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Editorial on the Research Topic
New trends in natural product research for inflammatory and infectious
diseases

Introduction

Inflammatory and infectious diseases have a high prevalence, morbidity, and
mortality rates worldwide (Vos et al., 2020). Despite the availability of a considerable
number of drugs for the management of these diseases, there are several conditions in
which the drugs are ineffective or have side effects that limit their use (Miranda et al.,
2021).

Two major challenges with respect to infectious diseases are the presence of a few
therapeutic options for the treatment of neglected diseases and the rapid emergence of
multi-drug resistant organisms, which has limited the effectiveness of virtually all classes
of antimicrobials (Fisher et al., 2018; Murray et al.,, 2022). Hence there is an urgent
demand for the development of novel, safer, and more effective drugs and pharmaceutical
formulations (Blasco et al., 2017).

Natural products, especially medicinal plant-derived secondary metabolites, represent
an important source of new chemical entities that can be used in pharmacological research
especially for inflammatory and infectious diseases. While the present technology,
industry, and pharmaceutical market scenario have resulted in decreased patronage of
natural products in drug development in the last decades, it is hoped that the development
of new technologies will improve drug discovery from natural products and therefore
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natural products research remains an important field of scientific
investigation (Li and Vederas, 2009).

The present Research Topic is intended to collate
manuscripts reporting or describing active pharmacological
principles of extracts presenting well characterized and
quantified natural products with effectiveness against
inflammatory and infectious diseases. A  total of
17 manuscripts were published reporting anti-inflammatory,

antiviral, antibacterial and antiparasitic activities.

Anti-inflammatory activity

Most of the studies reported in our RT demonstrate the role of
phytochemicals and herbal formulations in experimental models
of inflammation. A review by Oliveira-Costa and others (Oliveira-
Costa et al.) discussed the ant-inflammatory activities of betulinic
acid, a lupane-type pentacyclic triterpene that is commonly
isolated from Betula species. Betulinic acid was found to
modulate the production of key inflammatory mediators
in vitro and in vivo, in different models of inflammation, which
is probably due to the inhibition of nuclear factor kappa-B (NF-«B)
and mitogen-activated protein kinase (MAPK) pathways. The
compound has served as a prototype for a large number of
derivatives with significant potential in drug development such
as 3-Deoxy-3p-((6-(2-heptanoyl-3-oxocyclopent-1-en-1-yl)
amino) hexanamido) betulinic acid. Another review by the
same group (Meira et al) highlighted the therapeutic
applications of physalins (a class of compounds commonly
found in the Solanaceae family) in  anticancer,
immunomodulatory, and antiparasitic activities. Physalin B and
F had the most potent pharmacological effects, but their
mechanism of action and toxic properties remain to be
described. Kuang et al. investigated the anti-inflammatory
activity of the sesterterpenoid fusaproliferin and its analogues in
RAW264.7 macrophages and zebrafish embryos stimulated with
lipopolysaccharide (LPS). The activity of the sesterterpenoid was
associated with the inhibition of nitric oxide (NO), reactive oxygen
species (ROS), and cytokine production, as well as with a decreased
expression of inflammatory enzymes such as nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2). As for betulinic acid, the
mechanism of action of fusaproliferin and its analogues was shown
to involve the inhibition of the TLR4-mediated activation of NF-
kB and MAPK signaling pathways. In fact, NF-kB is a family of
transcription factors that play crucial roles in cell activation,
proliferation, and survival, and therefore is a key molecular
target in anti-inflammatory research (Liu et al., 2017).

Four manuscripts investigated the effects of natural products on
the NLRP3 inflammasome, an intracellular multiprotein complex
with significant roles in inflammation and host defense.
Piperlongumine, an alkaloid isolated from Piper longum L. was
identified as an NLRP3 inhibitor that acts by interrupting the
assembly of the inflammasome. In addition, the significant in
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vivo activity demonstrated in LPS-induced endotoxemia and
MSU-induced peritonitis, indicated the potential application of
the alkaloid in NLRP3-associated diseases (Shi et al.).
(-)-Epicatechin, a flavonoid known for antioxidant and anti-
inflammatory activities, was found to significantly inhibit the
inflammatory response in MSU-induced acute gouty arthritis.
The compound caused significant inhibition of inflammatory
mediator production, edema development, and leukocyte
infiltration through inhibition of NLRP3 Inflammasome and the
NF-kB signaling pathway (Wu et al.). Qingwenzhike (QWZK), a
Traditional Chinese medicine preparation derived from
recombination of ancient Chinese classical prescriptions, was
chemically characterized by linear ion trap/electrostatic field
orbital trap tandem high-resolution mass spectrometry (UHPLC-
LTQ-Orbitrap MS) and investigated for its protective effects on LPS-
induced acute lung injury (ALI) model induced in rats. A total of
99 compounds (mostly flavonoids) were identified in QWZK, which
demonstrated protective effects on LPS-induced ALI, possibly by
TLR4/NF-kB
NLRP3 inflammasome activation (Zhang et al.). Together, these

inhibiting signaling pathway and
findings point to NF-kB and NLRP3 as potential targets in natural
product-based anti-inflammatory drug development. Similar
mechanisms were demonstrated in a study by Lu et al. with the
species Tetrastigma hemsleyanum Diels et Gilg, (Vitaceae), a
Chinese medicinal herb (popularly known as Sanyeqing) that is
traditionally being used to treat inflammation. The authors
demonstrated that polysaccharides obtained from this plant
ameliorated LPS-induced acute respiratory distress syndrome in
mice through modulation of TLR2/TLR4-NF-kB, NLRP3/caspase
and JAK/STAT signaling pathways, stimulating further research on
the benefits of these molecules on respiratory disorders such as the
coronavirus disease (COVID-19). An article by Yan et al. reported
the use of a murine model of colitis to demonstrate the therapeutic
effects of Guchangzhixie capsule, an established drug in the Chinese
Pharmacopoeia 2020. It is composed of Mume fructus, Zingiberis
rhizoma, Aucklandiae radix, Corydalis rhizome, Coptidis rhizoma,
and Papaveris pericarpium. It was observed that the anti-
inflammatory  properties of  Guchangzhixie result from
modulation of macrophage polarization and inflammatory
mediator production, favoring mucosal healing. These latter
studies demonstrate the relevance of traditional Chinese medicine
in anti-inflammatory drug research.

Antiviral activity

The current pandemic of COVID-19 led many researchers
working on drug discovery to search for novel sources and
compounds that could be useful as antivirals or as adjuvants
on the treatment of COVID-19 symptoms or complications.
Although the vaccines are available and effective to avoid severe
COVID-19, the threat of SARS-CoV-2 new variants makes the
development of antiviral therapies an urgent need. Several studies
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were reported investigating natural products with potential
action against SARS-CoV-2. Singla et al., carried out a wide
review on the role of intestinal microbiota and pro-inflammatory
markers on COVID-19. Additionally, they reviewed natural
products that could combat the SARS-CoV-2 virus. The
authors described 70 phytochemicals and ten polyherbal
formulations which were scientifically analyzed against the
SARS-CoV-2  virus,
bioresources on prevention and treatment of COVID-19

showing the great potential of
complications (Chao et al.).

In another research, Kolev et al. investigated the antiviral
effects of Echinacea purpurea focusing on SARS-CoV-2 virus.
The plant species was previously shown to possess antiviral and
immuno-modulating properties, indicating that it could be useful
against SARS-CoV-2. In an exploratory clinical study with
120 volunteers, it was demonstrated that the use of a
pharmaceutical preparation of Echinacea purpurea extract
potently reduced SARS-CoV-2 infections and viral loads as
part of an overall effect on viral respiratory tract infections
(Kolev et al.), suggesting that this preparation could be
complementary to other activities, such as vaccination and use
of face masks, that could attenuate the development of severe
COVID-19. Using a different approach, Yeh et al. developed a
computational method to select herbs from Traditional Chinese
Medicine (TCM) with the greater potentials to be active against
SARS-CoV-2 binding and replication. Using current procedures,
the authors established novel in silico methods to construct a
comprehensive map of TCM drugs that possess potential for
SARS-CoV-2 prevention and treatment. According to the in
silico predictions, Honeysuckle (Lonicera japonica) and Huangqi
(Astragalus membranaceus) were shown to have therapeutic
potential by blocking the binding of spike protein-ACE2,
suppressing SARS-CoV-2 replication and the inflammatory
phase by targeting cytokines. The preliminary results were
validated by collecting the selected herbs and evaluating their
anti-viral activity in vitro. Based on their findings, the authors
demonstrated that TCM candidates could be prioritized through
in silico predictions, followed by validation using various anti-
viral activity assays (Yeh et al.).

Regarding other viral infections, Chao et al. studied the
Chinese herb Andrographis paniculate (Chuanxinlian). They
identified twelve compounds produced by the plant and
evaluated their activity against enterovirus 71 (EV71), one of
the most important enteroviruses that cause hand, foot, and
mouth disease accompanied by neurological complications. In
their study they demonstrated that bioactive compounds of
Chuanxinlian act either by protecting EV71-infected RD cells
from sub-G1 arrest or possessing IFNy-inducer activity, thus it
may be feasible to develop anti-EV71 agents.

The relevance of Traditional Chinese Medicine in the treatment
of all kinds of diseases was reinforced by a Chinese research group
working on hepatitis B virus (HBV). They investigated the anti-HBV
effect and the related mechanisms of action of a Chinese patent
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medicine Liuweiwuling. In spite of the fact that Liuweiwuling tablets
are licensed in Chinese patent medicine with indications as anti-
inflammatory and to be used by patients with chronic HBV
infection, its anti HBV effect remained unclear. In the report Ge
et al. demonstrated the potent inhibitory effect on both wild-type
and entecavir-resistant HBV, which might be associated with
increasing IFN-B and IFN-y production (Ge et al.).

Antibacterial and antifungal activities

The interest in novel antimicrobial compounds has
significantly increased in the last years due to the lack of
effectiveness of conventional drugs against resistant
microorganisms such as bacteria and fungi. In this context,
evaluated the effects of a
bacteriophage cocktail obtained from different water sources
Klebsiella

pneumoniae in mice. The authors observed that while the

research by Singh et al

on septicemia caused by  colistin-resistant
lower dose (1 x 10° PFU/mouse) had a protective effect, the
higher dose (1 x 10" PFU/mice) was fatal in the early stages of
septicemia but not at the later stages. Moreover, the outcome
observed in the high-dose phage-treated mice were associated
with elevated IL-6 concentrations. This was the report on the
biological role of a natural product that was not derived from a
plant. It is a stimulus to the investigation of other natural sources
in anti-inflammatory and antimicrobial drug development.

As some diseases are caused by bacterial and fungal co-
infections, compounds with a wide spectrum of action may
represent promising alternatives as antimicrobial agents. In
this context, thymol a widely studied terpene, had its anti-
infective potential investigated in a model of caries caused by
Candida albicans and Streptococcus mutans co-infection. The
study carried out by Priya et al. demonstrated that the
monoterpene inhibited the growth of both pathogens, in
addition to inhibiting several virulence factors of these
microorganisms in vitro. Moreover, in vivo studies using a
Galleria mellonella model indicated significant inhibition of
infection under a single and dual state in the absence of
significant toxicity, supporting the application of thymol in
the development of pharmaceutical formulations for the
treatment of caries.

Antiparasitic activity

Parasitic diseases are a great threat to billions of people
especially in the tropical regions of the globe where there is
prevalence of neglected diseases, such as filariasis,
schistosomiasis and leishmaniases (Igoli et al., 2022). In this
category, the first manuscript reported on the in vitro activity of
BAS5 (a betulinic acid derivative) against different species of

Leishmania as well as its mechanism of action. The authors
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Ribeiro-Filho et al.

reported that BA5 inhibited the proliferation of promastigote
forms of Leishmania amazonensis, Leishmania major,
Leishmania braziliensis and Leishmania infantum. Using
electron microscopy and flow cytometry, it was demonstrated
that promastigotes incubated with BA5 presented membrane
blebbing, flagella damage, increased size, body deformation, and
that parasite mortality is mainly caused by apoptosis-like death
and arrested cell cycle in GO/G1 phase (Magalhaes et al.). In the
second manuscript, Okoh et al. used cheminformatics to
investigate two natural compounds and their potential for use
against Malaria. Molecular dynamics was used to compare the
binding affinity of artesunate and azadirachtin to the active site of
Gephyrin E, a multi-domain scaffolding protein of inhibitory
post-synapses. The results provided evidence that artesunate has
comparatively better binding affinity to Gephyrin E than
although
azadirachtin may be more effective as an anti-malarial agent

azadirachtin, they presented evidence that

than artesunate.

Conclusion

The Research Topic ‘New trends in natural product research
for inflammatory and infectious diseases’ was effective in
bringing together worthy studies and contributions on the
subject of inflammatory and infectious diseases, highlighting
the relevance of natural products in current pharmacological
research in a pre-clinical context.
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Liuweiwuling Tablet had Potent
Inhibitory Effects on Both Wild-Type
and Entecavir-Resistant Hepatitis B
Virus (HBV) in vitro and Effectively
Suppressed HBV Replication in Mouse
Model

Fei-lin Ge"?", Lan-lan Si?', Yan Yang®, Yuan-hua Li®", Zhong-lin Lv*, Wen-hui Liu®,
Hao Liao?, Jun Wang?, Jun Zou?, Le Li? Hui Li%, Zi-lin Zhang?, Jia-bo Wang?, Xue-chun Lu?,
Dong-ping Xu?, Zhao-fang Bai®*, Yan Liu?* and Xiao-he Xiao>*

School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijjing, China, 2Department of Infectious Diseases,
The Fifth Medical Center of Chinese PLA General Hospital, Bejjing, China, *Department of Liver Diseases, The Fifth Medical Center
of Chinese PLA General Hospital, Bejjing, China, “Department of Hematology, The Second Medical Center and National Clinical
Research Center for Geriatric Diseases, Chinese PLA General Hospital, Bejjing, China, °Department of Gastroenterology, The
Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing,
China

Liuweiwuling Tablet (LWWL) is a licensed Chinese patent medicine (approval number:
Z20060238) included in the national health insurance for anti-inflammmation of chronic HBV
infection, whereas its anti-HBV effect remains clarification. The study aimed to clarify its
antiviral effect and related mechanisms. HepG2.2.15 cells (wild-type HBV-replicating cells)
and HepG2. AB4 cells (entecavir-resistant HBV-replicating cells) were used for in vitro test.
Hydrodynamic injection-mediated HBV-replicating mouse model was used for in vivo test.
Active compounds and related mechanisms for antiviral effect of LWWL were analyzed
using network pharmacology and transcriptomics. The inhibition rates of LWWL (0.8 mg/
ml) on HBV DNA, HBsAg, and pgRNA were 57.06, 38.55, and 62.49% in HepG2.2.15
cells, and 51.57, 17.57, and 53.88% in HepG2. A64 cells, respectively. LWWL (2 g kg™
d™" for 4 weeks)-treated mice had 1.16 logyo IU/mL decrease of serum HBV DNA, and
more than 50% decrease of serum HBsAg/HBeAg and hepatic HBsAg/HBCAg.
Compared to tenofovir control, LWWL was less effective in suppressing HBV DNA but
more effective in suppressing HBV antigens. Thirteen differentially-expressed genes were
found in relation to HBV-host interaction and some of them were enriched in interferon
(IFN)-B pathway in LWWL-treated HepG2.2.15 cells. CD3*CD4* T-cell frequency and
serum IFN-y were significantly increased in LWWL-treated mice compared to LWWL-
untreated mice. Among 26 compounds with potential anti-HBV effects that were predicted
by network pharmacology, four compounds (quercetin, luteolin, wogonin, and kaempferol)
were experimentally confirmed to have antiviral potency. In conclusion, LWWL had potent
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inhibitory effect on both wild-type and entecavir-resistant HBV, which might be associated
with increasing IFN-B and IFN-y production.

Keywords: hepatitis B virus, entecavir resistance, Chinese patent medicine, antiviral activity, active compounds

INTRODUCTION

Hepatitis B virus (HBV) infection can cause chronic hepatitis B
(CHB), increase occurrence risk of liver cirrhosis and hepatocellular
carcinoma (HCC). An estimated 257 million individuals live with
HBsAg positive, leading to more than 887,000 deaths annually
(Revill et al, 2019). Two classes of anti-HBV agents,
ie., interferon (IFN) and nucleoside/nucleotide analogues (NAs),
have been approved for treatment of HBV-infected diseases. So far,
six NAs are licensed in China for the treatment of HBV-related
diseases, including lamivudine (LAM), adefovir dipivoxil (ADV),
telbivudine (LdT), entecavir (ETV), tenofovir disoproxil fumarate
(TDF), and tenofovir alafenamide (TAF). These antiviral agents have
brought great benefit for patients, while a major challenge is that
HBV is hardly to be eliminated from patients with chronic HBV
infection using current anti-HBV agents. In addition, HBV drug-
resistance and adverse drug reactions (ADRs) are also factors
influencing therapeutic efficacy. Therefore, it is still urgent to
develop novel efficacious drugs and therapies to improve clinical
cure of chronic hepatitis B (Wang et al., 2019; Seo et al., 2020; Helen
et al., 2013; Kim et al., 2017).

A few of traditional medicine (TM) and related components
were documented with anti-HBV effects, such as schisandrae
chinensis fructus, salviae miltiorrhizae radix et rhizom, sophorae
flavescentis radix, tsaoko fructus, wogonin, baicalein, and matrine
(Liu et al., 2018; Si et al, 2019; Hepatobiliary Specialized
Committee of China Association of Chinese Medicine and
Liver Diseases Specialized Committee of China Medical
Association of Minorities., 2018). Liuweiwuling Tablet
(LWWL) is a drug approved by the China National Medical
Products Administration (approval number: Z20060238) and it
has been taken into the national health insurance. LWWL
consists of six herbs, i.e., schisandrae chinensis fructus (Wu
Wei Zi or WWZ), ligustri lucidi fructus (Nv Zhen Zi or NZZ),
forsythiae fructus (Lian Qiao or LQ), curcumae rhizoma (E Zhu
or EZ), field sowthistle herb (Qu Mai Cai or QMC), and
ganoderma spore (Ling Zhi Bao Zi Fen or LZ). LWWL has
good efficacy on anti-inflammation of chronic HBV infection
(Hepatobiliary Specialized Committee of China Association of
Chinese Medicine and Liver Diseases Specialized Committee of
China Medical Association of Minorities., 2018; Hepatobiliary
Specialized Committee of China Association of Chinese Medicine
et al,, 2020). In addition, a few of clinical reports indicated that
LWWL combined with NAs could accelerate HBV DNA
undetectability and normalization of alanine aminotransferase
(ALT) compared to single NAs use (Zhao et al., 2016; Shangguan
et al,, 2016; Wang, 2014; Wang, 2020). However, the anti-HBV
effects of LWWL and related mechanisms remains clarification.
In light of the revelation, this study aimed to clarify anti-HBV
effect and related mechanisms, and to identify major active
compounds.

MATERIALS AND METHODS

Cell Lines and Cytotoxicity Assay

Two HBV-replicating cell lines HepG2.2.15 and HepG2.A64 were
employed in the study. HepG2.A64 as an ETV-resistant HBV-
replicating cell line has been employed previously (Liu et al., 2016;
Liu et al.,, 2018). Compared to HepG2.2.15 cells, HepG2.A64 cells
generated comparable HBV DNA, higher HBsAg but lower
HBeAg. The cytotoxicity of LWWL (Shibo Jindu, Zibo, China)
and four compounds quercetin, luteolin, wogonin, and
kaempferol (purchased from MedChemExpress Co., Ltd.,
Monmouth Junction, United States) on cells were analyzed
using Cell Counting Kit-8 (Dojindo Laborarories, kyushu,
Japan) according to the manufacturer’s instructions. The
median cytotoxic concentration (CCsy) was calculated. The
molecular and cellular studies were carried out in Biosafety
level-2 (BSL-2) laboratory at Center Laboratory, The Fifth
Medical Center of Chinese PLA General Hospital. All
manipulations were strictly conducted according to the
instructions of the laboratories.

Evaluating Anti-HBV Activity of LWWL in

Cell Models

HepG2.2.15 cells and HepG2.A64 cells were respectively plated
into 48-well culture plates (2 x 10* cells/well). The cells in
duplicate wells were treated with different concentrations of
the drug (0, 0.1, 0.2, 0.4 and 0.8 mg/ml of LWWL, or 0, 0.2, 2,
20, 200 pmol/L of TDF, or selective concentrations of compounds
identified from LWWL) for 5 days. Culture supernatants were
harvested in 5 days for determining HBsAg and HBeAg levels by
ELISA kits (Wantai Biological Pharmacy Enterprise Co., Ltd.,
Beijing, China), HBV pregenomic RNA (pgRNA) and HBV DNA
levels were respectively determined by quantitative reverse-
transcription PCR (qRT-PCR) and quantitative PCR (qPCR)
assays as previously described (Ji et al., 2011; Liu et al., 2015;
Wang et al., 2017). Half maximal inhibitory concentration (ICsg)
were calculated. The experiments were performed for three times
independently.

Establishment of HBV Mouse Model With
Hydrodynamic Injection of
Adeno-Associated Virus Plasmid

(PAAV)-HBV1.2

The pAAV carrying 1.2-mer wild-type HBV genome was
obtained from P.J. Chen (National Taiwan University, Taipei).
C57BL/6 male mice weighted 20—22 g were injected into tail vein
with 20 pug of pAAV-HBV 1.2 plasmid in 2 ml PBS within 6-8 s. In
3 days, the mice were bled through orbit for monitoring HBsAg,
HBeAg and HBV DNA levels.
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FIGURE 1 | Evaluation of safe concentration and optimal effective time of LWWL against HBV in cell models. The safe concentration of LWWL (defined as that
maintains >95% cell viability compared to drug-untreated control) were respectively evaluated in (A) HepG2.2.15 cells and (C) HepG2. A64 cells. The optimal effective time of
LWWL against HBV (defined as the day-point with the strongest HBV DNA suppression during 5-days observation) were respectively evaluated in (B) HepG2.2.15 cells and
(D) HepG2. AB4 cells. Cell viability (A, C) and HBV DNA levels (B, D) between each of escalated concentrations of LWW.L-treated groups and LWWL-untreated group

are analyzed. * and ** represent p < 0.05 and p < 0.01 respectively in difference comparison between resultant values treated with each indicated LWWL concentration and
the value treated with zero LWWL concentration using Student’s t-test. LWWL, Liuweiwuling Tablet; CCsq, the median cytotoxic concentration against cultured cells.
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Evaluating Anti-HBV Activity of LWWL in the

Mouse Model

The pAAV-HBV1.2-replicating mice were divided into four
groups with six mice each group as follows: normal saline
(NS) group, low-dose LWWL (1gkg ' d™') group, high-dose
LWWL (2gkg " d') group, and TDF (63 mgkg ' d™") group.
Intraperitoneal injection was conducted once a day for 4 weeks.
The mice were bled weekly during treatment through orbit. The
mice serum were harvested to measure HBV DNA, HBsAg,
HBeAg, and IFN-y using ELISA kits (Multi Sciences Co., Ltd.,
Hangzhou, China) according to the manufacturer’s instructions.
Hepatic HBcAg and HBsAg were examined using
immunohistochemical staining of paraffin-embedded tissue.
Monoclonal mouse anti-HBs (MXB Biotechnologies, Fuzhou,
China) and monoclonal mouse anti-HBc (Zhong Shan-Golden
Bridge Biological Technology Co., Ltd., Beijing, China) were used
for the examination. The animal study was conducted in BSL-2
laboratory at Animal Experimental Center, The Fifth Medical
Center of Chinese PLA General Hospital. All manipulations were
strictly conducted according to the instructions of the
laboratories. The study protocol was approved by the
Committee on the Ethics of Animal Experiments of The Fifth
Medical Center of Chinese PLA General Hospital (Permit
number: IACUC-2021-0009).

Flow Cytometric Analysis
Effects of LWWL on splenic T cells activities were investigated for

the high-dose LWWL mice (2g ' d™"). The mononuclear cells
were isolated. CD3, CD4, CDS8, and cell activation marker CD69
in mononuclear cells were visualized by fluorescent-labeled
antibodies (Biolgend, California, United States) and subjected
to LSRII flow cytometer. Data were analyzed using FlowJo
software v10.

Transcriptomics Analysis for Gene

Expression Comparison

Total cell RNA were isolated from LWWL-treated, TDF-treated,
and untreated HepG2.2.15 cells (named as LWWL group, TDF
group and control group, respectively) and subjected to Agilent
GeneChip (Shanghai Oebiotech Company, Shanghai, China) for
transcriptomics analysis as previously described (Cheng et al.,
2014). In brief, the differentially-expressed genes (DEGs) were
analyzed using Kyoto Encyclopedia of Genes and Genomes
(KEGG) database and gene ontology (GO) in the DAVID 6.8
(https://david.ncifcrf.gov/tools.jsp) to identify genes involved in
HBV infection-related molecular interaction network.
Transcriptomics data has been successfully deposited and is
public. The accession number is GSE183509.
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FIGURE 2 | The effects of LWWL on HBV DNA/RNA and antigen in cell models. The inhibitory effects of LWWL on HBV DNA and supernatant HBsAg + HBeAg
were tested for both (A) in HepG2.2.15 cells and (D) in HepG2. AB4 cells. The effects of TDF against HBV were also tested in (B) HepG2.2.15 cells and (E) HepG2. A64
cells. The effects of LWWL and TDF on supernatant pgRNA were also tested in (C) HepG2.2.15 cells and (F) HepG2. A64 cells. Dashed lines indicate ICso of LWWL and
TDF. *and ** represent p < 0.05 and p < 0.01 respectively in difference comparison between resultant values treated with each indicated concentration of LWWL (A,
D) or TDF (B, E) and the value treated with zero concentration of LWWL or TDF. LWWL, Liuweiwuling Tablet; TDF, tenofovir disoproxil fumarate; pgRNA, pregenomic
RNA; ICs0, 50% maximal inhibitory concentration.

RNA Quantification by qRT-PCR
The relative expression level of RNA of 24 DEGs was quantified

using qQRT-PCR, with 2" method using B-actin as a reference
control (Livak and Schmittgen, 2001). The primers are used in
qPCR shown in Supplementary Table S1. TransStart Green RT-
qPCR kit (Transgen Biotech Co., LTD., Beijing, China) was used
to determining RNA level.

Network Pharmacology Analysis for Active
Compounds of LWWL and Targets of HBV

Firstly, the six herb names in LWWL were put into the traditional
Chinese medicine systems pharmacology database (TCMSP)
respectively to extract compounds of all herbs, the website
address of TCMSP is http://tcmspw.com/. Furtherly, possible
active compounds were filtered based on their corresponding
pharmacodynamic parameters including drug-like (DL) and oral
bioavailability (OB), and “DL > 0.18, OB > 30%” was used as
screening conditions. Secondly, possible active compounds
screened by OB and DL in LWWL were paired with potential
target proteins based on TCMSP database, and the Uniprot
database (https://www.uniprot.org/) was used to obtain the
gene names of target proteins. Finally, Genecards database
(https://www.genecards.org/) was used to extract HBV-related
targets according to key words species “homo species” and
“hepatitis B”.

LWWL-Compounds-Target-HBV Network

Analysis

The “LWWL-compounds-targets-HBV” interaction network was
constructed using cytoscape software (Version 3.7.2) on the basis of
the intersection of LWWL-related potential targets and HBV-related
molecules. The value of degree was calculated to evaluate the anti-HBV
potential of different compounds in LWWL. Targets of LWWL
against HBV-related molecules through Cytoscape software analysis
were placed in the DAVID 6.8 database for KEGG and GO analyses.

Liquid Chromatograph-Mass Spectrometer
Analysis of LWWL

The LWWL was qualitatively and quantitatively determined via
LC-MS. The chromatographic conditions as below: Column,
Phenomenex Kinetex 2.6u Bi-phenyl 1004, 50 x 3 mm; mobile
phase A (water with 0.1% FA) and B (acetonitrile with 0.1% FA);
elution program (0-0.5 min, 10% B; 0.5-4.0 min, 40% B; 4.0-9.0
min, 90% B; 12.0 min, 90% B; 12.0-15.0 min, 10% B). Flow rate
was 0.4 ml/min; and injection volume was 5.0 pl. Electrospray
positive ionization mode was used for analysis. The mass
spectrometer was operated in positive mode with the main
parameters set as follows: GS1 was 50 psi; GS2:50 psi; Curtain
gas (N,) pressure was 35 psi; collision gas was nine psi; and
capillary temperature was 550°C.
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FIGURE 3| The impacts of LWWL on HBV DNA/antigen and IFN-y of pAAV-HBV1.2 replication mice. The impacts of LWWL and TDF on serum (A) HBV DNA level,
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Statistical Analysis

SPSS16.0 software was used for statistical analysis. The data are
expressed as the mean + standard deviation, and the
experimental groups and the control group were analyzed
by a t-test. Other data were analyzed by one-way analysis of
variance (ANOVA). A p value <0.05 was considered
statistically significant.

RESULTS

Antiviral Effect of LWWL in Cell Models

Cell viability kept well when LWWL concentration was <0.8 mg/
ml of LWWL. The CCs, values were 3.14 mg/ml and 4.57 mg/ml
in both cell models (Figures 1A,C), respectively. Under the safe
concentration, the antiviral effect of LWWL was evaluated on the
first, third and fifth days respectively, and it was found that
antiviral effect of LWWL was the best on day 5 of the treatment in
both cell models (Figures 1B,D).

In wild-type HBV-replicating HepG2.2.15 cells, the inhibitory
rates of LWWL (0.8 mg/ml) on HBV DNA, HBsAg, HBeAg and
pgRNA were 57.06, 38.55, 21.26, and 62.49%, respectively
(Figures 2A,C). By contrast, the inhibitory rates of TDF
(200 pmol/L) on HBV DNA, HBsAg, HBeAg, and pgRNA

were 86.18, 13.91, 12.66, and 45.55%, respectively (Figures
2B,C). In ETV-resistant HBV-replicating HepG2.A64 cells, the
inhibitory rates of LWWL (0.8 mg/ml) on HBV DNA, HBsAg,
and pgRNA were 51.57, 17.57, and 53.88%, respectively (Figures
2D,F). By contrast, the inhibitory rates of TDF (200 pmol/L) on
HBV DNA, HBsAg, and pgRNA were 80.20, 13.26, and 31.93%,
respectively (Figures 2E,F).

Antiviral Effect of LWWL in Mouse Model
In 4-weeks treatment, serum HBV DNA levels were decreased
0.36, 1.16, and 2.35 log;o IU/ml in low-dose LWWL-, high-dose
LWWL-, and TDF-treated mice compared to NS-treated mice.
Serum HBeAg levels were decreased 47.47, 53.20, and 8.26%, and
serum HBsAg levels were decreased 40.28, 50.77, and 11.53%,
respectively post 4-weeks treatment (Figures 3A-C). Compared
to NS-treated mice, serum IFN-y levels of low-dose LWWL, high-
dose LWWL, and TDF-treated mice had 1.60-, 2.01-, and 0.95-
fold increases, respectively (Figure 3D).

The average densities of HBsAg-positive hepatocytes in the
NS-, high-dose LWWL-, and TDF-treated mice were 129.48 +
46.24, 12.02 + 9.89, and 157.31 + 29.05, respectively (Figures
4D-F). Average densities of HBcAg-positive hepatocytes of NS-
treated, high-dose LWWL-treated, and TDF-treated mice were
21.88 £ 6.31, 3.54 + 0.59, and 23.07 + 7.40, respectively (Figures
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4G-I). Statistical analysis showed that the number of the HBV
antigen-positive hepatocytes was significantly decreased in
LWWL-treated mice than in TDF-treated and NS-treated mice
(Figures 4J,K).

Effect of LWWL on Splenic T Cells Activation
The frequency of CD3"CD4" T cells in high-dose LWWL-treated
mice was significantly higher than that in NS-treated mice
(17.10 £ 1.95% vs 2543 + 1.28%, p < 0.01) (Figures 5A,B);
whereas no significant difference was observed for the frequencies
of CD3"CD4"CD69" T cells between LWWL-treated and NS-

treated mice (1.97 + 0.82 vs 1.63 =+

(Figures 5C,D).

0.54%, p > 0.05)

Differential Gene Expression in
Transcription Level Based on
Transcriptomics and qRT-PCR Verification
There were 2,074 up-regulated genes and 985 down-regulated
genes in LWW.L-treated HepG2.2.15 cells compared with
untreated cells. Total of 24 DEGs was found to be involved in
HBV-related pathway by KEGG pathway analysis in LWWL-
treated cells compared to control group (Figures 6A-D).
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FIGURE 5 | Effect of LWWL on splenic T cells of pAAV-HBV1.2 replication mice. Flow cytometry of the frequencies of CD4* T cells (A) and CD4*CD69* T-cell
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Among them, 13 DEGs between LWWL group and control
group were verified by RT-qPCR. Compared to control
group, EGR2 and FOS expression in LWWL group were
significantly lower, IKBKE, CCNE2, AKT3, CREB3L2,
PIK3R3, CREBBP, BCL2, PCNA, E2F1, CASP8 and P53
expression in LWWL group were significantly higher
(Figure 6E). In addition, IFN-B expression levels in
LWWL group were significantly higher than that in
control group (Figure 6F).

Experimental Verification of Major Active
Compounds of LWWL Associated with HBV
Inhibition Based on Network Pharmacology
Prediction
Total of 35 compounds contained in LWWL were subjected to
network pharmacology prediction that contained 2107 HBV-
related targets. As a result, 26 active compounds were found to be
involved 128 HBV-related targets (Figure 7; Table 1).

Among the 26 potential anti-HBV compounds, seven
compounds (quercetin, kaempferol, luteolin, wogonin,

beta-sitosterol, bicuculline, and lucidumoside D-qt) had
>10 degree value were taken into further experimental
analysis as a higher degree usually indicates a greater
potential for anti-HBV activity. Among the seven
compounds, quercetin, luteolin, wogonin, and kaempferol
showed better anti-HBV effects. The molecular structures of
the four active compounds are shown in Figure 8A1, B1, C1,
D1. Cytotoxic testing showed the four compounds are
shown in Figure 8A2, B2, C2, D2. The maximum
concentrations with anti-HBV effects in vitro were
5.00 umol/L for quercetin, 2.50 umol/L for luteolin,
2.50 pmol/L for wogonin, and 6.25 pmol/L for kaempferol,
respectively. As a result, the inhibitory rates on supernatant
HBV DNA in HepG2.2.15 cells were 53.47, 53.28, 54.05, and
28.93% for quercetin, luteolin, wogonin, and kaempferol,
respectively; and the inhibitory rates on HBsAg/HBeAg for
the four compounds were 38.04%/14.25%, 45.00%/36.38%,
19.41%/15.95 and 19.35%/23.02%, respectively (Figure 8A3,
B3, C3, D3). Furthermore, we have identified those four
active compounds in LWWL based on LC-MS analysis
(Table 2).
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DISCUSSION

The major drawback for current anti-HBV agents is that they do
not effectively eliminate HBV from patients with chronic HBV
infection. NAs are the most commonly-used antiviral agents. They
effectively inhibit viral replication but has no direct suppressive
effect on covalently closed circular DNA (cccDNA), and the
suppressive effect is much weaker on HBV antigen expression
than on HBV replication (Chevaliez et al., 2013). In addition, long-
term use of NAs may induce HBV drug-resistance (Terrault et al,
2018). The life of HBV cycle and viral interplay with host involve
multiple factors. Thus, agents reactive to multiple targets are
required for effectively eliminating the virus (Wang, et al., 2021;
Terrault et al., 2018). Because Chinese patent medicine contains
multiple active components against multiple targets related to HBV
proliferation, they may have a potential superior in playing multi-

target synergistic antiviral effects (Liu et al., 2018; Hepatobiliary
Specialized Committee of China Association of Chinese Medicine
and Liver Diseases Specialized Committee of China Medical
Association of Minorities., 2018). Clinical use of LWWL has
shown that it is well efficacious on anti-inflammation of chronic
HBV infection (Hepatobiliary Specialized Committee of China
Association of Chinese Medicine et al., 2020). In addition, a meta-
analysis documented that combination of LWWL with NAs (at
least for 3 months) could increase the rate of HBV DNA
undetectability (OR = 1.8-6.71, p < 0.05) and HBeAg loss (OR
= 1.83-2.04, p < 0.05) compared to single use of NAs (He et al,
2017; Wang et al, 2020). So far, there is still lack of data on
experimental anti-HBV effects and underlying mechanisms
of LWWL.

Our study showed LWWL had anti-HBV effect both for
wild-type and for ETV-resistant viruses. Compared to TDF
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control, LWWL was more efficient in suppressing HBV
antigen levels, although it was less efficient in suppressing
HBV DNA level. This antiviral effect was verified in HBV-
replicating mouse. HBV antigen such as HBsAg is critical for
HBYV to establish immune tolerance, which could facilitate the
persistence of HBV infection by suppressing host immunity
through the regulation of IFN-related pathway (Jiang et al,,
2014; Warner et al,, 2020). LWWL had a better efficacy in
suppression HBsAg production and this endow it potential to
play a synergistic effect with NAs. In addition, compared to
TDF, LWWL had a better effect on inhibiting HBV pgRNA of
both wild-type and ETV-resistant HBV. As pgRNA is directly
transcribed from cccDNA, it may more closely reflect cccDNA
activity compared to the other viral markers (Wang et al,

2017).

Transcriptomics provides a novel and effective way to refine
clues about complex mechanisms. Therefore, we used
transcriptomics to analyze the potential mechanisms of
LWWL against HBV. Transcriptomics analysis and qRT-
PCR verification showed that there were 13 DEGs at
transcription levels involved in HBV-related molecular
pathways, mainly including P53, apoptosis, and IFN-f
pathways. Further analysis showed that the expression level
of effector IFN-P in IFN-B pathway were significantly higher in
LWWL-treated HepG2.2.15 cells than that in LWWL-
untreated cells. IFN- has been verified in previous studies
through activating pathogen-associated molecular patterns
(such as TLRs, RIG-1, c-GAS)/IFN-f pathways (Yin et al,
2016; Cheng et al., 2017; Alexopoulou et al., 2020). Our results
also showed that in HBV-replicating mouse model, LWWL
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TABLE 1 | Prediction of anti-HBV components of LWWL based on network pharmacology.

Composition

quercetin

kaempferol

luteolin

wogonin

beta-sitosterol

bicuculline

Lucidumoside D_gt

taxifolin

Onjixanthone |

eriodictyol

(+)-pinoresinol monomethyl ether
(3R,4R)-3,4-bis|(3,4-dimethoxyphenyl)methyl]oxolan-2-one
Gomisin R

hederagenin

Angeloylgomisin O

Mairin
campesta-7,22E-dien-3beta-ol
ergosta-7,22E-dien-3beta-ol
ergosta-4,6,8(14),22-tetraene-3-one
ganoderal B

Lucialdehyde B

lucidone A

Gomisin-A

Wuweizisu C

Schizandrer B
Deoxyharringtonine

treatment significantly increased the frequency of CD3"CD4"
T cells and serum IFN-y production. IFN-y is mainly
generated by activated CD37CD4" T cells, and IFN-y has
been proved to be able to inhibit HBV replication through
triggering intracellular antiviral pathways (Chokshi et al,
2014; Sang et al,, 2017; Iannacone and Guidotti, 2021). We
speculated that LWWL might play an anti-HBV role by
enhancements of both IFN-B-mediated innate anti-HBV
effect and IFN-y-mediated acquired anti-HBV effect,
whereas further studies are needed for the confirmation and
elucidation of the context of the pathways.

Network pharmacology, developed in recent years, is an
integration of bioinformatics and pharmacology by
constructing the network of Chinese medicine-compounds-
target-disease (Yang et al., 2018; Zhang et al., 2019). It has been
proved to be a useful tool for predicting active compounds of
Chinese medicine against certain diseases. Therefore, we firstly
predicted the potential active compounds against HBV in
LWWL based on network pharmacology, and then focused
on the compounds with high degree that usually indicates a
greater potential for anti-HBV activity. Out of the 26
compounds with potential anti-HBV effects that were
predicted by network pharmacology, four compounds
(quercetin, luteolin, wogonin, and kaempferol)
experimentally confirmed to have antiviral potency, which
partly clarified the active compounds of LWWL against
HBV, and also provides a reference for the new drug
screening of HBV. Previous studies showed that luteolin

were

Degree OB% DL%
97 46.43 0.28
46 41.88 0.24
45 36.16 0.25
33 30.68 0.23
13 36.91 0.75
12 69.67 0.88
12 54.41 0.47
9 57.84 0.27
8 79.16 0.3
7 71.79 0.24
6 53.08 0.57
6 52.3 0.48
5 34.84 0.86
4 36.91 0.75
3 31.97 0.85
2 55.38 0.78
2 43.51 0.72
2 43.51 0.72
2 48.32 0.75
2 42.56 0.81
2 43.12 0.81
2 37.22 0.64
2 30.69 0.78
2 46.27 0.84
2 30.71 0.83
2 39.27 0.81

had inhibitory effect on HBV replication through regulating
HNF 4a expression (Bai et al., 2016), and quercetin could
inhibit HBV DNA, HBsAg, and HBeAg levels in vitro but
mechanisms remained clarification (Cheng et al., 2015). Our
team reported that wogonin was one of major active
compounds against HBV in Chinese herbal extracts Su-
duxing, and wogonin had inhibitory effects on HBV
cccDNA in addition to regular HBV DNA and antigens
(Liu et al.,, 2018; Si et al., 2019). In this study, we confirmed
that quercetin, luteolin, and wogonin in LWWL had anti-HBV
effects, and found that kaempferol in LWWL was also an anti-
HBV component. These enriched the knowledge on the anti-
HBV effects of LWWL and provided a good start for
elucidating the antiviral mechanisms of LWWL, although it
is still a way to go to comprehensively elucidate the antiviral
mechanisms of LWWL.

CONCLUSION

In this study, we for the first time found that Chinese patent
medicine LWWL could effectively suppress the activities of
both wild-type and ETV-resistant HBV in cell models and the
suppressive effects were superior to TDF on HBsAg
expression. The antiviral effects were also verified in HBV-
replicating mouse model. Our study suggested that LWWL
against HBV might be associated with increasing IFN-p and
IFN-y productions. Four major active anti-HBV compounds
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TABLE 2 | Identification of the compounds of LWWL in chromatography.

Index Component name Formula
1 luteolin Ci5H1006
2 quercetin C15H1007
3 wogonin C16H120s
4 kaempferol C15H100¢

from LWWL were firstly identified. These findings can
provided new insights into the anti-HBV activities of
LWWL, which may help optimize combination therapy of
LWWL with current NAs and develop novel LWWL-
derived anti-HBV agents.
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Ulcerative colitis (UC) is the major type of inflammatory bowel disease (IBD) characterized
by an overactive immune response and destruction of colorectal epithelium with intricate
pathological factors. Guchangzhixie (GCZX) capsule, included in the Chinese
Pharmacopoeia 2020, has been widely utilized against UC. However, the underlying
molecular mechanisms have not been elucidated. In the present study, a murine model of
experimental colitis was established by orally feeding 4% dextran sodium sulfate (DSS) for
5days and subsequently subjecting to GCZX treatment for another 15 days. Network
pharmacology analysis was performed to predict the pertinent mechanisms of GCZX
capsule. Cellular experiments examining the functional changes of intestinal organoids
(I0s), macrophages (Mgs), and human colon epithelial cell cells (NCM460 cell line) after
GCZX therapy were performed. Sequencing of 16S rRNA was conducted on the stools
from the mouse model. Liquid chromatography-mass spectrometry (LC-MS) was utilized
to detect serum metabolites. As a result, DSS induced experimental colitis, and this
induction was alleviated by GCZX treatment, as evidenced by rescued pathological
symptoms in UC mouse models, such as rectal bleeding stopping, decreased levels of
albumin, interleukin-17, as well as chemokine (C-X-C motif) ligand 1 (CXCL1), and
reduction in colon length. Network pharmacology analysis showed that GCZX-target
genes were enriched in pathogen-induced infections, inflammatory pathways, as well as
neoplastic processes. DSS treatment decreased microbial diversity and led to the
accumulation of pathological bacterial, which was reversed by GCZX capsule.
PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States) based on profiles of microbiota composition demonstrated a
decreased incidence of infectious disease and cancers after GCZX therapy. In full
accordance with these data, GCZX administration suppressed Mg transition to pro-
inflammatory phenotype, alleviated tumor necrosis factor-a (TNFa)-compromised |10s
functions, and decreased the recruitment of Mes by epithelial cells. We conclude that
GCZX capsule is an effective drug for UC and its pharmacological mechanisms involve re-
establishing an anti-inflammatory milieu and favoring mucosal healing.

Abbreviations: CD, Crohn’s disease; GCZX, Guchangzhixie; IBD, Inflammatory bowel disease; IOs, intestinal organoids; M¢s,
Macrophages; ISCs, intestinal stem cells; TCM, Traditional Chinese Medicine; PPIs, Protein-protein interactions; UC, Ul-
cerative colitis.
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Intervention Effect of Guchangzhixie Capsule
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capsule

1 INTRODUCTION

The relapsing and oncogenic nature of inflammatory bowel
disease (IBD) dramatically affects patients’ quality of life, and
searching for effective therapeutic strategies aiming at long-
lasting clinical remission without serious adverse events has
been the main topic in this field (Borren et al., 2021; van der
Giessen et al., 2020; Voskuil et al., 2021). IBD is divided into
Crohn’s disease (CD) and Ulcerative colitis (UC), sharing similar
symptoms such as diarrhea, rectal bleeding, abdominal pain, and
weight loss, and occurring in both adolescents and adults. Despite
the similarity between these symptoms of CD and UG, there are
some differences between these two, including affected sites and
risk of cancer.

Most obviously, CD occurs in mouth, anus, as well as the
entire intestine, while UC is often limited to colon and rectum
(Veauthier and Hornecker, 2018). Moreover, UC patients bear a
higher risk of developing cancer than patients with CD (Jess et al.,
2006; Xue et al, 2018). However, both are pathologically
characterized by epithelium disruption under a sustained pro-
inflammatory microenvironment induced by a diverse range of
factors, for instance, genetic susceptibility, physiological
environmental dimension, psychological condition, and gut
microbiota composition (Voskuil et al, 2021). Given the
complexity of these factors, multi-target drugs show their
superiority to combat IBD compared with exquisitely selective
compounds.

