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Editorial on the Research Topic

Multi-dimensional characterization of neuropsychiatric disorders

Introduction

The human nervous system itself and its extensive connections with the human

body form a complex system. The individual characteristics and abnormalities of

the system can be observed on multiple dimensions, such as the brain functional,

structural, molecular, genetic, and behavioral dimensions. Understanding the underlying

multi-dimensional mechanisms and the corresponding biomarkers for neuropsychiatric

disorders could be regarded as the highest-priority goal in neuroscience and a vital step

for clinical practice (Li et al., 2019). In particular, brain disorders can be characterized on

multiple dimensions, with reference either to the biomarkers of one modality or to those

of multiple modalities. This multi-dimensional method of characterization provides a

more objective and accurate identification of disorders; based on this level of precision,

treatments can be developed to benefit patients in clinical practice.

This Research Topic assembles 10 articles on a broad spectrum of research

in neuropsychiatric disorders. Authors from backgrounds in psychiatry, radiology,

computer science, and engineering have all contributed to this Research Topic by

conducting empirical studies, developing computational models, performing reviews,

and introducing novel intervention techniques. In this Editorial, we provide an overview

of these exciting and diverse articles, grouping them based on their conceptual design.
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Computational modeling of
multi-dimensional brain signals

The modeling scheme proposed by Lun et al. extracts

features of motor imagery EEG signals separately for each

hemisphere using a deep learning architecture and then

combines the embeddings for classification. This research is

helpful for the development of brain–machine interfaces for

motor functional disability and spinal cord injury. The article

by Peng et al. proposes to characterize the neural electrical

signals captured by intracranial and scalp EEG on multiple

temporal and frequency dimensions so that the rich information

can be better utilized for seizure prediction in epilepsy. This

is particularly important in surgery-planning for drug-resistant

epilepsy. The model proposed by Liu K. et al. utilizes coupled

integration for hierarchical feature representation of MCI and

AD with structural MRI to enable improved discrimination of

the different stages of AD. Also targeting AD diagnosis but

using PET imaging, the article by Cui et al. proposes a region-

by-region descriptor for FDG-PET. The collective descriptors

are fed into a novel deep learning network (BMNet) featuring

bilinear pooling and metric learning. It transpires that this

method offers improved performance in the identification of

EMCI and LMCI. This work is important for early diagnosis and

intervention in AD.

Multi-dimensional data for
treatment development

Sun, Guo et al. used an fMRI-derived measure of ALFF

to identify potential age differences in the neuropathological

mechanism of treatment-resistant depression. An investigation

by Shadli et al. tested the possibility of using EEG as a

biomarker for ketamine therapy in anxiety disorders. Among

the signals frommultiple electrodes and the frequency spectrum,

the authors report right frontal theta power to be a possible

biomarker. Wu et al. combined rs-fMRI, protein markers,

and behavioral assessments to investigate the effect of rTMS

on neural plasticity. Although this is a pre-clinical study, it

provides evidence for cognitive enhancement that may have

future human applications.

Identification and validation of
imaging biomarkers of
neuropsychiatric disorders

In a study of structural imaging biomarkers, Liu T.

et al. investigated multiple variables relating to the structural

connectome, measured with diffusion MRI. They found that

local efficiency of the structural connectome is correlated

with language function in infants, suggesting a relationship

between language disorders and the early development of white

matter in infancy. Functional brain signals also provide an

effective approach to the characterization of brain alterations

and treatment response. Under the approach proposed by Sun,

Chen et al., the rich information obtained though rs-fMRI is

modeled in the form of regional ReHo and ALFF, resulting

in the discovery of functional alteration imaging biomarkers

for first-episode and recurrent depression; this finding provides

neuroimaging insights into the psychological mechanism of

depression. Last but not least, the review article by Pan

et al. revisits the efforts of the psychiatric and neuroimaging

community over the course of 40 years to understand the

neural substrates of post-stroke depression, covering regional

lesion analysis and the study of brain networks, from structural

to functional connectome. It is emphasized in this review

that multivariate analysis has played an important role in the

task, thereby further highlighting the importance of multi-

dimensional characterization of the disorder.

In the current Research Topic, most of the articles have

devoted efforts to the characterization of neuropsychiatric

disorders within a single modality. We envision that, in

the near future, it will be possible to measure many of

these multi-dimensional modalities in a single patient,

so that information across modalities can be integrated

to provide a more comprehensive characterization of

a particular disorder or spectrum of disorders. Such

high-dimensional multi-modal characterization would

provide higher discriminability and more accurate digital

identification. High-dimensional characterization will become

even more powerful if this method can be employed with

a large-scale patient cohort, as the big data generated in

this way can be fed into machine learning and artificial

intelligence systems, enabling an improved understanding

of the mechanisms of the disorder in question. As a

consequence, we will be able to characterize patient

subtypes more precisely and provide personalized diagnoses,

resulting in improved treatment and early intervention for

neuropsychiatric disorders.
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Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for

drug-resistant epilepsy. Conventional approaches commonly collect training and testing

samples from the same patient due to inter-individual variability. However, the challenging

problem of domain shift between various subjects remains unsolved, resulting in a low

conversion rate to the clinic. In this work, a domain adaptation (DA)-based model is

proposed to circumvent this issue. The short-time Fourier transform (STFT) is employed

to extract the time-frequency features from raw EEG data, and an autoencoder is

developed to map these features into high-dimensional space. By minimizing the

inter-domain distance in the embedding space, this model learns the domain-invariant

information, such that the generalization ability is improved by distribution alignment.

Besides, to increase the feasibility of its application, this work mimics the data distribution

under the clinical sampling situation and tests the model under this condition, which is the

first study that adopts the assessment strategy. Experimental results on both intracranial

and scalp EEG databases demonstrate that this method can minimize the domain gap

effectively compared with previous approaches.

Keywords: seizure prediction, feature extraction, neuropsychiatric disorders, domain adaptation, STFT, EEG

1. INTRODUCTION

1.1. Epilepsy Background
Epilepsy is a brain disorder characterized by the transient occurrence of unexpected seizures,
which stems from excessive, or hypersynchronous neuronal activities (Fisher et al., 2005). It
affects approximately 1.0% of the world’s population (Banerjee et al., 2009), and around half of
them experience severe seizures. Besides, although the anti-epileptic drug (AED) administration is
applied to patients, about 30% of them suffer from drug-resistant epilepsy (Kwan et al., 2011; Lin
et al., 2014). These individuals might have seizures at any moment, such that their daily lives are
influenced by unexpected behavioral changes, loss of muscular control and sudden faint. As a result,
a reliable seizure prediction device is becoming an emerging and significant demand to prevent the
injury of epileptic coma, or even death. A successful seizure forecast commonly adopts data-driven
techniques to monitor the electroencephalography (EEG) signals of the epileptic brain, since such
data records rhythmic information induced by coordinated neuronal. The first-in-man study that
proves the predictability of seizure has been reported in 2013 (Cook et al., 2013). Since then, many
EEG-based studies regarding seizure prediction have been proposed.
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FIGURE 1 | Definition of three brain states in continuous epileptic EEG recordings.

1.2. Related Work
At present, there are two main streams for epileptic seizure
prediction. The first stream is a binary classification framework
trained to discriminate preictal samples from interictal samples.
The ictal and postictal samples are deserted during the training
procedure for the uselessness of their contribution to forecast.
This stream is widely adopted among researchers in the area of
seizure prediction. The second stream assumes that a specific
index that fluctuates with changes of seizure stage exists in
EEG recordings. These methods attempt to describe this index
explicitly andmonitor it with a threshold. For instance, spike rate
(Li et al., 2013; Karoly et al., 2016; Guo et al., 2017), zero-crossing
intervals (Zandi et al., 2013), and phase/amplitude locking value
(Myers et al., 2016) have been reported as the indicators. Since
a universal preictal biomarker has not been defined explicitly,
we also follow the binary scheme of the first stream, which is
depicted in Figure 1.

Studies adopting the binary classifier usually combine the
features extraction algorithms with machine learning techniques.
To be specific, the features extraction algorithms are commonly
used in data preprocessing due to the complexity and diversity
of EEG signals, and then the machine learning techniques
can analyze these features and give their categories. Features
extraction approaches like wavelet transform (Vahabi et al., 2015;
Moctezuma and Molinas, 2020), Q-factor wavelet transform
(Al Ghayab et al., 2019), Fourier neural network (Peng et al.,
2021), and fractional Fourier transform (Fei et al., 2017),
are employed to learn the high-dimensional representations
of samples. Machine learning techniques like support vector
machines (Mirowski et al., 2009; Direito et al., 2017; Sun
et al., 2019), random forests (Brinkmann et al., 2016), k-nearest
neighbor (Zhang et al., 2018), and ensemble learning (Peng
et al., 2020) are utilized to learn the spatial and temporal
representations of seizures. Besides, recently most authors apply
deep learning frameworks for seizure prediction. Convolutional
neural network (CNN) (Zhang et al., 2019; Lin et al., 2020; Liu
et al., 2020), 3D CNN (Ozcan and Erturk, 2019), Long Short-
TermMemory (LSTM)Network (Tsiouris et al., 2018; Daoud and

FIGURE 2 | Seizure prediction is a patient-specific problem. The discriminative

models (dashed line) of various individuals (circle and triangle)

differ significantly.

Bayoumi, 2019; Li et al., 2020), and cascades of DNN (Özcan and
Ertürk, 2017), are introduced to process continuously acquired
EEG signals.

1.3. Significance
Although conventional studies report high precision (< 85% on
average) for the epileptic seizure prediction task, their translation
to the practical application is still a challenging issue. The
major reason for this situation is that most of these studies
only provide patient-specific results. For these patient-specific
models, both training and testing sets are recorded from one
subject, which leads to limited domain adaptability of previous
approaches between different patients (each patient is considered
as a domain). As shown in Figure 2, for the patients with epilepsy,
the internal patterns vary significantly among various subjects
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(Jirsa et al., 2017; Elger and Hoppe, 2018; Kuhlmann et al.,
2018), which learn totally different discriminative hyperplanes.
Therefore, these patient-specific models with good performance
might obtain undesired results in real life, although they are
significant to personalized medicine. It is obvious that how to
develop a predictor that is universal to various patients is the
key problem. However, this issue remains unsolved and thus the
previous models are not yet in widespread use.

This work attempts to develop a seizure prediction model
without the precondition of patient specificity. However, since
the underlying patterns and dynamics of epilepsy are not well-
understood in neuroscience, the complete desertion of the
“target” samples (data of the patient to be tested) is impossible.
The training set in existing studies is composed of the “target”
data entirely. We attempt to reduce the reliance on the “target”
data as much as possible until it reaches a clinically acceptable
amount of EEG recordings. To be specific, due to the risk of
infection in invasive surgery and the right of privacy, the training
set in real life mainly consist of signals of previous patients.
And only a small amount of “target” samples can be used for
training. We try to simulate this sampling situation to train and
test our model.

To achieve a higher generalizationa ability, this study
introduces the strategy of domain adaptation (DA) methods
for seizure prediction. It is a machine learning technique that
can reduce the domain gap. In some successful DA models like
maximum mean discrepancy-adversarial autoencoders (MMD-
AAE) (Li et al., 2018) and cone manifold domain adaptation
(CMDA) (Yair et al., 2019), to minimize the inter-domain
distance in a high-dimensional space is the major optimization
objective. Inspired by these researches, we hope to develop
a generic seizure prediction model based on minimizing the
inter-domain distance. To encode the raw EEG data into a
high-dimensional space, we design a novel autoencoder using
the short-time Fourier transform (STFT) (Cordes et al., 2021)
and the MMD-AAE. The main contributions of this study are
summarized as follow

• A general seizure prediction model for different patients
is proposed based on the MMD-AAE model and STFT
technique. It is tested under simulated clinical sampling
conditions, making it feasible in practice.

• A domain adaptation framework is developed based on
inter-domain distance. This algorithm can improve the
generalization ability since it minimizes the domain gap
between different patients.

• It is the first study to provide a comparison results of different
domain adaptation algorithms on seizure forecast, which is
important to follow-up researches.

Based on the MMD-AAE model and STFT technique, the
proposed method obtains an above-par generalization ability.
Experiments on two open datasets, the Freiburg Hospital EEG
database and the CHB-MIT EEG database (Goldberger et al.,
2000; Zhou et al., 2018), are conducted for model assessment.
Compared with other methods, experimental results indicate that
the proposed model achieves high robustness while preserving a
decent precision.

2. DATA ACQUISITION AND
PREPROCESSING

2.1. Patients
Two open EEG databases, the Freiburg Hospital intracranial
EEG database (Zhou et al., 2018) and the CHB-MIT scalp EEG
database (Goldberger et al., 2000), are selected to assess themodel
performance of our method.

The Freiburg Hospital database includes time series of 87
seizures of 21 subjects with medically intractable focal epilepsy,
aged from 10 to 50 years old (8 males and 13 females). EEG
signals are recorded invasively by 6 electrodes (3 near the
epileptic focus and 3 away from the epileptogenic zone). The
sampling rate is 256 Hz for all patients(data of Patient No.12 are
sampled at 512 Hz but are down-sampled to 256 Hz).

The CHB-MIT database consists of scalp EEG sequences of
22 epileptic subjects, including 5 males aged from 3 to 22 years
and 17 females aged from 1.5 to 19 years. The EEG signals are
recorded at a 256 Hz sampling rate using 16-bit analog-to-digital
converters. Most samples are collected from 23 channel surface
electrodes following the 10-20 standard system for electrode
placement (Rojas et al., 2018). Each individual has a subfolder
that has 9 to 42 recordings.

2.2. Data Selection and Labeling
We use the power line noise removal to denoise the raw EEG
recordings. In the intracranial EEG test set, the frequency bands
of 47–53 and 97–103Hz are deserted and in the scalp EEG test set,
the frequency bands of 57–63 and 117–123 are discarded. This
is because that the noise of the Freiburg database usually occurs
at 50 Hz and noise of the CHB-MIT database occurs at 60 Hz.
In addition, we perform a patient selection. Only patients who
had at least 2 seizures but fewer than 15 per day are chosen, since
less than 2 seizures would not be sufficient to support training,
and more than 15 would render the prediction meaningless. The
subjects chosen in this work are presented in Tables 1, 2.

The seizure occurrence period (SPO) is set to 0. Only the
seizure prediction horizon (SPH) is considered in this study.
Thirty minutes before seizure occurrence is set as the SPH.
This parameter is given by empirical evidence of comparison
experiments applyingmultiple preictal lengths. If a seizure occurs
within 30 min, the forecast model then returns a positive. The
raw EEG recordings are split into continuous, non-overlapping
segments over a 5-s time window. The sample number for each
case is sufficient (> 38,400) to support training. In addition,
to obtain equal amounts of preictal and interictal samples, a
random subsample on the interictal data is implemented, which
circumvents the imbalance of different kinds of training samples.

3. METHODS

To reduce the impact of inter-individual variability, we propose a
generic seizure prediction model. The core idea of our method
is to minimize the domain distance between different subjects
in the high-dimensional space. Such that domain-invariant
features can be extracted during domain distribution alignment.
The maximum mean discrepancy (MMD) measure (Zhang
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TABLE 1 | Details of the Freiburg Hospital test set.

Patient Gender Age Seizure type No. of seizures

Pt 1 F 15 SP 4

Pt 2 M 38 SP, CP, GTC 3

Pt 3 M 14 SP, CP 5

Pt 4 F 26 SP, CP, GTC 5

Pt 5 F 16 SP, CP, GTC 5

Pt 6 F 31 CP, GTC 3

Pt 8 F 32 SP, CP 2

Pt 9 M 44 CP, GTC 4

Pt 10 M 47 SP, CP, GTC 5

Pt 11 F 10 SP, CP, GTC 4

Pt 12 F 42 SP, CP, GTC 3

Pt 13 F 22 SP, CP, GTC 2

Pt 14 F 41 CP, GTC 4

Pt 15 M 31 SP, CP, GTC 4

Pt 16 F 50 SP, CP, GTC 5

Pt 17 M 28 SP, CP, GTC 5

Pt 18 F 25 SP, CP 5

Pt 19 F 28 SP, CP, GTC 4

Pt 20 M 33 SP, CP, GTC 5

Pt 21 M 13 SP, CP 5

F, Female; M, Male; SP, simple partial; CP, complex partial; GTC, generalized tonic-clonic.

TABLE 2 | Details of the CHB-MIT test set.

Patient Gender Age Seizure type No. of seizures

Pt 1 F 11 SP, CP 7

Pt 2 M 11 SP, CP, GTC 3

Pt 3 F 14 SP, CP 6

Pt 5 F 7 CP, GTC 5

Pt 6 F 2 CP, GTC 4

Pt 7 F 15 SP, CP, GTC 3

Pt 8 M 4 SP, CP, GTC 5

Pt 9 F 10 CP, GTC 4

Pt 10 M 3 SP, CP, GTC 6

Pt 13 F 3 SP, CP, GTC 5

Pt 14 F 9 CP, GTC 5

Pt 17 F 12 SP, CP, GTC 3

Pt 18 F 18 SP, CP 6

Pt 19 F 19 SP, CP, GTC 3

Pt 20 F 6 SP, CP, GTC 5

Pt 21 F 13 SP, CP 4

F, Female; M, Male; SP, simple partial; CP, complex partial; GTC, generalized tonic-clonic.

et al., 2020) is selected as the distance measure and the high-
dimensional space is established by the adversarial autoencoders
(AAE) (Makhzani et al., 2015).

3.1. Clinical Situation Simulation
The training set of conventional studies is not consistent with
the sampling situation in real life. During clinical treatment, it is

almost impossible to record a large number of EEG samples from
a specific patient over a long period of time. Thus the traditional
patient-specific learning strategy can not be performed because
the data size is unable to support training. To tackle this issue,
we propose a novel predictor that can use other patients’ data
for training.

To mimic the sampling situation in the clinic, we adopt a
particular training and testing strategy, which is illustrated in
Figure 3. To be specific, the training and validation set includes
previous patient’ data and one seizure from the “target” subject,
while the remaining seizures of the “target” subject served as the
test set. This strategy refers to the idea of the Leave-one-out cross-
validation (LOOCV) approach (Peng et al., 2018). Moreover, the
training and validation set are partitioned into 5-folds, and 80%
of the data are assigned to the training set while the remaining
20% are assigned to the validation set to prevent overfitting.

3.2. Modal Transformation With STFT
Due to the low signal-to-noise ratio (SNR) of EEG recordings, we
attempt to transform the input information from time domain
into time-frequency domain. Two preprocessing techniques,
wavelet and Fourier transforms (Muralidharan et al., 2011;
Zhao et al., 2019), are commonly employed to convert EEG
segments into image shapes. Here we adopt the short-time
Fourier transform (STFT) to produce feature maps from raw
EEG sequences. The conversion transforms the EEG time series
into matrices, which can meet the input requirement of the two-
dimensional MMD-AAE. This procedure can also extract the
significant features for seizure prediction.

In the STFT module, the time-varying EEG fragment is
converted to a two-dimensional matrix composed of frequency
and time axes. Such that an insight in the time-evolution for
each time window can be observed by the two-dimensional map.
Suppose that there exist K domains (patient) in total. The input
data from the K domains are denoted by X̄ = [x̄(1), · · · , x̄(K)]T ∈

R
K×d, where x̄ ∈ R

d×1. For an arbitrary domain, the segment
with the time index t is given as x̄(t). By performing the STFT
procedure, we get the time-frequency feature map of x̄(t), which
is presented as:

x(ω, u) =
∑

t

x̄(t)g(t − u)ejωt , (1)

where ω is the selected frequency band, g(t − u) is the
window function. For K domains, the STFT is implemented
to each subject, and then the inputs are converts to X =

[x(1), · · · , x(K)]T ∈ R
K×d. The samples of each case are

represented by spectrograms. These time-frequency feature maps
are then sent to the AAE for invariant feature extraction.

3.3. Construction of High-Dimensional
Space
This module attempts to establish a high-dimensional space
with an encoder and a decoder. The model is illustrated in
Figure 4. By using an encoder, we can map the time-frequency
images of raw EEG samples into an embedding subspace. And
by using a decoder, these hidden layers are then mapped back
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FIGURE 3 | Illustration of clinical situation simulation.

FIGURE 4 | Block diagram of our model: the STFT module converts raw EEG recordings into time-frequency images to meet the input requirement of the AAE

module. The AAE module maps each domain’s data into a high-dimensional space. MMD loss is employed as the measure to align distributions of different domains.

The Laplace prior is exploited to optimize the hidden code z using adversarial learning.

to a “fake” input matrix. The hidden space is high-dimensional
and therefore contains more information. The MMD measure

is then utilized to align the distributions of high-dimensional

feature vectors between different domains. Thus the optimized

hidden code contains sharable information of various patients.

We then extract these latent characteristics that are universal
among patients for classification.

There are two procedures during the construction

of embedding space: the reconstruction process and the

distribution alignment process. In the reconstruction process,

the autoencoder attempts to recover the time-frequency image

from the high-dimensional vectors. The architecture of the
autoencoder refers to the structure in MMD-AAE (Li et al.,
2018). We set an optimization objective Lrec to guide the
generated feature map x̃ to match the input map x. The loss
function of the reconstruction procedure Lrec is defined as:

Lrec =
∥

∥x̃− x
∥

∥

2

2
. (2)

Now, we specify the form of the inter-domain distance
metric. The maximum mean discrepancy (MMD) measure
(Jia et al., 2017) is exploited to align the distributions
of different domains. Like the reconstruction process, we
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also give a MMD-based regularization term to optimize the
hyperparameters in the neural network (Li et al., 2018). Suppose
that Z = [z(1), · · · , z(K)]T ∈ R

K×l represents the learned high-
dimensional features of K domains, where z ∈ R

l×1. For two
arbitrary hidden vector z(i) and z(j), we assume that they belong to
two unseen probability distribution P

(i) and P
(j), respectively. By

adopting the kernel embedding technique (Smola et al., 2007), the
instance is mapped to a reproducing kernel Hilbert space (RKHS)
H. The corresponding mean value in RKHS is given as:

µ(P) = Ez∼P[h(z, ·)], (3)

where is µ(·) the mean map operation. h(z, ·) is the kernel
function induced by the feature map inH. In this work, we adopt
the RBF kernel following the MMD-AAE model (Li et al., 2018).
The inter-domain distance between the latent codes z(i) and z(j)

can be described as:

dis(z(i), z(j)) =
∥

∥µ
P(i) − µ

P(j)

∥

∥

H
. (4)

Then, it is obvious that the regularization item of the entire latent
space can be defined as:

Rdis(z
(1), · · · , z(K)) =

1

K2

∑

1≤i,j≤K

dis(z(i), z(j)). (5)

With the distance error above, the extracted high-dimensional
features can generalize well across all the domains, since
the neural network learns their common code by aligning
their distributions.

3.4. Optimization Using Adversarial
Learning
To further optimize the learned features in section 3.3, we
introduce an adversarial learning-based module according to
AAE (Makhzani et al., 2015). Adversarial learning is an emerging
machine learning approach in recent years, which has been
successfully applied in the area of epileptic EEG signal processing.
It usually contains a generator network G with parameters
2G and a discriminator network D with parameters 2D. The
generator network G will produce some fake version of the
inputs. These fake data are sent to the discriminator network D
together with the real input data. Then the discriminator network
D will tell whether the input sample is artificially generated.
During the training procedure, the neural network finds a Nash
equilibrium between the generator and the discriminator, and the
fake data are gradually approaching the real one. This “zero-sum
game” can be described as:

min
G

max
D

Exr∼pr

[

logD2D (xr)
]

− Exf∼pf

[

logD2D

(

xf
)]

, (6)

where xr and pr are the real data and the corresponding
distribution, xf and pf are the fake version. After the optimization
with the loss Jgan, the adversarial subnetwork can align pf to the
constant prior pr .

We hope to utilize the aforementioned principle in the
embedding space. Therefore, we assume that the “true” universal

features among different patients comes from an arbitrary prior
distribution p (z). The adversarial module draws samples from
the prior distribution p (z) and considers these samples as the
real data zr . Accordingly, the learned latent information z is
considered as the fake data zf , where the autoencoder represents
the generator G. A discriminator D is also implemented in the
adversarial module, which distinguishes the produced vector z
from the samples of the prior. In this study, the prior distribution
is selected as the Laplace distribution z ∼ Laplace (η), where η

denotes the hyperparameter.
The training strategy of the adversarial module is a variational

inference process. To be specific, first, the latent coding
space has been established by the encoder explicitly. Then
the distributions among different domains are aligned with
the MMD regularization item to extract the domain-invariant
feature vectors. These features are guided to approach a prior
distribution p (z). To match the hidden code with an arbitrary
distribution can effectively alleviate the overfitting to a certain
patient. After the optimization process, the aggregated posterior
distribution q (z) of the hidden layer is as follows:

q (z) =

∫

x

q (z | x) pd (x) dx, (7)

where q (z | x) is the encoding function of the autoencoder, pd (x)

is the marginal distribution of data. During the training phase,
the probabilistic autoencoder is regularized with an adversarial
loss function Jadv, which is described as:

Jadv = Ez∼p(z)

[

logD (z)
]

+ Ex∼pd

[

log (1− D (G (x)))
]

.
(8)

After training, a generative model is defined by imposing the
prior p (z) on the data distribution. A one-hot encoding vector
y is used for supervised learning (Kumar et al., 2018; Saito et al.,
2020). Then we use the learned domain-invariant features for
seizure prediction. An SVM classifier is introduced to analyze
the extracted features. The loss function of the classification
procedure is denoted by Lcla. The objective function of the entire
model can be defined as:

min
G,C

max
D

Lcla + λ0Lrec + λ1Jadv + λ2Rdis, (9)

where λ0, λ1 and λ2 represent the trade-off positive parameters,
and C is the classifier. Our model is optimized jointly with
these modules. In general, the MMD-based regularization term is
designed to align the distributions among different patients. The
AAE architecture is used to construct the latent feature space.
The adversarial module is developed to match the hidden code
with a prior distribution. Thus this model can circumvent the
overfitting to a certain patient.

4. RESULTS AND DISCUSSION

In this section, comparison experiments are conducted to verify
the generalization ability and evaluate the forecast precision.
Our model is tested on both intracranial and scalp EEG signals.
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TABLE 3 | Results compared with conventional methods on the Freiburg Hospital database.

Source Target
FT-CNN PLV SBP Wav-CNN Our model

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.64 0.21 0.66 0.20 0.69 0.19 0.70 0.17 0.79 0.16

S.C. Pt 2 0.63 0.3 0.65 0.28 0.66 0.26 0.67 0.24 0.82 0.12

S.C. Pt 3 0.58 0.24 0.59 0.23 0.62 0.22 0.64 0.22 0.74 0.20

S.C. Pt 4 0.64 0.25 0.65 0.24 0.66 0.22 0.69 0.20 0.83 0.16

S.C. Pt 5 0.56 0.4 0.58 0.39 0.59 0.38 0.60 0.38 0.57 0.30

S.C. Pt 6 0.64 0.27 0.64 0.26 0.67 0.26 0.69 0.26 0.73 0.18

S.C.∗ Pt 8 0.54 0.33 0.55 0.33 0.57 0.32 0.57 0.31 0.68 0.29

S.C. Pt 9 0.70 0.18 0.72 0.17 0.75 0.15 0.77 0.13 0.77 0.19

S.C. Pt 10 0.52 0.34 0.53 0.33 0.55 0.32 0.58 0.30 0.81 0.16

S.C. Pt 11 0.50 0.32 0.5 0.30 0.52 0.29 0.52 0.28 0.68 0.29

S.C. Pt 12 0.72 0.15 0.74 0.13 0.75 0.12 0.77 0.13 0.82 0.09

S.C.∗ Pt 13 0.55 0.27 0.56 0.25 0.59 0.24 0.60 0.23 0.66 0.29

S.C. Pt 14 0.56 0.46 0.57 0.46 0.58 0.44 0.60 0.43 0.75 0.22

S.C. Pt 15 0.66 0.17 0.66 0.16 0.69 0.15 0.69 0.13 0.83 0.12

S.C. Pt 16 0.59 0.33 0.6 0.32 0.63 0.31 0.65 0.30 0.85 0.12

S.C. Pt 17 0.59 0.34 0.62 0.33 0.63 0.31 0.65 0.30 0.77 0.21

S.C. Pt 18 0.76 0.14 0.78 0.13 0.80 0.11 0.83 0.12 0.84 0.09

S.C. Pt 19 0.48 0.29 0.48 0.28 0.48 0.27 0.5 0.26 0.73 0.23

S.C. Pt 20 0.45 0.33 0.47 0.33 0.48 0.33 0.51 0.32 0.82 0.15

S.C. Pt 21 0.60 0.28 0.62 0.27 0.62 0.25 0.65 0.24 0.66 0.31

Avg. 0.59 0.28 0.61 0.27 0.63 0.26 0.64 0.25 0.76 0.19

S.C., simulated clinical samples; Sn, sensitivity; FPR, false prediction rate; Avg., average result. S.C.
∗ uses NO samples of the predictor user.

TABLE 4 | Results compared with conventional methods on the CHB-MIT database.

Source Target
FT-CNN PLV SBP Wav-CNN Our model

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.52 0.33 0.54 0.31 0.55 0.31 0.56 0.31 0.77 0.25

S.C. Pt 2 0.46 0.37 0.47 0.37 0.48 0.34 0.49 0.32 0.56 0.32

S.C. Pt 3 0.59 0.30 0.60 0.30 0.63 0.29 0.63 0.28 0.70 0.24

S.C. Pt 5 0.48 0.39 0.48 0.37 0.49 0.35 0.51 0.34 0.74 0.23

S.C. Pt 6 0.64 0.3 0.66 0.29 0.68 0.28 0.70 0.28 0.79 0.27

S.C. Pt 7 0.53 0.21 0.56 0.21 0.56 0.29 0.57 0.26 0.71 0.15

S.C. Pt 8 0.58 0.26 0.60 0.25 0.61 0.24 0.63 0.23 0.82 0.22

S.C. Pt 9 0.51 0.34 0.54 0.33 0.55 0.33 0.56 0.32 0.78 0.20

S.C. Pt 10 0.5 0.31 0.51 0.29 0.53 0.28 0.54 0.26 0.72 0.24

S.C. Pt 13 0.46 0.21 0.47 0.20 0.50 0.28 0.50 0.27 0.54 0.37

S.C. Pt 14 0.46 0.38 0.48 0.38 0.49 0.36 0.50 0.34 0.80 0.14

S.C. Pt 17 0.42 0.37 0.43 0.35 0.44 0.35 0.44 0.35 0.75 0.3

S.C. Pt 18 0.49 0.29 0.52 0.29 0.53 0.27 0.54 0.25 0.70 0.22

S.C. Pt 19 0.56 0.28 0.58 0.27 0.60 0.25 0.63 0.23 0.73 0.19

S.C. Pt 20 0.57 0.24 0.59 0.22 0.60 0.2 0.62 0.28 0.82 0.16

S.C. Pt 21 0.63 0.25 0.66 0.24 0.67 0.22 0.70 0.20 0.68 0.28

Avg. 0.51 0.30 0.54 0.29 0.56 0.29 0.57 0.28 0.73 0.24

S.C., simulated clinical samples; Sn, sensitivity; FPR, false prediction rate; Avg., average result.
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FIGURE 5 | AUC of different seizure prediction models on the Freiburg Hospital test set (left) and the CHB-MIT test set (right).

Three commonly-used indicators about model performance are
exploited in experiments: sensitivity, false alarm rate per hour
(FPR), and area under the receiver operating characteristic
curve (AUC). Noted that each EEG fragment represents an
event so that the event-based indicators are used for evaluation
(Temko et al., 2011).

4.1. Comparison With Conventional
Methods
To demonstrate the advantages over conventional methods, we
select four seizure prediction researches for comparison: FT-
CNN (Truong et al., 2018), phase locking value (PLV) (Cho et al.,
2016), spectral band power (SBP) (Ozcan and Erturk, 2019),
and Wav-CNN (Khan et al., 2017). All these approaches have
obtained good model performance when the training and testing
processes are performed on the same subject. But data from
previous cases are not used in their training phases. Here we train
these models with EEG samples from multiple patients and test
them with the “unseen” patient’s data. The sensitivity and FPR
are provided in Tables 3, 4. The AUC value for each patient is
illustrated in Figure 5.

The widely-used Freiburg Hospital database is employed in
this work to evaluate our model on the intracranial EEG. Table 3
illustrates that our model outperforms all the other conventional
methods in a clear margin. It is reasonable since the prior
studies adopt the patient-specific strategy and consider little
about the domain adaptability. Conversely, our method exhibits
obvious advantages in terms of generalization ability, which
achieves a sensitivity of 76% and an FPR of 0.19/h on average.
Although these results do not achieve the high accuracy of
tests under the patient-specific conditions, such precision can
still meet the daily needs of patients with epilepsy because they
are similar to the warning frequency in the first-in-man trial
(Cook et al., 2013).

Still, the simulated clinical sampling situation is “harsh” for
the forecast task. It can be observed that the performances of
all these models are not desired. Moreover, on several outliers
like Pt 5, 11, and 21, the performance degradation is particularly
noticeable. It might be caused by a more complex internal
mode in the high-dimensional space. Note that even on these

outliers, the sensitivity of our model is slightly higher than
other methods, which demonstrates that our approach achieves
better robustness.

As for the scalp EEG recordings, we test these methods using
the public CHB-MIT database, produced by the Massachusetts
Institute of Technology. As shown in Table 4, our algorithm
achieves a sensitivity of 73% and an FPR of 0.24/h on average. The
results of our model show a significant improvement compared
with the conventional methods, which is consistent with the
results on intracranial EEG.However, all themodel performances
drop to a varying degree compared with the precisions on the
Freiburg test set. It might be caused by the low spatial resolution
of the scalp EEG signals for they are more susceptible to being
contaminated by noises (Ramantani et al., 2016; Usman et al.,
2019). In other words, intracranial EEG recordings have the
higher SNR and the artifacts are typically seen in scalp EEG.

There are also some outliers in the tests on the scalp EEG
signal. On Pt 2, 13, and 21, all these models obtain a subpar
performance. Larger domain gapsmight exist in the sample space
of these outliers, which makes the hyperplane difficult to capture.
Even on these outliers, the precision of our model is slightly
higher than the lower bound of a random binary classifier.
It gives us confidence in applying DA techniques to epileptic
seizure prediction.

4.2. Comparison With DA Methods
We further compare our model with domain adaptation (DA)
methods in the existing literature. However, few applications
regarding DA approaches have been reported in the area of
epileptic seizure prediction. Thus we have to employ DA
methods from other fields. The maximum independence
domain adaptation (MIDA) (Yan et al., 2017), model-agnostic
learning of semantic features (MASF), conditional deep
convolutional generative adversarial networks (C-DCGANs)
(Zhang et al., 2021) and subject-invariant domain adaption
(SIDA) (Rayatdoost et al., 2021) are introduced to verify the
advantage of our model. The sensitivity and FPR are provided
in Tables 5, 6. The AUC value for each patient is illustrated in
Figure 6.
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TABLE 5 | Results compared with DA methods on the Freiburg Hospital database.

Source Target
MIDA MASF C-DCGANs SIDA Our model

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.57 0.22 0.62 0.21 0.78 0.19 0.83 0.18 0.79 0.16

S.C. Pt 2 0.56 0.28 0.60 0.26 0.73 0.26 0.82 0.25 0.82 0.12

S.C. Pt 3 0.52 0.23 0.62 0.22 0.77 0.22 0.78 0.20 0.74 0.2

S.C. Pt 4 0.49 0.23 0.60 0.23 0.61 0.21 0.62 0.20 0.83 0.16

S.C. Pt 5 0.57 0.37 0.53 0.35 0.78 0.35 0.79 0.33 0.57 0.30

S.C. Pt 6 0.53 0.23 0.60 0.23 0.63 0.23 0.70 0.23 0.73 0.18

S.C.∗ Pt 8 0.45 0.33 0.51 0.33 0.53 0.33 0.55 0.30 0.68 0.29

S.C. Pt 9 0.49 0.37 0.51 0.36 0.68 0.26 0.70 0.24 0.77 0.19

S.C. Pt 10 0.52 0.33 0.54 0.32 0.62 0.32 0.64 0.31 0.81 0.16

S.C. Pt 11 0.59 0.33 0.57 0.32 0.67 0.30 0.79 0.31 0.68 0.29

S.C. Pt 12 0.59 0.36 0.63 0.34 0.73 0.24 0.75 0.22 0.82 0.09

S.C.∗ Pt 13 0.45 0.29 0.56 0.29 0.69 0.27 0.69 0.26 0.66 0.29

S.C. Pt 14 0.45 0.46 0.52 0.45 0.65 0.44 0.60 0.44 0.75 0.22

S.C. Pt 15 0.56 0.16 0.67 0.16 0.52 0.36 0.74 0.16 0.83 0.12

S.C. Pt 16 0.44 0.35 0.48 0.33 0.76 0.33 0.64 0.31 0.85 0.12

S.C. Pt 17 0.44 0.36 0.47 0.35 0.53 0.32 0.52 0.32 0.77 0.21

S.C. Pt 18 0.58 0.36 0.61 0.35 0.77 0.22 0.77 0.21 0.84 0.09

S.C. Pt 19 0.45 0.29 0.47 0.28 0.53 0.27 0.58 0.26 0.73 0.23

S.C. Pt 20 0.47 0.34 0.53 0.34 0.62 0.31 0.66 0.31 0.82 0.15

S.C. Pt 21 0.52 0.30 0.54 0.29 0.52 0.27 0.66 0.26 0.66 0.31

Avg. 0.51 0.31 0.56 0.30 0.66 0.29 0.69 0.27 0.76 0.19

S.C., simulated clinical samples; Sn, sensitivity; FPR, false prediction rate; Avg., average result. S.C.
∗ uses NO samples of the predictor user.

TABLE 6 | Results compared with DA methods on the CHB-MIT database.

Source Target
MIDA MASF C-DCGANs SIDA Our model

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.55 0.34 0.61 0.33 0.74 0.30 0.74 0.28 0.77 0.25

S.C. Pt 2 0.43 0.38 0.49 0.38 0.66 0.37 0.64 0.35 0.56 0.32

S.C. Pt 3 0.51 0.28 0.50 0.27 0.65 0.25 0.67 0.24 0.70 0.24

S.C. Pt 5 0.48 0.42 0.51 0.40 0.69 0.37 0.69 0.36 0.74 0.23

S.C. Pt 6 0.46 0.29 0.52 0.27 0.72 0.27 0.72 0.25 0.79 0.27

S.C. Pt 7 0.54 0.25 0.56 0.24 0.73 0.21 0.73 0.19 0.71 0.15

S.C. Pt 8 0.48 0.27 0.60 0.26 0.67 0.25 0.66 0.24 0.82 0.22

S.C. Pt 9 0.46 0.31 0.51 0.29 0.58 0.27 0.57 0.25 0.78 0.20

S.C. Pt 10 0.45 0.28 0.46 0.27 0.52 0.25 0.52 0.24 0.72 0.24

S.C. Pt 13 0.48 0.21 0.51 0.39 0.61 0.38 0.62 0.26 0.54 0.37

S.C. Pt 14 0.47 0.39 0.48 0.39 0.64 0.36 0.65 0.35 0.80 0.14

S.C. Pt 17 0.49 0.38 0.50 0.37 0.61 0.37 0.59 0.35 0.75 0.30

S.C. Pt 18 0.50 0.30 0.49 0.30 0.57 0.28 0.61 0.28 0.70 0.22

S.C. Pt 19 0.51 0.39 0.51 0.36 0.62 0.34 0.62 0.24 0.73 0.19

S.C. Pt 20 0.53 0.25 0.55 0.23 0.70 0.23 0.66 0.21 0.82 0.16

S.C. Pt 21 0.50 0.27 0.52 0.26 0.63 0.24 0.68 0.22 0.68 0.28

Avg. 0.49 0.31 0.52 0.31 0.65 0.30 0.65 0.27 0.73 0.24

S.C., simulated clinical samples.
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FIGURE 6 | AUC of different DA models on the Freiburg Hospital test set (left) and the CHB-MIT test set (right).

For the intracranial EEG samples, we still exploit the Freiburg
Hospital database as the test set. Evidently, compared with
other DA methods, our model achieves the best performance
with a sensitivity of 76% and an FPR of 0.19/h on average.
Then the SIDA method exhibits a slight advantage over other
methods. Comparing this model to SIDA, we see a benefit of
approximately 7% is obtained. Comparing our method to C-
DCGANs, we remark that a further 3% benefit is obtained. As for
the MASF, a benefit of 20% is observed, for a total of 25% margin
over MIDA.

In terms of the scalp EEG data, the open CHB-MIT dataset
is applied in the experiment. The order of precision of these DA
algorithms is consistent with the performance of the intracranial
EEG data. Our model has obvious advantages over other
approaches with a sensitivity of 73% and an FPR of 0.24/h on
average. The high model performance of our model on both
intracranial and scalp EEG testifies to the application potential on
seizure forecast.

Evidently, SIDA achieves the best performance except for
the proposed method. The reason for this superiority might
credit the combination of CNN and generative adversarial
network (GAN). SIDA is the deep neural network from the
field of emotion recognition. Raw EEG data are converted to
spectrum in EEG. Byminimizing loss of emotion recognition and
subject confusion, SIDA extracts the invariant features among
different domains. We conjecture that the architecture of GAN
in SIDA might have advantages in this task, which needs to be
further proved.

The C-DCGANs makes a relatively larger contribution
compared with other modules. An adversarial learning-
based structure is also employed by C-DCGANs. It also
uses the data augmentation technique, which generates EEG
recordings artificially. By increasing the data diversity, C-
DCGANs hopes to improve the domain shift robustness.
Nevertheless, the man-made data may involve more
artifacts (Fahimi et al., 2020) that contaminate EEG
samples. Besides, C-DCGANs is a variation of deep
learning-based frameworks. As such, it has uncertainties
associated with DNN, in particular a lack of formal
convergence guarantees.

Not surprisingly, the results of MASF and MIDA are not
satisfactory. The core idea of MASF is to establish a model-
agnostic learning paradigm using semantic features and gradient-
based meta-learning. However, the discriminant hyperplane in
the high-dimensional spacemight be too complex to be described
with semantic features. MIDA reduces differences between
distributions of domains by learning a subspace with background
information. It is obvious that the background-specific features
are not valid characteristics.

Based on the aforementioned observations, we conjecture
that adversarial learning-based techniques are relatively superior
for alleviating individual variability, since all the adversarial
learning-based models achieve a decent model performance
and generalization ability for seizure prediction. Experiments
on both intracranial and scalp EEG datasets suggest that
adversarial structure has potential in developing a generic seizure
forecast model.

4.3. Impact on Different Components
In this section, we conduct experiments to understand the
impact of different modules of the proposed model on the
final forecast results. To calculate the contribution of each
component quantitatively, we adjust the corresponding trade-
off positive parameters and observe the variation tendency.
The experiment results are listed in Tables 7, 8. Here we
discuss three components in this model: the reconstruction
module with a loss Lrec, the adversarial module with a
loss Jadv, and the inter-domain distance regularization
termRdis.

As shown in Tables 7, 8, we observe that removing the inter-
domain distance regularization item, the adversarial subnetwork,
or the classification component causes performance drop on both
intracranial and scalp EEG databases. Such results indicate that
these modules can effectively improve the model performance:
(1) AAE is suitable for epileptic EEG signal processing, and the
embedding space made by AAE is meaningful. (2) MMD is an
appropriate distance measure to minimize the domain gaps in
the seizure forecast task. (3) The reconstruction procedure can
force the model to learn the significant features from the latent
high-dimensional space.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2022 | Volume 15 | Article 82543417

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Peng et al. Seizure Prediction

TABLE 7 | Comparison results on the Freiburg Hospital database using various components.

Method Sn FPR (/h) Acc AUC

No Rdis 0.60 ± 0.03 0.35 ± 0.03 0.63 ± 0.04 0.63 ± 0.03

No Jadv 0.67 ± 0.03 0.31 ± 0.03 0.68 ± 0.03 0.69 ± 0.03

No Lrec 0.71 ± 0.03 0.27 ± 0.03 0.72 ± 0.03 0.72 ± 0.03

Our model 0.76 ± 0.03 0.19 ± 0.03 0.78 ± 0.03 0.78 ± 0.03

Sn, sensitivity; FPR, false positive rate; Acc, accuracy.

TABLE 8 | Comparison results on the CHB-MIT database using various components.

Method Sn FPR (/h) Acc AUC

No Rdis 0.57 ± 0.03 0.36 ± 0.03 0.59 ± 0.03 0.59 ± 0.03

No Jadv 0.64 ± 0.04 0.33 ± 0.03 0.66 ± 0.04 0.66 ± 0.03

No Lrec 0.68 ± 0.03 0.29 ± 0.03 0.69 ± 0.03 0.70 ± 0.03

Our model 0.73 ± 0.03 0.24 ± 0.03 0.75 ± 0.03 0.75 ± 0.03

Sn, sensitivity; FPR, false positive rate; Acc, accuracy.

FIGURE 7 | AUC of different inter-domain distance measures on the Freiburg Hospital test set and the CHB-MIT test set.
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By adjusting these trade-off items, a set of hyperparameters
that are suitable for seizure prediction can be obtained. For the
intracranial EEG data, the most appropriate trade-off parameters
are set as λ0 = 1.05, λ1 = 1.2e2, λ2 = 0.7. For the scalp EEG data,
the most appropriate parameter are set as λ0 = 1, λ1 = 1.1e2,
λ2 = 0.6.

