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Editorial on the Research Topic

InSAR crustal deformation monitoring, modeling and error analysis

Background

Crustal deformation associated with endogenous forces of the earth (e.g., volcanic

events, earthquakes, landslides, and collapses) and anthropogenic activities (e.g., urban

construction, mining activities, oil and groundwater extraction) has been observed all over

the world, which has become one of the most significant geological hazards globally. As

one of the most effective means for measuring crustal deformation, interferometric

synthetic aperture radar (InSAR) can provide high-resolution, high-precision, and large-

scale land surface displacements as well as their spatio-temporal evolution behaviors.

InSAR monitoring and modeling outputs can help understand the deformation

mechanisms and minimize exposure of people and assets to potential damages. With

the recent development and improvement in satellite technologies and extensive data

computing methodologies, InSAR deformation monitoring, analyzing, and modeling,

which is essential for disaster control, faces new and emerging challenges and produces

remarkable progress.

Motivation for the topic

Over the past two decades, InSAR technology has become a powerful tool for

measuring Earth’s deformation with high spatial resolution and high precision and is

playing a key role in monitoring various natural and anthropogenic hazards related to

earthquakes, volcanoes, landslides, groundwater/oil extraction, urban construction, and
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mining activities, etc. Nowadays, many efficient InSAR

approaches, such as PS-InSAR, SBAS-InSAR, DS-InSAR, etc.,

have widely been exploited over the years and have already

demonstrated their values. With the recent development and

improvement in satellite technologies and extensive data

computing methodologies, it is time that we present some of

the latest advances in InSAR Crustal Deformation Monitoring,

Modeling and Error Analysis.

Summary of the papers

This Research Topic contains eleven articles published,

involving sixty authors from seventeen research institutions.

Most papers utilize mainly InSAR, D-InSAR, multi-temporal

InSAR or multi-sensors InSAR techniques to investigate and

analyze the ground deformation related to earthquakes, mining

activities, landslides and extraction of groundwater, aiming to

understand their dynamical mechanisms and provide technical

support for assessment and early-warning of related geohazards.

Some authors focus on developing novel methods to improve the

reliability of deformation results. Deep learning approaches are

also integrated within InSAR processing and recognizing

deformation patterns. In the following, we summarize the

main work and achievements of the papers.

Liao et al. combined D-InSAR and pixel offset tracking

techniques to characterize the co-seismic displacement and

extract the trace of the rupturing fault for the 2022 Qinghai

Menyuan (China) Ms 6.9 earthquake. They inverted the slip

distribution by adopting the steepest descent method and

analyzed the stress condition of the surrounding faults based

on the calculated Coulomb stress change. They suggested that

attentions should be paid to Lenglongling fault, Tolaishan fault,

SunanQilian fault, and Minyue-Damaying fault in future

research. Li et al. obtained the co-seismic deformation fields

of the 21 May 2021 Mw 6.1 earthquake in Yangbi (China) by use

of Sentinel-1 SAR images acquired from ascending and

descending tracks. The slip distribution of the rupture plane

was inverted with the particle swarm optimization method.

Results indicated that a steeply dipping dextral strike-slip fault

controlled the earthquake. Wang et al. gave a detailed joint

analysis of the co-seismic and post-seismic deformation of the

2020 Mw 6.0 Jiashi earthquake in Xinjiang (China) using both

D-InSAR and SBAS-InSAR techniques. The optimal geometric

parameters and slip distribution were inverted based on the

Okada model. All papers above researched the deformation

fields of recent earthquakes, aiming to provide useful

information to better understand the tectonic background and

mechanisms of corresponding regions.

Qin et al. jointly used the finite difference method 3D model

and the stacking InSAR to monitor the ground deformation in

the Fangezhuang coal mining area. By detailed investigation of

the correlation between the spatial pattern of deformation and

the geological faults, they concluded that the spatial extent of the

observed ground movement was controlled by a tectonic fault

that mining activities had reactivated. Not only ground surface of

mining area is affected by considerable deformation, and the

mine waste dump experiences subsidence which should not be

ignored since it could cause landslides. Tabish et al. proposed a

strategy to characterize and predict the spatio-temporal

evolution of the subsidence of mine waste dump with the aid

of InSAR and a secondary consolidation model. The method was

applied and tested over a mine waste dump in Weijiamao mine

(China). Low coherence induced by land use cover and

deformation gradient is always a challenge for deformation

monitoring in mining areas using InSAR. To overcome this

limitation, Du et al. developed an improved phase

optimization algorithm to increase the density of

measurement points and reduce the influence of phase noise.

It was demonstrated that the proposed method was practically

feasible for long time and wide scale deformation monitoring in

mining areas. Wang et al. presented a novel phase unwrapping

method based on U-Net convolutional neural network to reduce

the uncertainties resulted from inaccurate interferometric phase

unwrapping. The method was compared with the traditional

minimum cost flow method and its effectiveness was verified in

Peibei mining area of Xuzhou, China. Yu et al. also integrated a

deep learning algorithm (named Light YOLO-Basin model) but

with different objective with Wang et al. The model was used to

automatically recognize the subsidence basins in two typical

mining areas with wide swath InSAR interferograms. It

showed potentials in terms of detection speed and detection

accuracy.

Identifying slope active deformation areas (SADAs) is

important to early-warning and prevention of potential

geological hazards. Wang et al. observed the long-term

deformation in Zhouqu region (China) from January 2019 to

February 2021 using DS-InSAR technique. They proposed a

method for automatically identifying SADA based on the

large-scale deformation results. It could effectively eliminate

the region affected by geometric distortion. Zhu et al. focused

on fully using multi-source, multi-sensor, and multi-temporal

SAR images to detect ground deformation. With the help of

spatial coherence estimated from Sentinel-1 interferograms, Ali

et al. discriminated between active and stagnant dune regions,

assisting in assessing aeolian activity in Bodélé Depression

(Chad).

Future perspectives

The contributions of this research topic convey that InSAR

has been a unique tool among the geoscience communities for

making precise measurements of ground motions of various

types. Distinguished authors have made rigorous and

meticulous analyses of InSAR-derived deformation maps to
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reveal the geophysical fundamentals that underlie earthquakes,

rock slides, ground subsidence, and underground mining

activities. These have inspired us to explore more exciting

technical and scientific breakthroughs in many aspects of

InSAR. First, technological advances in InSAR will enable

innovative applications where the usage of traditional InSAR

is complex, such as recording glacier movements, flood

coverages, fire scars, land cover types, and soil moisture

contents. Second, nearly all studies in this special issue focus

on using Sentinel-1 images owing to its availability and

continuance.Nevertheless, other satellites with diverse signal

wavelengths, polarizations, and orbit geometries offer more

comprehensive deformation mapping capabilities, such as

Sentinel-1C/D, Gaofen-3B/C, GeoSAR, and NISAR. Finally,

automated InSAR processing systems will be more widely

available such as the COMET-LiCS Sentinel-1 InSAR portal

(https://comet.nerc.ac.uk/comet-lics-portal/), and Jet

Propulsion Laboratory’s (JPL’s) ARIA Science Data System

(https://asf.alaska.edu/data-sets/derived-data- sets/sentinel-1-

interferograms/). These services provide rapid and continuous

InSAR interferograms, which largely facilitate the routine

monitoring of natural hazards and natural resources.
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A Novel Phase Unwrapping Method
Used for Monitoring the Land
Subsidence in Coal Mining Area Based
on U-Net Convolutional Neural
Network
Zhiyong Wang1*, Lu Li2, Yaran Yu1, Jian Wang1, Zhenjin Li 1 and Wei Liu1
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Large-scale and high-intensity mining underground coal has resulted in serious land
subsidence. It has caused a lot of ecological environment problems and has a serious
impact on the sustainable development of economy. Land subsidence cannot be
accurately monitored by InSAR (interferometric synthetic aperture radar) due to the low
coherence in the mining area, excessive deformation gradient, and the atmospheric effect.
In order to solve this problem, a novel phase unwrapping method based on U-Net
convolutional neural network was constructed. Firstly, the U-Net convolutional neural
network is used to extract edge to automatically obtain the boundary information of the
interferometric fringes in the region of subsidence basin. Secondly, an edge-linking
algorithm is constructed based on edge growth and predictive search. The interrupted
interferometric fringes are connected automatically. The whole and continuous edges of
interferometric fringes are obtained. Finally, the correct phase unwrapping results are
obtained according to the principle of phase unwrapping and the wrap-count (integer jump
of 2π) at each pixel by edge detection. The Huaibei Coalfield in China was taken as the
study area. The real interferograms from D-InSAR (differential interferometric synthetic
aperture radar) processing used Sentinel-1A data which were used to verify the
performance of the new method. Subsidence basins with clear interferometric fringes,
interrupted interferometric fringes, and confused interferometric fringes are selected for
experiments. The results were compared with the other methods, such as MCF (minimum
cost flow) method. The tests showed that the new method based on U-Net convolutional
neural network can resolve the problem that is difficult to obtain the correct unwrapping
phase due to interrupted or partially confused interferometric fringes caused by low
coherence or other reasons in the coal mining area. Hence, the new method can help
to accurately monitor the subsidence in mining areas under different conditions using
InSAR technology.

Keywords: InSAR, phase unwrapping, U-Net convolutional neural network, mining subsidence, interferometric
fringe
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INTRODUCTION

The coal industry is a significant part of China’s energy
system. On the one hand, coal mining has promoted the
rapid development of China’s economy and made great
contributions to social development (Fan et al., 2014; Chen
et al., 2020a). On the other hand, wide-spread and high-
intensity mining of underground coal resources for a long
time has caused some serious problems of ground subsidence
and damaged the ecological environment, such as the
subsidence of building foundations, the cracking of wall,
the destruction of farmland, and the abandonment of land
resources (Zhou et al., 2013). Moreover, mining coal also has
caused soil erosion, debris flow, and other geological
disasters, which endanger the life and property safety of
the people in the mining area and seriously restrict the
sustainable development of the mining areas. Therefore, it
is particularly important to continuously monitor the land
subsidence caused by mining underground mineral
resources.

