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Editorial on the Research Topic

Advances in imaging and treatment of embolic stroke of

undetermined source

Determining the causes of acute ischemic stroke is crucial for patient management,

particularly to prevent future strokes. Embolic stroke of undetermined source (ESUS) is

a subtype of cryptogenic ischemic stroke and accounts for ∼20% of all ischemic stroke,

and the average recurrence rate of 4.5% per year is relatively high, despite preventive

treatment with antithrombotic agents (1). Recent studies have shown that novel clinical

strategies and imaging techniques can improve the detection rate of the etiology of ESUS.

Atherosclerosis and ESUS

Non-stenotic atherosclerotic plaques are a major contributor to ESUS (2). Several

previous studies revealed that certain morphological features of plaques on ultrasound,

computed tomography (CTA), or high-resolution MRI vessel wall imaging (HR-VWI)

are significantly more common in ESUS patients ipsilateral to the side of stroke than the

contralateral side (3). High-risk culprit plaque can still present despite the stenosis degree

being <50%, and the outward remodeling of the plaque is common. HR-VWI provides

the opportunity to image the high-risk features of the plaques with <50% stenosis,

including intraplaque hemorrhage, lipid-rich necrotic core, and thin or ruptured fibrous

caps (4).

In this Research Topic, Che et al. concluded that extracranial carotid intra-plaque

hemorrhage (IPH) on HR-VWI was significantly associated with poor 3-month

outcomes after acute ischemic stroke and could predict a poor 3-month functional

prognosis. Baradaran et al. discussed the role of cross-sectional imaging of the

extracranial and intracranial arteries and how imaging might potentially uncover

high-risk plaque features that may be contributing to ischemic strokes. They highlighted

that, in the extracranial carotid artery, both MR and CTA could be used to identify

certain plaque features which indicated more plaque vulnerability including IPH on MR
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and increased soft plaque thickness on CTA. VW-MR can also be

used as a powerful tool to identify active atherosclerotic plaque

in the intracranial arteries with <50% stenosis by identifying

an enhancing plaque with positive remodeling. Lin et al. found

the culprit plaque characteristics of patients with symptomatic

MCA atherosclerotic in different stroke mechanisms may be

evaluated using HR-VWI. The plaque characteristics of different

stroke mechanisms may have clinical value for the selection of

treatment strategies to prevent stroke recurrence.

There has been increased attention given to decoding the

contributory role of non-stenotic atherosclerosis in the carotid

arteries, intracranial arteries, and the aortic arch in ESUS

patients. Cai X. et al. found that aortic arch calcification,

especially spotty calcification, had a good predictive value

for stroke recurrence in patients with ESUS. Sakai et al.

reviewed the use of VW-MRI in detecting and characterizing

carotid, intracranial, and aortic arch atherosclerosis in ESUS

patients. Besides high-risk feathers of carotid and intracranial

atherosclerosis, HR-VWI also allows further characterization of

aortic arch plaque compositions like that seen in carotid studies.

Cardioembolic and ESUS

Occult atrial fibrillation (AF) is a leading cause of stroke of

unclear cause (5). Chen C.-H. et al. revealed that MRI at stroke

onset provides critical clues for the prediction of newly detected

AF, including single cortical infarcts, territorial infarcts, and

early hemorrhage. Future studies are warranted to verify their

new prediction model and to assess whether the identification of

AF can be enhanced to improve outcomes after acute ischemic

stroke. Hou et al. found that potential embolic sources (PES)

differ in patients with ESUS according to age and differences

in recurrence. PFO is the only common PES in young patients

with ESUS. Future studies prospectively evaluating PES in both

age groups are needed. Chen L. et al. provided a case of

cryptogenic stroke associated with infective endocarditis (IE)

and antiphospholipid antibody syndrome (APS). They pointed

out that bicuspid aortic valve (BAV) vegetation-related cerebral

embolism might present as cryptogenic and can be confusing in

the acute phase, particularly when APS and IE were diagnosed

simultaneously. Kato and Takahashi provided a review of atrial

cardiopathy and cryptogenic stroke. They concluded that atrial

cardiopathy should be considered as one of the mechanisms of

ESUS. Abnormal atrial substrate (atrial cardiopathy) that leads

to atrial fibrillation (AF) can result in embolic stroke before

developing AF and may explain the source of cryptogenic stroke

in some patients.

Other research in ESUS

There are many other biomarkers associated with ESUS. Cai

Z. et al. outlined the current understanding of the regulatory

network of non-coding RNAs (ncRNAs) and reviewed the recent

evidence for the contribution of ncRNAs in the experimental

ischemic stroke model. Zhou et al. pointed out that carotid

web (CaW) was a risk factor in cryptogenic stroke because

it could be detected in nearly 5% of young cryptogenic

stroke patients. Contrast-enhanced ultrasound (CEUS) might

have higher diagnostic accuracy for CaW with thrombosis,

and it had a higher clinical application prospect. Dong

and Ma reviewed advances in exploring uncommon female-

predominant etiologies of cryptogenic stroke. This review

provided novel clinical clues for the etiological diagnosis of

cryptogenic stroke and will help to improve the management

and secondary prevention of stroke in the female population.

Future directions

Though these studies can be helpful in determining the

source of potential emboli for ESUS, further studies are

needed to validate these imaging techniques and pave a path

for their routine use in clinical practice. The use of VW-

MRI to detect and characterize carotid, intracranial, and

aortic arch atherosclerosis in ESUS patients is an exciting

and rapidly evolving field. Additional efforts are warranted

to elucidate the contributory role of these atherosclerotic

plaques in ESUS. The ARCADIA trial is currently being

performed to validate the diagnosis of atrial cardiopathy

and to determine whether atrial cardiopathy can be a new

therapeutic target for direct-acting oral anticoagulants (DOAC).

It was also hypothesized that oral anticoagulation may decrease

the risk of stroke recurrence in ESUS, which was tested in

two large randomized controlled trials: the NAVIGATE ESUS

and the RE-SPECT ESUS (6, 7). For ESUS patients without

atherosclerotic lesions, it seems rational to hypothesize that

oral anticoagulation could reduce the risk of stroke recurrence.

But for ESUS patients with atherosclerosis, further research is

needed to prove the combined use of low-dose anticoagulation

with antiplatelets.
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Cohort Study
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Background and Purpose: Carotid plaque hemorrhage (IPH) is a critical plaque

vulnerable feature. We aim to elucidate the association between symptomatic

extracranial carotid atherosclerotic IPH and poor 3-month functional outcome after acute

ischemic stroke by high-resolution vessel wall MRI (HRVMRI).

Methods: We prospectively studied consecutive patients with a recent stroke or

transient ischemic attack (TIA) of carotid atherosclerotic origin. All patients underwent

a High-Resolution (HR) VWMRI scan of ipsilateral extracranial carotid within 1 week

after admission. The patients recruited were interviewed by telephone after 3 months

after stroke onset. The primary outcome was a 3-month functional prognosis of stroke,

expressed as a modified Rankin Scale (mRS) score. A poor prognosis was defined as

a 3-month modified Rankin Scale (mRS) score ≥ of 3. Univariate analysis was used

to analyze the correlation between risk factors and IPH. The relation between IPH and

3-month functional outcome was analyzed by Logistic regression analysis.

Results: A total of 156 patients (mean age, 61.18 ± 10.12 years; 108 males)

were included in the final analysis. There were significant differences in the age,

gender, smoking history, national institutes of health stroke scale (NIHSS) on

admission, and diastolic blood pressure (DBP) on admission between the IPH

group and the non-IPH group (all p< 0.05). During the follow-up, 32 patients

(20.5%) had a poor functional outcome. According to the prognosis analysis

of poor functional recovery, there was a significant difference between the two

groups [36.7 vs. 16.7%; unadjusted odds ratio (OR), 2.32, 95% confidence

interval (CI), 1.12–4.81, p = 0.024). Even after adjusting for confounding factors

[such as age, gender, smoking history, National Institutes of Health Stroke Scale

(NIHSS) on admission, DBP on admission, stenosis rate of carotid artery (CA),

8

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.780436
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.780436&domain=pdf&date_stamp=2021-12-14
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zxq@vip.163.com
https://doi.org/10.3389/fneur.2021.780436
https://www.frontiersin.org/articles/10.3389/fneur.2021.780436/full


Che et al. Plaque Hemorrhage Predicts Poor Outcome

calcification, loose matrix, lipo-rich necrotic core (LRNC), and statins accepted at 3

months], IPH was still a strong predictor of poor 3-month outcome, and the adjusted

OR was 3.66 (95% CI 1.68–7.94, p = 0.001).

Conclusions: Extracranial carotid IPH is significantly associated with poor 3-

month outcome after acute ischemic stroke and can predict the poor 3-month

functional prognosis.

Keywords: MRI, atherosclerosis, plaque, prognosis, acute ischemic stroke

INTRODUCTION

Atherosclerosis is the leading cause of ischemic stroke in the
Chinese population (1). The Chinese Intracranial Atherosclerosis
Study (CICAS) showed that 14% of patients with ischemic
stroke had severe extracranial carotid atherosclerosis (> of 50%).
Some studies have confirmed that carotid artery atherosclerotic
stenosis is significantly associated with the onset and prognosis
of acute ischemic stroke (2, 3). However, histopathological
studies have demonstrated that the vulnerable features of carotid
artery plaque are the underlying risk factors of most ischemic
events (4–10). Therefore, identifying the vulnerable plaques
based on advanced medical imaging technology and exploring
the correlation between the vulnerability of the plaque and
stroke recurrence has become research hotspots in recent years.
Meanwhile, we still do not know whether the characteristics of
carotid artery plaques in acute ischemic stroke are associated with
the poor 3-month outcome of patients after stroke onset.

Our study aims to analyze the vulnerable characteristics
of carotid plaque by high-resolution vessel wall magnetic
resonance imaging (HR VWMRI) and find a relation between
IPH and the early poor prognosis of acute ischemic stroke.
With that in mind, we might identify the risk factors of
poor 3-month outcome of stroke and take more effective
individualized prevention strategies in the acute stage of
ischemic stroke.

METHODS

Study Population
All patients were enrolled from a single-center prospective
cohort study in Beijing Tiantan Hospital. We aimed to
assess the characteristics of carotid atherosclerotic plaques
and the relationship between IPH and poor 3-month
outcome after stroke onset. All enrolled patients underwent
an ultrasonographic screen and a HR VWMRI scan of
the symptomatic extracranial carotid artery within 1 week
after admission. They were followed up by telephone after
3 months (90 ± 7 days) after stroke onset. According to
the latest international guidelines, we gave the enrolled
patients standardized medical therapy and secondary
prevention of stroke. In addition, the inclusion criteria and
exclusion criteria of the study have been mentioned in the
Supplementary Material. The Ethics Committee approved the
study of Beijing Tiantan Hospital. All study subjects had signed
written consent.

Carotid MR Imaging Protocol
All recruited subjects were scanned using 3.0 T MR scanners
(Achieva TX; Philips Healthcare, Best, the Netherlands)
with 8-channel head coils. A standardized multisequence
protocol included three-dimensional time of flight
(3D-TOF), T1-weighted quadruple inversion recovery, T2-
weighted multislice double, and magnetization prepared
gradient recalled echo (MPRAGE) imaging sequences.
We used gadolinium diethylenetriamine pentametric acid
(GD-DTPA) as the contrast medium, and the injection
dose was 0.1 mmol/kg. We used spectral preservation
attenuated inversion recovery (SPAIR) in the black blood
technique. The study’s imaging parameters of carotid
atherosclerotic plaque MRI have also been mentioned in
the Supplementary Material.

MRI Image Analysis
We used a standard workstation (ADW4.4, G.E. Medical
System, USA) for imaging analysis. Two experienced senior
neuroimaging physicians reviewed all slices of multi-contrast
MR vessel wall images. They were both blinded to the
diffusion-weighted images (DWI) and clinical information.
The plaque was defined as a thickening of the focal wall
relative to image slices beneath the T2 and T1-weighted
imaging focal wall. We manually outlined the outer wall
boundaries and lumen of carotid arteries at each slice. The
parameters of plaque morphology and the stenosis ratio of
the carotid were measured. According to the international
criteria detailed previously, the plaque components such as
carotid artery (CA), lipo-rich necrotic core (LRNC), IPH, and
fibrous cap rupture (FCR) were detected by MRI (11). MR
image quality was divided into a four-point grade (1 = poor;
2 = general; 3 = good; and 4 = excellent), and slices with
image quality ≥ 3 were included in the statistical analysis. We
would accept consensus interpretation as the final analysis if
inconsistent in the two readers’ interpretations. We randomly
selected twenty patients from the study population every 2
months to test the consistency of inter-reader and intra-
reader in measuring carotid plaque morphology and carotid
plaque compositions.

Outcome Assessment
Patients were followed up at 3 months after stroke onset. The
primary outcome was 3-month functional outcome, expressed
as a modified Rankin Scale (mRS) score 3 months after
discharge. A poor functional outcome was defined as mRS
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score ≥of 3 at 3 months. The secondary outcomes were
early stroke progression, early recurrent ischemic stroke, and
hemorrhagic transformation at 3 months post-discharge. The
recurrence of ischemic stroke was confirmed according to
new neurological deficits documented in the medical records.
Two experienced stroke neurologists reviewed patients’ medical
documents to ensure a reliable diagnosis of recurrent ischemic
stroke. The early stroke progression was described as an
incremental increase in the NIHSS score by ≥2 points in
the total score or ≥1 point in motor power within 1
week after admission (excluding hemorrhage transformation of
cerebral infarction and symptomatic intracranial hemorrhage),
accompanied by the new ischemic signals on brain MRI or
computed tomography (CT) (12). Early recurrent ischemic
stroke (ERIS) was defined as the occurrence of an ischemic
stroke in other independent arterial regions confirmed by
clinical symptoms or by CT/MRI imaging techniques (13).
Hemorrhagic transformation was defined as the hemorrhage
in the infarct area or the corresponding vascular distribution
area after acute cerebral infarction (14). Complications during
hospitalization were defined as at least one syndrome, namely,
urinary infection, pulmonary infection, gastrointestinal bleeding,

deep vein thrombosis, other organ dysfunction, and/or acute
coronary syndromes within 7 days. Patients or their authorized
proxies were interviewed at 3 months by telephone by
trained research coordinators. Two trained researchers in
Beijing Tian Tan hospital completed all the telephone follow-
ups of patients. Trained stroke neurologists assessed the
NIHSS. The mRS at the 3-month time point was evaluated
by trained and experienced neurologists by a telephone
assessment using a standardized structured questionnaire.
An experienced neurologist independently confirmed all the
followed-up assessments. They were also blinded to imaging
information of all patients.

Statistical Analysis
Continuous variables were described by means [standard
deviations (SDs)] or medians [interquartile ranges (IQRs)], and
categorical data were expressed as frequency and percentage. To
analyze the difference between the IPH group and the non-IPH
group, Student’s t-test or Mann–Whitney U-test were used for
continuous variables according to a normal distribution, and
chi-squared test or Fisher exact test for categorical variables.
Univariate and multivariable Cox regression analyses were

FIGURE 1 | Flow chart of study patients.
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conducted to study predictors of poor prognosis of stroke
by calculating odds ratio (OR) and 95% confidence interval.
Statistical analyses were performed using SPSS version 22.0
(IBM, NY, USA). A two-sided p < 0.05 was considered
statistically significant.

RESULTS

One hundred seventy-one patients were enrolled from January
2011 to December 2013, and 15 patients were excluded for the
following reasons: (1) 10 patients were lost; and (2) the image
quality of 5 patients was poor. Thus, a total of 156 patients
were included in the final statistical analysis, including 108
males (69.2%) with a mean age of (61.18 ± 10.12, 33–85) years.
The median day of follow-up time was [IQR, 93 (78–110)].
Thirty-two patients (20.5%) had a 3-month poor prognosis
(Figure 1).

Intraplaque hemorrhage detected by HR VWMRI was found
in 30 (20.5%) patients (Figure 2). There were significant
differences in the age (mean, 66.30 ± 8.27 vs. 59.96 ± 10.16, p =
0.002), gender (male, 86.7 vs. 65.1%, p= 0.021), smoking history
(60.0 vs. 31.7%, p = 0.004), NIHSS on admission [IQR, 3 (0–8)
vs. 4 (2–12), p= 0.031], and DBP on admission (mean, 81.52 ±

11.40 vs. 86.94± 12.12mmHg, p= 0.037) between the IPH group
and the non-IPH group (Table 1).

Between the IPH group and the non-IPH group, there was
no significant difference in the degree of stenosis (p = 0.279),
lumen area (LA) (p = 0.063), and vessel area (VA) (p = 0.269).

However, there were significant differences in the wall area (WA)
[IQR, 34.56 (21.68–114.10) mm2 vs. 29.61 (19.11–54.03) mm2,
p < 0.001], normalized wall index (NMI) [IQR, 0.46 (0.40–0.69)
vs. 41 (0.28–0.63), p < 0.001], wall thickness (WI) [IQR, 1.33
(1.06–3.14) mm vs. 1.07 (0.81–1.80) mm, p < 0.001], plaque area
(PA) [IQR, 38.32 (11.42–71.35) mm2 vs. 22.22 (8.60–74.29) mm2,
p < 0.001], and remodeling index (RI) (mean, 0.68 ± 0.07 vs.
76± 0.07, p < 0.001) (Table 1).

During the follow-up, 32 patients (20.5%) had a poor
functional outcome. The proportion of poor function outcome is
36.7% for the IPH group and 16.7% for the non-IPH group (crude
OR 2.32; 95%CI 1.12–4.81; p= 0.024) (Figure 3). After adjusting
the baseline variables as age, gender, smoking history, NIHSS on
admission, DBP on admission, stenosis rate of CA, calcification,
loose matrix, LRNC, and statins accepted at 3 months, there was
still a statistical difference (adjusted OR 3.66; 95%CI 1.68–7.94;
p = 0.001) between the two groups (Table 2). Regarding the
second outcomes, the proportion of early stroke progression,
early recurrent ischemic stroke, and hemorrhagic transformation
in the IPH group was significantly higher (all p <0.05, Table 2).

DISCUSSION

Our study investigated the association between IPH detected
by HR VWMRI and functional outcome at 3 months after
stroke onset. Our study found that the incidence of carotid
plaque IPH in patients with acute ischemic stroke was

FIGURE 2 | Distribution of modified Rankin scale (mRS) scores at 3 months in patients with acute ischemic stroke.
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TABLE 1 | Demographic and clinical characteristics in patients.

Variables Total (n = 156) IPH group (n = 30) Non-IPH group (n = 126) P-value

Gender, male, n (%) 108 (69.2) 26 (86.7) 82 (65.1) 0.021

Age, years 61.18 ± 10.12 66.30 ± 8.27 59.96 ± 10.16 0.002

Hypertension, n (%) 107 (68.6) 22 (73.7) 85 (67.5) 0.533

Diabetes mellitus, n (%) 50 (32.1) 13 (43.3) 37 (29.4) 0.141

Coronary heart disease, n (%) 18 (11.5) 2 (6.7) 16 (12.7) 0.528

Hyperlipidemia, n (%) 59 (37.8) 7 (23.3) 59 (37.8) 0.069

Prior stroke/TIA, n (%) 31 (19.9) 4 (13.3) 27 (21.4) 0.318

Smoking history, n (%) 58 (37.2) 18 (60.0) 40 (31.7) 0.004

Alcohol consuming, n (%) 51 (32.7) 9 (30.0) 42 (33.3) 0.726

Family history of stroke, n (%) 21 (13.5) 2 (6.7) 19 (15.1) 0.371

SBP on admission, mmHg 144.60 ± 21.75 143.15 ± 21.01 144.93 ± 21.99 0.702

DBP on admission, mmHg 85.92 ± 12.18 81.52 ± 11.40 86.94 ± 12.12 0.037

NIHSS on admission, IQR 4 (0–12) 3 (0–8) 4 (2–12) 0.031

Pre-admission mRS, IQR 1 (0–2) 1 (0–2) 1 (0–2) 0.059

hs-CRP, IQR, mg/L 2.60 (0.00–45.90) 3.30 (0.00–17.90) 2.50 (0.00–45.90) 0.617

TC, mmol/L 4.34 ± 1.07 4.25 ± 1.13 4.36 ± 1.06 0.634

TG, IQR, mmol/L 1.36 (0.50–8.44) 1.29 (0.67–3.89) 1.37 (0.50–8.44) 0.507

LDL-C, mmol/L 2.61 ± 0.96 2.39 ± 0.91 2.66 ± 0.96 0.184

HDL-C, mmol/L 1.07 ± 0.34 1.19 ± 0.56 1.05 ± 0.27 0.209

Hcy, IQR, umol/L 17.10 (6.60–75.00) 21.17 (10.50–51.20) 16.70 (6.60–75.00) 0.201

Stenosis rate of CA, % 62.77 ± 12.08 65.26 ± 14.32 62.18 ± 11.47 0.279

Stenotic degree of CA 0.090

Mild stenosis (<50%), n (%) 20 (12.8) 4 (13.3) 16 (12.7) —

Moderate stenosis (50–69%), n (%) 92 (59.0) 13 (43.3) 79 (62.7) —

Severe stenosis/occlusion (>70%), n (%) 44(28.2) 13 (43.3) 31 (24.6) —

LA, mm2 16.86 ± 6.99 14.73 ± 7.94 17.37 ± 6.67 0.063

WA, IQR, mm2 30.65 (19.11–114.10) 34.56 (21.68–114.10) 29.61(19.11–54.03) <0.001

VA, IQR, mm2 74.45 (43.00–162.11) 73.22 (43.00–162.11) 74.45(45.01–133.74) 0.269

NWI, IQR 0.42 (0.28–0.69) 0.46 (0.40–0.69) 0.41(0.28–0.63) <0.001

WT, IQR, mm 1.11 (0.81–3.14) 1.33 (1.06–3.14) 1.07(0.81–1.80) <0.001

PA, IQR, mm2 24.42 (8.60–74.29) 38.32 (11.42–71.35) 22.22 (8.60–74.29) <0.001

RI 0.75 ± 0.08 0.68 ± 0.07 0.76 ± 0.07 <0.001

Calcification, n (%) 85 (54.5) 26 (86.7) 59 (46.8) <0.001

Loose matrix, n (%) 74 (47.4) 24 (80.0) 50 (39.7) <0.001

LRNC, n (%) 127 (81.4) 30 (100.0) 97 (77.7) 0.004

FCR, n (%) 4 (2.6) 4 (13.3) 0 (0.0) 0.001

Median on admission-to-following time, d (IQR) 93 (78–110) 93 (83–99) 93 (78–110) 0.750

mRS at 3 months, IQR 2 (0–5) 3 (0–5) 2 (0–5) 0.870

Medication at 3 months

Aspirin, n (%) 89 (57.1) 19 (63.3) 70 (55.6) 0.439

Clopidogrel, n (%) 18 (11.5) 1 (3.3) 17 (13.5) 0.200

Statins, n (%) 68 (43.6) 8 (26.7) 60 (47.6) 0.038

Antihypertension, n (%) 49 (31.4) 9 (30.0) 40 (31.7) 0.853

Hypoglycemic, n (%) 47 (30.1) 11 (36.7) 36 (28.6) 0.385

IPH, intraplaque hemorrhage; TIA, transient ischemic attack; SBP, systolic blood pressure; DBP, diastolic blood pressure; hs-CRP, hypersensitive c-reactive protein; TC, cholesterol; TG,

triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; Hcy, homocysteine; CA, carotid artery; LA, lumen area; WA, wall area; VA, vessel

area; NWI, normalized wall index; WT, wall thickness; PA, plaque area; RI, remodeling index; LRNC, lipo-rich necrotic core; FCR, fibrous cap rupture; NIHSS, national institutes of health

stroke scale; mRS, modified Rankin scale; IQR, interquartile range.

19.27%. Meanwhile, the percentage of IPH was significantly
higher than other plaque vulnerable features, which could
reach 61.54%.

Our previous study has confirmed that IPH was associated
with ipsilateral ischemic stroke recurrence, especially in the first 3

months after acute ischemic stroke. So, we hypothesized that IPH
might be related to a 3-month poor prognosis. In our study, we
found the proportion of patients with poor functional outcome
in the IPH group is much higher than patients in the non-IPH
group, which could be 3.66 times higher even after adjusting
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FIGURE 3 | A 61-year-old male patient presented with right ischemic stroke. The plaque is shown at the beginning of the right internal carotid artery on (a) 3D

MERGE, (b) TOF, and (c) T1W (white arrow). The intraplaque hemorrhage (IPH) is characterized by hyperintensities on (d) T2WI and (e) MPRAGE (yellow arrow). 3D

MERG, 3D multiple-echo recalled gradient-echo; 3D-TOF, three-dimensional time of flight; T1W, T1-weighted; T2W, T2-weighted; MPRAGE, magnetization-prepared

rapid acquisition gradient-echo.

TABLE 2 | Outcomes at 3 months after stroke onset in carotid plaque hemorrhage (IPH) group vs. non-IPH group.

Outcome No. (%) of patients Unadjusted OR (95% CI) P-value Adjusted OR (95% CI)* P-value

IPH group (n = 30) Non-IPH group (n = 126)

Primary outcome

mRS 3–6 at 3 months 11 (36.7) 21 (16.7) 2.32 (1.12–4.81) 0.024 3.66 (1.68–7.94) 0.001

Second outcomes

Early stroke progression 5 (16.7) 4 (3.2) 5.25 (1.41–19.60) 0.014 5.43 (1.45–20.25) 0.012

Early recurrent ischemic stroke 15 (50.0) 14 (11.1) 4.90 (2.37–10.17) 0.000 7.49 (3.13–17.94) <0.001

Hemorrhagic transformation 1 (3.3) 3 (2.4) 1.51 (0.16–14.53) 0.722 - 0.010

*Adjusted baseline variables: age, gender, smoking history, NIHSS on admission, DBP on admission, stenosis rate of CA, calcification, loose matrix, LRNC, and statins at 3 months.

mRS, modified Rankin Scale; IPH, intraplaque hemorrhage; CA, carotid artery; LRNC, lipo-rich necrotic core. OR, odds ratio; CI, confidence interval; mRS, modified Rankin Scale; IPH,

intraplaque hemorrhage; CA, carotid artery; LRNC, lipo-rich necrotic core.

for confounding factors (including age, gender, smoking history,
NIHSS on admission, DBP on admission, stenosis rate of CA,
calcification, loose matrix, LRNC, and statins accepted at 3
months). However, we still wanted to know why the patients
with IPH might be more prone to have a poor prognosis. So,

we defined the early stroke progression, early recurrent ischemic
stroke, and hemorrhagic transformation as the second outcomes.
Our study found that patients with IPH might be more likely
to occur early stroke progression, recurrent ischemic stroke, and
hemorrhagic transformation.

Frontiers in Neurology | www.frontiersin.org 6 December 2021 | Volume 12 | Article 78043613

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Che et al. Plaque Hemorrhage Predicts Poor Outcome

Several studies have confirmed that IPH is associated with
plaque progression (15, 16). Takaya et al. (17) followed the
asymptomatic patients with carotid artery stenosis rate of
50–70% for 18 months. They found that the volume of the
carotid artery wall and the percentage of lipid-rich necrotic
core volume in the patients with IPH detected by MRI at
baseline were significantly higher than in the control group.
Meanwhile, the patients with IPH at baseline were also more
likely to have new IPH at 18 months (43 vs. 0%; p =

0.006). According to the pathophysiological mechanism of
plaque progression, some scholars believed that the hemoglobin
would be released extracellularly after red blood cells are
phagocytosed by macrophage. The free hemoglobin would
increase inflammation, lipid core expansion, and oxidative stress,
leading to plaque progression. IPH also carried proteolytic
enzyme, leading to the degradation and destruction of the fibrous
cap, and, finally, to the plaque rupture (18–20). Due to the
limitations of this study, we did not study the pathophysiological
process of IPH leading to the secondary outcomes, though it
might be the research direction and hot spot in the future.

Our study still has some shortcomings. Firstly, because it
is a single-center study with small sample size, the statistical
results might be biased. Secondly, we did not make further
study on the dynamic evolution of IPH, so we still do not
know the pathophysiological mechanism of PH leading to poor
functional outcome. Thirdly, our study did not exclude other
risk factors affecting the prognosis of stroke, such as intracranial
vascular artery disease, collateral circulation, and cerebral blood
flow reserve capacity, which may be some errors in the results.
Fourthly, we did not register the TOAST subtypes in our
study, and it is a pity of the study. However, we have tried
our best to rule out cardiogenic sources. We also hope to see
the results of a large sample and more rigorous research in
the future.

CONCLUSION

Compared with patients without IPH, patients with IPH have a
higher risk of poor 3-month outcome after stroke onset. Based on
this, we should not overlook the potential risk of IPH. It might
be essential to understand the underlying pathophysiological
mechanism of plaque vulnerability and themolecular biomarkers
combined with neuroimaging markers.
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Recent advances in pathophysiology suggest that a pathological atrial substrate can

cause embolic stroke even in patients without atrial fibrillation (AF). This pathological

condition is called “atrial cardiopathy”, which indicates atrial structural and functional

disorders that can precede AF. The objective of this narrative review was to provide

a current overview of atrial cardiopathy and cryptogenic stroke. We searched the

PubMed database and summarized the recent findings of the identified studies, including

the pathogenesis of atrial cardiopathy, biomarkers of atrial cardiopathy, relationship

between atrial cardiopathy and cryptogenic stroke, and therapeutic interventions for atrial

cardiopathy. Abnormal atrial substrate (atrial cardiopathy) that leads to AF can result in

embolic stroke before developing AF, and may explain the source of cryptogenic stroke

in some patients. Although there are several potential biomarkers indicative of atrial

cardiopathy, P-wave terminal force in lead V1 (>5,000 µV∗ ms), N-terminal pro-brain

natriuretic peptide (>250 pg/ml), and left atrial enlargement are currently promising

biomarkers for the diagnosis of atrial cardiopathy. Because the optimal combination

and thresholds of biomarkers for diagnosing atrial cardiopathy remain uncertain, atrial

cardiopathy represents a spectrum disorder. The concept of atrial cardiopathy appears

to be most valuable as a starting point for therapeutic intervention to prevent stroke.

Validation of the diagnosis of atrial cardiopathy and whether it can be used as a

new therapeutic target for direct oral anticoagulants are currently being covered in the

ARCADIA trial.

Keywords: atrial cardiopathy, atrial dysfunction, atrial fibrillation, cardioembolic stroke subtype, embolic stroke

of undetermined source

INTRODUCTION

Approximately one fourth of all ischemic stroke patients are classified as cryptogenic strokes, most
of which are caused by an embolic mechanism (1). Cryptogenic strokes have usually meant a
non-lacunar infarction without proximal arterial stenosis or cardioembolic sources; however, there
is neither a widely accepted definition nor a required diagnostic assessment. This has inhibited
clinical research into optimal preventive therapy for cryptogenic strokes. In 2014, the Cryptogenic
Stroke/ESUS International Working Group proposed the classification of a new subgroup of
cryptogenic stroke: embolic stroke of undetermined source (ESUS) (1). The definition of ESUS is as
follows: (1) detection of a non-lacunar infarct on brain computed tomography/magnetic resonance
imaging; (2) exclusion of ≥50% atherosclerotic stenosis proximal to the infarct with any imaging
modality (catheter, magnetic resonance, computed tomography angiography, or ultrasonography);
(3) exclusion of a major-risk cardioembolic source with echocardiography and cardiac monitoring
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for ≥24 h; and (4) no other specific causes (e.g., arteritis,
dissection, migraine, and drug misuse) (1). The concept of
ESUS has contributed to facilitating clinical trials testing direct-
acting oral anticoagulants (DOAC) for the secondary prevention
of ESUS.

Although ESUS represents a heterogeneous clinical entity,
the hypothesis that covert paroxysmal AF is the primary
cause of ESUS is widely affirmed and has contributed to
the current practice of performing long-term cardiac rhythm
monitoring after ESUS. However, an implantable cardiacmonitor
detected AF in only 30% of patients during a 3-year period
(2). This implies that AF may not be a necessary condition
for cardioembolism.

Recent advances in pathophysiology have suggested that left
atrial degeneration, including chamber dilation, remodeling,
fibrosis, and damage to endothelial cells and cardiomyocytes,
can induce thrombus generation and cause embolism, even
in patients without AF (3, 4). This condition was defined as
atrial cardiopathy, a term used to describe atrial structural and
functional disorders that can precede AF (5). Atrial cardiopathy
increases the stroke risk in patients with AF and is likely to
also increase the stroke risk in patients without AF. In this

FIGURE 1 | Atrial cardiopathy as a cause of thromboembolic stroke. Atrial fibrillation is likely only a marker (tip of the iceberg) for underlying abnormal atrial substrate

or “atrial cardiopathy”. Underlying atrial cardiopathy can cause stroke, even in patients without atrial fibrillation. Once atrial fibrillation develops, the dysrhythmia causes

structural and electrical remodeling, which further increases the risk of thromboembolism.

article, we review the pathogenesis of atrial cardiopathy, its
biomarkers, its association with stroke, and the potential for
therapeutic intervention.

PATHOGENESIS OF ATRIAL
CARDIOPATHY

The mechanism of thrombosis has long been recognized as
Virchow’s triad, summarized as stasis, hypercoagulability, and
endothelial damage. In the case of AF, thrombus formation is
induced by decreased left atrial appendage (LAA) flow velocity,
activation of the coagulation cascade, and left atrial enlargement
(LAE) and fibrosis. Recent findings suggest that the causal
association between AF and stroke is not simple and still not
fully understood.

Figure 1 shows the relationship between atrial cardiopathy
and thromboembolic stroke. Aging and lifestyle-related diseases
promote atrial damage, including stretching and enlargement
of the left atrium. Over time, this causes increased fibrosis
of the left atrial myocardium under a process modulated by
genetic predisposition. The resulting fibrotic changes promote
left atrial remodeling, including structural and electrical changes
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(6), which forms abnormal atrial substrate (atrial cardiopathy)
that can lead to the occurrence of AF and embolic stroke (3, 7).
AF leads to further atrial remodeling. It is important to note
that atrial cardiopathy can predispose to embolic stroke even in
patients without AF.

BIOMARKERS OF ATRIAL CARDIOPATHY

There are still no established criteria for the diagnosis of atrial
cardiopathy. However, researchers have attempted to identify
atrial cardiopathy biomarkers associated with stroke risk factors
found in ESUS patients. Table 1 shows the potential biomarkers
of atrial cardiopathy associated with the risk of stroke. These
biomarkers are classified as electrophysiological, structural,
hemodynamic, serological, and genetic markers.

ELECTROPHYSIOLOGICAL MARKERS

Symptomatic stroke may be an initial clinical manifestation of
underlying AF. Two randomized trials have found that prolonged
rhythm monitoring of outpatients after ESUS results in a higher
detection rate of AF than with standard monitoring (2, 8).
Although even brief subclinical episodes of AF are associated
with the occurrence of stroke (9), the causal association between
ischemic stroke and AF remains circumstantial (3). Both the
ASSERT and TRENDS studies reported that in only 8–28%
of patients, subclinical AF was detected within 30 days before
stroke or systemic embolism (10, 11). The absence of temporality
implies that AF itself may not be the direct cause of stroke in
patients with short-term AF. Instead, AF may be a risk indicator
for embolic stroke associated with underlying atrial dysfunction.

The P-wave terminal force in lead V1 (PTFV1) (Figure 2)
becomes prolonged with left atrial hypertrophy, fibrosis, and
increased filling pressure, and is thought to reflect structural
and functional impairment of the left atrium (12, 13). In the
Multi-Ethnic Study of Atherosclerosis, which included 6,741
participants aged 45–85 years without a history of cardiovascular
disease, stroke, or AF, PTFV1 was associated with a higher
incidence of ischemic stroke [hazard ratio (HR) per standard
deviation 1.21, 95% confidence interval (CI) 1.02–1.44] than AF
(HR per standard deviation 1.11, 95% CI 1.03–1.21) after a mean
of 8.5 years of observation (14). In the Atherosclerosis Risk in
Communities study of 14,542 AF-free participants observed for
a median of 22 years, ischemic stroke occurred more frequently
in those with abnormal PTFV1 (>4,000 µV∗ ms) than in those
without (6.3 vs. 2.9 per 1,000 person-years, respectively, p <

0.001; Figure 3). Abnormal PTFV1 was associated with ischemic
stroke (HR 1.33, 95% CI 1.11–1.59) and non-lacunar infarction
(HR 1.49, 95% CI 1.07–2.07) but not with lacunar infarction (HR
0.89, 95% CI 0.57–1.40) (15).

Paroxysmal supraventricular tachycardia (PSVT) is a benign
rhythm disorder that has been associated with palpitations but
that does not increase the risk of stroke. However, a follow-up of
169 patients with PSVT revealed that 12% developed AF within 1
year and 19% developed AF within a mean of 31 months (16). In
addition, a large cohort study conducted in California found that

TABLE 1 | Potential biomarkers associated with atrial cardiopathy and stroke risk.

Biomarkers classified into

categories

Specific examples

Electrophysiological

Atrial fibrillation Subclinical atrial fibrillation

P-wave morphology P-wave terminal force in lead V1

Paroxysmal supraventricular

tachycardia

Atrial ectopy Excessive supraventricular ectopic

activity

Structural

Left atrial size Left atrial enlargement, left atrial

volume index

LAA morphology Non-chicken wing type

Myocardial fibrosis Regions of delayed gadolinium

enhancement on cardiac MRI

Hemodynamic

LAA flow velocity Low flow velocity

Serological

NT-proBNP, BNP

Hs-cTnT

Genetic

Polymorphisms rs2200733, rs10033464

LAA, left atrial appendage; MRI, magnetic resonance imaging; NT-proBNP, N-terminal

pro-brain natriuretic peptide; BNP: brain natriuretic peptide; Hs-cTnT, high-sensitivity

cardiac troponin T.

FIGURE 2 | An example of abnormal P-wave terminal force in lead V1. The

P-wave terminal force in lead V1 was calculated as multiplying the amplitude

and duration of the terminal negative part of the P-wave in lead V1.

PSVT was associated with ischemic stroke even in the absence of
AF (adjusted HR 2.10, 95% CI 1.69–2.62) (17).

An ectopic atrial rhythm is also considered a risk factor for
ischemic stroke. In the Copenhagen Holter Study, 678 patients
aged 55–75 years without a history of cardiovascular disease,
stroke, or AF underwent 48 hours of mobile electrocardiography
(ECG) and were followed-up for 15 years (18). Excessive
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FIGURE 3 | Cumulative incidence of ischemic stroke, stratified by baseline PTFV1 (15). Ischemic stroke occurred more frequently in those with abnormal PTFV1

(>4,000 µV* ms) than in those without (log-rank test p < 0.001). PTFV1, P-wave terminal force in lead V1.

supraventricular ectopic activity (ESVEA) was defined as the
presence of either≥30 premature atrial contractions/hour or any
runs that lasted for≥1 h. Ninety-nine patients (15%) had ESVEA
during follow-up. The incidence of stroke was higher in patients
with ESVEA than those without in >65 years of age (38.5 vs. 13.6
per 1,000 person-years, respectively, p = 0.0007), but not in ≤65
years of age (8.9 vs. 5.0 per 1,000 person-years, respectively, p =
0.2086) (Figure 4). After adjusting for risk factors and censoring
for the development of AF, the risk of stroke in patients with
ESVEA was nearly twice as great as in those without ESVEA (HR
1.96, 95% CI 1.10–3.49). Of the patients with ESVEA who had
cerebral infarction, 14.3% developed AF before their stroke. The
incidence of cerebral infarction in patients with ESVEA and a
CHA2DS2-VASc score of ≥2 points was 2.4%/year, indicating a
risk similar to that of AF.

STRUCTURAL MARKERS

Structural abnormality of the left atrium indicates the need
to search for findings of atrial cardiopathy. Population-based
studies have shown that LAE is associated with developing AF
(19) and incident ischemic stroke after multivariable adjustment
including AF. The Framingham study reported that LAE is
a significant predictor of stroke in men (adjusted HR per
10mm increase 2.4, 95% CI 1.6–3.7) and women (adjusted

HR per 10mm increase 1.4, 95% CI 0.9–2.1) (20). In the
Northern Manhattan Stroke Study of 655 patients with previous
ischemic stroke, moderate to severe LAE (≥47mm in men and
≥43mm in women) was significantly associated with recurrent
cardioembolic/cryptogenic stroke compared with normal LAE
(adjusted HR 2.83, 95% 1.03–7.81) (21). However, one limitation
of these studies is that they used left atrial diameter, which does
not fully represent the true three-dimensional size of the left
atrium. It has recently been shown that the left atrial volume
index to the subject’s body surface area is a superior indicator
of left atrial size in terms of predicting cardiovascular outcomes
(22). Furthermore, a recent study revealed that the left atrial
volume index to the subject’s body surface area is independently
associated with the development of AF in ESUS patients (adjusted
odds ratio per mL/m2 1.09, 95% CI 1.02–1.15, p= 0.007) (23).

The fundamental cause of AF is thought to be atrial fibrosis
(24, 25). On cardiac magnetic resonance imaging, fibrotic areas
are visualized as areas of delayed gadolinium enhancement (26).
The presence of left atrial fibrosis on cardiac magnetic resonance
imaging appears to correlate with stroke risk. A cross-sectional
analysis of 387 AF patients revealed that patients with previous
strokes had significantly higher levels of fibrosis than those who
had not experienced a stroke (27). In a multivariate analysis, the
presence of fibrosis was a better predictor of stroke risk than the
CHADS2 score. A recent study revealed that the prevalence of left

Frontiers in Neurology | www.frontiersin.org 4 February 2022 | Volume 13 | Article 83939819

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kato and Takahashi Atrial Cardiopathy and Cryptogenic Stroke

FIGURE 4 | Kaplan–Meier survival estimate of stroke-free survival stratified by age group and ESVEA (18). The incidence of stroke associated with ESVEA was higher

in patients >65 years of age (p = 0.0007), but not in patients ≤65 years of age (p = 0.2086). ESVEA, excessive supraventricular ectopic activity.

atrial fibrosis in ESUS patients was higher than that in patients
with stroke due to other causes (p = 0.03) and similar to that in
stroke patients with AF (p= 0.22) (28).

