
Edited by  

Jin Cao, Jixin Liu, Lei Lan, Lu Liu and Lingmin Jin

Brain patterns of pain 
processing and non-
pharmacological 
treatments

Published in  

Frontiers in Neurology

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/research-topics/24833/brain-patterns-of-pain-processing-and-non-pharmacological-treatments
https://www.frontiersin.org/research-topics/24833/brain-patterns-of-pain-processing-and-non-pharmacological-treatments
https://www.frontiersin.org/research-topics/24833/brain-patterns-of-pain-processing-and-non-pharmacological-treatments
https://www.frontiersin.org/research-topics/24833/brain-patterns-of-pain-processing-and-non-pharmacological-treatments


August 2023

Frontiers in Neurology frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-3311-6 
DOI 10.3389/978-2-8325-3311-6

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


August 2023

Frontiers in Neurology 2 frontiersin.org

Brain patterns of pain processing 
and non-pharmacological 
treatments

Topic editors

Jin Cao — Harvard Medical School, United States

Jixin Liu — Xidian University, China

Lei Lan — Chengdu University of Traditional Chinese Medicine, China

Lu Liu — Capital Medical University, China

Lingmin Jin — Guizhou University of Traditional Chinese Medicine, China

Citation

Cao, J., Liu, J., Lan, L., Liu, L., Jin, L., eds. (2023). Brain patterns of pain processing 

and non-pharmacological treatments. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-3311-6

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-3311-6


August 2023

Frontiers in Neurology frontiersin.org3

05 Acupuncture Enhances Dorsal Raphe Functional Connectivity 
in Knee Osteoarthritis With Chronic Pain
Nan Gao, Haiping Shi, Sheng Hu, Bixiang Zha, Aihong Yuan, 
Jianhua Shu, Yinqiu Fan, Jin Bai, Hongyu Xie, Jingcheng Cui, 
Xiaoxiao Wang, Chuanfu Li, Bensheng Qiu and Jun Yang

12 Trigeminal Nerve White Matter Fiber Abnormalities in Primary 
Trigeminal Neuralgia: A Diffusion Spectrum Imaging Study
Si-ping Luo, Fan-fan Chen, Han-wen Zhang, Fan Lin, 
Guo-dong Huang and Yi Lei

21 Alterations of the White Matter in Patients With Knee 
Osteoarthritis: A Diffusion Tensor Imaging Study With 
Tract-Based Spatial Statistics
Shirui Cheng, Xiaohui Dong, Jun Zhou, Chenjian Tang, Wenhua He, 
Yang Chen, Xinyue Zhang, Peihong Ma, Tao Yin, Yimei Hu, Fang Zeng, 
Zhengjie Li and Fanrong Liang

30 Brain Functional Alteration at Different Stages of Neuropathic 
Pain With Allodynia and Emotional Disorders
Ya-Nan Zhang, Xiang-Xin Xing, Liu Chen, Xin Dong, Hao-Tian Pan, 
Xu-Yun Hua and Ke Wang

42 Brain Mechanism of Acupuncture Treatment of Chronic 
Pain: An Individual-Level Positron Emission Tomography 
Study
Jin Xu, Hongjun Xie, Liying Liu, Zhifu Shen, Lu Yang, Wei Wei, 
Xiaoli Guo, Fanrong Liang, Siyi Yu and Jie Yang

52 Effectiveness of Transcranial Direct Current Stimulation and 
Monoclonal Antibodies Acting on the CGRP as a Combined 
Treatment for Migraine (TACTIC): Protocol for a Randomized, 
Double-Blind, Sham-Controlled Trial
Raffaele Ornello, Chiara Rosignoli, Valeria Caponnetto, 
Francesca Pistoia, Michele Ferrara, Aurora D’Atri and Simona Sacco

61 Glymphatic System Dysfunction: A Novel Mediator of Sleep 
Disorders and Headaches
Ting Yi, Ping Gao, Tianmin Zhu, Haiyan Yin and Shuoguo Jin

71 Temporal Grading Index of Functional Network Topology 
Predicts Pain Perception of Patients With Chronic Back Pain
Zhonghua Li, Leilei Zhao, Jing Ji, Ben Ma, Zhiyong Zhao, Miao Wu, 
Weihao Zheng and Zhe Zhang

83 fMRI Findings in Cortical Brain Networks Interactions in 
Migraine Following Repetitive Transcranial Magnetic 
Stimulation
Kirill Markin, Artem Trufanov, Daria Frunza, Igor Litvinenko, 
Dmitriy Tarumov, Alexander Krasichkov, Victoria Polyakova, 
Alexander Efimtsev and Dmitriy Medvedev

Table of
contents

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/


August 2023

Frontiers in Neurology 4 frontiersin.org

92 Altered brain functional activity and connectivity in bone 
metastasis pain of lung cancer patients: A preliminary 
resting-state fMRI study
Daihong Liu, Xiaoyu Zhou, Yong Tan, Hong Yu, Ying Cao, Ling Tian, 
Liejun Yang, Sixiong Wang, Shihong Liu, Jiao Chen, Jiang Liu, 
Chengfang Wang, Huiqing Yu and Jiuquan Zhang

103 Effect and safety of extracorporeal shockwave therapy for 
postherpetic neuralgia: A randomized single-blind clinical 
study
Lu Chen, Ailing Qing, Tao Zhu, Pingliang Yang and Ling Ye

114 Optogenetics: Emerging strategies for neuropathic pain 
treatment
Siyu Li, Xiaoli Feng and Hui Bian

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/


ORIGINAL RESEARCH
published: 18 January 2022

doi: 10.3389/fneur.2021.813723

Frontiers in Neurology | www.frontiersin.org 1 January 2022 | Volume 12 | Article 813723

Edited by:

Lei Lan,

Chengdu University of Traditional

Chinese Medicine, China

Reviewed by:

Liang Kang,

Chengdu Sport University, China

Hantong Hu,

Zhejiang Chinese Medical

University, China

Mailan Liu,

Hunan University of Chinese

Medicine, China

*Correspondence:

Jun Yang

yangjunacup@126.com

Bensheng Qiu

bqiu@ustc.edu.cn

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Headache and Neurogenic Pain,

a section of the journal

Frontiers in Neurology

Received: 12 November 2021

Accepted: 02 December 2021

Published: 18 January 2022

Citation:

Gao N, Shi H, Hu S, Zha B, Yuan A,

Shu J, Fan Y, Bai J, Xie H, Cui J,

Wang X, Li C, Qiu B and Yang J

(2022) Acupuncture Enhances Dorsal

Raphe Functional Connectivity in Knee

Osteoarthritis With Chronic Pain.

Front. Neurol. 12:813723.

doi: 10.3389/fneur.2021.813723

Acupuncture Enhances Dorsal Raphe
Functional Connectivity in Knee
Osteoarthritis With Chronic Pain
Nan Gao 1†, Haiping Shi 2†, Sheng Hu 1,3, Bixiang Zha 2, Aihong Yuan 2, Jianhua Shu 3,

Yinqiu Fan 2, Jin Bai 2, Hongyu Xie 2, Jingcheng Cui 4, Xiaoxiao Wang 1, Chuanfu Li 2,

Bensheng Qiu 1* and Jun Yang 2*

1Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China, 2 First Affiliated Hospital of

Anhui University of Traditional Chinese Medicine, Hefei, China, 3 School of Medical Information Engineering, Anhui University

of Chinese Medicine, Hefei, China, 4 Third People’s Hospital of Hefei, Hefei, China

Introduction: Knee osteoarthritis is a common disease in the elderly. Patients suffer

from long-term chronic pain and reduced life quality. Acupuncture has been proven to

be an effective treatment for KOA. However, the neural mechanism of acupuncture is

unclear, so far. Periaqueductal gray (PAG) and raphe nuclei (RPN) are essential structures

associated with chronic pain in human brains. This study aims to investigate functional

connectivity (FC) changes of PAG and RPN in KOA to interpret the neural mechanism

of acupuncture.

Methods: In 15 patients with KOA and 15 healthy controls (HC), we acquired Visual

Analog Scale (VAS) scores and resting-state fMRI images of each participant before and

after acupuncture stimulation on EX-LE5 acupoint. Then, PAG and RPNwere selected as

seeds to perform FC analysis based on resting-state fMRI images. Finally, we compared

FC patterns of PAG and RPN between patients with KOA and HC, then between pre-

acupuncture and post-acupuncture. Correlations between FC values and VAS scores

were calculated as well.

Results: For PAG, FC of patients with KOA was lower in the right lingual

gyrus at post-acupuncture compared with HC (p <0.001, uncorrected). For dorsal

RPN, FC of patients with KOA was significantly higher in right putamen at post-

acupuncture compared with HC (p <0.001, corrected with FDR), and FC changes

were significant between pre-acupuncture and post-acupuncture in patients with KOA.

Post-acupuncture FC values between dorsal RPN and right putamen were correlated

with VAS scores. For medial RPN, FC of patients with KOA was lower in the

right cerebellum at post-acupuncture compared with HC (p <0.001, uncorrected),

but no significant FC changes were found between pre-acupuncture and post-

acupuncture in patients with KOA. FC values between medial RPN and right cerebellum

were not correlated with VAS scores at pre-acupuncture and post-acupuncture.
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Discussion: Our study demonstrated that acupuncture enhanced FC between dorsal

RPN and the right putamen in patients with KOA, which was associated with chronic pain

intensity. This result suggests that acupuncture stimulation can enhance FC between

dorsal raphe and striatum, illustrating a neural mechanism that acupuncture can drive

the patients’ brain, with KOA, to perceive pain.

Keywords: functional magnetic resonance imaging, chronic pain, acupuncture, functional connectivity, knee

osteoarthritis

INTRODUCTION

Knee osteoarthritis is a common type of arthritis and prevalently
affects the quality of life among the elderly (1). Chronic pain is
the primary complaint associated with KOA, severely influencing
the patients by physical dysfunction and muscular weakness
(2, 3). Acupuncture is considered an effective therapy to relieve
the chronic pain of KOA (4–6), but the mechanism underlying
its clinical efficacy is still controversial. Previous studies have
reported that chronic pain can induce changes in brain function
(7–9), and acupuncture stimulation can mediate brain function
to relieve chronic pain (10). Therefore, this study aims to explore
the mechanism of acupuncture treatment by investigating how
acupuncture induces the functional connectivity (FC) of brains
in patients with KOA.

Periaqueductal gray and raphe nuclei, located in the
brainstem, play a well-established pain responses because these
structures have optimal anatomical positioning to integrate
relevant contextual information, driving the central neural
system to release pain-related neurotransmitters (11, 12).
Recently, functional MRI (fMRI) studies have investigated how
the activation of PAG and RPN contributes to neural mechanisms
underlying chronic pain. Lee et al. applied the FC method to
test the FC changes between patients with chronic migraine and
with episodic migraine. They revealed that FC was enhanced,
from PAG and RPN to cortical regions, in patients with chronic
migraine (13). Notably, a recent study on the mouse model of
OA has found that, in the early phase of OA pain, the PAG
network, especially the connection between PAG and RPN, may
contribute to the transition from acute to chronic OA pain (14).
Another study demonstrated that dorsal RPN and ventral PAG
have the potential to regulate pain by releasing dopamine and
glutamate (15).

Acupuncture, one of the traditional Chinese treatment
modalities, has a good therapeutic effect on chronic pain (16),
that includes chronic migraine and chronic low back pain.
Some previous studies reported that the possible mechanism
of relieving pain by acupuncture stimulation was mediating
through central pain modulation of the PAG and RPN in the
brainstem (17, 18). Although some studies have supported that
acupuncture is an efficient treatment tool for KOA pain, the
neural mechanism underlying acupuncture treatment on KOA is
unclear. Therefore, this study aimed to clarify the acupuncture
neural mechanism on KOA by using fMRI. Considering the
above, we speculated that acupuncture stimulation could alter FC
of PAG and RPN in patients with chronic KOA pain, which is
associated with pain-related clinical symptoms.

To test this hypothesis, we respectively calculated FC
for patients with KOA and healthy controls (HC) at pre-
acupuncture and post-acupuncture stimulation. The group
differences between KOA and HC, and between pre-acupuncture
and post-acupuncture, were evaluated, as well as the correlations
between altered FC and the related clinical symptomwere further
calculated to assess how the FC changes through acupuncture
stimulation have modulated chronic KOA pain.

MATERIALS AND METHODS

Participants
Fifteen patients with chronic KOApain (mean age: 59.13± 10.27;
eight females), whose pain lasts at least 4 months, were recruited
from the First Affiliated Hospital of Anhui University of Chinese
Medicine (AUCM), while 15 HC (mean age: 58.53 ± 8.15; 11
females) were recruited from the local community. The patients
who presented with neurological or psychiatric diseases, poorly
controlled hypertension, head injury, or any other conditions
that might affect the study were excluded. All the participants
had signed an informed consent before the study, which was
approved by the Ethics Committee of the First Affiliated Hospital
of AUCM (No. 2021AH-29).

KOA Diagnostic Criteria
The diagnostic criteria of KOA were determined according to the
Chinese Guideline for Diagnosis and Treatment of Osteoarthritis
(2021 edition) formulated by the Joint Surgery Branch of the
Chinese Orthopedic Association (19). Patients with KOA were
diagnosed by the results of both clinical and X-ray examinations,
plus the following rules: (1) middle-aged and elderly people; (2)
recurrent knee pain for nearly a month; (3) morning stiffness ≤
30min; and (4) bone frictions when physically exercising.

Pain Assessment
Pain intensity was evaluated by the Visual Analog Scale (VAS), a
tool widely used to measure pain (20). The patients were asked to
indicate their perceived pain intensity as a point along a 100-mm
horizontal line, and the length from the left edge to this point was
measured to acquire a VAS score. The VAS score ranges from 0
to 10, where VAS= 0 represents the patient feels no pain, VAS <

3 indicates the patient feels mild but tolerable pain, 4 < VAS <

6 means the patient feels pain and sleep is affected, and 7 < VAS
< 10 depicts the patient feels severe pain, which is unbearable
and already affects the sleep and appetite. Detailed information is
presented in Supplementary Table 1.
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Experiment Design
Pre-acupuncture resting-state fMRI data were acquired with
205 time points for 6min 50 s before acupuncture stimulation.
After that, acupuncture stimulation was performed at EX-
LE5 acupoint, which is considered effective in treating KOA
(21). When the participants received de-qi sensation (soreness,
numbness, fullness, and heaviness) (22), task-state fMRI data
with 205 time points were acquired for 6min 50 s. Finally, after
pulling out the acupuncture needles, post-acupuncture resting-
state fMRI data acquisition of 205 time points was obtained for
6min 50 s. The workflow is shown in Supplementary Figure 2.
For the patients with KOA, VAS scores were acquired for
assessment of pain intensity at both pre-acupuncture and
post-acupuncture. In this study, we used the pre-acupuncture
and post-acupuncture resting-state data and the VAS scores
for analysis.

Image Acquisition
MRI data were acquired using a 3.0-Tesla MRI scanner
(Discovery MR750, General Electric, USA), with an eight-
channel high-resolution radio-frequency head coil. Sagittal
3D T1-weighted images were acquired using T1-3D BRAVO
sequence with repetition time (TR)/echo time (TE): 8.16
ms/3.18ms, flip angle (FA): 12◦, matrix: 256 × 256, field of view
(FOV): 256× 256mm, slice thickness: 1mm, with 170 axial slices
with no gap. Resting-state and task-state fMRI data were acquired
using a gradient-echo single-shot echo planar imaging sequence
with TR/TE: 2,000/30ms, FOV: 220 × 220mm, matrix: 64 ×

64, FA: 90?, slice thickness: 3mm, with 205 volumes. All the
participants were instructed to lie down with their eyes closed,
keep their minds relaxed, and not fall asleep during the scanning.

Data Preprocessing
For each participant, resting-state fMRI images were
preprocessed using a combination of analysis packages,
including FSL and AFNI. Functional images were preprocessed
using the following steps: (1) the first 10 functional images were
discarded to eliminate transients and account for T1 relaxation
effects, followed by slice timing to compensate for acquisition
delays across slices; (2) motion correction was performed by
realigning all functional images to the middle image, and the data
with head motion over 2mm or 2

◦

were excluded; (3) functional
images were co-registered to the high-resolution anatomical
images, and then normalized to Montreal Neurological Institute
standard brain; (4) voxels were re-sampled to 2 × 2 × 2 mm3

resolution; (5) images were spatially smoothed with a 6-mm
full width at half-maximum (FWHM) Gaussian kernel; (6)
the data were linearly detrended, and the residual signals were
band-pass temporal filtered at.01–0.1Hz; and (7) nuisance
variable regression was performed to regress out the six head
motion parameters, as well as the signals of white matter (WM)
and cerebrospinal fluid (CSF).

Functional Connectivity Analysis
To evaluate FC changes of PAG and RPN, we first selected these
two regions as seeds for FC analysis. Seed of PAGwas structurally
defined with the “atlas of the basal ganglia” (https://www.nitrc.
org/projects/atag/), in which the nonlinear elderly atlas of PAG
was selected for FC analysis. RPN was divided into dorsal and
medial sub-regions, defined based on a previous study (23). The
seeds of PAG and RPN are shown in Figure 1.

For each participant, the Pearson correlation coefficient
between the mean time series of each seed and the time series

FIGURE 1 | Representation of seed regions. PAG, periaqueductal gray; DRPN, dorsal raphe nuclei; MRPN, medial raphe nuclei.
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of each voxel across the whole brain was calculated. Then,
the coefficients were converted to a z-value using Fisher r-to-z
transformation to improve the normality.

Statistical Analysis
A paired two-sampled t-test was applied to both KOA and
HC groups to compare FC changes between pre-acupuncture
and post-acupuncture, uncovering how acupuncture mediates

TABLE 1 | Group differences of FC between KOA and HC at post-acupuncture.

Regions
MNI

Z Value Voxel size

x y z

Periaqueductal gray

Right Lingual Gyrus 4 −64 −2 −4.16 42

Dorsal Raphe

Right Putamen 26 0 6 4.97 91

Medial Raphe

Right Cerebellum 16 −72 −35 −4.65 41

FC between dorsal raphe and right putamen was corrected for FDR with p < 0.001,

whereas FC between periaqueductal gray and right lingual gyrus, and also betweenmedial

raphe and right cerebellum were uncorrected with p < 0.001.

FC. An unpaired two-sampled t-test was used at both pre-
acupuncture and post-acupuncture to compare FC changes
between KOA and HC to investigate the group differences
mediated by acupuncture. The results of group analysis were
corrected using a false discovery rate (FDR) of p < 0.001.

Correlation Analysis
We explored the relationships between FC values and the
VAS scores in the patient group to identify how acupuncture
affects chronic pain through mediating brain function. For all
correlation analyses, we used partial correlations to factor out age
and sex.

RESULTS

FC Changes of PAG
No FC changes of PAG were observed between pre-acupuncture
and post-acupuncture in both patients with KOA and groups
with HC. No FC differences of PAG were found between the
two groups at pre-acupuncture. Lower FC of PAG in patients
with KOA was found in right lingual gyrus at post-acupuncture
compared with HC (Supplementary Figure 1 and Table 1, p <

0.001, uncorrected).

FIGURE 2 | Group differences of FC. (A) FC of dorsal RPN of patients with KOA enhanced at post-acupuncture compared with HC. The result was corrected for FDR

with p <0.001. (B) FC differences of right putamen between pre-acupuncture and post-acupuncture in KOA. (C) FC of medial RPN of patients with KOA decreased at

post-acupuncture compared with HC. The result was uncorrected with p < 0.001. (D) FC differences of right cerebellum between pre-acupuncture and

post-acupuncture in KOA. **: represents significant group difference with p <0.05; ns: represents no significant group difference.
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FIGURE 3 | Relationships between FC and pain intensity. (A) Correlation between FC of right putamen and pain intensity in KOA. (B) Correlation between FC of right

cerebellum and pain intensity in KOA. Pre, pre-acupuncture; Post, post-acupuncture.

FC Changes of RPN
For dorsal RPN, no FC changes were observed between pre-
acupuncture and post-acupuncture in two groups; no FC
differences were found between patients with KOA and HC
at pre-acupuncture, whereas FC in patients with KOA was
significantly higher in right putamen at post-acupuncture
compared with HC (Figure 2A and Table 1, p <0.001, corrected
with FDR). The FC difference of right putamen was significant
between pre-acupuncture and post-acupuncture in patients with
KOA (Figure 2B). Post-acupuncture FC values of right putamen
were correlated with VAS scores, while the pre-acupuncture FC
values were not (Figure 3A).

For medial RPN, no FC changes were observed between
pre-acupuncture and post-acupuncture of two groups; no FC
differences were found between patients with KOA and HC at
pre-acupuncture, whereas FC in patients with KOA was lower
in right cerebellum at post-acupuncture compared with HC
(Figure 2C and Table 1, p <0.001, uncorrected). FC difference
of right cerebellum was not significant between pre-acupuncture
and post-acupuncture in patients with KOA (Figure 2D). FC
values of right cerebellum were not correlated with VAS scores
at both pre-acupuncture and post-acupuncture (Figure 3B).

DISCUSSION

The brainstem involvement in relieving chronic pain has been
investigated in previous studies, demonstrating a mediating role
of PAG and RPN, as well as their interactions with cortical regions
(24, 25). Therefore, we applied the resting-state fMRI to evaluate
the neural mechanism underlying acupuncture, intervening in
chronic KOA pain by investigating the FC changes of the PAG
and RPN mediated by acupuncture. Our results suggested that
acupuncture enhanced FC between dorsal RPN and the right
putamen in patients with KOA, and enhanced FC is associated
with chronic pain intensity.

Periaqueductal gray (PAG) plays a central role in the
descending modulation of pain (26). Dysfunction of PAG is
thought to contribute to dysregulation of pain, which is the main
reason for chronic pain (24). Previous studies have demonstrated
that FC between PAG and prefrontal cortex/anterior cingulate

cortex in low back chronic pain (27) and chronic migraine
(28) is enhanced after acupuncture treatment, associated with
the relieving of pain symptoms (28). However, in our study,
FC differences of PAG were not found between patients with
KOA and HC. Acupuncture stimulation has also not induced
PAG-related FC changes in patients with KOA with chronic
pain. These results were inconsistent with previous studies. In
this study, the patients also received several other medications
in addition to acupuncture treatment, which possibly drove
the FC of PAG close to the normal level. Previous studies
have demonstrated that transient drug therapy could enhance
the patients’ brain function, whereas the patients were also
accompanied by clinical symptoms (29, 30). This is the possible
explanation why we did not observe the changes in PAG function
in the patients with chronic KOA pain.

Previous studies have interpreted the neural mechanism of
dorsal RPN in the regulation and the perception of pain from
electrophysiology and neuroimaging, based on the fact that
FC between dorsal RPN and cortical/subcortical regions was
increased in patients with chronic pain after treatment (13, 16).
The striatum receives serotonin innervation from the dorsal
RPN, which implicates the behaviors of emotions, depression,
and anxiety (31, 32). This evidence was further proved in a PET-
fMRI study, revealing that dorsal RPN has strong functional
connections with striatum (23). In present studies, FC between
dorsal RPN and right putamen was enhanced after acupuncture
stimulation rather than FC between medial RPN and right
cerebellum. Moreover, the rising value of FC was associated
with pain intensity. In summary, our results may explain that
acupuncture stimulation induces the enhanced FC between
dorsal RPN and striatum to drive the patients’ brain with KOA
to perceive the pain.

There were also several limitations in this study. The sample
size of the participants was relatively small so that individual
variation may affect the accuracy of the results. Moreover,
considering the comfort and cooperation of the patients, short-
term acupuncture stimulation was conducted in this research
rather than typical acupuncture therapy, because the participants
were lying in the bore of MRI equipment through the whole
experiment. Our study pursued the instantaneous effect of
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how the brain perceives the pain right after the acupuncture
stimulation; not the neural mechanism of the acupunctural
therapeutic effect. For further research, more participants will
be recruited, and we will simultaneously study the effects of
both the short-term acupuncture stimulation and long-term
acupuncture therapy.

CONCLUSIONS

In conclusion, our results have demonstrated that
acupuncture stimulation can enhance FC between dorsal
raphe and striatum, illustrating a neural mechanism that
acupuncture can drive the patients’ brain, with KOA, to
perceive pain.
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Objective: Diffusion spectrum imaging (DSI) was used to quantitatively study the

changes in the trigeminal cistern segment in patients with trigeminal neuralgia (TN) and

to further explore the value of acquiring DSI data from patients with TN.

Methods: To achieve high-resolution fiber tracking, 60 patients with TN and 35 healthy

controls (HCs) were scanned with conventional magnetic resonance imaging (MRI) and

DSI. The patients and the members of the control group were compared within and

between groups. The correlations between quantitative parameters of DSI and the visual

analog scale (VAS), and symptom duration and responsible vessel types were analyzed.

Results: Compared with unaffected side of patients in the TN group, the affected

side showed significantly decreased quantitative anisotropy (QA) (p < 0.001), fractional

anisotropy (FA) (p = 0.001), and general FA (GFA) (p < 0.001). The unaffected side

exhibited significantly decreased QA (p + 0.001), FA (p = 0.001), and GFA (p < 0.001)

and significantly increased axial diffusivity (AD) (p = 0.036) compared with the affected

side of patients in the TN group and the average values of HCs. There were significantly

decreased QA (p = 0.046) and FA (p = 0.008) between the unaffected side of patients

and the average values of HCs. GFA can evidently distinguish arteries, veins, and features

of unaffected side in TN patients.

Conclusion: Using high-resolution fiber tracking technology, DSI can provide

quantitative information that can be used to detect the integrity of trigeminal white matter

in patients with TN and can improve the understanding of the disease mechanism.

Keywords: trigeminal neuralgia, diffusion spectrum imaging, diffusion tensor imaging, fiber tractography, diffusion

magnetic resonance image

INTRODUCTION

Trigeminal neuralgia (TN) is recurrent, unilateral, transient, and electric pain in the trigeminal
nerve distribution area. It has been reported that the annual incidence is about 4–29/10 million
person-years worldwide (1). The prevalence rate in women was higher than that in men
(F:M = 3:2). With disease aggravation, pain attacks become more frequent, affecting basic human
functions, such as speaking, eating, drinking, or touching the face, resulting in low quality of life (1).
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The etiology of primary TN is unknown. At present, the
generally accepted theory is neurovascular compression (NVC).
This theory suggests that microvascular compression leads to
demyelination of trigeminal nerve roots, causing TN. These
vessels that compress the trigeminal nerve are called responsible
vessels. Microvascular decompression (MVD), a minimally
invasive interventional technique, is designed based on this
etiological explanation and has been recognized as the most
effective method for the treatment of TN (2, 3). MVD can
identify the painful nerve and effectively isolate the responsible
vessels that compress the trigeminal nerve root and brainstem to
relieve compression and, repair nerve pain under the operating
microscope and eliminate the source of trigeminal nerve pain (4).

As a non-invasive magnetic resonance imaging (MRI)
technique to evaluate the integrity of white matter, diffusion
tensor imaging (DTI) can indirectly reflect the integrity of nerve
fiber bundles by measuring the diffusion movement of water
molecules (5), thus providing new insights into the etiology of
TN. Previous studies (6, 7) have shown that in patients with
TN, DTI parameters such as fractional anisotropy (FA) decreased
significantly and axial diffusivity (AD), radial diffusivity (RD),
and mean diffusivity (MD) increased significantly. However,
some studies (8, 9) argued different or even opposite opinions
of the changes of DTI metrics values between affected and
unaffected sides in patients and controls. In addition, the
correlation between the degree of FA decrease and the degree
of pain, symptom duration, and types of responsible vessels are
controversial (8, 10, 11). Moreover, DTI needs larger sample sizes
for standardization and the spatial resolution limits the further
use of DTI in patients with TN.

Diffusion spectrum imaging (DSI) generalizes DTI by
acquiring more directions in q-space, either by high-angular
resolution diffusion imaging shells, a cube on a Cartesian grid,
or Q-ball imaging, which has been used to non-invasively detect
the complex structure of white matter bundles and fiber bundles
in human brain (12). DSI reconstructs fiber bundles with higher
resolution than traditional DTI and has been shown to accurately
display crossing, winding, interruption, and small fibers (13, 14).
DSI parameters include DTI parameters: FA, RD, MD, and AD as
well as unique parameters: quantitative anisotropy (QA), general
FA (GFA), restricted diffusion imaging (RDI), and isotropic
diffusion component (ISO). The GFA value, which represents
the direction consistency of water molecule diffusion and reflects
the integrity of axon or myelin more accurately and sensitively
than FA value, is the main quantitative parameter of DSI (15,
16). Generalized q-sampling imaging (GQI) (17) is one of the
commonly used DSI data reconstruction models for calculating
QA and ISO. RDI (18) is a model-free method to quantify the
density of restricted diffusion given a diffusion displacement
range. DSI has been used to study some mental diseases, such as
autism (19) and schizophrenia (20), as well as neurodegenerative
diseases, such as Alzheimer’s disease (21) and multiple sclerosis
(22). Recently, DSI has been increasingly used to study the brain
nerve structure (23).

In this study, we used DSI technology to study and compare
the changes in cistern segments between the affected side and
the unaffected side of patients with TN, analyze the difference of

DSI parameters between patients with TN and healthy controls
(HCs), and the relationship between the degree of difference
value and symptom duration, the degree of pain, and responsible
vessels. We hypothesized that some of the identified white matter
abnormalities exist in TN patients and would correlate with the
degree of pain, symptom duration, and responsible vessel types,
so as to further explore the value of utilizing DSI technology in
patients with TN.

MATERIALS AND METHODS

Participants
This study collected patients with TN diagnosed in the Shenzhen
Second People’s Hospital from November 2019 to August 2021.
They all underwent MRI and excluded: (1) TN secondary to
other neurological conditions such as tumor growth or multiple
sclerosis; (2) There are other known intracranial lesions including
obvious trauma; (3) Previous history of craniocerebral surgery;
and (4) Incomplete image data. After screening, a total of 60
patients were included in this study. By posting advertisements
in several health management centers, 35 years of age and sex-
matched participants without pain and any neurological diseases
served as HCs. The protocol was approved by the Hospital
Bioethics Committee. All the participants received a written
informed consent prior to registration.

Magnetic Resonance Imaging Acquisition
Scanning was performed on a 3.0-T MRI system (Prisma,
Siemens) using a 20-channel head coil. Comfortable and tight
foam padding was used to limit head movement. All the patients
were treated with three-dimensional time-of-flight magnetic
resonance angiography (3D-TOF-MRA) and T2_SPC_TRA_ISO
sequence before operation to check the relationship between
blood vessels and nerves. The relevant parameters for the T2_
SPC sequence were repetition time/echo time (TR/TE) = 1,000
ms/125ms, field of view (FOV) = 82mm × 160mm,
matrix = 320 × 164, 2 average, slice thickness = 0.5mm, flip
angle 100◦, and scanning time: 3min 46 s; 3D-TOF sequence:
TR/TE = 20 ms/3.69ms, FOV = 191 × 200mm, matrix = 384
× 331, 1 average, slice thickness = 0.5mm, flip angle 18◦, and
scanning time: 4min 49 s.

Data were collected using MRI sequences including T1-
weighted magnetization-prepared rapid acquisition gradient-
echo (MPRAGE) for better anatomic reference and DSI using
pulsed gradient twice-refocused spin-echo echo-planar imaging
(EPI) sequences. T1-weighted sagittal images were obtained with
3D fast-field echo imaging. The following acquisition parameters
were employed: repetition time, 2,300ms; echo time, 3.55ms; flip
angle, 8◦; slice thickness, 0.9mm; number of sections, 192; FOV,
240 × 240mm; matrix, 256 × 256; and voxel size, 0.9 × 0.9mm.
The acquisition parameters for DSI were as follows: repetition
time, 6,300ms; echo time, 71ms; slice thickness, 2.2mm; number
of sections in the transverse plane, 60; FOV, 220 × 100mm;
matrix, 220 × 100; and voxel size, 2.2 × 2.2 × 2.2mm. A
total of 128 directions with the maximum diffusion sensitivity
bmax = 3,000 s/mm2 were sampled on the grid points in the
3D q-space. The grid sampling scheme sampled the diffusion
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encoding space using a given grid, which consisted of 19 b-values
of b = 200, 350, 400, 550, 750, 950, 1,100, 1,150, 1,500, 1,700,
1,850, 1,900, 2,050, 2,250, 2,400, 2,450, 2,600, 2,650, 3,000 s/mm2

along 3, 2, 4, 4, 3, 12, 8, 4, 6, 15, 8, 4, 12, 4, 2, 10, 22, 2, and 3
directions, respectively.

Clinical Data
The clinical data of all the patients with TN including sex, age,
symptom duration, and pain laterality (right or left pain) were
obtained frommedical records. Themain results of pain intensity
were evaluated by using the visual analog scale (VAS) (0: no
pain; 10: the most serious possible pain). The pain perception of
patients with TN was measured by a senior pain physician.

The judgment of the responsible vessel types shall be
diagnosed by the surgeon doctors and radiologists. For patients
undergoing MVD surgery, the type of responsible vessel can be
obtained by querying the operation records. If MVD surgery is
not performed or the operation records are unclear, two senior
radiologists will diagnose the type of responsible vessel through
pre-operative MRI examination. The types of responsible vessels
are divided into artery and vein.

Tract Analysis
To analyze the microstructure integrity of white matter fiber
bundles, we used the DSI Studio software (http://dsi-studio.
Labsolver.org/) to reconstruct the fiber bundles of all the
participants. The diffusion image was imported into the DSI
Studio software, brain mask was set, and generalized q-sampling
imaging (GQI) with diffusion sampling length ratio of 1.25
was used to reconstruct the model (17). Restricted diffusion
was quantified using restricted diffusion imaging. The region of
interest (ROI) is placed in the QA diagram, the volume sizes of
the ROIs were 1.3× 103mm3-2.0× 103mm3 within the cisternal
segment of the trigeminal nerve (24), and the trigeminal nerve
can be seen in the brainstem area of bilateral trigeminal nerves.
A deterministic fiber tracking algorithm is used to reconstruct
the trigeminal nerve tracts (25). The quantitative anisotropy
threshold was 0.20 ± 0.25 (subject dependent), the angular
threshold was 60◦, the step size was 1.2mm, the smoothness
was 0.80, the minimum length was 10mm, and the maximum
length was 200mm. A total of 5,000 were calculated. Finally, the
values of average GFA, QA, RDI, and ISO as well as the basic
diffusion coefficients such as FA, MD, AD, and RD are calculated.
Two radiologists with more than 10 years of neuroradiology
experience tracked the seeds and targets, respectively, and
obtained the average values of the above parameters.

Difference of Parameters
The average value of each parameter for HCs was obtained
from the average value of the left and right sides of these
participants. The difference value of each parameter = average
parameter value of HCs—parameter value of the affected side.
The difference scores of each parameter = (average parameter
value of HCs)—(parameter value of the affected side)/(average
parameter value of HCs) (10). The difference value and difference
scores of each parameter on the affected side and unaffected side
of patients with TN can be obtained. The above parameter value,

including the parameter value of TN affected side, unaffected side
and HCs, difference value, and difference scores were statistically
were used. Correlation analysis and logistic analysis were carried
out to investigate relationships among the parameter value and
VAS scores, symptom duration, and responsible vessel types.

All the patients were assigned to either the short-duration
(symptom duration < 4 years) or the long-duration (symptom
duration ≥ 4 years) groups and their affected side parameters
were compared. The threshold was set to the mean symptom
duration of all the trigeminal patients in our cohort. The statistics
analysis was performed with t-test.

Statistical Analysis
Continuous variables were summarized as means (±SD). For
categorical variables, the percentages of patients in each category
were calculated.

Statistical analyses were performed in the SPSS version 22.0
(IBM Corporation, Armonk, New York, USA). Differences
between groups were assessed using the independent samples
t-tests or the one-way ANOVA, whereas differences within
groups were assessed using the paired-samples t-tests. Benjamini
and Hochberg correction was used to correct the multiple
comparisons of different groups. The Bonferroni correction
was used to correct the multiple comparisons of intragroup
comparison. Bivariate correlation and partial correlation analyses
were used to identify the relationship between the DSI
parameters that exhibited significant differences and clinical
severity assessment. Normality of the data was assessed using
the Shapiro–Wilk-test. For non-normally distributed variables, a
non-parametric equivalent test was performed. If the data had
unequal variances (determined by Levene’s test for homogeneity
of variances) and/or unequal sample sizes, Welch’s t-test or
Welch’s ANOVA followed by Games–Howell post-hoc tests was
performed. p < 0.05 was considered as statistically significant.

RESULTS

Demographic and Disease Characteristics
of Participants
Table 1 shows 60 patients diagnosed with primary TN (age 57.45
± 8.78 years; range 25–80 years; 22 men and 38 women) and
35 HC (age 54.6 ± 5.2 years; range 45–65 years; 20 men and
15 women). Sex and age were not significantly different between
the two groups of subjects. Affected regions were more often
observed on the right side than the on left. Responsible vessels
are mainly arteries (73.3%) and veins (26.7%).

Diffusion Spectrum Imaging Analysis
In all the participants, we successfully completed high-definition
fiber tractography of the trigeminal nerve in cistern segments and
an instance of a patient’s tractography is displayed in Figure 1.
Two radiologists measured and calculated the parameters
separately and the intraclass correlation coefficients (ICCs)
of these measurements were ICCQA = 0.87, ICCISO = 0.96,
ICCMD = 0.93, ICCAD = 0.95, ICCFA = 0.86, ICCRD = 0.92,
and ICCGFA = 0.83. The parameters were averaged and analyzed.
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TABLE 1 | Demographic and disease characteristics of participants.

Patients (n = 60) Controls (n = 35) p-value

Age (mean ± SD, years) 57.45 ± 8.786 54.6 ± 5.259 0.085a

Sex (number, %)

Male 22 (36.7%) 20 (57.1%) 0.058b

Female 38 (63.3%) 15 (42.9%)

Disease duration (mean ± SD, years) 4.22 ± 4.04

Short duration 35 (58.4%) NA NA

Long duration 25 (41.6%)

Pain side (number,%)

Right 38 (63.3%) NA NA

Left 22 (36.7%) NA

VAS (mean ± SD, score) 8.45 ± 0.72 NA NA

Responsible vessels (number, %)

Arteries 44 (73.3%)

Superior cerebellar artery (SCA) 30 (50%) NA

Anterior inferior cerebellar artery (AICA) 10 (16.7%) NA

Basilar artery 4 (6.6%)

Veins 16 (26.7%) NA

VAS, visual analog scale; NA, not applicable.
ap-values were calculated with the two-tailed t-tests.
bp-value was obtained using the chi-squared test.

FIGURE 1 | Examples of volumes of interest, trigeminal nerve tracking, and

trigeminal nerve reconstruction. (A) Shows the quantitative anisotropy (QA)

diagram. (B) Shows the seeds placed on two sides of the cistern segments in

trigeminal nerve (purple and blue). (C) Shows the T1-weighted image (T1WI)

structural MRIs. The trigeminal nerve tractography for right side affected

patients with trigeminal neuralgia (TN) in QA diagram (D,E) and T1WI MRI (F).

After fiber tracking, DSI parameters were extracted for
intragroup comparison. There was no significant difference
in any parameters between the left and right sides of HCs.
Compared with the unaffected side of patients in the TN group,
the affected side showed significantly decreased QA (p < 0.001),
FA (p= 0.001), and GFA (p < 0.001), as shown in Table 2.

The parameters of the patient’s affected side and unaffected
side were compared with the average parameter values of
the HCs. In the affected side of patients in the TN group,
significantly decreased QA (p < 0.001), FA (p= 0.001), and GFA
(p < 0.001) and significantly increased AD (p = 0.036) were
noted compared with the average values of HCs. In addition,
there were significantly decreased QA (p = 0.046) and FA
(p = 0.008) between the patient’s unaffected side and the average
parameter values of HCs, as shown in Table 3 and Figure 2.

Difference of Parameters
The significantly different parameters discussed above were used
to calculate the parameter difference scores and correlation
analysis and logistic analysis were carried out between the
difference scores and VAS scores and symptom duration, and
responsible vessel types. There was a correlation between TN
patient’s’ VAS scores and symptom duration and there was no
significant correlation between the difference scores of each
parameter and VAS scores and between the difference scores
of each parameter and symptom duration. In the TN group,
FA (p = 0.028) was significantly decreased between arteryies
and veins in responsible vessel types. GFA showed artery (p <
0.001), followed by veins (p = 0.017), in the affected side had
the most significant decreases, compared with measurements of
the unaffected side, while FA showed no significant difference
between the affected artery and unaffected side, these findings are
depicted in Table 4 and Figure 3.