We also discuss the superiority of the MMD measure over
other distance metrics. The standardized Euclidean distance
and the KL-divergence are used for comparison. Experimental
results are provided in Figure 7. The results suggest that
the precision can increase by 3% for intracranial EEG and
4% for scalp EEG by applying the MMD measure, which
demonstrates the advantage of MMD measure on the seizure
prediction task.

5. CONCLUSION

This work proposes a generic seizure predictor to alleviate
the impact of individual variability. By combining STFT with
MMD-AAE, our model reduces the effects of epileptic domain
variance and improves the generalization ability. Besides, a
simulated clinical sampling scenario is used during training
and testing periods, which is the first attempt to adopt this
assessing strategy. Compared with the patient-specific strategy
from previous researches, such a test approach is relatively
challenging. Nonetheless, our method achieves high domain shift
robustness and precision, which demonstrates its feasibility of
real-world applications.

By analyzing the comparison results of DA methods, a
conjecture about the effectiveness of adversarial learning in
epileptic seizure prediction is obtained. The underlying causes
of this phenomenon remain unclear because there is no
definitive explanation of the dynamics of epilepsy in the existing
literature. The search for more powerful DA algorithms and
the underlying reasons will be considered as part of our
future research.
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18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) reveals altered
brain metabolism in individuals with mild cognitive impairment (MCI) and Alzheimer’s
disease (AD). Some biomarkers derived from FDG-PET by computer-aided-diagnosis
(CAD) technologies have been proved that they can accurately diagnosis normal control
(NC), MCI, and AD. However, existing FDG-PET-based researches are still insufficient
for the identification of early MCI (EMCI) and late MCI (LMCI). Compared with methods
based other modalities, current methods with FDG-PET are also inadequate in using
the inter-region-based features for the diagnosis of early AD. Moreover, considering the
variability in different individuals, some hard samples which are very similar with both two
classes limit the classification performance. To tackle these problems, in this paper, we
propose a novel bilinear pooling and metric learning network (BMNet), which can extract
the inter-region representation features and distinguish hard samples by constructing
the embedding space. To validate the proposed method, we collect 898 FDG-PET
images from Alzheimer’s disease neuroimaging initiative (ADNI) including 263 normal
control (NC) patients, 290 EMCI patients, 147 LMCI patients, and 198 AD patients.
Following the common preprocessing steps, 90 features are extracted from each FDG-
PET image according to the automatic anatomical landmark (AAL) template and then
sent into the proposed network. Extensive fivefold cross-validation experiments are
performed for multiple two-class classifications. Experiments show that most metrics
are improved after adding the bilinear pooling module and metric losses to the Baseline
model respectively. Specifically, in the classification task between EMCI and LMCI, the
specificity improves 6.38% after adding the triple metric loss, and the negative predictive
value (NPV) improves 3.45% after using the bilinear pooling module. In addition, the
accuracy of classification between EMCI and LMCI achieves 79.64% using imbalanced
FDG-PET images, which illustrates that the proposed method yields a state-of-the-art
result of the classification accuracy between EMCI and LMCI based on PET images.

Keywords: early Alzheimer’s disease, mild cognitive impairment, FDG-PET images, bilinear pooling, inter-region
representation, metric learning, embedding space
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INTRODUCTION

Alzheimer’s disease (AD), a brain degenerative disorder, is
harming the health of thousands of old people now, and its rate of
prevalence is expected to increase rapidly in the coming decades
(Wang et al., 2013; Alzheimer’s Association, 2018, 2019). Mild
cognitive impairment (MCI) is considered to be a preclinical
precursor of AD, but it is difficult to predict whether it will
convert to AD or not (Gauthier et al., 2006; Dubois et al., 2016;
Hampel and Lista, 2016). Considering the unpredictable process
of MCI, it is crucial to develop relevant methods for diagnosing
the early MCI and AD.

18F-fluorodeoxyglucose (FDG)-positron emission
tomography (PET) can reveal altered brain metabolism in
individuals with MCI and AD (Sörensen et al., 2019; Zhou et al.,
2019; Wang et al., 2020). Various recent studies have proved
that biomarkers derived from FDG-PET by computer-aided-
diagnosis (CAD) technologies of machine learning and deep
learning can accurately diagnose NC, MCI, and AD (Pagani et al.,
2017; Choi et al., 2018; Blazhenets et al., 2019). Liu et al. (2018)
proposed a new classification framework for AD diagnosis with
3D PET images. They decomposed 3D images into 2D slices
to learn the intra-slice and inter-slice features and achieved a
promising classification performance of AUC of 83.9% for MCI
vs. NC classification. Zhou et al. (2021) developed a new deep
belief network model for AD diagnosis based on sparse-response
theory, which identified a better classification result than that of
other models. To solve the multimodal data missing problem,
Dong et al. (2021) proposed a high-order Laplacian regularized
low-rank representation method for the classification tasks of
NC, MCI, and AD. Pan et al. (2021) developed a disease-image-
specific deep learning (DSDL) framework which can achieve
neuroimage synthesis and disease diagnosis simultaneously using
incomplete multi-modality neuroimages.

Many studies have achieved good performance on the
classification of NC, MCI, and AD based on FDG-PET
images. However, when it comes to the more refined task like
classification of early MCI (EMCI) and late MCI (LMCI), the
studies with FDG-PET images are still insufficient. Hao et al.
(2020) proposed a novel multi-modal neuroimaging feature
selection method with consistent metric constraint (MFCC) and
obtained an accuracy (ACC) of 73.87% for the classification
between EMCI and LMCI based on MRI and FDG-PET but
only 64.69% when just using FDG-PET. Singh et al. (2017)
proposed a multilayer neural network involving probabilistic
principal component analysis for binary classification and only
achieved an F1 score of 68.44%. Nozadi et al. (2018) used learned
features from semantically labeled PET images to perform group
classification and got an ACC of 72.5%. Forouzannezhad et al.
(2018, 2020) applied a novel deep neural network and a random
forest model respectively, and both models got a moderate
ACC. Fang et al. (2020) introduced a supervised Gaussian
discriminative component analysis (GDCA) algorithm for the
effective classification of early Alzheimer’s disease with MRI and
PET. Yang and Liu (2020) applied the Convolutional Architecture
for Fast Feature Embedding (CAFFE) as the framework of the
deep learning platform for early Alzheimer’s disease diagnosis.

By comparison, based on fMRI and DTI images, Lei et al. (2020)
got an ACC of 78.05% for the classification between EMCI and
LMCI via proposing a new joint multi-task learning method
by combining low-rank self-calibrated functional and structural
brain networks. Song et al. (2021) constructed a new graph
convolution network (GCN) and got an ACC of 79.26% based
on fMRI and 82.92% based on DTI for the same classification
task. With MRI images, Lian et al. (2018) developed a hierarchical
fully convolutional network that can achieve an ACC of 81%
for the classification between progressive MCI (pMCI) and
stable MCI (sMCI).

To sum up, the refined classification performance for early AD
based on FDG-PET images still has some room for improvement.
One of the reasons might be that existing classification methods
based on FDG-PET have not fully explored the inter-region
representation among different brain regions. For example, based
on fMRI, there are many methods like Pearson’s correlation
and sparse representation for functional brain network (FBN)
estimation (Huang J. et al., 2020). However, several studies have
proved that brain metabolism connectivity has value in the
diagnosis of early AD (Huang et al., 2010; Sanabria-Diaz et al.,
2013; Titov et al., 2017), but few PET-based studies are using
the inter-region features to improve classification performance.
In addition, another reason might be that the number of PET
images is generally much more than that of fMRI images in
most researches. The bigger dataset might increase the variety
of individuals and the probability of special samples which are
hard to distinguish, thus causing complexity of the problem for
classification tasks.

Considering these two limitations, we propose a novel
bilinear pooling and metric learning network (BMNet) for
early Alzheimer’s disease identification with FDG-PET images,
especially for the classification task between EMCI and LMCI.
Our main contributions are as follows: (1) We propose a shallow
convolutional neural network model to achieve the classification;
(2) We introduce a bilinear pooling module into the model for
exploring the inter-region representation features in the whole
brain; (3) We introduce the deep metric learning to help model
learn the hard samples in the embedding feature space; (4) We
conduct our method on the dataset collected from the publicly
released ADNI database and obtain a state-of-the-art result of the
classification between EMCI and LMCI based on PET images.

The rest of this paper is organized as follows. In section
“Materials and Methods,” we present details of the materials
and the proposed methods. Section “Results” presents the results
of the experiments on the public ADNI database. Finally, we
provide the discussions and conclusion of this paper in section
“Discussion and Conclusion.”

MATERIALS AND METHODS

Image Acquisition and Preprocessing
In this work, we use the data in the publicly released Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (Jack et al.,
2008). We collect a cohort of subjects with FDG-PET images
from the ADNI databases. The ADNI cohort includes FDG-PET
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images from 898 subjects, including 263 NC, 290 EMCI, 147
LMCI, and 198 AD participants. Table 1 lists the demographic
characteristics of subjects.

We choose FDG-PET images which are in a state of rest
with 30–35 min with 185 ± 18.5 MBq FDG, and details of
acquisition can be obtained from the study protocols in the
ADNI database. Firstly, we normalize the images based on the
template of the Montreal Neurological Institute (MNI). Then,
we perform the smoothing with a Gaussian filter of 8 mm
fullwidth at half-maximum (FWHM) (Wang et al., 2020). Finally,
to verify the effectiveness of the proposed method, we do the
main experiments using two different brain atlas. Based on the
automated anatomical labeling (AAL) (Ashburner and Friston,
2000) atlas, we extract features of 90 regions of interest (ROIs)
from FDG-PET images with intensity normalized averagely.
Similarly, based on the Schaefer et al. (2018) atlas (Schaefer
et al., 2018), we extract features of 400 regions. We perform all
preprocessing steps by Statistical Parametric Mapping software
(SPM12) (Tzourio-Mazoyer et al., 2002) and Matlab (2020).

Methods
Overview of the Proposed Network
Figure 1 illustrates the method framework of this study. The left
box is the preprocessing step of FDG-PET images, in which the
left image is the raw PET image of the brain, and the right one is
the AAL template. Then 90 features extracted based on the AAL
template are input into the subsequent model. The model consists
of two convolution layers, a bilinear pooling layer, and two fully
connected layers.

After extracting the first-order features through two
convolution layers, the bilinear pooling module is used to
further extract the inter-region-based features. Finally, the metric
learning loss is added to the classification loss to strengthen the
ability to learn hard samples of the proposed model.

Baseline Model
We construct a shallow neural network as the Baseline model,
including two convolution blocks and three fully connected
layers. Each convolution block includes a convolution layer, a
batch normalization layer, and a Rectified Linear Unit (ReLU)
activation layer.

Given a set of nodes (regions) R = {r1, r2, r3}, and the
features of each region is denoted as Xi. Each convolution block
is defined as:

Yi = σ[BN(f (Xi))] (1)

TABLE 1 | Demographic characteristics of the subjects in the ADNI database.

Subjects NC EMCI LMCI AD

Number 263 290 147 198

Gender (M/F) 130/133 160/130 80/67 119/79

Age 75.49 ± 6.47 71.40 ± 7.33 72.16 ± 7.55 75.05 ± 7.60

MMSE 29.06 ± 1.13 28.32 ± 1.57 27.62 ± 1.84 23.20 ± 2.17

The values are presented as mean ± standard deviation.
MMSE, Mini-Mental State Examination.

Where the f represents the convolution process, BN
represents the batch normalization process, σ represents the
activation process.

Generating Inter-Region Representation via Bilinear
Pooling Module
In this section, we propose to use a bilinear pooling module
to further generate second-order features which may represent
inter-region features among whole brain regions. Bilinear pooling
is an effective feature fusion method, which has been widely used
in various computer vision and machine learning tasks (Lin et al.,
2015; Gao et al., 2020). Bilinear pooling captures the high-order
statistical information of features by matrix operations and then
generates an expressive global representation (Kim et al., 2016; Li
et al., 2017; Gao et al., 2020). In the research of DTI and fMRI,
this method is also used to extract connectivity-based features
between brain regions (Huang F. et al., 2020). In theory, by using
these features, the inter-region representation among the whole
brain regions in FDG-PET images could be exploited to some
extent, as the functional brain network of fMRI.

In this work, we introduce a new factorized bilinear pooling
method (Gao et al., 2020) to capture inter-region features by
fusing homogeneous features where the input features are from
the same source. This new bilinear pooling method simplifies
the complexity of calculation, reduces heavy computational
redundancy issues. Based on factorized bilinear coding, it is
proved that bilinear features are rank-one matrices whose rank
is one. The bilinear features could be extracted by factorizing
dictionary atoms into low-rank matrices and Hadamard product,
instead of massive matrix operations, reducing the dimension of
matrices and computational burden.

The main operations of bilinear features are as follows (Kim
et al., 2016; Gao et al., 2020):

B = YTWY = YTUVTY = PT(UTY◦VTY) (2)

where B represents the bilinear features, and Y represents the
input feature, UT , VT and PT are learnable parameters of the
dictionary, ◦ represents Hadamard product.

The low-rank matrix U and V are used to approximate W,
and the operation is simplified. Matrix P is used to control the
length of the output. In the network, three fully connected layers
are used to learn UT , VT and PT . Then, we use an average
pooling layer to diminish the feature dimension and obtain the
global information. Finally, the feature map is flattened to one-
dimensional and a fully connected layer is used to diminish the
feature dimension to facilitate subsequent learning processes.

We use this bilinear pooling method to capture inter-region
representation with FDG-PET images. The homogeneous
features achieve interaction of the whole brain by the
bilinear pooling module, which needs complex and expensive
computation before.

Distinguishing Hard Samples in Embedding Space by
Metric Learning
In this section, we introduce the deep metric learning strategy
into the classification of different stages of AD. Metric learning
is widely utilized with deep neural networks in classification
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FIGURE 1 | The architecture of the proposed bilinear pooling and metric learning network (BMNet) for MCI diagnosis using PET images. There are four modules in
our framework (i.e., images preprocessing module, convolutional feature-extraction module, bilinear pooling module, and the metric learning module).

tasks, especially in problems affected by large intra-class sample
changes (Liu et al., 2017; Sundgaard et al., 2021). Deep metric
learning loss maps features to the embedded space, which is
conducive to learning difficult samples and can effectively deal
with the imbalance of data (Sundgaard et al., 2021). Inspired by
these, we argue that deep metric learning might be suitable for
our classification task. Thus, in this paper, we employ deep metric
learning for the diagnosis of AD to help distinguish hard samples
in the embedding space.

In deep neural networks, the loss function is a manifestation
of metric learning, and there are a variety of different metric
learning loss functions. In this paper, we employ two deep metric
learning loss functions for automatic diagnosis of early AD,
including contrastive loss and triplet loss, which are widely used
in recent studies (Cheng et al., 2016; He et al., 2021; Sundgaard
et al., 2021). Contrastive loss employs a pair of positive and
negative samples for each training iteration. The contrastive loss
function is measured by the Euclidian distance between two
vectors in embedding space. The contrastive loss function is given
as (Hadsell et al., 2006):

Lc(b1,i, b2,i) =
∑N

i=1
[yid2

1,2 + (1− yi){max(0, m− d1,2)}
2
](3)

d1,2 = ||f1,i − f2,i||22 (4)

where yi = 0 for two positive vectors and yi = 1 for negative
pairs, b1,i, b2,i is the training input from two classes, f1,i, f2,i
represents the embedding vector of each training input generated
by the network, N is the number of input samples, and m is the
margin, usually set to 1.0.

When the input is a positive sample pair, d1,2 decreases
gradually, and the same kind of samples will continue to form
clusters in the feature space. On the contrary, when the network
inputs a negative sample pair, d1,2 will gradually rise until it
reaches the set m. By minimizing the loss functions, the distance

between positive sample pairs can be gradually reduced and
the distance between negative sample pairs can be gradually
increased, to meet the needs of the classification task.

Triplet loss is a widely used measure of metric learning loss,
which is the basis of a large number of metric learning methods.
Unlike contrastive loss, triplet loss requires three input samples
including two positive samples and a negative sample. The three
samples are named as fixed sample (anchor) ba, positive sample
(positive) bp and negative sample (negative) bn respectively.
ba and bp form positive sample pairs, and ba and bn form
negative sample pairs.

This triplet loss function simultaneously penalizes a short
distance da,n between an anchor and a negative sample and a
long distance da,p between an anchor and a positive sample, and
is defined as (Schroff et al., 2015):

Ltriplet(ba
i , bp

i , bn
i ) =

∑N

i=1
max(0,m+ da,p − da,n) (5)

where ba
i , bp

i , bn
i is the input from two training groups, N

represents the number of samples, and m is the margin, usually
set to 1.0.

da,p = ||f a
i − f p

i ||
2
2 (6)

da,n = ||f a
i − f n

i ||
2
2 (7)

f a
i , f p

i , f n
i represents the vector of training input in

embedding space.
As shown in Figure 1, the triple loss can shorten the distance

between positive sample pairs, while pushing away the distance
between negative sample pairs. Finally, samples with the same
class form feature clusters and embedding space to improve the
performance of the classification tasks.
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Loss Functions
In addition, we use cross-entropy loss LC for the classification
task. Therefore, the final loss function includes a joint loss
function Ltotal that contains metric loss LM for the embedding
space and cross-entropy loss for the classification task.

Ltotal = λLM + LC (8)

LC =
1
N

∑N

i
− [yilog(pi)+ (1− yi)log(1− pi)] (9)

Where yi represents the label of the sample i, where pi
represents the probability that the sample i is projected to be
a positive class, λ represents the coefficient which we define as
0.05 by experience.

Performance Evaluation
We adopt six commonly used evaluation metrics to evaluate
the performance of the models objectively, including accuracy
(ACC), sensitivity (SEN), specificity (SPE), positive predictive
value (PPV), negative predictive value (PPV), F1 score (F1), area
under the receiver operating characteristic curve (AUC).

Implementation Details
We implement the proposed network based on the public
platform PyTorch 1.8 and Intel Core i5-9400 CPU with 16 GB
memory. Besides, we adapt stochastic gradient descent (SGD) to
optimize the model, in which momentum and weight decay are
set to 0.9 and 0.001 respectively.

Validation Strategies and Statistic Analysis Methods
To evaluate the effectiveness of the proposed model, we conduct a
fivefold cross-validation strategy in all ablation and comparative
experiments based on the AAL atlas. For each experiment, we

divide data into five groups, and each group maintains the same
proportion of two classes. In each fold experiment, four groups
are used as train groups and another group is used as the test
group. The detailed classification results on the ADNI database
are summarized in section “Ablation Experiments.”

In addition, we apply independent testing set strategy in the
experiments based on Schaefer et al. (2018) atlas. We divide
the collected dataset from the ADNI database into a training
set (80%), validation set (10%), and testing set (10%). The
corresponding detailed classification results are summarized in
sections “Experiments on Different Atlases.”

Similarly, to evaluate the effectiveness of the proposed model,
we use two methods to validate the statistical significance
including the t-test and DeLong test. In the experiments on the
AAL atlas, we use the t-test. In the experiments on Schaefer et al.
(2018) atlas, we use the DeLong test.

RESULTS

Ablation Experiments
To verify the effect of the bilinear pooling module and the
metric learning loss on the performance of the proposed
model, we remove the bilinear pooling module and the
metric learning mechanism loss from the proposed BMNet,
respectively. In the first experiment (i.e., our method without
a bilinear pooling module), we directly use a fully connected
layer to replace the bilinear pooling module. In the second
experiment (i.e., our method without metric learning losses),
we just use the cross-entropy loss function. The details are
as follows and the results are shown in Tables 2–5 and
Figure 2.

TABLE 2 | Results of the ablation studies of BP module and metric learning losses for EMCI vs. LMCI classification (Mean ± Standard Deviation).

Method ACC (%) PPV (%) NPV (%) SEN (%) SPE (%) AUC F1 (%) p

Baseline 75.74 ± 2.96 83.79 ± 2.32 59.84 ± 13.06 80.79 ± 4.89 64.92 ± 2.09 0.7332 ± 0.0602 82.26 ± 1.53 –

Baseline + BP 78.48 ± 3.44 86.21 ± 4.22 63.29 ± 4.18 82.24 ± 2.03 70.29 ± 7.26 0.7629 ± 0.0719 84.17 ± 2.70 0.068

Tri-loss 77.35 ± 5.28 87.93 ± 5.72 56.34 ± 19.67 80.49 ± 6.45 71.3 ± 8.60 0.7415 ± 0.0963 84.05 ± 3.41 0.342

Tri-loss + BP 79.64 ± 3.11 89.31 ± 2.56 60.55 ± 9.54 81.84 ± 3.66 74.29 ± 4.18 0.7589 ± 0.0633 85.41 ± 2.13 0.013*

Con-loss 77.81 ± 3.05 86.55 ± 3.57 59.17 ± 9.13 80.88 ± 3.37 70.53 ± 5.67 0.7387 ± 0.0801 83.94 ± 2.22 0.342

Con-loss + BP 79.40 ± 1.92 86.90 ± 6.41 64.67 ± 10.58 83.22 ± 3.86 72.43 ± 6.59 0.7707 ± 0.0848 85.01 ± 1.89 0.079

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.

TABLE 3 | Results of the ablation studies of BP module and metric learning losses for NC VS. AD classification (Mean ± Standard Deviation).

Method ACC (%) PPV (%) NPV (%) SEN (%) SPE (%) AUC F1 (%) p

Baseline 85.25 ± 2.50 92.01 ± 2.82 76.33 ± 6.77 83.91 ± 3.96 87.99 ± 3.52 0.9074 ± 0.0215 87.77 ± 1.96 –

Baseline + BP 88.94 ± 1.20 93.52 ± 3.48 82.79 ± 3.50 87.92 ± 1.77 90.93 ± 4.33 0.9286 ± 0.0218 90.63 ± 1.22 0.051

Tri-loss 88.29 ± 0.86 93.54 ± 0.99 81.33 ± 2.04 86.92 ± 1.44 90.47 ± 1.31 0.9279 ± 0.0127 90.35 ± 0.74 0.059

Tri-loss + BP 89.80 ± 0.62 93.53 ± 3.70 84.81 ± 4.88 89.28 ± 2.79 91.20 ± 4.28 0.9281 ± 0.0192 91.11 ± 0.70 0.032*

Con-loss 89.14 ± 1.75 93.53 ± 2.56 83.35 ± 2.78 88.02 ± 1.59 90.76 ± 3.54 0.9281 ± 0.0253 90.69 ± 1.48 0.088

Con-loss + BP 89.80 ± 0.99 93.90 ± 2.44 84.32 ± 3.40 88.91 ± 2.00 91.40 ± 2.97 0.9334 ± 0.0141 91.35 ± 0.80 0.029*

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.
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TABLE 4 | Results of the ablation studies of BP module and metric learning loss for NC VS. LMCI classification (Mean ± Standard Deviation).

Method ACC (%) PPV (%) NPV (%) SEN (%) SPE (%) AUC F1 (%) p

Baseline 76.81 ± 4.27 78.86 ± 9.26 73.45 ± 10.68 84.50 ± 4.26 66.81 ± 6.33 0.7527 ± 0.0520 81.58 ± 4.79 –

Baseline + BP 80.00 ± 4.61 86.28 ± 6.49 68.71 ± 8.88 83.25 ± 3.83 74.45 ± 7.40 0.7871 ± 4.57 84.74 ± 4.03 <0.001*

Tri-loss 80.49 ± 2.86 89.33 ± 4.01 64.60 ± 5.42 81.91 ± 2.04 77.68 ± 6.17 0.7702 ± 5.77 85.46 ± 2.34 0.007*

Tri-loss + BP 82.20 ± 4.36 89.36 ± 3.17 69.42 ± 11.53 84.18 ± 5.23 78.48 ± 5.76 0.7985 ± 5.38 86.69 ± 3.05 <0.001*

Con-loss 79.03 ± 4.83 83.22 ± 7.72 71.36 ± 13.62 84.31 ± 5.15 71.28 ± 6.79 0.7841 ± 4.18 83.76 ± 4.23 0.016*

Con-loss + BP 81.46 ± 3.99 84.64 ± 6.62 72.02 ± 9.80 84.96 ± 3.64 76.05 ± 7.78 0.8096 ± 4.22 84.80 ± 4.35 0.001*

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.

TABLE 5 | Results of the ablation studies of BP module and metric learning loss for LMCI vs. AD classification (Mean ± Standard Deviation).

Method ACC (%) PPV (%) NPV (%) SEN (%) SPE (%) AUC F1 (%) p

Baseline 77.69 ± 2.67 74.16 ± 5.54 80.30 ± 6.73 74.57 ± 5.91 80.86 ± 2.54 0.7964 ± 0.0216 74.37 ± 2.67 –

Baseline + BP 80.06 ± 5.78 72.92 ± 11.12 85.37 ± 4.11 78.62 ± 5.95 81.29 ± 6.67 0.8108 ± 0.0581 75.66 ± 8.02 0.243

Tri-loss 80.60 ± 3.04 74.25 ± 9.76 85.31 ± 6.67 79.77 ± 6.85 82.23 ± 5.29 0.8040 ± 0.0422 76.91 ± 4.30 0.307

Tri-loss + BP 81.18 ± 2.72 78.90 ± 7.80 82.85 ± 4.39 77.53 ± 3.26 84.41 ± 4.42 0.8167 ± 0.0295 78.21 ± 3.97 0.022*

Con-loss 79.71 ± 0.97 74.87 ± 7.56 83.31 ± 5.89 77.53 ± 5.36 82.00 ± 3.37 0.8018 ± 0.0332 76.18 ± 2.19 0.327

Con-loss + BP 81.77 ± 4.50 77.54 ± 8.19 84.91 ± 6.27 79.64 ± 6.88 83.84 ± 4.97 0.8297 ± 0.0346 78.57 ± 5.53 0.028*

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.

FIGURE 2 | The F1 scores of experiments for EMCI vs. LMCI classification, NC vs. LMCI classification, LMCI vs. AD classification and NC vs. AD classification.
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TABLE 6 | Results of the main studies based on the Schaefer et al. (2018) atlas.

Class Method ACC SEN SPE F1 AUC p

EMCI-
LMCI

Baseline 0.7500 0.7647 0.7000 0.8254 0.7379 0.0358*

Con-loss 0.7727 0.7714 0.7778 0.8438 0.7609 0.1090

Baseline + BP 0.7955 0.8125 0.7500 0.8525 0.7425 0.0990

Con-loss + BP 0.8409 0.8235 0.9000 0.8889 0.8529 –

NC-AD Baseline 0.8298 0.8519 0.8000 0.8519 0.8796 0.0395*

Con-loss 0.8511 0.8571 0.8421 0.8727 0.9139 0.3212

Baseline + BP 0.8511 0.8333 0.8824 0.8772 0.9259 0.3548

Con-loss + BP 0.8936 0.8929 0.8947 0.9091 0.9574 –

The bold values represent the highest number.
The asterisk represents the results have the statistical significance.

The Ablation Experiments of the Bilinear Pooling
Module
Firstly, we conduct the experiments based on the Baseline model.
Then we conduct the experiments of adding a bilinear pooling
(BP) module to the Baseline model. According to the results,
after the BP module is added, the four groups of classification
experimental results have been improved to a certain extent.
Specifically, in classification experiments between EMCI and
LMCI, ACC increases by 2.74%, and AUC increases by 2.97%. In
classification experiments between NC and AD, the results are the
best, where ACC increases by 3.69% and AUC increases by 2.12%.
In addition, we also conduct experiments in the classification
between NC and LMCI, LMCI, and AD. The results illustrate that
the BP module has a good generalization ability in the different
classification tasks.

Furthermore, we conduct comparative experiments to verify
the effectiveness of the BP module based on metric learning
loss. For example, in the classification experiments of EMCI and
LMCI, after adding the BP model to the triplet loss (Tri-loss),
ACC increases by 2.29%, and AUC increases by 1.74%.

The Ablation Experiments of Metric Learning Losses
In this sub-section, we perform comparative experiments in
terms of metric learning losses, including the triplet loss (Tri-loss)
and the contrastive loss (Con-loss). We use two kinds of metric
learning losses respectively, and the results illustrate that the two
metric learning losses are both effective in different experiments.
Specifically, in the classification experiments between EMCI and
LMCI, ACC increases by 2.07% after adding the contrastive loss,
which is a little higher than that of triplet loss. Similarly, in the
classification experiments between NC and AD, ACC increases
by 3.89%. In the classification experiments between NC and
LMCI, the results of triplet loss improve more than these of
contrastive loss, and ACC reaches 0.8049. On the contrary, in
the classification experiment between LMCI and AD, the results
of contrastive loss are better, where ACC reaches 0.8177 and
AUC reaches 0.8297.

Finally, we use the t-test to measure the statistical significance
comparing AUCs and the results are shown as p-value in
Tables 2–5. We can see that most results of the two final models
(Con-loss + BP and Tri-loss + BP) are statistically significant.
In addition, we can also see that most F1 scores of the two final
models are higher than these of other models in Figure 2.

Experiments on Different Atlases
In this section, we evaluate the performance of our method (Con-
loss + BP) based on the Schaefer et al. (2018) atlas. We conduct
two groups of experiments for EMCI vs. LMCI classification and
NC vs. AD classification and the results are shown in Table 6
and Figure 3. As stated earlier, we apply independent testing set
strategy in these experiments and use the DeLong test to validate
the statistical significance.

The results illustrate that both BP module and contrastive
loss are effective based on the Schaefer et al. (2018) atlas. In the
experiments for EMCI vs. LMCI classification, ACC increases
by 2.27% after adding the contrastive loss, which is a little

FIGURE 3 | Receiver operating characteristic (ROC) curves of experiments for EMCI vs. LMCI classification and the ROC of experiments for NC vs. AD classification
based on the Schaefer et al. (2018) atlas. TPR, true positive rate; FPR, false-positive rate; AUC, area under the receiver operating characteristic curve. Please see
the web version for the complete colorful picture.
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TABLE 7 | Comparison of the performance of different model algorithms in experiments for EMCI vs. LMCI classification with the related works.

Method Modality DATA (EMCI/LMCI) ACC SEN SPE AUC F1

SVM PET 290/147 0.6620 0.7769 0.4653 0.6329 –

Singh et al., 2017 PET 178/158 – 0.6482 – – 0.6844

Nozadi et al., 2018 PET 164/189 0.7250 0.7920 0.6990 0.790 –

Forouzannezhad et al., 2018 PET 296/193 0.6230 0.7820 0.4000 – –

Forouzannezhad et al., 2020 PET 296/193 0.6280 0.6150 0.6430 – –

Yang and Liu, 2020 PET – 0.7219 0.7382 0.7305 – –

Hao et al., 2020 PET 273/187 0.6469 0.7817 0.4444 0.6300 –

PET+MRI 0.7387 0.9055 0.4952 0.7000 –

Fang et al., 2020 PET+MRI 297/196 0.8333 0.8235 0.8966 0.8947

Lei et al., 2020 fMRI 44/38 0.7805 0.7368 0.8182 0.8571 –

DTI 0.5366 0.5789 0.5000 0.5260 –

Song et al., 2021 fMRI 44/38 0.7926 0.8421 0.7500 0.9067 –

DTI 0.8292 0.9473 0.7272 0.9414 –

Our method (Tri-loss+BP) PET 290/147 0.7964 0.8184 0.7429 0.7589 0.8541

Our method(Con-loss+BP on Schaefer atlas) PET 290/147 0.8409 0.8235 0.9000 0.8889 0.8529

The bold values represent the highest number.

lower than that of the BP module. Similarly, in the classification
experiments between NC and AD, ACC increases by 2.13%.
Finally, combining the BP module and contrastive loss, the final
model (Con-loss + BP) achieves much improvement in both
two classification experiments. Specifically, in the classification
experiments for EMCI and LMCI, ACC, SEN, SPE, F1 and
AUC achieve 84.09%, 82.35%, 90%, 88.89% and 0.8529 with
an improvement of 9.09, 5.88, 20, 6.35, and 11.5% respectively,
compared with Baseline model. In the NC vs. AD classification
experiments, ACC, SEN, SPE, F1 and AUC increases by 6.38%,
4.1%, 9.47%, 5.72%, 7.78% and reach 89.36%, 89.29%, 89.47%,
90.91% and 0.9574.

Comparison With Other Methods
In this section, we compare the performance of our method
(Tri-loss + BP) with that of several recent representative

TABLE 8 | Comparison of the performance of different model algorithms in
experiments for NC vs. AD classification with the related works.

Method Modality DATA
(NC/AD)

ACC SEN SPE AUC

SVM PET 263/198 0.6213 0.8063 0.5547 0.8445

Hao et al., 2020 PET 211/160 0.8006 0.8602 0.7194 0.85

MRI 0.8663 0.9028 0.8181 0.93

Lei et al., 2020 fMRI 44/38 0.7805 0.7368 0.8182 0.8571

DTI 0.5366 0.5789 0.5000 0.5260

Song et al., 2021 fMRI 44/38 0.7926 0.8421 0.75 0.9067

DTI 0.8292 0.9473 0.7272 0.9414

Lian et al., 2018 MRI 429/358 0.90 0.82 0.97 0.95

Dong et al., 2021 MRI+PET 440/367 0.9305 0.9474 0.9091 0.9732

Our method
(Tri-loss+BP)

PET 263/198 0.898 0.8928 0.912 0.9281

Our method
(Con-loss+BP on
Schaefer atlas)

PET 263/198 0.8936 0.8929 0.8947 0.9574

The bold values represent the highest number.

methods. In addition, we apply the least absolute shrinkage and
selection operator (LASSO) feature selection method and support
vector machine (SVM) method for the contrast experiments.
From Table 7, we can find that our method gets the highest
performance in classification experiments between EMCI and
LMCI based on FDG-PET images. Specifically, the proposed

TABLE 9 | Comparison of the performance of different model algorithms in
experiments for NC vs. LMCI classification with the related works.

Method Modality DATA
(NC/LMCI)

ACC SEN SPE AUC

SVM PET 263/147 0.6415 0.7446 0.5437 0.6724

Hao et al., 2020 PET 273/187 0.6677 0.7545 0.5594 0.68

MRI 0.712 0.7801 0.6332 0.76

Lei et al., 2020 Fmri 44/38 0.7805 0.7368 0.8182 0.8571

DTI 0.5366 0.5789 0.5000 0.5260

Song et al., 2021 fMRI 44/38 0.7926 0.8421 0.75 0.9067

DTI 0.8292 0.9473 0.7272 0.9414

Our method
(Tri-loss+BP)

PET 263/147 0.822 0.8418 0.7848 0.7985

The bold values represent the highest number.

TABLE 10 | Comparison of the performance of different model algorithms in
experiments for LMCI vs. AD classification with the related works.

Method Modality DATA
(LMCI/AD)

ACC SEN SPE AUC

SVM PET 147/198 0.5841 0.7834 0.5044 0.6908

Hao et al., 2020 PET 273/187 0.6677 0.7545 0.5594 0.68

MRI 0.712 0.7801 0.6332 0.76

Lei et al., 2020 fMRI 44/38 0.7805 0.7368 0.8182 0.8571

DTI 0.5366 0.5789 0.5000 0.5260

Song et al., 2021 fMRI 44/38 0.7926 0.8421 0.75 0.9067

DTI 0.8292 0.9473 0.7272 0.9414

Our method
(Tri-loss+BP)

PET 147/198 0.8118 0.7753 0.8441 0.8167

The bold values represent the highest number.
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FIGURE 4 | The AUCs of ablation experiments loss functions for EMCI vs. LMCI classification and NC vs. AD classification based on the Schaefer et al. (2018) atlas.
AUC, area under the receiver operating characteristic curve.

method yields big improvement than the results of Singh et al.
(2017) and Nozadi et al. (2018), although the dataset in our
experiments is highly unbalanced. Based on a similar dataset, the
proposed method still has better performance than the methods
proposed by Forouzannezhad et al. (2018, 2020). In addition,
compared with the method proposed by Hao et al. (2020), our
method achieves an overall huge improvement with 14.95%
in ACC, 3.67% in SEN, 29.85% in SPE, and 12.89% in AUC,
respectively. Compared to the results of the fusion of PET and
MRI (Singh et al., 2017; Forouzannezhad et al., 2018, 2020;
Nozadi et al., 2018; Fang et al., 2020; Hao et al., 2020), our
method also achieves an improvement in most metrics. Besides,
our method gets a comparable performance compared to the
methods based on fMRI and DTI adapted by Lei et al. (2020) and
by Song et al. (2021), but the subjects in our research are much
more than those they use.

Similarly, from Table 8, we can find that our method gets
the highest performance of classification experiments between
NC and AD based on PET images too. Specifically, compared
with the method proposed by Hao et al. (2020) based on PET
images, our method achieves an overall huge improvement
with 9.74% in ACC, 3.26% in SEN, 19.26% in SPE, and 7.81%
in AUC, respectively. Besides, our method gets a comparable
performance compared to the methods based on other modalities
(Lian et al., 2018; Lei et al., 2020; Song et al., 2021). ACC, SEN,
SPE, AUC of our method based on PET images improve 10.76%,
4.69%, 16.83%, and 2.82% than those of their method based
on fMRI. While SEN and AUC are slightly lower, ACC and
SPE based on PET images improve 7.1% and 19.11% than
those based on DTI.

In addition, we conduct the classification experiments
between NC and LMCI, LMCI and AD, and the results compared
with other methods are shown in Tables 9, 10 respectively, to
further validate the effectiveness of our method.

From those experiments above, we can see that our
classification results between EMCI and LMCI have exceeded
those of the existing methods overall based on FDG-PET images.
In addition, our results are also comparable with those based on
fMRI and DTI images.

DISCUSSION AND CONCLUSION

Comparison of Different Coefficients in
Loss Functions
To select the proper coefficient of loss functions, we compare
several numbers of coefficient λ in Equation 8, including 0, 0.03,
0.05, 0.08, and 0.1. We conduct the ablation experiments based
on methods in section “Experiments on Different Atlases” and
the corresponding AUCs are shown in Figure 4. It can be seen
that the AUC turns out to be the highest when coefficient is
around 0.05 and keep at a relatively high level in the range
from 0.05 to 0.08. Therefore we set coefficient λ as 0.05 in
most experiments.

Comparisons With Previous Researches
In general, there are three major advances between the proposed
method and previous methods. Firstly, current PET-based
methods are deficient in extracting representation features
among different brain regions, incurring poor performance
for the classification of early AD. The proposed BMNet
introduces a bilinear pooling module into the model to
explore the inter-region representation features and get a good
classification performance. Secondly, there are few methods
to study hard samples to improve the classification results
in the brain disorder analysis. By comparison, we apply
two metric learning losses to our model which has been
proved useful for hard samples classification and they both
get a good performance in the experiments. Thirdly, brain
metabolism is very important for AD diagnosis and can
only be obtained by PET images. Based on PET images,
the proposed method could extract region-based features
which represent the brain metabolic connectivity network,
excavate the potential of PET images, and improve the
diagnosis performance. This is the main superiority of inter-
region-based methods with PET images compare with other
modalities. In addition, the proposed PET-based method
is comparable to other modalities in classification tasks
between EMCI and LMCI.
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Potential Applications in Other
Modalities
Considering the good performance based on FDG-PET images,
the proposed BMNet including the bilinear pooling module and
the metric learning loss functions also has the potential capability
of diagnosis for other neurological diseases with other kinds
of brain images. Besides, the proposed method only requires
features of each brain region as the input. This lightweight
characteristic allows the model to be easily applied to fMR and
DTI images. We will try to explore more applications of the
proposed method in future work.

Limitations and Future Works
While the proposed BMNet achieves good results for the
diagnosis of early AD, there are still some limitations. Firstly,
considering the characteristics of the convolution neural
network, the models and results are hard to be interpreted
and the inter-region representation of the brain regions is
hard to be visualized. Secondly, the proposed method focus
on region-based features, which are lightweight but only utilize
the metabolism of brain regions, limiting the ability of the
network. In future work, we will try to integrate whole 3D PET
images into the network to achieve joint feature extraction and
classification. Finally, there is still some potential in exploiting
methods that can extract brain inter-region representation
features based on FDG-PET images. In the future, we will try
to design methods that could extract inter-region representation
features more effectively. In addition, the proposed method
directly combined the contrastive loss and triplet loss with the
entropy loss to better distinguish the hard samples. In the
future, we will some novel designs of these losses based on
domain knowledge.

Conclusion
We propose a novel neural network method for the
diagnosis of early AD with FDG-PET. We firstly construct
a shallow neural network as the Baseline model. Then we
introduce a bilinear pooling module into the network to
try to extract inter-region representation features among
the whole brain. We also apply the deep metric learning
losses into the final loss function to help distinguish hard
samples in the embedding space. Finally, we conduct the
BMNet on the ADNI database and the results show that

our method yields comparable classification performance
with several representative methods. Especially, we get
a satisfying classification performance in the experiment
between EMCI and LMCI, which is the state-of-the-art
result with FDG-PET.
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Poststroke depression (PSD), affecting about one-third of stroke survivors, exerts
significant impact on patients’ functional outcome and mortality. Great efforts have
been made since the 1970s to unravel the neuroanatomical substrate and the brain-
behavior mechanism of PSD. Thanks to advances in neuroimaging and computational
neuroscience in the past two decades, new techniques for uncovering the neural
basis of symptoms or behavioral deficits caused by focal brain damage have been
emerging. From the time of lesion analysis to the era of brain networks, our knowledge
and understanding of the neural substrates for PSD are increasing. Pooled evidence
from traditional lesion analysis, univariate or multivariate lesion-symptom mapping,
regional structural and functional analyses, direct or indirect connectome analysis, and
neuromodulation clinical trials for PSD, to some extent, echoes the frontal-limbic theory
of depression. The neural substrates of PSD may be used for risk stratification and
personalized therapeutic target identification in the future. In this review, we provide
an update on the recent advances about the neural basis of PSD with the clinical
implications and trends of methodology as the main features of interest.

Keywords: poststroke depression, neural substrate, lesion analysis, gray matter atrophy, regional brain activity,
brain network, lesion-network mapping, disconnectome

INTRODUCTION

Poststroke depression (PSD) is a common complication of stroke, involving about 29% of patients
at any time within 5 years poststroke (Ayerbe et al., 2013). PSD is associated with heavier healthcare
burden, poorer functional outcome, and higher long-term mortality in stroke survivors (Robinson
et al., 1986; Ghose et al., 2005; Jia et al., 2006; Ayerbe et al., 2013; Bartoli et al., 2013; Kutlubaev
and Hackett, 2014). To aid in early prediction and effective intervention for PSD, its etiology and
mechanisms need to be scrutinized. Based on accumulating evidence, it is generally believed that
PSD has underlying neurobiological causes and is not only a psychosocial response to the new
disability or stressful life event (Folstein et al., 1977; Towfighi et al., 2017; Mayman et al., 2021).
The association between lesion location and PSD first reported in the 1970s (Robinson et al., 1975,
1983; Robinson and Price, 1982), although extensively investigated as a potential biological factor of
PSD, is still of considerable debate (Nickel and Thomalla, 2017; Towfighi et al., 2017). Most of those
studies were of traditional design with relatively low spatial accuracy for visual lesion localization
(Nickel and Thomalla, 2017). Until 2003, a new technique called voxel-based lesion-symptom
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mapping (VLSM) was developed to test the lesion–behavior
correlation at the voxel level and has been widely used to identify
the neural substrates of symptoms after focal brain damage such
as PSD, poststroke cognitive impairment, poststroke dysphagia,
and stroke-related myocardial injury (Bates et al., 2003; Ay
et al., 2006; Kim et al., 2017; Hess et al., 2021; Weaver et al.,
2021a). Moreover, there is a growing consensus that the rough
lesion location used in traditional lesion analysis and the spatial
topography information used in VLSM only represent the “tip of
the iceberg”: a surface-level depiction of the lesion largely blind
to its impact on the underlying extensive brain networks (Catani
et al., 2012; Fox, 2018). The brain network dysfunction caused
by a given stroke lesion, instead of the lesion itself, might be
the key neural substrate of poststroke symptoms especially when
patients with the same symptom have lesions in various brain
regions with little lesion overlap (Fox, 2018). Thanks to advances
in neuroimaging techniques and statistical methodologies in
the past two decades, lesion-symptom inference in high spatial
resolution, with robust statistics and from the perspective of the
human connectome, can be performed and new evidence for the
neural substrates of PSD, beyond those findings from traditional
studies, is emerging. In this review, we provide a brief summary
of traditional studies and an update on the latest advances about
the neural basis of PSD, which may shed light on the etiology,
prediction, therapeutic target identification, and future research
directions for PSD.