The risk of stroke may also be associated with the
morphological features of the LAA (29). In a previous study of AF
patients, a non-chickenwing LAAmorphology wasmore likely to
be associated with ischemic stroke (30). In a retrospective study
of 172 stroke patients, the prevalence of non-chicken wing LAA
morphology on chest computed tomography tended to be higher
in patients with cardioembolic stroke (58.7%) and ESUS (58.8%)
than in those with noncardioembolic stroke (46.3%); however,
the difference did not achieve statistical significance (31).

HEMODYNAMIC MARKERS

The LAA appears to play an important role in intracardiac
thrombus generation in AF patients. More than 90% of
intracardiac thrombi in AF patients are identified in the LAA
(32), and a decreased LAA flow velocity is thought to be

associated with the generation of stasis (33). Among 721 patients
who underwent transesophageal echocardiography in a post hoc
analysis of the Stroke Prevention in Atrial Fibrillation-III trial,
reduced LAA flow velocity (<20 cm/s) was associated with
thrombus formation and subsequent cardioembolic stroke (33).
Similarly, a cross-sectional study of 909 stroke patients with or
without AF found that decreased LAA flow velocity (<60 cm/s)
was associated with clinically elevated stroke severity (34), and
an observational study of 786 patients with cryptogenic stroke
found that decreased LAA flow velocity on transesophageal
echocardiography was associated with multiple infarcts (35).
These results indicate that decreased flow velocity in the LAA is
an additional risk factor for cardioembolic stroke, regardless of
whether AF exists.

SEROLOGICAL MARKERS

Serum biomarkers could be informative to detect a high risk
of paroxysmal AF in patients with stroke and to preselect
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patients who require long-term cardiac monitoring after stroke.
For example, B-type natriuretic peptide (BNP) and N-terminal
pro-brain natriuretic peptide (NT-proBNP) are released by
the cardiac myocytes in response to stretch and are therefore
increased in patients with heart failure, AF, and ventricular
strain. Thus, BNP and NT-proBNP levels have been proposed
as indicators of cardioembolic origin in stroke of unknown
cause (36).

In a case-cohort analysis of the Reasons for Geographic and
Racial Differences in Stroke cohort (n = 1,502, mean follow-
up 5.4 years), patients in the highest quartile of serum NT-
proBNP concentration had a 3-fold higher stroke risk than those
in the lowest quartile (HR 2.9, 95% CI 1.9–4.5); the association
was strongest for cardioembolic subtypes (HR 9.1, 95% CI 2.9–
29.2), suggesting that the stroke risk was due to embolism (37).
A subanalysis of the Find-AFRANDOMISED trial of 398 stroke
patients without AF showed that the median BNP level was
higher in patients with paroxysmal AF detected by frequent and
longer Holter ECGmonitoring than in patients without AF (57.8
vs. 28.3 pg/mL, respectively, p = 0.0003) (38). A BNP cutoff
value of ≥100 pg/mL was useful to preselect stroke patients who
required frequent and longer Holter ECG monitoring.

Cardiac troponin (cTnT) is a biomarker of myocardial
damage often used to detect myocardial ischemia. Highly
sensitive assays can determine cTnT concentrations of less
than one-tenth that detected in conventional assays used
for the identification of acute myocardial ischemia. In the
ARIC study of 10,902 stroke-free patients observed for a
mean of 11.3 years, a highly sensitive assay concentration
of cTnT in the highest quintile was significantly associated
with cardioembolic stroke (HR 2.63, 95% CI 1.28–5.37, p =

0.003) compared with the lowest quintile, but not with lacunar
infarction (39).

GENETIC MARKERS

Recently, a genome-wide association study found a haplotype
block on chromosome 4q25 associated with AF (40). In
addition, two single nucleotide polymorphisms (rs2200733 and
rs10033464) have been reported to be associated with the
development of AF (41) and ischemic stroke, especially the
cardioembolic subtype, even in patients in whom active AF
has not been detected (42). While paroxysmal AF may be
underdiagnosed in these patients, their genetic predisposition
may involve potential left atrial abnormalities that lead
independently to both AF and stroke.

ATRIAL CARDIOPATHY AND
CRYPTOGENIC STROKE

Although specific diagnostic criteria for atrial cardiopathy and
the thresholds indicative of increased stroke risk are still being
developed, it appears that atrial cardiopathy can be provisionally
diagnosed by the presence of one or a few of the biomarkers
of atrial dysfunction discussed above. In the Cardiovascular
Health Study, among 3,723 participants without stroke and AF at

baseline, 585 participants developed an incident ischemic stroke
during a median 12.9 years of follow-up (43). PTFV1 (HR per
1,000 µV∗ ms 1.04, 95% CI 1.001–1.08), NT-proBNP (HR per
doubling of NT-proBNP 1.09, 95% CI 1.03–1.16), and incident
AF (HR 2.04, 95% CI 1.67–2.48) were each independently
associated with incident ischemic stroke, but not the left atrial
diameter (>4.3 cm in women, >4.7 cm in men).

In a cross-sectional study of 846 stroke patients, the prevalence
of atrial cardiopathy (defined as PTFV1 >5,000 µV∗ ms or
severe LAE) was higher in ESUS patients than in patients with
noncardioembolic stroke (26.6 vs. 12.1%, respectively, in large
artery atherosclerosis vs. 16.9% in small artery disease; p =

0.001) (44).
In a subanalysis of 3,983 eligible patients from the New

Approach Rivaroxaban Inhibition of Factor Xa in a Global
Trial vs. ASA to Prevent Embolism in Embolic Stroke
of Undetermined Source (NAVIGATE ESUS), 235 (5.9%)
patients had LAE, 939 (23.6%) had ipsilateral carotid plaque
to ischemic stroke, and 94 (2.4%) had both (45). Although
the common risk factors were male sex, Caucasian ethnicity,
hypertension, tobacco use, and coronary artery disease,
increasing atrial diameter was not associated with carotid
plaque after adjustment (odds ratio per cm, 1.1, 95% CI 1.0–
1.2, p = 0.08). There was also no association between line of
atrial cardiopathy (premature atrial contractions on Holter
ECG, new onset of AF) and carotid plaque formation. These
results suggest that atrial cardiopathy and carotid plaque are
likely separate and nonoverlapping risk factors in patients
with ESUS.

THERAPEUTIC INTERVENTIONS FOR
ATRIAL CARDIOPATHY

Current knowledge suggests that atrial cardiopathy is likely
to be the stroke etiologic subtype most similar to AF
and may benefit from anticoagulation, particularly DOAC
therapy. In fact, secondary analyses of the NAVIGATE
ESUS trial found that rivaroxaban was superior to
aspirin in the subset of patients with LAE (>4.6 cm)
(HR 0.26, 95% CI 0.07–0.94, p = 0.02) (46), but not
in the subset of patients with ipsilateral nonstenosing
plaque (47).

The AtRial Cardiopathy and Antithrombotic Drugs In
prevention After cryptogenic stroke (ARCADIA) trial is
currently underway (48), with the primary objective to validate
the hypothesis that a DOAC (apixaban) is more effective than
aspirin for stroke prevention in cryptogenic stroke patients with
atrial cardiopathy. In the ARCADIA trial, atrial cardiopathy
was defined as the presence of one or more of the following:
PTFV1 >5,000 µV∗ ms, NT-proBNP >250 pg/ml, and left atrial
diameter index ≥ 3 cm/m2.

CONCLUSION

Atrial cardiopathy should be considered one of the mechanisms
of ESUS. Although there are several potential biomarkers
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indicative of atrial cardiopathy, PTFV1 (>5,000 µV∗ ms),
NT-proBNP (>250 pg/ml), and left atrial enlargement are
currently promising biomarkers for the diagnosis of atrial
cardiopathy. Because the best combination and thresholds
of biomarkers for diagnosing atrial cardiopathy remain
uncertain, atrial cardiopathy represents a spectrum disorder.
The concept of atrial cardiopathy is useful as a starting
point for therapeutic intervention to prevent stroke. The
ARCADIA trial is currently being performed to validate

the diagnosis of atrial cardiopathy and to determine
whether atrial cardiopathy can be a new therapeutic target
for DOAC.
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Stroke is a worldwide public health problem that has caused a substantial economic

burden to families and society. Despite recent major advances, there is still a need

for more timely, effective diagnosis and treatment methods for acute ischemic stroke.

Non-coding RNAs (ncRNAs), which widely exist in the human body, do not encode

proteins. Instead, these mediate various cellular processes as functional regulatory

molecules from the RNA level. Each ncRNA node in organisms is not isolated but

constitutes a complex regulatory network, regulating multiple molecular targets and

triggering specific physiological or pathological reactions, leading to different outcomes.

Abundant studies have proclaimed the impact of ncRNAs in ischemic stroke, which

may enlighten new inspirations for diagnosing and treating ischemic stroke. This paper

outlines the current understanding of the ncRNA regulatory network and reviews

the recent evidence for the contribution of ncRNAs in the experimental ischemic

stroke model.

Keywords: non-coding RNA, ischemic stroke, regulating network, lncRNA, circRNA

INTRODUCTION

Stroke is a severe life-threatening acute cerebrovascular disease, which is mainly divided into
ischemic stroke (IS) and hemorrhagic stroke. Furthermore, a proportion of hemorrhagic strokes
can be secondary to IS. This is called the hemorrhagic transformation of brain infarction and is
a complication of IS (1). Ischemic stroke, which accounts for the majority of strokes, is caused
by a sharp decrease in cerebral blood flow, which will further cause hypoxia and tissue damage.
The subsequent mechanism involves many pathological processes, such as energy failure, acidosis,
calcium overload, excitotoxicity, mitochondrial damage, oxidative stress, inflammatory reaction,
etc. (2). IS can ultimately cause cell necrosis or apoptosis, leading to a neurological deficit of
the corresponding cerebral area and resulting in adverse outcomes. In terms of diagnosis, due
to the rapid onset and few precursor symptoms, the diagnosis of IS is often based on the
clinical and imaging manifestations after the disease onset. Hence, there is still a lack of sensitive
early biomarkers. The key principle of IS treatment is “time is brain," which means that early
recanalization of blood supply to the ischemic area is very important to improve the prognosis. At
present, the standard treatment of IS is intravenous injection of recombinant tissue plasminogen
activator (rtPA) andmechanical treatment to remove the clot to achieve vascular recanalization (3).
However, the indications, complications, and possible ischemia-reperfusion injury of thrombolytic
therapy limit its universal application in clinics. Therefore, it is essential to explore the molecular
mechanisms underlying IS’s pathogenesis to improve the diagnosis and treatment of the disease.

Non-coding RNA (ncRNA) widely exists in organisms. It does not encode proteins but serves
as functional RNA which mainly regulates post-transcriptional gene expression. In the narrow
sense, non-coding RNAs mainly include microRNA (miRNA), circular RNA (circRNA), and long

24
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non-coding RNA (lncRNA). miRNA is a small molecule with
a length of about 21 nucleotides. It can cause silencing or
degradation of target messenger RNA (mRNA) by binding

to the 3
′

-untranslated region (3
′

-UTR) of mRNA, regulating
gene expression at the post-transcriptional level. miRNAs are
expressed in all human tissues and are tissue- and time-
specific. The relationship between miRNA and mRNA is not
one-to-one. miRNAs can be divided into hundreds of families.
Different members of the samemiRNA family can target multiple
genes and jointly regulate specific physiological processes. The
same mRNA molecule can be regulated by multiple upstream
miRNAs as well, and it can subsequently participate in multiple
downstream pathways. Multiple nodes are interconnected to
form a very complex and precise regulation network. Studies
have shown that miRNA is involved in regulating almost all cell
biological processes, and its expression changes are related to
a variety of pathological processes (4). It has become a critical
factor in the post-transcriptional regulation of gene expression.
lncRNA is a non-coding RNA with a length >200 nucleotides.
It possesses a wide range of functions and complex mechanisms
to regulate the body’s growth and development. For example,
post-transcriptional regulation is one of the functions that can
be achieved in various ways. lncRNA can directly interact with
proteins, bind specific transcription factors as molecular bait
to prevent it from binding with DNA, and regulate miRNA
expression as a miRNA sponge or enhancer (5). circRNA is a
circular single-stranded RNA molecule, which can be covalently
closed by reverse splicing of mRNA precursor transcripts in

eukaryotic cells. Unlike linear molecules, their 5
′

and 3
′

ends are
directly connected to form a circular closed structure without free
ends. At present, it has been found that circRNA can regulate
transcription, splicing, and chromatin interactions. Moreover, it
could directly bind to proteins and enter the cytoplasm to serve as
endogenous competitive RNA (ceRNA) to prevent the binding of
miRNAs to target mRNAs (6). The expression level of circRNAs
in cells is generally low, and its expression is also tissue-specific.
Significant enrichment of circRNAs can be observed in the brain,
and they can participate in the disease progression (7). However,
hitherto, the research on its function is not sufficient.

Non-coding RNAs (ncRNAs) are abundant in the brain. The
level of ncRNAs in the brain can change to varying degrees
at the time of the onset of neurovascular disease, forming a
characteristic ncRNA expression profile. The change of ncRNA
expression level after IS is the response of the body toward injury
factors. Its follow-up effect has advantages and disadvantages
for the progress and prognosis of the disease. Current studies
have identified the role of ncRNAs’ imbalance in the onset and
development of IS and proposed the potential of ncRNAs to be
novel biomarkers applied in clinical diagnosis and treatment.
However, due to the complexity and multi-targeting of the
ncRNA regulationmechanism, the relationship between different
ncRNA nodes and between ncRNAs and downstream molecules
remain unexplored. So, there are significant limitations in
the clinical transformation of basic research. In this review,
we innovatively classified the miRNAs involved in the stroke
process into protective and damaging miRNAs according to

their post-disease expression levels and relationships with
prognosis to analyze their functions and effects in the disease
progression or deterioration. Meanwhile, we preliminarily
explored the potential molecular mechanism and regulatory
network of ncRNAs in IS, forming various lncRNA/circRNA-
miRNA-downstream molecular axes and constructing a primary
regulatory network of ncRNAs, discussed ncRNA’s significance as
a biomarker and therapeutic target, and prospected the research
prospect of ncRNA.

ALTERATIONS IN NCRNA EXPRESSION
FOLLOWING ISCHEMIC STROKE

At present, many ncRNAs with abnormal expression in the
occurrence and development of IS have been found, and many
studies have explored the regulatory relationship of ncRNAs
under the guidance of miRNAs. So far, miRNA has been proved
to be involved in neuroprotection and repair, brain injury and cell
death, changes in neuronal excitability, glial scar formation, and
so forth (8). Therefore, we will describe the ncRNA expression
profile of IS based on the expression change of miRNAs.

The expression level of miRNAs changes rapidly after
ischemia, presenting diverse expression patterns in different
periods. Jeyaseelan et al. analyzed the expression level of miRNAs
in brain tissue and blood in 24–48 h after middle cerebral artery
occlusion reperfusion and confirmed the abnormal expression
of miRNAs of IS and firstly reported the role and molecular
mechanism of miRNAs in the middle cerebral artery occlusion-
related diseases (9). This part will classify the miRNAs related
to the IS into protective and damaging types based on the
expression alteration of miRNAs detected after the onset of IS,
the effects of alteration, and the impact of the use of antagonists
or agonists on the prognosis. The presence of protective miRNAs
means that the alteration of miRNAs expression level after IS
is advantageous to the prognosis, and reversing its expression
has an opposite effect (Table 1). On the other hand, damaging
miRNAs refer to miRNAs which expression level alteration after
IS is unfavorable to prognosis, and reversing its expression
level can reduce pathological damage (Table 2). In the existing
research data, the expression of somemiRNAs changes over time,
making it difficult to define the benefits or harm of their function.
Hence, they are not within the scope of discussion.

Neuronal apoptosis and necrosis are the most severe and
common pathological changes of IS. This process is mediated
by a variety of mechanisms, including but not limited to
excitotoxicity, oxidative stress, inflammation, ion imbalance
and secondary edema, transcription factor failure, endoplasmic
reticulum stress, mitochondrial dysfunction, and abnormal
methylation (56). The neurons’ regeneration potentiality of the
central nervous system is low (57). Once dead, the neuron
will be phagocytosed by microglia and replaced by a glial scar,
leaving neurological defects. Yin et al. found that miRNA-497
increased significantly within 24 h after middle cerebral artery
embolization and verified it with the glucose oxygen deprivation
model (OGD) (16). The results showed that the high expression
of miR-497 would aggravate neuronal damage. miR-497 directly
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TABLE 1 | Protective microRNA (miRNA) and its upstream and downstream molecules and main functions.

miRNAs Up/

down

Target

molecule/pathway

Affected

pathological

processes

Influence on

pathological

processes

Upstream

molecules

Up/down

miR-26a (10) Up PI3K/AKT

MAPK/ERK

VEGF

cell proliferation

Angiogenesis

Alleviated - -

miR-128 (11) Up MAPK - Alleviated - -

miR-146a (12) Up IRAK1 oligodendrogenesis Alleviated - -

miR-124 (13) Up PI3K/AKT/mTOR

caspase-3

Bcl-2

Bcl-xl

Apoptosis

Autophagy

Alleviated - -

miR-199a (14) Down SIRT1

MAPK

cell proliferation Alleviated lncRNA-SNHG12 Up

miR-130a-5p (15) Down VEGF-A Angiogenesis Alleviated lncRNA-MEG8 Up

binds to the predicted 3
′

-UTR target sites of bcl-2/-w genes
and downregulates its expression level. Knockout of miR-497
can increase the level of Bcl-2/-w protein in the ischemic
area, reducing the area of cerebral infarction and improving
neurological function. Aquaporin 4 (AQP4), a protein on the
cell membrane, can control the water molecules moving in and
out of cells and help water molecules pass through the blood-
brain barrier (BBB). The high abnormal expression of AQP4
can aggravate the cell damage caused by IS, leading to a poor
prognosis. miR-145 has been proved to regulate AQP4 (24, 25).
After IS, the expression level of miR-145 decreased, but AQP4
increased, showing a higher level of apoptosis. Accordingly, the
use of miR-145 siRNA (small interfering RNA, which can lead to
the silencing of target miRNAs complementary to it) reduced the
damage and produced a protective effect.

Cysteine proteases (caspases) are a highly conserved family
of cysteine proteases. There are many family members. Among
them, hitherto 11 family members have been found. The
imbalance of caspase activation plays an essential role in
inflammation and tumorigenesis. At present, many studies have
shown that caspase is abnormally expressed in IS and regulated
by multiple miRNAs (58). For example, miR-let-tc-3p, miR-195,
miR-24, miR-233, miR-503, etc., have been proved to be related to
this process (17, 26–28, 59). miR-130a was upregulated in brain
tissue of MCAO rats (60) and X-Linked Inhibitor Of Apoptosis
(XIAP) was identified as its target molecule. XIAP is an inhibitor
of caspase 3/7/9 and belongs to the inhibitor of the apoptosis
protein family. It can be observed that the level of XIAP was
upregulated when the expression of miR-130a was inhibited.
Correspondingly, apoptosis reduced and angiogenesis increased
to improve the neural function of rats. Other studies have shown
that the high expression of miR-130a in serum is related to
the adverse consequences of acute intracerebral hemorrhage and
perihematomal edema, which can increase BBB permeability and
aggravate inflammatory reaction during cerebral ischemia (61).
Interestingly, the expression of miR-130a in neurons of MCAO
rats is low, while upregulating miR-130a can inhibit phosphatase
and tensin homolog (PTEN) expression and enhance PI3K/AKT

pathway activity from preventing ischemia-reperfusion injury.
The phenomenon suggests that the expression of miRNA is
different inside and outside the cell. Some miRNAs can be
induced to a high expression level and then released out of the
cells in certain forms, resulting in the rise of miRNA expression
in the tissue (2). The effect of miR-191 is similar to miR-130a
(18). It was overexpressed in acute ischemic stroke brain tissue
and preferentially expressed in endothelial cells. Its effects lie
in anti-angiogenesis and inhibit endothelial cell proliferation
and migration. miR-191 can inhibit the expression of Vascular
Endothelial Zinc Finger 1 (VEZF1), thus inhibiting angiogenesis
and promoting ischemia-reperfusion injury.

The inflammatory response is an adaptive response secondary
to infection and tissue injury. Typically, the BBB limits the
circulating immune cells and molecules to enter the brain.
When the brain injury occurs, the BBB is damaged and
demonstrates an increased permeability. Peripheral immune
cells can pass through the BBB together with the innate
immune cells and inflammatory mediators of brain tissue,
which triggers the post-injury inflammatory response. Brain
inflammation after IS is characterized by microglial activation
and circulating inflammatory cell infiltration (62). Hypoxia
due to ischemia is the main pathogenic factor of IS. Hypoxia is
accompanied by the rapid increase of inflammatory mediators.
The inflammatory response can cause irreversible damage
to neurons in the ischemic area and lead to neurological
dysfunction. The expression of miR-92b decreases in brain
microvascular endothelial cells (BMECs) after IS, which is
suppressed by upstreammolecular transcription factor Forkhead
Box O1 (FOXO1) that is induced to be highly expressed
by IS. The promotion of the low expression of miR-92b is
associated with lower BBB permeability, which was originally
induced to elevate by the OGD. Intracerebroventricular
injection of miR-92b adenovirus vector can improve the
survival rate of BMECs and inhibit the expression of
downstream nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase 4 (NOX4) to improve the stability of the
BBB (29).
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TABLE 2 | Damaging miRNA and its upstream and downstream molecules and main functions.

miRNAs Up/

down

Target

molecule/pathway

Affected

pathological processes

Influence on

pathological

processes

Upstream

molecules

Up/

down

miR-497 (16) Up Bcl-2/Bcl-w Apoptosis Aggravated - -

miR-503 (17) Up PI3K/Akt/eNOS

Bcl-2, caspsase-3

Apoptosis Oxidative stress Aggravated - -

miR-191 (18) Up VEZF1 Angiogenesis Aggravated - -

miR-210 (19) Up TNF-α/IL-1β/IL-6 Inflammation Aggravated - -

miR-449c-5p (20) Up STAT6 Neuroinflammation Aggravated lncRNA-SHNG4 Down

miR-186-5p (21) Up CTRP3 inflammation

of microglia/macrophage

Oxidative stress

Aggravated lncRNA-OIP5-AS1 Down

miR-125b-5p (22) Up GDF11 Apoptosis Aggravated circRNA-UCK2 Down

miR-582-3p (23) Up NOS3 Neuroinflammation

Apoptosis oxidative stress

Aggravated lncRNA-ZFAS1 Down

miR-145 (24, 25) Down AQP4 apoptosis Aggravated lncRNA-TUG1

lncRNA-MALAT1

Up

miR-195 (26) Down Bcl-2/JNK/KLF5 Neuroinflammation

Apoptosis

Aggravated - -

miR-let-7c-5p (27) Down Caspase-3 Apoptosis Aggravated - -

miR-24 (28) Down Caspase-3 Apoptosis Aggravated - -

miR-92b (29) Down NOX4 BBB damage Aggravated FOXO1 Up

miR-375 (30) Down PDE4D Apoptosis

neuroinflammation

Aggravated lncRNA-MALAT1 Up

miR-30a (31) Down Beclin1 Autophagy Aggravated lncRNA-MALAT1 Up

miR-181b (32) Down 12/15-LOX/HSPA5/UCHL1 Apoptosis Aggravated lncRNA-MEG3 Up

miR-424-5p (33) Down Sema3A apoptosis Aggravated lncRNA-MEG3 Up

miR-147 (34) Down SOX2/NF-kB/

Wnt/β-catenin

Apoptosis Aggravated lncRNA-MEG3 Up

miR-21 (35) Down PTEN/PI3K/AKT/PDCD4 Apoptosis Aggravated lncRNA-Gas5

lncRNA-MEG3

Up

miR-181c-5p (36–38) Down HMGB1/BIM/BMF Apoptosis Aggravated lncRNA-SNHG6

lncRNA-MALAT1

lncRNA-SNHG14

Up

miR-136-5p (39) Down ROCK1 Neuroinflammation Aggravated lncRNA-SNHG14 Up

miR-30b-5p (40) Down Atg5/Beciln1 Autophagy Aggravated lncRNA-SNHG14 Up

miR-199b (41) Down MAPK/ERK/Egr1/AQP4 macrophages apoptosis cell

proliferation

Aggravated lncRNA-SNHG14 Up

miR-183-5p Down FOXO1/PI3K/Akt apoptosis Aggravated lncRNA-SNHG15 Up

miR-19a-3p Down PTEN/PI3K/AKT Apoptosis oxidative stress Aggravated lncRNA-H19 Up

miR-153-3p (42) Down FOXO3 - Aggravated lncRNA-

KCNQ1OT1

Up

miR-142 (43) Down Beclin1/TIPARP Autophagy Aggravated circRNA-HECTD1 Up

miR-335-3p (44) Down TIPARP apoptosis Aggravated circRNA-TLK1 Up

miR-133b (45) Down TRAF1

NF-κB

Apoptosis Aggravated circRNA-HECTD1 Up

miR-204-5p (46) Down HMGB1 Angiogenesis Inflammation Aggravated lncRNA-MIAT Up

miR-130a-3p (47) Down DAPK1 Apoptosis Aggravated lncRNA-H19 Up

miR-24-3p (48) Down Nrp1/NF-κB Apoptosis Aggravated lncRNA-THRIL Up

miR-214 (49) Down PI3K/AKT

VEGF

Apoptosis angiogenesis Aggravated lncRNA-NEAT1 Up

miR-26a-5p (50) Down DAPK1 apoptosis Aggravated lncRNA-

AK038897

Up

miR-335 (51) Down ROCK1/AKT/GSK-3β apoptosis Aggravated lncRNA-Gas5 Up

miR-455-5p (52) Down PTEN Apoptosis oxidative stress Aggravated lncRNA-Gas5 Up

miR-19a (53) Down Id2 apoptosis Aggravated lncRNA-H19 Up

(Continued)
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TABLE 2 | Continued

miRNAs Up/

down

Target

molecule/pathway

Affected

pathological processes

Influence on

pathological

processes

Upstream

molecules

Up/

down

miR-200a-3p (54) Down NLPR3 Neuroinflammation Aggravated lncRNA-TUG1 Up

miR-874-3p (55) Down IL1B Apoptosis

neuroinflammation

Aggravated lncRNA-MIAT Up

Some miRNA expressions can be induced by hypoxia. These
miRNAs, such as miR-199a, miR-107, miR-210, and so on,
are called hypoxia-induced miRNAs (hypoximiRs) (63, 64). As
master hypoxamiR, miR-210 plays an essential role in fine-tuning
the adaptive response of cells toward hypoxia and can be strongly
induced by hypoxia (65). Many studies have proved that miR-210
is induced to be highly expressed in MCAO, and the application
of miR-210-locking nucleotide (LNA, a kind of miRNA inhibitor)
can reduce TNF-α level immediately after IS and completely
block IL-1β, and the expression of pro-inflammatory factor
IL-6 is blocked 12 h after IS, but the expression of anti-
inflammatory factor such as TGF-β and IL-10 is insusceptible. At
the same time, it can also inhibit the expression of chemokines
CCL2 and CCL3. These two chemokines are excreted by
activated microglia and injured endothelial cells after IS to
recruit inflammatory cells to pass through the BBB and trigger
ischemic inflammation, suggesting that miR-210-LNA plays a
neuroprotective role by antagonizing pro-inflammatory factors
and inhibiting inflammatory infiltration (19). However, some
studies have found that exosomes containingmiR-210 can induce
angiogenesis after injection into the cerebral ventricle of MCAO
mice (66). It can directly target cytokine Suppressor Of Cytokine
Signaling 1 (SOCS1) and increase the expression of STAT3 and
VEGF-C to promote angiogenesis around ischemic foci and the
aggregation of neural precursor cells (NPCs), which is good for
IS prognosis (67).

NCRNA REGULATORY NETWORK IN
ISCHEMIC STROKE

It has been previously described that both lncRNAs and circRNAs
act as miRNA sponges. Therefore, a large number of lncRNAs
and circRNAs together with their regulated miRNAs and
miRNAs targeting molecules constitute the lncRNA/circRNA-
miRNA-mRNA axis, and interconnection of each axis ultimately
forms a complicated ncRNA regulatory network of IS (Figure 1).

Long Non-Coding RNAs and MicroRNAs
A large number of studies have demonstrated that the pathology
of the central nervous system is concerned with the abnormal
expression of lncRNA. A variety of lncRNAs have been found
to be involved in the onset and development of IS for several
years. In addition, lncRNA can also be utilized as a potential new
biomarker for disease diagnosis, treatment, and prognosis.

In recent years, lncRNA-MALAT1 has been observed to
express abnormally in IS and participate in some pathological

processes. The expression of MALAT1, the function of which
refers to inflammatory and apoptosis pathways, was significantly
upregulated in patients’ microglia and neurons. miR-375 is
one of the target molecules of MALAT1. The decrease causes
high expression of Phosphodiesterase 4D (PDE4D) through the
miR-375/PDE4D axis, promoting inflammation and apoptosis
(30). MALAT1 can also target miR-181c-5p and upregulate
the expression of High Mobility Group Box 1 (HMGB1),
a pro-inflammatory factor (36), aggravating the degree of
inflammation. Jin et al. found that the expression levels of
MALAT1 and AQP4 were consistent (68). Relevant studies have
shown that MALAT1 can increase the level of AQP4 and cause
a larger infarct area by inhibiting miR-145 (24). Autophagy
is a necessary evolutionarily conserved process of substance
turnover within eukaryotic cells, also reflected in neural injury.
In IS, autophagy can be activated under excitotoxic conditions,
and autophagy activated by neurons under cerebral ischemia is
adverse (69). MALAT1 can upregulate the expression of Beclin1
by inhibiting miR-30a (31). High levels of Beclin-1 will increase
autophagy and deteriorate neuronal damage.

To sum up, the high expression of lncRNA-MALAT1 is
related to more severe inflammation and autophagy, and it
also spawns larger infarct size, which is unfavorable to the
prognosis of IS. However, some studies have found that high
expression of MALAT1 can improve the prognosis in IS. Zhang
et al. found that the decrease of MALAT1 expression would
increase ischemia-induced endothelial cell loss, apoptosis,
and inflammation (70). Silencing MALAT1 provoked the
expression of pro-apoptotic factor Bcl-2 interacting mediator
of cell death (BIM), pro-inflammatory factor Monocyte
Chemoattractant Protein-1 (MCP-1), IL-6, and E-selectin,
significantly increasing caspase-3 activity and inducing
BMECs’ death.

As with MALAT1, the expression level of lncRNA-MEG3
also increased after IS. It can directly target miR-181b (32).
The inhibitory effect of miR-181b on 12/15-lipoxygenase (LOX)
was relieved, which exacerbated hypoxia-induced neuronal
apoptosis. MEG3 can also target miR-424-5p, resulting in
increased expression of downstream semaphorin 3A (Sema3A)
(33), thereby activating the MAPK signal pathway associated
with Sema3A and hampering the axon growth. Similarly, other
studies have proved that Sema3A inhibitors can activate the
Akt pathway and phosphorylate Glycogen synthase kinase-3β
(GSK-3β). The phosphorylation of GSK-3β suppresses astrocyte
activation and promotes axon regeneration after ischemia (71).
GSK-3 is a highly conserved serine-threonine kinase that was
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FIGURE 1 | Interconnection and regulation of the different molecular nodes involved in the progression of ischemic stroke (IS).

initially identified as phosphorylation and inactivator of glycogen
synthase. It has two isoforms, α and β. GSK-3β is confirmed
to participate in energy metabolism, inflammation, endoplasmic
reticulum stress, mitochondrial dysfunction, apoptosis, etc.,
making it possible to become a new therapeutic target of
IS (72). At the same time, Sema3A can also competitively
bind Neuropilin 1 (NRP-1) and antagonize VEGF to prevent
angiogenesis. In addition, MEG3 could target miR-21, increasing
the expression of Programmed Cell Death 4 (PDCD4), a pro-
apoptotic protein, and hindering the neuron-protective effect
of miR-21. Inhibiting MEG3’s expression level can boost nerve
growth and reduce nerve injury led by ischemia-reperfusion
(73). Furthermore, MEG3 was found to act on the Notch
pathway and Wnt/β-catenin pathway, causing inhibition of
angiogenesis and simultaneously increasing neuronal apoptosis
(74). This finding was supplemented by Han et al. who
argued that miR-147 and downstream molecule SRY-Box
Transcription Factor 2 (SOX2) were involved in the effect
of MEG3 on the regulation of Wnt/β-Catenin pathway and
NF- κB pathway (34), and that the high level of SOX2

will activate the above pathways and cause more severe
hypoxia injury.

Studies have confirmed that lncRNA-GAS5 negatively
regulates multiple miRNAs. High expression of GAS5 in the
brain after IS can block the cell cycle and increase apoptosis
(75). Firstly, the GAS5 expression level was observed to be
consistent with PTEN expression. Relevant studies pointed
out that the effect could be mediated by miR-21 and miR-455-
5p (35, 52). High levels of PTEN act as negative regulators
to dephosphorylate AKT and reduce activation of which,
inhibiting PI3K/AKT pathway, further affects neuronal survival,
leading to cell apoptosis, oxidative damage, and mitochondrial
damage, accelerating the progression of ischemic brain injury.
In addition, Zhou et al. predicted and verified the accurate
binding site between GAS5 and miR-221 (76). The rise of GAS5
level leads to the upregulation of p53 upregulated modulator
of apoptosis (PUMA), further resulting in dephosphorylation
and inactivation of histone H2AX through the JNK pathway
and causing more severe cell apoptosis. On the contrary, the
expression of miR-221 increased after the knockout of GAS5.
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Consequently, the expression of PUMA decreased, and the
apoptosis decreased correspondingly.

Small nucleolar RNA host genes (SNHGs) are a group of
lncRNAs that have been proved to be oncogenes of many
cancers. Recent studies have found that abnormal expression
of SNHG1/4/6/12/14/15 exists in the process of IS. SNHG1
expressed significantly high in the MCAO mouse model and
OGD-cultured microvascular endothelial cells, which function
as a protective role. Knockdown of SNHG1 was correlated
with higher caspase-3 activity and more severe apoptosis
(77). Moreover, SNHG1 also acts as a ceRNA for miR-18a,
resulting in elevated downstream HIF-1α expression and pro-
proliferation of vascular endothelial cells via the HIF-1α/VEGF
axis. It was also shown that SNHG4 has a regulatory effect
on the severity of microglia inflammation (20) by comparing
the content of lncRNA in serum and cerebrospinal fluid
samples of MCAO model mice, patients with acute cerebral
infarction, and ordinary people. Zhang et al. found that the
expression of SNHG4 in microglia of patients and MCAO
mice was significantly lower than the normal level. When
increasing the expression level of SNHG4 and STAT6, the
target molecule of miR-449c-5p was upregulated, which could
inhibit the inflammatory response after cerebral ischemia-
reperfusion injury.

The SNHG6 expression level was significantly upregulated
after IS (37). It can act as the ceRNA of miR-181c-5p, relieving
the transcriptional inhibition of miRNA on the downstream
target gene BIM and causing more severe apoptosis. Knockout
of SNHG6 can improve cell survival, suppress caspase-3 activity,
and alleviate nerve injury. SNHG12 level was also notably
raised after ischemia or reperfusion injury treatment (14,
78). Overexpressed SNHG12 targets miR-199a, promotes the
expression of NAD-Dependent Protein Deacetylase Sirtuin-
1(SIRT1), and further activates AMPK pathway and boosts
cell proliferation, while inhibition of SNHG12 can reverse
this effect. ncRNA-SNHG14 is a lncRNA that is widely
upregulated in a variety of diseases (38). At present, many
pathways that involve SNHG14 in IS have been found. The
expression of SNHG14 increases in the brain of ischemia-
reperfusion mice, which combines with miR-136-5p and
stimulates the expression of downstream molecule ROCK1
and promotes inflammatory response (39). miR-181c-5p is
also one of the downstream molecules of SNHG14 (38).
BCL2 modifying factor (BMF) is a member of the Bcl-
2 homologous domain 3 (BH3) protein family. As a pro-
apoptotic protein, it was found to be negatively regulated
by miR-181c-5p. SNHG14 positively regulates BMF expression
and aggravates neuronal injury. The knockdown of SNHG14
can significantly promote OGD-induced neuronal proliferation,
inhibit apoptosis, and play an anti-inflammatory role. Previously,
miR-181c-5p has also been proved to be regulated by lncRNA
MALAT1 (46), which suggests that miRNA itself is regulated in
many aspects.

It is worth noting that some studies have pointed out that
the expression of miR-181c-5p is upregulated in myocardial
cells after ischemia-reperfusion and can aggravate the level of
apoptosis and inflammation (79). This is opposite to the effect of

miR-181c-5p in the brain, suggesting that the regulatory effects
of ncRNAs vary in different cell types. Sun et al. argued that
SNHG14 can target miR-30b-5p to promote the expression of
Autophagy Related 5 (ATG5) and Beclin1 to activate autophagy
and enhance brain inflammation level (40). They also found that
transcription factor SP1 directly interacted with the promoter
of SNHG14 and thus upregulated the expression of SNHG14.
Meanwhile, SP1 itself was also regulated by P38/MAPK pathway,
indicating that lncRNA itself was also regulated by upstream
pathways and molecules. Otherwise, studies have demonstrated
that it is through miR-199b/AQP4 axis that SNHG14 can
promote inflammation and oxidative stress (41, 80). SNHG15
is highly expressed in MCAO rats according to the research
of Wen et al., which can act as the ceRNA of miR-183-5p,
upregulating the expression of FOXO1 and cyclin-dependent
kinase inhibitor 1B (P27Kip1) and resulting in cell cycle block
and apoptosis.

The expression of lncRNA-H19 was upregulated in MCAO
mice (81). It mediates the expression of PTEN through the
downstream molecule miR-19a-3p. The upregulation of the
PTEN level causes the inactivation of the PI3K/AKT pathway
and aggravates oxidative stress and apoptosis. Knockout of
H19 can alleviate the damage. The expression of lncRNA-
KCNQ1OT1 was significantly increased in neurons of MCAO
mice. Studies showed that its role in promoting neuronal
injury was achieved by regulating the expression of FOXO3
as a ceRNA of miR-153-3p (42). OPA-interacting protein 5
antisense RNA1 (OIP5-AS1) is a recently discovered long
non-coding RNA (21). It was downregulated in microglia
of ischemic brain tissue, resulting in low expression of
C1q/TNF-Related Protein 3 (CTRP3) by targeting miR-186-
5p, thereby activating Nrf2 and NF-κB pathway, significantly
promoting inflammation and oxidative stress response, and
showing greater infarct size. At the same time, it has been
proved that there is cross-talk between Nrf2 and NF-κB
pathways. The interaction between Nrf2 and NF-κB pathways
can make cells regulate their response more finely to stressors
and improve their adaptability to environmental changes.
Upregulation of OIP5-AS1 can increase the expression of
CTPR3 and reduce the damage response induced by microglia
and macrophages.

It should be noted that lncRNA acts in a wide range of ways in
vivo. In addition to inhibiting the expression of miRNA through
the molecular sponge, it can also directly interact with proteins
and participate in pathophysiological processes. As Yan et al.
(56) found the DBD270−281 region of P53 is responsible for the
direct association between MEG3 and P53. MEG3 can positively
regulate P53 and activate its transcriptional activity, mediating
neuronal death after IS.

Circular RNA and MicroRNAs
Many studies have shown that the imbalance of circRNA
expression is one of the characteristics of IS (82). However, the
research on the role of circRNA in IS is not sufficient. Dong
et al. compared the circRNA expression profiles of monocytes
from ordinary people and patients with IS (83). Bioinformatics
analysis showed that abnormally expressed circRNAwas involved
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in multiple pathophysiological processes, such as inflammation
and immune processes. Therefore, it is of positive significance to
study the role of circRNA in IS (Figure 2).

Han et al. found that the expression of circRNA-HECTD1 was
significantly increased in ischemic brain tissue of MCAO mice
and plasma of patients with acute ischemic stroke (AIS) (43).
It can be used as ceRNA of miR-142 to inhibit the translation
inhibition of TCDD inducible poly (ADP ribose) polymerase
(TIPARP) by miR-142. The highly expressed TIPARP can
increase the activation of astrocytes and promote inflammation
and apoptosis. Knockout of HECTD1 can significantly reduce
infarct size and regulate astrocyte autophagy and activation.
Similarly, the expression of circRNA-TLK1 increased in ischemic
brain tissue (44). By inhibiting miR-335-3p, it leads to the
decrease of TIPARP expression, which aggravates the neuronal
injury. Neural stem cells (NSCs) are a kind of cells with
self-renewal ability and multi-differentiation potential. After
brain injury, endogenous static NSCs are activated. These then
participate in the process of brain repair and play an essential
role in IS (84). Yang et al. explored the effects of circRNA-TTC3
on ischemia-reperfusion injury and NSCs (85). TTC3 expression
was significantly increased in hypoxic astrocytes, and its target
wasmiR-372-3p. TTC3 depletion could lead to high expression of
Toll-like receptor 4 (TLR4), inhibiting the activation of the OGD-
induced apoptosis pathway and promoting the proliferation of
NSCs. Zhang et al. found that highly expressed circRNA-camk4
after IS can significantly increase the cell mortality after ischemia-
reperfusion in MCAO rats (82). In addition, they predicted
and confirmed that miR-27a-3p, miR-324-3p, and miR-212-3p
were the target molecules of camk4. The regulation of miRNA
by camk4 involves the glutamatergic synaptic pathway, MAPK
pathway, and apoptosis pathway.