For affected side of the TN group, patients in the long-
duration (25, 41.6%) group showed significantly decreased ISO
(p = 0.021) and RDI (p = 0.021) compared with patients in the
short-duration group (35, 58.4%), as shown in Table 5.
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TABLE 2 | Compared with the sides of the affected and unaffected patients and the healthy control group left and right.

Patients (n = 60) p-value Healthy controls (n = 35) p-value

Affected Unaffected Left Right

QA 0.0665 ± 0.008 0.0837 ± 0.016 <0.001 0.0788 ± 0.013 0.0779 ± 0.011 0.7

FA 0.2678 ± 0.047 0.2764 ± 0.043 0.001 0.3159 ± 0.1159 0.3023 ± 0.0487 0.425

GFA 0.0627 ± 0.010 0.0713 ± 0.007 <0.001 0.0695 ± 0.0058 0.0700 ± 0.0064 0.744

QA, quantitative anisotropy; FA, fractional anisotropy; GFA, general FA.

p-values were calculated with the paired-samples t-tests.

TABLE 3 | Compared with patients and healthy controls.

Patient-unaffected Healthy control p-value Patient-affected Healthy control p-value

QA 0.08378 ± 0.0161 0.0783 ± 0.0099 0.046 0.0665 ± 0.0080 0.0783 ± 0.0099 <0.001

AD 0.00092 ± 0.0001 0.0008 ± 0.0001 0.059 0.00094 ± 0.0001 0.0008 ± 0.0001 0.036

FA 0.2764 ± 0.0435 0.3091 ± 0.0735 0.008 0.2678 ± 0.0469 0.3091 ± 0.0735 0.001

GFA 0.0713 ± 0.0071 0.0698 ± 0.0044 0.21 0.0627 ± 0.0102 0.0698 ± 0.0044 <0.001

QA, quantitative anisotropy; AD, axial diffusivity; FA, fractional anisotropy; GFA, general FA.

p-values were calculated with independent sample t-test.

FIGURE 2 | The (A–D) respectively shows QA, GFA, FA, AD of the affected side and unaffected side of patient with TN were compared with those average of the HC

group. ap was calculated with the paired-samples t-tests, bp was calculated with the independent samples t-tests (***p < 0.001; **p < 0.01; *p < 0.05). QA,

quantitative anisotropy; GFA, generalized FA; FA, fractional anisotropy; AD, axial diffusivity; HC, healthy control.

DISCUSSION

In this study, we explored the DSI parameters of trigeminal
nerve in patients with TN and HCs. The results showed that
QA, FA, and GFA on the affected side of individuals in the TN

group decreased significantly, compared with the values on the
unaffected side. On the affected side of individuals in the TN
group, QA, FA, and GFA were significantly decreased and AD
was significantly increased compared with the average values
of HCs. There were significantly decreased QA and FA in the
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TABLE 4 | Compared responsible vessel types and the unaffected side in patients.

FA p-value GFA p-value

Arteries (n = 44) 0.25990 ± 0.0461 0.028 0.06150 ± 0.0105 0.12

Veins (n = 16) 0.28971 ± 0.0435 0.06617 ± 0.0089

Arteries (n = 44) 0.25990 ± 0.0461 0.065 0.06150 ± 0.0105 <0.001

Unaffected side (n = 60) 0.27640 ± 0.0435 0.07133 ± 0.0071

Unaffected side (n = 60) 0.28971 ± 0.0435 0.281 0.06612 ± 0.0089 0.017

Veins (n = 16) 0.27640 ± 0.0435 0.07133 ± 0.0071

FA, fractional anisotropy; GFA, general FA.

p-values were calculated with independent sample t-test.

FIGURE 3 | Relationship between responsible vessel types and GFA value (A) and FA value (B) in TN patients (***p < 0.001; *p < 0.05). GFA, generalized FA; FA,

fractional anisotropy; DSI, diffusion spectrum imaging.

TABLE 5 | Compare short-duration and long-duration groups.

Patients (n = 60) p-value

Long duration (n = 25) Short duration (n = 35)

ISO 0.2766 ± 0.0494 0.3097 ± 0.0553 0.021

RDI 0.1625 ± 0.0345 0.1850 ± 0.0371 0.021

ISO, isotropic diffusion component; RDI, restricted diffusion imaging.

Short duration (symptom duration < 4 years), long duration (symptom duration ≥ 4 years).

p-values were calculated with independent sample t-test.

patient’s unaffected side of patient than the average parameter
values of HCs.

The etiology of primary TN is undefined. At present, the
generally recognized theory is NVC. When the trigeminal
nerve is compressed by blood vessels, the main cause
of TN may be trigeminal nerve fiber bundle edema and
demyelination (26). MVD well supports this theory. Routine
MRI cannot suitably evaluate the integrity of trigeminal
nerve white matter fiber bundle. Previous studies mostly
used the traditional DTI method to study the white matter
damage in patients with TN (27). Nevertheless, traditional
DTI cannot accurately distinguish the cross fibers with
limited angular resolution (28). In addition, DTI is affected
by magnetic susceptibility artifact and partial volume

average of complex fiber structure, which may lead to poor
tracking (29).

In this study, we chose DSI instead of DTI to evaluate the
damage of trigeminal nerve white matter fiber bundle. DSI has a
longer acquisition time and provides more accurate quantitative
details than DTI. DSI is a valuable tool for central nervous system
imaging as it can be used to visualize the structural details of
white matter bundles in multiple directions (14, 28–30). Similar
to previous studies (6, 7), in our study, the FA value of trigeminal
nerve on the affected side of TN patients was lower than that
on the unaffected side and the decrease of FA value indicated
that the integrity of white matter fiber bundle was damaged.
However, in our study, AD, RD, and MD in the patient group
did not increase significantly as previous studies. In this study,
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we found that FA, QA, and GFA values of the affected side of
TN patients were significantly lower than those of the unaffected
side and HCs. GFA was sensitive to axonal properties such as
the integrity of the axonal membrane and myelin (31), whereas
Yeh et al. (25) suggested that QA was more robust to free water
effect and partial volume of crossing fibers. In addition, QA
is an anisotropy index similar to FA, but it is calculated for
each orientation-distribution function peak in each voxel. The
decrease of QA and GFA can both reflect the damage to white
matter, similar to FA (25). In our study, the decrease of QA and
GFA values in TN patients might have indicated incompleteness
of axon structure.

Consistent with previous studies (6), our study found
that the QA and FA values of the unaffected side of TN
patients decreased compared with those of HCs. QA and FA
decreased, indicating that the integrity of trigeminal nerve
fibers on the unaffected side of TN patients was damaged.
Therefore, there may be microstructural abnormalities in
the trigeminal nervous system in individuals the TN group.
TN patients may be sensitive to chronic pain due to pre-
existing white matter abnormalities, which may explain why
some people do not develop TN even if they have NVC.
Because of the previous abnormalities of trigeminal nerve
(such as high AD value and/or MD, RD value, and low FA
value) (32), vascular compression is enough to cause TN,
and there may be individual differences in susceptibility to
chronic pain (6).

In our study, there were more patients with right TN than
left TN, which was consistent with the results of previous studies
(8, 26). The main responsible vessel type is the artery, especially
the superior cerebellar artery (SCA), followed by the anterior
inferior cerebellar artery (AICA) and the basilar artery, which is
also consistent with the previous study (8, 26).

In the study of correlation with clinical symptoms, previous
studies found that the decline rate of FA in DTI was significantly
correlated with VAS scores, symptom duration, and responsible
vessel types (11). Other studies showed that the decline of FA
was negatively correlated with VAS and symptom duration (11).
However, in this study, the difference scores of DSI parameters
were not significantly correlated with VAS, symptom duration,
and responsible vessel types. However, we found that artery GFA
had the most significant decrease, followed by veins, compared
with the unaffected side of individuals in the TN group. Previous
studies have shown that trigeminal artery compression results
in more obvious pain symptoms and more serious nerve injury
than venous compression because the pulsation of the artery is
better than that of the vein. Moreover, the calculation of GFA
is based on the orientation distribution function (ODF), which
accurately and sensitively reflects the integrity of axon or myelin
sheath than FA value and is very sensitive to axon characteristics
such as the integrity of axon membrane and myelin sheath (11).
Regardless of the presence of artery or vein compression, the
white matter fiber bundle of trigeminal nerve is damaged. The
injury in fiber bundle might be minimally difference, but the
edema caused by compression may be significantly different.
Hence, FA might be showed different, while GFA is not divided.

It might explain why GFA can evidently distinguish between
arteries, veins, and the unaffected side in TN patients while
FA not.

In our understanding, the longer the onset of pain symptoms
takes, the longer the trigeminal nerve and vascular compression
is. Then, damage to trigeminal nerve microstructure is more
serious in patients with long symptom duration. However,
our study showed that there was no significant difference in
QA, GFA, and FA between the patients with long and short
symptom duration. Previous animal studies (33) have proved that
the supposed pulsatile nature of pathological vascular contact
results in a process of demyelination and remyelination of
the nerve root, rather than progressive demyelination. This
process, together with the altered pain management threshold,
is considered to be the cause of the typical paroxysmal rather
than persistent pain syndrome in patients with TN. Based on this
result, it can be assumed that the changes of parameters reflect the
alternating process of demyelination and remyelination, rather
than linear progressive demyelination.

Furthermore, our results showed that patients with long
symptom duration had ISO and RDI decreased compared
with that of patients with short symptom duration. The ISO
is the minimum distribution value of an ODF. It represents
background isotropic diffusion contributed from cerebrospinal
fluid (CSF) or non-directional restricted diffusion (34). To
separate restricted ISO from non-restricted ISO, a spectrum of
RDI measures estimating restricted or non-restricted diffusion
was used (18). We suggested that it was possibly caused by long-
term microvascular compression, so that the intercellular space
was smaller and the isotropic diffusion of water molecules was
restricted. This finding may support NVC theory.

We acknowledge that our study has some limitations. First,
there will be some differences in the results of manual tracking
settings, including the position and size of ROIs, and the
anisotropy threshold. Secondly, the sample size of a single center
is relatively small, which may have limited the difference between
groups of some parameters, thus hindering the realization
of statistical significance to a certain extent. There are some
methodological considerations in previous research, such as
DTI vs. DSI, REZ vs. cisternal segment of nerve for the ROI
placement, averaging control nerves vs. comparing to just one
side etc. These methodological differences may also be a source
of discrepancy between the current study and previous literature.
The current study was a cross-sectional study. The longitudinal
study of TN patients in the future will help to evaluate the
prognosis of patients before operation and verify the accuracy
of this study. In the future, we hope to include more samples
for research.

CONCLUSION

We found that DSI parameters such as QA, GFA, FA decreased,
and AD increased in TN patients. Moreover, GFA can evidently
distinguish between arteries, veins, and the unaffected side in
patients with TN. This findings reflects the change of trigeminal
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nerve microstructure and fiber integrity, which helps us to better
understand the mechanism of disease.
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Background: Functional and structural alterations in the gray matter have been

observed in patients with knee osteoarthritis (KOA). However, little is known about white

matter changes in KOA. Here, we evaluated fractional anisotropy (FA), mean diffusivity

(MD), axial diffusivity (AD), and radial diffusivity (RD) to investigate potential alterations in

the white matter of patients with KOA.

Methods: A total of 166 patients with KOA, along with 88 age- and sex-matched

healthy controls were recruited and underwent brain magnetic resonance imaging (MRI).

Diffusion tensor imaging (DTI) data were collected and analyzed using tract-based

spatial statistics (TBSS). Statistical significances were determined at p < 0.05 and were

corrected by the threshold-free cluster enhancement (TFCE) method. Then, we evaluated

potential correlations between FA, MD, AD, RD values and disease duration, Western

Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, and visual

analog scale (VAS) scores.

Results: FA values for the body of corpus callosum, splenium of corpus callosum,

bilateral superior longitudinal fasciculus, cingulum, bilateral superior corona radiata, and

right posterior corona radiata were significantly higher in patients with KOA than in healthy

controls (p < 0.05, TFCE corrected). Compared with healthy controls, patients with KOA

also had significantly lower MD, AD, and RD values of the genu of corpus callosum,

body of corpus callosum, splenium of corpus callosum, corona radiata, right posterior

thalamic radiation, superior longitudinal fasciculus, and middle cerebellar peduncle (p <

0.05, TFCE corrected). Negative correlations were detected between WOMAC scores

and AD values for the body of the corpus callosum and the splenium of the corpus

callosum (p < 0.05, FDR corrected).
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Conclusion: Patients with KOA exhibited extensive white matter alterations in

sensorimotor and pain-related regions. Longitudinal observation studies on the causation

between abnormalities in the white matter tracts and KOA is needed in the future.

Keywords: knee osteoarthritis (KOA), diffusion tensor imaging, white matter, tract-based spatial statistics,

neuroimaging

INTRODUCTION

Osteoarthritis (OA) is a common cause of pain and disability
in the elderly (1) and predominantly affects the knee joint (2).
Knee osteoarthritis (KOA) affects at least 15–18% of people
globally (3), reduces multiple facets of the quality of life (QOL),
and induces an enormous healthcare burden in industrialized
societies (4). The risk factors for developing knee osteoarthritis
are age, obesity, and articular malalignment (2). According
to clinical guidelines, the first therapeutic principle for is to
relieve knee pain (5). However, the pathology of KOA is not
well-understood, thus restricting the development of specific
therapeutic protocols for clinical practice.

It is generally believed that the key factor underlying KOA
is inflammation due to the breakdown of joint tissues from
mechanical loading, aging, or other factors (6, 7). However, these
peripheral abnormalities do not fully account for the intensity of
pain in patients with chronic musculoskeletal pain (8) because
substantial discordance exists between radiographic OA of the
knee when compared to knee pain (9, 10). With the development
of neuroimaging techniques, researchers have found that the
central neural system plays a key role in KOA (11). For example,
several recent studies reported abnormal functions of the gray
matter in the lateral prefrontal cortex, parietal lobule, anterior
cingulate cortex, insula and limbic cortical, which were involved
in altered pain processing in KOA patients (12–14). These
findings were further validated by the observation of structural
changes in the graymatter in other neuroimaging studies (15, 16).
Given that the observed alterations in the structure and function
of the gray matter arise from the adaption or maladaption of
the brain to certain conditions such as prolonged nociceptive
input from chronic knee pain, it is reasonable to hypothesize
that the white matter could also be affected by this condition.
However, little is known about white matter alterations in
patients with KOA.

Abbreviations: 3DT1, three-dimensional T1-weighted; ACC, anterior cingulate

cortex; ACR, American College of Rheumatology; AD, axial diffusivity; BET, brain

extraction tool; BMI, body mass index; CC, corpus callosum; CRPS, chronic

complex regional pain syndrome; DTI, diffusion tensor imaging; FA, fractional

anisotropy; FDR, false discovery rates method; FDT, FMRIB’s diffusion toolbox;

FMS, fibromyalgia syndrome; FOV, field of view; GMV, gray matter volume; HC,

healthy control; IBS, irritable bowel syndrome; KOA, knee osteoarthritis; LPFC,

lateral prefrontal cortex; MD, mean diffusivity; MITN, midline and intralaminar

thalamic nuclei; MRI, magnetic resonance imaging; OA, osteoarthritis; OFC,

orbital frontal cortex; PFC, prefrontal cortex; QOL, quality of life; RD, radial

diffusivity; TR, repetition time; SAS, self-rating anxiety scale; SDS, self-rating

depression scale; SLF, superior longitudinal fasciculus; TBSS, tract-based spatial

statistics; TE, echo time; TFCE, threshold-free cluster enhancement; VAS,

visual analogue scale; WOMAC, Western Ontario and McMaster Universities

Osteoarthritis Index.

Diffusion tensor imaging (DTI) can provide significant
insight into the diffusion of water molecules and thus quantify
microstructural alterations within the white matter (17, 18).
Tract-based spatial statistics (TBSS) is the most common
method used to analyze DTI data (19) and includes four
metrics: fractional anisotropy (FA), axial diffusivity (AD), radial
diffusivity (RD), and mean diffusivity (MD). FA, as a marker of
axonal membrane circumference and packing density, reflects the
orientation and distribution of the random movements of water-
molecules (20). AD can reflect diffusional directionality along
axons and is related to the degree of myelination in the white
matter (21). RD can characterize the diffusional directionality
perpendicular to axons and is related to the beginning of
demyelination (22) or axonal damage (20). MD reflects the
diffusionmagnitude; this is related to inflammation and edema in
the white matter tracts (20). DTI and TBSS have been used wildly
for detecting abnormal white matter in various disorders, such as
schizophrenia spectrum disorders (23), chronic back pain (24),
osteoarthritis (13, 14), and fibromyalgia syndrome (FMS) (25). In
this study, we used the whole-brain TBSS method to investigate
potential differences in the white matter tracts of patients with
KOA and compared data with that derived from healthy controls
(HCs). We also correlated abnormal FA, MD, AD, and RD values
with clinical variables in patients with KOA to assess the clinical
meaning of our findings.

MATERIALS AND METHODS

Participants
Patients with a diagnosis of KOA at three hospitals (The First
Affiliated Hospital of Chengdu University of Traditional Chinese
Medicine, the Third Affiliated Hospital of Chengdu University
of Traditional Chinese Medicine, and the Orthopedic Hospital
of Sichuan Province) were enrolled from September 2016 to
September 2021. Brain magnetic resonance imaging (MRI) scans
were obtained on a GE 3.0T MRI scanner (GE 3.0T MR750,
Wauwatosa, WI) using a 16-channel head coil in Chengdu,
China. Age- and sex-matched HCs were also recruited. This
study was carried out in accordance with the Declaration of
Helsinki and was approved by the Institutional Review Board and
Ethics Committees of the First Affiliated Hospital of Chengdu
University of Traditional Chinese Medicine (No. 2016KL-017).

The diagnostic symptoms and signs of KOA patients were
assessed by two experienced orthopedists according to the
American College of Rheumatology (ACR) criteria (26). Patients
with KOA were recruited if they met the following inclusion
criteria: (a) aged from 38 to 70 years and right-handed; (b)
were diagnosed with KOA; (c) had a pain intensity >3 on a
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10-point numeric scale; (d) had a knee joint radiological degree
on the Kellgren-Lawrence scale of 0-II (27); and (e) had signed
a written and informed consent form. Patients with KOA were
excluded if they (a) had other major painful, psychiatric, or
neurological diseases; (b) had drug or alcohol addiction; (c) had
contraindications for MRI scans; (d) had taken any pain killer
medicine or complementary and alternative therapies within the
previous month; or (e) were pregnant or lactating.

HCs were recruited if theymet the following inclusion criteria:
(a) aged from 38 to 70 years and right-handed; (b) were free
from any pain disorders; and (c) signed the written and informed
consent form. HCs were excluded if they met the following
exclusion criteria: (a) accompanied by rheumatoid arthritis, high
blood pressure, diabetes, or psychiatric or neurological diseases;
(b) had drug or alcohol addiction; (c) had contraindications
for MRI scans; (d) had taken any medicine or complementary
and alternative therapies within the previous month; or (e) were
pregnant or lactating.

Clinical Data Acquisition
A range of data were collected for each patient, including age,
gender, height, weight, education level, and disease duration.
The average intensity of pain over the previous 2 weeks was
also obtained from all KOA participants using the visual analog
scale (VAS). The Western Ontario and McMaster Universities
Osteoarthritis Index (WOMAC) was used to assess the symptoms
and QOL of the KOA patients. Anxiety and depression were
evaluated in the KOA patients by using the validated Chinese
version of the self-rating anxiety scale (SAS) and self-rating
depression scale (SDS). The VAS, WOMAC, SAS, and SDS
assessments were administered on the same day when the MRI
scan was performed.

Image Acquisition
Brain MRI scanning sequences including three-dimensional
T1-weighted (3DT1) MRI scans and diffusion-weighted DTI
sequence with single-shot echo-planar imaging were performed
for all participants at baseline. The parameters of the 3DT1 scans
were as follows: repetition time (TR)= 6.008ms, echo time (TE)
= 1.7ms, data matrix= 256× 256, field of view (FOV)= 256×
256 mm2, and voxel size= 1.0× 1.0× 1.0 mm3. The parameters
of DTI scans were: FOV= 256× 256 mm2, TR= 8,500ms, echo
time = minimum, matrix = 128 × 128, number of diffusion-
encoding directions = 64, slice thickness 2mm, layer spacing =
0, and gradient values b= 0 s/mm2 and b= 1,000 s/mm2.

Diffusion Data Process
DTI data preprocessing and statistical analysis were conducted
using the FMRIB software library (FSL; http://www.fmrib.ox.
ac.uk/fsl/) (28). Data preprocessing steps included correction
for eddy current effects and head motion using FDT (FMRIB’s
Diffusion Toolbox), extraction of the brain mask with FSL’s
brain extraction tool (BET), and the calculation of diffusion
tensors by the DTIFIT program. After preprocessing, tract-
based spatial statistical analysis was performed, including non-
linear registration of each participant’s FA image to a 1 ×

1 × 1 mm3 standard space of the FMRIB58-FA template.

These images were affine co-registered to the MNI152 standard
space, and tracts were averaged to create a mean FA skeleton,
extracting the FA skeleton, and projecting each participant’s
aligned FA image back onto the mean FA skeleton with
a 0.2 FA threshold. The MD, AD, and RD images of
individual participants were also projected onto the mean
FA skeleton.

Statistical Analysis
Statistical comparison of the clinical data between patients with
KOA and HCs was performed using SPSS Statistics version 22.0
(IBMCorp., Armonk, NY). Age and bodymass index (BMI) were
compared between the two groups using a non-parametric test.
Gender distribution was analyzed between the two groups using
the chi-squared test.

Voxel-brain skeletal FA, MD, AD, and RD analysis was
performed between the KOA patients and HCs using a
general linear model through the FSL randomize toolkit.
Age, gender, and BMI were used as covariates. A 5,000-
repetition permutation test was conducted between the KOA
patients and HCs, and significant clusters were corrected
by the threshold-free cluster enhancement method (TFCE,
p < 0.05). After correction, only clusters with voxel size
>100 were reported (29). JHU ICBM-DTI-81 White-Matter
Labels in FSL were used to identify white matter tracts
showing significant alterations. Spearman’s correlation analysis
was conducted between the FA, MD, AD, and RD values
of significant clusters and a range of clinical characteristics
including disease duration, VAS scores, and WOMAC scores,
which were corrected by the false discovery rates method (FDR,
p < 0.05).

RESULTS

Clinical Characteristics
A total of 166 patients with a diagnosis of KOA (125 females,
age range: 39–67 years, mean ± SD: 52.87 ± 5.23 years) and 88
HCs (56 females, age range: 42–62 years, mean ± SD: 53.76 ±

TABLE 1 | Clinical and demographic characteristics of KOA and HC.

Items KOA HS P-value

(n = 166) (n = 88)

Age (years) 52.87 ± 5.23 53.76 ± 4.82 0.110

Gender (female/male) 125/41 56/32 0.051

BMI (kg/m2) 23.95 ± 2.85 23.85 ± 2.80 0.843

Duration (months) 45.95 ± 50.18 – –

WOMAC 35.73 ± 28.63 – –

VAS 4.31 ± 1.31 – –

SAS 35.96 ± 8.03 – –

SDS 30.97 ± 5.83 – –

Data were expressed as the Mean ± SD. BMI, body mass index; HC, health control;

KOA, knee osteoarthritis; SAS, self-rating anxiety scale; SDS, self-rating depression

scale; VAS, visual analog scale; WOMAC, Western Ontario and McMaster Universities

Osteoarthritis Index.
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FIGURE 1 | Alterations in TBSS parameters in patients with KOA. White matter regions showing increased FA and decreased MD, AD, and RD values in patients with

KOA compared to healthy controls. White matter regions showing overlapping FA, MD, AD, and RD values in the body, the splenium of the corpus callosum (p < 0.05,

TFCE corrected). AD, radial diffusivity; FA, fractional anisotropy; KOA, knee osteoarthritis; MD, mean diffusivity; RD, radial diffusivity; TBSS, tract-based spatial

statistics; TFCE, threshold-free cluster enhancement.

4.82 years) were recruited in this study. There were no significant
differences between the two groups in terms of age, gender, and
BMI (p > 0.05). The mean duration of patients with KOA was
45.95 ± 50.18 months (range: 1–241 months) and the mean
WOMAC and VAS scores of patients with KOA were 35.73 ±

28.63 and 4.31± 1.31, respectively. The demographic and clinical
data of the KOA patients and HCs are summarized in Table 1.

Tract-Based Spatial Statistics Analysis
Compared with HCs, patients with KOA showed a significant
increased FA in the body of the corpus callosum (CC), splenium
of CC, bilateral superior corona radiata, right posterior corona
radiata, bilateral superior longitudinal fasciculus (SLF), left
cingulum (cingulate gyrus), and bilateral fornix/stria terminalis
(p < 0.05, TFCE corrected; Figure 1; Table 2).

The MD was significantly reduced in the middle cerebellar
peduncle, genu of CC, body of CC, splenium of CC, right
cerebral peduncle, right posterior limb of internal capsule, right
retrolenticular part of the internal capsule, bilateral superior
corona radiata, bilateral posterior corona radiata, right posterior
thalamic radiation, right sagittal stratum, right external capsule,
left cingulum (cingulate gyrus), right cingulum (hippocampus),
and bilateral SLF in KOA patients (p < 0.05, TFCE corrected;
Figure 1; Table 2).

KOA patients had a reduced AD in the middle
cerebellar peduncle, pontine corticospinal tract, genu of
CC, body of CC, splenium of CC, right corticospinal tract,
bilateral medial lemniscus, bilateral inferior cerebellar
peduncle, bilateral superior cerebellar peduncle, left
anterior corona radiata, right superior corona radiata,
bilateral posterior corona radiata, right posterior thalamic
radiation, and right SLF (p < 0.05, TFCE corrected;
Figure 1; Table 2).

The RD of the middle cerebellar peduncle, genu of CC,
body of CC, splenium of CC, right cerebral peduncle, right
posterior limb of internal capsule, bilateral retrolenticular
part of the internal capsule, bilateral superior corona radiata,
bilateral posterior corona radiata, right posterior thalamic
radiation, right sagittal stratum, right external capsule, bilateral
cingulum (cingulate gyrus), right cingulum (hippocampus), right
fornix/stria terminalis, and bilateral SLF was also significantly
reduced in patients with KOA (p < 0.05, TFCE corrected;
Figure 1; Table 2).

The overlapping white matter tracts of the FA, MD,
AD, and RD were the body of CC and splenium of CC
(Figure 1; Table 2). Using education level, SAS and SDS
scores as covariates for further analysis did not change
these results above with respect to only age, gender, and
BMI as covariates.
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TABLE 2 | Regions with significantly increased FA and decreased MD, AD, and RD in patients with KOA.

WM

(JHU WM)

Cluster size

FA MD AD RD Overlap

Middle cerebellar peduncle – 905 1,068 1,179 –

Pontine crossing tract (a part of MCP) – – 202 – –

Genu of corpus callosum – 396 511 258 –

Body of corpus callosum 1,469 2,764 1,882 2,532 953

Splenium of corpus callosum 156 1,113 995 867 119

Fornix (column and body of fornix) 152 – – – –

Corticospinal tract R – – 131 – –

Medial lemniscus R – – 177 – –

Medial lemniscus L – – 108 – –

Inferior cerebellar peduncle R – – 154 – –

Inferior cerebellar peduncle L – – 161 – –

Superior cerebellar peduncle R – – 115 – –

Superior cerebellar peduncle L – – 131 – –

Cerebral peduncle R – 203 – 283 –

Posterior limb of internal capsule R – 349 – 361 –

Retrolenticular part of internal capsule R – 641 – 661 –

Retrolenticular part of internal capsule L – – – 189 –

Anterior corona radiata L – – 152 – –

Superior corona radiata R 146 566 143 601

Superior corona radiata L 139 141 – 318 –

Posterior corona radiata R 151 736 493 524

Posterior corona radiata L – 443 161 378 –

Posterior thalamic radiation (include optic radiation) R – 745 152 773 –

Sagittal stratum (include inferior longitudinal fasciculus and inferior

fronto-occipital fasciculus)

R – 264 – 232 –

External capsule R – 113 – 137 –

Cingulum (cingulate gyrus) R – – – 180 –

Cingulum (cingulate gyrus) L 233 104 – 386 –

Cingulum (hippocampus) R – 113 – 180 –

Fornix (cres) / Stria terminalis R 223 274 – 249 –

Fornix (cres) / Stria terminalis L 143 – – – –

Superior longitudinal fasciculus R 516 1,170 296 1,073 –

Superior longitudinal fasciculus L 100 292 – 558 –

p < 0.05, TFCE corrected. AD, radial diffusivity; FA, fractional anisotropy; JHU WM, JHU ICBM-DTI-81 White-Matter Labels; KOA, knee osteoarthritis; L, left; MCP, middle cerebellar

peduncle; MD, mean diffusivity; R, right; RD, radial diffusivity; WM, white matter.

Correlations Between White Matter Tracts
and Clinical Characteristics
For the KOA group, AD values of the body of CC (r =−0.249, p
= 0.0098; FDR corrected) and the splenium of CC (r=−0.201, p
= 0.0489; FDR corrected) were correlated with WOMAC scores
(Figure 2). None of the FA, MD, and RD metrics in any of
the brain tracts was related with WOMAC, VAS scores, disease
duration, SAS, or SDS (p > 0.05, FDR corrected).

DISCUSSION

This study featured a large sample size and used TBSS analysis
to investigate alterations in the white matter of patients with

KOA. Several regions in patients with KOA showed increased
FA, and decreased MD, AD, and RD values when compared with
HCs, including the CC, corona radiata, longitudinal fasciculus,
cingulum, and thalamic radiation (Figure 1; Table 2). In patients
with KOA, the AD values of the body of CC and splenium
of CC were both correlated with WOMAC scores (Figure 2).
These results reflected global white matter alterations in the KOA
patients. To our knowledge, this is the first DTI study to detect
alterations in the white matter of neural pathways in patients
with KOA.

Functional changes in the regions of the brain responsible
for perception, affection, and cognition have been detected
in OA patients (12–14). These alterations in functional
plasticity are often accompanied by gray matter remodeling
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FIGURE 2 | Correlations between AD values and WOMAC scores. (A) A

negative correlation was observed between AD values for the body of the

corpus callosum and WOMAC scores. (B) A negative correlation was

observed between the AD values for the splenium of the corpus callosum and

WOMAC scores (p < 0.05, FDR corrected). AD, axial diffusivity; FDR, false

discovery rates; WOMAC, Western Ontario and McMaster Universities

Osteoarthritis Index.

and reorganization of the neurons, axons, and circuits (30, 31),
further inducing the development and persistence of chronic
pain (32). Furthermore, decreased gray matter volume (GMV)
has been detected in the anterior cingulate cortex (ACC), orbital
frontal cortex (OFC), lateral prefrontal cortex (PFC), precentral
cortex, postcentral cortex, caudate nucleus, hippocampus, insula,
thalamus, and amygdala of patients with OA (15, 16, 33). In
this study, we found alterations in the white matter tracts
of the CC, cingulum (cingulate gyrus), corona radiata, and
superior longitudinal fasciculus in patients with KOA. These
are all important components of the somatosensory and pain-
related pathways and participate in the central integration and
modulation of various peripheral perceptions, cognition, and
emotion of pain (34).

The corpus callosum is the largest fiber tract and acts as a
bridge for communicating perceptual, cognitive, volitional, and
motor information between the two hemispheres (35, 36), and
features prefrontal axons crossing the midline in the genu of
the CC, somatosensory and motor axons crossing in the body
of CC, and occipital and temporal axons crossing the midline
in the splenium of CC (37). In the present study, we found
that abnormal microstructure of the white matter spanned the
length of the corpus callosum, thus suggesting alterations in
the integration of cognitive, sensory, and motor information
in KOA patients. Previous studies detected abnormal gray
matter function and volume in the prefrontal, sensory, and
cognitive regions in OA patients (12–16). Alterations in the
CC connecting the sensory gyri might reflect an abnormal

amount of nociceptive information entering the central nervous
system from the peripheral nervous system. These alterations
in motor integration may result from the evasive action evoked
by KOA patients to lessen or avoid knee pain. The results
of our study are in line with several other whole-brain TBSS
studies which also found the abnormalities of the CC in patients
with chronic pain diseases (25, 36, 38, 39). Furthermore, the
AD values for the body of CC and the splenium of CC were
negatively correlated with WOMAC scores in patients with
KOA. Peripheral pathological pain is associated with persistent
traumatic stimuli to the central nervous system and may be
the microstructural basis for central sensitization, thus leading
to central neuroinflammatory processes and edema (40, 41).
Therefore, this correlation suggested that the integrity and
neurofilament phosphorylation of axons in the CC may mediate
individual variations in the clinical knee pain of patients with
KOA. Abnormalities in the CC may be the specific indicator
of maladaptive plastic modifications in KOA patients and CC-
mediated interhemispheric connections might contribute to
clinical sensory pain (42).

In the present study, we also detected an abnormal white
matter microstructure in the corona radiata of patients with
KOA. The corona radiata starts from the inner capsule
and connects to the inferior frontal-orbital cortex and ACC,
which is responsible for emotional expression and cognitive
processing transmission between the brain hemispheres (43).
Significant abnormalities in the corona radiata have been found
in other chronic pain diseases, such as trigeminal neuralgia
(39), chronic migraine (44), and chronic complex regional
pain syndrome (CRPS) (45). These findings might suggest that
there are abnormalities of emotional regulation in patients with
chronic pain.

Increased FA values and decreased MD, AD, and RD values
of the SLF were also found in patients with KOA in this study.
Several previous studies have reported alterations in gray matter
and abnormal functional brain activity in the insula, bilateral
precentral gyrus, and frontal cortex in patients with chronic pain
diseases, including chronic back pain (24), osteoarthritis (13, 14),
and fibromyalgia syndrome (FMS) (25). Pain perception ismostly
projected to the primary and secondary somatosensory areas,
including the postcentral gyrus, paracentral lobule, precentral
gyrus, and insula through the SLF (46). Furthermore, alterations
in the microstructure of the white matter in the corticospinal
tract were found in patients with KOA. The motor cortex
may reduce the intensity of pain perception through the
corticospinal tract; these represent the output pathway from
cortical motor efferent to the descending pain modulatory
system (47).

The cingulum is an important white matter pathway
located within the limbic system (48). The midline and
intralaminar thalamic nuclei (MITN) receive differing
amounts of the spinothalamic tract, the pronociceptive
sub-nucleus reticularis dorsalis, the parabrachial nucleus
inputs, and project to the cingulate gyrus through the
cingulum (49–51). In this study, microstructural alterations
were mostly involved in the cingulum (cingulate gyrus) and
cingulum (hippocampus). Persistent perceptive signals of
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pain lead to increased connections between the cingulum-
hippocampal tract and default network, thus leading to
the impairments in the avoidance behaviors provoked by
OA (48).

Findings from TBSS studies of patients with chronic pain
diseases are controversial (38, 52–55). In patients with pediatric
migraine, carpal tunnel syndrome, and neuromyelitis optica
spectrum disorders with neuropathic pain, the FA values were
increased (53–55). Patients with idiopathic trigeminal neuralgia
were found to have a lower FA, along with an increased MD,
AD, and RD, in the white matter of connecting areas (52),
while patients with migraine without aura showed lower MD
and AD values in multiple white matter tracts of the brain
(38). In the present study, we observed increased FA values
but reduced MD, AD, and RD values in several white matter
tracts in patients with KOA. There are several factors that may
responsible for such discordances, including different kinds of
diseases and subjects, sample sizes, research methods, scanning
parameters, and statistical approach. Furthermore, the intensity
and persistency of pain has been proven to be related with
morphological and functional brain regions in patients with OA
(12, 14). In this study, the mean VAS score of KOA patients
was 4.31, which may have a milder effect on white matter than
patients with a high intensity of pain. Also, we should consider
that changes in neural expression of the white matter of patients
with KOA might be related to a longer disease duration and
concomitant neuroplasticity (40, 56). In this study, the mean
disease duration of KOA was about 46 months. It is possible that
central nervous system plasticity may have occurred after nerve
impairment (56, 57). These changes in structural plasticity help
pain-related learning and memory and may further contribute to
the development of chronic pain or minimize the effects of pain
on the body (57). In summary, the reasons for the controversial
values of FA, MD, AD, and RD in white matter tracts reported
in this study may be related to abnormal axonal integrity (axonal
loss or the loss of bundle coherence) (58, 59), neural regeneration,
and plasticity (56, 57).

There are several limitations in this study that need to
be considered. First, this was a preliminary study relating
to abnormalities of the white matter in patients with KOA
compared with healthy controls. Second, correlations between
the injury condition of the local knee joints and white matter
alternations in KOA patients has not been identified. Third,
the causation between alterations in the white matter tracts
and KOA has yet to be elucidated. Longitudinal observation
studies on the relationships between abnormalities in the
white matter tracts and KOA need to be identified in
further study.

CONCLUSION

Patients with KOA showed extensive alterations in the white
matter of the CC, corona radiata, longitudinal fasciculus,
cingulum, and thalamic radiation. Furthermore, the AD values of
the body and the splenium of CC were correlated with WOMAC
scores in patients with KOA. Longitudinal observation studies on
the causation between abnormalities in the white matter tracts
and KOA are needed in the future.
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Neuropathic pain (NeuP), a challenging medical condition, has been suggested by

neuroimaging studies to be associated with abnormalities of neural activities in some

brain regions. However, aberrancies in brain functional alterations underlying the

sensory-discriminative abnormalities and negative emotions in the setting of NeuP remain

unexplored. Here, we aimed to investigate the functional alterations in neural activity

relevant to pain as well as pain-related depressive-like and anxiety-like behaviors in

NeuP by combining amplitude of low frequency fluctuation (ALFF) and degree centrality

(DC) analyses methods based on resting-state functional magnetic resonance imaging

(rs-fMRI). A rat model of NeuP was established via chronic constriction injury (CCI) of

the sciatic nerve. Results revealed that the robust mechanical allodynia occurred early

and persisted throughout the entire observational period. Depressive and anxiety-like

behaviors did not appear until 4 weeks after injury. When the maximum allodynia

was apparent early, CCI rats exhibited decreased ALFF and DC values in the left

somatosensory and nucleus accumbens shell (ACbSh), respectively, as compared with

sham rats. Both values were significantly positively correlated with mechanical withdrawal

thresholds (MWT). At 4 weeks post-CCI, negative emotional states were apparent and

CCI rats were noted to exhibit increased ALFF values in the left somatosensory and

medial prefrontal cortex (mPFC) as well as increased DC values in the right motor cortex,

as compared with sham rats. At 4 weeks post-CCI, ALFF values in the left somatosensory

cortex and DC values in the right motor cortex were noted to negatively correlate with

MWT and exhibition of anxiety-like behavior on an open-field test (OFT); values were

found to positively correlate with the exhibition of depressive-like behavior on forced

swimming test (FST). The mPFC ALFF values were found to negatively correlate with

the exhibition of anxiety-like behavior on OFT and positively correlate with the exhibition
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of depressive-like behavior on FST. Our findings detail characteristic alterations of neural

activity patterns induced by chronic NeuP and underscore the important role of the left

somatosensory cortex, as well as its related networks, in the mediation of subsequent

emotional dysregulation due to NeuP.

Keywords: neuropathic pain, allodynia, negative emotions, functional magnetic resonance (fMRI), ALFF, DC

INTRODUCTION

Neuropathic pain (NeuP), caused by pathology of the
somatosensory nervous system, is commonly seen as a chronic
condition in clinical practice (1). The general prevalence of NeuP
is estimated to reach 7-8% and, as such, significantly decreases
the quality of life and imposes a high societal burden (2–4). In
addition to hyperalgesia, allodynia, and spontaneous pain, NeuP
is also accompanied by the manifestation of emotional disorders
including anxiety and depression (1, 5). Notably, emotional
disbalance further exacerbates NeuP (6, 7). Although NeuP
has become a major worldwide public health concern (8), the
mechanisms underlying its pathogenesis remain unclear, and
thus its treatment remains challenging.

The brain is involved in the central regulation of pain
and the generation of negative emotions (9, 10). Noxious
stimulation affects multiple brain regions, including the primary
somatosensory cortex (S1), the secondary somatosensory cortex
(S2), anterior cingulate cortex (ACC), prefrontal cortex
(PFC), thalamus, nucleus accumbens (NAc), amygdala,
and periaqueductal gray (PAG) (10, 11). Most of these
aforementioned brain regions similarly engage in the regulation
of emotion (12–16). As such, pain induces “an unpleasant
sensory and emotional experience” and provides a physiological,

GRAPHICAL ABSTRACT | Brain functional alteration at different stages of neuropathic pain.

structural, and functional basis for multi-dimensional changes
seen in the setting of chronic pain (17). Previous studies
have reported that the structural and functional disorders of
these relevant brain regions contributed to the generation and
maintenance of allodynia and negative emotions in chronic pain
(18, 19). Multiple lines of evidence have suggested that obvious
pathological pain develops early and that negative emotions
do not become apparent until later (20). Furthermore, a recent
study reported that pathological pain resulting from different
etiologies affects distinct neural circuits (21). Whether a similar
sequence of alterations in distinct brain regions corresponds to
the manifestation of pathological pain and negative emotions in
different stages of NeuP, however, remains unknown.