With the development of geodetic surveying technology, more
and more new technologies are applied to monitor the mining
subsidence (Zhou et al., 2009; Xia et al., 2018; Chen et al., 2020a).
Among those technologies, as a research hotspot, InSAR
technology can monitor large area deformation with all-
weather imaging capability and day/night data acquisition (Du
et al., 2016; Ma et al., 2016; Ng et al., 2017; Yang et al., 2018;
Zheng et al., 2018). The study of monitoring the subsidence in
mining areas using InSAR technology began in 1996 (Carnec
et al., 1996). Carnec et al. researched the subsidence of French
Gardanne coal mine and found a large annular subsidence area
through SAR images at intervals of 35 days. D-InSAR technology
was used to monitor a salt mine in Vauvert region of France and
optimized the ground level observation plan according to the
monitoring results (Carnec et al., 1996; Raucoules et al., 2003).
The classical approach of differential radar interferometry
(D-InSAR) with short temporal baselines (6 days) was used
and the radar results were compared with prediction models
based on the Knothe–Budryk theory for mining subsidence
(Ilieva et al., 2019). Zheng et al. analyzed land subsidence
induced by coal mining in a 200 km2 area in the Ordos Basin
for the time period 2006–2015 using SBAS InSAR and D-InSAR
(Zheng et al., 2020). Pawluszek-Filipiak et al. indicated that the
Kriging-based integration method of D-InSAR and SBAS can be
effectively applied to monitor mining-related subsidence
(Pawluszek-Filipiak and Borkowski, 2020). Malinowska et al.
evaluated the impact of mining-induced earthquakes in Poland
through time-series InSAR technology (Malinowska et al., 2018).
Pawel et al. focused on describing vertical surface displacements
in the Upper Silesian Coal Basin in the south of Poland (Pawel
et al., 2020). The surface deformations are identified using
D-InSAR technology. A D-InSAR-based illegal-mining
detection system (DIMDS) was proposed to exploit the
geometric, spatial, and temporal characteristics of those
subsidence patterns (Hu et al., 2013). It can be seen that
InSAR technology has become a new technical means of
mining subsidence monitoring.

Due to the complexity of mining environment and the
limitation of InSAR technology, the accuracy and reliability
of InSAR in monitoring the mining subsidence are not high.
Low coherence, excessive deformation gradient,
interferometric phase discontinuity caused by large
displacement, and the atmospheric effect will influence the
accuracy of InSAR technology when monitoring the
deformation in the mining area (Chen et al., 2021). The
deformation in the mining area is special, which is mainly
characterized by uneven settlement rate, large deformation in
the mining area, and small and dispersive settlement range
(Fan et al., 2014; Du et al., 2016; Du et al., 2019). In addition,
the surface of the mining area is mostly covered by vegetation
and farmland, which leads to the low coherence of
interferometric pair. In order to improve the accuracy and
reliability of InSAR monitoring results, it is necessary to
combine InSAR technology with other methods. For
example, a method that relied on the principle of the
probability integral method (PIM) and interferometric
synthetic aperture radar (InSAR) was proposed to retrieve
the location of an underground goaf (Xia and Wang, 2020). A
solution was proposed to obtain complete deformation fields
using the probability integral method to fuse deformation
data derived from differential interferometric SAR
(D-InSAR), sub-band InSAR, and offset-tracking (Wang
et al., 2020). Du et al. used the probability integral method
(PIM) and D-InSAR to locate the goaf (Du et al., 2019). An
improvement of PSI processing, named as external model-
based deformation decomposition PSI (EMDD-PSI) was
proposed to address the limitations when monitoring large
gradient deformations when there is phase ambiguity (Du
et al., 2020). Liu et al. obtained the spatial–temporal
characteristics of land subsidence caused by drilling
solution mining activities using the time-series analysis
(Liu et al., 2019). Sui et al. proposed an approach based on
a combination of a differential interferometric synthetic
aperture radar (D-InSAR) technique and a support vector
machine (SVM) regression algorithm optimized by grid
search (GS-SVR) to predict mining subsidence (Sui et al.,
2020). Chen et al. employed the small baseline subset
interferometric synthetic aperture radar (SBAS-InSAR)
technology to obtain the time-series residual surface
deformation based on the 40 Sentinel-1A images acquired
from February 14, 2017, to May 17, 2020 (Chen et al., 2020b).

With the continuous development of InSAR technology, the
applications of InSAR technology for monitoring the mine
subsidence are also increasing. The main research directions
have evolved from obtaining single surface deformation
information to parameter inversion or subsidence prediction
based on deformation theory (Du et al., 2019; Sui et al., 2020;
Wang et al., 2020). Most of these works are targeted at one or
more subsidence basins, which have high requirements on the
interferogram and phase unwrapping quality of the
interferometric pair. But influenced by the complex surface
environment of the mining area, interferograms are seriously
affected by noise which will interrupt or confuse the
interferometric fringes.
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Phase unwrapping is an important factor affecting the
accuracy of InSAR measurement (Wang et al., 2017).
Although many methods for InSAR phase unwrapping
have been proposed (Chiglia and Pritt, 1998; Costantini,
1998; Xu et al., 2016; Wang et al., 2017; Yu et al., 2019;
Luo et al., 2020; Liu and Pan, 2020; Zhou et al., 2020; Sica
et al., 2020; Dai et al., 2020; Gao et al., 2020), traditional
methods cannot unwrap the interferometric phase correctly
and the reliability of InSAR monitoring results is not high in
monitoring the large deformation in the mining areas. There
are several learning-based phase unwrapping methods,
including back-projection neural network in 1D phase
unwrapping (Tipper et al., 1996; Hamzah et al., 1997),
supervised feedforward multilayer perceptron neural
network for 2D phase unwrapping (Schwartzkopf et al.,
2000), a deep learning-based phase unwrapping network
that uses the fully convolutional network (FCN) (Spoorthi
et al., 2019), and also a deep convolutional neural network-
based robust phase gradient estimation for 2D phase
unwrapping (Li et al., 2020). Sica et al. also proposed a
convolutional neural network-based coherence-driven
approach for InSAR phase unwrapping (Sica et al., 2020).
So, a reliable phase unwrapping method is still the guarantee
for obtaining reliable land subsidence with high precision
using SAR interferometry.

When monitoring the subsidence in the coal mining area
using InSAR technology, the interferometric fringes are
usually interrupted or confused because the interferograms
are contaminated by noise or other reasons, so the existing
phase unwrapping methods are difficult to accurately realize
the phase unwrapping. To solve this problem, a novel phase
unwrapping method based on the characteristics of
subsidence basin is proposed in this paper. First, a U-Net
convolutional neural network is introduced into the phase
unwrapping of InSAR mining subsidence basin to accurately
extract the edge of interferometric fringes, which is the wrap-
count (integer jump of 2π) at each pixel. Then, based on the
rule of phase unwrapping, accurate and reliable phase
unwrapping of mine subsidence can be realized. The main
purpose of the new method is to obtain the wrap-count
(integer jump of 2π) at each pixel by edge detection.

The main sections of this paper are organized as follows: In
Data and Materials, the study area and data are introduced in
detail. The new method proposed in this paper is introduced
in the Methods. To improve the accuracy and reliability of
InSAR measurements in monitoring the subsidence in the
coal mining area, a new phase unwrapping method based on
U-Net convolutional neural network is constructed, and the
detailed algorithm and flow of the method are introduced.
Results and accuracy verification are presented in Results,
where phase unwrapping experiments are carried out with
clear interferometric fringes and are compared with other 5
phase unwrapping methods. The Discussion is the analysis
and discussion section, focusing on evaluating the
performance of the new method for the interrupted and
confused interferometric fringes. Finally, some important
conclusions drawn from this study are given in Conclusions.

DATA AND MATERIALS
Study Area
The Huaibei Coalfield (115°58′–117°12′E, 33°20′–34°28′N),
located in the north of Anhui Province of China, was
selected as the study area. It has a temperate monsoon
climate with distinct seasons and mild climate. There are
many coal mines in this region. Here, the terrain is flat, the
surface vegetation is rich, and the farmland is numerous. The
cumulatively proved coal reserves are nearly 13 billion tons.
The large-scale and long-time exploitation of underground
coal resources has resulted in a lot of ground subsidence in
large area. It has seriously affected the local ecological
environment and economic and social development. The
study area is shown in Figure 1.

Experimental Data
In order to evaluate the performance of the new phase
unwrapping method proposed in this paper, 4 Sentinel-1A
SAR data from ESA (European Space Agency) acquired from
December 2017 to March 2018 were selected. Two
interferometric pairs are constructed by the Sentinel-1A
data which are acquired in the IW (interferometric wide)
mode, C-band (with 5.6 cm wavelength), VV polarization,
and ascending orbit. The Sentinel-1A radar data used in this
study has an incident angle of 38.9° and a pixel size of about
2.33*13.90 m. The detail characteristics of the interferometric
pairs are shown in Table 1.

Moreover, the SRTM (Shuttle Radar Topography Mission)
DEM (digital elevation model) released by NASA (National
Aeronautics and Space Administration) was applied to
D-InSAR data processing in this study. The spatial
resolution of DEM used in this study is about 90 m.

FIGURE 1 | Location of Huaibei Coalfield. It covers an area of about
9,600 square kilometers. The area containing coal is about 4,100 square
kilometers.
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The data processing flow of InSAR can be referenced in
(Massonnet and Feigl, 1998; Hanssen, 2001). The
interferometric pairs were processed by D-InSAR (differential
radar interferometry) and two interferograms of the whole area
were obtained. The subsidence of the mining area will form a
series of circular or elliptical interferometric fringes on the InSAR
interferogram. Therefore, the subsidence basin is the object of our
phase unwinding research to obtain the accurate land subsidence
in the coal mining area. The subsidence basin is defined as the
position where the subsidence is about 1 cm. The subsidence
basins in study area were obtained by detection model based on
HOG (histogram of oriented gradient) feature (Ronneberger
et al., 2015) automatically. Then, the interferograms and
coherence images including one complete subsidence basin
were cut out from the original interferograms. Therefore, there
are more than 25 subsidence basins within the coverage of a single
Sentinel-1A.

Three subsidence basins with different interferometric quality
were selected from interferograms generated by two
interferometric pairs for phase unwrapping experiment, as
shown in Figure 2. Figure 2A is a subsidence basin with good

interferometric quality. It contains two interferometric fringes
that resemble elliptical shapes. The interferometric fringe edges
are characterized as smooth and continuous, without
interruption or confusion, and the coherence is also very high,
as shown in Figure 2D. Figure 2B is a subsidence basin with
common interferometric quality. It contains approximately four
interferometric fringes that resemble elliptical shapes. It is
obvious that the interferometric fringes inside are partially
interrupted or discontinuous, and the coherence value is poor,
as shown in Figure 2E. Figure 2C is a subsidence basin with poor
interferometric quality, in which the interferometric fringes are
partially confused due to the massive noise. The coherence value
is terrible, as shown in Figure 2F.

METHODS

The Rules of Phase Unwrapping
After underground coal mining, a series of goaf will be formed
(Hu et al., 2013; Yang et al., 2018). In the InSAR interferograms, it
is usually manifested as a series of concentric circles or concentric

TABLE 1 | The two interferometric pairs are used for the test. They contain 4 Sentinel-1A images.