Guchangzhixie (GCZX) capsule is an established drug
included in the Chinese Pharmacopoeia 2020, which has been
upgraded from Wumei (Mume fructus) pellet from Shang Han
Lun (the oldest Chinese monograph on Cold Damage Diseases).
GCZX capsule encompasses Mume fructus (Mf), Zingiberis
thizoma (Zr), Aucklandiae radix (Ar), Corydalis rhizome
(CRr), Coptidis rhizoma (CPr), and Papaveris pericarpium
(Pp). In this formula, Mf and Pp are astringent medicinal
herbs that efficiently stop hemorrhoids and diarrhea.
Additionally, Mf as the predominant component exerts anti-
inflammatory as well as antibacterial effects (Choi et al., 2007;
Chen et al,, 2011; Kim et al., 2016; Xing et al., 2018). Pp has been
used to treat chronic cough and cramp and alleviate human
suffering (Cao et al., 2007). CRr and CPr share many common
components that suppress inflammation (Kubo et al., 1994; Wang
and Ng, 2001) and neoplasias (Peng et al., 2006; Chen et al., 2016;
Wan et al,, 2019), and represent strong antiviral (Wang and Ng,
2001) and antibacterial activity (Tian et al., 2020). In addition to
its anti-inflammatory role (Endo et al., 2017; Endo et al., 2018;
Tian et al., 2020), Zr has been utilized in combination with other
herbs to reduce toxicity and optimize clinical efficacy (Peng et al.,
2013). Ar alleviates diarrhea and gastric ulcer injury through
modulating gastric emptying and intestinal propulsion (Huang
et al., 2021), and numerous studies reported its antibacterial (Lee
and Kim, 2020), anti-inflammatory (Wang et al., 2020a), and
anti-tumor (Roy and Manikkam, 2015) roles, and regulation of

bacterial composition (Hasson et al., 2013; Huang et al., 2021;
Rocha et al,, 2021). Logically, this formula combinates herbs that
exert anti-inflammatory, antibacterial, and antidiarrheal effects.
Nevertheless, the cellular mechanism of GCZX capsule lacks solid
experimental validation.

In the present study, we ascertained the intervention effect of
GCZX capsule on experimental colitis mice, discussed its
mechanical mechanisms utilizing network pharmacology, and
sequentially validated its therapeutic role by cellular experiments
integrated with 16S rRNA sequencing.

2 MATERIALS AND METHODS
2.1 Ethics Statement

All procedures and assays were approved by the Institutional
Animal Care and Use Committee of Jining Medical University.

2.2 Establishing Component-Target

Network of GCZX Components

Using Traditional Chinese Medicine Systems Pharmacology
database and Analysis Platform (TCMSP) (Ru et al., 2014), the
active components were obtained according to the suggested
parameter information. The cutoff was greater or equal to 0.18
(Drug likeness, DL) and 20% (Oral bioavailability, OB). The
targets of each active component were transformed into gene
symbols of Homo sapiens species by the UniProt knowledge
database (www.uniport.org).

2.3 Collecting Colitis-Related Genes

We collected colitis-related genes from five sources with the
keyword “ulcerative colitis,” including GeneCards (Rebhan
et al, 1997; Safran et al, 2010), DrugBank (Wishart et al,
2018), Online Mendelian Inheritance in Man (OMIM)
(Hamosh et al., 2002), PharmGkb (Whirl-Carrillo et al., 2012),
and Statistics of Therapeutic Target database (TTD) (Wang et al.,
2020b) (Supplementary Table S1).

2.4 Herb-Ingredient-Target (HIT)

Interaction Network

The shared genes between GCZX capsule and colitis were selected
to build the HIT interaction network utilizing Cytoscape software
(Su et al, 2014).

2.5 Protein-Protein Interaction (PPI)

Network and Hub-Genes Calculation

Utilizing the STRING database (Search Tool for Retrieval of
Interacting Genes/Proteins) (http://string-db.org/) (Szklarczyk
et al, 2019), a PPI network based on the shared genes was
computed with a confidence score >0.7 for significance and
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without disconnected nodes. Network nodes refer to proteins;
edges do not mean the physically binding of two proteins, but the
protein-protein interactions that they jointly facilitate a function.
The thicker the edge is, the higher the confidence is.

Hub genes with a high-degree node were calculated by
CytoNCA according to six indices, including closeness
centrality, betweenness centrality, degree centrality, eigenvector
centrality, local average connectivity, and network centrality
(Tang et al., 2015). Genes above the median value of each
index were selected per calculation. These indices were
calculated three times to establish the final sub-network.

2.6 GO and KEGG Pathway Enrichment

Gene Ontology (GO) divides genetic functions into cellular
component (CC), molecular function (MF), and biological
process (BP) (Ashburner et al, 2000). Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a reference knowledge base for
systematic interpretation of genes functions (Kanehisa and Goto,
2000). GO and KEGG enrichment analysis was executed by
Bioconductor (R). Adjusted p-value below 0.05 was considered
significantly enriched genes.

2.7 Experimental Validation
2.7.1 Ulcerative Colitis Mouse Model and GCZX
Treatment
MY, Zr, Ar, CRr, CPr, Pp were mixed with the ratio of 4:1.3:1:1.3:
1:1, added to 1,000 ml (1: 10 g/v) pure water, and boiled for 1 h.

A total of 45 C57BL/6 male mice (Cyagen, China) weighing
20-25 g were randomly divided into three groups (15 mice per
group): control group, DSS group, and GCZX-treated DSS group.
Mice were fed with 4% dextran sodium sulfate (DSS, MP
Biomedicals) diluted in water for 4 days. Upon removal on
day 5, GCZX solution was administered for another 2 weeks.

The disease activity index (DAI) score included measurements
of stool, weight loss, fecal occult, and histology and was calculated
as follows (Travis et al., 2013): (1) stool (normal = 0; soft = 1; very
soft, semi-formed = 2; liquid, sticky, or unable to defecate = 3); (2)
weight loss (no loss = 0; <5% = 1; 5-10% = 2; 10-20% = 3; >20% =
4); (3) bloody stool test (not positive within 2 min = 0; purple
positive after 10 s = 1; light purple positive within 10 s = 2; heavy
purple positive within 10 s = 3) (Leagene); and (4) indices of the
histological scores included destruction of the epithelial
monolayer, edema, crypt loss, and mucosa infiltration.

Tissues were fixed and embedded in paraffin for 72 h. Slice
(3.5 um thick) was stained with hematoxylin and eosin (H&E)
and visualized on the microscope.

2.7.2 GCZX Solution Preparation

To prepare GCZX solution for cellular experiments, we
established a HIT interaction network with the hub genes and
the active components of herbs. We selected the common
components of these herbs based on TCMSP (Ru et al., 2014)
and one typical ingredient with the highest degree in each herb
acquired in the HIT interaction network: oleanolic acid (Ar, Mf),
beta-sitosterol (Mf, Zr), kaempferol (Mf), quercetin (Mf, CPr and
CRyr), morphine (Pp), palmatine, berberine and coptisine (CPr
and CRr). The mixture of these compounds was diluted in DMSO
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(dimethyl sulfoxide) at a concentration of 10 ng/ml, and 20 ng/ml
of each compound (All chemicals have purchased the chemicals
in Yuanye Biology, China). The concentration of compounds
representing each herb in the final solution was almost equal to
the proportion in GCZX capsule. MTT (3-[4,5-dimethylthiazol-
2-yl]-2,5 diphenyl tetrazolium bromide) assay was utilized to
determine the toxicity in NCM460 cells (Human epithelial cell
line) (Supplementary Figure S2), a concentration of 10 ng/ml
was selected.

2.7.3 Amplicon Sequencing Data Analysis

Raw data was primarily filtered by Trimmomatic (Bolger et al.,
2014). Identification and removal of primer sequences were
processed by Cutadapt (Kechin et al,, 2017) and subsequent
paired end reads were assembled by USEARCH and followed
by chimera removal using UCHIME (Edgar et al., 2011). Original
subreads were corrected to generate Circular Consensus
Sequencing (CCS) reads by SMRT Link. CCS reads from

different samples were distinguished based on barcode
sequences. High-quality CCS reads were obtained after
removing  chimeras. Subsequently, OTU (operational

taxonomic unit)/ASV (amplicon sequence variants) analysis
was performed to cluster sequences with similarity over 97%
and generating ASVs with conservative threshold for OTU
filtration (0.005%). Species annotation and taxonomic analysis,
diversity analysis including alpha and beta diversity, significant
difference analysis, and functional prediction were performed
(Supplementary method) (PRJNA757221).

2.7.4 |dentification of the Chemical Constituents of
Serum From GCZX-DSS Mice

A Hybrid Quadrupole-Time-of-flight (TOF)  Liquid
Chromatography with tandem mass spectrometry (LC/MS/
MS) was used. A total of 100 pl serum was added to 1 ml 80%
methanol under ultrasonication for 15 min. After 1,200 r/min
centrifugation for 10 min, the filtration was collected through a
0.45 pym membrane filter and injected into Hybrid TOF LC/MS/
MS (Triple TOF 5600+, AB Sciex Instruments) to identify the
chemical constituents followed the previous instructions (Dunn
et al., 2011).

Chemical identification was performed on a connected system
of LC-30 (Shimadzu)-Hybrid Quadruple time-of-flight mass
spectrometer (TOF MS) with electrospray ionization source
(ESI). InerSustain C18 column (Shimadzu, 100 x 2.1 mm,
2 um) was used to perform chromatographic separation with a
flow rate of 0.3ml/min at 35°C. Mobile phase system was
composed of Equate A (acetonitrile) and Equate B (0.1%
HCOOH-H,0): 4 min (A:5%:B:95%), 8 min (A:20%:B:80%),
2 min (A:15%:B:75%), 2 min (A:46%:B:54%), 3 min (A:100%:B:
0%), 1 min (A:5%:B:95%).

Following are the instrumental settings: both ion source gas 1
and gas 2 were 50 psi, curtain gas (CUR) was 25 psi, source
temperature was 500°C in positive mode while 450°C in negative
mode, ion spray voltage floating (ISVF) was 5500 V in positive
mode while 4400 V in negative mode, TOF MS scan range was
100-1200 Da, product ion scan range was 50-1000 Da, TOF MS
scan and product ion scan accumulation time was 0.2 and 0.01 s,
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respectively. Data was acquired in information-dependent
acquisition (IDA) with high sensitivity mode, collision energy
was 35 + 15eV, and declustering potential was +60V
(Supplementary Table S1) (Supplementary Figure S1).

2.7.5 Macrophage Isolation and Phagocytosis
Experiment

Peritoneal macrophage (M¢) isolation: Mice were sacrificed and
the peritoneal liquid was collected. The pallet was diluted with
RPMI1640 medium (Thermo Fisher, United States).

Bone marrow-derived M¢ (BMDM) culturing: Femurs from
4 weeks-age mice were collected and bone marrow was flushed
out with cold PBS. Blood cell lysis buffer was added to the pellet
for 5min and the acquired cell medium was filtered by a
10 pum cell filter. After centrifugation, cells were dilated with
complete solution (RPMI1640, 10% fetal borine serum, 1%
Penicillin-Streptomycin ~ solution, 50 ng/ml  Granulocyte-
macrophage colony-stimulating factor) (Stemcell technology,
Canada). The medium was replaced every 2 days. On day 7,
MO Mgs were harvested for further experiments.

A total of 20 pl microparticles (Thermofisher, United States)
diluted in 2000 pl 1% BSA were incubated at 37°C for 30 min and
subsequent ultrasonic treatment for 5 min; then, 10> Mgs were
added to the microparticle solution and incubated for 1.5h at
37°C. After centrifugation and washing, cells were diluted in
500 ul PBS and subjected to flow cytometry analysis at the
fluoresceine isothiocyanate (FITC) wavelength (488 nm).

2.7.6 Intestinal Organoids Culture

Small intestine tissue was washed with cold PBS15 times till it
reached transparency and digested for 25min (Stemcell
technology, Canada). The supernatant was filtered and then
centrifugated at 1,300 rpm for 5 min. The pellet was diluted in
intestiCult organoid growth medium (Stemcell technology,
Canada). The medium was exchanged every 2 days. On day 7,
I0s were collected for further experiments.

2.7.7 Immunofluorescence

For mitochondrial stress measurement, intestinal organoids were
incubated with MitoSOX™ Red Mitochondrial Superoxide
Indicator (ThermoFisher, United States) for 10 min at 37°C.
After three times washing, cells were mounted on the
fluorescent microscope at 590 nm.

To examine the protein abundance of BAX and BCL-2 in IOs,
I0s were fixed by 4% PFA and treated with triton. After the blockage
with 5% BSA, IOs were incubated with antibodies including BAX and
BCL-2 (ThermoFisher, United States) overnight at 4°C. For CW-2
cells, cells were fixed and treated with blocking and permeabilization
solution (10% FCS +0.1 Triton X100) and incubated with antibodies
(vascular endothelial growth factor, VEGF; KI67; Vimentin)
(ThermoFisher, United States) overnight at 4°C. After secondary
antibody incubation, protein expression was visualized on the
fluorescent microscope.

2.7.8 Western Blotting
Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis was
performed utilizing 40 pg protein and transferred to a nitrocellulose
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membrane (VWR). After the blockage by 5% bovine serum albumin
for 2 h, the membranes were then treated with antibodies for 24 h,
including CD163, CD206, and ARG1 as well as GAPDH antibodies
(1:1,000) (ThermoFisher). After secondary antibody incubation for
2 h, protein bands were visualized.

2.7.9 Scratch Assay

Human colorectal cancer cells (CW-2) (American Type Culture
Collection, United States) were seeded in DMEM complete
medium (Biological industries, Israel) and the monolayer was
scratched utilizing a pipette tip. The scratched area was
photographically monitored at 0 and 24 h. The percentage of
the coverage was measured.

2.7.10 Transwell Assay and Co-culturing System
Cells were seeded in the upper chamber of transwell (Corning,
8 um diameter) at a density of 10° cells/per well, and a
complete cell culture medium was put in the lower
chamber. For co-culturing, MO BMDMs were seeded in the
upper chamber, and human colon epithelial cell cells
(NCM460 cells) (Moyer et al, 1996) (American Type
Culture Collection, United States) were put in the lower
chamber of the insert with 1,640 complete medium
(Biological industries, Israel).

After 24 h, the membrane of transwell insert was cut and fixed
with 4% Paraformaldehyde Fix Solution (Beoytime, China) for
10 min. After washing with cold PBS, Dapi (Beoytime, China)
was mounted on the membrane and visualized by microscope.
The migrated cells were counted at five random fields and the
average number was obtained.

2.7.11 ELISA

Mouse IL-17, CXCL1, and Albumin Enzyme-Linked
ImmunoSorbent Assay (ELISA) Kit were obtained from
Abcam. Serum was incubated with antibody cocktail for 1 h.
After three times washing, the supernatant was discarded and
Streptacidin-horseradish peroxidase solution was added for 1 h.
After incubating TMB (3,3', 5,5 -tetramethylbenzidine)
chromogen solution for 10 min, stop solution was utilized. OD
was read at 450 nm.

3 RESULTS

3.1 GCZX Capsule Suppresses

Experimental Colitis Progression

A murine model of experimental colitis was established utilizing
C57 male mice that had free access to 4% DSS water for 5 days,
and was gavaged twice a day with GCZX treatment (Figure 1F).
HE staining showed that GCZX treatment dramatically relieved
the epithelial structural collapse in UC mouse models
(Figure 1A). Moreover, the severity of fecal blood and
albumin, shortened colon length in UC mice
considerably alleviated after GCZX administration (Figures
1B-D); GCZX also reversed DSS-induced IL-17 and CXCL1
levels in mouse serum (Figure 1E), suggesting the intervention
effect of GCZX capsule against experimental colitis.

were
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FIGURE 1 | GCZX alleviates UC progression HE staining images of colon sections (A), fecal occult blood test (B), colon tissue (C), albumin level (D), IL-17 and
CXCL1 levels (E) from C57 mice subject to 4% DSS administration with GCZX; Flow chart of experimental design (F). *o < 0.05, *p < 0.01, and ***p < 0.001 indicates a
statistically significant difference from saline group; # indicate statistically significant difference from UC group.

3.2 HIT Network of GCZX
In virtue of the TCMSP database, we obtained 138 active

compounds targeting 2,482 genes. Zr yields five components
targeting 54 genes, CPr yields 26 components targeting 400 genes,
Ar yields 35 components targeting 797 genes, Mf yields nine
components targeting 308 genes, CRr yields 49 components
targeting 164 genes, Pp yields 14 components targeting 374 genes
(Supplementary Table S1). Based on the acquired 5811 UC-relevant
genes (Figure 2A, Supplementary Table S2), Venn diagram
demonstrated that GCZX formula shared 208 putative targets with
UC (Figure 2B). With the aim of exploring the pharmacological
mechanisms of GCZX, a HIT network was constructed (Figure 2C).
The light blue rectangle nodes forming the outside circle represented
UC-related genes and the circle nodes inside were GCZX active
components; each color indicated one herb. As illustrated, all the
herbs not only worked synergistically targeting some common genes
but also shared some active components.

As shown in Figure 3A, CRr, CPr, and Mf were responsible
for 69% of targeted genes and considered the major components

of GCZX formula. GO and KEGG analysis was performed with
these genes to predict the mechanism of each herb combating
UC (Figure 3B). Mf, the core herb in the formula, correlated
with the regulation of oxidative stress and response to reactive
oxygen species that both play a pivotal role in the pathogenesis
of IBD; and with the response to cadmium ion that causes
microbiota dysbiosis hence increases intestinal permeability
(Liu et al,, 2020); and with histone deacetylase activity that is
involved in tumorigenesis. Moreover, Mf influenced virus
infection and the neoplastic progression of colorectal cancer.
CRr and CPr shared many common components and their
targeted genes were similarly enriched in immune response to
lipopolysaccharide and bacterial as well as virus, all of which
could induce inflammation and infection. Other seemingly
minor but vital herbs were Ar and Zr as well as Pp. Pp and
Zr as well as Ar worked with neurological processes, including
neuroactive ligand-receptor interaction and neurotransmitter
receptor activity as well as postsynaptic membrane, which
pointed towards the modulation of intestinal innervation by

Frontiers in Pharmacology | www.frontiersin.org

26

November 2021 | Volume 12 | Article 762603


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Yan et al. Intervention Effect of Guchangzhixie Capsule

A GeneCard B

Colitis

8745

PharmGkb

c Gczx

wosossa otz
worstzses wosiozs o
5 Y s —

wowms Hougioets s
o083 Moo oesen
e wouonte

e

o res [T et (1 OS], ONDIGETS

s S N Lo oonzs

FIGURE 2 | The Herb-Ingredient-Target network of GCZX. Venn analysis showing UC-related genes from five databases: Drugbank, GeneCard, OMIN,
PharmGkb, TTD (A), and the shared targets between GCZX and UC (B); Network of herbs and compounds as well as all the potential targets (C).

these herbs. Additionally, Ar, Pp, CRr, and CPr were associated Utilizing the intersected genes between UC and GCZX, we
with catecholamine activity including dopamine and  construct a full PPI network with a PPI enrichment p-value
adrenaline, both of which innervate gastrointestinal muscles (<1.0e-16) based on the STRING database (Figure 4A). In
whereby regulating gastrointestinal motility. Specifically, Zrand ~ agreement with the individual function of each herb, GO
Ar are also related to regulation of vascular processes such as  analysis showed that these genes were enriched in responses
blood vessel size and diameter, indicating a favorable role in  to oxygen, hypoxia, lipopolysaccharide, bacterial, nutrient
hemostasis. Furthermore, GCZX represented a strong capacity ~ levels as well as cellular response to drug. KEGG further
to suppress neoplastic progression including prostate cancer,  corroborated the role of GCZX in cancer, inflammation,
small cell lung cancer, and colorectal cancer. Altogether, these  and infection.

herbs function synergistically to alleviate rectal bleeding, Sub-network was established with 10 hub-genes with higher
orchestrate enteric nervous system, and control host immune  than the median values of the indices (Figure 5A). The median
response. values of betweenness centrality, closeness centrality, degree
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FIGURE 3| The function of each herb in the pathogenesis of UC. Pie chart illustrating the target genes of each herb in UC (A); GO and KEGG analysis showing the
enrichment of herb-target genes (B).

centrality, eigenvector centrality, local average connectivity,
and network centrality in the PPI network were 291.9072,
0.408736, 15.35052, 0.049987, 6.280781, 8.980268,
respectively. The median values in the final subnetwork
(right) were 10.77105, 0.880509, 21.5, 0.223418, 14.83785,
18.95284, respectively. As shown in Figure 5B, we selected
the common-shared components of the herbs for subsequent
in-vitro experiments, composed of (R)-Canadine, palmatine,
coptisine, palmatine, quercetin, beta-sitosterol, Stigmasterol,
EIC (-)-alpha-cedrene, and fumarine. To validate the existence
of these compounds and their metabolites, the serum isolated
from DSS-GCZX mice was collected and subjected to LC-MS

3.3 Fecal Metabonomic Combined With 16S
rRNA Sequencing Validation

Network pharmacology analysis showed the antibacterial effect
of GCZX capsule, so we examined changes in microbiota
composition and its metabolites. With the aim of identifying
whether the sequencing amount was sufficient to evaluate the
diversity of the original microbiota, a-diversity was calculated
by coverage meaning the true state of the microbes, Chao and
Ace reflecting the bacterial richness and species abundance
(Grice et al., 2009), and Shannon and Simpson indices
reflecting the diversity of original microorganisms (White
et al., 2009).

analysis (Supplementary Figure S1; Supplementary As illustrated in Tablel, all sample libraries covered above
Table S3). 99%, which indicated the library size of this study sufficed to
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cover the majority of the microbes. Rarefaction analysis
illustrated that the number of OTUs in both groups reached
saturation (Figure 6B). Among the observed OTUs, GCZX
treatment restored DSS-reduced bacterial diversity of UC mice
without influencing the bacterial richness (Figure 6A).
B-diversity reflecting between-habitat diversity was analyzed
by binary Jaccard. Both PCoA and Nonmetric
multidimensional scaling analysis (NMDS) indicated a clear
distinction between DSS group and DSS-GCZX group
(Figures 6C,D). Stress value <0.2 suggests the validity of
NMDS. Furthermore, based on the distance matrix acquired
from B-diversity, UPGMA was utilized to establish hierarchical
clustering of these samples with the aim of evaluating the
similarity of bacterial composition after GCZX therapy. As
shown in Figure 6E, it manifested that DSS group and DSS-
GCZX group clustered clearly in their own groups. Species
annotation analysis showed only bacterial of the top 10

abundance at the genus and phylum levels with remaining
species merged into “others.”

At the phylum level, the relative abundance of Bacteroidetes
that belongs to normal gut microbiota (Le Chatelier et al., 2013) was
higher in GCZX group, while Fusobacteria and Proteobacteria,
reported as UC-related microorganisms (Petersen et al, 2020),
were more abundant in the DSS group. At the genus level, the
normal flora of the mouse gut such as Lachnospiraceae and
Muribaculaceae (Chung et al, 2020) were most abundant in
GCZX group (Figure 6F). Cladogram and Linear discriminal
analysis coupled with effect size measures (LEFSe) revealed that
Ruminiclostrdium and Lachnospiraceae, Muribaculaceae, and
Clostridia were enriched in the GCZX group (Figures 6G,H).

Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRust2) (Langille et al., 2013) based on
16S rRNA sequencing data was utilized to predict functional
profiles of microbial communities. GCZX treatment suppressed
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FIGURE 5 | Hub-genes of PPI network. Hub genes of PPI interaction network (A); Herbs and compounds as well as all hub-genes targets were linked (B).

the incidence of cancer and infectious disease and digestive
system (Figure 7). Specifically, GCZX inhibited microbial
metabolism, suppressed UC-related metabolic pathways
including  arachidonic acid and  glycerophospholipid
metabolism (de Silva et al, 2010; Yuan et al, 2020) and
abrogated pro-inflammatory responses such as
lipopolysaccharide  biosynthesis, restored  colitis-reduced
arginine (Coburn et al, 2016; Singh et al, 2019) and
propanoate (Chambers et al., 2019) levels by impeding their
metabolisms whereas contributed to methionine metabolism
the derivatives of which favor reconstruction of destroyed
epithelium during UC (Roediger et al, 1996; Stavsky and
Maitra, 2019). Additionally, it facilitated antibiotics and

secondary bile acid biosynthesis that both facilitate the
remission of UC (Sinha et al., 2020). Tax4Fun (Af3hauer et al.,
2015) also corroborated a strong inhibition of inflammatory
pathways such as IL-17 and estrogen signaling pathways as
well as antigen processing presentation, and the suppressed
incidence of infectious diseases (Supplementary Figure S3).

3.4 GCZX Treatment Rescues
TNFa-Induced ROS Production in Intestinal

Stem Cells

As predicted in the network pharmacology analysis, the
therapeutic mechanism of GCZX capsule against colitis
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involves oxidative stress that enables stem cells to take on an
“over-active” state undergoing differentiation or apoptosis
(Tothova et al., 2007; Zhang et al., 2018). The intestinal stem
niche environment maintains homeostasis of epithelial renewal
by orchestrating the balance between stemness and
differentiation. IO culture directly resembles intestinal
epithelial organization and thereby recapitulates the dynamic
cellular processes of re-epithelization under pathological

settings, such as the
cytokines (TNFa).

An ex-vivo UC cellular model was constructed utilizing IOs in the
presence of TNFa (20ng/ml, 24h), and GCZX solution was
administered for another 24 h. Mitochondria consume oxygen and
produce reactive oxygen species (ROS), which can be detrimental
resulting in intrinsic apoptosis or initiate acute responses to external
stimuli such as pro-inflammatory interleukins and pathogens (El-

stimulation of pro-inflammatory
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FIGURE 7 | PICRust2 analysis of the therapeutic role of GCZX pellet.

Osta and Circu, 2016). As illustrated in Figure 8A, TNFa
treatment enhanced I0 ROS production and inflated its
size, an effect that was restored by GCZX administration.
In line with the findings above, immunofluorescence showed
TNFa-induced apoptosis was suppressed by GCZX therapy
(Figure 8B). Therefore, GCZX treatment could suppress
apoptosis of intestinal stem cells, thereby favoring mucosal
healing and combating UC progression.

3.5 GCZX Therapy Inhibits Inflammation
Peritoneal Mes isolated from GCZX mice showed stronger
phagocytic capacity and higher expression levels of M2
markers compared with DSS group, as evidenced by flow
cytometry and western blot (Figures 9A,B), corroborating the
anti-inflammatory effect of GCZX capsule.

To mimic the microenvironment in proximity to epithelial
cells, we established a co-culture system utilizing BMDMs and
NCM460 cells. Interestingly, the migration of BMDMs was
subdued with GCZX-pretreated NCM460 cells, indicating that
GCZX treatment weakens chemokine secretion from NCM460
cells and hence inhibits the recruitment of BMDMs (Figure 9C).

Given the anti-tumor role of GCZX capsule predicted by
network analysis, we examined the metastatic expansion of
disseminated cancer cells in the presence of GCZX solution.
KI67 represents proliferation, and VEGF and Vimentin refer
to the invasion of cancer cells. Neither migration nor invasion as
well as proliferation of CW-2 cells was affected by GCZX
treatment, as shown by scratch assay and ICC experiments
(Supplementary Figure S4), which suggested that GCZX
capsule might influence tumor microenvironment, but not
directly suppress tumor invasion.
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FIGURE 8 | GCZX treatment alleviates TNFa-induced apoptosis of intestinal organoids. Immunofluorescent staining illustrating the mitochondrial stress (A) and
BAX as well as BCL-2 expression (B) of TNFa-treated (20 ng/ml, 24 h) intestinal organoids in the presence of GCZX (30 ng/ml, 24 h). *p < 0.05, *p < 0.01, and **p <
0.001 indicates a statistically significant difference from saline group; # indicate statistically significant difference from UC group.

DISCUSSION analysis and connectivity provide a practical approach to

investigate the pharmacological mechanisms of traditional
IBD is a chronic remitting gastrointestinal disease characterized  Chinese formulas (TCM) that encompass multiple compounds
by impaired intestinal homeostasis as well as abnormal stress  with proven efficacy for hundred decades in China.
response to stimuli. Despite large-scale functional genomics GCZX capsule is derived from Wumei (Mume Fructus) pellet
findings regarding its pathogenesis, it is still relapsing in  and has been included in the Chinese Pharmacopoeia 2020 to
nature with uncertain etiology. The uncertainty relates to a  treat chronic gastrointestinal disorders. In the present study, by
broad array of pathological factors such as genetic  using a murine DSS-induced colitis model, we confirmed that
susceptibility, environment, microbiota and food intake, etc. In GCZX formula dramatically hampered the progression of
this context, single-gene manipulation against IBD does not  experimental colitis. Moreover, network pharmacology analysis
achieve the desired outcome nor does it without side effects  showed the enrichment of GCZX-targeted genes in infection,
(Hopkins, 2008). Multi-target drug strategy, comparatively,  inflammation, and cancer pathways by regulating the responses
appears a promising direction to combat IBD by deploying  to oxygen, hypoxia, and pro-inflammatory molecules, and in
multiple  mechanisms.  Moreover, emerging network  hormone activities, which logically indicates the therapeutic effect
pharmacology that integrates systems biology and network  of GCZX formula on UC. An effective UC intervention should
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take the key symptoms into consideration, namely, inflammation,
rectal bleeding, mucosal healing, electrolyte turbulence, as well as
mental suffering.

In this formula, Mf, CPr, CRr, and Pp synergistically exerted
an anti-inflammatory function and rendered tissue protection
from microbe-induced infection, by modulating responses to
external stimuli including bacterial, lipopolysaccharide, etc.
Concurrently, the combination of Ar and Zr functioned as
hemostasis components by regulating blood vessel diameter
and vascular processes. In terms of humoral regulation, Pp,
CPr, CRr, Ar, and Zr were associated with catecholamine,
dopamine, as well as steroid hormone activities, which play a
role in orchestrating the homeostasis of gastrointestinal tract and
in relieving mental stress (Nezi et al., 2000; Furlan et al., 2006;
Mogilevski et al., 2019). Moreover, GCZX formula took the brain-
gut axis into consideration and selected compounds able to
influence neurotransmitter activity. GO and KEGG analysis
showed that Zr, Ar, and Pp were involved in neurological
processes, including neuroactive ligand-receptor interaction
and synaptic membrane structure. Additionally, GCZX capsule
showed an anti-cancer effect against colorectal cancer, prostate
cancer, and small cell lung cancer, and also solved the resistance
problem of anti-tumor drugs, such as platinum drugs.
Collectively, network pharmacological analysis predicted that

GCZX formula provides an effective therapeutic strategy
against UC by abrogating infection and inflammation,
restoring homeostasis of hormones and innervation, timely
stopping bleeding, and relieving mental suffering. In a bid to
validate the prediction, we assessed the molecular mechanisms
via which GCZX capsule hinders UC progression and abrogates
subsequent neoplasias. Herewith, its therapeutic effects on
bacterial flora, host immunity, and mucosal healing were
examined, respectively.

Human gut microbiota, comprised of over 35,000 bacterial
species, is largely responsible for normal individual and
human health as a whole by providing resistance against
colonization of exogenous pathogens. Disruption of
colonization resistance due to microbiota dysbiosis, and
potential subsequent bacterial enteric infection is an
important cause of gastrointestinal diseases. The decreased
bacterial diversity in IBD was reversed after GCZX
administration. Specifically, GCZX therapy restored the
relative abundance of Bacteroidetes, Lachnospiraceae, and
Muribaculaceae (Chung et al, 2020) that predominantly
reside in healthy human gut and contribute to colonization
resistance. Concomitantly, among the most prevalent bacterial
enteropathogens (Ducarmon et al., 2019; Petersen et al., 2020),
UC-associated Fusobacteria and Proteobacteria abundance
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was suppressed by GCZX treatment. In the formula, the active
components of CRr and CPr show a strong anti-microbe
activity (Wang and Ng, 2001; Li et al., 2005; Kim et al,
2014; Tian et al, 2020) and suppress subsequent
inflammatory responses (Kubo et al,, 1994; Wang and Ng,
2001) and neoplasias (Peng et al., 2006; Chen et al., 2016; Wan
et al,, 2019). Moreover, a healthy gut flora maintains the
integrity of gut mucosal barrier and secrets antibacterial
components, and provides nutrients and energy by
metabolizing dietary components, and these beneficial
effects have been disturbed during IBD.

As predicted by Tax4Fun and PICRust2 analysis based on
profiles of microbiota composition, GCZX treatment
suppresses UC-related metabolic pathways and inhibits
pro-inflammatory responses, enhanced the production of
antibiotics and secondary bile acid that is in favor of
colonization resistance during UC remission (Ducarmon
et al., 2019; Sinha et al., 2020). Collectively, GCZX capsule
reduced the incidence of pathogen-induced infection by
restoring a healthy gut flora that co-evolves to live in a
collaborative relationship with host immunity.

We isolated peritoneal Mgs from the experimental colitis
mouse model and examined the polarization of these cells.
Upon stimuli, naive macrophages (M0 Mgs) transit to pro-

inflammatory phenotype (M1 Mgs) or anti-inflammatory
status (M2 Mgs) depending on the types of external
signals. GCZX capsule increased the phagocytic capacity of
peritoneal Mgs and the corresponding protein expression of
M2 Me¢ makers, suggesting an alleviated inflammatory
together with an improved would healing circumstance
due to M2 Mg transition. Moreover, within the
inflammatory milieu, gut mucosal epithelial cells secret
chemokines and subsequently attract a wide array of
immune cell types. The secreted molecules could shape the
plasticity of these recruited immune cells, such as Mg
polarization, while activated immune cells in turn
influence differentiation and proliferation of mucosal cells,
forming a reciprocal interaction. We found that GCZX-
treated human colon epithelial cells showed a weaker
capacity to attract MO Mg in comparison to non-treated
cells, indicating that GCZX might reduce chemokine
secretion of colon cells. Altogether, in the context of
immunomodulation, GCZX alleviates colitis progression by
hampering M¢ infiltration and suppressing its transition to a
pro-inflammatory phenotype.

Given the suppressed inflammatory responses and restored
gut microbiota after GCZX treatment as well as its anti-
oxidative function demonstrated in network analysis, we
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ascertained whether it contributes to mucosal healing, a
process that would be destroyed by any disruption in
intestinal stem cell (ISC) niche and subsequently causes
gastrointestinal diseases (Merlos-Suarez et al., 2011; Suzuki
etal., 2018; Yu et al., 2020). Proper functions of ISCs require
fine-tuning of cellular pathways involved in differentiation,
proliferation, and underlie mitochondrial homeostasis.
Mitochondrial are key organelles in that they provide
energy and regulate cellular processes ranging from
signaling to apoptosis, which is coupled with the
production of ROS (Zorov et al., 2014). High levels of
mitochondrial ROS can be detrimental resulting in
intrinsic apoptosis (El-Osta and Circu, 2016) and hence
impair ISC functions, and consequently hinder mucosal
healing. As a primary culture of intestinal stem cells, IOs
directly recapitulate the dynamic progression of mucosal
destruction during IBD. In a bid to mimic the
inflammatory setting in proximity to stem cell niche,
mitochondrial stress in IOs was examined in the presence
of TNFa. Expectedly, TNFa instigated ROS production of IOs
and subsequently induced apoptosis, which was markedly
alleviated by GCZX treatment, suggesting its beneficial role in
mucosal renewal.

CONCLUSION

Based on the network pharmacology approach integrated with 16S
rRNA sequencing and cellular evidence (Figure 10), we proposed that
GCZX capsule inhibits the progression of experimental colitis by
restoring healthy microbiota composition, suppressing inflammation
and oxidative stress, and improving mucosal healing, which is an
effective drug for colitis with proven safety.
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Early childhood caries (ECC), a severe form of caries due to cross-kingdom interaction of
Candida albicans and Streptococcus mutans, is a serious childhood dental disease that
affects majority of the children with poor background. The present study investigated the
anti-infective potential of thymol against C. albicans and S. mutans dual species for the
management of ECC. Thymol, a plant derivative of the monoterpene group, has been well
known for its numerous biological activities. Thymol at 300 ug/ml concentration completely
arrested growth and proliferation of dual species of C. albicans and S. mutans. Rapid killing
efficacy of pathogens, within a span of 2min, was observed in the time kill assay. In
addition, at sub-inhibitory concentrations, thymol effectively diminished the biofilm
formation and virulence of both C. albicans and S. mutans such as yeast-to-hyphal
transition, hyphal-to-yeast transition, filamentation, and acidogenicity and acidurity,
respectively, in single and dual species state. gPCR analysis was consistent with
virulence assays. Also, through the invertebrate model system Galleria mellonella, in
vivo toxicity and efficacy of the phytocompound was assessed, and it was found that
no significant toxic effect was observed. Moreover, thymol was found to be proficient in
diminishing the infection under single and dual state in in vivo condition. Overall, the results
from the present study illustrate the anti-infective potential of thymol against the ECC-
causing dual species, C. albicans and S. mutans, and the applicability of thymol in
medicated dentifrice formulation.

Keywords: dual species, thymol, anti-infective, antivirulence, early childhood caries, C. albicans, S. mutans, G.
mellonella

INTRODUCTION

The oral microbiome of humans comprises more than 700 different species of microorganisms,
including bacteria, fungi, mycoplasma, viruses, archaea, and protozoa (Marsh and Zaura, 2017).
These communities of microorganisms interact with each other and persist in the oral surfaces as
multispecies biofilms. Of the various kinds of interaction between these microbial communities,
cross-kingdom interaction between bacteria and fungi is of great interest as it is associated with

Frontiers in Pharmacology | www.frontiersin.org 39

November 2021 | Volume 12 | Article 760768


http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2021.760768&domain=pdf&date_stamp=2021-11-19
https://www.frontiersin.org/articles/10.3389/fphar.2021.760768/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.760768/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.760768/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.760768/full
https://www.frontiersin.org/articles/10.3389/fphar.2021.760768/full
http://creativecommons.org/licenses/by/4.0/
mailto:pandiansk@gmail.com
https://doi.org/10.3389/fphar.2021.760768
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2021.760768

Priya et al.

dental caries (tooth decay) and mucosal infections (Koo et al.,
2018). Interaction between Candida albicans and Streptococci
stands as the most common fungal and bacterial communication
in the oral cavity. Coinfection with C. albicans and oral
streptococci species is pronounced with enhanced virulence of
dental caries and oropharyngeal diseases (O’Donnell et al., 2015;
Allison al, 2016). More precisely, this interspecies
communication ensues in early childhood caries (ECC). ECC
has been reported to be the most common childhood oral disease
that extremely affects the poor and minority children of age less
than 6 years all over the world (Dye et al., 2012; Kassebaum et al.,
2015). This severe form of caries is characterized with massive
and painful destruction of teeth. Carbohydrate-rich diet such as
sucrose elevates the disposition of microbial communities with
predominance of aciduric and cariogenic microorganisms.
Consequently, enhanced virulence leads to furtherance of
dental tissue destruction. Streptococci species such as S.
gordonii, S. oralis, and S. sanguinis interact with C. albicans
and subsist with enhanced bacterial colonization and biofilm
formation. Typically, in a healthy oral environment, no
interaction between S. mutans and C. albicans is encountered
nor no colonization of C. albicans is observed in the teeth surface
(Xiao et al., 2018). One of the prime factors that contribute to the
severe destruction of teeth in ECC is the extended consumption
of sucrose-rich foods and beverages, which is due to the increased
physical coadhesion between C. albicans and S. mutans as well as
colonization on the tooth surface. The enzyme
glycosyltransferases secreted by S. mutans bind with the cell
surface of C. albicans and foster conversion of sucrose to
extracellular polysaccharides (EPS), which further provides a
binding site for S. mutans (Ikono et al, 2019). This unusual
interaction further increases the localized microbial burden,
acidurity, and production of the extracellular matrix.
Eventually, this mixed-kingdom interaction leads to sever
tooth decay (Falsetta et al., 2014).

Dual species interaction of C. albicans and S. mutans is found
in the ECC (Marchant et al., 2001; de Carvalho et al., 2006; Raja
et al., 2010) and in bracket materials (Rammohan et al., 2012).
Also, S. mutans and C. albicans have been found together in
carious lesions (Vilchez et al., 2010). ECC is a severe and
aggressive form of caries where C. albicans was found in
around 96% of caries-positive children and only in 24% of
caries-free children (Raja et al., 2010). Dental plaque was
found to contain both S. mutans and C. albicans in about
25.5% healthy individuals (Ribeiro et al., 2012). Also, ECC is a
familial disease as this is infectious and transmissible (Douglass
and Clark, 2015). As this cross-kingdom interaction increases the
virulence of this disease through enhanced biofilm formation, the
therapeutic intervention most often fails to completely eradicate
the infection. Currently available treatments with synthetic
antimicrobials include the use of chemical biocides such as
hydrogen peroxide and chlorhexidine, which are demonstrated
to be incapable of destroying the infectious organisms beyond the
well-formed matrix material (Autio-Gold, 2008; Koo et al., 2017).
Moreover, the use of these synthetic antimicrobials ensues in
adverse side effects. To circumvent these limitations, the present

et
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study demonstrated the use of bioactive molecule derived from
natural source as an effective alternate for the treatment of ECC.

In traditional medicine, Thymus vulgaris (thyme) has been
used for the treatment of various ailments owing to its broad
spectrum of pharmacological properties (Amiri, 2012). The
major constituent of the thyme essential oil is thymol, which
is a phenol monoterpene compound (Burt, 2004; Nickavar et al.,
2005; Amiri, 2012). This bioactive molecule is the natural
derivative of cymene and structural isomer of carvacrol. It is
known to have various biological properties such as antibacterial,
antifungal, antioxidant, anticancer, and cognitive-enhancing
activities (Tohidpour et al, 2010; Azizi et al., 2012; Braga,
2005). As carvacrol and thymol are generally considered as
safe for human consumption, these bioactive molecules are
being employed in dental applications (Ogaard et al., 1997;
Khan et al., 2017; Kachur and Suntres, 2020). The phenolic
hydroxyl group in the chemical structure of thymol is known
to confer its biological activities (Nagoor Meeran et al., 2017).
Though thymol has been reported to possess antimicrobial
activity against various pathogenic organisms including
Staphylococcus ~ aureus,  Escherichia  coli,  Salmonella
Typhimurium, C. albicans, S. pyogenes, etc (Braga et al., 2008;
Xu et al., 2008; Palaniappan and Holley, 2010), the efficacy of
thymol in inhibiting the dual species C. albicans and S. mutans,
the role players in the development of ECC, was unexplored.
Thus, the present study investigated the antimicrobial and anti-
infective potential of this phytocompound against the growth,
biofilm, and other virulence attributes of mono and dual species
of C. albicans and S. mutans for the employability of thymol in the
treatment options of ECC.

MATERIALS AND METHODS
Ethical Statement

The saliva sample used in this study was collected from
healthy volunteers after obtaining written informed
consent. The protocol for experimentation and the use of
saliva was assessed and approved by the Institutional
Ethical Committee, Alagappa University, Karaikudi (IEC
Ref No: IEC/AU/2018/5). Methods followed were carried
out in accordance with the appropriate guidelines and
regulations.

Microbial Strains and Growth Conditions
Streptococcus mutans UA159 and Candida albicans (ATCC
90028) were used in this study. Culturing mono species of S.
mutans and C. albicans (2 x 10° cfu/ml) was performed using
THYES (Todd Hewitt broth supplemented with 1% of yeast
extract and sucrose) (HiMedia, India) and YPD (1% yeast
extract, 2% peptone, and 2% dextrose) broth (HiMedia,
India), respectively. For culturing of dual species (equal
volume of each culture), TSBS (soybean casein digest
medium supplemented with 1% sucrose) medium
(HiMedia, India) was used. Cultures were incubated at
37°C for 24 h.
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Phytochemical Stock Solution

Thymol was commercially procured from Alfa Aesar, India. Stock
solution of thymol was prepared as 50 mg/ml concentration in
methanol (Sigma-Aldrich, India) and stored at room
temperature. The highest volume of the compound used was
chosen as the volume of methanol to be added for vehicle control
in each assay.

Determination of Minimum Inhibitory
Concentration (MIC) and Minimum

Microbicidal Concentration (MMC)
The MIC of thymol against C. albicans and S. mutans was

evaluated through microbroth dilution method according to
CLSI guidelines (Wikler, 2006; Barbara et al, 2017). For
determination of MMC, single and dual species culture of C.
albicans and S. mutans was cultured in the absence and presence
of thymol at MIC and sub-MICs. After 24 h of incubation at 37°C,
the control and treated groups were subjected to serial dilution
followed by spotting and spread-plating on appropriate agar
plates (Priya et al., 2021).

Time Kill Assay

Time kill assay was performed to analyze the short-term
microbicidal effect of thymol on single and dual species
culture of C. albicans and S. mutans as described by Niu et al.
(2020) with slight modifications. Briefly, 2 x 10° cells were taken
for mono species, and an equal volume of C. albicans and S.
mutans was taken for dual species. Various concentrations of
thymol (1X, 2X, 5X, and 10X MIC) were added separately. After
2-min exposure, the compound activity was restrained by
removal through two rounds of centrifugation. Cells were
resuspended in phosphate buffered saline (PBS) and serially
diluted, and 5pl each from all the serial dilutions was also
spotted on agar plates.

Effect on Biofilm Formation

C. albicans, S. mutans, and dual species cultures in the absence
and presence of thymol at MIC and sub-MICs were allowed to form
biofilm on 1 cm x 1 cm glass surface for 24 h at 37°C. Post incubation,
the glass slides were carefully removed from the medium, dip-washed
in sterile PBS to remove loosely bound cells, air-dried, and stained with
0.4% crystal violet. Biofilm cells in the stained glass sections were
visualized under a light microscope (Nikon Eclipse 80i, United States)
at a magnification of x400 and documented.

Effect of Thymol on Biofilm Adherence

In addition to microscopic observation of the single and dual
species C. albicans and S. mutans biofilm under the influence and
absence of thymol, cell viability assay was performed with
resazurin dye (Alamar blue). Alamar blue is a versatile
metabolic dye, which is a redox indicator that is reduced
within the cell due to cellular metabolism. Single and dual
species cultures of C. albicans and S. mutans were allowed to
form biofilm in the presence and absence of thymol at MIC and
sub-MICs (32.5, 75, 150, and 300 pg/ml) on polystyrene surface.
At the end of 24h, the planktonic cells were discarded, and

Antiinfective Potential of Thymol

loosely bound cells were removed by careful washing with PBS.
Surface-attached cells were then resuspended in PBS solution.
Stock solution of Alamar blue (Sigma-Aldrich, India) at a
concentration of 6.5 mg/ml was prepared in 1x PBS. To 0.9 ml
of cell suspension in PBS, 0.1 ml of Alamar blue was added and
incubated in the dark for 4h at 37°C. Sterile PBS added with
Alamar blue substrate alone was maintained as blank. Samples
were centrifuged at 8,000 rpm for 10 min after incubation.
Supernatant was collected, and the fluorescent intensity was
measured at 590-nm emission and 560-nm excitation
wavelengths (Muthamil et al., 2020).

Effect of Thymol on Biofilm Formation in the

Presence of Saliva

Unstimulated whole saliva (UWS) was collected from healthy
individuals with good oral hygiene. Prior to the collection of
saliva, the volunteers were refrained from eating, drinking, and
brushing for 2 h. The saliva sample was collected by the method of
spitting into a sterile tube, which was immediately clarified by
centrifugation at 4,000 x g for 10min. The cell debris were
removed, and the supernatants were pooled and stored at —20°C
until use. For biofilm formation, 200 ul of cell suspensions (single and
dual species) was added with 20 pl of clarified saliva in the absence and
presence of thymol. After 24 h of incubation, the planktonic cells were
discarded, and loosely bound cells were washed off with sterile PBS.
Surface-bound biofilm cells were stained with 0.4% crystal violet and
subsequently destained with 15% glacial acetic acid solution, the
absorbance of which was read at 570 nm using a multifunctional
spectrophotometer (Spectra Max 3, Molecular Devices, United States)
(Ahn et al.,, 2008).

Effect of Thymol on Hyphal Morphogenesis

of C. albicans

The impact of thymol on fungal morphogenesis between yeast
and hyphal forms was analyzed through the following assays
(Priya and Pandian, 2020).