Functional magnetic resonance imaging (fMRI), a non-
invasive neuroimaging technique, is used to evaluate the
relationship between hemodynamic response and neuronal
activity (22). It reflects both physiological functions and
metabolic alterations caused by local neuronal activity via
changes in blood-oxygen-level-dependent signal (BOLD) (23).
As rs-fMRI can macroscopically detect resting-state neuronal
activity, it is frequently used in the study of a variety of
neuropathologies (24, 25). Brain diseases are associated with
abnormal local spontaneous neuronal activity (26). Many
methods have been exploited to characterize local properties of
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FIGURE 1 | Schematic of the experimental timeline.

the rs-fMRI signal, including the amplitude of low-frequency
fluctuation (ALFF) and degree centrality (DC) (26, 27). ALFF
is used as an indicator to characterize the intensity of neural
activity at a voxel, while DC reflects the intrinsic functional
connectivity between a node (voxel) and other nodes within the
brain, and can be used to evaluate hub nodes (27, 28). Here, rs-
fMRI was used to investigate brain abnormalities in both the early
and late stages of NeuP using ALFF and DC to assess relevant
central mechanisms.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley (SD) rats (160-180 g) were purchased
from Shanghai Slack Laboratory Animal Ltd. (Shanghai,
China). The animals were kept under a 12/12 h reverse
light cycle in a controlled environment at a temperature
of 21 ± 1◦C and relative humidity of 60–70%. Food and
water were available to the rats at all times, and the animals
were provided a 7-day acclimatization period to their new
environment prior to experimentation. A total of 16 rats
were randomly divided into sham (n = 8) and chronic
constriction injury (CCI; n = 8) groups. Experimental
procedures stated in the National Institutes of Health
Guidelines for the Use of Laboratory Animals were approved
by the Institutional Animal Care Committee of YueYang
University of Traditional Chinese Medicine, Shanghai, China.
All behavioral tests were performed between 8:00 am and 11:30
am. The flowchart of the experimental design is shown in
Figure 1.

CCI Model
Rats were anesthetized via intraperitoneal injection with sodium
pentobarbital (50 mg/kg). Left-sided CCI of the sciatic nerve was
achieved as previously described by us (20). A surgical incision of
one centimeter was initially made in the middle of the thigh and
the left sciatic nerve was exposed after being bluntly separated
from the muscle. The exposed sciatic nerve was subsequently
ligated in four passes using a gut suture (3-0 silk). In sham group
rats, only the left sciatic nerve was exposed without ligature.
All surgical procedures were performed by the same individual
to prevent potential bias. All efforts were made to minimize
animal suffering, and there were no rat deaths during surgery to
establish CCI.

Behavioral Tests
Nociceptive Behavioral Test
The von Frey plantar aesthesiometer (IITC,Woodland Hills, CA,
USA) was used to measure mechanical withdrawal thresholds
(MWT). Animals were placed separately in Plexiglas cages on
a punching table for 15min to allow acclimatization to the
environment prior to testing. Each rat’s left hind paw was
stimulated three times at 5min intervals during the formal
examination. Paw withdrawal, flinching, or licking was regarded
as positive behavior (29). Each value was recorded; MWT were
represented by the mean values.

Open Field Test
The open-field test (OFT) was conducted to measure athletic
ability and anxiety-like behavior (30). Rats were provided an
acclimatization period of 30min in the behavior assessment
room prior to experimentation. The dimensions of the testing
apparatus were 100 cm (length) × 100 cm (width) × 40 cm
(height); it contained non-reflective black walls and floor. Each
rat was gently placed in the central zone and allowed to freely
explore the area for 10min in a quiet environment. The central
zone was defined as an area covering 40% of the total area of the
box. SMART 3.0 software (Panlab, Cornella, Spain) was used to
record and analyze time and distance traveled in the central zone,
as well as the total distance traveled. The apparatus was cleaned
after testing each rat using 75% ethanol.

Elevated Plus Maze Test
The elevated plus-maze test (EPMT) was used to measure anxiety
associated with open spaces and height (31). Themaze comprised
two 50 × 10 cm open arms, two 50 × 10 cm closed arms, and
a 10 × 10 cm central area. The closed arms were contained by
boards 40 cm high. The maze was placed 80 cm above the floor in
a testing room. Each rat was placed onto the central area facing
one open arm and allowed to explore the maze for 10min (20).
Time spent in the arms of the maze and total distance traveled by
rats was analyzed using SMART software. After testing each rat,
the apparatus was cleaned as described above.

Forced Swimming Test
The forced swimming test (FST) was conducted to assess
depressive behavior. Rats were placed into a glass cylinder (height
30 cm; diameter 18 cm) filled with water (23 ± 1◦C) for 6min.
Immobility time throughout the 4min of the testing session was
evaluated. Immobility was defined as behavior manifesting by the
rat only keeping its head above water and attempting to float with
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minimal exertion (32). The experimenter was blinded to both the
CCI and sham groups.

fMRI Acquisition
We performed fMRI scans at 11 and 32 days post-CCI and
collected imaging data using a Bruker 7T magnetic resonance
system (Bruker Corporation) with a coil. Before data acquisition,
rats were anesthetized with 2.5% isoflurane and Medetomidine
(0.025 mg/kg). Under continuous 1.5–2% isoflurane anesthesia,
rats were fixed on the scanner with their heads immobilized.
Body temperature and respiration were continuously monitored.
Imaging data were obtained with the following interlayer
scanning echo-plane parameters: interleaved scanning order;
flip angle = 90◦; slice thickness = 0.3mm;, repetition time =

3,000ms; 200 times points; imaging duration= 10min; echo time
= 20ms; number of averages= 1; field of vision= 32× 32 mm2;
matrix= 64× 64 voxels.

fMRI Data Preprocessing
Data preprocessing was conducted using the Statistical
Parametric Mapping 12 toolbox (http://www.fil.ion.ucl.ac.
uk/spm/) based on the MATLAB 2014a platform. To match data
to human dimensions, the first five time points were removed and
images expanded by 10 × 10 × 10. This amplification procedure
only modulated the dimension descriptor fields in the file header
instead of changing interpolation. Manual stripping of none-
brain tissue was then performed before further preprocessing. To
minimize the temporal bias of slice acquisition, slice scan time
correction was performed. To reverse the dislocation of voxels
caused by head motion, spatial adjustment with rigid-body
transformations was applied. The standard brain template in
Schwarz’s study was used to accomplish the normalization of
common space, the voxel size for normalized images was 2.06 ×
2.06 × 2mm (33). Images were subsequently smoothed by a full
width at half maximum quadruple as the voxel size (6.18 × 6.18
×6mm). For further preprocessing, temporal bandpass filtering
(0.01–0.08Hz) was applied to decrease the low-frequency drift
based on the removal of covariates and linear trends.

ALFF Calculation
ALFF depends on the blood oxygen level (BOLD) signal of each
voxel and reflects the extent of spontaneous neuronal activity
(20). Here, we calculated ALFF values for the traditional low-
frequency band (0.01–0.08Hz) and divided them by the global
mean ALFF value within the brain mask (28).

DC Calculation
DC represents the extent of interconnectivity between a given
voxel (node) and other voxels, thus detailing the importance
of the voxel or brain area. A change in the DC value of a
node indicates altered connectivity; these changes were calculated
during analyses (34). The DC was calculated using the REST
toolbox (http://www.restfmri.net). A whole-brain functional
connectivity matrix based on a REST-supported binary mask
was constructed using Pearson’s correlation coefficients between
gray matter voxel. To improve normality and derive the Z-
score matrix, the Fisher transformation was used. Regional

FIGURE 2 | Evaluation of mechanical withdrawal thresholds (MWT). All data

are expressed as the Mean ± SEM (n = 8 per group). ***p < 0.001 vs. the

sham group.

functional connectivity strength was calculated as the sum of
all the connections (Z-values) between voxels. Greater strength
values were extracted and analyzed.

Statistical Analyses
Statistical analyses were performed using SPSS 19.0 (IBM Corp.,
Armonk, USA). Behavioral data were expressed as the mean
± standard error (SEM). Differences in MWT between the
two groups at multiple time points were compared via two-
way repeated measures analysis of variance (time-treatment
interaction) with the Bonferroni test for post-hoc comparisons.
Differences in OFT, EPMT, and FST data were analyzed using
an independent-samples t-test. Prior to analyses, data were
checked for conformance to the normal distribution using the
Shapiro-Wilk normality test; when normal distribution was not
supported, the Wilcoxon rank-sum test was used. A p < 0.05
was considered statistically significant. Sham and CCI group
ALFF and DC values obtained from fMRI data were compared
using two-sample t-tests. Results were corrected for multiple
comparisons with a combined threshold of a single voxel (p <

0.001). AlphaSim estimation was performed using REST v2.329
(http://rfmri.org/dpabi). To decrease the possibility of false-
negative results, a threshold (p < 0.001, cluster size >12 voxels)
was applied to each cohort. Pearson correlation analysis was
utilized to evaluate the correlation among behavioral test and
fMRI ALFF and DC value data.

RESULTS

CCI Induced Mechanical Allodynia
A main effect of the CCI model [F(1,14) = 109.9; p < 0.0001]
and a significant group × time interaction [F(4,56) = 38.39; p
< 0.0001] were noted among the two groups. The day before
CCI surgery, no significant differences in MWT among the two
groups were found (p > 0.05). After the surgery, CCI group
ipsilateral hind paw MWT values were noted to significantly
decrease from days 7 to 28 as compared with sham group values
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FIGURE 3 | Depressive and anxiety-like behaviors induced by CCI in rats. Anxiety-like behavior was accessed using both the open field test (OFT) (A–D, K–N) and

the elevated plus maze test (EPMT) (E–H, O–R). Depressive-like behavior was accessed using the forced swimming test (FST) (I,J,S,T). (A,K) OFT was performed on

(Continued)
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FIGURE 3 | days 8 and 29 after CCI surgery; (B,L) Distance traveled in the central zone on OFT; (C,M) Time spent in the central zone on OFT; (D,N) Total distance

traveled on OFT; (E,O) EPMT was performed on days 9 and 30 after CCI surgery; (F,P) Distance traveled in the open arms on EPMT; (G,Q) Time spent in the open

arms on EPMT; (H,R) Total distance traveled on EPMT; (I,S) FST was performed on days 10 and 31 after CCI surgery; (J,T) Immobility time on FST. All data are

expressed as the Mean ± SEM (n = 8 per group). *p < 0.05, **p < 0.01 vs. sham group.

(all p < 0.001; Figure 2), indicating that CCI induced persistent
mechanical allodynia.

CCI Induced Emotional Disorders
Behavioral tests conducted on days 8–10 after CCI revealed the
following (Figures 3A,E,I): (1) analyses of OFT data revealed
no differences in distance traveled (p > 0.05) and time spent
(p > 0.05) in the central zone, as well as total distance traveled
(p > 0.05) among CCI and sham groups (Figures 3B–D); (2)
analyses of EPMT data revealed no differences in distance
traveled (p > 0.05) and time spent (p > 0.05) in maze open
arms, and total distance traveled (p > 0.05) among the two
groups (Figures 3F–H); (3) analyses of FST data revealed CCI
group immobility time to be similar to that of the sham group
(p > 0.05; Figure 3J). Behavioral tests conducted from days
29 to 31 revealed the following: (Figures 3K,O,S) (1) analyses
of OFT data revealed that CCI group rats traveled shorter
distances (p < 0.001) and spent less time (p < 0.01) in the
central zone as compared to sham group rats (Figures 3L,M).
No differences in total distance traveled were noted between
groups (p> 0.05; Figure 3N); (2) analyses of EPMT data revealed
that CCI rats traveled significantly shorter distances (p < 0.05)
and spent significantly less time (p < 0.05) in the open arms
of the maze (Figures 3P,Q). The total distance in EPM did not
show any difference (p > 0.05) in the two groups (Figure 3R);
(3) analyses of FST data revealed that CCI rats were immobile
for significantly longer as compared to sham rats (p < 0.05;
Figure 3T). These findings suggest that depressive and anxiety-
like behaviors induced by CCI do not appear in the early stages
of pathology until approximately 4 weeks after injury.

Post-CCI Alterations in ALLF at Different
Time Points
On day 11 post-CCI, experimental group rats exhibited
significantly lower ALFF values in the left somatosensory cortex
as compared to sham group rats (Figure 4A and Table 1). At
this time point, Pearson correlation analysis revealed a positive
correlation between ALFF values in the left somatosensory cortex
and MWT values (r = 0.679, p = 0.004; Figure 4B). On day
32 post-CCI, experimental group rats were found to exhibit
significantly higher ALFF values in the left somatosensory cortex
and left mPFC as compared to sham group rats (Figure 4A and
Table 1). Pearson correlation analysis revealed that both ALFF
values in the left somatosensory cortex and left mPFC negatively
correlated with MWT values (r = −0.762, p = 0.001 for the
left somatosensory cortex, Figure 4C; r = −0.656, p = 0.006
for the left mPFC, Figure 4D), distance traveled in the central
zone of the maze on OFT (r = −0.647, p = 0.007 for the left
somatosensory cortex, Figure 4E; r = −0.569, p = 0.02 for the
left mPFC, Figure 4F), and length of time spent in the central
zone on OFT (r = −0.73, p = 0.001 for the left somatosensory

cortex, Figure 4G; r = −0.512, p = 0.04 for the left mPFC,
Figure 4H). ALFF values in the left somatosensory cortex and
left mPFC, however, were both noted to positively correlate with
immobility duration values on FST (r = 0.55, p= 0.02 for the left
somatosensory cortex, Figure 4I; r = 0.319, p = 0.02 for the left
mPFC, Figure 4J) throughout the aforementioned time period.
No significant correlation between EPMT and ALFF values in
the left somatosensory cortex (r = −0.4, p = 0.08 for distance
traveled in the open arms; r = −0.41, p = 0.1 for time spent in
the open arms) and left mPFC (r = −0.373, p = 0.1 for distance
traveled in the open arms; r = −0.406, p = 0.1 for time spent in
the open arms), however, was noted (Supplementary Figure 1).

Post-CCI Alterations in DC at Different
Stages
Compared to sham rats, CCI rats were found to exhibit
significantly decreased DC values in the left nucleus accumbens
shell (ACbSh) on day 11 post-CCI and the right motor
cortex on day 32 post-CCI (Figure 4A and Table 2). Pearson
correlation analysis revealed that left ACbSh DC values positively
correlated with MWT values on day 11 post-CCI (r = 0.75,
p = 0.001, Figure 5B) and that right motor cortex DC values
negatively correlated with MWT values on day 11 post-CCI
(r = −0.764, p = 0.001, Figure 5C). Right motor cortex DC
values were similarly found to negatively correlate with values
of distance traveled within the central zone of the maze (r
= −0.631, p = 0.009, Figure 5D) and time spent in the
central zone (r = −0.573, p = 0.02, Figure 5E) on OFT, and
positively correlate with immobility duration values on FST
(r = −0.542, p = 0.03, Figure 5F). No significant correlation
between right motor cortex DC values and EPMT data were
noted (Supplementary Figure 2).

DISCUSSION

This study aimed to investigate alterations in brain functional
features throughout the development and progression of NeuP.
We confirmed that the robust mechanical allodynia occurred
early in injury and persisted in a CCI rat model of NeuP. Pain-
related negative emotions did not manifest until 4 weeks after
nerve injury. ALFF and DC values were found to be significantly
decreased in the left somatosensory cortex and ACbSh early in
CCI rats as compared to sham controls. When anxiety- and
depression-like behaviors manifested, ALFF and DC values were
noted to significantly increase in the left somatosensory cortex,
left mPFC, and right motor cortex among CCI rats.

As ALFF reflects the magnitude of spontaneous neuronal
activity, an altered ALFF suggests abnormal regional
neuronal activity. We found that neuronal activity within
the somatosensory cortex of CCI group rats is suppressed early
after injury yet enhanced in later stages as compared with the
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FIGURE 4 | Significant alternations in ALFF induced by CCI and correlations between ALFF values and the mechanical withdrawal thresholds (MWT) values, open field

test (OFT) data, and forced swimming test (FST) data. (A) CCI group rats were found to exhibit significantly lower ALFF values in the left somatosensory cortex on day

(Continued)
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FIGURE 4 | 11 after CCI surgery and significantly higher ALFF values in both the left somatosensory cortex and mPFC on day 32 after CCI surgery as compared to

sham group rats; (B) ALFF values in the left somatosensory cortex (10 days after CCI surgery) positively correlated with MWT values (7 days after CCI surgery); (C–H)

ALFF values in the left somatosensory cortex and mPFC (32 days after CCI surgery) negatively correlated with MWT (28 days after CCI surgery), distance traveled and

time spent in the central zone of OFT (29 days after CCI surgery); (I,J) The ALFF values in the left somatosensory cortex and mPFC (32 days after CCI surgery) was

positively correlated with immobility time on FST (31 days after CCI surgery).

TABLE 1 | Results of amplitude of low-frequency fluctuations (ALFF) analysis.

Contrast name MNI-coordinates

Time Region label Extent t-value x y z

Day 11 L-Somatosensory Cortex 12 −5.324 −46 1 −71

Day 32 L-Somatosensory Cortex 24 6.063 −54 24 −37

L-Medial Prefrontal Cortex 20 5.741 −7 −5 −69

L, left; R, right.

TABLE 2 | Differences in DC values between model and sham groups.

Contrast name MNI-coordinates

Time Region label Extent t-value x y z

Day 11 L- nucleus accumbens shell 50 −5.281 −7 −28 −59

Day 32 R- motor cortex 45 5.030 −14 34 −63

L, left; R, right.

control group rats. The somatosensory cortex (primary (S1)
and secondary (S2) somatosensory cortices) is responsible for
the sensory-discriminative dimension of pain processing and
receives noxious somatosensory input from the somatosensory
thalamus, coding spatial, temporal, and intensive aspects
of noxious somatosensory stimuli (35–38). Several clinical
and experimental lines of evidence confirmed that NeuP
induces changes in both morphology and plasticity within
the somatosensory cortex (39–41). Patients suffering from
NeuP display changes in somatosensory cortex activity and
anatomy not seen in patients suffering from non-neuropathic
chronic pain (42). A longitudinal study reported that lower
somatosensory cortex excitability among patients in the acute
stages of low back pain was associated with significantly
increased odds of developing chronic pain by 6-month follow-up
(43). Furthermore, activation of inhibitory neural circuits
within the somatosensory cortex using electroacupuncture
was reported to alleviate hyperalgesia in the setting of NeuP
(44). Interestingly, somatosensory cortex functions are not
restricted to pain sensation; rather, they are involved in the
regulation of comorbid anxiety in the setting of persistent
pain as well as aversive responses to pain (45, 46). Our results
supported these concepts and suggested that changes in
ipsilateral somatosensory cortex excitability play active roles
in the chronification of NeuP and manifestation of negative
emotions among CCI model rats with left-sided sciatic nerve
ligation. Unlike the left somatosensory cortex, ALFF remained
static in the left mPFC and exhibited significant increases only
in the later stages of NeuP, also correlating with mechanical
hyperalgesia and the manifestation of negative emotions. The

mPFC has previously been extensively implicated in the affective
emotional and cognitive aspects of pain and pain modulation
(47, 48). A study evaluating human fMRI data that analyzed 270
participants across 18 studies found that pain representations
were localized to the anterior midcingulate cortex, negative
emotion representations to the ventromedial prefrontal cortex,
and cognitive control representations to portions of the dorsal
midcingulate cortex (49). Many studies have similarly shown that
mPFC activity to be altered in the setting of chronic pain (50).
Importantly, gray matter mPFC volume decreases among people
suffering from chronic pain (51). Layer- and subregion-specific
electrophysiological and morphological changes in the mPFC
have further been reported in the setting of NeuP (52). The
plasticity of serotonin transmission in the mPFC facilitates the
manifestation of anxiety associated with NeuP (53). Likewise, the
excitability of pyramidal mPFC neurons was noted to increase
when depressionmanifested. Among NeuP rats; this was induced
via nerve-sparing injury (54). As such, the mPFC plays a key
role in the development of negative emotions associated with
NeuP. Pain-related neural activity shifts in focus from the acute
pain circuit to the emotional one, suggesting an alteration in
perception to be a key consequence of NeuP (55).

The evaluation of DC reveals the importance of a neural
node within connectivity networks at the voxel level (34). In
this study, the left ACbSh was found to exhibit decreased DC
early in NeuP. One recent fMRI study reported that patients
suffering chronic pain exhibited smaller nucleus accumbens
volumes and loss of power in the slow-5 frequency band
(0.01–0.027Hz) only after the onset of the chronic pain phase,
highlighting a likely signature of the state of chronic pain
(56). As a subregion of the nucleus accumbens, the ACbSh
also plays an important role in mediating NeuP (57). Spinal
nerve ligation was recently reported to decrease the relative
intensity of excitatory and inhibitory synaptic inputs to medium
spiny neurons within the ACbSh, resulting in a decreased the
frequency of spontaneous inhibitory postsynaptic currents as well
as both the frequency and amplitude of spontaneous excitatory
postsynaptic currents in medium spiny neurons (58). Here,
we found increased DC values in the right motor cortex later
in NeuP when anxiety- and depression-like behaviors were
noted. In agreement with our findings, another study reported
excitability of the motor cortex to be higher in chronic pain
patients and possess a significantly negative correlation with
anxiety (59). A double-blind randomized study found that 40%
of NeuP patients are able to achieve remission with the use
of motor cortex stimulation via surgically implanted electrodes
(60). A systematic review and meta-analysis of fMRI studies
also found that the motor cortex of such patients exhibited
significantly decreased activity after treatments as compared to
baseline (40).
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FIGURE 5 | Significant DC alternations induced by CCI and correlations between DC values and the mechanical withdrawal thresholds (MWT), open field test (OFT),

and forced swimming test (FST) data. (A) CCI group rats exhibited significantly lower DC values in the left nucleus accumbens shell (ACbSh) on day 11 after CCI

surgery and significantly higher DC values in the right motor cortex on day 32 after CCI surgery as compared to sham rats; (B) DC values in the ACbSh (10 days after

CCI surgery) positively correlated with MWT values (7 days after CCI surgery); (C–E) DC values in the right motor cortex (32 days after CCI surgery) negatively

correlated with MWT values (28 days after CCI surgery), distance traveled and time spent in the central zone of OFT (29 days after CCI surgery); (F) DC values in the

right motor cortex (32 days after CCI surgery) positively correlated with the immobility time on FST (31 days after CCI surgery).

The somatosensory cortex, mPFC, nucleus accumbens,
and motor cortex likely possess functional connections that
participate in pain modulation. For instance, the density of
perineuronal nets in the somatosensory cortex and mPFC
were found to be enhanced in a mouse model of chronic
inflammatory pain (61). Motor cortex stimulation was found
to block the transmission of somatosensory information to the
primary somatosensory cortex and alleviate chronic pain (62).
Corticotropin-releasing factor neurons of the mPFC project
directly to the nucleus accumbens and increased activity in these
neurons in the setting of NeuP facilitates behavioral responses to
morphine reward (63). Interestingly, the practice of traditional
mindful breathing was found to successfully modulate functional
connectivity between the prefrontal and primary somatosensory
cortices and relieve pain (64).

This study was not without limitations. Here, we only focused
on evaluating functional changes in brain regions as NeuP
developed but did not investigate for structural abnormalities.

Further studies are needed to elucidate the contribution of these
brain structures to pain sensitivity and the manifestation of
negative emotions. In addition, future study of changes in brain
plasticity is warranted. Finally, patient sex differences were not
considered in this study. A clear sexual dimorphism in NeuP is
known to exist, with females reported to be more sensitive (65).

In conclusion, our study indicates that longitudinal changes
in intrinsic brain activity are associated with the development
of NeuP. More specifically, we found lower neuronal activity
and voxel-voxel connectivity in the somatosensory cortex and
ACbSh to be key in nociception and the modulation of pain
processing early in NeuP when maximal allodynia was apparent.
With the manifestation of depressive and anxiety-like behaviors,
higher neuronal activity and voxel-voxel connectivity in the
somatosensory cortex, mPFC, andmotor cortex highlight the key
role of these regions in themodulation of negative emotions. This
study provides a basis for future investigation aiming to advance
neuromodulatory intervention for NeuP.
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Objective: Acupuncture has been shown to be effective in the treatment of chronic

pain. However, their neural mechanism underlying the effective acupuncture response

to chronic pain is still unclear. We investigated whether metabolic patterns in the pain

matrix network might predict acupuncture therapy responses in patients with primary

dysmenorrhea (PDM) using a machine-learning-based multivariate pattern analysis

(MVPA) on positron emission tomography data (PET).

Methods: Forty-two patients with PDM were selected and randomized into two groups:

real acupuncture and sham acupuncture (three menstrual cycles). Brain metabolic

data from the three special brain networks (the sensorimotor network (SMN), default

mode network (DMN), and salience network (SN)) were extracted at the individual level

by using PETSurfer in fluorine-18 fluorodeoxyglucose positron emission tomography

(18F-FDG-PET) data. MVPA analysis based onmetabolic network features was employed

to predict the pain relief after treatment in the pooled group and real acupuncture

treatment, separately.

Results: Paired t-tests revealed significant alterations in pain intensity after real but

not sham acupuncture treatment. Traditional mass-univariate correlations between brain

metabolic and alterations in pain intensity were not significant. The MVPA results showed

that the brain metabolic pattern in the DMN and SMN did predict the pain relief in the

pooled group of patients with PDM (R2 = 0.25, p = 0.005). In addition, the metabolic

pattern in the DMN could predict the pain relief after treatment in the real acupuncture

treatment group (R2 = 0.40, p = 0.01).

Conclusion: This study indicates that the individual-level metabolic patterns in DMN

is associated with real acupuncture treatment response in chronic pain. The present

findings advanced the knowledge of the brain mechanism of the acupuncture treatment

in chronic pain.

Keywords: acupuncture, metabolic, biomarker, primary dysmenorrhea, machine learning
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INTRODUCTION

Acupuncture, a traditional Chinese medical procedure, has been
widely used to alleviate diverse pains for over 2,000 years (1).
The National Institutes of Health have suggested acupuncture
as a potentially useful option for various chronic pain disorders,
such as menstrual pain (2). Primary dysmenorrhea (PDM), a
classic chronic and cyclic pain disorder, is characterized by cyclic
cramping pain in the lower abdomen during menstruation and a
lack of any visible pelvic pathology. PDM affects most women
throughout the menstrual years, with up to 90% of adolescent
females globally reported experiencing it (3). Although PDM is a
common reason for work absenteeism and lower quality of life in
women, the disorder is often under-diagnosed and poorly treated
(4). Several randomized controlled trials (RCTs) further suggest
favorable effects of acupuncture on menstrual pain intensity and
other symptoms of dysmenorrhea (5–7). Moreover, our previous
meta-analysis also demonstrated that acupuncture is safe and
effective in PDM management (8), and real acupuncture could
be more effective than placebo/sham group in pain relief (9).

Although acupuncture has been shown to be effective in
pain relief in patients with PDM, the inter-individual response
of different patients to acupuncture treatment varies greatly
(10–12). Similarity, responses to other treatments for pain
are also be affected by multidimensional individual differences
(13–15). Because pain is a highly personal and subjective
experience, it is not surprising that the outcome of treatment
is influenced by the baseline physiological state of individuals
(16, 17). Thus, the baseline brain characteristics of individuals
might be a useful biomarker to predict differential responses to
intervention strategies.

Neuroimaging biomarkers have recently proven promising for
predicting responses to treatment and are used for elucidating
the underlying brain mechanism for pain relief. For example,
Reggente et al. (18) found that pre-treatment brain connectivity
in the visual network and the default mode network (DMN)
significantly predicted obsessive-compulsive disorder severity
after treatment. Conversely, clinical pre-treatment variables
did not reliably predict post-treatment outcomes, indicating
that brain networks are stronger predictors than more readily
obtained clinical scores. A recent study found that resting-
state regional homogeneity in the temporoparietal junction
was an important predictive factor of treatment effects of
acupuncture in patients with cervical spondylosis neck pain (19).
As such earlier studies show successful applications of brain-
based biomarkers to predict therapeutic effects at the individual
level, the development of quantitative, objective neuroimaging
biomarkers/predictors is of increasing importance to provide
optimal treatment for PDM and provides a useful approach
to illustrate the broad applicability of acupuncture. In the past
few years, neuroimaging studies of PDM have increasingly
and collectively shown that PDM is associated with significant
changes in brain anatomy, function, and metabolism (20–24).
However, no study investigates the individual-level metabolic
biomarker of treatment response in PDM.

In this exploratory study, we thus aimed to investigate
whether individual-level brain metabolic biomarkers in a special

network at baseline can predict acupuncture responses in the
treatment of PDM using multivariate pattern analysis (MVPA)-
based machine-learning techniques. We first acquired metabolic
data from 42 individuals with PDM who underwent fluorine-
18 fluorodeoxyglucose positron emission tomography (18F-FDG
PET-CT) at baseline. Participants were then randomized into a
real group and a sham acupuncture group and treated over the
course of three menstrual cycles. Lastly, MVPA was applied to
explore the optimal metabolic predictors for clinical responses
after treatment in subjects with PDM. To improve the analytic
power and efficiency in this study, we restricted them to some
special networks, such as the DMN, the sensorimotor network
(SMN), and the salience network (SN), where previous studies
found abnormal alterations in patients with chronic pain. We
hypothesized that the individual-level metabolic patterns of these
target networks can predict acupuncture responses in patients
with PDM.

MATERIALS AND METHODS

Participants
A total of 42 patients with PDMwere enrolled via advertisements
and hearsay, and all participants were confirmed through
telephone and face-to-face interviews. This study was
approved by the affiliated Hospital of Chengdu University
of Traditional Chinese Medicine Institutional Review Board.
Before participation, all patients provided voluntary informed
consent. The inclusion criteria for enrollment were fellows: (1)
between the ages of 18 and 30; (2) a regular menstrual cycle
(27–32 days); (3) more than 1 year of PDM history; (4) no
hormones or centrally acting medication in the last 6 months;
(5) cramping pain during menstruation at least 4 on a 0–10
visual analog scale (VAS); and (6) right-handedness. Exclusion
criteria were as follows: (1) organic pelvic diseases; (2) visceral
pain caused by other diseases; (3) a positive pregnancy test; (4)
a history of neurological or psychiatric disorders; and (5) any
contraindications to PET or MRI scanning. During the study,
four cases were dropped out before the first clinical measurement
and imaging scan, and five cases were dropped out before the
first acupuncture treatment. Four cases did not complete all
treatment sessions. Finally, 29 patients completed all clinical
assessments and imaging sessions (Figure 1).

Clinical Assessment
In this study, we used VAS (0= “no pain at all,” 10= “unbearable
pain”) as primary outcome measurement to assess menstrual
pain severity (25). In addition, the Zung Self-Rating Depression
Scale (SDS) and the Zung Self-Rating Anxiety Scale (SAS) were
also used to access the mental state of participants (26, 27).
All clinical assessments were measured at baseline and after 3
menstrual cycles’ acupuncture treatments.

Acupuncture Intervention
Patients were randomly assigned to either the real or sham
acupuncture groups using a computer-generated random-
allocation process. All participants and clinical evaluators were
unaware of the group assignment until the end of the study. Only
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FIGURE 1 | Study design and research flow chart.

the acupuncturists were informed about the treatment allocation
and accordingly delivered real or sham treatment. Two licensed
acupuncturists with at least 3 years of experience performed
acupuncture on two groups of PDM patients. Participants
received a course of acupuncture treatment that lasted 5–7 days
before menstrual onset. The treatments lasted 3 weeks.

Based on the date-driven results of previous research and
expert opinions, the Sanyinjiao (SP6) point was chosen for the
real acupuncture treatment (28). The SP6 is located on the
posterior border of the tibia and 3 cun directly superior to the
tip of the medial malleolus (29). After the skin has been cleaned
with 75% alcohol, 0.25 × 40-mm stainless needles (Hwatuo,
Suzhou, China) were inserted to a depth of 1.0–1.2 cun and
gently twisted, lifted, and thrust at an even amplitude, force, and
speed. “Deqi” sensation of a soreness, numbness, heaviness, and
distension sensation was essential during and after the operation.
A 30-s manipulation was conducted every 10min during 30-min
needling retention. For the sham group, a nearby sham acupoint
was chosen at the same level as the SP6 andXuanzhong (GB39), at
the midpoint of the stomach and gallbladder meridians. Patients
in the sham group had an acupuncture technique comparable
to those in the actual acupuncture group. However, there was

no manipulation following needle insertion, and the “Deqi”
sensation was not required.

Statistical Analysis of Clinical Data
All statistical analyses were conducted in SPSS (SPSS statistical
software, version 22.0, SPSS Inc., Chicago, IL, USA). The inner-
group difference in VAS score (post-treatment minus pre-
treatment) across each treatment group was tested by using
paired t-test. Furthermore, a two-sample t-test has been used
to compare the within-group difference of VAS score change
(post-treatment minus pre-treatment) between the real and
sham acupuncture groups. In addition, the relationships between
before and after treatment clinical features were assessed with
partial correlation analysis, controlling for age and treatment
method. The significant level for all analyses was set at p < 0.05.

Imaging Acquisition
The structural MRI (sMRI) data were acquired to co-register
the brain region to the PET image. A 32-channel radio-
frequency head coil in a 3.0-Tesla magnetic resonance scanner
was used to collectMRI data (DiscoveryMR750, General Electric,
Milwaukee, WI, USA). To limit head motion and scanner
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FIGURE 2 | Regions of interest. Sensorimotor network (SMN): bilateral post-central (S1), and bilateral insula. Salience network (SN): the dorsolateral prefrontal cortex

(dlPFC), and bilateral dorsal anterior cingulate cortex (dACC). Default mode network (DMN): bilateral inferior parietal cortex (IPC), precuneus, isthmus cingulate cortex

(ICC), and posterior cingulate cortex (PCC).

noise, earplugs and tight yet soft foam padding were used. The
following parameters were used to create a high-resolution, T1-
weighted structural image: repetition time= 2,530ms, echo time
= 3.39ms, field of view = 256mm × 256mm, data matrix
= 256 × 256; slice thickness = 1mm, gap = 0mm, and
flip angle = 7◦. Referring to our previous studies (30), 18F-
FDG-PET scanning was prepared at Sichuan Provincial People’s
Hospital using a Biograph Duo BGO scanner (Siemens, Munich,
Germany). The FDG-PET image was scanned in the morning
during the periovulatory phase (the middle 5 days between the
two menstrual periods). After fasting for at least 12 h, patients
underwent the following procedures: (1) fasting plasma glucose
and resting blood pressure measurements at 8 a.m., (2) a 15–
20min peaceful rest in a darkroom, (3) an intravenous injection
of fluorine-18 fluorodeoxyglucose on the back of the right hand
(synthesized with a Mini Tracer accelerator at 0.11 MCi/kg
dosage), (4) a 40-min rest, and (5) a PET-CT scan. Before
picture capture, there was a 40-min uptake period. Patients were
encouraged to stay motionless during scanning by having their
heads immobilized, their ears muffled, and their eyes blinded.

Region of Interest (ROI) Selection
Sixteen ROIs in the cortical region were selected for further
analysis (Figure 2). Four regions were identified as key regions
within the SMN, the bilateral post-central (S1), and bilateral
insula (31, 32), which represent the major ascending pathways
of pain; four regions were selected in the SN, which represent
the descending pathways that modulate pain by inhibiting
nociceptive transmission, such as the bilateral caudal middle
frontal gyrus (a region within the dorsolateral prefrontal cortex,
dlPFC), the bilateral caudal anterior cingulate cortex (a region
in the dorsal anterior cingulate cortex, dACC) (33); and eight
regions were selected in the DMN, which are involved in pain
rumination (34), such as the bilateral inferior parietal cortex
(IPC), the precuneus, the isthmus cingulate cortex, and the
posterior cingulate cortex (PCC).

Imaging Processing and Individual-Level
Metabolic Extraction
The pre-processing of sMRI and metabolic data was conducted
using FreeSurfer and PETSurfer toolbox (version 6.0, http://
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FIGURE 3 | Flowchart of the MVPA procedure. (A) Obtaining quantitative information from preprocessed PDG-PET scans. (B) Extracting metabolism data across all

voxels in all ROIs. (C) Constructing feature matrixes of the SUVR. (D) Building the SVR model with LOOCV to predict each participant’s response to acupuncture.

FDG-PET, fluorodeoxyglucose positron emission tomography; LOOCV, leave-one-out cross-validation; ROIs, regions of interest; sMRI, structural magnetic resonance

imaging; SUVR, standardized uptake value ratio; SVR, support vector regression.

surfer.nmr.harvard.edu/). First, the cortical parcellation and
subcortical segmentation methods have been described in detail
in our prior publications (35, 36). Second, the standardized
uptake value rate (SUVR) was calculated for the metabolic state
in the brain regions. The SUVR is useful for normalizing the
comparison of the significant inter-individual variability in the
global PET signal (37). A symmetric geometric transfer matrix
(SGTM) method was used for partial volume correction (PVC)
where limited scanner resolution causes the activity to appear to
spill out of one region and into another (38). To perform PVC,
the PET data were registered to theMRI data via boundary-based
registration (BBR) using a six degree of freedom linear transform
(39). The MRI segmentation was mapped onto the PET space
in a way that accounted for the tissue fraction effect (38). The
SUVR for each ROI was computed by dividing the intensity of
the ROI by the intensity of the pons at the individual level (39)
(FreeSurfer commands: gemseg, mri_coreg, and mri_gtmpvc).
Third, the SUVR data of the 16 ROIs were extracted from the
processed images at the individual level for further analysis.

Multivariate Pattern Analysis
We attempted to predict clinical symptom alterations after the
treatment based on special metabolic networks. We used linear
support vector regression (SVR) that was implemented with the
LIBSVM toolbox (40) for model training and further prediction
analysis. We used the change in pain severity (VAS change) as
the dependent variable and brain metabolic network features as
independent variables (predictors) while controlling for effects
of age, treatment method (only in the pooled group prediction
analysis, see below), and VAS score at baseline. A leave-one-
out cross-validation (LOOCV) method was used to ensure a

clear separation between training and test sets. LOOCV is
appropriate for preliminary estimate prediction in longitudinally
neuroimaging studies where sample sizes are small (41). To
evaluate the predictive ability of SVR, we calculated the mean
absolute error, defined as the mean discrepancy between actual
and predicted values (42, 43), and the squared prediction-
outcome correlation (R2), defined as the squared correlation
between the prediction and true outcome. Furthermore, we
estimated the probability that random chance would predict the
treatment response and SVR method (permutation test with
10,000 iterations). Because of the small sample size of the present
study, we combined the real and sham groups for a pooled
group MVPA analysis, where the treatment method effect was
controlled as a covariate. In addition, theMVPA analysis was also
conducted within each group separately. Figure 3 illustrates the
individualized prediction framework used in this investigation.

Mass-Univariate Correlation Analysis
To directly compare our multivariate SVR analysis with
traditional mass-univariate correlation analyses, we tested
the association between treatment responses and metabolic
properties in each ROI using a traditional bivariate Pearson
correlation analysis. The significance level was set at p < 0.05.

RESULTS

Demographic Characteristics and Clinical
Results
As shown in Table 1, statistical analysis indicats no significant
difference in age, disease duration, body mass index (BMI),
baseline VAS scores, SDS scores, and SAS scores between the
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TABLE 1 | Demographics and clinical characteristics of each group.

Real (n = 14) Sham (n = 15) T P

Mean SD Mean SD

Age (years) 24.86 1.75 24.53 2.07 0.45 0.653

Duration

(months)

90.57 36.31 97.40 34.09 −0.52 0.606

BMI 19.20 1.15 19.45 1.81 −0.44 0.664

Baseline VAS 6.07 1.07 6.00 1.20 0.17 0.867

Baseline SDS 39.68 7.28 43.42 10.07 −1.14 0.265

Baseline SAS 41.34 5.56 40.55 7.80 0.31 0.758

Post-

treatment

VAS

3.50 1.70 5.30 1.39 −3.14 0.004

Change VAS −2.57 1.55 −0.70 1.62 −3.17 0.004

BMI, body mass index; VAS, visual analog scale; SAS, Self-Rating Anxiety Scale; SDS,

Self-Report Depression Scale.

two treatment groups at the baseline stage (all p > 0.05).
For intra-group comparison, the post-treatment VAS value was
significantly decreased in the real acupuncture group than
baseline (T = 6.19, p = 3.28 × 10−5); however, no change
was detected in the sham acupuncture group throughout the
trial (T = 1.67, p = 0.12). For inter-group comparison, there
was a significant difference in the real acupuncture vs. sham
acupuncture group in the changes of VAS value after three
menstrual cycles of treatment (T = −3.17, p = 0.004). Baseline
VAS scores were not significantly associated with VAS changes
after treatment after controlling for age and treatment methods
in the pooled group analysis (R = −0.34, p = 0.07) and the real
acupuncture group (R=−0.20, p= 0.51). In addition, treatment
responses did not correlate with disease duration, SAS, or SDS
(all p > 0.05). In addition, no significant difference was found in
the SUVR in all selected regions between the two groups (all p >

0.05), see Table 2.