No. Date Orbit Relative orbit Frame Temporal baseline
(d)

Spatial baseline
(m)

1 December 10, 2017 19,639 142 106 12 89.9
December 22, 2017 19,814 142 106

2 February 08, 2018 20,514 142 106 24 29.04
March 04, 2018 20,864 142 106

FIGURE 2 | Subsidence basins with different interferometric fringes quality are used to verify the reliability of new method. (A) The subsidence basin with clear
interferometric fringes. The size of this interferogram is 64*64 pixel; (B) the subsidence basin with discontinuous interferometric fringes. The size of this interferogram is
64*64 pixel; (C) the subsidence basin with partially confused interferometric fringes. The size of this interferogram is 100*100 pixel. (D), (E), and (F) The coherence
images corresponding to (A), (B) and (C), respectively.
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ellipses with similar shapes (Du et al., 2019; Wang et al.,
2021). According to the principle of phase unwrapping
(Chiglia and Pritt, 1998; Yu et al., 2019), the number of
phase-jump (or wrap-count) is calculated by the
interferometric fringes of subsidence basin and the phase
unwrapping is realized through adding or subtracting 2N in
the position corresponded to the interferogram.

The purpose of the edge detection algorithm is to achieve the
boundary of subsidence basin in the interferogram. The wrap-
count (integer jump of 2π) is determined by number of
interferometric fringes. Thus, the phase values of subsidence
basins are added or subtracted 2N based on some certain
rules. The specific rules of phase unwrapping are that 2N is
added to the phase value when there is the change from +π to −π
or subtracted in the opposite condition.

In mathematical language, it can be expressed as follows:

ϕ � φ + 2π ·N,N � 0,±1,±2 . . . , (1)

where Φ represents the value after phase unwrapping, and φ and
N are the wrapping phase and the number of phase-jump,
respectively.

Flow Chart of the Novel Method
The swath of SAR image is large, such as Sentinel-1 image with
the swath of 250 km, but no land surface deformation occurred in
most areas. Only several subsidence basins will be formed in some
areas, such as the underground coal mining area. Some factors,
such as vegetation growth, surface water, temporal decorrelation,
and spatial decorrelation (Zhou et al., 2009; Ronneberger et al.,
2015), will bring a lot of phase noise into interferograms, which
will result in great difference among interferograms in the mined-
out area. For example, some interferometric fringes are clear and
continuous, but some are partially interrupted or discontinuous.
Moreover, some fringes are even indistinct or confused. Above on
these problems, we will not obtain the correct results of phase
unwrapping using the traditional phase unwrapping methods,
which leads to unreliable monitoring results of land subsidence in
the mining area.

To solve this problem, a novel phase unwrapping method
based on U-Net convolutional neural network is proposed.
Firstly, the U-Net convolutional neural network that has been
trained according to some samples is used to extract the edge of
the fringes. Then, it can automatically obtain the boundary

information of the interferometric fringes in the region of
subsidence basin. Secondly, an edge-linking algorithm is
constructed based on edge growth and predictive search to
connect the break of interferometric fringe automatically.
Then, a complete and continuous edge of interferometric
fringe is obtained. Finally, according to the rules of phase
unwrapping, the number of phase-jump N or the wrap-count
is calculated and the phase unwrapping is realized through adding
or subtracting 2N at the corresponding position in the
interferogram. The flow chart of the novel method is shown in
Figure 3.

Extracting the Edge of Interferometric
Fringes
The phases of interferogram are wrapped (Hanssen, 2001; Wang
et al., 2021). If the position of phase jump (that is wrap-count) in
the interferometric fringe can be obtained, the true phase can be
obtained. Therefore, the phase unwrapping can be turned into an
image segmentation problem to a certain extent. For image edge
extraction, many methods have been proposed. Although the
FCN (fully convolutional network) can identify the spatial
relationship between pixels and realize the segmentation at the
semantic level, the process of restoring the image is relatively
simple and the obtained fringe boundary is not accurate enough
(Jonatnan et al., 2014; Liang et al., 2020). As for InSAR
interferometric images, there are not a large amount of
training data available for public use, so we can only collect
and generate them by ourselves, and the number of samples
generated is generally small. Due to the practicality of U-Net
convolutional neural network and its learning ability with fewer
samples (Ronneberger et al., 2015; Parente et al., 2019), the U-Net
convolutional neural network is used to obtain the edge
information (or the wrap-count at each pixel) of the
interferometric fringes automatically, which is the first step of
the new phase unwrapping method. The main role of U-Net
convolutional neural network in new phase unwrapping method
is to obtain the wrap-count (integer jump of 2π) at each pixel by
edge detection.

The U-Net convolutional neural network is basically same as
the FCN. Through multiple convolutions and pooling operations,
the feature dimensions are improved and the images are
compressed (Kando et al., 2019; Esch et al., 2020). In the
process of image restoration, the U-Net convolutional neural

FIGURE 3 | Flow chart of the new method of phase unwrapping based on U-Net convolutional neural network used for monitoring the land subsidence in coal
mining area.
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network also convolved the fused images for many times (Qin
et al., 2020), which enhanced the detailed information of images
and achieved the better segmentation effect.

The training sample set of U-Net convolutional neural
network came from 21 interferometric pairs composed of
Sentinel-1A data corresponding to Huaibei Coalfield and
Yanzhou Coalfield in China. A total of 150 training samples
have been established and these samples have been uniformly
resampled to 256 × 256×1. For the convolutional neural network,
the number of samples is little. However, the U-Net convolutional
neural network has a good generalization ability. This can
compensate for shortage of samples to a certain extent.

Edge Thinning and Edge Linking
As there are lots of surface vegetation and farmlands in the
mining area, it will cause incoherence phenomena in monitoring
the land subsidence by InSAR technology, which results in some
discontinuous or interrupted interferometric fringes in the
interferogram. Thus, it is impossible to extract the continuous
and complete fringe boundary directly. Although the U-Net
convolutional neural network can extract relatively clear
interferometric fringe boundary, the edge thinning and edge
linking are needed to carry out to obtain the closed and
complete edge, especially in case of discontinuous, interrupted,
or even confused interferometric fringes.

Edge Thinning
An improved algorithm is adopted for edge thinning (Xu et al.,
2014), which is described as follows:

Step 1: the edge points in the image are traversed and the
current edge point is recorded as P0
Step 2: the edge points in the eight-connected domain centered
on P0 are counted as E(P0). If E(P0) � 0, this edge point is
eliminated
Step 3: if 2 < E(P0)<6, and S(P0) � 1, it is marked as the point to
be eliminated, and it is eliminated after the traversal is
complete. S(P0) is the point that is based on P1, P2, P8 to
sort., which is the number of changes from the edge point to
the non-edge point.

The above three steps constitute a traversal and carry out as
repeated iteration until that no points satisfy the rule to be
marked.

Edge Linking
In order to obtain the complete edge of the interferometric
fringes, an edge linking operation is required. Based on edge
growth and predictive search, a new algorithm is constructed by
improving the edge growth method (Farag and Delp, 1995; Lin
and Shi, 2000). The specific steps are as follows:

Step 1: search the endpoint P in the edge graph
Step 2: five edge points are searched in the reverse from the
endpoint and the direction of the edge is determined by the
coordinates of these edge points

Step 3: according to the edge trend determined in the previous
step, the range of the edge growth is limited. The edge growth
is carried out according to the gradient of the original image to
obtain the new endpoint P′
Step 4: with the new endpoint P′ as the starting point, the edge
growth continues until it connects to another endpoint.

The operation of edge thinning and edge linking is based on
binary images. So, before the edge thinning and linking, the
threshold segmentation of edge image is carried out to obtain the
binary image of the result from the U-Net convolutional neural
network.

RESULTS

In order to evaluate the performance of the new method, some
interferograms including the whole mining subsidence basins
obtained by Sentinel-1A data were used.

Model Training
Neural networks have been applied to InSAR phase unwrapping
(Jonathan et al., 2015; Parente et al., 2019; Kando et al., 2019; Sica
et al., 2020). As an important branch of machine learning, neural
networks should be trained with sample data before edge
extraction (Lin and Shi, 2000). Firstly, 60 targets of subsidence
basins were extracted by HOG (histogram of oriented gradient)
model (Wang et al., 2021) and their edge images were obtained to
form the basic training samples. Secondly, in order to obtain
more samples, the basic samples were uniformly resampled to
256 × 256 pixels by the resampling method of bilinear
interpolation. Then, other 90 subsidence basins and
corresponding edge images were achieved through
transformation of rotation, translation, and zoom for the basic
samples. Finally, a total of 150 training samples were obtained
and some samples are shown as Figure 4. In the model
established in this paper, the training group consists of 150
pairs of images, the test group consists of 10 images, and the
validation group consists of 5 images.

The loss function is used to evaluate the difference between
predicted and real values in the training process of neural
network. The purpose of training or optimization operation is
to minimize the loss function (Parente et al., 2019; Esch et al.,
2020). The smaller the loss function value is, the closer the
predicted value of the model is to the real value, and the
result will be more accurate. The essence of edge extraction is
a binary classification, so the binary cross entropy function is used
as the loss function of U-Net convolutional neural network to
represent the model accuracy. The overfitting problem is avoided
by using the dropout function before and after the last
convolutional layer and discarding some parameters randomly.

In order to further evaluate the performance of the new
method quantitatively, the mean phase difference (M) and
mean square error (MSE) are selected as assessment indexes to
compare the results of new method with those of other methods
quantitatively. The expressions are as follows:
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M � 1
mn

∑
m−1

i�0
∑
n−1

i�0
(I(i, j) − K(i, j)), (2)

MSE � 1
mn

∑
m−1

i�0
∑
n−1

i�0
(I(i, j) − K(i, j))2, (3)

wherem and n are the number of columns and rows of the image;
I and K represent the phase unwrapping result of new method
proposed in this paper and other methods, respectively. (i,j)
represents the position of the pixel.