Yeast-to-Hyphal Transition

C. albicans and dual species of C. albicans and S. mutans were
cultured in a YPD medium supplemented with 10% FBS in the
absence and presence of thymol at MIC and sub-MICs at 37°C for
4h under constant shaking at 160 rpm. Following incubation,
morphological transitions in the cells were observed under a
microscope (Nikon Eclipse Ts2R, Japan).

Hyphal-to-Yeast Transition

C. albicans in single and dual species state was allowed to form
hyphae by incubating in an RPMI medium for 4 h at 37°C with
constant shaking at 160 rpm. Subsequently, thymol at various
concentrations was added, further incubated for 2h, and
visualized under a microscope.

Filamentous Morphology
Spider agar (1% of mannitol, 0.2% of dipotassium hydrogen
phosphate, 1% of nutrient broth, and 1.8% agar)
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TABLE 1 | List of candidate genes, their role in virulence, and pathogenicity and primer details.

S. Gene Function Primer sequence (5'-3')
No Forward Reverse
1 eap1 Cell adhesion, filamentation, and invasion. Mediates adhesion to polystyrene ~ TGTGATGGCGGTTCT GGTAGTGACGGTGATGATAGT
and epithelial cells TGTTC GACA
2 hwp1 Hyphal development, biofilm formation. Promotes yeast adhesion to epithelial  GCTCCTGCTCCTGAA CTGGAGCAATTGGTGAGGTT
cells ATGAC
3 ras1 Cell adhesion, filamentous growth, induction, and maintenance of hyphae, CCCAACTATTGAGGATTC  TCTCATGGCCAGATATTCTTCTTG
white-opaque switching TTATCGTAAA
4 als1 Cell surface adhesin. Important for adhesion to oral mucosa. Mediates yeast CCTATCTGACTAAGACTG  ACAGTTGGATTTGGCAGTGGA
aggregation CACC
5 ecel Hyphal specific protein, Candidalysin. Mediates adhesion, biofim formation, CCAGAAATTGTTGCTCGT  TCCAGGACGCCATCAAAAACG
and filamentation GTTGCCA TTAG
6 nrg1 Transcriptional repressor of filamentous growth. Repress ece? and hwp1 CCAAGTACCTCCACC GGGAGTTGGCCAGTAAATCA
AGCAT
7 ume6 Transcriptional regulator of filamentous growth. Important for hyphal elongation ~ ACCACCACTACCACC TATCCCCATTTCCAAGTCCA
and germ tube formation ACCAC
8 tup1 Transcriptional repressor, farnesol-mediated inhibition of filamentation, CTTGGAGTTGGCCCA TGGTGCCACAATCTGTTGTT
regulates phenotypic switching TAGAA
9 efg1 Transcriptional regulator for switch between white and opaque cells. Required  GCCTCGAGCACTTCC TTTTTTCATCTTCCCACATGGTAGT
for biofilm formation, filamentation. Regulator of cell wall dynamics ACTGT
10 hst7 Required for opague mating or white biofilm formation TCATCAGCTTCTTCTATAC  TATTGAGGAAATGACAGTT
11 cpht Transcription factor involved in pseudohyphal and hypha formation and TATGACGCTTCTGGG ATCCCATGGCAATTTGTTGT
phenotypic switching TTTCC
12 vicR Two-component regulatory system. Regulates cell wall biogenesis and biofim  TGACACGATTACAGCCTT  CGTCTAGTTCTGGTAACATTAAGT
formation TGATG CCAATA
13 otfB Glucosyltransferases synthesizing water-insoluble glucan from sucrose AAAGCAACGGATACA CTCTGTCATTGGTGTAGCGC
GGGGA
14 gtfc Glucosyltransferases synthesizing water-soluble and -insoluble glucans GGTTTAACGTCAAAATTA CTCAACCAACCGCCACTGTT
GCTGTATTAGC
15 gtfD Glucosyltransferases synthesizing water-soluble glucan synthesis GAAGTATGGCGGTGC ATAACCAACACCACGGCCTA
TTTCC
16 gbpB Glucan binding protein. Contributes to sucrose-dependent biofilm formation ~ ATGGCGGTTATGGAC TTTGGCCACCTTGAACACCT
ACGTT
17 smu0630  Hypothetical protein involved in biofilm formation, cell separation, and autolysis  GTTAGTTCTGGTTTTGAC CCCTCAACAACAACATCAAAGGT
CGCAAT
18 comDE Competence stimulating peptide. Regulation of bacteriocin production and ACAATTCCTTGAGTTCCA TGGTCTGCTGCCTGTTGC
competence TCCAAG

supplemented with 5% FBS was added with MIC and sub-MICs
of thymol. An agar plate with an appropriate volume of methanol
(0.6%) served as the control. After solidification, 5ul of C.
albicans culture in single and dual species state was spotted on
the center of agar plates and incubated at 37°C for 5 days.

Effect of Thymol on Acidogenicity and

Acidurance of S. mutans

Glycolytic pH Drop Assay

S. mutans cells cultured under single and dual state were
harvested by centrifugation at mid-logarithmic phase and
washed in PBS. The cell pellets were then resuspended in a
salt solution comprising 50 mM potassium chloride and 1 mM
magnesium chloride in the absence and presence of various
concentrations of thymol, and the pH of the mixture was
adjusted to 7.2 with 0.2M potassium hydroxide. To this,
glucose at 1% w/v final concentration was added, and decline
in the pH level was monitored for a period of 120 min at 15-min
intervals.

Acid Tolerance Assay

The effect of thymol on acid tolerance mechanisms of S. mutans
in the single and dual species state was appraised with the viable
count of cells following exposure to two different acidic pH
conditions. Cells cultured in the absence and presence of
thymol at sub-MICs were pelleted by centrifugation. Cell
pellets from the control and each treatment group were split
into two aliquots, unadapted and adapted cells, of which the
former was directly resuspended in the THYES broth of pH 3.5,
incubated at 37°C for 2 h, and the latter was initially suspended in
THYES broth of pH 5.5 for 1 h followed by exposure to lethal pH
3.5 for 2h. Subsequently, viable cells from adapted and
unadapted groups were enumerated by spread plating.
Dilutions were also spotted on agar plates (Priya et al., 2021).

Post Antimicrobial Effect

C. albicans and S. mutans cells in single and mixed state were
subjected to a brief exposure of thymol (1X, 2X, 5X, and 10X
MIC) for 1h after which the compound was removed by
centrifugation. Appropriate positive controls were maintained
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FIGURE 1 | Impact of thymol on the growth of mono and dual species of C. albicans and S. mutans. (A) Thymol significantly impaired the growth of C. albicans and

S. mutans at 128 and 256 pg/ml concentrations, respectively. (B) Proliferation of growth was completely arrested at 300 pg/ml for single and dual species of C. albicans
and S. mutans. (B) Log reduction in cfu/ml of pathogens under sub-inhibitory concentrations of thymol. (C) Spot assay confirming the complete inhibition of growth at
300 pg/ml and reduction in microbial load with increasing concentrations. (D) Rapid killing efficiency of thymol. Two minutes exposure of thymol completely
inhibited S. mutans at 1XMIC and C. albicans and dual species at 2X MIC. Error bars represent standard deviations from the mean and * indicates significance p < 0.05.
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in parallel. For mono species of C. albicans and S. mutans,
amphotericin B (MIC: 2.5pg/ml) and chlorhexidine (MIC:
16 ug/ml) were used, respectively. For dual species, both
amphotericin B and chlorhexidine were used in combination.
Post exposure, 1% culture from each group was used as the
inoculum and cultured in an appropriate medium. Changes
in the cell density were spectrophotometrically observed for a
period of 12 h with 1-h time interval (Taweechaisupapong
et al., 2012).

Ability of C. albicans and S. mutans to

Develop Resistance Against Thymol
Spontaneous Resistance Assay

The cell density of the overnight cultures of C. albicans, S. mutans
and dual species was adjusted to 1 x 10° cells. Cultures were
spread-plated on agar plates with various concentrations of
thymol and incubated at 37°C for 48h. Cultures plated on
agar plates devoid of thymol served as the control (Min et al.,
2017).

Successive Passage Assay

Initially, the cultures were exposed to the lowest concentration of
thymol, and at subsequent days, the cells were passaged and
exposed to increasing concentrations until MIC. After every

passage, the cell density was measured spectrometrically by
reading absorbance at 600 nm (Hua et al., 2010).

Effect of Thymol on Expression of Key

Virulence Genes

Total RNA from C. albicans, S. mutans, and dual species culture
was extracted by the Trizol method. Using a high-capacity
cDNA Reverse Transcription Kit (Applied Biosystems,
United States), the extracted RNA was converted to cDNA.
qPCR analysis was performed with the SYBR Green Master
Mix (Applied Biosystems, United States) for candidate genes
(list of genes, primer details, and function are provided in
Table 1) of C. albicans and S. mutans. Changes in the
expression were calculated by the * “CT method (Livak
and Schmittgen, 2001).

Evaluation of In Vivo Efficacy of Thymol

The toxic effect of thymol, if any, and the in vivo efficacy to clear
the C. albicans and S. mutans infection were analyzed
through the invertebrate animal model Galleria mellonella.
Larvae weighing around 0.2-0.4g were taken for
experiments. Ten larvae were taken per group. A total of
2 x 10° and 2 x 10*cells of C. albicans and S. mutans,
respectively, were taken for infection. Thymol at
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FIGURE 2 | Effect of thymol on the biofilm of single and dual species of C. albicans and S. mutans. Concentration-dependent biofiim inhibitory effect of thymol (A) as
visualized through a microscope (B) Alamar blue assay (C) biofim inhibitory effect of thymol in the presence of saliva. Error bars represent standard deviations from the
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Control

300 mg/kg was injected for both toxicity analysis and
treatment groups. Injection was performed with a U-100 insulin
syringe (Dispovan, HMD, India) in the last proleg. For survival
analysis, nine different groups were segregated. Group I received
PBS alone and served as the injection control. Group II received
PBS along with 2% methanol and served as the vehicle control.
Group III larvae were injected with thymol (300 mg/kg) for
analysis of the toxicity. Groups IV-VI were designated as the
infection control and received the cultures C. albicans, S. mutans,
and dual species, respectively. An appropriate volume of culture
was taken in the U-100 syringe and injected on the last left proleg.
Groups VII-IX were designated as the treatment group where the
larvae received thymol in addition to infection. Thymol was
injected on the last right proleg. Larva groups were incubated at
37°C for 5 days. Survival was monitored every 12 h. For in vivo
efficacy of thymol in controlling the infection, three larvae from
infected and treated groups were cut open with a scalpel; the
content was suspended in sterile PBS, and the serial dilutions were
plated on a selective medium (HiChrome candida differential
medium (HiMedia, India) for C. albicans; Mitis salivarius agar
(HiMedia, India) for S. mutans; for dual species, both the plates
were used) (Selvaraj et al., 2020).

Statistical Analysis
All the experiments were carried out in at least three biological

replicates with at least two technical replicates, and values are
presented as mean + standard deviation (SD). To analyze the
significant difference between the value of control and treated
samples, one-way analysis of variance (ANOVA) and Duncan’s
post hoc test were performed with a significant p-value of <0.05 by
the SPSS statistical software package version 17.0 (Chicago, IL,
United States).

RESULTS

MIC and MMC of Thymol Against Single and

Dual Species of C. albicans and S. mutans
Initially, the MIC of thymol was assessed against single
species of C. albicans and S. mutans through microbroth
dilution assay. It was found that for monoculture, thymol at
128 and 256 pg/ml inhibited the visible growth of C. albicans
and S. mutans, respectively (Figure 1A). Hence, for dual
species, 300 ug/ml of thymol was analyzed for growth
inhibitory effect, and the same concentration was found to
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FIGURE 3 | Influence of thymol on fungal morphogenesis of C. albicans in single and dual species state. (A) Thymol, in a concentration-dependent manner,
suppressed the transition of yeast cells to hyphal form. (B) Transition of hyphal cells to yeast morphogenesis was augmented by increasing concentrations of thymol. (C)
Filamentation with the supplement of FBS was efficiently repressed by thymol in both single and dual species state.

Dual species C. albicans ©

be effective in inhibiting the growth of dual species. Thus,  dual species of C. albicans and S. mutans in a concentration-
300 pug/ml of thymol was considered to be the MIC and MMC  dependent manner (Figure 1B). Spot assay displays that
for dual species. Through cfu analysis, it was evident that  thymol at 300 ug/ml completely inhibited the growth of
thymol exerts the growth inhibitory effect against single and  single and dual species of C. albicans and S. mutans, and a
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FIGURE 4 | Effect of thymol on acidogenicity and acidurance of S. mutans in single and dual species state. (A) Due to the interference of thymol in the glycolytic
pathway, decline in the metabolism of glucose resulting in decreased acid production was observed in both single and dual species culture. (B) Thymol deteriorates the
acid tolerance mechanism of S. mutans. (B-1) Log reduction in cfu/ml of pathogens habituated in acidic condition under the influence of thymol; (b-2) spot assay
confirming the reduction in microbial load. Error bars represent standard deviations from the mean and * indicates significance p < 0.05.

DS T 75 pg/mL,

m
B
5
g!
a
=
[,
g 5
B 2

Sm T 75 pg/mL

DS Control

Unadapted

DS T 150 pg/mL

DST 75 pg/mL,

concentration-dependent growth inhibition can also be
witnessed (Figure 1C).

Effect of Brief Exposure of Thymol on
Viability of Single and Dual Species C.

albicans and S. mutans

As the end application of this study is directly related to the
dentifrice formulation, the impact of limited time exposure of
bioactives on these pathogens was analyzed through time kill
assay where the microbes were exposed to thymol for 2 min. At
MIC, S. mutans cells were completely killed by the action of
thymol, whereas for C. albicans and dual species, 2X MIC cleared
the viable cells (Figure 1D).

Biofilm Inhibitory Effect of Thymol at

Sub-Inhibitory Concentrations
The impact of sub-inhibitory concentrations of thymol was
microscopically appraised. Dose-dependent diminution in the

surface adherence of cells was observed for thymol treatment.
Under single and dual species state, the biofilm formation and
surface adherence of C. albicans were impaired in a
concentration-dependent manner by the influence of thymol.
In addition to reduction in surface adherence, the hyphal form
was also found to be arrested. At MIC, the viability of S. mutans
was completely lost, and thus, no surface adherence of S. mutans
was found (Figure 2A).

Similarly, metabolic viability assay was performed for the
biofilm of C. albicans and S. mutans single and dual species
under the influence of thymol. Results observed are in line with
the microscopic observation, as C. albicans biofilm adherence was
found to be diminished in a concentration-dependent manner
under both single and dual species condition (Figure 2B).

The proficiency of thymol in inhibiting the biofilm formation
of C. albicans and S. mutans in the presence of saliva was also
analyzed. The efficiency of thymol continued to be the same even
in the presence of saliva (Figure 2C). These results suggest that
thymol can be effective against the C. albicans and S. mutans
biofilm.
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FIGURE 5 | Post antimicrobial effect of thymol. Brief exposure to 1X-10X MIC of thymol significantly suppressed the proliferation of the pathogens in single as well
as dual state, whereas positive controls did not exhibit significant post antimicrobial effect. PC, positive control. Amphotericin B (MIC- 2.5 ug/ml) and chlorhexidine (MIC-
16 pg/ml) were used as the positive control for C. albicans and S. mutans, respectively. For dual species, amphotericin B and chlorhexidine were used in combination.
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Reduction in the Virulence Attributes of C.
albicans in Single and Dual Species State

Under the Influence of Thymol

Phenotypic switch between yeast and hyphal forms under the
influence of thymol was analyzed. In a concentration-dependent
manner, thymol could restrain the shift of yeast to hyphal phase
(Figure 3A) and can revert the hyphal cells to yeast morphogenesis
(Figure 3B). Hyphal morphogenesis of C. albicans during interaction
with S. mutans was found to be diminished, and the same has been
evidenced in the present study through the filamentation assay, which
when compared to mono species, the filamentation of C. albicans
under dual state was found to be less. Despite the single or dual state,
thymol significantly impeded the development of filamentous
morphology (Figure 3C).

Decline in the Acidogenic and Aciduric
Potential of Single and Dual Species S.

mutans Under the Effect of Thymol

Metabolic breakdown of carbohydrate through glycolysis was
interfered by the presence of thymol. In single as well as dual state,
the pH of the control was dropped to more acidic condition. For
thymol treatment, at MIC, a slight variation in the pH change was
noted, whereas at higher MICs a significant change was observed
(Figure 4A).

Correspondingly, the aciduric ability of C. albicans and S.
mutans was found to be significantly diminished under the
impact of thymol. Both adapted and unadapted cells were
found to be sensitized to the acidic pH condition under the
single and dual species state when treated with thymol
(Figure 4B). Unadapted cells were found to be more sensitive
to thymol. Irrespective of prior adaptation conditions, thymol
reduced the survival of cells under low pH condition, which is an
added advantage for the treatment of caries.

Post Antimicrobial Effect of Thymol

As oral pathogens are exposed to dentifrices only for a short
duration, the antimicrobial effect after the removal of thymol was
analyzed. Compared to the positive controls—chlorhexidine and
amphotericin b—thymol exhibited proficient post antimicrobial
effect against single and dual species of C. albicans and S. mutans
even at MIC by arresting the proliferation of cells (Figure 5).

Diminished Possibility for Resistance
Development by C. albicans and S. mutans
Against Thymol

The possibility of resistance development against thymol by
single and dual species of C. albicans and S. mutans was
investigated. Spontaneous resistance (Figure 6A) to higher
concentration of thymol as well as resistance to successive
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FIGURE 6 | Assessment of the ability of the pathogens to develop resistance against thymol. (A) Spontaneous resistance development. Both single and dual
species of C. albicans and S. mutans did not develop spontaneous resistance to thymol even at 20X MIC. (B) Resistance development in successive passage.
Subculturing of pathogens with increasing concentrations of thymol did not initiate resistance development. Error bars represent standard deviations from the mean.

passage (Figure 6B) in the presence of increasing concentrations  other genes of both C. albicans and S. mutans was found to be
of thymol were not acquired by the pathogens. When single and ~ downregulated. Expressions of nrgl and tupl were found to be
dual species of C. albicans and S. mutans was allowed to growona  upregulated, which is in line with the antihyphal activity observed
medium supplemented with high concentrations of thymol, no  through in vitro assays. Genes involved in the development and
colonies were developed, signifying that the pathogens were  maintenance of hyphae in C. albicans such as hwpl, rasl,
unable to outgrow in the presence of thymol. Similarly, when  ecel, and cphl, genes responsible for filamentous morphology
the pathogens were exposed to thymol from lower concentration ~ such as eap I, efgl, adhesin als 1, and the transcriptional
to higher concentration over a period, no resistance development  regulator of filamentous growth such as ume6 and hst7, which
was observed as complete growth inhibition was observed at sub-  is required for biofilm formation, are found to be
MIC of thymol at the 12th day of passage (Figure 6B). downregulated. Negative transcriptional regulators of
filamentation such as nrgl and tupl were upregulated

. . . . upon thymol treatment in both single and dual species.
Dynamics in the Expression of Candidate Downregulation of genes associated with the hyphal
Virulence Genes development and  filamentous  morphology  and
Treatment with thymol influenced the transcriptional level  upregulation of negative regulators of the same under the
modulations in the virulence genes (Figure 7). Except for the  influence of sub-inhibitory concentration of thymol imply
transcriptional repressors nrgl and tupl, the expression of all  that the compound can influence crucial virulence aspects of
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FIGURE 7 | Gene expression profiling of candidate genes associated

with virulence and pathogenesis of C. albicans and S. mutans under single
and dual species state. Under the influence of thymol, C. albicans genes that
are responsible for biofilm formation, hyphal and filamentous

development, adhesins, and morphological phenotypic switching are found to
be downregulated. Negative transcriptional regulators of filamentation such as
nrg1 and tup1 were found to be upregulated. S. mutans genes that are allied
with biofilm formation, competence, glucan synthesis, which mediates
interaction between C. albicans and S. mutans, is downregulated by the
impact of thymol. Downregulation of virulence genes validates the anti-
infective efficacy of thymol. Error bars represent standard deviations from the
mean and * indicates significance p < 0.05.

the pathogen. Similarly, vicR and comDE, the two major two-
component regulatory systems of S. mutans, were found to be
downregulated. Downregulation of vicR has affected the
expression of glucosyltransferases gtfBCD, which are
responsible for the synthesis of water-soluble and -insoluble
glucans that are elemental bridge molecules between bacteria
and acquired pellicle, thereby facilitating the colonization of the
microbial biofilm. Decreased expression of ComDE, the two-
component signal transduction system allied with the quorum
sensing, which is known to regulate the competence and biofilm
formation of S. mutans, suggests that the communication between
the microbial systems resulting in the increased biofilm
amalgamation has been impaired by the action of thymol.
Similarly, the expression of two other genes gbpB and Smu0630
that are correlated with biofilm formation are declined.

In Vivo Rescuing Potential of Thymol From

C. albicans and S. mutans Infection

Thymol at 300 mg/kg concentration does not exert any
significant toxic effect to the larvae, whereas infection with C.
albicans, S. mutans, and dual species of C. albicans and S. mutans
impaired the survival (Figures 8A,B). Treatment with thymol
rescued the larvae from the infection and increased the survival
rate (Figure 8C). About 70% of larvae survived up to 120 h after
administration of thymol. Only 35, 50, and 30% of larvae survived
following infection with C. albicans, S. mutans, and dual species,
respectively. On the other hand, treatment with thymol increased
the survival rate to 70, 80, and 60% in larvae infected with C.
albicans, S. mutans, and dual species, respectively. In addition to
this, the in vivo infection clearance was also promoted by thymol
treatment, which was evidenced through the reduced colony
count in CFU analysis.

Antiinfective Potential of Thymol

DISCUSSION

Amid the numerous infectious diseases, dental caries is
represented as one of the most prevalent chronic diseases that
affect majority of the people all over the world (Dye et al., 2007;
Selwitz et al., 2007). Individuals who encounter this infection
once are susceptible to infectivity throughout their lifetime
(Featherstone, 2000; Pitts, 2004). Dental caries rises from the
impaired balance between the availability of minerals in the teeth
and colonization of oral microbial community as biofilms
(Fejerskov, 2004; Scheie and Petersen, 2004). Thus, interaction
between the acid-producing bacteria and fermentable
carbohydrates remains as a principal underlying machinery in
the progression of teeth erosion (Philip et al,, 2018). ECC, a
virulent form of dental caries that affects the primary tooth, is also
affiliated with the increased consumption of fermentable
carbohydrates accompanied with improper bottle-feeding
practices (de Carvalho et al., 2006; Phantumvanit et al., 2018).
Various other risk factors that are associated with ECC are
environmental risk factors, dietary risk factors, and
microbiological risk factors. A later predisposing factor is the
principal etiological cause for the development and progression of
ECC (Kawashita et al., 2011). Co-occurrence of C. albicans and S.
mutans is frequently detected from the plaque sample of ECC (de
Carvalho et al., 2006). Restoration or surgical removal of the
carious teeth is the established therapeutic intervention in the
current setting. Nevertheless, the relapse of the caries around the
restored teeth or extent to the nearby teeth is very frequently
reported (Berkowitz, 2003; Graves et al., 2004). Numerous reports
are available on the epidemiology, etiology, prevention measures,
and association between C. albicans and S. mutans in the disease
progression (de Carvalho et al., 2006; Falsetta et al., 2014; Koo and
Bowen, 2014; Lobo et al., 2019). Not too many reports are
available regarding therapeutic interventions to confine this
cross-kingdom alliance (Bombarda et al., 2019; Li et al,, 2019).
In order to decline this obscurity, the present study investigated
the therapeutic efficacy of thymol against the major virulence
attributes of C. albicans and S. mutans during their solitary and
cohabitation. Thymol is a major phytocompound of the thyme
species that has been used for various pharmacological purposes
for decades. Biological activities of thymol are not limited to
antioxidant, anti-inflammatory, antibacterial, antifungal,
antiseptic, and antitumor activities (Nagoor Meeran et al,
2017). Here, in the present study, the anti-infective efficacy of
thymol against the dual species of C. albicans and S. mutans was
analyzed. Initial experiments with the determination of MIC and
MMC signified that thymol at 300 pug/ml concentration
completely inhibited the growth and proliferation of single
and dual species of C. albicans and S. mutans. In addition to
growth inhibition effect, the proficiency to kill the existing mass
of cells within a span of 2 min implies the therapeutic efficiency of
thymol.

Synergistic interaction between C. albicans and S. mutans
within the carious biofilm ensues in enhanced virulence of
both the pathogens. Also, several studies report that the
presence of C. albicans supports the extensive colonization of
S. mutans in the dental biofilm. Thus, the impact of sub-
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FIGURE 8 | In vivo anti-infective efficacy of thymol against single and dual species of C. albicans and S. mutans in the G. mellonella model system. (A)
Representative image displaying the survival status of larvae at time O h and time 120 h in different groups. Thymol at 300 pg/ml concentration was administered to
check the toxic effect. No significant reduction in mortality was observed. Hence, thymol at the tested concentration was found to be nontoxic. Infected groups received
respective cultures, and the treated groups received both culture and thymol at 300 pg/ml concentration. Larvae that turned to complete black and no response to
physical stimulus were considered to be dead. (B) The Kaplan-Meier survival plot displaying the survival of G. mellonella under the influence of various treatments.
Thymol at 300 mg/kg was found to be nontoxic to the G. mellonella larvae. C. albicans and dual species infection drastically reduced the survival rate, whereas thymol
treatment rescued G. mellonella from infection. (C) Reduction in the internal microbial burden due to the anti-infective potential of thymol. Error bars represent standard
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inhibitory concentrations of thymol on biofilm formation of
single and dual species of C. albicans and S. mutans was
microscopically appraised, and a dose-dependent diminution
in the surface adherence of cells was observed.

Furthermore, the impact of thymol on major virulence
attributes of C. albicans and S. mutans was reviewed. Previous
in vitro and in vivo studies have shown that the hyphae of C.
albicans can penetrate the enamel, dentinal tubules, and root
canal in the large caries lesions (Sen et al., 1997; Jacob et al., 1998;
Waltimo et al., 2000). Fungal morphogenesis and filamentation

conditions were found to be controlled by thymol. Similarly, S.
mutans has been shown to produce acid from the dietary
carbohydrates (acidogenicity) and able to survive under lethal
pH condition (acidurity), which is one of the most imperative
attributes for the progression of dental caries. C. albicans can also
produce acids and survive under acidic pH. Accordingly, the
influence of thymol on glycolytic pH drop and acid tolerance was
measured for S. mutans under the single and dual species state.
Both the acidogenic and aciduric ability of S. mutans was found to
be impaired by thymol.
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Along with the ability to restrain the major virulence attributes
of C. albicans and S. mutans, thymol also displayed post
antimicrobial efficacy, which was found to be superior to the
positive controls.

When a pathogen is frequently exposed to a growth-
suppressing agent, the development of resistance may arise as
a consequence of natural selection. However, pathogens did not
develop resistance against thymol, which could be due to the fact
that this bioactive regulated various genes/transcriptional
regulators of both the organisms. This further strengthens the
application of thymol in treating ECC.

Additionally, the decreased expression of genes that are
directly associated with virulence and pathogenesis of C.
albicans and S. mutans under both single and dual species
state by thymol alludes the anti-infective efficacy against these
ECC-causing pathogens.

Galleria mellonella is an invertebrate model organism that has
been used to study pathogenicity, host-pathogen interaction,
immune response to microbial infections, and toxicity. Allegra
etal. (2018) reported that G. mellonella can discriminate between
toxic and nontoxic chemicals, and this model system is a better
tool than the cell culture system. There are several other studies
that have shown the nontoxic nature and in vivo efficacy of their
compound in G. mellonella (Lu et al., 2019; Merigo et al., 2017;
Desbois and Coote, 2011; Gibreel and Upton 2013 etc). Rossoni
et al. (2019) reported G. mellonella as an experimental model
system to study oral pathogens and detailed about the studies that
used the G. mellonella model system to study oral pathogens,
which include C. albicans and S. mutans. There are also several
studies that demonstrated the usefulness of the G. mellonella
model system to study the virulence of C. albicans (Mesa-Arango
et al., 2013; Kavanagh and Sheehan, 2018; Bergin et al., 2006 etc).
Numerous studies have employed G. mellonella to study the
virulence of S. mutans (Alves et al., 2020; Abranches et al,
2008; Avilés-Reyes et al., 2014; Miller et al., 2015). Reports are
also available on studies related to dual species in the G.
mellonella model system (Kean et al, 2017; Sheehan et al,
2020 etc). Based on this background, G. mellonella was
expended as a model system in this study to evaluate the
toxicity and in vivo efficacy of thymol. Thymol at 300 mg/kg
concentration does not exert any significant toxic effect to the
larvae, whereas infection with C. albicans, S. mutans, and dual
species of C. albicans and S. mutans impaired the survival.
Treatment with thymol rescued the larvae from the infection
and increased the survival rate.

As the primary aim of this investigation is to evaluate the
proficiency of thymol against the ECC-causing dual species C.
albicans and S. mutans, the practical applicability of thymol in
prophylaxis/treatment is crucial. Dental caries, which is the
buildup of microbial plaque on the teeth surface, can be
controlled by certain mechanical self-care oral hygiene
practices such as tooth brushing and dental flossing. Improper
oral hygiene practices and recalcitrant nature of the microbial
biofilm result in recurrent and persistent infection. A broad range
of oral care products in different forms such as toothpastes,
mouthwashes, medicated chewing gum, etc. is available in the
market. In addition to the basic purpose of the dentifrices, certain

Antiinfective Potential of Thymol

products are specifically used for the control of infectious
organisms. More precisely, antiplaque mouthwashes are being
commercialized excessively. These products were produced to
contain synthetic or natural actives with antimicrobial activity
(Jacobsen et al., 2001). Rather than the use of synthetic and
chemical agents with side effects, bioactive components from the
natural sources can be a better alternative. In the recent decade,
research on the formulation and development of herbal-based
toothpastes and mouthwashes has been accelerated. Currently,
chewing gum has been progressing toward an effective drug
delivery system rather than a candy. In addition to application
in drug delivery for systemic infections, chewing of sugar-
free gums can have added benefits to oral health such as their
cleaning ability, reduction of conditions such as dry mouth,
increasing the pH of the biofilm, and remineralization of
enamel (Wessel et al, 2016). As ECC is primarily associated
with children, proper usage of toothpaste or mouth rinse cannot
be guaranteed. Thus, the authors consider that medicated
chewing gum formulation with thymol will be the best for the
prevention/treatment of ECC.
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In the rural communities of sub-Saharan African (sSSA) countries, malaria is being managed
using phytocompounds. Artesunate is reported to inhibit Gephyrin E, a central, multi-
domain scaffolding protein of inhibitory post-synapses. Neem plant and its metabolites like
azadirachtin are being indicated for management of malaria by traditional healers. The
present study was aimed to cheminformatically analyse the binding potential of artesunate
and azadirachtin with various reactive moieties of Gephyrin E, to reduce malaria scourge.
With molecular dynamics (MD), binding free energy estimation and binding affinity of
artesunate and azadirachtin to Gephyrin E was done. GRIP docking was done to study the
interactions of these test ligands with Gephyrin E (6FGC). MD simulation gave insights to
structural changes upon binding of artesunate and azadirachtin in the ligand-binding
pocket of Gephyrin E. Root mean square deviation (RMSD) and root mean square
fluctuation (RMSF) were calculated. From the estimation, azadirachtin had a total
binding energy of —36.97 kcal/mol; artesunate had a binding energy of —35.73 kcal/
mol. The GRIP docking results provided a clearer evidence that artesunate has
comparatively better binding affinity to Gephyrin E than azadirachtin, and the critical
binding sites (in activity order) were cavity 3, 2, 8, and 6 for artesunate while for
azadirachtin, it was cavity 6, 3, 8, and 2. The GRIP docking provided detailed
interactions at the atomic levels, providing evidence; both compounds have chances
to overcome the drug resistance problem, albeit higher for artesunate. Our findings added
another piece of evidence that azadirachtin may be effective as an anti-malarial agent. The
results herein may provide impetus for more studies into bioactive components of plant
origin towards the effective management of malaria disease phenotype.

Keywords: malaria, phytomedicine, gephyrin, metabolite, molecular dynamics, protease, reactive oxygen species,
SDICS methodology
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INTRODUCTION

There is an increase in the epidemiological burden of severe life-
threatening diseases on the human population across the globe.
This has compelled researchers and clinicians to develop reliable
therapeutic strategies against these diseases (Srivastava et al,
2019). Different disease conditions in most part of the world
have previously been managed or prevented using
phytomedicines (Oniyangi and Cohall, 2018). Medicinal plants
have been essential in health management since ancient times
(Sofowora et al., 2013). Studies have been carried out globally to
evaluate their efficacy and some of the findings have led to the
establishment of plant-based medicines (Reiz and Lipp, 1982;
Mann et al., 2007; Sofowora et al., 2013; Newman and Cragg,
2020; Adejoh et al., 2021). Availability, affordability, relative
safety, and efficacy of natural products have greatly
contributed toward their success against some known severe
diseases (Oniyangi and Cohall, 2018; Okoh, 2019, Srivastava
et al., 2019), for instance, Camellia sinensis (L.) Kuntze and
Erigeron breviscapus (Vaniot) Hand.-Mazz. as neuroprotective
agents (Lopez and Calvo, 2011), Ganoderma lucidum and
Ganoderma sinense (species of Ganoderma) as antitumor
agents (Lawal et al,, 2019), etc.

The resistance of Plasmodium falciparum to chloroquine in
the past and to artemisinin and its derivatives currently has
attracted worldwide attention. In 2010, the WHO reported a
decreased sensitivity of P. falciparum to artemisinin and warned
of the danger of such resistance (WHO, 2010). This burden of
drug resistance on human well-being has drawn the attention of
researchers to focus on and devise other therapeutic means using
phytomedicine, especially those involving plant bioactive
components mediating ligand interactions (Jeong and Ryang,
2019) and gene modification to combat malaria, caused by
Plasmodium parasite. Several strategies including disruption of
feline leukemia virus subgroup C receptor (FLVCR); reduction of
FLVCR by gene silencing-techniques; prevention of the
interaction between Plasmodium thrombospodin related
anonymous protein (TRAP) and the Anopheles Saglin protein;
prevention of the interaction of surface enolase and plasminogen
of mammalian blood meal were suggested to be useful technique
for the control of malaria by blocking Plasmodium transmission
(Adejoh et al., 2018). Recent review also reported some plants
belonging to the family of Violaceae, Rubiaceae, Cucurbitaceae,
Poaceae, Asterids, Rosids, and Monocots with cyclotide
antimicrobial peptides, which possess structural similarities to
SM1 peptide and were considered as a novel competitive inhibitor
of Plasmodium TRAP-anopheles saglin binding (Adejoh et al.,
2018). Azadirachtin, a bioactive component of Azadirachta
indica A. Juss. seed extract, was identified to possess structural
similarities to artemisinin, a sesquiterpene lactone containing an
unusual peroxide-bridge, thought to enhance the anti-plasmodial
medicinal characteristic (Brown, 2006; Adejoh et al., 2018). This
peroxide bridge is believed to be responsible for the mechanism of
action of artemisinin (Adejoh et al., 2018).

Herein, our focus is understanding the complex life cycle of
mosquito malaria transmission (both exo- and endo-
erythrocytic); their involvement in cerebral malaria via
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synaptic  binding simulation; and relate this with
phytochemical properties of the plant (Neem) currently used
in sSA to reduce the malaria scourge. Kasaragod et al. (2019) in
his studies demonstrated that artemisinin antimalarial drug binds
to gephyrin at the same active site where the receptor interaction
occurs. Following this indication, we selected Gepherin E as the
target towards establishing if any mechanistic similarity exists
between these two important natural bioactive molecules.

Bearing in mind the links between medicinal plants and
successful anti-malarial drug discovery, we compared the
binding affinity of artesunate and azadirachtin to Gephyrin E
active site, using molecular dynamic (MD) simulation and the
GRIP docking, which enabled more detailed analyses of
interaction at the atomic level as compared to the binding free
energy estimation from the molecular mechanics/Poisson-
Boltzmann surface area (MM/PBSA). Our results lead
credence that the bioactive component of the plant Neem can
be exploited in pharmaceutical industries for anti-plasmodial
drug production.

METHODOLOGY

Molecular Dynamic Simulation

Starting Structures Preparation and MD Simulation
The Gephyrin E domain structures were retrieved from the
Protein Data Bank with PDB 1D: 6FGC. The co-crystallized
molecules were deleted and any missing residues were added
with the aid of modeller (Eswar et al., 2007). B3LYP/6-311++G
(d, p) (Jorgensen et al., 1983) level of Gaussian 16 (Weedbrook
et al, 2012) were employed to achieve ligand optimization.
Following, molecular docking was carried out using the
optimised structures with the aid of UCSF Chimera (Yang
et al., 2012). FF14SB module (David, 2012; Salomon-ferrer
et al., 2012; Soremekun et al., 2019a) of the AMBER forcefield
was employed in carrying out MD simulation. The General
Amber Force Field (GAFF) and Restrained Electrostatic
Potential (RESP) were used in describing the atomic charges
of the ligands. Leap variant present in Amber 14 was used for
system neutralization and hydrogen atoms addition (Salomon-
ferrer et al, 2012; Akinsiku et al, 2020). Following similar
protocol earlier reported (Soremekun et al, 2019b; Akinsiku
et al, 2020), the system was kept solvated with an
orthorhombic box of TIP3P water molecules surrounding all
protein atoms at a distance of 94 (Jorgensen et al., 1983;
Soremekun et al, 2019a). System minimization was carried
out first with a 2000 steps minimization using a restraint
potential of 500 kcal/mol. Second, we used a 1,000 steps full
minimization process without restrain, and afterwards, the
system was gradually heated at a temperature of
-273.15-26.85°C at 50ps for simulation time. The system
solutes are kept at a potential harmonic restraint of
10kcalmol 1A -2 and collision frequency of 1.0 ps-1.
Equilibration succeeded heating at an estimate of 500 ps of
each system. Temperature at 26.85°C, number of atoms, and
pressure at lbar (isobaric-isothermal ensemble, NPT using
Berendsen barostat) were all kept constant. The simulation
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time was set at 200 ns with each SHAKE algorithm to narrow the
hydrogen atom bonds. Each step of the simulation was run for 2fs
and an SPFP precision model was adopted. The simulations were
kept at constant temperature and pressure (NPT), and Langevin
thermostat at collision frequency of 1. ops-2. PTRAJ variant of
Amber14 was adopted for further analysis which included root-
mean-square deviation (RMSD), root-mean-square fluctuation
(RMSF) and Radius of Gyration (Roe and Cheatham, 2013). The
data plots were then made with ORIGIN analytical tool and
visualization done using UCSF Chimera (Pettersen et al., 2004).

Binding Free Energy Estimation

The Molecular Mechanics/Poisson-Boltzmann Surface Area
(MM/PBSA) was employed in the estimation of differential
binding of Artesunate and Azadirachtin to Gephyrin E
(Kollman et al, 2000). MM/PBSA is an end-point energy
estimation used in the prediction of binding affinities of
ligands and their corresponding protein target. MM/PBSA is
mathematically described as:

AGyping = Geomplex (Greceptor + Ginhibitor) (1)
AGping = AGgs + AGy — TAS 2)
AGgs = AEjy + AEge + AEuaw 3)
AGyo = AGeiesoi(GB) — AGrpsol (4)

AG,p0 = YSASA + f (5)

AGy,, represents the total gas phase energy calculated by
intermolecular energy (AE;,,), electrostatic energy (AEg,), and
van der Waals energy (AE,qw). AG, represent the solvation
energy, TAS represent entropy change. AGge o1 pp) describes
polar desolvation energy, while AG,, s, describes the non-
polar desolvation energy. 7y is the surface tension
proportionality constant and is set to 0.0072 kcal/(mol-1. A-2),
B is a constant equal to 0, and SASA is the solvent accessible
surface area (A2).

GRIP Docking Methodology

Vlife" Molecular Design Suite (MDS) 4.6 (Vlife Science
Technologies Pvt. Ltd., Pune, India, www.vlifesciences.com) is
a robust, modularly multifunctional, and easy to use software
suite for Computer-Aided Drug Designing (CADD) (Singla and
Bhat, 2010; Igoli J. O. et al., 2014; Pokuri et al., 2014; Singla, 2015;
Singla et al., 2016; Sahu et al., 2017; Singla et al., 2017; Singla et al.,
2018; Srivastava et al., 2018; Singla and Dubey, 2019; Joon et al.,
2021). The structures of the artesunate and azadirachtin were
retrieved from PubChem and redrawn using ChemDraw Ultra 8.
0 (PerkinElmer LAS [United Kingdom] Ltd., Seer Green,
Beaconsfield, Bucks HP9 2FX England) as mol file. After
structure preparation, cleaning, and energy optimization, both
these ligands were docked in different cavities of the 6FGC. In
fact, the X-ray structure of Gephyrin E domain, i.e., 6FGC was
cleaned and optimized prior to the docking procedure, and apo_
snapshotl version was used in this study. GRIP docking study
was performed on all the eight hydrophobic cavities and tested
the affinity of both these ligands for comparison. The parameters
used while performing docking simulation were: number of
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placements: 100; rotation angle: 10°C; exhaustive method;
ligand flexible and ligand wise results: 20; scoring function:
PLP score. The specific best pose of each ligand respective for
each cavity was then processed for the interactive analysis to
evaluate van der Waal’s interactions, hydrogen bonding,
hydrophobic, pi-staking/aromatic, and charge interactions
between ligand and amino acid residues of the hydrophobic
cavities (Igoli J. O. et al,, 2014; Igoli N. P. et al., 2014; Singla,
2015; Singla et al., 2016; Sahu et al., 2017; Singla et al., 2018; Singla
and Dubey, 2019).

Further, to understand the interactions better, especially Van
der Waals interactions and hydrophobic interactions, an
empirical approach viz. Smart Docking Interaction Calculation
Scoring (SDICS) Methodology has been devised, which was
basically classifying the interactions into different levels.
Methodology was devised on the basis of knowledge and
experience gained so far. These are: Weak Van der Waal’s
Interaction (V,,): 1-5 bonding; Moderate Van der Waal’s
Interaction (V,,): 6-10 bonding; Strong Van der Waal’s
Interaction (V,): 11-20 bonding; Extraordinary Strong Van
der Waal’s Interaction (V,): >21; Weak Hydrophobic
Interaction (Hy): 1-3; Moderate Hydrophobic Interaction
(H,,): 4-7; Strong Hydrophobic Interaction (H): 8-14; and
Extraordinary Strong Hydrophobic Interactions (Hy): >15
(Singla et al., 2021).

RESULTS

Molecular Dynamics Simulations
MD simulations were conducted to gain insights into the
structural changes upon the binding of Artesunate and
Azadirachtin in the ligand-binding pocket of Gephyrin E. All
produced trajectory during the simulation run were observed for
stability and fluctuation. Root mean square deviation (RMSD)
and root mean square fluctuation (RMSF) were calculated for the
three systems to determine their individual energetic stability and
spatial residual fluctuation. The RMSDs of all the backbone atoms
of the mutant and wild protein (Figure 1A), as well as the C-a
atoms for the residues of the active site, i.e., residues within 5 A
around the ligand were plotted. Figure 1A shows that the three
systems reached a convergence as early as 10 ns., indicating the
three systems attained stability, hence, a good system for further
analysis. Averagely, the RMSD plot revealed that the Apo system
exhibited low translational movement and convergence when
compared to the Apo-Art and Apo-Ard systems. Furthermore,
for a deep insight into the binding of Artesunate and
Azadirachtin in the ligand-binding pocket of Gephyrin E,
RMSF was used to plot the residual fluctuations during the
MD simulation. Figure 1B showed that the Apo-Ard system
fluctuates more when compared to the Apo-Art and the Apo
system, indicating that Azadirachtin increases the motional
movement of the protein when compared to Artesunate. A
similar trend was observed in the RoG plot.

To further explore the binding of Artesunate and Azadirachtin
in the ligand-binding pocket of Gephyrin, we used MM/PBSA to
explore the binding strength and affinity. The estimation of this
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FIGURE 1 | Conformational analysis plot showing stability and atomistic motions among Apo (black), Apo_Art (red), and Apo_Ard (green) systems (A). C-a RMSF
plot showing the residual fluctuation of Apo (black), Apo_Art (red), and Apo_Ard (green) systems (B). RoG plot showing the residual compactness of Apo (black),

FIGURE 2 | Molecular interactions between key residues and reactive moieties in Gephyrin (A). 3D structure of Azadirachtin in the active site of Gephyrin (B).

binding free energy can help provide insights into the inhibitory
mode of Artesunate and Azadirachtin. Our estimations reveal
that Azadirachtin had a total binding energy of —36.97 kcal/mol,
while Artesunate had a binding energy of -35.73 kcal/mol,

suggestive of a better binding affinity of Azadirachtin relative
to Artesunate. Comparatively, from Figures 2, 3, the strong
binding affinity of Azadirachtin when compared to Artesunate
could be corroborated by the strong interactions exhibited
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FIGURE 3 | Molecular interactions between key residues and reactive moieties in Gephyrin (A). 3D structure of Artesunate in the active site of Gephyrin (B).

TABLE 1 | Energy contributions between the active site residues of Gephyrin E and Artesunate and Azadirachitin.

Residue van der Waals Electrostatics (kcal/mol) Polar Solvation kcal/mol Non-Polar Solvation
(kcal/mol) kcal/mol

Art Aza Art Aza Art Aza Art Aza
Met8 —0.966 -0.066 -0.179 -2.704 0.529 2.5626 —-0.089 -0.002
Asp9 -1.180 -0.530 —-18.656 187.961 19.203 -184.726 -0.197 -0.142
Phe12 -3.417 -0.294 -0.021 -5.240 0.037 5.349 -0.252 -0.074
lle13 -1.360 -0.119 0.549 -3.347 -0.475 3.396 -0.254 -0.018
Leul6 -0.624 -0.036 1.124 -4.754 -1.027 4.722 -0.084 —-0.000
Arg335 -2.996 -0.056 20.087 -292.239 -19.581 275.218 -0.446 -0.642
Pro336 -1.374 -0.142 -0.738 10.787 1.083 -10.464 -0.107 —0.009
11e338 -0.694 -0.838 0.209 -1.433 -0.165 1.411 -0.161 -0.208
Tyr355 -0.538 -0.038 0.107 -4.308 0.412 4.342 -0.066 —0.000
MET 387 -0.798 -0.167 -0.201 0.828 0.356 -0.745 -0.152 -0.016

between Azadirachtin and the residues present in the active site of
Gephyrin E. Most prominent of these interactions are pi-pi alkyl,
hydrogen bonds, and covalent interactions. The energy
contributions of the active site residues of Gephyrin E,
Artesunate, and Azadirachitin are herein presented in Table 1.