MVPA Analysis Results
The SUVR patterns in the SMN and DMN could predict the
VAS changes in the pooled group (SMN, R2 = 0.20, p = 0.01,
Mean Absolute Error = 2.64; DMN, R2 = 0.14, p = 0.04, Mean
Absolute Error = 2.51). In addition, the mixed SUVR pattern in
the DMN and SMN could predict better for the VAS changes
in the pooled group (R2 = 0.25, p = 0.005, Mean Absolute
Error = 2.70; Figure 4A). In the real acupuncture group, the
SUVR pattern in the DMN could predict the VAS changes after
treatment (R2 = 0.40, p = 0.01, Mean Absolute Error = 2.71;
Figure 4B). No other significant predictor was found in the real
acupuncture or the sham acupuncture group.

Mass-Univariate Correlation Results
To directly compare the multivariate pattern machine-learning
analysis with traditional mass-univariate correlation analyses,
we conducted Pearson correlation analyses. The results are
displayed in Table 3: no significant association between

regional SUVR and VAS changes is found using univariate
correlation analysis.

DISCUSSION

To our knowledge, this is the first study using a brain
metabolic biomarker to predict the pain relief after acupuncture
treatment in chronic pain disorders. MVPA-based machine-
learning approach was employed to explore whether pre-
treatment brain metabolism in three special networks (SMN,
DMN, and SN) can predict acupuncture treatment responses in
patients with PDM. The MVPA results show that mixed DMN
and SMN did indeed predict the observed pain relief in patients
with PDM. Specially, the DMN metabolic pattern could predict
the pain relief after real acupuncture treatment in patients with
PDM. These findings support the brain metabolic mechanism in
the acupuncture treatment for chronic pain.

Multivariate pattern analysis is a widely used machine-
learning approach in the neuroimaging research field (44). This
technique has been used to investigate the pathophysiology of
chronic pain conditions, such as neck pain (19), trigeminal
neuralgia (45), and chronic back pain (46). The present findings
illustrated that metabolic features at baseline may be a useful
predictor for acupuncture treatment responses in patients with
PDM. In our study, the predictive power and strength of MVPA
approaches were validated in two ways. First, we found that
baseline clinical or demographic features were not enough to
predict outcome responses. Our results converge with previous
findings of more accurate predictions from neural than readily
obtained clinical information (47, 48). The MVPA analysis,
where baseline VAS scores were controlled as covariates, suggests
that baseline biomarkers reflect the capacity of an individual
with PDM to return to normalcy (quantified by their VAS
score) after acupuncture, independent of their starting symptom
severity. Second, the traditional mass-univariate correlations
between brain metabolic features and VAS changes were not
significant. MVPA technology can increase sensitivity to subtle
and spatially distributed brain differences, which may not be
detected by traditional approaches (49, 50). We thus demonstrate
the feasibility and reliability of MVPA models for predicting
clinical symptom changes after acupuncture treatment in patients
with PDM.

In our SVR models, the multivariate pattern in the SMN
and DMN significantly predicted the VAS changes. The key role
of the DMN and SMN in predicting responses to acupuncture
is consistent with the central role of these networks in the
pathophysiology of PDM. In some previous studies, brain
abnormalities in areas associated with DMN and SMN have been
confirmed to be related to PDM. For instance, using PET (20)
and sMRI (21, 51), Tu et al. found increases in metabolism
and altered gray matter volumes in brain regions within the
DMN in patients with PDM vs. healthy controls. Of note, the
SMN is involved in the sensory-discriminative aspects of pain.
A resting-state functional MRI (fMRI) study observed a trait-
related reduction of functional connectivity between the DMN
and the SMN during a pain-free phase, indicating that the altered
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TABLE 2 | The SUVR in all selected regions of each group.

Brain Networks Regions Real (n = 14) Sham (n = 15) T P

Mean SD Mean SD

Salience network Left dACC 3.05 0.18 3.09 0.20 1.05 0.30

Left dlPFC 2.75 0.13 2.74 0.10 0.20 0.84

Right dACC 2.77 0.18 2.85 0.24 −1.03 0.31

Right dlPFC 2.68 0.15 2.67 0.12 0.07 0.95

Default mode network Left IPC 2.54 0.12 2.54 0.07 −0.22 0.83

Left ICC 2.50 0.09 2.50 0.14 −0.10 0.92

Left PCC 2.67 0.10 2.69 0.11 −0.45 0.66

Left PCU 2.52 0.11 2.48 0.10 0.87 0.39

Right IPC 2.58 0.10 2.55 0.09 0.72 0.48

Right ICC 2.47 0.17 2.52 0.11 −0.98 0.34

Right PCC 2.63 0.12 2.70 0.10 −1.73 0.10

Right PCU 2.54 0.09 2.56 0.08 −0.48 0.64

Sensorimotor network Left S1 2.17 0.08 2.17 0.09 0.03 0.98

Left Insula 2.93 0.16 2.91 0.15 0.29 0.78

Right S1 2.13 0.08 2.17 0.11 −0.95 0.35

Right Insula 2.88 0.18 2.94 0.11 −0.94 0.35

dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; IPC, inferior parietal cortex; ICC, isthmus cingulate cortex; PCC, posterior cingulate cortex; PCU, precuneus;

S1, postcentral.

FIGURE 4 | Predicting treatment effects using baseline SUVR patterns in special networks. (A) SUVR pattern in the SMN and DMN as a predictor for the pooled

group. (B) SUVR pattern in the DMN as a predictor for the real acupuncture treatment group. DMN, default mode network; SMN, sensorimotor network; SN, salience

network; SUVR, standardized uptake value ratio.

DMN and SMNmay be an ongoing representation of cumulative
menstrual pain (52). Additionally, multiple neuroimaging studies
have suggested that acupuncture may have analgesic effects
by modulating the DMN and SMN (53–56), indicating that
these brain networks also play an important role in mediating
acupuncture effects. For example, Dhond et al. (57) demonstrated
that acupuncture treatment induced hyperconnectivity of the
DMN to pain, memory, and affective regions and also increased
SMN connectivity to pain-related brain regions. Specially, for
the real acupuncture treatment group, we also found that the

metabolic in DMN, not SMN and SN, could predict the treatment
response in PDM. The DMNs have been considered to be
involved in pain rumination (34), and the structural, metabolic,
and functional alterations in DMN have been manifested in
amount of previous neuroimaging studies (21, 51). Taken
together, these findings proposed that metabolic features within
the DMN and SMN can be used not only to identify the
pathogenesis of PDM but also to predict therapy responsiveness,
especially, the DMN metabolic feature could predict the real
acupuncture response for PDM.
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TABLE 3 | The relationship between change of VAS and brain features by using

bivariate Pearson correlation analyses.

Brain network ROI R P

Default mode network Left IPC 0.29 0.12

Left ICC 0.26 0.18

Left PCC 0.25 0.19

Left PCU 0.36 0.05

Right IPC 0.30 0.11

Right ICC 0.37 0.05

Right PCC 0.29 0.13

Right PCU 0.37 0.05

Salience network Left dACC 0.14 0.48

Left dlPFC 0.24 0.20

Right dACC 0.30 0.11

Right dlPFC 0.29 0.13

Sensorimotor network Left S1 0.29 0.13

Left Insula 0.34 0.08

Right S1 0.32 0.09

Right Insula 0.32 0.09

dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; IPC, inferior

parietal cortex; ICC, isthmus cingulate cortex; PCC, posterior cingulate cortex; PCU,

precuneus; S1, postcentral.

It should be emphasized that we combined the two therapy
groups into a pooled group to increase statistical power in
the MVPA analysis. Although we have controlled for the
treatmentmethod as a covariate, the different neural mechanisms
underlying the effects observed in the real and sham acupuncture
groups might have influenced the present results (10). Our
analyses also identify the MVPA model as a potential predictor
for treatment responses in the real acupuncture but not the
sham acupuncture group. Additional studies with larger sample
sizes are needed to examine further predictors for real and sham
treatments in PDM. In summary, our research is in line with
the growing interest in multivariate neuroimaging features and
machine-learning methods for therapeutic outcome prediction
and the tailoring of personalized interventions (58–60). In recent
years, machine-learning-based predictive models have been
successfully applied in a variety of therapies, such as transcranial
magnetic stimulation (61), electroconvulsive therapy (62), and
vagus nerve stimulation (63). These studies are beginning to
unlock the potential and value of machine learning in the
clinical practice.

It is necessary to mention the study’s limitations. First, our
sample size was small, and we only recruited through one single
site. As the sample size is small, the cross-validation method used
here may cause some instability and biased estimates. As a result,
our findings should be interpreted with caution. Larger sample
sizes and multiple site data are needed to verify the findings
in future studies. Second, the present study used the Sanyinjiao
(SP6) point for acupuncture treatment. Our previous study has
manifested that the acupoint has a specific neural response (64),
thus, further studies need to investigate the acupuncture neural
effect with other acupoints. Third, the present study did not
explore the metabolic in brain stem regions, such as the ventral

tegmental area (VTA) and periaqueductal gray (PAG), as the
FreeSurfer does not segment these brain stem regions. The VTA
and PAGhave been shown to play important roles in chronic pain
and are modulated by acupuncture treatment of chronic pain
(65). Future studies should include these brain regions to get a
comprehensive metabolic mechanism knowledge of chronic pain
and acupuncture treatment.

CONCLUSION

The present study shows that individual-level metabolic patterns
of the DMN and SMN can predict the pain relief after
acupuncture treatment for PDM. This preliminary study
supports the potential of metabolic biomarkers and MVPA to
predict therapeutic outcomes in patients with PDM. The present
findings advanced the brain metabolic mechanism of the chronic
pain treatment.
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Background: Migraine is a recurrent headache disorder that has a still unclear

pathophysiology, involving several circuits of both the central and peripheral nervous

system. Monoclonal antibodies acting on the calcitonin gene-related (CGRP) pathway

(CGRP-MAbs) are the first drugs specifically designed for migraine; those drugs

act peripherally on the trigeminal ganglion without entering the blood-brain barrier.

Conversely, neuromodulation techniques such as transcranial direct current stimulation

(tDCS) act centrally by increasing or decreasing the neuronal firing rate of brain cortical

areas. The aim of the study will be to evaluate whether tDCS, in addition to CGRP-MAbs,

is an effective add-on treatment in reducing headache frequency, intensity and acute

medication use in patients with migraine. To demonstrate the biological effects of tDCS,

the electroencephalographic (EEG) power changes after tDCS will be assessed.

Methods: We will include patients with migraine on treatment with CGRP-MAbs and

reporting ≥8 monthly migraine days. During a prospective 28-day baseline period,

patients will fill in a headache diary and questionnaires to evaluate migraine-related

disability, anxiety and depressive symptoms, sleep quality, and health-related quality

of life. Subjects will be randomly assigned in a 1:1 ratio to active or sham tDCS. The

stimulation protocol will consist in five daily sessions, the cathodes will be applied

bilaterally above the occipital areas, with the reference anode electrodes positioned

above the primary motor areas. Before the first, and immediately after the last stimulation

session, patients will perform a 10-min resting EEG recording. During a 28-day follow-up

period following tDCS, patients will have to fill in a headache diary and questionnaires

identical to those of the baseline period.

Discussion: This trial will evaluate the efficacy of an add-on treatment acting on the

brain in patients with migraine, who are already treated with peripherally acting drugs,
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showing how tDCS acts in restoring the dysfunctional brain networks typical of the

migraine patient.

Clinical Trial Registration: NCT05161871.

Keywords: migraine treatment, transcranial direct current stimulation, electroencephalogram, monoclonal

antibodies, calcitonin gene-related peptide, randomized controlled trials

INTRODUCTION

Migraine is a recurrent headache disorder representing the
second cause of disability under 50 years of age and the first in
young women (1). It is a central nervous system disorder whose
mechanisms are poorly understood. Electrophysiology (EEG)
studies have revealed abnormalities in cortical responsivity to
external stimuli, in the different phases of the migraine cycle.
During the days between attacks—i.e., the interictal period—,
patients with migraine lack of habituation to external stimuli
which normalizes in the hours that precede an attack (2).
In the premonitory phase of migraine, changes in thalamo-
cortical connectivity were observed; the presence of the so-called
“thalamocortical dysrhythmia” is supported by MRI studies,
before and during migraine attacks (3–5). Those studies showed
altered connectivity of the cortex, thalamus, hypothalamus,
brainstem and amygdala, which may be involved in the
modulation of pain and sensory function (6).

Cortical spreading depression (CSD) is an event occurring
in the brain which is supposed to play an important role in
the genesis of migraine and to directly generate migraine aura
(7). CSD consists in the diffusion of a wave of depolarization
in the cerebral cortex that spreads slowly from the posterior
areas of the brain; a “second phase” of neurophysiological and
vascular changes ensues, characterized by a prolonged direct
current potential shift that is lower in amplitude than the initial
CSD wave, along with sustained vasoconstriction and reduced
blood oxygenation (8). All those events lead to the activation
of nociceptive centers, including a peripheral neural structure,
the trigeminal ganglion (TG), which releases pain-inducing
peptides and mostly calcitonin gene-related peptide (CGRP)
(9, 10).

Several drug classes can be used for the prevention
of migraine; they can be classified into antidepressants,
antiepileptics, antihypertensives, onabotulinumtoxin A, beta-
blockers, calcium agonists, and drugs that act on the calcitonin
gene-related peptide (CGRP) pathway (11). Preventive drug
treatment is not always viable due to potential contraindications;
besides, patients may report adverse events or unsatisfactory
benefit. Due to non-optimal adherence and poor tolerability
to drugs, pharmacological preventive treatment can be
replaced or integrated with non-pharmacological methods.
Neuromodulation techniques, such as transcranial direct current
stimulation (tDCS), are already used as a treatment for migraine
and other chronic pain conditions (12–14), and it can be used in
patients who prefer non-pharmacological management, or who
cannot be adequately managed with drugs.

tDCS is a non-invasive and painless technique of brain
modulation, consisting of delivering a weak current (1–2mA)
through two sponge electrodes fixed on the scalp and connected

to a battery-driven stimulator; the aim of tDCS is to modulate
spontaneous neuronal firing rate by the polarization of resting
membrane potential (15). After-effects of the stimulation rely on
the modulation of NMDA receptors and synaptic GABAergic
activity (15). Anodal stimulation increases cortical excitability
by depolarizing neurons in the stimulated area, while cathodal
stimulation hyperpolarizes neurons with inhibitory effects (16).

Monoclonal antibodies acting on the CGRP pathway (CGRP-
MAbs) are the first preventive drugs specifically designed for
migraine; these drugs act by blocking the CGRP pathway, thereby
inhibiting vasodilation and the transmission of pain (10). Those
drugs demonstrated high efficacy in randomized controlled trials
(17–19) and even more effectiveness in real-world studies (20–
25). In real-life, the reduction in monthly migraine days due to
CGRP-MAbs was up to 12.2 days at 6 months compared with
baseline, while monthly days of acute medication consumption
decreased up to 8; 50% response rates ranged from 10 to 76.5%
(20–26). However, both randomized controlled trials and real-
life studies showed that up to one half of patients in clinical
practice do not attain a 50% reduction in monthly migraine
days from baseline even with those specific treatments and need
further improvements in their migraine prevention. Besides,
many patients, even if reporting a significant response to those
drugs, may have a high number of residual monthly headache
days resulting in a substantial impact on daily activities (27).
The number of residual monthly migraine days after treatment,
although clinically relevant, is not reported by the available
studies (28).

Due to their huge molecular dimensions, CGRP-MAbs inhibit
CGRP release from the TG without crossing the blood-brain
barrier (10); hence, they are not expected to interfere with the
mechanisms of migraine occurring within the brain. On the
contrary, tDCS acts on the central nervous system, bymodulating
the electrical activity of areas implied in pain modulation (29).
Therefore, tDCS with CGRP-MAbs have different targets located
at different levels in the nervous system; hence, we speculate
that their combined administration can have a synergistic or
additive effect.

OBJECTIVES

The primary aim of the present study will be to assess whether
tDCS as an add-on treatment to CGRP-MAbs is effective in
reducing headache frequency, intensity, and acute medication
use in patients withmigraine. Secondarily, we will assess the effect
of tDCS add-on on migraine-related disability, quality of life,
sleep disturbance, and psychological symptoms. To demonstrate
and quantify the biological effects of tDCS, we will assess the
electroencephalographic (EEG) power changes after tDCS.
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ETHICAL ISSUES

The study was approved by the Ethics Committee for the districts
of L’Aquila and Teramo with Protocol Number 272/21. All
patients will sign an informed consent to participate in the study.

INCLUSION AND EXCLUSION CRITERIA

Our trial will follow the guidelines issued by the International
Headache Society for neuromodulation in headaches
(30). The protocol follows the SPIRIT checklist (31, 32)
(Supplementary Material 1). The inclusion criteria will be
the following:

- male or female patients, aged between 40 and 70 years,
referring to the Headache Center of the University of L’Aquila;

- a diagnosis of migraine with or without aura according to
the International Classification of Headache Disorders, 3rd
Edition (33);

- migraine must have been present for at least 12 months;
- treated with CGRP-MAbs (erenumab, fremanezumab or
galcanezumab) for 90–180 days since the first subcutaneous
administration (this time range was chosen to ensure a stable
CGRP pathway inhibition);

- reporting ≥8 monthly migraine days in the last 30 days of
observation despite treatment with CGRP-MAbs;

- able to discriminate between migraine and
tension-type headaches;

- written informed consent to participate in the study.

Treatment with CGRP-MAbs will be prescribed according to
Italian reimbursement criteria, i.e., in patients reporting ≥8
monthly migraine days with a Migraine Impact and Disability
Assessment Scale score ≥11 and having failed at least three
preventive medication classes among beta-blockers, tricyclic
antidepressants, anticonvulsants, and onabotulinumtoxinA.

Patients with other concomitant primary headache types will
be included if attacks are <1 day/month and <12 days/year.

Subjects with medication overuse headache and menstrually-
related migraine will be not excluded from the study but will
be included in exploratory subgroup analyses. According to the
clinical practice of the recruiting center, patients with medication
overuse will not undergo detoxication treatments.

The exclusion criteria will be the following:

- use of any concurrent migraine preventive medication other
than CGRP-MAbs;

- secondary migraine-like headache;
- epilepsy or any other neurologic condition that may be
worsened by transcranial electrical stimulation;

- metallic head implants, cardiac pacemaker or any
other device that could malfunction or be displaced by
electrical stimulation;

- pregnancy or lactation.

Acute migraine treatment will be allowed during the study.
Migraine preventive treatments other than CGRP-MAbs must be
withdrawn for at least 60 days before inclusion in the trial.

TABLE 1 | Assessment schedule.

Screening Baseline Stimulation Follow-up

Informed consent X

Inclusion/exclusion criteria X X

Clinical history X X

Demographic data X X

Headache diary X* X X X

mMIDAS X X

HIT-6 X X

HADS X X

SF-36 X X

PSQI X X

EEG X X

CGRP-MAbs indicates monoclonal antibodies acting on the calcitonin gene-related

peptide pathway; EEG, electroencephalogram; HADS, Hospital Anxiety and Assessment

Scale; HIT-6, Headache Impact Test-6; mMIDAS, modified Migraine Impact and Disability

Assessment Scale; PSQI, Pittsburgh Sleep Quality Index; SF-36, Short Form Health

Survey. *Retrospective assessment based upon the Headache Center diary used in

clinical practice.

VISIT SCHEDULE AND ASSESSMENT

The study includes a 90- to 180-day retrospective screening
period, a 28-day baseline period, a 5-day stimulation period, and
a 28-day follow-up period. The planned inclusion period of the
study will be 12 months. Assessment schedule is summarized in
Table 1.

At the beginning of the study, all subjects will be thoroughly
informed about all aspects of the study, including the study
treatment, visit schedule, required evaluations, diary compliance,
and all regulatory requirements for informed consent. Subjects
who sign an informed consent but fail to be assigned to the study
treatment for any reason will be considered a screen failure. The
reason for not being started on treatment will be recorded.

Subject demographic and baseline characteristic data
will be collected on all subjects. This will include age, race,
ethnicity, and relevant physiological and medical history. Prior
headache characteristics and previous headache medication
history, including information on the suitability for migraine
prophylactics and prior migraine prophylactic treatment
failure history, will be collected as part of screening and
baseline characteristics.

RANDOMIZATION AND BLINDING

To control for placebo and nocebo effects, subjects will be
randomly assigned in a 1:1 ratio to active or sham tDCS.
Randomization will be performed by one of the investigators
(AdA) unaware of personal data of study participants. A random
allocation sequence will be generated in MATLAB environment;
consecutive patients will then be allocated according to that
sequence. The investigators who will administer the stimulation
protocol (CR, RO), as well as the patient, will be blind as regards
the type of stimulation applied (double blind). Finally, outcome
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assessment will be performed by an investigator (VC) blinded to
the intervention performed.

STUDY PROCEDURES

Baseline
Eligible subjects will undergo a 28-day baseline period to confirm
their eligibility, by filling out a headache diary containing
information about headache occurrence, its intensity on a 1–
10 Numerical Rating Scale, its duration (in hours), associated
symptoms (nausea, vomiting, photophobia, phonophobia), and
consumption of drugs for the acute treatment. For each headache
day, patients will have to rate their degree of headache-related
disability as low-medium, or high (Supplementary Material 2).

At baseline, subjects will have to fill out questionnaires to
assessmigraine-related disability, quality of life, sleep disturbance
and psychological aspects: the modified Migraine Disability
Assessment (mMIDAS); the Headache Impact Test-6 (HIT-6);
Short Form Health Survey (SF-36); Pittsburgh Sleep Quality
Index (PSQI); Hospital Anxiety and Depression Scale (HADS).

Stimulation Period
tDCS will be administered by trained personnel; one of the
investigators (AdA) has years of experience in the tDCS
field and will train two other investigators (CR, RO). The
stimulation protocol will consist in five daily sessions, each
lasting 20min. The stimulation montage will provide a bilateral
cathodal stimulation on occipital areas, with the reference anodal
electrodes positioned on the M1 areas. The stimulation will be
applied via 4 conductive-rubber square electrodes (5 × 5 cm)
placed in sponges saturated with high conductivity gel and
connected to a battery-operated stimulator system (BrainSTIM,
EMS medical). In the active tDCS group, a direct current with
maximal intensity of 1.5mA with be provided for 20 mins (30 s
ramp-in/ramp-out); those parameters are within the range of the
available randomized controlled trials (34). In the sham group,
the current will be turned off after 10 s (30 s ramp-in/ramp-
out) at the beginning and at the end of the 20-min interval, in
order to maintain the same tingling sensation that subjects refer
during the gradual increase/decrease of the current intensity at
the beginning/end of the ‘real’ stimulation procedure. Patients
will fill out the headache diary during the 5 days of tDCS.

EEG Recording
Patients will perform a 10-min resting EEG recording (5min
eyes-open, 5-min eyes-closed), immediately before the first and
immediately after the last tDCS session. EEG will be performed
with a 64-channel apparel (BrainAmp, Brain Products GmbH)
according to the 10–10 international system.

Follow-Up
Patients will undergo a 28-day follow-up assessment period
starting from the day following the last tDCS session, filling out
a diary identical to those of the baseline period. At the end of the
follow-up period, patients will fill out the same questionnaires as
during the baseline period. To verify blindness, patients will also
be asked whether they received active or sham tDCS. The study
procedures are summarized in Figure 1.

STUDY DISCONTINUATION

The study will be discontinued under the
following circumstances:

- Subject decision;
- Pregnancy;
- Failed to meet the inclusion/exclusion criteria at any time
during the study;

- Any situation in which study participation might result in a
safety risk to the subject;

- Any change (initiation, withdrawal, or dosing change) in
concurrent medication, including preventive and abortive
treatment for migraine;

- New diagnosis of diseases that may be negatively affected by
tDCS, such as epilepsy.

Study subjects will be consecutively recruited until the number
of subjects completing the study reaches the number of 30
(15 treated with tDCS and 15 with sham stimulation). In
case of screening failure or any of the conditions listed
above and leading to study discontinuation, subjects will be
replaced, provided that their inclusion falls within the 12-months
inclusion period.

Patients discontinuing CGRP-MAbs due to non-response or
lack of tolerance, as well as patients starting oral migraine
preventive treatments as add-on, will be excluded from the
study due to change in their medication. To ensure that
treatment with CGRP-MAbs is stable and well-tolerated and to
minimize the risk of including patients who will then withdraw
treatment with CGRP-MAbs or change their medication, patient
screening will be performed after 90–180 days from the first MAb
administration. Patients lost to follow-up, unwilling to continue
the trial, or developing a contraindication to continue the trial,
will be excluded from efficacy analyses; their adverse events will
be monitored and reported.

STUDY OUTCOMES AND DATA ANALYSIS

Efficacy Outcomes
As we expect a short, 5-day course of tDCS to have a short-lasting
effect on brain function, we will only assess short-term outcomes
at 28 days after the end of tDCS.

The primary efficacy outcome will be the change in headache
days from the 28-day baseline to the 28-day follow-up period.

The secondary outcomes will include the change in migraine
days, headache hours, mean pain intensity (0–10 Visual Analog
Scale), acute treatment consumption (doses), migraine-related
disability (mMIDAS score) and impact (HIT-6 score), quality of
life (SF-36 score), sleep quality (PSQI score), and anxious and
depressive symptoms (HADS score) from the 28-day baseline
to the 28-day follow-up period. The change in the number
of days with low, medium, and high disability will also be
assessed by using of a specifically designed headache diary
(Supplementary Material 2).

The additional outcome will be the changes in spectral
power and coherence in the delta (1–4Hz), theta (5–7Hz),
alpha (8–12Hz), and beta bands (13–30Hz), both overall and
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FIGURE 1 | Schematic representation of trial procedures. Mab indicates monoclonal antibody; EEG, electroencephalogram; tDCS, transcranial direct current

stimulation. In the transcranial direct current stimulation figure, blue squares indicate the cathodes, while red squares indicate the anodes.

over the occipital regions, at EEG recording between the
two measurements (before vs. after tDCS). The EEG power
changes will be correlated with the improvement in primary and
secondary outcomes. The age limit of 40–70 years was chosen to
limit the variability in EEG activity generated by the inclusion of
too young or old subjects, which could act as a confounder in
outcome assessment.

Each outcome will be assessed in the group of active and sham
tDCS; additionally, between-group comparisons will be made.

A migraine day will be defined as a day with headache lasting
at least 4 h if left untreated and accompanied by typical symptoms
(nausea, vomiting, photo- and/or phonophobia) or preceded by
aura. All days with headache not accompanied by any of those
symptoms will be considered as non-migraine headache days.
The total count of headache days will include both migraine and
non-migraine headache days.

Safety Outcomes
Safety assessment will include adverse event reporting. Adverse
event monitoring will be performed during the tDCS stimulation
sessions and during the 28-day follow-up period after tDCS.
Adverse events will be detected and collected by investigators
with a standard questionnaire (35) and open-ended questions.
Monitoring for serious adverse events (SAEs) will be performed
according to common clinical practice.

Statistical Analysis
Continuous data will be summarized by mean, standard
deviation (SD), median, first and third quartiles, minimum and
maximum, Categorical data will be presented by absolute and

relative frequencies (n and %). Bilateral 95% confidence limit will
be presented as appropriate.

Comparison between groups (active/sham) for the variables
under study (headache days, days of disabling headache, intensity
of pain, consumption of acute treatments, headache-related
disability, and scores on questionnaires) will be performed
using parametric or non-parametric statistics, depending on the
data distribution.

Primary analyses will be performed on primary and secondary
outcomes. Exploratory subgroup analyses will be performed on
patients with a history of menstrual migraine and on patients
with chronic migraine with medication overuse.

To evaluate electrophysiological changes, the dependent
variable will be the variations in EEG activity after vs. before
tDCS. Specifically, we will compute the spectral power via Fast
Fourier Transform (FFT) and the coherence in cortical activity
among brain areas via magnitude-squared coherence (MSC) for
the artifact-free epochs in each EEG frequency band. For each
group of patients (tDCS vs. sham), the power change before
vs. after tDCS will be compared for each electrode and each
frequency band. Given the results of a previous study (36),
particular attention will be given to power in the alpha band in
occipital areas. The EEG index changes will be correlated with
changes in migraine parameters (headache days, migraine days,
pain intensity, acute medication consumption, questionnaires
score) to directly link the modifications in brain physiology
to the frequency and severity of migraine episodes. Source
current density of cortical generators of relevant EEG indexes will
be also assessed by low-resolution electromagnetic tomography
(LORETA) (37), to confirm the cortical origin of the physiological
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changes induced by tDCS. Outcomes will be compared between
the active and sham tDCS groups by chi-squared or t-test
statistics as appropriate.

Sample Size
The sample size calculation was performed using GPower,
version 3.1. According to previous literature (36), a between-
groups mean difference of 3 ± 2 migraine days per month
was considered significant. The computation was made with
the following parameters: confidence interval (two-sided): 95%;
power: 80%; ratio of sample size: 1:1; mean change in group 1:
−4 days; mean change in group 2:−1 day; standard deviation: 2.
The minimum sample size suggested was of 9 patients per group.
In consideration of possible dropouts, we set our population size
to 30 patients, 15 per group.

DISCUSSION

CGRP-MAbs have significantly changed the landscape of
migraine prevention. They are an effective and well tolerated
class of drugs which can substantially improve the quality of
life of patients with migraine. CGRP-MAbs were proved to be
effective even in patients who had failures to other preventatives.
The degree of benefit of CGRP-MAbs is highly variable; in up
to 10% of patients they can lead to migraine freedom (100%
responders) (17, 18, 38, 39), while in all the other patients there is
a residual migraine impact despite the treatment. Some patients,
even if meeting criteria to be considered as responders to CGRP-
MAbs, continue to experience a significant burden of migraine.
In fact, in real-life studies 14.4–57% of patients received add-
on treatment (21, 22, 26). It is unclear which is the optimal
treatment to be associated with CGRP-MAbs. We aim to evaluate
if patients, with a significant migraine burden (>8 migraine days
per month) despite the use of CGRP-MAbs, may achieve further
benefit by adding a non-pharmacological (tDCS) treatment
targeting central mechanisms involved inmigraine. The rationale
to choose tDCS is its non-pharmacological nature and the central
mechanism of action which may be complementary to the
peripheral mechanism of action of anti-CGRP-MAbs. We will
randomize patients who are on treatment with CGRP-MAbs and
who still experience a significant migraine burden (>8 migraine
days per month) to tDCS or placebo.

So far, several studies have already evaluated tDCS for
migraine prevention proving that it is a promising treatment
to prevent migraine (36, 40–50). Available RCTs included
a variable number of patients (from 15 to 135 patients)
with highly heterogeneous patient populations, outcomes, time
schedules, and tDCS montages (34). Most of the available RCTs
performed either cathodal occipital stimulation with anterior
reference (40, 43, 44, 46) or anodal frontal stimulation with
supraorbital reference (36, 41, 42, 45). Those montages are both
justified by neurophysiology, as studies on migraine showed a
hyperresponsivity of the visual cortex, while frontal stimulation
reduces the excitability of the thalamus, which is responsible
for pain generation (29). Results of those RCTs were overall
positive in the short term, while being more controversial 12
months after tDCS (36, 48). The available RCTs are limited by the

underuse of neurophysiological tests, which would improve our
understanding of the effect of tDCS and how to improve it (34).

With respect to the available RCTs, our study has several
differences. Firstly, we will test tDCS as an add-on to a class
of drugs specifically designed to prevent migraine. Besides,
our montage will be bilateral with 4 electrodes (2 anodes and
2 cathodes), while the other trials all performed unilateral
stimulation. The bilateral stimulation is justified by the supposed
bilateral alterations of the migraine brain (4) and will likely
optimize current flow through the brain. Moreover, our montage
will merge cathodal occipital stimulation and anodal frontal
stimulation, by positioning the cathode over both occipital
regions and the anode over both frontal regions. Those
procedures are intended to maximize neuromodulation of
circuits involved in migraine and pain (29). Additionally, our
study will follow as closely as possible the recently issued
guidelines for trials of neuromodulation in patients with
migraine (30).

We will also study the cortical effect of neuromodulation
by electrophysiology (EEG). Previous studies have shown that
EEG activity is different between subjects with and without
migraine. In detail, migraineurs showed increased slow activity
between attacks compared with non-migraineurs (51, 52) and
the degree of EEG slowing on the occipital areas showed a
correlation with the burden of migraine (53); the increase in
slow activity is coupled with decreased power of the alpha
frequency. Interestingly, a trial of anodal tDCS over the frontal
motor areas showed that active treatment was associated with
increased alpha power over the occipital regions (36), suggesting
that tDCS can mitigate the neurophysiological abnormalities of
the migraineurs’ brain. Quantifying EEG activity in our trial will
provide a neurophysiological correlate to clinical findings and
will help explaining the effect of tDCS on neural structures. The
use of high-density EEG will provide accurate information on the
sites of tDCS action.

The present trial has a robust double-blind, randomized
approach with blinded outcome assessment. The trial complies
with the most recent guidelines for neuromodulation in
migraine. Besides, the tDCS montage was designed specifically
for migraine prevention by reflection on the most plausible
neuroanatomical targets. However, the study also has limitations.
The study is single-center; besides, its sample will be sufficient to
calculate the primary outcome, while subgroup analyses will be
only exploratory. We will correct for low numbers by assessing
the normality of variable distributions and perform conservative,
non-parametric tests for non-normally distributed variables. As
an add-on to highly effective migraine preventatives, we cannot
exclude that the clinical effect of tDCS in the present RCT will
be negative. Nevertheless, we will include patients with a high
burden of migraine (≥8 monthly migraine days) to correct for
this effect. Besides, a previous trial showed that active tDCS
is more effective than sham even on top of topiramate (47),
suggesting that tDCS could be an effective add-on migraine
preventative. Besides, we will assess not only the possible clinical
efficacy of tDCS, but also its effect on brain circuitry; therefore,
even results that are clinically neutral will be interesting to
discuss with respect to the functional effects of tDCS. Our trial
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will contribute to assess the possible central, indirect effects
of CGRP-MAbs by verifying whether the central circuits of
migraine generation can be inhibited in addition to the action of
those drugs.

CONCLUSION

In conclusion, our trial will assess the efficacy of an add-on
non-pharmacological treatment acting on the brain in patients
with migraine who are already treated with peripherally acting
CGRP-MAbs. The trial will also allow us to better understand
the pathophysiology of migraine, and to evaluate how tDCS
acts in restoring the dysfunctional brain networks typical of the
migraine patient.
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Sleep contributes to the maintenance of overall health and well-being. There are a

growing number of patients who have headache disorders that are significantly affected

by poor sleep. This is a paradoxical relationship, whereby sleep deprivation or excess

sleep leads to a worsening of headaches, yet sleep onset also alleviates ongoing

headache pain. Currently, the mechanism of action remains controversial and poorly

understood. The glymphatic system is a newly discovered perivascular network that

encompasses the whole brain and is responsible for removing toxic proteins and waste

metabolites from the brain as well as replenishing nutrition and energy. Recent studies

have suggested that glymphatic dysfunction is a common underlying etiology of sleep

disorders and headache pain. This study reviews the current literature on the relationship

between the glymphatic system, sleep, and headaches, discusses their roles, and

proposes acupuncture as a non-invasive way to focus on the glymphatic function to

improve sleep quality and alleviate headache pain.

Keywords: glymphatic system, headaches, sleep, neuropathology, aquaporin 4

INTRODUCTION

Sleep is vital to our body. Headache is a common pain complaint following poor sleep (1). Up to
70% of patients with chronic headaches also experience sleep disruption (2). Despite the common
co-occurrence of these conditions, the relationship between headache and sleep is complex and
poorly understood. Patients consistently report that poor sleep the previous night causes headache
the next day (3), which indicates that poor sleep is a trigger for headaches and a higher frequency
of headaches. However, sleep disturbances can be influenced by numerous factors. Although
headache disorders have been suggested as a possible predisposing and perpetuating factor of
sleep disturbances (4), the causal relationship regarding which occurs first, headache or poor sleep,
remains a conundrum. To date, there have been some studies investigating the relationship, which
suggests that the complex relationship between sleep and headache is bidirectional (4). However,
a growing number of studies have suggested that sleep and headache share a common underlying
etiology (5).

The glymphatic system (GS) is a newly discovered central nervous system (CNS) waste cleaning
system that may offer a possible explanation for the relationship between sleep and headache
(6). Its function is similar to the peripheral lymphatic system and relies on astrocytes; thus, the
system is termed a “glia lymphatic” or “glymphatic” system, which represents a waste clearance and
fluid pathway in and out of the brain (7, 8). When an individual experiences sleep disturbances,
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glymphatic exchange markedly decreases, and this blocks the
interstitial fluid (ISF) outflow of excitatory substances or
inflammatory chemicals from interstitial space, which affects
metabolic balance (9, 10). Furthermore, a variety of headaches
breaks the balance of the GS, leading to the accumulation of
beta-amyloid (Aβ) and metalloproteinases (11), which increase
the risk of sleep disruption. Therefore, GS dysfunction may be
considered a common underlying pathophysiology of headache
pain and sleep problems. We propose that regulating glymphatic
function is critical for alleviating headaches and sleep disorders.
In this review, we highlighted important discoveries made by
human and animal research regarding the role the GS plays
in sleep disorders and headaches. In addition, we presented a
hypothetical model network to illustrate that GS dysfunction
underlies the pathophysiology of sleep disorders and various
types of headaches and provides implications for current and
future research.

GLYMPHATIC SYSTEM

The GS is an effective waste clearance and fluid pathway for
the CNS (for a detailed review see (8)). The current network
model of GS transportation is described in Figure 1. The pathway
consists of a periarterial influx route for cerebrospinal fluid
(CSF) to center the brain parenchyma and a perivenous outflux
route, which allows the clearance of ISF and extracellular solutes
from the brain parenchyma (8). Extensive evidence has also
shown that the bulk flow of CSF-ISF into the perivascular
spaces (PVS) delivers glucose (12) and transports lipids, signaling
molecules (13), and apolipoprotein E (14) for brain-wide energy
metabolism. Moreover, the enhanced convective bulk flow of
CSF-ISF for the removal of soluble proteins, waste, and excess
extracellular fluid is dependent on astrocyte aquaporin 4 (AQP4)
channels (15). Therefore, the two most critical elements during
the process of continuous circulation and metabolism are the
capacity of the PVS for holding metabolic fluid to transport and
the mediating effect of AQP4 polarization to decrease resistance-
enhancing bulk flow exchange on GS.

The Main Structural Feature of the
Glymphatic System
The para-arterial and para-venous spaces are collectively referred
to as the PVS, which is the small tissue space that surrounds the
cerebral arteries and veins. The inner wall is the vascular wall, and
the outer wall comprises the basement membrane and the AQP4
expression in astrocyte endfeet, which wrap around and form the
boundary of the space surrounding the blood vessel (16). The
PVS is also known as the prelymphatic system and is considered
an extension of the subarachnoid space, which is filled with
CSF. The PVS narrows gradually at small arteries and arterial
capillaries and eventually disappears. However, the outer wall of
the blood vessel at the end remains surrounded by the basement
membrane and astrocytes (17). The basal lamina provides low-
resistance fluid space from which the CSF moves into the
parenchyma through AQP4. The CSF convectively exchanges
with the surrounding ISF in the brain parenchyma to expel and

bind to metabolic waste and is subsequently cleared from the
brain along with the surrounding space to the lymphatic system
of the neck (15, 18). Thus, the key function of PVS is to enable
the exchange of CSF and ISF. When PVS is constricted, it would
increase resistance to convective fluid movement, suppress CSF
influx, and accumulate metabolic wastes. Collectively, the loose
fibrous matrix of the PVS provides an essential low-resistance
pathway for the bulk flow, that is, a network of drainage channels
that accelerates the flow of CSF-ISF and removes soluble proteins,
toxic products, andmetabolic waste within the GS from the brain.