Phase Unwrapping for the Clear
Interferometric Fringes
A subsidence basin with clear interferometric fringes from real
interferometric data was selected to evaluate the performance of
the new method. As shown in Figure 2A, the subsidence basin
had good interferometric quality which is characterized with
smooth and continuous interferometric fringe edges, and the
coherence value is also very high in the coherence image. The

results of edge thinning and linking after binarization process
are shown in Figure 5 and the result of phase unwrapping is
shown in Figure 6A. In order to verity the effectiveness of the
new method proposed in this paper, the results are compared
with other phase unwrapping methods, such as minimum cost
flow (MCF) method, Goldstein’s branch-cut method, quality-
guided phase unwrapping (QG) method, Flynn’s minimum
discontinuity (MD) method, LP minimum norm method (LP),
and so on. Goldstein’s branch-cut (Goldstein) algorithm (Yu
et al., 2019) is the most representative of the residue-theorem-
based methods, connecting the nearby positive and negative
residues so that the residues are balanced. The minimum cost
flow (MCF) PU method (Costantini, 1998; Liu and Pan, 2020)
and Flynn’s minimum discontinuity (MD) method (Xu et al.,
2016) can be classified as the LP-norm phase unwrapping
method. Quality-guided (QD) phase unwrapping method
assumes that pixels with high quality are less likely to cause
PU error (Yu et al., 2019). The methods always attempt to first
make the integration path that visits the highest-quality pixel
provided by the quality map. The specific results are shown as
Figures 6B–F. The quantitative comparisons are shown in
Table 2.

It can be seen from Figure 6 and Table 2 that the result of new
method proposed in this paper is generally consistent with those
of other methods under the condition of clear interferometric
fringes. The ranges of unwrapping phases from different methods
are within the theoretical ranges. The values of M and MSE from
different methods are all small. The results of unwrapping are
highly consistent in images and values. In other words, in the case
of clear interferometric fringes from real interferometric data,
different phase unwrapping methods can achieve correct
unwrapping. It also indicates that the new method can achieve
correct phase unwrapping result in the case of clear
interferometric fringes.

FIGURE 4 | Some training samples are used for the U-Net convolutional neural network model in this paper. A total of 150 samples are used for model training.
Interferograms and extracted fringe edges are alternately presented in different columns.

FIGURE 5 | The edges are extracted based on U-Net convolutional
neural network in the case of clear interferometric fringes. (A) The initial edge
using U-Net convolutional neural network. (B) The final edge after edge
thinning and edge linking.
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DISCUSSION

According to the experiments, the result of the new method
proposed in this paper is generally consistent with those obtained
by other methods in the case of clear interferometric fringes from
real interferometric data. All these methods can achieve the
correct unwrapping phase of the interferogram. The
unwrapping results are different obviously, however, when the
interferometric fringes are interrupted or confused. The
subsidence basin caused by underground coal mining in the
mining area should show a series of concentric circles or
concentric ellipses with similar shapes on the InSAR
interferogram. There are one or more interferometric fringes
according to the different land subsidence. Ideally, the
interferometric fringes are continuous. But affected by noise or
other reasons, there will be a gap of 2-3 pixels in the one
interferometric fringe in some area. But the boundary of the
interferometric fringe can still be clearly defined. This is called
“interrupted interferometric fringe.” If the noise is larger or the

ground subsidence in the mining area exceeds the maximum
deformation gradient, it is not easy to distinguish the boundary of
two or more interferometric fringes in the InSAR interferogram,
and confusion occurs locally or globally. This is called “confused
interferometric fringe.” The phase unwrapping results obtained

FIGURE 6 | Phase unwrapping of InSAR based on U-Net convolutional neural network in the case of clear interferometric fringes. (A) Result of phase unwrapping
based on the new method; (B) result of phase unwrapping based on the minimum cost flow (MCF) method; (C) result of phase unwrapping based on the Goldstein
method; (D) result of phase unwrapping based on theMinimum discontinuity (MD) method; (E) result of phase unwrapping based on the quality-guided (QG) method; (F)
result of phase unwrapping based on the LP minimum norm (LP) method.

TABLE 2 | The quantitative comparison of unwrapping phase between different methods is counted in the case of clear interferometric fringes.

Method Phase minimum Phase maximum Whether within
the theoretical

range

M MSE

New method −1.0110 14.0628 Yes — —

MCF −0.7281 14.0768 Yes 3.762 × 10−4 2.602 × 10−7

Goldstein −1.0090 14.0347 Yes −7.396 × 10−4 1.024 × 10−6

MD −1.0080 14.0206 Yes 1.095 × 10−3 2.306 × 10−6

QG −1.0130 14.0909 Yes 7.397 × 10−4 1.025 × 10−6

LP −1.0141 14.1049 Yes 1.193 × 10−4 2.415 × 10−6

FIGURE 7 | Edge extraction results in the case of interferometric fringes
discontinuity. (A) The initial edge using U-Net convolutional neural network.
(B) The final edge after edge thinning and edge linking.
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by different methods under the two conditions are particularly
discussed.

In the Case of Interrupted Interferometric
Fringes
A subsidence basin with interrupted interferometric
fringes from real interferometric data, as shown in
Figure 2B, was selected to study. The interferometric
quality of this subsidence basin is common, and the
interferometric fringes inside are partially interrupted
and discontinuous. Especially, the coherence value is poor,
as shown in Figure 2E. The results of edge extraction
and phase unwrapping obtained by the new method
proposed in this paper are displayed in Figure 7 and
Figure 8A, respectively. Moreover, in order to compare
with other five methods, the subsidence basin is resolved
by other methods, and the phase unwrapping results are
displayed in Figures 8B–F. The quantitative comparison is
shown in Table 3.

As shown in Figure 8, the result of new method proposed in
this paper is obviously different between those of other five
methods in the case of discontinuous interferometric fringes.
The unwrapping result of new method in this paper is closer
with that of Goldstein method than others. The results from
MCF, QG, and LP minimum norm methods all have the
regions which are not completely unwrapped, but the sizes
of the regions are different. From the results of phase
unwrapping, the result of new method in this paper is great
and without any incompletely unwrapped regions. The
detailed comparisons are shown in Table 3. Only the
results of new method and Goldstein method are in the
theoretical ranges. From the assessment indexes of M and
MSE of different methods, the result obtained by LP minimum
norm method is the worst among these methods, which had
many incompletely unwrapped regions. The results of other
four methods also have some obvious regions that are
incompletely unwrapped, though the difference is small in
M and MSE when compared with the method proposed in
this study.

FIGURE 8 | Comparison of phase unwrapping results in the case of discontinuous interferometric fringes. (A) Result of phase unwrapping based on the new
method; (B), (C), (D), (E), and (F) the result of phase unwrapping based on MCF, Goldstein, MD, QG, and LP methods, respectively.

TABLE 3 | The quantitative comparison of unwrapping phase between different methods is counted in the case of discontinuous interferometric fringes.

Method Phase minimum Phase maximum Whether within
the theoretical

range

M MSE

New method −1.689 25.278 Yes — —

MCF −1.689 20.559 No −0.2255 1.4168
Goldstein −3.040 24.985 Yes −0.1212 1.0698
MD −1.689 18.995 No −0.2669 1.6963
QG −1.689 19.314 No −0.2608 1.7156
LP −1.689 94.393 No 1.2011 44.7120
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In the Case of Confused Interferometric
Fringes
In order to validate the reliability of the method under the
influence of extreme noise, a subsidence basin with confused
interferometric fringes from real interferometric data is selected
for the experiment. As shown in Figure 2C, the quality of the
interferometric fringe of the subsidence basin is poor and the
fringe is confused due to a large amount of noise. Especially, the
coherence value is very poor, as shown in Figure 2F. The edge
extraction results are displayed in Figure 9 and the phase
unwrapping result is shown in Figure 10A. Moreover, in
order to compare with other five methods, the subsidence
basin is resolved by other methods and the phase unwrapping
results are displayed in Figures 10B–F. The quantitative
comparisons are shown in Table 4.

It can be seen from Figure 10 and Table 4 that the phase
unwrapping result of the method proposed in this paper is
relatively consistent with that of the MCF method in the case
of confused interferometric fringes. In addition, two phase
unwrapping results from the new method and MCF method
are also within the theoretical ranges. Therefore, it can be
considered that the phase unwrapping results of these two
methods are correct. However, in terms of the results of
Goldstein method and other four phase unwrapping methods,
all of them have the regions that are not unwrapped correctly and
they are not within the theoretical ranges. Moreover, there are
many unwrapped pixels existing in the phase unwrapping results
of Goldstein method and QG method, and the whole effect of the
phase unwrapping is not good. Especially, theMSE of the result of
Goldstein method is larger than others. Hence, under the
condition of extreme noise, the result obtained by the new
method proposed in this paper is better than others and it can
greatly achieve the correct phase unwrapping results in the case of
confused interferometric fringes of mining area.

CONCLUSION

When monitoring the mining subsidence using radar
interferometry, the reliable method of phase unwrapping is the
key to obtain subsidence values. It is difficult to correctly resolve
the condition where the interferometric fringes are discontinuous
or partially confused by using existing methods. In order to solve
the problem, a novel method based on the edge extraction using
U-Net convolutional neural network was proposed. The method
can extract the edge of interferometric fringes and connect
discontinuous fringes automatically to obtain the wrap-count
at each pixel by edge detection. Finally, the phase results of

FIGURE 9 | Edge extraction results in the case of partially confused
interferometric fringes. (A) The initial edge using U-Net convolutional neural
network. (B) The final edge after edge thinning and edge linking.

FIGURE 10 | Comparison of phase unwrapping results in the case of partially confused interferometric fringes. (A) Result of phase unwrapping based on the new
method; (B), (C), (D), (E), and (F) the result of phase unwrapping based on MCF, Goldstein, MD, QG, and LP methods, respectively.
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mining subsidence basins are obtained according to the rules of
phase unwrapping and the wrap-count (integer jump of 2π) at
each pixel by edge detection. Three kinds of subsidence basins
with different interferometric fringes were selected for
experiment. The results showed that the method proposed in
this paper can obtain more accurate phase unwrapping results
under the conditions of clear, interrupted, or partially confused
interferometric fringes by compared with other methods. Hence,
the greatly reliable results of mining subsidence are achieved.

Through the study in this paper, some important conclusions
can be drawn as follows:

1) In the case of clear and uninterrupted interferometric fringes,
the results obtained by the newmethod proposed in this paper
are consistent with those obtained by the MCF method,
Goldstein method, and other methods. In other words,
different methods can obtain correct results of phase
unwrapping in the ideal case.

2) The discontinuous boundary of interferometric fringe can be
detected and linked by using the new method proposed in this
paper automatically, and the complete interferometric fringe
edge is obtained in further. The phase unwrapping results of
new method are close to that obtained by Goldstein method.
The mean phase difference and mean square error are −0.12
and 1.07, respectively. Overall, the newmethod in this paper is
superior to the other five phase unwrapping methods.

3) In the case of partially confused interferometric fringes, it can
also realize the detection and linking in position of interrupted
boundary to obtain the complete ones. The results obtained in
this study are consistent with those obtained by MCFmethod.
The mean phase difference and mean square error are 0.06
and 1.22, respectively. The results showed that the new
method proposed in this paper can completely solve the
issues of phase unwrapping under the condition that part
fringes are partially confused.