DEFINITION, DIAGNOSIS, AND
MEASUREMENT OF POSTSTROKE
DEPRESSION

The Diagnostic Statistical Manual of Mental Disorders-5 (DSM-
5), as gold standard for PSD diagnosis, defines PSD as
“depressive disorder due to another medical condition” with
depressive features, major depressive-like episode, or mixed-
mood features (American Psychiatric Association, 2013). Some
aspects in DSM-5 criteria, such as “disturbance is the direct
pathophysiological consequence of another medical condition,”
are almost impossible to prove in clinical practice (American
Psychiatric Association, 2013). Therefore, the diagnosis of PSD
relies on a thorough clinical interview with careful exploration
of presenting symptoms and is commonly assisted by the
use of screening tools (specifically the depression rating scales
validated in PSD screening) (Chun et al., 2021). Although
multiple depression scales have been applied and compared in
previous studies, the optimal screening tool for PSD remains
undetermined (Towfighi et al., 2017). One meta-analysis reported
three scales as promising options with relatively high sensitivity
and specificity in PSD screening: Center of Epidemiological
Studies-Depression Scale (CESD), Hamilton Depression Rating
Scale (HDRS), and Patient Health Questionnaire (PHQ)-9,
compared with other scales including Geriatric Depression
Scale (GDS), Hospital Anxiety and Depression Scale (HADS),
and PHQ-2 (Meader et al., 2014). Another study found that
HDRS, Beck Depression Inventory (BDI), and Clinical Global
Impression (CGI) assessment by professionals showed similar

performance in PSD screening (Berg et al., 2009). Of note, the
optimal rating scale along with the optimal cutoff value for PSD
diagnosis may vary across different stages after stroke (Berg et al.,
2009), which warrants further investigation. The methods for
PSD diagnosis or measurement in previous studies on the neural
substrates of PSD are summarized in Table 1.

More recently, researchers on mental disorders tend to
define depressive disorders as a complex symptom network.
Both DSM-5 criteria and the sum score of a depression rating
scale are based on the traditional “common cause” theory,
assuming that depression as an entity causes various symptoms
and these symptoms are interchangeable and diagnostically
equivalent so that the number or severity of symptoms can
be simply added up (Borsboom, 2008; Borsboom and Cramer,
2013; Fried and Cramer, 2017). The depressive symptoms,
however, actually interact with each other in complex ways,
which has long been common knowledge among clinicians
(Borsboom, 2008; Borsboom and Cramer, 2013; Fried and
Cramer, 2017). In the psychopathological network theory,
mental disorders are conceptualized as dynamic and complex
networks of symptoms influencing each other by creating causal
pathways and feedback loops (e.g., depressed mood - > insomnia
- > fatigue - > depressed mood, in depressive disorders)
(Borsboom, 2008; Borsboom and Cramer, 2013; Fried and
Cramer, 2017). Depressive symptom networks have been well
established in neurologically healthy populations (van Borkulo
et al., 2015; Belvederi Murri et al., 2020), and interactions among
depressive symptoms may also exist in the stroke population
(Ashaie et al., 2021). One recent study modeled poststroke
depressive symptoms at three timepoints (discharge and 3 and
12 months after discharge) as networks in which depressed
mood was consistently identified as a central symptom and
might be responsible for triggering or sustaining the rest of
symptoms via symptom–symptom interactions (Ashaie et al.,
2021). Interestingly, the network structure and connectivity of
poststroke depressive symptoms might vary across time after
stroke (Ashaie et al., 2021). Accumulating evidence suggests that
certain biological processes (e.g., inflammation and focal brain
damage) may not be equally related to all depressive symptoms
(Moriarity et al., 2022). Investigating risk factors and biomarkers
for individual depressive symptoms has become a new research
paradigm (Fried et al., 2014, 2020; Jokela et al., 2016; White et al.,
2017; Triolo et al., 2021; Moriarity et al., 2022).

LESION LOCATION AND POSTSTROKE
DEPRESSION

Traditional Lesion Analysis
The majority of the evidence about the association between
lesion location and PSD is derived from traditional region-of-
interest (ROI) analysis in which the lesion is assigned to overlap
with a region or not by reviewing the scan without manual
segmentation, followed by comparison for the prevalence of PSD
in populations defined by the presence or absence of involvement
of the ROI. The results from traditional studies before 2017
have been reviewed elsewhere and will not be redundantly
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TABLE 1 | Study design and findings for studies on neural substrates of PSD.

Study Imaging
biomarker

Timing of
behavioral

assessment since
lesion onset

Behavioral
assessment

method

Behavioral outcome Regions or networks
implicated

Results
involving PFC

Traditional ROI analysis

Nickel and
Thomalla, 2017*

Lesion location Varied* Varied* Varied* Varied* Yes, frontal lobe
reported in

7/17 studies

Koenigs et al.,
2008

Lesion location More than
3 months

BDI-II, DSM-4, and
NRS for one

dataset; BDI-IA or
BDI-II for another

dataset

Ordinal (low, intermediate, or
high severity)

Bilateral DLPFC Yes

Lesion subtraction analysis

Kim et al., 2017 Lesion location Within 3 months DSM-4 and GDS Binary PSD diagnosis (DSM-4
met and GDS > 16)

Inferior posterior lobe of the left
cerebellar hemisphere

PFC not
covered in

study design

VLSM

Gozzi et al., 2014 Lesion location Within 12 days and
at 1 month
poststroke

DSM-4 and HADS Binary PSD diagnosis (DSM-4
met and HADS > 11)

Negative No

Kim et al., 2017 Lesion location Within 3 months DSM-4 and GDS Binary PSD diagnosis (DSM-4
met and GDS > 16)

Posterior lobe of the left
cerebellar hemisphere

PFC not
covered in

study design

Padmanabhan
et al., 2019

Lesion location Varied by five
datasets with

lesions of different
etiologies including
stroke; ranges from
28 days to 39 years

Varied by datasets:
Neuro-QOL, GDSS,
PHQ-9, HADS plus

MINI, BDI-II

Binary PSD diagnosis
(threshold varied by datasets:
Neuro-QOL ≥ 59.9,
GDSS ≥ 11, PHQ-9 ≥ 10,
HADS ≥ 11 with DSM-4 net,
BDI-II ≥ 20)

Negative No

Multivariate LSM

Grajny et al., 2016 Lesion location At least 6 months SADQ Continuous sum score Left DLPFC Yes

Weaver et al.,
2021b

Lesion location Within 1 year,
ranges from 1 to

361 days

GDS Continuous sum score Right amygdala and pallidum No

VBM

Shi et al., 2017 GMV Ranges from
3 months to 1 year

DSM-4 and HDRS Binary diagnosis (DSM-4 met
and HDRS > 17)

Bilateral PFC, limbic system
and motor cortex

Yes

Hong et al., 2020 GMV At least 6 months DSM-4 and HDRS Binary diagnosis (DSM-4 met
and HDRS > 7)

Left middle frontal gyrus Yes

Regional functional activity

Egorova et al.,
2017

fALFF 3 months PHQ-9 Both binary diagnosis
(PHQ-9 ≥ 5) and continuous
sum score

Left DLPFC and right precentral
gyrus; left insula

Yes

Goodin et al., 2019 fALFF 3 months MÅDRS Binary (MÅDRS > 8) Frontostriatal, temporal,
thalamic, and cerebellar regions

Yes

Direct connectome analysis

Lassalle-Lagadec
et al., 2012

rsFC 3 months HDRS Continuous sum score Left middle temporal cortex and
precuneus

No

Zhang P. et al.,
2014

rsFC Less than 2 weeks DSM-4 and HDRS Both binary diagnosis
(HDRS > 7) and continuous
sum score

Increased rsFC between the left
orbital part of the inferior frontal
gyrus and ACC

Yes

Shi et al., 2017 rsFC Ranges from
3 months to 1 year

DSM-4 and HDRS Binary PSD diagnosis (DSM-4
met and HDRS > 17)

Decreased rsFC of ACC with
PFC, cingulate cortex, and
motor cortex, but increased
rsFC with the hippocampus,
parahippocampal gyrus, insula,
and amygdala

Yes

Vicentini et al.,
2017

rsFC Mean: 25 days DSM-4 and BDI Continuous BDI score Left inferior parietal gyrus No

Balaev et al., 2018 rsFC 7 ± 4 months ADRS Continuous sum score Anterior DMN, salience
network, left frontoparietal
network

Yes

(Continued)
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TABLE 1 | (Continued)

Study Imaging
biomarker

Timing of
behavioral

assessment since
lesion onset

Behavioral
assessment

method

Behavioral outcome Regions or networks
implicated

Results
involving PFC

Egorova et al.,
2018

rsFC 3 months PHQ-9 Both binary diagnosis
(PHQ-9 ≥ 5) and continuous
sum score

Decreased rsFC between left
DLPFC and right supramarginal
gyrus

Yes

Sun et al., 2018 rsFC Mean: 3.6 months HDRS Ordinal (3 levels of severity: ≤5,
6–20, and >20)

Decreased rsFC between the
parietal-occipital and the frontal
areas

Yes

Zhang et al., 2018 rsFC Mean: 10 days DSM-4 and HDRS Both binary diagnosis
(HDRS > 7 with DSM-4 met)
and continuous sum score

DMN, CCN, AN; left inferior
parietal gyrus, the left orbital
part of inferior frontal gyrus, and
left angular gyrus

Yes

Zhang et al., 2019 rsFC Less than 6 months DSM-4 and HDRS Both binary diagnosis
(HDRS ≥ 17 with DSM-4 met)
and continuous sum score

Altered rsFC of amygdala with
the fronto-limbic-striatal circuit

Yes

Shi et al., 2019 Functional
circuit

Ranges from
3 months to 1 year

DSM-4 and HDRS Binary diagnosis (HDRS ≥ 17
with DSM-4 met)

Ventromedial
PFC-ACC-amygdala-thalamus
circuit

Yes

Liang et al., 2020 rsFC 3 months GDS Binary diagnosis (GDS ≥ 7) DMN (inferior parietal lobule
and dorsal prefrontal cortex)

Yes

Yang et al., 2015 FA; Structural
network
topology

Within 1 month DSM-4 and HDRS Ordinal: major, mild and
non-PSD (HDRS ≥ 20, 10–19,
<10, respectively)

Wide (including frontal) areas of
white matter; a
depression-related subnetwork
composed of 17 brain regions
(including frontal cortex)

Yes

Shen et al., 2019 FA, mean
kurtosis

2 weeks DSM-5 and HDRS Binary PSD diagnosis based on
DSM-5

Bilateral frontal and temporal
lobes, genu of corpus callosum

Yes

Xu et al., 2019 Structural
network
topology

Within 2 weeks DSM-4 and HDRS Binary PSD diagnosis based on
DSM-4 and HDRS ≥ 7

Disrupted global and local
network topologies (involving
ipsilesional superior frontal
gyrus and middle frontal gyrus,
etc.)

Yes

Oestreich et al.,
2020

FA, structural
network
topology

27–82 days GDS Binary diagnosis (GDS ≥ 10) Reward system (including PFC) Yes

Indirect connectome analysis

Padmanabhan
et al., 2019

FDC Varied by five
datasets with

lesions of different
etiologies including
stroke; ranges from
28 days to 39 years

Varied by datasets:
Neuro-QOL, GDSS,
PHQ-9, HADS plus

MINI, BDI-II

Binary PSD diagnosis
(threshold varied by datasets:
Neuro-QOL ≥ 59.9,
GDSS ≥ 11, PHQ-9 ≥ 10,
HADS ≥ 11 with DSM-4 met,
BDI-II ≥ 20)

A depression circuit centered
on left DLPFC and spanning
multiple regions (bilateral
prefrontal, temporal and
parietal)

Yes

Weaver et al.,
2021b

SDC Within 1 year,
ranges from 1 to

361 days

GDS Continuous sum score Right parahippocampal white
matter, right thalamus and
pallidum, and right anterior
thalamic radiation

Yes (anterior
thalamic
radiation

originates from
PFC)

ACC, anterior cingulate cortex; ADRS, aphasic depression rating scale; AN, affective network; BDI, Beck Depression Inventory; CCN, cognitive control network; DLPFC,
dorsolateral prefrontal cortex; DMN, default mode network; DSM, Diagnostic Statistical Manual of Mental Disorders; fALFF, fractional amplitude of low frequency
fluctuations; FA, fractional anisotropy; FDC, functional disconnection; GDS, Geriatric Depression Scale; GDSS, Geriatric Depression Score Short Form; GMV, gray
matter volume; HADS, Hospital Anxiety and Depression Scale; HDRS, Hamilton Depression Rating Scale; LSM, lesion-symptom mapping; MÅDRS, Montgomery-Åsberg
Depression Rating Scale; MINI, Mini-International Neuropsychiatric Interview; Neuro-QOL, Neuro-QOL Depression Scale; NRS, Neurobehavioral Rating Scale; PFC,
prefrontal cortex; PHQ-9, Patient Health Questionnaire; PSD, poststroke depression; ROI, region of interest; rsFC, resting-state functional connectivity; SADQ; Stroke
Aphasic Depression Questionnaire; SDC, structural disconnection; VBM, voxel-based morphometry; VLSM, voxel-based lesion-symptom mapping.
*The 17 traditional ROI studies reviewed by Nickel and Thomalla (2017) are not expanded in our table.

described here (Nickel and Thomalla, 2017). In brief, the earliest
notion that depression was more likely to be associated with
left than with right hemispheric strokes and with lesions in
the left anterior brain than with other regions (Robinson and
Price, 1982; Starkstein et al., 1987) was not supported by other
studies: some concluded with the association between PSD and
right hemispheric strokes (MacHale et al., 1998; Wei et al., 2015),

while others ended up with no association at all between lesion
location and PSD (Carson et al., 2000; Kutlubaev and Hackett,
2014). No conclusion could be drawn regarding the role of
lesion location (laterality, anterior–posterior gradient, within
specific brain regions, etc.) in the etiology of PSD based on
traditional evidence (Nickel and Thomalla, 2017). The traditional
ROI approach has its intrinsic limitations. First, the association
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between the ROI and PSD might be just a coincidence due to
the coexisting involvement of other brain regions with common
blood supply (so-called consistent error) (Ay et al., 2006; Mah
et al., 2014). Second, the traditional approach dichotomizes the
study sample with respect to involvement of a relatively large
ROI, which precludes point localizations and may result in false
negative results due to improper sampling or counterbalancing of
effects among multiple small regions within a large ROI (Ay et al.,
2006). Another traditional approach called lesion subtraction
analysis is also used for lesion-symptom inference (Rorden and
Karnath, 2004). Based on the hypothesis that the causative neural
substrate is more frequently involved in patients with a specific
symptom than in those without, the voxel-wise lesion incidence
map of the non-PSD group is subtracted from that of the PSD
group showing brain regions more frequently involved in PSD.
One lesion subtraction study identified left cerebellar stroke to
be correlated with PSD, which was consistent with the result of a
subsequent VLSM analysis (Kim et al., 2017). However, the lesion
subtraction plot alone may only provide a descriptive result of the
possible neural substrate due to lack of statistical tests.

It is not surprising to get inconsistent results from traditional
studies (and some other methods in the following text) given
the heterogeneity in depression rating scales (Table 1), diverse
timepoints of depression assessment since stroke onset (Table 1),
small sample size, selection bias (e.g., exclusion for aphasia),
different definitions of lesion location, inadequate imaging
quality, combining lesions of various etiologies into a single
analysis, and so on (Robinson and Jorge, 2016; Nickel and
Thomalla, 2017; Towfighi et al., 2017). Of note, the interval
between stroke onset and depression assessment might be
an important factor exerting influence on the results of the
traditional approach (and other methods as well). A longitudinal
study focusing on depression at specific stages of stroke found
that the association of PSD with left anterior lesions appeared to
be a transient phenomenon restricted to the acute stage and the
laterality tended to reverse to the right hemisphere in the long-
term follow-up (Astrom et al., 1993). Another independent study
also suggested that only in-hospital depression was associated
with lesions in the left anterior hemisphere and depression at 1–
2 years poststroke was associated with right-hemisphere lesion
volume and lesion proximity to the occipital pole (Shimoda
and Robinson, 1999). A meta-analysis with stratification by
time of assessment showed that the association between right
hemispheric stroke and PSD only existed at the subacute stage of
stroke (Wei et al., 2015). It is conceivable that the neuroanatomic
substrates of PSD might change over time or there might
be distinct mechanisms for PSD at different stages of stroke
(Astrom et al., 1993; Shimoda and Robinson, 1999). Therefore,
studies mixing patients of various stages poststroke tend to
produce inconsistent and unreliable results and performing PSD
assessments at homogeneous stages after stroke might be helpful
in future studies. Although inconclusive, some researchers still
believe that there is an association between left frontal strokes
and PSD within the first 2 months after stroke based on
some converging evidence (Astrom et al., 1993; Shimoda and
Robinson, 1999; Rajashekaran et al., 2013; Robinson and Jorge,
2016). The role of the left prefrontal cortex (PFC) in PSD

was further supported by multiple clinical trials showing that
repetitive transcranial magnetic stimulation (rTMS) targeted at
the left dorsolateral PFC (DLPFC) can significantly alleviate the
symptoms of PSD and vascular depression (Jorge et al., 2004;
McIntyre et al., 2016; Gu and Chang, 2017; Shen et al., 2017;
Frey et al., 2020).

Voxel-Based and Multivariate
Lesion-Symptom Mapping
The general procedure of VLSM analysis involves lesion
segmentation on computed tomography (CT) or magnetic
resonance imaging (MRI) scans, spatial normalization of lesion
masks, mass-univariate statistical tests voxel by voxel for
the association between lesion status at a given voxel and
presence or severity of the symptom of interest, correction
for multiple comparisons to control false positive rates, and
interpretation of the significant clusters. Three lesion-symptom
mapping (LSM) studies on PSD before 2017 did not provide
consistent results, as described in the previous review (Nickel
and Thomalla, 2017). The first study showed negative results,
and another two identified lesions in the left cerebellum and
left DLPFC, respectively, as the neural substrates of PSD (Gozzi
et al., 2014; Grajny et al., 2016; Kim et al., 2017). These
are considered as pilot exploratory LSM studies with small
sample size (n < 100) and therefore low statistical power
(Nickel and Thomalla, 2017). Another study in 2019 which
performed VLSM in five datasets (total n = 461) with focal
brain damage of various etiologies (including stroke) failed
to find any lesion location to be correlated with depression
after brain damage (but did identify a functional depression
circuit via connectome analysis) (Padmanabhan et al., 2019).
Generally, only voxels with lesion incidence above a certain
threshold (e.g., at least 10 patients or 5% of patients, indicating
sufficient lesion affection) could be included in VLSM to ensure
reasonable statistical power and anatomical validity (Medina
et al., 2010; Sperber and Karnath, 2017). Small sample size
tends to provide insufficient lesion coverage, leaving those
infrequently involved brain regions with lower statistical power
or being unexplored (Kimberg et al., 2007; Gozzi et al., 2014).
Indeed, a large sample size will be required if we want to
perform whole-brain VLSM analysis without predefined ROIs,
considering the recent evidence that about 3,000 subjects were
needed to achieve a lesion coverage of 86% of total brain
voxels (Weaver et al., 2021a). The original VLSM approach
with mass-univariate tests still suffers the aforementioned
consistent error originating from collateral vasculature (Mah
et al., 2014; Karnath et al., 2018). The latest machine learning-
based multivariate LSM approaches, believed to be able to
overcome this limitation, seem as promising alternatives in
future studies (Mah et al., 2014; Karnath et al., 2018). One
multivariate LSM study mentioned above applied support vector
regression-based LSM (SVR-LSM) and found the association
between lesions in the left DLPFC and severity of poststroke
depressive symptoms (PSDS; Zhang Y. et al., 2014; Grajny et al.,
2016). Another recent SVR-LSM study found that infarcts in
the right amygdala, right pallidum, and right hippocampus
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were associated with PSDS (Weaver et al., 2021b). External
validation confirmed the association between infarcts in the right
amygdala and pallidum, but not the right hippocampus, and
PSDS (Weaver et al., 2021b). Another latest method named
multivariate sparse canonical correlations technique (SCCAN),
generally superior to the univariate approach at small sample
sizes, may also be recommended in future studies (Pustina
et al., 2018). Some neural substrates unlikely to be identified
with the univariate approach may be unveiled with multivariate
LSM which integrates lesion information from multiple voxels
simultaneously in lesion-symptom inference (Karnath et al.,
2018). Multivariate approaches are preferred if we have good
reasons to assume that the symptom of interest is represented
in an extensively distributed brain network, as in these cases
the ability of the univariate approach to detect all of the
network modules may be limited (Karnath et al., 2018; Xu
et al., 2018). Based on current LSM studies showing non-
convergent results, the role of lesion location in the etiology of
PSD still warrants further investigation with large datasets and
advanced methodologies.

REGIONAL STRUCTURAL AND
FUNCTIONAL ABNORMALITIES AND
POSTSTROKE DEPRESSION

Gray matter atrophy may serve as a transdiagnostic neural
substrate for various mental illnesses (Goodkind et al., 2015).
Voxel-based morphometry (VBM) is able to evaluate the
intergroup difference of gray matter volume (GMV) at the voxel
level using high-resolution structural MRI (sMRI; Ashburner
and Friston, 2000). The procedure of VBM involves spatially
normalizing and segmenting sMRI images into the same standard
space (Ashburner and Friston, 2000). The gray matter segments
are smoothed so that each voxel represents the average of itself
and its neighbors (Ashburner and Friston, 2000). Parametric
statistical tests are performed at the voxel level, followed by
corrections for multiple comparisons with the theory of random
fields (Ashburner and Friston, 2000). One study performed
VBM analysis in 30 first-ever ischemic frontal stroke patients
showing that decreased GMV in PSD was mainly observed
in the prefrontal-limbic system and motor cortex compared
with non-PSD patients (Shi et al., 2017). The involved limbic
structures were mainly located in the right hemisphere, and the
PFC showed a decreased GMV in both hemispheres (Shi et al.,
2017). Recent evidence from another VBM study in 23 PSD and
33 non-PSD subcortical stroke patients suggested that the PSD
group had significantly decreased GMV in the left middle frontal
gyrus (MFG; Hong et al., 2020). Together with the clinical-
demographic variables, the MFG’s GMV prediction model was
able to distinguish PSD from non-PSD with high sensitivity and
specificity (Hong et al., 2020). The results from VBM studies
are in accordance with the aforementioned role of the frontal
cortex in PSD, as well as the frontal-limbic model which is
well-recognized in depressive disorders such as major depressive
disorder (MDD) and vascular depression (Taylor et al., 2013;
Lai, 2021).

Resting-state functional MRI (rs-fMRI), reflecting brain
activation via blood oxygenation level-dependent (BOLD) signal,
has been widely used in research of neuropsychiatric disorders
including stroke and depression (Ovadia-Caro et al., 2014; Oathes
et al., 2015). Several measurements, such as amplitude of low-
frequency fluctuations (ALFF) and fractional ALFF (fALFF),
were developed to reflect the characteristics of spontaneous brain
activity within a brain region (Zang et al., 2007; Zou et al., 2008).
One rs-fMRI study performed in 64 participants at 3 months
poststroke found significantly higher fALFF in PSD in the left
DLPFC and the right precentral gyrus compared with non-PSD
patients and a significant association between higher PSD severity
and higher fALFF in the left insula (Egorova et al., 2017). The
aberrant regional brain activity could be a more sensitive feature
than lesion location and volume to characterize PSD in small
samples (Egorova et al., 2017). Another rs-fMRI study identified
a significant correlation between PSD severity and fALFF in
frontostriatal, temporal, thalamic, and cerebellar regions (Goodin
et al., 2019). These fMRI results also provided evidence for the
role of the frontal-limbic system in PSD. However, functional
neuroimaging is time-consuming and vulnerable to head motions
which is difficult to control in stroke patients (Ovadia-Caro
et al., 2014; Fox, 2018). Another major limitation of fMRI
studies is that they can hardly be used for causal inference (Fox,
2018). Unlike visual or voxel-based lesion analyses which have
a clear temporal order between lesion and PSD, fMRI analysis
typically has neuroimaging performed at the time of or after PSD
diagnosis for a case–control comparison. Therefore, whether this
functional difference between PSD and non-PSD is causative,
or whether it is a reactive or adaptive alteration to depression,
remains elusive (Fox, 2018). The results from fMRI analyses
should be regarded as correlation rather than causation (Fox,
2018). Future studies with longitudinal design might unravel
the potential causal relationship between gray matter atrophy,
regional functional abnormality, and development of PSD.

BRAIN NETWORK DISRUPTION AND
POSTSTROKE DEPRESSION

Based on large amounts of lesion studies, the lesions of PSD
patients fail to overlap in a single brain region. It has long
been discovered that some neuropsychiatric symptoms can result
from dysfunctions of anatomically intact brain regions which are
distant but connected to the lesion (“diaschisis” phenomenon)
(Carrera and Tononi, 2014). In the era of brain networks and
human connectome, we have good reasons to assume that PSD
might be a complex disconnection syndrome resulting from
disruption of networks of interacting brain regions (Gong and
He, 2015). There are two types of brain connectivity being
explored. Functional connectivity (FC) is measured by the
correlation of the fMRI BOLD time series between brain regions,
and structural (or anatomical) connectivity (SC) can be derived
from diffusion tensor imaging (DTI) in which water diffuses
more freely along white matter fibers than across them (Fox and
Raichle, 2007; Jbabdi et al., 2015). Brain networks can be analyzed
at different levels: microscale (single neuron and synapses),
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mesoscale (neuronal groups), and macroscale (brain regions
and inter-region pathways) (Sporns et al., 2005). Quantitative
analysis, especially graph theory analysis, can reveal important
features of complex networks such as highly connected hubs,
modularity, and small-world topology (Bullmore and Sporns,
2009; He and Evans, 2010). Importantly, these quantifiable
network features were found to change in normal development,
aging, and various neuropsychiatric disorders (He and Evans,
2010; Menon, 2011; Ovadia-Caro et al., 2014). With both FC
and SC techniques, complex symptoms like PSD that transcend
localization to single brain regions may be mapped to widely
distributed brain networks.

Direct Connectome Analysis
Typically, the FC is directly derived from each patient’s
fMRI scans. One study in frontal stroke patients performed
connectivity analysis with the anterior cingulate cortex (ACC)
as the seed found decreased resting-state FC (rsFC) with the
PFC, cingulate cortex, and motor cortex, but increased rsFC with
the hippocampus, parahippocampal gyrus, insula, and amygdala,
in the PSD group (Shi et al., 2017). Another study in temporal
stroke patients found that the left amygdala had increased rsFC
with the bilateral precuneus and right orbital frontal lobe but
decreased rsFC with the right putamen in PSD compared with
non-PSD patients (Zhang et al., 2019). The right amygdala had
increased rsFC with the right temporal pole, right rectus gyrus,
and left orbital frontal lobe but decreased rsFC with the right
primary sensory area (S1) (Zhang et al., 2019). The amygdala’s
rsFCs with the right orbital frontal cortex, right insula, and
right cingulate cortex were correlated with the HDRS score
(Zhang et al., 2019). A multivariate Granger causality analysis in
right frontal ischemic stroke patients found an emotional circuit
(composed of ventromedial PFC, ACC, amygdala, and thalamus)
to explain the network alterations in PSD (Shi et al., 2019). The
DLPFC could predict the activity of the ACC via the temporal
pole, and the activity of the insula could be regulated negatively
by the thalamus via ACC (Shi et al., 2019). Altered rsFC of the
default mode network (DMN), cognitive control network (CCN),
and affective network (AN) was observed in PSD compared with
non-PSD patients and normal comparisons (NC; Zhang et al.,
2018). The left orbital part of the inferior frontal gyrus, the left
inferior parietal gyrus, and the left angular gyrus (which indicated
altered rsFCs) were significantly correlated with HDRS scores in
PSD patients (Zhang et al., 2018). Dysfunction of the AN in PSD
was also observed in another study which found that the rsFCs of
the left inferior temporal gyrus, the left orbital part of the inferior
frontal gyrus, and the right triangular part of the inferior frontal
gyrus were increased with the ACC in PSD compared with non-
PSD stroke patients (Zhang P. et al., 2014). Moreover, the rsFC
between the left orbital part of the inferior frontal gyrus and ACC
was positively correlated with PSD severity (Zhang P. et al., 2014).
As for the CCN, PSD was associated with decreased rsFC between
left DLPFC and right supramarginal gyrus (Egorova et al.,
2018). Graph theory analysis found that the DMN configuration
(especially at core hubs such as dorsal PFC and inferior parietal
lobule) might be more essential in the pathogenesis of PSD than
stroke lesions (Liang et al., 2020). RsFC between anterior DMN

and salience network positively correlated with PSD severity,
and rsFC between anterior DMN and left frontoparietal network
decreased after treatment of PSD (Balaev et al., 2018). Earlier
evidence suggested that DMN dysfunction soon after stroke was
predictive of PSD severity at 3 months poststroke (Lassalle-
Lagadec et al., 2012). Both PSD and poststroke anxiety was found
to be associated with DMN disruption (Vicentini et al., 2017).
Depression symptoms were found to be correlated with increased
rsFC in the left inferior parietal gyrus (Vicentini et al., 2017).
Other than fMRI, electroencephalography (EEG) can also be used
for rsFC analysis. In one study using mutual information-based
graph theory analysis on EEG data, stroke patients showed a
decreasing trend in the rsFC between the parietal–occipital and
the frontal areas as PSD severity increased (Sun et al., 2018).
These functional studies provided promising evidence for the role
of emotion- and cognition-related networks in PSD, of which
the clinical applicability is yet to be determined considering
the complexity of brain networks. Furthermore, most rs-fMRI
studies lack the ability of causal inference but reveal a correlation
instead as discussed in the previous section (Rorden and Karnath,
2004; Fox, 2018). A functional alteration may be the result
of compensation for PSD rather than its cause, and treatment
strategies suppressing the alteration could make the symptom
worse (Fox, 2018). Targeting the region where brain activity is
correlated with but not causally related to PSD may have no effect
at all (Fox, 2018). These ambiguities, along with the susceptibility
to motion artifacts, make it difficult to translate fMRI correlates
directly with therapeutic targets (Rorden and Karnath, 2004;
Ovadia-Caro et al., 2014; Fox, 2018).

Direct SC analysis is typically based on each patient’s DTI
scans. SC at the neuronal level is the densely distributed
axonal streamlines within white matter to connect gray matter
regions. Regions that are structurally connected tend to also be
functionally connected; however, FC presents a different pattern
than SC due to the impact of extensive polysynaptic connections
(Fox and Raichle, 2007; Fornito et al., 2015). Recent evidence
suggested that the functional brain network dysfunction after
stroke can be explained by structural disconnection (SDC; Griffis
et al., 2019, 2020). Therefore, SDC could be a more upstream
neural substrate of PSD than functional network dysfunction.
One study used fractional anisotropy (FA) to reflect white matter
integrity and found that the mean FA of the intact areas of stroke-
lesioned tracts was lower than that of completely intact fiber
tracts (Yang et al., 2015). FA reductions were observed in wide
areas of white matter in PSD compared with non-PSD (Yang
et al., 2015). Graph theory analysis revealed that decreased local
efficiency of a depression-related subnetwork was a significant
risk factor for major depression poststroke (Yang et al., 2015).
Another study suggested that aberrant global and local structural
network topologies might contribute to the development and
severity of PSD (Xu et al., 2019). Recent evidence showed that
reduced FA, along with increased extracellular free water (a
marker of neuroinflammation) and GMV loss, in the reward
system was predictive of PSD (Oestreich et al., 2020). However,
one major limitation of FA and tractography analysis lies in their
susceptibility to complex brain architecture such as fiber crossing
(Mori and van Zijl, 2002; Jeurissen et al., 2013). For example,
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FA may be actually increased after microstructural disruption in
regions of fiber crossing. The diffusion tensor model can account
only for the Gaussian diffusion process which is not always the
case in the human brain and the fiber crossing issue should
not be overlooked in future DTI studies (Jeurissen et al., 2013).
Diffusion kurtosis imaging (DKI), applying a more complex
model than DTI to quantify non-Gaussian water diffusion and
reveal complex microstructures, was also used to investigate
the role of white matter integrity in PSD (Jensen et al., 2005).
DKI may be useful for unveiling abnormalities in isotropic
structures, such as fiber crossing and gray matter, where DTI is
less applicable (Jensen et al., 2005). One DKI study found that
the FA value of the left frontal lobe and the mean kurtosis (MK)
value of the bilateral frontal and temporal lobes and genu of the
corpus callosum were significantly decreased in PSD compared
with non-PSD patients and NC (Shen et al., 2019). Concerning
the relationship between the structural and functional networks
in PSD, one study identified the SC-FC coupling as a potential
biomarker of PSD (Zhang et al., 2021).

Indirect Atlas-Based Connectome
Analysis
Thanks to great efforts such as the Human Connectome Project,
connectome atlases of averaged FC and SC patterns from
hundreds or thousands of normal populations are now readily
available (Glasser et al., 2016). Beyond lesion analysis, we can
now combine lesion data with connectome atlases to map the
network substrates for PSD without specialized neuroimaging for
each individual (Boes et al., 2015; Fox, 2018).

Lesion-network mapping (LNM), a technique to combine
lesion with normative functional connectome, generally involves
three steps: translating the three-dimensional lesion into the
standard space; estimating FC of the lesion with the rest of
the brain using normative functional connectome atlas; and
overlapping or statistically comparing FC maps derived from
patients with the same symptom to identify regions common
to the syndrome of interest (Boes et al., 2015; Fox, 2018). LNM
is becoming increasingly popular in recent years to map the
strategic network substrates of various conditions such as PSD,
poststroke behavioral deficits, and mania after brain damage
(Padmanabhan et al., 2019; Cotovio et al., 2020; Salvalaggio
et al., 2020). A recent LNM study suggested that the lesion
locations associated with depression after focal brain damage
could be mapped to a human depression circuit centered
on left DLPFC (Padmanabhan et al., 2019). Three rTMS
targets reported to be effective in treating PSD fell within
this circuit (Padmanabhan et al., 2019). A similar method
named “dys-connectome” or disconnectome has been used
to map the structural network substrates for PSD, poststroke
behavioral deficits, poststroke fatigue, and so on (Salvalaggio
et al., 2020; Ulrichsen et al., 2021; Weaver et al., 2021b).
Powerful tools, such as BCBtoolkit and Lesion Quantification
Toolkit, allow researchers to indirectly estimate SDCs with the
lesions embedded in the structural connectome atlas and then
perform disconnection-symptom inference at tract or voxel levels
(Foulon et al., 2018; Griffis et al., 2021). Recent evidence from

a multivariate disconnection-symptom mapping study found
that SDCs in the right parahippocampal white matter, right
thalamus and pallidum, and right anterior thalamic radiation
were significantly associated with PSDS (Weaver et al., 2021b).

The atlas-based approach, without need for specialized
neuroimaging, may prove a broadly applicable and versatile way
for understanding the neural basis of neuropsychiatric symptoms
after focal brain damage (Boes et al., 2015; Fox, 2018). However,
the atlas-based approach does not necessarily reveal the actual
disconnection patterns (Weaver et al., 2021b). The connectome
architecture has its intrinsic individual variability (Mueller et al.,
2013). It should also be noted that concomitant conditions, other
than the stroke lesion, may have impact on brain networks.
For example, cerebral small vessel disease (CSVD) is common
in elderly stroke patients and can increase the risk of PSD
(Tang et al., 2010, 2014; Bae et al., 2019; Liang et al., 2019).
Moreover, structural network disruption was observed in CSVD
compared with NC (Xie et al., 2017; Lawrence et al., 2018).
The impact on the brain network from concomitant factors
with inter-person variability may only be taken into account by
direct connectome analysis. In terms of causal inference, lesion
network maps span several regions at all levels of the neuro-
axis and the extent to which any of them are causal to the
symptoms is unknown and would require other complementary
approaches. The indirect nature of the atlas-based approach
requires confirmation and complementation by other methods
including direct mapping of residual structural and functional
connections in the patients (Salvalaggio et al., 2020; Bobes et al.,
2021; Boes, 2021).

DISCUSSION: FUTURE DIRECTIONS
AND CLINICAL IMPLICATIONS

Studies reviewed in this work are summarized in Table 1
regarding study design and findings. From the time of lesion
analysis to the era of brain networks, our knowledge and
understanding of the neural substrates for PSD are increasing.
Pooled evidence (Table 1) from traditional lesion analysis,
univariate or multivariate LSM, regional structural and functional
analyses, and connectome analysis, to some extent, echoes the
frontal-limbic theory described in multiple depressive disorders
including MDD and vascular depression (Taylor et al., 2013;
Robinson and Jorge, 2016; Lai, 2021). Despite differences in
etiology and symptom profile (da Rocha e Silva et al., 2013;
Albert, 2018), PSD and MDD may share the common neural
basis. As shown in Table 1, the PFC as replicated across studies
of various methodologies may be the structure most heavily
implicated in the pathogenesis of PSD. The role of PFC in
depressive disorders has been confirmed by multiple clinical
trials, showing that rTMS targeted at the left DLPFC can
significantly alleviate the symptoms of PSD, vascular depression,
and MDD (Jorge et al., 2004; O’Reardon et al., 2007; George et al.,
2010; McIntyre et al., 2016; Gu and Chang, 2017; Shen et al.,
2017; Frey et al., 2020; Sackeim et al., 2020). We believe that
the PFC is most promising as the avenue for future research or
the target for treatment of PSD and other depressive disorders.

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 81241041

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-812410 March 31, 2022 Time: 15:9 # 9

Pan et al. Neural Substrates of Poststroke Depression

The distinct roles of subregions of the PFC in mood regulation
(Koenigs et al., 2008) and the optimal stimulation target within
PFC for neuromodulation therapy are yet to be scrutinized.
To date, the definite neural substrates of PSD along with their
clinical applications still entail further investigation. Patients with
focal brain damage have long been proper study samples for
understanding human brain-behavior mechanisms (Fox, 2018;
Vaidya et al., 2019), and the findings from research on PSD
may also be generalized to depressive disorders in neurologically
healthy population.

To improve inter-study consistency and accumulate further
evidence, we provide some suggestions for future studies in
the field. First, in addition to DSM-5 criteria, researchers may
apply a validated depression rating scale with a consistent cutoff
value for PSD diagnosis (Berg et al., 2009). Scales that can be
generalized to patients with aphasia may be recommended to
reduce bias in patient selection (Cobley et al., 2012). Second, serial
assessments of depression status (and neuroimaging if necessary)
at acute, subacute, and chronic stages of stroke are performed to
uncover the potentially dynamic neural substrates of PSD across
various stages after stroke. Third, LSM and connectome studies
in multicentric large datasets with cross or external validation
are recommended to derive comprehensive maps for the strategic
lesion locations and disconnection patterns for PSD. Fourth, the
neural substrates of PSD at the individual symptom level are
uncovered, rather than simply using a binary PSD diagnosis or a
continuous sum score. Note that depressive symptoms may have
different risk factors and biomarkers (Fried et al., 2014; Moriarity
et al., 2022), and the neural substrates of PSD may also be
symptom-specific. The symptom-specific anatomical correlates,
as well as the complex and dynamic pattern of symptom-
symptom interactions, may help us better understand the brain-
behavior mechanisms of PSD. Fifth, preregistration of anatomical
hypotheses may add rigor to this field. The anatomical hypothesis
and analysis plan before observing the research outcomes are
defined to prevent problematic research practices such as false
positive results from p-hacking and publication bias (Nosek et al.,
2018, 2019).

Understanding the neural substrates for PSD is of great
predictive value. For example, the strategic lesion locations and
disconnection patterns for PSD can be used to develop prediction
models for risk stratification and early intervention (Munsch
et al., 2016; Salvalaggio et al., 2020; Weaver et al., 2021a,b).
Only a few PSD prediction models based on routine clinical-
demographic data have been developed and validated (de Man-
van Ginkel et al., 2013; Hirt et al., 2020). Stroke severity, physical
disability, history of depression, and cognitive impairment have
been the most well-recognized predictors of PSD (Towfighi et al.,
2017). Sex, age, education level, social support, and personality

traits (e.g., neuroticism) are also considered potential (although
less clear) predictors of PSD (Towfighi et al., 2017; Chun et al.,
2021). A previous study found that both functional dependence
and neuroanatomical measures were correlated with more PSD
symptoms (Singh et al., 2000). Although inferior frontal lesion
location was a risk factor of PSD, the degree of functional
dependence imparted the greatest risk (Singh et al., 2000).
To date, no imaging predictor is found to outperform classic
clinical-demographic variables in PSD prediction. Considering
the biopsychosocial multifactorial nature of PSD, incorporating
neural substrates into clinical-demographic predictors might
be a good choice in PSD prediction (Munsch et al., 2016;
Towfighi et al., 2017; Hong et al., 2020). Moreover, advances
in methodology as detailed above may provide new promising
imaging predictors for PSD in the future. The neural substrates
of PSD also have significant preventive and therapeutic value.
Many studies (Table 1) can provide convergent evidence for the
role of PFC in PSD and therefore the effectiveness of rTMS
targeted on left DLPFC. Future studies on brain networks might
find personalized preventive or therapeutic targets for PSD
based on human connectome (e.g., an emerging technique called
connectomic neuromodulation) (Cocchi and Zalesky, 2018; Fox,
2018; Horn and Fox, 2020; Siddiqi et al., 2020). The optimal
individualized stimulation site may provide enhanced response
to neuromodulation therapy for depression (Cash et al., 2019,
2021). Of note, distinguishing adaptive brain alterations to
PSD from causative neural substrates is of great importance in
future studies because strategies to inhibit the adaptive changes
may lead to exacerbation of PSD (Fox, 2018). Moreover, the
techniques reviewed here for uncovering neural substrate can also
be extended to clinical research for a broad range of disorders
with focal brain damage.
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Background: Studies on differences in brain function activity between the first
depressive episode (FDE) and recurrent depressive episodes (RDE) are scarce. In
this study, we used regional homogeneity (ReHo) and amplitude of low-frequency
fluctuations (ALFF) as indices of abnormal brain function activity. We aimed to determine
the differences in these indices between patients with FDE and those with RDE, and
to investigate the correlation between areas of abnormal brain function and clinical
symptoms.

Methods: A total of 29 patients with RDE, 28 patients with FDE, and 29 healthy
controls (HCs) who underwent resting-state functional magnetic resonance imaging
were included in this study. The ReHo and ALFF measurements were used for image
analysis and further analysis of the correlation between different brain regions and
clinical symptoms.

Results: Analysis of variance showed significant differences among the three groups in
ReHo and ALFF in the frontal, parietal, temporal, and occipital lobes. ReHo was higher
in the right inferior frontal triangular gyrus and lower in the left inferior temporal gyrus
in the RDE group than in the FDE group. Meanwhile, ALFF was higher in the right
inferior frontal triangular gyrus, left anterior cingulate gyrus, orbital part of the left middle
frontal gyrus, orbital part of the left superior frontal gyrus, and right angular gyrus, but
was lower in the right lingual gyrus in the RDE group than in the FDE group. ReHo
and ALFF were lower in the left angular gyrus in the RDE and FDE groups than in
the HC group. Pearson correlation analysis showed a positive correlation between the
ReHo and ALFF values in these abnormal areas in the frontal lobe and the severity of
depressive symptoms (P < 0.05). Abnormal areas in the temporal and occipital lobes
were negatively correlated with the severity of depressive symptoms (P < 0.05).
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Conclusion: The RDE and FDE groups had abnormal neural function activity in some of
the same brain regions. ReHo and ALFF were more widely distributed in different brain
regions and had more complex neuropathological mechanisms in the RDE group than
in the FDE group, especially in the right inferior frontal triangular gyrus of the frontal lobe.

Keywords: first depressive episode, recurrent depressive episodes, magnetic resonance imaging, regional
homogeneity, amplitude of low-frequency fluctuation

INTRODUCTION

Major depressive disorder (MDD) is a common clinical
psychiatric disorder characterized by affective, cognitive, and
somatic symptoms. Most of its clinical manifestations are
common symptoms such as depressed mood, diminished
interest, slowed thinking, loss of appetite, and insomnia (Wolfers
et al., 2015). The World Health Organization reports that an
estimated 350 million people worldwide have depression and that
depression is the leading cause of suicide, with approximately
800,000 people dying by suicide each year (Zhang et al., 2018).
By 2030, depression is expected to become the disease with
the largest burden worldwide (Friedrich, 2017). Currently, the
diagnosis of MDD relies on clinical scale assessment of the patient
and the experience of the psychiatrist; however, knowledge about
precise neurobiological biomarkers is lacking.

According to the classification criteria of the 10th revision
of the International Statistical Classification of Diseases and
Related Health Problems, MDD is classified into the first
depressive episode (FDE) and recurrent depressive episodes
(RDE) (Yuksel et al., 2018). Previous studies have demonstrated
differences in depressive and somatic symptoms (Roca et al.,
2011), cognitive functioning (Roca et al., 2015; Zu et al., 2021;
Varghese et al., 2022), and quality of life (Zu et al., 2021)
between patients with RDE and those with FDE. Epidemiological
surveys have shown that depression has a high recurrence
rate and that, once the first episode has occurred, it relapses
within 5 years. In addition, approximately 80% of patients
with depression have a history of two recurrences (Burcusa
and Iacono, 2007). Moreover, the severity of MDD increases
with the number of relapses (Harlev et al., 2021), and it is
increasingly being recognized that the challenge in patients
with depression is preventing relapse rather than promoting
recovery (Fava et al., 2017). Therefore, the differences in
pathogenesis between RDE and FDE need to be elucidated from
a neuropathological perspective.