For the validation of the GRIP docking protocol, the co-
crystallized ligand artesunate was extracted from 6FGC, and
then re-docked as test ligand in the same cavity. Similar dock
score obtained when the co-crystallized artesunate was docked as
test ligand, which validated the reliability of the docking protocol.
For artesunate and azadirachtin’s docking studies, cleaned and
optimized apo_snapshotl version of 6FGC was used. The results
from the GRIP docking analysis, tabulated in Table 2, unlike the
buck estimate using MM/PBSA, show considerable evidence that
artesunate comparatively has more binding affinity to Gephyrin E

cavity than azadirachtin, not only for a single cavity, but found to
have high multisite potential. Thus, artesunate has more chances
to overcome the drug resistance problem, as it is not a highly site-
specific drug molecule. The binding affinities of artesunate for
different cavities in Gephyrin are in the following order: Cavity
3 > Cavity 2 > Cavity 8 > Cavity 6 > Cavity 4 > Cavity 7 > Cavity
5 > Cavity 1, while in the case of azadirachtin, the binding affinity
is in the order: Cavity 6 > Cavity 3 > Cavity 8 > Cavity 2 > Cavity
4. Grip docking results indicated that for cavity 1, cavity 5, and
cavity 7, azadirachtin didn’t possess significant binding affinity.
One surprising note, for all these 3 cavities, azadirachtin had
much stronger interactions with amino acid residues as compared
to rest of the cavities (maybe due to the fluid motional movement
as indicated Figure 1B), and even surpassed artesunate in some
cases. Herein (Table 2), we discuss the interactions in details for
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TABLE 2 | Grip docking-based interactions study of artesunate and azadirachtin with all the cavities of cleaned and optimized Gephyrin E domain (6FGC), apo_snapshot1.
HID: Histidine with hydrogen on the delta nitrogen; HIE: Histidine with hydrogen on the epsilon nitrogen.

S.No Grip Docking Based Interactions
Ligand Dock Score Interactions

Cavity 1 Artesunate -39.07 VDW: Glu218 (V), HID219 (Vs), Arg326 (Vy), Thr337 (Vi), Val408 (Vy), 116409 (Vy,), Gly410 (Vg), Argd11 (Vy), Leud12 (Vy)
HYI: Glu218 (Hyw), HID219 (Hpy), Val322 (Hy), Thr337 (Hm), Vald08 (Hy), lle409 (Hw), Gly410 (Hm), Argd11 (Hs), Leud12 (Hy)
Cl: Glu218
HB: Arg411

Azadirachtin 137.22 VDW: Glu218 (Vy), HID219 (Vy), Arg326 (V), Thr337 (Vs), Asn383 (Vy), Val408 (Vy), 11409 (Vim), Gly410 (Vy), Argdi1 (Vy),

Leud12 (Vg)

HYI: Glu218 (Hg), HID219 (H,), Val322 (Hy,), Thr337 (Hg), Val408 (H,), lle409 (Hy,), Gly410 (He), Arg411 (Hy), Leud12 (Hy,)
HB: Arg326, Gly410, Arg411 (Strong)
Cavity 2 Artesunate —65.96 VDW: Lys284 (Vs), Pro285 (Vs), Val311 (Vyy,), Val315 (Vy,), Glu354 (Vy,), HID356 (Vy), Arg357 (Vs), Thr374 (Vy,)
HYI: Lys284 (Hg), Pro285 (Hs), Val311 (Hy,), Val315 (Hy,), HID356 (Hg), Arg357 (Hs)
HB: Arg357
Azadirachtin -24.34 VDW: Leu343 (Vy), Cys345 (Vy), Val347 (Vy), HID356 (Vs), Ser373 (Vs), Thr374 (Vim), Gly375 (Vy), Leu386 (V)
HYI: Cys345 (Hy,), HID356 (Hs), Ser373 (Hs), Thr374 (Hy,), Gly375 (Hy), Leu386 (Hy)
Cavity 3 Artesunate -68.27 VDW: Met8 (Vi), Asp9 (Vin), Phel2 (Vg), Leu319 (Vy,), Pro336 (Vs), Pro353 (Vi), Tyr355 (Vin), Met387 (V), Pro389 (Vy),
Met407 (Vi)
HYI: Met8 (Hy), Asp9 (Hm), Phe12 (Hy,), Leu319 (Hy,), Arg335 (Hy), Pro336 (Hs), Pro353 (Hy), Met387 (Hs), Pro389 (Hy,),
Asp405 (Hy,), Met407 (Hy)
HB: Tyr355
Azadirachtin -53.91 VDW: Met8 (Vg), Asp9 (Vs), Phe12 V), Leu319 (Vy,), Pro336 (Vy,), Pro353 (Vs), Tyr355 (Vi,), Met387 (Vy,), Leu388 (Vy,), Pro389
(Vs), Pro390 (V,y,), Asp405 (Vy)
HYI: Met8 (Hy), Asp9 (Hs), Phe12 (Hy,), Leu319 (Hy), Arg335 (Hy), Pro336 (Hm), Pro353 (Hs), Met387 (Hp,), Leu388 (Hy), Pro389
(Hm), Pro390 (Hp,), Asp405 (Hy), Met407 (Hy)
Cavity 4 Artesunate -57.34 VDW: Glu191 (Vg), 16204 Vi), Gly254 (V,,), Gly255 (Vy,), Val256 (Vy,), Ser257 (Vs), Gly259 (Vi) Lys261 (Vs), Asp262 (Vy),
Gly308 (V)
HYI: Glu191 (Hpy,), Leu192 (Hy), 116204 (Hyy,), Gly254 (Hy), Gly255 (Hy,), Val256 (Hy,), Ser257 (Hy,), Gly259 (Hy,), Lys261 (Hs),
Gly308 (Hm)
ClI: Glu260, Asp262
HB: Lys261
Azadirachtin -14.34 VDW: Asn190 (Vy), Glu191 (V,), Leu192 (Vy), Gly202 (Vy,), Lys203 (Vy), 16204 (Vy), Asp231 (Vy), Ser257 (Vy), Gly259 (Vy),
Lys261 (Vs), Asp262 (V,), Gly308 (V)
HYI: Asn190 (Hy,), Glu191 (Hy), Leu192 (Hy,), Lys203 (Hy), 116204 (Hy), Ser257 (Hy), Gly259 (Hy), Lys261 (Hm)

Cl: Glu191
Cavity 5 Artesunate -51.70 VDW: Pro4 (Vg), Thr6 (Vy), Lys10 (Vm), Thr14 (Vi,), Met18 (Vy), GIN275 (Vg), 1276 (Vy), HIE277 (V)
HYI: Pro4 (Hs), Thro0C (Hy), Lys10 (Hs), lle13 (Hy), Thr14 (Hpy), Met18 (Hp), GIn275 (Hg), HIE277 (Hy)
HB: Thr14
Azadirachtin 17.04 VDW: Pro4 (Vy), Leu5 (Vy,), Thr6 (Vy), Lys10 (Vm), Thr14 (Vy), Glu17 (Vy), Met18 Vi), 16276 (Vy), HIE277 (Vy), Phe278 (V)
HYI: Pro4 (Hg), Leu5 (Hy), Thr6 (Hy), Lys10 (Hm), Ala11 (Hy), Thr14 (Hs), Met18 (H,,), HIE277 (Hs), Phe278 (Hy)
Cl: HIE277
HB: Thr6
Cavity 6 Artesunate —60.65 VDW: Phe3 (V,), Val256 (Vy,), Ser257 (Vs), Met258 (Vy), Gly259 (Vyy), Glu260 (Vs), Asp262 (Vy), Lys265 (Vs), GIn266 (Vy),
Arg280 (Vs)
HYI: Phe3 (Hy), Ser257 (Hy,), Met258 (Hs), Glu260 (Hp), Asp262 (Hy), Lys265 (Hp), Arg280 (Hs), Pro288 (Hy,)
HB: Lys265
Azadirachtin -59.87 VDW: Phe3 V), Ser257 (Vy), Met258 (V), Gly259 (Vy,), Glu260 (Vw), Asp262 (Vy,), Lys265 (Vs), GIN266 (Vyy,), Arg280 (Vy),
Leu287 (Vw)

HYI: Pro2 (Hy,), Phe3 (Hy), Met258 (Hs), Asp262 (Hy), Lys265 (Hp,), Arg280 (Hp,), Leu287 (Hy)
HB: Gly259, Lys265, GIn266
Cavity 7 Artesunate -53.94 VDW: Val21 (Vg), Thr24 (Vy,), Ala38 (Vs), Lys155 (Vy), Asn178 (Vi), Lys327 (Vy), Gly330 (Vi) 1€331 (Vy), Leu332 (V)
HYI: Val21 (Hg), Thr24 (Hpm), Ala38 (Hg), Lys155 (Hy), Gly156 (Hw), Lys327 (Hm), Gly330 (Hy), Leu332 (Hs)
HB: Asn178, Lys327
Azadirachtin 285.81 VDW: Val21 V), Leu22 (Vy,), Gly23 (Vy,), Thr24 (Vs), Arg35 (Vy), Val36 (Vy), Leu37 (Vs), Ala38 (Vy), GIN39 (Vy), Lys155 (Vy),
Gly156 (Vy), Thr157 (Vy), HIE158 (Vy), Glu176 (Vs), Val177 (Vy), Asn178 (Vy), GIn329 (V,), Gly330 (Vs), lIe331 (V,), Leu332 (V)
HYI: Val21 (Hg), Leu22 (H,y), Gly23 (Hy), Thr24 (Hs), Val36 (Hy), Leu37 (Hp,), Ala38 (Hy), GIn39 (Hy,), Lys155 (Hy), Gly156 (Hs),
Glu176 (Hyw), Val177 (Hy), Asn178 (Hg), Gly330 (Hpy), 116331 (Hy), Leu332 (Hg)
HB: Val36, GIn39, Gly156
Cavity 8 Artesunate —64.49 VDW: Pro48 (Vy), Pro49 (Vg), Phe50 (Vg), Alab2 (Vy,), Ala77 (Vy), Gly78 (Vs), GIU79 (Vy), Gly96 (Vi) Ala97 (Vy,), Pro98 (Vs)
HYI: Pro48 (Hy,), Pro49 (Hy), Phe50 (Hy,), Ala52 (Hy), Ala77 (Hs), Gly78 (Hs), Glu79 (Hy), Gly96 (Hy), Ala97 (H), Pro98 (Hy)
HB: Gly78
Azadirachtin -40.42 VDW: Pro48 (Vy), Pro49 (Vg), Ala77 (Vs), Gly78 (Vy), Gly96 (Vy,), Pro98 (Vy,)
HYI: Leud7 (Hy), Pro49 (Hy), Ala77 (Hs), Gly78 (Hs)
HB: Gly96

Keys: VDW: Van der Waal's interactions; HYI: Hydrophobic interactions; Cl: Charge interactions; HB: Hydrogen bonding. V,,: Weak Van der Waal’s Interaction; V,,: Moderate Van der
Waal’s Interaction; Vs: Strong Van der Waal’s Interaction; V,: Extraordinary Strong Van der Waal’s Interaction; H,,: Weak Hydrophobic Interaction; H,,: Moderate Hydrophobic Interaction;
Hs: Strong Hydrophobic Interaction; H,: Extraordinary Strong Hydrophobic Interactions.
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those cavities, where the ligands had binding affinity value in the
negative.

Succinctly, for cavity 1, artesunate had significant Van der
Waal’s interactions with Glu218, HID219, Val408, Gly410, and
Arg411 while having significant hydrophobic interactions with
Val408 and Arg411 only. Apart from this, 18C of artesunate was
having charge interaction with Glu218 at a bond distance of
3.740 A while the 270 of artesunate exhibited hydrogen
bonding with Argdllat a bond distance of 2.190A.
Azadirachtin interactions with amino acid residues of
Gephyrin E’s cavity 1 were better than artesunate, but the
binding affinity was in positive range, hence, not discussed here.

For the cavity 2, artesunate was having significant Van der
Waal’s and hydrophobic interactions with Lys284, Pro285,
HID356, and Arg357 amino acid residues of 6FGC. Apart
from these, 260 of artesunate was having hydrogen bonding
with Arg357. On the other hand, azadirachtin had some
significant Van der Waal’s and hydrophobic interactions with
HID356 and Ser373. No other interactions apart from Van der
Waal’'s and hydrophobic interactions were found for
azadirachtin.

Similarly, for cavity 3, artesunate had some significant Van der
Waal’s interactions with Phe12, Pro336, and Met387 while having
significant hydrophobic interactions with Pro336 and Met387
only. Apart from these, 240 of artesunate had hydrogen-bonding
interaction with Tyr355 of 6FGC. Azadirachtin, on the other
hand, had some significant Van der Waal’s interactions with
Met8, Asp9, Pro353, and Pro389 and significant hydrophobic
interactions with Met8, Asp9, and Pro353 amino acid residues in
cavity 3 of 6FGC. No other interactions apart from Van der
Waal’s and hydrophobic interactions were found in case of
azadirachtin.

In case of the cavity 4, artesunate was having significant
Van der Waal’s interactions with Glul91, Ser257, Lys261, and
Gly308 while having significant hydrophobic interactions
with Lys261 only. Moreover, 18C of artesunate was having
charge interactions with Glu260 and Asp262at a bond
distance of 4.825 and 4.142 A, respectively. Further, 260 of
artesunate was exhibiting hydrogen bonding with Lys261 at a
bond distance of 2.087 A. On the other hand, azadirachtin was
having significant Van der Waal’s interactions with Glul91,
Ile204, and Lys261 while having significant hydrophobic
interactions with Glul91 and Ile204 only. Apart from
these, 210 of azadirachtin was having charge interaction
with Glu191 at a bond distance of 4.506 A.

Moreover, in the case of cavity 5, artesunate had some
significant Van der Waal’s interactions with Pro4, GIn275, and
HIE277 while having strong hydrophobic interactions with Pro4,
Lys10, GIn275, and HIE277 amino acid residues of 6FGC. Apart
from these, 270 of artesunate was having hydrogen bonding with
Thrl4 at a bond distance of 2.153 A. Azadirachtin interactions
with amino acid residues were found to be significant, but since
the binding affinity was in positive range, it is not discussed here.

In case of the cavity 6, artesunate was having significant Van
der Waal’s interactions with Ser257, Met258, Glu260, Lys265, and
Arg280 while having significant hydrophobic interactions with
Met258 and Arg280 only. Apart from these, 230 of artesunate
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was having hydrogen bonding with Lys265 at a bond distance of
2.371 A. On the other hand, azadirachtin was having significant
Van der Waal’s interactions with Met258, Lys265, and Arg280
while having significant hydrophobic interactions with Met258
only. Moreover, 31H of azadirachtin was having hydrogen
bonding with Gly259 at a bond distance of 2.001 A, 250 of
this ligand was having hydrogen bonding with Lys265 at a bond
distance of 2.564 A, while 270 of azadirachtin was exhibiting
hydrogen bonding with GIn266 at a bond distance of 1.697 A.

For the cavity 7, artesunate was having significant Van der
Waal’s interactions with Val21 and Ala38 only while having
significant hydrophobic interactions with Val21, Ala38, and
Leu332 amino acid residues of 6FGC. Apart from that, 200
and 260 of artesunate were having hydrogen bonding with
Asn178 and Lys327 at a bond distance of 2.251 and 2.111 A,
respectively. Azadirachtin interactions with amino acid residues
were better, but since the binding affinity was in positive range,
we will not discuss it here.

In the case of cavity 8, artesunate was having significant Van
der Waal’s interactions with Pro49, Phe50, Gly78, and Pro98
while having significant hydrophobic interactions with Pro49,
Ala77, Gly78, and Pro98 amino acid residues of 6FGC. Apart
from that, 220 of artesunate was having hydrogen bonding with
Gly78at a bond distance of 2.238 A. On the other hand,
azadirachtin was having significant Van der Waal’s
interactions with Pro49, Ala77, and Gly78 while having
significant hydrophobic interactions with Ala77 and Gly78
only. Moreover, 31H of azadirachtin was having hydrogen
bonding with Gly96 at a bond distance of 2.297 A.

Though there is marginal difference in the binding affinity for
both the ligands in case of cavity 3, cavity 4, cavity 6, and cavity 8,
the interactions revealed that azadirachtin was also having a
strong potential to act on the residues of 6FGC.

DISCUSSION AND FUTURE
PERSPECTIVES

Molecular dynamics is a crucial tool in structural molecular
biology and computer-aided drug design. In attempts to
understand biochemical processes, the combination of both
ligand and structure-function-based analysis for drug design
approaches remains a promising tool for the discovery and
development of new molecules with potential anti-malaria
activities (Ojha and Ray, 2015). During malaria parasite
invasion of the brain (cerebral malaria), metabolite such as
gamma amino butyric acid (GABA) and pipecolate are
elevated at the trophozoites and schizont stage (post invasion).
Plasmodium falciparum invasion of the red blood cells lead to
break down of haemoglobin whose globin component is utilized
for the synthesis of various plasmodium proteins (Beri et al.,
2019). Plasmodium falciparum can convert alpha ketoglutarate to
glutamate, which in turn converted to GABA. In addition, other
inflammatory metabolites such as those found in the kynurenine
pathway (quinolinic and kynurenic acid) are thought to be
important in cerebral malaria pathogenesis. Quinolinic acid
has been shown to cause seizures in animal models of brain
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disease, while kynurenic acid is an antagonist and is generally
thought of as neuro-protective (John et al., 2006).

Increase in the secretion of GABA mediated by P. falciparum
schizont infected erythrocyte is suggestive for the clinical
manifestation of a COMA associated with cerebral malaria (Beri
et al, 2019) Gephyrin-mediated clustering of GABA 4 and glycine
receptors underlies fast inhibitory signalling at central synapses
(Jeong and Ryan, 2019). Kasaragod et al. (2019) in his studies
demonstrated that artemisinin antimalarial drug binds to gephyrin
at the same active site where the receptor interaction occurs.
Neurotransmission inhibition is mediated by synaptic GABA,
and glycine receptors in the central nervous system (CNS).
Gephyrin is a key protein that reinforces synaptic recruitment
of both receptors (Jeong and Ryan, 2019).

Gephyrin is a Greek word which means “bridge” and represents
the functional significance of bridging between glycine receptors
and the cytoskeleton (Tyagarajan and Fritschy, 2014; Jeong and
Ryan, 2019). It is a 93 kDa protein with N-terminal geph G and
C-terminal geph E domains, connected through a long
unstructured linker often called the geph C domain (Tyagarajan
and Fritschy, 2014). These domains play critical roles in complex
formation and a not well-understood role in oligomerization to
zero in on receptors at synapses.

Previously, in vitro analysis had revealed geph G assembles as a
trimer and geph E assembles as a dimer, which resembles the
unusual disulphide bridge of SM1 peptide (Ghosh et al., 2009;
Jeong and Ryan, 2019)). The geph C linker contains post-
translational modification sites thought to regulate the
formation of gephyrin clusters (Jeong and Ryan, 2019). Among
the three domains, the geph E domain is the one that directly
interacts with the inhibitory receptors (Jeong and Ryan, 2019). The
GABA , and glycine receptors are part of the larger Cys-loop family
of pentameric ligand-gated ion channels (Jeong and Ryan, 2019).
The Cys-loop family was suggested in recent review (Adejoh et al,,
2018) to be the major molecular component responsible for the
anti-plasmodial characteristic of phytomedicine, which possess
cyclotide antimicrobial peptides. It is thought that all the
subunit in the pentamer shares a conserved architecture,
including four transmembrane a helices (M1-M4) with a
poorly conserved and often large and disordered intracellular
loop between M3 and M4 (Jeong and Ryan, 2019). It is this
flexible loop that can bind to a groove in the geph E domain of
gephyrin (Kim et al., 2006; Maric et al., 2011; Maric et al., 2014;
Jeong and Ryan, 2019).

Kasaragod et al. (2019), using the concept of neuro-interaction,
identified the artemisinin binding site on gephyrin and provides
structural and biochemical insights into the mechanism of
artemisinin in gephyrin-mediated inhibitory receptor clustering.
Geph E domain as discussed earlier is the target for artemisinin,
as reported using a crystallographic approach to define atomic-scale
mechanisms of the small molecules (Jeong and Ryan, 2019
Kasaragod et al,, 2019). The experimental approach revealed four
structures of the geph E domain; two of which were shown to be
bounded by the artemisinin, artemether, and artesunate; the other
two were bounded by peptides from the intracellular loops of the
GABA, a3 and glycine B receptor subunits. Interestingly, the
artemisinin-binding pocket overlaps with the receptor binding
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pocket and shares key points of interaction, implying that these
drugs may directly compete with receptor binding (Jeong and Ryan,
2019). The receptor-gephyrin interaction occurs in a large groove
formed by geph E subdomains III and IV (Jeong and Ryan, 2019).
Both receptor-derived peptides nestle within this hydrophobic
groove. The peptides from the GABA, R a3 subunit and GlyR f
subunit form key interactions with F330, 1331, and R635 in gephyrin.
Intriguingly, the two artemisinins are positioned to form interactions
with these same residues (Jeong and Ryan 2019). Hypothetically, it is
most probable that the process and reports of coma associated with
cerebral malaria may be due to the extrusion of GABA and
homocysteine by P. falciparum schizont-infected erythrocytes. This
provides important clinical implications enabling further
investigation into bioactive compounds of plants origin with a
view to mitigate pathogenesis of malaria in all its forms.

Similarly, Figures 2, 3 present the binding interaction (affinity
binding) between artesunate (an Artemisinin derivatives) and
azadirachtin to the active site of gephyrin E. The result of
computational simulation study shows that azadirachtin has a
high binding affinity to the active site of gephyrin when compared
to artesunate binding. However, the GRIP docking shows
otherwise bearing, artesunate has comparatively more binding
affinity to azadirachtin, albeit marginal difference was found in
the binding affinity for both the ligands for cavity 3, cavity 4,
cavity 6, and cavity 8, with the interactions revealing that
azadirachtin has a strong potential to act on the residues of 6FGC.

Results from these disparate methods suggest that azadirachtin
properly developed may be as effective an anti-malarial agent as
artesunate. Artesunate and azadirachtin binds to the same active site
of gephyrin suggesting that both compounds may possess similar
structure, side chains, and functionality. The binding of artesunate to
gephyrin E reported earlier to stabilize the interaction between
GABA, receptors and gephyrin leading to trans-differentiation of
the a-cells into the B-cells enabling artesunate exhibit its antimalarial
activity (Kasaragod et al. 2019). With the similarities between
artesunate/azadirachtin as reported in this study, it is most
probable also that both metabolites may share same pattern of
molecular activities against malaria parasite invasion.

The paucity of literature on risk factors for cognitive
impairment as a result of malaria/cerebral malaria highlights
the need for additional studies in this area, and also it brings to the
fore the need for further studies on phyto-compounds used in
combating the scourge of malaria across sSA.

Conclusively, the present study compares the binding affinity
of artesunate and azadirachtin a metabolite present in neem plant
to the active site of gephyrin, thought to underlie their roles in
clustering inhibitory ligand-gated ion channels at synapses (Jeong
and Ryan, 2019). The formation of clustering inhibitory ligand-
gated ion channels at synapses may be due to the hydrophobic
nature of the side chains of glycine and GABA, and this could
prevent the transmission of Plasmodium parasite across synaptic
membrane. As a result of this, parasite anchoring leading to
transmembrane differentiation would be truncated, hence, the
control of malaria disease. The molecular details provide
foundational insights for this study probing mechanisms of
receptor clustering which earlier suggests the anti-malaria
potential of artemisinin (Maric et al,, 2014). The actual roles
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of artesunate in destabilizing synaptic signalling complexes at
concentrations used to treat malaria are less clear (Jeong and
Ryan, 2019). Some of the challenges studying the effects of this
drug class on neuronal signalling is the documented cytotoxicity
in cell culture and animal studies, as well as neurotoxicity in
human clinical studies (Efferth and Kaina, 2010; Jeong and Ryan,
2019), and this may probably be due to high levels of extracellular
homocysteine, which have been implicated in neurological
damage and disrupting the blood brain barrier (Hunt and
Grau, 2003; Srivastava et al., 2019). Going forward, it will be
exciting to visualize complexes of full receptors with gephyrin to
better understand how synaptic anchoring is achieved and how
small molecules may destabilize it, leading to the effective control
of malaria disease using plant-based drugs/components. It is of
note also, in this study, that it was surprising that, for all the 3 (1.5
and 7) cavities, azadirachtin had less binding but much stronger
interactions with amino acid residues as compared to the rest of
the cavities, and even surpassed artesunate in some cases; this
may explain the higher total binding energy from the MD
simulation. The GRIP docking enabled a more detailed
interaction at the atomic resolution level as compared to the
binding free energy estimation from the Molecular Mechanics/
Poisson-Boltzmann Surface Area (MM/PBSA). Further, from the
GRIP docking result, it is evident that both compounds have
more chances to overcome the drug resistance problem, as both
are not highly site-specific drug molecules. Moving forward, it is
highly essential for the combination of disparate molecular/
biophysical tools for attempting rational drug design from
natural bioactive compounds.
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Background: The world has been unprecedentedly hit by a global pandemic which broke
the record of deadly pandemics that faced humanity ever since its existence. Even kids are
well-versed in the terminologies and basics of the SARS-CoV-2 virus and COVID-19 now.
The vaccination program has been successfully launched in various countries, given that
the huge global population of concern is still far behind to be vaccinated. Furthermore, the
scarcity of any potential drug against the COVID-19-causing virus forces scientists and
clinicians to search for alternative and complementary medicines on a war-footing basis.

Aims and Objectives: The present review aims to cover and analyze the etiology and
epidemiology of COVID-19, the role of intestinal microbiota and pro-inflammatory markers,
and most importantly, the natural products to combat this deadly SARS-CoV-2 virus.

Methods: A primary literature search was conducted through PubMed and Google
Scholar using relevant keywords. Natural products were searched from January 2020
to November 2020. No timeline limit has been imposed on the search for the biological
sources of those phytochemicals. Interactive mapping has been done to analyze the multi-
modal and multi-target sources.

Results and Discussion: The intestinal microbiota and the pro-inflammatory markers
that can serve the prognosis, diagnosis, and treatment of COVID-19 were discussed. The
literature search resulted in yielding 70 phytochemicals and ten polyherbal formulations
which were scientifically analyzed against the SARS-CoV-2 virus and its targets and found
significant. Retrospective analyses led to provide information about 165 biological sources
that can also be screened if not done earlier.

Conclusion: The interactive analysis mapping of biological sources with phytochemicals and
targets as well as that of phytochemical class with phytochemicals and COVID-19 targets
yielded insights into the multitarget and multimodal evidence-based complementary medicines.

Keywords: SARS-CoV-2, complementary medicine, secondary metabolites, polyherbal formulation, intestinal
microbiota, pro-inflammatory markers
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1 INTRODUCTION

A virus can be defined as a dead or alive particle that completely
relies on the host to thrive and replicate further (Fermin, 2018).
Plants, animals and humans can serve as hosts. In general,
viruses can be classified on the basis of their replication and
growth mechanism (Lodish et al.,, 2000). The most common
virus is influenza (flu) which generally causes chills, headaches,
muscle pain, and fever and can survive for about 18-20 days
in humans (Eccles, 2005). A virus may be transmitted from
host to host (E.g. Coronavirus) (Riou and Althaus, 2020).
Coronaviruses have existed for a long time as microbial flora
or pathogens in bats, camels, and cats (Singla et al., 2020).
The first documented infectious outbreak and public health
emergency associated with coronaviruses was identified in
2003 in the form of severe acute respiratory syndrome (SARS)
(Yang Y. et al.,, 2020).

Currently, the world is experiencing the fifth pandemic after
the 1918 flu (Liu YC. et al., 2020). The cause of the present
pandemic is the novel coronavirus disease (COVID-19), a
communicable viral infection caused by the severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) (Zheng,
2020). At the end of 2019, SARS-CoV-2 was first identified
in Wuhan city in the People’s Republic of China (PRC) and then
spread globally as a pandemic. The virus may get transmitted
from human to human through respiratory droplets produced
in high quantities during coughing, sneezing, shouting, singing
and even talking. The virus can survive on various surfaces from
a few seconds to many days. For example, it may remain on
plastic for up to two to 3 days, stainless steel for up to two or
3 days, cardboard for up to 1 day, and copper for up to 4 hours
(van Doremalen et al., 2020). It has been found that the
infection is associated with worse outcomes in individuals
with comorbidities and/or immune compromise (Wei
J. et al., 2020). The spread of the infection and the lack of
etiological treatment has necessitated country and region-wide
restrictive measures including travel bans, lockdowns and social
distancing practices. These measures in combination with
personal protective equipment and personal hygiene have
commendably lowered the spread of the virus in expectation
of vaccines and etiological treatments. However, financial,
professional and social activity have been negatively affected,
making the discovery of effective treatment regimens a dire
need. (Atalan, 2020).

2 METHODOLOGY

The authors performed a literature search with keywords,
related to different phytochemical classes, natural products,
microbiota, pro-inflammatory markers, SARS, coronavirus,
and COVID-19 related terminologies, literature was collected
from PubMed and Google Scholar search engines. Natural
products were searched from January 2020 to November
2020. No time limit was applied to the search of studies
related to the etiology and epidemiology of COVID-19,
intestinal microbiota and pro-inflammatory markers,

Natural Products Against COVID-19

biological products, their origin and mechanisms of action.
Relevant clinical studies focusing on natural products have
been searched without a time limit as well. Articles published
in languages other than English, review articles, short
communications, articles published in non-peer—reviewed
sources, including those without PubMed Identification
(PMID) or Digital Object Identifier (DOI) were excluded to
ensure the credibility and reproducibility of the study.

3 COVID-19: ETIOLOGY AND
EPIDEMIOLOGY

3.1 Etiology

Coronaviruses are positive-stranded RNA viruses with a
crown-like appearance under an electron microscope due to
the presence of spike glycoproteins (S protein) (Yan et al.,
2020). The subfamily of orthocoronavirinae in the
Coronaviridae family is subdivided into four CoVs genera,
i.e., alphacoronavirus (alphaCoV), betacoronavirus (betaCoV),
deltacoronavirus (deltaCoV), and gammacoronavirus (gammaCoV)
(Chan et al., 2013). Genomic evaluation showed that bats
and rodents are the gene sources of alphaCoVs and
betaCoVs, respectively, while the avian species are sources
of deltaCoVs and gammaCoVs (Su et al., 2016). The virus can
cause respiratory, enteric, hepatic, and neurological diseases
(Kahn and McIntosh, 2005). HCoV-0OC43 and HCoV-HKU1
(lineage A betaCoVs); HCoV-229E, and HCoV-NL63
(alphaCoVs) have been identified as the human CoVs. Most
of them are associated with mild immune responses such as
common colds and upper respiratory tract infections,
especially in immunocompromised people. However, SARS-
CoV, SARS-CoV-2, and MERS-CoV (lineage B and C
betaCoVs, respectively) are epidemic causing variables
associated with adverse outcomes in subjects of all ages.
Exposing the virus to heat treatment at a temperature above
75°C for 3 min results in its inactivation (Abraham et al., 2020;
Raeiszadeh and Adeli, 2020). Exposure to higher temperatures
causes a decrease in the replication rate. It is also inactivated by
lipid solubilizing solvents, such as ether, ethanol, chlorine-
containing disinfectants, peroxyacetic acid, and etc (Jing et al.,
2020).

SARS-CoV-2 has a single-stranded RNA envelope. For its
characterization, a metagenomic next-generation sequencing
approach was applied, which is 29881 bp in length and encodes
9,860 amino acids (Chen L. et al., 2020). Two types of proteins
are expressed as structural and non-structural using gene
fragmentation (Mousavizadeh and Ghasemi, 2020). The S,
E, M, and N gene codes are for structural proteins, whereas
non-structural 3-chymotrypsin-like protease, papain-like
protease, and RNA-dependent RNA polymerase are encoded
by the ORF region. The S glycoproteins are present in the
surface of SARS-CoV-2 that binds to the ACE2 host cell
receptor and potentiates the penetration of the virus to the
cell. As the S protein binds to the receptor, the TM protease
Serine 2, positioned at the host cell membrane, helps in
entering into the cell and activating the S protein. As the
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virus gets cell entry, the viral RNA is released in the process of
RNA replication. Then, transcription takes place through
protein cleavage and the assembly of the replicase-transcriptase
complex (Chen L. et al, 2020). Structural proteins are
synthesized, assembled, and packaged in the host cell and
viral particles are released further.

3.2 Transmission

The transmission routes of SARS-CoV-2 are shown in Figure 1.
The first case was identified in a seafood market in Wuhan,
China; however, other cases were not linked with it. Human to
human transmission occurred later and people acted as hosts
and carriers of the virus (Riou and Althaus, 2020). The
presentation of the infection included fever, dry cough,
tiredness, arthralgia, anosmia (loss of smell) and loss of taste.
Symptomatic individuals were isolated and kept in quarantine
for a certain period of time. Viral transmission was associated
with respiratory droplets from coughing and sneezing (Dhand
and Li, 2020). Asymptomatic individuals can also transmit the
infection. Given that they are not quarantined, they may spread
the infection up to 80% more than symptomatic individuals,
who are diagnosed and isolated on time (Ford et al., 2020).
There is some evidence that the transmission of the virus is more
prevalent in intensive care units (ICUs), compared with general
wards, perhaps due to the abundance of devices producing
aerosols. This applies to COVID-19 patients hospitalized in
such departments among non—COVID-19 patients. Such a

comparison is not applicable to COVID-19 wards, where all
the patients are infected. Additionally, the virus can be found on
floors, computer mice, trash bins, and door handles and people
can be infected through hand contact with the contaminated
surfaces (Guo et al., 2020). Based on data from China CDC and
local CDCs, it has been found that the virus can remain
incubated for about three to 7 days and the time from
infection to symptoms takes 12.5days (Li Q. et al., 2020).
The data showed that the virus gets doubly replicated every
7 days (T.K and G, 2020).

With a particle size lower than 100 pm, airborne transmission
is primarily suspected of transmitting SARS-CoV-2 (Jayaweera
et al,, 2020). Aerosols may originate from dental activities and
various medical surgeries and procedures, such as endotracheal
intubation, bronchoscopy, open suctioning, nebulized treatment
administration, manual ventilation before intubation, turning the
patient into the prone position, disconnecting the patient from
the ventilator, non-invasive positive-pressure ventilation,
tracheostomy, and cardiopulmonary resuscitation.
Furthermore, aerosols may be produced by a droplet oozed
during a normal conversation or an infected subject coughing
and sneezing (Tran et al.,, 2012). These findings have also been
corroborated by many studies. In a study by Lai et al., many
healthcare workers were infected while they were treating the
patients in Tongji Hospital in Wuhan, China (Lai X. et al., 2020).
The study shows that 9,684 healthcare workers were undertaken
and 110 of them had COVID-19 with an infection rate of 1.1%. A
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major infection rate of about 71.8% was found in nurses (70
nurses), with a median age of 36.5 years. However, no surfaces were
tested positive for COVID. The commonly observed symptoms
were fever, myalgia or fatigue, cough, sore throat, and muscle ache.
For taking precautions, the World Health Organization (WHO)
recommended a set of protocols to be followed.

Another mode of SARS-CoV-2 transmission is self-
inoculation. It may occur through poor hand hygiene or
poorly following the disease-controlling etiquettes (Przekwas
and Chen, 2020). Viral transmission has been increased due to
frequently touching contaminated fomites.

Besides airborne transmission, the fecal route has also a
discernible effect on the transmission of the virus (Heller et al.,
2020). A study conducted in China showed that out of 1,070
specimens collected from 205 COVID patients from three different
hospitals, the virus in 29% of the positive COVID cases was
transmitted through fecal route after they observed live
infectious agents in the patients’ stools (Wang W. et al.,, 2020).
Xing et al., examined three patients for the continually shredding of
the virus through stools, even after the nasopharynx samples
showed negative results (Xing et al,, 2020). Consequently, there
is a strong need for the inclusion of feces or anal swab tests before
discharging patients after recovering from COVID-19.

3.3 Epidemiology

Earlier studies showed that about 66% of COVID cases in China
were due to the seafood market in which various living wild
animals, including bats, marmots, and poultry, were on sale
(Chen N. et al, 2020; Huang et al., 2020). This has been
linked to the sudden outbreak of COVID in Wuhan city. The
WHO investigation reports showed that the Huanan seafood
market samples were tested positive for COVID, but linking it to
specific animals was not established.

Until October 11, 2021, a total of 238,664,271 positive cases and
4,867,551 deaths have been reported around the world according to
Worldometer. info (Worldometer, 2020). 215,862,052 cases out of
them have recovered, with an average recovery rate of 90.45%.
About 100,751,486 positive cases (42.21%) of the total cases have
been reported in the United States, India, and Brazil only. Apart
from these three countries, the other top ten countries included
UK, Russia, Turkey, France, Iran, Argentina, and Spain. All these
countries contributed to more than 60% of the total reported cases.
While Seychelles topped in total cases per million people, with
218,297counts, Peru topped in deaths per million people in the list
of around 220 countries.

4 INTESTINAL MICROBIOTA AND
PRO-INFLAMMATORY MARKERS IN
COVID-19: PROGNOSIS, DIAGNOSIS, AND
TREATMENT

4.1 Intestinal Microbiota and

Pro-inflammatory Markers
The human gastrointestinal tract hosts around 1,014 resident
microorganisms such as bacteria, archaea, viruses, and fungi (Gill
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et al,, 2006). The prevailing gut bacteria in healthy individuals
include the phyla of Actinobacteria, Firmicutes, Proteobacteria,
and Bacteroidetes. The bacterial families Bacteroidaceae,
Prevotellaceae, Rikenellaceae, Lachnospiraceae, and
Ruminococcaceae reside in the colon in large numbers (van
der Lelie et al,, 2020). The gut microbiota populations consist
of at least one trillion microorganisms and weigh up to 3 kg
(Rooks and Garrett, 2016; Nagpal et al., 2018). The microbiota’s
genetic material inherently regulates their population dynamics
and the expression of a wide range of biomolecules.

During pathogen infection, the gut microbiota will act as
competitors in the antivirus combat. Meanwhile, the myeloid
cells will be activated and cytokines such as IL-6, IL-1, and TNF
will be released. Then, it will be followed by an increased
expression of cytokine-related receptors (e.g., IFN-a/f
receptor). Cytokine activated genes (CAGs) will be transcribed
and then proteins with antiviral functions will be coded.
Combined with Thl7 cells, released cytokines will induce
inflammation through NF-kp or JAK-STAT signaling pathway.
The gut microbiota also play a role in reducing inflammation in
case of hypersensitivity.

Constant crosstalk between the microbiome and the human
body provides them with habitat and nourishment. In return, the
microbiome contributes to the regulation of the host’s
physiological functions in terms of digestion and immunity
(Figure 2). Digestion is co-facilitated by substances produced
by microorganisms (Singh et al., 2017; Anand and Mande, 2018).
At the same time, microorganisms serve as competitors against
intruding pathogens. The gastrointestinal immune tissue
maintains a balance between Thl7 lymphocytes and
T-regulatory cells (Tregs) to supervise the microorganisms’
population growth. This balanced coexistence is known as
symbiosis (Li et al, 2020b; Lee and Shin, 2020). When
internal or external factors induce alterations in the
microbiome, a temporary status of dysbiosis occurs. Dysbiosis
pertains to the depletion or excessive proliferation of intestinal
microbial populations and/or the disruption of their
physiological functions. A dysbiotic microbiome has been
detected in several diseases from inflammatory bowel diseases
(IBDs) to cardiovascular diseases and depression (Tang et al.,
2017; Khan et al., 2019).

Various pro-inflammatory markers have been detected and
investigated within the last years (Vandeputte et al, 2016).
Although their association with diseases that are systematic or
that affect different body systems remains obscure, the “leaky gut”
theory provides a formidable explanation (Obrenovich, 2018).
According to this theory, alterations in the gut microbiota
composition can lead to a leakage of endotoxins into the
circulation that promotes systemic inflammation in addition to
the development of obesity, metabolic diseases, asthma, and
multiple sclerosis among others (Singh et al., 2017; Tang et al,,
2017).

Localized or circulated toxins are perceived as pathogen- and
microorganism-associated  molecular  patterns  (PAMPs,
MAMPs) by cellular pattern recognition receptors (PRRs).
These toxins induce the production of pro-inflammatory
cytokines (Negi et al, 2019). Cytokines are signaling
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TABLE 1 | Pro-inflammatory markers associated with the intestinal microbiota (Schirmer et al., 2016; Chen et al., 2017; Gou et al., 2020).

Marker Family Main sources

Interleukin 1b IL-1 Macrophages

Interleukin 8 CXC Macrophages, epithelial cells, monocytes

Interleukin 10 IL-10 Monocytes, T cells, B cells

Interleukin 12 IL-12 Dendritic cells, epithelial cells, neutrophils

Tumor Necrosis Factor (TNF)  TNF Macrophages, NK cells, adipocytes, CD4 (+) T lymphocytes
Interferon Type 1 IFN-1 Dendritic cells

biomolecules secreted by immune cells to affect numerous
endogenous  processes, including  immunomodulation
(Schirmer et al, 2016). Detected pro-inflammatory markers
are presented in Table 1.

4.2 Intestinal Microbiota and Markers in
COVID19: Prognosis, Diagnosis, and

Treatment

The role of the microbiome in infectious diseases has been
extensively studied. Despite the advances in the field, many
aspects of this topic remain unknown (Negi et al., 2019; Dhar
and Mohanty, 2020). Briefly, the mainstay of treatment for
infections, especially antibiotics, affects the gut microbiota by
decreasing the population of microorganisms that are sensitive to
the prescribed medicines. In most cases, this dysbiotic condition
leads to temporary gastrointestinal distress (Bernstein, 2014; He
et al,, 2020). At the same time, the interaction between the
microorganisms and the host immune system can affect the
immune response against pathogens (Rooks and Garrett, 2016;
Nagpal et al., 2018).

Function

Pro-inflammation, pro-differentiation, apoptosis
Pro-inflammation, chemotaxis, angiogenesis
Anti-inflamsmation, inhibition of pro-inflammatory cytokines
Pro-inflammation, cell differentiation, NK cells activation
Pro-inflammation, cytokine production, cell proliferation, anti-
infection

Pro-inflammation, innate immunity

COVID-19 seems to affect the digestive system as well, taking
into account that many patients have gastrointestinal symptoms,
including but not limited to vomiting and diarrhea (Xiao et al,,
2020). Moreover, enterocytes express ACE-2 inhibitors and can
be infected by SARS-CoV-2 (Wang J. et al., 2020; He et al., 2020).
Stool diagnosis has been one of the most sensitive and specific
methods for detecting SARS-CoV-2 although it is not widely used
for practical reasons (Xiao et al, 2020; Zuo et al, 2020).
Accumulating evidence concerns the implications of the gut
microbiota in the prognosis, diagnosis, and treatment of
COVID-19.

4.2.1 Prognosis
Predicting the course of the COVID-19 infection is quite
complex. Available evidence involves numerous factors,
including gender, age, comorbidities, and clinical and
laboratory findings (He et al., 2020). However, a growing body
of evidence investigates the prognosis of COVID-19 in
correlation with the intestinal microbiota.

Evidence from Wuhan in China suggested that the increased
levels of Lactobacillus species correlated with higher levels of anti-
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inflammatory IL-10 and improved the disease prognosis (Di
Renzo et al, 2020; Lee and Shin, 2020). On the other hand,
the elevated levels of pro-inflammatory bacterial species, such as
Klebsiella, Streptococcus, and Ruminococcus gnavus, correlated
with the elevated levels of pro-inflammatory cytokines and
infection severity (Gou et al., 2020).

Moreover, the gut microbiota seems to be involved in this
condition with the so-called lung-gut axis when it comes to
ARDS. Zhang et al,, have recently shown that microorganisms
such as  Bacteroidetes, Firmicutes, and Proteobacteria
preponderate in the lung (Rooks and Garrett, 2016; Dhar and
Mohanty, 2020).

Previous studies have shown that lung infections affect the
gut microbiota (He et al., 2020; van der Lelie et al., 2020). This
combined evidence indicates a bidirectional of
communication between the gut and the lung microbiota that
contain endotoxins and microbial metabolites capable of
affecting the gut once the lungs are infected (Anand and
Mande, 2018; Dhar and Mohanty, 2020). Out of the pro-
inflammatory cytokines, the expression of IFN-1 seems to
mediate the crosstalk between the infected lungs and the gut
(Lee and Shin, 2020; Mantlo et al., 2020). Experimental and
clinical observations have already demonstrated both the
principal involvement of the gut microbiota in the
pathogenesis of sepsis and ARDS (Dickson, 2018; He et al,
2020) and the contribution of type I interferon to the
hyperinflammation in the progression of severe COVID-19
(Lee and Shin, 2020).

It seems that the depleted microbiome and the secretion of
INF-1 are associated with a poor prognosis, taking into account
that elderly people who have a less diverse intestinal microbiome
lacking beneficial microorganisms such as bifidobacterium are
more prone to adverse outcomes.

axis

4.2.2 Diagnosis

Stool analysis of patients with COVID-19 indicates a persisting
pattern of microbial disruption, even in the absence of GI
manifestations and after recovering from the respiratory
infection (Han et al., 2020). Their microbiota are enriched
with opportunistic pathogens and depleted salutary bacteria.
They also manifest an increased capacity for nucleotide and
amino acid biosynthesis and carbohydrate metabolism. These
findings lead to the question of whether there is a diagnostic
pattern of the COVID-19-associated alterations in the
microbiome (Zuo et al., 2020).

A recent study by Gu et al. suggested that comparing the
microbiome alterations in COVID-19 and HIN1 could assist
in distinguishing these conditions, where their similarities in a
clinical presentation can trouble clinicians during winter
spikes of both infections. They identified seven taxa that
indicate the COVID-19 infection (Li et al.,, 2020b). Their
findings enhance the evidence regarding the involvement of
the intestinal microbiome in COVID-19; however, their
clinical utility has been criticized. Microbiome analysis
takes time and is expensive compared with the established
methods of laboratory diagnosis of both diseases (Klann et al.,
2020).
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Nonetheless, stool PCR is indicated to confirm the diagnosis
when SARS-CoV-2 is undetectable in the upper respiratory tract.
At the same time, recent clinical studies showed that IL-1p was
also markedly elevated in patients with COVID-19, particularly
those admitted to the ICU.

4.2.3 Treatment

In the lack of COVID-19 specific treatment, many studies have
focused on repurposing existing medicines toward the
pathophysiological traits of the disease (Singhal, 2020). The
secretion of IL-1 leads to the dysfunction of the innate
immune system, impairing the COVID-19 response. Inhibiting
IL-1b, one of the microbiota-associated pro-inflammatory
cytokines can be achieved using Anakinra. Anakinra is
recombinant and has a non-glycosylated form of human IL-
1Ra that competitively inhibits the binding of IL-1 molecules to
their (IL-1R) receptor (Gao et al., 2020). Similarly, JAK inhibitors
that target IL-12 and TNF-a have been recognized as a potential
treatment hindering the cytokine storm in COVID-19 (Gao et al,,
2020).

A recent review study published in Science has shown
ambivalent results for these regimens that would be used in
moderate and severe disease (Mudd et al., 2020). Several
studies have examined the use of probiotics in mild disease,
especially in primary home-based care management. In addition,
probiotics can be used as prophylaxis for physicians and
healthcare workers with constant exposure to patients with
COVID-19 (Gill et al., 2001; Dhar and Mohanty, 2020) or as
immunonutrition for vulnerable groups such as obese individuals
(Di Renzo et al.,, 2020). However, more evidence is required to
validate these options.