The expression level of circRNA-UCK2 significantly decreased
in the brain tissue of the ischemia-reperfusion mouse model (22).
In contrast, increasing its expression can significantly reduce
the size of the infarct area and improve the neurological deficit.
It can inhibit the expression of miR-125b-5p and increase the
expression of growth differentiation factor-11 (GDF11) and bind
TGF-β Receptor to activate the downstream Smad3 signaling
pathway, resulting in anti-apoptotic and anti-inflammatory
effects. GDF11 is a member of the activin subfamily and TGF-
β superfamily that binds two types of TGF- β receptors (TβRI
and TβRII) to form an active signal transduction complex.
TβRII activates TβRI kinase activity by phosphorylating TβRI
before transmitting signals intracellularly via phosphorylating
transcription factor Smad by TβRI. Smads mainly accumulate
in the nucleus and regulate the expression of target genes by
combining DNA and other transcription mechanisms. circRNA
can also participate in the regulation of autophagy (86).
circRNA-SHOC2 is highly expressed in ischemic-preconditioned
astrocyte-derived exosomes (IPAS-EXOs). SHOC2 can target
miR-7670-3p, increase the expression of downstream molecule
SIRT1, and inhibit neuronal apoptosis. At the same time, SHOC2
can also reduce neuronal damage by regulating autophagy.

Circular RNA (circRNA) can directly function with targeted
protein molecules. Yang et al. screened circRNA-SCMH1 from
the plasma of patients with IS and found that its expression

level significantly decreased after IS (87). After treating brain
tissue with SCMH1 analogs, the functional recovery after IS
was improved while enhancing neuronal plasticity and inhibiting
glial cell activation and peripheral immune cell infiltration. The
downstream target search results show that it could directly
bind to the transcription factor Methyl-CpG Binding Protein
2 (MeCP2) and attenuate the transcriptional repression of
MeCP2 on the target genes Myelin Associated Oligodendrocyte
BasicProtein (Mobp), Insulin-Like Growth Factor Binding
Protein 3 (Igfbp3), FXYD Domain Containing Ion Transport
Regulator 1 (Fxyd1), and Proline Dehydrogenase 1(Prodh), all of
which play an important role in maintaining brain function.

CLINICAL SIGNIFICANCE

A large number of studies have confirmed that ncRNAs can be
utilized as new biomarkers and therapeutic targets. More and
more pieces of evidence accumulated over the years show that
miRNA can exist in tissues and various biological fluids, such
as blood, urine, saliva, and so on (88). miRNA circulates in
a highly stable acellular form in peripheral blood and can be
detected in plasma or serum (64). Many studies have shown that
nerve cells can somehow secrete miRNA after IS, providing a
theoretical basis for ncRNA expression profile as a biomarker
in IS. Zuo et al. identified the differentially expressed circRNA
in IS patients’ blood (89) before isolating platelets, lymphocytes,
and granulocytes from the blood to identify the source of
circRNA. It was identified that the expression of circFUNDC1,
circPDS5B, and circCDC14A in plasma was higher than in the
standard control group and positively correlated with infarct
volume. PDS5B and CDC14A may come from lymphocytes and
granulocytes. When three circRNAs were utilized in combination
to detect IS, they showed high sensitivity and specificity.
However, the limitation is that there is no sufficient research
evidence based on lncRNA and circRNA targeted therapy after
IS, but these ncRNAs involved in the pathological process of IS
have the potential to become therapeutic targets.

As mentioned earlier, miRNA expression is disordered after
IS, and abnormal expression of some miRNAs is related to
poor prognosis. To improve the prognosis of patients, ncRNA
antagonists or analogs can be applied to reverse the expression
of ncRNAs at the pathological level to play a protective role.
Liu et al. injected a miR-21/miR-24 inhibitor into the cerebral
ventricle of MCAO rats and found that it can significantly
reduce the apoptosis of hippocampal and cortical neurons (90).
Early intraventricular injection of miR-124 has been shown
to significantly improve neuronal survival and microglia M2-
like polarization (91) and plays a neuroprotective and anti-
inflammatory role. After the NSCs transduced by circRNA-
HIPK2-siRNA were injected into the lateral ventricle of MCAO
mice, NSCs were observed to migrate and differentiate into
the ischemic hemisphere, representing a neuroprotective effect
which not only increased the plasticity of neurons after
ischemia but also significantly reduced functional defects (92).
The application of extracellular vesicles is helpful to deliver
ncRNA-related preparations into the brain, which is one of the
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FIGURE 2 | Targeting of downstream microRNAs (miRNAs) by different circular RNAs (circRNAs) and the molecules or pathways are ultimately affected, along with

the impact on pathological processes.

research hotspots of targeted therapy. In animal experiments,
intraventricular injection of bone marrow mesenchymal cell
exosomes overexpressing miR-223-3p can reduce the size
of the infarct area caused by MCAO (93). The exosomes
loaded with miR-210 could target the necrotic area after
intravenous injection. After 2 weeks, the expressions of VEGF
and CD34 were significantly upregulated, and the survival rate
of animals was also improved. Yang et al. used engineered
rabies virus glycoprotein-circSCMH1-extracellular vesicles to
transport circRNA-SCMH1 into the brain (87) and found that
the functional recovery after IS was promoted significantly. After
transnasal administration of RVG29-modifiedmicroRNA-loaded
nanoparticles (94), it was seen that cerebral ischemia-reperfusion
injury was reduced. RVG29 is derived from the rabies virus
glycoprotein and has shown efficient brain-targeted drug delivery
and a good safety profile during its use. Transnasal delivery
of targeted drugs is expected to be an effective treatment for
neurological disorders.

Some drugs have also been found to cause changes in the
expression of ncRNAs during the application with potential
therapeutic effect on IS. Dexmedetomidine (DEX) is a good
anesthetic sedative. At present, some studies have found that the
application of DEX seems to be beneficial to the prognosis of IS
(95). After DEX application, the low expression of miR-381 was
reversed. Accordingly, the expression of miR-381 downstream
molecules IRF4 and IL-9 decreased, showing smaller infarct
foci. Sevoflurane (SEVO) is considered a neuroprotective agent

for cerebral ischemia-reperfusion injury (96). After treatment
with SEVO, the expression of miR-181a decreased in MCAO
rats, increasing the expression of XIAP in cortical neurons
and decreasing the release of Lactate Dehydrogenase (LDH),
thereby showing better cell survival. Cao et al. showed that
the expression of lncRNA-MALAT1 and downstream molecule
HMGB1 decreased after preventive treatment with berberine
(BBR) in MCAO mice (36), suggesting that BBR may be
involved in the anti-inflammatory effect after inducing IS.
Notably, these drugs are not directly targeting agents of ncRNAs.
Relevant studies can only hint that the drug effect is related
to the ncRNA regulatory network, but this may provide
information for studying drug mechanisms and the development
of targeted drugs.

CHALLENGES AND PERSPECTIVES

Even from the incomplete understanding of the role of ncRNAs
in IS, ncRNAs are widely involved in the gene regulatory network,
particularly in regulating the critical process of disease onset and
development. However, most studies start with a single molecule
to explore its upstream or downstream molecules to construct a
single pathway that is scattered. Future studies should focus more
on the relationship between ncRNAs to form a complete ncRNA
regulatory network. Research shows that ncRNA after IS can be
detected in serum and possess disease specificity, conveying the
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potential to be used as early biomarkers of IS. However, whether
ncRNAs are abnormally expressed before the onset of IS remains
to be researched to help therapists identify and intervene early to
prevent serious consequences. A comprehensive understanding
of the interaction between ncRNA nodes, such as feedback loop
and antagonism, is vital for applying the research results to
clinical treatment. This is because single-dose targeted therapy
can sometimes prove to be insufficient and combination therapy
requires consideration of the interactions between drug pathways
of action (97). Hence, the multi-temporal changes of molecular
and cellular state changes after IS, targeting, and safety of ncRNAs
agents are issues that need to be addressed by researchers.

More work is still demanded to describe ncRNA regulatory
networks to help understand the onset of IS and provide
information for selecting better therapeutic targets. The
application of bioinformatics has dramatically promoted the
interpretation of the interaction between ncRNA nodes and
other signal pathway members, presenting great benefits to the
study of complex ncRNA regulatory networks. With the help of
computers, unlocking this complex network may just be around
the corner. It is inevitable for ncRNA to become a hotspot
with good prospects in basic and clinical research because of
its significant role. The identification and development of the

ncRNA regulatory network may change our understanding and
treatment of diseases.
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The Relationship Between Aortic
Arch Calcification and Recurrent
Stroke in Patients With Embolic
Stroke of Undetermined Source—A
Case-Control Study
Xiaofeng Cai, Yu Geng and Sheng Zhang*

Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People’s Hospital, Affiliated People’s

Hospital, Hangzhou Medical College, Hangzhou, China

Background: Aortic arch calcification (AoAC) is associated with plaque development

and cardiovascular events. We aimed to estimate the predictive value of AoAC for stroke

recurrence in patients with embolic stroke of undetermined source (ESUS).

Methods: Consecutive patients with ESUS who were admitted to our center between

October 2019 and October 2020 and who had a 1-year follow-up of stroke recurrence

were retrospectively reviewed. According to our AoAC grading scale (AGS), AoAC was

classified into four grades based on chest computed tomography (CT) findings: no visible

calcification (grade 0), spotty calcification (grade 1), lamellar calcification (grade 2), and

circular calcification (grade 3).

Results: Of the 158 patients with ESUS (age, 62.1 ± 14.5 years; 120 men) enrolled,

24 (15.2%) had recurrent stroke within a 1-year follow-up. The Cox regression analysis

showed that stroke history [hazard ratio (HR), 4.625; 95% confidence interval (CI),

1.828–11.700, p = 0.001] and AoAC (HR, 2.672; 95% CI, 1.129–6.319; p = 0.025)

predicted recurrent stroke. AGS grade 1 was associated with a significantly higher risk

of stroke recurrence than AGS grade 0 (HR, 5.033; 95% CI, 1.858–13.635, p = 0.001)

and AGS grade 2 plus 3 (HR, 3.388; 95% CI, 1.124–10.206, p = 0.030). In patients with

AoAC, receiver operating characteristic (ROC) analysis showed that AGS had a good

value in predicting stroke recurrence in patients with ESUS, with an area under curve

(AUC) of 0.735 (95% CI = 0.601–0.869, p = 0.005).

Conclusions: Aortic arch calcification, especially spotty calcification, had a good

predictive value for stroke recurrence in patients with ESUS.

Keywords: aortic arch calcification, embolic stroke of undetermined source (ESUS), recurrent stroke, chest CT

scan, AoAC grading scale
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INTRODUCTION

Embolic stroke of undetermined source (ESUS) is a new
clinical entity with specific diagnostic criteria, such as (1) non-
lacunar stroke on neuroradiological imaging, (2) no arterial
stenosis >50% or occlusion in a corresponding large artery,
(3) lack of a major cardioembolic source, and (4) lack of
other determined stroke causes (1). Two large randomized
controlled trial studies on secondary prevention in ESUS, the
NAVIGATE–ESUS trial on rivaroxaban and dabigatran, showed
that the secondary prevention effect of anticoagulants was not
superior to aspirin and was associated with a higher risk of
bleeding in the investigated population (2, 3). These findings
indicate that the etiology of ESUS is not necessarily due to an
undetected cardiogenic stroke. Recent studies have shown that
the stroke mechanism underlying ESUS includes low-embolic
risk cardiac diseases, paradoxical brain embolisms, aortic lesions,
and mild-to-moderate carotid arterial disease (4–7). Therefore,
the mechanism of recurrent stroke in ESUS and its secondary
prevention strategies remains controversial.

Arterial calcification has long been considered a complication
of advanced atherosclerosis (8, 9). Aortic arch calcification
(AoAC) is a predictor of systemic atherosclerosis, which has been
shown to be associated with the occurrence of cardiovascular and
cerebrovascular events, such as ischemic cerebral infarction (9,
10). In recent years, studies have reported that complex AoACs
are common in patients with ESUS (10). This finding suggests
that AoAC may be involved in the occurrence and recurrence
of ESUS.

Previous studies based on X-rays, such as the aortic arch
calcification (AAC) grading scale (8, 11), calcification in the
aortic arch, age, and multiple infarction (CAM) score (11),
showed that the severity of AoAC was related to the recurrence
of vascular events in patients with ESUS. However, these methods
have limitations in clinical applications. First, a precise evaluation
of the extent of calcification seems impossible on radiography,
and the relationship between the amount of calcium involvement
and plaque vulnerability cannot be evaluated using X-rays (12).
Second, the degree of calcification assessed by X-ray may not
be consistent with the true pathological stages of calcification,
and the relationship between each degree of AoAC and stroke
recurrence on ESUS is not yet clear. Recently, a new pathological
classification system was developed to assess the calcium burden
from a healthy artery with no calcification to the advanced calcific
deposits spread throughout the tunica media (13). To investigate
the relationship of AoAC and its severity with stoke recurrence
of ESUS, based on this pathologic classification system, we
generated an AoAC grading scale (AGS) on chest computed
tomography (CT), and we tested the predictive value of AGS for
stroke recurrence in patients with ESUS.

METHODS

Ethics Statement
The local ethics committee approved the study protocol. All
clinical investigations were conducted in accordance with the
principles of the Declaration of Helsinki.

Patients
Between October 2019 and October 2020, we retrospectively
reviewed consecutive patients who had been admitted for acute
ischemic stroke within 7 days at Zhejiang Provincial People’s
Hospital, China. Patients were enrolled if (1) they met the
ESUS diagnostic criteria adopted the criteria proposed by the
ESUS International Organization (14) and (2) completed a 1-
year follow-up of stroke recurrence. Patients were excluded if (1)
clinical or imaging data were incomplete and (2) imaging data
were not available due to motion artifacts.

Imaging Protocol
Baseline non-contrast CT was performed using a 64-slice CT
scanner (15). During hospitalization, the patients were required
to undergo cranial imaging within 3–5 days after admission. All
cranial MRIs in our study were performed using a 3.0T MR
scanner (16). The sequences of cranial MRIs were as follows:
T1WI [repetition time (TR)/echo time (TE): 160/3.05ms],
T2WI (TR/TE: 6,000/100ms), T2-fluid-attenuated inversion
recovery (FLAIR) (TR/TE: 9,000/94.0ms), and DWI (TR/TE:
6,400/86.0ms, b value 0, and 1,000 s/mm2). In all sequences, slice
thickness and slice spacing were set as 5 and 1.5mm, respectively.
New ischemic brain lesions were defined as hyperintense lesions
on postoperative brain DWI.

Aortic Arch Calcification Grading Scale
(AGS)
Based on the pathological staging of calcification (13, 17), spotty
calcification was defined as calcification with a diameter of ≤
1mm in one or more areas of the aortic intima. As CT scans are
very sensitive to calcification, we applied this standard to CT and
defined calcification with a diameter of no more than 1mm as
grade 1 on the AGS. Pathologically, calcification with a diameter
of 1–3mmwas defined as fragment calcification, and calcification
>3mm was defined as sheet-like calcification. Therefore, on CT,
we defined this type of calcification with a diameter >1mm as
grade 2 AGS. Finally, an entirely calcified artery or circular-like
calcification was ascribed to an AGS grade 3. Examples of each
AGS grade are shown in Figure 1.

Since this AGS is a grading of calcification severity,
when multiple degrees of calcification occurred in one
patient, the grade of the most serious calcification was
considered as the group of that patient. For example,
when patient A had both spotty and lamellar calcifications
simultaneously, patient A should be ascribed to a group of
lamellar calcifications.

Two raters (XFC and SZ), who jointly evaluated the AGS, were
blinded to the imaging and clinical data of patients. A single
trained observer (XFC) measured the AGS in all patients two
times, at an interval of 1 month apart. The other observer (SZ)
independently performed the same evaluation.

Other Imaging Analysis
The Distribution of Infarction
New ischemic brain lesions were defined as hyperintense lesions
on postoperative brain diffusion-weighted imaging. According to
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FIGURE 1 | Aortic arch calcification grading scale (AGS). According to AGS,

the degree of aortic arch calcification (AoAC) detected by chest CT was

divided into four grades (the white arrow points to the calcification area): grade

0, no visible calcification; grade 1, spotty calcification of the aortic arch ≤

1mm in diameter; grade 2, lamellar calcification > 1mm in diameter; grade 3,

circular calcification.

the distribution of infarctions, patients were divided into single
territory and multiple territory infarctions.

Carotid Artery Ultrasound
Ipsilateral non-stenosing carotid plaque was defined using the
site investigators’ reports of cervical large-artery atherosclerotic
plaques and infarct location. According to ultrasound echo, the
characteristics of carotid plaques were defined as hypodense,
hyperdense, or iso-dense.

Left Atrial Diameter (LAD) and Left Ventricular

Ejection Fraction (LVEF)
All patients underwent transthoracic echocardiography (TTE)
examination during hospitalization, and data, such as left atrial
diameter (LAD), LAD/height (LAD/H), LAD/body surface area
(LAD/BSA), and LVEF were recorded. LVEF estimation was
based on TTE performed within 7 days after stroke. The LVEF
was calculated using the Simpson biplane method (18).

Outcome
The primary outcome was recurrent strokes. If any of the
following items of the Sacco criteria (19) were satisfied, stroke
recurrence could be diagnosed.

All patients were evaluated through outpatient or telephone
follow-up. The clinician (XF.C., 8-year experience of in stroke
management) was responsible for determining recurrent stroke.

Statistical Analysis
Statistical analyses were performed using SPSS version 24.0.
Kappa statistics were used to test inter- and intra-observer
reliability for evaluating AGS. Excellent inter- and intra-
observer reliabilities were observed in assessing the AGS
score (κ = 0.908 and 0.867, respectively). Demographic and
baseline characteristics and imaging features were reported
using descriptive statistics. Numerical and nominal variables
are expressed as mean standard deviation (SD) and frequency
percentage, respectively. A t-test was used to compare the
normally distributed data between groups, and the rank-sum
test was used to compare the non-normally distributed data.
Counting data are expressed as frequency and percentage,
and chi-square analysis was used for comparison between
groups. Multivariable logistic regression analysis was performed
to identify risk factors for recurrent stroke in patients with
ESUS. The Cox proportional hazards model was used to
explore factors associated with recurrent stroke events, such as
clinical characteristics and AoAC. After univariate analysis of all
clinically relevant covariates, those with p < 0.05 were included
in the multivariable Cox model. The Kaplan–Meier method and
log-rank test were used to estimate the cumulative event rates
of recurrent vascular events. Statistical significance was set at p
< 0.05.

RESULTS

Clinical Characteristics of Patients With
ESUS
In total, 158 patients were enrolled in this study. The
median age of the patients was 62 years (interquartile
range [IQR]: 53–73 years) and 75.9% were men. Of the
158 patients, 98.1% (155/158) were treated with statins,
96.8% (153/158) with antiplatelet therapy, and 7.8% (12/153)
with dual antiplatelet therapy. Of the 153 patients who
received antiplatelet therapy, 7.8% (12/153) were switched
to anticoagulant therapy because of deep venous thrombosis
(n = 4), pulmonary embolism (n = 1), vertebrobasilar
dolichoectasia (n = 1), and atrial fibrillation (n = 6).
Atrial fibrillation was found in four patients during follow-
up and in two patients during hospitalization for recurrent
stroke. Univariate Cox regression analysis showed that statin,
antiplatelet, and anticoagulant therapies were not associated with
stroke recurrence (all p > 0.05). This result has been added in
Table 1. A flowchart of patient screening is shown in Figure 1.
During the 1-year follow-up, 24 patients (15.2%) experienced
recurrent stroke.

Univariate comparisons of baseline clinical characteristics
are shown in Supplementary Table 1. Compared with patients
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TABLE 1 | Univariate Cox regression analysis of baseline characteristics

associated with stroke recurrence.

Variables HR 95% CI P value

Age, years 1.009 0.979–1.040 0.567

Male 1.88 0.823–4.295 0.134

Risk factors

Hypertension 0.616 0.23–1.650 0.335

Diabetes mellitus 1.482 0.588–3.733 0.404

Dyslipidaemia 1.030 0.385–2.759 0.953

Stroke history 4.739 1.877–11.965 0.001

Chronic kidney disease 21.164 0.001–39.330 0.543

Tobacco use 0.999 0.428–2.335 0.999

Alcohol abuse 0.525 0.196–1.407 0.200

Medications

Antiplatelet therapy 0.964 0.541–1.716 0.900

Duel antiplatelet therapya 1.742 0.516–5.888 0.371

Anticoagulant therapy 1.948 0.581–6.533 0.280

Statin 0.455 0.117–1.771 0.256

BMI, kg/m2 0.932 0.830–1.048 0.239

TCL, mmol/L 0.827 0.478–1.430 0.496

CHO, mmol/L 0.747 0.484–1.154 0.189

LDL, mmol/L 0.784 0.466–1.320 0.361

HDL, mmol/L 0.625 0.165–2.362 0.488

HbA1C, % 0.879 0.661–1.170 0.377

NIHSS score 0.981 0.882–1.090 0.721

TEE findings

LAD, mm 1.020 0.948–1.096 0.600

LAD/H, mm/m 1.063 0.946–1.195 0.306

LAD/BSA, mm/m2 1.105 0.988–1.236 0.080

LVEF % 0.974 0.930–1.020 0.266

PFO 1.552 0.463–5.202 0.477

Multiple territory infarcts 0.490 0.183–1.313 0.156

Carotid plaque features

Ipsilateral non-stenosing carotid plaque 2.320 0.962–5.596 0.061

Grading of plaque density 1.252 0.866–1.809 0.233

Diameters of carotid artery plaque, mm 0.999 0.982–1.017 0.911

AoAC 2.819 1.206–6.590 0.017

AGS

Grade 0 – – –

Grade 1 6.216 2.446–15.796 <0.001

Grade 2 plus 3* 1.922 0.667–5.539 0.226

a indicates the aspirin combined with clopidogrel antiplatelet therapy.

*As none of the patients with AGS grade 3 had recurrent stroke, patients with AGS grades

2 and 3, marked as grade 2 plus 3, were enrolled in the univariate Cox regression analysis.

HR, hazard ratio; 95% CI, 95% confidence interval; AoAC, aortic arch calcification; AGS,

aortic arch calcification grading scale; BMI, body mass index; NIHSS, National Institutes

of Health Stroke Scale; LAD, left atrial diameter; LAD/H, left atrial diameter/height; BSA,

body surface area; LEVF, left ventricular ejection fraction; PFO, patent foramen ovale. TCL,

triglyceride, CHO, cholesterol, LDL, low-density lipoprotein, HDL, high-density lipoprotein,

HbA1C, glycosylated hemoglobin.

without recurrent stroke, patients with recurrent stroke were
more likely to have a history of stroke (patients that had a
history of stroke before enrolment in this study), left atrial
diameter/height (LAD/H) enlargement, and AoAC (all p <

0.001). Stroke history, LAD/H, and AoAC were associated with
stroke recurrence in the univariate Cox regression analysis (p <

0.05) (Table 1). These three factors were entered intomultivariate
Cox regression analysis as covariates to explore the predictors
of stroke recurrence. AoAC use was significantly associated with
stroke recurrence (hazard ratio [HR], 2.672; 95% confidence
interval (CI), 1.129–6.319; p = 0.025). Stroke history was also
predictive of recurrent stroke (HR, 4.625; 95% CI, 1.828–11.700,
p= 0.001).

The Association Between AoAC and Stroke
Recurrence
Among 158 patients with ESUS, 69 (43.7%) were
identified as having AoAC. A comparison of the clinical
characteristics of patients with and without AoAC is
shown in Supplementary Table 2. In the AoAC subgroup
(n = 69), 22 patients had spotty calcifications (grade 1),
while 37 patients had lamellar calcification (grade 2) and
10 patients had circular calcification (grade 3), according
to our AGS.

In patients with no AoAC on chest CT (AGS grade 0) (n
= 89), only eight patients (9%) experienced stroke recurrence.
In patients with AoAC (n = 69), the risk of stroke recurrence
was reduced with an increase in AoAC severity. The rate of
stroke recurrence was highest (45.5%) in patients with AGS
grade 1, then followed by AGS grade 2 (16.2%). Of note, none
(0%) of the patients with AGS grade 3 presented with stroke
recurrence during the 1-year follow-up observation. Univariate
comparison analysis showed that the rate of stroke recurrence
was significantly higher in patients with AGS grade 1 than in
those with any other AGS grade (all p< 0.05), while there was no
significant difference in stroke recurrence among patients with
AGS grades 0, 2, and 3 (χ2

= 2.717, p= 0.257).
After replacing AoAC with AGS in multivariate Cox

regression analysis, AGS grade 1 (HR, 5.033; 95% CI, 1.858–
13.635, p = 0.001) was associated with a significantly higher risk
of stroke recurrence in comparison with AGS grade 0, while AGS
grade 2 plus 3 (lamellar and circular calcification) showed no
higher risk of stroke recurrence than AGS grade 0 (HR, 1.558;
95% CI, 0.539–4.509, p= 0.413).

In the AoAC subgroup (n = 69), multivariate Cox regression
analysis showed that AGS grade 1 was associated with a
significantly higher risk of stroke recurrence than AGS grade 2
plus 3 (HR, 3.388; 95% CI, 1.124–10.206, p = 0.030). An ROC
analysis showed that AGS had a good value for predicting stroke
recurrence with an AUC of 0.735 (95% CI = 0.601–0.869, p
= 0.005).

Kaplan–Meier survival curves showed that the cumulative
event (stroke recurrence) free rate was significantly lower in
patients with a history of stroke than in those without a history
of stroke (log-rank test, p < 0.001) and lower in patients with
AoAC than in patients without AoAC (log-rank test, p = 0.012;
Figure 2A). In the AoAC subgroup (n = 69), the Kaplan–Meier
survival curves showed that the cumulative event-free rate was
significantly lower in patients with AGS grade 1 than in patients
with AGS grade 2 and 3 (log-rank test, p= 0.008; Figure 2B).
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FIGURE 2 | Kaplan–Meier curves of freedom from recurrent stroke events during a 12-month follow-up. The x-axis indicates time in month since inclusion in the

study. The y-axis indicates the proportion of patients with recurrence-free stroke. Cumulative event-free rates were compared based on the presence of AoAC (A) and

among AGS grade 1(spotty calcification), 2 (lamellar calcification), and 3 (circular calcification); (B) showing p = 0.012 and p = 0.008 on the log-rank test, respectively.

DISCUSSION

In the present study, the 1-year stroke recurrence rate with ESUS

was approximately 15%. A previous history of stroke and AoAC

and its degree were demonstrated to be predictors for 1-year

stroke recurrence in patients with ESUS. In contrast to the other

subtypes of AoAC, spotty calcification (≤1mm in diameter) was
associated with a higher risk of stroke recurrence in our patients
with ESUS.

First, the recurrence rate of ESUS in our study was higher
than that in previous reports. In general, the prevalence of
stroke recurrence in ESUS was annually approximately 2.3–
13% (14, 20). We speculated that this gap was mainly caused
by different study populations. It was reported that the stroke
recurrence was more frequently seen in China than that in the
West (21, 22). Data from the Chinese National Stroke Registry
showed that the stroke recurrence rate in patients with ischemic
stroke was 16% in the first year which was similar to our outcome
(23, 24). According to data from the China National Stroke
Screening and Prevention Project (CNSSPP), the standardized
prevalence of AF among Chinese adults aged ≥40 years was
2.31%. Notably, the rate of stroke recurrence in our patients
with ESUS was quite close to that reported in patients with large

artery atherosclerosis (LAA) (25, 26), further supporting that
large artery non-stenosing plaque might be the potential etiology
of stroke and stroke recurrence in this ESUS population in China.

Second, we found that AoAC, especially spotty calcification,
was a key factor in the high incidence of stroke recurrence
in ESUS. Interestingly, the risk of recurrent stroke with spotty
calcification is not only higher than that without calcification but
also higher than that with lamellar and circular calcifications.
This finding is very different from those of previous research.
Some studies believe that the higher the severity of AoAC which
is reflected by the AAC grade or CAM score, the higher the risk
of stroke recurrence (11). However, some studies failed to find a
strong correlation (27, 28). We speculated that the reasons why
our results were different included (1) the study population was
different and (2) the evaluation methods of calcification were
different. Compared with AAC, our evaluation using CT is more
objective and accurate than X-ray imaging (29). Compared with
the CAM score, although our method was unable to quantify the
degree of AoAC, our research method was simpler and might
be easier to apply in other centers for patients with stroke.
Although our results are in contrast to those of other studies,
the mechanism of low-grade calcification in predicting stroke
recurrence can still be logical. One important embolic source in
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ESUS is atherosclerotic plaque in the carotid, vertebrobasilar, and
intracranial arteries, or the aortic arch collectively described as
supracardiac atherosclerosis (30). A previous research has shown
that spotty calcification generally occurs in the aortic intima
which increases the risk of plaque rupture. Macrocalcification,
such as areas of calcification and circular calcification, is more
common in the tunica media of the acral arteries and often leads
to stenosis (10, 11). Moreover, this suggests that plaque size has
certain limitations in evaluating stroke recurrence. In the future,
plaque morphology or routine plaque vulnerability assessment
for AoACmay better explain the relationship between AoAC and
stroke recurrence. In addition, whether intensive statin treatment
can better prevent stroke recurrence in patients with this type
of spotty calcification is a problem that needs to be addressed in
future research.

On chest CT, AoAC, a risk marker for cardiovascular disease,
becomes available in subjects with no additional radiation burden
to the patient and no additional work for the radiologist.
Our AGS has proven to be a valuable evaluation tool for
recurrent stroke risk for patients with ESUS. For AGS grade
0, the stroke recurrence rate was much lower than that
of grade 1, but was close to the incidence in the severe
calcification group (grades 2–3). We propose that patients
without calcification should still be evaluated for cardiogenic
stroke, such as recommending screening for 24 h or longer
electrocardiograms (ECGs), and patent foramen ovale (PFO). For
AGS grades 2–3, more serious calcification might be associated
with a relatively low risk of recurrent stroke in patients with
ESUS in comparison with spotty calcification (grade 1). Further
assessment of atherosclerotic plaque stability upon cardiac
imaging, such as computed tomography angiography (CTA) or
digital subtraction angiography (DSA), might be beneficial as a
secondary prevention strategy for ESUS stroke and calcification
of ESUS etiology.

Furthermore, cardiovascular calcifications were associated
with cardiovascular events and death (31, 32). They can involve
the coronary arteries, cardiac valves, myocardium, pericardium,
and aorta artery. Different location and the level of calcifications
may be potential markers in identifying patients of a high-risk
phenotype for developing recurrent stroke.

This study had several limitations. First, the study design was
retrospective and selection bias could not be ruled out. Second,
the data from the current study were derived from a single
center and the number of patients with recurrent stroke was
small. Third, we did not select the Agatston score to quantify

the severity of AoAC on chest CT because we considered that
the AGS might be more applicable and feasible in most centers.
Moreover, with the advent of coronavirus disease 2019 (COVID-
19), patients with stroke must undergo routine chest CT scans
at admission, which provides convenience for further stroke
recurrence risk assessment with a larger sample size in the future.
At last, for technical and economic reasons, implantable loop
recordermonitoring for atrial fibrillation has not been carried out
in our hospital. Yushan et al. found that the rate of AF detection
was much higher at 12% with insertable cardiac monitor (ICM)
in patients with ESUS (33). Lack of ICM might influence the
detection rate of AF in our research.

In conclusion, AoAC, particularly spotty calcification on
chest CT, was effective in predicting future recurrent stroke in
patients with ESUS. AGS might be a valuable evaluation tool for
stroke recurrence risk in ESUS, which needs to be confirmed in
prospective, large-sample-sized studies in the future.
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Objectives: The purpose of this study was to investigate whether contrast-enhanced

ultrasound (CEUS) is more advantageous than conventional ultrasound in the diagnosis

of carotid web (CaW) and to compare the clinical characteristics of patients in different

age groups.

Methods: Seventeen patients admitted to the hospital from October 2019 to December

2021 were included in our study. Patients were initially diagnosed with CaW using digital

subtraction angiography (DSA), and conventional ultrasound and CEUSwere completed.

Baseline patient data were analyzed and compared between the <60 years old CaW

group and the ≥60 years old CaW group to explore the differences between the two

groups. Then, comparing the accuracy of conventional ultrasound and CEUS.

Results: A total of 17 CaW patients participated in this study, including 4 female patients

(23.5%) and 13 male patients (76.5%), with an average age of 59.41 (±10.86) years.

There were 9 patients (52.9%) with left CaW and 8 patients (47.1%) with right CaW.

Acute ischemic stroke (AIS) occurred in 14 patients (82.4%). Thrombosis occurred in five

of 17 patients (29.4%). There was a significant statistical difference about the thrombosis

between the <60 years old CaW group and the ≥60 years old CaW group [<60 years

group: 0 (0%), ≥60 years group: 5 (62.5%), P = 0.005]. Seven patients (41.2%) received

medical management, nine patients (52.9%) had carotid artery stenting (CAS), and one

patient (5.9%) had carotid endarterectomy (CEA). None of the patients had recurrent

stroke during the follow-up period. The diagnostic rate of CaW and thrombus by CEUS

was higher than that by conventional ultrasound, and there was a significant statistical

difference in the diagnosis of thrombus between CEUS and conventional ultrasound

(χ2 = 4.286, P = 0.038).

Conclusions: CEUS may have a higher diagnostic accuracy for CaW with thrombosis,

and it has a higher clinical application prospect.

Keywords: carotid web, stroke, contrast-enhanced ultrasound, diagnosis, thrombus

44

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.860979
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.860979&domain=pdf&date_stamp=2022-04-27
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhuyuyou2020@126.com
mailto:xfliu2@vip.163.com
https://doi.org/10.3389/fneur.2022.860979
https://www.frontiersin.org/articles/10.3389/fneur.2022.860979/full


Zhou et al. Carotid Web on CEUS

INTRODUCTION

Stroke is a disease with high morbidity and disability rates
(1) and is the second leading cause of death worldwide (2).
Carotid web (CaW) can be detected in nearly 5% of young
cryptogenic stroke patients (3). Therefore, CaW is a risk factor
in cryptogenic stroke (4). CaW is a kind of endovascular
variation caused by fibromuscular dysplasia (FMD) (5). It usually
originates from the posterior wall of the carotid bulb and
protrudes into the lumen, presenting a shelf-like structure in
morphology (6). FMD was first proposed by Connett and
Lansche (7), and the term “web” was first described in the
literature by Momose and New (8). CaW is commonly associated
with the occurrence of an ipsilateral cerebral infarction or
transient ischemic attack (TIA) (9), suggesting its involvement
in potential stroke mechanisms (3). CaW is prevalent in 1–7%
of the population (10) and is more common in younger patients
with cryptogenic stroke (3).

Although there are definite morphological characteristics of
CaW, the diagnosis of CaW is clinically difficult and easily
misdiagnosed or missed (11) because of its rarity, small size,
and insufficient understanding (12). Conventional ultrasound
is a non-invasive, rapid, and convenient method. It can be
repeated many times and has a wide range of applicability
(13). Contrast-enhanced ultrasound (CEUS) is a non-invasive
method developed using conventional ultrasound technology as a
foundation that provides more information, better image quality,
and more quantitative data through intravenous injection of
contrast agent as tracer (13). CEUS can clearly show conditions
in the lumen, such as whether there is a contrast filling defect,
and evaluate the degree of thrombus formation in the lumen.
Therefore, CEUS is often used to display neovascularization in
plaques in both symptomatic and asymptomatic patients, identify
plaque vulnerability, and find the location of the thrombus and
the site of involvement (14). CEUS is a more accurate method
to measure the stenosis of lumen than conventional angiography
and magnetic resonance angiography (MRA) (15).

Previous studies have explored the diagnosis of CaW using
computed tomographic angiogram (CTA), high-resolution
magnetic resonance imaging (MRI), and conventional
ultrasound (16). However, few studies have explored the
diagnostic value of CEUS for CaW. In particular, the diagnosis
of superimposed thrombosis by CEUS has not yet been reported.
Therefore, there is some confusion about the application value
of CEUS in CaW and thrombosis. In addition, the incidence
and severity of stroke is age-related and increases with age (17).
The elderly patients with acute ischemic stroke (AIS) showed
specific characteristics and epidemiology, with more baseline
comorbidities, disability and higher NIHSS score at admission
compared with younger patients (18). Moreover, the rate of
thrombosis increases with age (19). To our knowledge, no
studies have reported the characteristics of CaW in different
age groups. Therefore, the purpose of this study was to identify
different manifestations of CaW and thrombosis using CEUS
and to explore the diagnostic value of CEUS. In addition,
comparing the clinical characteristics of patients with CaWs in
different age groups.

METHODS

Study Population and Design
Patients diagnosed with CaW at the First Affiliated Hospital
of the University of Science and Technology of China from
October 2019 to December 2021 were retrospectively analyzed.
The inclusion criteria were as follows: (1) age older than 18 years;
(2) digital subtraction angiography (DSA) used to diagnose CaW;
(3) improved conventional ultrasound and CEUS examination.
The exclusion criteria were as follows: (1) incomplete medical
history; (2) severe infection, tumor, failure of the liver, kidney, or
respiratory system; (3) no follow-up data. Baseline characteristics
and associated risk factors were collected, including sex, age,
hypertension, diabetes, hyperlipidemia, coronary heart disease,
history of stroke, alcohol, and smoking. In addition, the low-
density lipoprotein (LDL), high-density lipoprotein (HDL),
glucose, total cholesterol (TC), and triglyceride (TG) levels of
patients were also recorded.Moreover, the length, width, location
of CaWs, and degree of carotid artery stenosis were measured.

Imaging Assessment and Analysis
The diagnosis of CaW was achieved with DSA, which was
chosen for its high temporal and spatial resolution (20). DSA
is considered the gold standard for CaW diagnosis (9). The
CaW showed a contrast filling defect when assessed with DSA
(21) (Figure 1). On conventional ultrasound, the CaW appears
as a hypoechoic plaque with an axial shelf-like structure (16)
(Figure 2). Upon assessment with CEUS, CaW showed delayed
filling of contrast agent. Imaging examination results were read
independently and blinded by two physicians in the department
of neurology. If there were inconsistent judgments, they were
determined after further discussion.

Statistical Analysis
Statistical analysis was performed in SPSS 22.0 software
(IBM SPSS Statistics 22.0). Categorical variables are presented
as numbers (%). Continuous variables that were normally
distributed were described as the mean ± standard deviation.
Continuous variables that were not normally distributed were
presented as the median and quartile intervals. The Chi-square
test was used when comparing categorical variables. Continuous
variables were compared using the t-test or Mann-Whitney U-
test. P < 0.05 indicated that there was statistical difference.

RESULTS

A total of 17 CaW patients were enrolled in this study, including
4 females (23.5%) and 13 males (76.5%), with an average
age of 59.41 (±10.86) years (Table 1). All 17 patients had
unilateral CaW, including nine patients (52.9%) with left CaW
and eight patients (47.1%) with right CaW. AIS occurred in 14
patients (82.4%). Among the 17 patients, 13 patients (76.5%)
had hypertension, one patient (5.9%) had hyperlipidemia, eight
patients (47.1%) had diabetes, two patients (11.8%) had coronary
heart disease, and six patients had (35.3%) a history of stroke.
Thrombosis occurred in five of 17 patients (29.4%). The median

Frontiers in Neurology | www.frontiersin.org 2 April 2022 | Volume 13 | Article 86097945

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhou et al. Carotid Web on CEUS

FIGURE 1 | Performance of CaW at the right internal carotid artery of the patient during DSA. Comparied with (A) early-arterial phase, (B) mid-arterial phase, and (C)

late-arterial phase showed significant contrast agent retention.

FIGURE 2 | Conventional ultrasound showing axial view of CaW (arrow

indicates shelf-like CaW).

systolic blood pressure (SBP) value was 129 mmHg (IQR, 118–
143 mmHg), the median diastolic blood pressure (DBP) value
was 77 mmHg (IQR, 72–88 mmHg), and the median glucose
value was 5.46 mmol/L (IQR, 4.89–6.08 mmol/L). The median
TG value was 1.17 mmol/L (IQR, 0.73–1.94 mmol/L), the median
TC value was 3.59 mmol/L (IQR, 2.91–4.88 mmol/L), the median
HDL value was 1.12 mmol/L (IQR, 0.90–1.38 mmol/L), and the
median LDL value was 2.06 mmol/L (IQR, 1.23–3.00 mmol/L).

The clinical difference between the <60 years old CaW group
and the ≥60 years old CaW group was compared in Table 2.
The median admission glucose level in the <60 years old CaW
group was found to be higher than the≥60 years old CaW group
[<60 years: 5.47 mmol/L (IQR, 4.88–6.69 mmol/L), ≥60 years:
5.39 mmol/L (IQR, 4.84–5.39 mmol/L)]. In addition, the median
TC and LDL levels of patients in the <60 years old CaW group
were higher than that of patients in the ≥60 years old CaW
group [TC: < 60 years 4.51 mmol/L (IQR, 2.91–5.47 mmol/L),
≥60 years old 3.28 mmol/L (IQR, 2.89–4.37 mmol/L); LDL: <60
years 2.84 mmol/L (IQR, 1.12–3.47 mmol/L), ≥60 years old 1.68

TABLE 1 | Clinical characteristics of CaW patients.