In recent years, with rapid developments in neuroimaging
technology, resting-state functional magnetic resonance imaging
(rs-fMRI) has gradually been applied to the study of insomnia
(Marques et al., 2018), schizophrenia (Sheffield and Barch, 2016),
autism (Bathelt and Geurts, 2021), and other psychiatric systemic
disorders. It has also been applied to the study of MDD subtypes
(Brown et al., 2019; Yue et al., 2020). rs-fMRI indirectly reflects
neuronal spontaneous activity by measuring the blood oxygen
level-dependent (BOLD) signal, which enables the investigation
of brain function abnormalities in the early disease stage and has
advantages of simplicity, non-invasiveness, and reproducibility
(Lee et al., 2013). Regional homogeneity (ReHo) and amplitude

of low-frequency fluctuations (ALFF) are two of the commonly
used metrics in rs-fMRI analysis. ReHo mainly assesses the
synchronous reflection of the sequence between a given voxel and
its neighboring voxels, reflecting the temporal homogeneity of
signals related to regional blood oxygen levels (Zang et al., 2004).
ALFF is the sum of the spectral amplitude of each voxel signal
in the low-frequency range (usually 0.01–0.08 Hz), reflecting the
amplitude of low-frequency fluctuations caused by spontaneous
neuronal activity (Zang et al., 2007). Combining the ReHo
and ALFF methods can contribute to a better understanding
of the abnormalities of brain function in patients with MDD
(Ni et al., 2016).

However, the combination of ALFF and ReHo has been
mainly applied in studies on mild cognitive impairment (Ni
et al., 2016), schizophrenia (Zhao et al., 2018), and anxiety
disorders (Shen et al., 2020), whereas the differences between
FDE and RDE have not been investigated. A study in patients
with FDE and remitting MDD (rMDD) showed differences in
ALFF and ReHo in the temporal lobes, although patients with
rMDD had been cured with antidepressant medication (Yang
et al., 2018). Another study observed alterations in bilateral
frontal BOLD signals in patients with FDE or RDE; however,
the study used a task-state observation approach (Yuksel et al.,
2018). The frontal lobe is an important brain region in the
pathogenesis of MDD, and previous studies have also found
differences in frontal lobe function between FDE and RDE
(Talarowska et al., 2015).

In this study, we aimed to determine the differences in
brain function activity among patients with FDE, patients with
RDE, and healthy controls (HCs) by using the ReHo and ALFF
methods based on rs-fMRI techniques. Further, we also aimed
to analyze the correlation between different brain areas and
clinical characteristics. We hypothesized that differences would
be observed in the brain neural circuits of patients with FDE
and those with RDE, especially in areas closely related to the
frontal lobe. This study will provide a neuroimaging basis for the
differences in neuropathological mechanisms between FDE and
RDE and some insights for clinical research.

MATERIALS AND METHODS

Participants
A total of 59 outpatients with MDD from Guang’anmen
Hospital, Chinese Academy of Traditional Chinese Medicine,
Beijing First Hospital of Integrative Medicine, were recruited
for this study. All patients met the Diagnostic and Statistical
Manual of Mental Disorders Fifth Edition criteria for MDD.
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We used the 17-item Hamilton Rating Scale for Depression
(HAMD-17) (Hamilton, 1960) to assess the severity of depression
in all patients and classified these patients into those with
RDE [n = 31; mean frequency of recurrence, 2.27 (standard
deviation = 0.79)] and those with FDE (n = 28, 0 recurrence).
The inclusion criteria were (1) age 18–55 years; (2) HAMD-
17 score > 17; and (3) The FDE group all had their FDE
prior to enrollment and were not receiving any antidepressant
medication. The RDE group had a previous history of depression,
cured by antidepressant medication, now recurring and a
history of antidepressant withdrawal for at least 4 weeks
prior to enrollment. We also included 29 sex- and age-
matched HCs (21 women and 8 men) who (1) were aged
18–55 years, (2) had a HAMD–17 score of < 7, (3) had right-
handedness, and (4) had no history of any mental illness in
first-degree relatives.

The exclusion criteria for patients and HCs were as follows: (1)
serious mental illness and other diseases such as cardiovascular
and cerebrovascular disorders; (2) history of drug and alcohol
abuse; (3) any contraindications to MRI, such as presence of a
heart pacemaker, metal fixed false teeth, or severe claustrophobia;
(4) pregnant or lactating status; and (5) bipolar disorder or
suicidal ideation.

All patients were required to sign an informed consent
form before enrollment. This study was approved by the ethics
committee of Guang’anmen Hospital, Chinese Academy of
Traditional Chinese Medicine.

Scan Acquisition
All patients in this study underwent MRI using a Magnetom
Skyra 3.0-T scanner (Siemens, Erlangen, Germany). Before the
scanning procedure, the patients were instructed to remain awake
and avoid active thinking. During the scanning process, the
patients were required to wear earplugs and noise-canceling
headphones, to use a hood to immobilize the head, and to lie
flat on the examination bed. The scanning procedure involved
a localizer scan, high-resolution three-dimensional T1-weighted
imaging, and BOLD-fMRI.

The scanning parameters were as follows: for three-
dimensional T1-weighted imaging, time repetition/time
echo = 2,500/2.98 ms, flip angle = 7◦, matrix = 64 × 64, field
of view = 256 mm × 256 mm, slice thickness = 1 mm, slice
number= 48, slices= 192, scanning time= 6 min 3 s; for BOLD-
fMRI, time repetition/time echo= 2,000/30 ms, flip angle= 90◦,
matrix = 64 × 64, field of view = 240 mm × 240 mm, slice
number = 43, slice thickness/spacing = 3.0/1.0 mm, number of
obtained volumes= 200, and scanning time= 6 min 40 s.

Image Processing
Functional Magnetic Resonance Imaging Data
Preprocessing
The rs-fMRI data were preprocessed using DPARSF (Data
Processing Assistant for rs-fMRI) software (DPABI5.0)1 (Yan
and Zang, 2010) in MATLAB (Mathworks Inc., Natick, MA,
United States), according to the following process: (1) conversion

1http://www.rfmri.org/DPARSF

of DICOM raw data to NIFTI format; (2) removal of the first 10
time points to place the data in a stable state; (3) slice timing;
(4) realignment of head motion (removal of patients with head
movements > 2 mm in any direction and motor rotation > 2◦);
(5) regression of covariates, including brain white matter signal,
cerebrospinal fluid signal, and head movement parameters; (6)
spatial normalization (the functional images of all patients were
converted to Montreal Neurological Institute standard space
using the DARTEL method); and (7) linear detrending and
filtering (0.01–0.08 Hz).

Regional Homogeneity Analysis
The DPARSF (Data Processing Assistant for Resting-State
fMRI Advanced Edition_V5.1_201001, see text footnote 1)
software was used to analyze the ReHo and ALFF of the
pre-processed data. The similarity of the time series of each
voxel to its neighboring voxels (26 neighboring voxels) was
assessed using the Kendall’s coefficient of concordance (KCC)
(Kendall, 1990), i.e., ReHo values. The whole-brain ReHo
images of the subjects were obtained by calculating the KCC
values of the whole-brain voxels. To improve the signal-
to-noise ratio, the Re Ho images were spatially smoothed
using a 6 mm × 6 mm × 6 mm full-width half-height
Gaussian kernel.

Amplitude of Low-Frequency Fluctuations Analysis
Data were spatially normalized and smoothed, and a fast
Fourier transform was performed to switch the time series
to the frequency domain to obtain the power spectrum.
The square root of the power spectrum at each frequency
was calculated to obtain the average square root of the
ALFF measurement for each voxel in the range of 0.01–
0.08 Hz. Finally, time bandpass filtering (0.01–0.08 Hz) was
performed. To reduce the inter-individual variability, ALFF was
transformed to zALFF using Fisher’s z transformation before
statistical analysis.

Statistical Analyses
Clinical Data Analysis
Clinical data were analyzed using the SPSS 23.0 statistical
software (IBM Corporation, Somers, NY, United States). One-
way analysis of variance was used to compare age and
educational level among the three groups, and the chi-square
test was used to compare sex differences. A two-sample t-test
was used to compare the duration of disease, HAMD-17
scores, and frequency of recurrence between the two patient
groups, with a threshold of P < 0.05 (two-tailed) set as
statistically significant.

Functional Magnetic Resonance Imaging Data
Analysis
Imaging data were analyzed using the DPARSF toolbox, and
a voxel-based one-way analysis of variance was performed to
compare the whole-brain ReHo/ALFF map among the three
groups. Sex, age, educational level, and framewise displacement (a
metric derived from Jenkinson’s formula) were used as covariates,
and brain areas with ReHo/ALFF differences among the three
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groups were corrected for Gaussian random fields. The corrected
cluster level was set at P < 0.05 (two-tailed), and threshold voxel
levels of P < 0.005 were defined as statistically different. We
performed post-hoc t-test analysis using DPARSF 5.1 software
for two-by-two comparisons between groups, and Bonferroni
correction was applied to the results, setting a threshold of
P < 0.016 (0.05/3) for statistical significance. The threshold was
set to clusters > 10 voxels.

To verify the relationship between ReHo/ALFF values
and clinical symptoms, we extracted the mean ReHo/ALFF
values of three different brain regions and performed Pearson
correlation analysis of the clinical scale scores of each group.

Significance was set at a statistical threshold of P < 0.05
(two-tailed).

RESULTS

Characteristics of Research Samples
Two patients with RDE were excluded because of excessive head
movement displacement. Therefore, a total of 29 patients with
RDE, 28 patients with FDE, and 29 HCs met the inclusion criteria.
No statistical differences among the three groups were found in
terms of sex, age, and years of education. The HAMD-17 scores

TABLE 1 | Demographic and clinical characteristics of the study participants.

Variable RDE (n = 29) FDE (n = 28) HCs (n = 29) t(F)/χ2 P -value

Sex (M/F) 8/21 8/20 8/21 0.043 0.958a

Age (years) 33.62 ± 10.28 32.85 ± 9.77 33.24 ± 9.42 0.018 0.982b

Education (years) 14.96 ± 2.44 14.28 ± 2.80 14.93 ± 3.05 0.538 0.586b

Duration of illness (months) 22.96 ± 11.49 2.28 ± 0.93 NA 9.487 <0.001c*

HAMD-17 score 23.31 ± 3.26 23.10 ± 3.16 NA 0.238 0.812c

Frequency of recurrence 2.34 ± 0.76 0 NA 16.133 <0.001c*

RDE, recurrent depressive episode; FDE, first depressive episode; HCs, healthy controls; HAMD-17, 17-item Hamilton Rating Scale for Depression; NA, not applicable.
aThe P-values of sex distribution among the three groups were obtained using the chi-square test.
bP-value from one-way analysis of variance tests.
cP-value from a two-sample t-test.
*Significant difference.

TABLE 2 | ReHo differences in RDE, FDE, and HCs.

Clusters Brain regions MNI peak Cluster size F/T-value (peak)

X Y Z

Differences among three groups

1 Right inferior frontal triangular gyrus 33 30 30 27 17.934a

2 Left anterior cingulate cortex −12 51 3 25 12.561a

3 Left middle temporal gyrus −39 −54 18 34 15.505a

Left angular gyrus

4 Left superior temporal gyrus −45 −30 15 29 13.698a

5 Left inferior temporal gyrus −39 −57 −6 53 12.601a

Left inferior occipital gyrus

6 Right Rolandic operculum gyrus 42 −18 24 34 11.938a

RDE vs. FDE

1 Right inferior frontal triangular gyrus 33 30 30 19 4.344b

2 Left inferior temporal gyrus −42 −57 −6 35 −4.270b

RDE vs. HCs

1 Right inferior frontal triangular gyrus 33 30 27 23 4.745b

2 Left anterior cingulate cortex −12 51 3 25 4.272b

3 Left superior temporal gyrus −45 −30 15 29 4.543b

4 Left angular gyrus −39 −63 27 17 −2.881b

FDE vs. HCs

1 Left inferior temporal gyrus −44 −63 −9 25 2.905b

2 Left middle temporal gyrus −39 −51 15 23 −2.816b

Left angular gyrus

MNI peak, coordinates of primary peak locations in the Montreal Neurological Institute space.
aF-value of the peak voxel showing gray matter volume differences among the three groups.
bT-value of the peak voxel showing gray matter volume differences among the three groups (post hoc two-group comparisons).
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TABLE 3 | ALFF differences in RDE, FDE, and HCs.

Clusters Brain regions MNI Peak Cluster size F/T-value (peak)

X Y Z

Differences among three groups

1 Right inferior frontal triangular gyrus 33 30 30 22 12.285a

2 Left anterior cingulate cortex −12 42 −18 109 11.440a

Orbital part of the left middle frontal gyrus

3 Left angular gyrus −39 −57 24 45 15.704a

Left middle temporal gyrus

4 Right angular gyrus 39 −63 36 36 14.556a

5 Left inferior temporal gyrus −60 −63 −15 31 12.380a

Left inferior occipital gyrus

6 Right lingual gyrus 21 −54 −6 70 13.548a

7 Vermis_3 6 −45 −21 51 12.253a

RDE vs. FDE

1 Right inferior frontal triangular gyrus 34 18 25 14 4.222b

2 Left anterior cingulate cortex −6 36 6 14 3.376b

3 Orbital part of the left middle frontal gyrus −12 48 −3 17 3.942b

4 Orbital part of the left superior frontal gyrus −12 42 18 42 4.445b

5 Right angular gyrus 39 −63 33 15 4.167b

6 Right lingual gyrus 15 −51 −9 65 −2.909b

RDE vs. HCs

1 Left anterior cingulate cortex −15 48 −3 24 3.641b

2 Left angular gyrus −39 −60 21 18 −3.094b

3 Right angular gyrus 42 −63 36 26 4.097b

FDE vs. HCs

1 Left middle temporal gyrus −42 −51 12 36 −3.015b

Left angular gyrus

2 Left inferior temporal gyrus −60 −63 −15 26 4.055b

3 Vermis_3 6 −45 −21 15 3.830b

MNI peak, coordinates of primary peak locations in the Montreal Neurological Institute space.
aF-value of the peak voxel showing gray matter volume differences among the three groups.
bT-value of the peak voxel showing gray matter volume differences among the three groups (post hoc two-group comparisons).

were not statistically different between the RDE and FDE groups,
whereas a statistical difference was observed in the duration of
illness and frequency of recurrence (Table 1).

Differences in Regional
Homogeneity/Amplitude of
Low-Frequency Fluctuations Between
the Recurrent Depressive Episodes, First
Depressive Episode, and Healthy
Controls
One-way analysis of variance showed significant differences
in ReHo and ALFF among the three groups in the right
inferior frontal triangular gyrus, left anterior cingulate cortex,
left middle temporal gyrus/left angular gyrus, and left inferior
temporal gyrus/left inferior occipital gyrus. Meanwhile, ReHo
was significantly different in the left superior temporal gyrus
and right Rolandic operculum gyrus. ALFF was also significantly
different in the right angular gyrus, right lingual gyrus, and
Vermis_3 (Tables 2, 3 and Figures 1, 2).

Compared with the FDE group, the RDE group had elevated
ReHo in the right inferior frontal triangular gyrus and decreased
ReHo in the left inferior temporal gyrus. Meanwhile, the RDE
group had elevated ALFF in the right inferior frontal triangular
gyrus, left anterior cingulate gyrus, orbital part of the left middle
frontal gyrus, orbital part of the left superior frontal gyrus, and
right angular gyrus, but had decreased ALFF in the right lingual
gyrus (Tables 2, 3 and Figure 3).

Compared with the HC group, the RDE group had elevated
ReHo in the right inferior frontal triangular gyrus, left anterior
cingulate gyrus, and left superior temporal gyrus, but had reduced
ReHo in the left angular gyrus. Meanwhile, the RDE group had
elevated ALFF in the left anterior cingulate gyrus and right
angular gyrus, but had decreased ALFF in the left angular gyrus
(Tables 2, 3 and Figure 4).

Compared with the HC group, the FDE group had elevated
ReHo in the left inferior temporal gyrus and decreased ReHo
in the left middle temporal gyrus/left angular gyrus. Meanwhile,
the FDE group had elevated ALFF in the left inferior temporal
gyrus and Vermis_3, but had decreased ALFF in the left middle
temporal gyrus/left angular gyrus (Tables 2, 3 and Figure 5).
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FIGURE 1 | Brain regions with abnormal ReHo among the three groups based on one-way analysis of variance. The color bars indicate the F-value.

FIGURE 2 | Brain regions with abnormal ALFF among the three groups based on one-way analysis of variance. The color bars indicate the F-value.

Significant Correlation Between
Functional Image and Clinical Feature
To test the correlation between areas of abnormal brain activity
and the severity of clinical depressive symptoms, we further
performed Pearson correlation analysis. We found a positive
correlation between the ReHo/ALFF values of the right inferior
frontal triangular gyrus and the HAMD-17 scores in the RDE
group (r = 0.436, P = 0.018; r = 0.394, P = 0.034). Meanwhile,
we observed a positive correlation between the ReHo values in
the left anterior cingulate cortex/orbital part of the left middle
frontal gyrus and the HAMD-17 scores in the FDE group
(r = 0.488, P = 0.008). Furthermore, we found a negative

correlation between the ReHo values in the left inferior temporal
gyrus/left inferior occipital gyrus and right lingual gyrus and the
HAMD-17 scores in the FDE group (r = −0.412, P = 0.029;
r =−0.408, P = 0.030) (Table 4 and Figure 6).

DISCUSSION

To our knowledge, this is the first study to investigate the changes
in local brain function activity in patients with RDE or FDE using
the ReHo and ALFF methods. The results of this study showed
that the RDE and FDE groups had abnormal neural function
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FIGURE 3 | Brain regions with abnormal ReHo (left) and ALFF (right) between the RDE group and the FDE group based on a post hoc t-test. The color bars
indicate the T-value.

FIGURE 4 | Brain regions with abnormal ReHo (left) and ALFF (right) between the RDE group and the HC group based on a post hoc t-test. The color bars indicate
the T-value.

activity in some of the same brain regions. ReHo and ALFF
were more widely distributed in different brain regions and had
more complex neuropathological mechanisms in the RDE group
than in the FDE group. This study provides a reference for the
differences in brain function activity between RDE and FDE.

We found increased ReHo and ALFF in the right inferior
frontal triangular gyrus in the RDE group compared with
the FDE group. The right inferior frontal triangular gyrus
is located in the dorsolateral prefrontal cortex (DLPFC), an
important component of executive function that is closely related

to working memory, thought activity, and cognitive control
(Wang et al., 2020; Brosch et al., 2021; Nejati et al., 2022).
Previous studies have also shown that depressed mood and
cognitive behavioral impairment in patients with depression are
associated with abnormalities in executive function (Sun et al.,
2018). Patients with mild impairment in the DLPFC often show
symptoms of depression, such as loss of interest, poor memory,
slow thinking, lack of motivation, and insomnia (Elliott, 2003;
Li et al., 2021). Previous studies have found that the right
inferior frontal triangle gyrus plays an important role in the
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FIGURE 5 | Brain regions with abnormal ReHo (left) and ALFF (right) between the FDE group and the HC group based on a post hoc t-test. The color bars indicate
the T-value.

early pathogenesis of MDD (Zhang et al., 2021) and that the
gray matter volume of the DLPFC is reduced in patients with
RDE after 6 weeks of antidepressant therapy (Li et al., 2010).
Another study showed that stimulation of the right and left
DLPFC with transcranial direct current stimulation was effective
in reducing the risk of recurrence in patients with depression
(Aparicio et al., 2019). The BOLD signals in the DLPFC have
also been found to differ between RDE and FDE (Yuksel et al.,
2018). This suggests that patients with RDE and those with FDE
have differences in executive function. The correlation analysis

TABLE 4 | Correlation of abnormal brain areas with clinical symptoms.

Variables group Brain regions HAMD-17 score

Coefficient P-value

ReHo RDE Right inferior frontal
triangular gyrus

0.436 0.018a,#

FDE Left inferior temporal gyrus −0.412 0.029a,#

Left inferior occipital gyrus

ALFF RDE Right inferior frontal
triangular gyrus

0.394 0.034a,#

FDE Left anterior cingulate
cortex

0.488 0.008a,#

Orbital part of the left
middle frontal gyrus

FDE Right lingual gyrus −0.408 0.030a,#

aP-value from Pearson correlation (not corrected).
#Statistical significance.

in this study showed that the ReHo and ALFF values in the
right inferior frontal triangular gyrus were positively correlated
with the HAMD-17 scores in the RDE group, whereas no such
correlation was found in the FDE group. These results suggest
that the right inferior frontal triangular gyrus is an important
neurobiological imaging marker for RDE and an important brain
region for differentiating RDE from FDE.

We also found differences in ALFF in the left anterior
cingulate gyrus and left orbitofrontal gyrus between the RDE
and FDE groups. The anterior cingulate gyrus is an important
component of the limbic system. It has extensive fibrous
connections to many cortical and subcortical structures; is
involved in the regulation of a wide range of functions, such
as emotion, cognition, and motivation; and is closely associated
with the onset of depression (Xiao and Zhang, 2018; Zheng et al.,
2018; Rolls, 2019). Previous studies have found higher ALFF in
the right ventral anterior cingulate gyrus in patients with anxious
depression than in patients with rMDD and in HCs. In addition,
abnormal activation of the anterior cingulate gyrus at rest in
patients with MDD may be related to the failure of emotional
control, which is a central factor in negative rumination and
persistent self-focus in these patients (Amodio and Frith, 2006;
Liu et al., 2015). Therefore, the results of this study suggest that
patients with RDE show abnormal activation of the left side of the
anterior cingulate gyrus. The orbitofrontal cortex is an important
part of the reward network and is closely associated with
emotional information and sensory stimuli (O’Doherty, 2004; Liu
et al., 2017). A previous study found that patients with refractory
depression, which is characterized by persistence and recurrence,
had significantly higher ALFF in the orbitofrontal cortex than
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FIGURE 6 | Positive correlation between the ReHo/ALFF values of abnormal brain regions and the HAMD-17 scores. (A) ReHo values in the recurrent depressive
episode (RDE) group. (C) ALFF values in the RDE group. (D) ALFF values in the first depressive episode (FDE) group. Negative correlation between the ReHo/ALFF
values of abnormal brain regions and the HAMD-17 scores. (B) ReHo values in the FDE group. (E) ALFF values in the FDE group. Frontal_Inf_Tri_R, right inferior
frontal triangular gyrus; Cingulum_Ant_L/Frontal_Med_Orb_L, left anterior cingulate cortex/orbital part of the left middle frontal gyrus; Temporal_Inf_L/Occipital_Inf_L,
left inferior temporal gyrus/left inferior occipital gyrus; Lingual_R, right lingual gyrus; ReHo, regional homogeneity; ALFF, amplitude of low-frequency fluctuations;
HAMD-17, 17-item Hamilton Rating Scale for Depression.

HCs (Liu et al., 2014). This suggests that abnormal activation
of the orbitofrontal cortex is a cause of the complexity of RDE.
Another study also showed that patients with FDE had reduced
ALFF in the left and right orbitofrontal cortex compared with
HCs, suggesting that patients with FDE have reduced regulation
of the reward network (Zhang et al., 2014). Although these results
were from different studies, they all support the involvement of
the anterior cingulate gyrus and orbitofrontal cortex in regulating
the pathophysiology of MDD. The correlation analysis in the
current study showed that the ALFF values in the left anterior
cingulate cortex/orbital part of the left middle frontal gyrus were
positively correlated with the HAMD-17 scores in the FDE group,
thus identifying an important brain region for differentiating
between RDE and FDE.

In addition, we found that the RDE group had higher ALFF
values in the right lingual gyrus than the FDE group. The lingual
gyrus is part of the occipital lobe, and previous studies have
shown that the lingual gyrus is also involved in activities related
to visual memory processing and is closely associated with the
development of MDD (Jung et al., 2014; Le et al., 2017; Palejwala
et al., 2021). One study found that patients with rMDD had
lower ALFF values in the right lingual gyrus than HCs, suggesting
that reduced ALFF in the right lingual gyrus is a marker for the
remission of depression (Yang et al., 2018). Another study also
showed that patients with FDE had lower ALFF values in the
right lingual gyrus than HCs (Wang et al., 2012). Our correlation
analysis showed that the ALFF values in the right lingual gyrus

were negatively correlated with the HAMD-17 scores in the FDE
group. This suggests that the right lingual gyrus can be used as a
status marker for FDE.

Meanwhile, we found that the ALFF in the right angular
gyrus was higher in the RDE group than in the FDE group.
A previous study reported that the right angular gyrus is
associated with the self-localization function in humans and is
potentially associated with psychiatric disorders, and that an
abnormality in this function affects both sensory and perceptual
functions, with a causal relationship between them (de Boer
et al., 2020). This may also be informative in elucidating the
differences in neuropathological mechanisms between RDE and
FDE. The inferior temporal gyrus is involved in functions such as
social cognition, emotional stimulus processing, self-referential
processing, and semantic processing and is closely associated with
MDD development (Chao et al., 1999; Cabeza and Nyberg, 2000;
Herath et al., 2001; Hu et al., 2017; Kocsis et al., 2021). Previous
studies have found that ReHo is significantly higher in the left
middle temporal gyrus in patients with FDE than in those with
rMDD, suggesting that enhanced metabolism in the left middle
temporal gyrus may be one of the pathogenic mechanisms of FDE
(Yang et al., 2018). Therefore, we suggest that differences exist
between RDE and FDE in terms of abnormalities in the frontal,
temporal, parietal, and occipital lobes, particularly in the right
inferior frontal triangular gyrus of the frontal lobe.

Interestingly, we also found that the RDE and FDE groups
had lower ReHo and ALFF in the left angular gyrus than the
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HC group. The angular gyrus is located in the posterior part
of the inferior parietal lobe and is mainly involved in human
semantic and numerical processing, memory retrieval, spatial
cognition, word reading and comprehension, reasoning, and
social cognition, with the left angular gyrus playing a more
important role in situational simulation and memory (Seghier,
2013; Thakral et al., 2017; Ramanan and Bellana, 2019). The
angular gyrus is also an important part of the default mode
network (Raichle et al., 2001; Raichle, 2015). Previous studies
have found differences in BOLD signals in the angular gyrus
between patients with RDE or FDE and HCs, consistent with
the present study (Yuksel et al., 2018). Other studies have also
reported that the ReHo and ALFF values in the left angular
gyrus were lower in patients with MDD than in HCs (Wang
et al., 2012; Liu et al., 2021). Abnormalities in angular gyrus
function can lead to cognitive impairment, a common clinical
manifestation of MDD (Lee et al., 2012). Therefore, this suggests
that (1) both RDE and FDE are characterized by default mode
network dysfunction and (2) ReHo and ALFF abnormalities in
the left angular gyrus are important markers for differentiating
patients with MDD from HCs.

Some limitations of this study should be considered. First,
the patients with RDE enrolled in this study might have still
been affected by an underlying antidepressant action despite
having stopped medication for 4 weeks. Second, the number
of recurrences in the RDE group was inconsistent, and a first-
recurrence study of patients with RDE seem to have greater
research value. Third, this study focused on only one scale
(HAMD-17). To enhance the scientific value of this study,
more scales need to be used in the future to focus on the
detailed correlation of cognitive, somatic, anxiety, and insomnia
symptoms with RDE and FDE. Finally, this study did not find
a difference between RDE and FDE in depressive symptoms,
which may be related to the specificity and small size of the study
population. Further studies with a larger sample size are needed
to confirm or refute the findings of this study.

CONCLUSION

This study used ReHo and ALFF, which are indices based on
the rs-fMRI technique, to preliminarily analyze the differences
between RDE and FDE in terms of neural activity in different
brain regions. The RDE and FDE groups showed abnormal
changes in neural function activity in some of the same brain
regions, with ReHo and ALFF being more widely distributed in
different brain regions and the neuropathological mechanisms
being more complex in the RDE group than in the FDE group,

particularly in the right inferior frontal triangular gyrus of
the frontal lobe.
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Brain-computer interface (BCI) based on motor imagery (MI) can help patients with limb

movement disorders in their normal life. In order to develop an efficient BCI system, it

is necessary to decode high-accuracy motion intention by electroencephalogram (EEG)

with low signal-to-noise ratio. In this article, a MI classification approach is proposed,

combining the difference in EEG signals between the left and right hemispheric electrodes

with a dual convolutional neural network (dual-CNN), which effectively improved the

decoding performance of BCI. The positive and inverse problems of EEG were solved by

the boundary element method (BEM) and weighted minimum norm estimation (WMNE),

and then the scalp signals were mapped to the cortex layer. We created nine pairs of new

electrodes on the cortex as the region of interest. The time series of the nine electrodes

on the left and right hemispheric are respectively used as the input of the dual-CNN

model to classify four MI tasks. The results show that this method has good results

in both group-level subjects and individual subjects. On the Physionet database, the

averaged accuracy on group-level can reach 96.36%, while the accuracies of four MI

tasks reach 98.54, 95.02, 93.66, and 96.19%, respectively. As for the individual subject,

the highest accuracy is 98.88%, and its four MI accuracies are 99.62, 99.68, 98.47, and

97.73%, respectively.

Keywords: brain-computer interface (BCI), electroencephalography (EEG), motor imagery (MI), convolutional

neural network (CNN), weighted minimum norm estimation (WMNE)

1. INTRODUCTION

The electroencephalogram (EEG) signal is the electrical activity of neurons in the brain recorded
by EEG sensors. It has high temporal resolution and low spatial resolution (Nakamura et al., 2005).
Currently, motor imagery EEG (MI-EEG) has received widespread attention because it can decode
motion intention (Pfurtscheller et al., 2006). The brain-computer interface (BCI) can detect the
intention of theMI-EEG signal and convert it into an executable output by themachine (Millan and
Del, 2002). In other words, it can communicate with external devices by decoding MI tasks, so as to
achieve two-way feedback between the user and the BCI system. The external device receives signals
from the brain to control the device, and the device feeds back the control results to the brain for
judgment (Jin et al., 2020). MI-BCI can help some disabled patients independently control external
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devices such as wheelchairs (Wang and Bezerianos, 2017)
and artificial limbs (Condori et al., 2016; Cho et al., 2019).
Bhattacharyya et al. (2021) designed a real-time BCI
neurofeedback system to reflect the expected tasks of hand
movement and imagery.

Effective feature extraction can achieve high-precision
decoding on MI-BCI. Entropy and sensor-imotor rhythm
(SMR) are currently popular features in MI-BCI. In SMR-based
BCI, He et al. (2015) reviewed the principles and approaches
of developing an SMR EEG based BCI and found that the
SMR based noninvasive BCI has the potential to provide
communication and control capabilities. Yuan and He (2014)
described the characteristic features of SMR from the human
brain and discussed their underlying neural sources, also
reviewed the functional components of SMR-based BCI, together
with its current clinical applications. Serafeim et al. (2018)
trained two severely impaired participants with chronic spinal
cord injury (SCI) following mutual learning approach in a virtual
BCI race game, it substantiates the effectiveness of this type of
training. In entropy-based BCI, Stefano et al. (2019) proposed
a novel approach based on the entropy of the EEG signals to
provide a continuous identification of motion intention. The
result shows that the proposed system can be used to predict
motion in real-time at a frame rate of 8 Hz with 80 ± 5% of
accuracy. Lei et al. (2012) extracted the sample entropy of the
EEG and used support vector machines for pattern classification,
it is found that sample entropy can effectively distinguish
the characteristics of the brain in different states. Hsu (2015)
extracted wavelet fuzzy approximate entropy and used SVM
for classification, the results indicate that the proposed system
including wavelet-based fuzzy approximate entropy (wfApEn)
obtains better performance in average classification.

Recently, there have been many studies on the cortex. Hou
et al. (2019) created ten regions of interest in the cortex and
performed a time-frequency analysis on them. Edelman B. et al.
(2015) explored the cortex dynamics during movements of
an unaffected body part in tetraplegic subjects with chronic
spinal cord injury. Kim and Kim (2018) analyzed the motor
cortex of primates and provided an effective method to decode
invasive BCI.

A convolutional neural network (CNN) is a practical tool
in many fields, such as image classification (Krizhevsky et al.,
2017), sentence classification (Kim, 2014), and EEG decoding
(Schirrmeister et al., 2017). It reduces the data preprocessing
steps and manual feature processing steps. Also, deep learning
has made outstanding contributions to the improvement of MI-
BCI (Li et al., 2018; Zhang et al., 2018; Cho et al., 2019; Robinson
et al., 2019). Nakagome et al. (2020) used neural networks and
machine learning algorithms to decode EEG. The results indicate
that neural networks are of great significance in the decoding
of EEG signals. Tortora et al. (2020) used a trained long short
term memory deep neural network to decode EEG gait, and
the proposed decoding method obtains more than 90% robust
reconstruction. Al-Saegh et al. (2021) gathered 40 related articles
on deep neural network architecture and MI-EEG tasks, and the
results show that deep neural networks play a positive role in
MI-EEG classification.

Brain-computer interface is a technology that reads EEG
signals, records and decodes brain activities, manipulates the
activities of specific brain regions, and affects its functions. Based
on this, accurate decoding of EEG signals is very important for
BCI systems. Since EEG signal is dynamic time series data with
a low signal-to-noise ratio, the decoding accuracy of EEG signals
has always been a challenge. Although many scholars have made
remarkable achievements in this field, there is still a gap between
the BCI system and practical application standards, and there is
still much room for improvement in the classification method
and accuracy of EEG signals.

The contributions of this article are summarized as follows: In
this article, we proposed a MI signals classification method via
the difference of EEG signals between left and right hemispheric
electrodes. Based on the Physionet database, the EEG signal on
the scalp layer is inversely mapped to the cortex of the brain,
and then 9 pairs of new electrode pairs are created, which
contain higher SNR information. The time-frequency analysis
method is used to extract feature information from the time
and frequency series of cortical electrodes. The dual-CNNmodel
proposed in this article has the same settings, including 4 layers
of CNN for learning EEG features, 4 layers of max pooling
for dimension reduction, a Flatten operation for converting
multidimensional data into one-dimensional data, and 1-layer
fully connected (FC) layer for classification. This method
combines the electrode channel information of the symmetrical
regions of interest on the left and right hemispheres of the cortex
with the CNN, which realizes the high-precision classification
task and provides a new idea for simplifying the design of the
BCI system.

The remainder of this article is organized as follows: Section
2 is the Materials and Methods. Section 3 is the Classification
Accuracies of the Subjects. Section 4 is a Discussion. Finally,
Section 5 is the Conclusion of this article.

2. MATERIALS AND METHODS

2.1. The Framework
The overall block diagram is shown in Figure 1. In this study,
we first preprocessed the EEG on the scalp layer and then
preprocessed it on the cortex layer. The noise covariance matrix
of each subject was calculated in the cortex preprocessing, and
the real head model was constructed with the help of the colin27
template and BEM algorithm.We used distributed current model
(DCD) and WMNE algorithm to build a source model and then
limited the source to the cortex layer. Then, manually created
nine pairs of new electrodes on the left and right hemispheric
of the cortex. Finally, the time series carried by the nine pairs
of electrodes on the left and right hemispheric were used as the
input of the dual-CNN classification model. The preprocessing
process and the CNNmodel structure will be introduced in detail
in the following Sections 2.3 and 2.4.2.

2.2. Dataset
The dataset we used was created by the developers of BCI2000
at a sampling frequency of 160Hz in a standard environment
(Schalk et al., 2004). It is obtained through the corresponding
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FIGURE 1 | The framework of the proposed approach.

10-10 system 64-channel EEG (excluding electrodes Nz, F9, F10,
FT9, FT10, A1, A2, TP9, TP10, P9, and P10). The dataset records
4 MI tasks (left fist, right fist, both fists, and both feet) of 109
subjects. Each subject consists of 84 trails with 21 trails per class,
each trail takes 1–2 min, and the duration of each MI task is
slightly more than 4 s. The four tasks are as follows:

(1) A target appears on the left side of the screen. The subject
imagines opening and closing the left fist until the target
disappears. Then the subject relaxes.

(2) A target appears on the right side of the screen. The subject
imagines opening and closing the right fist until the target
disappears. Then the subject relaxes.

(3) A target appears on the top of the screen. The subject
imagines opening and closing both fists until the target
disappears. Then the subject relaxes.

(4) A target appears on the bottom of the screen. The subject
imagines opening and closing either both feet until the
target disappears. Then the subject relaxes. Detailed data
description is given at https://archive.physionet.org/pn4/
eegmmidb/.

2.3. Data Preprocessing
Data preprocessing is divided into two parts: scalp layer
preprocessing and cortex layer preprocessing. In the scalp layer

preprocessing, wemarked 4MI tasks (left fist, right fist, both fists,
and both feet) of each subject as T1, T2, T3, and T4, respectively.
Since each MI task is slightly more than 4 s, we used a time
window of 4s to unify the size of 4 MI tasks, and then performed
8–30 Hz band-pass filter processing for each MI task.

The positive problem of EEG is the use of EEG sensors to
collect electrical signals generated by a large number of neurons
in the brain (Wheless and Castillo, 2004). However, the signals
transmitted from the brain to the scalp are already very weak
and cannot accurately represent the activities inside the brain.
Therefore, inverting EEG into the brain will improve the quality
of EEG and also help improve its decoding intention. The process
of using EEG to acquire signals inside the brain is an inverse
problem (Becker, 2015). Solving the positive problem of EEG is
the basis for solving its inverse problem.

The positive problem of EEG is also called the forward model
of EEG, which can be described as follows (Baillet and Garnero,
1997; Engemann and Gramfort, 2015):

y = b+ ε = Lx+ ε (1)

Where n represents the number of sensors of EEG, p represents
the number of dipoles in source space, L ∈ Rn×p is gain matrix or
leadfield, and ε is noise.
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FIGURE 2 | Cortex preprocessing.

According to Maxwell equations (Noraini et al., 2013), the
electromagnetic field Rn in Formula (1) is the linear combination
of the fields generated by all sources x ∈ Rp : b = Lx. Solving the
L matrix in Equation (1), finding sources that can best explain
the value of EEG, and tracing the neurons in the brain is called
the inverse problem of EEG (Janati et al., 2020).

The solution of the EEG forward problem consists of two
parts: the head model and the algorithm. The head model is
obtained by magnetic resonance imaging (MRI) of each subject.
Since there is no permission to access the MRI of each subject, we
used the high-precision colin27 template to build the head model
(Collins et al., 1998).

In this part, we first completed the calibration of MRI and
EEG and then calculated the noise covariance matrix according
to baseline data for each subject to solve the problem of noise
differences between different subjects. Then we used the BEM
(Mosher et al., 1999; Gramfort, 2010) to solve the EEG positive
problem and built a three-layer (cortex, skull, and scalp) head
volume conduction model, also L was solved in the Equation (1).

Since the number of sources in the brain is far greater than
the number of EEG sensors on the scalp, the result of the EEG
inverse problem is not unique. It requires us to limit the source
to a certain range. There are many cells on the cortex layer, they
are close to the scalp, and the direction is basically perpendicular
to the scalp, which is the main source of EEG (Okada, 1993).

According to this, we used the DCD model to limit the source
to the cortex layer of the brain. DCD model divides the entire
cortex into discrete fixed sub-regions, each sub-region is placed
with a current dipole perpendicular to the cortex, and this dipole
is the source.

We used WMNE to solve the EEG inverse problem, as shown
below (Phillips et al., 2002; Wu et al., 2003; Hassan et al., 2014):

I = LT(LLT + λω)−1R (2)

Then we got a source model, the preprocessing of the cortex layer
on the source model is shown in Figure 2. Similar to the research
method of EEG source imaging, the region of interest can be
selected by identifying particular gyral landmarks on the subject
special cortex model (Edelman B. J. et al., 2015). According to
Lun et al. (2020) we selected 18 scouts on the motor cortex as
the region of interest. Nine sources on the left hemispheric are
termed FC5, FC3, FC1, C5, C3, C1, CP5, CP3, CP1, and nine
sources on the right hemispheric are termed FC6, FC4, FC2,
C6, C4, C2, CP6, CP4, CP2. Each of the scouts was extended to
20 vertices, each vertex with one source (dipole) in constrained
dipoles orientations. While the positions of the 18 sources are the
projection on the cortex of nine pairs of electrodes (FC5, FC3,
FC1, C5, C3, C1, CP5, CP3, CP1; FC6, FC4, FC2, C6, C4, C2,
CP6, CP4, CP2), we marked these 18 sources as nine pairs of new
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TABLE 1 | Proposed CNN architecture.

Layer Input size Map Convolution Pooling Output size

kernel size size

L1 Input 1,280×9 1 - - 640×9,640×9

L2 Conv_L1,Conv_R1 640×9 25 11×9×25 - 630×1×25

L3 Pool_L1, Pool_R1 630×1×25 25 - 3×1 210×1×25

L4 Conv_L2,Conv_R2 210×1×25 50 11×1×50 - 200××50

L5 Pool_L2, Pool_R2 200×1×50 50 - 3×1 66×1×50

L6 Conv_L3,Conv_R3 66×1×50 100 11×1×100 - 56×1×100

L7 Pool_L3, Pool_R3 56×1×100 100 - 3×1 18×1×100

L8 Conv_L4,Conv_R4 18×1×100 200 11×1×200 - 8×1×200

L9 Pool_L4, Pool_R4 8×1×200 200 - 2×1 4×1×200

L10 Flatten_L,Flatten_R 4×1×200 1 - - 800

L11 Flatten_L-Flatten_R 800 1 - - 800

L12 FC 800 1 - - 128

L13 Softmax 128 1 - - 4

electrodes on the left and right hemispheric. The time series of
nine pairs of new electrodes on the left and right hemispheric
were extracted by brainstorming in MATLAB (Tadel et al., 2011).

2.4. CNN Theory and CNN Structure
2.4.1. CNN Theory
Convolutional neural network is generally composed of a
convolution layer, pooling layer, and fully connected layer to
complete feature extraction and classification (Schirrmeister
et al., 2017; Kaldera et al., 2019).When the convolution operation
is performed layer by layer, CNN can not only automatically
extract rich features but also convey depth information. The
initial layer of convolution is used to extract local features, and
the end layer is used to extract global features. Among them, the
convolutional layer contains multiple filters to extract features
that are useful for classification (Liu and Liu, 2017). It uses the
output of the previous layer as the input of the next layer to
extract features, as follows (Ji et al., 2013):

xlj = f (
∑

i∈Mj

xl−1
i ∗ klij + blj) (3)

Where xlj is the output of the jth channel of the l layer in the

convolutional layer, f (·) is the activation function, Mj is the set

of selection inputs, and xl−1
i is the output of the ith channel of

l − 1 layer in the convolutional layer, ∗ represents convolution
operation, klij is convolution kernel matrix, and blj is offset value.

The pooling layer is generally used after the convolutional
layer to reduce the number of parameters. It mainly includes
average pool and max pool, which can be described as follows:

xlj = f (β l
jdown(x

l−1
j )+ blj) (4)

Where f (·) is the activation function, down(·) is the down-
sampling function, β l

j is the weight coefficient of the jth

channel of the lth layer in the pooling layer, and blj is bias

(Zang et al., 2020).

Rectified linear unit (ReLU) is a commonly used activation
function in convolution and pooling layers, which plays an
important role in simulating biological neurons (Nair and
Hinton, 2010; Karthik et al., 2020).

After multiple convolutional layers and pooling layers, the
data will enter a fully connected layer. First, the data is processed
by weighted summation, then processed by the activation
function, and finally, the output of the fully connected network
is obtained, as follows:

xl = f (ωlxl−1 + bl) (5)

Among them, ωlxl−1 + bl is the net activation of layer l in a fully
connected layer. ωl is the weight coefficient, and bl is bias.

Since the training is for subjects, the output of each category
label will be converted into conditional probability by the softmax
function as follows (Amin et al., 2019):

p(lk|f (X
j; θ)) =

expfk(X
j; θ)

∑K
k=1 exp(fk(X

j; θ))
(6)

Where lk is the given label, Xj is input, θ is parameter including
weight and bias, and K is the category.

2.4.2. CNN Structure
The network structure and parameters of CNN are determined
by the experimental method, as shown in Table 1. We proposed
a novel dual-CNNmodel for MI classification, which can process
the time series of nine hemispheric electrodes on the cortex
layer, and the structure is shown in Figure 1. The specific process
description is as follows:

(1) We used 4s MI data as the input of the neural network.
At a sampling frequency of 160Hz, its data dimension is
640, and the dimension remains unchanged after cortex layer
processing. First, connect the time series of the left and right
hemispheric symmetrical electrodes horizontally, and then
connect the data of the nine pairs of electrodes vertically,
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TABLE 2 | The classification accuracy of individual subject.

Subject Accuracy (%) T1 accuracy (%) T2 accuracy (%) T3 accuracy (%) T4 accuracy (%)

S1 97.77 99.67 97.14 96.08 98.18

S2 97.30 99.59 96.00 96.45 97.17

S3 96.35 99.73 96.90 95.89 92.86

S4 98.88 99.62 99.68 98.47 97.73

S5 97.14 99.56 98.15 91.49 99.34

S6 97.61 98.93 97.56 95.91 98.04

S7 96.23 99.14 93.18 96.45 96.15

S8 96.33 99.92 99.37 90.91 95.12

S9 97.34 99.81 97.44 95.83 96.27

S10 98.81 99.74 97.56 99.56 98.36

so that the data format that enters the neural network is
1, 280 × 9. The first layer of the network separates the nine
electrodes of the left and right brains through the reshape
operation to form two data with a size of 640×9, representing
the time series of the nine electrodes of the left and right
brains, respectively.

(2) We used two CNN structures with exactly the same
parameters to form a dual-CNNmodel. Each CNN structure
contains 4-layer CNN for learning features, 4-layer max
pooling for dimensionality reduction, and 1 FC layer that
converts multi-dimensional data into one dimension.