Aquaporins are a family of water channels that are
ubiquitously distributed among various tissues of the body.
AQP4 is the most abundantly expressed aquaporin in the
brain and participates in maintaining brain homeostasis (19).
AQP4 is anchored to the dystrophin-associated protein complex
via α-syntrophin, which is linked to laminin and agrin in
the perivascular glial basement membrane by α-dystroglycan
(20). Because of this complex molecular organization, AQP4 is
unusually dense in the interface between the perivascular and
interstitial spaces of the brain, which makes it easy to lower
the resistance to aid CSF entry into the brain parenchyma
and enhance CSF-ISF exchange, ultimately contributing to the
exchange of solutes and metabolites in the bulk water flow (7).
Research has shown that the polarization of AQP4 in healthy
brains is highly distributed in the astrocyte endfeet of the
outer wall of the PVS, which facilitates fluid influx into the
parenchyma, fluid efflux out of the brain, and the elimination
of brain metabolic waste (21, 22). When AQP4 channels are
mislocalization or knockout, Iliff and colleagues found CSF influx
significantly reduced relative to wild-type animals (7). As a result,
we speculate that a significant reduction in the expression of
AQP4 in astrocyte endfeet will lead to an impairment in the
effective exchange of CSF-ISF, the accumulation of metabolic
waste in the interstitium of brain tissues, and the gradual
formation of plaque materials, which will eventually result
in disease.

Factors That Impact the Glymphatic
System
The physiological function of the GS is affected by a variety
of factors; however, the exact mechanism underlying its
development remains unclear. In recent years, progress in the
study of the GS with animal experiments and clinical trials has
increased our understanding of the GS. It is currently believed
that several factors affect the GS, including (1) arterial pulsatility,
which is considered an important factor that drives the flow
of CSF in PVS and subsequent CSF–ISF exchange. Ligation of
the internal carotid artery causes CSF influx into the brain to
slow, whereas enhanced arterial pulsatility following β agonist
injection leads to an increase in CSF influx (23). (2) Sleep
also affects the GS, in which the arousal level appears critical
for governing glymphatic dynamics of CSF-ISF. There is an
association between the sleep-wake cycle, water homeostasis, and
effective clearance of pathological proteins. Hablitz et al. showed
that glymphatic inflow was higher during slow-wave sleep (or
ketamine/xylazine anesthesia) than during wakefulness and was
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FIGURE 1 | Schematic diagram of glymphatic transport in the brain (8). Cerebrospinal fluid (CSF) influx flows through the peri-arterial space via pulsation of the arterial

wall and is then mediated by astrocyte aquaporin 4 (AQP4) in the brain parenchyma, which drives the interstitial fluid (ISF), whereby parenchymal metabolic waste

substances exchange with the CSF to efflux into the peri-venous space. Eventually, the waste is cleared into the peripheral lymphatic system of the neck by arachnoid

granulations and meningeal lymphatic vessels along with cranial and spinal nerve roots.

positively correlated with delta brain waves and Aβ in the cortex
(24, 25). The clearance rate of Aβ increased 2-fold, and the
function of the GS increased significantly during sleep or under
anesthesia (26). In order to further explore the role of sleep,
the pioneering study of Fultz et al. suggested that global brain
signals drive strong CSF movement associated with physiological
modulations, especially during drowsiness or sleep in human
(27), and global blood oxygen level-dependent (BOLD)–CSF
coupling can be served as a marker for gauging glymphatic
function (28). Intriguingly, this is the reason why recent studies
have discovered that BOLD–CSF coupling is significantly weaker
in those patients with AD (28) and PD (29) accompanying the
accumulation of metabolic toxic wastes. (3) Finally, aging is a
factor where brain aging has a significant impact on the function
of the GS. A study compared the influx of the GS between aged
and young mice and found that the influx of the CSF tracer
in aged mice was 85% lower than that in young mice (10),
whichmay be explained bymeningeal lymphatic atrophy, arterial
pulsatility impairment and perivascular AQP4 depolarization in
the aging brain (30). In addition, other factors, such as inspiration
(31) and body posture (32), have been shown to be related to
the GS.

THE GLYMPHATIC SYSTEM IN VARIOUS
TYPES OF HEADACHES

The Glymphatic System and Migraine
Migraine is a heterogeneous neurovascular disorder that affects
people worldwide (33). Although the mechanism underlying

chronic migraine is not fully understood, the trigeminovascular
system has been shown to play a key role. Cortical spreading
depression (CSD) and calcitonin gene-related peptide (CGRP)
are recognized as key players in migraine pathophysiology (34).

Animal studies and the experience of spreading scintillations
during migraine have shown that CSD, a pro-longed
depolarization that spreads throughout the occipital lobe of
the cortex, is the pathophysiologic mechanism underlyingly
migraine aura. It is associated with transient disruption of
ionic gradients, severe neuronal swelling, and neurotransmitter
release, especially the local release of adenosine triphosphate,
potassium, and hydrogen ions from neurons (33). A recent novel
report demonstrated that CSD facilitates several minutes of the
closure of PVS, a proposed exit route for ISF and solutes from
the brain, which results in headaches by impairing glymphatic
flow and preventing toxic substances to be cleared from the brain
(Figure 2) (11). This study was the first to demonstrate that
the GS is related to an abnormal cortical event that provokes a
migraine attack. Moreover, based on the regulation of the width
of the PVS by astrocytic endfeet, Rosic et al. further demonstrated
that CSD is connected with the swelling of astrocytic endfeet
using two-photon laser scanning microscopy in a different CSD
mouse model (35). Taken together, these findings suggest that
the closure of the PVS, which results in impaired clearance
of excitatory and inflammatory waste along the paravascular
pathways, plays a critical role in migraine pathogenesis.

The local inflammatory response is specifically triggered by
CGRP, substance P, and pituitary adenylate cyclase-activating
polypeptide from meningeal afferent fibers, following the
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FIGURE 2 | Cortical spreading depression (CSD) closes perivascular spaces (PVS), which impairs glymphatic flow, during migraine (11). The left panel illustrates the

closure of the para-arterial space and para-venous space caused by the CSD over time in vivo two-photon. Specifically, the para-arterial and para-venous spaces

close for 6 and 16min, respectively, and partially reopen at 30min, which causes the impairment of glymphatic flow that is represented in the right panel. The

glymphatic flow over time (green dye) in CSD mice (right f) is lower than that in controls (right e).

vasodilation and microenvironment changes that occur
during migraine (36). CGRP primarily mediates neurogenic
inflammation and modulates nociceptive input (37). It is a
primary neuropeptide involved in headaches, particularly
migraine, and is an effective vasodilatory peptide that is widely
applicable to migraine treatment (37). In 1990, Goadsby et al.
first reported that CGRP was elevated in the extracerebral
circulation during migraine (38) and that the CGRP level
obtained from the jugular vein of migraine patients is higher
than individuals without migraine (39). Newer drugs that target
CGRP transmission along the migraine pain pathway have
recently been approved by the United States Food and Drug
Administration (40). CGRP is released by the trigeminal nerve
innervating meninges, pia mater, intracerebral arteries, and the
central projections in the spinal trigeminal nucleus at the level
of the medulla (41). The regulatory mechanism of CGRP is well-
understood; however, how it is metabolized after being released
from the perivascular compartment into the blood remains
unclear (41). It is expressed in C- and A-delta nociceptive
nerve fibers and is widely released from perivascular trigeminal
afferents, yet it cannot readily cross the blood-brain barrier (42).
Thus, when it is released from nerve fibers, it initially cannot
reach the vessels; however, the regulatory mechanism of CGRP
needs to enter the perivascular space and subsequently into the
CSF of the subarachnoid space. This is the reason why research
has shown that the CGRP concentration in the CSF is five times
higher than that in the plasma (43). Therefore, we propose that
CGRP released from nerve fibers does not enter the vessels and
instead diffuses into the surrounding perivascular space, which
may be a continuation of the PVS of the penetrating arteries.
This process may be mediated by the GS, which promotes the
exchange and flow of CSF-ISF tomaintain balance and eliminates
CGRP (41). Therefore, the underlying pathological mechanisms
of migraine pain may involve the GS, which offers insights into

potential new antimigraine targets. Further, in a separate study,
Hana and colleagues found that CGRP antagonists are not only
a treatment for migraine but also for AD (44), which can reduce
neuroinflammation and α-synuclein aggregation indicating a
new therapeutic avenue for neurological disorders. While the
study does not implicate that the mechanism is related to GS, it
is a meaningful direction worth further exploring the exact role.

The Glymphatic System and
Post-traumatic Headache
Traumatic brain injury (TBI) is a devasting disorder that results
in temporary or permanent neurological deficits and affects
millions of people worldwide annually. In the past several
decades, there has been an increase in the incidence of TBI
globally, and this has coincided with a substantial increase
in the incidence of post-traumatic headache (PTH). Globally,
there are an estimated 69 million patients with TBI each year
(45), whereas the 1-year prevalence for PTH is 21/100,00 (46).
Moreover, PTH accounts for 4% of all headaches and is the
second most common sequelae after TBI (47). The International
Classification of Headache Disorders (ICHD) recently revised
the diagnostic criteria for PTH in 2018 (48), although the
criteria remain controversial. Nevertheless, PTH has attracted
increased attention in recent years. The complex pathogenesis
of TBI involves neuronal depolarization and the release of
excitatory neurotransmitters, such as glutamate and aspartate,
resulting in an increase in intracellular calcium, which induces
dramatic changes in the metabolic state of the brain (47, 49).
In addition, the accumulation of metabolic waste caused by
abnormal metabolism in the brain is an important cause of
PTH (50). Numerous recent studies have demonstrated the
role of GS in TBI. In one study, Iliff et al. observed that
the clearance of interstitial proteins and peptides from the
brain parenchyma was impaired following TBI (51). Thus, it
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FIGURE 3 | Schematic outline of glymphatic system (GS) function during different arousal states (64). The influx and efflux of the fluid transport pathway from GS (A)

and its function varies during different arousal states. A glymphatic clearance occurs primarily during sleep via the enlargement of the periarterial space and the

perivenous space to promote the glymphatic flow (B). However, function decreasing in the GS results in the accumulation of metabolic waste, which builds up in the

awake brain and mostly depends on lymphatic vessels to exclude (C).

has been suggested that impairment in the clearance of CGRP
and interstitial proteins and peptides may also underlie PTH.
Furthermore, CGRP-mediated mechanisms could play a critical
role in PTH pathogenesis. This was supported by an animal
study that proposed blockade of CGRP as a potential therapy for
managing PTH (52). Therefore, the role of the GS is maintaining
balance, and preventing the CGRP level from becoming too high
may be a promising treatment for PTH. In summary, we suggest
that the GS is important for PTH, and CGRP is also a significant
mediator of PTH. The clearance of waste from the brain due to
glymphatic dysfunction is a likely cause of PTH (50, 53).

In addition, other researchers have found that TBI induces
meningeal lymphatic drainage dysfunction, accompanied by

morphological changes and increased intracranial pressure
(ICP) (54). Intracranial hypertension (IIH) is a debilitating
disorder characterized by ICP and causes chronic headaches
that reduce the quality of life. Although the pathogenesis
of IIH is poorly understood, recent evidence suggests that
abnormal CSF absorption as a result of GS abnormalities is the
mechanism underlying IIH (55). The venous outflow pathway
plays an important role in maintaining the homeostatic balance
of CSF as well as ICP. The glymphatic outflow pathway may
serve as a compensatory pathway to regulate fluid homeostasis
when the venous outflow pathway is dysfunctional. Thus, CSF
absorption anomalies cause increased ICP, which contributes to
the pathophysiology of IIH. Enhancing the function of the GS to
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accelerate CSF circulation may be a promising method to relieve
headaches induced by IIH.

THE GLYMPHATIC SYSTEM AND SLEEP
DISORDERS

Sleep is important to our bodies. Brain excitability, memory
consolidation, and immune functions can become impaired
following sleep disturbances (56). Rapid eye movement (REM)
sleep and periods of non-REM (NREM) sleep are two metabolic
and electrophysiological phases with distinct functions during
sleep. The NREM sleep phase is subdivided into three stages: N1,
N2, and N3. Because of the presence of slow EEG waves during
N3, NREM is also called slow-wave sleep. Brain waves during
REM sleep are similar to those during the awake state and are
characterized by rapid eye movements. At the beginning of sleep,
individuals enter the NREM sleep phase, whereby EEG exhibits
slow waves, and subsequently, they enter the REM sleep phase;
these phases alternate in a cyclic fashion all night (57–59).

Physiological changes in the organs and functions of the
body during sleep occur as a result of changes in nervous
system function. Experimental and epidemiological evidence
has demonstrated a strengthening of the relationship between
neurological decline and sleep problems; these conditions
frequently co-occur (60). Sleep disorders have been linked to the
development of neurogenerative diseases. Poor sleep impairs
cognition, exacerbates depression and anxiety symptoms, and
predisposes people to dementia, particularly Alzheimer’s
disease and Parkinson’s disease (10, 61). Although the
specific mechanisms underlying such effects are unknown,
the involvement of the abnormal clearance of metabolic waste
during sleep has been suggested (15). Our brain only weighs

approximately 3 lbs, yet its high energy demand accounts
for 40% of the body’s total energy consumption. Moreover,
cerebral oxygen consumption reduces by only 20% during
sleep (5). Thus, such a high energy demand generates a higher
amount of potentially toxic protein waste than that generated
by other organs. However, the lack of lymphatic vasculature to
remove large amounts of waste from the brain parenchyma is
problematic. Further research on the GS that is focused on this
issue will advance our understanding of the relationship between
the GS and sleep disorders (62).

The most significant function of the GS is particularly
active during sleep (63), whereby potentially toxic neural waste
substances that accumulate during wakefulness are cleared via
the GS (Figure 3) (24, 64). It is thought that the cell volume
decreases during sleep, which expands the size of PVS, and this
facilitates the influx of CSF into the peritubular space for material
exchange and metabolic waste removal (10). Animal experiments
using intravital 2-photon microscopy in mice showed that
glymphatic clearance is decreased by 90% during wakefulness,
while protein clearance in the intima of the brain doubles during
sleep (24). In addition, Aβ levels in circadian-fluctuating CSF
have been reported to significantly increase during wakefulness
and decrease during sleep, especially during NREM sleep. To
further understand the effects of sleep deprivation on Aβ

clearance, a clinical trial in 20 healthy controls who underwent
31 h of sleep deprivation showed that Aβ was increased by 5%
in the hippocampus, the parahippocampus, and the thalamus
(65). Moreover, a recent study that tracked the REM phase
in patients who experienced poor sleep found that the index
of diffusion tensor imaging analysis along the perivascular
space was significantly lower in patients than in healthy
controls, which indicated glymphatic dysfunction (66). Thus,
we speculate that the GS is intimately linked to various aspects
of sleep.

FIGURE 4 | Diagram illustrating the relationship of three parts. GS dysfunction is a common underlying pathological mechanism of sleep disturbances and headache

pain. Glymphatic flow, the clearance of waste products, and nutrient transportation can be improved during sleep, which may alleviate headaches. In contrast, poor

sleep and headaches affect each other and may be connected indirectly, whereby both impairing glymphatic function, which further exacerbates both conditions.

Frontiers in Neurology | www.frontiersin.org 6 May 2022 | Volume 13 | Article 88502066

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yi et al. Relationship of Glymphatic System, Sleep, and Headache

Sleep Position
Gravity can affect the flow and distribution of blood in the brain.
Therefore, sleep position may be an important factor that affects
the clearance of waste products from the brain. In a clinical
study, Daniel et al. reported a significant association between
sleeping in a supine position for more than 2 h/night and the
development of neurodegenerative diseases. Interestingly, head
position in a supine position during sleep can affect the clearance
of neurotoxic proteins from the brain, which may trigger the
development of neurodegenerative diseases (67). In another
study in anesthetized rats, the transport and clearance efficiency
of the GS was higher in the lateral position than in supine and
prone positions, which corresponds to rats’ preference for lateral
decubitus behavior during rest and sleep under physiological
conditions (32). Moreover, humans are also accustomed to lying
in a lateral position during sleep. Thus, perhaps this is an effective
way to prevent neurodegenerative diseases. Although there have
not been any clinical trials investigating this idea, the potential
mechanism warrants exploration.

Sleep-Wake Cycle Alterations
The suprachiasmatic nucleus of the hypothalamus controls the
sleep-wake circadian rhythm (68). Abnormal circadian rhythms
and altered sleep-wake patterns often coexist. Patients who have
trouble falling and staying asleep at night often experience
excessive daytime sleepiness. Although sleep plays an important
role in glymphatic function as discussed above, research has also
shown that glymphatic function depends on not only the arousal
state but also the daily rhythm. This explains why glymphatic
influx and interstitial fluid clearance in mice are better at noon
when they are asleep (69). To further explore whether its own
circadian rhythm causes the function of the GS to change or the
environment change causes the light/dark cycle. Lauren et al.
observed circadian behavior from constant light (LL) in mice
by continuous activity monitoring, and there is no significant
change in the circadian system under 10 days in LL. Subsequently,
these mice were exposed to LL for 10 days. Results showed that
glymphatic influx, waste clearance, and fluid drainage persisted,
which supports the hypothesis that the circadian oscillations that
affect the GS are endogenous, not by light cycle (70, 71).

GLYMPHATIC SYSTEM IS A POSSIBLE KEY
IN THE BIDIRECTIONAL RELATIONSHIP
BETWEEN SLEEP AND HEADACHES

Sleep disturbances and headaches occur throughout life. Their
relationship is interdependent and often follows a vicious
cycle. Headaches may occur during sleep, after sleep, or at
different stages of sleep, whereas poor quality, short duration,
inappropriate timing, and inappropriate sleep behaviors can
also trigger headaches. Recently, the ICHD-3 described the
relationship between headache and sleep disturbances, which
included sleep-related headache disorders, such as migraine,
cluster headache, chronic paroxysmal migraine, sleep-onset
headache, and secondary headache (72). Some headache
prevalence studies showed that tension-type headache (TTH) is
larger than migraine worldwide, but migraine is closely linked

to sleep disturbance (73). 48–74% of patients with migraine
thought poor sleep is a predictor of headache, while patients
with TTH only account for 26–72% (74). In patients with
migraine, sleep disturbance manifested as insomnia, daytime
sleepiness, obstructive sleep apnea, and parasomnia (night
terrors, somnambulism) (75); Insomnia was most associated with
migraine compared with other types of sleep disorders. The
prevalence of insomnia in Korean patients withmigraine is 25.9%
(76). A prospective study has shown that patients with insomnia
have higher risks of migraine after 11 years (77). The increased
headache frequency in patients with migraine is associated with
short sleep duration and poor sleep quality (78). Although the
pathogenetic relationship between sleep and migraine is still not
completely understood, they are commonly affected by potential
factors such as high levels of stress, anxiety, and depression
during the day, which are significant triggers of poor sleep
and headache during the night. Interestingly, this is the reason
why fatigue, weariness, and yawning typically precede headache
attacks during the day. Thus, we concluded that headache
promotes sleep disturbances, but sleep disturbances can also
precede and trigger headaches.

Glymphatic dysfunction has been put forward as a common
pathogenic mechanism of sleep disturbances and headaches
(Figure 4). Sleep has been shown to play a major role in brain
homeostasis and waste clearance via the GS (11). However,
another study demonstrated that sleep deprivation reduces
glycogen breakdown, which may ultimately contribute to CSD,
rise the extracellular K+ levels activating inflammatory pathways,
and impair glymphatic transport causing glucose or lactate
transporter deficiency; subsequently, this forms a vicious cycle in
the cortex that leads to migraine pathophysiology (79). Further,
norepinephrine (NE), which regulates glymphatic function, is
also an important factor that affects sleep and migraine. On
the one hand, NE regulates the sleep-wake cycle of glymphatic
exchange and the volume of extracellular perivascular space (80).
Arousal causes a burst of NE release, which turns the GS off and
increases the resistance of fluid transport. On the other hand,
reports have shown that rats produce headache behaviors when
NE is applied to the dura mater (81), which may explain why
propranolol is one of the most effective first-line medications
used for migraine prophylaxis. Therefore, GS may provide a
tantalizing link between sleep disturbance and headache, and
glymphatic dysfunction may be a common pathogenic factor.

There are direct and indirect factors that could explain
how GS affects headache and sleep. They may directly
influence each other via the GS; for example, sleep can
decline NE levels from the locus coeruleus, thereby increasing
the size of the interstitial space, lowering the resistance to
convective fluid movement, and promoting CSF influx and
interstitial solute efflux, thus it can improve the closure
of PVS by CSD to alleviate the symptoms of migraine
(11, 24); pain may directly block GS function by altering
neuronal function, which in turn, causes sleep disturbances.
Alternatively, there may be an indirect connection, whereby
sleep disruption causes the accumulation of a large amount
of metabolic waste, which triggers neuroinflammation
and impairment of the GS, inducing intense headache
symptoms (6, 50, 53). Thus, improving sleep quality can
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improve GS function by enlarging PVS, increasing CSF-
ISF exchange, and promoting metabolic waste removal to
relieve headaches.

Currently, effective and widely available treatments are limited
for patients who experience headaches and sleep problems.
Therefore, there is an urgent need to develop more effective
and safe treatments. Perhaps treatments that increase CSF-ISF
exchange and glymphatic clearance would improve sleep or
reduce headache pain. Acupuncture is widely used clinically
in patients with headaches and sleep disorders (82, 83). It
is well-tolerated with little risk of serious adverse effects. Do
non-pharmacological treatments, such as acupuncture, improve
sleep and reduce pain? Moreover, do their effects correlate
with the glymphatic function? Extensive evidence has shown
that acupuncture plays an important role in reducing NE and
inhibiting inflammation via multiple mechanisms (84, 85) and
accelerating glymphatic clearance (86), which suggests that it may
be an effective method for reducing the severity of headache pain
while simultaneously improving sleep quality. Although this is a
thought-provoking idea, validation in a larger prospective study
is needed.

In conclusion, GS is a recently discovered waste clearance
system for the CNS that helps remove metabolic waste
products from the brain to maintain metabolic homeostasis.
Impairment of the GS is observed in various neurological
diseases, which include sleep and headache disorders. There
is a close relationship between sleep disorders and headache
disorders. Some headache disorders are significantly affected by
lack of sleep; conversely, headache disorders can trigger sleep
disturbances. Thus, we proposed a mechanistic model network
of the glymphatic dysfunction to explain the bidirectional
relationship between sleep and headache disorders and
hypothesized that GS dysfunction is a common pathological
mechanism of the two conditions. Although there is growing
evidence to support the model, it is currently a theoretical
framework, which still has some uncertain problems to be
verified. For example, AQP4 is an important part of GS.
When the perivascular AQP4 water channel is mislocated,
it will contribute to the impairment of glymphatic flows.
Recent research highlighted the role of AQP4 in human sleep-
wake regulation (87). However, the trigger roles of AQP4

depolarization are still unknown when a patient is under
headache attack after poor sleep. Further, sleep disturbance
and headache are affected by many factors, for example,
depression and anxiety are strong predictors in those with sleep
and headache problems. Although depression is thought to
decrease glymphatic function (88), is there any possibility that
depression affects sleep and headaches by reducing GS function?
Meanwhile, the brain structure (hypothalamic and brainstem)
and neurotransmitters (melatonin and adenosine) have been

hypothesized as an important pathological mechanism of sleep
disturbance and headache, but there is a certain knowledge gap
about whether these pathological mechanisms are related to
GS. At last, the glymphatic system is a novel mechanism that
has been recently discovered. It is still controversial and needs
further exploration to pave the way for future research. In the
future, we suggest identifying the key element that controls
glymphatic exchange to maintain metabolic homeostasis, which
would enable the development of preventive and therapeutic
approaches for headaches and sleep disorders. As a non-
pharmacological treatment, acupuncture may be promising as
a non-invasive therapy. Furthermore, a better understanding of
the pathological mechanisms underlying GS dysfunction may
give rise to novel therapeutic strategies.
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Chronic back pain (CBP) is a maladaptive health problem affecting the brain function

and behavior of the patient. Accumulating evidence has shown that CBP may alter

the organization of functional brain networks; however, whether the severity of CBP is

associated with changes in dynamics of functional network topology remains unclear.

Here, we generated dynamic functional networks based on resting-state functional

magnetic resonance imaging (rs-fMRI) of 34 patients with CBP and 34 age-matched

healthy controls (HC) in the OpenPain database via a sliding window approach, and

extracted nodal degree, clustering coefficient (CC), and participation coefficient (PC)

of all windows as features to characterize changes of network topology at temporal

scale. A novel feature, named temporal grading index (TGI), was proposed to quantify

the temporal deviation of each network property of a patient with CBP to the normal

oscillation of the HCs. The TGI of the three features achieved outstanding performance

in predicting pain intensity on three commonly used regression models (i.e., SVR, Lasso,

and elastic net) through a 5-fold cross-validation strategy, with the minimum mean

square error of 0.25 ± 0.05; and the TGI was not related to depression symptoms

of the patients. Furthermore, compared to the HCs, brain regions that contributed

most to prediction showed significantly higher CC and lower PC across time windows

in the CBP cohort. These results highlighted spatiotemporal changes in functional

network topology in patients with CBP, which might serve as a valuable biomarker for

assessing the sensation of pain in the brain and may facilitate the development of CBP

management/therapy approaches.

Keywords: chronic back pain (CBP), dynamic functional connectivity, temporal grading index (TGI), pain

assessment, depression
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INTRODUCTION

Pain and pain-related diseases aremajor contributors to disability
(1–3). Among them, chronic back pain (CBP) is particularly
prevalent with the disability rate increasing by over 54% in the
last 30 years (4). CBP is known to be aroused by peripheral
and central sensitization (5, 6), and alters the connectomics of
the brain. Advances in neuroimaging technology have allowed
researchers to characterize structural and functional alterations
in the brain of patients with CBP (7–9), investigate brain
signatures for predicting pain intensity (e.g., patterns of brain
activation) (10–12), and identify effective methods for pain
relief (13). Although these studies have painted a relatively
comprehensive picture from abnormal brain alterations of CBP
to its intervention, the relationship between spatiotemporal
dysfunction of brain topological organization and pain intensity,
a key question to the understanding of CBP, remains unclear.

The cerebral alterations of patients with CBP have been
investigated in a series of studies focusing on functional
connectivity (FC) established via functional magnetic resonance
imaging (fMRI) (14–16). The large-scale functional network
established by measuring pair-wise FC provides a comprehensive
description of interactions among distinct brain regions, in terms
of correlation, coherence, and topological organization (17–20).
For example, chronic pain was associated with abnormal changes
in the connectivity within the salience and central executive
networks (21, 22) and altered strength of hub regions (23);
and the study shows that pain would cause an increase in the
shortest path length and clustering coefficient, and decreases
in small-worldness (24). These alterations in inter-regional
connectivity and network topology have largely affected the
ability of information integration and segregation in the brain of
patients with chronic pain (25, 26).

Existing evidence has suggested that the perception of pain
was influenced by maladaptive neuroplastic changes over time
(27, 28), and the CBP may derive from these changes in
the central nervous system which could enhance nociceptive
efficiency, influence normal attentional processing, and create
the maladaptive perception of pain (29, 30). Since the “dynamic
pain connectome” theory posits that the processing of pain
in the brain is a dynamic process (31), it is necessary to
investigate the CBP-related brain functional alteration from a
time-varying perspective. Compared to traditional FC analysis,
dynamic functional connectivity (dFC) is able to capture the
alterations of intrinsic FC over time under various physiological
and pathological brain conditions (32–36). For example, dynamic
reconfiguration of functional brain networks was found during
executive cognition by using dFC technology (37). Thus, dFC
can provide additional information that may promote our
understanding of the association between altered brain functions
and CBP (38, 39). Recent studies have shown that dFC can reflect
pain conditions at multiple timescales (e.g., short-term state and
long-term trait) rather than just the current state of patients with
chronic pain (40), and characterize pain pathophysiology from a
dynamic perspective representing oscillations of the FC (41–43).
However, previous studies have mainly focused on pain-related
alterations in dFC, with few studies exploring how dynamics of

functional network topology change in patients with CBP, and
whether these changes can predict pain intensity has not been
well explored.

The present study aims to investigate whether CBP is
associated with dynamic changes in the functional network
topology and to find an effective feature that could accurately
predict the intensity of pain in the brain of patients with CBP.
Resting-state fMRI data of 34 patients with CBP and 34 age-
matched healthy controls (HC) were used to estimate the dFC
through a sliding window approach along the time sequence.
Degree centrality, clustering coefficient (CC), and participation
coefficient (PC) of dFC network were calculated at each time
window and cascaded to represent the dynamic fluctuation of
network topology from the perspectives of nodal importance,
local efficiency, and modular communication, respectively.
Temporal grading index (TGI), a new feature that quantifies
the oscillation slope of each network metric of the CBP cohort
relative to the normative oscillation sequence of the HCs, was
proposed and utilized to predict the pain intensity of the patients.
TGI of these network metrics were submitted to three commonly
used regression models (i.e., support vector regression [SVR],
least absolute shrinkage and selection operator [Lasso], and
elastic net), with a 5-fold cross-validation strategy, to examine
the effectiveness of dynamic network topology on explaining pain
intensity of patients with CBP.

MATERIALS AND METHODOLOGY

Participants
In the study, MRI data of 34 patients with CBP and 34
healthy controls (HC) who had matched age and gender in
patients with CBP were downloaded from the Open Pain
database (www.openpain.org). The database was collected by the
OpenPain Project (OPP) for scientific investigation, teaching, or
the planning of clinical research studies. All patients with CBP
have completed the Short-Form of theMcGill PainQuestionnaire
(SF-MPQ), including a visual analog scale (VAS) ranging from
0 (painless) to 10 (maximum imaginable pain). The Beck
Depression Inventory (BDI) was used to access the depression
scores of all participants. Questions of SF-MPQ and BDI were
finished 1 h before the brain scan.

MRI Data Acquisition
MRI data were acquired on a 3-Tesla Siemens Trio whole-
body scanner using the standard radio-frequency head coil.
All participants were required to close their eyes during the
scan. High-resolution 3-dimensional T1-weighted data were
acquired with the following parameters: voxel size 1×1×1
mm3, repetition time (TR) = 2,500ms, echo time (TE) =

3.36ms, flip angle = 9◦, number of slices = 160, field of
view = 256 mm, in-plane matrix resolution = 256×256.
Resting-state fMRI (rs-fMRI) data were acquired using an
echo-planar imaging (EPI) sequence at the same scanner with
the following scanning parameters: repetition time (TR) =

2,500ms, echo time (TE) = 30ms, flip angle = 90◦, number
of slices = 40, slice thickness = 3mm, in-plane resolution
= 64×64, number of volumes = 245 or 305. For images
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TABLE 1 | Demographic information of participants.

CBP (N = 30,

mean ± SD)

HC (N = 29,

mean±SD)

p-value

Age 50.3 ± 8.1 49.2 ± 9.4 0.6519a

Gender (M/F) 17/13 17/12 0.6888b

BDI score 6.3 ± 5.6 1.3 ± 2.2 < 0.05a

VAS score 6.8 ± 1.7 - -

Pain duration 15.9 ± 11.6 - -

CBP, chronic back pain; HC, healthy control; BDI, beck depression inventory; VAS, visual

analog scale; a denotes two-sided two-sample t-test; b denotes two-sided Pearson

chi-square test.

that had 305 volumes, we removed the last 60 volumes
to make the time point consistent (245 volumes for all
images) (44, 45).

Image Preprocessing
All rs-fMRI data were preprocessed via the statistical parametric
map 8 (SPM, https://www.fil.ion.ucl.ac.uk/spm/software/spm8)
using the general pipeline. Briefly, the pipeline included
the following steps: (1) removing the first 5 volumes; (2)
correcting slice timing and head motion; (3) registering the
functional images to the corresponding T1-weighted images, and
normalizing the acquisition to Montreal Neurological Institute
(MNI) space with a resampling voxel size of 3×3 × 3 mm3

resolution; (4) smoothing the normalized images with a 5-
mm full-width at half-maximum (FWHM) Gaussian kernel
spatially according to previous literature (46); (5) reducing low-
frequency drift and high-frequency noise with bandpass filtering
(0.01–0.1Hz). The global signal regression was not conducted
avoiding the removal of the significant neuronal signals (47,
48). Participants with poor image quality or excessive head
motion [translation distances > 2mm or rotation degree >

2◦ or mean framewise displacement > 0.2mm (49, 50)] were
excluded (51), leaving 30 CBP patients and 29 healthy controls
for further analysis. The demographics for patients with CBP
and HC are shown in Table 1. The human Brainnetome atlas
(52) was used to parcellate the whole brain into 274 regions [246
for the cerebrum and 28 for the cerebellum derived from the
Probabilistic Cerebellar Atlas (53)].

Dynamic FC Estimation
After preprocessing, a data matrix (n×T) for each participant
was obtained, where T = 240 denotes the number of time points
and n = 274 denotes the number of brain regions. We used the
DynamicBC toolbox (https://guorongwu.github.io/DynamicBC)
(54) to estimate the dynamic functional connectivity (dFC) of
each participant. As a key parameter in the sliding window
approach, it has been proved that the method would introduce
spurious correlations when window lengths < 1/fmin, where fmin

denotes the lowest frequency (i.e., 0.01Hz) in preprocessing of
bandpass filtering (55–57). The dFC matrices were calculated
within t= 191 consecutive windows produced by sliding window
approach with 50 TRs length of the window and 1 TR length
of sliding step (58). Finally, t functional connectivity matrices

w ∈ R
n×n , with negative- and self- connectivity removed (59),

were obtained for each participant (Figure 1A).

Computation of TGI for Patients With CBP
We averaged the functional networks of each time window across
the HCs, resulting in a series of average dFC (Wh ∈ R

t×n×n)
of HC subjects. The Brain Connectivity Toolbox (BCT, http://
www.brain-connectivity-toolbox.net) was used to calculate the
network properties of dFC matrices w of each subject across
time windows, including degree, clustering coefficient (CC), and
participation coefficient (PC) (Figure 1B). The PC was calculated
based on the modular structure including Yeo’s 7 cortical
functional networks (i.e., visual, somatomotor, dorsal Attention,
ventral attention, limbic, frontoparietal, default and subcortical
networks) (60), subcortical network, and cerebellar network. The
subcortical network was composed of all subcortical regions,
including the amygdala (BN label 211–214), thalamus (BN
label 231–246), caudate (BN label 219–220, 227–228), putamen
(BN label 225–226, 229–230), globus pallidus (BN label 221–
222), nucleus accumbens (BN label 223–224); and the cerebellar
network was composed of all cerebellar lobules (excluding the
brain stem) in the BN_274 atlas (BN label 247–274). For each
network property of a participant, we concatenated this property
across time windows to form a dynamic matrix X ∈ R

t×n.
As shown in Figure 1B, for the j-th brain region, we subtracted

the regional network property calculated fromWh (the averaged
dFC networks of the HCs) from the regional network property
of each patient with CBP. Then a linear regression (equation
1) model, with the result of the subtraction as the dependent
variable and the network property of average HC Wh as the
independent variable, was performed to extract the temporal
gradient index (TGI) of each brain region of CBP patients.

y− x = ki,jx+ b (1)

The slope k is the TGI that represents the alteration gradient
of this patient relative to the HC group at the temporal scale. For
each patient with CBP, we concatenated the TGI of each network
property across brain regions. In addition, the combination of all
the TGI features was calculated via the z-score strategy.

Regression Analysis
To examine the validity of TGI in assessing the pain intensity of
patients with CBP, three commonly used regression models (i.e.,
support vector regression [SVR], least absolute shrinkage and
selection operator [Lasso], and elastic net) were applied to predict
pain intensity (VAS scores) using the TGI. Five-fold cross-
validation repeated ten times was performed and mean square
error (MSE) was used to evaluate the regression performance.

The Linear SVR (61) we used for the prediction
can approximate the actual pain intensity y with two
hyperparameters E and o ascertain a linear regression function
expressed as:

f (ω, b) = ωx+ b (2)
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FIGURE 1 | The pipeline of TGI extraction. (A) We assess the dynamic functional connectivity (dFC) using the sliding window analysis with 50 TRs length for a window

and 1 TR length for sliding step, resulting in t windows. (B) We extract dynamic property matrix (degree, clustering coefficient [CC], and participation coefficient [PC])

for the network of each CBP patient and the average network of the HCs. A linear regression model was then used to extract the TGI Ki,j of each network property of

the j-th brain region for i-th CBP subject.

where ωǫR1×n and b are the parameters of the function. For
the prediction of the pain intensity, xǫRn×1and the output f (xi)
denoted the TGI feature of each brain region extracted from
patients and the prediction result for the i-th patient, respectively.

The regression problem of Lasso (62) can be described as
equation 3, where βǫRn×1 is the parameter of the regression
function. The L1-norm regularization was used to make the
coefficients sparse so that the irrelevant predictors could be
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FIGURE 2 | Distribution of the TGI of different network properties [degree, clustering coefficient (CC), and participation coefficient (PC)] in cerebrum and cerebellum.

excluded (62).

min
β

‖y− Xβ‖2 + λ‖β‖1 (3)

Compared to Lasso, elastic net (63) had one more regularization
term (βǫRn×1) and the elastic net will turn into Lasso when
setting α =0 (see equation 4). The L2-norm regularization
enabled the model to select a subset rather than only one from
the highly correlated features to overcome the deficit of using
L1-norm regularization only.

min
β

‖y− Xβ‖2 + λ‖β‖1 + α‖β‖2 (4)

We used the grid search method to calibrate the λ in Lasso
regression according to the previous study (64). For example, the
Lasso was constructed by varying the λ in a specified range λ=
{0.10,0.15,0.20,...,1} and then the optimal λwas used in the testing
dataset. A two-step grid search method was applied to calibrate
the parameters for both SVR and elastic net according to previous
studies (65, 66). When calibrating parameters of SVR and elastic
net models, we first specified a coarse grid search to determine
the best region of the calibrated parameters and then conducted
a finer grid search to find the optimal parameters.

We then adjusted the bias between predicted pain intensity
and real pain intensity according to the bias-adjustment scheme
proposed by Beheshti et al. (67). For each subject in the training
set, we calculated the 1 by subtracting the real intensity from
the predicted intensity of pain and then used a linear regression
model of 1 against the real pain intensity to get a linear
regression function with the slope µ and the intercept ϕ. The
offset can be calculated as below:

offset = µ� + ϕ (5)

where � denote the real pain intensity. The bias-free back
pain intensity was calculated by subtracting the offset from
individual predicted pain intensity (more information about
the relation between 1 and pain intensity could be found in
Supplementary Figure S1).

Statistical Analysis
Between-group differences in age and BDI score were estimated
by using a two-sample t-test, and the gender difference was
estimated via the Chi-square test. Pearson correlation analysis
was performed to assess the relationship between TGI and
BDI score (68) to examine whether the changes in TGI were
influenced by affective factors. In addition, a two-sample t-test,
with age, gender, and BDI score as covariates, was performed to
examine the between-group differences in the network properties
(i.e., nodal degree, CC and PC) in brain regions that had high
prediction power. The false discovery rate (FDR) correction with
q < 0.05 was used to correct the results formultiple comparisons.

RESULT

Spatial Distribution of the TGI of the Three
Network Properties
The average TGI of each network property across patients
with CBP is shown in Figure 2. The average TGI of degree
is mainly negative values across the brain, except in the left
posterior parietal thalamus (PPtha) and right ventrolateral
fusiform gyrus [ventrolateral Brodmann area 37 (A37vl)] which
have more positive values. Similarly, the average TGI of PC
is mostly negative values except for cerebellar right lobule
VIIb and left rostroventral ventral anterior cingulate cortex
[rostroventral Brodmann area 24 (A24rv)]. The average TGI
of CC shows more positive values relative to the other two
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FIGURE 3 | Prediction performance of pain intensity using the TGI of different network properties. The scatter plot shows the correlation between the real VAS score

and the predicted VAS score estimated by different features through different regression models. The solid lines indicate the identity line (y = x). CC, clustering

coefficient; PC, participation coefficient; VAS, visual analog scale.

properties, which locates in A37vl, right rostral temporal
thalamus (rTtha), and right medial pre-frontal thalamus
(mPFtha), whereas the TGI of medial prefrontal and occipital
cortices are highly negative. From the result (more details
could be found in Supplementary Figure S2) of Pearson
correlation analysis between TGI and BDI scores, we found no
significant difference.

Prediction Performance of Pain Intensity
Using the TGI Features
We used the TGI of degree, CC, PC as well as their combination
as input features of SVR, Lasso, and elastic net models to predict
the VAS score via a cross-validation strategy. The results are
visualized in Figure 3. The scatter plots illustrate the correlation
between estimation and the real VAS scores. The MSE of
each regression task is given in Figure 4. For TGI of degree,

SVR achieved the best prediction performance by using the
parameters of (O, E) = (1,0.17), with the mean MSE = 0.45 ±

0.09. The TGIs of CC and PC achieved the mean MSEs of 0.56±
0.18 and 0.54 ± 0.14, respectively, using the elastic net under the
parameters (λ,α) = (0.08,0.28). The combination of all the TGI
features significantly improved the regression performance of all
the three models, and the Lasso achieved the minimum MSE =

0.25± 0.05 under the parameter λ = 0.65.

