.org) – universal resource locator for network @ https://

www.string-db.org/URL (Enrichr) – universal resource locator for

network @ Enrichr pathway and geneset enrichment analysis: https://
maayanlab.cloud/Enrichr/.
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The immunological events leading to type 1 diabetes (T1D) are complex and

heterogeneous, underscoring the necessity to study rare cases to improve our

understanding. Here, we report the case of a 16-year-old patient who showed

glycosuria during a regular checkup. Upon further evaluation, stage 2 T1D,

autoimmune thrombocytopenic purpura (AITP), and common variable

immunodeficiency (CVID) were diagnosed. The patient underwent low carb

diet, losing > 8 kg, and was placed on Ig replacement therapy. Anti-CD20

monoclonal antibody (Rituximab, RTX) was administered 2 years after diagnosis

to treat peripheral polyneuropathy, whereas an atypical mycobacteriosis
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manifested 4 years after diagnosis and was managed with prolonged antibiotic

treatment. In the fifth year of monitoring, the patient progressed to insulin

dependency despite ZnT8A autoantibody resolution and IA-2A and GADA

autoantibody decline. The patient had low T1D genetic risk score (GRS =

0.22817) and absence of human leukocyte antigen (HLA) DR3/DR4-DQ8.

Genetic analysis identified the monoallelic mutation H159Y in TNFRSF13C, a

gene encoding B-cell activating factor receptor (BAFFR). Significant reduced

blood B-cell numbers and BAFFR levels were observed in line with a

dysregulation in BAFF–BAFFR signaling. The elevated frequency of PD-1+

dysfunctional Tfh cells composed predominantly by Th1 phenotype was

observed at disease onset and during follow-up. This case report describes a

patient progressing to T1D on a BAFFR-mediated immunodysregulatory

background, suggesting a role of BAFF–BAFFR signaling in islet-specific

tolerance and T1D progression.
KEYWORDS

type 1 diabetes (T1D), common variable immunodeficiency (CVID), BAFFR mutation,
islet autoimmunity, circulating T follicular helper cells (cTfh)
Introduction

Type 1 diabetes (T1D) is a disease of multifactorial origin

caused by the autoimmune destruction of insulin-producing

pancreatic b cells. Several immune players have been identified

as contributors to the disease immunopathogenesis, involving

both the innate and adaptive arms of the immune system (1–3).

T cells seem to play a dominant role during the disease

pathogenesis and are directly involved in the pancreatic b-cell
killing. The possible role of B cells and autoantibodies (AAbs) in

T1D remains elusive, which are thought to act mainly as

antigen-presenting cells. Islet-specific AAbs—such as glutamic

acid decarboxylase 65 (GAD65), insulin, the tyrosine

phosphatase–like autoantigen IA-2, or the ZnT8—are the most

reliable biomarkers for disease diagnosis and prediction (4, 5).

Today, T1D patients can be subdivided into three stages based
ne thrombocytopenic

cTfh, Circulating T

egulatory cell; cTreg,

le immunodeficiency;

w cytometry; FMO,

cose; FU, Follow-up,

S, Genetic risk score;
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on the presence of islet-specific AAbs and impaired glucose

tolerance: stage 1 T1D, with individuals positive for at least two

islet-specific AAbs and no metabolic dysregulation; stage 2 T1D,

with individuals who developed impaired glucose tolerance; and

stage 3 T1D, with individuals with multiple AAb-positive and

fasting hyperglycemia (clinical diabetes) (6, 7)

A poorly defined interaction between genetic and

environmental factors underlies T1D pathogenesis. HLA

accounts for the majority of T1D genetic risk, whereas single-

nucleotide polymorphisms (SNPs) in non-HLA genes, such as

INS, PTPN22, IL2RA, IFIH1, and CTLA4, are considered

additional contributing genetic factors (8, 9). Recently, several

T1D genetic risk scores (GRSs) have been developed based on

HLA and non-HLA T1D-risk genes (30-97 SNPs). These scores

can discriminate T1D from type 2 diabetes (T2D), monogenic

diabetes from T1D, and monogenic autoimmunity from early

onset T1D associated with poly-autoimmunity (10, 11).