Characteristics All patients (N = 17)

Age, yr, mean (±SD) 59.41 (±10.86)

Sex (male), n (%) 13 (76.5)

Hypertension, n (%) 13 (76.5)

Dyslipidemia, n (%) 1 (5.9)

Diabetes, n (%) 8 (47.1)

Coronary heart disease, n (%) 2 (11.8)

History of stroke, n (%) 6 (35.3)

SBP, mmHg, Median (IQR) 129 (118–143)

DBP, mmHg, Median (IQR) 77 (72–88)

Glucose, mmol/L, Median (IQR) 5.46 (4.89–6.08)

TG, mmol/L, Median (IQR) 1.17 (0.73–1.94)

TC, mmol/L, Median (IQR) 3.59 (2.91–4.88)

HDL, mmol/L, Median (IQR) 1.12 (0.90–1.38)

LDL, mmol/L, Median (IQR) 2.06 (1.23–3.00)

Stenosis (%), Median (IQR) 40 (30–50)

AIS, n (%) 14 (82.4)

Left CaW, n (%) 9 (52.9)

Thrombosis, n (%) 5 (29.4)

Smoking, n (%) 5 (29.4)

Alcohol, n (%) 3 (17.6)

AIS, acute ischemic stroke; CaW, carotid web; DBP, diastolic blood pressure; HDL, high-

density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol; TG, triglyceride;

SBP, systolic blood pressure; yr, year.

mmol/L (IQR, 1.28–2.27 mmol/L)]. Furthermore, there was a
significant statistical difference about the thrombosis between the
two groups [<60 years: 0 (0%),≥60 years: 5 (62.5%), P = 0.005].

Seventeen patients received the corresponding treatment
strategy after admission (Table 3), of whom seven patients
(41.2%) received medical management, nine patients (52.9%)
received carotid artery stenting (CAS), and one patient (5.9%)
received carotid endarterectomy (CEA). Among patients who
received medical management, there were five patients (71.4%)
had right CaW, median length 7.1mm (IQR, 4.5–13.0mm),
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TABLE 2 | Comparison of characteristics between the <60 years old CaW group and the ≥60 years old CaW group.

Characteristics Age < 60 years (N = 9) Age ≥ 60 years (N = 8) P-value

Sex (male), n (%) 8 (88.9) 5 (62.5) 0.410

Hypertension, n (%) 6 (66.7) 7 (87.5) 0.312

Dyslipidemia, n (%) 1 (11.1) 0 (0) 0.331

Diabetes, n (%) 5 (55.6) 3 (37.5) 0.457

Coronary heart disease, n (%) 1 (11.1) 1 (12.5) 0.929

History of stroke, n (%) 3 (33.3) 3 (37.5) 0.858

SBP, mmHg, Median (IQR) 138 (120, 145) 126 (112, 138) 0.423

DBP, mmHg, Median (IQR) 77 (70, 88) 77 (71, 91) 1.000

Glucose, mmol/L, Median (IQR) 5.47 (4.88, 6.69) 5.39 (4.84, 5.39) 0.541

TG, mmol/L, Median (IQR) 1.17 (0.69, 2.44) 1.18 (0.81, 1.60) 0.606

TC, mmol/L, Median (IQR) 4.51 (2.91, 5.47) 3.28 (2.89, 4.37) 0.277

HDL, mmol/L, Median (IQR) 1.04 (0.83, 1.34) 1.24 (0.95, 1.41) 0.673

LDL, mmol/L, Median (IQR) 2.84 (1.12, 3.47) 1.68 (1.28, 2.27) 0.481

Stenosis (%), Median (IQR) 40.0 (30.0, 55.0) 35.0 (22.5, 47.5) 0.370

AIS, n (%) 7 (77.8) 7 (87.5) 0.600

Left CaW, n (%) 5 (55.6) 4 (50.0) 0.819

Thrombosis, n (%) 0 (0) 5 (62.5) 0.005

Smoking, n (%) 4 (44.4) 1 (12.5) 0.149

Alcohol, n (%) 3 (33.3) 0 (0) 0.072

AIS, acute ischemic stroke; CaW, carotid web; DBP, diastolic blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TC, total cholesterol; TG, triglyceride; SBP,

systolic blood pressure; yr, year; The bold values means p < 0.05.

TABLE 3 | Treatment of patients with CaW.

Treatment N Age (yr),

Median

(IQR)

Sex (male),

n (%)

Location

(right),

n (%)

Length (mm),

Median (IQR)

Width (mm),

Median

(IQR)

Stenosis

(%), Median

(IQR)

Follow up

(month), Median

(IQR)

Recurrence,

n (%)

Medical management 7 58 (53–64) 4 (57.1) 5 (71.4) 7.1 (4.5–13.0) 2.5 (1.6–2.9) 30 (25–50) 11 (4–13) 0

CAS 9 63 (49–72) 8 (88.9) 2 (22.2) 8.7 (5.1–11.4) 2.5 (1.6–4.1) 40 (30–55) 9 (6–20) 0

CEA 1 58 1 (100) 1 (100) 8.9 5.1 50 2 0

CAS, carotid artery stenting; CaW, carotid web; CEA, carotid endarterectomy; yr, year.

median width 2.5mm (IQR, 1.6–2.9mm), median stenosis rate
30% (IQR, 25–50%), and no recurrence at a median follow-up of
11 months (IQR, 4–13 months). Among patients who underwent
CAS, seven patients (77.8%) had left CaW, with median length
of 8.7mm (IQR, 5.1–11.4mm), a median width of 2.5mm (IQR,
1.6–4.1mm), a median stenosis rate of 40% (IQR, 30–55%), and
no recurrence at a median follow up of 9 months (IQR, 6–20
months). Only 1 patient received CEA.

Upon conventional ultrasound, CaW appeared as a
hypoechoic plaque that protrudes into the lumen. On CEUS,
delayed infusion of the contrast agent was observed and a
perfusion defect was revealed (Figure 3), where the web was
located, to be protruding into the lumen after the injection
of contrast agent. All 17 patients with CaW underwent
conventional ultrasound and CEUS (Table 4). Among them,
16 patients (94.1%) with CaW were diagnosed by CEUS, and 1
patient was missed. Fourteen patients (82.4%) were diagnosed
by conventional ultrasound, and three patients were missed.
We found there was no statistical difference when comparing

conventional ultrasound to CEUS in the diagnosis of CaW
(P = 0.287). DSA confirmed thrombosis in five of 17 patients,
five patients were diagnosed by CEUS (100%) and two patients
were diagnosed by conventional ultrasound (40%), indicating
that CEUS was statistically better than conventional ultrasound
in the diagnosis of thrombosis (χ2= 4.286, P = 0.038).

DISCUSSION

The pathological characteristics of CaW are intimal thickening
of the carotid artery and proliferation of fibroblasts (22).
Angiography showed that most of the shelf-like structures
associated with CaW were convex into the lumen (20). However,
the exact etiology of CaW is still unclear and could involve factors
such as genetics, presence of chronic vascular injury, hormone
levels, and trophoblast vascular abnormalities (23). Our results
found that hypertension accounted for a higher proportion of
risk factors (76.5%), followed by diabetes (47.1%) and then
smoking history (29.4%). Hypertension is associated with the
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FIGURE 3 | Imaging manifestations of CaW using CEUS. (A–D) all have obvious contrast filling defects (arrows indicate filling defects).

onset of stroke and small-vessel disease (24). Therefore, it is very
important for patients with CaW to control their blood pressure.
In addition, fourteen patients (82.4%) experienced AIS. There
was no significant difference when looking at the prevalence of
the left CaW group and the right CaW group, which is consistent
with previous study (25). Moreover, our results showed that
there were statistical differences in the thrombosis between the
<60 years old CaW group and the ≥60 years old CaW group
(P = 0.005). However, there was no statistical difference in
hematological indexes between the two groups. In this study, the
proportion of male CaW patients was higher than that of female
CaW patients, which contradicted the previous conclusion that
there were more female patients than male patients (26, 27).
This may be due to selection bias in the preponderance of
male patients.

CaW leads to lumen stenosis and produces greater
hemodynamic changes than atherosclerosis of a similar degree
of lumen stenosis (10). The shelf-like structures of the CaW alter
the distal hemodynamic pattern (22), resulting in the formation
of a superimposed thrombus at the vortex (16). Superimposed
thrombosis is associated with slow filling defects and turbulent
blood flow (28). Thromboembolism can lead to stroke and
neurological deterioration (29). Therefore, the examination of
thrombosis is very important. Early detection of thrombi and
taking corresponding treatment measures play an important role
in saving patients’ lives. In this study, the proportion of CaW
patients with thrombosis reached 29.4%. Particularly, all patients
with thrombosis were in the ≥60 years group, indicating that
the incidence of CaW with thrombosis was higher in elderly
patients. The risk of arterial and venous thrombosis increases
with age (19, 30), which may be related to thrombin generation

TABLE 4 | Comparison of conventional ultrasound and CEUS in the diagnosis of

CaW and thrombosis.

Conventional ultrasound CEUS χ2 P-value

n(%) n(%)

CaW (n = 17) 14 (82.4) 16 (94.1) 1.133 0.287

Thrombosis (n = 5) 2 (40.0) 5 (100) 4.286 0.038

CaW, carotid web; CEUS, contrast-enhanced ultrasound. The bold values means p <

0.05.

(31). The relationship and physiological mechanism between
age and thrombosis in patients with CaW need to further study.
Furthermore, the median stenosis rate of CaW patients was 40%
(IQR, 30–50%). Patients with mild to moderate stenosis were at
an increased risk of future vascular events (32).

There are many diagnostic methods for identifying CaWs.
DSA has high temporal and spatial resolution, it can provide
dynamic information on regional blood flow, which is the gold
standard for CaW diagnosis (9). However, DSA is invasive
and expensive (33, 34). Therefore, it is not suitable for routine
examinations. CTA can quickly obtain high-resolution imaging
and reconstructed-imaging inmultiple planes (24). It can provide
detailed vascular morphology information, and can distinguish
between CaW, atherosclerosis, and artery dissection (35).
However, CTA does not provide information on hemodynamics
and lesion composition, and it exposes patients to radiation
and iodine contrast agents (36). Conventional ultrasound is a
non-invasive, convenient, and rapid examination method (37).
Nevertheless, conventional ultrasound has limited depth and
is highly dependent on doctors’ subjectivity. CEUS was based
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on conventional ultrasound, and has more advantages (38).
SonoVue was used as a contrast agent for CEUS, and there
were no serious adverse reactions and no significant effects
on liver and kidney function, so it was easily accepted by
patients. Additionally, it can enhance the carotid lumen, allowing
for a more in-depth assessment of arterial wall. CEUS can
clearly show plaques in various parts of the vessel by signs of
filling defects (39), provide higher image resolution and more
quantitative data, such as quantitative plaque angiogenesis (13).
Nevertheless, CEUS requires a high level of technical expertise
from doctors because of the limited time-of-use of contrast agent.
Conventional ultrasound and CEUS are important tools in the
detection of carotid artery plaques, which indicates they have
good diagnostic value for characterizing carotid artery plaques
with cerebrovascular events (40). Some studies explored the
diagnostic rate of atherosclerosis by CEUS and conventional
ultrasound (41), and the results showed that CEUS could
identify atherosclerotic plaques at a higher frequency (P = 0.02).
Although CEUS does not show a high advantage in the diagnosis
of CaW, it does show an advantage in the diagnosis of thrombus.
The occurrence of AIS in CaW patients was associated with
thrombus (34). Therefore, it is crucial to diagnose thrombosis
timely for the treatment and medication of patients.

The treatment strategies for CaW mainly include medical
management, CAS, and CEA. However, whether any of these
treatment strategies are optimal remains unclear. Medical
management alone has a higher recurrence rate (25). Although
surgery is a first-line treatment strategy, patients may be at
risk of vascular occlusion and more severe carotid stenosis
(25, 42). CAS is the preferred treatment strategy because of its
safety and effectiveness (43). Moreover, it has fewer perioperative
complications (44). In this study, medical management, CAS,
and CEA were used. The medical management in this
study was antiplatelet therapy, including aspirin and cilostazol
tablets. Antiplatelet therapy was chosen in most studies, and
anticoagulant therapy was recommended by only few physicians
(35). In a recent paper, Guglielmi et al. showed that 93% of
ipsilateral CaW patients received drug therapy. Most of these
patients were treated with antiplatelet therapy. However, the
incidence of recurrent stroke was relatively higher in patients
receiving anticoagulant therapy (27). Therefore, antiplatelet
therapy is a reasonable treatment strategy in the patients with
transient ischemic stroke or minor stroke (6). We suggested that
antiplatelet therapy can be used in asymptomatic patients or
patients with low stenosis rate of carotid artery, and surgical
intervention is preferred for CaW patients with recurrent
ischemic stroke. During the follow-up period, there was no
recurrence of stroke in the CaW patients and the prognosis was
good, indicating that these three methods are safe and effective.
Due to the short follow-up period, long-term follow-up studies
can be carried out in the future to explore the impact of different
treatment strategies on the long-term prognosis of CaW patients.

CaW should be considered as a factor in patients with
cryptogenic stroke. Doctors should improve their understanding
of CaWs because CaW has a high risk of recurrence and early
recognition and treatment are needed to help decrease the risk

of additional strokes (3). This paper has several limitations. We

only analyzed 17 CaW patients, which is a small sample size. The
large sample size and multi-center studies are needed to verify
our views in the future. The second limitation was the absence
of histopathological verification. Finally, we did not compare the
diagnostic rates of CaW between CTA and CEUS.

CONCLUSIONS

CEUS may have a higher diagnostic accuracy for CaW with
thrombosis, and it has a higher clinical application prospect for
CaW patients.
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Introduction: Understanding the potential embolic source in young patients with ESUS

may improve the diagnosis and treatment of such patients.

Hypothesis: Potential embolic sources (PES) differ in young vs. older patients with

ESUS, and, therefore, not all patients with ESUS have the same risk profile for

stroke recurrence.

Methods: Young patients (age 18-49) with ESUS, who were admitted to our stroke

center from 2006 to 2019, were identified retrospectively and matched with next

consecutive older patients (age 50–99) with ESUS by admission date. PES were

categorized as atrial cardiopathy, AFib diagnosed during follow-up, left ventricular

disease (LVD), cardiac valvular disease (CVD), PFO or atrial septal aneurysm (ASA), and

arterial disease. Patients, who had cancer or thrombophilia, were excluded. The type and

number of PES and stroke recurrence rates were determined and compared between

young and older patients.

Results: In young patients (55.3% women, median age 39 years), the most common

PES was PFO/ASA, and the rate of other PES was low (2–7%). Half of the young patients

(54.1%) had a single PES, only 10% had multiple PES, and 35.3% of young patients did

not have any PES identified. In older patients (41.7% women, median age 74 years),

the 3 most common PES were atrial cardiopathy (38.1%), LVD (35.7%), and arterial

disease (23.8%). Nearly half of older patients (42.9%) hadmultiple PES. The rate of stroke

recurrence tended to be lower in young patients as compared to older patients (4.9 vs.

11.4%, p = 0.29). During a median follow-up of 3 years, only 3 young patients (4.9%)

had a recurrent stroke, and two of them had unclosed PFO. There were no recurrent

strokes among young patients with no PES identified.

Conclusions: It was noted that PES differ in patients with ESUS according to age and

differences in recurrence. PFO is the only common PES in young patients with ESUS.

Future studies prospectively evaluating PES in both age groups are needed.

Keywords: ESUS, potential embolic source, PFO, ischemic stroke in young adults, AFib
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INTRODUCTION

The concept of embolic stroke of undetermined source (ESUS)
was introduced by the cryptogenic stroke/ESUS international
working group in 2014 (1). In patients with ESUS, the causal
etiology might not be identified, but there are many potential
embolic sources, also referred to as potential embolic sources
(PES) (2, 3). These underlying PES are heterogeneous, but it
is hypothesized that emboli are either cardiogenic, arteriogenic,
or paradoxical from the veins. At present, the main challenge
in ESUS remains how to decide on optimal secondary stroke
prevention in the absence of a known stroke mechanism. The
efficacy of antithrombotic agents for secondary prevention in
ESUS was tested in the NAVIGATE ESUS and RE-SPECT ESUS
trials. Results showed that anticoagulation was not superior to
aspirin for the prevention of stroke in patients with ESUS (4, 5).
Ischemic stroke in young adults is usually defined clinically by
an age threshold of <50 at stroke occurrence, based on different
risk factors and clinical characteristics between young and older
patients with stroke (6). Approximately 15–20% of patients with
ESUS are young patients (7, 8). However, previous RCTs and
studies included mainly older patients at a mean age of around
65 years (2–5). There is limited information about PES and the
associated risk of recurrent stroke in young patients with ESUS.
In this retrospective study, we evaluated the rate and overlap
degree of previously reported PES and assessed the rate of stroke
recurrence per PES in young patients with ESUS and compared
them with older patients with ESUS.

MATERIALS AND METHODS

We retrospectively reviewed young patients (age 18–49) with
ESUS who were admitted and followed at Hartford Hospital from
2006 to 2019. Each young patient was matched with the next
consecutive older patient (age 50–99) with ESUS by admission
date within the same period.

The ESUS was defined as non-lacunar brain infarct in the
absence of extracranial or intracranial atherosclerosis causing
≥50% luminal stenosis in arteries supplying the area of
infarcts, established major cardioembolic source, other specific
cause (e.g., vasculitis/vasculopathy, dissection, vasospasm, or
thrombophilia) according to the criteria proposed by the
Cryptogenic Stroke/ESUS International Working Group and
previous studies (1). The minimal standard evaluation was
required for the diagnosis of ESUS, which included transthoracic
or transesophageal echocardiography, CTA/MRA of head and
neck, 12-lead EKG, at least 24 hours of continuous heart
rhythm monitoring, and screening for inherited thrombophilia
in patients younger than 50-year-old (1, 9). We did not include
cancer as PES as hypercoagulability and embolism are both
possible mechanisms of cancer-related stroke.

According to previous studies, we used the definitions of
PES described in Table 1: categorized as atrial cardiopathy,
AFib diagnosed during follow-up, left ventricular disease (LVD),
cardiac valvular disease (CVD), PFO and/or Atrial septal
aneurysm (ASA), and arterial disease (1–3). In a single patient,
there may be none, single, or multiple PES. Atrial cardiopathy

TABLE 1 | Definition of potential embolic sources (PES).

Atrial

cardiopathy

Left atrium dilation on echoa

Afib/Aflutter

at follow-up

Atrial Fib/flutter, detected by 30 day or implanted event

monitor or by any EKG performed after discharge

Left

ventricular

dysfunction

heart failure history, or LV ejection fraction was <35%b, LV

hypertrophy, moderate diastolic dysfunction, global or

regional wall motion abnormality

Cardiac

valve disease

bioprosthetic valve, mitral valve prolapse, moderate to

severe annular calcification, moderate stenosis or

regurgitation of mitral or aortic valve

PFO PFO and/or ASA detected on Echo

Arterial

disease

ipsilateral atherosclerotic plaque causing luminal stenosis

of <50% or complex aortic arch atherosclerotic plaquec

aLeft atrial dilation was defined according to Echo lab criteria based on LA volume index

>34 ml/m2.
bPatients with LVEF ≤25% was excluded.
cComplex aortic plaque defined as mobile, ulcerated, and/or size ≥4mm on CTA or TEE.

was defined as left atrial (LA) volume index>34ml/m2 according
to American Society of Echocardiography guidelines (10). AFib
was diagnosed by EKG, 30-day or implanted heart rhythm
monitor during follow-up.

Baseline and clinical stroke characteristics were compared
between young and older patients using proportions for
categorical variables and medians with interquartile range for
continuous variables. The rate of different types of PES and
numbers of PES were determined and compared between young
and older patients with ESUS. After discharge, patients were
followed up at Hartford Healthcare for at least one year with
the available medical record. Patients who did not follow with
Hartford Healthcare for at least one year were considered as lost
to follow-up and were not included in the study. The recurrent
ischemic stroke was diagnosed by repeated brainMRI or head CT
during follow-up. The rate of stroke recurrence during follow-
up was assessed by different types of PES, numbers of PES,
and comparison with young and older patients with ESUS. All
comparisons were performed using the Pearson Chi-square test
with SPSS and p<0.05 as the significance level.

RESULTS

A total of 85 young patients with ESUS (55.3% women, median
age 39 years) were identified and matched with 84 older patients
(41.7% women, median age 74 years). The baseline and clinical
characteristics of patients are summarized in Table 2. Young
patients with ESUS tended to be women and ethnic minorities
as compared to older patients.

As expected, a lower proportion of young patients with
ESUS had hypertension, hyperlipidemia, and diabetes,
although both young and older patients with ESUS had
a similar rate of active smoking. The initial NIHSS at
admission as well as the rate of large vessel occlusion were
similar in young and older patients with ESUS, with young
patients tending to receive mechanical thrombectomy. Young
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TABLE 2 | Baseline and clinical characteristics.

Baseline and clinical characteristics

Young ESUS N = 85 Older ESUS N = 84 P

Age 39 (32–44) 74 (63−81) <0.001

Female 55.3% (47/85) 41.7% (35/84) 0.08

Caucasian 62.4% (53/85) 77.4% (65/84) 0.07

Afr-Am 12.9% (11/85) 4.8% (4/84)

Other race 24.7% (21/85) 17.9% (15/84)

Hypertension 23.5% (20/85) 81.0% (68/84) <0.001

Hyperlipidemia 24.7% (21/85) 61.9% (52/84) <0.001

Diabetes 17.6% (15/85) 32.1% (27/84) 0.03

Active Smoking 20.0% (17/85) 14.1% (12/84) 0.33

NIHSS (0-5) 65.9% (54/82) 62.0% (49/79) 0.88

NIHSS (6–9) 14.6% (12/82) 16.5% (13/79)

NIHSS (≥10) 19.5% (16/82) 21.5% (17/79)

LVO 22.4% (19/85) 17.9% (15/84) 0.63

Thrombectomy 14.1% (12/85) 6.0% (5/84) 0.08

Discharge home 71.6% (58/81) 48.0% (36/75) 0.003

Discharge rehab 28.4% (23/81) 52.0% (39/75)

Antiplatelet 87.8% (72/82) 79.8% (67/84) 0.16

Anticoagulation 12.2% (10/82) 20.2 (17/84)

Recurrence after 1 year 2.6% (2/77) 6.3% (5/79) 0.26

Recurrence during follow-up 4.1% (3/74) 11.4% (9/79) 0.29

Data are given as a percentage (number). Age is presented as median (interquartile range).

patients were more likely to be discharged home compared
to older patients. Most young (87.8%) and older (79.8%)
patients with ESUS were treated with antiplatelet agents
with lower rates of anticoagulation among younger patients.
Young patients with ESUS tended to have a lower rate of
recurrent embolic stroke during follow-up as compared to
older patients.

Themost common PES in young patients with ESUSwas PFO,
with or without an atrial septal defect (ASA) (42.4%). Other types
of PES were only identified in 2–7% of young patients with ESUS
(Table 3). About half of young patients (54.1%) with ESUS were
found to have a single PES, only 10% had multiple PES and about
one-third (35.3%) did not have any PES identified (Table 3). In
older patients with ESUS, the 3 most common PES were atrial
cardiopathy (38.1%), LVD (35.7%), and arterial disease (23.8%).
wDuring follow up, AFib was detected in 17.9% of older patients
(about 32% of older patients with ESUS had a 30-day monitor
and 11% had implanted monitors) as compared to in 2.4% of
young patients with ESUS (∼20% of young patients with ESUS
had a 30-day monitor and 5% received implanted monitor). As
compared to young patients, at least one PES was identified in
78.6% of older patients with ESUS. Nearly half (42.9%) of older
patients had multiple PES (Table 3).

The rate of recurrent embolic stroke by PES is summarized
in Table 4. During a median follow-up of 3 years, 13% of young
patients with ESUS and 6% of older patients with ESUS were
lost follow-up. About one out of 10 (11.4%) older patients with
ESUS had a recurrent stroke. Older patients who were found

TABLE 3 | Rate of PES by types and numbers.

Young ESUS

N = 85

Old ESUS

N = 84

P

Individual PES

Atrial cardiopathy

2.4% (2) 38.1% (32) <0.001

Afib 2.4% (2) 17.9% (15) 0.001

Left ventricular

dysfunction

5.9% (5) 35.7% (30) <0.001

Cardiac valve disease 5.9% (5) 16.7% (14) 0.026

PFO/ASA 42.4% (36) 9.5% (8) <0.001

Arterial disease 7.1% (6) 23.8% (20) 0.003

Number of PES

NO PES 35.3% (30) 21.4% (18) <0.001

Single PES 54.1% (46) 35.7% (30)

Multiple PES 10.6% (9) 42.9% (36)

Data are given as percentages (numbers).

to have A-fib during follow-up tended to have the highest rate
of stroke recurrence (26.7%). Older patients who had multiple
PES had a rate of 15.8% stroke recurrence compared to those
who had single or no PES at 6.7% and 5.6%, respectively. Only
one out of 25 young patients with ESUS (4.1%) had a recurrent
stroke. Among the three young patients who had a recurrent
stroke, two patients had PFO without closure and one patient
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TABLE 4 | Recurrent embolic stroke by type and number of PES.

Stroke recurrence

PES Young ESUS Old ESUS

Atrial cardiopathy 0/2 18.8% (6/32)

Afib at F/U 0/2 26.7% (4/15)

Left ventricular dysfunction 0/5 13.3% (4/30)

Cardiac valve disease 20.0% (1/5) 14.2% (2/14)

PFO/ASA 5.6% (2/36) 12.5% (1/8)

Arterial disease 0/6 10% (2/20)

No PES 0/30 5.6% (1/18)

Single PES 6.5% (3/46) 6.7% (2/30)

Multiple PES 0/7 15.8% (6/38)

Total 4.1% (3/74) 11.4% (9/79)

Data are given as a percentage (number).

had cardiac valve disease. There were no recurrent strokes among
young patients with no PES identified.

DISCUSSION

In this observational study, PFO and/or ASA were the only
common PES in young patients with ESUS and found in nearly
half (42%) of young patients. In contrast, PFO and/or ASA were
detected in less than 10% of older patients, albeit many older
patients who usually underwent transthoracic echocardiography
without bubble study. Other PES, such as atrial cardiopathy,
LVD, arterial disease, AFib, and cardiac valve disease, were
frequently identified in about 15–40% of older patients, but they
were uncommonly detected in less than 10% of young patients.
Overall, young patients with ESUS had a lower burden and less
overlap of PES than older patients. Half (54%) of young patients
had single PES, and one-third of young patients did not have any
PES identified, whereas nearly half of older patients had two or
three PES. Our findings are consistent with a recent study that
identified three main clusters of patients with ESUS according
to clinical characteristics and cerebrovascular risk factors. Those
clusters were correlated to the potential arteriogenic, cardiogenic,
and paradoxical source of embolic stroke. One cluster was
associated with PFO in patients at young ages (11).

According to a systemic review including most studies of
older patients, ESUS is associated with a recurrent stroke rate
of 4.5% per year (8). Among the young patients registered to
the Helsinki Young Stroke Registry, young patients with ESUS
had a relatively low cumulative risk of recurrent stroke that
is about 1.95% annually over a median follow-up time of 10
years (7). Again, our study showed young patients with ESUS
tended to have a lower rate of stroke recurrence as compared
with older patients with ESUS. Only three young patients had
a recurrent stroke, and two of them had PFO without closure.
In recent years, emerging evidence indicates that paradoxical
embolism through PFO is a potential causal mechanism of ESUS
(12). PFO with large shunting and/or ASA was associated with
a high risk for recurrent stroke (12, 13). Two recent RCTs

found that percutaneous closure of PFO in appropriately selected
patients decreases the risk of recurrent stroke in young patients
with ESUS (14, 15). Only one patient with cardiac valve disease
had a recurrent stroke for other PES. The rate of other PES-
associated stroke recurrence is difficult to be interpreted in our
study because of their low detection rate in young patients with
ESUS. As compared to young patients, older patients who were
found to have A-fib during follow-up tended to have the highest
rate of stroke recurrence (26.7%). And all other PES-associated
stroke recurrence rate was 10–20% in older patients with ESUS.
However, given half of older patients had multiple PES, it is
difficult to determine the PES that are potentially implicated
in each patient. Previous studies found that older patients with
multiple PES were not at increased risk of recurrent stroke as
compared to patients who had single PES (2, 3). The finding
may indicate high-risk PES, but not multiple low-risk PES, play
the key role in stroke recurrence. Young patients with ESUS
had less overlap of PES; our study showed that among 10% of
young patients who had two PES identified, none of them had a
recurrent stroke.

The low rate of PES in young patients with ESUS is partly
explained by the low rate of traditional cerebrovascular risk
factors. In addition, according to recommendations from the
international ESUS working group, only minimal standard
evaluation is required to rule out established etiology, other
diagnostic tests such as malignancy screening, hypercoagulable
testing, 30-day or implanted rhythm monitors, TEE, and
special MRIs may be considered on a case-by-case basis (1).
PES detection rate may be higher if all the young patients
underwent TEE, prolonged cardiac monitoring, and more
advanced diagnostic workup. It is important to note, however,
that occult AFib was a rare finding in younger patients with
ESUS in our study, and of low yield. High-resolution MRI
had higher sensitivity and specificity in detecting vessel wall
abnormality such as atheroma and dissection (16, 17). If high-
resolution MRI can be used in routine practice, it may help to
identify more PES in young patients. Furthermore, young stroke
patients have unique risk factors such as migraines, the use of
oral contraceptive pills, or illicit drugs (18–20). Mechanisms
other than embolisms such as hypercoagulability, vasospasm,
and in-situ thrombosis may be the cause of cryptogenic
stroke in young patients. Cancer, especially active cancer is
considered a risk factor for ischemic stroke in young adults
(21, 22). The hypercoagulable state is the most important
mechanism of malignancy-associated ischemic stroke and
other potential mechanisms include marantic endocarditis,
the effect of chemotherapy or radiotherapy, accelerated
atherosclerosis, and intravascular disease (Lymphoma) (22).
Inherited thrombophilia is a group of disorders including factor
V Leiden or Prothrombin mutation, deficiency of Antithrombin,
protein C and protein S, and hyperhomocysteinemia caused
by mutations in methylenetetrahydrofolate reductase (23, 24).
Studies have shown an inconsistent or weak association between
inherited thrombophilia and ischemic stroke (23–25), although
a moderately stronger risk was reported in a subgroup of
younger patients (25, 26). Our study focused on ESUS with
embolism as a likely cause of stroke and we did not include
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patients with malignancy or inherited thrombophilia, in which
a hypercoagulable state is a potential mechanism. However,
malignancy and thrombophilia are important risk factors for
cryptogenic stroke in young adults and they can cause imaging
patterns similar as embolic stroke. Of note, our study shows PES
was not identified in one-third of young patients with ESUS,
and none of those patients had a recurrent stroke. Although the
causal mechanism remains unknown, this finding is reassuring
that stroke recurrence was rare in these young patients with
ESUS without PES identified.

The findings of our study suggest young patients differ
from older patients with ESUS. Although the two groups have
similar stroke severity and rate of large vessel occlusion, they
are different regarding risk factors, possible embolic source,
and stroke recurrence. Current RCTs testing antithrombotics
for stroke prevention in ESUS mainly focused on older patients
and the finding would not be well-applicable to young patients
(5, 6). Severe atrial cardiopathy was identified as an independent
risk factor in the absence of AFib in patients with ESUS (27).
However, due to the low prevalence of atrial cardiopathy in
younger patients, the ongoing ARCADIA (Atrial Cardiopathy
and Antithrombotic Drugs in Prevention after Cryptogenic
Stroke) trial only enrolls patients with ESUS older than 45 years
(28). PFO is the only common PES in young patients with ESUS.
Given the low rate of other PES, their roles in stroke recurrence
are less significant in young patients with ESUS. Future studies in
young patients with ESUS should focus on PFO-related stroke to
better define features of high-risk PFO and identify appropriate
patients to benefit from PFO closure as it will further lower
stroke recurrence.

Strengths and Limitations
Our study is the first study to assess PES and its associated
rate of stroke recurrence in young patients with ESUS over
15 years. However, due to a single-center design, we were
unable to estimate the risk of recurrent stroke by PES given
the relatively small number of patients. One common limitation
of all PES studies is that the rate and overlap of PES are
usually underestimated. PES in our study was defined according
to criteria used in NAVIGATE ESUS study and reviewed by
an international ESUS working group (1, 2). Many recently
identified PES such as new biomarkers of atrial cardiopathy,

including NT-proBNP and ECG indexes (28–30), pulmonary
arteriovenous fistula, and carotid web, were not included in the
study (31, 32). Another common limitation in PES studies is
that the criteria also likely include many low-risk PES. Those
PES are usually associated with a very low rate of stroke and
are often likely incidental without clinical significance. In the
future, a prospective multi-center study better defined PES, with
a sufficient sample size and completion of extensive diagnostic
tests, is needed to assess the PES burden and associated risk of
stroke recurrence in young patients with ESUS.

In conclusion, PES differs in patients with ESUS according to
age. PFO is the only common PES in young patients with ESUS.
Young patients have less burden and overlap with other PES that
are commonly identified in older patients. Future research should
continue to identify high-risk PES specific to young patients and
verify features of high-risk PFO.
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The etiologies of cryptogenic stroke are complex and heterogeneous. A number of

uncommon etiologies are not fully recognized, some of which predominantly affect

females. Most of these etiologies are closely related to the hormonal level, reproductive

factors, coagulation function, and medications of females. Moreover, once cryptogenic

stroke is diagnosed, females tend to have worse outcomes. Therefore, prompt etiological

recognition and treatment are crucial for good recovery. The aim of this article is to

review advances in exploring uncommon female-predominant etiologies of cryptogenic

stroke. These etiologies are categorized into arterial, cardiac, and venous sources.

Arterial vasoconstrictive narrowing, intimal injury, and intimal developmental abnormality

can cause brain ischemia or artery-to-artery cerebral embolism. Myocardial contraction

dysfunction, cardiac wall injury, and developmental abnormality can induce intracardiac

thrombosis and lead to cardiac embolism. In addition, cortical venous thrombosis and

occult venous thromboembolism via intracardiac or extracardiac channels also account

for cryptogenic stroke in females. Due to the lack of knowledge, in clinical practice, the

above etiologies are seldom assessed. The low incidence rate of these etiologies can

lead to missed diagnosis. This review will provide novel clinical clues for the etiological

diagnosis of cryptogenic stroke and will help to improve the management and secondary

prevention of stroke in the female population. In the future, more studies are needed to

explore the etiology and prevention strategies of cryptogenic stroke.
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INTRODUCTION

The etiologies of cryptogenic stroke are complex and heterogeneous. A number of uncommon
etiologies are not fully recognized, some of which predominantly affect females. Studies have shown
that differences in hormonal factors, coagulation state, and immunity may predispose females to
stroke at certain physiological periods, including pregnancy and the peripartum period (1, 2). Once
cryptogenic stroke is diagnosed, females tend to have worse outcomes (1, 3), therefore prompt
etiological recognition and treatment are crucial for good recovery. However, these potential
etiologies are often undiagnosed in clinical practice due to the limitation of knowledge and
examination technologies. In this article, we will review the advancement in exploring uncommon
female-predominant etiologies of cryptogenic stroke, which will provide novel clinical clues for the
etiological diagnosis of cryptogenic stroke and might be helpful in improving the diagnosis and
secondary prevention of stroke as a whole.
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ARTERIAL SOURCES OF CEREBRAL
INFARCTION OR EMBOLISM

Vascular Sources of Cerebral Infarction or
Embolism
Atherosclerotic arterial stenosis/occlusion and vulnerable plaque
eruption are predominant pathogenic mechanisms of ischemic
stroke (23). However, some uncommon conditions, including
cerebral vasoconstrictive narrowing and thromboembolism
caused by arterial intimal injury or intimal developmental
abnormality, are unrecognized. These conditions are closely
related to the hormonal level, gestational status, and medications
of females, which deserve more attention from clinicians.

Reversible Cerebral Vasoconstriction Syndrome
Reversible cerebral vasoconstriction syndrome (RCVS) refers to
a group of disorders characterized by reversible vasoconstriction
of the cerebral vasculature, including uncommon conditions like
drug-induced angiopathy and postpartum angiopathy. . . RCVS.
should be highly suspected in patients with recurrent thunderclap
headache, multifocal segmental cerebral artery narrowing
typically showing a beaded appearance on angiography, and
after exclusion of diseases with similar clinical manifestations
including arterial dissection, aneurysm, and vasculitis. In
addition, the arterial narrowing in RCVS is characteristically
reversible within 3 months (4).

In previous studies, up to 64.2–85.6% of RCVS patients
were female (4, 5), while only 14.4–35.8% were men. The
predominance of females in RCVS might be associated with
the use of vasoactive medications including triptans, selective
serotonin reuptake inhibitors, or noradrenergic and selective
serotonergic antidepressants, or with postpartum and eclampsia
(6, 7). Vasoactive substances and surge of blood pressure can
induce sympathetic overactivation and subsequently persistent
vasoconstriction. Estrogen also participated in the deregulation
of cerebral vascular tone (4). Further, placental growth factor,
soluble fms-like tyrosine kinase-1, and transforming growth
factor β might be implicated in developing postpartum RCVS
(2, 4), the mechanism of which is still unclear.

It is usually thought that RCVS has a benign course, but
in fact, around 6–39% of RCVS cases developed ischemic
stroke (4). Particular attention should be paid to RCVS-related
stroke in pregnancy and the postpartum periods. Recently, two
retrospective studies have indicated that RCVS might be the
most common cause of stroke during these periods. Moreover,
the condition of RCVS-related stroke in these periods might
continuously worsen and even lead to death (24–26). It should
be noted that the prodromal headache symptom of RCVS-
related stroke is sometimes atypical or even absent (27), which
would lead to misdiagnosis of RCVS as atherosclerotic stenosis
or aneurysm, or missed diagnosis. Thus, for females with
cryptogenic stroke, particularly for those in pregnancy and the
postpartum periods, not only should detailed history taking
of prodromal headache symptom, precipitating factors, and
medications be taken, but also dynamic observation of the
reversible changes of cerebral vasculature should be highlighted,
in order to clarify the diagnosis.

Pregnancy Associated Aortic Dissection
Aortic dissection is a known uncommon etiology of cryptogenic
stroke, but surprisingly, for young and middle-aged female, over
half of aortic dissections developed in pregnancy (8). Particularly,
pregnant females with multiple gestation, connective tissue
disorders, gestational diabetes, gestational hypertension and pre-
eclampsia/eclampsia are more prone to pregnancy-associated
aortic dissection (PAD) (28, 29). PAD might develop under the
synergistic effect of various factors. The increase in heart rate,
cardiac output, and abdominal pressure in pregnancy would
add forces to the aortic wall. In addition, changes in estrogen
level during pregnancy might be associated with the weakening
of elastic fibers and medial degeneration of the aortic wall
(28). These factors combined could increase the risk of aortic
intimal laceration.

Studies have shown that up to 76% of PAD were Stanford
type A, which means the dissection might involve the orifices
and proximal segments of the three major branches of aorta
and would lead to stroke and upper limb ischemia (30, 31).
Moreover, PAD-related stroke is a rapidly progressive life-
threatening condition with a high rate of maternal and fetal
death, which requires urgent diagnosis and treatment. Patients
with PAD might sometimes present with atypical chest pains.
Moreover, the characteristic imaging features of dissection,
including entrance and exit tears, true and false lumen, and
intimal flap, are easily neglected in routine examinations for
stroke, such as carotid ultrasonography and echocardiogram,
which would delay or mislead the diagnosis of PAD-related
stroke. Therefore, for pregnant females with cryptogenic stroke,
clinicians should be highly alert to PAD even when encountering
atypical manifestations.

Intracranial Arterial Dissection
Unlike vertebral and carotid artery dissections, fewer than 20% of
stroke-related dissections involve intracranial arteries, including
dissections of the basilar artery, posterior inferior cerebellar
artery, and arteries around the circle of Willis, which are not
fully recognized. The smaller diameters of these arteries limit
the ability of routine vascular imaging examinations to detect
characteristic imaging features of dissection, including true and
false lumen and intimal flap; the dissection tends to be missed or
misdiagnosed as aneurysm, vasculitis, or fibromuscular dysplasia,
etc. (32, 33).

It is worth noting that among East Asian patients, up to
67–78% of cervicocranial arterial dissections are intracranial
arterial dissection (IAD), and around half of IAD patients
are female (9). In this regard, when east Asian females with
cryptogenic stroke presented with dissection related factors,
including prodromal headache and medical history of head
trauma or violent movement, while no evidence of carotid or
vertebral artery dissection was found, high resolution magnetic
resonance imaging or thin slice spiral CT should be applied to
detect IAD.

Carotid Web
Carotid web (CW) refers to a thin shelf-like projection developed
from the posterior wall of the carotid bulb, which was
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demonstrated to be the fibroelastic thickening of the intima in
histopathological examinations (34). Researchers hypothesized
that CW might be a rare and atypical subtype of fibromuscular
hyperplasia with unknown pathogenesis (10).

In recent years, studies have found a close relationship
between CW and the incidence and recurrence of cryptogenic
stroke in young andmiddle-aged adults. CWhas been detected in
9.4–37% of young and middle-aged cryptogenic stroke patients;
the percentage was markedly higher than that of non-stroke
controls (1–7%) (35). In addition, a cohort study of cryptogenic
stroke patients has reported that 29% of CW ipsilateral to the
infarction developed mural thrombi; during 1-year follow-up,
32% of stroke patients had recurring cerebral infarctions in brain
regions ipsilateral to the CW (11). Researchers hypothesized
that the pathogenic mechanism of CW-related stroke might be
a cerebral embolism due to dislodgement of mural thrombus
formed within CW.

Particularly, in recent meta-analyses and case control studies,
up to 61–91% of CW-related stroke patients were female (10–
13). The underlying mechanism of developing CW in females is
still not clear, although genetic, hormonal factors, and vascular
injury might play a role. When evaluating for cryptogenic stroke
in young and middle-aged females, careful examination of the
posterior wall for a protrusion along the carotid bulb should
be done on computed tomography angiography or magnetic
resonance angiography.