The proposed phase unwrapping method for InSAR technology is
suitable to monitor the land subsidence caused by underground
mining, especially for a circular or elliptic subsidence basin
presented in the interferogram. Based on the existed sample data,
the method can accurately resolve the issues of the phase unwrapping
of discontinuous or partially confused interferometric fringes by using

the U-Net convolutional neural network. It can realize the phase
unwrapping of interrupted or even partially confused interferometric
fringes, but for the interferometric fringes that are not circular or
elliptical, the algorithm cannot be solved well. In the next study, the
phase unwrapping method will be improved deeply so that it can be
adapted to most InSAR phase unwrapping for monitoring land
subsidence to achieve the reliable results.
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TABLE 4 | The quantitative comparison of unwrapping phase between different methods is counted in the case of partially confused interferometric fringes.

Method Phase minimum Phase maximum Whether within
the theoretical

range

M MSE

New method −3.6482 22.0781 Yes — —

MCF −4.2959 22.4704 Yes 0.0597 1.220
Goldstein −12.5783 25.0858 No −0.6155 10.350
MD −4.5349 18.0847 No −0.2287 2.811
QG −10.5077 25.7394 No −0.0270 3.833
LP −3.6482 16.2900 No −0.2205 4.047
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Study of GroundMovement in aMining
Area with Geological Faults Using
FDM Analysis and a Stacking InSAR
Method
Zhengyuan Qin1*, Vivek Agarwal1, David Gee1,2, Stuart Marsh1, Stephen Grebby1,
Yong Chen3* and Ningkang Meng3

1Nottingham Geospatial Institute, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom, 2Terra Motion
Limited, Nottingham, United Kingdom, 3State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and
Technology, Xuzhou, China

Underground coal mining activities and ground movement are directly correlated,
and coal mining-induced ground movement can cause damage to property and
resources, thus its monitoring is essential for the safety and economics of a city.
Fangezhuang coal mine is one of the largest coalfields in operation in Tangshan,
China. The enormous amount of coal extraction has resulted in significant ground
movement over the years. These phenomena have produced severe damages to the
local infrastructure. This paper uses the finite difference method (FDM) 3D model and
the stacking interferometric synthetic aperture radar (InSAR) method to monitor the
ground movement in Fangezhuang coalfield during 2016. The FDM 3D model used
calibrated Fangezhuang geological parameters and the satellite InSAR analysis
involved the use of ascending C-band Sentinel-1A interferometric wide (IW) data
for 2016. The results show that the most prominent subsidence signal occurs in
mining panel 2553N and the area between panel 2553N and fault F0 with subsidence
up to 57 cm. The subsidence observed for the FDM 3D model and stacking InSAR to
monitor land deformation under the influence of fault are in close agreement and were
verified using a two-sample t-test. It was observed that the maximum subsidence
point shifted towards the fault location from the centre of the mining panel. The
tectonic fault F0 was found to be reactivated by the coal mining and controls the
spatial extent of the observed ground movement. The impact of dominant geological
faults on local subsidence boundaries is investigated in details. It is concluded that
ground movement in the study area was mainly induced by mining activities, with its
spatial pattern being controlled by geological faults. These results highlight that the
two methods are capable of measuring mining induced ground movement in fault
dominated areas. The study will improve the understanding of subsidence control,
and aid in developing preventive measures in Fangezhuang coalfield with fault
reactivation.

Keywords: finite difference method, ground movement, Interferometric SAR, stacking, geological fault, 3D
modelling
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1 INTRODUCTION

As China’s primary source of energy, coal it is critical to the
country’s social and economic growth. Large-scale coal mining,
however, has the potential to substantially harm the environment
in mining areas, as well as causing a variety of geological issues
and societal problems (Diao et al., 2019). As one of the main
effects, a thorough understanding of mining-induced subsidence
is essential for preventing or mitigating such issues.

With regards to measuring surface movement, traditional
methods like levelling, Global Navigation Satellite System
(GNSS), 3D laser scanning, and similar provide accurate
information, but can be time-consuming, expensive, and have
low spatial extent and are therefore unsuited to surveying large
(basin level) areas. A better alternative is to use the satellite
Interferometric Synthetic Aperture Radar (InSAR) technique,
which provides weather independence, sunlight independence
(active sensor), high (basin-level or greater) spatial coverage, and
is less tedious and more economical. Therefore, InSAR offers a
spatial resolution comparable to other traditional methods of
land surveying. Many researchers have used InSAR to study land
movement resulting from earthquakes (Fialko, Simons, and
Agnew 2001), glacial movements (Wang et al., 2015),
landslides (Sun et al., 2015; Kang et al., 2017; Zhang et al.,
2020), volcanic bulging (Fournier et al., 2010; Albino et al.,
2020), groundwater extraction (Bell et al., 2008; Motagh et al.,
2017; Castellazzi et al., 2018) and coal mining (Zhang et al., 2015;
Yang et al., 2017; Diao et al., 2018; Dong et al., 2021).

Extensive research has been carried out to study ground
movement induced by underground mining activities (Park
et al., 2012; Yang et al., 2019). In recent years, several research
tools, such as numerical analysis (Deck and Anirudh 2010;
Shabanimashcool and Li 2012; Shi M et al., 2021) and InSAR
time-series analysis (Sowter et al., 2016; Gee et al., 2017; Grebby
et al., 2019; Ghayournajarkar and Fukushima 2020) have been
widely employed to analyse the mechanism of ground movement.
Furthermore, several studies have also focused on ground
movement associated with fault activation. Bell et al. (2005)
reported mining subsidence from Great Britain, Germany and
Colombia, and stated that mining area experiencing reactivation
of faults should be surveyed properly before construction and a
safe gap of at least 10 m should be maintained between the fault
zone’s edge and any structures. Moreover, Mohammady et al.
(2019) employed Random Forest theory to analyse subsidence
susceptibility and found that gap from the fault, elevation, slope
angle and water table had the largest influence on ground
deformation. Gumilar et al. (2015) and Pacheco-Martínez
et al. (2013) discovered a direct link between fault position
and high land deformation rates.

In terms of numerical analysis, the finite difference method
(FDM) is commonly utilised within the FLAC3D software because
of its efficacy as a tool for solving rock mechanics and geo-
mechanical issues. It can handle material heterogeneity,
nonlinearity, complicated boundary conditions, ground
condition pressures and gravity. The FDM model idealises the
rock mass as a continuous medium that deforms according to a
given constitutive law, satisfying compatibility and equilibrium

criteria, and yields approximate partial differential equation
solutions. Due to the discontinuities (e.g., geological fault) in
the study area, a discontinuous numerical method was chose to
study the ground movement based on the FDM analysis with
FLAC3D software. In FLAC3D, the ground movement value of any
point in the model can be monitored; it is typically more
applicable for continuous and uniform subsidence. FDM
analysis is widely used to study the ground movement in coal
fields (Cheng et al., 2019; Parmar et al., 2019; Sikora and
Wesołowski 2021; Yan et al., 2021).

Only a few attempts have been made to study 3D model
simulation of ground movement in conjunction with InSAR-
derived groundmovement to understand the effect of a geological
fault (Jeanne et al., 2019; Perry et al., 2020; Francioni et al., 2021;
Shi Y et al., 2021). Although these previous studies suggest that
faults do affect the ground movement, the nature and magnitude
of effects have not been fully explored. The current approach uses
the hybrid method, which is the combination of the numerical
method and stacking InSAR analysis to study how the fault affects
the ground movement induced by mining. To study the ground
movement associated with subsurface mineral extraction at
Fangezhuang coal mine, a fully 3-D elastoplastic FDM model
was constructed. The results of the developed FDM model were
verified by comparing the outputs of the model with the ground
movement revealed by stacking InSAR analysis. Finally, the
ground movement under the influence of fault in
Fangezhuang coal mine is discussed.

This paper is divided in five sections. The section 1 provides
an Introduction, and the section 2 describes the study area.
Section 3 describes the methodology for studying the ground
movement with the 3D FDM model and stacking InSAR
technique. In section 4, we reveal the ground movement in
Fangezhuang coal mine using FDM model and InSAR
technique and perform a comparison between FDM model
and InSAR result and the ground movement trend in
Fangezhuang coal mine is revealed. Finally, conclusions and
future scope of the study are discussed in section 5.

2 STUDY AREA

Fangezhuang coal mine lies in the Kailuan area, Hebei Province,
China, approximately 23 km east of Tangshan city. While most
coal lies in plain, the ground surface consists of farmland, villages,
mining factories and ground sunk fissure caused by mining
subsidence. Fangezhuang coal mine has an area of 32.33 km2

in which the north-south direction is 12.25 km, and the highest
east-west inclination is 3.92 km. The coal seam is nearly
horizontal, with a mean thickness of 3 m. This region is
characterised by large ground movements, with thick loose
layers and fast advancement of the working panel. The study
area is marked in Figure 1.

2.1 Geological Structure
Within the Fangezhuang coal mine, one major fault exists: F0
(Figure 1). F0 fault is a normal fault that runs through the
Fangezhuang coal mine in a north-south direction. According to
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the drilling data, the fault extends about 3,000 m, and the drop
ranges from 14 m to 37 m. The fault is a high-angle normal fault,
inclined to SWW, with a dip angle of 70°–84°. F0 fault runs
through the whole monocline structural area and has a significant
impact on mining production. Meanwhile, there are associated
faults of a specific scale with a significant drop on both sides of the
F0 fault, and most of the associated faults here develop along the
strike of the F0 fault.

2.2 Coal Seam and Rock Strata
Figure 2 shows the cross-section along H-H’. The strata revealed
through exploration of Fangezhuang coal mine are Ordovician
(O), Carboniferous (C), Permian (P) and Quaternary (Q), as
described below.

1) The O stratum, 500–900 m thick, comprises fine-grained
dolomite, stratified limestone.

2) The C stratum, 140–290 m thick, comprises siltstone,
mudstone and fine sandstone. This formation also contains
1-3 layers of unstable thin coal seams.

3) The P stratum has a mean thickness of 550 m. From bottom to
top, the sequence is split into the four forms showed below.
• The Damiaozhuang formation mainly contains siltstone,
mudstone and medium sandstone. Four layers of the coal
seam can be mined, namely No. 5 coal seam, No. 7 coal
seam, No. 8 coal seam and No. 9 coal seam.

• The Tangjiazhuang formation is mainly composed of
coarse-to-medium sandstone, followed by fine
sandstone. The lower strata are interbedded with 1–4
layers of thin coal lines.