Common variable immunodeficiency (CVID) is a

heterogenous disease classified as predominantly antibody

deficiency (12), with a broad variety of clinical spectrum,

characterized by low levels of immunoglobulins (Ig) and failure

to produce antigen-specific antibodies with a normal or low levels

of B cells and different involvement of cellular immunity. Reduced

B-cell counts, isotype-switched B cells (13, 14) and plasmablasts

(15) have been described in individuals affected by CVID. In

addition, several T-cell defects have been described that often

account for the failed B-cell helper support occurring in germinal

centers (GCs) (16–19). Patients with CVID often present

autoimmune manifestations, mainly autoimmune cytopenia and

inflammatory bowel disease (20). T1D in CVID has been
frontiersin.org
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described in a handful of reports, but the underlying mechanism

and genetic causes remain unknown (21). In this study, we report

a patient who at 16 years of age was diagnosed with stage 2 T1D

and CVID. Genetic analyses identified a monoallelic mutation in

the B-cell activating factor receptor (BAFFR). T1D GRS analysis

showed a reduced risk for T1D, suggesting that the identified

BAFFR mutation together with other factors, genetic, and

environmental determined the progression to T1D.
Case description

A healthy 16-year-old man with a Caucasian ethnic

background underwent a medical visit for a pre-participation

sport evaluation. As part of the checkup, urinalysis was

performed, resulting positive for glycosuria (99 mg/dl) but

negative for ketones. Biochemical analysis revealed the

presence of prediabetes (FPG 120 mg/dl, HbA1c 42 mmol/

mol) associated with mild thrombocytopenia (89,000/µl) and

microcytemia (MCV 78 fl) that was treated with iron

supplementation for 1.5 months. Of note, glycosuria (252 mg/

dl), not further addressed, and a platelet count at the lower limit

of normal (166,000/µl) were present at the age of 12 years,

according to his medical records. Stage 2 T1D was diagnosed by

the presence of three islet AAbs (IA-2, GADA, and ZnT8A),

dysglycemia (FPG 101 mg/dl, HbA1c 40 mmol/mol), glucose

intolerance (FPG 309 mg/dl at 2-h 75-g Oral Glucose Tolerance

Test (OGTT)), and a partially impaired insulin secretion (fasting

insulin and C-peptide: 15.45 mU/L and 1.85 ng/ml; 2-h 75-g

Oral Glucose Tolerance Test insulin and C-peptide: 47.52 mU/L

and 3.46 ng/ml). Family history included autoimmune

Hashimoto’s thyroiditis (treated with levothyroxine) (father),

anti-thyroid peroxidase antibodies (younger brother), and

T2DM (maternal grandmother). No signs of celiac disease,

atrophic gastritis, or autoimmune thyroid disease were found

in the patient. A low-carb diet was recommended with a

consequent decline in weight (> 8 kg in a 3-month period)

and blood glucose normalization. Concomitant to stage 2 T1D,

immune thrombocytopenia (ITP) (PLT 47,000/µl, anti-PLT

antibodies positive), and hypogammaglobulinemia (IgG: 323

mg/dl; IgM: 21 mg/dl; IgA: 48 mg/dl) were diagnosed (22).

Bone marrow biopsy excluded any lymphoproliferative diseases

confirming the ITP diagnosis. Microbiological analysis and EBV

serology were negative, except for low copies of HHV6 and

Parvovirus B19 in the bone marrow. Two months later, the

patient was hospitalized for severe immune thrombocytopenia

(platelets: 20,000/µl), which was treated with high-dose

intravenous immunoglobulin (IVIg) with a good response.

During hospitalization, hypogammaglobulinemia was

confirmed (IgG: 344 mg/dl; IgM: 33.10 mg/dl; IgA: 6.92 mg/

dl). Immunological investigations showed mild lymphopenia

with an increase in memory T-cell subsets and alteration in B-

cell maturation, with low memory B-cell frequencies, absent
Frontiers in Immunology 03
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switched memory B cells, and low/absent antigen-specific T-cell

responses. In the same year, the patient had experienced

recurrent tonsillitis, but his past medical history was negative

for severe or recurrent infections, with the exception of

laryngospasm episodes in pre-scholar age. Consequently, after

excluding other secondary causes and considering the

persistence of hypogammaglobulinemia, a clinical diagnosis of

CVID was made and he started IVIg replacement therapy.