5 NATURAL PRODUCTS AGAINST
SARS-COV-2: COMPUTATIONAL TO
PRECLINICAL STUDIES

Natural products were searched from January 2020 to November
2020. In case of clinical studies on natural products, the timeline
limit has been removed. No timeline limit has been imposed on
the search for the biological sources of those phytochemicals.
Though there was no keyword used related to in silico or
computational studies, but the literature search yielded in
silico studies as a major outcome, which is quite obvious as
laboratories were not prepared enough to experimentally deal
with this deadly virus, SARS-CoV-2. Globally the researchers
were on a mission to explore all the possible sources against this
virus, and bioinformatics and cheminformatics have indeed
played a significant role, whether it is for the drug discovery
or vaccine design. In this COVID-19 pandemig, it has now been
widely accepted that the truly impactful and significant
computational tools are utmost required to generate an
experimentally feasible hypotheses, so as to accelerate the drug
discovery and vaccine design programs (Galindez et al., 2021;
Mohamed et al.,, 2021; Muratov et al., 2021). Keeping this in
mind, all the in silico-based studies were discussed without any
unbiased mind.
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5.1 Flavonoids

The non-cannabinoid metabolites of Cannabis sativa L.,
caflanone (Figure 3A), were employed to establish the
potential against COVID-19 and associated with the virus
entry factors. Ngwa and colleagues investigated the in silico
and in vitro effect of caflanone. Caflanone was docked with
the ACE2 receptor (PDB ID: 1R4L) while in vitro antiviral
activity was evaluated against the OC43 human coronavirus
(hCoV-OC43). The results indicated that caflanone has a high
affinity with the CoV-2 spike glycoprotein-binding sites towards
the angiotensin-converting enzyme 2 (ACE2), which could
inhibit the viral entry of SARS-CoV-2. Binding energy is

much lower than chloroquine (CLQ) that was initially
considered as prophylactics or a therapeutic anti-COVID-19
compound. Key amino acid residues in the ACE2 receptor
interacting with caflanone were Arg273, Phe274, Glu375, and
Zn coordinated to Glu402. In vitro results suggested that
caflanone could inhibit hCoV-OC43 with an ICs, value of
0.42 uM. Moreover, they found that caflanone could decrease
the expression of the viral entry-related factors, such as AXL-2,
ABL-2, cathepsin L, PI4Kiiif, and various cytokines, viz. IL-1,
IL-6, IL-8, Mip-1a, and TNF-a (Ngwa et al., 2020).

Ngwa and colleagues investigated the in silico effect of
hesperetin (Figure 3B) while it was docked with the ACE2
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receptor (PDB ID: 1R4L) and compared with chloroquine.
Hesperetin has a higher binding affinity than chloroquine
towards the ACE2 receptor, which suggested its potential
against COVID-19 (Ngwa et al, 2020). Hesperetin is a
commonly available flavonoid found in citrus fruits, as
reported by Cordia sebestena L. (Prakash et al., 2020) and
Origanum majorana L. (Erenler et al., 2016).

Furthermore, Ngwa and colleagues investigated the in silico
effect of myricetin while it was docked with the ACE2 receptor
(PDB ID: 1R4L) compared with chloroquine. In a docking study,
Myricetin (Figure 3C) showed better binding affinity than
chloroquine (Ngwa et al, 2020). Myricetin can be isolated
from many sources, including Myrica rubra (Lour.) Siebold
and Zucc. (Wang et al., 2010), Hypericum afrum Lam. (Larit
et al., 2021), Abelmoschus moschatus Medik. (Liu et al., 2005),
Tecomaria capensis (Thunb.) Spach var. aurea (Elshamy et al.,
2020), and Moringa oleifera Lam. (Shervington et al., 2018).

In addition, Ngwa and colleagues investigated the in silico
effect of the linebacker while it was docked with the ACE2
receptor (PDB ID: 1R4L) and compared with chloroquine.
Linebacker presented the potential of having a higher affinity
with the infection-related proteins of SARS-CoV-2, which is
regarded as novel prophylactics and a therapeutic natural
product. It can be isolated from Cannabis sativa L. (Ngwa
et al., 2020).

Chymotrypsin-like protease (3CLpro), papain-like protease
(PLpro), RNA-dependent RNA polymerase (RdRp), and Spike
(S) protein are the crucial proteins of SARS-CoV-2 that infect the
host cell. Luteolin was reported to have anti-SARS-CoV activity
before (Wu et al., 2004; Prasad et al., 2020). Yu et al., performed
the docking simulation to investigate the binding efficiency of
luteolin (Figure 3D) on these proteins (PDB IDs: 6LU7 for
3CLpro; 40VZ for PLpro; 6NUS for RdRp and 6VSB for S
glycoprotein). Luteolin is the main flavonoid constituent of
honeysuckle, which is the important antiviral ingredient used
in traditional Chinese medicines (TCM), including
Lianhuagingwen (LH). Their results suggested that luteolin has
lower binding energy and stronger interactions with the key
amino acid residues than the co-crystallized ligand found in
the crystal structure of these test proteins of SARS-CoV-2.
Thus, it can be suggested that luteolin exhibits a potential
antiviral activity (Yu et al., 2020). Luteolin can be isolated
from many sources such as Martynia annua L. (Lodhi and
Singhai, 2013), Lonicera japonica Thunb. (Kang et al., 2010),
Vitex negundo L. (Rooban et al., 2012), Colchicum ricthii R. Br.
(Abdalla et al., 1994), and Elsholtzia rugulosa Hemsl. (Liu R. et al.,
2011).

Pectolinarin (Figure 3E) indicated its inhibitor activity with
the reduction of the fluorescent intensity of 3CLpro. Its measured
ICsg value was 51.64 uM from the curves of the concentration in
the fluorescence experiment. In a docking study, Seri Jo et al.
found that the L-mannopyranosyl p-D-glucopyranoside moiety
and the chromen-4-one moiety of pectolinarin could capture the
space of S1, S2, and S3’ sites (Aanouz et al., 2020). Pectolinarin
can be isolated from Cirsium subcoriaceum (Less.) Sch. Bip.
(Martinez-Vazquez et al., 2007), C. chanroenicum Nakai (Lim
et al., 2008), and C. setidens (Dunn) Nakai (Yoo et al., 2008).

Natural Products Against COVID-19

Baicalin (Figure 3F) could significantly reduce the fluorescent
intensity of 3CLpro as the ICs, value was 34.71 uM. Baicalin
binds in silico to Glul66, Glyl43, and Asnl42 by forming
hydrogen bonds and His41 by pi-pi stacking (Jo et al., 2020;
Mu et al., 2020). Quyuan Tao et al. screened all the compounds in
the Huashi Baidu formula and studied the herb-compound-
targets network. Consequently, they found that baicalin was
the most stable active part in the docking study with 3CLpro
(Tao Q. et al., 2020). Baicalin has been isolated from Scutellaria
baicalensis Georgi (Ohkoshi et al., 2009; Peng-fei et al.,, 2012).
Baicalein (Figure 3G), a phytoconstituent of Polygonatum
sibiricum Redouté, could bind to the acid residues of 3CLpro,
Glul66, Ser144, Gly143, Cys145, Leul41, and His163 by forming
hydrogen bonds, and GIn189, Argl88, Metl65, Phel40, and
Asnl42 by forming hydrophobic interactions (Mu et al,
2020). Baicalein can also be isolated from Scutellariae
baicalensis Georgi Radix (Kimura et al., 2001), and Scutellaria
baicalensis Georgi (Kimura et al., 1997). Zandi et al. had studied
the anti-SARS-CoV-2 activity of baicalin and baicalein in Vero
and Calu-3 cell lines and compared it with remdesivir. They
found ECsy (uM) of baicalin, baicalein and remdesivir as 4.5, 9.0,
and 1.0 respectively (in Vero cell line), and 1.2, 8.0, and 0.14
respectively (in Calu-3 cell line). Further, they had reported
strong binding of baicalin and baicalein with SARS-CoV-2
RdRp, when checked by in silico tools. In the thermal shift
assay, they found that baicalein caused a ATm of 3.9°C of
nspl2, which suggested that baicalein is a strong and specific
binder for nsp12 component of RdRp (Zandi et al., 2021).

In the fluorescence experiment, herbacetin (Figure 3H) could
attenuate the intensity of the fluorescence of 3CLpro. In a docking
study, the phenyl moiety of herbacetin could occupy the S1 site
while the chromen-4-one moiety is located in the S2 site with
hydrogen bonds (Jo et al., 2020). Herbacetin can be isolated from
Linum usitatissimum L. (Veeramani et al., 2018), Rhodiola rosea
L. (Péter Zomborszki et al, 2019), and Ephedra sinica Stapf
(Hyuga et al., 2013).

In a previous study, quercetin (Figure 3I) and its 7-O-
Arylmethylquercetin derivatives exerted their anti-SARS-CoV
and anti-HCV in vitro effects (Park et al., 2012; Prasad et al,,
2020). Now, a docking study indicated that quercetin could bind
to ACE2 by forming hydrogen bonds with the amino acid
residues Lys745, Tyr613, His493, and Asp609 (Tao Q. et al,
2020). It could also reveal a strong interaction between the main
protease of SARS-CoV-2 and Glu290 and Asp289 (Vijayakumar
et al,, 2020). As part of the molecular mechanism exploration of
Respiratory Detox Shot, Zhang and the team had performed
molecular docking studies of quercetin with the 3CLpro of SARS-
CoV-2 (PDB ID: 6LU7) and found that quercetin can form
hydrogen bonds with His163A, Ser144A, and Cys145A (Zhang
7]. et al., 2020). These results indicated that a novel natural
product requires in vitro and in vivo further study since the
molecule is effective against both the viral target and the host
receptor target. Quercetin has been isolated from multiple
sources, including Euonymus alatus (Thunb.) Siebold (Fang
et al., 2008), Rosa canina L. (Fujii and Saito, 2014), Diospyros
kaki L. f. (Cho et al., 2016), and Toona sinensis (Juss.) M. Roem.
(Zhang et al., 2016). Quercetin is also readily available in various
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foods like onion (Allium cepa L.), apple (Malus domestica The protein-ligand docking suggested that cyanidin
(Suckow) Borkh.), and Broccoli (Brassica cretica Lam.), etc (Figure 3]J) could downregulate the RNA-dependent RNA
(Boyer and Liu, 2004; Lombard et al., 2005; Wu et al., 2019). polymerase and prevent the replication of SARS-CoV-2 by
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binding to the Asp761 catalytic residue (Vijayakumar et al,
2020). Cyanidin can be isolated from sources like Prunus
cerasus L. (Wang et al, 1999) and Oryza sativa L. cv.
Heugjinjubyeo (Hyun and Chung, 2004). There are plenty of
sources where cyanidin has been isolated in its glycosidic form,
though.

In a docking study, diosgenin (Figure 3K) is one of the most
active components in Polygonatum sibiricum Redouté. A small
molecule of diosgenin could form a hydrogen bond with Met276,
form hydrophobic interactions between Argl31, Lys137, Asp289,
Leu287, Leu286, Ala285, Gly275, or Tyr239, and 3CLpro, and
form hydrophobic interactions between Phe40, Asp350, Asp382,
Ala348, His378, His401, Asn394, Arg393, Tyr385, Phe390, or
Trp69, and ACE2. In addition, it could form a hydrogen bond
with Asn437, form hydrophobic interactions between Phe334,
Lys333, Ile428, Thr431, Asn435, Tyr438, Ser336, or Ala339, and
the S protein, form a hydrogen bond with Lys267, and form
hydrophobic interactions between Pro461, Thr319, Val320,
Phe321, Pro322, Trp268, Ile266, Tyr265, or Ser255, and the
RdRp. This molecule possesses the potential against the
infection of SARS-CoV-2 (Mu et al.,, 2020). Diosgenin has also
been isolated from other sources like Hellenia speciosa (J. Koenig)
S.RDutta (Selim and Al Jaouni, 2015), Solanum virginianum L.
(Sato and Latham, 2002), Dioscorea bulbifera L. (Pietropaolo
et al., 2014), and Dioscorea nipponica Makino (Kang et al., 2011).

(+)-Syringaresinol-O-beta-D-glucoside  (SBG) its
antiviral effect through forming hydrogen bonding interactions
with Glu564, Asn210, Lys94, Glu208, Asp206, Gly205, Trp203,
Tyr202, and GIn102 and hydrophobic interactions with Leu9l,
Lys94, Ser563, Leu95, Lys562, Val212, Pro565, Val209, Trp566,
and GIn98 of the ACE2 receptor (Mu et al., 2020). SBG
(Figure 3L) can be isolated from Viscum album L. (Nazaruk
and Orlikowski, 2015).

Narcissoside (Figure 4M) has a higher affinity with the protein
complex 6W63 of SARS-CoV-2 causing COVID-19 and the
standard inhibitor X77. In a docking study, it could bind to
Argl188, Glul66, His 164, Cys145, Asnl4, Cys44, His 41, GIn192,
and Thr190 by forming hydrogen bonds and exerting its potent to
inhibit the activity of the COVID-19 proteins (Dubey and Dubey,
2020). Narcissoside has been reported to be found in Azima
tetracantha Lam. (Duraipandiyan et al., 2016), Morinda citrifolia
L. (Su et al, 2005), Polygonatum odoratum (Mill.) Druce
(Ganbaatar et al, 2015), and Lolium multiflorum Lam.
(Kuppusamy et al., 2018).

In docking the non-structural polypeptide, NSP25
(GVITHDVSSAINRPQIGVVREFLTR)  study, kaempferol
(Figure 4N) could distinctly perform interactions with Glyl
and Arg25 through forming hydrogen bonds, with Vall8
through pi-sigma, and with Phe22 through the pi-pi stacked
bonds (Hamza et al., 2020). TMPRSS2, a key receptor for the
entry of SARS-CoV-2, is reportedly being downregulated after the
treatment of the LNCaP cells with kaempferol using qPCR data as
detected by Da and the team (Da et al., 2019). Kaempferol is
observed in many plant sources and is even found in propolis, a
resinous production by honeybees (Berretta et al., 2020). This
suggested that kaempferol could serve as a potential candidate
since it can act on the host receptor target as well as the viral

exerts
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target. Kaempferol has been isolated from multiple sources,
including Euonymus alatus (Thunb.) Siebold (Fang et al,
2008), Vachellia nilotica (L.) P.JH.Hurter and Mabb.(Singh
et al., 2008), Persicaria tinctoria (Aiton) Spach. (Kataoka et al,,
2001), Eruca vesicaria (L.) Cav. (Kishore et al., 2017), Lagenaria
siceraria (Molina) Standl. (Rajput et al., 2011), and Nelumbo
nucifera Gaertn. (Lee B. et al., 2015).

In a docking study, rutin (Figure 40) showed the highest
affinity with Mpro, which binds to Serl44, His163, Asnl42,
Cysl45, Glyl43, His4l, Phel40, Thr25, Thr26, Thr190,
Argl188, Metl65, Glul66, His164, Leul4l, and GIn189 residue
sites. In addition, it possesses the potential to combat COVID-19
(Das et al., 2020). In a docking study of Felipe Moura A da Silva,
rutin formed hydrogen bonds with His41, Thr25, Cys44, Met165,
GIn189, and Thr190 (da Silva et al., 2020). Rutin is again a very
common phytoconstituent which is widely available in a large
number of resources, including but not limited to Dendropanax
morbifer H. Lev. (Choi et al., 2015), Schinus molle L. (Machado
et al,, 2008), Triticum aestivum L. (Dixit, 2014), Chrozophora
tinctoria (L.) A. Juss. (Abdel-Naim et al., 2018), Spermacoce
hispida L. (Sundaram.R et al, 2018), Calendula officinalis L.
(Das et al., 2020), Edgeworthia chrysantha Lindl. (Shenggiang
et al.,, 2009), Caragana spinosa (L.) Hornem., and Memecylon
edule Roxb. (Srinivasan et al., 2015).

Isorhamnetin-3-O-b-D-glucoside (IRG) (Figure 4P) showed
high affinity, good stability, and flexibility with Mpro by binding
to Cysl145, Glyl43, Asnl42, Ser144, His163, Phel40, GIn189,
Asp187, Argl88, Metl65, His41, Thr26, and Met49 (Das et al,
2020). It has been reported that it is found in Calendula officinalis
L. (Das et al., 2020), Chrysanthemum morifolium (Ramat.) Hemsl
(Jun Hu et al,, 2017), and Salvadora persica L.(Ali et al., 1997).

Calendoflaside (Figure 4Q) showed its inhibiting function to
Mpro by binding to major amino acid residues as Argl8s,
Aspl87, Metl65, Hisl63, Serl44, Glul66, Phel40, Leuld4l,
Cysl145, Gly143, Asnl42, Leu27, Met49, GInl189, and His4l
(Das et al, 2020). It has been reported that it is found in
Calendula officinalis L. (Das et al., 2020).

Procyanidin B2 revealed the lowest binding energy to 3CLpro,
which has been isolated from Uncaria tomentosa (Willd. ex
Schult.) DC. It also showed low barriers to bind in the ligand
pathway simulations, that predicted inhibitory effect against
SARS-CoV-2 (Yepes-Perez et al, 2020). Procyanidin B2
(Figure 4R) can also be obtained from Malus domestica
(Suckow) Borkh. (Shoji et al., 2003), Vitis sp. (Yin et al,
2017), Litchi chinensis Sonn. (Li and Jiang, 2007), Adansonia
digitata L. (Shahat, 2008), Malus domestica (Suckow) Borkh.
(Hibasami et al., 2004), and Hypericum perforatum L.
(Butterweck et al., 1998).

The special structure of procyanidin has strong interactions
with the proteins of SARS-CoV-2 which could inhibit the
functions and the process of infection. The binding results
revealed that procyanidin in ACE2 could bind to Ser44, Ser47,
Asp350, Asp382, Tyr385, Arg393, Asn394, and His401 by
forming hydrogen bonds, to Phe40 and Phe390 through
hydrophobic interactions, and to Asn394, Gly395, Ser43,
Leu351, His378, Ala348, Trp69, Leu391, Met62, Ser47, and
Asn51 through VDW interactions. In Mpro, procyanidin
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forms hydrogen bonds with Ser44, Ser47, Asp350, Asp382,
Tyr385, Arg393, Asn394, and His401, hydrophobic
interactions with Phe40 and Phe390, pi-sulfur bonds with
Met49, and pi-alky interactions between the benzene ring and
Cys145. In regard to the S protein, procyanidin shows that there
are hydrogen bonds with Ser375, Thr376, Gly404, Asp405,
Arg408, and Ile410 residues hydrophobic interactions with
Thr376, Val407, and Arg408, and pi-cation and pi-anion
interactions with Lys378 and Asp405, respectively. The
blocking of procyanidin could effectively prevent the infection
and replication of the virus (Maroli et al., 2020). Procyanidin can
be isolated from Sclerocarya birrea (A.Rich.) Hochst. (Galvez
et al., 1993), Machaerium floribundum Benth. (Waage et al,
1984), and Phaseolus vulgaris L. (Silverstein et al, 1996).
Furthermore, there are numerous sources where procyanidin
oligomers and their derivatives are abundantly available.

Nicotiflorin (kaempferol-3-O-rutinoside) could bind to the
catalytic dyad of 3CL pro, His41, and Cys145. Furthermore, it
could form hydrogen bonds with Met49, Glul66, and Thr190,
form pi-pi and pi-sigma interactions with His41, and form pi-
sulfur interactions with Cys145. It possesses an inhibitory effect
on SARS-CoV-2 (da Silva et al., 2020). Nicotiflorin (Figure 4S)
can be obtained from Caragana spinosa (L.) Hornem. (Olennikov
and Partilkhaev, 2012), Zeravschania aucheri (Boiss.) Pimenov
(Zahra Ahmadian et al., 2017), Nymphaea candida C. Presl (Zhao
J. et al., 2017), Edgeworthia chrysantha Lindl. (Shengqiang et al.,
2009), and Brickellia cavanillesii A. Gray (Avila-Villarreal et al.,
2016).

Broussochalcone A (Figure 4T) is a kind of key polyphenol
obtained from Broussonetia papyrifera (L.) L'Hér. ex Vent. It
possesses higher affinity, higher stability, and less conformational
fluctuations in the Mpro of SARS-CoV-2 than darunavir and
lopinavir which are anti-HIV drugs. In a docking study, it bound
to the key catalytic residues, His41 and Cys145. Furthermore, it
formed hydrogen bonds with Thr26, Gly143, Ser144, Cys145, and
Glul66, pi-sigma interactions with His41, pi-alkyl with Met165,
and pi-sulfur interactions with Met49 to exert its potential to
combat COVID-19 (Ghosh et al., 2020).

As the main content of Broussonetia papyrifera (L.) L'Hér. ex
Vent., papyriflavonol A showed better binding energy and higher
stability when it was docked with Mpro than darunavir and
lopinavir as it formed hydrogen bonds with Leul41, Cys145, and
Argl188, and formed pi-alkyl interactions with His41, Leu27, and
Metl165 (Ghosh et al., 2020). Papyriflavonol A (Figure 4U) can
also be isolated from Macaranga pruinosa (Miq.) Mill.Arg. (Syah
and Ghisalberti, 2010).

Broussoflavan A (Figure 4V) could be extracted from
Broussonetia papyrifera (L.) L'Hér. ex Vent. The Broussoflavan
A-Mpro complex showed better stability than darunavir and
lopinavir due to the formation of hydrogen bonds with the
residues Glyl143, Glul66, and Asnl43, the formation of pi-
alkyl interactions with His41, Metl165, and Cys145, and the
formation of pi-sulfur interactions with Met49. The results
predicted the promising potential of Broussoflavan A against
COVID-19 (Ghosh et al., 2020).

Fisetin (Figure 4W) is a 7-hydroxyflavonol that can be
obtained from various pigmented fruits and vegetables, like
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Elaeagnus indica Servett. (Srinivasan et al., 2016), Hymenaea
courbaril L. (jatoba) (da Costa et al., 2014), and Toxicodendron
vernicifluum (Stokes) F.A.Barkley (Lee JH. et al,, 2015). In their
respiratory detox shot, which is a Chinese Herbal Medicine
analysis, Zhang and the team found that fisetin could make
hydrogen bonds with the Cysl45A amino acid residues of
SARS-CoV-2 3CLpro (PDB ID: 6LU7). Therefore, fisetin can
act as a potential inhibitor for this target enzyme. It is also one of
the components in this Chinese Herbal Medicine (Zhang
Z]J. et al., 2020).

Isolicoflavonol (Figure 4X), a flavonol analog, can be isolated
from various sources, such as Glycyrrhiza uralensis Fisch. ex DC.
(Han et al, 2012), Broussonetia papyrifera (L.) L’Hér. ex
Vent.(Zheng et al, 2008), Macaranga indica Wight (Yang
et al, 2015), and Macaranga conifera (Rchb.f. and Zoll.)
Miill. Arg. (Jang et al., 2002). Besides kaempferol and fisetin,
Zhang and the team have also performed a docking study on
isolicoflavonol. They found that isolicoflavonol exerted a
significant hydrogen bonding effect on the Ser144A, Cys145A,
and His163A amino acid residues of SARS-CoV-2 3CLpro (PDB
ID: 6LU7) (Zhang ZJ. et al., 2020). Therefore, isolicoflavonol can
act as a potential inhibitor for this target enzyme.

Licoisoflavone B (Figure 4Y) can be traced in many plants,
such as Lupinus albus L. (Tahara et al, 1984), Lupinus
angustifolius L. (Lane et al, 1987), Sophora moorcroftiana
(Benth.) Benth. ex Baker (Shirataki et al.,, 1988), and Sinkiang
licorice root (Saitoh et al, 1978). Zhang and the team have
performed a docking study on licoisoflavone B, along with the
abovementioned natural products, viz. kaempferol, fisetin, and
isolicoflavonol. They found that licoisoflavone B could make
hydrogen bonds with Asnl42A and GInl89A amino acid
residues of SARS-CoV-2 3CLpro (PDB ID: 6LU7). This
finding suggested that licoisoflavone B could serve as a
potential candidate as this viral enzyme inhibitor (Zhang
Z]J. et al., 2020).

5.2 Terpenoids

Crocin (Figure 5A) could be extracted from Crocus sativus L.
With its prominent effect on anti-HSV and anti-HIV drugs,
crocin indicated a more promising binding energy value
(—8.2 kcal/mol) with the main protease of SARS-CoV-2 than
most natural products in the docking study (Aanouz et al., 2020).
Another reported source for crocin is Gardenia jasminoides
J. Ellis (Lee et al., 2005).

Even rarely isolated from Laurus nobilis L., B-eudesmol
(Figure 5B) has antibacterial and antiviral functions. In a
docking study, the p-Eudesmol binding energy value is
—7.1 kcal/mol while the CLQ value is —6.0 kcal/mol against the
main protease of SARS-CoV-2 (Aanouz et al., 2020). f-eudesmol
can be isolated from Zingiber zerumbet (L.) Roscoe ex Sm. (Yu
et al., 2008), Magnolia obovata Thunb. (Tachikawa et al., 2000),
Dioscorea japonica Thunb. (Miyazawa et al., 1996), and Teucrium
ramosissimum Desf. (Ben Sghaier et al., 2016).

Sarsasapogenin (Figure 5C) could be a potential inhibitor for
the Nsp15 of SARS-CoV-2 by forming a strong hydrogen bond
with Lys290. Its binding energy is much lower than
hydroxychloroquine and chloroquine (Kumar S. et al., 2020).
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Sarsasapogenin can be found in Anemarrhena asphodeloides
Bunge (Bao et al., 2007), Asparagus officinalis L. (Wang et al.,
2011), and Yucca glauca Nutt. (EI-Olemy et al., 1974) while
glycosidic and other derivatives have been isolated from
numerous other sources.

Ursonic acid (Figure 5D) also showed lower binding energy
with Nsp15 than hydroxychloroquine and chloroquine. Besides,

the ursonic acid and Nsp15 complex got a stable result after the
MD, radius of gyration, RMSD, and RMSF studies (Kumar S.
et al., 2020). Ursonic acid has been reportedly found in various
sources, including Piper betle L. (Saced et al., 1993), Ziziphus
jujuba Mill. (Kawabata et al., 2017), Ficus carica L. (Chiang et al.,
2005), Lantana camara L. (Begum et al., 2004), and Catharanthus
roseus (L.) G. Don (Thanh Tam et al., 2016).
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Carvacrol (Figure 5E) could form hydrogen bonds with
Ser459, residue bind domain of S protein (Kulkarni et al,
2020). Carvacrol has been isolated from multiple sources,
some of which are Lippia multiflora Moldenke (Kunle et al.,
2003), Origanum acutidens (Hand.-Mazz.) Ietsw. (Kordali et al.,
2008), Origanum dictamnus L. (Liolios et al, 2009), Lippia
origanoides Kunth (Games et al., 2016), and Thymus vulgaris
L. (Fachini-Queiroz et al.,, 2012).

The structure of hydroxyl with a phenyl ring indicated the
activity and antiviral property of geraniol (Figure 5F). In a
docking study, it could bind to Lys458 and Ser459 of the S
protein by forming hydrogen bonds (Kulkarni et al., 2020). Even
geraniol has been reported in numerous medicinal plants, for
instance, Pelargonium graveolens L’'Hér. (Gupta et al., 2001),
Camellia sinensis (L.) Kuntze (Zhou et al, 2019), Rosa X
damascena Herrm. (Sadraei al, 2013), Cymbopogon
flexuosus (Nees ex Steud.) W. Watson (Ganjewala and Luthra,
2009), and Cymbopogon martini (Roxb.) W. Watson (Kamble
et al., 2020).

Glycyrrhizic acid is one of the important constituents of
Glycyrrhiza glabra L. Previous studies on glycyrrhizic acid
(glycyrrhizin) indicated that it has capability to induce
interferon to prevent the replications of the MERS-CoV virus
(Omrani et al,, 2014; Luo et al, 2020). Maddah et al. had
performed the high throughput virtual ligand screening using
the dataset of 56 licorice compounds. Based on the docking
studies, SAR between docking energy and ADMET properties,
and MD simulations, glycyrrhizic acid was found to have highest
affinity against various targets such as “spike receptor-binding
domain, main protease, papain-like protease, RNA-dependent
RNA polymerase, or endoribonuclease non-structural protein, as
well as human angiotensin-converting enzyme 2”. This suggest
that glycyrrhizic acid can be tested further to check its potential as
anti-SARS-CoV-2 agent (Maddah et al., 2021).

5.3 Alkaloids

Quinadoline B (Figure 5G) could be extracted from the
mangrove-derived fungus Cladosporium sp. PJX-41 that
possesses anti-SARS-CoV-2 potency by binding to the Lys711
and Arg355 sites of PLpro through H-bonds and Leu557, Ala579,
and Ile580 through pi-alkyl interactions. In regard to RdRp,
quinadoline B showed the highest affinity with the binding
sites, by binding to GIn73 through H-bonds, to Arg569
through pi-cation, to Ala686 through pi-alkyl interactions, and
to Tyr689, Ala580, and Ala688 sites through pi-pi stacking and
pi-alkyl interactions. Concerning nspl5, it could be bound to
His235 and His250 through van der Waals (VDW) affinity, to
Lys290 through the pi-cation intermolecular bonding, to Tyr343,
Lys345, and Leu346 through pi-pi stacking/pi-alkyl interactions.
In addition, nsp15 exerts an H-bonding effect on the Val292 site.
Regarding the S protein, it interacted with binding sites through
pi-sulfur bonding to Cys454, pi-anion to Asp441, pi-alkyl to
Ala444, and pi-pi stacking to Phe430. With the ADMET results,
quinadoline B indicated high gastrointestinal (GI) absorption,
low blood-brain barrier penetrability, and high drug-likeness
(Quimque et al., 2020). Quinadoline B has also been extracted
from Aspergillus giganteus Wehmer, 1901 NTU967 which was

et

Natural Products Against COVID-19

isolated from the marine alga, Ulva lactuca (Chen J]. et al., 2020),
and Aspergillus sp. FKI-1746 (Koyama et al., 2008).

In the compounds of fungal secondary metabolites, scedapin C
(Figure 5H) could be isolated from the marine-derived fungus
Scedosporium apiospermum (Sacc.) Sacc. ex Castell. and Chalm.,
1919 F41-1, exerting the highest affinity with PLpro through
various interactions, viz. hydrogen bonding with Arg712, pi-
cation interactions with Lys711, pi-pi stacking interactions
with His342, and pi-alkyl interactions with Ala579.
Concerning 3CLpro, scedapin C could bind to Cys145 through
pi-sulfur interactions, Metl65 through pi-pi stacking
interactions, His41 through pi-pi stacking interactions, and
Met49 through pi-alkyl interactions. Compared with
favipiravir, RdRp has higher binding energy by binding to
Lys593 and Cys813 through hydrogen bonds, I1e589 and
Leu758 through pi-alkyl interactions, and Cys813 through pi-
sulfur interactions. In regard to nsp15, scedapin C hinged itself on
His235 through pi-pi stacking interactions, His250 and Lys290
through VDW affinity, Thr341 through H-bonds, and Tyr343
through pi-pi stacking interactions (Quimque et al., 2020).

Berberine (Figure 5I) could be extracted from the root,
rhizomes, stems, and the bark of Hydrastis canadensis L.
(Berberidaceae). After the viral screening and the docking
study of the potential inhibition against 3CLpro, the main
protease in SARS-CoV-2, it showed much lower binding
energy to 3CLpro, compared with other compounds isolated
from Tinospora cordifolia (Willd.) Hook. f. and Thomson. In
addition, the berberine:3CLpro structure possesses higher
stability than other inhibitors according to the MD simulation
and exerts a potent effect against COVID-19 by preventing the
activity of 3CLpro (Chowdhury, 2020). Other reported biological
sources, where berberine is one of the important
phytoconstituents, are Berberis vulgaris L. (Freile et al., 2003),
Berberis aquifolium Pursh (Ceriidkovd and Kostalova, 2008),
Berberis vulgaris L. (Imanshahidi and Hosseinzadeh, 2008),
and Corydalis chaerophylla DC. (Basha et al., 2002).

Nigellidine is a bioactive component obtained from the seeds
of Nigella sativa L., which was reported before for its anti-
oxidative, anti-inflammatory, anti-bacterial, anti-hypertensive,
and immunomodulatory functions. In the docking study of
Maiti and workers, nigellidine (Figure 5J) could interdict the
function of the Nucleocapsid (N) protein of SARS-CoV-2 by
binding to Ala55 (through hydrogen bonds), GIn306 (through
N-O bonds), and ARG203, ARG209, Leu230, Gln241, Gln242,
Ala308, Ala305, and Phe307 residue sites. In regard to the Nsp2 of
SARS-CoV-2, which could concern the integrity of mitochondria
and the resistance to the diverse stresses of the host cell,
nigellidine could block it by binding to Cys240 through rigid
bonds, and Leul69, Val126, Trp243, Alal27, Cys132, The256,
Gly257, Tyr242, Vall57, and other positions with Ala 241
through hydrogen bonds. Concerning Mpro, nigellidine could
form a stable bond with Glul66 (Maiti et al., 2020).

Noscapine (Figure 5K) has a higher affinity and a much lower
binding score to the pocket-3 of Mpro, compared with
chloroquine, ribavirin, and favipiravir. It formed hydrogen
bonds with Thr199 and Asn238, and hydrophobic interactions
with Asp197, Thr198, Thr199, Leu237, Asn238, Tyr239, and
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Leu271 in silico. Furthermore, the results of the molecular
dynamic simulation revealed that noscapine possessed good
stability and conformational change. Additionally, it was a
potential natural product against SARS-CoV-2 (Kumar N.
et al, 2020). Apart from the natural source Papaver
somniferum L. (Dang and Facchini, 2012) from which it is
abundantly isolated, there is enough literature available on
noscapine and the synthesis of its derivatives (Zhou et al,
2003; Ni et al., 2011; Devine et al., 2018).

Transmembrane protease Serine 2 (TMPRSS2) is the
essential receptor of the host cell that could modulate the
entry of SARS-CoV-2. Vivek-Ananth et al studied the
affinity of qingdainone (Figure 5L) to TMPRSS2. With the
lowest binding energy, qingdainone could form hydrogen bonds
with D440 and A399 as well as hydrophobic interactions with
1381, S382, T387, E388, N398, A400, D440, C465, and A466
(Vivek-Ananth et al., 2020). Qingdainone is also well known as
candidine. It can be isolated from sources such as Yarrowia
lipolytica (Jahng, 2013), Isatis tinctoria L. (Zou and Huang,
1985; Wu et al., 2007), and Strobilanthes cusia (Nees) Kuntze
(Zou and Huang, 1985).

(+)-Oxoturkiyenine has lower binding energy to cathepsin L
which is an essential receptor of the host cell for the entry of
SARS-CoV-2. The residues of cathepsin L, such as Q19 and
W189, could form hydrogen bonds with (+)-oxoturkiyenine
(Figure 5M), pi-pi interactions with W189, and hydrophobic
interactions with G139, H140, H163, and W189 (Vivek-Ananth
et al., 2020) (+)-Oxoturkiyenine can be isolated from Hypecoum
pendulum L. (Kadan et al., 2004; Mete and Gozler, 2004).

3a,17a-Cinchophylline could be extracted from Cinchona
calisaya Wedd., the herb that possesses antiviral and anti-
inflammatory activities. In regard to cathepsin L, the receptor
of the host cell which plays the key role in the process of SARS-
CoV-2 entry, 3a,17a-cinchophylline (Figure 5N) formed
hydrogen bonds with C25, H163, G23, and M70, and
hydrophobic interactions with Q21, C22, L69, M70, A135 and
W189 to reveal its potential function for COVID-19 (Vivek-
Ananth et al., 2020).

Speciophylline could be extracted from Uncaria tomentosa
(Willd. ex Schult.) DC. It exerts a higher affinity with 3CLpro
compared with N3, the inhibitor of 3CLpro as it is known. To the
S1 cleavage site, speciophylline (Figure 50) performs its affinity
without obviously energetic expend (Yepes-Perez et al,, 2020). It
has also been reported that it is isolated from Mitragyna speciosa
Korth. (Beckett et al., 1965), Uncaria lanosa f. philippinensis
(Elmer) Ridsdale (Olivar et al., 2018), Uncaria bernaysii F. Muell.
(Phillipson and Hemingway, 1973), and Uncaria attenuata
Korth. (David Phillipson and Hemingway, 1975).

Cadambine comes from Uncaria tomentosa (Willd. ex Schult.)
DC. It possesses a significant affinity with 3CLpro. Furthermore,
the ligand-pathway simulation study showed low barriers to bind
in the case of this test molecule. Thus, cadambine (Figure 5P)
could be a potent inhibitor of SARS-CoV-2 (Yepes-Perez et al.,
2020). It can be isolated from Neolamarckia cadamba (Roxb.)
Bosser (Kumar et al., 2015), Neonauclea purpurea (Roxb.) Merr.
(Handa et al., 2004), and Uncaria rhynchophylla (Miq.) Miq. (Qi
et al., 2014).
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5.4 Glycosides

As an anthocyanin derivative, delphinidin 3,3’-di-glucoside-5-(6-
p-coumarylglucoside) (DGCG) (Figure 6A), displayed a potential
function to interdict the main protease of SARS-CoV-2 according
to the molecular dynamic simulation, the radius of gyration
analysis, and the binding of free energy results (Fakhar et al,
2020). DGCG has been reportedly isolated from Gentiana cv.
Albireo (Hosokawa et al., 1997).

Pelargonidin 3-O-[B-D-Glucopyranosyl-(1->2)-[4-
hydroxycinnamoyl-(->6)]-B-D-glucopyranoside](E-) 5-O-(6-O-
malonyl-B-D-glucopyranoside), PGHGM (Figure 6B) is another
derivative of anthocyanin with activity against the main protease
of SARS-CoV-2 as per the results obtained by the radius of
gyration, the binding of free energy, the molecule stability, and
the flexibility studies (Fakhar et al., 2020). PGHGM can be
isolated from Pomacea maculata Perry, 1810 (KHALIL et al,
2020).

From the Nerium oleander L., digitoxigenin (Figure 6C)
and its derivatives exert antiviral and anti-cancer properties.
It has a binding energy value of —7.2 kcal/mol and is proposed
to be an effective inhibitor to the coronavirus against
the main protease of SARS-CoV-2 (Aanouz et al., 2020).
Another important and main source where digitoxigenin
can be isolated is Digitalis lanata Ehrh. (Caspi and
Hornby, 1968).

In the screening study of the DrugBank dataset, digitoxin
(Figure 6D) revealed the lowest binding energy with Site 2 of the
S protein of SARS-CoV-2. It formed hydrogen bonds with
Lys458, Ser459, Asp467, and Glu471, and carbon-hydrogen
bonds with Lys458 and Glu471. Furthermore, it formed alkyl
hydrophobic interactions with Lys458 and Pro491 (Wei TZ. et al.,
2020). Clinically relevant, digitoxin can be isolated from Digitalis
purpurea L. (Hagimori et al., 1984).

5.5 Quinones

The results of the docking study by Hamza et al., suggested that
anthraquinone (Figure 6E) may have an inhibitory effect against
COVID-19 by being bound to non-structural polypeptides
(GVITHDVSSAINRPQIGVVREFLTR) amino acid residues,
such as Val2 (through hydrogen bonds), Ile3 (through
hydrogen bonds), and Glyl (through pi-cation interactions)
(Hamza et al, 2020). Anthraquinone is such an important
scaffold with many natural derivatives. Consequently, it
becomes a separate class of compounds.

5.6 Monolignols
Anethole (Figure 6F) could bind to Ser459 of the S protein by
forming hydrogen bonds, which are rich in some plant families
such as Apiaceae, Myrtaceae, and Fabaceae (Kulkarni et al., 2020).
Some of the biological sources of anethole are Foeniculum vulgare
Mill. (Dongare et al., 2012), Pimpinella anisum L. (Kubo et al,
2008), Hlicium verum Hook. f. (Liu, 1996), Croton grewioides
Baill. (de Siqueira et al, 2006), and Vepris madagascarica
(Baillon) H. Perier (Rabehaja et al., 2013).

Cinnamaldehyde has a high ability to fight against
inflammation, viruses and cancer. In a docking study,
cinnamaldehyde could form hydrogen bonds with Glu471 and
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5.7 Phenolic and Polyphenolic Compounds
Previous studies indicated that curcumin (Figure 6H) which is

the most important phytoconstituent in turmeric (Curcuma
longa L.) (Anderson et al., 2000) has a potential effect against
AIDS inhibiting the HIV protease and integrase enzymes,
along with having a synergistic action with antiretroviral
drugs (Prasad and Tyagi, 2015; Gupta et al,, 2020). In the
case of the influenza A virus, curcumin reportedly reduces
inflammatory cytokines (Ciavarella et al., 2020; Gupta et al,,
2020). In the case of HIN1, it was found that it decreases the
nucleoprotein expression, thereby preventing the infection of
the influenza virus (Richart et al., 2018; Lai Y. et al., 2020;
Gupta et al.,, 2020). All these findings strongly suggested the
potent antiviral activity inherently possessed by curcumin.
This has led Oso and the team to check the affinity of
curcumin against COVID-19-associated proteases, such as
cathepsin K, COVID-19 main protease, and SARS-CoV 3C-
like protease, by performing in silico studies. Their results
suggested that curcumin has strong binding affinities towards
all the target proteins, with the best against the SARS-CoV 3C-
like protease. Interaction analysis performed by Oso and the
team further suggested that curcumin could form hydrogen
bonding with the Trp188 of cathepsin K while it could form
hydrogen bonding with Gly143 and Ser144 of the COVID-19
main protease. Furthermore, curcumin was found to form
hydrogen bonding with Glyl109, GIn110, Thrlll, and
Phe294 of the SARS-CoV 3C-like protease as per their
analysis (Oso et al., 2020).

Syn-16 is the coumarin derivative that exhibited the potential
for combating COVID-19. After the structure-based virtual
screening, molecular dynamics simulation, and the binding of
free energy calculation, Khan and workers found that Syn-16
could form three different hydroxyl groups of hydrogen bonds
and have stable interactions with the S1, S2, and S5 pocket
residues. Thus, Syn-16 displayed the promising potential that
it could bind to 3CLpro and prevent the replication and
maturation of SARS-CoV-2 (Khan et al., 2020).

Gallocatechin gallate (Figure 6I), a derivative obtained from
Saxifraga spinulosa Adams, 1817, non Royle, 1835, was reported
about its function in inactivating the influenza A virus and
norovirus. Takeda and the team studied its capacity for
fighting against SARS-CoV-2. The results suggested that a
pyrogallol-enriched fraction (Fr 1C) inactivated 99.53% of
SARS-CoV-2 with 10s of exposure, decreased the S2 subunit
of the S protein, interdicted the cDNA reverse transcription more
rapidly than any other fractions (Takeda et al, 2020).
Gallocatechin gallate is available in Camellia sinensis (L.)
Kuntze (Sugita-Konishi et al., 1999), and Diospyros kaki L. f.
(Matsuo and Ito, 2014).

Ararobinol showed the highest affinity towards cathepsin L in
the docking study. Earlier studies indicated that ararobinol
(Figure 6]) has antiviral properties. Ararobinol can build
hydrogen bonds with cathepsin L residues, such as Q19 and
A138, pi-pi interactions with WI189, and hydrophobic
interactions with C25, G139, L144, H163, and W189 (Vivek-
Ananth et al,, 2020). Ararobinol could be found in Senna
occidentalis (L.) Link. It can also be isolated from sources like
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Frangula caroliniana (Walter) A. Gray (Mekala et al., 2017) and
Senna siamea (Lam.) H.S.Irwin and Barneby (Kumar et al., 2017).

Gingerol (Figure 7A), which is an important phytoconstituent
of Zingiber officinale Roscoe (Guh et al., 1995), has also been
investigated by means of cheminformatics by Oso and the team
for its binding affinity and potential against COVID-19-
associated proteases, like cathepsin K, COVID-19 main
protease, and SARS-CoV 3C-like protease. Their results
suggested that gingerol also had a good binding affinity with
all these target enzymes, especially Cathepsin K. Their further
performed studies indicated that gingerol could form hydrogen
bonding with Asn18, GIn19, His162, Trp184, and Trp188 amino
acid residues of Cathepsin K. It also has the potential to form
hydrogen bonding with Thr199, Leu272, and Leu287 amino acid
residues of the COVID-19 main protease. Additionally, they
found it has the potential to form hydrogen bonding with
Thr111l and Thr292 of the SARS-CoV 3C-like protease (Oso
et al., 2020). Gingerol has found in Aframomum melegueta K.
Schum. (Mohammed et al., 2017).

In the simulation, Nat-1 (coumarin analog) had a pi-alkyl
interaction with GIn189, which is in the S5 pocket residues with
different hydroxyl groups. The binding model indicated that
there are interactions between Nat-1 and 3CLpro, which could
contribute to the new treatments of the SARS-COV-2 infection
(Khan et al., 2020).

5.8 Miscellaneous Compounds
Isochaetochromin D1 is a kind of Fusarium sp. metabolites that
has an interfering function in viral enzymes. In regard to the non-
structural protein 15 (nsp15) of SARS-CoV-2, it could bind to
Val292 and His250 through H-bonding, His235, and Lys290
through VDW interactions, and other sites through pi
interactions to interdict the activity of nsp15 (Quimque et al,
2020).

Bisindigotin (Figure 7B) can be extracted from Isatis tinctoria
L. (Mohn et al., 2009) and Persicaria tinctoria (Aiton) Spach. In
the screening study of the Traditional Chinese Medicine Systems
Pharmacology (TCMSP), bisindigotin exerted the lowest binding
energy with the S protein that binds to Arg457, Ser469, and
Glu471 through hydrogen bonds, Lys458 through carbon-
hydrogen bonds, Asp467 and Glu471 through pi-anion
interactions, and Arg457 through pi-alkyl interactions, which
increased the stability of the binding (Wei TZ. et al., 2020).

Edgeworoside C could be isolated from Edgeworthia gardneri
(Wall.) Meisn. and widely used for the treatment of metabolic
diseases. In a docking study, edgeworoside C (Figure 7C) could
form hydrogen bonds with A386, N398, A399, V434, D435,
D440, D435, V434, A386, N398, and D440 of TMPRSS2, and
bind to E260, 1381, A400, N433, and A466 through hydrophobic
interactions to exhibit its antiviral properties (Vivek-Ananth
et al, 2020). Edgeworoside C has been isolated from
Edgeworthia chrysantha Lindl. (Yan et al., 2004).

Adlumidine (Figure 7D) is the main constituent of Fumaria
indica (Hausskn.) Pugsley (Blasko et al., 2004) which could treat
cough, fever, and skin and urinary-related diseases. The study
suggested that adlumidine has a high affinity with the TMPRSS2
which is the key target for the entry of SARS-CoV-2. The complex
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has hydrogen bonds between adlumidine and E388, E389, 5436,
C465, C437, and A466 while it has hydrophobic interactions with
E260, 1381, S382, T387, N398, A399, and A400 (Vivek-Ananth
et al., 2020). Previous literature suggested that adlumidine can be
obtained from Pseudofumaria lutea (L.) Borkh. (Yang et al,

1993), and Dactylicapnos torulosa (Hookf. and Thomson)
Hutch. (Riicker et al., 1994).