• The Guye formation mainly comprises of medium-coarse
sandstone with a small amount of mudstone and siltstone.

• TheWali formation is mainly composed of medium-coarse
sandstone, fine sandstone and siltstone. At the bottom, a

layer of aluminum mudstone with a thickness of about
4–5 m is developed.

4) The Q stratum is mainly composed of clay, sand and gravel
layer. The Quaternary alluvium covers the whole
Fangezhuang mine field. The thickness of alluvium varies
from 54 m to 424 m and gradually thickens from north
to south.

In this research, No. 5 coal seam, located at around 560 m deep
in Permian strata, is the main workable seam. The mining panel
2553N which started in January 2016 and terminated in
December 2016 along the northwest-southeast direction, is
chosen to analyse ground movement. For the geological
structure, F0 fault cut No. 5 coal seam along the southeast
direction, resulting in a decrease of the depth of No. 5 coal
seam at the east side of F0.

3 METHODOLOGY AND DATA USED

In this study, FLAC3D was adopted for numerically predicting
ground movement caused due by coal mining. FLAC3D is a 3-D
finite-difference computer program to solve geological problems
(Kumar et al., 2016; Shi M et al., 2021). In FLAC3D, the initial
model is the geomechanical model with the engineering scale,
which is able to simulate the real geological condition in the
mining coalfield. The null model plugged in FLAC3D is used to
delete the elements to simulate the mining extraction activities.
When the elements representing the coal are deleted to leave a
void, the overlying elements will have a free displacement
boundary and the stress field will redistribute, resulting in the
overlying elements caving. The caving is spread upwards to the
top surface, which represent the ground movement. The InSAR
analysis used 25 Sentinel-1 ascending, Interferometric Wide (IW)

FIGURE 1 | Location of the study area. Blue spot is Fangezhuang coal mine in Tangshan city. Purple rectangle area is mining panel 2553N. Red line shows the F0
geological fault.
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Single Look Complex (SLC) images between January 2, 2016 and
December 21, 2016. The C-Band (wavelength of 5.6 cm) data
have a pixel spacing of 2.3 m in range and 13.9 m in azimuth, and
a revisit period of 12 days (Torres et al., 2012).

3.1 Establishment of the 3D FDM Model
The mining panel 2553N shown in Figure 1 is selected as the
computational model domain on the basis of spatial distribution
of the considered mining area. Based on the geological properties
of the Fangezhuang coalfield, a 3D FDM simulation model of
panel 2553N and F0 fault is set up, which is shown in Figure 3.
The parameters of the FDM model are set as follows: the size of
panel 2553N is 900 m × 180 m, No.5 coal thickness is 3 m, mining
depth is 560 m, angle of the fault F0 is 70°, and step excavation
distance is 75 m. The coal mineral extraction was simulated as
long-wall mining with step by step excavation. The ground
surface deformation map was obtained for the study area from
January 2016 to December 2016 when the ground surface was
stable (where the unbalanced force is less than 10–5 of the
maximum unbalanced force) (Du et al., 2019). The
dimensions of the model are 1800 m long, 900 m wide, and
590 m high. The top surface does not show any geomorphic

feature and is assumed horizontal in the model. The shortest
horizontal distance between the mining boundary and the model
boundary is 360 m to remove the boundary effect.

3.1.1 Generalisation of Strata and Faults
Mining panel 2553N lies in the Permian strata, and No. 5 coal
seam is the main workable coal seam. As a result, two geological
strata Quaternary and Permian, as well as No. 5 coal seam are
simulated in a FDM model. The structure of each strata is made
with reference to the geological report of Fangezhuang coal mine
and borehole data. The fault could be designed with interface
elements in FLAC3D if the thickness of the fault is small (Cai et al.,
2021). However, when the thickness of a fault is more than 10 m,
it is appropriate to use a layer with a certain thickness to simulate
a fault (Xu et al., 2013). In this paper, we choose a layer with two
boundary surfaces to model the F0 fault around 10–20 m thick.

3.1.2 Computational Mesh
FLAC3D supports numerous element shapes, including
hexahedrons, tetrahedrons, pyramids, triangular prisms, and
others (Abbasi et al., 2013). With a consideration of achieving a
balance between processing time and simulation accuracy, a set of

FIGURE 2 | Cross section view along H-H’ (marked in Figure 1).

FIGURE 3 | FLAC3D FDM model.
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octahedral elements was adopted tomesh the simulationmodel. The
meshing approach is as follows. It can be seen in Figure 3, from top
to bottom, the model is divided into 13 layers which are loose layer,
fine sandstone, siltstone, medium coarse sandstone, mudstone,
medium coarse sandstone, siltstone, fine sandstone, siltstone, No.
5 coal, siltstone, No. 7 coal and siltstone. Each layer has a thickness of
3–160m. The closer a layer is to the coal seam roof, the thinner the
layer is set; the farther it is from the roof, the thicker it is set.

3.1.3 The Constitutive Model and Boundary
Conditions
The Mohr-Coulomb model is used as the constitutive model and
Mohr–Coulomb yield criterion are used in this study, along with
displacement boundary conditions. No vertical displacement is
allowed at the bottom of the simulation model, and no
displacement is allowed in the direction perpendicular to the
lateral boundaries. Trapezoidal distributed load is applied in the
horizontal direction. Gravity force is applied to the model. A
numerical model is obtained from these results, which reflects the
mining and geological condition of the region after long-wall
panel exploitation.

3.1.4 Monitor Points
The 3D FDM model simulates the whole No. 5 coal extraction of
panel 2553N which commenced in January 2016 and stopped in
December 2016. Based on the mesh of the FDMmodel, on the top
boundary of the model we set up 224 monitoring points (16 × 14)
to obtain the ground movement during the coal mining process.

3.1.5 Mechanical Parameters of Rock Strata
Intact rock and discontinuities make up rock layers. The
mechanical properties of complete rock samples acquired
through laboratory testing differ substantially from the
mechanical properties of rock strata (Hoek and Brown 1997).
However, to some extent, the reliability of numerical simulation
results depends on the choice of rock mechanical parameters. The
methods for determining mechanical parameters mainly include
empirical reduction method, engineering rock mass classification
method and displacement back analysis method. This research
adopts the back analysis with orthogonal test and numerical
simulation to determine the rock mechanical parameters.

The detailed procedure is as follows (Xu et al., 2013):

1) Based on the geological report of Fangezhuang coal mine, the
initial rock parameters are shown in Table 2 (Ren 2017). The
average value of the deformation modulus �E, Poisson’s ratio
�μ, cohesion �C and internal friction angle �∅ are chosen as the
experimental factors. The initial mechanical parameter
divided by the corresponding average value is calculated for
each mechanical parameter of each strata. These values are
listed as Ki

E , Ki
µ , Ki

C, and Ki
Ø in Table 1. Therefore, each

strata mechanical parameters could be given as Ki
E
�E , Ki

µ
�µ ,

Ki
C
�C and Ki

Ø
�Ø. The maximum ground movement Wmax is

chosen as the test indicator.
2) The orthogonal test with four factors and five levels L25 (5

4)
was set up to test the rock parameters (Table 2). All the testing
schemes are listed in an orthogonal table (Table 3).

3) 25 numerical simulations were conducted using FLAC3D and
the results for each scheme were listed in Table 3. According
to the result in Table 3, it was found that the maximum
ground movement of the 4th scheme is closest to the measured
ground movement of 16.2 cm (geological report of
Fangezhuang coal mine). Therefore, the parameters of the
four factors are �E � 3.6GPa, �μ � 0.31, �C � 6.3MPa and
�∅ � 37°. The final parameters for each layer shown in
Table 4.

3.2 Stacking InSAR Analysis
An InSAR stacking method was employed to map the ground
deformation due to the decimetre scale rates of deformation
expected to occur following the long- wall extraction of panel
2553N. The processing chain utilised is summarized in Figure 4.
The Sentinel-1 SLC data were initially deburst andmerged before co-
registration to the slant-range coordinate system of themaster image
(January 2, 2016). Phase ramps attributed to orbital errors were
subtracted using the precise orbit determination and topographic
phase was simulated and removed using a DLR digital elevation
model (DEM) from the TanDEM-X mission (Rizzoli et al., 2017).
The data were multi-looked by a factor of 4 in range and 1 in
azimuth and interferograms, with approximately a 10 m resolution,
were generated between consecutive SAR acquisitions irrespective of
the perpendicular baseline. The interferometric fringes (phase cycles
that correspond to a displacement of half of the sensor wavelength)
are related to the surface deformation. Generating interferograms
only over the shortest epochs the minimises like likelihood of
quantitatively underestimating the deformation due to the
ambiguity effect when deformation gradients are high, such as
over active mining sites. Further, an accurate estimation of the
deformation depends upon high coherence (or phase correlation)
between the two forming SAR images, hence, utilizing consecutive
image pairs helps maintain coherence. In addition, the
interferograms were filtered using a modified Goldstein filter to
further improve coherence and the quality of phase. The
interferograms were unwrapped from modulo-2π phase to
relative deformation using a statistical-cost network-flow
algorithm (Chen and Zebker 2001) with respect to a reference
point located at Tangshan (39.6309° N, 118.1802° E). The
unwrapped interferograms were subsequently stacked and an
average rate of motion was derived from a least squares
covariance analysis of the unwrapped phase. Once linear
velocities had been generated, the relative height change for each
image acquisition was calculated in accordance with that of
Berardino et al. (2002). Finally, the line-of-sight time-series were
projected into the vertical, by means of dividing by the cosine of the
incidence angle (∼ 0.639 radians), to facilitate an appropriate
comparison with the model.

4 RESULTS AND DISCUSSION

4.1 Comparison Between FDM Model and
Stacking InSAR Result
Figure 5 shows the vertical surface deformation over the study
period as generated by (a) InSAR stacking, (b) 3D FDM model
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and (c) Residual of the InSAR movement minus FDM model.
Surface uplift is represented by a positive value and subsidence by
a negative value. Both the InSAR and 3D FDM model results
show the severe subsidence pattern nearby the mining panel
2553N. For the FDM model, the ground movement ranges from
34.2 to 57.6 cm, while for the stacking InSAR result, the vertical
deformation ranges from 15.2 to 58.3 cm. Based on the mining
ground movement theory, if the ground movement is greater
than ±10 mm/ year then the area is considered unstable (Zheng
et al., 2018). From the perspective of ground movement, both the
FDM model and InSAR measurements confirm that the area is
unstable due to the coal mineral extractions. The ground

movement basin is located within the mining panel 2553N
and the area between the panel and fault F0.