Temporal Fluctuation of Network
Properties of High Informative Brain
Regions
The distribution of brain regions with the TGI that highly
contributed to the regression process is shown in Figure 5A

(the fluctuations of the other brain regions can be found
in Supplementary Figures S3–S5 in Supplementary Materials).
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FIGURE 4 | The MSE is derived from different models and features. Bars represent the mean and SD of the MSE during the cross-validation process. CC, clustering

coefficient; PC, participation coefficient.

For the TGI of degree, brian regions contributing to prediction
were mainly placed in the temporal lobe, subcortical nuclei,
and insular cortex, including superior temporal gyrus (STG),
insular gyrus (INS), and basal ganglia (BG). For the TGI of
CC, the high informative brain regions were located in the
frontal and temporal lobes, including the superior frontal gyrus
(SFG), superior temporal gyrus (STG), and inferior temporal
gyrus (ITG). For the TGI of PC, high-weight brain regions were
located across frontal, temporal, and parietal cortices, including
the middle frontal gyrus (MFG), posterior superior temporal
sulcus (pSTS), inferior frontal gyrus (IFG), superior temporal
gyrus (STG) and superior parietal lobule (SPL). Furthermore, the
cerebellum, caudoposterior superior temporal sulcus (cpSTS),
and rostral somatosensory association cortex [rostral Brodmann
area 7 (A7r)] highly contributed to regression tasks using
each type of TGI. We also compared the fluctuations of
degree, CC, and PC of five brain regions, including ventral
caudate (vCa), opercular Broca’s area [opercular Brodmann area
44 (A44op)], cerebellum lobule V (V), rostroventral inferior
temporal gyrus [rostroventral Brodmann area 20 (A20rv)],
dorsal agranular insula (dIa), cerebellum lobule VIIIa (VIIIa),
dorsal dysgranular insula (dId), medial superior occipital gyrus
(msOccG), caudoposterior superior temporal sulcus (cpSTS),
inferior frontal junction (IFJ), rostral temporal thalamus (rTtha),
cerebellum lobule Crus I (CrusI) and cerebellum lobule IX
(IX), with the highest weights in pain prediction between the
two groups (Figure 5B). Compared to the HC cohort, the CC

showed higher values over time in patients with CBP in all the
five brain regions, whereas, the PC in these regions showed
the opposite alteration trend in the CBP cohort. In addition,
the fluctuations of the nodal degree of CBP patients showed a
relatively larger overlap with the HC when compared to the other
two network properties.

DISCUSSION

The present study aimed to (1) investigate whether CBP is
associated with altered dynamics of topological organization of
functional brain networks, and (2) develop a novel kind of feature
(TGI) that could better characterize pain sensation from dynamic
functional networks. We found CBP significantly altered the
dynamics of functional network properties, and the gradient of
these dynamics of CBP patients relative to the HCs accurately
predicted pain intensity. These results suggested that CBP is
accompanied by abnormal alterations of functional topology at
the temporal scale, which may serve as an effective biomarker for
estimating pain perception in the brain.

Studies have shown that the degree gradient of patients with
CBP relative to the HCs can characterize a unique neurological
state of chronic pain (46, 69), such as a global randomization
state of functional connectivity (46). Regarding the dynamic
nature of the functional brain connectome, we speculated that
the TGI extracted from the dFC networks might better depict
the variations in neurological states of CBP over time than using
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FIGURE 5 | Brain regions have high prediction power and the fluctuation of their nodal topology over time. (A) The weight of nodes contributed to the prediction

process. Larger nodal size indicates a higher weight. (B) The fluctuation of network properties [nodal degree, clustering coefficient (CC), and participation coefficient

(PC), not TGI] of the five nodes with the highest weights. The black point indicates a significant between-group difference (p < 0.05, FDR corrected). vCa, ventral

caudate; A44op, opercular Broca’s area (opercular Brodmann area 44); V, cerebellum lobule V; A20rv, rostroventral inferior temporal gyrus (rostroventral Brodmann

area 20); dIa, dorsal agranular insula; VIIIa, cerebellum lobule VIIIa; dId, dorsal dysgranular insula; msOccG, medial superior occipital gyrus; cpSTS, caudoposterior

superior temporal sulcus; IFJ, inferior frontal junction; rTtha, rostral temporal thalamus; CrusI, cerebellum lobule Crus I; IX, cerebellum lobule IX.
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static functional networks. The high prediction performance of
pain intensity suggested the effectiveness of the TGI feature,
and no significant difference between TGI and BDI scores
suggested the stabilization of the TGI feature that TGI would
not be influenced by abnormal emotion (i.e., depression).
Furthermore, the combination of three types of TGI significantly
improved the prediction performance, suggesting the complex
neural mechanism of CBP requires information from diversified
domains to assess pain sensation. Nodal degree, CC and PC
were indicated to represent network hubness, segregation, and
integration of the brain network, respectively (59, 70, 71).
Studies have reported the differences in nodal degree and PC
of functional brain networks between patients with CBP and
the HCs (72, 73). The CC of the insular cortex was found to
be correlated with individual pain thresholds (74). Therefore,
the combination of the TGI of these three network properties
can comprehensively depict the alternation of brain networks of
patients with CBP, which undoubtedly performed better than the
TGI of a single network property in predicting the pain intensity.

Interestingly, we also found that the dynamics of CC and PC

of brain regions that had TGI with high prediction power (i.e.,
STG, ITG, pSTS, SPL, IFG, INS, and parts of the cerebellum)
showed distinct fluctuation patterns between patients with CBP
and the HCs. Although previous studies have shown altered
CC and PC of the static functional network in the CBP cohort
(70, 75), our study moved a further step to show abnormalities
in the temporal fluctuation of these two properties in patients
with CBP. Since CC and PC represented the segregation and
integration of the network, respectively. The altered fluctuation
of themmay indicate the topological reorganization of functional
brain networks in patients with CBP that the network tended
to be more locally connected with disruptions in inter-modular
connectivity. This is in line with previous studies indicating
lower efficiency of information transfer in the brain networks
of patients with CBP than the HCs (42, 76). The brain regions
with abnormal fluctuation of CC and PC were indicated to be
extensively involved in pain processing (77–80). For example,
IFG and ITG are involved in pain-related memories (81, 82), and
INS plays a critical role in pain modulation (83). Furthermore,
the cpSTS and the A7r of SPL showed a high contribution to
pain prediction in all regression tasks using the TGI derived
from different network properties (i.e., degree, CC and PC),
suggesting the abnormal changes in these two brain regions were
not only in local connectivity with other regions but also in
the flow of information throughout the brain. These findings
were supported by the previous studies indicating increased
vigilance of the pain within these two brain regions (84–86).
All these results supported our argument that TGI of network
properties might better characterize the neurological condition
of the individual with CBP in a dynamic manner.

There were several limitations in the present study. First, the
sample size was limited in this study. Here, we performed a 5-fold
cross-validation strategy and employed three commonly used
regression models (i.e., SVR, Lasso and elastic net) that showed
high generalizability across studies (87–89) to reduce the risk of
overfitting, and achieved robust performance. Replications on a

larger and independent dataset are still necessary to further verify
the effectiveness of TGI of network topology in assessing pain
intensity. Second, the dynamics of functional networks largely
rely on the chosen parameters of the sliding window approach
that determine the scale of the time sequence (90). In the
present study, we chose the parameters according to the previous
literature (55–57). Nevertheless, whether the parameters could
influence the prediction power of TGI on the pain intensity need
to be further explored.

CONCLUSION

We proposed a novel feature called TGI that was derived
from the dFC network to represent the temporal deviation of
network topology in patients with CBP relative to HCs. The
TGI of network properties achieved outstanding performance
in predicting the pain intensity of patients with CBP in three
commonly used regression models, with a minimum MSE of
0.25 ± 0.05. Our findings suggested that the TGI can serve
as a valuable biomarker for pain intensity evaluation and has
potential application in CBP management/therapy.
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Background: Repetitive transcranial magnetic stimulation (rTMS) is one of the

high-potential non-pharmacological methods for migraine treatment. The purpose of

this study is to define the neuroimaging markers associated with rTMS therapy in patients

with migraine based on data from functional MRI (fMRI).

Materials and Methods: A total of 19 patients with episodic migraine without aura

underwent a 5-day course of rTMS of the fronto-temporo-parietal junction bilaterally,

at 10Hz frequency and 60% of motor threshold response of 900 pulses. Resting-state

functional MRI (1.5 T) and a battery of tests were carried out for each patient to clarify their

diagnosis, qualitative and quantitative characteristics of pain, and associated affective

symptoms. Changes in functional connectivity (FC) in the brain’s neural networks before

and after the treatment were identified through independent components analysis.

Results: Over the course of therapy, we observed an increase in FC of the default mode

network within it, with pain system components and with structures of the visual network.

We also noted a decrease in FC of the salience network with sensorimotor and visual

networks, as well as an increase in FC of the visual network. Besides, we identified 5

patients who did not have a positive response to one rTMS course after the first week of

treatment according to the clinical scales results, presumably because of an increasing

trend of depressive symptoms and neuroimaging criteria for depressive disorder.

Conclusions: Our results show that a 5-day course of rTMS significantly alters the

connectivity of brain networks associated with pain and antinociceptive brain systems in

about 70% of cases, whichmay shed light on the neural mechanisms underlyingmigraine

treatment with rTMS.

Keywords: headache, neurostimulation, neuroimaging, functional connectivity, migraine
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INTRODUCTION

The fact that every seventh human in the world suffers from
migraine, which remains second among the causes of disability
in young people, determines the importance of the subject
under study (1, 2). The low efficacy of existing symptomatic
therapies and high costs in view of unknown consequences after
the cessation of targeted medications force us to look for new

methods for treating this disease (3).

One of the high-potential alternative approach to the

treatment of migraine is neurostimulation (4) and particularly
repetitive transcranial magnetic stimulation (rTMS) (5). The
efficacy of this method has been confirmed for acute and
preventive migraine treatment (6, 7). Another significant
advantage of TMS is the absence of side effects (8). The
most frequently used regions for TMS are the prefrontal
dorsolateral cortex and primary motor cortex, the stimulation
of which resulted in a lower number of migraine attacks and
increased quality of life among patients (9, 10). Yet, there
still are no objective criteria for treatment efficacy, nor have
its pathophysiological mechanisms been thoroughly studied.
Therefore, despite showing the efficacy of rTMS in some studies,
only single-pulse TMS is approved for migraine prevention.

Existing TMS techniques for treating depression (7) and
secondary headaches (11) have been associated with some
neuroimagingmarkers, particularly using functional MRI (fMRI)
which is a promising tool for assessing interactions of the
brain’s neural networks in migraine patients (12–14). As we
know, migraine is characterized by various changes in FC in the
brain’s neural networks, which mostly result in pain perception
disorder and an inadequate response to pain (15). Therefore,
combined rTMS/fMRI studies can help us better understand
the mechanisms underlying this method of migraine treatment
and set up objective criteria to assess the efficacy of therapy
(16). To assess changes in FC during TMS treatment, we have
applied independent component analysis (ICA) which is based
on the registration of spontaneous low-frequency oscillations
that occur in spatially separated, functionally connected,
continuously communicating anatomical regions representing
neural networks of the brain.

To select regions for TMS, we relied on the mechanisms
underlying migraine and the effects of TMS application as
reflected in fMRI studies (17). A headache in migraine, which
arises through sensibilization of neurons in the trigeminal
thalamocortical pathway, is characterized by an imbalance
between attention to external and internal stimuli in favor of the
latter (12). The network that is largely involved in these processes
is the salience network, which is responsible for perceiving,
processing, and switching attention between stimuli (18, 19).
Its primary structure is the insular cortex lays is a portion of
the cerebral cortex folded deep within the lateral sulcus. At the
same time, the activity of the inferior frontal gyrus, which is a
part of the frontal-temporal neural network, is closely associated
with cognitive and emotional components of pain (20), and
stimulating of this region by TMS can cause changes in FC of
other neural networks as well (21, 22), including the default mode
network, for which FC changes inmigraine were described earlier

(23). In view of this, for stimulation, we selected the region of
the fronto-temporo-parietal junction to ensure the maximum
coverage of described structures.

Aim: We presume that fMRI and subsequent analysis of
changes in FC will allow assessing the brain changes associated
with rTMS therapy in patients with migraine. To achieve this
goal, we compared FC data before and after a 5-day course of
rTMS by using independent component analysis for the brain’s
core neural networks.

MATERIALS AND METHODS

Sample
During one-year screening at the clinic of the Neurology
Department, we selected 56 patients with newly diagnosed
episodic migraine without aura according to the criteria of
the International Classification of Headache Disorders, 3rd
edition (24). All the patients received only acute treatment of
migraine (with the exception of 2 patients who received beta-
blockers at intermediate therapeutic doses due to a concomitant
illness). The following criteria were applied for the inclusion
in the study group: voluntary informed consent for research
participation, diagnosed migraine without aura, aged 18–
65, and absence of headache at the moment of screening.
The criteria for exclusion: contraindications to MRI (metallic
implants, claustrophobia, pacemakers, etc.) and/or TMS, major
psychiatric or neurological disorders, pregnancy, antidepressant
medication treatment, interruption of the 5-day TMS therapy
course, invalid/unreadable MRI scans, refusal to continue
participating in the study. There were 27 patients included
in the study, but 8 patients were excluded in the course of
research (3 patients had more than 30 invalid MRI scans after
the preprocessing, 2 patients have high-movement coefficient
during the scanning after the preprocessing, 2 patients refused
to continue participation in the study due to the pandemic
restrictions, and 1 patient refused to continue participation in the
study due to unknown reasons).

Thus, this study is based on the results obtained from
19 patients (16 women, average age 39.8 ± 11.1 years) who
underwent a complete TMS course and fMRI scanning before
and after the course. The number of respondents was chosen
to take into account the established scientific practice in this
direction of research (11, 16, 25).

The illustration of the study design can be found in
Supplementary Material 1.

All the participants received a complete description of the
research and gave their informed consent in writing. The
protocol was approved by the IRB/IEC, and conformed
to ethical standards and principles described in the
Helsinki Declaration.

Test Battery
A test battery was filled out by the patients three times–
immediately prior to conducting fMRI before and after the
TMS course, and after 1 month of TMS therapy. The numerical
rating scale (NRS) for pain allowed to evaluate the pain
intensity during the last attack before scanning, where “0”
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TABLE 1 | Demographical and clinical data of patients before and after a 5-day course of rTMS and 1 month after the treatment (5 of 19 patients undergo more than one

TMS therapy course).

Before TMS (n = 19) (M ± S.D.) After TMS (n = 19) (M ± S.D.)

student’s t-test; p-value

(before/after)

A month after TMS (n = 19) (M ± S.D.)

student’s t-test; p-value

(before/after 1 month)

Gender (male/female) 3/16

Age 39.84 ± 7.09

Illness duration 15.71 ± 5.24

The numerical rating scale for pain (last episode) 7.74 ± 1.45 2.42 ± 1.57

t = 12.68; p < 0.01

1.75 ± 1.71

t = 14.18; p < 0.01

The frequency of migraine (days in month) 9.37 ± 2.91 5.95 ± 3.73

t = 7.32; p < 0.01

5.66 ± 2.42

t = 11.83; p < 0.01

the Migraine Disability Assessment Questionnaire 18.30 ± 2.52 – 8.79 ± 1.88 t = 9.81; p < 0.01

The Leeds dependency questionnaire 13.31 ± 5.08 7.05 ± 4.50

t = 6.98; p < 0.01

7.50 ± 3.52

t = 6.43; p < 0.01

Hospital anxiety scale 7.21 ± 2.84 5.58 ± 2.87

t = 2.70; p = 0.015

5.31 ± 2.49

t = 3.06; p < 0.01

Hospital depression scale 4.89 ± 2.40 4.11 ± 2.34

t = 1.82; p = 0.065

3.74 ± 2.18

t = 3.41; p = 0.012

TMS, Transcranial Magnetic Stimulation (5-day course).

FIGURE 1 | Changes in the functional connectivity in the default mode network, salience, and visual networks after a 5-day TMS course. Column 3 shows ROI with

changed FC (blue–before TMS; orange–after TMS). The pictures represent neural network models from Chabran et al. (29).

meant the absence of pain, and “10” referred to the most acute
pain. The respondents filled out a standardized questionnaire
in which they assessed the duration of migraine, migraine
family history, number of days with headache per month;
the Migraine Disability Assessment Questionnaire (MIDAS);

the acute migraine preventing drugs overuse anamnesis was
assessed by the Leeds Dependence Questionnaire (LDQ). In
addition, the patients filled out the hospital anxiety and
depression scale (HADS) for screening of associated symptoms
of affective disorders.
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TABLE 2 | Changes in functional connectivity in three networks with cluster names, sizes, locations according to Montreal Neurological Institute (MNI) coordinates, and

validity of resulting changes with the Benjamini–Hochberg correction.

Network MNI-space Structure name Cluster size (voxels) P-FDR

x y z

Default mode network (ICA_05) −26 −70 −18 Lateral Occipital Cortex + Fusiform gyros 125 0.000036

+10 −54 +66 Precuneus 84 0.026138

−30 −06 +60 Precentral gyrus 71 0.026138

−14 −74 −02 Lingual gyrus + Fusiform gyros 70 0.033545

+04 −74 +00 Intracalcarine Cortex 55 0.033545

Salience network (ICA_03) +56 −14 +50 Postcentral gyrus 138 0.007110

+18 −84 +28 Lateral Occipital Cortex + Occipital pole 81 0.022571

Visual network (ICA_07) −22 −70 +34 Lateral Occipital Cortex 223 0.000116

+00 +20 +34 Anterior Cingulate gyrus 124 0.003183

ICA, Independent Components Analysis.

FIGURE 2 | Changed functional connectivity of the medial prefrontal cortex in the default mode network (ICA_5) in the responders in comparison with the

non-responders.

Statistical Analysis of Demographic Data
and Headache Characteristics
Data statistical processing was performed with the software suite
SPSS 25 (SPSS Inc., USA). Data distribution normality was
validated by using the Kolmogorov–Smirnov and Shapiro-Wilk
tests. Ordinal scale data were analyzed by using the Mann–
Whitney U-test, matched samples with normal distribution–by
using Student’s t-test, and non-parametric matched samples–by
using the Wilcoxon signed-ranks test, differences between which
had the significance levels. The results were represented with
(mean ± SD) and also the median and the interquartile range
for ordinal scales. Pearson and Spearman’s analyses were used to
assess correlations to test battery data.

According to the subjective feelings of continuing headache,
NRS for actual pain (cut-off: 5-point and more of the last
headache episode reduction after the first week of treatment),

frequency of headaches (days in a month) (cut-off: 4-days
and more reduction after the first week of treatment), and
HADS-depression tests significantly different results we defined
responders and non-responders.

TMS Procedures
The procedures were carried out at the TMS laboratory of the
clinic of the Neurology Department. The patients did not receive
antianginal therapy during the procedures. Each patient received
five rTMS sessions in 5 days during the headache-free period (at
least 2 h after the last attack) in the first half of the day (from
9 a.m. to 13 a.m.). Stimulations were performed with a circular
coil. The stimulation field covered the lower frontal region at the
temporal lobe junctions and the projection region of trigeminal
nerve sensory branches. TMS was performed using a neuro-
MS/D transcranial magnetic stimulator (Neurosoft, Ivanovo,
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TABLE 3 | Test battery data of the responders and the non-responders to one

course of TMS therapy.

Responders (n = 14)

(M ± S.D.)

Non-responders (n = 5)

(M ± S.D.)

The numerical rating scale for pain (last episode)

Before 8.14 ± 1.41 6.60 ± 0.89

After 2.36 ± 1.44 4.25 ± 0.96

Student’s t-test; p-value t = 13.32; p = 0.00 t = 4.; p = 0.009

The frequency of migraine (days in month)

Before 8.78 ± 3.02 11.00 ±2.00

After 4.36 ± 2.65 10.40±2.51

Student’s t-test; p-value t = 17.67; p = 0.00 t = 0.88; p = 0.426

The Leeds dependency questionnaire

Before 13.21 ± 5.67 13.60 ± 3.36

After 6.78 ± 5.03 9.80 ± 2.77

Student’s t-test; p-value t = 5.47; p = 0.00 t = 2.49; p = 0.062

Hospital anxiety scale

Before 6.36 ± 2.38 9.60 ± 2.88

After 4.79 ± 2.61 5.20 ± 1.92

Student’s t-test; p-value t = 1.76; p = 0.102 t = 2.24; p = 0.089

Hospital depression scale

Before 5.07 ± 2.64 7.00 ± 3.32

After 3.64 ± 1.91 5.40 ± 3.29

Student’s t-test; p-value t = 2.46; p = 0.029 t = 0.76; p = 0.491

Russia). Motor thresholds were determined by independent
measurements on the primary motor cortex on both sides
before the first treatment session. The motor response threshold
was determined by the percentage intensity of a stimulus that
generated 50µV in the contralateral muscle abducting the thumb
in 5 of 10 trials. A TMS session consisted of bilateral stimulation
at 10Hz and 60% of the motor threshold response of 900 pulses.
The 10Hz protocol was introduced as a series of 60 pulses during
6 s, followed by 20 s rest (15 trains 6.5min for one side). The
second course of TMS with the same characteristics for non-
responders was conducted the next week after filling the test
battery (one week after the first course).

All the patients did not receive any prophylactic therapy
during the one-month follow-up to better assess the effectiveness
of rTMS.

fMRI Scanning
The patients underwent fMRI scanning not earlier than a week
before and not later than a week after the 5-day TMS course on a
Philips Ingenia 1.5T magnetic resonance imaging scanner in the
interictal period (at least 24 h after the last attack). The scanning
was performed in the evening (from 5 p.m. to 8 p.m.). Patients did
not eat or drink coffee at least 3 h before the scan. The protocols–
T1-weighted (301 axial sections, planar resolution of 1 × 1mm;
repetition time/echo time 8.0/3.7ms; flip angle = 8) and EPI
(echo-planar imaging scan) (35 axial sections; planar resolution
of 3.03× 3.03mm; section depth of 4.0mm; repetition time/echo
time 3,000/50ms; flip angle= 90)–were obtained for each patient

with preceding instructions: “Remain lying and relaxed, with
closed eyes, but do not sleep.”

MRI Data Processing
Data were preprocessed using MATLAB R2019b software
(MathWorks, Natick, MA) and the CONN 19c toolbox for
functional connectivity analysis (26). The data processing
included functional realignment and unwarp, slice-timing
correction, outlier identification, direct segmentation, and
normalization into standard MNI space. Functional smoothing
was performed using spatial convolution with a Gaussian
kernel of 8mm full width half maximum. The default
denoising pipeline combines two general steps: linear regression
of potential confounding effects in the blood-oxygen-level-
dependent imaging signal (BOLD) based on an anatomical
component-based noise correction procedure–“aCompCor” and
temporal band-pass filtering. Temporal frequencies below
0.008Hz or above 0.09Hz are removed from the BOLD signal
to focus on low-frequency fluctuations while minimizing the
influence of physiological, head-motion, and other noise sources.
All the data were processed on a single MacBook (OS Catalina
10.15.5 software).

Statistical Analysis of MRI Data
Group dimensional independent component analysis was
performed using the methodology of group analysis according
to Calhoun (27). All the obtained data regarding functional
connectivity before and after treatment were distributed into 10
components. After the spatial correlation analysis, the following
components corresponding to the primary neural networks were
selected: ICA_3–salience neural network, ICA_5–default mode
network, ICA_7–visual neural network, and ICA_10–sensory
motor network.

The subsequent comparison of FC of these networks was
carried out on the basis of parametric statistics using the random
field theory (28) with the clusterization threshold: p < 0.05, the
cluster size with the Benjamini–Hochberg correction (p-FDR-
corrected), and the voxel threshold: p < 0.001 p-uncorrected.
We compared (1) FC of four obtained neural networks in all the
patients before and after the therapy; (2) FC of obtained neural
networks in responders to the therapy and FC in non-responders
to the therapy; and (3) possible dependence of test results and
FC changes.

RESULTS

Demography and Clinical Data
All the demographical and clinical data are presented in Table 1.
Statistically, valid differences were observed between the results
of the numerical rating scale for pain (the last episode), frequency
of headaches (days in a month), and hospital anxiety scale before
and after the course of treatment, and between the results of
the numerical rating scale for pain (the last episode), frequency
of headaches (days in a month), and hospital anxiety scale
before and after the course of treatment, the Leeds dependence
questionnaire, theMigraine Disability Assessment Questionnaire
before the course and after 1 month of rTMS therapy.
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FIGURE 3 | The overall scheme of 5-day rTMS course affects changes in FC between main resting-state neural networks. FC, functional connectivity; VN, visual

network; DMN, default mode network; SN, salience network; SMN, sensorimotor network.

Results of fMRI–Independent Component
Analysis
According to ICA, the TMS course was followed by increased
FC in the default mode network, decreased FC in the salience
network, and both increase and decrease in FC in the visual
network (Figure 1 and Table 2).

Increased FC was observed in the region between the
default mode network and lateral occipital cortex + fusiform
gyros/precuneus/precentral gyrus/lingual gyrus/intracalcarine
cortex. On the other hand, decreased FC was observed in
the regions between the salience network and postcentral
gyrus/lateral occipital cortex. FC between elements of the visual
network and lateral occipital cortex was increased, while in the
anterior cingulate cortex the visual network FC decreased after
the TMS therapy.

Results of fMRI–Response to Therapy
We identified 14 respondents and 5 non-respondents according
to the described criteria for response to therapy. We compared
the selected groups to find out a reason for failure in the
first week of stimulation. As a result, we revealed a significant
difference in FC in the default mode network (ICA_5). In non-
responders to one course of therapy, much higher dissociation
of FC was observed between the medial prefrontal cortex and
other regions of the default mode network, that were associated
with effective alterations (Figure 2). It should be noted that there

was a statistically valid difference in the dynamics of decreasing
scores of the frequency of headaches (days in amonth), The Leeds
dependency questionnaire, and the hospital depression scale for
responders but not for non-responders (Table 3).

DISCUSSION

The presented pilot study of the efficacy of stimulating the
ventrolateral prefrontal cortex by repetitive TMS in patients with
migraine has demonstrated certain evidence of the therapy’s
success based on correlations of clinical and neuroimaging data.
The statistically significant differences based on the results of
testing the patients before and after the applied therapy point to
positive effects of TMS on patients’ quality of life and amount of
medication treatment. Furthermore, it should be noted that the
effect of the applied TMS therapy remained evident for a month.
We obtained the results of the independent component analysis
which revealed FC changes in three primary neural networks of
the brain.

Default Mode Network
Default Mode network is a neural network in which activity is
registered (as evident from its name) in a relaxed state of rest
and which is extremely important for self-referential cognitive
processes, interception, and self-control (23, 30). Most authors
have reported a decrease in FC both inside the default mode
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network and between it and other neural networks in patients
with migraine, which could point to functional disorders in that
network, yet there are data to the contrary as well (23).

In the structure of the default mode network, the connectivity
of the posterior cingulate gyrus with the precuneus plays a
key role in antinociceptive and multisensory integration, and
a decrease in FC between these structures might be a reason
for the described functional disorders (31). Such contradictory
findings point to a slight increase in FC between the posterior
cingulate gyrus and the precuneus in patients with migraine in
comparison with healthy volunteers (32). Our study has shown
an increase in FC between the default mode network structure
and the precuneus, which could be explained by activation of the
antinociceptive system of that network and normalization of the
multisensory integration function, presumably as a result of the
course of therapy (33).

Reduced FC between the default mode network and precentral
gyrus could reflect difficulties of multisensory information
integration (34). The restoration of these connections after a
TMS therapy course also allows to presume an increase in
antinociceptive activity of the so-called the brain’s pain system
and a decrease in pain rumination (35).

Finally, increased FC with the lateral occipital cortex, lingual
gyrus, and fusiform gyros could be evidence of interaction
between the default mode network and the visual network
whose activity changes have been observed in patients with
migraine (36). Reduced FC between these two networks was a
characteristic feature that distinguished patients with migraine
without aura from healthy volunteers (25). Our findings provide
evidence of normalized connectivity between the default mode
network and the visual network after a course of TMS therapy.

Visual Network
Visual network—FC changes in the visual network are the
most indicative differences between patients with migraine
from healthy volunteers, presumably due to hyperexcitability
of the visual cortex in migraine patients both with and
without aura (33). In addition to the increase in FC with
the default mode network, there was observed a decrease
in connectivity between both the visual (lateral occipital
cortex) and salience (anterior cingulate gyrus) networks.
This observation could explain a decrease in inner attention
to external and internal stimuli, which, in turn, reduces
headache severity (37). Often observed photophobia in patients
could also be a reason for changed FC, and therefore,
its absence would lead to normalization of neural network
activity (36).

Salience Network
Salience network is a neural network that is presumably
involved in pain stimulus integration and subsequent
switching between resting-state and active networks in
migraine (18, 19). Increased FC with the postcentral gyrus
and the right insular cortex was observed in migraine patients
in previous studies (38). The change of FC between those
regions may play an important role not only in decreasing
inner attention to pain impulses, including due to an

actual decrease in the number of pain stimuli but also in
decreased pain rumination (35). It might also be supposed
that the TMS effect results in normalizing the mechanisms of
multisensory processing which are damaged in patients with
migraine (33).

Finally, we found possible predictors of positive response
to TMS therapy according to the described protocol. We
presume that the patients’ predisposition to comorbid depressive
symptoms, and also their identifiable neuroimaging criteria
(Figure 3 and Table 3), could be a reason for the negative
response to therapy. In this case, attention should be paid
to their early recognition and the use of the simulation
protocol for the dorsolateral prefrontal cortex or other treatment
options (39).

Our study has some substantial limitations, such as
the absence of placebo control in the form of sham
TMS, a relatively small sample of patients, no control
over medication intake, and no analysis of FC changes
in subcortical structures which could be associated
with the pain system. Questions also arise regarding
the absence of correlation between FC changes and the
clinical data.

CONCLUSION

Our results show that a 5-day course of rTMS significantly
alters the connectivity of brain networks associated with
pain and antinociceptive brain systems in about 70% of
cases, which may shed light on the neural mechanisms
underlying migraine treatment with rTMS. However,
further research is required, with an extended sample
and placebo control, which we intend to conduct in
near future.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Kirov Military Medical Academy IRB/IEC. The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

AT performed the neurological examination of patients, analyzed
and interpreted the patient data, and was a contributor in
writing the manuscript. KM analyzed and interpreted the patient
data, performed the neuroimage data analysis, and was a major
contributor to writing the manuscript. DF performed the TMS
procedures. IL was a contributor to writing the manuscript.
DT and AE performed the fMRI scanning procedures. AK
performed the statistical analysis of patient data. VP performed

Frontiers in Neurology | www.frontiersin.org 7 June 2022 | Volume 13 | Article 91534689

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Markin et al. rTMS Migraine Treatment fMRI Findings

the neurological examination of patients. DM made the
translation of the manuscript. All authors read and approved the
final manuscript.

FUNDING

This research was funded by the Development Program of ETU
LETI within the framework of the program of Strategic Academic

Leadership Priority-2030 No 075-15-2021-1318 on September
29, 2021.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2022.915346/full#supplementary-material

REFERENCES

1. Steiner TJ, Stovner LJ, Jensen R, Uluduz D, Katsarava Z. Migraine

remains second among the world’s causes of disability, and first among

young women: findings from GBD2019. J Headache Pain. (2020)

21:137. doi: 10.1186/s10194-020-01208-0

2. GBD 2016 Headache Collaborators. Global, regional, and national burden

of migraine and tension-type headache, 1990-2016: a systematic analysis for

the global burden of disease study 2016. Lancet Neurol. (2018) 17:954–76.

doi: 10.1016/S1474-4422(18)30322-3

3. Raffaelli B, Terhart M, Overeem LH, Mecklenburg J, Neeb L, Steinicke M,

et al. Migraine evolution after the cessation of CGRP(-receptor) antibody

prophylaxis: a prospective, longitudinal cohort study. Cephalalgia. (2021)

42:326–34. doi: 10.1177/03331024211046617

4. Schwedt TJ, Vargas B. Neurostimulation for treatment of migraine and cluster

headache. Pain Med. (2015) 16:1827–34. doi: 10.1111/pme.12792

5. Barker AT, Shields K. Transcranial magnetic stimulation: basic

principles and clinical applications in migraine. Headache. (2017)

57:517–24. doi: 10.1111/head.13002

6. Lan L, Zhang X, Li X, Rong X, Peng Y. The efficacy of transcranial magnetic

stimulation on migraine: a meta-analysis of randomized controlled trails. J

Headache Pain. (2017) 18:86. doi: 10.1186/s10194-017-0792-4

7. Evers S. Non-invasive neurostimulation methods for acute and

preventive migraine treatment-a narrative review. J Clin Med. (2021)

10:3302. doi: 10.3390/jcm10153302

8. Dodick DW, Schembri CT, Helmuth M, Aurora SK. Transcranial magnetic

stimulation for migraine: a safety review. Headache. (2010) 50:1153–

63. doi: 10.1111/j.1526-4610.2010.01697.x

9. Zhang B, Liu J, Bao T, Wilson G, Park J, Zhao B, et al. Locations for

noninvasive brain stimulation in treating depressive disorders: a combination

of meta-analysis and resting-state functional connectivity analysis. Aust N Z J

Psychiatry. (2020) 54:582–90. doi: 10.1177/0004867420920372

10. Leung A, Shirvalkar P, Chen R, Kuluva J, Vaninetti M, Bermudes R, et

al. Transcranial magnetic stimulation for pain, headache, and comorbid

depression: INS-NANS expert consensus panel review and recommendation.

Neuromodulation. (2020) 23:267–90. doi: 10.1111/ner.13094

11. Vaninetti M, Lim M, Khalaf A, Metzger-Smith V, Flowers M, Kunnel A, et

al. fMRI findings in MTBI patients with headaches following rTMS. Sci Rep.

(2021)11:9573. doi: 10.1038/s41598-021-89118-2

12. Schwedt TJ, Chiang CC, ChongCD,DodickDW. FunctionalMRI ofmigraine.

Lancet Neurol. (2015) 14:81–91. doi: 10.1016/S1474-4422(14)70193-0

13. Russo A, Silvestro M, Tedeschi G, Tessitore A. Physiopathology of Migraine:

What Have We Learned from Functional Imaging? Curr Neurol Neurosci Rep.

(2017) 17:95. doi: 10.1007/s11910-017-0803-5

14. Skorobogatykh K, van Hoogstraten WS, Degan D, Prischepa A, Savitskaya

A, Ileen BM, et al. European Headache Federation School of Advanced

Studies (EHF-SAS). Functional connectivity studies in migraine: what have

we learned? J Headache Pain. (2019) 20:108. doi: 10.1186/s10194-019-1047-3

15. Brennan KC, Pietrobon D. A systems neuroscience approach to migraine.

Neuron. (2018) 97:1004–21. doi: 10.1016/j.neuron.2018.01.029

16. Kumar A, Mattoo B, Bhatia R, Kumaran S, Bhatia R. Neuronavigation

based 10 sessions of repetitive transcranial magnetic stimulation therapy

in chronic migraine: an exploratory study. Neurol Sci. (2021) 42:131-

9. doi: 10.1007/s10072-020-04505-3

17. Andreou AP, Holland PR, Akerman S, Summ O, Fredrick J,

Goadsby PJ. Transcranial magnetic stimulation and potential cortical

and trigeminothalamic mechanisms in migraine. Brain. (2016)

139:2002–14. doi: 10.1093/brain/aww118

18. Androulakis XM, Rorden C, Peterlin BL, Krebs K. Modulation of

salience network intranetwork resting state functional connectivity

in women with chronic migraine. Cephalalgia. (2018) 38:1731–

41. doi: 10.1177/0333102417748570

19. Veréb D, Szabó N, Tuka B, Tajti J, Király A, Faragó P, et al.

Temporal instability of salience network activity in migraine with

aura. Pain. (2020) 161:856–64. doi: 10.1097/j.pain.00000000000

01770

20. He Z, Zhao J, Shen J, Muhlert N, Elliott R, Zhang D. The right VLPFC

and downregulation of social pain: A TMS study. Hum Brain Mapp. (2020)

41:1362–71. doi: 10.1002/hbm.24881

21. Freedberg M, Reeves JA, Toader AC, Hermiller MS, Kim E, Haubenberger

D, et al. Optimizing Hippocampal-Cortical Network Modulation via

Repetitive Transcranial Magnetic Stimulation: A Dose-Finding Study Using

the Continual Reassessment Method. Neuromodulation. (2020) 23:366–

72. doi: 10.1111/ner.13052

22. Hartwigsen G, Volz LJ. Probing rapid network reorganization of motor and

language functions via neuromodulation and neuroimaging. Neuroimage.

(2021) 224:117449. doi: 10.1016/j.neuroimage.2020.117449

23. Chong CD, Schwedt TJ, Hougaard A. Brain functional connectivity in

headache disorders: A narrative review of MRI investigations. J Cereb Blood

Flow Metab. (2019) 39:650–69. doi: 10.1177/0271678X17740794

24. Headache Classification Committee of the International Headache Society

(IHS). The International Classification of Headache Disorders, 3rd edition

(beta version). Cephalalgia. (2013) 33:629–808. doi: 10.1177/03331024134

85658

25. Coppola G, Di Renzo A, Tinelli E, Lepre C, Di Lorenzo C, Di Lorenzo G,

et al. Thalamo-cortical network activity between migraine attacks: Insights

from MRI-based microstructural and functional resting-state network

correlation analysis. J Headache Pain. (2016) 17:100. doi: 10.1186/s10194-01

6-0693-y

26. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity

toolbox for correlated and anticorrelated brain networks. Brain connectivity.

(2012) 2:125–41. doi: 10.1089/brain.2012.0073

27. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group

inferences from functional MRI data using independent component analysis.

Hum Brain Mapp. (2001) 14:140–51. doi: 10.1002/hbm.1048

28. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC.

A unified statistical approach for determining significant signals in

images of cerebral activation. Hum Brain Mapp. (1996)b4:58–73.

doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O

29. Chabran E, Noblet V, Loureiro de Sousa P, Demuynck C, Philippi N,

Mutter C, et al. Changes in gray matter volume and functional connectivity

in dementia with Lewy bodies compared to Alzheimer’s disease and

normal aging: implications for fluctuations. Alzheimers Res Ther. (2020)

12:9. doi: 10.1186/s13195-019-0575-z

30. de Tommaso M, Vecchio E, Quitadamo SG, Coppola G, Di Renzo A, Parisi V,

et al. Pain-related brain connectivity changes in migraine: a narrative review

and proof of concept about possible novel treatments interference. Brain Sci.

(2021) 11:234. doi: 10.3390/brainsci11020234

Frontiers in Neurology | www.frontiersin.org 8 June 2022 | Volume 13 | Article 91534690

https://www.frontiersin.org/articles/10.3389/fneur.2022.915346/full#supplementary-material
https://doi.org/10.1186/s10194-020-01208-0
https://doi.org/10.1016/S1474-4422(18)30322-3
https://doi.org/10.1177/03331024211046617
https://doi.org/10.1111/pme.12792
https://doi.org/10.1111/head.13002
https://doi.org/10.1186/s10194-017-0792-4
https://doi.org/10.3390/jcm10153302
https://doi.org/10.1111/j.1526-4610.2010.01697.x
https://doi.org/10.1177/0004867420920372
https://doi.org/10.1111/ner.13094
https://doi.org/10.1038/s41598-021-89118-2
https://doi.org/10.1016/S1474-4422(14)70193-0
https://doi.org/10.1007/s11910-017-0803-5
https://doi.org/10.1186/s10194-019-1047-3
https://doi.org/10.1016/j.neuron.2018.01.029
https://doi.org/10.1007/s10072-020-04505-3
https://doi.org/10.1093/brain/aww118
https://doi.org/10.1177/0333102417748570
https://doi.org/10.1097/j.pain.0000000000001770
https://doi.org/10.1002/hbm.24881
https://doi.org/10.1111/ner.13052
https://doi.org/10.1016/j.neuroimage.2020.117449
https://doi.org/10.1177/0271678X17740794
https://doi.org/10.1177/0333102413485658
https://doi.org/10.1186/s10194-016-0693-y
https://doi.org/10.1089/brain.2012.0073
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1002/(SICI)1097-0193(1996)4:1$<$58::AID-HBM4$>$3.0.CO;2-O
https://doi.org/10.1186/s13195-019-0575-z
https://doi.org/10.3390/brainsci11020234
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Markin et al. rTMS Migraine Treatment fMRI Findings

31. Russo A, Silvestro M, Trojsi F, Bisecco A, De Micco R, Caiazzo G, et

al. Cognitive networks disarrangement in patients with migraine predicts

cutaneous allodynia. Headache. (2020) 60:1228–43. doi: 10.1111/head.13860

32. Zhang J, Su J, Wang M, Zhao Y, Yao Q, Zhang Q, et al. Increased default mode

network connectivity and increased regional homogeneity in migraineurs

without aura. J Headache Pain. (2016) 17:98. doi: 10.1186/s10194-016-0692-z

33. Tu Y, Zeng F, Lan L, Li Z, Maleki N, Liu B, et al.

An fMRI-based neural marker for migraine without aura.