Asparagoside-C (Figure 7E) has a higher affinity with the S
protein of SARS-CoV-2. It could be extracted from Asparagus
racemosus Willd. The molecular dynamic simulation results
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suggested that asparagoside-C and S protein possess a stable
conformation, caused by hydrogen bonds with Gly496, Gln414,
Ser494, Thr415, and Tyr453. Concerning the nucleocapsid
protein (N protein), it is also observed that it forms hydrogen
bonds with Glu234, Gly230, Val292, His235, and Asp240
(Chikhale et al., 2020).

Asparagoside-D  (Figure 7F) is also an important
phytoconstituent obtained from Asparagus racemosus Willd. It
has a better binding energy result than the standard drug
Remdesivir and this is indicated in the treatment regimen for
COVID-19 right now. Asparagoside-D could form hydrogen
bonds with Gly502, Ser494, Lys417, Asp420 Tyr449, and
GIn498 of the S protein and with Glu340, His243, GIn245,
Asp240, Asn278, and Leu346 of the N protein in SARS-CoV-
2. Thus, it has a major potential for acting against COVID-19
(Chikhale et al., 2020).

Asparagoside-F  (Figure 7G) is another important
phytoconstituent obtained from Asparagus racemosus Willd. It
has better affinity and stability because of hydrogen bonds formed
between the N and Glu234, Gly230, Ala232, Hip235, Asp240,
Glu340, and Val339. This displays the capacity for blocking the
key protein of SARS-CoV-2 (Chikhale et al., 2020).

3-(3-Methylbut-2-enyl)-3,4,7-trihydroxyflavane (MTHEF)
(Figure 7H), could be isolated from Broussonetia papyrifera
(L.) L’Hér. ex Vent.. It possesses a better blocking capacity for
the Mpro of SARS-CoV-2 than darunavir and lopinavir. The
docking study indicated that it could form a highly stable and less
fluctuated complex with Mpro, by binding to Leul41, Asnl42,
Gly143, Cys145, and Glul66 through forming hydrogen bonds,
Met49 through pi-sulfur and pi-alkyl interactions, and His41
through pi-sigma and pi-alkyl interactions (Ghosh et al., 2020).

Kazinol F (Figure 71I) revealed that it has the lowest binding
energy value among all the constituents of Broussonetia
papyrifera (L) L'Hér. ex Vent. by forming hydrogen bonds
with Leul4l, Glyl43, and Metl65 amino acid residues in
Mpro, pi-alkyl interactions with Cysl145 and Met49, pi-pi
T-shaped interactions with His41, and the key catalytic residue
of Mpro (Ghosh et al., 2020). Another source for isolating Kazinol
F is Broussonetia X kazinoki Siebold (Baek et al., 2009).

Kazinol ] (Figure 7]) has been isolated from Broussonetia
papyrifera (L.) L'Hér. ex Vent. It showed a lower binding energy
value, higher affinity, higher stability, and less fluctuation when it
bound with Mpro compared with darunavir and lopinavir.
kazinol J occupied the in silico residues, such as Serl44,
His163, and Thr190 through forming hydrogen bonds, Met49,
Met165, Prol68, and Cys145 through pi-alkyl interactions, and
His41 through pi-sigma interactions (Ghosh et al., 2020).

Cinnamyl acetate (Figure 7K) showed its anti-SARS-CoV-2
potential by binding with Glu471, Arg454, and Ser459 of the S
protein through H-bond interactions (Kulkarni et al., 2020).
Cinnamyl acetate is mainly obtained from Cinnamomum
verum J. Presl (Choi et al, 2001; Kaul et al, 2003), and
Cinnamomum osmophloeum Kaneh. (Cheng SS. et al., 2006).

L-4-terpineol (Figure 7L) could be extracted from the essential
oil of tea tree and lavender. It can bind to the S protein by forming
hydrogen bonds with Leu492 and Tyr505 (Kulkarni et al., 2020).
Some of the other reported biological sources are Artemisia
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herba-alba Asso (Nezhadali et al., 2008), Pistacia chinensis
subsp. integerrima (J.L.Stewart) Rech. f. (Shirole et al., 2015),
Artemisia nanschanica Krasch. (Shang et al., 2012), and Nigella
sativa L. (Liu et al., 2013).

Allicin (Figure 7M) is a sulfoxide derivative that is categorized
under sulfinic acids. It is one of the very important
phytoconstituent found in Allium sativum L. (garlic). Oso and
the team performed simulation studies to assess the binding
potential of allicin to various targets of SARS-COV-2, viz.
cathepsin K, COVID-19 main protease, and SARS-CoV 3C-
like protease. Their results suggested that allicin elicited a
similar sort of binding affinity towards all these tested
proteins. Allicin could form hydrogen bonding with Gly66 of
cathepsin K or Glyl43 and Serl44 of the COVID-19 main
protease, and Thr190 of the SARS-CoV 3C-like protease (Oso
et al., 2020).

6 TRANSLATIONAL POTENTIAL OF
NATURAL PRODUCTS AGAINST
SARS-COV-2: BENCH TO BEDSIDE

6.1 Lianhua Qingwen

Lianhua Qingwen (LHQW) capsule contains so many different
kinds of natural product extracts, such as “Forsythia suspensa
(Thunb.) Vahl. (Lianqiao), Lonicera japonica Thunb. (Jinyinhua),
Ephedra sinica Stapf (Mahuang), Prunus armeniaca L
(Kuxingren), Gypsum fibrosuum (Shigao), Isatis tinctoria L.
(Banlangen), Dryopteris crassirhizoma Nakai
(Mianmaguanzhong), Houttuynia cordata Thunb (Yuxingcao),
Pogostemon cablin (Blanco) Benth. (Guanghuoxiang), Rheum
palmatum L. (Dahuang), Rhodiola rosea Linn. (Hongjingtian),
Mentha canadensis L. (Bohe), Glycyrrhiza uralensis Fisch. ex DC.
(Gancao)”, which reportedly affect COVID-19 (Li L.-C. et al,
2020). Zheng et al., studied the mechanism of action of LHQW in
COVID-19. Their analysis indicated that most of the constituents
are modulating the expression of the lung proteins and having a
relationship with more than 2,000 targets, 160,000 protein-
protein interactions, and 30 functional modules. LHQW is
modulating 189 proteins that are related to the co-expression
of ACE2, thus concerning its ability to repair lung damage,
attenuate the cytokine storm, and alleviate the symptoms
caused by the ACE2-expression disease (Zheng et al., 2020). In
a clinical study of efficacy and safety from Hu and the workers,
they found that the treatment group has a higher recovery rate,
improvement in chest, computed tomography manifestations
rate, and clinical cure rate, but it has a shorter recovery time
from symptoms like fever, cough, and fatigue. In this study, the
results suggested a natural-product-combination-based capsule
contributes to attenuating the symptoms of COVID-19 in clinical
environments (Hu et al., 2020).

6.2 Pudilan

The formula of pudilan (PLD) contains dandelion, Isatis root,
Scutellaria baicalensis Georgi, and Corydalis bungeana Turcz.
herb. This polyherbal formulation is used in clinical settings as
anti-SARS CoV-2 in China. Kong and the workers studied its
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efficacy against COVID-19. The ingredients’ data analysis results
indicated that PLD could prevent the entry of SARS-CoV-2 by
blocking ACE2, modulating the immune-related factors and
proteins to relieve the cytokine storm, and attenuating the
inflammation. Thus, PLD can alleviate the symptoms and
exert its potency for the treatment of COVID-19 (Kong et al.,
2020).

6.3 Chinese Herbs Mixture

In one patient infected with COVID-19, Lan-ting Tao and his co-
workers performed a form of Traditional Chinese Therapy
including a combination of acupuncture and a preparation
consisting of Chinese herbs were used for the treatment.
Regarding the introduction, the formula contains Aconitum
carmichaeli Debeaux lateralis praeparata, Radix et Glycyrrhiza
glabra L. praeparata cum Melle, Lonicera japonica Thunb.,
Gleditsia sinensis Lam., Ipomoea cairica (L.) Sweet, Citrus x
aurantium L., and Agastache rugosa (Fisch. and C.A.Mey.)
Kuntze that could enhance immune mechanism as anti-
pathogenic qi and rejuvenate the functionality of the lung. The
results of the treatment indicated that the therapy attenuated
symptoms to less cough and sputum, relieved shortness of breath
on exertion, and decreased shadows of CT images. Furthermore,
the patient felt much better and returned to their previous
condition. According to their analysis, the formula alleviated
the lung by modulating the kidney qi and the toned spleen and
stomach, promoting immunity, preventing transmission of the
pathogen, and recovering the host system and turning it back to
the normal level (Tao LT. et al., 2020).

6.4 Chinese Traditional Medicine

Prescription

One 23-year-old infected male was studied by Qian Liu and the
team. Before the intervention, the patient presented with
diarrhoea (2-days history), pneumonia, and liver damage, but
there were no fever and cough. The prescription contained
almond, Lophatherum gracile Brongn., tuckahoe (Wolfiporia
aff. extensa), forsythia (Forsythia suspensa (Thunb.) Vahl.),
Wurfbainia villosa (Lour.) Skornick. and A.D.Poulsen,
hawthorn  (Crataegus sp.), medicated leaven (Massa
Fermentata Medicinalis), malt (Hordeum vulgare L.), and
Pueraria montana var. lobata (Willd) Maesen and
S.M.Almeida ex Sanjappa & Predeep. Following treatment, CT
imaging was cleared of the typical signs of pneumonia. Recovery
was also documented by means of a negative nucleic acid test, the
positive IgG, and the IgM results (Liu Q. et al., 2020).

6.5 Qing-Fei-Da-Yuan

QFDY is the granular formulation under traditional Chinese
medicines. It is used by the clinical experts of Hubei Province
for COVID-19 patients under the emergency response
mechanism. Hong and the team performed the network
pharmacology and molecular docking studies with the key
components of this formulation and the COVID-19 targets.
They hypothesized that QFDY acts multimodally by regulating
ACE2’s co-expressing genes, inflammation, and affecting
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immune-associated signalling pathways associated with 3CL
hydrolase and ACE2 (Hong et al., 2020).

6.6 Coronil

Coronil is an ayurvedic triherbal formulation, that is clinically
used as an immunomodulator in patients with COVID-19.
Coronil contains extracts from Withania somnifera (L.)
Dunal, Tinospora cordifolia (Willd.) Hook. f. and Thomson,
and Ocimum tenuiflorum L (Balkrishna et al, 2021a).
Balkrishna et al, reported the anti-SARS-CoV-2 activity of
coronil using the zebrafish model. They found that coronil
potentially inhibited SARS-CoV-2 spike protein, and
reducing the behavioural fever. Coronil also attenuates and
modulates the cytokines production viz. IL-6 and TNF-alpha
when tested in A549 cell lines (Balkrishna et al., 2020).
Balkrishna et al, also reported the ACE-2 inhibitory
potential of coronil (Balkrishna et al., 2021a). In a cross-
sectional satisfaction covid survey, which Balkrishna et al,
had conducted on 367 patients participants, they found
treatment satisfaction in patients when using Divya-Swasari-
Coronil-Kit (Balkrishna et al., 2021b).

6.7 Kabasura Kudineer

KSK is a polyherbal formulation of India’s Siddha System of
Medicine, well known to be traditionally used in diseases similar
to that of COVID-19. Natarajan et al., had conducted a single
centre, randomized controlled trial in Chennai, India on RT-PCR
confirmed COVID-19 cases. Their trial results suggested that
KSK could significantly reduce the viral load of SARS-CoV-2 in
patients, and did not report any clinically diagnosed, serious
adverse effect (Natarajan et al., 2021).

6.8 Withania somnifera (L.) Dunal

Withania somnifera (L.) Dunal, commonly known as
ashwagandha, is a well-known medicinal plant having multiple
therapeutic effects. Chopra et al., had conducted a randomized,
multicentre study on 400 participants to assess the efficacy and
safety when using ashwagandha in place of hydroxychloroquine.
Their efficacy and safety assessment suggested that ashwagandha
has similar effects to hydroxychloroquine, although the
therapeutic efficacy of the latter has been heavily criticized
until then (Chopra et al., 2021).

6.9 Indian Ayurvedic Prescription Medicine
Including Coronil (Patanjali Divya
Coronil Kit)

Devpura et al, had conducted a placebo controlled
randomized double blind trial on 100 COVID-19 patients.
The ayurvedic treatment covered different natural products
like 1gm of Tinospora cordifolia (Willd.) Hook. f. and
Thomson, 2 gm of Swasari Ras which is a traditional herbo-
mineral formulation, 0.5 gm of Withania somnifera (L.) Dunal,
and 0.5 g of Ocimum tenuiflorum L., along with a traditional
nasal drop, Anu Taila. Tinospora cordifolia (Willd.) Hook. f.
and Thomson, Withania somnifera (L.), and Ocimum
tenuiflorum L. were combined in the form of a 500 mg
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TABLE 2 | Non-validated candidates based on hypothesis or earlier antiviral knowledge.

Classification

Polyphenols

Alkaloids

Terpenoid

Flavonoids

Polyketides

Glycosides

Carotenoids

Mixture/Crude

Proteins/Amino
acids/Peptides

tablet, Coronil. With 71% recovery on Day 3 and 100%
recovery on day 7 when treated with this Patanjali Divya
Coronil Kit, in comparison to 60% recovery in placebo
group. On day 7, significant fold change reduction was also
marked when checked for serum levels of hs-CRP, IL-6 and
TNF-alpha in comparison to placebo group, with no clinically
observed adverse effects (Devpura et al., 2021).

Natural product

Resveratrol (Figure 8A)

Tetrahydrocurcumin

(Figure 8B)
Monoacetylcurcumin

(Figure 8C)
Homoharringtonine (Figure 8D)

Emetine (Figure 8E)

Lycorine (Figure 8F)

Reserpine (Figure 8G)
Tetrandrine (Figure 8H)
Artemisinin (Figure 8I)
Epigallocatechin-3-Gallate

(Figure 8J)

Naringenin (Figure 8K)

Emodin (Figure 8L)
Saikosaponins

Aescin (Figure 8M)
Astaxanthin (Figure 8N)

Turmeric

Sumac extract

Toona sinensis (Juss.) M.Roem.
tender leaf extract
Tylophorine compounds

Euphorbia neriifolia L. leaves
ethanolic extracts
Mannose-binding lectins
Tetra-O-galloyl-B-D-glucose
Cinanserin

Function

Inhibit the replication in vitro

Inhibit intracellular viral multiplication in vitro,
decrease the death rate in piglets
Downregulate TNF-alpha levels and diminish
diarrhea in piglets

Decrease the nucleoprotein expression, prevent
the influenza virus infection

Prevent the influenza virus infection

Powerful antiviral activity

Anti-herpes

Prevent the transport of nucleoprotein
Prevent the autophagy or RNA translation

Anti-SARS activities

Protect the host infected through the viral
transmission by inhibiting endo-lysosomal Two-
Pore Channels (TPCs)

Prevent the bioactive chymotrypsin-like protease
and replication of the virus

Upregulate the Nrf2 expression which could
relieve oxidative stress and inflammation, reduce
the ACE2 and increase the expression of antiviral
genes (RIG-I, IFN-B, and MxA)

Decrease secretion of the virus

Inhibit replication and infection

Interdict the binding of the S protein to ACE2,
prevent the infection

Prevent the penetration and adsorption of the
virus

Anti-SARS activities

Janus kinase/signal transducer and activator of
transcription; antiapoptotic agent

Increase the expression of TNF-a and the IFN-p
mRNA

Inhibit reverse transcriptase and protease
Prevent the process of attachment and
penetration

Prevent the replication of the virus

Prevent the replication of TGEV which induce
apoptosis and cytopathic effect

Relieve cytopathic effect

Increase the survival of infected cells

Prevent the replication of the virus
Defense of the virus entry

Inhibit the activity of the main protease
Prevent the replication of the virus

Virus
MERS-CoV
Pseudorabies
virus
Rotavirus
H1N1
Influenza virus
Herpes virus
Herpes virus
Influenza virus
EV71
SARS-Cov
Ebola virus

SARS-Cov

Influenza A virus

Hepatitis C virus
influenza A virus
dengue virus
Zika virus
SARS-Cov

HCoV-229E

SARS-Cov
Not checked

HBN1

HIV-1
HSV

SARS-Cov
TGEV

SARS-Cov
HCoV-229E

SARS-Cov
SARS-Cov
SARS-Cov
HCoV-229E
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Refs

Lin et al. (2017), Marinella (2020)
Zhao et al. (2017b), Marinella (2020)

Cui et al. (2018), Marinella (2020)

Richart et al. (2018), Lai et al. (2020b),
Gupta et al. (2020)
Richart et al. (2018), Gupta et al. (2020)

Dong et al. (2018), Kim and Song (2019),
Hassan (2020)

Mukhopadhyay et al. (2016), Khandelwal
et al. (2017), Andersen et al. (2019),
Hassan (2020)

He et al. (2013), Zhang et al. (2020a)

Liu et al. (2011a), Wang et al. (2019),
Zhang et al. (2020a)

Prasad et al. (2020)

Sakurai et al. (2015), Filippini et al. (2020)

Li et al. (2005), Law et al. (2020)
Kesic et al. (2011), Mendonca and

Soliman (2020)

Nahmias et al. (2008), Filippini et al. (2020)
Dong et al. (2014), Filippini et al. (2020)
Frabasile et al. (2017), Filippini et al. (2020)
Cataneo et al. (2019), Filippini et al. (2020)
Ho et al. (2007), Prasad et al. (2020)

Cheng et al. (2006a), Prasad et al. (2020)

Prasad et al. (2020)
Fakhri et al. (2020)

Richart et al. (2018), Gupta et al. (2020)

Kadokura et al. (2015), Korkmaz (2020)
Reichling et al. (2009), Korkmaz (2020)

Chen et al. (2008), Prasad et al. (2020)
Yang et al. (2010), Prasad et al. (2020)

Yang et al. (2010), Prasad et al. (2020)
Chang et al. (2012), Prasad et al. (2020)

Keyaerts et al. (2007), Prasad et al. (2020)
Yi et al. (2004), Prasad et al. (2020)
Gao et al. (2003), Di Micco et al. (2020)

6.10 Persian Medicine Herbal Formulations
Karimi and the team had performed multicenter, randomized

and controlled clinical trial on 358 COVID-19 patients in Iran, to
assess the potential of three herbal formulations based on Persian
Medicine System. The treatment consists of two herbal capsules
and one herbal decoction, where capsule 1 contains extracts
prepared from the root of Rheum palmatum L., rhizome of
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Glycyrrhiza glabra L., and fruit peel of Punica granatum L.;
capsule 2 contains seeds of Nigella sativa L. in powdered form;
while herbal decoction contains powdered herbs of “Matricaria
chamomilla L., Zataria multiflora Boiss., G. glabra L., Ziziphus
jujuba Mill., Ficus carica L., Urtica dioica L., Althaea officinalis L.,
and Nepeta bracteata Benth.”. 174 patients received standard
treatment as per the government protocols, while 184 received
these herbal remedies along with standard treatment for a period
of 7 days. The results clearly suggested that the combination of
herbal remedies along with standard treatment has not
accelerated the clinical improvement and decrease in
symptoms, but it has also significantly reduced the hospital
stay duration. Further, patients have well accepted the herbal
treatment (Karimi et al., 2021).

7 NON-VALIDATED CANDIDATES BASED
ON HYPOTHESIS OR EARLIER ANTIVIRAL
KNOWLEDGE

Going through the literature, it has been witnessed that there are
many molecules and formulations which were hypothesized for
their potential to combat COVID-19 based on their antiviral
activities reported earlier against SARS-CoV or MERS-CoV or
any other virus. We have covered that information in Table 2.

8.CONCLUSION, LIMITATIONS, AND
FUTURE PERSPECTIVES

SARS-CoV, SARS-CoV-2, and MERS-CoV have been associated
with betaCoVs. SARS-CoV, and MERS-CoV were controlled due
to lesser geographical spreading, however SARS-CoV-2 has
spread throughout the world. The transmission of SARS-CoV-
2 as shown in Figure 1 clearly reflects the importance of hygiene
and sanitation, utilization of mask, physical distancing and
limitation of large-scale gatherings. The authors have further
elaborated on the role of intestinal microbiota and pro-
inflammatory biomarkers in the prognosis, diagnosis and

treatment of COVID-19 disease. Gut microbiota is a
multimodal entity with an established involvement in
inflammation, immunity and drug metabolism. Pro-

inflammatory markers associated with intestinal microbiota are
interleukin 1b, interleukin 8, interleukin 10, interleukin 12, TNF,
and interferon type 1.

Vaccines have greatly contributed to the prevention of
COVID-19 since December 2020. Nevertheless, a number of
vaccinated individuals, predominantly those with severe
comorbidities or immune compromise remain vulnerable to
severe infection, hospitalization and death. Moreover, the
duration of immunity remains debatable and can be
undermined by novel SARS-CoV-2 strains (Dolgin, 2021).
Thus, exploring additional therapeutic solutions, including
those derived from medicinal plants remains relevant.

It is pertinent to note that so far, the efficacy of numerous
natural products against the principal COVID-19 therapeutic
targets, namely NSP25, ACE2 receptor, 3CL pro/Mpro, RdRp, PL
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Pro, TMPRSS2, Cathepsin L, Nsp2, Spike (s) protein, Nsp15, and
nucleocapsid (N) protein, has been investigated. The authors
have covered 70 natural products which were broadly distributed
in 165 biological sources. They were active against various targets
for combating COVID-19 (Refer to Figure 9). In regard to the
covered literature, we found it very interesting that few
compounds have the potential to act multi-dimensionally
against COVID-19, such as quercetin, diosgenin, scedapin C,
luteolin, gallocatechin gallate, quinadoline B, procyanidin,
curcumin,  gingerol, allicin,  kaempferol,  nigellidine,
asparagoside-C, and asparagoside-D. An interactive analysis
map of different phytochemical classes is linked to those
natural products which have a documented potential against
SARS-CoV-2 (Figure 10). It has been observed that the
majority of the studied molecules belongs to the flavonoid,
alkaloid and terpenoids category. ACE-2 inhibitory potential
was most recorded in compounds bearing flavonoid moiety,
which probably suggests the involvement of flavonoid scaffold
in interacting with ACE-2 amino acid residues. Multitarget
molecules are mostly the ones having phenolic moiety. As per
the covered literature, all the terpenoids and monolignols were
reported with a single target potential.

The multitarget potential (also known as polypharmacology)
of these natural products can become the basis of regimens
covering different strains of the virus. This can be further
illustrated with a number of examples:

e As mentioned before, the entry of SARS-CoV-2 in the host
cell was regulated by the spike protein (S-glycoprotein) of
the virus and ACE-2 receptor of the host cell (Yang J. et al,
2020). For instance, diosgenin, a dual acting compound, has
the tendency to bind with both, ACE-2 receptor as well as
Spike(S) protein.

e 3CLpro (also known as Mpro) and PLpro are the key
protease enzymes which are responsible for the
replication of SARS-CoV-2 and for virus spread (Shin
et al,, 2020; Tahir ul Qamar et al., 2020; Mody et al,
2021). Quercetin has shown potential to bind ACE2
receptor as well as 3CLpro. Quercetin can thus inhibit
the replication of SARS-CoV-2, as well as stop the entry
of this virus in the host cell. On top of this, procyanidin, a
flavonoid, is capable of binding with the spike(S)-protein,
ACE-2 receptor, and 3Clpro.

e RdRp is an important RNA polymerase involved in viral
replication. As a matter of fact, it is a target of remdesivir
(Jiang et al., 2021). Luteolin, a compound found in edible
plants, has a multitarget potential to bind with 3CLpro,
PLpro, RdRp, and Spike(S) protein.

e TMPRSS2 is an additional important target from the host
cell side, as it is responsible for spike(S) protein priming
and activation, thus responsible for SARS-CoV-2
pathogenicity (Hoffmann et al., 2020; Mollica et al,
2020). This makes compounds like kaempferol and
adlumidine as important because of their binding
potential to TMPRSS2.

e Similarly to TMPRSS2, cathepsin K/L also plays important
role in the activation of spike(S) protein. Hence, compounds
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FIGURE 8 | Non-validated candidates based on hypothesis or earlier antiviral knowledge.
targeting cathepsin L like allicin, gingerol, curcumin are e Nucelocapsid(N) protein in SARS-CoV-2 is a key structural
having promising potential to aid in circumventing the RNA-binding protein, which plays pivotal role in virus
pathogenicity of SARS-CoV-2. transcription and assembly (McBride et al., 2014; Cubuk
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FIGURE 9 | Interactive analysis map between biological sources, natural
secondary metabolites, and targets to combat COVID-19.

et al., 2021). This indicates the importance of compounds
like nigellidine, Asparagoside-C, Asparagoside-D, and
Asparagoside-F, who can bind to this protein.

Natural Products Against COVID-19

The majority of the results discussed in this article derived
from in silico studies. The role of computational tools in drug
discovery, especially against viral infections has been frequently
highlighted during the pandemic (Matter and Sotriffer, 2011;
Phillips et al., 2018). The in silico research of Tao and colleagues
(2020), serves as an example indicating the potential of baicalin
against SARS-CoV-2 (Tao Q. et al,, 2020). On these grounds,
Zandi and colleagues (2021) have experimentally yielded that
baicalin can have comparable results with remdesivir against
COVID-19 (Zandi et al, 2021). Keeping the potential of
computational studies in mind, we strongly recommend to
researchers to experimentally assess the drug potential of thes
listed natural products, either alone or in combination with other
natural compounds or in combination with other standard
antiviral drugs (Refer to the section: Natural Products Against
SARS-CoV-2:  Computational to Preclinical Studies). The
validation of these theoretical studies, may lead to a potent
anti-SARS-CoV-2 agent.

As mentioned before, the retrospective search for the sources
of the reported natural products, indicated that some plants
possess multiple bioactive components which could act
simultaneously against various COVID-19 therapeutic targets.
Some of those sources are Cannabis sativa L., respiratory detox
shot, Scutellaria baicalensis Georgi, Uncaria tomentosa (Willd. ex
Schult.) DC., Polygonatum sibiricum Redouté, Diospyros kaki L.
f, Euonymus alatus (Thunb.) Siebold, Camellia sinensis (L.)
Kuntze, Cinnamomum verum ]. Presl, Caragana spinosa (L.)
Hornem., Edgeworthia chrysantha Lindl, Nigella sativa L.,
Broussonetia papyrifera (L.) L'Hér. ex Vent, Calendula
officinalis L., and Asparagus racemosus Willd. Some bioactive
compounds with anti-SARS-CoV-2 potential are very common
and reportedly being found in multiple sources, namely
hesperetin, myricetin, pectolinarin, herbacetin, narcissoside,
baicalin, procyanidin B2, quercetin, and licoisoflavone B.
Given the significance of computational data in this COVID-
19 pandemic time, to accelerate drug discovery, the authors have
discussed these studies in an unbiased manner, acknowledging
the need for validation in clinical settings. Perhaps, a polyherbal
formulation combining these biological sources could lead to a
potent pharmaceutical agent, with relatively low cost of
production and presumably high acceptance among
populations who are acquainted with these compounds
through their traditions. In this context, Natural Products
Against SARS-CoV-2: Computational to Preclinical Studies has
listed 10 polyherbal formulations based on Traditional Chinese
Medicine (TCM) Indian Ayurvedic and Siddha Medicine and
Persian Medicine. The reported studies included limited number
of patients and further clinical investigation is necessary.
However, considering that a considerable number of
individuals in the aforementioned countries may seek such
treatments, being aware of the relevant evidence is important.

Interactive analysis matching the covered biological sources
with their taxonomical tree was performed in an effort to reveal
significant relationships and leverage the insights provided by the
present study (Refer Figure 11 as Interactive analysis map
biological ~ source-family-order-clade-class-clade). Out of
approximately 64 covered families, the families were medicinal
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Quercetin

Procyanidin

FIGURE 10 | Interactive analysis map between phytochemical classes, natural secondary metabolites, and targets to combat COVID-19.

plants possessing bioactive compounds to combat COVID-19
were abundant included Rutaceae, Anacardiaceae, Rosaceae,
Moraceae, Rhamnaceae,  Hypericaceae,  Euphorbiaceae,
Lamiaceae, Verbenaceae, Plantiginaceae, Salvadoraceae,

Brassicaceae, Asteraceae, Poaceae, Asparagaceae,
Dioscoreaceae, Fabaceae, Rubiaceae, Apocynaceae, Lauraceae,
Berberidaceae, and Papaveraceae. Papaveraceae, Rubiaceae,
Fabaceae, Asparagaceae, Poaceae, Asteraceae, Lamiaceae,
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FIGURE 11 | Interactive analysis map biological source-family-order-clade-class-clade.

Euphorbiaceae, and Rosaceae. Similarly, out of approximately 36 Saxifragales, Brassicales, Lamiales, Malphighiales, Rosales, and
covered orders, the most significant ones were Ranunculales,  Sapindales. Ranunculales, Lamiales, Rosales, Sapindales were
Apiales, Gentianales, Caryophyllales, Zingiberales, Asparagales,  further the most significant out of all the listed orders. Almost
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all the covered medicinal plants belong to the clade:
Mesangiospermae;  class: ~ Magnoliopsida  and  clade:
Streptophyta. Taxonomical classifications were based on
similarities and commonalities. Keeping the similarities and
commonalities of the taxonomy in mind, we authors
recommend to investigate the potential of these families
against COVID-19 and its sequelae.

The focus of the present study has been limited to
phytochemicals reported between January 2020 and November
2020. This limitation was deemed necessary in order to analyse
evidence connecting natural compounds with COVID-19 in a
comprehensive manner, as presented in Figure 9-Figure 11.
Moreover, the authors limited their search of the biological
source of these phytochemicals to the 5-6 more abundant and
investigated sources of it. Hence the listing of biological sources is
not exhaustive but serves as a guide for future original research.

It is 21 months since the onset of the COVID-19 pandemic, a
historical crisis with multilevel implications to health, economy,
politics and society. Research related to the management of the
disease has culminated in a record number of publications,
including a significant amount of work investigating natural
compounds in the context of COVID-19. To date, relevant
secondary (review) studies have focused either on natural
products with known antiviral properties associated with other
viral infections (in the sense that some of these properties may
render them effective against COVID-19) (Dejani et al., 2021;
Ebob et al, 2021) or were not focused on single classes of
compounds (da Silva, 2021; Ghidoli et al., 2021; Khazeei
Tabari et al., 2021; Kowalczyk et al., 2021; Montenegro-
Landivar et al, 2021) or elaborated on synthetic antiviral
regimens (Shah et al., 2021). To the authors best knowledge, a
review summarizing the evidence about natural products of
different classes on COVID-19 has not been published so far.
The present study puts this evidence in the context of the etiology
and epidemiology of COVID-19, intestinal microbiota and pro-
inflammatory markers related to disease, in an effort to outline a
comprehensive background for future original research. Overall,
this review serves as a guide for research related to the use of
natural compounds against SARS-CoV-2. It can be particularly
useful to pharmacology researchers in academia and in the
industry and may also provide clinical investigators with
insights about relevant clinical research. The authors
acknowledge the need to enhance this evidence by means of
large-scale clinical studies and recognize that currently
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GLOSSARY

alphaCoV: alphacoronavirus
betaCoV: betacoronavirus

deltaCoV: deltacoronavirus
gammaCoV: gammacoronavirus
UVC: Ultraviolet-C

RNA: Ribonucleic Acid

RdARp: RNA-dependent RNA polymerase
3CLpro: 3-chymotrypsin-like protease
PLpro: Papain-like protease

ACE2: Angiotensin-converting enzyme 2
ICUs: Intensive care units

IL6: Interleukin-6

IL1: Interleukin-1

TNEF: Tissue Necrosis Factor

CAGs: Cytokine activated genes

Tregs: T regulatory cells

IBDs: Inflammatory bowel diseases

PAMPs: Pathogen associated molecular patterns

MAMPs: Microorganisms associated molecular patterns

PRRs: Pattern recognition receptors
INF-1: Initiation factor-1

PCR: Polymerase chain reaction

S protein: Spike protein

TCM: Traditional Chinese Medicines

LH: Lianhuagingwen

ICs¢: 50% Inhibitory concentration

anti- HCV: Anti-Hepatitis C Virus
SBG: (+)-Syringaresinol-O-beta-D-glucoside
NSP: Non-structural polypeptide
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TMPRSS2: Transmembrane protease, serine 2

qPCR: Quantitative PCR

Da: Dalton

M pro: Main protease

IRG: Isorhamnetin-3-O-b-D-glucoside

anti-HSV: Anti-Herpex simplex virus

Anti-HIV: Anti-Human immunodeficiency virus

MD: Molecular dynamics

RMSD: Root mean square deviation

RMSEF: Root mean square fluctuation

VDW: van der Waals

ADMET: Absorption, distribution, metabolism, excretion, and toxicity
GI: Gastrointestinal

H-bond: Hydrogen bond

N protein: Nucleocapsid protein

DGCG: Delphinidin 3,3'-di-glucoside-5-(6-p-coumarylglucoside)

PGHGM: Pelargonidin 3-O-[B-D-Glucopyranosyl-(1->2)-[4-
hydroxycinnamoyl-(->6)]-p-D-glucopyranoside] (E-) 5-O-(6-O-malonyl-
B-D-glucopyranoside)

AIDS: Acquired immune deficiency syndrome

HIV: Human immunodeficiency virus

TCMSP: Traditional Chinese Medicine Systems Pharmacology
MTHE: 3-(3-Methylbut-2-enyl)-3,4,7-trihydroxyflavane
LHQW: Lianhuaqingwen

PLD: Pudilan

CT: Computed tomography

IgG: Immunoglobulin G

IgM: Immunoglobulin M

QFDY: Qing-Fei-Da-Yuan

TPCs: Two-Pore Channels

TGEV: Transmissible gastroenteritis virus.
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Aim: Andrographis paniculata (Burm. f.) Nees (also known as Chuanxinlian in Chinese) of
Acanthaceae family is one of the Chinese herbs reputed to be effective in the treatment of
inflammation, infection, cold, and fever. Enterovirus 71 (EV71) is one of the most important
enteroviruses that cause hand, foot, and mouth disease (HFMD) accompanied with
neurological complication.

Methods: To explore an anti-infective Chinese herb medicine, pure compounds isolated
or synthesized analogues from A. paniculata (AP) ethyl acetate (EtOAC) extract are used to
explore their anti-EV71-induced cytotoxicity. The antiviral activity was determined by
cytopathic effect (CPE) reduction, and sub-G1 assays were used for measuring lysis
and apoptosis of EV71-infected rhabdomyosarcoma (RD) cells. IFNy-driven luciferase
reporter assay was used to evaluate their potential roles in activation ofimmune responses.

Results: Our data showed that EV71-induced sub-G1 phase of RD cells was dose
dependently increased. Highly apoptotic EV71-infected RD cells were reduced by AP
extract treatment. Ergosterol peroxide (4) has the most anti-apoptotic effect among these
seven compounds. In addition, 3,19-O-acetyl-14-deoxy-11,12-
didehydroandrographolide (8) synthesized from acetylation of compound 7 showed
significantly better antiviral activity and the lowest sub-G1 phase of 6%-18%. Further
investigation of IFNy-inducer activity of these compounds showed that compounds 3, 6,
10, 11, and 12 had significantly higher IFNy luciferase activities, suggesting their potential
to promote IFNy expression and thus activate immune responses for antivirus function.

Conclusion: Our study demonstrated that bioactive compounds of AP and its derivatives
either protecting EV71-infected RD cells from sub-G1 arrest or possessing IFNy-inducer
activity might be feasible for the development of anti-EV71 agents.

Keywords: Andrographis paniculata, antiviral activity, cytopathic effect, enterovirus 71, rhabdomyosarcoma cells
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1 INTRODUCTION

Andrographis paniculata (Burm. f) Nees (also known as
Chuanxinlian in Chinese) of Acanthaceae family, native to
Taiwan, Mainland China, and India, is a medicinal plant
widely used for anti-inflammatory, antipyretic, antiviral, and
detoxifying purposes. The leaves and aerial parts of A.
paniculata (AP) have been used in traditional Chinese
medicine (TCM). It has been considered as a “cold” herb and
used to get rid of body heat and toxins. Earlier works have
identified many important ingredients in the plant, including
diterpenes, flavonoid, and stigmasterols (Chao et al., 2010; Chao
and Lin, 2010; Saxena et al., 2010; Kumar et al.,, 2021). It is
commonly employed for “clearing heat and resolving toxicity.”
Typical symptoms of “heat and toxicity” include swollen and
painful gums, associated with inflammation, cancer, and virus-
related diseases (Wang et al., 2016; Jiang et al., 2021).

There have been several reports on the effects of these
ingredients ~on  antivirus  activity.  Andrographolide,
neoandrographolide, and 14-deoxy-11,12-
didehydroandrographolide (7) isolated from AP demonstrated
virucidal activity against herpes simplex virus 1 without
significant cytotoxicity (Wiart et al, 2005). Andrographolide
was also shown to inhibit the expression of Epstein-Barr virus
lytic proteins during the viral lytic cycle in infected P3HR1 cells, via
inhibiting the production of mature viral particles without harm to
the cells (Lin al, 2008). Anti-influenza activity of
andrographolide and its derivatives was also demonstrated in
mice infected with HINI1, H9N2, or H5NI, as well as in
infected canine kidney cell line Madin-Darby canine kidney
(MDCK) cells (Chen et al,, 2009). They further synthesized 14-
a-lipoyl andrographolide derived from andrographolide and found
it more effective against avian influenza A virus HON2 and H5N1
and human influenza A HINI virus in vitro. Jiang et al. (2009) also
showed that synthesized andrographolide analogue, 14-glycinyl
andrographolide hydrochloride, exerted more potent antibacterial
activity. These studies suggest that chemical modification of
bioactive compounds isolated from plants is worthy of study to
improve the efficacy of anti-infection (Jiang et al., 2009).

Enterovirus type 71 (EV71) infection is one of the serious public
health problems, especially in Asia. The pathogen was originally
recognized in 1969 in California with subsequent outbreaks in other
parts of the United States. Since then, outbreaks have been noted in
Australia, Japan, Korea, Malaysia, Singapore, Vietnam, and China
(Ho, 2000; Chung et al., 2010). EV71 is a single positive-stranded
RNA virus that belongs to the Enterovirus genus of the
Picornaviridae family. EV71 infection might be asymptomatic
or might cause diarrhea, rashes, vesicular lesions on the hands
and feet, and oral mucosa (hand, foot, and, mouth disease
(HFMD)), which are typically found in infants and children.
Sometimes, infection can lead to severe herpangina, aseptic
meningitis, encephalitis, or myocarditis, which might be fatal in
infants and children. The viruses are spread through contact with
virus-containing body fluids, respiratory droplets, and feces. There
is currently no vaccine or specific medication for EV71 infections,
though antivirus drug ribavirin for hepatitis was reported to reduce
mortality of EV71-infected mice (Li et al., 2008).

et

The Anti-EV71 Effect of AP

HFMD is caused mainly by an accumulation of damp heat and
toxicity in the body, and therefore its treatment may involve the usage
of heat-clearing and detoxifying medicines (Wang et al, 2016).
Therefore, in this study, we investigated the anti-EV71-induced
cytotoxicity of 12 compounds isolated and modified from AP
(Chao et al,, 2010). EV71 infection induces cytopathic effect (CPE)
on the host cells, such as neuroblastoma, colorectal adenocarcinoma,
and rhabdomyosarcoma (RD) cells, leading to eventual cell death (Bai
et al, 2019). Therefore, the antiviral activity of the fractions and
compounds from AP ethyl acetate (EtOAc) extract against EV71 was
examined by CPE in EV71-infected RD cells.

In addition, interferon (IFN)-mediated antiviral responses are
very important to host defense against viral infection. Both type I
IFNs (IFNa/B) and type II IEN (IFNy) play an important role in
controlling EV71 infection and replication. Administration of IFN
inducer was reported to protect the mice against EV71 infections
via higher IFNa production (Liu et al.,, 2005; Lin et al,, 2019). In
severe EV-A71 infection, the increase of IFNy inducible protein-10
subsequently elevating expressions of IFNy is crucial for virus
clearance and survival of EV71-infected mice (Shen et al., 2013).
Therefore, we also investigated the anti-EV71-induced cytotoxicity
of these 12 compounds from AP (Chao and Lin, 2010) by
evaluating their IFN-inducing activity using an IFNy-luciferase
reporter assay (Chao et al., 2009). Therefore, screening for IFN
inducers or immune-stimulatory compounds from medicinal plant
is a practical approach to identify potent antiviral agents.

2 ARTICLE TYPES

Original Research Article.

3 MATERIALS AND METHODS

3.1 Plant Material

A. paniculata (Burm. f.) Nees (Acanthaceae) (AP) was purchased
from a licensed Chinese herbal drug store in Taipei City. The
identification of AP was authenticated by Dr.Wei-Chu Li (Sheng
Chang Pharmaceutical Co., Ltd) by pharmacognostical
anatomical analysis (Chao et al.,, 2009). The dried whole plant
of AP (9kg) was extracted with 95% ethanol (60 L) at room
temperature for 2weeks. After filtration, 95% ethanol was
evaporated under vacuum to obtain a black syrup, which was
suspended in water (1 L) and partitioned with EtOAc (1 L three
times) to obtain EtOAc-soluble layers (Figure 1).

3.2 Fractionation, Isolation, and
Identification of Active Compounds From
Andrographis paniculata

The AP EtOAc-soluble fraction (316.9 g) was separated by silica
gel column chromatography eluted by increasing the proportion
of EtOAc (0%-100%) in n-hexane (Hex) and methanol in EtOAc
(10%-50% methanol) to give a total of 26 fractions as described
previously (Chao et al., 2009; Chao et al., 2010). The 26 fractions were
collected for bioassay-guided fractionation test by measuring their

Frontiers in Pharmacology | www.frontiersin.org

103

December 2021 | Volume 12 | Article 762285


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Chao et al.

The Anti-EV71 Effect of AP

‘ Andrographis paniculata (9 kg) ‘

!

95% ethanol
EtOAc/H,O partition

[ EtOAc extract (316.9 g) ]

!

Bioactivity-guided chromatographic
fractionation

Active fraction A
(11.0¢g)

Active fraction B
(3.5¢)

Active fraction C
(147g)

Silica gel Silica gel recrystallization
chromatography chromatography l
- - - - 14-deoxy-11,12-didehydroand
‘7~IO fractlons‘ |12~14 fractlons‘ ‘ 8~9 fractmns‘ ‘11~12 fractlonJ

l HPLC

S-hydroxy-7,8-dimethoxyflavanone (1)
5-hydroxy-7,8,2”,5 -tetramethoxyflavone (2)
cinnamic acid (3)

ergosterol peroxide (4)

andrograpanin (5)

14-deoxy-14,15-dehydro
andrographolide (6)

FIGURE 1 | The extraction procedure for the separation and identification of Andrographis paniculata EtOAc extract. Compounds tested for anti-EV71-induced
cytotoxicity are enumerated with Arabic numbers (bold). EtOAc, ethyl acetate; EV71, enterovirus 71.
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effect on NF-kB-dependent luciferase activity (Chao et al.,, 2009), and
active fractions were collected. After repeated bioassay-guided
fractionation by silica gel chromatography, single peak fractions
eluted by high-performance liquid chromatography (HPLC) were
collected for identification. The chemical compositions of the
molecules isolated from AP were analyzed by HPLC and “C
NMR and 'H NMR spectroscopic data. As shown in Figure 1,
compounds 1, 2, 3, 4, 5, and 6 were isolated from active fractions
(elution with 30%-50% EtOAc/Hex). These were identified as 5-
hydroxy-7,8-dimethoxyflavanone (1), 5-hydroxy-7,8,2',5'-
tetramethoxyflavone (2), cinnamic acid (3), ergosterol peroxide (4),
andrograpanin (5), and 14-deoxy-14,15-dehydroandrographolide (6).
One major component, 14-deoxy-11,12-didehydroandrographolide
(7), was eluted from 50% EtOAc/Hex.

3.3 Synthesis of Analogues of
14-Deoxy-11,12-
Didehydroandrographolide (7)

Compound 7 was treated with acetic anhydride in pyridine at room
temperature for 1 h (Chao et al,, 2010). After the routine workup,
compounds 8 and 9 were afforded. For hydrogenation, compound
7 (100 mg) dissolved in 30 ml of acetone with 10% Pd-C (15 mg, as
a catalyst) was stirred under a hydrogen atmosphere for 1 h. After
filtration and evaporation, the product was purified by HPLC with

50% EtOAc/Hex as the eluted solvent, and compound 10 was
yielded. Via Jones oxidation in acetone, compound 7 yielded
compounds 11 and 12 (Figure 2). Their chemical structures
were elucidated by comparison of their NMR (*H and '’C) and
mass spectrometry as described previously (Chao et al., 2010).

3.4 Enterovirus 71 Virus Preparation and

Titration
The EV71 virus strain used in this study was TW2272/98 (C2
genogroup, isolated in 1998). Virus strain was propagated in RD
cells cultured at 37°C in Alpha Minimum Essential Medium (a-MEM,
Invitrogen, Carlsbad, CA, USA) containing 10% fetal bovine serum
(FBS). The virus titers were determined based on the CPE developed
in infected RD cells and expressed as the median (50%) tissue culture
infective dose (TCIDsp) per ml (Lin et al., 2012). Briefly, confluent
monolayers of RD cells are plated, and serial dilutions (107 t0 10719
of the virus are added. After incubation for 48 h, the percentage of cell
death (ie., infected cells) is manually observed under microscope,
images were recorded as CPE for each virus dilution, and results are
used to calculate a TCIDsq result. The virus was stored at —70°C
until use.

The titers of the virus stocks were also determined by a TCIDs,
assay. Serially diluted viruses from 107> to 10" in a-MEM with
2% FBS were inoculated to RD cells in 96-well plates, and the cells
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FIGURE 2 | Chemical structures of compounds 1-12 isolated or semi-synthesized from AP. AP, Andrographis paniculata.

were incubated for 3 days at 37°C. TCID5, was calculated by
counting the CPE in infected RD cells. Finally, we selected the
infective dose of 1077 EV71 as the median tissue culture infective
dose (TCIDs) in this study to assess the antiviral effect of our
samples (Supplementary Figure S1).

3.5 Cytopathic Effect Inhibition Assay for
Anti-Enterovirus 71-Induced Cytotoxicity of

Andrographis paniculata
The antiviral activity of AP EtOAc extract against EV71
was determined by a CPE reduction method. RD cells

(2 x 10* cell/well) were seeded onto a 96-well culture plate.
The next day, the medium was removed, and the cells were
pretreated with AP (10-45 pug/ml) for 2 h, then infected with
TCIDs, (1077 dilution) of EV71, and further incubated at
37°C in 5% CO, for 48 h. The morphology of EV71-infected
RD cells, with or without pretreatment of AP, was observed
under light microscope and recorded as EV71-induced CPE.
Infected RD cells in the absence of test compounds were used
as the controls. Since test compounds were dissolved in
dimethyl sulfoxide (DMSO), 1% DMSO was also added to
RD cells for 2h before infection as solvent control for
reference.
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3.6 Cell Death Analysis by Flow Cytometry
To quantitate death of the infected RD cells, sub-G1 assay by flow

cytometry was used to estimate the fractional DNA content.
Briefly, a total of RD cells measuring 3 x 10° cells/well were
seeded into 6-well culture plates (Falcon; BD Biosciences, San
Jose, CA, USA) for 2-h pretreatment with each test compound
(2.5-10 pg/ml) and then infected with EV71. The pretreated and
infected RD cells were collected 48 h post-infection, washed with
phosphate-buffered saline (PBS) buffer, and then centrifuged at
3,000 rpm for 5 min.