During a 5-year follow-up, he did not experience any ITP

relapses and his platelet count remained stable between 100,000

and 150,000/µl.

Two years after CVID and T1D stage 2 diagnosis, the patient

was admitted to the hospital for asymmetric axonal sensitive

polyneuropathy, probably triggered by CMV infection, which

was managed with high-dose IVIg, RTX, Pregabalin, and

Duloxetin. Steroids were not considered due to his

comorbidities (pre-clinical diabetes and hypertension).

Neurological improvement occurred with a mild persistence of

sensitive alterations.

Two years later, an atypical mycobacterial pulmonary

infection associated with generalized lymphadenopathy and

worsening splenomegaly was discovered and treated with long-

time pluri-antibiotic therapy.

The patient remained insulin free for 4 years after the initial

prediabetes diagnosis when the dysglycemia evolved into stage 3

T1D (at 21 years of age) marking the start of insulin therapy.

Despite receiving three doses of the anti–SARS-CoV-2

vaccine (the last dose in December 2021) and showing a good

humoral and cellular response (23), the patient was infected by

SARS-CoV-2 virus in April 2022 and experienced a

paucisymptomatic clinical course without the necessity of

additional therapies and viral clearance in 15 days. Currently,

the patient is on subcutaneous Ig replacement therapy (20 gr/28

days) and insulin Glargine 20 UI/day.
Timeline

The complete timeline from the time of diagnosis (07/2016)

to now is shown in Figure 1.
Genetic assessment

The index patient underwent genetic screening by whole

exome sequencing (WES). A monoallelic mutation in BAFFR

(H159Y) was identified and confirmed by Sanger sequencing.

The mother carried the wild-type allele, whereas the father

carried the same mutation. Additionally, T1D GRS was

calculated by typing 30 common HLA and non-HLA genetic

variants associated with T1D, as previously described (10). The

index patient did not have a T1D-risk HLA (X/X for DR3/DR4-

DQ8) and his T1D GRS score was 0.22817 (Figure 2A).
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Moreover, the monoallelic mutation in BAFFR was associated

with reduced gMFI BAFFR expression on the B cell, Tfh, and T

regulatory cell (Treg) surface as compared with HC. BAFFR

decrease was more pronounced in B cells (MFI reduction 82.1%)

than in T cells (reduction 15.4%, 18.9%, and 18.5% in Tfh, Treg,

and Tfr, respectively) (Figure 2B). Similar to the index patient,

the father expressed reduced levels of BAFFR on the surface of

his circulating B cells (Figure S1).
Immunological assessment

The diagnosis of CVID was confirmed by the patient’s

immunological profile. The patient showed mild lymphopenia
Frontiers in Immunology 04
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with a global decrease and altered distribution of the B- and T-

cell compartment already at disease onset and during follow-up

as compared with age- and gender-matched healthy donors

(HC) (Table 1).

By assessing the expression of CXCR5 and FoxP3 among

CD3+CD4+ cells, the frequency of Circulating T follicular helper

cell (cTfh) (CXCR5+FoxP3-), Circulating T follicular regulatory

cell (cTfr) (CXCR5+FoxP3+), and cTreg (CXCR5
-FoxP3+) cells was

determined. While cTfr cell frequencies in the patient were within

the normal range, cTreg cell frequencies were within the lower

range at first but returned to average normal values in subsequent

FUs (CVID cTfr, 1-FU = 3.13%; 2-FU = 3.76%; 3-FU = 4.24%; 4-

FU = 2.66%; 5-FU = 2.44%; 6-FU = 0.63% vs. HC median, IQR =

1.62, 0.97–2.18, n = 80) (CVID cTreg, 1-FU = 2.67%; 2-FU =
A

B

FIGURE 1

Timeline of clinical events, therapeutic interventions, and diagnostic procedures. (A) Summary of major clinical manifestations and therapeutic
interventions. IVIG: intravenous immunoglobulins; SCIG: subcutaneous immunoglobulins; RTX: Rituximab. At each follow-up, an extensive
immune cell phenotyping was conducted. (B) Timeline of fasting blood glucose (FBG), 2-h blood glucose (BG2h), fasting C-peptide (CPEP), and
2-h C-peptide (CPEP2h), HOMA index, fasting insulin (FI) and 2-h insulin (I2h), glycohemoglobin (HbA1c), and platelet count (PLT) from April
2016 to August 2021.
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2.43%; 3-FU = 5.22%; 4-FU = 4.26%; 5-FU = 3.39%; 6-FU = 3.46%

vs. HC median, IQR = 4.4, 3.12–5.68) (Figures 2C, S2A, Table 1).