It can be seen from Figure 5A that the shape of the subsidence
basin is not symmetrical over the mining area (mining panel
2553N), and the maximum subsidence point is located at point B,
which is about 75 m from point A (centre of panel 2553N). The
subsidence map shows a clear boundary nearby Fault F0. The
boundary corresponds to the fault F0 and clear ground
movement differences can be seen either side of fault F0.
Figure 5B shows the similar subsidence basin revealed by
FDM modelling. The maximum subsidence point is also
located at point B but with a marginally smaller magnitude

TABLE 1 | Initial mechanical parameters of rock formations.

Rock formation E (GPa) μ C (MPa) Ø (°) K i
E K i

μ K i
C K i

Ø

Loose layer 0.06 0.36 0.015 20 0.006 1.268 0.003 0.625
Fine sandstone 11.63 0.28 5 47 1.209 0.987 1.079 1.469
Siltstone 9.01 0.28 3.7 30 0.937 0.987 0.799 0.938
Medium-coarse sandstone 18.6 0.23 13.05 47 1.934 0.810 2.819 1.469
Mudstone 8.46 0.29 2 23 0.880 1.022 0.432 0.719
Medium-coarse sandstone 18.6 0.23 13.05 47 1.934 0.810 2.819 1.469
Siltstone 9.01 0.28 3.7 30 0.937 0.987 0.799 0.938
Fine sandstone 11.63 0.28 5 47 1.209 0.987 1.079 1.469
Siltstone 9.01 0.28 3.7 30 0.937 0.987 0.799 0.938
Coal 5.5 0.31 1.8 18 0.572 1.092 0.389 0.563
Siltstone 9.01 0.28 3.7 30 0.937 0.987 0.799 0.938
Coal 5.5 0.31 1.8 18 0.572 1.092 0.389 0.563
Siltstone 9.01 0.28 3.7 30 0.937 0.987 0.799 0.938
Average 9.618 0.284 4.63 32 3.6 0.31 6.3 37

TABLE 2 | Levels of test factors.

Scheme Deformation modulus Poisson’s ratio Cohesion Internal friction angle

�E GPa �μ �C MPa �Ø (°)

Ⅰ 3.6 0.22 1.8 16
Ⅱ 6.1 0.25 3.3 23
Ⅲ 8.6 0.28 4.8 30
Ⅳ 11.1 0.31 6.3 37
Ⅴ 13.6 0.34 7.8 44

TABLE 3 | Orthogonal test design and results.

Scheme �E (GPa) �μ �C (MPa) �Ø (°) Wmax (cm) Scheme �E (GPa) �μ �C (MPa) �Ø (°) Wmax (cm)

1 3.6 0.22 1.8 16 26.1 14 8.6 0.31 4.8 16 7.6
2 3.6 0.25 3.3 23 19.6 15 8.6 0.34 6.3 23 7.2
3 3.6 0.28 4.8 30 17.8 16 11.1 0.22 3.3 37 5.8
4 3.6 0.31 6.3 37 16.6 17 11.1 0.25 4.8 44 6.5
5 3.6 0.34 7.8 44 15.2 18 11.1 0.28 6.3 16 4.6
6 6.1 0.22 4.8 23 11.1 19 11.1 0.31 7.8 23 8.2
7 6.1 0.25 6.3 30 10.4 20 11.1 0.34 1.8 30 6.7
8 6.1 0.28 7.8 37 10.2 21 13.6 0.22 6.3 44 5.2
9 6.1 0.31 1.8 44 10.5 22 13.6 0.25 7.8 16 4.9
10 6.1 0.34 3.3 16 11.5 23 13.6 0.28 1.8 23 6.8
11 8.6 0.22 7.8 30 7.5 24 13.6 0.31 3.3 30 4.7
12 8.6 0.25 1.8 37 8.2 25 13.6 0.34 4.8 37 4.5
13 8.6 0.28 3.3 44 7.4
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compared with InSAR. The relative severe ground movement
with a maximum value of 58 cm is located in the northeast part of
panel 2553N. In the east of the fault F0, the maximum ground
movement is approximately 15 cm. The east of panel 2553N
presents relatively uniform and homogeneous subsidence, with a
magnitude of up to 20 cm. Figure 5C shows the residual map of
the FDM model and the InSAR result. The red colour represents
where the ground movement of FDM model is less than the
InSAR result. In other words, negative residual measurements
represent underestimation of the FDM model with respect to the
InSAR result. It can be seen that the average ground movement
obtained by InSAR is smaller, especially in the area of severe
ground movement between panel 2553N and fault F0.
Nonetheless, the surface subsidence caused by long-wall
mining is significant. InSAR only detects the medium-scale

ground movement. As a result, the 3D FDM model proposed
in this study is a valuable tool for ground movement analysis.

Since the numerical model does not take the rock fissure and
other geological properties of rock mass into account, the
simulated results appear relatively smoother than the InSAR
result. In addition, the InSAR measurements are relative to a
reference point and are therefore not absolute. Thus, when
comparing the InSAR results directly to the results from the
FDM-model, it is worth noting that there may be some offset if
the InSAR reference point was not entirely stable (i.e., it has a
non-zero displacement) during the observed period.
Furthermore, InSAR results may be affected by noise such as
atmospheric, ionospheric (Liao et al., 2018) and unwrapping
correlation error (Yunjun et al., 2019). Thus, any differences
between the measurements could be due to several aspects
relating to the InSAR processing, e.g., noise and the fact that
the InSAR measurements are relative to a reference point that
may be moving slightly.

The ground movement pattern may result from underground
mining, fault reactivation and other factors. Figure 6 shows the
time series surface deformation of the FDM model and InSAR
analysis at points A, B, C and D. It can be seen that the maximum
subsidence values gradually increase from 14th January to 20th

September. After 20th September, both the FDM model and
InSAR result show that the rate of increase of the maximum
ground movement value decreases. Although the mining panel is
advancing from September to December, the ground movement
is increasing slowly at a relatively steady pace. According to
mining subsidence theory, when the advancing distance reaches
1.2–1.4 times the average mining depth, the mining activity will
reach full mining condition (Wang et al., 2020). This suggests that
after 9 months of mineral extraction (panel 2553N advancing
675 m along the strike direction), the mineral extraction reached
supercritical mining. From January toMarch, uplift is observed in
the InSAR time series, which might be the noise effect in the
stacking analysis. Compared with the ground movement value at
point A, point B experiences less ground movement, confirming
that the maximum ground movement is not located at the centre
of panel 2553N. There is a clear difference in ground movement
between C and D, which are located on different sides of fault F0.

TABLE 4 | Calibrated mechanical parameters used in 3D model.

No Rock formation Thickness(m) E (GPa) μ C (MPa) Ø (°)

1 Loose layer 160 0.022 0.39 0.02 23
2 Fine sandstone 15 4.35 0.31 6.8 54
3 Siltstone 55 3.37 0.31 5 35
4 Medium-coarse sandstone 90 6.96 0.25 17.8 54
5 Mudstone 15 3.17 0.32 2.7 27
6 Medium-coarse sandstone 35 6.96 0.25 17.8 54
7 Siltstone 50 3.37 0.31 5.03 35
8 Fine sandstone 60 4.35 0.31 6.8 54
9 Siltstone 50 3.37 0.31 5.03 35
10 No. 5 Coal 3 2.06 0.34 2.5 21
11 Siltstone 30 3.37 0.31 5.03 35
12 No.7 Coal 4 2.06 0.34 2.5 21
13 Siltstone 23 3.37 0.31 5.03 35

FIGURE 4 | Stacking InSAR processing chain used for the study.
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Table 5 summarises the two-sample t-test results for points A,
B, C and D (marked in Figure 5) to determine, quantitatively,
whether the differences between the InSAR and FDM model
series at these points are within the acceptable range (Agarwal
et al., 2020). The mean difference between the InSAR and the
FDM model is not the same at each of these points. As a result, it
is necessary to investigate if the difference is significant. For the
test, the Null Hypothesis (H0) is taken as the average difference is
zero (µ � 0) and alternate Hypothesis (HA) as the average
difference is not zero (µ ≠ 0).

The t-value computed for the comparison of the InSAR and
FDM modelling outputs at point A is 1.32. This means that these
values are 1.32 standard deviations off of the mean. A t-value less
than the critical t-value (2.069 for point A) is necessary to accept
the null hypothesis. The t-value for point A is less than the crucial
t-value, meaining that the null hypothesis is accepted, indicating
that there is no significant difference between the InSAR result
and the FDMmodel at point A. Another approach to confirm this
is to look at the p-value (0.25) and alpha (0.05 for the 95 percent
confidence limit), where a p-value greater than alpha means the
null hypothesis is accepted. Acceptance of the null hypothesis in
both cases demonstrates that the InSAR-derived subsidence

exists, and that the FDM model is consistent at point A. From
Table 5, similar results can be seen for points B, C, and D. As a
result, we have sufficient evidence that InSAR-based subsidence is
consistent and agrees well with FDM model values for all four
points A, B, C, and D.

In order to examine the ground movement trends, the transect
lines M–M′ along the coal seam strike direction, N–N′ along the
coal seam dip direction and F-F′ vertically across the fault F0 were
extracted (as shown in Figure 5). Figure 7 shows the land
subsidence profiles of observation lines M–M′, N–N′ obtained
from the FDMmodel and stacking InSAR analysis. It can be seen
that the ground movement trends of the two lines are almost
identical. The root-mean-square error along M–M′ in the dip
direction is 0.113 m, with a maximum difference 0.141 m. The
root-mean-square error along N–N′ in the strike direction is
0.105 m, with the largest difference of 0.210 m. The blue and
orange lines show InSAR and FDM-model subsidence,
respectively. The grey shading shows the standard deviation of
the displacements observed at each location for both InSAR and
FDM subsidence. The overlapping darker area for both the curves
highlights that the deviation between the methods is small and
within the standard deviation error limits. It can be seen that the

FIGURE 5 | Three-dimensional deformation generated by (A) InSAR result (B) 3D FDM model result (C) Residual result (InSAR—3D FDM model).
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subsidence curves along with M–M′ and N–N’ do not remain
horizontal at the bottom of the basin but appear to be fluctuating
somewhat.

From the subsidence profile of N–N′ in Figure 7B, it can be
seen that the InSAR result shows the ground movement in the
southern part of N–N’ is slightly greater than that in the northern
part. This is likely because the ground movement obtained by
InSAR includes some residual subsidence caused by adjacent goaf
(Fan et al., 2021). According to the geological report of
Fangezhuang coal mine, mining along a panel to the south of
panel 2553N stopped in 2015 and may cause the residual ground
movement in 2016.