Neurology. (2020) 94:e741–51. doi: 10.1212/WNL.00000000000

08962

34. Hodkinson DJ, Veggeberg R, Kucyi A, van Dijk KR, Wilcox SL,

Scrivani SJ, et al. Cortico-Cortical Connections of Primary Sensory Areas

and Associated Symptoms in Migraine. eNeuro. (2017) 3:ENEURO.0163-

16.2016. doi: 10.1523/ENEURO.0163-16.2016

35. Galambos A, Szabó E, Nagy Z, Édes AE, Kocsel N, Juhász G, et al. A systematic

review of structural and functionalMRI studies on pain catastrophizing. J Pain

Res. (2019) 12:1155–78. doi: 10.2147/JPR.S192246

36. Puledda F, Fytche D, O’Daly O, Goadsby PJ. Imaging the

visual network in the migraine spectrum. Front Neurol. (2019)

10:1325. doi: 10.3389/fneur.2019.01325

37. Niddam DM, Lai KL, Fuh JL, Chuang CY, Chen WT, Wang SJ. Reduced

functional connectivity between salience and visual networks inmigraine with

aura. Cephalalgia. (2016) 36:53–66. doi: 10.1177/0333102415583144

38. Ke J, Yu Y, Zhang X, Su Y, Wang X, Hu S, et al. Functional

alterations in the posterior insula and cerebellum in migraine

without aura: a resting-state MRI study. Front Behav Neurosci. (2020)

14:567588. doi: 10.3389/fnbeh.2020.567588

39. Kumar S, Singh S, Kumar N, Verma R. The effects of repetitive transcranial

magnetic stimulation at dorsolateral prefrontal cortex in the treatment

of migraine comorbid with depression: a retrospective open study. Clin

Psychopharmacol Neurosci. (2018) 16:62–6. doi: 10.9758/cpn.2018.16.1.62

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Markin, Trufanov, Frunza, Litvinenko, Tarumov, Krasichkov,

Polyakova, Efimtsev and Medvedev. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 9 June 2022 | Volume 13 | Article 91534691

https://doi.org/10.1111/head.13860
https://doi.org/10.1186/s10194-016-0692-z
https://doi.org/10.1212/WNL.0000000000008962
https://doi.org/10.1523/ENEURO.0163-16.2016
https://doi.org/10.2147/JPR.S192246
https://doi.org/10.3389/fneur.2019.01325
https://doi.org/10.1177/0333102415583144
https://doi.org/10.3389/fnbeh.2020.567588
https://doi.org/10.9758/cpn.2018.16.1.62~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


TYPE Original Research

PUBLISHED 21 September 2022

DOI 10.3389/fneur.2022.936012

OPEN ACCESS

EDITED BY

Lingmin Jin,

Guizhou University of Traditional

Chinese Medicine, China

REVIEWED BY

Nathan Churchill,

St. Michael’s Hospital, Canada

Jiaofen Nan,

Zhengzhou University of Light

Industry, China

*CORRESPONDENCE

Huiqing Yu

yhqdyx@cqu.edu.cn

Jiuquan Zhang

zhangjq_radiol@foxmail.com

SPECIALTY SECTION

This article was submitted to

Headache and Neurogenic Pain,

a section of the journal

Frontiers in Neurology

RECEIVED 04 May 2022

ACCEPTED 12 August 2022

PUBLISHED 21 September 2022

CITATION

Liu D, Zhou X, Tan Y, Yu H, Cao Y,

Tian L, Yang L, Wang S, Liu S, Chen J,

Liu J, Wang C, Yu H and Zhang J

(2022) Altered brain functional activity

and connectivity in bone metastasis

pain of lung cancer patients: A

preliminary resting-state fMRI study.

Front. Neurol. 13:936012.

doi: 10.3389/fneur.2022.936012

COPYRIGHT

© 2022 Liu, Zhou, Tan, Yu, Cao, Tian,

Yang, Wang, Liu, Chen, Liu, Wang, Yu

and Zhang. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Altered brain functional activity
and connectivity in bone
metastasis pain of lung cancer
patients: A preliminary
resting-state fMRI study

Daihong Liu1, Xiaoyu Zhou1, Yong Tan1, Hong Yu1, Ying Cao1,

Ling Tian2, Liejun Yang2, Sixiong Wang2, Shihong Liu2,

Jiao Chen1, Jiang Liu1, Chengfang Wang1, Huiqing Yu2* and

Jiuquan Zhang1*

1Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing

University, Chongqing, China, 2Department of Palliative Care and Department of Geriatric

Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University,

Chongqing, China

Bone metastasis pain (BMP) is one of the most prevalent symptoms among

cancer survivors. The present study aims to explore the brain functional

activity and connectivity patterns in BMP of lung cancer patients preliminarily.

Thirty BMP patients and 33 healthy controls (HCs) matched for age and sex

were recruited from inpatients and communities, respectively. All participants

underwent fMRI data acquisition and pain assessment. Low-frequency

fluctuations (ALFF) and regional homogeneity (ReHo) were applied to evaluate

brain functional activity. Then, functional connectivity (FC) was calculated

for the ALFF- and ReHo-identified seed brain regions. A two-sample

t-test or Manny–Whitney U-test was applied to compare demographic and

neuropsychological data as well as the neuroimaging indices according to the

data distribution. A correlation analysis was conducted to explore the potential

relationships between neuroimaging indices and pain intensity. Receiver

operating characteristic curve analysis was applied to assess the classification

performance of neuroimaging indices in discriminating individual subjects

between the BMP patients and HCs. No significant intergroup di�erences in

demographic and neuropsychological data were noted. BMP patients showed

reduced ALFF and ReHo largely in the prefrontal cortex and increased ReHo in

the bilateral thalamus and left fusiform gyrus. The lower FC was found within

the prefrontal cortex. No significant correlation between the neuroimaging

indices and pain intensity was observed. The neuroimaging indices showed

satisfactory classification performance between the BMP patients and HCs,

and the combined ALFF and ReHo showed a better accuracy rate (93.7%)
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than individual indices. In conclusion, altered brain functional activity and

connectivity in the prefrontal cortex, fusiform gyrus, and thalamus may be

associated with the neuropathology of BMP and may represent a potential

biomarker for classifying BMP patients and healthy controls.

KEYWORDS

bone metastasis pain, resting-state fMRI, low-frequency fluctuations, regional

homogeneity, functional connectivity

Introduction

Pain is the most frequent symptom of cancer survivors, and

this symptom has increased in prevalence (1). A previous review

revealed that 64% of cancer patients reported pain (2). Bone

metastasis pain (BMP) is one of the most prevalent sources of

pain since common cancers, including lung, breast, and prostate

cancers, have a propensity to metastasize to multiple bones (3).

Existing treatments for BMPmay be ineffective and fraught with

side effects. Therefore, understanding the pathophysiology of

BMP may guide the search for novel intervention options.

The brain is necessary for the multidimensional pain

experience, and activity in multiple brain regions has been found

to be associated with noxious stimuli. Therefore, brain imaging,

such as functional magnetic resonance imaging (fMRI), provides

valuable information. Among the fMRI indices, the amplitude

of low-frequency fluctuations (ALFF) is used to evaluate brain

functional activity (4), and regional homogeneity (ReHo) is used

to characterize the synchronization of fluctuations of a voxel

with its neighboring voxels (5). For instance, ALFF was reported

to be increased in the post- and precentral gyrus, paracentral

lobule, supplementary motor area, and anterior cingulate cortex,

and this feature may be associated with the neuropathology of

chronic low back pain (6). ReHo was decreased in the thalamus

in neuropathic pain (7), and ReHo values in abnormal brain

regions were associated with pain intensity in postherpetic

neuralgia patients (8). In addition, functional connectivity (FC),

which is used to assess brain activity synchronization between

any set of brain areas, was reported to be increased in the insular

cortex in our previous study on trigeminal neuralgia (9). The

combination of ALFF, ReHo, and FC was also used to explore

the brain activity of migraine (10), visceral pain (11), and other

types of pain. However, the signature of activationmay vary with

the different types of nociceptive stimulation (12). The brain

functional abnormalities of BMP remain unclear.

The mechanisms of BMP have been investigated in previous

studies. Regarding molecular mechanisms, BMP is associated

with inflammatory mediators, a highly acidic environment,

and cancer invasion of peripheral nerve endings (13). Then

nociceptive signals are transmitted to the cerebral cortex

and subcortical structures via the dorsal horn of the spinal

cord. Thus, the sensory, cognitive, and affective aspects of

pain experience will be processed within the brain. For

instance, the primary somatosensory cortex and thalamus

receive nociceptive input from the spinal cord and encode

the intensity of pain. In addition, nociceptive signals are sent

to the brainstem, midbrain, and medullary areas, where they

might modulate the perception and sensation of a noxious

stimulus (14, 15). In neuroimaging studies, the cingulate

cortex, prefrontal cortex, and ventral striatum showed pain-

specific FC changes in a mouse model of metastatic bone

cancer (16). Furthermore, prospective administration of anti-

nerve growth factor treatment can prevent pain-induced FC

adaptations in ascending and descending pain pathways in

the same mouse model (17). Animal models of BMP provide

invaluable information for pain pathophysiology; however, brain

functional activity and connectivity have not been reported in

the human population.

Here, we aimed to preliminarily explore the brain functional

activity and connectivity patterns in BMP. ALFF and ReHo

were applied to evaluate brain functional activity. Then, the

FC was calculated for the ALFF- and ReHo-identified seed

brain regions. Finally, the discrimination performance of

neuroimaging indices was assessed to investigate whether these

changes are useful for classifying BMP. The findings may

advance our understanding of the mechanism of BMP and

potentially provide neuroimaging biomarkers.

Materials and methods

Subjects

From August 2020 to November 2021, thirty-six lung

cancer patients with BMP were recruited from inpatients, and

36 healthy controls (HCs) matched for age and sex were

recruited from communities. Inclusion criteria: (1) lung cancer

patients suffering from bone metastasis pain, (2) the BMP

patients can tolerate the MRI scan and (3) right-handed.

BMP patients were diagnosed with lung cancer according to

pathology and bone metastasis according to medical imaging

and/or pathology. Subjects with brain structural abnormalities,

neurological or psychiatric diseases, disability, left-handedness,

and contraindications to MRI examination were excluded prior

to enrollment. The experiment was approved by the Medical
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Research Ethics Committee of Chongqing University Cancer

Hospital (Chongqing, China). All participants provided written

informed consent before the experiment. All procedures were

performed in accordance with the approved study protocol.

According to the head motion profile derived from

subsequent MRI data processing, six BMP and three HCs with

head motion >2mm in any direction or 2◦ at any angle were

excluded. Therefore, 30 BMP patients and 33 HCs were involved

in the study. Demographic information, including age and sex,

was obtained across the two groups. The intensity of real-time

pain was obtained according to patients’ feelings on a visual

analog scale (VAS). All subjects underwent evaluation of anxiety

and depression using the Self-Rating Anxiety Scale (SAS) and

Self-RatingDepression Scale (SDS). Details are shown in Table 1.

MRI scan protocol

Soon after the pain evaluation, structural and functional

MRI scanning were performed with a 3.0 T scanner (Magnetom

TABLE 1 Demographic and neuropsychological data comparisons.

BMP patients Healthy controls p-Values

Age (years) 59.57± 9.66 59.55± 9.38 0.993

Sex (male/female) 21/9 22/11 0.777a

Disease duration

(days)

240.00 (180, 330) NA NA

Pain score 2 (1, 3) NA NA

SAS 35.70± 9.48 33.97± 6.30 0.393b

SDS 32.00 (25.50, 39.00) 31.00 (25.50, 39.00) 0.809c

Data are presented as n for proportions, means± SD for normally distributed continuous

data, and median (QR) for nonnormally distributed data.
aThe p value for sex was obtained using the χ2 test.
bThe p value was obtained using the two-sample t-test.
cThe p value was obtained using the Mann–Whitney U-test.

BMP, bone metastasis pain; SAS, self-rating anxiety scale; SDS, self-rating depression

scale; NA, not applicable.

Prisma; Siemens Health Care, Erlangen, Germany) using a 64-

channel head-neck coil. Earplugs were used to alleviate the

influence of noise and cushions to restrict head motion. Subjects

stayed awake with their eyes closed and were instructed to not

think about any topics during the scanning.

Conventional T2-weighted images and fluid-attenuated

inversion recovery (FLAIR) images were acquired for

radiological evaluation of brain structural abnormalities.

Then, sagittal T1-weighted structural images were acquired

using volumetric 3D magnetization prepared by a rapid-

acquisition gradient-echo (MP-RAGE) sequence: repetition

time/echo time = 2,100 ms/2.26ms, flip angle = 8◦, field of

view= 256× 256 mm2, slices= 192, thickness= 1mm, matrix

= 256 × 256 and voxel size = 1 × 1 × 1 mm3, for a total of

4min and 53 s. Resting-state functional images were acquired

transversely using an echo planar imaging (EPI) sequence:

repetition time/echo time = 2,000 ms/30ms, flip angle = 70◦,

field of view = 240 × 240 mm2, slices = 36, thickness = 3mm,

matrix= 80× 80, voxel size= 3× 3× 3 mm3, and 240 volumes

with a total of 8min and 8 s.

MRI data processing

Conventional images obtained with anatomical scans

were reviewed by two radiologists with at least 5 years of

experience in neuroradiology, and no subjects were excluded

for brain abnormalities. The MRI data were processed with

a standard protocol in DPABI V6.0 (http://rfmri.org/) (18).

(1) Data in DICOM format was converted to NIfTI format.

(2) For magnetization equilibrium, the first 10 volumes of

individual resting-state functional images were removed. (3)

Slice timing was used to correct the remaining 230 volumes

due to the temporal offset between slices. (4) Realignment

was performed to correct for head motion so that the

brain across images was in the same position. According to

the realignment parameters, a report of head motion was

TABLE 2 Brain regions with aberrant ALFF, ReHo, and FC in BMP patients.

Measurements Brain regions Hemisphere BA Peak MNI coordinates Voxels t-Values

x y z

ALFF ACC Left 24/32 0 12 30 294 −5.4158

IFGoperc Right 44 48 12 27 50 −4.5053

PFCventmed Right 10 6 48 −3 91 −4.8296

ReHo THA Left/Right NA −12 −18 15 98 5.2606

FFG Left 20 −36 −27 −18 54 5.0836

PFCventmed Right 10 6 45 −6 77 −5.3365

FC Right PFCventmed (ALFF)-Right ACC NA 11 6 39 −3 246 −6.2276

Right PFCventmed (ReHo)-Right PFCventmed NA 11 3 42 −3 262 −6.5679

ALFF, amplitude of low-frequency fluctuation; ReHo, regional homogeneity; FC, functional connectivity; ACC, anterior cingulate cortex; IFGoperc, inferior frontal gyrus, opercular part;

PFCventmed, superior frontal gyrus, medial orbital; THA, thalamus; FFG, fusiform gyrus; BA, Brodmann area; NA, not applicable.
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automatically generated for subject exclusion with head motion

of >2mm in any direction or 2◦ at any angle. (5) In covariate

regression, the Friston 24-parameter model was applied to

regress out head motion effects. Other nuisance variables

including white matter signal and cerebrospinal fluid signal

were regressed out by using Statistical Parametric Mapping’s a

priori tissue probability maps (empirical thresholds: 90% for

white matter mask and 70% for cerebrospinal fluid mask).

Global brain signal regression was not performed because it

can cause correlation coefficient redistribution and ambiguous

interpretation of negative correlations of FC. (6) To make

inter-subject comparisons feasible, individual functional images

were warped to standardMontreal Neurological Institute (MNI)

space through spatial normalization. (7) Detrending was applied

to reduce the systematic signal drift with time using a linear

model. (8) Finally, to reduce the effects of very-low-frequency

and high-frequency physiological noise, the data were band-

filtered (0.01–0.10 Hz).

Then, ALFF and ReHo were calculated and standardized

with the mean division to reduce the impact of many sources

of nuisance variation and increase the test–retest reliability

(19). Specifically, ALFF is calculated as the sum of amplitudes

FIGURE 1

ALFF, ReHo, and FC maps of intragroup and intergroup comparisons. Corrected for multiple comparisons with Gaussian random-field theory

(voxel level p < 0.001, cluster level p < 0.05). The color scale denotes the t value. ALFF, amplitude of low-frequency fluctuations; ReHo, regional

homogeneity; FC, functional connectivity; PFCventmed, superior frontal gyrus, medial orbital; R, right; L, left.
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within a specific low-frequency range (0.01–0.10Hz) after

transforming voxel time series frequency information into

the power domain with a fast Fourier transform (4). ReHo

is calculated as Kendall’s coefficient of concordance (KCC)

among a seed voxel and its neighbor 26 voxels (5). The widely

used mean division is to calculate the mean across voxels for

neuroimaging indices and divide the value at each voxel by

the mean within gray matter. Smoothing (with a 6mm full-

width half-maximum isotropic Gaussian kernel) was conducted

before the ALFF calculation and after the ReHo calculation.

Brain regions with altered ALFF or ReHo in BMP patients were

set as seeds to obtain the averaged time course, and calculate

their Pearson correlation coefficient values for the remainder

of the whole-brain voxels. Fisher’s r-to-z transformation was

applied to normalize the distribution correlation coefficient to

obtain FC.

Statistical analysis

Demographic and neuropsychological data were analyzed

with SPSS software (version 25.0; IBM Corp., Armonk, NY,

USA). Two-sample t-tests or Mann–Whitney U-tests were

applied to compare the data between two groups according to

the distribution checked with the Kolmogorov–Smirnov test.

The chi-square test was applied to intergroup comparisons of

sex. Values of p < 0.05 were considered statistically significant.

Before the one or two-sample t-test, Jarque-Bera goodness-

of-fit test was conducted to confirm the normal distribution

of ALFF, ReHo, and FC maps (all voxels with p > 0.05).

Subsequently, neuroimaging indices were analyzed using DPABI

software. First, a one-sample t-test was performed to examine

the functional activity and connectivity patterns in each group.

Then, the t-statistics of group effect was analyzed after adjusting

for covariates (including age, sex, and gray matter intensity and

headmotion parameter) withmultiple linear regression. The test

results were corrected for multiple comparisons with Gaussian

random-field theory (GRF, voxel level p < 0.001, cluster level

p < 0.05).

ALFF, ReHo values, and FC z scores in significantly altered

brain regions were extracted for Spearman correlation analysis

with pain intensity and neuropsychological data in BMP

patients. We also explored the relationship of pain intensity with

neuroimaging indices of each voxel (GRF corrected, voxel level

p < 0.001, cluster level p < 0.05). The extracted values of both

groups were used for receiver operating characteristic (ROC)

curve analysis to evaluate their performance in discriminating

individual subjects between the two groups. Leave-one-out

cross-validation was performed to prevent possible inflated

estimates of discriminant power and the validated AUC was

obtained. Collinearity among neuroimaging indices was checked

by using linear regression to avoid the loss in statistical power.

TABLE 3 Results of Spearman correlation between neuroimaging

indices and pain scores in BMP patients.

Measurements Brain regions Hemisphere ρ p

ALFF ACC Left 0.112 0.557

IFGoperc Right 0.140 0.459

PFCventmed Right 0.144 0.459

ReHo THA Left 0.025 0.897

THA Right −0.031 0.871

FFG Left −0.143 0.450

PFCventmed Right −0.300 0.107

FC Right PFCventmed

(ALFF)-Right ACC

NA −0.175 0.355

Right PFCventmed

(ReHo)-Right

PFCventmed

NA −0.186 0.326

BMP, bone metastasis pain; ALFF, amplitude of low-frequency fluctuations; ReHo,

regional homogeneity; FC, functional connectivity; ACC, anterior cingulate; IFGoperc,

inferior frontal gyrus, opercular part; PFCventmed, superior frontal gyrus, medial orbital;

THA, thalamus; FFG, fusiform gyrus; NA, not applicable.

FIGURE 2

Brain regions with significant di�erences in ALFF (A), ReHo (B), and FC (C) between BMP patients and healthy controls. * p < 0.05 (corrected

with Gaussian random-field theory, voxel level p < 0.001, cluster level p < 0.05). ALFF, amplitude of low-frequency fluctuations; ReHo, regional

homogeneity; FC, functional connectivity; ACC, anterior cingulate cortex; IFGoperc, inferior frontal gyrus, opercular part; PFCventmed, superior

frontal gyrus, medial orbital; THA, thalamus; FFG, fusiform gyrus; R, right; L, left.
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TABLE 4 Classification performance of neuroimaging indices in discriminating between BMP patients and healthy controls.

Measurements Brain regions Hemisphere AUC Leave-one-out

cross validated

AUC

Cutoff

values

Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

ALFF ACC Left 0.868a 0.866 0.8387 73.30 78.80 76.20

IFGoperc Right 0.804a 0.802 1.1565 66.70 75.80 71.40

PFCventmed Right 0.835a 0.834 1.0450 80.00 75.80 77.80

ReHo THA Left 0.868a 0.867 0.8231 73.30 84.80 79.40

THA Right 0.774a 0.773 0.8362 63.30 78.80 71.40

FFG Left 0.810a 0.811 0.6962 76.70 78.80 77.80

PFCventmed Right 0.848a 0.848 1.0708 80.00 78.80 79.40

FC Right PFCventmed (ALFF)-Right ACC NA 0.911b 0.908 0.8260 86.70 81.80 84.10

Right PFCventmed (ReHo)-Right

PFCventmed

NA 0.909b 0.906 0.8241 86.70 81.80 84.10

Combined ALFF and

ReHo values

Brain regions with significant

intergroup difference of ALFF and ReHo

NA 0.963 0.961 NA 93.30 93.90 93.70

aCompared with combined ALFF and ReHo values, p < 0.05.
bCompared with combined ALFF and ReHo values, p > 0.05.

BMP, bone metastasis pain; ALFF, amplitude of low-frequency fluctuations; ReHo, regional homogeneity; FC, functional connectivity; ACC, anterior cingulate cortex; IFGoperc, inferior

frontal gyrus, opercular part; PFCventmed, superior frontal gyrus, medial orbital; THA, thalamus; FFG, fusiform gyrus; NA, not applicable.

And the probabilities of combined neuroimaging indices were

obtained by using logistic regression in SPSS software and were

used for the ROC curve analyses. The Delong test was applied to

compare areas under ROC curves (AUCs) (20).

Results

Demographic and neuropsychological
data comparisons

The BMP patients did not differ from the HCs in terms of

age, sex, SAS, and SDS score (p > 0.05). The duration of pain in

patients ranged from 20 to 2,095 days, and the pain score ranged

from 1 to 7. Details are shown in Table 1.

Functional activity and connectivity
analysis

According to the one-sample t-test, both the BMP patients

and HCs showed higher ALFF and ReHo than the global mean

value mainly in the parietal and occipital lobes and lower ALFF

and ReHo mainly in the frontal and temporal lobes. According

to the two-sample t-test, BMP patients showed lower ALFF and

ReHo mainly in the prefrontal cortex and higher ReHo in the

bilateral thalamus and left fusiform gyrus. Higher ALFF values

were not observed in BMP patients.

According to the two-sample t-test, the brain regions

with abnormal brain activity were set as the seed regions for

FC calculation. In both groups, the right medial orbital of

the superior frontal gyrus had higher FC than the medial

frontal cortex and temporal lobes. Compared to HCs, BMP

patients had lower FC of the right medial orbital of the

superior frontal gyrus within the prefrontal cortex. The FC

anchoring other seed regions showed no significant differences

between the two groups. Details are shown in Table 2

and Figures 1, 2.

Correlation and ROC curve analysis

No significant correlations between neuroimaging indices

and pain scores or neuropsychological data were noted in BMP

patients (p > 0.05; Table 3). The extracted values of ALFF

from individual brain regions showed moderate discrimination

performance as well as the values of ReHo, whereas the values

of FC z scores showed better discrimination performance than

ALFF or ReHo alone. The combined ALFF and ReHo values

of all brain regions were superior to individual values in ROC

analysis (p < 0.05). FC z scores were not involved in the

combination due to their collinearity. The combined AUC of

ALFF and ReHo showed no significant difference from the AUC

of FC values (p > 0.05; Table 4, Figures 3–6).

Discussion

We investigated the brain functional activity

and connectivity differences between BMP patients

and HCs. Decreased ALFF and ReHo were found

mainly in the frontal cortex, and increased ReHo was
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FIGURE 3

The classification performance of ALFF values extracted from individual brain regions identified by intergroup comparison. The top row are

receiver operating characteristic curves for R.PFCventmed (A), L.ACC (B) and R.IFGoperc (C). The bottom row are interactive dot diagrams for

R.PFCventmed (D), L.ACC (E) and R.IFGoperc (F). ALFF, amplitude of low-frequency fluctuations; ACC, anterior cingulate cortex; AUC, areas

under receiver operating characteristic curve; IFGoperc, inferior frontal gyrus, opercular part; PFCventmed, superior frontal gyrus, medial orbital;

R, right; L, left.

FIGURE 4

The classification performance of ReHo values extracted from individual brain regions identified by intergroup comparison. The top row are

receiver operating characteristic curves for L.THA (A), R.THA (B), R.PFCventmed (C) and L.FFG (D). The bottom row are interactive dot diagrams

for L.THA (E), R.THA (F), R.PFCventmed (G) and L.FFG (H). ReHo, regional homogeneity; AUC, areas under receiver operating characteristic

curve; THA, thalamus; PFCventmed, superior frontal gyrus, medial orbital; FFG, fusiform gyrus; R, right; L, left.

found in the thalamus and fusiform gyrus in BMP

patients compared with HCs. Decreased FC within the

prefrontal cortex was observed in BMP patients. These

neuroimaging indices showed satisfactory discriminatory

performance between the two groups and may serve as

neuroimaging biomarkers.

The thalamus and prefrontal cortex (including the anterior

cingulate cortex) have been repeatedly reported to be associated
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FIGURE 5

The classification performance of FC z scores extracted from individual brain regions identified by intergroup comparison. The top row are

receiver operating characteristic curves for z scores of FC between R.PFCventmed and R.ACC (A) and z scores of FC between R.PFCventmed

and R.PFCventmed (B). The bottom row are interactive dot diagrams for z scores of FC between R.PFCventmed and R.ACC (C) and z scores of

FC between R.PFCventmed and R.PFCventmed (D). FC, functional connectivity; AUC, areas under receiver operating characteristic curve; ACC,

anterior cingulate cortex; PFCventmed, superior frontal gyrus, medial orbital; R, right; L, left.

with chronic pain (21). As the relay station in ascending

nociceptive inputs and descending pain modulatory pathways,

the thalamus was reported to have functional and structural

abnormalities in patients with migraines (22) and chronic low

back pain (6). Blood oxygen level-dependent signal variability

in the ascending trigeminal spinal-thalamo-cortical pathway

was associated with headache severity (23). Therefore, the

elevated activity of the thalamus in BMP patients may be driven

by the transmission of pain information. Furthermore, the

prefrontal cortex drives the cognitive modulation of the pain

experience (15). Decreased pain-evoked brain activity in the

prefrontal cortex was associated with reduced antinociceptive

brain responses to pain in fibromyalgia patients (24). Increased

prefrontal cortex activity was associated with reduced pain

intensity after psychologic-based therapies in fibromyalgia

patients (25). Therefore, the decreased brain activity and

connectivity in the prefrontal cortex may suggest that BMP

patients suffer from weakened antinociceptive cognitive

modulation, which is consistent with previous studies on other

types of pain.

A few studies have reported the possible role of the fusiform

gyrus in pain processing. The fusiform gyrus anatomically

connects the ventral visual network and is associated with

facial recognition or face selection (26). Heightened activity

in the fusiform gyrus was found to be a robust biomarker

of pain intensity in experimental pain and chronic low back

pain (27). The fusiform gyrus may be involved in the affective

component of pain processing occurring in the amygdala
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FIGURE 6

The classification performance of combined ALFF and ReHo

values extracted from individual brain regions identified by

intergroup comparison. ALFF, amplitude of low-frequency

fluctuations; ReHo, regional homogeneity; AUC, areas under

receiver operating characteristic curve; R, right; L, left.

and hippocampus by outputting the visualization of painful

experiences (28). The present study’s findings of increased

activity in fusiform are consistent with previous studies and

suggest the potential involvement of affective processing in

BMP patients.

Neuroimaging indices have been used as biomarkers to

discriminate between pain patients and controls. ALFF maps

were used to classify chronic low back pain patients and controls

with a moderate discriminate performance (accuracy rate

>70%) (29). In addition, ReHo maps showed poor performance

in classifying the more resilient chronic pain patients from

the less resilient chronic pain patients (accuracy rate = 55%);

however, the accuracy rate of combined ReHo and fractional

ALFF achieved 79% (30). In the present study, the combined

ALFF and ReHo showed satisfactory classification performance

(accuracy rate = 93.7%) between BMP patients and HCs,

which is comparable with the classification performance of

FC maps. And the classification performance of FC maps

was not significantly different from the combined ALFF and

ReHo maps. Hence, ALFF, ReHo, and FC maps may serve

as neuroimaging biomarkers for classifying BMP patients and

HCs. However, the discriminant power of ROC may be

overestimated by entering the values extracted from previously-

identified significant brain regions, which can be inferred

from the similarity between the original AUCs and leave-

one-out cross-validated AUCs. Therefore, the classification

performance in the present study should be interpreted with

caution. In addition, the disadvantages of these neuroimaging

indices are not negligible, including respiratory carbon dioxide

influence on ALFF (31), the impact of neighborhood voxel

size on ReHo (32), and the potential transitivity problem,

controversial anti-correlations, and unsatisfactory reliability of

FC (29, 33).

Of note, no correlation between brain activity or

connectivity was found with pain intensity in the present

study. The dissociation between the magnitude of the response

in the brain and the persistence of pain may be due to the

habituation of repetitive noxious stimuli (12). For instance,

brain activity was significantly related to stimulus intensity

rather than pain intensity in healthy participants during

experimental tonic noxious heat stimulation (34). Moreover,

a recent study suggests that fMRI may not be a reliable

measure of reported pain intensity (35). Other confounding

factors should also be taken into consideration, including

pain caused directly by the tumor and treatment. On one

hand, the tumor can release pain-modulating agents and their

growth can erode into normal tissue, resulting in pain. On

the other hand, surgical insult contributes to chronic post-

surgical pain and chemotherapy and monoclonal antibodies

can induce neuropathy which is associated with pain (36). In

addition, the individual amplitude of pain may be facilitated by

negative emotions (37), even though no significant differences

in SAS and SDS scores were noted between BMP patients

and HCs.

Some limitations should be acknowledged. First, the sample

size is relatively small. The findings should be further validated

in other datasets with larger sample sizes. Second, patients

suffering from severe intensities of pain are impractical to

be involved with potential evident head movement and only

those with mild and moderate intensities were included.

Therefore, bias is not avoidable. Third, we cannot exclude

the confounding effects of analgesics, lung cancer, and

its treatment. Fourth, the MRI data processing should be

taken into consideration since there is no definite standard

procedure. For instance, though the effects of variables of

interest have remained largely after standardization (19), we

must acknowledge that the choice of whether to conduct

standardization may have an impact on the results. Despite

these limitations, the preliminary positive findings warrant

further investigation.

In conclusion, it is necessary to better understand cancer

pain. Our findings suggested a decrease in brain functional

activity mainly in the frontal cortex and an increase in the

thalamus and fusiform gyrus in BMP. Moreover, a decrease

in functional connectivity within the frontal cortex was

observed. These abnormalities may be associated with the

neuropathology of BMP and hold the potential to classify BMP

patients and HCs. However, we should note that the present

preliminary findings should be verified in future elaborate

study designs.
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E�ect and safety of
extracorporeal shockwave
therapy for postherpetic
neuralgia: A randomized
single-blind clinical study

Lu Chen1†, Ailing Qing2†, Tao Zhu3, Pingliang Yang4* and

Ling Ye1*

1Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China,
2Department of Anesthesiology, West China School of Public Health and West China Fourth

Hospital, Sichuan University, Chengdu, China, 3Department of Anesthesiology, West China Hospital

of Sichuan University, Chengdu, China, 4Department of Anesthesiology, The First A�liated Hospital

of Chengdu Medical College, Xindu, China

Objective: To evaluate the e�cacy and safety of extracorporeal shockwave

therapy (ESWT) for postherpetic neuralgia.

Design: Randomized single-blind clinical study.

Patients: Patients with postherpetic neuralgia.

Methods: Patients were randomly divided into the control group and the ESWT

group. The control group received conventional treatment while the ESWT

group received conventional treatment and ESWT. The primary outcome is

pain degree as assessed by the numeric rating scale (NRS), and secondary

outcomes include brief pain inventory (BPI), Self-rating Anxiety Scale (SAS),

Self-rating Depression Scale (SDS), and Pittsburgh Sleep Quality Index (PSQI).

Data were collected at baseline and at weeks 1, 4, and 12. Linear mixed-e�ects

models were applied to repeated measurement data.

Results: The scores on the NRS, BPI, SAS, SDS, and PSQI decreased over time

in both groups. The NRS and SDS scores of the ESWT group were statistically

lower than the control group. There was no time × group interaction in the

mixed model analysis. Baseline age was correlated with NRS scores and BPI

scores, and invasive treatment was related to PSQI scores, with no interaction

e�ect for baseline confounders observed. No adverse events were observed

during the process of this trial.

Conclusion: Extracorporeal shockwave therapy combined with conventional

treatment could relieve pain and improve the psychological state in patients

with postherpetic neuralgia without serious adverse e�ects.

KEYWORDS

extracorporeal shockwave therapy, postherpetic neuralgia, neuropathic pain, chronic

pain, quality of life
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Introduction

Postherpetic neuralgia (PHN) is defined as persistent pain

lasting more than 3 months after the onset of shingles

(1), which is the most common complication of herpes

zoster occurring in 20–30% of patients (2–5). As a type of

neuropathic pain, PHN is related to peripheral-nerve damage

and characterized by burning, itching, lightning, and sharp

pain, some with allodynia or hyperalgesia, which seriously

affect patients’ life quality, sleep quality, and mental state (3).

The current common treatment for PHN includes medication

and interventional therapy. First-line medication therapy

includes pregabalin, gabapentin, and tricyclic antidepressants,

while interventional therapy includes subcutaneous injection,

electrical nerve stimulation, nerve block, pulsed radiofrequency,

and spinal cord stimulation (6). Despite multiple treatments,

there are still adverse effects, such as nausea, vomiting, and

constipation caused bymedication, as well as infection, bleeding,

and nerve injury related to interventional therapy. Therefore,

it is necessary to find an effective and non-invasive treatment

for PHN.

A shockwave is a type of transient pressure fluctuation

generated by electromagnetic, electrohydraulic, or piezoelectric

devices (7). As an effective and safe treatment, extracorporeal

shockwave therapy (ESWT) is widely used in urinary

disease and musculoskeletal disorders (8–10). The main

biological mechanism of ESWT includes wound healing,

tissue regeneration, bone remodeling, angiogenesis, and

anti-inflammation (11). In recent studies, ESWT has been

reported to improve neuropathic pain, such as Morton’s

neuroma, primary trigeminal neuralgia, and diabetic

neuropathy (12–15). In addition, a pilot study that includes

13 patients suggested that ESWT could significantly reduce

symptoms of PHN (16). However, a randomized controlled

trial with a larger sample size and longer follow-up is

lacking. The objective of this study is to evaluate the effect

and safety of ESWT on patients with PHN in short and

middle term.

Materials and methods

Design

This study design is a single-center, single-blind,

randomized controlled trial, which was approved by

the Ethics Committee of West China Hospital, Sichuan

University, Chengdu, China (No. 2019[814], date of approval:

30 December 2019) and registered at ChiCTR.org.cn (Identifier:

ChiCTR1900025828, date of registration: 10 September

2019). The initial version of the protocol was published (17).

Consolidated Standards of Reporting Trials (CONSORT)

were followed.

Participants

Patients were recruited from September 2019 to September

2020 in the pain department ofWest ChinaHospital. After being

informed of the procedures and possible complications of the

study, they decided whether to participate in this study. Then,

more detailed information was collected to assess the eligibility.

The inclusion criteria included adults diagnosed with PHN

according to the Consensus of Chinese experts on PHN (18); had

an NRS score ≥4 points; had described symptoms objectively;

had not received ESWT previously; and had not participated

in other clinical trials within 3 months. The exclusion criteria

included patients who had a history of allergy to coupling agent;

tumor; liver or kidney dysfunction; thrombosis or abnormal

coagulation; with a cardiac pacemaker; infectious; pregnant;

fracture or severe osteoporosis; and mental disorders.

Randomization and blinding

After signing the informed consent, the participants were

allocated into the control group or the ESWT group (1:1).

In this process, a researcher was in charge of preparing the

sealed opaque envelopes, which contained random numbers

generated by EXCEL table. Another researcher was responsible

for assigning the envelope to participants randomly, and then

a shockwave therapist decided whether to perform shockwave

therapy according to the random numbers in envelopes. The

assessors and statisticians were blinded to randomization and

did not participate in the treatment.

Treatment and outcomes

The control group received conventional treatment, such as

medication and invasive interventional therapy, while the ESWT

group received conventional treatment and extracorporeal

shockwave therapy. Conventional treatment remained stable

during the study period in patients receiving ESWT. The

detailed therapeutic schedule is shown in Table 1. The schedule

of drugs was adjusted based on the patients’ symptoms, while

the selection of invasive interventional therapy depended on the

painful area and course of disease.

Extracorporeal shockwave therapy was performed by

a skilled therapist with a radial extracorporeal shockwave

generator (MASTERPULS MP100; Storz Medical AG,

Switzerland). As shown in Figure 1, the patients could be

in different positions (prone, lateral, or seated position)

depending on the location of skin lesions. After applying the

coupling agent to the skin, a R15 probe (radius of 15mm) was

moved along the nerve. The energy could gradually increase

according to the patients’ reaction. The primary outcome is

pain intensity assessed by the numeric rating scale (NRS), and
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TABLE 1 Therapeutic schedule.

Therapy Schedule

Conventional treatment Medication Gabapentin 0.3 g qd on day 1

0.3 g bid on day 2

0.3 g tid on day 3 and maintained

Pregabalin 75mg bid

Oxycodone and acetaminophen 0.5 tablet tid

Mecobalamin 0.5mg tid

Invasive interventional therapy Epidural nerve block 2ml 2% Lidocaine

1ml compound Betamethasone

2ml Mecobalamin for injection

5ml normal saline

Radiofrequency modulation 42◦C 65V, 15 min

Radiofrequency thermocoagulation 65◦C, 30 s; 70◦C, 30 s

75◦C, 1min; 80◦C, 2min; 85◦C, 2 min

Extracorporeal shockwave therapy 10Hz; 1–4 bar; 4000–7000 pulses

performed every 3–5 days

3–5 sessions consist a course

qd, once a day; bid, two times a day; tid, three times a day.

secondary outcomes include quality of life assessed by brief pain

inventory (BPI), psychological state assessed by the Self-rating

Anxiety Scale (SAS) and the self-rating Depression Scale (SDS),

and sleep quality assessed by the Pittsburgh Sleep Quality Index

(PSQI). Assessors collected data by telephone interviews at

baseline and at weeks 1, 4, and 12. Adverse reactions related to

ESWT were recorded to evaluate the safety.

Statistical analysis

The sample size was estimated with the superiority test

(α = 0.05 and β = 0.2). According to a previous study (19),

we calculated that 76 participants were required. Demographic

and baseline characteristics included age, sex, BMI, nerve

segments of PHN, PHN duration, medication, invasive therapy,

and per capital invasive therapy course. In the analysis of

baseline data, quantitative data with normal distribution were

presented as mean ± standard deviation (SD) and analyzed

by the independent-samples T-test, while data that did not

conform with normal distribution were presented as median

(the upper and lower quartiles) and analyzed by the Mann–

Whitney U-test. Categorical data were presented as frequency

(percentage) and compared by the χ2 test. In the analysis of

repeated measurement data, intention-to-treat (ITT) analysis

was conducted with the missing data replaced by using the last

observation carried forward (LOCF) imputation method. Linear

mixed-effects models were applied to longitudinal data, and

restricted maximum likelihood (REML) with an unstructured

covariance matrix was used. In the 2 groups (ESWT vs.

control), 4 time points (baseline, weeks 1, 4, and 12), and

the time × group interaction were considered as fixed effects,

while baseline confounders, such as age, sex, body mass

index (BMI), invasive treatment, and PHN nerve segments

as covariates. IBM SPSS Statistics 26 was used for statistical

analysis. All tests were two-sided, with p < 0.05 indicating

statistical significance.