Treg cells (CD25
+CD127-/loFoxP3+) and FoxP3 levels (gMFI) in

the proband were reduced at disease (Figures 2G–I).

cTfh cells, on the other hand, were elevated at the onset but

declined in year 5 of FU (Table 1). Further analyses on cTfh cell

subset distribution and activation status identified a remarkable
Frontiers in Immunology 05
142
shift toward Tfh1 (CXCR3+CCR6-) cells at the expense of the

Tfh2 and Tfh17 subsets (CXCR3+CCR6- and CXCR3-CCR6+,

respectively) (Figure 2D) that was maintained throughout the 5-

year FU (Figure S2B, Table 1). Moreover, the frequency of PD-1+

cTfh cells was substantially higher and remained elevated over

time in comparison with HC (median, IQR = 21.30, 16.40–

25.30), whereas ICOS+ cTfh cell frequency remained higher
A B

D

E F

G

I

H

C

FIGURE 2

Genetic and immunological characteristics of a patient with CVID and stage 2 T1D. (A) Genetic testing identified low T1D GRS (0.22817, HLA: X/
X), and H159Y mutation in BAFFR inherited in a patrilineal fashion. The father was diagnosed with autoimmune thyroiditis, and the brother was
positive for anti-TPO autoantibody production. (B) Representative gating strategy to evaluate BAFFR distribution on B cells, Tfh, and Treg. White,
dark, and light gray slopes for control, HC, and CVID013, respectively. (C) FoxP3 and CXCR5 staining on CD3+CD4+ lymphocytes identifies Tfh
(CXCR5+FoxP3-), Tfr (CXCR5+FoxP3+), and Treg (CXCR5-FoxP3+) cells, and (D) CXCR3 and CCR6 staining on CD4+CXCR5+CD45RA-. The
following subsets were identified: cTfh1 (CXCR3+CCR6-), cTfh2 (CXCR3-CCR6-), and cTfh17 (CXCR3-CCR6+). (E) PD-1+ and ICOS+ expressing
cells among cTfh are increased over time compared to the HC group (PD-1+ median, IQR = 21.3%, 16.4–25.3, n = 65; ICOS+ median, IQR =
1.45, 0.91–2.32, n = 65). Solid dots and squares represent the index patient and the proband father, respectively. (F) CXCL13 was evaluated in
plasma by ELISA assay. Stable higher levels of this chemoattractant were detected over time in CVID patient when compared with the HC
(median, IQR = 47.68 pg/ml, 29.52–68.24; n = 65), represented by the continuous line within the light gray area. (G, H) Treg gating strategy
based on CD25 and CD127 expression, and FoxP3 expressing cells among CD25+CD127- Treg. (I) CD25

+CD127- Treg were reduced in the index
patient at the first follow-up (HC mean ± SD = 3.42% ± 0.51) and expressed lower levels of FoxP3 (mean HC FoxP3 ± SD = 88.7% ± 3.3; mean
HC FoxP3 MFI ± SD = 1080 ± 254.2).
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since disease onset (~4 times higher than the control, 6.15% vs.

HC median, IQR = 1.45%, 0.91–2.32) (Figure 2E, Table 1).

Additionally, higher levels of plasma CXCL13, a GC blood

biomarker, were observed during the 5-year FU (Table 1,

Figure 2F). The father had normal frequencies and subset

distribution of follicular T cells (Table 1).

The percentage of total CD19+ B cells was low during the

5-year follow-up (FU) (CVID B cells, 1-FU = 2%; 3-FU =
Frontiers in Immunology 06
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1.19%; 4-FU = 1.77%; 5-FU = 0.5%; 6-FU = 2.1% vs. HC mean

± SD = 10.28 ± 3.74, n = 90). The frequency of B memory cells

(CD19+CD27+) was lower than HC (median, IQR = 17.0,

12.6–25.2). Potentially autoreactive B cells defined as

CD19+CD21lowCD38low B cells (Figure 3A) were present at

higher frequency in the index patient at diagnosis as

compared with HC (CVID013 = 11.1% vs. HC median, IQR

= 2.42%, 1.30–4.58) and increased over time (3-FU = 18.30%;
TABLE 1 Immunological phenotyping of B and T cells, autoantibodies titres, and analysis of cytokine production by FC.