The cell pellet was incubated with methanol for 30 min at 4°C,
centrifuged again, and washed with PBS buffer. The pellet cells
were incubated with RNAase solution, then stained with
propidium iodide (PI staining) for DNA content in cell cycle
analysis (Sigma Chemical Co., St. Louis, MO, USA), and
measured by flow cytometry (FACScan, Becton Dickinson,
Mountain View, CA, USA). CellQuest Pro version 4.0 was
used for data analysis to calculate the percentage of sub-Gl
phase as an indicator of cell death. The increase in sub-G1 cell
population in cell cycle indicates cellular apoptosis. The sub-G1
phase increased from 61.6% (1077 EV71) to 86.9% (10°° EV71)
when more EV71 was added, consistent with microscopic images
of CPE (Supplementary Figure S1).

3.7 IFNy-Luciferase Reporter Gene Assay
To investigate whether these compounds possess IFN-inducing
activity, the transient transfection assay using an IFNy-luciferase
reporter gene was performed. EL-4T cells, a murine T
lymphocyte cell line, grown in Dulbecco’s modified Eagle’s
medium (DMEM) with 10% FBS were seeded on 24-well
plates at a concentration of 4 x 10° cells/well. The EL-4
T cells were transiently transfected with 0.9 pg of pIFNy-luc, a
plasmid containing IFNy promoter with luciferase reporter gene,
and 0.1 pg of internal control pRL-tk plasmid for 5 h, as described
previously (Chao et al., 2009). EL-4 transfectants were pretreated
with each test compound (2.5-10 pg/ml) or vehicle for 1 h and
then stimulated without or with phorbol 12-myristate 13-acetate
(PMA; 50 ng/ml, Sigma)/ionomycin (1,000 ng/ml, Sigma) for
24 h. Cell lysis was performed, and luciferase activity measured
as previously reported (Chao et al., 2009).

3.8 Statistical Analysis

The data were expressed as mean + SD. The significant difference
compared with the control group was analyzed by Student’s t-test
using the SAS statistical software (SAS/STATA version 8.2; SAS
Institute, Cary, NC, USA). The difference was considered to be
significant if p was <0.05.

4 RESULTS

4.1 Structures of Pure Compounds 1-12
From Andrographis paniculata Ethyl

Acetate Extract
Isolation and identification of active compounds from AP are as
shown in Figure 1. The chemical structures of compounds 1-12

The Anti-EV71 Effect of AP

isolated or semi-synthesized from AP EtOAc extract are
illustrated in Figure 2. The compounds selected for this study
are as follows: flavonoids 5-hydroxy-7,8-dimethoxyflavanone (1)
(29mg) and 5-hydroxy-7,8,2',5'-tetramethoxyflavone  (2)
(169.7 mg); acid cinnamic acid (3) (63.3 mg); steroid ergosterol
peroxide (4) (10.2 g); diterpenoids andrograpanin (5) (676.3 mg)
and 14-deoxy-14,15-dehydroandrographolide (6) (1.2g); and
one  major  bioactive  component 14-deoxy-11,12-
didehydroandrographolide (7) (14.7 g).

Five synthetic analogues from this major compound 7 are as
follows:  3,19-O-acetyl-14-deoxy-11,12-didehydroandrographolide
(8) (726 mg) and new compound 3-O-acetyl-14-deoxy-11,12-
didehydroandrographolide (9) (3.3mg) by acetylation; new
compound hexahydro-14-dehydroxyandrographolide (10)
(224mg) by hydrogenation, and new compounds 3,19-
dioxolabda-8(17),11E,13-trien-16,15-olide (11) (63.2 mg) and 3a-
hydroxy-19-oxolabda-8(17),11E,13-trien-16,15-olide (12) (5.4 mg)
by oxidation.

The major compound 14-deoxy-11,12-didehydroandrographolide
(7) is known to possess immunostimulatory and anti-atherosclerotic
activities and is anti-inflammatory anti-infective (Cai et al,, 2020).
Andrograpanin is a minor compound but was also reported to have
both anti-inflammatory and anti-infective properties (Chao and Lin,
2010; Chandrasekaran et al., 2011). In a previous study, Chao et al.
showed that AP presented as an inflammatory inhibitor through the
suppression of NF-«B signaling (Chao et al., 2010; Tung et al., 2010).
Therefore, the antiviral activity of the major compounds is worthy of
further investigation.

4.2 Protection of Enterovirus 71-Induced
Cytopathic Effect With Andrographis

paniculata Extract

The antiviral activities of AP EtOAc extract against EV71 are
based on inhibition of virus-induced CPEs in RD cells. AP
EtOAc extract was first confirmed to have no cytotoxicity
against host cells at concentrations up to 45 ug/ml. RD cells
were pretreated with a variety of concentrations of AP EtOAc
extract for 2h before EV71 inoculation. As shown in
Figure 3, EV71 infection increased the apoptotic rate of
RD cells as indicated in 78.4% sub-Gl phase. When
treated with different concentrations higher than 10 pg/ml
of AP, the apoptotic rates of RD cells decreased from 63.5% to
11.8% (Figure 3). The antiviral assays demonstrated that AP
EtOAc extract could significantly inhibit the CPE of EV71
viral infection.

4.3 Inhibition of Enterovirus 71-Induced
Cytopathic Effect by Compounds 1-12 From

Andrographis paniculata

To further investigate bioactive compounds fractionated and
purified from AP that exert anti-EV71 effects, compounds
1~12 obtained by bioassay-guided fractionation of a 95%
ethanol extract of AP, as shown in Figures 1 and 2, were
tested for anti-EV71 activity. Compounds 1~12 dissolved in
DMSO at the concentrations of 2.5, 5, and 10 pg/ml without
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FIGURE 3 | EV71-induced cytopathic effects are inhibited by AP EtOAc extracts. (A) Morphological changes of RD cells observed under an inverted microscopy
(x20). (B) Sub-G1 population of the infected RD cells was analyzed by flow cytometry illustrated as a histogram. Confluent monolayers of RD cells were pretreated with
AP EtOAc extracts at the doses of 10, 20, 25, 30, 35, 40, or 45 ug/ml for 2 h and then challenged with 1077 of EV71 simultaneously at 37°C. The cytopathic effect was
observed under a microscope (x20) after 48 h. Then, the cells were trypsinized, and sub-G1 cell cycle arrest was analyzed in flow cytometry after being stained with

PI. M1 indicates the sub-G1-gated region in the histogram. Data are representative of three independent experiments. All AP-treated results were significantly different
from those of EV71 only analyzed by Student’s t-test (Supplementary Table S1). EV71, enterovirus 71; AP, Andrographis paniculata; EtOAc, ethyl acetate; RD,

any cytotoxic effect were used for the anti-EV71-induced
cytotoxicity test. The results are summarized in Table 1, as
categorized into the following subgroups: flavones, acid,
steroids, terpenoids, and synthetic analogues of compound 7.
As the antiviral activity is evaluated by the decrease in
percentage of sub-Gl phase, the results repeated the
protective effects of 10 pg/ml of AP extract in EV71-
infected RD cells, as shown in Figure 3, with 63.51% of
apoptotic populations. The isolated compounds 1~7
decreased sub-Gl1 percentages to exert 38%-77%
protection of EV71-induced CPEs compared with EV71
only control at concentration of 2.5pug/ml (Table 1).
Ergosterol peroxide (4) showed the strongest protection
among compounds 1~7, with 77%-88% inhibitory effect of
apoptosis at the concentration of 2.5-10 ug/ml addition to

EV71-infected RD cells. At a higher concentration of 10 pg/
ml, most of these compounds had 88% inhibition except for
compounds 6 and 7, which exerted 76%-83% inhibition of
apoptosis caused by EV71.

Since compound 7 was the major compound isolated from
AP EtOAc extract, further modifications were attempted to
improve its antiviral effect. The synthetic analogues shown in
Table 1 demonstrated that the EV71-induced sub-G1 phase was
reduced from 65.0% to 5.6% when compound 8at the
concentration of 2.5-10 pg/ml was added to the infected cells.
3,19-O-Acetyl-14-deoxy-11,12-didehydroandrographolide (8)
had much lower sub-Gl population than 14-deoxy-11,12-
didehydroandrographolide (7), indicating its stronger
protection from EV71 infection through chemical
modification of compound 7.
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TABLE 1 | Anti-EV71-induced cytotoxicity of AP EtOAc extract and its pure compounds evaluated by the decrease in percentage of sub-G1 population in EV71-infected

RD cells.

EV71 only

2% FBS-alpha-MEM medium only
1% DMSO only

EV71 with extract or pure compounds

AP EtOAc extract
Flavones
5-Hydroxy-7,8-dimethoxyflavanone (1)
5-Hydroxy-7,8,2',5'-tetramethoxyflavone (2)
Phenolic acid
Cinnamic acid (3)
Steroids
Ergosterol peroxide (4)
Diterpenoids
Andrograpanin (5)
14-Deoxy-14,15-dehydroandrographolide (6)
14-Deoxy-11,12-didehydroandrographolide (7)
Synthetic analogues
3,19-O-Acetyl 11,12-didehydroandrographolide (8)
3-O-Acetyl 14-didehydroandrographolide (9)
Hexahydro-14-dehydroxyandrographolide (10)
3,19-Dioxolabda-8(17),11E,13-trien-16,15-olide (11)
Ba-Hydroxy-19-oxolabda-8(17),11E,13-train-16,15-olide (12)

Sub-Gl (%)

64.96 + 4.82

4.46 + 1.63"

4.05 + 110"

2.5 pg/ml 5 pg/ml 10 pg/ml

nd nd 57.21 + 8.92
39.96 + 0.35 20.54 + 0.66* 7.60 + 0.57*
37.14 + 3.34* 19.12 £ 1.25* 9.11 + 0.64"
2541 + 1.97* 14.39 + 0.86" 8.55 + 0.92*
14.99 + 2.14* 10.47 + 0.75 8.15 + 2.45*
2125 +1.91* 13.71 + 1.82* 8.33 + 1.56"
33.24 + 1.18* 26.40 + 4.31* 10.85 + 1.63*
26.44 + 4.61 21.89 + 0.87* 156.29 + 3.20"
18.24 + 2.77 9.16 + 2.32* 561+ 1.70"
63.16 + 0.50* 37.15 + 1.62* 17.14 + 3.42*
60.23 + 5.61* 40.58 + 0.82* 28.08 + 1.27*
57.34 + 2.74* 34.03 + 1.45* 22.99 + 1.43*
36.55 + 3.05* 21.86 + 1.50* 18.87 + 0.33"

The sub-G1-gated region by flow cytometry indicates cells undergoing apoptotic changes. Values are expressed as means + SD of three independent experiments with three replicates in

each experiment and statistically analyzed by Student’s t-test.
*p < 0.05 indicates a significant difference from EV71 only.

nd, not determined; EV71, enterovirus 71; AP, Andrographis paniculata; EtOAc, ethyl acetate; RD, rhabdomyosarcoma; FBS, fetal bovine serum; DMSO, dimethy! sulfoxide.

4.4 Effects of Compounds 1~12 on
Activation of IFNy in EL-4 T-Cell Line

Since IFNs are important not only to combat virus infection but also
to modulate the antiviral immune responses, we further employed
an IFNy promoter-driven luciferase reporter construct to investigate
whether these pure compounds also exert IFNy-driven activity,
using luciferase reporter gene expression. As shown in Figure 4,
as compared with those cells incubated with medium without
stimulation (white bar), incubation of EL-4 T cells with PMA/
ionomycin increased IFNy transactivation activity (black bar, p <
0.05). The ratio of luciferase intensity revealed that cinnamic acid (3)
and 14-deoxy-14,15-dehydroandrographolide (6) might have IFNy
induction potential to activate its promoter. In addition, three of
chemically modified analogues of compound 7, hexahydro-14-
dehydroxyandrographolide (10), 3,19-dioxolabda-8(17),11E,13-
trien-16,15-olide (11), and 3a-hydroxy-19-oxolabda-8(17),11E,13-
trien-16,15-olide (12), also significantly increased the promoter
activity. It suggests a potential action of these compounds to
induce IFNy transcription. In contrast, compounds 4, 5, 7, 8,
and 9 showed inhibitory effects on IFNy transcription.

5 DISCUSSION

EV71 is a pathogen causing many disease symptoms in humans,
especially infants and children under the age of 5. Unfortunately,
there is no effective vaccine for prevention or antiviral drug

against EV71 infection (Tosh et al., 2020). Thus, there is a need to
develop effective antiviral agents to treat EV71 infection.

With a combined effort of bioassay-guided purification, high-
resolution mass spectrometry, and NMR, we identified the
fractions of AP responsible for anti-EV71-induced cytotoxicity
in vitro. For the first time, the pure compounds isolated from AP,
5-hydroxy-7,8-dimethoxyflavanone (1), 5-hydroxy-7,8,2',5'
tetramethoxyflavone (2), cinnamic acid (3), ergosterol peroxide
(4), andrograpanin (5), 14-deoxy-14,15-dehydroandrographolide
(6), and 14-deoxy-11,12-didehydroandrographolide (7), were
found to inhibit EV71-induced CPE, which represent anti-
EV71 infection activities. In addition, after acetylation,
hydrogenation, and oxidation of compound 7, compound 8
was found to have the strongest antiviral activity (Table 1),
suggesting that chemical modification of major compounds for
improvement of potency is worthy of further investigation.

In addition to the evaluation of anti-EV71-induced cytotoxicity by
inhibiting apoptosis of EV71-infected RD cells, the effects on IFNy-
activation were also investigated. IFNy plays a vital role in stimulating
immune response, primarily secreted by activated T cells and natural
killer cells. We investigated the IFNy-inducing effects of these 12 pure
compounds by using a T lymphocyte cell line transfected with IFNy
reporter gene. Among these compounds, we identified cinnamic acid
(3), 14-deoxy-14,15-dehydroandrographolide (6), and synthetic
analogues  hexahydro-14-dehydroxyandrographolide  (10), 3,19-
dioxolabda-8(17)(11)E,13-trien-16,15-olide (11), and 3a-hydroxy-19-
oxolabda-8(17),11E,13-trien-16,15-olide (12) with IFNy-inducing
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FIGURE 4 | IFNy-luciferase activity compounds 1~12 from AP EtOAc
extract. EL-4 T cells transfected with IFNy-luciferase reporter gene were
stimulated with PMA (50 ng/ml)/ionomycin (1,000 ng/ml) in the absence or
presence of 12 test compounds. Data representative of three

independent experiments are expressed as mean + SD. IFNy-luciferase
activity is represented as a fold ratio to the control without stimulation (white
bar). *p < 0.05; **, p < 0.01 vs. stimulated cells in the absence of test
compound (black bar). AP, Andrographis paniculata; EtOAc, ethyl acetate;
PMA, phorbol 12-myristate 13-acetate.

activity, which is crucial for viral clearance in virus-infected tissues
(Stubblefield Park et al., 2011). Cinnamic acid is an organic chemical
mainly isolated from cinnamon. Natural and synthetic cinnamic acid
derivatives were reported to exhibit multiple biological activities
including  anti-inflammatory,  antimicrobial,  anti-oncogenic,
antioxidant, kinase-inhibitory effects, and/or inhibit hepatitis C virus
replication (Mielecji and Lesyng, 2016; Amano et al., 2017).

IFNy not only induces antiviral immune response but also
activates macrophage to increase phagocytosis and production of
inflammatory mediators (Lee and Ashkar, 2018). Therefore,
compounds 4, 5, 7, 8, and 9 with decreased IFNy transcription
imply that inhibition of IFNy expression might be beneficial for anti-
inflammation at the immune homeostatic phase of the battle of host
vs. virus. This dual nature of IFNy not only exerts antiviral immune
response by compounds 3 and 6 to limit virus replication but also
negatively regulates this response by compounds 4, 5, 7, and 8 to avoid
further tissue damage. Ergosterol peroxide can inhibit porcine
deltacoronavirus (PDCoV) infection and regulate host immune
responses (Hong et al., 2009; Duan et al., 2021). The enhancement
of peripheral blood lymphocyte proliferation and IL-2 secretion that
activates immune cells by 14-deoxy-11,12-didehydroandrographolide
(7) might also contribute to the antiviral function (Kumar et al., 2004).
Zhou et al. (2019) showed that ergosterol peroxide has been shown to
exhibit antitumor, antioxidant, anti-bacterial, and anti-influenza A
virus properties (Zhou et al,, 2019).

TCM has its perspective and unique advantages derived from
its 2,500-year history. Since the 1950s, the chemical components
of A. paniculata have been well investigated. A. paniculata is a
heat-clearing and detoxifying medicine. According to the present
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investigation, diterpenoid lactones (34.95%) and flavonoids
(46.23%) are the major classes of chemical compounds
especially from aerial parts (61.93%) of A. paniculata. Other
classes, such as terpenoids (10.22%), phenolic acids (4.30%),
chalconoids  (2.15%), xanthones (2.15%), and volatile
compounds, are also reported in different plant parts (Chao
and Lin, 2010; Wang et al, 2016; Jiang et al, 2021; Kumar
et al., 2021).

Natural products have played pivotal roles in the drug discovery
and development process. For antivirus effects of AP, its ethanol
extract was reported to alleviate inflammation in H1N1-infected
human bronchial epithelial cells by inhibiting chemoattractant
activity (Ko et al, 2006). Andrographolide is a major bioactive
component of the plant; a labdane diterpenoid has been reported
for anti-hepatitis virus activity (Chen et al,, 2014; Sa-hgiamsuntorn
et al, 2021). In addition, through chemical modification, the
synthesized derivatives of andrographolide could enhance its anti-
HIV  effect (Reddy et al, 2005). 14-Deoxy-11,12-
didehydroandrographolide (7) was also demonstrated to exert anti-
HIV activity in vitro (Uttekar et al, 2012), attenuated excessive
inflammatory response, and protected mice lethally infected with
H5NI1 virus in vivo (Cai et al,, 2016). We further chemically modified
compound 7 to synthesize 3,19-O-acetyl-14-deoxy-11,12-
didehydroandrographolide (8) and found stronger anti-EV71-
induced cytotoxicity than that of compound 7. It is suggested that
the application of plants could be diversified into the major compound
for its therapeutic targets and the other less abundant compounds for
modification to increase their efficacy. 14-Deoxy-11,12-
dehydroandrographolide is one of the major active constituents of
A, paniculata.  Studies  found  that  14-deoxy-11,12-
dehydroandrographolide strongly inhibited H5N1 replication (Cai
et al,, 2016; Cai et al., 2020).

In our study, based on the information of structure-activity
relationships (Chen et al, 2014; Nguyen et al, 2015), the
acetylation, hydrogenation, and oxidation were performed to
modify the most abundant compound isolated. We have
successfully modified the hydroxyl groups at C-3 and C-19 of
compound 14-deoxy-11,12-didehydroandrographolide (7).
Compounds 8 and 9 were obtained from acetylation of 14-deoxy-
11,12-didehydroandrographolide (7), and thus, 3,19-O-acetyl- in (8)
exerted more inhibitory effects than 3-O-acetyl- in (9), which indicated
that 19-acetyl did make a difference. Compound 10 obtained from
hydrogenation of (7) have hexahydro- that saturated three double
bonds. Compound 10 exerting less effect indicated that the three
double-bond structures were critical. Compounds 11 and 12 obtained
from oxidation of (7) both have 19-oxo-, but compound 11 oxidized to
3-keto showed less effect than compound 12, indicating its effective
structure order 3-acetyl- > 3-hydroxy- > 3-keto.

Several natural products, herbs, or synthetic compounds have
been found to display antivirus infection (Ho et al., 2009; Santangelo
et al,, 2012; Zhang et al., 2014). For example, the viral CPE on RD
cells can be reduced by inhibiting virus replication and further
confirmed by the low mortality of mice challenged with a lethal dose
of EV71, by several compounds such punicalagin (Yangetal,, 2012),a
component of pomegranate (Punica granatum L.). Chrysosplenetin
and penduletin, O-methylated flavonols isolated from the leaves of
Laggera pterodonta, were demonstrated to block virus entry or
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fractionation

Bioassay-guided

FIGURE 5 | Schematic summary of the current study.

anti-enterovirus 71 induced cytotoxicity

replication in RD cells (Zhu et al., 2011). The inhibition of EV71 VP1
protein production by several compounds such as glycyrrhizic acid
isolated from Glycyrrhiza uralensis (Wang et al., 2013), formononetin
(a kind of plant isoflavonoid from red clover) (Wang et al., 2016), and
luteoloside, curcumin, and quercetin from a number of plants and
herbs (Cao et al., 2016; Huang et al., 2018; Yao et al,, 2018). All these
studies indicated great potential of compounds isolated, and further
synthesis of analogues from plants has anti-EV71-induced
cytotoxicity.

In our study, we evaluated anti-EV71-induced cytotoxicity of herbal
compounds by measuring sub-G1 percentage of infected RD cells as
the apoptotic response caused by virus. We first studied the anti-EV71
activity of AP EtOAc extracts, and we further investigated seven pure
compounds isolated from this extract and five synthetic analogues of
the compound in significant amount. Ergosterol peroxide (4) had the
highest anti-EV71 activity. Further, 3,19-O-acetyl-14-deoxy-11,12-
didehydroandrographolide (8) showed increased anti-EV71 activity
after chemical modification of one major bioactive component 14-
deoxy-11,12-didehydroandrographolide (7). By transfection of IFNy
report gene to T-cell line for transactivation assay, cinnamic acid (3)
and 14-deoxy-14,15-dehydroandrographolide (6) were found to have
IFNy-inducing effect; and ergosterol peroxide (4), andrograpanin (5),
14-deoxy-11,12-didehydroandrographolide  (7),  3,19-O-acetyl-14-
deoxy-11,12-didehydroandrographolide  (8), and 3-O-acetyl-14-
deoxy-11,12-didehydroandrographolide (9) could suppress IFNy
expression in T cells, which might be critical for anti-inflammatory
activity of these compounds. Furthermore, chemical modification of
known active natural compounds may lead to better structural
optimization to yield higher efficiency and lower toxicity, thus

promoting  anti-EV71  drug  development. Our study
demonstrated that bioactive compounds of AP and its derivatives
either protecting EV71-infected RD cells from sub-Gl1 arrest or
possessing IFNy-inducer activity might be feasible for the
development of anti-EV71 agents.

In summary, this plant is reported to have diterpenoids,
flavonoids, and steroids. One or more active ingredients can
act alone or in synergy in this extract (Figure 5). The results in
this study demonstrated the anti-EV71-induced cytotoxicity of
compounds isolated from A. paniculata, and further chemical
modification of the compounds could increase the antiviral
activity or IFNy-inducing activity.
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Background: Acute lung injury (ALl) is characterized by dysfunction of the alveolar
epithelial membrane caused by acute inflammation and tissue injury. Qingwenzhike
(QWZK) prescription has been demonstrated to be effective against respiratory viral
infections in clinical practices, including coronavirus disease 2019 (COVID-19) infection.
So far, the chemical compositions, protective effects on ALl, and possible anti-
inflammatory mechanisms remain unknown.

Methods: In this study, the compositions of QWZK were determined via the linear ion trap/
electrostatic field orbital trap tandem high-resolution mass spectrometry (UHPLC-LTQ-
Orbitrap MS). To test the protective effects of QWZK on ALI, an ALI model induced by
lipopolysaccharide (LPS) in rats was used. The effects of QWZK on the LPS-induced ALI
were evaluated by pathological changes and the number and classification of white blood
cell (WBC) in bronchoalveolar lavage fluid (BALF). To investigate the possible underlying
mechanisms, the contents of interleukin-6 (IL-6), tumor necrosis factor-a (TNF-a),
monocyte chemoattractant protein (MCP-1), interleukin-1f (IL-1f), interleukin-18 (IL-
18), and immunoregulatory-related factors interferon-y (IFN-y) were detected by ELISA.
Furthermore, the expression of Toll-like receptor 4 (TLR4), p-IKKa/B, IKKa, IKKB, p-IkBa,
[kBa, p-NF-xB, nuclear factor-kB (NF-kB), NOD-like receptor family pyrin domain
containing 3 (NLRP3), cleaved caspase-1, pro-caspase-1, apoptosis-associated
speck-like protein containing CARD (ASC), and B-actin were tested by Western blot.

Results: A total of 99 compounds were identified in QWZK, including 33 flavonoids, 23
phenolic acids, 3 alkaloids, 3 coumarins, 20 triterpenoids, 5 anthraquinones, and 12

Abbreviations: ALL acute lung injury; ASC, apoptosis-associated speck-like protein containing CARD; ARDS, acute respi-
ratory distress syndrome; BALF, bronchoalveolar lavage fluid; BSA, body surface area; COPD, chronic obstructive pulmonary
disease; CS, corticosteroids; ELISA, enzyme-linked immunosorbent assay; i.g., intragastric administration; i.p., intraperitoneal
injection; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein; Myd88, medullary differentiation protein 88; NF-kB,
nuclear factor-kB; NLRP3, NOD-like receptor family pyrin domain containing 3; NO, nitric oxide; PVDF, polyvinylidene
difluoride membrane; QWZK, Qingwenzhike Preparation; TBST, Tris-buffered saline Tween-20; TLR4, Toll-like receptor 4;
TNF-a, tumor necrosis factor-o; UHPLC-LTQ-Orbitrap MS, linear ion trap/electrostatic field orbital trap tandem high-
resolution mass spectrometry.
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others. ALl rats induced by LPS exhibited significant increase in neutrophile, significant
decrease in lymphocyte, and evidently thicker alveolar wall than control animals. QWZK
reversed the changes in WBC count and alveolar wall to normal level on the model of AL
induced by LPS. ELISA results revealed that QWZK significantly reduced the
overexpression of proinflammatory factors IL-6, TNF-a, MCP-1, IL-1B, IL-18, and IFN-y
induced by LPS. Western blot results demonstrated that QWZK significantly
downregulated the overexpression of TLR4, p-IKKa/B, p-lkBa, p-NF-kB, NLRPS,
cleaved caspase-1, and ASC induced by LPS, which suggested that QWZK inhibited
TLR4/NF-kB signaling pathway and NLRP3 inflammasomes.

Conclusions: The chemical compositions of QWZK were first identified. It was
demonstrated that QWZK showed protective effects on ALl induced by LPS. The
possible underlying mechanisms of QWZK on ALl induced by LPS was via inhibiting
TLR4/NF-kB signaling pathway and NLRP3 inflammasome activation. This work
suggested that QWZK is a potential therapeutic candidate for the treatments of AL
and pulmonary inflammation.

Keywords: Acute Lung Injury (ALI), Qingwenzhike (QWZK) prescription, inflammation cytokines, TLR4/NF-xB

signaling pathway, inflammasome, NLRP3

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic causes
tremendous catastrophe worldwide. During the development
of COVID-19 infection. Acute lung injury (ALI) is a critical
step and causes high mortality (Leist et al., 2020; Lin et al., 2021).
In ALI the lungs show widespread destruction of the capillary
endothelium, damages in alveolar capillary barrier, lung
inflammatory cell infiltration, diffuse alveolar, and pulmonary
interstitial edema, which lead to respiratory distress, progressive
hypoxemia, and acute respiratory distress syndrome (ARDS)
(Gupta et al., 2020; England et al., 2021). ALI/ARDS induced
by COVID-19 overproduces early response proinflammatory
cytokines TNF-q, interleukin (IL)-6, and IL-1f, which results
in cytokine storm, and then leads to vascular hyperpermeability,
multiorgan failure, high cytokine concentrations unabated over
time, and eventually death (England et al., 2021). Therefore, it is
critical to develop protective treatments against ALL

The most common risk factors for ALI are severe infections
(e.g., sepsis/septic shock) and pneumonia induced by various
microbial pathogens, such as bacteria, viruses, fungi, rickettsia,
and parasites. Due to the limitation in availability of high levels of
bio-safety labs for antiviral studies, lipopolysaccharide (LPS) has
been used extensively in studies on inflammatory diseases. LPS is
a major microbial mediator in Gram-negative bacterial infection
(Ratajczak and Kucia, 2020), and Toll-like receptors (TLRs) are
the transmembrane transduction receptors for LPS signaling
from extracellular to intracellular space. LPS directly binds to
TLR4 to activate the NF-«B signaling pathway, which leads to the
synthesis and release of various inflammatory mediators, and
finally initiates and amplifies the inflammatory responses (N. Li
et al., 20205 Li et al., 2017). Meanwhile, inhibition on TLR4/NF-
kB pathway attenuated the injury and inflammation of the lung
tissues in ALI (Ciesielska et al., 2021; Rosadini & Kagan, 2017; N. ;

Yang et al, 2016). Thus, TLR4/NF-kB pathway plays an
important role in LPS infections. Besides TLR4/NF-«xB
pathway, it has been recently unveiled that activation of
NLRP3 inflammasome is another critical mechanism during
ALL NLRP3 can regulate the manufacture of IL-13 and IL-18.
Through binding to the adaptor ASC, NLRP3 induces pro-
Caspase-1 recruitment, auto-activation and pro-IL-1f and pro-
IL-18 shear processing, and responds to diverse incentive,
including ATP, bacterial toxins, bacteria and viruses (Afonina
et al.,, 2017). It has also been identified as an important target for
pneumonia, asthma, sepsis, or chronic obstructive pulmonary
disease (COPD) (Scambler et al., 2018; Theofani et al., 2019;
Pearce et al., 2021). So TLR4, NF-kB, NLRP3 inflammasome have
been considered as promising pharmacological targets for
inflammatory diseases, including ALI and pneumonia (Du
et al., 2019; Wu et al., 2020; Yao et al., 2017).

Current clinical therapeutic drug for ALI is corticosteroids
(CS). On the one hand, it exerts a wide spectrum of bioactivities
including  anti-inflammatory,  antioxidant,  pulmonary
vasodilator, and antiedematous effects; on the other hand, side
effects of CS are evident, such as immunosuppression,
osteoporosis, and peptic ulcers (Vandewalle et al., 2018).
Although several cytokine-targeted therapies, such as
tocilizumab and anakinra, are currently being used to treat the
observed cytokine storm associated with COVID-19 (Kim et al.,
2021), they were only used to treat critical phase patients. Thus,
there are still tremendous unmet needs for treatments of
COVID-19.

Traditional Chinese medicine (TCM) has a long history in
clinical practices in China. During the COVID-19 pandemic,
TCM has been widely used in China and has been demonstrated
to show convincing effects. Qingwenzhike (QWZK) is a TCM
preparation derived from recombination of ancient Chinese
classical prescriptions, including Maxingshigan decoction
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(Cheng et al, 2019), Sheganmahuang prescription, and
Shengjiang powder. It has been applied to treat acute phase of
COVID-19 infection and was demonstrated to be effective in mild
type of COVID-19 patients in Wuhan. Moreover, QWZK was
approved as a hospital preparation by the Beijing government
used in COVID-19 treatments in Beijing region during the
outbreak period. More than that, an international cooperation
program on clinical trials of QWZK for treatments on COVID-19
are being untaken in South Africa. So far, the chemical
compositions, protective effects against ALI, and possible
action mechanisms of QWZK prescription remain unknown.
In the present study, the chemical compositions of QWZK were
determined. The protective effects of QWZK on ALI was
evaluated on a rat model stimulated by LPS. The possible
mechanisms of QWZK were supposed by inhibiting TLR4/NF-
kB pathway and NLRP3 inflammasome in cytokine expression.

MATERIALS AND METHODS

Chemicals and Reagents

Ephedrae Herba (No. 20200103), Gypsum Fibrosum (No.
20200327), Rhei Radix Et Rhizoma (No. 20200107),
Belamcandae Rhizoma (No. 20200412), Asteris Radix Et
Rhizoma (No. 20200310), Farfarae Flos (No. 20200411), Citri
Reticulatae Pericarpium (No. 20200511), Pinelliae Rhizoma
Praeparatum Cum Zingibere Et Alumin (No. 20200717), Poria
(No. 20200904), Armeniacae Semen Amarum (No. 20200414),
Cicadae Periostracum (No. 20200813), Fritillariae Thunbergii
Bulbus (No. 20200907), Taraxaci Herba (No. 20200528), and
Platycodonis Radix (No. 20200816) were provided by Beijing
Bencaofangyuan Pharmaceutical Co., Ltd. (Beijing, China). The
standards including alanine, caffeic acid, quercetin, B-sitosterol,
chrysophanol, amygdalin, and hesperidin were purchased from
National Institutes for Food and Drug Control
Lipopolysaccharides (LPS, from Escherichia coli 055:B5,
abs47014848, Absin, Shanghai, China) and dexamethasone
(D4902, Sigma-Aldrich, St. Louis, MO, United States) were
purchased from Absin and Sigma-Aldrich.

Preparation of QWZK
QWZK comprises 14 herbs: Ephedrae Herba, Gypsum Fibrosum,
Rhei Radix Et Rhizoma, Belamcandae Rhizoma, Asteris Radix Et
Rhizoma, Farfarae Flos, Citri Reticulatae Pericarpium, Pinelliae
Rhizoma Praeparatum Cum Zingibere Et Alumin, Poria, 6.30 %
Armeniacae Semen Amarum, Cicadae Periostracum, Fritillariae
Thunbergii Bulbus, Taraxaci Herba, and Platycodonis Radix. The
QWZK was acquired as described above. The specimens (No.
20211009) were deposited in the Beijing Research Institute of
Chinese Medicine, Beijing University of Chinese Medicine.

The preparation methods of the QWZK powder were as
follows: the crude drugs of QWZK accurately weighed 1.43 kg.
These drugs were soaked in 14.30 L (10 times, w/v) pure water for
30 min and was then boiled for 2h. Subsequently, they were
boiled in 11.40 L (8 times, w/v) pure water for 1 h twice.

The extracts were filtered through three-layer gauze, then
combined and concentrated to 66.50 ml in a rotary evaporator

Qingwenzhike Prescription Alleviates ALI

at 75°C. The concentrate was vacuum dried, and 0.446 kg dry
powder was obtained. The extract rate (%) = extract dry powder/
total quality of crude drugs. Therefore, the extract rate of QWZK
powder was 31.20%. The powder was used in the follow-up
experiments.

According to the body surface area (BSA) scaling for
converting the dose of a test drug from human clinical trials
to animal species (Mahmood, 2007; Blanchard & Smoliga, 2015),
the test doses of QWZK in animals were 3, 6, and 12 g/kg/day and
that of an adult human was 71.5 g/day of crude drugs. The body
weight of an adult human is 70 kg, and the convert coefficient is 6.
Based on the extract rate, the text dose of QWZK powder were
0.94, 1.87, and 3.74 g/ kg/ day in animals.

Quantitative Analysis of QWZK

Liquid chromatography was performed using a Dionex Utimate
3000 UHPLC Plus Focused Ultra High-Performance Liquid
Chromatography System (Thermo Scientific, Santa Clara, CA,
United States). Chromatographic separation was achieved
through a ACQUITY UPLC C18 column (2.1 mm X 100 mm,
1.7 mm particles) at a flowrate of 0.3 ml/ min, defended by a high-
pressure column prefilter (2 mm) (Shimadzu, Kyoto, Japan) at
35°C. Mass spectrometric detection was performed with an LTQ-
Oribitrap XL linear ion trap tandem electrostatic field orbital trap
mass spectrometer (Thermo Scientific, Santa Clara, CA,
United States) in positive and negative ion modes, which was
equipped with an electrospray ion source in MRM modes.

QWZK powder was accurately weighed 1.00 g and added into
10.00 ml methanol, ultrasonically treated for 45 min using an
ultrasonic cleaning instrument (KQ-500DB CNC, Kunshan
Ultrasonic Instrument Co., Ltd., Kunshan, Jiangsu, China),
and the solution was filtrated through 0.22 ym microporous
membrane. The standards such as alanine, caffeic acid,
quercetin,  [B-sitosterol, chrysophanol, amygdalin, and
hesperidin were weighed in precision, dissolved in methanol
with a standard solution of 1mg/ml, and filtered through
0.22 um microporous membrane. Samples or strands were
separated on an ACQUITY UPLC C18 column (2.1 mm x
100 mm, 1.7 mm) at 35°C. The mobile phase consisted of 0.1%
formic acid aqueous solution (A) and acetonitrile solution (B).
The gradient elution conditions were as follows: 0-6 min
(90-60% A), 6-9 min (60-40% A), 9-42 min (40-20% A), and
42-60 min (20-90% A). The flowrate was 0.3 ml/min, and the
injection volume was 3.0 pl.

Electrospray ionization mass spectrometry (ESI-MSP)
analyses were performed on an LTQ-Oribitrap XL linear ion
trap tandem electrostatic field orbital trap mass spectrometer
(Thermo Scientific, Santa Clara, CA, United States). Samples of
QWZK were detected in positive ion detection mode, and the
spray and capillary voltages were set to 4.0 KV and 35.0V,
respectively. The tube lens voltage was 110V, and the source
temperature was set to 350°C. Nitrogen (purity >99.99%) was
used as both the sheath gas (40 arb) and auxiliary gas (20 arb).
Then, samples were analyzed in negative ion detection mode,
with the spray and capillary voltages set to 3.0kV and 35.0V,
respectively. The tube lens was set to 110V, and the source
temperature was set to 350°C. Nitrogen (purity >99.99%) was
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used as both the sheath gas (30 arb) and auxiliary gas (10 arb).
Data-dependent acquisition (ddms3) of high-resolution Fourier
transform (TF, full scan; resolution, 30,000) and CID
fragmentation were used for positive and negative ion data
acquisition. The compositions of QWZK were authenticated
by referring to the retention time of each chemical
component, high-resolution precise molecular weight, and
MSn multilevel fragment information detected by LC-MS and
combined with the extraction of ion flow map and standard
product information and related literature.

Induction of ALI by LPS

Adult Wistar rats (4-6 weeks, 180-220g, male) were
purchased from the Vital River Laboratories (SYXK 2016-
0006). All the animals were housed in an environment with
temperature of 23 + 1°C, relative humidity of 50 + 1%, and a
light/dark cycle of 12/12h. All animal experimental
procedures were conducted in strict accordance with the
Guide for the Care and Use of Laboratory Animals and
were approved by the Animal Care and Use Committee of
Beijing University of Chinese Medicine. After acclimation for
7 days for 7 days, the rats were randomly assigned into 6
groups (n = 10/group): the control group was treated by saline
only, the LPS group was treated by LPS (from Escherichia coli
O55:B5, abs47014848, Absin, Shanghai, China) only, the
dexamethasone group was treated by dexamethasone and
LPS, and the QWZK groups were pretreated with QWZK
followed by LPS. QWZK was administrated with 3, 6, and
12 g/kg via intragastric (i.g.) administration once per day for 7
consecutive days. LPS was injected intraperitoneally (i.p.) after
final injection of medication for 1 h. At 4-h intervals, the left
lung was lavaged with cool phosphate-buffered saline (PBS) to
collect the bronchoalveolar lavage fluid (BALF); the middle
lobe of the right lung was fixed with 4% paraformaldehyde
(PFA), and the upper lobe, lower lobe, and accessory lobes
were stored at —80°C for protein expression tests.

WBC Count and Analysis

The BALF was centrifuged at 3,000 rpm for 5 min, at 4°C. The
supernatant was discard, and then, the cell pellet was resuspend in
PBS. Whereafter, a Sysmex XS-800iBayer ADVIA120
Hematology System was used for cell counting and classification.

Hematoxylin-Eosin Staining

The tissues fixed with 4% PFA were dehydrated, transparent, and
immersed in paraffin. Before staining, the slices (3 um) were
dewaxed and soaked. Then, they were stained with hematoxylin
aqueous solution and eosin staining solution, respectively.
Finally, they were dehydrated and rendered transparent and
sealed with neutral gum. Sections were observed under a
microscope and photographed. A 20-fold field was selected for
the statistics of alveolar wall area (%). The airway wall area was
detected and calculated with Image-Pro Plus software according
to references (Moon et al., 2021). We used the lung tissue slices of
the control group to calibrate the quantitative parameters,
randomly select different areas of the lung, and quantify the
alveolar wall and blank area. Alveolar wall ratio (%) = alveolar

Qingwenzhike Prescription Alleviates ALI

wall area/total area. Lung injury was scored according to the
following criteria (Schingnitz et al., 2010; Moon et al., 2021; Zhao
et al, 2021): (1) alveolar congestion, (2) hemorrhage, (3)
infiltration or aggregation of neutrophils in airspace or vessel
wall, and (4) thickness of the alveolar wall. For each subject, a 5-
point scale was applied: 0, minimal (little) damage; 1+, mild
damage; 2+, moderate damage; 3+, severe damage; and 4+,
maximal damage. The total score of each criteria was used for
statistics.

Western Blot

To investigate the expression of proteins by Western blot
analyses, animal tissue samples were lysed in a protein cell
lysis buffer (Applygen, Beijing, China). The protein
concentration of the samples was determined using a
bicinchoninic acid (BCA) protein assay kit (Thermo Fisher
Scientific, MA, United States). The samples were boiled for
10 min, and proteins were separated by electrophoresis using a
10% or 12% sodium dodecyl sulfate (SDS)-polyacrylamide gel.
After the transfer of protein to a polyvinylidene difluoride
membrane (PVDF, Millipore, Bedford, MA, United States), the
membrane was incubated in blocking buffer [5% non-fat dairy
milk in Tween-20 Tris-buffered saline (TBST)] for 2 h at ambient
temperature and probed with various antibodies in a blocking
buffer overnight at 4°C. The membrane was washed four times
with 0.1% TBST, probed with a secondary antibody in the
blocking buffer for 2h at ambient temperature and then
washed again with TBST. The membranes were detected with
an enhanced chemiluminescence kit (Amersham Pharmacia
Biotech, Piscataway, NJ, United States). The primary antibody

included TLR4 (1:1,000, NB100-56566, Novus, CO,
United States), IKKa (1:1,000, #11930, CST, Boston,
United States), IKKB (1:1,000, #8943, CST, Boston,
United States), p-IKKa/B (1:1,000, #2697, CST, Boston,
United States), IxBa (1:1,000, #4814, CST, Boston,
United States), p-IkBa (1:1,000, #2859, CST, Boston,
United States), NF-kB p65 (1:1,000, #8242, CST, Boston,
United States), p-NF-kB p65 (1:1,000, #3033, CST, Boston,

United States), NLRP3 (1:1000, ab263899, Abcam, Cambridge,
United States), pro-caspase-1 + pl0 + p12 (1:1,000, ab179515,
Abcam, Cambridge, United States), ASC/TMS1 (1:1,000, NBP1-
78977, Novus, Colorado, United States), and B-actin (1:5,000,
#8457, CST, Boston, United States). The secondary antibodies
include goat antirabbit IgG H&L (HRP, 1:5,000, ab6721, Abcam,
Cambridge, United States), goat antimouse IgG H&L (HRP, 1:
5,000, ab6789, Abcam, Cambridge, United States).

ELISA

The contents of IL-6, TNF-a, IFN-y, MCP-1, IL-1f, and IL-18
were determined by ELISA method. The lung tissues were
crushed with balls at 0-4°C and centrifuged at 12,000 rpm for
20 min. Protein concentration was determined by BCA protein
assay kit (Thermo Fisher Scientific, MA, United States). The
levels of IL-6, TNF-a, IFN-p, MCP-1, IL-1pB, and IL-18 in lung
tissues were measured by using commercially procured ELISA
assay Kkits, including IL-6 ELISA kits (Biolegend, San Diego,
United States, Item No. 437107), TNF-a ELISA Kkits
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FIGURE 1 | The compositions of QWZK were determined by UHPLC-LTQ-Orbitrap MS. (A) Total ion flow diagram of QWZK in positive mode. (B) Total ion flow
diagram of QWZK in anion mode. (C) Number of monomer components in QWZK identified by positive and anion UHPLC-LTQ-Orbitrap MS.

No. RTFI00038), IL-1p ELISA kits (Genie, London,
United Kingdom, Item No. RTDL00552), and IL-18 ELISA kits
(Genie, London, United Kingdom, Item No. RTDL00548).

(Biolegend, San Diego, United States, Item No. 438207), IFN-y
ELISA kits (Biolegend, San Diego, United States, Item No. 439007),
MCP-1/CCL2 ELISA kits (Genie, London, United Kingdom, Item
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Statistical Analysis
The data and statistical analysis comply with the British Journal of

Pharmacology on experimental design and analysis in pharmacology
(Curtis et al., 2018). All data were presented as means + standard
error of mean (SEM). All rights reserved based on at least three
independent experiments and analyzed on GraphPad Prism 8.0
(GraphPad Software, San Diego, CA, United States). Statistical
analysis was undertaken for studies where each group rats were at
least n = 8. Statistical data conforming to a Gaussian distribution was
performed either with one-way analyses of variance (ANOVAs)
followed by Fisher’s least significant difference (homogeneity of
variances) and Tamhane T2 (heterogeneity of variance) post-hoc
test using SPSS version 25 for windows (IBM" SPSS” Statistics,
Chicago, IL, United States). Mann-Whitney U test was applied to
data analysis of abnormal distribution. p < 0.05 was considered
statistically significant.

RESULTS

The Chemical Compositions of QWZK Were

Determined
In this study, the chemical compositions of QWZK were analyzed
by UHPLC-LTQ-Orbitrap MS. There were 21 compounds

identified in the negative spectrum and 78 compounds were
identified in the positive spectrum. A total of 99 compounds
were identified, including 33 flavonoids, 23 phenolic acids, 3
alkaloids, 3 coumarins, 20 triterpenoids, 5 anthraquinones, and
12 others (Figure 1). The list of identified compounds was shown
in the supplementary material (Supplementary Table S1).

QWZK Recovered the WBC Counts and
Classification and Improved Pathological
Changes in the Lungs of ALI Rats Induced
by LPS

The effects of QWZK on ALI were evaluated by the detection of the
number and cdlassification of leukocyte in BALF and the
histopathology of lung. As shown in Figure 2A, the number
(292 + 057 x 10° cells/ul) of leukocyte in BALF of the rats in
LPS group was significantly increased than that in the control group
(1.63 + 0.26 x 10” cells/ul), and the number of leukocyte in BALF of
rats in the dexamethasone group and QWZK 3 g/ kg group, QWZK
6 g/ kg group, and QWZK 12 g/ kg group were 1.24 +0.11 x 10° cells/
ul, 1.94 +0.35 x 107 cells/ul, 1.38 + 0.41 x 10” cells/ul, and 1.69 + 0.30
x 107 cells/pl, respectively, which were declined significantly than that
in the LPS group (Figure 2A). The number (2.17 + 0.32 x 10° cells/
) and proportion (84.17 + 2.27%) of neutrophils in BALF of LPS
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FIGURE 3| QWZK alleviated the pathological characteristics of lung in ALI rats induced by LPS. (A) The images of lung in different groups, which was stained with
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percentage in different groups. Data were presented as the mean + SEM, n = 10. (C) Statistical results of lung injury score in different groups. Data were presented as the
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group were enhanced significantly compared with those of control
group (1.04 + 0.21 x 10 cells/pl, 52.77 + 3.78%). The dexamethasone
and QWZK 3 g/ kg, QWZK 6 g/ kg, and QWZK 12 g/kg treatments
all decreased the number and proportion of neutrophils in BALF
(Figures 2B,C). Moreover, QWZK 6 g/kg decreased the neutrophil
number to 0.94 + 0.16 x 10 cells/pl, as much as that in control group.
Furthermore, the number of lymphocyte and monocyte in BALF of
rats in the LPS group were 0.03 + 0.01 x 10° cells/ ul and 0.04 + 0.01 x
10 cells/ p, respectively, which declined significantly compared with
that in the control group (0.43 + 0.12 x 10° cells/gl, 0.19 + 0.06 x 10°
cells/ pl), and QWZK treatment increased compared with that of the
LPS group (Figures 2D,F) and the changes in proportion (Figures
2C,E,G). All these data suggested that QWZK reduced inflammatory
response in LPS-induced ALI rats.