(3) The one-dimensional data output by the left and right CNN
model are subtracted, then the signal differences of the
symmetrical electrode are entered into the FC layer, and the
softmax function is used to predict the attribution of the
test data.

In addition, based on 4-layer CNN and 4-layer max pooling,
we try to add more CNN layers and max pooling layers. It is
found that 4-layer dual-CNN performs best in the experiment,
and the accuracy is not significantly improved after the number of
convolutional layers exceeds 4-layer.We used spatial dropout and
batch normalization (BN) techniques to prevent overfitting. In
Section 3.5, our proposed model is compared with other models,
and a better classification evaluation effect is obtained.

3. RESULTS

3.1. Classification Accuracy of Individual
Subject
In order to obtain effective results, events T1-T4 in each subject
are randomly intermingled and separated into 90% as the training
set, and the remaining 10% as the test set. We conducted trial-
based accuracy experiments for each subject (S1-S10) on the
Physionet database. Table 2 lists the accuracy of each subject and
its fourMI tasks (T1, T2, T3, T4). In Table 2, the highest accuracy
is 98.88% (S4), and its four MI accuracies are 99.62, 99.68, 98.47,
and 97.73%, respectively. The lowest accuracy is 96.23% (S7),
and its four MI accuracies are 99.14, 93.18, 96.45, and 96.15%,
respectively. The average accuracies of the four MI tasks for ten
subjects are 99.57% (T1), 97.30% (T2), 95.70% (T3), and 96.92%

(T4), respectively. T1 has the highest accuracy, it is indicative that
the classification effect of the left fist is the best. The accuracy of
T3 is the lowest, it indicates that the classification effect of both
fists is the worst. The highest accuracy on T1 is 99.92% (S8), while
the lowest is 98.93% (S6). The highest accuracy on T2 is 99.68%
(S4) and the lowest is 93.18% (S7). The highest accuracy on T3
is 99.56% (S10), while the lowest is 90.91% (S8). The highest
accuracy on T4 is 99.34% (S5), while the lowest is 92.86% (S3).
According to the above results, it can be found that our proposed
method achieves higher accuracy on S1-S10 and its fourMI tasks.

During the CNN training iteration process, the accuracy
curves of the ten subjects are shown in Figure 3A. The accuracy
of an individual subject increases rapidly during the first 200
iterations and slows down during the 200–600 iterations. After
600 iterations, the accuracy can reach a stable state. The accuracy
curve of the whole iterative process is relatively smooth with less
burr. It shows that as the number of iterations increases, our
proposed dual-CNN can achieve high classification accuracy and
high stability.

The receiver operating characteristic (ROC) curves of 10
subjects are shown in Figure 3B, which is used to evaluate
the classification model. The area under the ROC curve is
represented by AUC, and the value range is between 0.5 and 1.
The closer the AUC is to 1.0, the better the classification effect
is. Among the 10 subjects, the best classification model is S4,
with an AUC value of 0.999, and the worst classification model
has an AUC value of 0.995 (S7). It can be seen the proposed
method has achieved better generalization performance and
higher classification effect in different subjects.

3.2. Classification Accuracy of Group-Level
Subjects
We also conducted a group-level experiment of 10 subjects
to obtain the classification performance. In this part, first, we
divided the data of each subject into two groups: the training
set and the test set. T1-T4 of each subject are randomly divided
into 10 equal parts, 9 parts are mixed uniformly to become the
training set, and the remaining part is randomly shuffled into
the test set. The training set of each subject is mixed to form
the final training set, and the test set of each subject is mixed
to form the final test set. Then we used five index evaluations to
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FIGURE 3 | Performance comparison of 10 subjects. (A) Accuracy comparison. (B) Receiver operating characteristic (ROC) curve comparison.

FIGURE 4 | Classification performance of 10 subjects. (A) Evaluation metrics. (B) Confusion matrix for the accuracy of 4 motor imagery (MI) tasks.

measure the effectiveness of classification, as shown in Figure 4A,
accuracy, kappa, precision, recall, and F1-score are 96.36, 95.23,
96.62, 96.27, and 96.44%, respectively.

The confusion matrix in Figure 4B shows the accuracy of
the 4 MI tasks at the group-level. The values on the diagonal
of the confusion matrix are the correct classification, and the
other values are the wrong classification. The accuracies of 4 MI
tasks are 98.54 (T1), 95.02 (T2), 93.66 (T3), and 96.19% (T4),
respectively. It can be seen the proposed method can also achieve
good performance in group-level classification.

3.3. Comparison of Classification Models
In order to solve the problem of overfitting, spatial dropout
and BN were used in our proposed model. Dropout refers to
the random “temporary dropping” of a part of neuron nodes
with a certain probability in training. Different neurons are
then combined with each other for optimization during each
training process. This process weakens the joint adaptability of
all neurons and reduces the risk of overfitting. BN enhances
the generalization ability of the model by imposing additional
constraints on the distribution of data.
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TABLE 3 | Performance comparison of different convolutional neural network (CNN) models.

Model Accuracy (%) kappa (%) Precision (%) Recall (%) F1-score (%)

Proposed model 96.36 95.23 96.62 96.27 96.44

Model without dropout 94.06 90.74 94.32 93.82 94.07

Model without BN 90.77 89.02 90.51 91.20 90.85

Model without 86.39 82.24 86.77 86.13 86.45

dropout & BN

FIGURE 5 | Performance comparison of different models. (A) Accuracy comparison. (B) ROC curve comparison.

In this article, we compared the performance of our proposed
models with three different models based on the data set of 10
subjects at group-level. Table 3 compared the performance of the
four models with five evaluation indicators. The accuracy, kappa,
precision, recall, and F1-Score of our proposed model are 96.36,
95.23, 96.62, 96.27, and 96.44%, respectively, which are higher
than othermodels, so its performance is better than othermodels.

Figure 5A is a comparison of the global average accuracy
of the four models. It can be seen that all models can reach a
stable state after iteration. Currently, the proposed model has the
highest accuracy of 96.36%, followed by 94.06% for the model
without dropout, 90.77% for the model without BN, and 86.39%
for the model without dropout and BN. Figure 5B is the ROC
curve and AUC curve of the four models. The model proposed
in this paper has the largest AUC value, 0.996, which is the
closest to 1, and the classification effect is the best. The accuracy
curve and ROC curve of the CNN model we proposed to solve
the overfitting problem are the smoothest and with the smallest
burr. In addition, the values of various evaluation metrics are the
highest, and the AUC value is also the highest when reaching the
stable state after iterations. When the iteration reaches a stable
state, the five evaluation indicators of accuracy, kappa, precision,
recall, and F1-score are all the highest, and the AUC value is
the largest. The performance of our proposed model is the most
stable, and it does improve the classification effect.

3.4. Comparison of Loss on Test Data
Figure 6A shows the loss function curve of ten individual
subjects on the test set, whose loss values decrease with the
increase of iteration times. When the number of iterations is
about 600, the loss values remain basically stable. Thus, the
optimal testing effect can be obtained, and it can be seen that
our model is convergent during testing. Figure 6B shows a
comparison of the loss function curve of different classification
models on the test set of group-level subjects. The loss values of
the four curves decrease with the increase of iteration times and
can reach equilibrium after 500 iterations. The blue curve is the
test loss function curve of the proposed model. Compared with
the other three models, it has the smoothest curve, the smallest
burr, and the smallest loss when it reaches the stable state. In
general, the proposed model has a good convergence effect on
the test set of the individual subject and group-level subjects.

3.5. Comparison With Other Works
Electroencephalogram signal has low amplitude and contains a
lot of noise, and there are differences between different subjects.
This article compared and analyzed our study with Handiru and
Prasad (2016), Azimirad et al. (2017), Dose et al. (2018), Athif
and Ren (2019), and Hou et al. (2019) in Table 4 under the
same database and the same MI task. The results show that our
method achieved the best results on both group-level subjects and
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FIGURE 6 | The loss function curve on test data. (A) Loss function comparisons of 10 individual subjects. (B) Loss function comparisons of different

classification models.

TABLE 4 | Performance comparison with other studies.

Work Training Accuracy (%) Methods

Azimirad et al. (2017) Global 81.00 SVM

Dose et al. (2018) Global 80.38 CNN

Subject 86.49

Athif and Ren (2019) Global 64.00 CSP

Hou et al. (2019) Global 94.54 ESI + CNN

Subject 94.50

Handiru and Prasad (2016) Global 61.01 SVM

This work Global 96.38 CNN

Subject 98.88

individual subjects, which indicates that the difference between
the left and right hemispheric on the cortex contains more
information related to MI tasks and that our CNN structure
is very helpful in improving the generalization performance of
the model.

In particular, the subjects used in theHou et al. (2019) partially
overlap with the subjects used in our article, which are S5-S10.
When the single subject is tested, the highest accuracies in Y.Hou
et al. are 94.6%(S5), 94.1%(S6), 95.0%(S7), 93.2%(S8), 95.5%(S9),
and 93.1%(S10). Then the accuracies of the method proposed in
this article are 97.14%(S5), 97.61%(S6), 96.23%(S7), 96.33%(S8),
97.34%(S9), and 98.81%(S10), which are higher than Hou et al. In
terms of real-time performance comparison, none of the articles
achieved real-time control.

4. DISCUSSION

4.1. Data Analysis
From Table 2 it can be found that the average accuracy of a single
subject in this article is up to 98.88%, which is an improvement

of 12 and 4% respectively compared with Dose et al. (2018) and
Hou et al. (2019). This proves the effectiveness of this method.
Specifically, Dose et al. only processes raw EEG signal, while
this article processes the region of interest on the cortex layer,
which shows that the preprocessing operation in this article
is effective. Hou et al. used single layer CNN to classify data,
which illustrates the feasibility and reliability of our proposed
dual-CNN. Figure 4 shows that the highest global accuracy rate
of this article is 96.38%, which is also higher than Dose et al.
and the Hou et al. In addition, our group-level accuracy is also
higher than other articles in Table 4, which proves that the
dual-CNN proposed in this paper has a significant effect on
MI-BCI classification.

4.2. Limitations of the Proposed Method
The time spent on data processing and classification using
neural networks is related to the amount of data, the complexity
of the network structure, and the performance of computer
equipment. When using CNN to process MI data, each learning
iteration during the CNN training will take some time. At
present, this paper cannot detect and classify MI tasks in real-
time. Therefore, Figure 3 still uses learning iterations during
CNN training, instead of using time as the abscissa axis.
But it is meaningful that the number of iterations is also
another manifestation of time, which means that as time
increases, our classification accuracy will continue to increase
and eventually reach a stable state. With the improvement
of computer performance, it will take less and less time for
us to reach a stable state. Therefore, in the classification of
non-real-time MI-BCI, it is also a good way to display the
performance of the method with the number of iterations. There
is still scope for simplifying the network structure, which will
be investigated in the future. Also, it would be interesting in
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the future to employ the current method for real-time online
BCI experiments.

5. CONCLUSION

The key objective of the study presented in this article is to
investigate themethod of high classification accuracy onMI-EEG
signals. This article proposed a newMI classification method that
combines the difference between the left and right hemispheric
electrodes on the cortex and dual-CNN. Using the Physionet
database as the data source, restored the raw EEG signal from
the low-density EEG scalp measurement, mapped nine pairs
of electrodes from the scalp layer to the cortex layer as the
region of interest, and extracted the time series of nine pairs
of electrodes signals as the input of the proposed dual-CNN
classificationmodel. The results demonstrated that theseMI tasks
can be classified with high accuracy by the difference between
the signals left and right hemispheric electrodes, and CNN plays
an important role in improving generalization performance. The
BCI system of MI based on left and right hemispheric electrodes
and CNN can be applied in the daily life of all subjects. The results

suggested that the classification accuracy of the proposed method
is substantially higher than all other methods used in this study.
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Structural magnetic resonance imaging (MRI) features have played an increasingly crucial

role in discriminating patients with Alzheimer’s disease (AD) andmild cognitive impairment

(MCI) from normal controls (NC). However, the large number of structural MRI studies only

extracted low-level neuroimaging features or simply concatenated multitudinous features

while ignoring the interregional covariate information. The appropriate representation

and integration of multilevel features will be preferable for the precise discrimination

in the progression of AD. In this study, we proposed a novel inter-coupled feature

representation method and built an integration model considering the two-level (the

regions of interest (ROI) level and the network level) coupled features based on structural

MRI data. For the intra-coupled interactions about the network-level features, we

performed the ROI-level (intra- and inter-) coupled interaction within each network

by feature expansion and coupling learning. For the inter-coupled interaction of the

network-level features, we measured the coupled relationships among different networks

via Canonical correlation analysis. We evaluated the classification performance using

coupled feature representations on the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database. Results showed that the coupled integration model with hierarchical

features achieved the optimal classification performance with an accuracy of 90.44%

for AD and NC groups, with an accuracy of 87.72% for the MCI converter (MCI-c)

and MCI non-converter (MCI-nc) groups. These findings suggested that our two-level

coupled interaction representation of hierarchical features has been the effective means

for the precise discrimination of MCI-c from MCI-nc groups and, therefore, helpful in the

characterization of different AD courses.

Keywords: coupled interaction representation, hierarchical features, classification, mild cognitive impairment,

Alzheimer’s disease, structural MRI
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most severe
neurodegenerative dementias in the elderly, and mild cognitive
impairment (MCI) is a prodromal stage with a higher risk of
progression to AD in patients with MCI than normal controls
(NC) (Dona et al., 2016; Arbabshirani et al., 2017; Zhang et al.,
2021a). Neuroimaging techniques provide objective and effective
tools to study the human brain and have been widely used in
the diagnosis of AD or MCI from NC. Neuroimaging studies
have shown remarkable structural and functional alterations in
the human brain during the course of AD (Vemuri and Jack,
2010; Rathore et al., 2017; Leandrou et al., 2018). Structural
magnetic resonance imaging (MRI) studies have extracted
hierarchical features [the voxel level, the regions of interest
(ROI) level, or the network level] as explicit variables to
discriminate AD and MCI from NC. However, a large number
of structural MRI studies only extracted low-level features, or
simply concatenated multitudinous features, while ignoring the
interregional covariate information among features (Anstey and
Maller, 2003; Yang et al., 2011; Moradi et al., 2015; Hu et al.,
2016; Rathore et al., 2017; Rondina et al., 2018), so they cannot
fully exploit the latent and complex information integrated with
hierarchical features. The effective feature representations help
to enhance the performance of classification. Therefore, the
appropriate representation and integration of multilevel features
will be preferable for the precise discrimination of AD, MCI,
and NC.

Based on structural MRI data, researchers extracted
hierarchical imaging features, such as the gray matter (GM)
density as the voxel-level features (Moradi et al., 2015; Zeifman
et al., 2015), the average gray matter volume (GMV) of brain
regions as the ROI-level features (Shi et al., 2014; Hu et al.,
2016), or the independent components (ICs) from independent
component analysis (ICA) as brain network-level features
(Yang et al., 2011). Moradi et al. considered the smoothed
GM density from structural MRI data as voxel-level features
for AD conversion prediction in subjects with MCI (Moradi
et al., 2015). In comparison with the voxel-level features with
redundant information but expensive computation, ROI-level
features significantly reduce the dimensionality of brain imaging
data by uniting the structural adjacent voxels. The GMV from
different ROIs has been applied as an independent variable to
investigate the predictive power for distinguishing AD with
MCI (Zhang et al., 2011) and classifying AD from NC (Rondina
et al., 2018). ICA is a data-driven approach that decomposes
the whole-brain voxel-vise information into a few maximally
independent components based on inter-regional covariance
relationships. The brain GM networks obtained from ICA have
been considered as brain network-level features to differentiate
individuals with AD and NCs, thus providing new avenues for
the network-level features in AD classification (Yang et al., 2011;
Wei et al., 2016). However, it has been noted that ROI-level
features in the same network exhibited more complicated
regional dependencies than those in different brain networks
(Liu et al., 2017a; Rathore et al., 2017; Filippi et al., 2020; Feng
et al., 2021). Nevertheless, the aforementioned studies mostly

constructed classification models using the single level of features
separately while neglecting the complex interaction relationships
among multilevel features.

There were explicit and hidden coupled interactions, much
more abundant than simple linear correlation among attributes
or features of objects in many domains, like the recommender
systems (Wang and Cao, 2020; Zhang et al., 2021b), outlier
detection (Pang et al., 2016), and pieces of neuroscience research
(Shi et al., 2014, 2015, 2020). Many coupled analysis models
were proposed to analyze the explicit and hidden couplings and
revealed the non-independent and identical distribution (non-
IIDness) characteristics for different data types (Wang et al.,
2013, 2015a,b). For numerical data,Wang et al. detailed the intra-
coupled interaction to capture the correlations between a feature
and its own expanded powers and the inter-coupled interaction
to quantify the interactive relationships among each feature and
the expanded powers of the other features (Wang et al., 2013).
A few imaging studies investigated AD classification with the
coupling characteristics of the ROI-level features (Shi et al., 2014,
2020). Although such studies demonstrated high accuracy for
AD, MCI, and NC classifications with coupled feature analysis,
they still weakened or overlooked the coupled relationship at
network-level features. The ROI-level features within the same
network strongly interacted with each other (Brickman et al.,
2007). Different brain networks collaborated with each other and
carried explicit or implicit relationships (Betzel et al., 2014; Zuo
et al., 2017). Consequently, greater effort should be focused on
designing an appropriate coupled interaction model to integrate
the ROI-level and network-level coupling relationships.

To integrate the intrinsic coupling relationships of the ROI-
level and network-level features from structural MRI data, we
proposed a novel inter-coupled feature representation method
for the network-level features and built a two-level (the ROI
level and the network level) coupled feature integration model
for AD, MCI, and NC classification. For the intra-coupled
interactions about the network-level features, we performed
the ROI-level (intra- and inter-) coupled interaction within
each network by feature expansion and coupling learning. For
the inter-coupled interaction of the network-level features, we
introduced the measurement of the coupled relationships among
different networks via Canonical correlation analysis (CCA).
We compared the identification performances in AD, MCI, and
NC classification with different feature representation models.
We hypothesized that two-level (the ROI level and the network
level) coupled feature integration models would achieve better or
comparable AD classification performance.

MATERIALS AND METHODS

Participants
This study included 121 patients with AD and 120 NC
subjects, and 126 MCI converters (MCI-c) and 108 MCI non-
converters (MCI-nc), with baseline structural MRI data from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The up-to-date information on ADNI’s
general inclusion criteria is described at www.adni-info.org.
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TABLE 1 | The characteristics of participants with AD, NC, MCI-c, and MCI-nc.

AD (n = 121) NC (n = 120) MCI-c (n =

126)

MCI-nc (n =

108)

Age (years) 74.87 ± 8.07 75.26 ± 6.52 73.47 ± 7.23 73.33 ± 7.73

Gender (M/F) 70/51 58/62 77/49 69/39

Education

(years)

15.72 ± 2.61 16.43 ± 2.74 16.09 ± 2.64 15.89 ± 2.63

MMSE score 21.71 ± 3.94 29.18 ± 0.98 26.88 ± 1.76 28.06 ± 1.75

APOE ε4

(NC/HT/HM)

41/80/0 79/33/8 37/65/24 67/35/6

ADAS-cog

score

21.52 ± 7.96 5.76 ± 3.02 13.60 ± 4.64 8.03 ± 3.47

Conversion

time (years)

– – 1.48 ± 0.69 –

AD, Alzheimer’s disease; NC, normal control; MCI, mild cognitive impairment; MCI-

c, MCI converter; MCI-nc, MCI non-converter; M/F, male/female; MMSE, Mini-Mental

State Examination; APOE, apolipoprotein E; NC, non-carrier; HT, heterozygote; HM,

homozygote; ADAS-cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale.

Briefly, the subjects were between 55 and 90 years of age.
General group inclusion/exclusion criteria were as follows: (1)
NC subjects: Mini-Mental State Examination (MMSE) scores
between 26 and 30, a Clinical Dementia Rating (CDR) score
of 0, non-depressed, non-MCI, and non-demented; (2) AD
subjects: MMSE scores <26, a CDR score of 0.5 or 1, and
met the National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS/ADRDA) criteria for probable
AD diagnosis; and (3) MCI subjects who had a CDR score of 0.5,
MMSE scores between 21 and 30, and memory complaints and
abnormal memory function according to the Logical Memory II
subscale (Delayed Paragraph Recall but an absence of dementia.
The patients with MCI who converted to AD within 3-year
follow-up were classified into the MCI-c group; otherwise, they
were classified into theMCI-nc group.With respect to the gender
ratio and age, the AD group did not significantly differ from the
NC group (p = 0.14 in the gender ratio and p = 0.68 in age),
and theMCI-c did not significantly differ from theMCI-nc group
(p = 0.66 in the gender ratio and p = 0.20 in age). However,
the AD group exhibited significantly lower MMSE scores (p =

1.25 E − 42) than the NC group. Table 1 lists the demographics
of all these subjects.

Structural MRI Data Acquisition
Structural MRI images were acquired from multiple sites
and platforms with different acquisition parameters, which
can be found at http://adni.loni.usc.edu/methods/documents/
mriprotocols/. The T1-weighted magnetization prepared rapid
gradient echo (MPRAGE) images of all these subjects were
obtained from 1.5T or 3T scanners. For intensity non-
uniformity and gradient nonlinearity correction, the grad warp,
B1 calibration, and N3 correction were implemented on each
structural MRI image. The processed NIFTI images were
downloaded for this study. Details of the protocols of MRI image
correction can be found at http://adni.loni.usc.edu/methods/
mri-analysis/mri-pre-processing/.

Image Preprocessing
All of the spatial preprocessing of structural MRI images
was performed via Statistical Parametric Mapping (SPM8)
software (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/) in
MATLAB. The Voxel-Based Morphometry (VBM) Toolbox
(http://dbm.neuro.uni-jena.de/wordpress/vbm/download/) was
used for the automated segmentation and normalization of
structural MRI images. First, each image was segmented into
three parts: GM, white matter, and cerebrospinal fluid (CSF)
(Rajapakse et al., 1997; Manjón et al., 2010). A de-noising
filter and a classical Markov random field (MRF) approach
were implemented to further improve the segmentation effect
(Ashburner, 2007). Then, GM images were normalized by the
Diffeomorphic Anatomical Registration using Exponential Lie
Algebra (DARTEL) protocol and transformed into the Montreal
Neurological Institute (MNI) space (Ashburner, 2007). Finally,
all the subjects’ GM images were smoothed with a kernel of 8-mm
full width at half maximum (FWHM).

Feature Extraction
In this study, the brain network-level features were extracted via
ICA using the Fusion ICA toolbox (FIT) (https://trendscenter.
org/software/fit/). The GM images of the AD and NC groups
were decomposed into a mixing coefficient matrix and a source
matrix with the Minimum Description Length (MDL) criteria
to estimate the optimal number of ICs. Each row of the
source matrix represents an IC, and each column of the mixing
coefficient matrix represents the contribution of each subject to
the corresponding IC. A two-sample t-test was performed on
the mixing coefficient of each IC, and then these IC maps with
significant between-group differences were converted to a z-score
brain map and reshaped to a binarization mask with a threshold
Z ≥ 3. For each IC, the main brain clusters were reported based
on the Anatomical Automatic Labeling (AAL) atlas. For each
subject in the AD, MCI-c, MCI-nc, and NC groups, only the top
3 ROIs ranked by the cluster size were selected as the ROI-level
features within each network. The average GMV of each ROI
falling into the brain network template was regarded as the ROI-
level original feature value. The average GMV of voxels within
each binarization network template was calculated as the value of
network-level original features.

Two-Level Coupled Feature Representation
We took the AD and NC groups as an example to illustrate
the implementation of coupled feature representation at the
ROI level and the network level. The two-level coupled feature
representations of the MCI-c andMCI-nc groups were generated
using the same method as the AD and NC groups.

Suppose that there are m1 samples in the AD group and
m2 samples in the NC group (M = m1 + m2), we assume that
there are N ROI-level original features and L brain network-level
original features for each subject. For the lth brain network, if
there are n ROI-level original features (n × L = N), and the
numerical value of the kth ROI-level features of the ith subject

is denoted as z
(l)
i,k
, then the ROI-level original feature vector can

be represented as z
(l)
i ∈ R

n =

[

z
(l)
i,1, z

(l)
i,2, · · · , z

(l)
i,n

]

. The whole
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ROI-level original feature vector for the ith subject is zi ∈ R
N =

[

z
(1)
i , z

(2)
i , · · · , z

(L)
i

]

. For the ith subject, the brain network-level

original feature vector is vi ∈ R
L =

[

vi,1, vi,2, · · · , vi,L
]

, and
the numerical value of the jth network-level features is denoted
as vi,j. The superscript ⊤ represents a transpose operator of a
vector or a matrix. In particular, we considered two levels of
feature representation with theOriginal FeaturesMatrix (OFM):
ZOFM = [z1, · · · , zM]⊤ ∈ R

M×N and VOFM = [v1, · · · , vM]⊤ ∈

R
M×L as follows:
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and VOFM =
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Compared with the prior ROI-level coupled feature
representation method (Shi et al., 2014), the present study
proposed a novel two-level coupled feature representation
method that attempted to investigate the complex coupling
relationship of both the network-level feature matrix VOFM

and the ROI-level feature matrix ZOFM for the identification
of NC and AD using structural MRI data. We illustrated and
schematized our framework in Figure 1 compared with the
previous ROI-level coupled interaction representation method
(Shi et al., 2014).

The Network-Level Intra-coupled Interactions
We illustrated the method of performing the network-level intra-
coupled feature representation by the ROI-level feature matrix of
the lth brain network as an example.

Referring to previous study about the coupled
attribute analysis on numerical data (Wang et al.,
2013), the ROI-level feature vector of each brain

network, z
(l)
i , was mapped into the expanded feature

space, employing a matrix expansion with E1 power
as follows:

[
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]

,

and we can represent the ROI-level Extended Features Matrix
(EFM) of this brain network as follows:

Next, the Pearson’s correlation coefficient, R, between each pair
of the ROI-level features of ZEFM, was calculated as the network-
level intra-coupled weight matrix to reflect the ROI-level (intra-
and inter-) coupled interactions within each brain network from
both the linear and non-linear aspects. If the p-value of R was
>0.05, the correlation coefficient was revised to 0. In this way,
Rintra describes the correlation between the kth ROI-level original
feature and its own expanded powers, and Rinter describes the
pairwise correlation between the kth ROI-level feature and all the
expanded powers of the others, as follows:
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where γpq is the revised Pearson’s correlation coefficient between

the pth and qth power of the kth ROI-level original feature,
〈

z
(l)
:,k

〉p

and
〈

z
(l)
:,k

〉q
, respectively, and δ

k,τ
pq is the revised Pearson’s

correlation coefficient between
〈

z
(l)
:,k

〉p
and

〈

z
(l)
:,τ

〉q
(k 6= τ ).

For the lth brain network from the ith subject, the network-

level intra-coupled feature vector can be represented as u
(l)
i ∈

R
(n×E1). The expanded vector of the kth ROI-level feature is

zintraEFM (i) =

[
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,
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, and the expanded

Frontiers in Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 90252873

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu et al. Coupled-Feature Representation for AD Classification

FIGURE 1 | A scheme of the proposed framework of two-level coupled interaction representation of neuroimaging features.

vector of other features is

zinterEFM (i) =
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)

.

Finally, the kth ROI-level coupled feature vector of the ith subject
for the lth brain network is denoted as follows:

u
(l)
i

(

k
)

= zintraEFM (i) ⊙ ω ⊗
[

Rintra
(

k
)]T

+zinterEFM (i) ⊙

n−1
︷ ︸︸ ︷

[ω,ω. . . . ,ω]⊗
[

Rinter
(

k
) ]T

,

where ω =

[

1
1! ,

1
2! , · · · ,

1
E1!

]

,

Then, the network-level intra-coupled feature matrix (CFM)
of the lth brain network for the ith subject is:

u
(l)
i =

[

u
(l)
i (1) , u

(l)
i (2) , . . . , u

(l)
i (n)

]

∈ R
(n×E1 ).

The network-level intra-coupled feature vector of the ith subject
is the concatenation of all networks’ coupled features vectors,
as follows:

Ui =

[

u
(1)
i , u

(2)
i . . . . . . , u

(L)
i

]

∈ R
(N×E1).

Note that the interactions on ROIs belonging to different
networks are not included.

The Network-Level Inter-Coupled Interactions
For the network-level inter-coupled representation, we can
represent the CFM as F ∈ R

M×L with the first E2
coefficients from CCA. In contrast to the network-level intra-
coupled feature representation used with the revised Pearson’s
correlation coefficient, we chose the CCA coefficients as the
coupling weights matrix for the network-level coupled feature
representation. CCA is a way of inferring information from
cross-covariance matrices of different network-level features.
The canonical correlation for the canonical variate pairs
from any two network-level ZOFM

(l) is as follows: wl1l2 =

RCCA

(

ZOFM
(l1),ZOFM

(l2)
)

, (l1 6= l2), which can represent the

inter-coupled interactions of different network-level features.
The top E2 canonical correlations are used for inter-coupled
interactions description rather than simply involving the whole

wl, revised as w̃l = R̃CCA

(

ZOFM
(l1),ZOFM

(l2)
)

. For the whole

brain, the network-level inter-coupled feature vector of the ith
subject is denoted as follows:

fi (w) = VEFM (Wl) ⊙

L−1
︷ ︸︸ ︷

[ω,ω. . . . ,ω]⊗ w̃l,

where ω =

[

1
1! ,

1
2! , · · · ,

1
E2!

]

and fi =

[fi (1) , fi (2) , · · · , fi (L)] ∈ R
L.
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To obtain the coupled feature representation at two levels,
the final CFMnetwork for the ith subject can be represented as
follows: [Ui, fi] ∈ R

(N×E1+L ).

Classification With Coupled Features
Boosting is a machine learning approach based on the idea
of improving the accuracy of a decision by combining many
relatively weak base learners (Schapire, 2013). The AdaBoost
algorithm works by updating parameters of feature distribution
in weak learners over training samples after each iteration
sequentially and adaptively (Freund and Schapire, 1997; Collins
et al., 2002). In this study, the two-level coupled feature matrix
was represented for the following classification analysis. We
chose an SVM classifier with a linear kernel function as the base
learner. In total, L + 1 base learners were trained, of which the L
base learners were trained for different brain network-level intra-
coupled features, and one was trained for the brain network-level
inter-coupled matrix.

We carried out separate analyses on two tasks: AD vs. NC
and MCI-c vs. MCI-nc classification. First, the boosting models
were constructed on the two-level Coupled Features Matrix,
denoted as CFMnetwork for AD vs. NC, and MCI-c vs. MCI-
nc classification. The 10-fold cross-validation was applied to
evaluate the performance, and the average results were reported.
In our two-level coupled feature representation and classification
scheme, several parameters need to be set, including E1 for
the parameter of network-level intra-coupled expansion and E2
for network-level inter-coupled coefficient selection. Here, the
optimal values of E1 and E2 were searched from a small set of
{2, 3, 4} and {1, 2, 3, 4, 5}, respectively.

We also constructed three other kinds of feature matrices
separately: (1) The ROI-level Original Features Matrix only,
denoted as OFMROI; (2) the ROI-level Coupled Features Matrix
across the whole brain without the network-level information,
denoted as CFMROI; and 3) the network-level Original Features
Matrix without coupling interaction information, denoted
as OFMnetwork . To validate the advantage of the two-level
coupled feature representation, we compared the classification
performances with these three different brain features.

RESULTS

The number of estimated ICs was 49 for the AD and NC groups
with the structural MRI data, and 21 ICs showed significant
between-group differences with Bonferroni correction. The
results of our two-level coupled feature representation and the
classification model showed that the best prediction accuracy is
90.44%, sensitivity is 88.5%, and specificity is 93.67% for AD
and NC groups and the best prediction accuracy is 87.72%,
sensitivity is 84.16%, and specificity is 91.64% for the MCI-c and
MCI-nc groups.

Based on the two-level coupled feature representation,
Tables 2, 3 show the classification results and give the detailed
results of the best parameters of E1 and E2 as references for future
studies.When E1 and E2 were set as 3 and 2, the two-level coupled
feature representation achieved the best performance for AD vs.

NC classification. The same parameter selection is applicable to
the MCI-c vs. MCI-nc distinction.

The results of the comparison for four different brain feature
representations for AD and NC classification are shown in
Table 2. The best classification accuracies for different features
are 69.21% for OFMROI, 73.51% for CFMROI, 71.29% for
OFMnetwork, and 90.44% for CFMnetwork. Table 3 shows the
results of the classification performances for the four kinds of
feature matrices for the MCI-c and MCI-nc classification. The
best classification accuracies for different features are 64.15%
for OFMROI, 75.10% for CFMROI, 68.62% for OFMnetwork, and
87.72% for CFMnetwork.

DISCUSSION

The current study proposed a novel network-level inter-coupled
representation approach, integrated the intrinsic coupled
relationships of both the ROI-level and the brain network-
level features, and then applied them to the classification of
subjects with AD, MCI-c, and MCI-nc from the normal elderly
individuals based on structural MRI data. By integrating the
intra- and inter-coupled interactions among the ROI-level and
network-level features, we obtained the innovative coupled
neuroimaging features, CFMnetwork and achieved the optimal
classification accuracy for both AD vs. NC and MCI-nc vs.
MCI-c classification compared with the OFMROI, CFMROI,
and OFMnetwork . These results indicated the effectiveness
of the coupled interaction representation among different
levels of neuroimaging features. Furthermore, the best-coupled
expansion parameter E1was 3 for the network-level intra-coupled
interaction, and the best-coupled coefficient selection E2 was 2
for the network-level inter-coupled interaction.

Two-Level Coupled Feature Representation
for AD and NC Classification
In the current study, we explored the coupled interaction
representation of two-level (the ROI -level and the network-
level) neuroimaging features on structural MRI data. For
AD and NC classification, the OFMnetwork representation
obtained slightly better performance (accuracy = 71.29%)
than the OFMROI representation (accuracy = 69.21%), and
the CFMnetwork representation achieved much greater accuracy
(accuracy = 90.44%) than the CFMROI representation (accuracy
= 73.51%). Overall, the network-level feature representations
showed preferable results to the ROI-level features, which
suggested the advantages of the network-level features in the AD
classification task. A number of studies built classificationmodels
to distinguish patients with AD from NCs based on the single-
level features from brain neuroimaging data, such as the ROI-
level features (Zhang et al., 2011; Zhan et al., 2015; Rondina
et al., 2018) or the network-level features (Yang et al., 2011).
For example, to identify the conversion from normal elderly
cognition to AD, Zhan et al. defined 90 ROIs and computed
the mean GMV as the ROI-level feature matrix and achieved an
accuracy of 83.83% (Zhan et al., 2015). The ROI-level features
computed by the ratio of increased GMVhave also been extracted
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TABLE 2 | Classification results for AD vs. NC with different kinds of feature representations.

Feature representation OFMROI OFMnetwork CFMROI CFMnetwork

Parameters setting E1 = 2 E1 = 3 E1 = 4 E1 = 2 E1 = 3 E1 = 4

E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5 E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5 E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5

ACC (%) 69.21 71.29 73.51 71.77 68.27 71.2 76.84 81.72 76.09 70.85 85.02 90.44 83.3 77.94 72.47 77.47 87.32 81.13 75.19 70.2

SEN (%) 67.29 67.72 69.32 69.57 64.03 68.67 74.12 76.75 72.41 68.29 82.28 88.5 81.08 74.04 68.01 79.4 85.72 77.42 71.01 67.18

SPE (%) 71.60 73.20 75.42 74.02 70.57 73.9 79.61 83.57 80.62 73.16 87.75 93.67 86.1 80.07 74.51 81.13 90.04 84.91 77.38 72.55

OFMROI, the original ROI-level feature representation; OFMnetwork , the original network-level feature representation; CFMROI, the coupled ROI-level feature representation; CFMnetwork , the two-level feature representation; Acc, accuracy;

Sen, sensitivity; Spe, specificity. The values with the highest accuracy are highlighted in boldface. The shadow of gray color is used to visually differentiate columns of the table.

TABLE 3 | Classification results for MCI-c vs. MCI-nc with different kinds of feature representations.

Feature

representation

OFMROI OFMnetwork CFMROI CFMnetwork

Parameters

setting

E1 = 2 E1 = 3 E1 = 4 E1 = 2 E1 = 3 E1 = 4

E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5 E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5 E2 = 1 E2 = 2 E2 = 3 E2 = 4 E2 = 5

ACC (%) 64.15 68.62 75.10 73.81 71.31 70.24 72.38 78.92 76.07 73.25 80.75 87.72 82.31 74.59 71.76 71.22 78.63 79.41 75.71 70.65

SEN (%) 62.30 66.44 72.23 70.54 67.90 66.21 69.70 75.92 73.82 70.61 78.42 84.16 78.73 72.16 69.02 68.78 76.23 77.20 71.02 68.99

SPE (%) 66.74 71.46 79.42 76.42 73.54 72.44 76.07 81.13 79.16 77.25 84.57 91.64 84.79 79.85 75.59 75.28 81.78 82.18 78.29 73.06

OFMROI, the original ROI-level feature representation; OFMnetwork , the original network-level feature representation; CFMROI, the coupled ROI-level feature representation; CFMnetwork , the two-level feature representation; Acc, accuracy;

Sen, sensitivity; Spe, specificity. The values with the highest accuracy are highlighted in boldface. The shadow of gray color is used to visually differentiate columns of the table.
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from structural MRI data, and they obtained a classification
accuracy of 76.11% between AD and NC (Rondina et al., 2018).
Different from them, Wang et al. considered the corresponding
coefficients of ICs decomposed using the ICA algorithm as the
network-level features and got 80.7% accuracy with the SVM
classifier for the diagnosis of individuals with AD and HC
(Yang et al., 2011). In this study, we not only extracted the
ROI-level features but also obtained the network-level features
and integrated them. Although the measurements or definitions
of original features in our study were different from those in
the prior studies, our study attempted to integrate hierarchical
features from sMRI for the classification of AD and NC.

Compared with the original features (OFMROI and
OFMnetwork), the coupled features (CFMROI and CFMnetwork)
helped improve the classification results in this study. Among
the four kinds of feature representations, the CFMnetwork

obtained the best classification performance of AD and NC
(accuracy = 90.44%), which demonstrated the strengths of
the integration of multilevel (the ROI level and the network
level) coupled interaction representation of hierarchical features.
It has been demonstrated that there were strong couplings,
including the relations that exist explicitly or implicitly between
source and destination entities, among values, attributes, and
objects for numerical data (Wang et al., 2013; Cao, 2015).
Wang et al. introduced the framework to quantify and integrate
the intra-coupled and inter-coupled interactions with the
original information from numerical data (Wang et al., 2013).
Many studies indicated that the original neuroimaging features
exhibited complex regional dependencies, and the features
in different brain networks changed diversely along with the
progression of MCI and AD (Liu et al., 2017c; Zheng et al.,
2019; Lee et al., 2020). Inspired by these pieces of research,
we quantitatively measured the network-level intra-coupled
relationships and proposed the network-level inter-coupled
interaction feature representation. Recently, several studies
focusing on the coupled interactions for ROI-level features have
been reported, in which they analyzed the ROI-level coupled
relationships and appealed to the coupling analysis for numerical
data (Shi et al., 2014, 2020). By hypothesizing that the ROI-level
features (the average GMV) were related to each other in some
ways, Shi et al. introduced the coupled interaction representation
for the ROI-level features and adopted the coupled boosting
algorithm to analyze the pairwise coupled-diversity correlation
between modalities with the best performance of 86.% for AD
and NC classification (Shi et al., 2014). Our model achieved
higher accuracy of 90.44%, which illustrated the advantages of
our two-level coupled interactions representation.

Two-Level Coupled Interaction
Representation for MCI-C and MCI-Nc
Classification
MCI is an intermediate stage in the trajectory from normal
cognition to AD and is important for the early diagnosis of
AD (Ahmed et al., 2017; Arbabshirani et al., 2017; Thung et al.,
2018). To classify MCI-c and MCI-nc, we integrated the intra-
coupled and inter-coupled interactions among the ROI-level

and network-level features with the best accuracy of 87.72%
compared with other feature representations. Considering the
GM density from structural MRI data as the voxel-level features,
Wang et al. obtained an accuracy of 69.77% for MCI-c vs. MCI-
nc based on informed Partial Least Square models (Wang et al.,
2016). Based on 38 subcortical volumes as ROI-level features,
Aleksandra et al. classified MCI vs. NC with the Random Forest
model (Lebedeva et al., 2017). Apart from the slight differences in
classifiers, a common practice in former studies was the straight
concatenation of all ROI-level features as independent variables
into the input feature matrix. However, these schemes lost sight
of the complicated dependencies among ROI-level features (Guo
et al., 2015) and the diversified and heterogenous changes for
different structural networks (Sui et al., 2014; Liu et al., 2017b).
Compared with the abovementioned studies, we believe that
the proposed two-level coupled interaction integration method
which was validated could be more powerful for the diagnosis of
MCI conversion to AD with promising results.

Methodological Considerations
ICA is a popular data-driven method to study brain functional
networks (Damoiseaux et al., 2012) and structural networks (Guo
et al., 2015; Liu et al., 2017c). The network-level features extracted
by ICA could effectively reduce the data dimensions and depend
entirely on brain neuroimaging data themselves without prior
knowledge. It has been confirmed that ROIs in the same brain
network carried similar and interregional covariate information
and exhibited more complicated regional dependencies than
those in different brain networks (Liu et al., 2017a; Filippi
et al., 2020; Wang et al., 2022). Thus, we performed ICA to
identify brain structural networks from AD and NC groups and
defined the representation of the network-level and ROI-level
neuroimaging features.

Then, we designed the two-level coupled interaction
integration of hierarchical features to evaluate the network-
level intra-coupled and inter-coupled effects in AD and MCI
classification. More specifically, we innovatively considered both
the network-level intra-coupled interaction for every network
individually, quantified by the intra-coupled and inter-coupled
interactions among the ROI-level features within this network
but not ROIs across the whole brain; and the network-level
inter-coupled interaction among different network-level features
was captured by the coupled coefficients between the ROI-level
feature set of this network and the ROI-level features set of
others. Besides, CCA can maximize the correlation between
a linear combination of the variables in two datasets and has
been applied to identify the relationship between brain networks
(Sui et al., 2012; Ouyang et al., 2015; Taquet et al., 2021). In
this study, CCA was performed on the ROI-level feature sets
of any two brain networks and obtained the inter-coupled
coefficients of network-level features to avoid reusing the
ROI-level features information for network-level coupled
interaction representation.

In the current study, E1was denoted as the maximal power
for the expansion of the ROI-level features in the network-level
intra-coupled interaction representation and E2 as the number of
the CCA coefficients selected to express the information for the
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network-level inter-coupled interaction representation. In this
way, we integrated the two-level coupled interactions, including
both the intra-coupled and inter-coupled interactions for both
the network-level and the ROI-level features. We set the range of
E1, from 2 to 4, and E2, from 1 to 5, respectively. When the value
of E1 increases, the value of E1! will grow correspondingly so will
E2!. The coupled interactions for feature values are quantified

by a Taylor-like expansion, ω =

[

1
1! ,

1
2! , · · · ,

1
E1!

]

. Along with

the increase of E1 and E2, the reciprocals,
1

E1!
and 1

E2!
, decreased

accordingly and caused the corresponding weight value of the
expanded items to be too small to capture the interactions among
different features. Furthermore, the greater E1 or E2 may have
less significant effects on the classification performance. Then,
the appropriate E1 or E2 helps to fully exploit the information
of coupled interactions within hierarchical features. As our
results indicated, the classification performance changed with
the variation of the two coupled interaction parameters. When
E1 = 3 and E2 = 2, the best result was obtained in this
tudy, which implied that the information of coupled interactions
within hierarchical features has been fully exploited. When E1 =
1, the number of the ROI-level features was still invariant, which
meant that the ROI-level coupled feature matrix was the original
ROI-level feature matrix without coupled interaction analysis.
When E1 increased, the number of ROI features increased with
E1-fold accordingly. When E1 was equal to 3, each ROI-level
feature was expanded three times in numerical space than the
original feature. The inter-coupled interaction parameter for
brain network-level features indicated that the first E2 pairs of
canonical variables via CCA were maximally adequate to express
the information among brain network-level features. When E2
was equal to 2, the top two coefficients of CCA were selected for
the network-level inter-coupled interaction representation. With
regard to the ROI-level and network-level coupled interactions of
parameters setting, we recommend E1 = 3 and E2 = 2 for similar
analysis in the future.

Limitations and Future Work
The current study focused on constructing a novel coupled
relationship representation to combine the ROI-level and
network-level features, and then, we only adopted the numerical
features from the structural MRI data. As different neuroimaging
modality features provide complementary information, the
coupled interactions of different modalities are heterogeneous
(Zhang et al., 2011; Rathore et al., 2017). The coupled
interactions based on multi-modality features are a novel issue
that needs more exploration. The representation and integration
of the intra-coupled interaction and inter-coupled interaction at
multilevels, including the modality level, the network level, and
the ROI level, will be investigated in future studies.