1-FU 2-FU 3-FU 4-FU 5-FU 6-FU Father HC group

% B-cell phenotyping
B cells (CD19+) 2.00 – 1.19 1.77 0.50 2.1+ 5.40 (1.15) 10.28 (3.74)

B naïve (CD19+CD27-) 94.00 – 90.20 93.60 81.94 91.6+ 58.31 (6.76) 82.1 (73.0-87.3)

B memory (CD19+CD27+) 5.96 – 6.99 5.98 16.10 8.4+ 35.80 (8.0) 17.0 (12.6-25.2)

Class-switched memory B cells (CD27+ IgM- IgD-) – 7.69 2.70 – 1.3+ 73 (5.09) 46.46 (7.07)

IgM-memory B cells (CD27+ IgM+) – 7.89 7.21 – 7.1+ 11.15 (1.48) 20.16 (10.21)

CD38lowCD21low 11.10 – 18.30 38.00 30.50 26.3+ 9.84 (3.47) 2.42 (1.30-4.58)

Transitional (CD24+CD38+) 23.80 – 16.60 8.54 – 32.2+ 2.08 (1.92) 7.64 (4.08-10.7)

Breg (CD27+CD24+) – – – 6.0 5.4 – 40.2 (6.79) 36.3 (12.30)

% Autoantibodies

IAA 0.06 0 0* 0* 0 0 0.00 (0.00) 0-0.2336

GADA 14.78 2.61 2.66* 3.62* 3.23 1.23 0.02 (0.005) 0-0.8761

IA-2A 48.30 55.87 31.72* 18.89* 18.93 11.72 0.06 (0.015) 0-0.9793

ZnT8A 379.49 26.71 12.52* 3.57* 1.32 2.49 0.42 (0.25) 0-2.5091

% T-cell phenotyping

CD3+ 79.2 75.4 81.3 47.1 79.7 81.6 70.35 (5.06) 39.2 (8.3)

CD3+CD4+ 38.1 38.7 38.6 47.8 46.2 57.1 40.9 (5.45) 75.9 (11.8)

cTfh (CXCR5+FoxP3-) 39.20 34.20 18.60 30.40 34.40 7.56 6.4 (5.87) 10.85 (8.35-12.60)

cTfr (CXCR5+FoxP3+) 3.13 3.76 4.24 2.66 2.44 0.63 0.69 (0.63) 1.62 (0.97-2.18)

cTreg (CXCR5-FoxP3+) 2.67 2.43 5.22 4.26 3.39 3.46 7.65 (5.78) 4.4 (3.12-5.68)

Tfh1 (CXCR3+CCR6-) 63.90 53.90 58.60 62.10 75.40 52.00 33.83 (7.63) 26.75 (5.90)

Tfh2 (CXCR3-CCR6-) 19.40 32.40 34.10 26.70 17.10 25.80 28.93 (8.31) 36.47 (8.04)

Tfh17 (CXCR3-CCR6+) 8.29 7.83 4.64 5.05 2.65 8.22 27.33 (9.95) 26.06 (5.04)

PD1 (CD4+CXCR5+) 70.00 57.30 52.10 66.10 69.30 54.10 13.87 (4.75) 21.30 (16.40-25.30)

ICOS (CD4+CXCR5+) 6.15 5.12 4.11 1.83 1.41 4.22 0.39 (0.18) 1.45 (0.91-2.32)

CXCR3+PD1- (CD4+CXCR5+) 22.40 23.80 7.01 12.70 13.20 – 12.31 (13.22) 8.17 (5.1)

% Cytokine production FC-analysis

CXCR5+ IFN-g+ – – – 2.21 1.99 2.72 3.22 (1.21) 9.51 (10.88)

IL-17+ – – – 2.09 0.51 0.80 1.26 (1.04) 5.06 (6.18)

IL-21+ – – – 3.49 3.43 5.53 2.13 (0.87) 8.98 (12.07)