Besides that, we observed the changes in pulmonary pathology
(Figure 3). The alveolar wall areas were performed to evaluate
pathological changes in the lung. LPS treatment showed
significant thickening of the alveolar wall, thickening of the
septum, infiltration of neutrophils in the septum and alveolar
cavity, and obvious bleeding in the lung interstitium (Figures

3A,C). The alveolar wall area of rats in the LPS group were
almost twofold more than that in control group. In the
dexamethasone group, rats showed mild thickening of the alveolar
septum and obvious infiltration of neutrophils. The alveolar wall
areas were reduced by 32.1% compared with the LPS group. The rats
in QWZK groups showed varying degrees of thickening of the
alveolar septum and neutrophil infiltration, and no obvious
bleeding lungs were seen. The QWZK of dose 6 g/ kg exhibited
the most obvious effect on the anesis of alveolar wall thickness and
hemorrhage (Figures 3A,B). These data showed that QWZK could
ameliorate LPS-induced ALI by regulating the number and
classification of WBC in BALF, and the better effect of QWZK
was given at 6 g/ kg.

QWZK Suppressed the Production of
Inflammatory Cytokine in the Lungs of ALI
Rats Induced by LPS

ELISA was performed to evaluate the inflammation-related
cytokines, including IL-6, TNF-a, MCP-1, IL-1pB, IL-18, and a
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FIGURE 4 | QWZK suppressed inflammatory cytokine levels in AL rats induced by LPS. The level of (A) IL-6, (B) TNF-a, (C) MCP-1, (D) IL-1B, (E) IL-18, and (F)
IFN-y were detected by ELISA. Data were presented as the mean + SEM, n > 8. “p < 0.05 vs. control group, *#p < 0.01 vs. control group, **p < 0.001 vs. control group.
*p < 0.05 vs. LPS group, **p < 0.01 vs. LPS group, **p < 0.001 vs. LPS group.

lymphokine related to immune regulation, IFN-y, in the total  the inhibition effect on some cytokines, such as TNF-qa, IL-18,
protein of the lung. As shown in Figure 4, the expression of IL-  and IFN-y, were better than dexamethasone.
6, TNF-a, IL-1B, and IL-18 of the rats in the LPS group were
1,036.20 + 53.57 pg/mg, 34.82 + 2.51 pg/mg, 1,354.90 + 155.75 pg/ o .
mg, and 123.47 + 42.21 pg/mg, respectively, which were significantly QWZK Inhibited TLR4/NF-«B Pathway in the
increased compared with those in the control group (2.41 + 0.68 pg/ Lungs of ALI Rats Induced by LPS
mg, 1.40 + 0.34 pg/mg, 556.53 + 96.13 pg/mg, 57.17 + 5.03 pg/mg).  As is well-known, the TLR4/NF-«B signaling pathway is involved
The expressions of IL-6, TNF-a, IL-1B, and IL-18 in the other groups ~ in regulating proinflammatory factors (Lawrence and Fong,
were lower than those in the LPS group (Figures 4A,B,D,E). 2010). Further, we investigated the effect of QWZK on TLR4/
The level of MCP-1 was significantly decreased in the rats after =~ NF-«B signaling pathway. As shown in Figure 5, compared with
dexamethasone (39.77 + 13.21 pg/mg), QWZK 3 g/kg (73.39 +  the control group, the expressions of TLR4, p-IKKa/p, p-IkBa,
3.74 pg/mg), QWZK 6 g/kg (61.22 + 18.07 pg/mg), and QWZK  and p-NF-kB were significantly upregulated in the lungs of LPS-
12 g/kg (7025 + 11.02 pg/ mg) administration, respectively,  induced ALI rats, and IKKa/B, IxBa, and NF-kB expression were
which was in contrast with that of the LPS group (83.17 +  significantly downregulated. Compared with the rats in LPS
4.82 pg/ mg). Similarly, LPS induced IFN-y production, and  group, TLR4, p-IKKa/B, p-IkBa, and p-NF-kB expression were
dexamethasone (24.28 + 9.38 pg/mg), QWZK 3 g/kg (46.43 +  declined in the dexamethasone group and the QWZK groups.
7.64 pg/mg), QWZK 6 g/kg (26.63 + 10.98 pg/mg), and QWZK  Among them, the expression of TLR4, p-IKKa/f, p-IkBa, and
12 g/kg (59.34 + 6.64 pg/mg) treatments could reverse the IFN-y  p-NF-«xB in QWZK 6 g/kg group was even lower than those in the
level to normal (Figure 4F). dexamethasone group and recovered to almost the same level as
Among them, the QWZK 6 g/kg group showed the optimal  that in control group. The results indicated that QWZK could
effect on the downregulation of proinflammatory cytokines, and  inhibit the TLR4/NF-«B signaling pathway.
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FIGURE 5 | QWZK restrained TLR4/NF-kB pathway in ALl rats induced by LPS. (A) The protein expression levels of TLR4, p-IKKa/B, p-IkBa, p- NF-kB, IKKa/B,
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0.05 vs. control group, #p < 0.01 vs. control group, *#p < 0.001 vs. control group. *p < 0.05 vs. LPS group, **p < 0.01 vs. LPS group, **p < 0.001 vs. LPS group.

QWZK Inhibited NLRP3 Inflammasome
Activation in the Lungs of ALI Rats Induced
by LPS

Studies demonstrated that inflammasome activation could
increase the expression of IL-13 and IL-18 (Seoane et al,
2020). Then, we investigated whether QWZK inhibited IL-1f
and IL-18 level via activation of NLRP3 inflammasomes.
Western blot results showed that the expression of NLRP3,
cleaved caspase-1 and ASC increased significantly in the rats
of the LPS group compared with those in control group. All of
dexamethasone, QWZK 3 g/kg, QWZK 6 g/kg, and QWZK
12 g/kg treatments could downregulate NLRP3, cleaved
caspase-1, and ASC expression (Figure 6). Interestingly,
the levels of NLRP3 and ASC in the rats treated with
QWZK 6 g/ kg were almost the same as those in the rats of
the dexamethasone group. QWZK could inhibit the
activation of NLRP3 inflammasomes, and QWZK 6 g/kg
exhibited better role on inhibition of NLRP3, cleaved
caspase-1, and ASC.

DISCUSSIONS

We identified 99 compounds in QWZK, including flavonoids,
phenolic acids, triterpenoids, anthraquinones, alkaloids, and

coumarins. According to literatures reported, some
compounds in QWZK play protective roles in the
pathogenesis of ALL  For instance, phenolic acid

compound-chrysophanol exhibits protective effects of ALI,
which were associated with the regulation of the HMGB1/NF-
kB pathway via HDAC3 (Wang et al, 2020). Coumarin
compound, emodin, alleviated LPS-induced pulmonary
inflammation in rat lung tissues through inhibiting the
mammalian target of rapamycin (mTOR)/hypoxia-inducible
factor 1-alpha (HIF-la)/vascular endothelial growth factor
(VEGF) signaling pathway (Li et al, 2020). Triterpenoids,
procyanidin B2, significantly suppressed the activation of
NLRP3 inflammasome in the lung tissue induced by paraquat
in the rat model (Jiang et al., 2018). Platycodin D are protective
against LPS-induced ALI by inhibiting NLRP3 and NF-kB
signaling pathway (Wu et al., 2021). Flavonoids, chlorogenic
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FIGURE 6 | QWZK inhibited NLRP3 inflammasome activation in ALI rats induced by LPS. (A) Western blot assay of NLRP3, pro-caspase-1, cleaved caspase-1,
and ASC in different groups. (B-D) The protein expression was analyzed by gray scale. Data were presented as the mean + SEM, n = 8. #0 < 0.05 vs. control group, #p <
0.01 vs. control group, *p < 0.001 vs. control group. *p < 0.05 vs. LPS group, *p < 0.01 vs. LPS group, **p < 0.001 vs. LPS group.

acid, markedly decreased activity of inducible nitric oxide
synthase (INOS) in lung tissues, so it prevented nitric oxide
(NO) release in response to LPS (Zhang et al., 2010). Rutin is
a potential protective agent for ALI via inhibition of neutrophil
infiltration, expression of vascular cell adhesion molecule 1
(VCAM-1) and iNOS, and NF-xB activation (Yang et al,
2016). Luteolin showed beneficial effects against ALI induced
by LPS in mice (Lee et al., 2010). The protective effect of quercetin
on ALI involved cAMP-Epac pathway (Wang et al, 2018).
Furthermore, octylgallate significantly decreased the iNOS, IL-
6, and IL-1P expression and protected alveolar macrophages
activated with LPS and on LPS-induced ALI (Haute et al,
2020). Therefore, a variety of components in QWZK could
play a protective effect against ALI, and all these evidences
supported the hypothesis that QWZK could play protective
effects on ALI induced by LPS. In the future, we will
quantitatively analyze the components of QWZK and conduct
research on the protective effects of the main and higher
composition in ALI On this basis, we lucubrated the
protective effect and mechanism of QWZK on ALL

QWZK is a TCM compound preparation, and the periodic
clinical treatment of COVID-19 is 7 days. In this study, the route,
dosage and time of QWZK were determined according to the
clinical dosage and time, and a single dose of LPS was selected to
stimulate rats for too short effective reaction time to construct an

ALI model. In order to investigate the protective effect of QWZK
on ALL the treatments of drugs were administrated for 7 days
continuously before LPS stimidation. Animal model of ALI
induced by LPS present study exhibited typical
characteristics in physiopathological changes as reported (Zhu
et al., 2020). Pathological evaluation demonstrated exuberant
infiltration and accumulation of WBCs, particularly
neutrophils, in both interstitial and alveolar spaces. Analysis of
BALF exhibited that the number of WBC and neutrophils were
significantly increased, while the number of lymphocytes and
monocytes decreased. These results demonstrated that this model
of ALI could be used for evaluating protective effects of QWZK
on ALIL Furthermore, results of the present study demonstrated
the protective effects of QWZK on ALL QWZK obviously
reduced the alveolar wall thickening, hemorrhage, and
inflammatory cell infiltration in the interstitial lung tissue and
reversed the increase in the WBC and neutrophils and the
decrease in the lymphocytes and monocytes in BALF caused
by LPS.

Proinflammatory cytokines are key index severe
inflammatory diseases, such as ALI and pneumonia or
cytokine storm. These proinflammatory cytokines include
interferons (IFNs), tumor necrosis factors (TNFs), interleukins
(ILs), and chemokines (Liu et al., 2016). The representative
proinflammatory factors IL-6, TNF-a, MCP-1, IL-1p, and IL-

in

in
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18 are highly expressed in inflammatory diseases or cytokine
storm. IL-6 and TNF-a are key cytokines in cytokine storm and
account for the escalation in aggravation of diseases. MCP-1 is
major chemotactic factors for monocytes. IL-1p and IL-18 are
secreted by dendritic cells and macrophages, which are activated
by NLRP3 inflammasome and cleaved from pro-IL-1f and pro-
IL-18. IFN-y is a lymphokine with strong immunomodulatory
properties (Liu et al., 2016; Guo & Thomas, 2017). Once these
cytokines increase, they recruit many inflammatory cells,

including  neutrophils and  monocytes.  Eventually,
inflammatory cells cause an increase in vascular permeability,
further aggravating the inflammatory response in the

inflammatory disease (McCord et al., 2020). The treatments of
cytokine storm can significantly enhance the body to fight against
infectious diseases (Rowaiye et al., 2021). In the present study,
QWZK significantly downregulated the contents of IL-6, TNF-a,
MCP-1, IL-1p, IL-18, and IFN-y in rat lung of ALI induced by
LPS. It suggested that QWZK plays an important role in
downregulating the expression of inflammation-related
cytokines, in which QWZK 6 g/kg showed the best effect
among three test doses on downregulating the expression of
IL-6, TNF-a, MCP-1, IL-1pB, IL-18, and IFN-y.

To investigate the underlying mechanisms of protective effects
of QWZK on ALI induced by LPS, TLR4/NF-kB signaling
pathway was studied. It is well known that LPS can activate
the TLR4/NF-«B signaling pathway and initiate the transcription
of its downstream inflammatory cytokines IL-6, TNFaq, IL-1, and
chemokines (Sun, 2017). Our study demonstrated that LPS
significantly upregulated the expression of TLR4, p-IKKa/p,
p-IkBa, and p-NF-kB but decreased expression of IKKa/p,
IkBa, and NF-kB. Other studies reported that LPS induced
overexpression of NF-kB or kept constant (Lee et al., 2020; Li
et al, 2020; Zhang et al, 2020). To solve this inconsistent
question, we tested different dosages and different stimulus
times of LPS on NF-kB expression and found that the NF-kB
expression was upregulated by LPS on 1 mg/kg at 4 h, 5 mg/kg at
both 2 and 4h, and 10 mg/ kg at 2 h. Meanwhile, the LPS on
2mg/ kg at 2h and 10 mg/ kg at 4 h significantly decreased the
NF-kB expression (Supplementary Figure S1). These results
suggested that the expression of NF-kB induced by LPS
showed a trend of dose- and time-dependent manner, but
further investigation is needed for their correlation under
specific conditions.

The NLRP3 inflammasome is critical for host immune
defenses against bacterial, viral, and fungal infections. The
activation of NLRP3 inflammasome needs a priming signal.
For example, ligands for TLRs or cytokine receptors could
activate the transcription factor NF-kB (Kelley et al., 2019).
NF-xB could act as the first initiation signal composed of the
NLRP3 inflammasome complex and upregulate the
expression of NLRP3, caspase-1, pro-IL-1B, and pro-IL-18.
Cleaved caspase-1 acts as an activated effector protein,
cutting the pro-IL-1p and pro-IL-18 into mature and IL-13
and IL-18, which are secreted to the outside of the cell to
mediate inflammation (McVey et al., 2021). Our results
demonstrated that QWZK could significantly reduce the
expression of NLRP3, cleaved caspase-1, ASC induced by

Qingwenzhike Prescription Alleviates ALI

@
5®
QWZK g)g?, !
QWZK
NUCLEjs Caspase1
2o \ NF-kB IL-6 TNF-a
8832 - Qpesipso) | ,~MCP:1_ey
QWZK LN/ TNINNIA:

FIGURE 7 | Schematic diagram shows that LPS, as a ligand of TLR4,

can activate TLR4/NF-kB pathway and NLRP3 inflammasome and then
upregulate the level of IL-6, TNF-a, MCP-1, IFN-y, IL-1B, and IL-18, promoting
lung damage. QWZK could protect LPS-induced ALl via downregulating

the expression of IL-6, TNF-a, MCP-1, IFN-y, IL-1B, and IL-18. Its mechanism
of action might inhibit TLR4/NF-kB pathway and NLRP3 inflammasome
activation.

LPS, and the contents of IL-1B and IL-18. QWZK (6 g/kg)
could significantly and effectively inhibit the activation of
NLRP3 inflammasome and downregulate the level of IL-1p
and IL-18. These results suggested that NLRP3
inflammasome is another key mechanism in QWZK
protective effects on ALI induced by LPS.

Generally, our study has verified that LPS could activate the
TLR4/NF-kB pathway and NLRP3 inflammasome activation;
upregulate the level of some proinflammatory cytokines,
chemokines, and lymphokine; and ultimately lead to ALI
(Figure 7). QWZK can reduce the WBC and neutrophils in
BALF, increase the lymphocytes and monocytes, and ameliorate
the pathological process of LPS-induced ALI The mechanism of
QWZK protection against ALI induced by LPS may via inhibiting
TLR4/NF-kB pathway and NLRP3 inflammasome activation and
then downregulated the expression of IL-6, TNF-a, MCP-1, IL-
1P, IL-18, and IFN-y (Figure 7). In present study, the effects of
QWZK did not show good dose-effect manners, and similar
phenomena were reported in previous studies (Du et al., 2021;
Pan et al., 2021; Song et al., 2021; Xie et al., 2022). The possible
reason was the components of QWZK are complicated and
diversiform, which acted by the mode of multi-component,
multi-target and multi-action. The best effects were observed
in the middle dose group, which is the clinical equivalent dose.
The high dose was twofold of the middle dose. Although its
efficacy in anti-inflammation was lower than the middle group, it
did not show obvious adverse effects. Considering the
complicated compositions of QWZK and the complexity of

Frontiers in Pharmacology | www.frontiersin.org

123

December 2021 | Volume 12 | Article 790072


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Zhang et al.

pathogenesis of ALI further investigations are needed to
elucidate the mechanisms of therapeutic effects of QWZK.

CONCLUSION

The chemical compositions of QWZK were first identified. It was
demonstrated that QWZK showed protective effects on LPS-
induced ALL The possible underlying mechanisms of QWZK on
ALI induced by LPS was via inhibiting TLR4/NF-kB signaling
pathway and NLRP3 inflammasome activation. Our work
suggested that QWZK might be a potential therapeutic
candidate for the treatment of ALI and pulmonary inflammation.
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Piperlongumine (PL) is an alkaloid from Piper longum L. with anti-inflammatory and
antitumor properties. Numerous studies have focused on its antitumor effect.
However, the underlying mechanisms of its anti-inflammation remain elusive. In this
study, we have found that PL is a natural inhibitor of Nod-like receptor family pyrin
domain-containing protein-3 (NLRP3) inflammasome, an intracellular multi-protein
complex that orchestrates host immune responses to infections or sterile
inflammations. PL blocks NLRP3 activity by disrupting the assembly of NLRP3
inflammasome including the association between NLRP3 and NEK7 and subsequent
NLRP3 oligomerization. Furthermore, PL suppressed lipopolysaccharide-induced
endotoxemia and MSU-induced peritonitis in vivo, which are NLRP3-dependent
inflammation. Thus, our study identified PL as an inhibitor of NLRP3 inflammasome
and indicated the potential application of PL in NLRP3-relevant diseases.

Keywords: piperlongumine, NLRP3, Nek7, inflammasome assembly, inflammation

INTRODUCTION

Piperlongumine (PL) is a natural product from the fruit of long pepper and a form of traditional
Chinese medicine (Wang et al., 2014). PL exhibits antitumor properties in serials of tumors including
sarcoma, melanoma, gastrointestinal cancers, and bladder cancers by induction of autophagy,
apoptosis, and cell cycle arrest through modulating ROS production (Chen et al., 2019; Rawat et al.,
20205 Shin et al., 2020). Recent studies have found that PL shows potent anti-inflammatory effects in
ovalbumin-induced asthma and airway inflammation, neuroinflammation, and psoriasis-like skin
inflammation (Gu et al., 2018; Kim et al., 2018; Lu et al., 2019). However, the underlying mechanisms
for PL anti-inflammation were all attributed to the NF-kB signal inhibition. Given the broad anti-
inflammatory effects of PL, we speculated that there still exists an unknown mechanism for PL in
suppressing inflammatory responses.

The NLRP3 inflammasome is an intracellular multiprotein complex that is critical in protecting
the host from infections or sterile injuries (Mao et al., 2013). NLRP3 can sense diverse stimuli
including pathogen components, environment irritants, and host danger effectors, so its aberrant
activation leads to many inflammatory diseases, such as sepsis (Mao et al., 2013), gout (Martinon
et al., 2006), type 2 diabetes (Masters et al., 2010), atherosclerosis (Duewell et al., 2010; Bai et al.,
2021), and Alzheimer’s disease (Heneka et al., 2013). It consists of a sensor, a nucleotide-binding
domain, a leucine-rich repeat, pyrin domain-containing protein 3 (NLRP3), an adaptor, the
apoptosis-associated speck-like protein containing a CARD (ASC), and an effector, caspase-1
(Swanson et al., 2019). NLRP3 inflammasome activation is a two-step process. First, it needs a
priming signal to upregulate the expression of NLRP3 and pro-IL-1f, and the priming signal can be
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induced by various pathogen-associated molecular patterns
(PAMPs) or through cytokines such as the tumor necrosis
factor (TNF). Second, the inflammasome is formed and fully
activated, which can be triggered by a wide variety of stimuli.
Oligomerized NLRP3 recruits ASC and then forms a large
complex to activate caspase-1, which induces the maturation
of IL-1f and IL-18 as well as gasdermin D-mediated pyroptotic
cell death.

In this study, we found that PL could inhibit the NLRP3
inflammasome activation in murine and human macrophages.
Moreover, PL alleviated the lipopolysaccharide (LPS)-induced
endotoxemia and MSU-induced peritonitis in vivo, which are
NLRP3-dependent inflammations. Mechanistically, PL blocks
NLRP3  inflammasome assembly by interrupting the
interaction between NLRP3 and NEK7 and subsequent
aggregation of NLRP3. Thus, our study identified PL as an
NLRP3 inhibitor and indicated the potential application of PL
in NLRP3-relevant diseases.

MATERIALS AND METHODS

Animals

Wild-type (WT) C57BL/6 mice (8-10 weeks old, weight between
20-25 g) were bought from Hunan SJA Laboratory Animal Co.,
Ltd. (Changsha, China) and were kept under SPF conditions with
standard chows and a 12- h light/dark cycle. All animal
experiments were conducted in accordance with Animal
Research: Reporting of In Vivo Experiments guidelines (Percie
du Sert et al., 2020) and the Institutional Animal Care and Use
Committee of Central South University.

Reagents and Antibodies

Reagents

Standard LPS (E. coli 0111:B4, Cat No. tlrl-eblps), ultrapure LPS
(E. coli 0111:B4, Cat No. tlrl-3pelps), nigericin (Cat No. tlrl-nig),
ATP (Cat No. tlrl-atpl), and MSU (Cat No. tlrl-msu) were
purchased from InvivoGen (San Diego, CA, United States); the
cell lysis buffer (CLB) (Cat No. 9803) was bought from Cell
Signaling Technology (Danvers, MA, United States); the mouse
immunoglobin IgG protein (Cat No. ab198772) was purchased
from Abcam (Cambridge, CB2 0AX, United Kingdom); Protein
A/G PLUS-Agarose (Cat No. sc-2003) was obtained from Santa
Cruz (Santa Cruz, CA, United States); mouse IL-1B (Cat No.
88-7013), tumor necrosis factor-a (TNF-a) (Cat No. 88-7324),
interleukin-6 (IL-6) (Cat No. 88-701364), and a human IL-1p
(Cat No. BMS22) ELISA kit was bought from Thermo Fishe‘g
(Waltham, MA United States); and the CellTiter-Glo

Luminescent Cell Viability Assay (Cat No. G7572) was from
Promega.

Antibodies

Anti-B-actin  (1:10,000, BH10D10) was bought from Cell
Signaling Technology (Danvers, MA, United States); Anti-
NLRP3 (1:1,000. Cryo-2) and Anti-ASC (1:1,000, AL177) were
purchased from Adipogen (San Diego, CA, United States); Anti-
Caspase-1 (1:1,000, ab179515) and Anti-NEK7 (1:10,000
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ab133514) were bought from Abcam (Cambridge, CB2 0AX,
United Kingdom); Anti-IL-1p (1:000 AF-401-NA; RRID:
AB_416684) was obtained from RD systems (Tustin, CA,
United States); the DyLight 488-labeled secondary antibody (1:
50, A120-100D2) was purchased from InvivoGen (San
Diego, CA, United States); and FITC anti-mouse/human
CD11b (101216, 1:500 for flow cytometry) and APC anti-
mouse Ly-6G (127614, 1:500 for flow cytometry) were from
BioLegend.

Cell Culture

THP-1 cells were obtained from American Type Culture
Collection (Manassas, VA). C57BL/6 mice were injected
intraperitoneally with 3% thioglycolate before collecting
primary peritoneal macrophages. Peritoneal lavage was
performed to harvest exudate cells and seeded in 48-well (2-3
x 10°) or 6-well (2 x 10°) culture plates. After 2 h, the non-
adherent cells were removed; the adherent monolayer cells were
peritoneal macrophages. Primary peritoneal macrophages and
THP-1 cells were cultured in the RPMI-1640 medium
supplemented with 10% fetal bovine serum, 100 U/ml
penicillin, and 100 pg/ml streptomycin at 37 C in a humidified
incubator of 5% CO,.

Cell Viability Assay
Peritoneal macrophages and THP-1 cells were seeded in 96-well
(4 x 10*) culture plates. After treatment with PL (1, 5, 10, 20, and
40) for 30 min, 100 pL of CellTiter-Glo~ Reagent was added to
each well. We incubated the plate at room temperature for 10 min
and recorded luminescence.

Inflammasome Activation

As previously reported (Wang et al, 2021), for NLRP3
inflammasome activation, macrophages were primed with LPS
(100 ng/ml) for 3 h, followed by PL or DMSO for 30min and
stimuli as follows: 5mM ATP or 10 uM nigericin for 1h and
200 pg/ml MSU for 6 h; differentiated adherent THP-1 cells were
induced by 100 nM PMA (phorbol-12-myristate-13-acetate) for
3h and then primed with LPS (1 ug/ml) for 3 h, followed by
NLRP3 inflammasome activation stimulation: 5mM ATP or
10 uM nigericin for 1 h or 200 pg/ml MSU for 6 h.

ASC Oligomerization

C57BL/6 mice peritoneal macrophages were primed with LPS for
3 h, treated with PL or DMSO for 30min, and stimulated with
nigericin for 1h, and then, the cells were lysed with the Triton
buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% Triton X-
100] mixed with 0.1 mM phenylmethylsulfonyl fluoride (PMSF)
and the EDTA-free protease inhibitor cocktail for 10 min on
ice. Then, the cell lysates were centrifuged at 6000 g for 15 min on
ice to collect the supernatant and to resuspend pellets in the
200 pL Triton buffer after washing twice. 2 mM disuccinimidyl
suberate (DSS) was added into the resuspended pellets and cross-
linked for 30 min at 37°C. All samples were dissolved in the
sodium dodecyl sulfate (SDS) loading buffer and heated to 100°C
for 10 min for protein denaturation so as to prepare for Western
blotting.
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ASC Speck Formation

C57BL/6 mice peritoneal macrophages were seeded on chamber
slides overnight. Then, macrophages were primed with LPS for
3 h and treated with PL or DMSO for 30 min and stimulated with
nigericin or ATP for 1h. After that, the cells were fixed in 4%
paraformaldehyde (PFA) for 10 min, permeabilized with 0.1%
Triton X-100 for 10 min, and blocked with 3% BSA in PBS for 1 h.
Cells were then stained with Anti-ASC (1:200 at 4°C overnight)
and the DyLight 488-labeled secondary antibody (1:50 at room
temperature for 45 min). Macrophage nuclei were dyed with
DAPIL A fluorescence microscope (Nikon Ti2-U) was used to
check these stained cells and ASC specks.

Immunoprecipitation and Western Blot
After indicated nigericin stimulation for 1h, mice peritoneal
macrophages were lysed in an immunoprecipitation (IP)
buffer mixed with PMSF and the cocktail. Then, these cell
lysates were reacted to specific antibodies ASC or NEK7 and
protein G plus-agarose overnight and washed four times with the
IP buffer. Immunoprecipitates were eluted by boiling with 1% (w/
v) SDS loading buffer.

The supernatants (SN) were immunoprecipitated with NLRP3
antibodies for 12 h at 4°C and protein A/G agarose for 2 h. The
immunoprecipitants were washed six times with the IP buffer and
boiled with 1% (w/v) SDS loading buffer for 10 min for
immunoblot analysis.

For Western blot, stimulated macrophages were lysed with CLB
(CST) supplemented with the cocktail and PMSF and subsequently
centrifuged at 12,000 g at 4°C for 10 min. Protein concentrations
were detected with a bicinchoninic acid assay (Pierce). An equal
content of extracts was separated by SDS-PAGE and transferred
onto 0.22-mm PVDF membranes (Merck Millipore).

SDD-AGE

Western blot of the NLRP3 aggregate was analyzed following
published protocols (Hou et al., 2011; Jiang et al.,, 2017). The
procedure is briefly described as follows: mice peritoneal
macrophages were lysed with the Triton X-100 lysis buffer,
supplemented with PMSF and the cocktail, and then
centrifuged at 12,000 g at 4°C for 5 min. Next, the cell lysates
were resuspended in a 5 x sample buffer (2.5 x TBE, 50% glycerol,
10% SDS, and 0.0025% bromophenol blue) and run onto vertical
1.5% agarose gel. After electrophoresis for 1h at a constant
voltage of 80V at 4°C in the running buffer (1 x TBE and
0.1% SDS), the proteins were transferred onto 0.22-mm PVDF
membranes for 1h for the following immunoblot.

ELISA Assay for Cytokines

Levels of IL-1p, IL-6, and TNF-a obtained from cell culture after
stimulations and mice blood serum were detected in quantitative
ELISA kits (eBioscience), according to the manufacturer’s
instructions.

LDH Release Assay

Levels of LDH release in cells after stimulations were determined
using an LDH Cytotoxicity Assay Kit bought from Beyotime
(Shanghai, China), according to the manufacturer’s instructions.

Piperlongumine Inhibits NLRP3 Inflammasome

In vivo Endotoxemia Model
Wild-type C57BL/6 mice were pretreated with PL (50 mg/kg or

100 mg/kg) or an empty solvent (as an empty control) for 0.5h
and then injected intraperitoneally with LPS (20 mg/kg). After
8 h, mice were sacrificed; the blood serum was collected by heart
puncture to detect concentrations of IL-1p, IL-6, and TNF-a by
ELISA; and the lungs were harvested for histology analysis.

MSU-Induced Peritonitis In Vivo

Wild-type C57BL/6 mice were pretreated with PL (100 mg/kg) or
an empty solvent (as an empty control) for 0.5 h. Next, they were
injected intraperitoneally with 1 mg MSU (dissolved in 500 pL
PBS) for 6 h. Peritoneal lavage was performed using 10 ml ice-
cold PBS to collect peritoneal exudate fluids and concentrated for
ELISA analysis with an Amicon Ultra 10 K filter (UFC900308)
from Millipore. Peritoneal cells were collected and analyzed by
flow cytometry.

Lung W/D Weight Ratio

The severity of pulmonary edema was estimated by calculating
the lung wet/dry (W/D) weight ratio. After sacrifice, the left lobe
of the lung was excised, washed with phosphate-buffered saline
(PBS), and weighed to gain the “wet” weight. The left lung was
then placed in an oven for approximately 72 h at 65°C until there
were no changes in the weight to obtain the “dry” weight.

Histological Analysis

After PBS perfusion to the cardiac, the lower right lobe of the lung
was cut and fixed in 4% paraformaldehyde solution at room
temperature for 24 h. After regular dehydration for histological
sections, these specimens were embedded with paraffin. Next,
sections were cut and mounted on polysine adhesion glass slides
for subsequent hematoxylin and eosin staining using standard
procedures. Slides were examined under a Nikon ECL IPSE Ci
biological microscope, and images were captured with a Nikon
DS-U3 color digital camera.

Statistical Analysis

All values in our experiments are shown as the mean + SD.
Statistical analysis was performed using GraphPad Prism 8.0
software. Unpaired Student’s t test was used for comparison of
two groups. When comparing more than two groups, ANOVA
with the Bonferroni test was used. The statistical significance was
set at p < 0.05.

RESULTS

Piperlongumine Inhibits NLRP3
Inflammasome Activation in Mouse
Macrophages

We first examined the cytotoxicity of PL (1-40 uM) by cell
viability and proved that the doses of PL were not cytotoxic
(Figure 1A). To explore whether PL inhibits NLRP3
inflammasome, we treated LPS-primed mouse peritoneal
macrophages with PL to exclude the effects of PL on the
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FIGURE 1 | PL dose-dependently inhibits nigericin-induced NLRP3 inflammasome activation. (A) Cell viability of PL (1-40 uM) in peritoneal macrophages. (B-D)
ELISA of IL-1p (B), TNF-a (C), and release of LDH (D) in supernatants from LPS-primed mouse peritoneal macrophages treated with 1-10 pM PL and stimulated with
nigericin. (E) Immunoblot of supernatants or cell lysates from LPS-primed mouse peritoneal macrophages treated with 1-10 uM PL and stimulated with nigericin. All data
were representative of three independent experiments. Values shown are mean + SD. For statistical analysis, A-D were analyzed using one-way ANOVA and the
Bonferroni test. “p < 0.05; **p < 0.01; ***p < 0.001.

priming signal and then added nigericin, an NLRP3 agonist by
causing K+ efflux. Interestingly, PL exhibited dose-dependent
inhibitory effects on LPS + nigericin-induced IL-1p secretion and
LDH release at the doses of 1-10 uM, while it had no effect on
inflammasome-independent  cytokine TNF-a production
(Figures 1B-D). Similarly, the cleaved caspase-1 (pl0) was
reduced dose-dependently, measured by Western blot.
Moreover, PL barely affected the expression of NLRP3, ASC,
the precursors of IL-1B, or the precursors of caspase-1
(Figure 1E).

We further observed that PL inhibited IL-1f secretion, LDH
release, and caspase-1 cleavage when macrophages were treated
with other NLRP3 agonists, including ATP and MSU (Figures
2A-D). Taken together, these results demonstrated the inhibitory
effects of PL on the NLRP3 inflammasome in mouse
macrophages.

Piperlongumine Suppresses NLRP3

Inflammasome Activation in THP-1 Cells
To further examine whether PL inhibits NLRP3 inflammasome in
human cells, we detected the effects in THP-1 cells. First, we
detected the cytotoxicity of PL (1-40 uM) by cell viability and
proved that the doses of PL were not cytotoxic (Figure 3A).
Treating PL with PMA-primed THP-1 cells, we observed the
declined IL-1( secretion and LDH release when challenged
with nigericin, ATP, and MSU (Figures 3B-E). Thus, PL
exerts an inhibitory role in NLRP3 inflaimmasome activation
in human cells.

Piperlongumine Interrupts ASC Speck

Formation

Next, we explored how PL inhibits NLRP3 activation. ASC speck
formation is an essential step for NLRP3 activation (Oroz et al,,
2016; Green et al., 2018), and then, we intended to determine
whether PL has a regulatory role in ASC speck formation. With
immunofluorescence microscopy analysis, we observed that PL
markedly decreased the percentage of macrophages containing
the ASC speck after stimulated with nigericin or ATP (Figures
4A,B). In common with the results of microscopy, PL distinctly
reduced appearance of large multimeric ASC complexes in
chemical cross-linking agents by Western blot (Figure 4C).
Thus, the results indicated that PL blocks ASC oligomerization.

Piperlongumine Inhibits NLRP3

Inflammasome Assembly

Since ASC speck formation is a result of ASC recruitment to
NLRP3 (Martinon et al., 2009; Davis et al, 2011), we next
investigated whether PL influenced the interaction between
them. By performing immunoprecipitation of ASC and NLRP3,
we observed that PL markedly interrupted the ASC-NLRP3
association (Figure 5A), suggesting that PL targets the upstream
of recruitment of ASC to NLRP3. Before recruiting ASC, NLRP3
first aggregates with the help of NEK7, a newly described
component of NLRP3 inflammasome (He et al., 2016). We then
detected the interaction between NEK7 and NLRP3. When treated
with PL, the NEK7-NLRP3 association was disrupted (Figure 5B).
Accordingly, the endogenous oligomerization of NLRP3 was
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FIGURE 2 | PL inhibits ATP or MSU-induced NLRP3 inflammasome activation. (A-C) ELISA of IL-1p (A), TNF-a (B), and release of LDH (C) in supernatants from
LPS-primed mouse peritoneal macrophages treated with 10 uM PL or DMSO and stimulated with ATP or MSU. (D) Immunoblot of supernatants or cell lysates from LPS-
primed mouse peritoneal macrophages treated with 10 uM PL and stimulated with indicated stimuli. All data were representative of three independent experiments.
Values shown are mean + SD. For statistical analysis, A, B, and C were analyzed using two-way ANOVA and the Bonferroni test; **p < 0.01; **p < 0.001;
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FIGURE 3| PL blocks NLRP3 inflammasome activation in THP-1 cells. (A) Cell viability of PL (1-40 pM) in THP-1 cells. (B-C) ELISA of IL-1p (B) and release of LDH

(C) in supernatants from PMA-primed THP-1 cells treated with 1-10 uM PL and challenged with nigericin. (D-E) ELISA of IL-1p (D) and release of LDH (E) in
supernatants from PMA-primed THP-1 cells treated with 10 uM PL or DMSO and stimulated with ATP or MSU. Values shown are mean + SD. For statistical analysis,
A-C were analyzed using one-way ANOVA and the Bonferroni test. D and E were analyzed using two-way ANOVA and the Bonferroni test; *p < 0.05; **p < 0.001;

=55 < 0.0001.

Frontiers in Pharmacology | www.frontiersin.org 130 January 2022 | Volume 12 | Article 818326


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Shi et al.

Piperlongumine Inhibits NLRP3 Inflammasome

from three independent experiments.

(2]
%5 50 ke LPS
? B DMSO  pNigericin . .+ 4
%40 e 3 PL PL .
3 ...
230
< Polymers
3 20
2 2 i
© Dimers
310 FI .
e} o
o
® 0 . X QI & Monomer —25
O < K O
O v N &
N\ & & —————
vog ASC| MRS - -
¥ ACTIN [ ———— o0

FIGURE 4 | PL suppresses ASC speck formation. (A, B) Immunofluorescence microscopy analysis of ASC specks in LPS-primed mouse peritoneal macrophages
treated with 10 uM PL or DMSO and stimulated with ATP or nigericin. (A) Representative images of ASC speck distribution in cells; ASC, green; nuclei, blue. White
arrows indicate ASC specks. (B) Quantified percentage of cells containing an ASC speck. At least 100 peritoneal macrophages were collected for analysis. (C)
Immunoblot analysis of ASC oligomerization in cross-linked cytosolic pellets of LPS-primed mouse peritoneal macrophages treated with 10 pM PL and then
stimulated with nigericin. Values shown are mean + SD. For statistical analysis, two-way ANOVA and the Bonferroni test were used; ***p < 0.0001. Data were collected
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FIGURE 5 | PL interrupts NLRP3 inflammasome assembly. (A) Immunoblot analysis (immunoprecipitation) of the interaction between NLRP3 and ASC in LPS-primed
mouse peritoneal macrophages treated with 10 uM PL or DMSO and then stimulated with nigericin. (B) Immunoblot analysis (Immunoprecipitation) of the interaction
between NEK7 and NLRP3 in LPS-primed primary macrophages treated with 10 uM PL or DMSO and then stimulated with nigericin. (C) Immunoblot analysis of NLRP3
oligomerization using SDD-AGE or SDS-PAGE assays in LPS-primed mouse peritoneal macrophages treated with 10 uM PL or DMSO and then stimulated with nigericin.

dramatically decreased by using semi-denaturing detergent agarose
gel electrophoresis (SDD-AGE) (Figure 5C). Thus, PL suppresses
NLRP3 inflammasome activation through inhibiting the NLRP3
inflammasome assembly.

Piperlongumine Suppresses

NLRP3-Dependent Inflammation in vivo
Finally, we investigated whether PL could inhibit NLRP3
inflammasome activation in vivo. Intraperitoneal injection of

LPS or MSU induces IL-1B secretion and neutrophil
infiltration in a NLRP3-dependent manner (Martinon et al,
2006). Pretreatment of PL (50 mg/kg or 100 mg/kg) could
markedly attenuate release of IL-1p without affecting IL-6 and
TNF-a in serum induced by LPS injection (Figures 6A-C).
Moreover, the PL-treated group showed moderate lung edema
by calculating the W/D ratio (Figure 6D) and smaller bleeding
spots, less inflammatory cell infiltration, and less impaired
structures in lungs evaluated by histopathology, compared to
the control group (Figure 6E). In another MSU-induced
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FIGURE 6 | PL disrupts NLRP3 inflammasome activation in vivo. (A-E) Effects of PL in endotoxemia. Wild-type mice with the C57BL/6 background were
pretreated with intraperitoneal injection of PL (50 mg/kg or 100 mg/kg) or N.S 30 min before intraperitoneal injection of LPS (20 mg/kg) for 8 h. ELISA analysis of IL-1p
(A), IL-6 (B), and TNF-a (C) was performed in mice blood serum. (D) Lung W/D ratio of endotoxemic mice treated with PL (50 mg/kg or 100 mg/kg). (E) Representative
images of HE staining in lungs. (F, G) Effects of PL in MSU-induced peritonitis. Wild-type mice with the C57BL/6 background were intraperitoneally injected of PL.

(100 mg/kg) or N.S 30 min before intraperitoneal injection of MSU (1 mg) for 6 h. ELISA of IL-18 (F) and neutrophils (flow cytometry) (G) in the peritoneal cavity fluid were
quantified. Values presented are mean + SD. Two-way ANOVA and the Bonferroni test were used for the statistical analysis; “***p < 0.001; ***p < 0.0001. Data were
collected from three independent experiments.

peritonitis model, PL also exhibited inhibitory effects on NLRP3  and antiangiogenesis by targeting JAK-STAT, NF-kB, or PI3K/
inflammasome reflected by reduced IL-1p (Figure 6F) and AKT/mTOR pathways (Farooqi et al., 2018; Piska et al., 2018).

recruitment of neutrophils (Figure 6G) in the lavage fluid.  Recently, a few studies have uncovered the role of PL in
Taken together, these data proved that PL could inhibit  alleviating sorts of inflammatory disorders, such as colitis,
NLRP3-dependent inflammation in vivo. amyloidogenesis, liver fibrosis, diabetes, and psoriasis-like skin

inflammation, suggesting an anti-inflammatory effect of PL (Gu
et al., 2018; Chilvery et al., 2020; Thatikonda et al., 2020; Xu P.
DISCUSSION et al., 2021). In addition, these studies have proved that PL
inhibits pro-inflammatory cytokine (TNF-a and IL-6)
Piperlongumine, a kind of amid alkaloids, is an extract from the  production mainly through suppressing the NF-kB signal and

fruits of long pepper plants in Southern India and Southeast Asia. ~ iNOS expression. However, only this mechanism could
It not only flavors food tastes but also protects human health.  not explain the role of PL under so many inflammatory
Numerous studies have reported its anticancer function in  conditions.

different types of tumors both in vitro and in vivo, including In this study, we demonstrated that PL is an inhibitor of NLRP3

colon, pancreatic, gastric, cholangio, lung, and prostate cancers  inflammasome (Figure 7). Treated human or murine LPS-primed
(Randhawa et al,, 2013; Dhillon et al., 2014; Ginzburg et al.,, 2014;  macrophages with PL could inhibit NLRP3 inflammasome-
Duan et al., 2016; Thongsom et al., 2017; Hafas-Wiéniewska etal.,  induced IL-1p production and pyroptotic cell death without
2020). The anticancer properties of PL were demonstrated  affecting inflammasome-independent cytokine TNF-a production.
through cell cycle arrest, pro-apoptosis, anti-invasiveness, = We noted that different from the previous study, PL did not suppress
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and NLRP3 and subsequent NLRP3 oligomerization.

FIGURE 7 | Mechanism of PL inhibits NLRP3 inflammasome activation. PL blocks NLRP3 inflammasome activation by disrupting the interaction between NEK7

Pro-IL-18

TNE-a production in this model because of the fact that PL addition
was after the NF-«xB signal activation. Moreover, it presented the
specificity of PL in NLRP3 inflammasome without affecting the NF-
kB signal. To further demonstrate whether PL could inhibit NLRP3
inflammasome in vivo, we first adopted an LPS-induced
endotoxemia murine model and observed that PL markedly
alleviated the inflammation, which is in line with a previous
study (Lee et al, 2013). In another MSU-induced peritonitis
model, PL exhibited similar effects by suppressing IL-1B
production and neutrophil infiltration, both of which were
dependent on NLRP3 inflammasome. Mechanistically, PL could
inhibit the NLRP3 inflammasome assembly. By checking the ASC
speck, an NLRP3 inflammation activation marker, we noticed that
PL may target the upstream of ASC speck formation. Although
performing SDD-AGE and immunoprecipitation, we demonstrated
that PL interrupted NLRP3 oligomerization and the interaction
between NLRP3 and NEK7, a newly recognized partner that
bridges the bond of adjacent NLRP3 to form NLRP3 aggregates
(He et al., 2016). However, the detailed molecular mechanism for PL
that blocks the interaction between NLRP3 and NEK?7 is not clear,
which still remains further investigation.

A previous study treated macrophages with PL before LPS
priming and found that PL could inhibit NLRP3 inflammasome
activation through disruption of the NF-xB signaling pathway
(Huang et al., 2021). However, in our study, we treated PL
after LPS priming to exclude affecting the NF-kB signal, and
we found that PL could inhibit NLRP3 inflammasome
activation through inhibiting the interaction of NLRP3 and
NEK?7 rather than the expression of NLRP3. Our study found
a different anti-inflammatory mechanism of PL. Taken together,
our study and previous study indicated that PL not only widely
suppresses inflammatory response through the NF-«B signaling
pathway but also specifically inhibits NLRP3 inflammasome
activation.

NLRP3 inflammasome is the most well-studied
inflammasome. Numerous studies have indicated that
excessive NLRP3 inflammasome activation is harmful to the
host immune system and can lead to many diseases that are
related to the long-term inflammatory process including type 2
diabetes mellitus, atherosclerosis, rheumatoid arthritis, and
gout (Swanson et al, 2019). Disruption of NLRP3
inflammasome activation exhibits a therapeutic role to these
diseases, thus apparently indicating its promising property in
dealing with inflammatory related disorders. Accordingly, several
compounds have been discovered for inhibiting NLRP3
inflammasome, and among them, MCC950 is the most well-
studied NLRP3 inhibitor. By directly interacting with NLRP3,
MCC950 leads to an inactive NLRP3 conformation (Tapia-
Abellan et al., 2019). Besides MCC950, there are a serial of
inhibitors directly interacting with NLRP3 and inhibiting
NLRP3 ATPase activity, including CY-09, Bay 11-7082,
OLT1177 dapansutrile, INF39, MNS, and BOT-4-one
(Swanson et al., 2019). Apart from directly interacting with
NLRP3, there are some inhibitors that control the NLRP3
activation in a posttranslational modification manner, such
as SP600125, which disrupts the phosphorylation of NLRP3
and ASC; G5 prohibits the deubiquitination of NLRP3 (Jiang
et al., 2020). In addition, some inhibitors target the association
between NLRP3 and ASC, such as cardamonin (Jiang et al,,
2020), SI-2 (Liu et al.,, 2020), and C646 (Xu X. et al., 2021), and
some inhibitors block the interaction between NLRP3 and
NEK7, including ordonin (Swanson et al, 2019) and
ginsenoside Rg3 (Jiang et al., 2020). Our study added another
natural inhibitor for NLRP3 by interrupting the interaction
between NLRP3 and NEK7.

In summary, our study identified PL as an NLRP3 inhibitor by
interrupting the assembly of the inflammasome, providing a new
view of the anti-inflammatory mech