Aortic Mural Thrombus
While mural thrombus due to aortic atherosclerotic plaque
rupture is a known source of cryptogenic stroke, less attention has
been given to aortic mural thrombus (AMT) with no underlying
aortic diseases. The pathogenesis of AMT is unclear, although
coagulation disorders and malignancy have both been reported.
The pathogenesis of this AMT is still unclear; some cases also
have coagulation disorders, hematologic disorders, malignancy,
inflammatory bowel disease, or are under chemotherapy or
taking steroids or oral contraceptives (14), which suggests
a possible link with hypercoagulable state. Intimal injuries
secondary to smoking and trauma might also induce aortic
thrombosis (36). Although only around 200 AMT cases were
reported to date (14), over half of the patients were female,
and about 88% of AMT were movable floating thrombus with
potentially high risk of embolism. Moreover, about 4–14% of the
embolic events were stroke (14, 37). Therefore, if the aortic origin
of cryptogenic cerebral embolism was suspected, especially in
females with hypercoagulation disorders and systemic embolism,
the aorta should be examined for AMT by transesophageal
echocardiogram or contrast enhanced computed tomography
even when atherosclerosis was not evident.

Cardiac Thromboembolism
Cardiac thrombi secondary to atrial fibrillation, recent
myocardial infarction, systolic heart failure, and prosthetic
heart valves are common sources of cerebral embolism. In
addition, infective endocarditis, papillary fibroelastoma, and
myxoma are relatively uncommon but known sources of
cardioembolism (15). Apart from these, some uncommon

diseases compromising the structure and function of the heart
can cause cardiac thrombi s as well. As most symptoms of
these diseases are non-specific, they tend to be misdiagnosed
or neglected, particularly when accompanied by common heart
diseases. Moreover, this group of diseases are difficult to detect
via routine transthoracic echocardiogram; transesophageal
echocardiogram or other high-resolution imaging techniques
are usually needed to clarify the diagnosis. In these situations,
the etiology of stroke would be underdiagnosed. Several of these
diseases are female-predominant, which call for special attention.

Takotsubo Syndrome
Takotsubo syndrome is an acute cardiac syndrome characterized
by transient and reversible left ventricular contraction
dysfunction affecting more than one coronary artery territory.
The incidence of TTS was reported to be approximately
10/100,000. TTS patients frequently suffered from emotional
or physical stress prior to symptom onset and have clinical
and electrocardiographic manifestations similar to that of
acute coronary syndrome; in a few cases, patients might
present with a chronic course or remain asymptomatic. On
left ventriculography, TTS characteristically shows an apical
ballooning appearance due to dyskinetic apical contraction
and compensatively enhanced basal wall contraction of the
left ventricle. The ventricle configuration and function usually
recovered spontaneously within days or months (16).

TTS is an uncommon etiology of stroke and could be the
underlying etiology of cryptogenic stroke. According to previous
studies, the incidence of stroke among TTS patients admitted
to the hospital, 30 days and 1 year after disease onset, were 1–
1.7, 2.8, and 4.2%, respectively (17). The pathogenic mechanism
of TTS-related stroke might be cardioembolism secondary to
ventricular thrombosis, as left ventricular thrombi were detected
in about 1.3–5.3% of TTS cases (38). Once the ventricle function
returned to normal, the thrombi might dislodge from the
ventricle wall after myocardial contraction and cause cerebral
embolism. Whereas, since the clinical manifestations of TTS
mimics that of acute coronary syndrome, and sometimes even no
obvious symptoms are presented, TTS tends to be misdiagnosed
or missed in clinical practice.

Up to 70–90% of TTS patients and most of the recurring TTS
cases were female (16, 18, 39); in addition, 10% of hospitalized
female patients who initially presented with suspected acute
coronary syndrome were ultimately diagnosed with TTS (16).
It should be noted that most of the females with TTS
were postmenopausal, which means TTS might be explained
by the hormonal changes after menopause. Catecholamine
cardiotoxicity plays a key role in the pathogenesis of TTS.
Emotional and physical stressors can induce sympathetic
hyperactivation and surge of circulating catecholamines, which
would cause myocardial stunning and coronary spasm, and
ultimately lead to ventricular contraction dysfunction. It is well-
established that estrogen protects against the cardiotoxicity of
catecholamine; as the estrogen level decreases after menopause,
its protective effect attenuates, which would render the heart
vulnerable to TTS in response to stress (16).
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When diagnosing cryptogenic stroke in females, especially
in postmenopausal females, detailed inquiry of predisposing
stressful events would be helpful. If prodromal acute chest pain
is presented, careful discrimination of TTS from acute coronary
syndrome would be necessary.

Left Atrial Appendage Aneurysm
Left atrial appendage aneurysm (LAAA) refers to the abnormal
aneurysmal enlargement of the left atrial appendage. The
pathogenesis of LAAA is undetermined; 90% of LAAA cases
were congenital, probably due to congenital dysplasia of the atrial
pectinate muscles, others were secondary to mitral valve diseases,
or other conditions leading to elevated left atrial pressure.
Most LAAA patients were asymptomatic, while others presented
with palpitation, dyspnea, or chest pain. In histopathological
examinations, endocardium or myocardium fibrosis of left atrial
appendage was demonstrated. The enlarged aneurysm might
compress the left coronary artery and result in myocardial
ischemia and atrial arrhythmia including atrial fibrillation/flutter
(26.7%) and supraventricular tachycardia (9.9%) (40). Of the
LAAA cases, 5.9% developed thromboembolic events (40), and
mural thrombi were detected attaching to the wall of left atrial
appendage in published LAAA-related stroke cases (19, 41).
LAAA is rare, only around 100 cases were reported in literature,
although 52.5% of patients were female. Thus, for females
with cryptogenic stroke, particularly for those presenting with
palpitation, dyspnea, or arrhythmia, echocardiogram should be
performed to assess for LAAA.

Left Atrial Dissection
Left atrial dissection (LAD) refers to the blood-filling false cavity
extending from the mitral annular area to the left atrium free
wall or interatrial septum. Most LAD cases were reported after
cardiac surgery, such as mitral valve replacement, radiofrequency
ablation, coronary bypass surgery, or percutaneous coronary
angioplasty, while no more 1/8 of cases were spontaneous. LAD
tended to occur in the posterior atrial wall; the false cavity
might gradually enlarge and grow into a hematoma, which would
obstruct the mitral valve inflow or orifices of pulmonary veins
and induce thrombosis. The clinical manifestations of LAD vary
widely, including dyspnea, hemodynamically instable symptoms,
chest pain, arrhythmia, dysphagia, and stroke (20, 42). In most
cases, the symptom presented within hours or days post-surgery
(73.3%), while a few presented after months or years. About half
of LAD patients were hemodynamically instable and presented
with congestive heart failure and low-output syndrome, while
15% were asymptomatic (42). Although no more than 100 LAD
cases were reported, over half of patients were female. In this
regard, LAD should be counted as another rare etiology of
cardioembolism in females. Particularly for female patients who
had a recent history of cardiac surgery prior to stroke onset
and presented with hemodynamically unstable symptoms, LAD
should be considered. The imaging features of LAD are not easily
distinguishable from that of cardiac tumor or pericardial effusion
in routine transthoracic echocardiogram andmagnetic resonance
imaging, when suspecting LAD, transesophageal echocardiogram
is possibly needed to clarify the diagnosis (20).

VENOUS SOURCES OF CEREBRAL
INFARCTION AND EMBOLISM

Venous thrombi cause stroke in two ways, either by direct
occlusion of cerebral drainage veins or by indirect paroxysmal
thromboembolism via intracardiac or extracardiac channels.
Apart from cerebral venous sinuses and lower limb veins, some
venous thrombi form in uncommon locations, which are almost
undetectable by routine vascular examinations and are closely
associated with a hypercoagulable state. Since females are prone
to hypercoagulation disorders, it is necessary to screen for occult
venous thrombi for females with cryptogenic stroke.

Isolated Cortical Venous Thrombosis
It is known that infarction due to cerebral venous sinus
thrombosis is an uncommon type of stroke. Unexpectedly, stroke
due to isolated cortical venous thrombosis (ICVT) is even more
uncommon and unrecognized. In previous reports, only 6% of
intracranial venous thrombosis were ICVT (43, 44). The clinical
manifestations of ICVT were similar to that of cerebral venous
sinus thrombosis, but intracranial hypertension was seldom
presented (44). The diagnosis of ICVT-related stroke is often
difficult, as the imaging features of ICVT are not evident in
routine vascular imaging examinations due to the small diameter
of involved cortical veins. Magnetic resonance venography,
black-blood magnetic resonance imaging, or CT venography is
always needed to clarify the diagnosis.

According to the meta-analysis conducted in 2014, up to 2/3
of ICVT patients were females (44). The development of ICVT
in females might be associated with a hypercoagulable state. In
this study, 21% of female had histories of taking contraceptives
and 35% were pregnant or in the postpartum period (44), both
conditions were closely related to hypercoagulation. In addition,
intracranial hypotension might also be an inducing factor of
ICVT in females. In a retrospective study recruiting 51 ICVT
patients, 10 patients (23.3%) had intracranial hypotension, while
intracranial hypotension was present in merely 2% of all patients
with cerebral venous thrombosis. Among the 10 patients, seven
patients were female while only three were men (21).

In clinical practice, when encountering a female stroke patient
with a history of taking contraceptives, pregnant or in the
postpartum period, or with intracranial hypotension, particularly
those with isolated cortical lesion, ICVT should be suspected.

Paradoxical Emboli
May-Thurner Syndrome
May-Thurner syndrome (MTS) is characterized by the
impairment of iliac venous return and obstruction of the
iliac vein due to compression by the overlying iliac artery against
the lumbar spine. Although the compression is a common
anatomic variation found in 14–32% of cadavers (45), and most
MTS patients were asymptomatic or with only insignificant
presentations like mild lower limb edema and pigmentation, it
still calls for attention. In a meta-analysis of 1,569 symptomatic
MTS cases, 52.4% of patients had deep venous thrombosis and
7.8% had pulmonary embolism (46). A hypercoagulable state
might be an inducing factor of MTS-related venous thrombosis.
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TABLE 1 | Proportion of women vs. men and screening recommendations for uncommon female-predominant etiologies of cryptogenic stroke.

Etiology Proportion of women

vs. men

Clinical history clues Diagnostic testing clues

Arterial sources

Vascular sources

Reversible cerebral

vasoconstriction

syndrome

64.2–85.6% vs.

14.4–35.8% (4, 5)

1. Prodromal thunderclap headache

2. Medical history of migraine, eclampsia

3. Postpartum or stage of pregnancy

4. Vasoactive medications including triptans, selective serotonin reuptake

inhibitors, noradrenergic and selective serotonergic antidepressants,

cannabis, binge drinking, etc. (6, 7)

1. Multifocal segmental cerebral artery narrowing with beaded appearance

on DSA//MRA/CTA/contrast-enhanced vessel wall imaging

2. Complete or substantial resolution of vasoconstriction within 3 months of

clinical onset

Pregnancy associated

aortic dissection

100% (60% in

pregnancy and

peripartum) vs. 0 (8)

1. Chest pain or back pain, hemodynamically instable symptoms, asymmetric

brachial arterial pressure

2. Medical history of multiple gestation, connective tissue disorders, gestational

diabetes, gestational hypertension and pre-eclampsia/eclampsia

3. Stages of pregnancy or postpartum

1. Entrance and exit tears, true and false lumen, intimal flap

on CTA/DSA/TEE

Intracranial arterial

dissection

33–42% vs. 58–67%

(9)

1. Age

2. Ethnicity

3. Prodromal headache

4. Recent medical history of head trauma, violent movement

1. True and false lumen, intimal flap on high resolution MRI/ thin- slice

spiral CT

Carotid web 61–91% vs. 9–39% in

carotid web related

stroke patients (10–13)

1. Age 1. Thin shelf-like filling defect attached to the wall of carotid bulb on

carotid ultrasonography/MRA/CTA

Aortic mural thrombus 53 vs. 47% (14) 1. Medical history of coagulation disorders, hematologic disorders, malignancy,

inflammatory bowel disease

2. Medications including chemotherapy, steroids, oral contraceptives

1. Coagulation tests including protein c, protein S, factor V, anticardiolipin

antibodies, etc.

2. Movable floating mass attached to the aortic wall on TEE/aortic CTA

Cardiac sources

Takotsubo syndrome 70–90% vs. 10–30%

(15–17)

1. Prodromal emotional or physical stressful events, chest pain or discomfort

2. Postmenopausal

1. Dyskinetic ventricle contraction, typically apical ballooning appearance on

left ventriculography/echocardiogram

2. Resolution of configuration and function within months of clinical onset

Left atrial appendage

aneurysm

52.5 vs. 47.5% (18) 1. Palpitation, dyspnea or arrhythmia 1. Aneurysmal enlargement of the left atrial appendage on

echocardiogram/cardiac MRI

Left atrial dissection 55 vs. 45% (19) 1. Recent history of cardiac surgery or intervention

2. Hemodynamically instable symptoms

1. Resembling cardiac tumor or pericardial effusion on

TEE/TTE/cardiac MRI

Venous sources

Isolated cortical venous

thrombosis

68 vs. 32% (20) 1. Headache, seizure

2. Medical history of coagulation disorders, intracranial hypotension

3. Pregnancy or postpartum

4. Taking oral estrogen containing contraceptives

1. Coagulation tests including protein c, protein S, factor V, anticardiolipin

antibodies, etc.

2. Black-blood MRI/MRV/ CTV

May-Thurner syndrome 67 vs. 33% in

symptomatic patients

(21)

1. Asymmetric lower limb edema, pigmentation

2. Medical history of patent foramen ovale, pulmonary embolism, coagulation

disorders

3. Pregnancy or postpartum

4. Taking oral estrogen containing contraceptives

1. Coagulation tests including protein c, protein S, factor V, anticardiolipin

antibodies, etc.

2. Compression of iliac vein by the overlying iliac artery and thrombosis on

contrast enhanced MRI /contrast enhanced CT of pelvic veins

Pulmonary

arteriovenous

malformation

60–64% vs. 36–40%

(22)

1. Recurrent epistaxis, multifocal cutaneous telangiectasis

2. Medical history of hypoxemia, brain abscess, migraine, decompression

illness, hemoptysis and hemothorax

3. Family history of hemorrhagic telangiectasis

1. Positive transcranial doppler bubble test, but no intracardiac shunting in

TEE

2. DSA/contrast enhanced chest CT

CT, computed tomography; CTA, computed tomography angiography; CTV, computed tomography venography; DSA, digital subtraction angiography; MRA, magnetic resonance angiography; MRV, magnetic resonance venography;

TEE, transesophageal echocardiogram; TTE, transthoracic echocardiogram.
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In this study, 11.2% of MTS patients had malignant tumor, 16.9%
had a history of recent surgery, 4.6% had trauma, and 9.6% had
coagulation disorders including factor V Leiden thrombophilia,
protein C, and protein S deficiency (46).

MTS tends to develop in females. In previous studies, about
2/3 of symptomatic MTS patients were female, which might be
associated with pregnancy, taking contraceptives, or estrogen
replacement therapy. Moreover, the condition of females with
MTS tended to be more severe than men; it was reported that
females had a higher percentage of severe iliac venous stenosis
(19.5 vs. 11.1%) (47) and pulmonary embolism (9.9 vs. 1.6%)
compared with men (46).

MTSmight not only cause pulmonary embolism, but also lead
to stroke. One of the recent studies utilizing magnetic resonance
imaging to examine the pelvic veins of cryptogenic stroke patients
has found that 31% of cryptogenic stroke patients had MTS,
which was significantly higher than that of controls (10%). The
compression degree of iliac veins in cryptogenic stroke patients
with MTS was also higher than that of controls (32 vs. 13%)
(22). Another study had retrospectively analyzed 50 cryptogenic
stroke cases with patent foramen ovale (PFO) and found that
10% of patients had MTS and 8% had pelvic venous thrombosis,
while none of the patients had lower limb venous thrombosis
(48). It is known that the patent foramen ovale is the main
conduit from which the venous thrombi crosses directly into the
systemic circulation and causes cerebral embolism. This study
indicated that pelvic venous thrombi secondary to MTS might
be the origin of paraxysmal cerebral embolism apart from lower
limb venous thrombi, andMTSmight be the potential etiology of
crytogenic stroke.

Therefore, for female patients with cryptogenic stroke with
PFO, especially those with hypercoagulation disorders, pregnant,
or taking oral contraceptives, the use of RoPE (Risk of
Paradoxical Embolism) score and PASCAL (PFO-Associated
Stroke Causal Likelihood) classification system to evaluate the
association between stroke and PFO and the screening for MTS
by contrast enhanced magnetic resonance imaging or contrast
enhanced computed tomography of pelvic venous thrombi would
be necessary.

Pulmonary Arteriovenous Malformation
Apart from patent foramen ovale, which is the most common
etiology of paraxysmal cerebral embolism, in a few conditions,
venous thrombi can flow through the vascular bed of pulmonary
arteriovenous malformation (PAVM) into systemic circulation.
The incidence of PAVM was reported to be 2–3/100,000; female
patients outnumber male with a female to male ratio of 1.5–
1.8:1, and more than half of PAVM patients had hereditary
hemorrhagic telangiectasis (49). While most PAVM patients were
asymptomatic, 30% developed hypoxemia, stroke, brain abscess,
migraine, decompression illness, hemoptysis, or hemothorax. In
previous studies, about 3.2–55% of PAVM patients developed
stroke (49, 50). The pathogenic mechanism of stroke might be
paraxysmal cerebral embolism caused by venous thrombi passing
through the abnormal communication between pulmonary

artery and veins and ultimately into the left heart chamber and
arterial system.

Special attention should be paid to PAVM in pregnancy.
Studies have observed that, in pregnancy, PAVM tended
to increase in volume and number (49, 51), which might
be related to the elevation of cardiac output in this
period (52).

Therefore, for female patients with cryptogenic stroke, when
paraxysmal cerebral embolism was suspected but no intracardiac
shunting was demonstrated, for instance, when the transcranial
doppler bubble test was positive but no patent foramen ovale
was found in transesophageal echocardiogram, PAVM should be
screened. Particularly for female patients with a family history
of hemorrhagic telangiectasis or with recurrent epistaxis or
multifocal cutaneous telangiectasis, pre-pregnancy screening for
PAVM would be helpful in preventing severe complications like
stroke in pregnancy.

DISCUSSION

Various uncommon stroke etiologies exist in the female
population that still remain unrecognized. The incidence rates
of these etiologies are generally low, for instance, the incidence
of TTS and PAVM are 10/100,000 and 2–3/100,000, respectively,
and no more than 200 cases of AMT, LAAA, and LAD were
reported in the literature. The development of these etiologies are
closely related to the hormonal profiles in different physiological
stages of female life, coagulation function, and medications.
In pregnancy and postpartum, the changes of estrogen and
placental-related hormones might influence the regulation of
cerebral vascular tone, and induce aortic wall degeneration,
which would predispose females to RCVS and PAD. In addition,
the hormonal changes might promote hypercoagulability,
and subsequently induce thrombosis in uncommon locations
as seen in AMT, ICVT, and MTS. In post menopause, the
decrease in estrogen level attenuates its protective effect against
the cardiotoxicity of catecholamine, which would render
the heart more vulnerable to stress and predispose females
to TTS. In clinical practice, for females with cryptogenic
stroke, detailed medical history taking, comprehensive
coagulation tests, and special imaging applications are vital
for detecting occult thrombi, dissection, and vascular/cardiac
developmental abnormalities that might be easily missed in
routine examinations (the screening recommendations for
uncommon female-predominant etiologies of cryptogenic stroke
are listed in Table 1). Currently, etiological studies focusing on
females with cryptogenic stroke are scarce. In the future, greater
efforts should be made to explore the etiology and prevention
strategies of cryptogenic stroke in the female population, so as to
improve the diagnosis and treatment of stroke.
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Introduction: Accurate definition of stroke etiology is crucial, as this will guide effective

targets for treatment. Both antiphospholipid antibody syndrome (APS) and infective

endocarditis (IE) can be independent risk factors for ischemic stroke in young adults.

When an embolic stroke occurs with IE and APS simultaneously, the origin of the embolic

source is difficult to identify.

Case Report: A 19-year-old man was admitted to the hospital for the onset of stroke.

A diagnosis of APS accompanied by IE was made after a series of examinations. We

identified aortic valve vegetation as the embolic source. Although both APS and IE

can induce valve vegetation, we considered IE to be the primary cause according to

the infective clues. Despite treatment with ampicillin, the patient’s fever persisted, and

surgical aortic valve replacement was performed urgently. The patient recovered without

recurrence of stroke during the 1-year follow-up.

Conclusion: A considerable challenge for physicians is evaluating all the signs

suggestive of embolic sources in acute stroke and identifying the primary etiology when

there are multiple causes. Early diagnosis and surgical intervention for bicuspid aortic

valve (BAV) vegetation complicated by acute stroke may yield favorable clinical results.

Keywords: antiphospholipid antibody syndrome (APS), infective endocarditis, embolic, cryptogenic stroke,

surgery

INTRODUCTION

Approximately 35% of non-lacunar stroke cases occur due to cardioembolic sources (1).
Intracardiac thrombi can indicate various common diseases, such as atrial fibrillation,
patent foramen ovale (PFO), papillary fibroelastoma, myxoma, and infective endocarditis (IE)
(1). Native valve disease, such as a bicuspid aortic valve (BAV) vegetation-induced septic
embolic cerebrovascular accident, is even less common (2). Although rare, antiphospholipid
antibody syndrome (APS) can develop into cardiac valvular lesions and produce intracardiac
thrombi (3, 4). While cardioembolic stroke is often a severe condition and the etiology
is various, diagnosis is challenging for physicians, particularly given the time pressure (5).
We report a rare case of stroke in a young patient with BAV vegetation who did not
present with any clinical features referable to the cardiovascular system before this attack.
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FIGURE 1 | No arterial occlusion, stenosis, or plaque was discovered in bilateral carotid arteries (A,B), vertebral arteries (C,D), and all the intracranial arteries (E,F).

The high-resolution vessel wall magnetic resonance imaging (MRI) of the basilar artery shows no occlusion or stenosis (G).

This stroke was thought to be cryptogenic because it could be
associated with IE and APS at the same time.

CASE DESCRIPTION

An 18-year-old man was referred to the ER for sudden onset
of left hemiplegia, vomiting, and disturbance of consciousness.
He was a healthy college student who had never taken any
medication before for any disease or illness. There was no
exposure to toxins or history of alcohol intake. The patient’s
family history was significant only for hypertension in his
grandmother. A complete system review was negative. His vital
signs on admission were as follows: blood pressure, 105/63
mmHg; pulse, 84 beats/min; respiration, 18 breaths/min;
and temperature, 36.5◦C. Neurological investigation revealed
somnolence, global aphasia, gaze palsy, and right-sided
hemiplegia. The National Institutes of Health Stroke Scale

(NIHSS) score was 15. The patient was transferred to our
neurovascular center after 5 h of onset, so thrombolysis with
alteplase was not administered. He was not a candidate for
acute intervention because multimodal computed tomography
revealed no arterial occlusion or perfusion defect (Figure 1), and
after this examination, the patient had significant recovery of his
consciousness. His power improved to 4/5 in the affected limbs,
bringing his NIHSS score to 1. Treatment of aspirin, clopidogrel,
and atorvastatin was administrated. Laboratory parameters
on admission indicated an acute bacterial infection with a
C-reactive protein (CRP) level of 38.21 mg/L and leukocytosis
of 12.71× 109/L.

Neuroimaging with brain magnetic resonance imaging (MRI)
showed foci of restricted diffusion in the left thalamus and the
right brain stem suggestive of an embolic stroke (Figure 2).
Blood work showed an erythrocyte sedimentation rate (ESR)
of 38 mm/h and an antistreptolysin O (ASO) concentration of
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FIGURE 2 | Diffusion restriction of the left thalamus (A,B) and the right brain stem as demonstrated on diffusion-weighted magnetic resonance imaging consistent

with acute ischemic infarction (C,D).

290.01 IU/ml. The patient tested positive for antiphospholipid
(aPL) antibodies, including antibodies against anticardiolipin
(aCL) antibodies, lupus anticoagulant (LA), and β2-glycoprotein-
1 (β2GP-1). The β2GP-1 (133 relative unit (RU)/ml) level was
elevated in high titers. Hence, a diagnosis of APS was considered.
At the same time, a transthoracic echocardiogram (TTE)
revealed a BAV with moderate regurgitation and vegetation. The
vegetation was attached to the anterior commissure, and the
longest oscillating mass was 8mm. Supported by the infection
evidence, we believed septic emboli due to IE should be the
primary etiology despite APS. However, the patient developed

an increasing fever with shivering after 5 days of antibiotic
therapy with high-dose penicillin. Further etiological workup on
blood cultures demonstrated the growth of oral Streptococcus,
and the patient was transferred to thoracic surgery for aortic
valve replacement. Seven weeks after successful mechanical aortic
valve replacement, the patient was discharged with only mild
unsteadiness. He received a total 6-week course of IV penicillin
in the hospital and was advised to continue a long-term warfarin
treatment. The patient did not receive any immunotherapy
and his aCL, LA, and β2GP-1 tests were still positive in other
hospitals in half a year. He had no residual neurological deficits
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TABLE 1 | The clinical features and treatment of the patient according to the timeline.

Clinical features Time Treatment

Left hemiplegia and left facial numbness 2018-11-17 14:00

Left hemiplegia, vomiting, and disturbance of

consciousness

2018-11-17 17:00

The patient arrived at the emergency room and

presented somnolence, global aphasia, left hemiplegia,

gaze palsy, and emesis. (NHISS 15)

2018-11-17 19:00

Returned consciousness and left hemiparesis (NHISS 1) 2018-11-17 19:30 Aspirin, clopidogrel, and atrovastatin

Antiphospholipid antibodies (+) 2018-11-21

Transthoracic echocardiogram (TTE) revealed bicuspid

aortic valve (BAV) vegetation

2018-11-22 Penicillin and nadroparin calcium (stop aspirin and

clopidogrel)

Fever and chills 2018-11-27

Blood cultures demonstrated the growth of oral

Streptococcus.

2018-11-28

There are no additional focal neurological deficits (NIHSS

1). His temperature was normal for 10 days and the

repeated brain MRI did not show any new infarct lesions

2018-12-10 Stopped nadroparin calcium 2 days ago, and aortic

valve replacement was performed

2018-12-16 Penicillin and warfarin (add warfarin)

Discharge 2019-01-22 The patient finished 6-week course of penicillin injection

and continued warfarin treatment

No residual neurological deficits and no recurrence of

stoke

2020-01-31 Warfarin

or recurrence of stoke when evaluated 1 year later. The patient
had returned to the college and felt that he can live and study
as before.

The timeline of the case is summarized in (Table 1).

DISCUSSION

According to the episode, this patient suffered from acute stroke
due to basilar artery occlusion and was soon self-recanalized.
Following the assessment, large-artery atherosclerosis and small-
vessel occlusion, two of the most common stroke etiologies, were
excluded first. The cardioembolic stroke had been considered in
the presence of BAV vegetation with multiple bilateral lesions
on MRI. BAV is a congenital heart abnormality that may
involve endocarditis, which is the most severe comorbidity with
significant morbidity (6). Two types of endocarditis, infective
and non-infective, can both cause stroke (5). Cardiac embolism
due to IE is an extraordinary stroke etiology, accounting for
nearly 30% of all patients with IE (7). Non-infective endocarditis
can complicate APS, which is a systemic autoimmune disease
characterized by thrombotic complications in patients positive
for aPL (5, 8, 9). The APS-associated non-infective endocarditis
was reported to be Libman–Sacks (LS) endocarditis (10). LS
endocarditis can be quite difficult to diagnose and often mimics
the presentation of bacterial endocarditis. In this case, IE and
APS were found to coexist, but which disease was accountable for
the aortic valve vegetation was ambiguous. Treatments of APS-
induced stroke are antithrombotic medications and modulation
of the immune response with immunotherapy, while IE requires
antibiotics or even emergency surgery. The radical etiology of

this cardioembolic stroke needed to be identified to inform
the treatment.

Management decisions for patients with complicated
cardioembolic stroke should be discussed and decided by a
multidisciplinary team comprised of cardiologists, infectious
diseases specialists, and cardiothoracic surgeons with a major
contribution from neurologists. We consulted all the specialists
and deemed IE to be the primary cause of the cardiac embolism
in terms of the patient’s elevated leukocytosis and CRP level as
well as the positive blood cultures. In APS, valvular vegetations
are often non-bacterial with negative blood cultures (11). These
findings were consistent with the evaluation of helpful markers
in distinguishing IE from LS endocarditis in the previous
literature (10).

In ∼15–20% of patients with IE, clinical features referable
to the cardiovascular system, such as clubbing, splinter
hemorrhages, and hematuria, may be absent (12). Furthermore,
if fever is not present during the initial evaluation, a rapid and
accurate diagnosis of IE complicated by stroke is difficult during
the rapid intravenous thrombolysis (IVT) treatment process in
the emergency department. IVT and endovascular therapy (EVT)
are the standard of care in selected patients for acute ischemic
stroke, but their use in patients with stroke secondary to IE
is controversial (13, 14). IVT is contraindicated because of the
increased risk of intracranial hemorrhage and worse outcomes
(15, 16). We found 10 cases of IE-related acute ischemic stroke
who received IVT, and IE was suspected post-thrombolysis in all
these cases (17–22). Nine of them were identified with sufficient
clinical outcome data (17–19, 21, 22) (Table 2). Among the
nine cases, the median age was 56 years (range 25–75 years);
four were women and five were men. Vegetations affected the
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TABLE 2 | Summary of clinical characteristics in reported case series of IE presenting as AIS treated with IVT.

Reference Age/Sex Affected valve Acute treatment NIHSS (initial) NIHSS (follow up) mRS sICH Mortality

Ashkanani et al. (17) 65/M Mitral valve IVT 18 ND 3 (8 weeks) No No

Brownlee et al. (18) 27/F Mitral valve IVT 15 20 1 (6 months) Yes No

Gopal et al. (19) 44/F Mitral valve IVT 4 ND 6 (3 months) No Yes

Gopal et al. (19) 56/F Mitral valve IVT 2 ND 6 (3 months) No Yes

Gopal et al. (19) 74/F Mitral valve IVT 8 ND 3 (3 months) No No

Gopal et al. (19) 66/M Mitral valve IVT 7 ND 6 (3 months) Yes Yes

Gopal et al. (19) 25/M Mitral valve IVT 3 ND 3 (3 months) Yes No

Maeoka et al. (21) 46/M Aortic valve IVT + EVT ND ND 1 (ND) Yes No

Distefano et al. (22) 75/M Aortic valve IVT + EVT 16 ND 6 (ND) Yes Yes

IE, infective endocarditis; AIS, acute ischemic stroke; IVT, intravenous thrombolysis; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Ranking Scale; sICH, symptomatic

intracranial hemorrhage; F, female; M, male; EVT, endovascular therapy; ND, not described.

mitral valve in 78% of these cases and the aortic valve in
the remainder. Eight of the nine cases reported preprocedure
NIHSS scores, but only one reported postprocedure NIHSS
scores, so we could not evaluate the improvement in NIHSS
scores. The median modified Ranking Scale (mRS) was 3, and
only two patients achieved good functional outcomes (mRS≤2).
Of all these reported cases, 56% (5/9) developed symptomatic
intracranial hemorrhage (sICH), and the mortality reached 44%
(4/9). IE should be considered from the outset to avoid IVT,
particularly given the time pressures in acute stroke care.

Endovascular therapy (EVT) may be a choice in ischemic
stroke with large vessel occlusion due to cardiac emboli. Routine
histopathological analysis of EVT-retrieved clots could have value
in confirming clinical diagnoses and supporting early treatment
in acute stroke with IE (23, 24). Even though EVT results in
highly successful recanalization rates, stroke patients with IE
are most likely to have worse clinical and safety outcomes than
non-IE patients following reperfusion therapy in the acute phase
(25, 26).With the limitation of the available evidence and a lack of
consensus, EVT still should be considered seriously as the efficacy
and safety have not yet been well established (14).

In many cases of IE, vegetation decreases during treatment
with antibiotics. However, in some patients, valvular lesions
that form the basis for the development of IE may remain
after treatment with antibiotics (27). Surgery is recommended
in uncontrolled infections according to the European Society of
Cardiology (ESC) guidelines (15). Due to the persistent fever
and burdensome BAV vegetations, valve surgery seemed to be
an imminent emergency in our patient. However, the benefit
of potential valve surgery can be challenging given the risk of
bleeding in the setting of high doses of heparin during surgery
and worsening neurological deficits attributed to perioperative
hypotension in IE patients who have already had a stroke (28).
Traditionally, cardiac surgery should be delayed for several
months in endocarditis complicated by stroke, while a growing
body of available evidence supports that early surgery is beneficial
for outcomes (29, 30). In this patient, the surgery was performed
24 days after stroke onset as the infection could not be controlled
by antibiotics. Postponing surgery to achieve clinical stabilization
and better perioperative circumstances may have worsened the

disease process with recurrent embolization and resulted in
heart failure. Early surgery for IE with small acute cerebral
infarction (<2 cm) was confirmed to be performed safely with
good outcomes (31). As the stroke lesions were small with a low
risk of hemorrhage, this patient eventually recovered well after
the early surgery.

Limitation
Aspirin has negligible or poor effects and shows a heightened
risk of hemorrhage in IE-related acute ischemic stroke; therefore,
the use of aspirin is not recommended in the early therapy of
patients with IE (32). Fortunately, the delay in IE diagnosis and
the use of aspirin and clopidogrel did not result in hemorrhage
complications in this case. A 5-year prospective study showed
that the median time for a recurrent thrombotic event is shorter
in patients with a high titer of aCL antibodies and intracardiac
thrombus (33). This patient did not receive any immunotherapy,
and his aPL level remained high. Furthermore, we still need long-
term follow-up to confirm the diagnosis. This literature review
may also have lapsed due to publication bias.

CONCLUSION

Bicuspid aortic valve (BAV) vegetation-related cerebral embolism
may present as cryptogenic and can be confusing in the
acute phase, particularly when APS and IE are diagnosed
simultaneously. Early consultation with a multidisciplinary team
can be extremely helpful. Timely surgical intervention should
always be considered in cases of small cerebral infarction
accompanied by large valve vegetations. Going forward, there
is a demand for further study within this area to direct
future practice.
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Despite advancements in multi-modal imaging techniques, a substantial

portion of ischemic stroke patients today remain without a diagnosed

etiology after conventional workup. Based on existing diagnostic criteria,

these ischemic stroke patients are subcategorized into having cryptogenic

stroke (CS) or embolic stroke of undetermined source (ESUS). There is

growing evidence that in these patients, non-cardiogenic embolic sources,

in particular non-stenosing atherosclerotic plaque, may have significant

contributory roles in their ischemic strokes. Recent advancements in vessel

wall MRI (VW-MRI) have enabled imaging of vessel walls beyond the degree of

luminal stenosis, and allows further characterization of atherosclerotic plaque

components. Using this imaging technique, we are able to identify potential

imaging biomarkers of vulnerable atherosclerotic plaques such as intraplaque

hemorrhage, lipid rich necrotic core, and thin or ruptured fibrous caps. This

review focuses on the existing evidence on the advantages of utilizing VW-

MRI in ischemic stroke patients to identify culprit plaques in key anatomical

areas, namely the cervical carotid arteries, intracranial arteries, and the aortic

arch. For each anatomical area, the literature on potential imaging biomarkers

of vulnerable plaques on VW-MRI as well as the VW-MRI literature in ESUS and

CS patients are reviewed. Future directions on further elucidating ESUS and CS

by the use of VW-MRI as well as exciting emerging techniques are reviewed.

KEYWORDS

vessel wall MRI, atherosclerosis, imaging, cerebrovascular disease/stroke, embolic

stroke of undetermined source (ESUS), stroke
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Introduction

The term Embolic Stroke of Undetermined Source (ESUS)

was introduced in 2014 by the Cryptogenic Stroke/ESUS

International Working Group (1). It describes patients

with non-lacunar brain infarcts without a high-grade large

artery stenosis, a high-risk cardioembolic source, or another

determined stroke mechanism. The ESUS population is of

clinical importance as it may account for up to 20% of all

ischemic strokes (1).

As prior clinical trials with patients initially suspected

of cryptogenic stroke (CS) revealed a high prevalence of

underlying atrial fibrillation (2, 3), subsequent clinical trials

focusing on the ESUS population, namely NAVIGATE ESUS

and RE-SPECT ESUS, studied the use of anticoagulant therapy,

with the underlying premise that unrecognized paroxysmal

atrial fibrillation might be a common ESUS mechanism.

However, both of these randomized clinical trials showed no

significant reduction in recurrent stroke with anticoagulation

compared to antiplatelet therapy (4, 5). Given this result, the

prospect that non-cardiogenic embolic sources contribute to

a significant proportion of ESUS seems increasingly likely.

One such source is non-stenosing plaque, which might be

present in the cervical carotid or vertebral arteries (6, 7),

the intracranial arteries (8), or the aortic arch (9) (Figure 1).

In the carotid arteries, this concept has been recently

referred to as “symptomatic non-stenotic carotid disease”

(SyNC) (10).

Recent advancements in neuroimaging allow us to better

evaluate non-stenotic plaque and characterize its potential

embolic risk. Potential plaque imaging biomarkers include

wall thickness, intraplaque hemorrhage (IPH), lipid-rich

necrotic core (LRNC), fibrous cap status, neovascularization

manifested by enhancement, and surface morphologies

such as ulcerations (11–13). In particular, vessel wall MRI

(VW-MRI) is increasingly being used for evaluation of

plaque to identify vulnerable features. VW-MRI protocols

commonly include magnetic resonance angiography

(MRA) and multi-contrast MRI sequences that suppress

the signal from adjacent tissue and flowing blood to

highlight vessel wall pathologies of both intracranial and

extracranial vessels. VW-MRI complements traditional

imaging techniques such as CT angiography, MRA, and

Digital Subtraction Angiography (DSA) because it allows

evaluation of pathology beyond luminal stenosis, namely

vulnerable plaque features such as IPH, LRNC, and fibrous cap

status (13).

We review how VW-MRI has been explored for evaluation

of disease in the cervical carotid arteries, intracranial arteries,

and the aortic arch in ischemic stroke patients and show imaging

examples of vulnerable plaque features. We also review the

available literature on how VW-MRI has been used to study

FIGURE 1

Vascular beds commonly a�ected with atherosclerosis. Careful

evaluation of high-risk plaque features using vessel wall MRI of

the intracranial arteries, cervical carotid arteries, and aortic arch

may aid in identifying culprit plaques in patients with

cryptogenic stroke or embolic stroke of undetermined source.

Such e�orts may help identify causes of stroke that may have

been previously overlooked.

patients who meet criteria for ESUS (or, in older literature prior

to introduction of the ESUS concept, CS).

Search strategy

We searched PubMed for reports published between January

1980 to March 1st, 2022. Search terms included: “Vessel Wall

Imaging,” “Vessel Wall MR Imaging,” “High Resolution Vessel

Wall MRI,” “Stroke Etiology,” “Cryptogenic Stroke,” “Embolic

source of undetermined source,” “ESUS,” “Atherosclerosis,”

“Atherosclerotic Plaque,” “Intraplaque hemorrhage,” and “Lipid-

rich necrotic core.” Furthermore, we reviewed the reference

lists of retrieved reports to identify additional relevant articles.
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Relevant practice guidelines and their reference lists were

also reviewed. We did not restrict our search by language.

The final reference list was generated based on relevance

to the broad scope of this narrative review with preference

given to meta-analyses/systematic reviews and studies with

rigorous methodology.

Cervical carotid arteries

Background

Established in 1993, the TOAST classification remains the

most widely used system of classifying stroke by etiology.

The TOAST classification applies a threshold of ≥50% carotid

luminal stenosis as causal of stroke and classifies patients with

<50% stenosis and no other identified mechanism as having

“stroke of undetermined cause” (14). This is problematic as

it may result in an underestimation of the role of carotid

atherosclerosis in ischemic stroke since patients with non-

stenosing but potentially culprit plaques are not captured. A

more recent classification system, the ASCOD Phenotyping of

Ischemic Stroke, has expanded the definition of carotid-etiology

by classifying the presence of an ipsilateral atherosclerotic

stenosis <50% in an intra- or extracranial artery with a luminal

thrombus supplying the ischemic field as a potential stroke

etiology (15).

The concept of “vulnerable plaque” was initially established

with regards to the coronary arteries, where several features

of coronary plaques were found to be associated with

acute coronary events and sudden cardiac death. These

high-risk features include a large lipid rich necrotic core

(LRNC), thin/ruptured fibrous cap, and intraplaque hemorrhage

(IPH) (16–18).

Advancements in imaging modalities have allowed us to

extend the concept of the vulnerable plaque to the evaluation

of the carotid arteries beyond assessing the degree of stenosis

to explore imaging features and potential biomarkers such as

IPH, LRNC, and fibrous cap status (19–21). In particular, MRI

has been validated with histology to have high sensitivity and

specificity in the evaluation of these vulnerable plaque features

(22–24). In recent years, increasing interest in the use of VW-

MRI to assess the carotid arteries in ESUS/CS patients has led to

investigations on potential imaging biomarkers that may aid us

in deciphering ESUS/CS and improve risk stratification. Below

we review several plaque features that have been investigated as

promising biomarkers.