CXCR5- IFN-g+ – – – 10.20 13.50 25.80 11.01 (5.34) 3.69 (2.86)

IL-17+ – – – 0.92 0.21 1.34 1.32 (1.57) 1.14 (0.37)

IL-21+ – – – 6.17 15.10 20.07 2.8 (1.61) 3.32 (2.06)

ng/ml IgM and IgG production assay

CVID BM +
CVID cTfh

IgM 7.78 8.35 – – – – – 1.37 (0.84)

IgG 0.3 ND – – – – – 9.77 (3.76)

CVID BN +
CVID cTfh

IgM 1.1 0.81 – – ND – – 1.22 (1.05)

IgG ND ND – – ND – – 5.52 (3.68)
Available measurements for the index patient, for the father and for the HC pool (B and T cell phenotyping, HC n = 85; cytokine production FC-analysis, HC n = 65; IgM and IgG
production assay, HC n = 16; autoantibodies, HC = internal laboratory reference) are included in the table as mean (SD) or median (IQR). The detection of autoantibodies was performed as
previously described (24, 25). +Values were determined in June 2022; *titres have been determined in serum samples; ND = undetermined.
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4-FU = 38.00%; 5-FU = 30.50%; 6-FU = 26.30%) (Figure 3B,

Table 1). In contrast to the index patient, circulating B cell

frequency and subset distribution in the father were

normal (Table 1).
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To assess the functionality of B and Tfh cells, we performed in

vitro B-cell helper assay. FACS-sorted memory and naïve B cells

were co-cultured with cTfh cells in autologous (CVID B cells with

CVID Tfh cells) and heterologous settings (CVID B cells with HC
A B

D

E

F

G H

C

FIGURE 3

Functional analysis of B- and T-cell subsets. (A) Representative gating strategy for CD38lowCD21low autoreactive B cells, gated on CD19+ cells
and (B) their frequency over time. CD38lowCD21low cell percentage was higher compared with the HC median, IQR (2.42%, 1.3–4.58; n = 85),
increasing from 11.10% at the first follow-up up to 38.00% in 2020, and decreasing to 30.50% in the last monitoring. (C, D) Functional analysis of
IgM and IgG production. Sorted B memory or B naïve cells were co-cultured with Tfh cells (1:1 ratio) in autologous (solid dot) or heterologous
settings (CVID B cells with HC Tfh, solid square, or HC B cells with CVID Tfh, clear square), and the percentage of CD38+CD20- was analyzed
within CD19+CD4- cells after 1 week. The black continuous line is representative for the mean HC percentage value ± SD (66.32% ± 12.46, n =
16) represented by the light gray area within the two dashed lines. The production of IgM and IgG was evaluated in the supernatant (E, Table 1).
The white dots and squares are representative for the 1-FU and 2-FU, respectively, whereas the black dots represent the HC. (F, G) Evaluation of
IFN-g, IL-17, and IL-21 production in CD4+CXCR5+ cells after 2-h stimulation with PMA/Ionomycin. The HC and patient slopes are identified
with the light and dark gray, respectively, whereas the unstimulated control is represented by the dashed line. IFN-g and IL-17 production was
lower compared with the HC (IFN-g mean ± SD = 16.66% ± 6.84; IL-17 mean ± SD = 8.35% ± 6.63; n = 65), whereas IL-21 production was
lower than HC mean and comprised within the SD (IL-21 mean ± SD = 8.74% ± 4.30; n = 65). (H) IFN-g, IL-17, and IL-21 production in
CD4+CXCR5- cells after 2-h stimulation with PMA/Ionomycin. IFN-g and IL-21 production was higher compared with the HC (IFN-g mean ±
SD = 3.69% ± 2.86; IL-21 mean ± SD = 3.32% ± 2.06; n = 65), whereas IL-17 production was comparable with HC (IL-17 mean ± SD = 1.14% ±
0.37; n = 65). .
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Tfh cells or vice versa) and the percentage of CD20-CD38+