Results

Patient flow

In this study, 109 patients were recruited and assessed for

eligibility and a total of 100 patients were included. After being

randomized in a 1:1 ratio to the two groups, they received their

allocated treatment. At week 1, 4 patients were lost to follow-up,

15 patients were lost to follow-up at week 4, and 31 patients were

lost to follow-up at week 12. Finally, 69 patients finished 12-week

follow-up. The data of all participates were included in the ITT

analysis (Figure 2).

Demographic and baseline
characteristics

There were no significant differences between the ESWT

group and the control group in age, gender, body mass

index (BMI), PHN localization, PHN duration, medication

therapy, and invasive therapy, suggesting that the baselines were

comparable (Table 2).
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FIGURE 1

Extracorporeal shockwave therapy (ESWT) for postherpetic neuralgia (PHN). The patient was treated by a radial extracorporeal shockwave

generator (MASTERPULS MP100; Storz Medical AG, Switzerland) in a lateral position.

A total of 31 participants were lost to follow-up because

nobody answered the phone. The demographic and baseline

characteristics of lost patients indicated that they were

significantly older (p < 0.001) with lower BMI (p = 0.026)

than patients who finished follow-up, while there was no

significant difference in sex, PHN nerve segments, PHN

duration, medication therapy, invasive therapy, and per capital

invasive therapy course (Table 2).

Of the 31 patients who lost to the follow-up, 16 patients

were in the treatment group while 15 patients were in

the control group. There was a statistical difference in

sex (p = 0.044) and BMI (p = 0.031) between the two

groups. In 69 patients who finished 12-week follow-up, there

were no significant difference in demographic and baseline

characteristics between the ESWT group and the control group

(Table 2).

Primary outcome

The scores and trends of baseline and post-treatment

NRS scores are shown in Table 3 and Figure 3. The analysis

of interaction effects for baseline confounders suggested

that age was correlated with the NRS score but there was

no interaction effect. A time × group interaction term

was added in the mixed model, which indicated that the

NRS scores in the ESWT group and the control group

followed similar trends over time (p > 0.05), then the

model was refitted without the time × group interaction

term (Table 4). The final model showed that NRS scores was

statistically associated with group (p = 0.027) and time (p

< 0.001). The NRS scores decreased over time, and the NRS

scores of the ESWT group were statistically lower than the

control group.
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FIGURE 2

Consort flow diagram. A total of 100 participates were randomized into the control group and the ESWT group, who were followed up at weeks

1, 4, and 12. All participates were included in the intention-to treat analysis.

Secondary outcome

The scores and trends of baseline and post-treatment BPI,

SAS, SDS, and PSQI scores are shown in Table 3 and Figure 4.

In the analysis of interaction effects for baseline confounders,

age was associated with BPI scores while invasive treatment

was related to PSQI scores. There was no interaction effect of

confounders in this study.

The analysis of time × group interaction showed that the

BPI, SAS, SDS, and PSQI scores changed similarly in both

groups over time (p > 0.05). After readjusting the model

without the time × group interaction term, the final model

showed that SDS scores were statistically associated with group

(p = 0.003) and the BPI, SAS, SDS, and PSQI scores were

statistically associated with time (p < 0.001; Table 4). The BPI,

SAS, SDS, and PSQI scores decreased over time while SDS

scores in the ESWT group were statistically lower than the

control group.

Adverse reactions

There were no patient complaints about adverse reactions

related to ESWT in either group through the follow-up

period, such as skin swelling, allergy, fever, pain aggravation,

paresthesia, tissue edema, and other adverse effects.
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TABLE 2 Demographic and baseline characteristics of participates.

Variable All (n = 100) Finished follow-up (n = 69) Lost follow-up (n = 31) All (n = 100)

ESWT

(n = 50)

Control

(n = 50)

P ESWT

(n = 34)

Control

(n = 35)

P ESWT

(n = 16)

Control

(n = 15)

P Finished

(n = 69)

Lost

(n = 31)

P

Age, years 67.9± 10.8 67.4± 11.2 0.84 64.15± 8.89 65.71± 11.96 0.540 75.75± 10.35 71.33± 8.24 0.201 64.94± 10.51 73.61± 9.50 <0.001

Male sex, n (%) 23 (46%) 23 (46%) 1 20 (58.8%) 15 (42.86%) 0.185 3 (18.8%) 8 (53.3%) 0.044 35 (50.7%) 11 (35.4%) 0.157

BMI (kg/m²) 23.16± 3.12 23.40± 3.36 0.705 24.10± 2.92 23.43± 3.61 0.398 21.15± 2.59 23.34± 2.79 0.031 23.76± 3.28 22.21± 2.87 0.026

PHN segment, n (%)

Cervical-facial segment 12 (24%) 10 (20%) 0.59 8 (23.5%) 6 (17.1%) 0.248 4 (25%) 4 (26.7%) 0.562 14 (20.3%) 8 (25.8%) 0.644

Thoracic segment 34 (68%) 38 (76%) 22 (64.7%) 28 (80%) 12 (75%) 10 (66.6%) 50 (72.5%) 22 (71.0%)

Sacral-lumbar segment 4 (8%) 2 (4%) 4 (11.8%) 1 (2.9%) 0 (0%) 1 (6.7%) 5 (7.2%) 1 (3.2%)

PHN duration, months 2 (1–3.25) 2 (1–6) 0.2 2 (1–3.25) 2 (1–6) 0.546 2 (1–5.25) 3 (2–7) 0.175 2 (1–5) 2 (1–6) 0.269

Medication /

Gabapentin g/d 0.9 (0.9–1.125) 0.9 (0.9–0.9) 0.981 0.9 (0.9–1.125) 0.9 (0.9–1.125) 0.886 / 0.9 (0.9–0.9) 0.110 0.9 (0.9–0.9) 0.9 (0.9–0.9) 0.728

Pregabalin mg/d 150 (150–225) 150 (150–225) 0.856 150 (150–225) 150 (225–300) 0.290 150 (150–225) 150 (150–150) 150 (150–225) 150 (150–150) 0.169

Invasive therapy, n (%)

Epidural nerve block 3 (6%) 6 (12%) 0.657 3 (8.8%) 5 (14.3%) 0.773 0 (0%) 1 (6.7%) 0.151 8 (11.6%) 1 (3.2%) 0.576

Radiofrequency modulation 25 (50%) 22 (44%) 16 (47.1%) 15 (42.9%) 9 (56.3%) 7 (46.7%) 31 (44.9%) 16 (51.6%)

Radiofrequency thermocoagulation 14 (28%) 16 (32%) 9 (26.5%) 11 (31.4%) 5 (31.2%) 5 (33.3%) 20 (29.0%) 10 (32.3%)

Combined therapy 8 (16%) 6 (12%) 6 (17.6%) 4 (11.4%) 2 (12.5%) 2 (13.3%) 10 (14.5%) 4 (12.9%)

Per capital invasive therapy course, times 2 (1∼3) 2 (2∼3) 0.61 2 (2–3) 2 (2–3) 0.630 3 (2–3.75) 2 (2–3) 0.748 2 (2–3) 2 (2–3) 0.279

PHN, postherpetic neuralgia; BMI, body mass index; ESWT, extracorporeal shockwave therapy.
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TABLE 3 Baseline and post-treatment outcome scores.

NRS BPI SAS SDS PSQI

Baseline

Control 7.62± 1.35 37.88± 9.18 40.48± 6.64 41.96± 7.76 15.76± 4.80

ESWT 7.18± 1.35 41.36± 12.35 42.52± 6.76 38.76± 7.41 18.04± 5.71

Week 1

Control 4.36± 1.84 25.14± 11.30 36.42± 7.16 35.96± 8.16 14.62± 5.15

ESWT 3.54± 1.87 20.62± 13.22 31.00± 4.06 29.06± 3.99 9.82± 5.45

Week 4

Control 4.30± 1.87 24.56± 11.41 35.98± 7.03 34.88± 7.49 14.20± 5.03

ESWT 3.60± 2.16 18.90± 13.29 30.28± 4.45 28.52± 3.61 9.62± 6.07

Week 12

Control 4.28± 2.01 24.04± 12.34 35.62± 7.49 34.04± 7.67 14.40± 5.57

ESWT 3.54± 2.36 18.28± 13.50 29.62± 4.32 28.24± 3.60 9.50± 6.03

ESWT, extracorporeal shockwave therapy; NRS, numeric rating scales; BPI, brief pain inventory; SAS, self-rating anxiety scale; SDS, self-rating depression scale; PSQI, Pittsburgh sleep

quality index.

FIGURE 3

Baseline and post-treatment numeric rating scale (NRS) scores. The NRS scores in the ESWT group and control group decreased over time

similarly. NRS scores of the ESWT group were statistically lower than the control group.

Discussion

To our knowledge, ectopic activity, central sensitization,

and inflammatory mediators might contribute to the

pathophysiological mechanisms of neuropathic pain (20, 21).

As a common type of neuropathic pain, PHN is related to

varicella zoster virus, which remains dormant in the nerve

after the primary infection and causes local rash and skin pain

after reaction because of weakened immunity (22). The injury

of the nerve could lead to the activation and migration of

macrophages, release of proinflammatory cytokines, such as

tumor necrosis factor α (TNF-α), which might contribute to

hyperalgesia (20). In a previous study, ESWT may reduce the

plasma levels of TNF-α and substance P (23). Therefore, the
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TABLE 4 Longitudinal change in scores for intervention related to the control group from baseline through 12 weeks.

Parameter NRS BPI SAS SDS PSQI

β(SE) t P β(SE) t P β(SE) t P β(SE) t P β(SE) t P

Group

control Ref Ref Ref Ref Ref

ESWT −0.589 (0.262) −2.245 0.027 −0.057 (2.002) −0.028 0.977 −0.485 (1.55) −0.313 0.755 −5.07 (1.632) −3.107 0.003 −1.153 (0.933) −1.236 0.220

Time −0.268 (0.056) −4.825 <0.001 −2.111 (0.317) −6.653 <0.001 −2.542 (0.599) −4.247 <0.001 −1.528 (0.454) −3.366 0.001 −0.632 (0.14) −4.514 <0.001

Sex

Female Ref Ref Ref Ref Ref

Male −0.071 (0.268) −0.265 0.792 0.198 (2.041) 0.097 0.923 −0.102 (1.58) −0.065 0.948 −0.595 (1.664) −0.358 0.722 −1.545 (0.951) −1.624 0.108

PHN nerve segment

Lumbar segment Ref Ref Ref Ref Ref

Sacral segment −0.976 (1.086) −0.898 0.371 2.043 (8.286) 0.247 0.806 7.338 (6.413) 1.144 0.256 −4.484 (6.755) −0.664 0.508 2.297 (3.862) 0.595 0.554

Cervical segment −0.21 (0.805) −0.262 0.794 −3.507 (6.138) −0.571 0.569 −1.109 (4.751) −0.233 0.816 −5.756 (5.004) −1.150 0.253 −2.354 (2.861) −0.823 0.413

Thoracic segment −0.568 (0.784) −0.725 0.470 −2.687 (5.979) −0.449 0.654 −0.599 (4.627) −0.129 0.897 −6.648 (4.874) −1.364 0.176 −2.936 (2.786) −1.054 0.295

Age 0.032 (0.013) 2.553 0.012 0.252 (0.097) 2.600 0.011 −0.026 (0.075) −0.352 0.726 −0.064 (0.079) −0.804 0.423 0.059 (0.045) 1.313 0.192

BMI 0.009 (0.042) 0.218 0.828 −0.091 (0.319) −0.284 0.777 −0.046 (0.247) −0.187 0.852 0.406 (0.26) 1.562 0.122 −0.044 (0.149) −0.296 0.768

Invasive treatment 0.08 (0.139) 0.572 0.569 0.034 (1.061) 0.032 0.974 −0.564 (0.822) −0.686 0.494 0.065 (0.865) 0.075 0.941 1.309 (0.495) 2.647 0.010

PHN, postherpetic neuralgia; BMI, body mass index; ESWT, extracorporeal shockwave therapy; NRS, numeric rating scale; BPI, brief pain inventory; SAS, self-rating anxiety scale; SDS, self-rating depression scale; PSQI, pittsburgh sleep quality index.
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FIGURE 4

The baseline and post-treatment brief pain inventory (BPI), self-rating anxiety scale (SAS), self-rating depression scale (SDS), and pittsburgh sleep

quality index (PSQI) scores. The BPI, SAS, SDS, and PSQI scores in the ESWT group and the control group decreased over time while SDS scores

in the ESWT group were statistically lower than the control group.

researchers designed this study to confirm the efficacy of ESWT

for PHN based on the immune regulation and analgesic effect

of ESWT.

In terms of demographic and baseline characteristics, the

mean age of the patients was 67.9 (10.8) years in the ESWT group

and 67.4 (11.2) years in the control group. Similarly, a previous

study suggested that the risk of PHN rose sharply between 50

and 79 years (24). Advanced age was suggested to be a risk factor

associated with PHN (4), which may be related to decreased

immunity and weakened self-repair ability of the elderly, and

the effect of age may differ in gender (25). Furthermore, female

patients (54%) were more than male patients (46%) in our study

and the risk of PHNwas suggested higher in female patients (24).

However, another study suggested that there was no significant

difference in gender in the development of PHN in patients with

Herpes zoster (HZ) (26). The correlation between gender and

PHN was still controversial and more evidence is needed. In

addition, the most commonly PHN localization was thoracic in

our result, which was similar to another study (25).

The reason for patients’ being lost to follow-up was

that nobody answered the phone. The demographic and

baseline characteristics of lost patients indicated that they were

significantly older (73.61 years) than patients who finished

follow-up (64.94 years). Patients who did not answer the phone

might be related to the low smartphone adoption and unskilled

use of smartphone in Chinese elderly people (27).

Considering that pain is an emotional experience and sense

is the gold standard of pain (28), the researchers selected

the NRS score as the primary outcome. In addition to pain,

psychological disorders, such as anxiety and depression are

common symptoms of patients with PHN, which could worsen

pain, cause disability, and effect quality of life and sleep (29, 30).

As a result, life quality, psychological state, and sleep quality

were assessed as secondary outcomes to evaluate the efficacy of

ESWT. The result indicated that there was no time × group

interaction in the NRS, BPI, SAS, SDS, and PSQI scores, which

indicated that these outcomes in the ESWT group and the

control group followed similar trends over time. The NRS,
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BPI, SAS, SDS, and PSQI scores were statistically decreased

with time in both groups. The NRS scores of the ESWT

group were statistically lower than the control group, which

may be related to lower sensory nerve conduction velocities,

which result in altered peripheral pain perception after ESWT

(31). In addition, the molecular neurobiology of chronic pain-

induced depression contains genetic modifications, epigenetic

modifications, transcription factors, and neurotransmitters (32).

The reduced SDS scores and improved depression state in

the ESWT group compared with the control group may

be associated with analgesic effects and neuroinflammatory

alterations caused by ESWT, such as TNF-α, which could be

explored in further study. Although the BPI, SAS, PSQI scores

in the ESWT group were lower than the control group, the

difference was not significant, which might because both groups

improved well over time, making the difference unobvious.

In this study, we assessed durability of ESWT by evaluating

participants during a 12-week follow-up and the result indicated

that ESWT could relieve pain and improve depression state. In

another study (33), ESWT relieved pain forMorton’s neuroma at

a 12-week follow-up, which was similar to this study. In addition,

durability could be assessed by more measurement methods,

such as recurrence rate at the longer follow-up visit, which could

be improved in future studies.

Interaction effects for baseline confounders, such as age,

sex, BMI, invasive treatment, and PHN nerve segments

were explored in this study, and no interaction effect for

baseline confounders was observed. PHN duration was not

added into this analysis because of some outliers. The result

indicated that the age was correlated with the NRS and BPI

scores. Hyperalgesia is more common in elderly population,

as well as prolonged pain development and less effective

medication, which might influence the quality of life (34).

Furthermore, the result suggested that invasive treatment was

related to PSQI scores. In some studies, pulse-modulated

radio frequency affects brain physiology, which might explain

the correlation between the invasive treatment and sleep

quality (35).

In a systematic review, 20.7% of patients developed transient

pain, swelling, petechiae, and other side effect after ESWT (36),

which was related to high-dose ESWT, constant energy level,

and radial shockwave therapy (36). In our study, ESWT was

performed by a skilled therapist to ensure a low dose of energy

(1–4 bar) gradually increasing according to patients’ reaction,

which might be the potential reason of no adverse reactions

in this study. The result suggested that ESWT could be a non-

invasive and safe treatment if under administration of low-dose,

gradually progressively energy.

There are some limitations. Further studies with objective

measurement and therapeutic mechanism are needed.

Furthermore, a high proportion (31%) of patients were lost

to follow-up, which could introduce potential bias. Some

old patients had difficulty in telephone use and were lost

to follow-up. Optimizing follow-up protocol and extending

follow-up may be necessary in the future. In addition, the

single-blind method may have the risk of bias. More double-

blind and multicenter studies would be needed to confirm

the result.

In conclusion, ESWT combined with conventional

treatment could relieve pain and improve the psychological

state of patients with PHN without serious adverse effects.

Further randomized clinical studies are needed to confirm

these results, so that ESWT could be used as a safe and effective

complementary treatment for PHN.
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Neuropathic pain (NP) is a chronic health condition that presents a significant

burden on patients, society, and even healthcare systems. However, in recent

years, an emerging field in the treatment of neuropathic pain – optogenetic

technology has dawned, heralding a new era in the field of medicine, and

which has brought with it unlimited possibilities for studying the mechanism

of NP and the treatment of research. Optogenetics is a new and growing field

that uses the combination of light and molecular genetics for the first time

ever. This rare combination is used to control the activity of living cells by

expressing photosensitive proteins to visualize signaling events andmanipulate

cell activity. The treatments for NP are limited and have hardly achieved the

desirable e�cacy. NP di�ers from other types of pain, such as nociceptive pain,

in that the treatments for NP are far more complex and highly challenging for

clinical practice. This review presents the background of optogenetics, current

applications in various fields, and the findings of optogenetics in NP. It also

elaborates on the basic concepts of neuropathy, therapeutic applications, and

the potential of optogenetics from the bench to the bedside in the near future.

KEYWORDS

neuropathic pain, optogenetics, treatment, neuromechanism, potential

Introduction

Neuropathic pain (NP) is defined by the International Association for the Study of

Pain (IASP) as the “pain caused by a lesion or disease of the somatosensory nervous

system” (1, 2). The definition of NP is very broad based owing to the complexities it

presents and should also include in its fold several characteristics and traits of NP (3).

However, many definitions put forth to describe NP are still inadequate and evenmissing

appropriate words. NP is caused by neuronal lesions, and treatment methods to bring

about an effective cure for this disease are very limited. The prevalence of chronic pain in

patients with neuropathological characteristics, according to large-scale epidemiological
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findings, is ∼7–10% (4). In recent years, as the growing trend

of the global population is toward aging, and as their survival

rate has prolonged after the treatment of various diseases, the

prevalence of NP too has increased further. Studies have shown

that patients with NP often experience anxiety, depression,

sleep disorders, and other symptoms (5). These debilitating

symptoms seriously affect their quality of life when compared

to patients who experience other types of chronic pain, such

as: inflammatory pain, fibromyalgia, non-specific low back pain,

etc. NP has numerous causes and complex neuromechanisms,

so far, that these neuromechanisms of NP have not been fully

understood and even remain to be elucidated. This review

describes a few common neuromechanism views of NP.

Furthermore, the treatment of NP that is being given to these

NP patients still presents a great challenge for clinical practice, as

the clinicians have to face a plethora of problems while engaging

and handling such patients. Pharmacotherapy is the main and

important treatment method to bring about a drastic cure in

these patients, but the current treatment only produces limited

remission (30–50%) that too only for a portion of patients (6).

Pharmacotherapy also brings along with it the problem of drug

dose and side effects which could also affect these patients. Non-

pharmacological treatments have small side effects, but some

treatments lack clinically reliable evidences, while in some cases,

the combination of multiple drugs or treatments can achieve

better results. In recent years, an emerging field of neurogenic

pain treatment – optogenetics is the newest and most recent

treatment method for the treatment of NP and has started

making its imprint in treating NP patients, and there is so much

unlimited untapped potential for the treatment of NP it offers

to treat patients. Thanks to the development of photogenetics,

researchers can now control the treatment-related activities in

defined neuronal populations and projections, while examining

their effects on behavior and physiology. Unlike pharmacology

and disease-based intervention, optogenetics also opens up

causal investigation and specificity for the rapid time scale of

natural nervous system communication (7, 8).

The results of many research works corroborate the role of

optogenetics and have also put forth a certain affirmation of the

role of optogenetics. In this review, we provide an overview of

the basic concepts of optogenetics and the active application of

optogenetic techniques in the treatment of NP in recent years.

Neuromechanism for NP

Neuropathic pain (NP), which is triggered by the impaired

somatosensory system, attributes its origin to various health-

related causes. These causes are diverse, arising from a wide

gamut of diseases, such as diabetes, metabolic diseases, tumors,

spinal cord injury, etc. After a nerve injury takes place, the nerve

fibers change at multiple levels, resulting in disturbances during

transmission to the brain and spinal cord, and involves issues

such as altered pain thresholds and signal effects (9). There are

several points regarding the pathogenesis of NP that merit our

attention and need to be studied in depth.

Neuronal activity

Abnormalities in neuronal activity

Changes in nerve fiber secretions are closely associated with

pain. As regards to neurons, a popular view was held to express

the fact that nociceptive afferents inhibit the flow of harmful

information from the spinal cord into the brain by activating

spinal inhibitory neurons and that the imbalance between

excitatory and inhibitory neurotransmission serves as the source

of ectopic pain (10). The hypothesis has been confirmed bymany

studies in recent decades, with increasing evidence suggesting

that the balance between excitation and inhibition in spinal

circuits is disrupted in NP (11). This reasoning was corroborated

further by experimental studies, which were conducted to prove

that the transplantation of GABAergic precursor cells into the

dorsal spinal horn reduced neurological mechanical pain (12).

At present, the research dynamics of the mechanism of neurons

in neuronal circuits are relatively active, and the results of the

research works are relatively rich in values and data. However, it

has not been explained accurately in which neuronal circuits do

the neurons participate.

Ion channels

Transient receptor potential (TRP) family of ion channels

and other ion channels, such as acid-sensing ion channels

adenosine triphosphate (ATP)-gated purine channel [ATP-PRX

(peroxiredoxin)], has highly specific involvement in various

types of nociceptive stimulations. At this time, different types

of sodium channels play a significant role, by magnifying

the point of the receptor, so as to trigger the depolarization

of the action potential. Notably, these ion channels are all

not only strongly regulated by post-translational modifications

and transcriptional levels, but can also be deregulated upon

nerve damage. However, the present study does not prove

the main connection of TRP channels with NP syndrome,

but pharmacologically related studies prove that blocking TRP

channels in rodent models relieves neuropathic allergy (13).

Studies have shown that knockout mouse sodium channels

in root ganglion neurons effectively slow down pain (14,

15). This suggests that there is a connection between NP

and ion channels and that NP is strongly associated with

ion channels. For instance, several studies have shown that

downregulation of potassium channels was observed in the

experimental animal models of NP (16). Overexpression or

downregulation of sodium channels is closely related to

threshold and ectopic activity, which also provides a huge

therapeutic space for subsequent intervention of sodium

channel blockers.
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Immune cells

Here, we focus on some of the most recent studies related

to NP. T cells in immune cells have a very important role to

play, and studies have shown thatmice lacking T cells completely

lack the ability to produce neuropathic abnormal pain after a

nerve injury (17). Furthermore, other studies have demonstrated

that angiotensin 2 mediates the attenuation of neurological

ectopic pain in the expression of invading macrophages at

the site of nerve injury (18). These studies suggest a great

therapeutic potential of immune cells in targeting NP and

warrant further exploration.

Mitochondrial factors

Notably, the dysfunction of mitochondrial function in

peripheral neurons can manifest in various NP types in different

animal models (19, 20), and this reasoning reflects the important

role of mitochondria in NP. Mitochondria are closely related

to the production of reactive oxygen species (ROS), and

any mitochondrial dysfunction leads to an energy deficiency,

triggering off many potential crises. Mitochondria and reactive

oxygen species (ROS) have only recently emerged in the field

of NP and have aroused the widespread interest of researchers

in their direction. Studies have shown that drugs that cause a

nitrite breakdown also serve the function to reduce neuropathic

ectopic pain during chemotherapy for cancer patients (21).

Passakorn et al. (22) demonstrated an additional benefit by

supplementing coenzymeQ10 (CoQ10) on pain relief in patients

with pregabalin-treated fibromyalgia, which may be achieved

by improving mitochondrial function, reducing inflammation,

and reducing brain activity. In conclusion, mitochondria

have a potential therapeutic space for the treatment of

interventional NP, but their more precise mechanism needs

more intensive investigation.

We describe several neural mechanisms associated

with NP that are currently well recognized. Actually, the

neuromechanisms underlying NP remain unexplored, because

of its diverse etiology and numerous systems involved.

Moreover, the transmission of pain signals is regulated by

complex large neural networks, making it more difficult to

carry out research on neural mechanisms. Of course, the views

discussed previously also bring a direction toward new therapy

in the treatment of NP, because optogenetics can also help with

research into NP pathways.

General treatment of neuropathic pain

At present, the treatment approach of NP is mainly divided

into pharmacotherapy and non-pharmacotherapy types, and

both the treatment methods have their own inherent advantages

and disadvantages. A broad consensus has been reached on the

drug treatment to be administered to the patient (23), as this

drug treatment is mostly based on the urgency and severity of

the patient’s condition and the specific course of the disease.

Hence, generally drugs are divided into three echelons. However,

either tricyclic antidepressants or opioid analgesics, as the first

choice of drugs (24), or the third-line drugs, such as cetin,

NMDA (N-methyl-D-aspartate) receptor antagonists, and local

capsaicin (25, 26), have been greatly restricted in their usage

due to the clinical side effects caused by them, and the clinical

response is general. With regard to the non-pharmacotherapy

type, whether it is traditional acupuncture (27, 28), physical

therapy (29, 30), transcutaneous electrical nerve stimulation

(31–33) or the virtual reality (VR) (34), spinal cord stimulation

(35, 36) and other treatment methods, although its side effects

have been greatly reduced (37, 38)and some results have even

been achieved by pharmacotherapy, the effect of its clinical

treatment has not yet brought the effect of the much-desired

ideal treatment to patients. However, the clinical efficacy of

some therapeutic methods still needs clarity (39), and even the

relevant therapeutic mechanism also needs to be explicit (40). In

a word, the therapeutic mechanism and efficacy of these non-

pharmacotherapy options in the field of neuropathic pain still

need to be corroborated by a large number of basic experiments

and clinical experiments.

As we all know, optogenetics has become a new technology

in recent years, which is helpful to explore the mechanism of

most diseases. We notice that this technology still has huge

untapped potential and offers scope for utilizing the unlimited

prospects in the application of neurological diseases and other

diseases in the future.

Background in optogenetics

Optogenetics is an emerging field, which boasts of a

hitherto unknown, amazing combination of optics and genetics.

Optogenetics mainly acts on the corresponding proteins by

currents that are generated by transfer to photosensitive proteins

(41, 42). Optogenetic activators, such as channelrhodopsin,

halorhodopsin (halogenated rhodopsin), and archaerhodopsin

(Arch)., are used to control neurons, and the monitoring of

neuronal activity is performed through genetically encoded ions

(e.g., calcium) ormembrane voltage sensors. The effectors in this

system are light, with the advantage of working at high spatial

and temporal resolution at multiple wavelengths and locations

(43, 44). The first step in the development of optogenetic

techniques was started way back in 1971 when Oesterhelt

and Stoeckenius discovered that the bacterium rhodopsin, a

purulentin from the halogen violet membrane of Halogen

bacillus, could pump protons under light (45). Later, Sugiyama

and Mukohata identified another member of the opsin family

in 1984 – halogenated rhodopsin (46), while Nagel et al.
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identified channelrhodopsin purpurulite in 2002 (47). A major

breakthrough was made in the field of optogenetics after the

discovery that neurons respond to light when microbial opsin

genes were introduced without any other component (48).

Optogenetics includes three main optogenetic tools,

including (1) photoactivated proteins; (2) light; (3) delivery

mode, virus-mediated gene delivery system is currently one of

the most commonly used methods. When applying optogenetic

techniques, we benefit from a number of advantages. A

significant advantage one can derive from optogenetics is that

rapid activation and silencing of expressed proteins can be

achieved without the use of chemicals (41, 49). Optogenetic

techniques are currently receiving widespread attention from

researchers and are actively being applied in various fields.

Photogenetics is the result of the fruitful combination of optics

and genetic engineering, which maximizes the advantages of

each discipline to the fullest extent possible. These advantages

are multifold such as optical control by manipulating the

wavelength and light intensity on the millisecond time scale, as

well as specific gene expression and gene product transport with

subcellular accuracy. It is not possible to realize this kind of

fine adjustment by traditional methods. Therefore, optogenetics

technology has brought about a revolution to neuroscience (50).

Applications of optogenetics

Optogenetics has been vigorously developing in recent years,

such as giving light, facility to be controlled in real time, and

becoming closer to the natural environment (51, 52). One

branch of medicine that has benefited the most in the field

of medicine from optogenetics is ophthalmology. In vision

studies, optogenetics makes it possible to impart and infuse

light sensitivity to different retinal cell types, thus providing

a new perspective on vision restoration in various inherited

retinal degenerative diseases. Bi et al. (53) first showed that

after complete photoreceptor degeneration, light sensitivity

can be restored by the expression of channel rhodopsin-

2 (ChR2) in retinal ganglion cells, and a number of other

studies have since proven this scientific advancement (54–57).

Optogenetics has also been widely used in the treatment of

neurological diseases in recent years. Alzheimer’s disease (AD)

is characterized by the presence of amyloid β (Aβ) plaques

and neurofiber tau tangles (58), Lim et al. (59) developed

fluorescently labeled optogenetically activated Aβ peptides that

can oligomerize in vitro during light exposure. Kaur et al.

(60) had used a similar method to produce Aβ aggregations

in vivo. There are also studies that suggest that optogenetic

inhibition of pyramidal cells (PCs) in the CA1 region of the

dorsal side of the hippocampus (61) or by deinsuppression

of somatostatin-positive (SST) cells (62) reversibly disrupts

memory acquisition. In the field of neuroscience, scientists

have found that optogenetic techniques reduce circuit noise

associated with schizophrenia to enhance the performance of

cortical circuit (63, 64). Optogenetics shows great potential in

various fields, and of course, NP is no exception.

The combination of optogenetics and electrophysiology

has also brought about sweeping reforms in the field of

neuroscience. Traditional in vivo electrophysiology is also

difficult to relate to specific cell types defined by genetics

or connectivity, so it serves as an important and universal

technology integration to combine in vivo electrophysiological

recording with optogenetics. It is reported that using this

method, the activation of the basolateral amygdala (BLA)

stimulates the nucleus accumbens (NAc) to drive reward seeking

(65). The activation of GABAergic cells from the extended

amygdala inhibits the lateral hypothalamic neurons, leading

to an increased food consumption. In addition, the medial

prefrontal cortex (mPFC) requires ventral hippocampus input

to encode the target position (66) and the aversion (open)

and safety (closed) spaces (67) in the elevated maze. Similar

neurological events can occur across circuits; for instance, the

bed nucleus of the stria terminalis (BNST) uses the BLA input to

code the enclosed space in the samemaze (68). The combination

of electrophysiology and photogenetics has unlimited potential

in the field of neuroscience. However, neuropathic pain is

an extremely complex disease, with complex symptoms and

causes. The mechanism and treatment of neuropathic pain still

merit a lot of work to be done by researchers to explore their

unknown potential.

Optogenetics in neuropathic pain

Recently, optogenetic combination with NP has also been

developing increasingly. When compared to conventional

electrical stimulation, optogenetics eliminates the critical step of

placing electrodes in the brain with a relatively homogeneous

group of neurons (69). But the millisecond-level time accuracy

of electrical stimulation displayed by optogenetic techniques

stands unmatched. The application of optogenetics in the field

of neuropathy has shown us the great potential of utilizing

optogenetics in the treatment of NP and the exploration

of mechanisms.

In recent years, a large number of studies have combined this

technique of optogenetics in the field of NP and have brought

to light various novel features and potential of optogenetics

in NP treatment by way of new methods for pain relief. For

example: in an earlier study, Daou et al. (70) demonstrated the

role of optogenetics in suppressing pain using a binary genetic

approach, delivering ChR2 channels to peripheral nociceptors

in the Nav1.8-Cre transgenic mouse line. Notably, in their

experiments, the free-moving small pains were caused to move

in a non-invasive and remote manner. In the two other studies,

in the NP model, in vivo stimulation of the halogenated

rhodopsin (eNpHR3.0) channel of the yellow photosensitive
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third-generation chloride pump successfully prevented pain (71,

72), thus highlighting the therapeutic potential of optogenetics.

In studies of neuropathic pain-like behaviors controlled by

the parabrachial nucleus circuit, optogenetic activation of

glutamatergic or inhibition of γ-aminobutyric acid (GABA)-

capable lateral parabrachial nucleus (LPBN) neurons induced

neuropathic pain-like behavior in young mice (73). The medial

prefrontal cortex (mPFC) is a region of the brain that is involved

in the emotional component of pain that undergoes plasticity

during the development of chronic pain. Dopamine (DA) is the

key neuromodulator in the middle cortical circuit that regulates

working memory and loathing. In this study on brain pathways,

the results demonstrated that phase activation of DA input from

the ventral cover area (VTA) to mPFC reduced mechanical

hypersensitivity in NP states (74). The central amygdala (CeA)

in the brain is also an important area for mood control, and the

results of Hua et al. show that the optogenetic activation of CeA

effectively inhibits the reflex and self-healing behaviors caused

by pain in sensory patterns and eliminates the mechanical

(high) sensitivity induced by NP (75). Similar results were

obtained in another study of this region (amygdala), where

optogenetic manipulation of adrenocorticotropic hormone-

releasing factor (central amygdala corticotropin-releasing factor

(CeA-CRF)) neurons in CeA modulates NP and controls

pain and anxiety-like behavior in rats (76). Gadotti et al.

(77) confirmed that optogenetic techniques could also be

operated through modulation of the medial prefrontal cortex

function to treat NP. Xiong et al. (78) have found that

altering neuronal properties and normalizing their cortical

excitability relieves pain. Stimulation of the anterior cingulate

cortex enhances excitatory synaptic transmission of the spinal

cord and leads to pain hypersensitivity responses. Studies

have demonstrated that inhibition of this type by optogenetic

methods can produce an anti-injury effect and can also reduce

nerve damage caused by synaptic enhancement (79). Recently,

there have been many reports of successful control of pain

in animal models mediated by optogenetic techniques (80–

83). These experimental studies suggest the infinite potential

of optogenetics in NP treatment. Optogenetic precision, being

controllable, and deliberate selectivity are its advantages (84).

The real challenge of optogenetics is to target the

mechanisms of NP, pinpoint its damaged nociceptive neurons,

understand nociceptors (as the main subset of units of pain, with

receptors and ion channels that can detect stimuli for potential

damage) and circuits. Optogenetics involves inducing neuronal

expression of light-activated membrane proteins, the activation

of which can directly turn on or off neurons by depolarization

(e.g., channel rhodopsin-2, ChR2) or hyperpolarization (e.g.,

haloopeopreum purpurulite), respectively, and opening a

cascade of G protein-coupled receptor (GPCR) signals (85).

Therefore, it is necessary to understand the genetics of

pathological neurons compared with normal functional neural

circuits. The complete transcriptome of trigeminal ganglia

(TG) and dorsal root ganglia (DRG) in adult mice was

analyzed to gain insight into the expression of ion channels

and G-protein-coupled receptors (GPCRs) under physiological

and pathophysiological conditions. This analysis suggests that

given the complex etiologies of ganglion pathological changes,

conventional strategies to inhibit individual ion channels or

inflammatory processes are less useful (86–88).

All in all, optogenetics presents both an opportunity and

a challenge. For example, optogenetics is currently restricted

to experiments on animals only, so how can it be extended

to experiments conducted on human beings? Optogenetic

technology can be effectively implemented in rodents most of

the time, but it has been difficult to effectively implement this

optogenetic technology in primates for many years now. The

reason for this difficulty is attributed to the all-time flexibility

of primates, which makes it even more difficult to translate

experiments into clinical practice. There are also limitations

regarding the way photosensitive proteins are entered and the

length of optogenetics to be maintained. Is there a way to make

the effect longer or even permanent? There is no denying the fact

that addressing these questions presents great challenges, and

this also requires further in-depth investigation of optogenetics.

It is worth noting that optogenetic techniques are crucial in

terms of both the pathways, mechanisms, and treatment of

NP. Identifying pain nociceptors through the spatiotemporality

of optogenetic techniques and identifying damaged neurons

is a breakthrough step in understanding the mechanism by

which God carries out pain, and provides a crucial role for

later treatment.

Conclusion and outlook

Neuropathic pain is a complex, comprehensive disorder

that is extremely challenging to treat clinically, owing to the

complexities that surface during NP treatment. The treatments

of NP are a major challenge for effective clinical practice.

Pharmacotherapy is a common clinical method to relieve pain

in patients, but we cannot ignore the side effects of the drug

treatment, and its efficacy has not achieved the ideal effect. Non-

pharmacological treatments have small side effects, but most of

their efficacy lacks reliable clinical evidence. The combination

of treatment methods may be a good way to improve the

efficacy, as the patients stand to benefit from the cumulative

effect of both these treatment methods. It has been clinically

confirmed that drug treatment with some traditional treatments

can not only increase the efficacy, but also reduce the side

effects. It can be further explored in the combination of multiple

treatment methods.

In summary, there are uncertainties in both pharmacological

and non-pharmacological treatments, and although the efficacy

of some treatment methods is clinically affirmed, further

research is still needed. Optogenetics, as an emerging field

Frontiers inNeurology 05 frontiersin.org

118

https://doi.org/10.3389/fneur.2022.982223
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2022.982223

of NP, has unlimited potential in terms of the mechanism

pathways and treatment of NP. Through the spatiotemporality

of optogenetic techniques, the identification and localization of

pain receptors, damaged neurons, which helps us to further

explore pain transmission pathways. In addition, optogenetic

techniques are now widely used in various fields, including

the treatment of NP. According to the previous description,

optogenetic techniques have been affirmed for their efficacy

in relieving pain, but there are still issues that need to be

further explored. For example, optogenetics is currently limited

to animal experiments, so how can it be applied to human

beings? How is the light-sensitive protein entered? The length

of optogenetics to be maintained is also a limitation. Is there

a way to make the effect longer or even permanent? There is

no denying the fact that addressing these questions presents

great challenges, and this also requires further investigation

of optogenetics.

Generally, before performing clinical experiments on human

beings, we usually conduct experiments first on non-human

primates that bear closeness to humans both in evolution

and in development. The implementation of optogenetic

technology is good and successful in rodents, but we face

tough challenges while applying this technology to primates,

which also signifies the application of optogenetic technology

to clinical practice. Second, optogenetic techniques may be used

in combination with other fields (such as slice electrophysiology

(89)), to investigate themechanisms of neuropathic pain further.

Examples include changes in the network of connections in

brain regions related to NP, and pain pathways involved in nerve

pain. The combination of optogenetic techniques with other

techniques is going to work wonders and is thus likely to help

explore the underlying mechanisms of NP even further. At the

same time, this technology also has great potential in exploring

the potential targets of NP treatment and the development and

efficacy of potential drugs. If this technique can identify its

damaged pain neurons, it provides a potential therapeutic target

and it marks a breakthrough in neuroscience. Optogenetics

technology is going to be of immense help to medical fraternity

and patients by being able to judge the positioning of drugs after

they enter the body through their spatial advantages. This in

turn helps to pave the way to explore the mechanism of action

of drugs and the possible mechanism of their own diseases, and

then to judge the efficacy of their drugs. The application of this

technology also reduces the side effects consequent to the use

of many clinical drugs, and the above conditions are possible

research directions in NP optogenetics in the future and have

great potential.

In a word, optogenetics brings with it a reliable promise for

the treatment of NP. After analyzing the various advantages of

optogenetics for the treatment of NP, we can emphatically state

that the therapeutic prospects of optogenetic technology for NP

are certain and deserve promotion and exploration for extensive

experimental research.
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