CONCLUSION

In the current study, we proposed a network-level inter-coupled
interaction representation approach with the independent
components from ICA as the network-level features and the CCA
weights for network-level inter-coupled characteristics. Then, we

integrated the ROI-level and network-level coupled interactions
based on structural MRI data to classify subjects with AD, MCI-
c, MCI-nc, and NC. Our results demonstrated that the two-
level coupled interaction feature representation outperformed
the original feature representation and the single-level coupled
representation and provided a perspective based on the coupled
interaction integration of hierarchical neuroimaging features.
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Anxiety disorders are the most prevalent mental disorders in the world, creating
huge economic burdens on health systems and impairing the quality of life for those
affected. Recently, ketamine has emerged as an effective anxiolytic even in cases
resistant to conventional treatments (TR); but its therapeutic mechanism is unknown.
Previous data suggest that ketamine anxiety therapy is mediated by reduced right
frontal electroencephalogram (EEG) theta power measured during relaxation. Here we
test for a similar theta reduction between population-sample, presumed treatment-
sensitive, (TS) anxiety patients and healthy controls. Patients with TS DSM-5 anxiety
disorder and healthy controls provided EEG during 10 min of relaxation and completed
anxiety-related questionnaires. Frontal delta, theta, alpha1, alpha2, beta, and gamma
power, Higuchi’s fractal dimension (HFD) and frontal alpha asymmetry (FAA) values were
extracted to match ketamine testing; and we predicted that the controls would have
less theta power at F4, relative to the TS anxious patients, and no differences in HFD
or FAA. We provide graphical comparisons of our frontal band power patient-control
differences with previously published post-pre ketamine TR differences. As predicted,
theta power at F4 was significantly lower in controls than patients and FAA was not
significantly different. However, HFD was unexpectedly reduced at lateral sites. Gamma
power did not increase between controls and patients suggesting that the increased
gamma produced by ketamine relates to dissociation rather than therapy. Although
preliminary, and indirect, our results suggest that the anxiolytic action of ketamine is
mediated through reduced right frontal theta power.

Keywords: anxiety disorders, ketamine, electroencephalography (EEG), theta frequency, response biomarker

INTRODUCTION

Anxiety disorders are the most prevalent psychiatric diseases in Europe and the United States
(Kessler et al., 2005, 2012), the sixth highest in terms of disability (Baxter et al., 2014), and
account for about 1/10 suicides (Baxter et al., 2014). They are a grave and ever-increasing burden
on healthcare resources (Kessler, 2007; Cryan and Sweeney, 2011; Maron and Nutt, 2017). Most
strikingly, anxiety disorders tend to start early in life (Cryan and Sweeney, 2011; Maron and Nutt,
2017) and often result in chronic impairment (Meyer, 2017). In Europe, work days lost because
of anxiety are higher than somatic disorders like diabetes (Bandelow and Michaelis, 2015). Across
36 large countries, anxiety and depression are expected to cost 12 billion days every year in lost
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productivity equivalent to a loss of US$925B (Chisholm et al.,
2016). A 1996 survey estimated the cost of anxiety disorders at
US$47B in the USA (DuPont et al., 1996; Kessler and Greenberg,
2002). But costs increase every year and, in 2004, the cost for
anxiety disorder in Europe was estimated at €41B (Bandelow
and Michaelis, 2015) while in 2010, the estimated cost jumped
nearly 5-fold to €200B (Olesen et al., 2012; Kalisch et al., 2017).
The COVID-19 pandemic significantly increased the number of
people diagnosed with anxiety disorders, with recent statistics
showing ∼35% of the total population in western societies
currently affected (Kowalczyk et al., 2021).

Key problems are that first-line conventional anti-anxiety
drugs (which are often also antidepressant) take a long time to
act on both anxiety (Bystritsky, 2006; Bandelow et al., 2008) and
depression (Muller et al., 2016), improve symptoms for only an
unpredictable subset of patients, and fail completely for both
anxiety and depression in about 1/3rd of patients (Nemeroff,
2007; Muller et al., 2016). Only some patients respond to the
first drug they try, and some do not show any improvement
even after trials with multiple drugs (Bystritsky, 2006; Aan
Het Rot et al., 2012). First line anxiolytic treatments produce
remission in 25–35% and response in 50–60% (Roy-Byrne, 2015),
so treatment resistance (TR) is common (Roy-Byrne, 2015;
Van Ameringen et al., 2017) and “30–60% of patients have
substantial and impairing remaining symptoms” (Bokma et al.,
2019). Benzodiazepines are more specific to anxiety (Roy-Byrne,
2015) but have similar TR problems (Cryan and Sweeney, 2011).

Hope is raised by ketamine. A single sub-anesthetic dose of
ketamine produces a clear therapeutic response in TR depression
within a few hours of administration, which lasts for about
a week (Aan Het Rot et al., 2012; Lai et al., 2014; Duman,
2018)—improving mood (Zarate C. A. et al., 2013), reducing
suicidal ideation (Duman, 2018), and preventing loss of life
(DiazGranados et al., 2010). Previously, we reported that low
dose ketamine is also effective in TR anxiety disorder—both
generalized (GAD) and social (SAD) (Glue et al., 2017). Ketamine
is also effective in OCD (Rodriguez et al., 2013), and PTSD (Feder
et al., 2014). Thus, most TR neurotic disorders may respond to
ketamine (McNaughton and Glue, 2020).

Unfortunately, we do not know the neural basis for the
therapeutic effects of ketamine. Ketamine is most obviously
a high potency N-methyl-D-aspartate non-competitive
glutamatergic antagonist (Zarate et al., 2006; Aan Het Rot
et al., 2012; Murrough et al., 2015; Duman, 2018); but, other
NMDA antagonists have not achieved: (1) rapid antidepressant
onset; (2) robust efficacy; (3) and sustained efficacy with a single
administration (Zarate and Machado-Vieira, 2017). We also
recently found no relation between the improvement of anxiety
symptoms in TR GAD/SAD and the levels of the ketamine and
its metabolites norketmaine (Glue et al., 2019).

However, there are other clues to the basis of ketamine’s
therapeutic action. We recently (Shadli et al., 2018) reported
effects on relaxation EEG in patients with TR GAD/SAD during
ketamine therapy. Ketamine increased high frequency EEG
power, and decreased low frequency power. Interestingly, only
the decrease in theta frequency band power at the right frontal
site F4 significantly correlated with the rapid changes in anxiety

measured by the Fear Questionnaire. These new patient findings
appear to fit with earlier preclinical and human data that link
anxiolytic action (Shadli et al., 2015) and anxiety disorder (Shadli
et al., 2021) to changes in task-elicited (as opposed to relaxation)
right-frontal theta-band EEG.

The aim of the present study was to assess whether the
reported relaxation EEG effects of ketamine (Shadli et al., 2018)
that correlated with its alleviation of anxiety disorder, match
relaxation EEG differences between non-anxious participants and
conventional anxiety disorder patients. Shadli et al. (2018), used a
variety of other EEG measures to analyze ketamine’s effects. These
measures were chosen by them because “in depressed patients,
ketamine specifically increases slow wave activity during sleep,
especially in those with low baseline slow waves, and this may
mediate its antidepressant effects (see Duncan and Zarate, 2013).
In healthy participants, it can reduce delta (1–3 Hz), theta (4–7
Hz) and alpha (8–15 Hz) band power, while increasing gamma
(> 32 Hz) band power (Hong et al., 2010; de la Salle et al.,
2016). But it can also increase theta power while decreasing alpha
power (Domino et al., 1965; Schűttler et al., 1987; Kochs et al.,
1996), particularly at frontal sites (Muthukumaraswamy et al.,
2015); so changes in bands can be interleaved, with decreased
delta, alpha and beta (16–31 Hz) mixed with increased theta and
gamma (Muthukumaraswamy et al., 2015; Rivolta et al., 2015).
. . . [So] we assessed EEG by quantitation of power in specific
frequency bands and by measures that show depression-related
changes: frontal alpha asymmetry (FAA; Allen et al., 2004; Stewart
et al., 2014; Mennella et al., 2017) and increased Higuchi’s fractal
dimension (HFD; Higuchi, 1988; Bachmann et al., 2013; Akar
et al., 2015).”

Shadli et al. (2018) found no relation between therapeutic
action and other power measures, FAA or HFD (Higuchi, 1988).
Only F4 theta changes were related to therapeutic effect. Here, we
hypothesized that healthy controls will have lower power in the
theta band at the F4 channel than the anxiety disorder patients
(but did not exclude other power changes). We also hypothesized
that anxiety disorder patients and controls would not differ on
FAA or HFD scores.

MATERIALS AND METHODS

There were 34 (26 female, 8 male) healthy and 47 (39
female, 8 male) patient participants recruited through online
advertisements on a local newspaper site, Facebook, and
advertisements in supermarkets. Healthy participants reported
no major illness in the past month, were not prescribed any
psychoactive medication in the previous 6 months, and had
not consumed alcohol in the 24 h prior to participating in the
study. The patient group consisted of individuals who reported
experiencing chronic symptoms of anxiety or fear, but were
not receiving any pharmacological treatments at the time of
recruitment. Participants were also excluded from this study if
they had any history of substance abuse or other neurological
disorders. All patients (29 GAD, 10 SAD, and 8 PTSD) went
through the Mini International Neuropsychiatric Interview
(MINI) diagnostic examination by a clinical psychologist in
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a separate session before having their electroencephalogram
(EEG) recorded. Similar to the control group, these participants
were otherwise healthy. They reported no significant illness in
the past month, no use of psychoactive medications in the
previous 6 months, and no consumption of alcohol in the
24 h before the experiment. All participants received petrol
vouchers ($30) in compensation for their time and travel costs.
The study was approved by the University of Otago Ethics
Committee (Health: H15/005), and all participants provided
written informed consent.

Questionnaires and Demographics
To avoid questionnaire fatigue, the questionnaires were
administered in two sets. The first set of questionnaires was
administered before EEG recording: the Spielberger State-
Trait Anxiety Inventory form-Y (Spielberger et al., 1983); the
Eysenck Personality Questionnaire-Revised (EPQ-R; Eysenck
and Eysenck, 1991); and the BIS scale items from the Behavioral
Activation System/Behavioral Inhibition System questionnaire
(Carver and White, 1994). The second set was administered after
the EEG recording, and contained a subset of scales from the
Personality Inventory of the DSM-5 (PID-5) (Anderson et al.,
2013). Table 1 represents the demographic details of patients and
healthy volunteers.

Electroencephalogram Recording
EEG data were recorded using a 32-channel Waveguard EEG
cap (ANT Neurotechnology, Netherlands). The electrodes on the
cap were arranged in accordance with to the 10–20 electrode
placement system. EEG was recorded, sampled at 512 Hz, from 32
channels: Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6,
T7, C3, Cz, C4, T8, CP5, CP1, CP6, CP2, P7, P3, Pz, P4, P8, POz,
Oz, O1, O2, M1 and M2 with CPz used as recording reference.
Only the frontal electrodes F7, F3, Fz, F4, and F8 were analyzed
to compare with our previous ketamine findings. The EEG was
re-referenced to the average of M1 + M2 for analysis. Electro-
gel (Electro Cap International, United States) was injected into
all electrodes using a 3 ml syringe and a Precision Glide 16-
gauge blunt needle (Becton, Dickenson & Co., New Jersey,
United States). Impedance was brought down to below 20 K� for
every electrode. 10 min of Resting EEG data were recorded in 1-
min blocks of eyes open (EO) or eyes closed (EC) in the following
sequence: EO, EC, EO, EC, EO, EC, EO, EC, EO, EC.

Data Processing and Analysis
Primary Pre-processing
We used the same EEG post-processing as our previous
experiment (Shadli et al., 2018). EEG data and associated event
markers were imported to the EEGLAB toolbox for MATLAB.
Raw data were first down sampled to 128 Hz then a 1–63 Hz
bandpass filter was applied. 50 Hz noise was removed using
Cleanline (Bigdely-Shamlo et al., 2015). Data sets were epoched as
1 s (128 samples) non-overlapping epochs for automatic artifact
rejection. Epoched data sets were visually inspected for gross
artifacts and removed from the dataset and boundary markers
were inserted to mark their previous locations. Independent
component analysis (ICA) was subsequently applied to the

remaining epoched data. ADJUST 1.1 (Mognon et al., 2011) was
used to analyze the ICA results and remove artifact components
to leave “clean” EEG. Artifact-free datasets were subsequently
converted from epoched to continuous. Similar to our previous
experiment (Shadli et al., 2018), we analyzed FAA and HFD.

Spectral Analysis
Artifact free datasets were re-epoched to 2 s, 50% overlapping,
epochs with a Hanning window. A fast Fourier transform was
applied, and the power spectrum was log10 transformed to
normalize error variance. The resultant epochs were averaged
to provide a single power spectrum for each participant, at
each channel, and frequency values were averaged in bands
defined as delta (1–3 Hz), theta (4–6 Hz), alpha1 (7–9 Hz),
alpha2 (10–12 Hz), beta (25–34 Hz), and gamma (41–53 Hz)
as previously (Shadli et al., 2018). FAA was calculated for 7–
12 Hz by subtracting logarithmic power at left electrodes from
their right-most counterparts [(ln (R)–ln (L)] for each of F8:F7
and F4:F3. This was for the purpose of directly comparing to the
FAA results of Shadli et al. (2018).

“Fractal dimension was calculated using Higuchi’s algorithm
with a kmax of 8 (Higuchi, 1988). After the eye-blink removal
stage, the data were subjected to an additional 2–36-Hz bandpass
filter, and sections with artefacts were manually removed. The
continuous data were then split into 2-s (256 sample) epochs
with 50% overlap. Higuchi’s algorithm creates kmax number of
new time series (with k running from 1 to kmax), each obtained
by taking every kth sample of the original epoch. The length of
the curve of each series is calculated and plotted against k on a
double logarithmic graph. If the length of the curve and k are
proportional, then the plotted data will fall on a straight line.
The slope of this line is the fractal dimension.” (Shadli et al.,
2018, p. 719).

Statistical Analysis
Statistical analysis was carried out with IBM SPSS (version 24).
Mixed measures ANOVAs with group (patients, controls) as a
between-subjects factor were carried out on each of band power,
FAA, and HFD. For band power, channel (F7, F3, Fz, F4, and
F8), and band (delta, theta, alpha1, alpha1, beta and gamma)
were repeated measures with orthogonal polynomial components
of channel and band automatically extracted by SPSS. For each
band, log power values at each frequency were averaged to a single
value prior to ANOVA. HFD was analyzed similarly except for
there being no band factor. For FAA, asymmetry was calculated
separately for the F7:F8 pair and the F3:F4 pair, and the two values
treated as levels of a repeated measures factor “electrode pair.”
Significant effects were further explored where necessary with
post-hoc t-tests.

RESULTS

Patient vs. Control Overview
Figure 1A displays the separate patient group and control group
band power values across frontal channels (F7, F3, Fz, F4, and
F8). Patients had largely similar power across channels. As band
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frequency increased, power decreased, with delta expressing the
highest power and gamma the lowest. Theta, alpha1 and alpha2
power were all approximately equal across all channels. Control
band frequency is also inversely proportional to power, with
higher frequency bands displaying lower power values. However,
controls displayed an inverted-U distribution of power across
channels, with power in the central channel (Fz) lower than in
lateral channels (F7, F8).

Anxiety Effect
To allow a clearer picture of the role of anxiety, the
patient-control difference is plotted in Figure 1B and shows
the 3D relationship between frontal channel position and band
frequency. The same data are plotted, overlayed, in Figure 1C

to allow direct numerical comparison of the power bands and
shows that in anxiety patients power increased at the midline
(Fz), relative to control patients across all frequency bands. In
the lateral channels (F7, F8), the difference between control
and anxiety patient power was minimal and usually a decrease.
Thus, the effect of anxiety on band power produced an inverted
U-shape curve that varied in size, systematically (Figures 1C,D).
This change was largely a progressive decrease from delta
through gamma [group × band[lin] × left-right[quad], F(1,
79) = 10.021, p = 0.002] but with a marginal inflection with
lower values either side of alpha [group × band[quad] ×
left-right[quad], F(1, 79) = 3.573, p = 0.062]. The linear and
quadratic frequency trends of the inverted-U variation in the
anxiety effect can be seen in a simplified form by plotting

TABLE 1 | shows the mean and SD for age, STAI-T (T), EPQ Neuroticism (N), PID-5 anxiety (Ax), anhedonia (Ah), and depression (D) scores for each of patients and
healthy controls.

Age T N Ax Ah D

Patients 33.3 10.5 53.1 10.6 14.5 5.5 28.4 5.7 17.1 4.7 29.6 9.1

Controls 31.0 6.4 36.3 4.7 4.6 5.8 16.6 8.4 12.8 5.6 20.5 9.4

FIGURE 1 | Patient and control EEG power in the different bands across frontal channels. (A) Patient power curves are relatively flat across each channel for most
bands with the possible exception of gamma, while control power curves generally have an inverted U-shape. (B) 3D representation of the effect of anxiety
(patient-control power difference) in different bands at frontal-central electrodes, showing the systematic left-right channel × band frequency variation, detected
statistically by a significant channel[quadratic] × frequency[linear] interaction. (C) The same data as in B but with different bands plotted against channel as
overlapping curves to allow numerical comparison (frequency of the band is coded by line thickness). The anxiety effect for each band was an inverted-U function of
channel; that is, the strongest difference in power was in the central channel, with minimal anxiety effects in the lateral channels. (D) Linear trend and quadratic trend
of band frequency fitted to power values for Fz minus the average of F7 + F8 (which approximates the quadratic trend across channel). There is a significant
decrease in this component from delta to gamma (the dotted line shows the significant linear trend). There appears to be some non-linearity, with an apparent peak
at alpha1. The curved line shows the combination of the linear trend with the apparent slight, non-significant (p = 6%), quadratic trend.
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power for Fz minus the average power of F7 and F8 as a proxy
for the quadratic trend of channel (Figure 1D). There is a
predominantly linear fall off with frequency in the average anxiety
effect (dotted straight line) except that the effect for delta is below
what would be expected for a purely linear effect (solid gray
linear+ quadratic curve).

Frontal Band Power—Qualitative
Comparison With Ketamine
Figure 2 compares the current “anxiolytic” effects on frontal
channel band power (Figure 2A) with those obtained with
various doses of ketamine (Figure 2B, adapted from Shadli et al.,
2018). Patient power values were subtracted from control power
values to mimic ketamine’s anxiolytic effect (i.e., the opposite of
the subtraction in Figure 1) matching the post–pre subtraction
used by Shadli et al. (2018).

Figure 2A shows that control—anxiety patient power
differences were distributed from F7 to F8 in a U-shaped curve,
with the effect at lateral channels being close to zero. However,
non-anxious power at more central channels was reduced
compared to anxious patients. Across the central channels, alpha1
power showed the largest decrease and gamma expressed the
highest increase.

Figure 2B shows the published effects of varying doses of post-
ketamine administration relative to pre-ketamine administration

(post-pre difference) in power across frontal channels. The post—
pre effects increased steadily with dose across all channels: unlike
Figure 2A, high frequency power increased (with beta and,
particularly, gamma); while, like Figure 2A, low frequency power
decreased (delta, theta, alpha1 and alpha2). So, in general, the
effects of ketamine are opposite to the control-patient difference
at high frequencies but similar at low frequencies.

Higuchi’s Fractal Dimension and Frontal
Alpha Asymmetry Comparison
Figure 3A displays the anxiety reduction effect (controls–
patients) on HFD and compares this to the post-pre ketamine
HFD scores of Shadli et al. (2018). There was a clear inverted-U
difference between controls and patients with the lateral channels
showing larger negative values [group × channel[quad], F(1,
79) = 6.680, p = 0.012]. There was little difference in HFD at
Fz [t(79) = 0.534, NS]. There were no significant differences in
HFD reported by Shadli et al. (2018). Further, K0.50 produced
the highest decrease in Fear Questionnaire scores but minimal
change in HFD. The non-significant quadratic trends with K0.25
and K1.00 are in the opposite direction to the current results.

FAA, averaged across electrode pair and group, was not
significantly different from zero [intercept, F(1, 79) = 1.181,
p = 0.281]. Figure 3B shows the FAA control-patient differences.
FAA, averaged across electrode pair, did not differ between

FIGURE 2 | Power difference scores for control–patient and post–pre ketamine across bands and frontal channels. (A) Control–patient power is as in Figure 1C but
with the direction of subtraction reversed and graphs plotted to match the published results shown below in (B). (B) Post–pre dose effect of ketamine from Shadli
et al. (2018) with permission of the authors. MDZ = midazolam (active control); K0.25, etc., doses of ketamine in mg. Note power scale differences.
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FIGURE 3 | Controls–patients and post–pre ketamine HFD and AA differences across frontal channels. (A) HFD: Controls–patients displays a significant U-shaped
relationship between HFD change and frontal channels. 0.25, 0.5, and 1.0 mg/kg of ketamine produced no significant HFD effects and any trend is in the opposite
direction. (B) Controls–Patients FAA differences were not significant at F8:F7 and F4:F3 pairs. Post–pre ketamine FAA was not significantly different across 0.25,
0.50, and 1.00 mg/kg doses at F8:F7 and F4:F3 pairs.

controls and patients [group, F(1, 79) = 1.682, p = 0.198] and
showed no differences between the electrode pairs in the control-
patient differences [electrode pair × group, F(1, 79) = 0.150,
p = 0.700].

DISCUSSION

Overview of Findings
Our primary finding, using identical procedures to our previous
work with ketamine, was that patients diagnosed with GAD,
SAD, SP, and PTSD showed increases in frontal relaxation EEG
rhythmicity compared to the controls. There was no anxiety
effect at the lateral channels but anxiety was associated with
significantly higher power centrally, across all frequency bands.
These data are consistent with earlier findings with panic disorder
patients compared to healthy controls (Wise et al., 2011). At
Fz, power difference was generally inversely proportional to
frequency, with a modest peak in the alpha range. As predicted,
AA was unaffected and, while there was a significant effect on
HFD at lateral channels, this was in the opposite direction to the
non-significant trends in the ketamine data.

Comparison With Ketamine Study
Theta Reduction at F4
Our primary predicted finding was that control theta power
decreased at F4 relative to the patients. Both here, and in Shadli
et al. (2018), theta reduced at several frontal channels with
reduced anxiety. However, only F4 theta reduction predicted

anxiety symptom improvements with ketamine as measured by
the Fear Questionnaire. Our F4 result, therefore, supports the
notion that the anxiolytic action of ketamine might be mediated
through reduced theta power in the F4 channel.

We also found stronger theta at Fz in patients relative to
healthy controls and no differences at the lateral channels (F7
and F8)—consistent with a recent review concluding that midline
theta is an important index of psychiatric illness (McLoughlin
et al., 2022). Frontal midline theta is a distinct rhythm recorded
at Fz above the midcingulate cortex (Mitchell et al., 2008).
It lasts a few seconds during arithmetic mental tasks, such
as addition in the N-back working memory task; and has
since been associated with anxiety-like behavior. However, there
are several forms of such theta rhythmicity. Administration
of anxiolytic drugs, including benzodiazepines and buspirone,
increase frontal-midline theta power in the Uchida-Kraepelin
task with associated decreases in STAI (anxiety) scores (for review
see Mitchell et al., 2008).

The apparent specificity of the involvement of F4 is
unexpected. The changes linked to psychiatric disorder in right
frontal theta (Shadli et al., 2018) and in the distinct midfrontal
theta (Mitchell et al., 2008; McLoughlin et al., 2022) appear
more widespread—consistent with our present results. However,
source separation has demonstrated multiple midfrontal thetas
(Zuure et al., 2020) and these appear involved a range of types
of cognitive control (Cavanagh and Frank, 2014). It is likely,
then, that ketamine’s wide-ranging effects (both across brain sites
and across frequency bands) are the result of impact on multiple
mechanisms, the bulk of which reflect longer-term consequences

Frontiers in Neuroscience | www.frontiersin.org 6 July 2022 | Volume 16 | Article 90010586

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-900105 June 29, 2022 Time: 14:38 # 7

Shadli et al. Theta and Ketamine Therapy

of anxiety (e.g., changes in theta) or immediate side-effects
(e.g., changes in gamma, see below). The F4 effect, then, would
be related to a specific mechanism that, rather than being a
consequence, is causally related to the generation or maintenance
of anxiety. Much further work would be needed to determine if
this is the case.

The mechanisms of action of ketamine on psychiatric
disorders in general and anxiety and F4 theta in particular are
unclear. As noted in the introduction, its therapeutic effect is not
via its known NMDA receptor effects (Zarate et al., 2006; Aan
Het Rot et al., 2012; Murrough et al., 2015; Zarate and Machado-
Vieira, 2017; Duman, 2018) nor linked to its metabolites (Glue
et al., 2019). Given its wide-ranging effects on brain activity,
most of which appear causally unrelated to anxiety it will be
hard to uncover its primary therapeutic mechanisms. Its effects
on theta rhythmicity (Engin et al., 2009) in a well-validated rat
electrophysiology model of anxiolytic action (McNaughton et al.,
2007) could provide a guide to its anxiolytic action. Whether its
antidepressant actions are related to theta (or F4) remains to be
determined but, given the nature of the drugs detected by the rat
model, is unlikely.

Gamma Band Changes
With ketamine (Shadli et al., 2018), gamma power across
frontal channels (including F4) increased. In contrast,
gamma power at F4 in control participants relative to
anxiety disorder patients decreased. This implies that the
increase in gamma power after ketamine administration is
unrelated to its anxiolytic action. At the doses used in our
previous studies of anxiety reduction, ketamine produces
strong dissociative effects (Glue et al., 2019), which include
euphoria and hallucinations. Since these are not symptoms
of anxiety it suggests that an increase in gamma power is
associated with the hallucinatory effects of ketamine. Gamma
frequency has previously been linked to NMDA antagonism.
Blockade of the NMDA receptors in rat neocortex in vivo has
led to dose-dependent increase in gamma power (Pinault,
2008). Administration of NMDA receptor antagonists, such
as ketamine, have also induced hallucinations in healthy
participants (Krystal et al., 1994; Lahti et al., 1995). These
studies imply that the dissociative effects of ketamine result
from its NMDA antagonist properties, causing an increase in
gamma band power.

Higuchi’s Fractal Dimension Changes
Shadli et al. (2018) found no significant HFD differences
between pre- and post-ketamine administration at any dosage.
In contrary, we found significant differences in HFD at the
lateral channels (F7 and F8) between anxiety patients and
controls, consistent with our earlier findings (Kawe et al.,
2019). These results suggest that a shift from an anxious to
a non-anxious state is related to a reduction in HFD at the
lateral channels, corresponding to left and right prefrontal sites.
Note that the direction of change here is the opposite of
the non-significant trend differences with ketamine. The HFD
differences, here, are also at lateral sites whereas the theta power
differences are not.

Alpha Asymmetry Differences
No significant difference was observed in FAA between anxiety
disorder patients and controls—consistent with our hypothesis
that no difference in FAA would be observed between anxiety
patients and controls. Shadli et al. (2018) found no significant
difference between pre-ketamine and post-ketamine treatment
on FAA at any dose.

Overview of Findings and Limitations
There is an urgent need to uncover the causes of anxiety disorders
to reduce the global crisis, which is being worsened by the
COVID-19 pandemic. Ketamine and similar fast acting drugs
could be a game changer in the treatment of anxiety disorders.
However, ketamine is currently an off-label drug because of its
abuse potential, and strong dissociative and hallucination effects,
limiting its use out of the clinic. Continuous efforts are needed
to better understand its mechanism of action, which will provide
for development of similar drugs with reduced side effects. Given
our low sample size, our findings need to be approached with
considerable caution. Future studies should have larger sample
sizes of both anxious and healthy volunteers and more direct
comparison of ketamine affects with natural anxiety differences.
Further our method is comparative and while consistent with
our hypothesis and strengthening our previous conclusions about
ketamine, cannot be taken as proof. That said, our right frontal
theta (F4) or the quite distinct frontal-central (Fz) theta should
provide guidance toward better understanding of the mechanism
of action of ketamine in anxiety disorders.
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Exuberant axon growth and competitive pruning lead to dramatic and comprehensive
changes in white matter pathways of the infant brain during the first few postnatal
months, yet the development of structural configuration in early infancy has not been fully
characterized. This study aimed to investigate the developmental trajectory of structural
connectivity reflecting relative fiber density in 43 preterm-born infants aged 0–3 months
of corrected age without any complications utilizing probabilistic tractography based on
fiber orientation distribution and to explore the potential function correlation associated
with the network properties based on the Chinese Communication Development of
Infant at 10 months of corrected age. The findings revealed significant increases in
global efficiency, local efficiency, normalized clustering coefficient, and small-worldness
(padj < 0.001 for each), while the normalized characteristic path length showed a non-
significant decrease with age (padj = 0.118). Furthermore, those findings were validated
by another parcelation strategy. In addition, the early local efficiency was found to be
significantly correlated with words understood at 10 months of corrected age. A unique
developmental pattern of structural networks with enhancing efficiency and the small-
world property was found in early infancy, which was different from those of neonates
or toddlers. In addition, this study revealed a significant correlation between local
efficiency and late language comprehension, which indicated that enhanced structural
connectivity may lay the structural foundation for language specialization.

Keywords: structural network, diffusion MRI, tractography, infant brain development, language outcome

INTRODUCTION

Exuberant axon growth and competitive pruning lead to dramatic and comprehensive changes
in white matter pathways of the infant brain during the first few postnatal months (Innocenti
and Price, 2005; Vanderhaeghen and Cheng, 2010), which may induce a profound alteration
in the topology of white matter. Infancy is regarded to be the fastest stage of global and local
reconfiguration (Cao et al., 2017), but is not yet fully characterized.

Structural network with diffusion MRI-based tractography provides a powerful approach to
investigate the brain connectivity, which has been used to study the network dynamics during
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the perinatal period and childhood (Hagmann et al., 2010;
Brown et al., 2014; van den Heuvel et al., 2015; Baum et al.,
2017), and reveals that neonates, children, and adults exhibit
a distinct development pattern of brain structural connectivity.
Previous studies revealed that the clustering coefficient and small-
worldness increased during the perinatal period (Brown et al.,
2014; van den Heuvel et al., 2015; Batalle et al., 2017) and
then decreased from toddler to adult (Hagmann et al., 2010;
Dennis et al., 2013). Combined with the results of another study,
which revealed a significant decrease in clustering coefficients and
small-worldness from neonates to childhood (Huang et al., 2015),
it is reasonable to speculate that there is an inflection point in
network properties during infancy.

However, the developmental pattern of brain structural
networks in infancy remains less understood, possibly due to
the lack of data and difficulty of acquisition in this period.
Yap et al. (2011) conducted a longitudinal study to investigate
the developmental trends of white matter connectivity in 39
participants at 2 weeks, 1 year, and 2 years and found that
all brains exhibited small-world properties with increasing local
efficiency. Tymofiyeva et al. (2013) performed deterministic
tractography in 8 preterm-born neonates, 8 term-born neonates,
10 six-month-old infants, and 7 adults and found that the
clustering coefficient decreased from preterm-born neonates
to 6-month-old infants and then increased until adult; while
the small-worldness increased from preterm-born neonates to
term-born neonates, kept steady until 6 months old, and then
decreased until adult. These two studies with small sample
sizes did not reach consistent conclusions, and the discrete
scan timepoints (neonate, 6 months, and 1 year) hindered the
continuous characterization of development. In addition, tensor-
based tractography used in the previous studies was not ideal
for immature infant brain due to difficulties in distinguishing
whether the signal reduction was due to immature tissue or
crossed fibers within voxels (Descoteaux, 1999), which can be
addressed by the probabilistic tractography method based on
fiber orientation distribution (FOD; Tournier et al., 2010).

Moreover, structural brain networks at an early stage may
indicate the functional outcome at a later stage. Baum et al.
(2017) revealed the mediation effect of modular segregation of
structural networks on the development of executive function
in youth. However, the functional correlates of early white
matter networks were still unknown. This study aimed to
investigate the development of structural brain networks in
0–3 months old preterm-born infants utilizing high angular
resolution diffusion imaging (HARDI) and the potential function
under network measures by correlating with 10 months old
Chinese Communication Development of Infant (CDI).

MATERIALS AND METHODS

Subjects
In total, sixty-seven preterm-born infants were enrolled for MRI
scans from 0 to 3 months of corrected age at the Children’s
Hospital of Zhejiang University School of Medicine. The parents
of all participants provided written informed consent, and

the ethical approval was granted by the institutional review
board of the local hospital. Exclusion criteria included (1)
extremely preterm birth (less than 28 weeks); (2) any acquired
lesions on MRI (assessed by a radiologist T.L.); (3) visible
artifacts on MRI; (4) congenital malformation or syndrome;
(5) encephalopathy caused by various factors; (6) intrauterine
growth restriction; (7) intracranial infection; (8) alcohol or an
illicit drug during pregnancy; and (9) neurological or psychiatric
family history. Among the 67 infants recruited, the following
infants were excluded: 16 participants who failed the CDI follow-
up, 3 extremely preterm-born infants (GA at birth less than
28 weeks), 1 participant with visual brain parenchymal lesion, 2
participants with intrauterine infection, and 2 participants with
poor image quality.

Image Acquisition
A certified nurse gave all infants 50 mg/kg oral or enema
chloral hydrate 30 min before the scan. Ear protectors were
applied for hearing protection, and a vacuum immobilization
mat was applied to reduce motion. The scanner’s physiological
monitoring system was used to continuously monitor the heart
and respiratory rates by a neonatologist in the scanner room.
MRI was carried out on a 3T Philips Achieva system with
an 8-channel head coil. A single-shot echo-planar imaging
sequence was used for acquiring multi-shell HARDI data, and
32 non-collinear diffusion-encoding directions were acquired
with b-values of 800 and 1,500 s/mm2. An additional b0 image
with the opposite phase-encoding direction was acquired for
eddy correction. The particularized parameters were as follows:
TR/TE = 9,652/115 ms, voxel size = 1.5 mm × 1.5 mm × 2 mm,
FOV = 180 mm × 180 mm × 120 mm, and SENSE
acceleration factor of 2.

Data Preprocessing
First, the HARDI data were preprocessed using MRtrix3,1

including denoising (Veraart et al., 2016), Gibb’s ring artifact
removal (Kellner et al., 2016), eddy correction (Andersson and
Sotiropoulos, 2016), slice-to-volume correction (Andersson et al.,
2017), and bias correction (Tustison et al., 2010). The weighted
linear least squares method (Basser et al., 1994) was used for
obtaining fraction anisotropy (FA) and mean diffusivity (MD).

Cortical Parcelation
The Edinburgh Neonatal Atlas 50 (ENA50) (Blesa et al., 2020)
with multiple templates (e.g., DTI metrics) and parcelation
schemes was transformed to the individual subject space utilizing
a multi-channel registration method based on MD, FA, and the
mean DWI contrasts (Djamanakova et al., 2013). Two sets of
parcelation schemes including the University of North Carolina
(UNC; Shi et al., 2011) and Melbourne Children’s Regional
Infant Brain (M-CRIB; Alexander et al., 2017) parcellations
were obtained for each participant. The transformation matrix
between ENA alignment to individual data was used to transform
the ENA gray matter probability map to individual space, and
the voxels with gray matter probability less than 0.4, as well

1https://www.mrtrix.org/
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as subcortical and cerebellar regions, were excluded, and 78
cortical regions of UNC were defined as structural network
nodes to study network dynamics. In addition, for assessing
whether findings were biased by the parcelation schemes, 68
cortical nodes from the M-CRIB atlas were used for validating
the reproducibility of the results.

Whole-Brain Tractography
The individual FOD was generated from the preprocessed
HARDI data according to the MRtrix3 multi-shell multi-tissue
constrained spherical deconvolution (MSMT-CSD) pipeline
(Jeurissen et al., 2014), and all individual data were up-sampled to
an isotropic voxel of 1 mm. Then, the whole-brain tractography
was performed based on individual FOD images utilizing the
second-order integration over the FOD method (Tournier
et al., 2010), and the tractography profile was as follows: step
size = 0.5 mm, minimum/maximum length = 10/250 mm,
maximum angle = 90◦, and cutoff = 0.05. Afterward, 10 million
streamlines were filtered to 1 million utilizing the spherical-
deconvolution informed filtering of tractograms (SIFT) method
(Smith et al., 2013), which selectively removed streamlines such
that the streamline density was as close as possible to fiber density.

Network Construction
The number of fiber tracts connecting two cortical nodes was
first normalized to node volumes (sum of two nodes) and then
normalized to the total number of tracts across the brain. The
tract density between each pair of the 78 cortical nodes forms
a 78 × 78 symmetric connectivity matrix. Concerning false-
negative connections due to spurious streamlines in probabilistic
tractography, we set the network density (the proportion of actual
connections among potential connections) to range from 0.2 to
0.3 with an interval of 0.01 (11 thresholds) to calculate network
measures, where 0.2 is the minimal network density with full
connectivity, and then averaged the measures at all densities
(Figure 1). In addition, the procedure was repeated based on
the M-CRIB parcelation to evaluate the reproducibility of the
findings from UNC parcelation.

Network Measures
Five global network measures were calculated for each infant:
local efficiency, global efficiency, normalized clustering
coefficient, normalized characteristic path length, and
small-worldness.

The global efficiency (Eglob) is the average of the inverse
shortest path length in a structural network (Latora and
Marchiori, 2001), which quantifies the exchange of information
across the whole network where information is concurrently
exchanged, and can be calculated as follows:

Eglob =
1
n

∑
i∈N

∑
j∈N,j6=i

(
dw

ij

)−1

n− 1
(1)

where dw
ij is the shortest weighted path length between i and j.

The local efficiency (Eloc) is the global efficiency computed
on the neighborhood of the node (Latora and Marchiori, 2001),

which quantifies a network’s resistance to failure on a small scale,
and can be calculated as follows:

Eloc =
1
2

∑
i∈N

∑
j,h∈N,j6=i

(
wijwih

[
dw

jh (Ni)
]−1

)1/3

ki
(
ki − 1

) (2)

where wij is the connection weight between node i and j;
dw

jh (Ni) is the shortest path length between j and h (node i is the
only neighbor of j and h along this shortest path); and ki is the
number of links connected to node i.

The weighted clustering coefficient (CC) is the proportion of
triangles around a single node, and thus, the average CC of the
network reflects the prevalence of clustered connections (Watts
and Strogatz, 1998). In this study, a variant CC was calculated,
which is free from the disproportionate influence of low-degree
nodes (Newman, 2003):

CC =
∑

i∈N 2tw
i∑

i∈N ki
(
ki − 1

) (3)

where tw
i is weighted geometric mean of triangles around node

i and can be calculated as follows:

tw
i =

1
2

∑
j,h∈N

(
wijwihwjh

)1/3 (4)

The characteristic path length (CPL) is the average shortest
path length among all node pairs in the network and measures
the network integration (Watts and Strogatz, 1998), and it can be
calculated as follows:

dw
ij =

∑
auv∈gw

i↔j

f (wuv) (5)

where f is a mapping from weight to length and gw
i↔j is the

shortest weighted path between node i and j.
Small-worldness characterizes a network that is remarkably

more clustered than a random network, but has roughly the same
CPL as a random network, and can be calculated as follows:

S =
CC/CCrand

CPL/CPLrand
(6)

where CC/CCrand is the normalized CC of a random network
and CPL/CPLrand is the normalized CPL of a random network.

Statistical Analysis
All statistical tests were performed utilizing the R-Project 4.1.2.2

Factors that were potentially associated with network measures
were first screened using univariate analysis, and the significant
ones were taken as covariates into the multiple regression
to analyze the correlations between network measures and
gestational age (GA) at birth, and postmenstrual age (PMA)
at scan. Pearson’s correlation analysis was conducted between

2https://www.r-project.org/
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FIGURE 1 | Pipeline of data analysis. Mean DWI, MD, and FA were generated from the preprocessed dMRI and were then co-registered with the ENA atlas to obtain
individual parcelation. The WM FOD was calculated according to the MSMT-CSD pipeline in MRtrix3, based on which whole-brain tractography was obtained
followed by a SIFT operation. The individual parcelation and filtered tractography were used to generate a 78 × 78 symmetric connectivity matrix. Network measures
were calculated at a series of network densities, and then, they were averaged for statistical analysis.

network measures obtained from UNC and M-CRIB parcelation
to evaluate the effect of the parcelation scheme.

For assessing the correlation between network properties and
language outcomes, univariate analysis was used to identify
potential factors that were significantly associated with the
Chinese CDI scores, which were included as covariates for
subsequent multiple analysis. It was noted that the observed
network measures were first regressed against PMA at scan
and bodyweight at scan, and then, the residuals were used as
PMA-corrected indicators of network for subsequent language
correlation analysis. The p-values were adjusted by the false
discovery rate method. The significance level for all analyses
was set at 0.05.

RESULTS

Demographic Information of Participants
After exclusion, 43 preterm-born infants aged 39.9–50.9
postmenstrual weeks (0–3 months of corrected age) without any
complications were included in the final analysis, with GA at
birth ranging from 28.1 to 35.6 postmenstrual weeks (detailed
information was demonstrated in Figure 2 and Table 1). In
addition, the mean head motion was 0.65 mm, which showed no
significant effect on the network measures based on an ANCOVA.

No Significant Effect of Gestational Age
Was Found on Network Measures
In this study, PMA at scan, bodyweight at scan, and delivery
were found to be significantly correlated with network measures

and were treated as covariates in the multiple regression analysis
between network properties and GA at birth. However, no
significant correlation was found, indicating that the network
measures were not affected by preterm birth in this study.

Developmental Trajectory of Structural
Brain Network in 0–3-Month-Old Infants
The averaged structural connectivity matrices of infants aged 0–
1, 1–2, and 2–3 months (Figure 3) demonstrated an enhancing
fiber density with age. All brain network measures except the
normalized CPL exhibited significant age-dependent alterations
in infants aged 0–3 months (Figure 4A). These findings

FIGURE 2 | Frequency distribution of GA at birth and PMA at scan for all
participants.
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TABLE 1 | Demographic information of the infants and their communication
development of infant (CDI) sub-scores at 10 months.

Demographic information

Gender (male/female) 25/18

Gestational age at birth (weeks) 32.7 ± 1.9

Postmenstrual age at scan (weeks) 44.4 ± 2.7

Multiple-birth/singleton 1.83 ± 0.4

Head motion (mm) 0.64 ± 0.3

Body weight at birth (kg) 42.3 ± 4.2

Body length at birth (cm) 11/32

Delivery (vaginal/cesarean) 4.50 ± 0.9

Body weight at scan (kg) 30.9 ± 3.6

Maternal age at delivery (years) 6.1 ± 1.5

Maternal education 25/18

Chinese CDI (10 months of corrected age)

Words understood 38.4 ± 24.3

Words production 1.1 ± 1.6

Phrases understood 2.0 ± 1.6

Actions and gestures 4.3 ± 2.4

revealed that both integration (Eglob) and segregation (Eloc
and normalized CC) increased significantly with age, and the
developmental rates (β) of Eglob, Eloc, and normalized CC were
0.005, 0.002, and 0.039 per week, respectively (padj < 0.001
for each). The normalized CPL showed a gradual decline with
age, although the statistic was not significant (β = −0.007 per
week, padj = 0.552). Furthermore, the increased clustering and

decreased CPL together resulted in the fast growth of small-
worldness (β = 0.047 per week, padj = 0.024) (Figure 4A).

In addition, the network properties obtained from M-CRIB
parcelation revealed a similar developmental trajectory to that of
UNC parcelation (Figure 4B), and the developmental trajectories
of the two parcellations were significantly correlated (Figure 4
and Table 2).

Local Efficiency Was Significantly
Correlated With Words Understood at
10 Months
The PMA at scan, body weight at scan, delivery, and
maternal education were found significantly correlated with
communication outcome at 10 months of corrected age and were
used as covariates in multiple regression between the network
measure and CDI scores. However, only the local efficiency
was found significantly correlated with words understood
(correlation coefficient = 0.339, padj = 0.047) (Figure 5), while no
other network measures were found to be significantly correlated
with communication outcomes (Table 3).

DISCUSSION

This study investigated the developmental trends of structural
brain networks in infants aged 0–3 months, which was not
presented before. The structural networks were generated
utilizing a probabilistic tractography based on FOD followed by a

FIGURE 3 | (A) 3D representations of the mean structural networks of 0–1 (A1), 1–2 (A2), and 2–3 (A3) months groups. (B) The averaged structural connectivity
matrices of 0–1 (B1), 1–2 (B2), and 2–3 (B3) months groups.
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FIGURE 4 | Developmental trajectories of network measures in infants aged 0–3 months, in terms of the global efficiency (Eglob), local efficiency (E loc), normalized
clustering coefficient (CC), normalized characteristic path length (CPL), and small-worldness, based on the UNC atlas (A) or M-CRIB atlas (B).

SIFT, and the findings were validated by another parcelation. The
results also indicated that higher local efficiency in early infancy
may be associated with language comprehension at a later stage.

Enhanced Information Transfer
Efficiency Within the Infant Brain
This study revealed a significant and monotonic increase in global
and local efficiency in infants aged 0–3 months, which indicated
an enhanced information transfer efficiency and greater fault
tolerance within the infant brain. Few studies have discussed
the evolution of network efficiency in infants and have not
reached consistent conclusions. Batalle et al. (2017) investigated
the development of structural brain networks in neonates aged
25–45 postmenstrual weeks and revealed an increase in global
efficiency but a decrease in local efficiency with age. However,
all studies in infancy used selected scan times and found
inconsistent findings. For example, Huang et al. (2015) revealed
that neonates had significantly lower structural brain network
efficiency than toddlers, while Yap et al. (2011) reported a
significant increase in local efficiency in 1-year-old toddlers
compared with neonates, but global efficiency remained constant.