Carotid plaque features

Studies to date using VW-MRI to evaluate carotid plaque

features in the ESUS population have examined one or more

FIGURE 2

Intraplaque hemorrhage in carotid plaque on

Magnetization-Prepared Rapid Gradient Echo (MPRAGE) and

Time-of-flight MR angiography (TOF MRA). T1 hyperintense IPH

at the right carotid bifurcation (white arrowheads) on both (A)

MPRAGE and (B) TOF MRA. The MPRAGE image has fat and

blood flow suppression, allowing for the IPH to standout in

contrast to the vessel lumen and surrounding soft tissues. The

TOF MRA image also demonstrates an intact hypointense

fibrous cap at this level (black arrowhead).

of the following imaging biomarkers: IPH, fibrous cap rupture,

LRNC, and thrombus. We briefly review how MRI identifies

these specific plaque characteristics.

Intraplaque hemorrhage

Intraplaque hemorrhage (IPH) is one of the features of

a vulnerable plaque (18). Physiologically, it represents the

extravasation of red blood cells or iron accumulation in plaque,

whichmay result in plaque instability (25). IPH in carotid plaque

has been shown to have significant association with ischemic

stroke (26, 27). A meta-analysis on carotid plaque MRI and

stroke risk reported patients with carotid IPH on MRI were

almost five-times more likely to have subsequent stroke or

transient ischemic attack than those without (hazard ratio 4.59,

95% confidence interval 2.91–7.94), although a limitation of the

included studies was a considerable range in stenosis degree (28).

On imaging, T1-weighted (T1W) sequences are considered the

best imagingmodality for detection of IPH in the carotid arteries

compared to CT or ultrasound due to its ability to detect blood

products (11, 13). A variety of T1W sequences can be used,

including magnetization-prepared rapid acquisition gradient

echo (MPRAGE) and 3D time-of-flight (TOF) sequences (29,

30). An example is shown in Figure 2. MPRAGE is considered to

have the highest accuracy given other plaque components such

as fibrous tissue and LRNC are suppressed on the inversion-

recovery preparation and fat saturation of MPRAGE sequences

thereby allowing for the highest tissue contrast between IPH

and background structures. Using histology as the gold standard,

MPRAGE has the highest specificity (97%) and sensitivity (80%)

in detecting carotid IPH (31).
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Lipid rich necrotic core

Physiologically, LRNC in carotid plaques represent

heterogeneous tissue composed of apoptotic cell debris, calcium

particles, and cholesterol crystals (19). A recent meta-analysis

showed carotid plaque LRNC is associated with increased risk

of ipsilateral ischemic stroke (28). On MRI, LRNC can be seen

as focal hypointensity on a T2-weighted sequence. Contrast-

enhanced T1-weighted sequences can also help distinguish

non-enhancing LRNC from enhancing fibrous plaque tissue

(22). LRNC and IPH commonly co-exist and can appear

similarly on CT as low-density plaque. While there are efforts to

further differentiate the two by Hounsfield units (32, 33), MRI

is generally considered superior (19).

Fibrous cap status

Physiologically, the fibrous cap refers to a layer of fibrous

connective tissue that contains macrophages and smoothmuscle

cells, which if ruptured, exposes the adjacent LRNC to luminal

blood resulting in activation of the thromboembolic cascade. It

has been shown that thin or ruptured fibrous cap is associated

with increased risk of ischemic stroke (27, 28, 34). One of the

key advantages of MRI is that it can assess fibrous cap status

with contrast-enhanced T1W sequences and 3D time-of-flight

magnetic resonance angiography (TOFMRA) (11). On contrast-

enhanced T1W sequences, normal thick fibrous cap shows

smooth linear enhancement overlying the plaque, whereas on

TOF MRA, uniform hypointense band between bright lumen

and gray plaque core is present (22, 24). An example is shown in

Figure 2B. Presence of an irregular and disrupted fibrous cap is

associated with ipsilateral ischemic stroke, most commonly due

to a thromboembolic mechanism (35). However, this feature can

be more difficult to assess than other features in clinical practice.

Surface morphology and ulceration

Luminal surface morphology of carotid plaques can be

classified as smooth (no irregularity/ulceration), irregular

(surface fluctuates from 0.3 to 0.9mm), or ulcerated (cavities

measuring ≥1mm) (36). Both irregular and ulcerated carotid

plaque surfaces are associated with increased risk of stroke

(36, 37). An example is shown in Figure 3. On MRI, luminal

evaluation is possible with contrast-enhanced MRA (38,

39). MRI can detect carotid plaque ulcerations with similar

sensitivity to CTA and the use of contrast-enhanced MRA is

preferred over unenhanced TOF MRA due to reduced flow

artifacts (38).

Literature on carotid VW-MRI in ESUS
patients

Vessel wall-MRI of carotid plaques in the ESUS population

suggests a higher prevalence of vulnerable plaque features in

FIGURE 3

Ulcerated plaque with intraplaque hemorrhage on VW-MRI.

Male patient presented with clinical and imaging evidence of a

1–2-year history of recurrent left MCA territory infarcts. (A,B)

Contrast-enhanced MRA neck confirmed a left cervical carotid

bifurcation stenosis with an ulcerated plaque (A, arrowhead).

(C,D) 3D surface volume rendering of the left carotid plaque

depicts the ulcerated surface morphology with (D) axial image

through the ulceration showing marked surface irregularity (red

arrows). (E,F) Carotid VW-MRI showed intraplaque hemorrhage

(arrowheads), depicted as T1 hyperintense signal on a

fat-suppressed T1W MPRAGE image. Based on the clinical and

imaging findings, the patient underwent a left carotid

endarterectomy.

the ipsilateral carotid artery compared to the contralateral,

regardless of the degree of luminal narrowing (35, 40–45)

(Table 1). These observations support the hypothesis that

embolization from large artery atherosclerosis may occur even

in the absence of hemodynamically significant internal carotid

artery stenosis.

Two recent systematic reviews/meta-analyses described the

prevalence of carotid artery IPH and other high-risk features in

mildly stenotic carotid arteries on VW-MRI in patients meeting

ESUS criteria (6, 7). Mark et al., included seven studies from

2012 to 2020 with 354 patients and reported a prevalence

estimate of IPH ipsilateral to cerebral ischemia to be 25.8%

(95% CI 13.1–38.5) and odds ratio of IPH ipsilateral to ischemia

vs. contralateral side to be 6.92 (95% CI 3.04–15.79). Pooled

analyses by Kamtchum-Tatuene et al., included eight studies

from 2013 to 2018 with 323 patients with unilateral anterior

circulation ischemic stroke with plaque imaging performed

within 14 days of stroke onset using either VW-MRI, CTA, or

US (7). High-risk features assessed included ulceration, IPH,

thrombus, fibrous cap rupture, echolucency, or plaque thickness

≥3mm. They reported the prevalence of mild (≤50% luminal

narrowing) carotid stenosis with the aforementioned high-risk

features in the ipsilateral carotid to be 32.5% (95% CI, 25.3–40.2)

compared to 4.6% (95% CI 0.1–13.1) in the contralateral side.
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TABLE 1 Select studies using VW-MRI in an ESUS/CS population for evaluation of carotid atherosclerosis.

Study Imaging technique Vessel Key imaging

characteristics

Select results

Altaf et al. (26) 1.5 T. 3D T1W GRE Carotid IPH 39 (61%) ipsilateral arteries with IPH. During

follow-up, 13 ischemic events, of which 5

were strokes, occurred in those with

ipsilateral carotid IPH (HR= 9.8, 95% CI

1.3–75.1, p= 0.03)

Freilinger et al. (35) 3T. TOF MRA, axial pre-and

post-contrast black-blood T1W,

PD, T2W

Carotid IPH, fibrous plaque rupture,

luminal thrombus

AHA-LT V1 plaques in 37.5% ipsilateral to

the stroke, none in contralateral (p= 0.001).

Most common diagnostic feature of AHA-LT

V1 plaques: IPH (75%), fibrous plaque

rupture (50%), luminal thrombus (33%)

Bayer-Karpinska et al. (40) 3T. TOF MRA, axial pre- and

post-contrast black-blood T1W,

PD, T2W. Additional Dynamic

contrast-enhanced MRI series in

subgroup

Carotid Characteristics including fibrous

cap rupture, IPH, juxtaluminal

hemorrhage/mural thrombus

Initial analysis showed significantly higher

prevalence of complicated ipsilateral AHA-LT

VI plaques in cryptogenic stroke patients

than contralateral (37% vs. 3%, p < 0.0001)

Gupta et al. (41) 1.5T/3T. 3D TOF MRA Carotid IPH 6 patients (22.2%) with IPH ipsilateral to the

side of ischemic stroke, 0 patients with IPH

on contralateral side (p= 0.01)

Gupta et al. (42) 1.5T/3T. 3D TOF MRA Carotid IPH 22 patients (20.2%) with <50% ICA plaque

with IPH ipsilateral to stroke, 9 (8.3%)

patients with IPH in <50% ICA plaque

contralateral to side of stroke (p= 0.01)

Hyafil et al. (43) 3T. 3D TOF MRA, axial pre- and

post-contrast black-blood T1W,

T2W

Carotid IPH, fibrous cap rupture, luminal

thrombus

AHA-LT V1 plaques significantly higher

ipsilateral to the stroke side than contralateral

(39 vs. 0 %; p= 0.001). For all other AHA

lesion types, no significant differences

between ipsilateral and contralateral sides

Singh et al. (44) 3T. 3D T1W GRE Carotid IPH Significantly higher prevalence of ipsilateral

than contralateral IPH (20% vs. 8.6%, p=

0.005)

VW-MRI, vessel wall MRI; T1W GRE, T1 weighted gradient-echo; T, Tesla; TOF MRA, Time-of-flight MR angiography; PD, proton density; T2W, T2 weighted; IPH, intraplaque

hemorrhage; AHA-LT VI, American heart association lesion type VI; HR, hazard ratio; 95% CI, 95% confidence interval.

Plaque with high-risk features was more than five times more

likely to be present in the ipsilateral vs. contralateral carotid

artery (OR 5.5, 95% CI, 2.5–12.0). Both studies highlight a

role for VW-MRI to detect the presence of morphologic and

compositional features in mildly stenotic plaque in patients

with ESUS/CS.

Future directions

The use of VW-MRI to evaluate carotid plaque features

is a rapidly evolving field. Multi-center prospective studies

with larger patient pools to clarify the relationship between

vulnerable carotid plaque features on VW-MRI and risk of

stroke recurrence are needed. Currently, there are several

prospective studies (CAPIAS, CARE II, and the PARISK)

intended to examine the value of carotid plaque imaging. These

studies are described in more detail in Table 2 (40, 46, 47).

How to use diagnostic imaging information from carotid VW-

MRI in clinical decision-making to determine strokemechanism

or to choose optimum preventative therapy remains an area

of investigation. Some challenges to clinical translation of

these VW-MRI protocols include lengthy acquisition times for

multiple contrast weightings. Technical efforts to accelerate or

simplify protocols include testing different neurovascular vs.

surface coils (48) and the use of simultaneous non-contrast

angiography and intraplaque hemorrhage (SNAP) (49) and

multi-contrast atherosclerosis characterization (MATCH) (50)

techniques and remain an active area of investigation.
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TABLE 2 Prospective carotid plaque imaging studies.

Study Study sites, start dates Patient selection and imaging Primary outcome Secondary outcome

The carotid plaque

imaging in acute

stroke study

(CAPIAS) (40)

• Initiated Feb 2011

• 3 Sites: Interdisciplinary

Stroke Center in Munich

(Ludwig-Maximilians-

University), Technical

University Munich,

University of Freiburg

• Observational cohort study;

• NCT01284933

• Age >49 years

• Stroke or TIA with symptom onset within 7

days

• 1 or more acute ischemic lesion(s) on DWI in

the territory of a single internal carotid artery

• <70% stenosis by NASCET in carotid artery

ipsilateral to stroke or TIA defined by US

• Carotid artery plaques in the ipsi- or

contra-lateral carotid artery as defined by

ultrasound (plaque thickness at least 2 mm;

located within 1 cm proximal or distal to the

carotid bifurcation)

• Excluded if history of neck radiation, DWI

positive lesions outside territory of a single

ICA; surgery within 24 hours prior to MRI

• All subjects imaged with VW-MRI at baseline

and 12 months follow-up

• Subgroup imaged with dynamic CE VW-MRI

to visualize neovascularization and

inflammation

• Subgroup imaged with 18F-FDG PET/MRI at

baseline to quantify plaque inflammation

Prevalence of complicated

AHA-LT VI plaques

• Association of AHA-LT VI

plaques with recurrence rates

of ischemic events up to 36

months

• Rates of new ischemic lesions

on cerebral MRI (including

clinically silent lesions) after

12 months

• Influence of specific AHA-LT

VI plaque features on the

progression of atherosclerotic

disease burden, infarct

patterns, biomarkers and

aortic arch plaques

Chinese

Atherosclerosis Risk

Evaluation (CARE II)

(46)

• Sites: 13 medical centers and

hospitals in China and

University of Washington

• Cross-sectional study;

• NCT02017756

• Stroke or TIA within 2 weeks

• Carotid plaque in at least 1 carotid artery with

wall thickness ≥1.5, as defined by US

• Exclude cardiogenic stroke, hemorrhagic

stroke, neck radiation, unable to undergo MRI

• Carotid VW-MRI and routine brain MRI

Prevalence and characteristics

of specific VW-MRI features

of high-risk atherosclerotic

plaque in Chinese patients

with stroke or TIA

• Association of carotid plaque

features and cerebral infarcts

• Differences of carotid plaque

patterns among different

regions in China

• Gender specific

characteristics of carotid

plaque in Chinese patients

with stroke

Plaque At RISK

(PARISK) (47)

• Observational cohort study

• 4 Sites: Academic Medical

Center Amsterdam; Erasmus

Medical Center Rotterdam;

Maastricht University

Medical Center; University

Medical Center Utrecht

• TIA, amaurosis fugax or minor stroke

(modified Rankin scale ≤3) of the carotid

artery territory and an atherosclerotic plaque

with <70% stenosis of the ipsilateral ICA

• No revascularization procedure

• Exclude cardioembolic course, clotting

disorder, unable to undergo MRI with

contrast

• Imaging performed within 5-day window of

symptom onset

• Baseline: Carotid VW-MRI, MRI brain, CTA,

TCD, US, & biomarkers

• 2 years: Carotid VW-MRI (subset), CTA,

TCD, Carotid US, Brain MRI (all)

Identify whether VW-MRI,

multidetector CTA, US and/or

transcranial Doppler will

predict future ischemic events

in symptomatic patients with

<70% carotid stenosis

Endpoint: ipsilateral recurrent

ischemic stroke or TIA and/or

ipsilateral ischemic brain

lesion on follow-up brain MRI

• Identify determinants for

plaque progression

• Examine relationship

between plaque

characteristics, microemboli,

and vascular damage on brain

MRI

• Determine associations

between blood biomarkers

and plaque parameters

VW-MRI, vessel wall MRI; TIA, transient ischemic attack; US, ultrasound, MRI, magnetic resonance imaging, AHA-LT VI, American Heart Association-Lesion Type VI; CTA, computed

tomography angiography; TCD, transcranial doppler; US, ultrasound.
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Intracranial arteries

Background

Several structural differences between intracranial and

extracranial arteries may contribute to differences in plaque

composition and the development of vulnerable plaque features.

Intracranial arteries have denser internal elastic lamina, a

thinner media, less abundant adventitia with decreased elastic

fibers and do not have external elastic lamina (51). In addition,

there is a relative paucity of vasa vasorum in the walls of

intracranial arteries (52), possibly because intracranial arteries

are bathed in nutrient-rich CSF (53). The development and

progression of atherosclerotic lesions may therefore be different

between intracranial and extracranial arteries (54–56). For

example, fibrosis is more prevalent than lipid infiltration of

the intima or the adventitia in intracranial plaque compared

to extracranial plaque (57). Much of our understanding of

imaging features of atherosclerosis stems from extracranial

carotid arteries due to the availability of carotid endarterectomy

specimens and histologic validation studies (58). Given the

lack of readily available specimens for intracranial arteries,

intracranial VW-MRI may be a non-invasive imaging modality

enabling serial imaging to provide additional insight about

intracranial atherosclerosis. Several features of intracranial

atherosclerosis on VW-MRI have been described (59, 60) and

are detailed below.

VW-MRI of intracranial plaque features

Intraplaque hemorrhage

Presence of intrinsic T1 hyperintensity on T1W imaging of

intracranial plaque is thought to reflect IPH (Figure 4). More

specifically, IPH has been defined by several authors as having

T1 signal intensity of >150% of the adjacent gray matter (61,

62) or adjacent muscle, noting wide variability of referenced

tissue (59). In one case report, radiology and pathology findings

were indeed histologically validated as such (63). Similar to

the cervical carotid arteries, IPH may also be associated with

ipsilateral ischemic stroke. A meta-analysis pooling five studies

included 521 intracranial vessel wall segments of the circle of

Willis and reported an odds ratio of 2.1 (95% CI 1.3, 3.3)

for the presence of T1W hyperintensity in a culprit plaque on

VW-MRI in patients with acute to subacute ischemia in the

territory supplied by that culprit plaque (64). Notably, many

of the included studies originated in China and presumably

predominantly included Chinese patients. In Chinese studies,

the reported prevalence of IPH ranges between 12 and 30%

(65, 66) and appears to be higher compared to the Western

counterpart. These studies raise the possibility of differences

in plaque composition by race for extracranial vs. intracranial

FIGURE 4

Intrinsic T1 hyperintense signal of intracranial plaque on

precontrast VW-MRI. Orthogonal view of a precontrast VW-MRI

of the middle cerebral artery shows intrinsic T1 hyperintense

signal (arrowhead) and positive (outward) wall remodeling

(arrowhead).

plaque (67) and additional studies evaluating ethnic differences

would be valuable.

LRNC

The prevalence of LRNC as part of intracranial

atherosclerosis in ischemic stroke patients is unclear. Due

to the restraints of spatial resolution, detecting LRNC

on intracranial VW-MRI is a challenge. However, several

radiology-pathology correlation studies have histologically

validated the presence of LRNCs in intracranial plaques

indicating a contributory role in plaque progression and a

feature of vulnerability (68–71). In these studies, LRNC showed

T1W hypointensity on fat-suppressed T1W VW-MRI, Short TI

inversion recovery (STIR) hypointensity, T1 iso/hyperintensity

and T2 iso/hypointensity.

Vessel wall thickening

Vessel wall thickening due to atherosclerotic plaque,

has been described as a common feature of intracranial

atherosclerosis on VW-MRI, albeit non-specific, as wall

thickening is also seen in other intracranial pathologies such as

vasculitis (12, 72).

The pattern of wall thickening can be either concentric

or eccentric. Per a recent systematic review, the most

common definition of identifying intracranial plaque using

VW-MRI was focal/eccentric vessel wall thickening (59).

Several authors have defined that vessel wall thickening

can be considered concentric if it is circumferential and

uniform, with the thinnest segment being at least 50%

of the thickest segment. On the other hand, vessel wall

thickening is considered eccentric if the wall thickening is

clearly focal, or when circumferential wall thickening is noted

but the thinnest segment of the wall thickening is <50%

of the thickest segment (62, 73). Examples of plaque with

both eccentric and concentric wall thickening are shown

in Figure 5.
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FIGURE 5

Vessel wall thickening and atherosclerosis on VW-MRI in a

symptomatic patient. (A) A patient with left parietal lobe acute

ischemic infarcts (arrowheads) underwent intracranial VW-MRI.

(B) Time-of-flight MRA and (C) intracranial VW-MRI shows

multiple intracranial plaques (arrows) that showed both

eccentric (a, b, c, e) and concentric (d) vessel wall thickening.

The culprit lesion was thought to be the most stenotic lesion (c)

in the left internal carotid artery.

Contrast enhancement

Multiple VW-MRI studies on intracranial atherosclerosis

have shown that there is a higher prevalence of ipsilateral

ischemic stroke in patients with contrast enhancing intracranial

plaques independent of the degree of luminal stenosis (74–80).

Figure 6 shows an example of an enhancing culprit plaque in a

non-stenotic vessel that was felt to be the most likely source of

a right basal ganglia ischemic stroke after a diagnostic work-up.

VW-MRI studies with histological correlation propose contrast

enhancement is a marker of inflammation and instability (70,

71). A meta-analysis pooling 990 circle of Willis vessel segments

from 11 VW-MRI studies reported that it was more than

seven times more likely to observe contrast enhancement of a

culprit plaque in association with acute/subacute ischemia in the

supplied vascular territory {OR of 7.4 [(95% CI, 3.4–16.4), p <

0.001]} (64), indicating this may be one of the stronger imaging

biomarkers to detect culprit intracranial plaque. In the literature,

definitions of focal/eccentric and circumferential vessel wall

thickening detailed above are similar to the definitions of degrees

of eccentric and circumferential enhancement.

Vessel wall remodeling

There are two features of vessel wall remodeling, outward

and inward, which may be associated with different risks

of ischemic events. Arterial walls can accommodate plaque

deposition by adapting and remodeling outwardly (81), also

known as positive wall remodeling (12). Initial studies in

FIGURE 6

Non-stenotic right middle cerebral artery enhancing culprit

plaque. (A) A patient with a right basal ganglia acute infarct

showed (B) mild luminal irregularity but no appreciable stenosis

of the right middle cerebral artery on time-of-flight MRA

imaging (arrowhead). (C) Precontrast VW-MRI showed eccentric

wall thickening along the right M1 middle cerebral artery

(arrowhead). (D) Precontrast and (E) postcontrast images in the

orthogonal plane through the plaque shows eccentric wall

thickening and enhancement of the culprit plaque, which likely

caused the ischemic infarct.

the coronary arteries suggested positive wall remodeling is

associated with features of plaque instability (82). A meta-

analysis pooling 352 middle cerebral and basilar artery segments

from seven VW-MRI studies reported an odds ratio of 5.6

[(95% CI, 2.2–14.0), p < 0.001] for presence of positive wall

remodeling in culprit plaques supplying the ischemic territory

(64). In contrast, fibrotic healing changes may result in arterial

wall shrinkage, otherwise known as negative remodeling (81, 83)

and hypoperfusion due to stenosis may be a stroke etiology.

Additional efforts to understand the role of intracranial vessel

wall remodeling in ischemic events are warranted.

Calcifications

The role of calcification in intracranial atherosclerosis

is unclear. Atherosclerotic calcification burden is thought

to be a marker for cardiovascular events. CT is the gold

standard for detecting intracranial calcifications. Detecting

calcifications on MRI can be difficult as signal intensities

may vary (84, 85), though most often are described to be

hypointense on 3D TOF, T1W, T2W, proton density sequences

and non-enhancing on gadolinium-enhanced T1W sequence

(86). Although CT may be best for calcification detection,

distinguishing the type of vascular calcification may be a

challenge. For instance, calcifications affecting the arterial

intima vs. media may have different clinical consequences.

Intimal calcifications are associated with subintimal lipid and

cholesterol deposition and macrophage accumulation whereas

calcifications of the media are metabolite-induced vascular

changes in the absence of lipid deposits and contribute to

arterial stiffness (87, 88). Intracranial VW-MRI may play a role

to help discriminate intimal calcifications. In a study with 75

patients, non-contrast CT and VW-MRI were used to evaluate

intracranial artery calcification and intracranial atherosclerotic

plaques, respectively. The study reported 72% of intimal
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TABLE 3 Select studies using VW-MRI in an ESUS/CS population for evaluation of intracranial atherosclerosis.

Study Imaging technique Vessel Key imaging

characteristics

Select results

Fakih et al.

(62)

7T. 3D TOF MRA, 3D T1W

fast-spin-echo (CUBE), T2W

CUBE, 3D susceptibility-weighted

angiogram, post-contrast 3D TIW

CUBE

Supraclinoid ICA, MCA,

ACA, VA, Basilar, PCA

Contrast enhancement;

plaque-to-pituitary stalk

contrast enhancement ratio

(CR), degree of stenosis,

morphology

Culprit plaques (n= 36) had higher CR and had

concentric morphology than non-culprit plaques

(p≤ 0.001). CR≥53 (p= 0.008), stenosis≥50% (p

< 0.001), and concentric morphology (p= 0.030)

as independent predictors of culprit plaques.

Tao et al. (8) 3T. 3D TOF MRA, 3D T1W

CUBE, 2D T2W

ICA, MCA, ACA, VA,

Basilar artery, PCA

Remodeling index (RI),

plaque burden, plaque surface

discontinuity, thick fibrous

cap, IPH

Higher prevalence of intracranial plaque ipsilateral

than contralateral side of ischemic stroke [63.8%

vs. 42.8%; odds ratio (OR): 5.25; 95% CI:

2.83–9.73]. RI independently associated with

ESUS; model 1 (OR: 2.329; 95% CI: 1.686−3.217;

p < 0.001) and model 2 (OR: 2.295; 95% CI:

1.661–3.172; p < 0.001).

VW-MRI, vessel wall MRI; T1W GRE, T1 weighted gradient-echo; T, Tesla; TOF MRA, Time-of-flight MR angiography; PD, proton density; T2W, T2 weighted; ICA, internal carotid

artery; MCA, middle cerebral artery; ACA, anterior cerebral artery; VA, vertebral artery; PCA, posterior cerebral artery; IPH, intraplaque hemorrhage; CR, plaque-to-pituitary stalk contrast

enhancement ratio; RI, remodeling index; 95% CI, 95% confidence interval.

calcifications coexisted with atherosclerotic plaques whereas

only 10.2% ofmedial calcifications coexisted with atherosclerotic

plaques (89). The authors also reported intimal calcifications

were more common in non-culprit plaques (25.9 vs. 9.4% P

= 0.008) in their study cohort, raising the possibility that

intimal calcifications may indicate a stable form of plaque (89).

Additional studies would be of value to understand intracranial

calcifications with VW-MRI having a complementary role

to CT.

Intracranial VW-MRI in ESUS patients

There are few studies evaluating the use of intracranial

VW-MRI specifically in the ESUS/CS population (Table 3). A

7 Tesla (T) VW-MRI study in 2020 by Fakih et al., evaluated

34 patients admitted to the stroke service with acute stroke

of cryptogenic origin and unspecific arterial changes on CTA,

MRA or DSA that did not meet a diagnosis of a specific

vasculopathy. 7T VW-MRI led to the determination of a new

stroke etiology in 28 of 34 patients, among which intracranial

atherosclerosis was adjudicated as the stroke etiology in 25

of 28 patients. 7T VW-MRI identified culprit plaques as

having significantly higher plaque-to-pituitary stalk contrast

enhancement ratio, showed concentric morphology compared

to non-culprit plaques, showed higher mean signal intensity,

and higher contrast ratios compared to non-culprit plaques (p

≤ 0.001) (62). This study suggests 7T VW-MRI may be used

to achieve a more accurate diagnosis of underlying intracranial

atherosclerosis as a stroke etiology in a subset of stroke patients

meeting criteria for cryptogenic stroke (Figure 7).

FIGURE 7

Comparison of 3 and 7 Tesla (T) VW-MRI for intracranial

atherosclerosis. A patient with history of obesity, hyperlipidemia

and hypertension and ischemic stroke underwent a (A) 7T

TOF-MRA, which showed left M1 middle cerebral artery severe

stenosis (arrowhead). (B) 7T MRI axial T1 SPACE post-gadolinium

(0.5mm isotropic resolution) image clearly delineates arterial

wall thickening and avid vessel wall enhancement in the region

of stenosis (arrowhead). (C) The same patient was imaged 18

days later on a 3T MRI (T1 SPACE post-gadolinium, 0.8 × 0.8 ×

1.0mm) to assess the stenosis (arrowhead). The 7T VW-MRI

shows improved conspicuity and delineation of the margins of

the arterial wall compared to the 3T, an advantage of the higher

magnet strength due to the higher signal to noise leveraged for

higher spatial resolution and soft tissue contrast.

A 3T VW-MRI study by Tao et al. (8) evaluated the

morphology and composition of intracranial plaque in the

ESUS population compared to patients with small-vessel disease
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(SVD). The authors hypothesized a higher prevalence of

non-stenotic plaque with positive wall remodeling, which is

more prone to vulnerability and rupture, on the ipsilateral

side of stroke in ESUS patients. Among 243 patients with

ESUS, the prevalence of intracranial plaque ipsilateral to ESUS

was significantly higher compared to the contralateral side

(63.8% vs. 42.8%; odds ratio 5.25, 95% CI 2.83–9.73). In

comparison, among 160 patients with SVD, there was no

significant difference in the prevalence of intracranial plaques

between the ipsilateral/contralateral sides. Vulnerable plaque

features significantly more prevalent on the ipsilateral side

of ESUS included positive remodeling and discontinuity of

plaque surface (DPS; e.g., surface irregularity suggesting an ulcer,

fibrous cap rupture, or formation of overlying mural thrombus),

a plaque finding not evident in patients with SVD. The authors

concluded that high-risk non-stenotic intracranial plaque may

represent a significant but currently underestimated embolic

source of ESUS.

Future directions

The use of intracranial VW-MRI to evaluate intracranial

atherosclerosis as the culprit source of ischemic stroke is in

its early stages. Challenges toward clinical adoption may be

related to lengthy acquisition times, variability in VW-MRI

protocols and pulse sequence designs, and lack of histologic

validation studies (90). Given challenges in obtaining histologic

specimens, serial imaging to evaluate the progression of vessel

wall changes may be useful to better understand the role of MRI

in plaque characterization.

Many patients with vascular risk factors will have

systemic atherosclerosis and have disease involving both

the intracranial and cervical carotid arteries (91). To

address this, investigators have proposed VW-MRI pulse

sequences that permit joint intracranial and extracranial

artery evaluation (Figure 8). Technical considerations for

these pulse sequences include attention to the (1) needed

spatial resolution to evaluate the smaller intracranial artery

walls compared to the extracranial carotid artery walls, (2)

need for adequate cerebrospinal fluid suppression around

the circle of Willis compared to fat suppression around the

carotid arteries, and (3) head/neck coils that allow adequate

coverage. These innovative joint intracranial-extracranial

VW-MRI pulse sequences provide promise in identifying

the culprit source of stroke in vulnerable patients with

systemic atherosclerosis and multiple potential sources of

stroke (92–95).

In addition, there is increased interest in characterizing

velocity using 4D FlowMRI. This is an advanced phase-contrast

MRI technique which allows non-invasive quantifications

of blood flow to characterize the hemodynamic impact

of intracranial atherosclerosis and identify hemodynamic

FIGURE 8

Joint VW-MRI of the extracranial and intracranial arteries. (A)

Coronal precontrast VW-MRI image shows the coverage of the

joint intracranial and extracranial VW-MR image. (B) A curved

reformatted image of the left cervico-cranial carotid artery

shows intrinsic T1 hyperintense signal at the carotid bulb (yellow

arrowhead), which was favored to be the culprit source of

plaque in this patient with ischemic strokes. The intracranial

internal carotid artery at the siphon (white arrowhead) and M1

middle cerebral artery segment (red arrowhead) showed no

significant wall thickening to suggest intracranial atherosclerosis.

FIGURE 9

4D Flow MRI of intracranial atherosclerosis. (A) TOF MRA image

demonstrates a focal area of middle cerebral artery narrowing

(arrowhead) with (B) post-contrast T1-weighted VW-MRI

showing a corresponding eccentric, enhancing atherosclerotic

plaque (arrowhead). (C) On 4D Flow MRI, increased velocities

are seen in the area of greatest narrowing (arrowhead).

biomarkers (96) (Figure 9). While studies to date share

limitations including long scan duration, low spatial/temporal

resolutions and associated tradeoffs (97), this is a promising

emerging technique.

Aortic arch

Background

Observational studies have identified several morphological

features of aortic arch atherosclerosis associated with a high

risk of stroke recurrence. Plaque thickness≥4mmwas observed

to be an independent predictor of recurrent stroke and new

arterial vascular events (98). Plaque ulcerations and the presence
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TABLE 4 Comparison of transesophgeal echocardiogram vs. MR imaging of the aortic arch/proximal aorta evaluating plaque thickness.

Study Imaging technique Aortic

segment

Key imaging

characteristics

Select results

Kutz et al. (108) 1.5T. 3D MRA with T1W vs. TEE;

patients imaged with both

modalities within 1 month

Asc, Arch, Desc Plaque size/thickness N = 30 patients; Plaques measuring

≥5mm, 22 (92%) were seen on TEE and

only 13 (54%) on MRA, p= 0.003

Fayad et al. (109) 1.5T. T1W, PDW, T2W vs. TEE;

patients imaged with both

modalities within 39± 13 days

Desc Max plaque thickness, plaque

extent, plaque composition

N = 10 patients, 25 plaques; Strong

correlation or agreement between

modalities for max plaque thickness (r

= 0.88, n= 25; 4.56± 0.21mm by MR

and 4.62± 0.31mm by TEE), plaque

extent [χ2
= 61.77, p < 0.0001; 80%

overall agreement] and plaque

composition [χ2
= 43.5, p < 0.0001;

80% overall agreement]

Harloff et al. (110) 3T. ECG-synchronized pre- and

post-contrast 3D T1W FS, 2D

T2W, time resolved (CINE)

imaging vs. TEE; patients imaged

with both modalities within 5–6

days (median)

Asc, Arch, Desc Max wall thickness of high

risk plaques (≥4mm or

superimposed thrombi)

N = 74 patients; No significant

difference between MRI and TEE

measurements of plaque thickness;

Strong agreement in detection of high

risk plaques (0.90 > κ > 0.50); CINE

imaging allowed for detection of mobile

thrombus

Harloff et al. (111) 3T. 3D contrast-enhanced MRA,

ECG-gated 3D T1W RF-spoiled FS

bright-blood GRE, 2D T2W TSE,

3D CINE T1W vs. TEE; patients

imaged with both modalities

within 3 days (median)

Asc, Arch, Desc Complex plaques (≥4mm

thick, ulcerated, or with

mobile thrombus)

N = 99 patients. MRI detected more

complex plaques than TEE (Asc, 13 vs.

7; Arch, 37 vs. 11; Desc, 101 vs. 70).

Image quality was higher for MRI in Asc

and Arch and higher for TEE in Desc

Asc, ascending, Desc, descending; FS, fat suppressed; MRA, magnetic resonance angiography; TEE, transesophageal echocardiogram.

of mobile thrombi were also shown to be high-risk features of

aortic arch atherosclerosis (99, 100). Given these results, the

ASCOD Phenotyping of Ischemic Stroke, which is an etiological

classification system for ischemic stroke proposed in 2013,

classifies aortic arch atherosclerosis with mobile thrombus and

plaque ≥4mm without a mobile thrombus as possible causes of

stroke (15).

Aortic arch atherosclerosis is an often unrecognized stroke

mechanism and a potentially important contributor to ESUS

(1). In an exploratory analysis of the NAVIGATE ESUS trial,

29% of ESUS patients who underwent evaluation of the aortic

arch by transesophageal echocardiography (TEE) had aortic arch

atherosclerosis of any severity, 21% had non-complex aortic arch

atherosclerosis, and 8% had complex aortic arch atherosclerosis

(9). “Complex plaques” included plaques with ulcerations or

≥4mm in wall thickness or had a mobile thrombus (9). A

prospective case-control study by the French Aortic Plaque in

Stroke (FAPS) group used TEE to quantify the risk of ischemic

stroke with arch atherosclerosis. The authors showed an adjusted

odds ratio of 9.1 (3.3–25.2) among 250 cases and 250 controls of

a risk of cerebral infarction with arch/proximal plaque thickness

≥4 mm (101).

The dominant imaging modality used to evaluate the aorta

in most centers currently is TEE (102). TEE has high sensitivity

and specificity for aortic arch atherosclerosis and has sufficient

image quality to allow measurement of plaque thickness as

well as detection of ulceration and mobile thrombus (103).

Limitations of TEE include its invasive nature and operator-

dependence. Specifically in regards to aortic plaque imaging, the

aortic wall cannot be visualized in its entirety on TEE due to

near-field signal losses (104) and limited anatomic evaluations of

the ascending aorta due to tracheal and bronchial artifacts (105).

Given these limitations, investigations using cross-sectional

imaging modalities, such as CT and MRI, have started to

emerge (102). Recent advances in 3D-multi-contrastMRI for the

detection of aortic atherosclerosis has enabled characterizations

of plaque compositions and identification of vulnerable plaques

(106, 107).
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FIGURE 10

Aortic VW-MRI using the MR MultiTasking based 3D Multidimensional Assessment of Cardiovascular System (MT-MACS) Technique. (A) In a

71-year-old patient with aortic atherosclerosis, bright-blood lumenography, (B) dark-blood (vessel wall imaging), and (C) gray-blood (optimized

to detect calcium/calcified nodules) images were acquired. In the thoracic aorta (dashed line), increased aortic wall thickness (4.491mm) was

measured and most conspicuous on the dark-blood (B) and gray-blood (C) images. [These images are re-printed with permission from

Zhaoyang Fan, PhD from Magnetic Resonance in Medicine (112).]

MRI of vulnerable aortic arch
atherosclerosis features

Plaque thickness

Both 1.5 and 3T MR studies imaging the aortic arch have

been compared to TEE with respect to plaque thickness and are

summarized in Table 4. Comparing 1.5T MR and TEE, Kutz et

al. (108), reported the mean atheroma size in the aortic arch

was underestimated on MR compared to TEE (3.4 ± 3.1mm

by TEE, 1.4 ± 3.0mm by MRA, P = 0.01). However, Fayad et

al. (109), reported strong correlation and agreement for both

1.5T MR and TEE when measuring maximum plaque thickness

and no significant difference in the measurements values (4.62

± 0.31mm by TEE, 4.56± 0.21mm by MRI, r = 0.88).

Using 3T MR showed more promising results between

TEE and MRI and advantages with MRI. Harloff et al. (110),

compared the maximum aortic wall thickness measured by TEE

against T1W sequence and reported the wall of the aortic arch

was not reliably assessed by TEE because of limited visualization

in 45 of 74 patients. Among those who were able to be measured,

the maximum wall thickness of the aortic arch did not have a

statistically significant difference between the modalities (3.36±

1.46mm by TEE, 2.83 ± 1.37 by MRI, p = NS). A subsequent

study by Harloff et al. (111), used the same MRI acquisition

protocol and showed that MRI detected more complex plaques

than TEE at the aortic arch (MRI 37 vs. TEE 11, p = 0.003).

Notably, the authors reportedMRI may potentially overestimate

the wall thickness (mean plaque thickness in MRI 5.2± 1.1 95%

CI 4.1–8.4 vs. TEE 4.7± 0.8 95% CI 4.0–6.5).

The long acquisition times for performing multiple

acquisitions and the need for ECG-gating and respiratory

navigations have resulted in a slow adoption of aortic VW-MRI

techniques. Newer innovations in the aortic VW-MRI space

show the ability to simultaneously image both the lumen and

vessel wall integrity (112, 113). One technique that circumvents

the need for these is the MR MultiTasking (MT) based 3D

Multi-dimensional Assessment of Cardiovascluar System

(MCAS) technique which allows for motion-resolved, isotropic

high-spatial resolution, multi-dimensional (multiple contrast

weights and cine images) imaging of the thoracic aorta in

6min (112) (Figure 10). Due to its non-invasive nature, MRI is

becoming increasingly used to investigate surveillance imaging

for atherosclerosis treatment (114, 115).

Plaque ulceration

An autopsy study showed a higher prevalence of ulcerated

aortic plaques with depth and width ≥2mm in cryptogenic

stroke patients (99) and a subsequent study observed that

ulcerated plaques were detected by TEE more frequently in

patients with cryptogenic stroke than in patients with known-

cause strokes or age-matched controls without stroke (116).

When directly compared to TEE, 3D MRI has demonstrated

mixed results regarding its ability in detecting ulceration. One

study using 3DMRI observed limited ability of MRI in detecting

ulceration compared to TEE (MRI detected 89% of proximal

aorta ulcerations and 64% of distal aorta ulceration) (117).

Meanwhile, another 3D MRI study reported MRI detected

more plaques with ulcerations compared to TEE (111). These

differences may be due to differences in MRI techniques, such as

magnet strength (1.5T vs. 3 T MRI) as well as small sample sizes

(22 vs. 74) and thus additional explorations are warranted.

Mobile thrombus

Recent advancements in cardiac MRI techniques such as

ECG-gated CINE imaging, which is a type of MRI sequence to

capture motion, has allowed evaluation of mobile thrombus by
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TABLE 5 Select studies using VW-MRI in an ESUS/CS population for evaluation of aortic arch atherosclerosis.

Study Imaging technique Vessel Key imaging

characteristics

Select results

Harloff et al. (110) 3T. ECG-synchronized pre- and

post-contrast 3D T1W FS, 2D

T2W, time resolved (CINE)

imaging

Asc, Arch,

Desc

Max Wall Thickness of high risk

plaques (≥4mm or superimposed

thrombi)

MRI identified high risk

pathologies in 8 of 26 (30.8%) CS

patients after standard diagnostic

work-up including TEE

Harloff et al. (111) 3T. 3D contrast-enhanced MRA,

ECG-gated 3D T1W RF-spoiled FS

bright blood GRE, 2D T2W TSE,

3D CINE T1W

Asc, Arch,

Desc

Complex plaques (≥4mm thick,

ulcerated, or with mobile

thrombus)

MRI showed additional complex

plaques in 19 of 58 (32.8%) CS

patients after diagnostic work-up

including TEE

Wehrum et al. (107) 3T. 3D T1W bright-blood, 3D

T2W black-blood, 3D PD

black-blood. 4D flow used to

visualize 3D blood flow within the

thoracic aorta

Asc, Arch,

Desc

Plaque thickness, surface

irregularities, thrombus, IPH,

calcification, fibrous tissue

Plaques ≥4mmmore frequent in

CS patients than controls [22

(55.0%) vs. 10 (16.7%); p < 0.001].

Of those with plaques ≥4mm,

AHA-LT VI plaques higher in

stroke patients (17.5% vs. 3.3%, p

< 0.001). No significant difference

between groups for plaques

<4mm thickness [23 (57.5%) vs.