plasmablasts together with IgM and IgG levels were evaluated

after a week (Figures 3C–E). Due to technical constraints, we

were able to perform the assay at three FU. The percentage of

plasmablast differentiating from memory B cells in the presence of

autologous Tfh cells was lower with respect to HC at diagnosis but

improved in 2-FU (Figure 3D, left panel). Patient Tfh cells were able

to induce the production of IgM by autologous B memory cells at

levels that were higher than the control co-cultures, (1-FU = 7.78ng/

ml; 2-FU = 8.35ng/ml vs. HC mean ± SD = 1.37ng/ml ± 0.84, n =

18). On the other hand, IgM production by B naïve cells was similar

to HC (1-FU = 1.1ng/ml; 2-FU = 0.80ng/ml vs. HC mean ± SD =

1.22 ng/ml ± 1.05, n = 16). Tfh cells co-cultured either with

autologous or heterologous B naïve cells were unable to induce

class switching and IgG production in vitro (Figures 3D, E).

Tfh (CD4+CXCR5+) and non-Tfh (CD4+CXCR5-) cell

functional status was also evaluated in vitro by intracellular

cytokine profile. Total PBMCs were activated with PMA/

Ionomycin and the expression of interferon-g (IFN-g),
interleukin-17 (IL-17), and IL-21 was evaluated by flow

cytometry (FC) (Figures 3F, G). Within the CXCR5+

compartment, IFN-g and IL-17 producing cells were fewer

compared with HC (Table 1). Also, IL-21 production was

lower than HC (CVID013 IL-21 range = 3.43% - 5.53% vs.

HC IL-21 mean ± SD = 8.74% ± 4.30; n = 65). On the contrary,

higher frequencies of IFN-g and IL-21 producing cells were

observed within the CXCR5- compartment (Table 1, Figure 3H).

Discussion

This case report describes a patient diagnosed with ITP,

CVID, and T1D with a monoallelic mutation in BAFFR

(H159Y) inherited from the father. Two years after CVID and

T1D stage 2 diagnosis, RTX was administered to treat peripheral

polyneuropathy with a potentially positive impact on diabetes

progression. Additional diet adjustment (hypoglycemic/

ketogenic) led to an 8-kg weight loss that possibly impacted the

disease course. Eventually, the patient progressed to insulin

dependency, despite a decline in islet AAbs levels. The patient

displayed the typical immunological signs of CVID, that is,

reduction in circulating B cells, switched memory B cells, and

an increase in autoreactive CD21lowCD38low B cells. B cell counts

remained low during a 5-year FU. The patient was positive for

SARS-CoV-2 antibodies prior to infection and vaccination,

probably secondary to the presence of these antibodies in IVIg.

After receiving three vaccine doses and natural SARS-CoV-2

infection, his anti–SARS-CoV-2 antibodies remained detectable.

Generally, CVID patients, especially those with autoimmunity,

have variable alterations in humoral responses against vaccines,

including against SARS-CoV-2, that could account for a low

specific response to some infections and vaccination (23).

Interestingly, B naïve and memory subset frequencies increased

over time but remained reduced and even declined in absolute
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numbers. When cultured in vitro with autologous and

heterologous Tfh cells derived from HC, memory B cells were

able to produce IgM, whereas IgG production was compromised,

suggesting dysfunctional B and/or Tfh cells.

cTfh cells were present at elevated frequencies during the

first 4 years of FU and produced reduced amounts of IFN-g and
IL-21 when challenged in vitro. cTfh cells showed a shift toward

a Tfh1 phenotype accompanied by an increase in activation

markers PD-1 and ICOS. cTfh cell activation status was reflected

in the blood where elevated plasmatic concentrations of CXCL13

were found (26). Interestingly, IL-21 production by CXCR5-

CD4+ cells was highly elevated when compared with HC. Given

the connection between IL-21 production and T1D (27),

elevated IL-21 production by CXCR5-CD4+ T cells could have

influenced T1D development in the index patient.

BAFFR is essential for B-cell development, and reduced

BAFFR expression or signaling, as in BAFFR deficiency, leads to

decreased B cell survival and hypogammaglobulinemia (28).

BAFFR can be expressed on the surface of activated T cells

including Tregs albeit at low levels (29–32). By re-analyzing our

previously published RNA-seq data in sorted Tfh cells from the

index patient (CVID013) (19), BAFFRmRNA levels were elevated

as compared with controls (Figure S3). However, at a protein level,

Tfh cells expressed slightly reduced BAFFR levels on their cell

surface. The BAFFR H159Y mutation identified in the patient has

been previously associated not only with autoimmune diseases,

such as systemic lupus erythematosus, multiple sclerosis, and

Sjogren’s syndrome, but also in non-Hodgkin’s lymphoma (33).