TABLE 2 | Correlation between the network measures from University of North
Carolina (UNC) and Melbourne children’s regional infant brain (M-CRIB) atlases.

Network measures Correlation coefficient P-value

Eglob 0.582 <0.001

E loc 0.600 <0.001

Normalized CC 0.807 <0.001

Normalized CPL 0.556 <0.001

Small-worldness 0.831 <0.001

Bold value represents adjusted p-value < 0.05.

The results of this study were consistent with Huang et al.
and provided a continuous developmental profile of network
efficiency during early infancy.

Linear Rising Clustering Coefficients and
Small-World Properties
This study found significantly higher normalized CC and small-
world properties of structural brain network in infants aged
0–3 months and a slight decrease in normalized CPL. This
finding was consistent with the results of network development
in perinatal studies utilizing DTI (Brown et al., 2014; van den
Heuvel et al., 2015; Batalle et al., 2017), but in contrast to those
studies comparing newborns and toddlers (Huang et al., 2015).
This implied that the small-world property of the brain structural
network may not monotonically decrease during infancy, and

FIGURE 5 | Correlation between PMA-corrected local efficiency and words
understood at 10 months.
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TABLE 3 | Correlation of postmenstrual age (PMA)-corrected network measures and communication outcomes, and the correlation coefficients were demonstrated.

Residuals of network measures Words understood Phrase understood Words production Actions and gestures

Eglob 0.008 −0.185 0.103 −0.191

E loc 0.339 0.161 0.063 0.136

Normalized CC 0.137 −0.077 0.062 −0.138

Normalized CPL 0.136 0.190 0.028 0.193

Small-worldness 0.086 0.004 0.011 −0.270

Bold value represents adjusted p-value < 0.05.

there is likely a turning point of small-world properties between
3 and 12 months, which remains to be confirmed by a wider age
range of infant studies.

Higher Local Efficiency Was Associated
With Better Words Understood
After controlling for age, we found that higher local efficiency
of structural connectivity at birth was associated with better
word comprehension at 10 months, and this is the first
report on the relationship between structural connectivity and
cognition development to the best of our knowledge. Local
efficiency measures the capability of a network to information
transmission locally, indicating how well each cluster exchanges
information when the index node is eliminated (Latora and
Marchiori, 2001). In addition, the local functional connectivity
of the network is thought to be the foundation for functional
segregation and specialization (Sporns, 2013), which may be
associated with cognitive functions. For example, Chan et al.
(2014) studied the functional network organization across the
lifespan (20–89 years) utilizing functional MRI and revealed
that segregation was predictable for long-term memory function.
Given that functional network organization is determined
by the underlying structural network (Cao et al., 2017), we
speculate that enhanced structural connectivity in local regions
related to language may lay the structural foundation for
language specialization.

Limitation
Several limitations of this study should be noted. First, this study
lack term-born infants as healthy control. We excluded infants
whose brain development might be compromised by certain
factors, e.g., extreme preterm birth and encephalopathy, to ensure
that relatively healthy participants were enrolled. In addition,
the fact that there was no correlation between GA at birth
and the structural network measurements supported that our
study population was not affected by preterm-born. Nevertheless,
future validation of the current findings from healthy term-
born infants would be ideal. Second, participants were sedated
with chloral hydrate. However, chloral hydrate is recognized as
safe and is often applied to infants for minimizing head motion
(Finnemore et al., 2014). Despite that sedation may reduce brain
activity (Williams et al., 2015), there is no evidence that it might
affect infant brain structure. Finally, due to the narrow age range
of participants in this study, the potential inflection point of the
small-world property was not revealed, and future studies with a
larger age range were needed.

CONCLUSION

This study investigated the developmental trajectories of
structural connectivity reflecting relative fiber connections in
infants aged 0–3 months, and the findings were validated by
another parcelation scheme. A unique developmental pattern of
structural networks with enhancing efficiency and small-world
property was found in early infancy. In addition, this study
revealed a significant correlation between local efficiency and
late language comprehension, which indicated that enhanced
structural connectivity in local regions related to language may
lay the structural foundation for language specialization.
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High-frequency repetitive
transcranial magnetic
stimulation improves spatial
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performance by regulating brain
plasticity in healthy rats
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Background: Repetitive transcranial magnetic stimulation (rTMS) is an

effective way to stimulate changes in structural and functional plasticity, which

is a part of learning and memory. However, to our knowledge, rTMS-induced

specific activity and neural plasticity in different brain regions that affect

cognition are not fully understood; nor are its mechanisms. Therefore, we

aimed to investigate rTMS-induced cognition-related neural plasticity changes

and their mechanisms in different brain regions.

Methods: A total of 30 healthy adult rats were randomly divided into the

control group and the rTMS group (n = 15 rats per group). The rats in

the control and the rTMS group received either 4 weeks of sham or high-

frequency rTMS (HF-rTMS) over the prefrontal cortex (PFC). Cognitive function

was detected by Morris water maze. Functional imaging was acquired by

resting-state functional magnetic resonance imaging (rs-fMRI) before and

after rTMS. The protein expressions of BDNF, TrkB, p-Akt, Akt, NR1, NR2A, and

NR2B in the PFC, hippocampus, and primary motor cortex (M1) were detected

by Western blot following rTMS.

Results: After 4 weeks of rTMS, the cognitive ability of healthy rats who

underwent rTMS showed a small but significant behavioral improvement in

spatial episodic learning and memory performance. Compared with the pre-

rTMS or the control group, rats in the rTMS group showed increased regional

homogeneity (ReHo) in multiple brain regions in the interoceptive/default

mode network (DMN) and cortico-striatal-thalamic network, specifically the

bilateral PFC, bilateral hippocampus, and the left M1. Western blot analyses

showed that rTMS led to a significant increase in the expressions of N-methyl-

D-aspartic acid (NMDA) receptors, including NR1, NR2A, and NR2B in the PFC,

hippocampus, and M1, as well as an upregulation of BDNF, TrkB, and p-Akt
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in these three brain regions. In addition, the expression of NR1 in these three

brain regions correlated with rTMS-induced cognitive improvement.

Conclusion: Overall, these data suggested that HF-rTMS can enhance

cognitive performance through modulation of NMDA receptor-dependent

brain plasticity.

KEYWORDS

repetitive transcranial magnetic stimulation, resting-state functional magnetic
resonance imaging, cognitive improvement, neural plasticity, N-methyl-D-aspartic
acid receptors, healthy rat

Introduction

Alzheimer’s disease is the main cause of dementia and
is quickly becoming one of the most expensive, lethal, and
burdensome diseases of this century. In 2018, Alzheimer’s
Disease International estimated the prevalence of dementia
at about 50 million people worldwide, a number projected
to triple by 2050, with two-thirds of those with the disease
living in low-income and middle-income countries (Scheltens
et al., 2021). Although there is no consensus yet on the origin
of AD, one of the dominant working hypotheses is involved
in the progressive deficits in neural plasticity resulting from
the amyloid-β (Aβ) cascade (Battaglia et al., 2007; Li et al.,
2021). A healthy nervous system is endowed with synaptic
plasticity and other neural plasticity, which are believed to
be key physiological mechanisms for learning and memory.
There has been much anatomical and functional evidence
pointing toward AD as a kind of disconnection syndrome,
which is manifested as a decline in the linkages between
different brain areas in the cognitive network, and neural
plasticity dysfunction (Brier et al., 2014). However, few available
medications have successfully reversed or affected the disease
course of AD. Because it affects neural plasticity both at the site
of stimulation and in remote brain regions and acts through
functional anatomical connections, rTMS has been regarded as
a potentially safe and cost-effective treatment for AD (Li et al.,
2021). Understanding the potential mechanisms of rTMS for
cognitive improvement of brain plasticity has been meaningful
for preventing and treating AD.

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment;
rTMS, repetitive transcranial magnetic stimulation; PFC, prefrontal lobe;
HF-rTMS, high-frequency repetitive transcranial magnetic stimulation;
rs-fMRI, resting-state functional magnetic resonance imaging; FC,
functional connectivity; OPFC, orbital medial prefrontal cortex; DMN,
default mode network; FPN, fronto-parietal network; CEN, central
executive network; BDNF, brain-derived neurotrophic factor; NMDA,
N-methyl-D-aspartic acid; S1, primary somatosensory cortex; Cg,
cingulate cortex; M1, primary motor cortex; M2, secondary motor
cortex; Ent, medial entorhinal cortex; RSG, retrosplenial granular cortex;
RSD, retrosplenial dysgranular cortex; V2, secondary visual cortex; DG,
dentate gyrus; CA2, cornus ammonis 2; Au, auditory cortex; TeA,
temporal association cortex; S2, secondary somatosensory cortex.

Resting-state functional magnetic resonance imaging has
been shown to disrupt a distributed network, especially the
linkages between the hippocampus, the prefrontal cortex (PFC),
and other brain areas, pathologically involved in preclinical
AD (Zarei et al., 2013). Ample evidence has demonstrated
that overall brain plasticity declines in AD patients (Battaglia
et al., 2007; Cai et al., 2017; Noguchi-Shinohara et al., 2021).
Plasticity in the PFC, hippocampus, and several other brain
regions was impaired in both patients with AD and APP/PS1
mice (Battaglia et al., 2007). Plasticity in the number and
strength of neural connections is the physical basis of learning
and memory (Todd et al., 2019). Therefore, the enhancement
of brain activity and the triggering of specific structural and
functional changes promoted by neural plasticity effects could
be expected to improve cognitive abilities (Li et al., 2014).
The use of rTMS could induce temporary excitation/inhibition
and long-term effects in specific cortical areas as well as in
deep sites via the magnetic field, the effects of which can
last for a considerable time. Over recent years, rTMS was
broadly applied when investigating the changes across cortical
networks (Stagg et al., 2010; Kohl et al., 2019). Previous
evidence has demonstrated that the dorsolateral prefrontal
cortex (DLPFC), the core part of PFC, plays crucial roles
in various cognitive tasks such as working memory, episodic
memory, attention, problem-solving, etc. (Giglia et al., 2021;
Jones and Graff-Radford, 2021). Abnormal activities of the
DLPFC as well as functional disconnection involving DLPFC
have been observed in MCI and AD (Cai et al., 2017).
Considering its local dysfunction and roles in various neural
circuits relevant to the physiological mechanisms of cognitive
impairment, the function of the DLPFC and its relationship
with the other brain regions in AD or MCI should be
especially emphasized. HF-rTMS over the DLPFC can improve
cognitive function in patients with MCI and AD (Chou
et al., 2020). Previous studies have shown that rTMS over the
DLPFC modified cognitive performances via modulating brain
functional connectivity of DLPFC and other brain regions in
MCI or AD patients (Guo et al., 2021; Esposito et al., 2022).
Thus, rTMS-induced activity and neural plasticity underlie
cognitive improvement. However, to our knowledge, the specific
activity and neural plasticity in different brain regions that
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affect cognition by rTMS over the PFC or DLPFC are not
fully understood.

High-frequency rTMS can induce long-lasting PFC-
hippocampus neural plasticity and improve cognitive function
(Ma et al., 2014; Li et al., 2019). However, it is not clear how
rTMS impacts neural plasticity in different brain regions. The
NMDA receptors play a central role in synaptic plasticity,
which is closely related to learning and memory abilities
(Gribkova and Gillette, 2021). Functional NMDA receptors
are tetramers composed of different subunits (NR1, NR2A-D,
NR3A-B). The NR1, NR2A, and NR2B subunits have been
demonstrated to be essential for the regulation of synaptic
plasticity in the adult hippocampus (Tsien et al., 1996). NMDA
receptor dysfunction has been reported to play a role in the
pathophysiology of AD (Lin et al., 2014). A 10-Hz rTMS
produced a long-term potentiation-like excitatory effect
through NMDA receptor-dependent glutamatergic activity
(Brown et al., 2021). Zhang et al. (2015) reported that rTMS
facilitated spatial cognition and synaptic plasticity associated
with increasing levels of BDNF and NMDA receptors. To
date, researchers have mainly focused on synaptic plasticity
of the hippocampus, and few studies have examined synaptic
plasticity-related intracellular signaling pathways in different
brain regions responding to rTMS. The mechanism of
rTMS on NMDA receptors of distant sites in the brain
is still unclear.

It has been shown that rTMS can improve various cognitive
domains in several disease models. However, although its
exploration in healthy animals is essential to attribute its pure
effect in learning and memory processes, there have been few
studies in this regard. Addressing healthy animals contributes to
a better understanding of the basic mechanisms by which rTMS
improves cognitive function and its modulation (Zorzo et al.,
2021). The understanding of how rTMS promotes cognitive
effects in healthy animals is crucial for directing the power of
rTMS to reduce the burden of cognitive decline. Also, it is
important to know how rTMS and its mechanisms affect neural
plasticity in different brain regions in healthy rats. In the present
study, we explored the cognitive improvement effect of rTMS
on healthy rats, focusing on cognitive-related neural plasticity
changes and their underlying mechanisms in different brain
regions. We believe it would be noteworthy for preventing and
treating neural plasticity impairment-related diseases.

Materials and methods

Ethics statement

All experimental procedures and protocols were approved
by the Ethics Committee of Nanjing Medical University (Animal
Ethics Number: 2007005-2) and were designed to minimize
the suffering and number of animals used. All the procedures

were conducted with strict attention to safe animal care and
use following National Institutes of Health guidelines for
humane animal care.

Animals and study design

A total of 30 male adult Sprague Dawley rats (250–
300 g) were included in the study. All the rats were provided
by the Experimental Animal Center of Nanjing Medical
University (Medical Experimental Animal Number: SYXK2018-
20020). The rats were randomly divided into a control group
and an rTMS group (n = 15 rats per group). For each
group of experiments, the animals were matched by age and
body weight. All the rats were housed in animal facilities
under controlled conditions (55 ± 5% relative humidity,
24 ± 2◦C, and a 12/12 h light/dark cycle). Animals were
allowed to acclimate to these conditions for at least 7 days
before inclusion in the experiments. Rats in the rTMS group
received 4 weeks of HF-rTMS intervention, and rats in the
control group received sham rTMS intervention. Each group
had six animals for behavioral testing, six for Western blot
analysis, and three for rs-fMRI. After 4 weeks of intervention,
rats for molecular testing in each group were sacrificed
with pentobarbital (50 mg/kg, intraperitoneal) and the brain
tissues, including the PFC, hippocampus, and M1, were
harvested (Figure 1A).

Repetitive transcranial magnetic
stimulation protocol

Rats in the rTMS group engaged in corresponding real
rTMS intervention 5 days per week for four consecutive weeks
in the awake state. The coil was turned by 90◦ and placed
5 cm away from the skull for the sham rTMS in the control
group to ensure auditory conditions were similar but did not
receive brain stimulation. The CCY-IA rTMS apparatus was
supplied by Wuhan Yiruide Medical Equipment Co., LTD
(Wuhan, Hubei, China). Repetitive TMS was implemented
with a parallel-wound solenoidal circular coil stimulator (Y064,
height = 20.4 mm, 50-mm outer diameter, 25-mm inner
diameter, number of turns = 6 layers × 5 turns/layer = 30
turns) with 3.5-T peak magnetic welds, specifically designed
for rodents. Rats were hand-restrained in a suitable cloth
when treated with rTMS. The coil center was placed over
the middle of the interocular line with the handle pointing
forward (Gersner et al., 2011). One rTMS session consisted
of 10 burst trains, with each train containing 10 pulses at
10 Hz with 10-s intertrain intervals, totaling 1,000 pulses, lasting
10 min. The motor threshold (MT) intensities when using
rats were measured preliminarily (Gersner et al., 2011). The
stimulation intensity was set at 80% of the average MT of rats.

Frontiers in Neuroscience 03 frontiersin.org

100

https://doi.org/10.3389/fnins.2022.974940
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-974940 August 3, 2022 Time: 9:16 # 4

Wu et al. 10.3389/fnins.2022.974940

FIGURE 1

Study protocol. (A) Experimental timeline and parameters of one rTMS session. Timeline showing a time series event of rat treatment. Healthy
rats received rTMS intervention (rTMS: real, rTMS group; sham, control group) for 4 weeks. The brain tissues were harvested 1 h after rTMS
intervention (n = 6 rats per group), and the spatial cognition function was tested in the Morris water maze (MWM) before and after rTMS
intervention (n = 6 rats per group). rs-fMRI was used to detect the activation of the brain before and after rTMS intervention (n = 3 rats per
group). One rTMS session consisted of 10 burst trains, with each train containing 10 pulses at 10 Hz with 10-s intertrain intervals. (B) A schematic
diagram of rat stimulation. The circular coil was positioned over the rat’s head and the coil center was placed over the middle of the interocular
line with the handle pointing forward.

In our study, the mean of MT intensities (n = 6 per group)
of rats was 42.60 ± 9.10% of the maximum stimulator output
(Figures 1A,B).

Functional magnetic resonance
imaging acquisition

Data on fMRI were acquired on a 7.0-T MRI scanner
(Biospec 7T/20 USR, Bruker Biospin, Ettlingen, Germany).
A quadrature volume resonator (inner diameter of 72 mm)
was used for radiofrequency transmission, and a four-
element surface coil array was used for signal reception.
The rats (n = 3 rats per group) were anesthetized with 2%
isoflurane and NO2/O2 mixed gas anesthesia in a chamber.
During the MRI scan, the rat was prostrated on a custom-
made holder to minimize head motion. An echo-planar

imaging (EPI) sequence was used with the following scanning
parameters: matrix size = 256 × 256, flip angle = 70◦,
resolution = 0.5 mm × 0.5 mm, slice thickness = 1 mm, slice
gap = 0, repetition time (TR) = 330 ms, echo time (TE) = 10 ms,
slice number = 25.

Functional magnetic resonance
imaging data analysis

Image preprocessing of the rs-fMRI data was performed
for all individuals using the SPM121 toolkit, which included
the following steps: (1) Slice time correction: correcting the
time information of each layer of each volume of each

1 http://www.fil.ion.ucl.ac.uk/spm/
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FIGURE 2

rTMS over the PFC improved spatial episodic learning and memory ability in healthy rats. At 4 weeks post rTMS, rats in indicated groups were
applied for Morris water maze (MWM) tests. Latencies of pre- and post-rTMS (A,B, respectively), delta latencies of pre- and post-rTMS (C).
(D) The frequency of swimming across the platform location in the probe trial. (E) Percentage of time spent in the platform quadrant in the
probe trial. (F) Representative track plots of rats in hidden platform test (left plots, “learning”) and probe trial stage (right plots, “memory”). Data
are shown as mean ± SEM; n = 6 per group; ∗P < 0.05 and ∗∗P < 0.01 vs. control group.

rat to eliminate the phase difference of the time series
between layers; (2) Head motion correction: the first volume
of each rat was used as a reference standard, and the
remaining volumes were spatially registered to the referred
image using a 6-parameter rigid-body transformation to
eliminate head movements. At the same time, the averaged
image after head motion correction was generated; (3)
Spatial normalization: a template was used as a reference
standard, and the averaged image after head motion correction
was used as the source image to estimate the registration
parameters (12-parameter affine transformation and non-
linear deformation), and then applied to normalize the
brain images of all the tested rats to the template space
to eliminate the differences among the rats. (4) Nuisance

signals regression: 13 parameters (six head movement + six
head movement first derivative + whole-brain signal) were
regressed; (5) Detrend: removing device linear signal drift;
(6) Filtering: the filter is 0.01–0.1 Hz. After that, regional
homogeneity (ReHo) was used to measure the “coherence” of
local brain activity. The principle is to calculate the Kendall
harmony coefficient between each pixel and its surrounding
12 pixels. Then, Gaussian smoothing and Z-transformation
were performed for ReHo maps. For each state of all rats
before and after treatment, the calculated ReHo index was
subjected to a single-sample test (the threshold was p < 0.001)
and FDR correction, and then the statistics of each brain
function index were generated under the threshold of cluster
size > 50 to analyze the results. The paired t-test was
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FIGURE 3

Differences in ReHo before and after rTMS and between group. (A) Brain regions with significant differences in ReHo between pre- and
post-rTMS in the rTMS group (P < 0.05, uncorrected, cluster size = 50). The hot color represents the higher ReHo in post-rTMS. The cold color
represents the higher ReHo in pre-rTMS. (B) Brain regions with significant differences in ReHo between the rTMS and the control group after
rTMS (P < 0.05, uncorrected, cluster size = 50). The hot color represents the higher ReHo in the rTMS group. S1, primary somatosensory cortex;
Cg, cingulate cortex; M1, primary motor cortex; Ent, medial entorhinal cortex; RSG, retrosplenial granular cortex; M2, secondary motor cortex;
RSD, retrosplenial dysgranular cortex; TeA, temporal association cortex; V2, secondary visual cortex; DG, dentate gyrus; CA2, cornus
ammonis 2; Au, auditory cortex; S2, secondary somatosensory cortex.

performed for each brain function index before and after
treatment in all rats; the threshold was uncorrected p < 0.05,
cluster size = 50.

Spatial episodic learning and memory
test by using Morris water maze

Morris water maze (MWM) tests were used to evaluate
the spatial learning and memory 1 day before and 1 day after
rTMS treatment in rats from each group (n = 6 rats/group), as
previously described (Hong et al., 2020). Morris water labyrinth
equipment (JLBehv-MWMG, Shanghai Jiliang Technology Co.,
Ltd., Shanghai, China) included a circular pool and a video
photography tracking system. The pool (1.5-m diameter and
0.5-m in height) was filled with 22–24◦C black water. A hidden
platform (9 cm in diameter) that served as the escape platform
was submerged 2.0 cm below the water surface. The rat faced
the wall of the pool and was gently placed in the water. The
first four consecutive days constituted the latency trial when
the rats were trained to find the escape platform once a day.
The average time required to complete the task was called
“full average escape latency.” Rats were considered to have
achieved it if they remained on the platform for 2 s. If rats
failed to reach the platform within 60 s, they would be manually
guided to the platform and held there for 15 s to familiarize
themselves with the environment and the platform position
before being placed back into the cage. At this time, the escape
latency was recorded as 60 s. The latency and swimming path
for reaching the platform were recorded for each rat, and its
decline over days of training reflected learning and memory.
On the fifth day, the platform was removed to perform a
probe trial, and each rat was allowed to search the maze for

60 s. The rats were placed into the quadrant opposite the first
quadrant and the number of platform crossings within the
60 s was recorded. This exploratory test was used to assess the
memory level and spatial cognitive ability. The escape latency
to find the platform, the time spent in the target quadrant,
and platform crossings were tracked and analyzed by the ANY-
maze video tracking software (Stoelting, Keele, WI, United
States).

Western blot analyses

Tissue samples of the PFC, hippocampus, and M1 were
dissected and homogenized in RIPA lysis buffer (Beyotime,
Shanghai, China). Total protein was quantified by a BCA
assay (Beyotime, Shanghai, China), separated by SDS-
PAGE, and transferred to PVDF membranes (Millipore,
Boston, MA, United States). The primary antibodies
were as follows: rabbit anti-BDNF (ab108319, Abcam,
Cambridge, Cambridgeshire, Umnited States), rabbit anti-
TrkB (ab179515, Abcam, Cambridge, Cambridgeshire, UK),
rabbit anti-Akt (T55972, Abmart, Shanghai, China), rabbit
anti-p-Akt (4060S, Cell signal technology, Boston, MA,
United States), rabbit anti-NR1 (5704S, Cell signal technology,
Boston, MA, United States), rabbit anti-NR2A (ab124913,
Abcam, Cambridge, Cambridgeshire, United States), rabbit
anti-NR2B (4207S, Cell signal technology, Boston, MA,
United States), and rabbit anti-β-actin (wx488142, ABclonal,
Wuhan, Hubei, China). After rinsing, the membranes were
incubated with HRP-conjugated secondary antibodies. The
densities of the bands on the membranes were visualized by
enhanced chemiluminescence (ChemiScope6100, Qinxiang,
Shanghai, China), followed by exposure to X-ray film
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FIGURE 4

Western blot analysis of synaptic plasticity-related proteins in the PFC, hippocampus, and M1. The representative blots depict NMDA receptors
compositions in brain tissues from PFC (A), hippocampus (B), as well as M1 (C). The representative blots depict the BDNF/TrkB/Akt pathway
compositions in brain tissues from PFC (D), hippocampus (E), as well as M1 (F). Data are shown as mean ± SEM; n = 6 per group; ∗P < 0.05,
∗∗P < 0.01, and ∗∗∗P < 0.001 vs. control group.

(RX-U, Fujifilm, Tokyo, Japan). Finally, the results were
quantified by using NIH Image J software (Bethesda,
MD, United States) and expressed as a ratio to the β-actin
protein.

Statistical analyses

Statistical analyses were performed using GraphPad
Prism software (version 9.0 c, GraphPad Software, Inc.,

La Jolla, CA, United States) and SPSS (version 21, SPSS
Inc., IBM, Armonk, NY, United States). A Kolmogorov–
Smirnov test showed that all data were normally distributed.
Data with normal distributions are expressed as the
mean ± SEM. Two-way ANOVA with Tukey’s test for
multiple comparisons was used to determine differences
among individual groups. The unpaired t-test was used
when comparing two separate groups. Spearman’s correlation
was used to analyze the correlation between the relative
band intensity of NR1 with the performance in the MWM
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FIGURE 5

Correlation scatters plot of the number of times crossing and the relative protein expression of NR1 in healthy rats after rTMS. Correlation
between the number of crossings in the MWM task and the relative protein expression of NR1 in the PFC (A) (r = 0.597, P < 0.05), hippocampus
(B) (r = 0.759, P < 0.01), and M1 (C) (r = 0.659, P < 0.05).

task. For all statistical significance, the levels were set at
P < 0.05.

Results

Use of repetitive transcranial magnetic
stimulation over the prefrontal cortex
improved spatial episodic learning and
memory abilities in healthy rats

We used the MWM test to evaluate the effect of rTMS
on spatial episodic learning and memory in healthy rats.
In the spatial learning stage, all rats from different groups
benefited from the 4-day training and exhibited gradually
decreased latency to the platform (Figures 2A–C). In the
latency trial, there were no significant differences in the
escape latencies between the control group and the rTMS
group in week 0 (Figure 2A) and week 4 (Figure 2B), while
the delta latency of pre- and post-rTMS showed that the
escape latencies of rTMS group decreased more significantly
after 4 weeks of rTMS than the control group (rTMS vs.
control, two-way ANOVA, F = 4.405, P < 0.05 for time,
F = 39.097, P < 0.0001 for group, F = 0.035, P > 0.05
for day × group Figure 2C). In the spatial probe trial,
cognitive performance was represented by the frequency of
swimming across the platform and the percentage of time
spent in the platform quadrant (Figures 2D,E). The frequency
of swimming across the platform in week 4 in the rTMS
rats was small but significantly higher than in the control
rats (P < 0.05, Figure 2D). The change in percentage of
time spent in the target quadrant in week 4 and the delta
time spent in the target quadrant was significantly higher in
the rTMS group than in the control group (P < 0.05 and

P < 0.01, respectively, Figure 2E). These results proved that
rTMS treatment could enhance spatial episodic learning and
memory ability in healthy rats.

Use of repetitive transcranial magnetic
stimulation over the prefrontal cortex
increased regional homogeneity in the
prefrontal cortex, hippocampus,
primary motor cortex, and other brain
regions in healthy rats

After rTMS intervention, 13 regions in the rTMS
group, namely, the right primary somatosensory cortex
(S1), left and right cingulate cortex (Cg), left primary
motor cortex (M1), right medial entorhinal cortex (Ent),
right retrosplenial granular cortex (RSG), right secondary
motor cortex (M2), right retrosplenial dysgranular cortex
(RSD), right temporal association cortex (TeA), left
dentate gyrus (DG), left cornus ammonis 2 (CA2), left
auditory cortex (Au), and left secondary visual cortex (V2)
showed increased ReHo (P < 0.05, uncorrected, cluster
size = 50, Figure 3A) over pre-rTMS. The rTMS group
also showed increased ReHo in the left and right Au,
right primary/secondary somatosensory cortex (S1/S2),
right CA2, right RSG, and left Ent as compared to the
control group (P < 0.05, uncorrected, cluster size = 50,
Figure 3B). Previous studies reported that structures
in the frontal module (orbital cortex, prelimbic cortex,
cingulate cortex 1, and cingulate cortex 2) belong to the
architectonic subdivision of the “orbital medial prefrontal
cortex” (OPFC) (Hsu et al., 2016; Carlén, 2017), and DG
and CA 2 belong to the hippocampus. In addition, PFC
(Cg), hippocampus (DG and CA2), M1/M2, and TeA are the
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brain regions important for the interoceptive/default mode
network (DMN), whereas the Ent, RSD, and S1/S2 belong
to the cortico-striatal-thalamic network. Hippocampus,
RSG, and Au are important brain regions of both the
interoceptive/DMN and cortico-striatal-thalamic network.
Therefore, use of rTMS over the PFC could activate the
interoceptive/DMN and cortico-striatal-thalamic network
in healthy rats.

Use of repetitive transcranial magnetic
stimulation over the prefrontal cortex
increased the protein expressions of
N-methyl-D-aspartic acid receptors
and activated the brain-derived
neurotrophic factor/TrkB/Akt pathway
in the prefrontal cortex, primary motor
cortex, and hippocampus in healthy
rats

Since NMDA receptors play a central role in synaptic
plasticity, the promotion of synaptic plasticity depends on
the synthesis of new plasticity-related proteins. To further
evaluate the effect and mechanisms of rTMS on brain plasticity,
we examined the synaptic plasticity-related proteins NMDA
receptors and their interaction with the BDNF/TrkB/Akt
pathway through the use of Western blot. We detected the
protein expressions of NR1, NR2A, and NR2B in the PFC,
hippocampus, and M1. In the PFC, hippocampus, and M1,
rTMS over the PFC significantly increased NR1(P < 0.001,
Figure 4A; P < 0.001, Figure 4B; P < 0.001, Figure 4C,
respectively), NR2A (P < 0.001, Figure 4A; P < 0.01, Figure 4B;
P < 0.001, Figure 4C, respectively), and NR2B (P < 0.001,
Figure 4A; P < 0.05, Figure 4B; P < 0.001, Figure 4C,
respectively). To explore the mechanism by which rTMS
upregulates NMDA receptors, we focused on BDNF, which
stands out for its high level of expression in the brain and
its potent effects on synapses. We found rTMS increased
the protein expressions of BDNF in the PFC, hippocampus,
and M1 (P < 0.01, Figure 4D; P < 0.001, Figure 4E;
P < 0.01, Figure 4F, respectively). Moreover, we examined
TrkB, the receptor of BDNF, and its downstream p-Akt
and Akt in these three brain regions. Western blot showed
rTMS increased TrkB (P < 0.01, Figure 4D; P < 0.05,
Figure 4E; P < 0.01, Figure 4F, respectively) and p-Akt/Akt
(P < 0.05, Figure 4D; P < 0.05, Figure 4E; P < 0.001,
Figure 4F, respectively) in the PFC, hippocampus, and M1.
All these results indicated that in the PFC, hippocampus,
and M1, rTMS-induced neural plasticity was, at least partly,
NMDA receptor-dependent synaptic plasticity, and rTMS-
induced increase of NMDA receptors might depend on

activation of the BDNF/TrkB/Akt pathway in the PFC,
hippocampus, and M1.

The synaptic plasticity-related protein
NR1 changes in the prefrontal cortex,
hippocampus, and primary motor
cortex correlated to a cognition
improvement in the repetitive
transcranial magnetic
stimulation-treated healthy rats

Since the NR1 subunit is considered indispensable for
functional NMDA receptor assemblies, whereas, NR2A and
NR2B subunits are not present at all synaptic NMDA
receptors (Papouin et al., 2012), therefore, to study the
relationship between the improved cognitive function by
rTMS and the NMDA receptor-dependent neural plasticity,
we conducted a correlation analysis between the relative
band intensity of NR1 and performance in the MWM
task (number of crossings) in the PFC, hippocampus, and
M1. The analysis showed that after 4 weeks of rTMS, the
number of times crossing the platform, reported in the
water maze exploration experiment, was positively correlated
with the relative protein expression of NR1 in healthy
rats in the PFC (r = 0.597, P < 0.05, Figure 5A),
hippocampus (r = 0.759, P < 0.01, Figure 5B), and M1
(r = 0.659, P < 0.05, Figure 5C). Taken together, rTMS-
induced improvement of cognitive function was significantly
correlated with the expression of NMDA receptors in the PFC,
hippocampus, and M1.

Discussion

Although a huge number of studies has drawn upon
patients or animals with cognitive impairment to study the
effects of rTMS on neural plasticity, especially in the PFC
and hippocampus, relatively few cognitive impairment
studies have focused on the effects of rTMS on the
neural plasticity of brain regions other than the PFC and
hippocampus, especially the M1 region. Moreover, the
potential mechanisms of the enhanced plasticity benefits
of rTMS in the PFC for cognitive improvement remain
unclear. In this study, we evaluated the ReHo values of
the brain using rs-fMRI and detected synaptic plasticity-
related proteins to reflect neural plasticity. This study
demonstrated that 4 weeks of rTMS over the PFC improved
spatial episodic learning and memory ability and promoted
brain plasticity via activating the interoceptive/DMN and
cortico-striatal-thalamic network in healthy rats, and in
the PFC, hippocampus, and M1, rTMS-induced NMDA
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receptor-dependent synaptic plasticity correlated to the
cognitive improvement. Furthermore, we found rTMS-
induced synaptic plasticity in these brain regions was
accompanied by activation of the BDNF/TrkB/Akt/NMDAR
pathway. We first provide evidence that rTMS-induced
cognitive enhancement-related neural plasticity in both
the delivered site and the distant sites are, at least partly,
a result of NMDA receptor-dependent synaptic plasticity,
and the mechanism of the neural plasticity in these
activated brain regions might be the activation of the
BDNF/TrkB/Akt pathway.

Use of repetitive transcranial magnetic
stimulation over the prefrontal cortex
improves spatial episodic learning and
memory

Repetitive TMS has been shown to improve cognitive
impairment in AD patients (Chou et al., 2020; Li et al.,
2021). We further investigated the effect of rTMS on
cognitive function in healthy rats. The MWM test was
conducted after 4 weeks of real/sham rTMS on healthy
rats to evaluate their cognitive behaviors. Previous studies
suggest that there are many options for intervention sites
for rTMS. The PFC, especially the DLPFC, is a core region
involved in cognitive functioning, such as working memory
and executive functions, and DLPFC plasticity is correlated
with cognitive ability in AD (Balderston et al., 2020; Chou
et al., 2020; Jones and Graff-Radford, 2021). Therefore, the
PFC was chosen as the intervention site in this study. Solé-
Padullés et al. (2006) first represented the evidence that
rTMS over the left DLPFC is capable of transitorily and
positively influencing brain function and cognition among
the elderly with memory complaints. A recent systematic
review and meta-analysis showed that high-frequency rTMS
over the left DLPFC and low-frequency rTMS on the right
DLPFC improved memory functions in MCI and AD (Chou
et al., 2020). Moreover, several meta-analyses comparing
the TMS-induced effect of the different region’s stimulation
protocols (i.e., left DLPFC) in AD or MCI, showed that
the benefits induced by rTMS are most likely due to the
stimulation of the left DLPFC (Begemann et al., 2020;
Chou et al., 2020). These findings support our use of HF-
rTMS over the PFC to investigate cognitive enhancement in
healthy rats. Our results showed that rTMS over the PFC
could improve spatial learning and memory in healthy rats
(Figure 2). Consistent with our study, Zhang et al. (2015)
and Shang et al. (2019) found HF-rTMS can enhance spatial
episodic learning and memory in cognitively impaired animal
models, which may be related to the improvement of neural
plasticity in the brain.

Use of repetitive transcranial magnetic
stimulation over the prefrontal cortex
increases regional homogeneity in
brain regions in interoceptive/default
mode network and the
cortico-striatal-thalamic network

Neural plasticity has been defined in terms of the capacity
to acquire cognitive skills (Carlén, 2017). It is therefore not
surprising that neural plasticity abnormalities are present
in patients with cognitive impairment (Burke and Barnes,
2006). The blood-oxygenation-level dependent (BOLD)-fMRI
approach has long been used to assess brain plasticity. In this
study, brain activity was measured synchronically by using
ReHo during rs-fMRI, which showed that rTMS over the PFC
increased PFC activity, manifested by the increased ReHo in the
PFC, including the left and right cingulate cortex (Figure 3A),
which was consistent with Yin et al. (2020).

Functional imaging studies indicate that rTMS can affect
the physiological functions of not only the brain area below
its coil but also relatively distant brain areas. Increasing
evidence shows that spatial learning and memory loss are
a severe consequence of neural plasticity disturbance in the
hippocampus. The two main areas that form the hippocampus –
the cornus ammonis 1, 2, and 3 (CA1, CA2, and CA3) and the
dentate gyrus (DG) – contribute separately to spatial learning
and memory processes. Converging evidence has suggested that
DLPFC-hippocampus network connectivity is pathologically
involved in preclinical AD (Goveas et al., 2011). In parallel,
dialog between the hippocampus and the PFC allows the
memory to reemerge into consciousness, which promotes the
consolidation and storage of episodic memories (Preston and
Eichenbaum, 2013). In this study, although the delivered target
of rTMS was the PFC, after rTMS, the ReHo in the rTMS
group also increased in CA2, DG, and other brain regions as
compared to the pre-rTMS or control group (Figures 3A,B).
These results suggested that rTMS over the PFC directly
induced the neural plasticity in the PFC, and representations
in the hippocampus were boosted by indirect manipulation.
Consistent with our study, Wang et al. (2014, 2018) found
that the targeted enhancement of PFC-hippocampal brain
networks improved associative semantic and episodic memory
performance, which involved localized long-term plasticity. The
roles of the hippocampus and PFC in memory processing,
individually or in concert, are a major topic of interest in
memory research, and PFC and hippocampus are strongly
connected by direct and indirect pathways (Eichenbaum, 2017).
Therefore, rTMS over the PFC improves spatial episodic
learning and memory via promoting neural plasticity in the
PFC-hippocampus.

In recent years, AD was regarded as a disease associated
with the deterioration of neural plasticity in the whole
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brain. Altered functional connectivity between the DLPFC,
posterior hippocampus, and other brain regions with advanced
age may contribute to age-related differences in episodic
memory (Ankudowich et al., 2019). Therefore, targeting
rTMS at the DLPFC may promote interconnected network
activity and integration, which may be directly related to
the multi-domain cognitive improvements observed (Alcalá-
Lozano et al., 2018). Previous studies demonstrated that the
DLPFC is considered a key region contributing to several
large-scale brain networks, such as the interoceptive/DMN,
FPN, and CEN (Liston et al., 2014; Sarpal et al., 2020;
Zheng et al., 2020). In this study, compared with both
the pre-intervention (Figure 3A) and the control groups
(Figure 3B), the brain regions activated after rTMS were
parts of the interoceptive/DMN or cortico-striatal-thalamic
network. We also found some reports that were consistent
with our results. Dunlop et al. (2016) reported that rTMS
over the dorsomedial PFC successfully modulated cortico-
striatal connectivity in obsessive-compulsive disorder. By using
[18F]-FDG microPET, Parthoens et al. (2014) found that
rTMS over the PFC of rats increased neural activity in the
medial entorhinal cortex, which is involved in spatial learning
and memory (Ga et al., 2013). Hippocampal-targeted theta-
burst stimulation enhanced associative memory formation
via modulating parahippocampal and retrosplenial cortices
(Tambini et al., 2018), which are involved in episodic-like and
spatial memory (Sato, 2021). Koch et al. (2018) reported that
rTMS enhanced memory and neural activity in AD patients
by manipulating DMN. These all support the fact that rTMS
over the PFC could improve spatial learning and memory
and promote neural plasticity by activating interoceptive/DMN
and the cortico-striatal-thalamic network, which is consistent
with our findings.

Repetitive transcranial magnetic
stimulation-induced neural plasticity is,
at least partly, N-methyl-D-aspartic
acid receptor-dependent synaptic
plasticity

Resting state-fMRI in this study provided indirect evidence
that HF-rTMS over the PFC increased neural plasticity in
the PFC, hippocampus, M1, and other brain regions, which
belong to the interoceptive/DMN and the cortico-striatal-
thalamic network. A previous study showed that stimulating
this region directly excited neurons, and consequently
reduced the synaptic conduction threshold, thereby making
the synapse become relatively active and increasing the
synaptic connections (Gribkova and Gillette, 2021). Several
basic studies reported that HF-rTMS improved cognitive
function by regulating synaptic plasticity in rodents with
cognitive impairment (Zhang et al., 2015; Shang et al., 2019).

Therefore, as a form of neural plasticity, synaptic plasticity
needs concern in this study.

N-Methyl-D-aspartic acid receptors, the major mediator
of postsynaptic response during synaptic neurotransmission,
are thought to be able to generate a persistent increase in
synaptic strength and participate in the regulation of synaptic
plasticity, memory, and cognition. Activation of NMDA
receptors allows a calcium flux into dendritic spines that serve
as the proximal trigger for synaptic plasticity. Impaired NMDA
receptors’ function is regarded as the most likely cause of the
NMDA receptor-dependent cortical plasticity deficit in aging
and AD (Battaglia et al., 2007). Using GLYX-13, an NMDA
receptor glycine site functional partial agonist, could enhance
cognition (Moskal et al., 2014). Whereas, the NMDA receptor
antagonist memantine was regarded as a symptomatological
and neuroprotective treatment for AD (Danysz and Parsons,
2003). Therefore, we detected the protein expression of NR1,
NR2A, and NR2B in several brain regions. Consistent with
the result of the rs-fMRI, we also found rTMS significantly
increased synaptic plasticity in the PFC, hippocampus, and M1,
as manifested by the increased protein expression of synaptic
plasticity-related proteins NR1, NR2A, and NR2B in these brain
regions, indicating rTMS-induced neural plasticity might be
synaptic plasticity (Figures 4A–C). Consistent with our results,
Zhang et al. (2015) and Shang et al. (2016), respectively, found
that rTMS facilitated spatial cognition and synaptic plasticity
associated with up-regulation of NR1, NR2A, and NR2B in the
hippocampus. Based on the above, the rTMS-induced NMDA
receptor-dependent synaptic plasticity occurred not just locally
in the targeted delivered site but also in the non-stimulated
brain regions at distant sites, and it is reasonable to believe
that NMDA receptor-dependent synaptic plasticity is, at least
partly, the underlying mechanism of rTMS-induced neural
plasticity.

Use of repetitive transcranial magnetic
stimulation over the prefrontal cortex
induces upregulation of
N-methyl-D-aspartic acid receptors by
activating the brain-derived
neurotrophic factor/TrkB/Akt pathway

Another concern is how rTMS upregulates NMDA receptors
in different brain regions. It is now widely accepted that
the main function of BDNF in the adult brain is to
regulate synapses, with structural and functional effects ranging
from short-term to long-lasting, on excitatory or inhibitory
synapses, in many brain regions. Previous studies showed
that rTMS improved cognition, increased BDNF-NMDAR
pathway level and synaptic plasticity, and enhanced cognitive
behavior in cognitively impaired patients or animal models
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(Zhang et al., 2015; Velioglu et al., 2021). The effects of BDNF
in rTMS-induced synaptic plasticity are mediated by its specific
membrane-bound receptor TrkB (tropomyosin-related kinase
B) receptors (Shang et al., 2019). A previous study showed that
increasing the phosphorylation of Akt in hippocampal neurons
by activation of BDNF/TrkB signaling would upregulate NMDA
receptors and promote synaptic plasticity (Nakai et al., 2014),
and cognitive decline in different models accompanied by
decreasing the level of BDNF/TrkB signaling (Mercerón-
Martínez et al., 2021). In addition, Li et al. (2022) reported
that activation of Akt promoted the interaction of cAMP-
response element-binding protein (CREB) and the promoter
of NR2B to increase NR2B. Kay et al. (2013) and Hu et al.
(2015), respectively, reported that activation of Akt/CREB also
increased NR1 and NR2A, and that the inhibition of BDNF-
PI3K/Akt or Akt/CREB pathways led to chronic nervous system
impairment. Thus, we speculated that rTMS increased NMDA
receptors via activating BDNF/TrkB/Akt pathway. The increase
of NMDA receptors accompanied by increasing in BDNF, TrkB,
and p-Akt/Akt in the PFC, hippocampus, and M1 verified
the speculation (Figures 4D–F). Therefore, rTMS promotes
NMDA receptor-dependent synaptic plasticity by activating
BDNF/TrkB/Akt pathways in the PFC, hippocampus, and M1.