33 (55.0%); p= 0.81]

Jarvis et al. (120) 1.5T. 4D flow MRI and 3D T1W

black-blood TSE

Mid-Asc,

Arch,

proximal-

Desc,

distal-Desc

Aortic wall thickness (3D T1W

black-blood), pulse wave velocity

(PWV, measure of arterial stiffness)

and voxel-wise mapping of flow

reversal fraction (FRF)

Aortic PWV and FRF higher in

CS patients (8.9± 1.7 m/s, 18.4±

7.7%) than younger controls (5.3

± 0.8 m/s, p < 0.0167; 8.5± 2.9%,

p < 0.0167), but not age-matched

controls (8.2± 1.6 m/s, p= 0.22;

15.6± 5.8%, p= 0.22). Maximum

aortic wall thickness higher in CS

patients (3.1± 0.7mm) than

younger controls (2.2± 0.2mm, p

< 0.0167) and age-matched

controls (2.7± 0.5mm) (p <

0.0167)

VW-MRI, vessel wall MRI; T1W, T1 weighted; T, Tesla; RF, radiofrequency; FS, fat suppressed; PD, proton density; T2W, T2 weighted; CE MRA, contrast-enhanced magnetic resonance

angiography; IPH, intraplaque hemorrhage; AHA-LT VI, American Heart Association lesion type VI; PWV, pulse wave velocity; FRF, flow reversal fraction; 95% CI, 95% confidence

interval; Asc, Ascending aorta; Desc, Descending aorta; TSE, turbo spin echo; CS, cryptogenic stroke.

MRI (110, 111). In these studies, structures within the blood

stream that were mobile on CINE imaging were defined as

mobile thrombus.

Plaque compositions

Similar to investigative aims for VW-MRI of plaque in

the cervical carotid and intracranial arteries, aortic VW-MRI

has been used to investigate plaque compositions. Yamaguchi

et al. (118), performed a retrospective study of 135 patients

with ischemic stroke/TIA and imaged on a 3T MRI using

a T1W MPRAGE fat suppressed pulse sequence of the

aortic arch. Detection of high signal intensity (>200% of

sternocleidomastoid muscle signal intensity) on T1WMPRAGE

was considered a vulnerable feature and compared to aortic

complicated lesions (ACLs) detected by TEE. The results showed

that high intensities onMPRAGEwere independently associated

with ACLs (OR 5.72, 95% CI 2.38–13.70).

Morihara et al. (119), applied a technique called liver-

acquisition-with-volume-acceleration-flexible (LAVA-Flex) to

assess the relationship between high-intensity plaque lesions

in cervical carotid and aortic plaques and plaque thickness on

TEE. High-intensity carotid plaque lesions detected on LAVA-

Flex were histologically validated on carotid endarterectomy

specimens to be large lipid cores and hemorrhage. Hyperintense

lesions detected in the thoracic aorta on LAVA-Flex were

observed in 24 (51.1%) of 47 CS patients. Twenty-one

(87.5%) of these hyperintense aortic lesions also showed

a ≥4mm plaque on TEE, which was considered the gold

standard. LAVA-Flex showed a sensitivity of 95.5% and a
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specificity of 88.0% in patients with large aortic plaques

(≥4 mm thickness).

Literature on aortic arch atherosclerosis
VW-MRI in ESUS/CS patients

Literature on the use of MRI to study the prevalence of

complex aortic arch atherosclerosis specifically in the ESUS/CS

populations is scarce and summarized in Table 5. Harloff et

al. (110), reported up to one-third of patients initially to have

CS were re-categorized with a high risk aortic plaque after

undergoing aortic VW-MRI. In a recent study comparing 40

CS patients to 60 controls, plaques <4mm thickness were

found in similar numbers in CS patients and controls [23

(57.5%) vs. 33 (55.0%); p = 0.81] but plaques ≥4mm were

more frequent in CS patients [22 (55.0%) vs. 10 (16.7%);

p < 0.001] (107).

Future directions

Interest in the use of MRI to evaluate aortic arch

atherosclerosis in acute ischemic stroke patients is re-emerging.

VW-MRI techniques used for cervical carotid and intracranial

arteries may have reignited an interest in characterizing

vulnerable aortic plaque features as a potential source for ESUS.

Features of aortic arch atherosclerosis that have traditionally

been used to define “complex plaques” for risk stratification

in acute ischemic stroke patients, such as plaque thickness,

ulcerations, and mobile thrombus, are mostly derived from

studies using TEE as the main diagnostic imaging modality.

However, MR evaluation of the aorta in CS/ESUS patients

may be complementary to TEE (110, 111) by offering

additional specificity in detecting aortic sources of embolism

in patients who would otherwise be labeled as having CS

(121, 122).

Advanced MR imaging techniques such as multicontrast

VW-MRI, 4D Flow MRI, and CINE imaging are increasingly

being explored. 4D Flow MRI allows analysis of hemodynamic

flow parameters and can be used to investigate not only

aortic wall thickness and stiffness but also flow reversal in

the proximal descending aorta in patients with ESUS/CS

given retrograde embolic mechanisms during diastole

may explain a portion of ESUS/CS (120, 123–125). As

technical feasibility is established using these advanced

imaging techniques, more studies examining ESUS/CS

populations are anticipated to emerge in the future. These

advanced imaging techniques may have future applications

in the evaluation of aortic arch atherosclerosis in the ESUS

population and are promising avenues of research for this

vulnerable population.

Conclusion

Despite advancements in stroke diagnostics, a considerable

proportion of acute ischemic stroke patients remain without

a clear determined mechanism. There has been increased

attention to decoding the contributory role of non-stenotic

atherosclerosis in the carotid arteries, intracranial arteries,

and the aortic arch, in ESUS patients. Non-invasive methods

to detect such atherosclerotic plaques and evaluate their

morphologies for risk stratification is desirable, and the use of

VW-MRI is increasingly becoming investigated.

The preponderance of existing literature on the use of

VW-MRI for assessment of vulnerable plaque focuses on the

cervical carotid arteries, with increasing translation to the

intracranial arteries and the aortic arch. High-risk features of

carotid artery atherosclerosis such as IPH, LRNC and fibrous

cap status are concepts derived from earlier work in the coronary

arteries, and it has been demonstrated that VW-MRI is capable

of detecting these features. For intracranial atherosclerosis,

additional VW-MRI imaging features have been proposed such

as contrast enhancement, vessel wall thickening and vessel wall

remodeling; further evaluation in ESUS patients is needed to

firmly establish histologic correlation and potential for risk

stratification. For aortic arch atherosclerosis, the conventional

definitions of “high-risk” features are those derived from earlier

non-MRI studies. VW-MRI allows further characterization of

aortic arch plaque compositions similar to that seen in carotid

studies. Given the rapid advancement of VW-MRI techniques,

further studies may demonstrate novel imaging features in aortic

arch atherosclerosis.

The use of VW-MRI to detect and characterize carotid,

intracranial, and aortic arch atherosclerosis in ESUS patients

is an exciting and rapidly evolving field. Additional efforts

are warranted to elucidate the contributory role of these

atherosclerotic plaques in ESUS.
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Despite an extensive workup, nearly one third of ischemic strokes are defined

as Embolic Stroke of Undetermined Source (ESUS), indicating that no clear

etiologic cause has been identified. Since large vessel atherosclerotic disease

is a major cause of ischemic stroke, we focus on imaging of large vessel

atherosclerosis to identify further sources of potential emboli which may be

contributing to ESUS. For a stroke to be considered ESUS, both the extracranial

and intracranial vessels must have <50% stenosis. Given the recent paradigm

shift in our understanding of the role of plaque vulnerability in ischemic

stroke risk, we evaluate the role of imaging specific high-risk extracranial

plaque features in non-stenosing plaque and their potential contributions to

ESUS. Further, intracranial vessel-wall MR is another potential tool to identify

non-stenosing atherosclerotic plaques which may also contribute to ESUS. In

this review, we discuss the role of cross-sectional imaging of the extracranial

and intracranial arteries and how imaging may potentially uncover high risk

plaque features which may be contributing to ischemic strokes.

KEYWORDS

cerebrovascular disease/stroke, atherosclerosis, carotid artery stenosis, magnetic

resonance angiography, carotid artery disease

Introduction

Despite an extensive workup, nearly one-third of ischemic strokes are defined as

Embolic Stroke of Undetermined Source (ESUS) meaning that no definite cause of the

stroke has been identified (1). ESUS has proven to be a difficult clinical entity to treat with

an almost 5% per year stroke recurrence rate (1). Most non-lacunar ischemic strokes are

embolic and can originate from cardiac sources, from more proximal arterial structures,

such as the carotid arteries or aortic arch, or potentially from a venous source in the

setting of paradoxical embolism.
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Cardiac sources, specifically atrial fibrillation, were thought

to play a major role in ESUS because occult atrial fibrillation

was found in many patients with ESUS (2). However, two

major randomized clinical trials comparing oral anticoagulants

to aspirin in patients with ESUS had neutral results (3, 4),

suggesting that other embolic causes for ESUS may play a

larger role. A major contributor to ischemic stroke is large

artery atherosclerotic disease accounting for approximately 25%

of ischemic strokes and most commonly arising from the

extracranial carotid artery. According to the most common

methods for classifying stroke etiologies, in order to attribute

an ischemic stroke to large artery atherosclerosis, there must be

associated luminal stenosis of at least 50% (5). These criteria do

not take into account the recent paradigm shift in our scientific

understanding of the contribution of specific plaque features to

ischemic stroke.

In this review article, we will review the role of cross-

sectional imaging of the carotid arteries in patients presenting

with ESUS. First, we will discuss the current standard of

care and typical imaging workup to exclude carotid disease

as a potential cause of stroke. We will then discuss the role

of computed tomography angiography (CTA) and magnetic

resonance angiography (MRA) in evaluating potential causes

of ischemic stroke in the extracranial carotid artery. We will

also review the role of intracranial vessel wall MR (VW-

MR) in assessing intracranial atherosclerosis, another potential

contributor to ESUS.

Current paradigm/standard of care

Rather than being a diagnosis of exclusion, ESUS has

a standardized, criteria-based definition requiring specific

imaging and clinical workup. In order to meet criteria for a

diagnosis of ESUS, an ischemic stroke must be a non-lacunar

stroke detected on CT or MR imaging, the patient must have

≤50% luminal stenosis of the extracranial and intracranial

vessels supplying the territory of the brain infarction, and

have no major risk of a cardioembolic source or other

specific identifiable cause of stroke, such as arteritis, dissection,

migraine/vasospasm, or drug misuse. In order to make this

diagnosis, suggested diagnostic assessment in evaluating those

with ESUS is a brain CT or MR, 12-lead electrocardiogram,

precordial echocardiography, cardiac monitoring for 24 h

with automated rhythm detection, and imaging of both the

extracranial and intracranial arteries supplying the area of brain

ischemia with either digital subtraction angiography, MR or

CT angiography, or cervical duplex and transcranial Doppler

ultrasonography (1). These relatively recent guidelines have

allowed for standardization in the identification of those with

acute ischemic stroke and have made those with ESUS easier

to identify. These more rigid definitions have led to more

concentrated effort in mitigating stroke in this population and

have paved the way for recent large randomized clinical trials

(3, 4).

Limitations of current imaging
techniques

While the current diagnostic criteria for ESUS require

assessment of both the extracranial and intracranial arterial

structures, the primary focus remains on the degree of luminal

stenosis. For decades, the degree of stenosis has been the primary

indicator of stroke risk in the extracranial and intracranial

arteries. Carotid disease is thought to lead to ischemic stroke by

two distinctive, but often synergistic factors: flow-limitation in

the setting of stenosis leading to hypoperfusion and artery-to-

artery embolism from plaque leading to thromboemboli (6). It

is likely that hypoperfusion from flow limitation contributes to

cerebral ischemia. Further, impaired perfusion in the setting of

flow-limitation may lead to a potentially transient embolic event

resulting in an infarct. While flow-limiting stenosis is clearly

a risk factor for the development of ischemic stroke, there is

mounting evidence that the plaque itself, regardless of the degree

of accompanying stenosis is likely a contributor to ischemic

strokes via artery-to-artery embolism (7).

Recent interest in the plaque components have furthered

our understanding of the role of plaque features in contributing

to embolic strokes. There is strong histopathologic evidence

that plaque may have different features conferring higher risk

for an embolic phenomenon. The American Heart Association

plaque classification describes a spectrum of plaque with

certain features, including intraplaque hemorrhage, lipid-rich

necrotic core, and surface defects including fibrous cap rupture

which are features indicative of more “vulnerable” plaque that

is more likely to rupture and lead to emboli (8, 9). With

the current recommendations for imaging, specific carotid

plaque features are not always appropriately imaged or may

not always be identified or treated as important drivers of

ischemic stroke. Despite strong scientific evidence supporting

the role of vulnerable plaque features in the development

of ischemic stroke, specifically in those with non-stenotic

carotid atherosclerosis, these plaque features are not always

being routinely assessed using the current guidelines. There

is strong evidence that specific plaque vulnerable features in

non-stenosing plaque are more commonly seen ipsilateral to

infarction in ESUS patients (10). By recognizing the importance

of non-stenosing plaque in the extracranial and intracranial

vasculature, we may potentially be able to reclassify patients

originally thought to have ESUS (11).

Extracranial carotid plaque

Extracranial internal carotid artery atherosclerosis has

traditionally been the most common source of large vessel
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atherosclerotic disease-causing ischemic stroke. The extracranial

carotid arteries are always imaged in the setting of acute ischemic

stroke to evaluate for a source. The simplest method for imaging

extracranial plaque is by duplex ultrasound (US) where the

degree of stenosis based on flow measurements can be assessed.

US can also evaluate various plaque features which are known

to be higher risk, including echolucent plaque (12). Though

US certainly plays a major role in the evaluation of stroke

etiology and ESUS (13), we will focus on other cross-sectional

imaging modalities which can more accurately assess specific

plaque features as well as luminal stenosis for a more complete

assessment of stroke risk.

When imaging the extracranial carotid artery in the setting

of ischemic stroke, there are two major considerations. First, the

degree of luminal stenosis must be assessed using a standardized

system, most commonly using North American Symptomatic

Carotid Endarterectomy Trial (NASCET) criteria (14). This

can be accurately ascertained in any of the imaging modalities

currently being utilized for the diagnosis of ESUS. In addition

to the degree of luminal stenosis, the components of the plaque

must also be assessed, even in those with non-stenosing plaque.

All imaging modalities for the extracranial carotid arteries can

assess plaque features to a certain degree, though some are more

well-suited than others.

MR imaging

MR is the most studied method to visualize vulnerable

plaque features with considerable evidence supporting its

use to evaluate advanced atherosclerotic plaque. Intraplaque

hemorrhage (IPH) is the most commonly encountered MR-

detected plaque feature considered to be “high-risk” and is

strongly associated with infarction (15–17). Other MR-detected

vulnerable plaque features including lipid-rich necrotic core,

ulceration, or fibrous cap rupture are also strongly associated

with ischemic infarction. There is strong histopathologic

evidence correlating MR imaging findings to known specific

vulnerable plaque features (9, 18). In order to accurately

image these plaque features, many utilize dedicated carotid

coils or specific high-resolution MR sequences, including T1

and T2 weighted sequences, proton density, and time-of

flight sequences to evaluate flow (19). Contrast-enhanced MR

sequences can also improve plaque characterization and allow

for better characterization of plaque ulceration (20).While using

dedicated carotid coils improves imaging by increasing signal-

to-noise ratios, some studies have found that even simple MR

sequences can accurately identify basic high-risk carotid plaque

features (Figure 1) (21).

Multiple studies have specifically evaluated the role of MR

imaging of plaque in the setting of ESUS. Several studies have

evaluated individuals with ESUS and have found that these MR-

detected vulnerable plaque features are more commonly seen

FIGURE 1

Though there is no accompanying significant stenosis [(A)

maximum intensity projection of contrast-enhanced MRA], this

MPRAGE sequence of the proximal right internal carotid artery in

a 73-years-old male demonstrates a large T1 hyperintense

plaque [(B) arrow]. These findings are compatible with

intraplaque hemorrhage, a well-established marker of

vulnerable plaque and likely contributor to acute ischemic

stroke in this patient.

ipsilateral to the side of stroke compared to the contralateral

side (22–25). Recent prospective studies have confirmed these

findings. The Plaque At RISK study showed that in patients with

mild-moderate extracranial carotid stenosis, those with IPH

and higher total plaque volume were more likely to experience

recurrent ipsilateral ischemic stroke over a 5 years follow-up

period, though plaque ulcerations and calcifications were not

significantly associated (26). Another recent prospective study

of patients with non-stenosing plaque found that patients with

complicated plaque, such as IPH or surface defects, were much

more likely to experience recurrent ipsilateral infarctions in the

30 months following an initial infarct (27). The findings from

these studies suggest that even in the setting of non-stenosing

plaque, certain higher-risk plaque features may be responsible

for infarcts.

Though MR imaging of the extracranial carotid arteries can

be helpful in identifying high risk plaque features, its widespread

use is somewhat limited by availability, patient contraindications

(e.g., implanted metal), and usually lengthy sequences making it

a time-consuming imaging examination.

CTA

CTA is an increasingly commonly used imaging modality

in the assessment of etiology of acute ischemic stroke. Because

it is relatively cost-effective and quick to obtain, it is most

often the first-line examination for those presenting emergently

with acute stroke symptoms. While there is more prospective

evidence that MR-assessed vulnerable plaque features contribute

to future and recurrent ischemic stroke, many of these

plaque features can also be assessed using CTA imaging (28).

While MR is a superior imaging modality for differentiating

histopathologic components of plaque, CTA is able to assess

a few specific features which are known to increase risk of
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FIGURE 2

This 71-years-old patient presenting with an acute left middle

cerebral artery territory infarction [arrow (A)] did not have any

significant stenosis by North American Symptomatic Carotid

Endarterectomy Trial criteria on CT angiography (CTA) and was

thought to have an embolic stroke of undetermined source. The

CTA (B) does however show a large, predominantly

non–calcified plaque up to 5mm in thickness in the proximal left

internal carotid artery [(B) arrow] compatible with a vulnerable

plaque, potentially the embolic source of the infarction.

emboli, including “soft” or predominantly non–calcified plaque

which is thought to be a correlate of IPH or lipid-rich necrotic

core, plaque ulceration, and plaque thickness (Figure 2). These

features are readily visible on routine CTA imaging and are

associated with increased likelihood of symptomaticity (28,

29). Similar to studies performed with MR-detected plaque

features, several have found that non-stenotic plaques are more

commonly seen ipsilateral to the infarcted cerebral hemisphere

in patients with ESUS (30, 31). Specifically, several have found

that having plaques >3mm was more common ipsilateral to

the side of stroke (30–32). Other studies have found that plaque

with spotty calcification and a “rim sign” were also associated

with cerebrovascular ischemic symptoms (33, 34). These studies

indicate that though there is a paucity of prospective data

evaluating the role of CT-plaque features in future ischemic

stroke, certain imaging findings may be useful in identifying

those at higher risk of ischemic stroke.

Other imaging techniques

Though not frequently used in everyday practice, there may

be a role for more advanced imaging to evaluate for higher risk

plaque. Positron Emission Tomography (PET) imaging has been

studied as a method for assessing the vulnerability of carotid

plaque. A recent systematic review and meta-analysis found

that carotid arteries ipsilateral to recent ischemic events had

more avid uptake of markers of inflammatory activity (e.g., 18-

F fluorodeoxyglucose) than asymptomatic arteries (35). Other

types of more advanced imaging has been studied to evaluate

for plaque vulnerability, including dynamic contrast enhanced

perfusion imaging (36). These and other findings point to

a potential role for advanced imaging in evaluating plaque

vulnerability in the future.

Intracranial atherosclerosis

Intracranial atherosclerosis leads to up to 9–15% of

ischemic infarctions in the United States and up to 50%

worldwide. Similar to extracranial atherosclerosis, intracranial

atherosclerosis must result in at least 50% narrowing in order

to be considered causative in the setting of ischemic stroke.

Active atherosclerotic plaque can easily be overlooked when

using conventional angiographic imaging because plaques do

not always produce associated vessel narrowing. Because of this,

intracranial vessel wall MR (VW-MR) can be used as an imaging

assessment of atherosclerosis, particularly non-stenosing plaque.

Intracranial VW-MR

Intracranial VW-MR is a powerful tool to image beyond

the vessel lumen and for evaluating non-stenosing plaque which

may lead to ischemic stroke. In order to accurately assess the

vessel wall, there are several critical components to intracranial

VW-MR imaging (37). First, in order to highlight the wall itself

and any potential plaque, it is essential to suppress flowing

luminal blood and CSF, which can be done with a variety of

different T1-weighted sequences. This is essential to increase

conspicuity of any plaque features or enhancement. Further,

high spatial resolution is needed in order to see the small

vessel wall with most institutions performing approximately

0.5mm voxels. Multiplanar acquisitions are also essential to

assess the vessels en face because of the inherent tortuosity of

the intracranial vessels. This is usually achieved by acquiring

images using 3D techniques then creating reformats. Lastly,

multiple tissue weightings are also performed to evaluate specific

T1 and T2 characteristics in order to distinguish different

plaque components.

Intracranial VW-MR can more easily detect smaller plaques

or plaques with associated positive remodeling which may

not produce narrowing on angiographic imaging but may still

lead to ischemic stroke. Positive remodeling is an adaptive

process where the outer wall of a vessel can outwardly bulge

in the setting of an atherosclerotic plaque to preserve cerebral

blood flow, leading to a normal, non-stenotic appearance on

standard angiographic imaging techniques, including CTA,

MRA, and DSA. Positive remodeling is commonly seen in the

posterior circulation but can be seen in any intracranial arteries.

Because of the common occurrence of positive remodeling,

many patients presenting with acute ischemic stroke may have

a normal appearing angiographic study without any suspicious

findings for a contributing atherosclerotic lesion. When imaged

using VW-MR, however, culprit atherosclerotic plaques may be
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FIGURE 3

This 62-year old patient presenting with an acute left middle cerebral artery (MCA) infarction on MR (A) had CT angiography [(B) maximum

intensity projection] at presentation without evidence of any significant stenosis. Initially thought to have an embolic stroke of undetermined

source, he underwent an intracranial vessel wall MR where he was found to have a focal, eccentric T2 hyperintense [(C) white arrow] enhancing

[(D) pre-contrast image, (E) post-contrast image, white arrow] plaque, in the distal M1 segment of the left MCA, thought to be the culprit

plaque.4.

identified (Figure 3) and are generally assumed to be causative

for ischemic stroke.

VW-MR uses a few specific imaging findings to identify

active or culprit atherosclerotic plaques. The most important

imaging finding for evaluating plaque in the setting of

acute ischemic stroke is plaque enhancement. Several meta-

analyses show that plaque/vessel wall enhancement is very

strongly associated with culprit or symptomatic plaques (38–

40). Plaque enhancement is readily assessable on post-contrast

MR sequences and is a fundamental aspect of imaging with

VW-MR techniques. In addition to plaque enhancement,

positive remodeling is another important imaging finding that

is strongly associated with symptomatic plaques (39, 40). This

strong association of positive remodeling with symptomatic

plaque highlights the importance of VW-MR in identifying

potential culprit plaques. Similar to extracranial carotid plaque,

discontinuities on the plaque surface indicative of fibrous

cap rupture are also associated with ischemic stroke and

symptomatic plaques (39, 40). Though intraplaque hemorrhage

is a very strong marker of high risk plaque in the extracranial

carotid artery, the association between IPH or intraplaque high

T1 signal in the intracranial artery is not as strong, with a

more modest association with ischemic stroke and symptomatic

plaque, more commonly seen in the basilar artery (40, 41).

Further studies evaluating the role of intracranial IPH in

contributing to acute ischemic stroke are warranted.

When used in patients with ESUS, some studies have found

that intracranial VW-MR can be a helpful tool. A study with

over 240 patients with ESUS found that intracranial plaque

was much more common ipsilateral to the side of stroke (42).

They also found that there was increased wall remodeling

in patients with ESUS, again highlighting the importance of

non-stenosing plaque (42). A recent systematic review of 21

studies of patients with non–stenosing atherosclerosis found

that intracranial plaque with higher risk features such as plaque

enhancement and positive remodeling were more commonly

seen in those with acute infarction, again indicating the role

of specific plaque features (43). Another study found that

using intracranial VW-MR could change the stroke etiology

classification as it identified alternate causes of the ischemic

stroke (44).

Intracranial VW-MR has become increasingly popular in

evaluating ischemic stroke and ESUS patients, with a recent

survey suggesting that more than 50% of neuroradiology

practices routinely perform this type of study (45). Despite its

increasing popularity, intracranial VW-MR imaging is limited

by lengthy acquisitions, patient contraindications, and cost.

Further, there has been limited histopathologic validation of MR

signal characteristics of intracranial vessel wall pathology due

to limitations in correlation with vessel samples (46, 47). This

inherent limitation in our ability to correlate imaging findings

with histopathologic components constrains our understanding

of intracranial plaque characteristics.

Conclusion

Given recent randomized clinical trial findings that treating

cardiac sources for ESUS may not be as beneficial as originally

hoped, more attention is being placed on other potential embolic

sources. Since the current ESUS definitions require <50%

luminal narrowing, potential culprit plaques could be missed

or inadequately treated because they are producing insignificant

narrowing. In the extracranial carotid artery, both MR and

CTA can be used to identify certain plaque features which

indicate more plaque vulnerability including IPH on MR and

increased soft plaque thickness on CTA. VW-MR can also be

used as a powerful tool to identify non-stenosing but active

atherosclerotic plaque in the intracranial arteries by identifying

an enhancing plaque with positive remodeling. Though these

studies can be helpful in determining the source of potential

emboli, there are some Further studies are needed to validate

these imaging techniques and pave a path for their routine use

in ESUS.
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Background and purpose: The early identification of cardioembolic stroke

is critical for the early initiation of anticoagulant treatment. However, it can

be challenging to identify the major cardiac source, particularly since the

predominant source, paroxysmal atrial fibrillation (AF), may not be present at

the time of stroke. In this study, we aimed to evaluate imaging predictors for

unrecognized AF in patients with acute ischemic stroke.

Methods: We performed a cross-sectional analysis of data and magnetic

resonance imaging (MRI) scans from two prospective cohorts of patients who

underwent serial 12-lead electrocardiography and 24-h Holter monitoring to

detect unrecognized AF. The imaging patterns in di�usion-weighted imaging

and imaging characteristics were assessed and classified. A logistic regression

model was used to identify predictive factors for newly detected AF in patients

with acute ischemic stroke.

Results: A total of 734 patients were recruited for analysis, with a

median age of 72 (interquartile range: 65–79) years and a median National

Institutes of Health Stroke Scale score of 4 (interquartile range: 2–6). Of

these patients, 64 (8.7%) had newly detected AF during the follow-up

period. Stepwise multivariate logistic regression revealed that age ≥75

years [adjusted odds ratio (aOR) 5.66, 95% confidence interval (CI) 2.98–

10.75], receiving recombinant tissue plasminogen activator treatment (aOR

4.36, 95% CI 1.65–11.54), congestive heart failure (aOR 6.73, 95% CI

1.85–24.48), early hemorrhage in MRI (aOR 3.62, 95% CI 1.52–8.61), single

cortical infarct (aOR 6.49, 95% CI 2.35–17.92), and territorial infarcts (aOR

3.54, 95% CI 1.06–11.75) were associated with newly detected AF. The

C-statistic of the prediction model for newly detected AF was 0.764.
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Conclusion: Initial MRI at the time of stroke may be useful to predict which

patients have cardioembolic stroke caused by unrecognized AF. Further studies

are warranted to verify these findings and their application to high-risk patients.

KEYWORDS

ischemic stroke, cryptogenic stroke, cardioembolic stroke, MRI, atrial fibrillation

Introduction

Cardioembolic stroke has been reported to account for about

one fifth of all cases of ischemic stroke (1), and it is associated

with higher stroke severity and recurrence rate (2, 3). Atrial

fibrillation (AF) is the leading cause of cardioembolic stroke

(4), and oral anticoagulants are the most effective method to

prevent cardioembolic stroke recurrence in patients with AF

(5, 6). Therefore, the early diagnosis of AF after stroke is critical

to allow for the early initiation of anticoagulant treatment.

However, it can be challenging to identify AF, particularly as

paroxysmal AF may not be present at the time of stroke.

In these situations, 24-h Holter monitoring is the standard

method to detect AF, however it is still far from satisfactory.

Extended electrocardiogram monitoring may improve the

detection rate of AF, however it is expensive and inconvenient,

limiting its widespread use in clinical practice. Therefore, a

method to accurately identify patients with cardioembolism

from unrecognized AF is urgently needed.

Previous studies have used several clinical scales to predict

new-onset AF, including CHA2DS2-VASc (congestive heart

failure, hypertension, age ≥75 years, diabetes mellitus, prior

stroke or transient ischemic attack, vascular disease, age 65–

74 years, female) (7). Cohorts for Heart and Aging Research in

Genomic Epidemiology-AF (CHARGE-AF) (8), and Electronic

Health Record–Based AF (EHR-AF) scores (9). These AF scales

have also been shown to be highly associated with cardioembolic

stroke (10). However, the use of these scales requires a thorough

survey and extensive clinical information to enable calculation of

the scores, and their sensitivity and specificity are still far from

satisfactory, which limits their usage in the clinic.

Magnetic resonance imaging (MRI) is widely used in clinical

practice to identify acute ischemic stroke, and it may be useful

to identify cardioembolic stroke from unrecognized AF at the

time of stroke. Several infarct patterns on MRI support the

diagnosis of cardioembolism, including multiple simultaneous

infarcts located in one or more major arterial territories of

the anterior and/or posterior circulation (11), single cortical

infarction or cortical-subcortical infarct without large artery

occlusion (12). In addition, the presence of a susceptibility

vessel sign (SVS) in a gradient recalled echo (GRE) MR imaging

sequence is associated with erythrocyte-rich thrombus and

cardioembolism (13).

In this study, we aimed to evaluate the MRI characteristics

associated with newly detected AF among two prospective

cohorts of patients with acute ischemic stroke who did not have

AF at baseline.

Materials and methods

Patients

We analyzed data from two prospective cohorts at Chang

GungMemorial Hospital (14). The first cohort was derived from

the Atrial Fibrillation Trial to Evaluate Real-world Procedures

for their Utility in helping to Lower Stroke Events (AFTER-

PULSE), which compared the detection rate of AF using serial

12-lead electrocardiography vs. 24-h Holter monitoring within

3 months after the index ischemic stroke event, and included

elderly patients with no known AF between October 2015

and July 2018 (14). The second cohort was derived from

an observational study conducted between January 2014 and

September 2017, which evaluated the correlation between left

atrial enlargement and new-onset AF among patients with no

known AF after their index ischemic stroke event; all patients

underwent serial 12-lead electrocardiography and were followed

up for 6 months.

Among these two cohorts, we selected patients who had

undergone MRI within 5 days after the index stroke event and

had a visible acute infarction in diffusion-weighted imaging

(DWI). A detailed flow chart of patient selection is shown

in Figure 1. In both cohorts, data on sex, age, and a medical

history of diabetes mellitus, hypertension, hypercholesterolemia,

congestive heart failure, prior cerebrovascular disease and prior

coronary artery disease were recorded. Systolic and diastolic

blood pressure values, blood cell counts and biochemistry

data were collected on admission. Neurological deficits were

evaluated using the National Institutes of Health Stroke Scale

(NIHSS) when the patient arrived at hospital, and the modified

Rankin scale at the 90th day.

MRI protocol and image analysis

All data were collected using a 3 Tesla Siemens Verio MRI

system (SiemensMedical System, Erlangen, Germany) or a 1.5-T
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FIGURE 1

Study flowchart of patient selection.

Philips Gyroscan Intera scanner (Philips Medical Systems, Best,

The Netherlands).

Standard sequences included axial DWI, fluid-attenuated

inversion recovery images, axial T1- and T2-weighted

images, and three-dimensional time of flight angiography

covering the extracranial carotid artery and circle of Willis.

Patients also received either axial T2∗-GRE imaging or

susceptibility-weighted imaging (SWI). The imaging data were

evaluated by two stroke neurologists, who were blinded to the

clinical information. If there were any discrepancies in the

interpretation of the images, the two readers discussed the data

further or consulted a third reader to form a consensus.

Definition of imaging predictors

Classification of DWI patterns

We divided the patients into the following groups based on

the observed DWI patterns with reference to previous reports

(Supplementary Figure 1) (11, 12, 15, 16), and the illustrated

patients are shown in Figure 2 and Supplementary Figure 2.

1. Territorial infarct, involving territories of the internal

carotid artery (ICA) or middle cerebral artery (MCA),

with at least one division. The DWI pattern should

be homogenous, including cortical and subcortical
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FIGURE 2

Illustration of DWI patterns in anterior circulation. Territory infarct (A), single cortical infarct (B), single subcortical infarct (<20mm) (C), single

subcortical infarct (>20mm) (D), small scattered cortical or subcortical infarcts (E), border zone infarcts (F), other cortical and subcortical

infarcts (G), and multiple territories (H).

areas. Small separate infarctions in the same vascular

territory or in different territories were also classified as

territorial infarcts.

2. Single cortical infarct, with a length <30mm and not

involving the subcortical area.

3. Single subcortical infarct (diameter ≤20mm) in the

penetrating artery territories.

4. Single subcortical infarct (diameter ≥20mm) in the

penetrating artery territories.

5. Small scattered cortical or subcortical infarcts, defined as

small scattered cortical infarctions with a length <30mm

or multiple subcortical lesions but not restricted to the

penetrating artery territories.

6. Border zone infarcts, including internal border zone

infarction in the MCA territory or infarction at the MCA-

anterior cerebral artery or MCA-posterior cerebral artery

cortical border zones.

7. Other cortical and subcortical infarcts, defined as lesions

≥30mm in one vascular territory but not classified in the

patterns above.

8. Multiple territories: multiple infarcts in different

vascular territories, including in both left and right ICA

territories or in both anterior and posterior circulation

territories.

Early hemorrhage

Hemorrhagic transformation after ischemic stroke is related

to cardioembolism due to a large core infarction and

recanalization. The radiologic appearance of hemorrhagic

transformation after ischemic stroke was defined according

to the European Cooperative Acute Stroke Study II trial,

including hemorrhagic infarction and parenchymal infarction

(17). These hemorrhages appeared as hypointense signals within

or next to the areas of infarction in SWI or GRE imaging

(Figures 3C,D), excluding hemorrhage mimics, such as vessels,

mineralization, air-bone interfaces, partial volume artifacts, or

microbleeds. Early hemorrhage was defined as any hemorrhagic

transformation within 5 days of stroke onset.

SVS in SWI and GRE imaging

SVSs from deoxygenated hemoglobin in red clots and

imaging markers are highly related to cardioembolism. SVS was

defined as a hypointense signal in the symptomatic occlusive

vessel on GRE imaging or SWI that was larger than the

contralateral arterial diameter (Figures 3A,B).

Statistical analysis

Descriptive statistics were presented as frequencies, means

and standard deviations, or medians and interquartile ranges

(IQRs), as appropriate. The Kolmogorov-Smirnov test was used

to examine the normality of continuous variables, which were

then compared using a Student’s t-test or Mann-Whitney U-

test, as appropriate. Categorical data were analyzed using a

chi-squared test or Fisher’s exact test. All tests were two-tailed,

and a p-value < 0.05 was considered to indicate a statistically

significant difference.
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FIGURE 3

Illustration of susceptibility vessel sign (SVS) and early

hemorrhage. (A) A hypointense signal was noted at the left

occluded middle cerebral artery (MCA) [(A), arrow] in

T2*-weighted imaging, with a low-intensity core surrounded by

a signal of higher intensity [(A) arrowheads], suggesting a

2-layered SVS. (B) A homogenous hypointense signal was noted

at the right occluded MCA [(B), arrow and arrowheads] in

T2*-weighted imaging suggesting SVS. (C) DWI showed acute

infarction in the left MCA territory with restricted di�usion and

hypointense lesions inside (arrow). T2*-weighted imaging

showed hypointense signal changes (arrowhead) suggesting

hemorrhagic infarction. (D) DWI showed acute infarction in the

right MCA territory (arrow). Susceptibility-weighted imaging

showed a hypointense space-occupying lesion (arrowhead)

suggesting parenchymal hemorrhage.

Factors potentially associated with newly-detected AF

were evaluated using descriptive statistics. Univariable logistic

regression models were used to evaluate candidate variables.

Odds ratios (ORs) together with 95% confidence intervals

(CIs) were reported, and p-values < 0.05 were considered

to indicate a statistically significant difference. We built a

multivariable regression model based on all potential predictors

using forward stepwise selection with p < 0.05. Then the

“nomolog” package was used to establish a predictive model and

generate the nomogram to predict newly detected AF. We also

examined discrimination using the C-statistic in our regression

model, CHA2DS2-VASc, CHARGE-AF, and EHR-AF scores.

Analyses were performed using Stata SE software (version 15.1;

StataCorp, College Station, TX).

Results

A total of 1,054 patients were selected from the two previous

trials (Figure 1). After excluding 263 patients without MRI or

without complete MRI sequences and 54 patients with transient

ischemic stroke, a total of 734 patients were recruited for

analysis. The median age of the patients was 72 (IQR 65–79)

years, and the median NIHSS score was 4 (IQR 2–6). Among

them, 64 (8.7%) patients had AF during the follow-up period;

46 (71.9%) within 14 days, 8 (12.5%) within 15–90 days, and

10 (15.6%) within 90–180 days following stroke onset. Among

the 179 patients with embolic stroke of an undetermined source

(ESUS), 30 (16.8%) were detected as having AF.

According to the classification of DWI patterns, there were

18 (2.3%) territorial infarcts, 27 (3.7%) single cortical infarcts,

289 (39.4%) single subcortical infarcts with a diameter <20mm,

61 (8.3%) single subcortical infarcts with a diameter≥20mm, 96

(13.1%) small scattered cortical or subcortical infarcts, 58 (7.9%)

border zone infarcts, 143 (19.5%) other cortical and subcortical

infarcts, and 42 (5.7%) infarcts in multiple territories. Among

the included patients, 301 had >50% stenosis or occlusion of

the relevant vessels, 40 (5.5%) had hemorrhagic infarcts, and 4

(0.5%) had parenchymal hemorrhage.

Compared to the patients without newly detected AF

(Table 1), the patients with AF were significantly older (80 vs.

71 years; p < 0.001), included more females (48.4 vs. 34.7%;

p = 0.028), had a higher rate of ESUS (46.9 vs. 22.2%; p <

0.001), lower incidence of diabetes mellitus (31.3 vs. 47.8%;

p = 0.011), higher incidence of receiving recombinant tissue

plasminogen activator (rt-PA) treatment (12.5 vs. 4.0%; p =

0.002), and higher incidence of congestive heart failure (7.8 vs.

1.3%; p < 0.001). The imaging patterns of territorial infarcts,

single cortical infarct, and early hemorrhage were more likely to

be associated with newly detected AF, whereas single subcortical

infarcts (diameter <20mm) and border zone infarcts were less

likely to be associated with newly detected AF.

In multivariate logistic regression analysis (Table 2), age

≥75 years [adjusted odds ratio (aOR) 5.66, 95% CI 2.98–

10.75], receiving rt-PA treatment (aOR 4.36, 95% CI 1.65–

11.54), congestive heart failure (aOR 6.73, 95% CI 1.85–24.48),

early hemorrhage in MRI (aOR 3.62, 95% CI 1.52–8.61), single

cortical infarct (aOR 6.49, 95% CI 2.35–17.92), and territorial

infarcts (aOR 3.54, 95% CI 1.06–11.75) were associated with
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TABLE 1 Baseline characteristics, imaging findings and outcomes, and correlations with newly detected atrial fibrillation.

Characteristics Patients without newly detected Patients with newly detected p

AF AF

All patients 670 64

Age 71 (63–79) 79.5 (73.3–85) <0.001

Female sex 232 (34.7) 31 (48.4) 0.028

Stroke information

Baseline NIHSS 4 (2–6) 5 (2–8) 0.105

ESUS 149 (22.2) 30 (46.9) <0.001

Diabetes mellitus 320 (47.8) 20 (31.3) 0.011

Hypertension 519 (77.5) 52(81.3) 0.486

Hypercholesterolemia 259 (38.7) 22 (34.4) 0.501

Coronary artery disease 60 (9.0) 7 (10.9) 0.599

Old stroke 169 (25.2) 11 (17.2) 0.153

Congestive heart failure 9 (1.3) 5 (7.8) <0.001

Intravenous rt-PA treatment 27 (4.0) 8 (12.5) 0.002

Imaging patterns

Territorial infarcts 12 (1.8) 6 (9.4) <0.001

Single cortical infarcts 20 (3.0) 7 (10.9) 0.001

Single subcortical infarcts (diameter <20mm) 272 (40.6) 17 (26.6) 0.028

Single subcortical infarcts (diameter ≥20mm) 59 (8.8) 2 (3.1) 0.153

Small scattered cortical or subcortical infarcts 86 (12.8) 10 (15.6) 0.527

Border zone infarcts 57 (8.5) 1 (1.6) 0.050

Other cortical and subcortical infarcts 127 (19.0) 16 (25.0) 0.243

Multiple territories 37 (5.5) 5 (7.8) 0.451

Relevant vessel stenosis >50% 279 (41.6) 22 (34.4) 0.247

Susceptibility vessel sign 26 (3.9) 5 (7.8) 0.128

Early hemorrhage 33 (4.9) 11 (17.2) <0.001

Values presented as n (%) and median (interquartile range).