It is currently unknown how this variant affects protein trafficking,

signaling, and degradation. Previous studies have shown that it

increases TRAF2, TRAF3, and TRAF6 recruitment to BAFFR,

potentiating NF-kB1 and NF-kB2 activity and immunoglobulin

production in B cells (28, 33–38). According to our RNA-seq data,

BAFFR-mediated dysregulation affected Tfh cell cycle, T-cell

activation, and proliferation pathways, and altered the

expression of genes involved in signal transduction, apoptosis,

and Tfh identity (i.e., BCL-6) (Figures S4–S6). On the other hand,

the UV response pathway was down-regulated including

pathways involved in apoptosis, cell cycle, proliferation, and

immune functions (promoting proliferation) (Figures S4–S7)

(19). Further analyses are required to determine the functional

role of H159Y in human Tfh cells and B cells and their

contribution to CVID and T1D development.

The H159Y variant has been previously described in

association with another polymorphism, P21R, which has been

described in some patients with CVID (37). These patients

displayed lower B cell numbers due to reduced BAFFR

expression levels. Possibly, other genetic variants in BAFFR or in

other genes related to this pathway are present and contributed to

the clinical course of CVID and T1D in the index patient. Of note,

the patient’s father is affected by autoimmune thyroiditis and has

no T1D nor CVID despite having the same BAFFR mutation and

reduced surface BAFFR levels on his B cells. Thus, incomplete
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disease penetrance might underlie the discrepancies between father

and son, similarly to previous CVID reports where family

members carry the same heterozygous mutation (34).

Given the absence of a T1D-HLA risk, alterations in BAFFR

and humoral dysregulation might have led to T1D. In contrast to

other autoimmune diseases, for example, SLE, where BAFF–BAFFR

signalling has been extensively studied, limited studies have been

conducted in T1D. In one of such studies, reduced BAFFR levels on

circulating B cells were observed in patients with longstanding T1D

(39). Given the 6-year time window from the time of stage 2 T1D to

stage 2 T1D diagnosis, we speculate that BAFFR humoral

dysregulation contributed to T1D with slow kinetics or, perhaps,

RTX and IVIg therapy delayed the disease onset.

The effect of IVIg therapy in B cells seems to be rather complex

and not well understood (40), and there is not enough evidence

supporting a beneficial role of IVIg in T1D progression. In the index

patient, the treatment did not alter circulating B-cell frequency over

the 6 years follow-up and did not affect B-cell ability to stimulate

IgM production in vitro. It is possible that the alterations in B-cell

subset composition were partly mediated by IVIg and could have

affected T1D progression, possibly by AAb dilution or by affecting

autoreactive B-cell frequency (41). Tfh were able to stimulate the

production of IgM but no IgG in B-cell co-cultures in vitro;

however, we did not explore the possibility that the patient had

less class-switched IgG+ memory B cells explaining our in vitro B

cell help findings. Additional experiments with sorted IgM+ vs. IgM-

memory B cells will be necessary to clarify this point.

Belimumab, the human monoclonal antibody that blocks

BAFF, is currently employed for the treatment of persistently

active systemic lupus erythematosus (33) BAFFR blockade in

murine models of T1D was also shown to protect from disease

development, a mechanism that involved Breg induction (42).

RTX depletes B cells and was shown to preserve C-peptide levels

in patients with new-onset T1D (43). The index patient received

RTX treatment 2 years after stage 2 T1D diagnosis and 3 years

later; after partial B-cell reconstitution, he progressed to insulin-

dependent T1D. In the NOD model of T1D, no synergy between

RTX and anti-BAFFRmAb treatment was seen as RTX eliminated

anti-BAFFR–induced Bregs (42). It remains unknown the effect of

RTX on Bregs in the index patient, but possibly RTX did not

aggravate disease progression but was rather beneficial.

Despite several weaknesses emanating from the study of a

single case and the lack of studies of BAFFR signaling, our data

suggest a possible involvement of the BAFFR H159Y variant in

T1D pathogenesis and suggest that the BAFF/BAFFR axis might

be a target of interest for the pharmacological modulation of T1D.
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