Repetitive transcranial magnetic
stimulation-induced upregulation of
NR1 in the prefrontal cortex,
hippocampus, and primary motor
cortex correlates with cognitive
enhancement

A number of studies have shown that rTMS-induced
neural plasticity in the PFC or hippocampus correlated with
cognition enhancement (Wang et al., 2014, 2018). Recently,
Li et al. (2019) reported that 6 weeks of HF-rTMS treatment
over the left DLPFC improved long-term potentiation-like
plasticity in M1 in AD patients, and the long-term potentiation-
like plasticity improvement in M1 correlated to the observed
cognition change. Considering that no other studies to date
have reported cognition-related plasticity was shown in the
M1 after rTMS over the PFC, therefore, based on Li’s
study, in addition to the PFC and hippocampus, we also
found that rTMS over the PFC led to an increase in ReHo
in the M1 by rs-fMRI and an upregulation of synaptic
plasticity-related proteins by Western blot in M1, indicating
rTMS-induced NMDA receptor-dependent synaptic plasticity
in the PFC, hippocampus, and M1. The NR1 subunit is
often considered indispensable for functional NMDA receptor
assemblies, thus we detected the correlation between protein
expressions of NR1 and rTMS-induced cognitive changes.
More specifically, we found protein expressions of NR1 in

the PFC, hippocampus, and M1 correlated with rTMS-induced
cognitive changes (Figures 5A–C). In clinical practice, M1
plasticity is relatively easy to acquire. Therefore, in the future,
detection of the neural plasticity in the M1, and perhaps
in other brain regions, might be a potential assessment
tool reflecting cognition and the therapeutic effect of rTMS.
Collectively, enhancement of the cognitive abilities by rTMS
over the PFC is associated with modulation of the neural
plasticity of interoceptive/DMN and cortico-striatal-thalamic
network in the brain.

Limitations

Several limitations are inherent in the present study.
First, we only demonstrated that the PFC rTMS can improve
cognition in healthy rats, but we have not verified it in disease
models. Whether the effects of rTMS observed in the healthy
rats could also be replicated in cognitively impaired rats should
be investigated further. Second, our sample size, especially in
terms of the number of rats who underwent rs-fMRI, was small,
thus the functional connectivity analysis-related study could not
be performed in this study. Finally, stimulation from the coil
could not be accurately localized to a specific brain area because
of the small size of the rat brain compared with the size of the
coil. Therefore, we could not ensure that each stimulation was
applied to the exact same area. Further study will be required to
rigorously evaluate whether effects are truly inverted and if the
same inversion is present for other stimulation targets.

Conclusion

The present results demonstrated that HF-rTMS over the
PFC improved spatial episodic learning and memory and
promoted brain plasticity via activating interoceptive/DMN and
cortico-striatal-thalamic network in healthy rats. In addition,
rTMS-induced brain plasticity, locally in the targeted delivered
site and in the non-stimulated regions at distant sites, was
NMDA receptor-dependent synaptic plasticity, which was
achieved through activating the BDNF/TrkB/Akt pathway.
In conclusion, we demonstrated that HF-rTMS can enhance
cognitive performance through the modulation of NMDA
receptor-dependent brain plasticity.
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Background: Treatment-resistant depression (TRD) may have different

physiopathological neuromechanism in different age groups. This study used

the amplitude of low frequency fluctuations (ALFF) to initially compare

abnormalities in local functional brain activity in younger and older patients

with TRD.

Materials and methods: A total of 21 older TRD patients, 19 younger TRD,

19 older healthy controls (HCs), and 19 younger HCs underwent resting-

state functional MRI scans, and the images were analyzed using the ALFF and

further analyzed for correlation between abnormal brain regions and clinical

symptoms in TRD patients of different age groups.

Results: Compared with the older TRD, the younger TRD group had increased

ALFF in the left middle frontal gyrus and decreased ALFF in the left caudate

nucleus. Compared with the matched HC group, ALFF was increased in the

right middle temporal gyrus and left pallidum in the older TRD group, whereas

no significant differences were found in the younger TRD group. In addition,

ALFF values in the left middle frontal gyrus in the younger TRD group and

in the right middle temporal gyrus in the older TRD were both positively

correlated with the 17-item Hamilton Rating Scale for Depression score.
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Conclusion: Different neuropathological mechanisms may exist in TRD

patients of different ages, especially in the left middle frontal gyrus and left

caudate nucleus. This study is beneficial in providing potential key targets for

the clinical management of TRD patients of different ages.

KEYWORDS

treatment-resistant depression (TRD), amplitude of low-frequency fluctuation, MRI,
major depressive disorder (MDD), age

Introduction

Major depressive disorder (MDD) is a common clinical
psychiatric disorder with depressed mood, decreased cognitive
function and somatic disorders as the main clinical features
(Lawson et al., 2017). Epidemiological surveys show that MDD
is expected to be the number one disease burden globally
by 2030 (Ho et al., 2018). In addition, MDD is the leading
cause of disability worldwide, with approximately 800,000
deaths by suicide each year (Fabbri et al., 2021). However,
despite numerous studies, 30–40% of MDD patients still do
not respond significantly antidepressants (Bergfeld et al., 2018).
This type of MDD that does not respond significantly to
two adequate doses and courses of antidepressant medication
can be called treatment-resistant depression (TRD) (Gaynes
et al., 2020). TRD is a complex subtype of MDD with
lower quality of life, higher costs and more severe activity
impairment than non-TRD (Qiao et al., 2017; Jaffe et al.,
2019). Therefore, understanding the pathogenesis of TRD and
exploring potential biomarkers are of great importance to guide
clinical treatment.

Patients with TRD may have differences in clinical
symptoms at different ages. Previous studies have shown that
younger TRD have more severe depressive symptoms than
older TRD (Conelea et al., 2017). In addition, older TRD
tend to have more severe cognitive and somatic dysfunction
(Mulsant and Pollock, 1998; Knöchel et al., 2015). It has also
been shown that age has been shown to be a moderator of
response to treatment with numerous antidepressants (Ochs-
Ross et al., 2020). Therefore, these different clinical symptoms
suggest that different neuropathological mechanisms may exist
in TRD patients of different ages.

However, there are fewer studies on the age classification
of younger and older TRD patients, and there is no uniform
consensus. A study defined the age of younger TRD patients
as under 60 years (<60 years), while older TRD patients
were defined as over 60 years (≥60 years), suggest that the
younger group was more likely to have a history of psychiatric
hospitalization and higher depression severity scores (Conelea
et al., 2017). Another study defined the age range of TRD
in adolescents as 14–17 years (Ghaziuddin et al., 2011). In
addition, some studies have defined the age range of older

TRD as 55–72 years (Lijffijt et al., 2022) and 65–84 years
(Gronemann et al., 2020), but these studies were single-
age studies and lacked the effect of different age boundaries
on the primary outcome. Therefore, the neurobiological
evidence for the age boundary between younger and older
TRD is unclear and further clinical studies are necessary
to elucidate it.

In recent years, resting state-functional functional magnetic
resonance (rs-fMRI) has been gradually applied in the field
of psychiatric disorders, including MDD (Wang et al., 2020;
Liu P. et al., 2021), autism (Guo et al., 2017), and bipolar
disorder (Zhang et al., 2021a). Amplitude of low-frequency
fluctuation (ALFF) is a commonly studied metric in rs-
fMRI and is able to describe the intensity of spontaneous
brain activity in the resting state from an energy perspective
(Zang et al., 2007). In addition, ALFF has been recently
applied to clinical studies of MDD subtypes of disease
(Guo et al., 2012; Liu et al., 2015). Only one study of
ALFF at different ages in MDD with a first episode and
without medication, and the abnormal brain regions in
both groups were concentrated in the frontal, temporal,
parietal, and occipital lobes (Guo et al., 2013). Up to date,
little is known about the neuroimaging differences between
younger and older TRD.

However, the use of an earlier age of onset to differentiate
between different age groups of MDD patients is susceptible
to severe psychopathology and risk factors (Klein et al., 1999;
Zisook et al., 2007). Previous studies have found that age-related
changes in affective, cognitive, and reasoning functions stabilize
between the ages of 20 and 60 (Hedden and Gabrieli, 2004). In
addition, another clinical study with a large sample observed
different clinical symptoms of MDD in early onset depression
(EOD) and late onset depression (LOD), using a cut-off age of
40 years (Korten et al., 2012). Therefore, we focused on younger
TRD (21–40 years) and older TRD (41–60 years) as the age
division range. This study was based on ALFF and focused
on the differences in local functional brain activity between
younger TRD and older TRD patients. In addition, to explore
whether there is a correlation between abnormal brain area
alters and clinical symptoms in the TRD group. This study will
provide some insight into understanding the neuropathological
mechanisms of TRD at different ages.
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Materials and methods

Participants

A total of 40 outpatients with TRD from Guang’anmen
Hospital, China Academy of Chinese Medical Sciences,
Beijing First Hospital of Integrated Chinese and Western
Medicine, and Xuanwu Hospital of the Capital Medical
University, were recruited for this study. All patients with
TRD showed the initial diagnosis of MDD in the fifth edition
of the American Diagnostic and Statistical Manual of Mental
Disorders (DSM-V). The inclusion criteria were as follows:
(1) age, 21–60 years; (2) 17-item Hamilton depression rating
scale (HAMD-17) score > 17; (3) right-handedness; (4) no
response to two or more adequate doses and courses of
antidepressant therapy. Thirty-eight gender- and age-matched
healthy controls (HCs) (16 men and 22 women) were
included in the HC group, which reflected the following:
(1) age, 21–60 years; (2) HAMD-17 score < 7; (3) right-
handedness; (4) no history of any mental illness in first-
degree relatives.

The exclusion criteria for patients and HCs were as
follows: (1) serious mental illness and other diseases such as
cardiovascular and cerebrovascular disorders; (2) history of
drug and alcohol abuse; (3) any contraindications to MRI,
such as presence of a heart pacemaker, metal fixed false teeth,
or severe claustrophobia; (4) pregnant or lactating status; (5)
bipolar disorder or suicidal ideation.

All patients were required to sign an informed consent
form before enrollment. This study was approved by the
ethics committee of Guang’anmen Hospital, China Academy of
Chinese Medical Sciences.

Clinical materials and subgroups

In this study, we collected clinical information on all
participants, including gender, age, years of education, and
duration of illness. Patients in the TRD group were diagnosed
by experienced psychiatrists and assessed for depression
severity using the HAMD-17 scale. According to previous
studies (Korten et al., 2012), all patients were divided into
younger TRD group (21–40 years) and older TRD group (41–
60 years). The HC group was also divided into two subgroups:
younger HC group (21–40 years) and older HC group (41–
60 years).

Scan acquisition

All subjects in this study underwent MRI using a Magnetom
Skyra 3.0 T scanner (Siemens, Erlangen, Germany), and
the scans were performed at Guang’anmen Hospital, China

Academy of Chinese Medical Sciences, and the scan parameters
were the same. Before the scanning procedure, the subjects
were instructed to remain awake and avoid active thinking.
During the scanning process, the subjects were required to
wear earplugs and noise-canceling headphones, to use a hood
to immobilize the head, and to lie flat on the examination
bed. The scanning procedure involved a localizer scan, high-
resolution three-dimensional T1-weighted imaging, and BOLD-
fMRI.

The scanning parameters were as follows: for three-
dimensional T1-weighted imaging, time repetition/time
echo = 2500/2.98 ms, flip angle = 7◦, matrix = 64 × 64, field
of view = 256 mm × 256 mm, slice thickness = 1 mm, slice
number = 48, slices = 192, scanning time = 6 min 3 s; for BOLD-
fMRI, time repetition/time echo = 2000/30 ms, flip angle = 90◦,
matrix = 64 × 64, field of view = 240 mm × 240 mm,
slice number = 43, slice thickness/spacing = 3.0/1.0 mm,
number of obtained volumes = 200, and scanning
time = 6 min 40 s.

Image processing

fMRI data preprocessing
The acquired rs-fMRI data were preprocessed using

MATLAB-based DPARSF 5.1 software (DPARSF 5.11)
(Chao-Gan and Yu-Feng, 2010), as follows: (1) conversion
of DICOM raw data to NIFTI format; (2) removal of
the first 10 time points to stabilize the data; (3) slice
timing; (4) realignment of head motion (removal of
patients with head movements greater than 2 mm in
any direction and motor rotation greater than 2◦); (5)
the resulting aligned image time series for each subject
were each co-registered with the corresponding 3D
T1-weighted image and the Diffeomorphic Anatomical
Registration Through Exponentiated Lie Algebra (DARTEL)
tool was used to normalize the data for all subjects to
Montreal Neurological Institute (MNI) space, which
was performed using the MNI coordinate space with
3mm × 3mm × 3mm; (6) linear detrending in order to
reduce the influence of MRI equipment; (7) regression
of covariates, including brain white matter signal,
cerebrospinal fluid signal, and head movement parameters;
(8) smoothening (a 6-mm full-width at half-maximum
Gaussian kernel).

Amplitude of low frequency fluctuations
analysis

Data were spatially normalized and smoothed, and a fast
Fourier transform was performed to switch the time series
to the frequency domain to obtain the power spectrum.

1 http://www.rfmri.org/DPARSF
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The square root of the power spectrum at each frequency
was calculated to obtain the average square root of the
ALFF measurement for each voxel in the range of 0.01–
0.08 Hz. Finally, time bandpass filtering (0.01–0.08 Hz) was
performed. To reduce the inter-individual variability, ALFF was
transformed to zALFF using Fisher’s z transformation before
statistical analysis.

Statistical analyses

Clinical data analysis
Clinical data were analyzed using the SPSS 23.0 statistical

software (IBM Corporation, Somers, NY, United States).
One-way analysis of variance was used to compare age
and educational level among the four groups, and the
chi-square test was used to compare gender differences.
A two-sample t-test was used to compare the duration
of disease and HAMD-17 scores between the two patient
groups, with a threshold of P < 0.05 (two-tailed) set as
statistically significant.

fMRI data analysis
Within-group patterns

Imaging data were analyzed using the DPARSF toolbox, and
a voxel-based one-way analysis of variance was performed to
compare the whole-brain ALFF map among the four groups.
Gender, age, years of education, and framewise displacement
(a metric derived from Jenkinson’s formula < 0.2) were used
as covariates, and brain areas with ALFF differences among
the four groups were corrected for Gaussian random fields
(GRF). The corrected cluster level was set at P < 0.05
(two-tailed), and threshold voxel levels of P < 0.005 were
defined as statistically different. The threshold was set to
clusters > 20 voxels.

Between-group differences

We extracted the mean ALFF values of abnormal brain
regions in each of the four groups and performed post hoc
between-group 2-sample t-test analysis in SPSS 23.0 software
to show the difference between each two groups (younger
TRD group vs. older TRD group, younger TRD group
vs. younger HC group, older TRD group vs. older HC
group, younger HC group vs. older HC group). And using
Bonferroni correction, the threshold was statistically significant
at P < 0.0125 (0.05/4).

Correlations with symptoms

To verify the relationship between clinical symptoms
and abnormal brain areas in the younger TRD group and
the older TRD group, we performed Pearson correlation
analysis between ALFF values and HAMD-17 scores for
abnormal brain areas extracted from the two groups separately.

Significance was set at a statistical threshold of P < 0.05 (two-
tailed).

Results

Characteristics of research datasets

Two older TRD patients were excluded because of excessive
head movement displacement. Therefore, a total of 19 younger
TRD patients, 19 older TRD patients, 19 younger HCs, and
19 older HCs met the inclusion criteria. There were no
significant differences between the younger TRD group and
the older TRD group in terms of gender, years of education,
duration of illness, and HAMD-17 scores. There were no
statistical differences between the younger TRD group and
the older TRD group in terms of gender, age, and years of
education when compared to matched controls in each age
group (Table 1).

Abnormal amplitude of low frequency
fluctuations among four groups

Age, gender, years of education, and frame displacement
were used as covariates. One-way ANOVA revealed
statistically significant differences in ALFF among
the four groups in the left middle frontal gyrus,
right middle temporal gyrus, right postcentral gyrus,
left pallidum, and left caudate nucleus (Table 2 and
Figure 1).

Abnormal amplitude of low frequency
fluctuations in younger
treatment-resistant depression group
vs. older treatment-resistant
depression group

Compared to the older TRD group, the younger TRD
group had increased ALFF in the left middle frontal gyrus and
decreased ALFF in the left caudate nucleus (Figure 2).

Abnormal amplitude of low frequency
fluctuations in younger
treatment-resistant depression group
vs. younger healthy control group

Compared with the younger HC group, the younger TRD
group had increased ALFF in the left middle frontal gyrus
and left pallidum, and decreased ALFF in the right postcentral
gyrus (Figure 2).
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TABLE 1 Demographic and clinical characteristics of the study participants.

Variable Younger TRD
(n = 19)

Older TRD
(n = 19)

Younger HCs
(n = 19)

Older HCs
(n = 19)

t(F)/χ 2 P-value

Gender (M/F) 9/10 7/12 9/10 7/12 0.864 0.834a

Age (years) 33.10 ± 5.38 50.42 ± 5.98 31.36 ± 4.24 50.63 ± 6.26 69.738 <0.001b*

Education (years) 14.94 ± 2.69 12.89 ± 3.84 15.15 ± 1.95 12.84 ± 3.54 3.169 0.029c*

Duration of illness (months) 41.36 ± 15.67 47.05 ± 23.09 NA NA −0.888 0.381d

HAMD-17 score 22.57 ± 3.09 23.10 ± 3.60 NA NA −0.483 0.632d

aThe P-values of gender distribution among the three groups were obtained using the chi-square test. Post hoc t-test: P = 1 (Younger TRD vs. Younger HCs), P = 1 (Older
TRD vs. Older HCs).
bP-value from one-way analysis of variance tests. Post hoc t-test: P = 0.336 (Younger TRD vs. Younger HCs), P = 0.907 (Older TRD vs. Older HCs).
cP-value from one-way analysis of variance tests. Post hoc t-test: P = 0.835 (Younger TRD vs. Younger HCs), P = 0.958 (Older TRD vs. Older HCs).
dP-value from a two-sample t-test.
*Significant difference.

TABLE 2 Brain areas with different ALFF signals for four groups.

Clusters Brain regions Peak coordinates (MNI) Cluster size F-values

X Y Z

1 Left middle frontal gyrus −24 49 14 31 8.415

2 Right middle temporal gyrus 48 −57 21 22 9.761

3 Right postcentral gyrus 24 −45 54 25 14.442

4 Left pallidum −13 −1 −1 55 10.340

5 Left caudate nucleus −18 −9 24 23 10.413

One-way ANOVA, P < 0.005, GRF corrected, cluster size > 20.

Abnormal amplitude of low frequency
fluctuations in older
treatment-resistant depression group
vs. older healthy control group

Compared with the older HC group, the older TRD group
had increased ALFF in the left middle frontal gyrus, right middle
temporal gyrus, left pallidum, and left caudate nucleus, and
decreased ALFF in the right postcentral gyrus (Figure 2).

Abnormal amplitude of low frequency
fluctuations in younger healthy control
group vs. older healthy control group

There was no significant difference in the comparison
of ALFF between the younger HC group and the older HC
group (Figure 2).

Correlation between amplitude of low
frequency fluctuations and clinical
symptoms

To test whether there was a correlation between clinical
characteristics and abnormal brain regions ALFF in the

younger TRD group and the older TRD group, we further
performed a Pearson correlation analysis. We found that the left
middle frontal gyrus ALFF values in the younger TRD group
were positively correlated with HAMD-17 scores (r = 0.499,
P = 0.029). In addition, the right middle temporal gyrus ALFF
values in the older TRD group were positively correlated with
HAMD-17 scores (r = 0.507, P = 0.026) (Figure 3).

Discussion

To our knowledge, this is the first study using the ALFF
method to analyze abnormalities in the physiopathological
mechanisms of the brain between younger TRD and older
TRD. The present study found no significant differences
in clinical symptoms between younger and older TRD, but
abnormal neuronal functional activity in some brain regions,
with abnormalities associated with cognitive control networks
(CCN) and reward networks. Compared to the matched HC
group, TRD also exhibited abnormalities in some brain regions
at different ages. The older TRD showed more extensive ALFF
abnormalities than younger TRD. This study provides new
insights into the differences in physiopathological mechanisms
in patients with TRD at different ages.

This study found that the younger TRD group had
increased ALFF in the left middle frontal gyrus than the
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FIGURE 1

Statistical maps showing ANOVA result of ALFF abnormalities among patients with younger TRD, older TRD group, younger HC group, and older
HC group (GRF corrected). The color bars indicate the F-value.

FIGURE 2

Post hoc two-sample t-tests (Bonferroni corrected) comparison showing ALFF values differences at peak voxel between each pair group
(younger TRD group vs. older TRD group, younger TRD group vs. younger HC group, older TRD group vs. older HC group, younger HC group
vs. older HC group). MFG.L, Left middle frontal gyrus; MTG.R, Right middle temporal gyrus; PoCG.R, Right postcentral gyrus; PAL.L, Left
pallidum; CAU.L, Left caudate nucleus. *P < 0.0125.
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FIGURE 3

Positive correlation between the ALFF values of abnormal brain regions and the HAMD-17 scores: (A) ALFF values in the younger TRD group;
(B) ALFF values in the older TRD group; Frontal_Mid_L, Left middle frontal gyrus; Temporal_Mid_R, Right middle temporal gyrus; ALFF,
amplitude of low-frequency fluctuations; HAMD-17, 17-item Hamilton Rating Scale for Depression.

older. The middle frontal gyrus is an important component of
the dorsolateral prefrontal cortex (DLPFC) and an important
component of the CCN, which is closely associated with
negative emotions, top-down attention, and working memory
(Fales et al., 2009; Wang et al., 2016; Egorova et al., 2018).
Patients with MDD with DLPFC damage tend to show low
interest in things, memory loss, and lack of motivation
(Hamilton et al., 2012; Kang et al., 2012; Martin et al.,
2017). Previous studies have found that EOD has increased
ALFF in the superior frontal gyrus than LOD, suggesting
that hyperactivity of the superior frontal gyrus in the resting
state may provoke strong negative affect for the individual
(Guo et al., 2012). Another study also showed that regional
homogeneity (ReHo) was increased in the right inferior frontal
triangular gyrus of the EOD than in the LOD, suggesting that
abnormal functional activity in the prefrontal lobe helps to
distinguish the EOD from the LOD (Zhang et al., 2021b).
Therefore, the results of the present study suggest that the
hyperactivity of the left middle frontal gyrus in the resting
state in younger TRD may be related to the high level of
stress caused by the life and work environment of young
people. In addition, we further found that ALFF in the
left middle frontal gyrus of the younger TRD group was
positively correlated with HAMD-17 scores, whereas this was
not found in the older TRD. This suggests that the left middle
frontal gyrus may be a neuroimaging marker for young TRD
and is an important brain region for distinguishing younger
TRD from older TRD.

We found that ALFF was decreased in the left caudate
nucleus in the younger TRD group compared to the older
TRD group. The caudate nucleus is an important component
of the striatum and is one of the central nodes of emotional
processing (Pizzagalli et al., 2009; Stoy et al., 2012). The caudate
nucleus is involved in the cortico-striato-pallidum-thalamus
emotion regulation loop, which regulates the body’s response
to external stimuli and maintains the balance of emotion
regulation (Alexander et al., 1990; Haber and Calzavara, 2009;
Peters et al., 2016). Meanwhile, the caudate nucleus is also an
important component of the reward network and is involved
in pleasure deficit and motivated reward processing in humans
(Macpherson and Hikida, 2019; Cao et al., 2021). Previous
studies found that ALFF in the right caudate nucleus was
significantly increased in the MDD group than in the HC
group, suggesting that abnormal spontaneous brain activity
in the caudate nucleus may be associated with MDD (Liu
et al., 2014; Chen et al., 2022). Another study also found that
ketamine improved patients’ emotional perception through its
modulatory effect on the caudate nucleus in TRD patients
(Murrough et al., 2015). Therefore, the results of this study
suggest that the degree of functional impairment of the
left caudate nucleus is more severe in older TRD patients
than in younger TRD. This further suggests that different
physiopathological mechanisms may exist in patients with TRD
at different ages of onset.

We found increased ALFF in the right middle temporal
gyrus and left caudate nucleus in the older TRD group compared
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to the older HC group, which was not found in the younger
TRD group compared to the younger HC group. Middle
temporal gyrus is involved in emotional perception, audiovisual
processing, memory and social cognitive functions, and is also
an important component of the default mode network (DMN)
(Raichle et al., 2001; Raichle and Snyder, 2007; Xu et al.,
2019; Liu M. et al., 2021). Several previous studies have shown
abnormalities in the functional activity of the DMN in patients
with TRD, and the DMN varies by disease stage and age (de
Kwaasteniet et al., 2015; Huang et al., 2020; Woody et al.,
2021). A work showed that early-onset recurrent depression was
increased ReHo in the right middle temporal gyrus than in the
younger HC group, suggesting that this partially compensatory
elevation of DMN may be one of the causes of abnormal brain
function in early-onset recurrent depression (Sun et al., 2022).
Therefore, the results of this study suggest that dysfunction
and abnormalities of the right middle temporal gyrus and
left caudate nucleus in older patients with TRD may be an
important pathogenetic mechanism in younger patients with
TRD. In addition, we found that ALFF values in the right
middle temporal gyrus of the older TRD group were positively
correlated with HAMD-17 scores, suggesting that this region
may be an important neuroimaging marker and potential
therapeutic target for older TRD patients. However, whether
ALFF in this brain region associated with clinical symptoms
can be a valid marker of TRD progression needs to be further
elucidated.

Interestingly, compared with the two matched HC
groups, the two subtype TRD groups had increased ALFF
in the left middle frontal gyrus, left pallidum, and decreased
ALFF in the right postcentral gyrus. The pallidum is not
only a component of the striatum, but also a transmission
node connecting the prefrontal cortex to the amygdala,
which is closely associated with motivation and reward
circuits in MDD patients (Smith et al., 2009; Knowland
et al., 2017). Previous studies have found that the functional
connectivity (FC) of median cingulate and paracingulate
gyri and left pallidum was decreased in MDD patients
compared to the HC group (Huang et al., 2021). In addition,
a review also showed that vagus nerve stimulation and
deep brain stimulation can reverse striatal abnormalities
and thus alleviate TRD symptoms (Mohr et al., 2011).
The postcentral gyrus belongs to the somatosensory-motor
area, which is a higher-level center for the regulation of
somatosensory and motor functions in the human body
and an important part of the frontoparietal network,
and is closely related to executive control and emotion
management functions (Zhang et al., 2019; Liu M. et al.,
2021). The postcentral gyrus plays an important role in the
physiopathological mechanisms of TRD, and abnormalities
of the postcentral gyrus predispose therefore TRD patients
to somatic disorders (Klok et al., 2019). Previous studies
have also found that electroconvulsive therapy can alleviate

residual dysfunction in depression by reversing abnormal FC
in the middle occipital gyrus and postcentral gyrus. Therefore,
the results of this study suggest that cognitive control,
reward motivation, and somatosensory-motor function were
impaired in patients with TRD at different ages, independent
of age of onset.

Some limitations need to be noted. First, for ethical reasons,
TRD patients were not discontinued from antidepressants prior
to enrollment. Therefore, we do not exclude the potential
effects of antidepressants on brain function. Second, we
only compared the differences in brain function between
the TRD and HC groups, but the nTRD group was not
included in this study. Therefore, the results of brain regions
with abnormal ALFF (TRD group vs. HC group) only
suggest an association with major depression and lack the
specificity of TRD pathophysiology, which needs further
study in the future. Third, only one clustering method
was used to analyze the images in this study, and we
will use different clustering methods to compare the results
in future studies to improve the scientific significance of
the results of this study. Finally, the small sample size
of the present study limited the age classification range
of the subjects. Therefore, we will further expand the
sample size in future studies to improve the scientific
value of this study.

Conclusion

To summarize, we found that different neuropathological
mechanisms may exist in TRD patients of different ages,
especially in the left middle frontal gyrus and left caudate
nucleus. This study is beneficial to provide potential key targets
for clinical treatment of TRD patients in different age groups.
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Mohr, P., Rodriguez, M., Slavíčková, A., and Hanka, J. (2011). The
application of vagus nerve stimulation and deep brain stimulation in depression.
Neuropsychobiology 64, 170–181. doi: 10.1159/000325225

Mulsant, B. H., and Pollock, B. G. (1998). Treatment-resistant depression in late
life. J. Geriatr. Psychiatry Neurol. 11, 186–193. doi: 10.1177/089198879901100404

Murrough, J. W., Collins, K. A., Fields, J., DeWilde, K. E., Phillips, M. L.,
Mathew, S. J., et al. (2015). Regulation of neural responses to emotion perception
by ketamine in individuals with treatment-resistant major depressive disorder.
Transl. Psychiatry 5:e509. doi: 10.1038/tp.2015.10

Ochs-Ross, R., Daly, E. J., Zhang, Y., Lane, R., Lim, P., Morrison, R. L., et al.
(2020). Efficacy and safety of esketamine nasal spray plus an oral antidepressant
in elderly patients with treatment-resistant depression-TRANSFORM-3. Am. J.
Geriatr. Psychiatry 28, 121–141. doi: 10.1016/j.jagp.2019.10.008

Peters, S. K., Dunlop, K., and Downar, J. (2016). Cortico-striatal-thalamic loop
circuits of the salience network: a central pathway in psychiatric disease and
treatment. Front. Syst. Neurosci. 10:104. doi: 10.3389/fnsys.2016.00104

Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan,
R., et al. (2009). Reduced caudate and nucleus accumbens response to rewards in
unmedicated individuals with major depressive disorder. Am. J. Psychiatry 166,
702–710. doi: 10.1176/appi.ajp.2008.08081201

Qiao, J., Qian, L. J., Zhao, H. F., Gong, G. H., and Geng, D. Q. (2017).
The relationship between quality of life and clinical phenotype in patients
with treatment resistant and non-treatment resistant depression. Eur. Rev. Med.
Pharmacol. Sci. 21, 2432–2436.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A.,
and Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.
U.S.A. 98, 676–682. doi: 10.1073/pnas.98.2.676

Raichle, M. E., and Snyder, A. Z. (2007). A default mode of brain function:
A brief history of an evolving idea. NeuroImage 37, 1083–1099. doi: 10.1016/j.
neuroimage.2007.02.041

Smith, K. S., Tindell, A. J., Aldridge, J. W., and Berridge, K. C. (2009). Ventral
pallidum roles in reward and motivation. Behav. Brain Res. 196, 155–167. doi:
10.1016/j.bbr.2008.09.038

Stoy, M., Schlagenhauf, F., Sterzer, P., Bermpohl, F., Hägele, C., Suchotzki,
K., et al. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in
unmedicated depressed patients normalizes after treatment with escitalopram.
J. Psychopharmacol. 26, 677–688. doi: 10.1177/0269881111416686

Sun, J. F., Chen, L. M., He, J. K., Wang, Z., Guo, C. L., Ma, Y., et al. (2022). A
Comparative Study of Regional Homogeneity of Resting-State fMRI Between the
Early-Onset and Late-Onset Recurrent Depression in Adults. Front. Psychology
13:849847. doi: 10.3389/fpsyg.2022.849847

Wang, M., Ju, Y., Lu, X., Sun, J., Dong, Q., Liu, J., et al. (2020). Longitudinal
changes of amplitude of low-frequency fluctuations in MDD patients: A 6-month
follow-up resting-state functional magnetic resonance imaging study. J. Affect.
Disord. 276, 411–417. doi: 10.1016/j.jad.2020.07.067

Wang, Y. L., Yang, S. Z., Sun, W. L., Shi, Y. Z., and Duan, H. F. (2016).
Altered functional interaction hub between affective network and cognitive
control network in patients with major depressive disorder. Behav. Brain Res. 298,
301–309. doi: 10.1016/j.bbr.2015.10.040

Woody, M. L., Panny, B., Degutis, M., Griffo, A., and Price, R. B. (2021). Resting
state functional connectivity subtypes predict discrete patterns of cognitive-
affective functioning across levels of analysis among patients with treatment-
resistant depression. Behav. Res. Ther. 146:103960. doi: 10.1016/j.brat.2021.
103960

Xu, J., Lyu, H., Li, T., Xu, Z., Fu, X., Jia, F., et al. (2019). Delineating functional
segregations of the human middle temporal gyrus with resting-state functional
connectivity and coactivation patterns. Hum. Brain Mapp. 40, 5159–5171. doi:
10.1002/hbm.24763

Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al.
(2007). Altered baseline brain activity in children with ADHD revealed by
resting-state functional MRI. Brain Dev. 29, 83–91. doi: 10.1016/j.braindev.2006.
07.002

Zhang, H., Qiu, M., Ding, L., Mellor, D., Li, G., Shen, T., et al. (2019). Intrinsic
gray-matter connectivity of the brain in major depressive disorder. J. Affect.
Disord. 251, 78–85. doi: 10.1016/j.jad.2019.01.048

Zhang, Z., Bo, Q., Li, F., Zhao, L., Wang, Y., Liu, R., et al. (2021a). Increased
ALFF and functional connectivity of the right striatum in bipolar disorder patients.
Prog. Neuropsychopharmacol. Biol. Psychiatry 111:110140. doi: 10.1016/j.pnpbp.
2020.110140

Zhang, Z., Chen, Y., Wei, W., Yang, X., Meng, Y., Yu, H., et al. (2021b). Changes
in Regional Homogeneity of Medication-Free Major Depressive Disorder Patients
With Different Onset Ages. Front. Psychiatry 12:713614. doi: 10.3389/fpsyt.2021.
713614

Zisook, S., Rush, A. J., Lesser, I., Wisniewski, S. R., Trivedi, M., Husain, M. M.,
et al. (2007). Preadult onset vs. adult onset of major depressive disorder: A
replication study. Acta Psychiatr. Scand. 115, 196–205. doi: 10.1111/j.1600-0447.
2006.00868.x

Frontiers in Neuroscience 10 frontiersin.org

122

https://doi.org/10.3389/fnins.2022.949698
https://doi.org/10.3389/fpsyt.2021.571532
https://doi.org/10.1186/s12888-019-2222-4
https://doi.org/10.1038/nm.2886
https://doi.org/10.1038/nm.2886
https://doi.org/10.1016/s0165-0327(99)00020-8
https://doi.org/10.1192/bjo.2019.58
https://doi.org/10.1192/bjo.2019.58
https://doi.org/10.2174/1570159x1305151013200032
https://doi.org/10.2174/1570159x1305151013200032
https://doi.org/10.1016/j.cell.2017.06.015
https://doi.org/10.1016/j.jad.2012.01.042
https://doi.org/10.1038/mp.2016.81
https://doi.org/10.1038/s41386-021-01242-9
https://doi.org/10.1016/j.brainres.2014.12.040
https://doi.org/10.1016/j.brainres.2014.12.040
https://doi.org/10.1002/hbm.22526
https://doi.org/10.1016/j.jad.2021.08.143
https://doi.org/10.1016/j.brainres.2020.147143
https://doi.org/10.1111/pcn.12830
https://doi.org/10.1002/da.22658
https://doi.org/10.1159/000325225
https://doi.org/10.1177/089198879901100404
https://doi.org/10.1038/tp.2015.10
https://doi.org/10.1016/j.jagp.2019.10.008
https://doi.org/10.3389/fnsys.2016.00104
https://doi.org/10.1176/appi.ajp.2008.08081201
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1016/j.neuroimage.2007.02.041
https://doi.org/10.1016/j.neuroimage.2007.02.041
https://doi.org/10.1016/j.bbr.2008.09.038
https://doi.org/10.1016/j.bbr.2008.09.038
https://doi.org/10.1177/0269881111416686
https://doi.org/10.3389/fpsyg.2022.849847
https://doi.org/10.1016/j.jad.2020.07.067
https://doi.org/10.1016/j.bbr.2015.10.040
https://doi.org/10.1016/j.brat.2021.103960
https://doi.org/10.1016/j.brat.2021.103960
https://doi.org/10.1002/hbm.24763
https://doi.org/10.1002/hbm.24763
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1016/j.braindev.2006.07.002
https://doi.org/10.1016/j.jad.2019.01.048
https://doi.org/10.1016/j.pnpbp.2020.110140
https://doi.org/10.1016/j.pnpbp.2020.110140
https://doi.org/10.3389/fpsyt.2021.713614
https://doi.org/10.3389/fpsyt.2021.713614
https://doi.org/10.1111/j.1600-0447.2006.00868.x
https://doi.org/10.1111/j.1600-0447.2006.00868.x
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Provides a holistic understanding of brain 

function from genes to behavior

Part of the most cited neuroscience journal series 

which explores the brain - from the new eras 

of causation and anatomical neurosciences to 

neuroeconomics and neuroenergetics.

Discover the latest 
Research Topics

See more 

Frontiers in
Neuroscience

https://www.frontiersin.org/journals/Neuroscience/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Multi-dimensional characterization ofneuropsychiatric disorders
	Table of contents

	Editorial: Multi-dimensional characterization of neuropsychiatric disorders
	Introduction
	Computational modeling of multi-dimensional brain signals
	Multi-dimensional data for treatment development
	Identification and validation of imaging biomarkers of neuropsychiatric disorders
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Seizure Prediction in EEG Signals Using STFT and Domain Adaptation
	1. Introduction
	1.1. Epilepsy Background
	1.2. Related Work
	1.3. Significance

	2. Data Acquisition and Preprocessing
	2.1. Patients
	2.2. Data Selection and Labeling

	3. Methods
	3.1. Clinical Situation Simulation
	3.2. Modal Transformation With STFT
	3.3. Construction of High-Dimensional Space
	3.4. Optimization Using Adversarial Learning

	4. Results and Discussion
	4.1. Comparison With Conventional Methods
	4.2. Comparison With DA Methods
	4.3. Impact on Different Components

	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	BMNet: A New Region-Based Metric Learning Method for Early Alzheimer's Disease Identification With FDG-PET Images
	Introduction
	Materials and Methods
	Image Acquisition and Preprocessing
	Methods
	Overview of the Proposed Network
	Baseline Model
	Generating Inter-Region Representation via Bilinear Pooling Module
	Distinguishing Hard Samples in Embedding Space by Metric Learning
	Loss Functions
	Performance Evaluation
	Implementation Details
	Validation Strategies and Statistic Analysis Methods


	Results
	Ablation Experiments
	The Ablation Experiments of the Bilinear Pooling Module
	The Ablation Experiments of Metric Learning Losses

	Experiments on Different Atlases
	Comparison With Other Methods

	Discussion and Conclusion
	Comparison of Different Coefficients in Loss Functions
	Comparisons With Previous Researches
	Potential Applications in Other Modalities
	Limitations and Future Works
	Conclusion

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Neural Substrates of Poststroke Depression: Current Opinions and Methodology Trends
	Introduction
	Definition, Diagnosis, and Measurement of Poststroke Depression
	Lesion Location and Poststroke Depression
	Traditional Lesion Analysis
	Voxel-Based and Multivariate Lesion-Symptom Mapping

	Regional Structural and Functional Abnormalities and Poststroke Depression
	Brain Network Disruption and Poststroke Depression
	Direct Connectome Analysis
	Indirect Atlas-Based Connectome Analysis

	Discussion: Future Directions and Clinical Implications
	Author Contributions
	Funding
	References

	Altered Brain Function in First-Episode and Recurrent Depression: A Resting-State Functional Magnetic Resonance Imaging Study
	Introduction
	Materials and Methods
	Participants
	Scan Acquisition
	Image Processing
	Functional Magnetic Resonance Imaging Data Preprocessing
	Regional Homogeneity Analysis
	Amplitude of Low-Frequency Fluctuations Analysis

	Statistical Analyses
	Clinical Data Analysis
	Functional Magnetic Resonance Imaging Data Analysis


	Results
	Characteristics of Research Samples
	Differences in Regional Homogeneity/Amplitude of Low-Frequency Fluctuations Between the Recurrent Depressive Episodes, First Depressive Episode, and Healthy Controls
	Significant Correlation Between Functional Image and Clinical Feature

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A Motor Imagery Signals Classification Method via the Difference of EEG Signals Between Left and Right Hemispheric Electrodes
	1. Introduction
	2. Materials and Methods
	2.1. The Framework
	2.2. Dataset
	2.3. Data Preprocessing
	2.4. CNN Theory and CNN Structure
	2.4.1. CNN Theory
	2.4.2. CNN Structure


	3. Results
	3.1. Classification Accuracy of Individual Subject
	3.2. Classification Accuracy of Group-Level Subjects
	3.3. Comparison of Classification Models
	3.4. Comparison of Loss on Test Data
	3.5. Comparison With Other Works

	4. Discussion
	4.1. Data Analysis
	4.2. Limitations of the Proposed Method

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

	The Coupled Representation of Hierarchical Features for Mild Cognitive Impairment and Alzheimer's Disease Classification
	Introduction
	Materials and Methods
	Participants
	Structural MRI Data Acquisition
	Image Preprocessing
	Feature Extraction
	Two-Level Coupled Feature Representation
	The Network-Level Intra-coupled Interactions
	The Network-Level Inter-Coupled Interactions

	Classification With Coupled Features

	Results
	Discussion
	Two-Level Coupled Feature Representation for AD and NC Classification
	Two-Level Coupled Interaction Representation for MCI-C and MCI-Nc Classification
	Methodological Considerations
	Limitations and Future Work

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Right Frontal Theta: Is It a Response Biomarker for Ketamine's Therapeutic Action in Anxiety Disorders?
	Introduction
	Materials and Methods
	Questionnaires and Demographics
	Electroencephalogram Recording
	Data Processing and Analysis
	Primary Pre-processing
	Spectral Analysis

	Statistical Analysis

	Results
	Patient vs. Control Overview
	Anxiety Effect
	Frontal Band Power—Qualitative Comparison With Ketamine
	Higuchi's Fractal Dimension and Frontal Alpha Asymmetry Comparison

	Discussion
	Overview of Findings
	Comparison With Ketamine Study
	Theta Reduction at F4
	Gamma Band Changes
	Higuchi's Fractal Dimension Changes
	Alpha Asymmetry Differences

	Overview of Findings and Limitations

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Early Development and the Functional Correlation of Brain Structural Connectivity in Preterm-Born Infants
	Introduction
	Materials and Methods
	Subjects
	Image Acquisition
	Data Preprocessing
	Cortical Parcelation
	Whole-Brain Tractography
	Network Construction
	Network Measures
	Statistical Analysis

	Results
	Demographic Information of Participants
	No Significant Effect of Gestational Age Was Found on Network Measures
	Developmental Trajectory of Structural Brain Network in 0–3-Month-Old Infants
	Local Efficiency Was Significantly Correlated With Words Understood at 10 Months

	Discussion
	Enhanced Information Transfer Efficiency Within the Infant Brain
	Linear Rising Clustering Coefficients and Small-World Properties
	Higher Local Efficiency Was Associated With Better Words Understood
	Limitation

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	High-frequency repetitive transcranial magnetic stimulation improves spatial episodic learning and memory performance by regulating brain plasticity in healthy rats
	Introduction
	Materials and methods
	Ethics statement
	Animals and study design
	Repetitive transcranial magnetic stimulation protocol
	Functional magnetic resonance imaging acquisition
	Functional magnetic resonance imaging data analysis
	Spatial episodic learning and memory test by using Morris water maze
	Western blot analyses
	Statistical analyses

	Results
	Use of repetitive transcranial magnetic stimulation over the prefrontal cortex improved spatial episodic learning and memory abilities in healthy rats
	Use of repetitive transcranial magnetic stimulation over the prefrontal cortex increased regional homogeneity in the prefrontal cortex, hippocampus, primary motor cortex, and other brain regions in healthy rats
	Use of repetitive transcranial magnetic stimulation over the prefrontal cortex increased the protein expressions of N-methyl-d-aspartic acid receptors and activated the brain-derived neurotrophic factor/TrkB/Akt pathway in the prefrontal cortex, primary motor cortex, and hippocampus in healthy rats
	The synaptic plasticity-related protein NR1 changes in the prefrontal cortex, hippocampus, and primary motor cortex correlated to a cognition improvement in the repetitive transcranial magnetic stimulation-treated healthy rats

	Discussion
	Use of repetitive transcranial magnetic stimulation over the prefrontal cortex improves spatial episodic learning and memory
	Use of repetitive transcranial magnetic stimulation over the prefrontal cortex increases regional homogeneity in brain regions in interoceptive/default mode network and the cortico-striatal-thalamic network
	Repetitive transcranial magnetic stimulation-induced neural plasticity is, at least partly, N-methyl-d-aspartic acid receptor-dependent synaptic plasticity
	Use of repetitive transcranial magnetic stimulation over the prefrontal cortex induces upregulation of N-methyl-d-aspartic acid receptors by activating the brain-derived neurotrophic factor/TrkB/Akt pathway
	Repetitive transcranial magnetic stimulation-induced upregulation of NR1 in the prefrontal cortex, hippocampus, and primary motor cortex correlates with cognitive enhancement

	Limitations
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	A comparative study of amplitude of low-frequence fluctuation of resting-state fMRI between the younger and older treatment-resistant depression in adults
	Introduction
	Materials and methods
	Participants
	Clinical materials and subgroups
	Scan acquisition
	Image processing
	fMRI data preprocessing
	Amplitude of low frequency fluctuations analysis

	Statistical analyses
	Clinical data analysis
	fMRI data analysis
	Within-group patterns
	Between-group differences
	Correlations with symptoms



	Results
	Characteristics of research datasets
	Abnormal amplitude of low frequency fluctuations among four groups
	Abnormal amplitude of low frequency fluctuations in younger treatment-resistant depression group vs. older treatment-resistant depression group
	Abnormal amplitude of low frequency fluctuations in younger treatment-resistant depression group vs. younger healthy control group
	Abnormal amplitude of low frequency fluctuations in older treatment-resistant depression group vs. older healthy control group
	Abnormal amplitude of low frequency fluctuations in younger healthy control group vs. older healthy control group
	Correlation between amplitude of low frequency fluctuations and clinical symptoms

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Back cover