AF, atrial fibrillation; ESUS, embolic stroke of undetermined source; IQR, interquartile range; NIHSS, national institutes of health stroke scale; rt-PA, recombinant tissue

plasminogen activator.

newly detected AF. A nomogram of the prediction model for

newly detected AF is shown in Figure 4. The C-statistic of

the prediction model for newly detected AF was 0.764 for all

patients, and 0.811 for the patients with ESUS. Using CHA2DS2-

VASc, EHR-AF and CHARGE-AF score, the C-statistics for the

prediction of newly detected AF were 0.551, 0.690, and 0.702,

respectively, for all patients.

Discussion

In this study, we demonstrated that specific infarction

patterns, including single cortical infarctions, territorial

infarctions, and early hemorrhage in MRI independently

predicted newly detected AF in patients with acute ischemic

stroke. Our findings also challenge the current imaging

definition of ESUS, which includes large single subcortical

infarctions, as they were not associated with newly detected

AF in the current study. Furthermore, the use of additional

imaging parameters improved the predictive accuracy for

newly detected AF compared to current scales using clinical

characteristics (10). A clinical and imaging prediction model

may be useful to determine which high-risk patients should

receive extended electrocardiogram monitoring. In keeping

with previous studies which reported an association between

territorial infarcts and cardioembolic stroke, we also found

that territorial infarcts were highly associated with newly

detected AF in this study (12, 18–20). For acute stroke caused

by large vessel occlusion, cardioembolic stroke tends to have less

collateral flow compared with atherosclerotic stroke because

of the more abrupt perfusion compromise in cardioembolic

occlusion (21, 22). As there are fewer leptomeningeal collaterals

in cardioembolic stroke, the infarct pattern is unsurprisingly

larger, wedge-shaped and homogenous in both cortical

and subcortical areas (18, 23). Single or multiple cortical

infarcts in either the cerebral or cerebellar cortex have been

reported to be related to cardioembolism or AF, suggesting

small or fragmented cardio-emboli (24–26). However, only
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TABLE 2 Logistic regression for the predictors of newly detected atrial fibrillation in the patients with acute ischemic stroke.

Univariate model Multivariate model

Odds ratio 95% CI p Adjusted odds ratio 95% CI p

Age≧ 75 years 3.93 2.25–6.87 <0.001 5.66 2.98–10.75 <0.001

Female sex 2.05 1.22–3.43 0.006

NIHSS score 1.06 1.02–1.10 0.006

Diabetes mellitus 0.50 0.29–0.86 0.013

Hypertension 1.25 0.65–2.40 0.503

Hypercholesterolemia 0.86 0.50–1.46 0.572

Coronary artery disease 1.23 0.54–2.81 0.629

Old stroke 0.62 0.31–1.21 0.157

Congestive heart failure 6.22 2.02–19.18 0.001 6.73 1.85–24.48 0.004

Intravenous rt-PA treatment 3.40 1.48–7.84 0.004 4.36 1.65–11.54 0.003

Imaging patterns

Territorial infarcts 5.67 2.05–15.7 0.001 3.54 1.06–11.75 0.039

Single cortical infarcts 3.99 1.62–9.84 0.003 6.49 2.35–17.92 <0.001

Single subcortical infarcts (diameter < 20mm) 0.53 0.30–0.94 0.030

Single subcortical infarcts (diameter≧20mm) 0.33 0.08–1.40 0.134

Small scattered cortical or subcortical infarcts 1.26 0.62–2.56 0.528

Border zone infarcts 0.17 0.02–1.25 0.082

Other cortical and subcortical infarcts 1.43 0.78–2.59 0.245

Multiple territories 1.45 0.55–3.83 0.453

Parental vessel stenosis >50% 0.73 0.43–1.25 0.249

Susceptibility vessel sign 2.13 0.79–5.79 0.137

Early hemorrhage 4.03 1.92–8.47 <0.001 3.62 1.52–8.61 0.004

CI, confidence interval; NIHSS, national institutes of health stroke scale; rt-PA, recombinant tissue plasminogen activator.

single cortical infarcts were associated with newly detected

AF in our study, and multiple cortical infarcts were not.

The reason for this finding could be that multiple cortical

infarcts are also related to artery-to-artery embolism from

atherosclerotic plaques of steno-occlusive vessels, whereas

single cortical infarcts are more likely to be related to the

cardioembolism (26).

Multiple simultaneous infarcts in multiple territories have

been reported to be more prevalent in patients with an acute

ischemic stroke of cardioembolic origin (27) and in patients

with occult AF in ESUS (28). However, in the current study,

there was no significant difference in infarctions in multiple

territories between the patients with or without newly detected

AF. The reason for this may be that we excluded patients with

a documented risk of cardioembolism and included patients

with small vessel occlusion. Therefore, only 5.2% of the patients

presented with multiple circulation infarcts in our study. The

lack of significant correlation between multiple simultaneous

infarcts in multiple territories and AF may also be due to the

small sample size. In addition, we did not exclude patients

with large atherosclerotic occlusion, which may have also led to

multiple circulation infarcts, such as in bilateral anterior cerebral

arteries from unilateral ICA or a fetal type posterior cerebral

FIGURE 4

Nomogram of the prediction model for newly detected AF.

artery. Despite these limitations, our findings are close to clinical

practice and provide valuable information that the presence of

multiple simultaneous infarctions is not as useful as previously

assumed for the prediction of unrecognized AF.

Frontiers inNeurology 07 frontiersin.org

104

https://doi.org/10.3389/fneur.2022.952462
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chen et al. 10.3389/fneur.2022.952462

The infarction pattern of single subcortical infarcts with

a diameter <20mm, commonly called lacunar infarcts, was

less likely to be associated with newly detected AF in

this study, which is comparable with previous reports (12,

27). A single subcortical infarct with a diameter ≥20mm

still showed a non-significant trend toward identifying the

absence of AF. The major reason for this may be that

larger single subcortical infarcts are usually attributed to

branch atheromatous disease caused by atherosclerotic plaques

involving parent artery perforators and less to cardioembolic

occlusion (29). Nevertheless, large single subcortical infarcts

with a diameter ≥20mm are classified as ESUS according to

imaging criteria. Since their pathologies favor an atherosclerotic

origin rather than cardioembolism, our findings provide

evidence against the current definition of ESUS, which includes

single subcortical infarcts≥20mm (30). In the RE-SPECT ESUS

and NAVIGATE ESUS trials, rivaroxaban and dabigatran were

not shown to be beneficial in preventing recurrent ESUS. A

possible reason for this finding may be the heterogeneity of

the recruited patients (31). In our study, 34% (64/179) of the

patients with ESUS had a single subcortical infarction with a

diameter ≥20mm. Therefore, it may be reasonable to remove

single subcortical infarcts with a diameter ≥20mm from the

imaging definition of ESUS, and instead use a new definition

involving MRI imaging.

Both internal border zone infarction and cortical border

zone infarction are usually associated with hemodynamic

failure and microembolization from steno-occlusive disease

or sometimes systemic hypotension (32, 33). When border

zone infarction is combined with stenosis or occlusion of

relevant vessels, it is usually presumed and classified to

be a large atherosclerotic artery stroke in clinical practice.

Hence, it is no surprise that the pattern of border zone

infarction was less likely to be associated with newly detected

AF in our study. However, time of flight angiography in

MRI could not clearly distinguish between atherosclerotic

and cardioembolic occlusion, so that occlusion or stenosis

>50% of relevant vessels failed to predict newly detected AF.

Although SVS with specific morphologies has been shown to

be associated with cardioembolic stroke (34, 35), the trend

was not statistically significant in our study, probably due to

the low number of patients (4.2%) with SVS. Further studies

with a larger sample size and a precise definition of SVS

are warranted to test its efficacy for the prediction of newly

detected AF.

Cardioembolic stroke, especially that caused by AF, is

strongly associated with hemorrhagic transformation after acute

ischemic stroke, probably due to the inherent characteristics

of large infarction core and early recanalization (36–38). T2∗-

weighted GRE and SWI are sensitive methods of detecting early

hemorrhagic transformation after acute ischemic stroke (39, 40).

In our study, early hemorrhagic transformation in MRI was an

independent predictor for newly detected AF.

In addition to specific imaging patterns, we also found that

certain clinical characteristics, including female sex, age ≥75

years, and heart failure, were associated with an increased risk

of newly detected AF. These factors are also included in the

CHA2DS2-VASc score, which is used to predict the risk of

stroke in individuals with AF, and predict the risk of AF in

individuals without AF (41, 42). The CHARGE-AF and EHR-AF

scores have been used to predict new-onset AF in population-

based cohorts and to predict cardioembolic stroke at the time

of stroke (9, 10, 43). AF has also been reported to account for

∼25% of patients receiving thrombolytic therapy because of

worse stroke severity (44, 45). Therefore, the patients receiving

intravenous rt-PA treatment were related to newly detected AF.

The prediction model in our study was robustly associated with

newly detected AF and could moderately discriminate occult

cardioembolism from unknown paroxysmal AF. A prediction

model including MRI information may improve the accuracy of

predicting newly detected AF at the time of stroke.

Compared with the NAVIGATE and RESPECT ESUS

trials, the definition of cardiac embolism in the ATTICUS

trial included additional risk factors (46). Despite the higher

rate of newly detected AF (23%), the trial still failed to

demonstrate the efficacy of apixaban in ESUS patients.

Moreover, apixaban treatment was not superior to “aspirin with

the switch to apixaban in case of AF detection by mandatory

cardiac monitoring” in preventing new ischemic lesions during

follow-up. This may emphasize the importance of extended

electrocardiogram monitoring in patients with ESUS, and our

prediction model may be useful to identify high-risk patients.

There are several limitations to this study. First, we

presumed that the specific infarction patterns were related

to cardioembolism due to unknown paroxysmal AF, however

other etiologies of embolic stroke were not explored, such

as patent foramen ovale, valvular heart disease, aortic arch

atheroma, cancer-associated coagulopathy, etc. Second, some

patients only received serial 12-lead electrocardiography and

were followed up for 3 months. The incidence of newly

detected AF may therefore be underestimated in our study, even

though the AF detection rate of 8.7% in our ESUS patients

is comparable to the 8.9% reported in a previous trial using

an insertable cardiac monitor for 6 months (47). The small

sample size and the fact that we did not use prolonged cardiac

monitoring may mean that we missed potential predictors for

unknown paroxysmal AF. Third, we did not recruit patients

with endovascular thrombectomy, so the imaging patterns

cannot be applied in these patients. Fourth, our study has

the inherent drawbacks of selection and detection bias, since

one selected cohort excluded patients <65 years old and

end-stage renal disease, and we only selected patients who

underwent MRI and had a milder stroke severity. Despite these

limitations, our study still provides valuable information which

may improve the prediction of newly detected AF after acute

ischemic stroke.
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Conclusion

In addition to clinically known risk factors for AF, our study

revealed that MRI at stroke onset provides critical clues for

the prediction of newly detected AF, including single cortical

infarcts, territorial infarcts and early hemorrhage. Future studies

are warranted to verify this new prediction model and to assess

whether the identification of AF can be enhanced to improve

outcomes after acute ischemic stroke.
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Purpose: For patients with symptomatic middle cerebral artery (MCA)

atherosclerotic stenosis, identifying the potential stroke mechanisms may

contribute to secondary prevention. The purpose of the study is to explore

the relationship between stroke mechanisms and the characteristics of culprit

plaques in patients with atherosclerotic ischemic stroke in the M1 segment

of the middle cerebral artery (MCA) based on high-resolution vessel wall

imaging (HR-VWI).

Methods: We recruited 61 patients with acute ischemic stroke due to MCA

atherosclerotic stenosis from Shenzhen Bao’an District People’s Hospital.

According to prespecified criteria based on infarct topography and magnetic

resonance angiography, possible stroke mechanisms were divided into

parent artery atherosclerosis occluding penetrating artery (P), artery-to-artery

embolism (A), hypoperfusion (H), and mixed mechanisms (M). The correlation

between the characteristics of MCA M1 culprit plaque and di�erent stroke

mechanisms was analyzed using HR-VWI. The indicators included plaque

surface irregularity, T1 hyperintensity, location, plaque burden (PB), remodeling

index (RI), enhancement rate, and stenosis rate.

Results: Parental artery atherosclerosis occluding penetrating artery was

the most common mechanism (37.7%). The proposed criteria showed

substantial to excellent interrater reproducibility (κ, 0.728; 0.593–0.863).

Compared with the P group, the surface irregularity, T1 hyperintensity,

and obvious enhancement of the culprit plaque in the A group were

more common (p < 0.0125). Compared with the other stroke mechanisms,

positive remodeling of culprit plaques was more common (p < 0.0125),

the RI was greater (p < 0.05), and the PB was the smallest (p <

0.05) in the P group. The enhancement ratio (ER) was smaller in the

P group (p < 0.05). Compared with the A group, T1 hyperintensity of

the culprit plaque was more common in the H group (p < 0.0125),

and the stenosis rate was greater (p < 0.05). After adjustment for

clinical demographic factors in the binary logistic regression analysis, the
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enhancement level (odds ratio [OR] 0.213, 95% CI (0.05–0.91), p = 0.037)

and PB of culprit plaque (OR 0, 95% CI (0–0.477), p = 0.034) were negatively

associated with P groups.

Conclusion: The culprit plaque characteristics of patients with symptomatic

MCA atherosclerotic in di�erent stroke mechanisms may be evaluated using

HR-VWI. The plaque characteristics of di�erent stroke mechanisms may have

clinical value for the selection of treatment strategies and prevention of

stroke recurrence.

Clinical trial registration: Identifier: ChiCTR1900028533.

KEYWORDS

stroke, mechanism, atherosclerosis, middle cerebral artery, high-resolution vessel

wall imaging

Introduction

Intracranial large atherosclerosis is one of the most common

causes of stroke worldwide (1). The vessel wall evolves from

having a slight thickening to the development of a nonstenotic

plaque, which gradually develops into lumen stenosis with

significant hemodynamic changes and occlusion (2–4). This

process often involves multiple arterial beds, and the middle

cerebral artery is the most common. The incidence of the

population is highest in Asia (5). The incidence rate of the

intracranial large atherosclerotic disease has gradually increased

in recent years with changes in the social environment, and it is

affecting a younger population (6). Therefore, effective methods

are needed to clarify the mechanism of ischemic stroke because

these mechanisms have potential significance for the clinical

treatment and prevention of secondary stroke (7).

The pathological changes of intracranial large artery

atherosclerosis indicate that ischemic stroke may involve a

variety of pathogeneses, including perforating artery occlusion

due to maternal atherosclerosis, artery–artery embolism,

hypoperfusion, and mixed mechanisms (8). There are

differences in treatment options for these specific mechanisms.

For example, single subcortical infarcts are treated with dual

antithrombotic therapy, but the intravascular treatment of

large atherosclerosis with significantly narrowed lumens

remains controversial (9, 10). A recent study found that more

patients with the baseline stroke mechanism of an artery–artery

embolism + hypoperfusion had a history of dyslipidemia and

hypertension than those with other stroke mechanisms (11).

Dyslipidemia is a risk factor for the presence of vulnerable

plaques, which may increase the risk of plaque rupture

and subsequent A-A embolism. It has been reported that

hypertension is associated with poor pial collateral circulation

in patients with acute ischemic stroke (12), which may be

a risk factor for the subtype mechanism of hypoperfusion

stroke. On the other hand, current evidence suggests that

enhanced contrast, positive remodeling, and plaque irregularity

of intracranial plaques are associated with an increased risk

of stroke (13). Therefore, clarifying the potential relationship

between the stroke mechanism and plaque characteristics of

large artery atherosclerosis may be valuable for individualized

clinical treatment and patient management. The present study

aimed to explore the relationship between stroke mechanisms

and the characteristics of culprit plaques in patients with

atherosclerotic ischemic stroke in the M1 segment of the middle

cerebral artery (MCA) based on high-resolution vessel wall

imaging (HR-VWI).

Methods

Patients

The local ethics committee approved this study. From

January 2019 to January 2022, we retrospectively recruited

patients admitted to Shenzhen Bao’an District People’s Hospital

because of acute ischemic stroke caused by atherosclerosis of the

M1 segment of the MCA. Acute ischemic stroke was determined

based on high-signal lesions on diffusion-weighted imaging and

the corresponding central nervous dysfunction in 1 week (14).

The hyperintense lesions on diffusion-weighted images (DWIs)

were located in the blood supply area of the middle cerebral

artery. All patients underwent headmagnetic resonance imaging

(MRI), magnetic resonance angiography (MRA), and HR-VWI

examinations within 1 week from the onset of the disease to

assess intracranial atherosclerosis. We retrospectively analyzed

154 patients with acute ischemic stroke and recruited 61

patients. The specific process is shown in Figure 1. All patients

satisfied the following criteria: (1) atherosclerotic plaque found

on the MCAM1 vessel wall image (when there were≥2 plaques,

the plaque leading to the narrowest lumen was evaluated);

and (2) the patient had at least one atherosclerotic risk factor.

Patients with an ipsilateral internal carotid artery stenosis rate
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≥50% and MCA M1 segment occlusion were excluded. Patients

with ischemic stroke caused by nonatherosclerotic factors were

also excluded.

Classification of the probable stroke
mechanisms in patients with ischemic
stroke

According to the China Ischemic Stroke Subclassification

(CISS) and other previous studies on the mechanism of

intracranial arterial stenosis (ICAS) stroke, we evaluated

the distribution pattern of ischemic lesions on diffusion-

weighted images (DWIs) and the location and severity of

ICAS in combination with MRA. All images were analyzed

with the Picture Archiving Communication System. The

evidence of ischemic lesions is high-signal lesions in DWI.

The possible stroke mechanisms in patients with symptomatic

MCA atherosclerosis were divided into four categories (11,

15) (Figure 2). (1) Parent artery atherosclerosis occluding

penetrating artery (P): the M1 segment of the MCA had

any degree of stenosis, and isolated acute infarction occurred

in an area adjacent to the blood supply of the perforating

artery. (2) Artery-to-artery embolism (A): the presence of

single or multiple small cortical infarctions, with or without

subcortical infarction, or wedge-shaped infarcts, and cortical

and subcortical areas that were completely located in the blood

supply area of the M1 segment of the MCA but did not involve

border zone areas. (3) Hypoperfusion (H): the presence of single

or multiple infarcts in the watershed area, including the cortical

type and the subcortical type. The cortical type refers to the area

between the supplying territories of the anterior cerebral artery

(ACA) and the MCA or between the MCA and the posterior

cerebral artery. Infarctions in these areas are generally wedge-

shaped or oval. The subcortical type refers to the white matter

along and above the lateral ventricles between the deep and

superficial supplying territories of the MCA or between the

superficial territories of the MCA and ACA. These infarctions

are linearly distributed in the centrum semiovale and the corona

radiata and are present as fusion infarctions with large cigar

shapes. (4) Mixed mechanisms (M): the coexistence of 2 or 3 of

the mechanisms described above.

High-resolution vessel wall imaging

A 3.0-T MRI scanner (Magnetom Skyra; Siemens, Munich,

Germany) with a 20-channel phased-array head coil was used.

High-resolution vessel wall scanning was performed by 3D

T1-sampling perfection with application-optimized contrasts

using different flip angle evolutions (SPACE), such as pre-

and postcontrast scanning. This imaging sequence was applied

using the following parameters: for diffusion-weighted imaging:

repetition time (TR) = 4,100ms, echo time (TE) = 64ms, field

of view (FOV) = 230mm × 230mm, matrix size = 160 × 160,

and slice thickness = 5mm; for time of flight: TR = 20ms, TE

= 3.69ms, FOV= 200× 172mm, matrix size= 235× 320, and

slice thickness = 0.6mm; and for 3D-T1 SPACE: TR = 980ms,

TE = 27ms, FOV = 200mm × 178mm, acquired resolution

= 0.78 × 0.78 × 0.78, reconstruction resolution = 0.39 × 0.39

× 0.39, and slice thickness = 0.39. Before the acquisition of

the contrast-enhanced 3D-T1 SPACE sequence, 0.1 ml/kg of

gadolinium-containing contrast agent (gadobutrol [Gadovist];

Bayer Pharma, Berlin, Germany) was administered to the patient

(16).

Image analysis

Plaque was defined as thickening >50% of adjacent or

contralateral vessel wall thickness on both pre- and post-

contrast HR-VWI (17). The plaque causing the narrowest

lumen on the M1 segment of the symptomatic MCA was

defined as the culprit plaque (16, 18). The HR-VWI was

processed using vessel mass software (Leiden UniversityMedical

Centre, Leiden, the Netherlands), which was used to reconstruct

multiple cross-sections of continuous vertical vessels with a

thickness of 1mm. Each cross-section was magnified 4-fold,

and the vessel and lumen boundaries were semiautomatically

tracked. These steps were repeated with the proximal end of

the plaque as the reference. Four quadrants (ventral, dorsal,

superior, and inferior walls) were selected at the maximal lumen

narrowing (MLN) cross-section of the blood vessels. When

≥2 quadrants were involved in the plaque, the quadrant with

the thickest plaque was selected. Intraplaque hemorrhage was

defined as a bright T1 signal ≥ 150% of the T1 signal of the

adjacent muscle or pons (19). Plaque irregularity was defined

as surface underfinishing. Plaque enhancement was graded as

follows: no enhancement means that in the same individual,

the enhancement was similar to or smaller than the intracranial

artery wall without plaque; mild enhancement means that the

enhancement degree was greater than the grade intracranial

artery wall but smaller than pituitary funnel; and the obvious

enhancement is similar to or larger than the funnel (20). The

parameters were evaluated by the MLN cross-section of blood

vessels, such as the maximum wall thickness (WTmax), lumen

area (LA), outer area (OA), wall area (WA), and signals of

the precontrast (Signal pre) and postcontrast (Signal post) scans

of the plaque. The following formulas were used (16): plaque

burden (PB)= (WAMLN/OAMLN × 100%); enhancement ratio

(ER) = (Signal post – Signal pre)/Signal pre × 100%; remodeling

index (RI) = OAMLN/OA ref (the remodeling mode is classified

according to the RI value: RI≥ 1.05 is positive remodeling (PR),

RI ≤ 0.95 is negative remodeling (NR), and 0.95< RI <1.05 is

no reconstruction); and stenosis degree= (1 – LAMLN/LA ref)×
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FIGURE 1

A flowchart of patient recruitment. HR-VWI: high-resolution vessel wall imaging.

100%. All of these data were measured two times, 1 month apart,

by a neuroradiologist who was unaware of the clinical details,

and the averages were calculated and applied.

Statistical analysis

This study used IBM SPSS Statistics 23.0 software for

all statistical analyses. The intraobserver reliability for

the measurement and evaluation of the vessel wall was

determined using the intraclass correlation coefficient (ICC).

Cohen’s κ value was used to determine the intraobserver

reproducibility. Measurement data are presented as the

means ± standard deviation (SD), and counting data are

presented as a percentage or frequency. Count data were

analyzed using the χ
2 test or Fisher’s exact probability

method. A value of p < 0.05 was considered statistically

significant. Measurement data were analyzed using analysis

of variance (ANOVA) to test differences between groups.

A value of p < 0.05 was considered statistically significant.

For the binary logistic regression analysis, we selected

adjusted variables that were statistically significant in the

univariate analysis.

Results

Clinical characteristics

In this study, 61 patients with ischemic stroke caused by

atherosclerosis in the M1 segment of the MCA were included.
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FIGURE 2

Ischemic lesion patterns indicating the di�erent stroke mechanisms in four patients with the symptomatic middle cerebral artery (MCA)

atherosclerotic stenosis. (A) A case of isolated acute infarction in the area of the perforating artery suggests parent artery atherosclerosis

occluding a penetrating artery. (B) Local infarction indicating a probable artery-to-artery embolism. (C) Internal watershed infarctions indicating

probable hypoperfusion. (D) Multiple cortical and wedge-shaped infarctions indicating a probable mixed mechanism of artery-to-artery

embolism and hypoperfusion.

The average age of the patients was 48.9 ± 8.4 years, and there

were 47 men and 14 women. These patients were divided into

different stroke mechanism subtypes. There were 23 patients

in the P group, 16 patients in the A group, 12 patients in the

H group, and 10 patients in the M group. Table 1 shows the

baseline characteristics of the patients. There was no significant

difference in the stroke risk factors between the different stroke

mechanism subtypes.

Reproducibility of the stroke mechanism
classification criteria and consistency of
vessel wall measurements

The intra-reader reproducibility was substantial (κ,

0.728; 95% CI, 0.593–0.863) for the classification of the

stroke mechanisms into four categories (Table 2). When

the three mechanisms existed independently without
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TABLE 1 Baseline demographics of the patients.

Characteristics P (n = 23) A (n = 16) H (n = 12) M (n = 10) P-values

Male 19(82.6) 12(75.0) 9(75.0) 7(70.0) 0.841

Age, y 48.0± 8.0 49.3± 8.9 50.1± 7.4 48.6± 10.0 0.904

Cardiovascular risk factors (%)

Hypertension 17(73.9) 12(75.0) 7(58.3) 6(60.0) 0.673

DM 7(30.4) 2(12.5) 4(33.3) 6(60.0) 0.089

Hyperlipidemia 17(73.9) 11(68.8) 9(75.0) 7(70.0) 0.978

Smoker 17(73.9) 12(75.0) 7(58.3) 6(60.0) 0.673

Laboratory test results (mmol/L)

FG 6.4± 2.1 5.9± 1.6 6.2± 1.8 7.4± 1.9 0.297

TC 4.7± 1.2 4.8±1.2 5.0± 1.0 4.9± 1.4 0.953

Triglyceride 1.6± 0.7 1.6± 1.0 1.6± 1.1 2.0± 1.2 0.720

HDL 1.1± 0.4 1.0± 0.2 1.1± 0.3 1.0± 0.2 0.724

LDL 3.0± 1.2 3.2± 0.9 3.3± 0.7 3.3± 0.9 0.748

Cysteine 14.6± 10.8 16.0± 8.6 9.9± 2.8 13.1± 4.2 0.263

DM, diabetes mellitus; FG, fasting glucose; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; p-values were calculated using

ANOVA or the chi-squared/Fisher’s exact test between the four groups, as appropriate.

TABLE 2 Intraobserver reproducibility of stroke mechanism

classification.

κ (95% CI)

Overall (4 categories) 0.728(0.593–0.863)

Existence of each mechanism

P 0.827(0.972–0.682)

A 0.684(0.468–0.899)

H 0.610(0.365–0.855)

A indicates artery-to-artery embolism; H, hypoperfusion; and P, parent artery

atherosclerosis occluding a penetrating artery.

considering any other accompanying mechanisms, the

intra-reader reproducibility was substantial for each

mechanism. The consistencies of OAMLN, LAMLN, WA

MLN, Signalpre, and Signalpost were excellent on a 3.0-T

HR-VWI (ICC >0.75), and WTmax, OAref, and LAref were

fair-to-good (0.40< ICC <0.75).

Qualitative analysis of the correlation
between culprit plaque characteristics
and stroke mechanism

There was a significant difference in the surface irregularity

of the culprit plaques of the different subtypes of stroke

mechanism (p = 0.001). Further pairwise comparison showed

that plaque surface irregularity in the A group was more

common than in the P group and the M group (p< 0.0125), and

plaque surface irregularity in the P group was more common

than in the H group (p < 0.0125). The difference in the

T1 high signal in the culprit plaques of the different stroke

mechanisms was statistically significant (p =0.004). Further

pairwise comparison showed that a high T1 signal in the plaques

of the A group was more common than in the P group (p

< 0.0125), and a high T1 signal in the plaques of the H

group was more common than in the A group and the M

group (p < 0.0125). There was a significant difference in the

pattern of culprit plaque remodeling between the different stroke

subtypes (p =0.004). Further pairwise comparison showed that

the positive remodeling in the P group was more common than

in the other groups (p < 0.0125). There was no significant

difference in the location of the culprit plaques between the

different stroke subtypes (p= 0.061) (Table 3).

Quantitative analysis of the correlation
between culprit plaque characteristics
and stroke mechanism

There was no significant difference in the maximum

thickness of the vessel wall between the plaques of the different

stroke mechanism subtypes (p = 0.548). There was a significant

difference in the RI between the different stroke subtypes (p =

0.016), and the RI in the P group was greater than in the H group

and the M group (p< 0.0125). There was a significant difference

in the PB between the different mechanisms (p = 0.000), and

the PB in the culprit plaques was the smallest in the P group.

There was a significant difference in the plaque enhancement
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TABLE 3 Culprit plaque characteristics of the di�erent stroke mechanism subtypes of patients with symptomatic middle cerebral artery (MCA) M1.

Measurement P (n = 23) A (n = 16) H (n = 12) M (n = 10) P-values

Plaque location 0.061

Superior 14 (60.9) 6 (37.5) 3 (25.0) 3 (30.0) -

Ventral 3 (13.0) 6 (37.5) 3 (25.0) 49 (40.0) -

Inferior 3 (13.0) 2 (12.5) 5 (41.7) 2 (20.0) -

Dorsal 3 (13.0) 2 (12.5) 1 (8.30) 1 (10.0) -

Irregularity a 11 (47.8) 13 (81.3) 10 (83.3) 10 (100) 0.001

T1 hyperintensityb 1 (4.3) 4 (25.0) 6 (50.0) 4 (40.0) 0.004

Remodeling mode 0.004

PRc 12 (60.0) 5 (25.0) 2 (10.0) 1 (5.0) -

NR 9 (25.7) 8 (22.9) 9 (25.7) 9 (25.7) -

RI 1.04±0.17 0.97±0.16 0.86±0.17 0.88±0.20 0.016

Enhancement level 0.001

Mild 16 (72.7) 3 (13.6) 1 (4.5) 2 (9.1) -

Obviousd 7 (17.9) 13 (33.3) 11 (28.2) 8 (20.5) -

ER 0.38± 0.34 0.52± 0.26 0.62± 0.40 0.71± 0.43 0.066

WT max , mm 1.32± 0.24 1.41± 0.33 1.42± 0.21 1.44± 0.32 0.548

LA MLN , mm2 0.05± 0.02 0.03± 0.02 0.02± 0.01 0.02± 0.01 0.000

OA MLN , mm2 0.14± 0.05 0.12± 0.04 0.09± 0.03 0.09± 0.03 0.002

WA MLN , mm2 0.09± 0.03 0.08± 0.03 0.07± 0.02 0.07± 0.03 0.097

PB 0.65± 0.08 0.72± 0.09 0.78± 0.12 0.79± 0.06 0.000

Stenosis 0.36± 0.24 0.37± 0.24 0.58± 0.31 0.66± 0.22 0.003

The p-values were calculated using ANOVA or the chi-squared/Fisher’s exact test between the four groups, as appropriate; RI indicates the remodeling index; PB, plaque burden; ER,

enhancement ratio; PR, Positive remodeling; NR, Negative remodeling. (a) The A group was statistically significant compared with the other groups; (b) the A group was statistically

significant compared with the P group; (c) the P group was statistically significant compared with the other groups; and (d) the A and M groups were statistically significant compared

with the other groups.

grade between the different mechanisms (p = 0.001). Obvious

plaque enhancement was more common in the A and M groups

than in the other groups (p < 0.0125). The ER of the culprit

plaque in the M group was higher than in the P group (p <

0.05). There was a significant difference in the stenosis rate of

the M1 segment of the MCA between the different mechanisms

(p = 0.003). The stenosis rate of the MCA in the H group and

the M group was higher than in the P group and the A group

(p <0.05) (Figures 3,4).

Association between culprit plaque
characteristics and di�erent stroke
subtypes

Figure 5 shows the binary logistic regression analysis results

for the parameters associated with the P group compared with

the other groups. After adjustment for clinical demographic

factors, the enhancement level (odds ratio [OR] 0.213, 95% CI

(0.05–0.91), p = 0.037) and the PB of culprit plaques (OR 0,

95% CI (0–0.477), p = 0.034) were negatively associated with

the P group.

Discussion

The present study classified the possible stroke mechanisms

of MCA M1 atherosclerosis using conventional imaging (DWI

and MRA). We demonstrated that there was inter-rater

reproducibility of the classification criteria and correlations

between the culprit plaque characteristics and different stroke

mechanisms. Compared with the parent artery atherosclerosis

occluding penetrating arterymechanism, ischemic stroke caused

by the artery-to-artery embolismmechanismwasmore common

and exhibited an irregular surface, high T1 signal, and obvious

enhancement of the culprit plaque. Compared with the other

stroke mechanisms, the PR of the culprit plaques in the P group

was more common, the RI was greater, and the PB was minimal.

The ER of the plaques in the P group was less than the mixed

mechanism group. Compared with the artery-to-artery embolic

mechanism, the T1 hyperintensity of the culprit plaque was

more common in the hypoperfusion group, and the stenosis rate

was greater. The binary logistic regression analysis revealed that

the enhancement level (OR 0.213, 95%CI (0.05–0.91), p= 0.037)

and PB of culprit plaque (OR 0, 95% CI (0–0.477), p = 0.034)

were negatively associated with the P group.
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FIGURE 3

The p-values were calculated using ANOVA.

Plaque enhancement may be due to gadolinium leakage

caused by neovascularization, inflammation, and endothelial

dysfunction. Recent studies agree that plaque enhancement

is a good biomarker for intracranial atherosclerotic diseases

(13), and this enhancement reflects the predictive value of

ischemic stroke and may also be used as an evaluation index

of curative effect. The present study showed that enhancement

of the culprit plaque was more common in the artery-to-artery

embolic mechanism, which indicates that the inflammatory

reaction was more severe. The neovascularization in the plaque

easily ruptures and bleeds, which shows a T1 high signal (21)

that better indicates the instability of the plaque, and this

association was confirmed by relevant pathology (22). The

plaque protrudes into the lumen and causes hemodynamic

changes. The low wall shear stress on the plaque surface easily

induces endothelial dysfunction (23). The weakening of the

fiber cap on the plaque surface increases the vulnerability

of the plaque and eventually leads to plaque fragmentation.

The embolus dislodges and forms an irregular shape on

the surface of the plaque. The instability of plaques may

affect the decision-making for clinical treatment. A study of

symptomatic carotid stenosis suggested that patients treated

with intravascular therapy within 2 weeks after ischemic events

had a significantly higher risk of stroke or death within

30 days (26.1 vs. 1.9%) than patients treated after 2 weeks

(24). The embolus is easily dislodged and may cause a distal

embolism during surgery. The present study suggests that the

inflammatory response to responsible plaques in the artery-

to-artery embolism may be serious and should be considered.

Chung et al. (25) found that high-dose statin treatment

significantly reduced plaque enhancement in patients with acute

stroke (p = 0.002). Chung et al. subsequently performed a
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FIGURE 4

Characteristics of the culprit plaque in the M1 segment of the MCA in four patients with acute stroke with di�erent mechanisms. (A1–A5), A

39-year-old male, di�usion-weighted images (DWIs) (A1) showed high signal intensity in the left basal ganglia, and the stroke mechanism was

parent artery atherosclerosis occluding penetrating artery by MCA atherosclerosis. Magnetic resonance angiography MRA_ (A2) showed that the

left MCA M1 lumen was normal (arrow). Sagittal images of the precontrast (A3) and postcontrast (A4) HR-VWI showed that the plaque was

located in the upper wall (arrow), showed mild enhancement, and the inner and outer walls of vessels were semiautomatically delineated on

postcontrast HR-VWI (A5). (B1–B5) A 48-year-old male, DWI (B1) showed multiple hypersignals in the left frontal cortex and the subcortical

area, and an artery-to-artery embolism was considered the mechanism of stroke; MRA (B2) showed that the left MCA M1 lumen was severely

stenotic (arrow); (B3,B4) HR-VWI showed that the plaque was located in the upper wall, which showed obvious enhancement (arrow). (C1–C5),

A 53-year-old male, DWI (C1) showed multiple hypersignals in the right subcortical watershed, and the mechanism of stroke was considered

when evaluating the mechanism of hypoperfusion. MRA (C2) showed that the right MCA M1 lumen was severely stenotic (arrow). (C3,C4)

HR-VWI showed that the plaque was located in the posterior wall, which showed obvious enhancement (arrow). (D1–D5), A 60-year-old male,

DWI (D1) showed multiple hypersignals in the left temporal lobe and the left posterior cortical watershed area; MRA (D2) showed that the left

MCA M1 lumen was severely stenotic (arrow); (D3,D4) HR-VWI showed that the plaque was located in the posterior wall, which showed obvious

enhancement (arrow).

study on statin treatment for patients with acute ischemic stroke

and found that statin treatment significantly decreased the

enhancement of play volume after 6 months (p = 0.013) (26).

These studies show that high-dose statins effectively stabilize

symptomatic ICAS plaques. However, the study population of

Chung et al. did not include patients with artery-to-artery

embolism. The Clopidogrel in High-Risk Patients with Acute

Nondisabling Cerebrovascular Events (CHANCE) trial showed

that the dual antiplatelet therapy of clopidogrel and aspirin

effectively reduced microemboli in ischemic stroke caused by

an artery-to-artery embolism (27). For patients with artery-to-

artery embolic stroke, reducing the inflammatory response to
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FIGURE 5

A binary logistic regression analysis results for the parameters associated with the P group compared with the other groups.

the culprit plaques and the shedding of emboli may be more

beneficial to patients.

In this study, we found that the PR of the culprit plaque

wasmore common in the parent artery atherosclerosis occluding

penetrating artery mechanism, the lumen stenosis rate and

PB were the smallest, and the ER was lower than the mixed

mechanism. Penetrating artery occlusions due to parent artery

atherosclerosis are more likely associated with early neurological

deterioration and recurrent stroke (28) and are classified as large

artery atherosclerosis rather than small vessel occlusion (8, 29).

Recent studies showed that the single subcortical infarction

was primarily related to plaques of the M1 segment of the

MCA located in the upper wall, and the lumen had mild

stenosis or was normal (30, 31). This result is similar to the

result that the culprit plaque in the perforator artery group

was primarily located in the upper wall. Jiang et al. found

that the plaque of a single subcortical infarct was located in

the upper wall, which was related to the fewer lenticulostriate

arteries (LSA) branches on the symptomatic side (p = 0.011)

and the shorter average length (p = 0.025) (32). Therefore, the

involved vessel wall may grow outward in the early stage of

the atherosclerotic disease to compensate for the stenosis of

the lumen, which results in positive remodeling and a certain

degree of inflammatory response. Although the stenosis of

the carrier artery lumen and the plaque burden are relatively

insignificant at this time, the plaque is more likely to occlude

the opening of the perforator artery, which results in a high-

risk transient ischemic attack or mild ischemic stroke. Patients

with minor ischemic stroke or high-risk TIA who received a

combination of clopidogrel and aspirin had a lower risk of major

ischemic events but a higher risk of major hemorrhage at 90

days than patients who received aspirin alone (33). The dual

antiplatelet therapy of cilostazol and clopidogrel may also be

better than single antiplatelet therapy (34). Cilostazol has an

anti-platelet aggregation effect and dilates arterioles, which may

compensate for the involvement of perforator artery openings.

High-dose statin therapy improves the short-term functional

prognosis (33, 35). However, the therapeutic effect on perforator

artery disease must be confirmed in further randomized

controlled studies. Therefore, a prospective study using statins

and dual antiplatelet therapy to prevent early neurological

deterioration and recurrent stroke caused by perforator

atherosclerosis should be performed (10) because its efficacy is

not certain.

The present study observed that a high T1 signal of the

plaque with hypoperfusion mechanism was most common,

and the degree of stenosis was most severe. As mentioned

above, a high T1 signal reflects the inflammatory progress

of plaques. However, obvious stenosis of the lumen reduces

the antegrade flow to the relevant area. If the collateral

circulation compensation is insufficient, the downstream

perfusion may be prolonged or damaged and result in

the occurrence of infarction (11, 36). Therefore, focusing

only on intensive blood pressure control may increase

the risk of recurrent stroke in patients with symptomatic

intracranial artery stenosis with impaired perfusion (37).

A post-hoc analysis of the Stenting and Aggressive Medical

Management for Preventing Recurrent Stroke in Intracranial

Stenosis (SAMMPRIS) trial also showed that among stroke

patients with a stenosis rate of 70–99%, a subgroup with

marginal zone infarction and collateral circulation damage

had a particularly high risk of recurrent stroke despite drug

treatment (38). For the stroke mechanism of hypoperfusion

perfusion, the degree of inflammation of the culprit

plaque and the stenosis rate of the mechanism should also

be considered.

A binary logistic regression analysis revealed that the plaque

enhancement level and PB were negatively associated with the
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parent artery atherosclerosis occluding a penetrating artery.

In other words, when the enhancement of the culprit plaque

and the greater plaque burden are obvious, the more likely

it is to be the result of other stroke mechanisms. A recent

study is similar to our results. The plaque in the branch

occlusive disease group was less enhancing plaque than in the

artery-to-artery group (p = 0.030) (39). However, there are

few studies on plaque burden as an indicator of treatment

evaluation. One study showed that the total volume of the

carotid artery wall was significantly reduced in patients with

carotid atherosclerosis with type 2 diabetes after receiving

hypoglycemic drugs compared with a control group without

diabetes after 2 years of treatment (40). However, the evaluation

of HR-VWI related to the therapeutic effect of hypoglycemic

drugs on intracranial artery atherosclerosis plaques must be

further studied.

Our study has some limitations. First, it was a single-

center study with relatively small sample size. Second, the

study performed a retrospective analysis, and there may

be a selection bias. Third, statistical analysis lacked the

evaluation of normal distribution and the consistency analysis

of plaque morphological characteristics. Finally, this study

only recruited patients with anterior circulation stroke, and

further research is needed to evaluate patients with posterior

circulation stroke.

Conclusion

Evaluations of the culprit plaque characteristics

of patients with symptomatic MCA atherosclerotic

in different stroke mechanisms based on HR-VWI

are feasible. The plaque characteristics of different

stroke mechanisms may have clinical value for the

selection of treatment strategies and prevention of

stroke recurrence.
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