4.2 Influence of Fault F0 on Ground
Movement
Figure 8 shows the land subsidence profiles of observation lines
F–F’ obtained from the FDMmodel and stacking InSAR analysis.
The grey shading shows the standard deviation of the

displacements observed at each location for both InSAR and
FDMmodel subsidence. The overlapping darker area for both the
curves highlight that the deviation obtained from both the
methods is small and within the standard deviation error limits.

For the profile along F-F′, it can be observed that at the
distance of around 155 m there is a distinct change in slope in the
subsidence profile. Interestingly, the fault F0 also lies at this
location, which appears to be controlling this subsidence pattern.
At this location, the fault is attributable for subsidence of
100–300 mm/ year on its right, and a subsidence rate of
300–500 mm/ year on its left. It can also be seen from
Figure 5 that fault F0 has a noticeable effect on the spatial
distribution of ground movement. This is most likely due to
differential vertical compaction of various thicknesses of
compressible soil deposited on both sides of the faults, which
is greater in the hanging wall in normal faults (Burbey 2002). This
observed structural control of land subsidence causes differential
subsidence rates on either side of the fault line, which could
potentially cause damage to villages, trains, and other
infrastructure.

Fault F0 crosses the Fangezhuang coal mine in a north-south
direction. The fault trace divides the subsidence rates and the
arrows in Figure 8 indicate the relative displacement of the fault.
To the west of F0, along F-F’, the relative severe subsidence has a
maximum value of 425 mm obtained for the FDM model result
and 433 mm measured by InSAR. The east of F0 exhibits
relatively stable subsidence, with a value up to 225 and
152 mm obtained with the FDM model and InSAR,
respectively. In addition, Figure 5 shows the maximum
subsidence point (point A) is not above the centre of panel
2553N, but it approaches F0. It can be seen that fault F0 has a
blocking effect on overburden movement. The surface subsidence
morphology under the influence of fault is not symmetric about

FIGURE 6 | Time series comparison for FDM model and InSAR subsidence and at point A, B, C and D.

TABLE 5 | Two-paired t-test for FDM model and InSAR result.

Parameter Point A Point B Point C Point D

Mean (InSAR) −291.32 −262.35 −143.78 −88.67
Mean (FDM) −309.14 −273.41 −153.08 −112.54
Standard Deviation of difference 29.16 36.61 27.48 31.15
Observations 24 24 24 24
Pearson Correlation 0.98 0.98 0.98 0.96
Df (Degree of freedom) 23 23 23 23
t Stat 1.32 1.81 1.42 1.74
P(T ≤ t) two-tail 0.25 0.087 0.059 0.321
t Critical two-tail 2.069 2.069 2.069 2.069
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FIGURE 7 | Land subsidence profiles of FDM model and InSAR result along (A) M–M′ and (B) N-N′.

FIGURE 8 | Land subsidence profiles of FDM model and InSAR result along F-F′.
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the centre of goaf. The maximum subsidence is shifted towards
the fault. The ground movement patterns show a good agreement
with the results derived from the recent study (Yu 2020). The
precise different ground movement on both sides of F0 indicates
that the fault is reactivated by panel 2553N coal mining. These
results suggest that the subsidence in the study area is a dynamic
process. Overall, the deviation obtained from the FDMmodel and
InSAR method is small and within the standard deviation error
limits. The InSAR- derived surface subsidence curve coincides
with the FDM model simulation result.

5 CONCLUSION

This paper studies the ground movement in Fangezhuang
coalfield in Tangshan city using a complete 3D FDM analysis
in conjunction with stacking InSAR analysis. In order to obtain
a reliable model, an orthogonal test was applied to back analyse
the strata parameters, and the subsequent FDM model result
was compared with the ground movement measured using
InSAR. The differences in the maximum ground movement
obtained from the FDM model analysis and stacking InSAR
analysis were within 25%. Both results show that when the fault
is activated by underground mining, the maximum subsidence
value will not be located precisely above the centre of the mining
panels. Instead, it is shifted towards the fault, and the geological
fault clearly affects the spatial distribution of ground movement.
The most dominant subsidence occurs in mining panel 2553N
and the area between panel 2553N and fault F0, and has
subsided by up to 57 cm. Overall, the ground movement
patterns and magnitudes obtained by two different methods
have a relatively good consistency, which attests the efficacy of
the FDM numerical model in simulating the impact of the
mining activity. The ground movement pattern in the
Fangezhuang coal mine is spatially controlled by the
geological fault to some degree, causing differential
subsidence that could affect infrastructures. The method

proposed in this paper can help to improve the
understanding of subsidence control, develop preventive
measures in Fangezhuang coalfield that consider fault
reactivation, and forecast the impact of future underground
mining activities in Fangezhuang coal mine. Further numerical
analyses are required at a more realistic mine scale to study the
ground movement trends in more detail.
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Assessment of Aeolian Activity in the
Bodélé Depression, Chad: A Dense
Spatiotemporal Time Series From
Landsat-8 and Sentinel-2 Data
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There are several hotspots of dust production in the central Sahara, the Bodélé Depression
(BD) in northern Chad is considered the largest source of aerosol dust worldwide, with the
fastest Barchan dunes that migrate southwesterly. Less is known about the complex
patterns of dune movement in the BD, especially on a short time scale. Time-series
inversion of optical image cross-correlation (TSI-OICC) proved to be a valuable method for
monitoring historical movements with low uncertainties, high spatial coverage, and dense
temporal coverage.We leveraged ∼8 years of Landsat-8 and ∼6 years of Sentinel-2 data to
capture the dune migration patterns at BD. We used TSI-OICC, creating four independent
networks of offset maps from Landsat-8 and Sentinel-2 images, and forming three
networks by fusing data from the two sensors. We depended on the multi spatial
coherence estimated from Sentinel-1 interferograms to automatically discriminate
between the active and stagnant regions, which is important for the postprocessing
steps. We combined the data from the two sensors in areas of overlap to assess the
performance of the fusion between two sensors in increasing the temporal scale of the
observations. Our results suggest that dune migration at BD is subject to seasonal and
multiyear variations that differed spatially across the dune field. Seasonal variations were
observed with migration slowing during the summer months. We estimated the median for
velocities belonging to the same season and calculated the seasonal sliding coefficient
(SSC) representing the ratio between seasonal velocities. The median SSC reached a
maximum value of ∼2 for winter/summer, while the ratios were ∼1.10 and ∼1.35 for winter/
spring and winter/autumn, respectively. The seasonal variability of the temporal patterns
was strongly supported by the wind observations. Between (1984–1998 and 1998–2007)
and (1998–2007 and 2013–2021), decelerations in dune velocities were observed with
percentages of ∼4 and ∼28%, respectively, and these decelerations were supported by a
deceleration in wind velocities. Inversion of time series provides dense spatiotemporal
monitoring of the dune activity. The fusion between two sensors allows condensing the
temporal sampling up to a weekly scale especially for locations exposed to contamination
of high cloud cover or dust.
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1 INTRODUCTION

In areas that lack vegetation cover and water resources and
exhibit low soil fertility, low rainfall, high temperatures, high
evaporation levels, and high sand availability, effective wind plays
a crucial role in aeolian processes. In several desert areas, the
instability of dunes and sand sheets poses an important threat to
transportation networks, water supply routes, urban areas,
cultural sites, and human activities (Middleton and Sternberg,
2013; Ahmady-Birgani et al., 2017; Ding et al., 2020a).
Monitoring dune migrations in spatiotemporal domains
contributes to a deeper understanding of the aeolian process
and its relationship with environmental changes (Hugenholtz
et al., 2012). Moreover, information on dune migration can be
used as an indicator of the presence or absence of large-scale
trends in windiness over major deserts (e.g., the Sahara Desert),
and these wind trends may influence the global dust budget
(Vermeesch and Leprince, 2012).

Observations with high spatiotemporal resolution are required to
decipher the complex patterns of dune migration (Hugenholtz et al.,
2012). Ground-based measurements offer higher accuracy but
provide sparse coverage in spatiotemporal domains. The
development of remote sensing techniques, including optical and
radar imagery and digital elevation models (DEMs), allows the
investigation of geomorphological changes with dense
spatiotemporal measurements. The majority of studies addressing
the evolution of dune dynamics have been conducted using optical
imagery (Manzoni et al., 2021). Compared to the optical imageries,
the dependency on synthetic-aperture radar (SAR) imagery to
monitor dune migration is not extensive. Previous studies that
employed SAR imagery (e.g., Rozenstein et al., 2016; Gaber et al.,
2018; Ullmann et al., 2019; Manzoni et al., 2021) mainly depended
on interferometric coherence as an indicator of dune and sand sheet
instability. Notably, these coherence-based techniques do not
provide any quantitative representation of dune dynamics,
however, can be used as a proxy for the fine movements of
dunes and sand sheets. Several approaches to optical imagery
have been used to capture information about dune dynamics at
various resolutions, including classical methods and visual
interpretation (e.g., Hereher, 2010; Hamdan et al., 2016), GIS
strategies (e.g., Ghadiry et al., 2012; El-magd et al., 2013), and
optical image cross-correlation (OICC) (e.g., Vermeesch and
Drake, 2008; Hermas et al., 2012; Scheidt and Lancaster, 2013;
Sam et al., 2015; Ali et al., 2021).

With the rapid development of OICC, mapping the surface
displacement of large areas at very high spatiotemporal resolution
is now feasible and reliable (Stumpf et al., 2016). Various types of
data were used to perform such correlations, including optical
and SAR images and DEMs. Optical images were the most
commonly used due to the availability of free archives (Dille
et al., 2021). Co-registration of optical image matching and
correlation (COSI-Corr) (Leprince et al., 2007) is considered
the most widely used method for retrieving surface
deformations due to its excellent performance in terms of
processing time, output variables, and provision of multiple
pre- and post-processing modules (Jawak et al., 2018). COSI-
Corr has been used to monitor various targets, including

earthquakes (e.g., Ayoub et al., 2009; Avouac et al., 2014;
Chen et al., 2020), landslides (e.g., Stumpf et al., 2014; Lacroix
et al., 2019; Yang et al., 2021), glaciers (e.g., Scherler et al., 2008;
Shukla and Garg, 2020; Das and Sharma, 2021), and dunes (e.g.,
Necsoiu et al., 2009; Vermeesch and Leprince, 2012; Hermas
et al., 2019). OICC provides subpixel measurements of surface
deformations with an accuracy of up to a tenth of the ground
resolution (Leprince et al., 2007).

TSI-OICCmeasurements has recently been used tomonitor the
temporal evolution of various targets, including landslides (e.g.,
Bontemps et al., 2018; Lacroix et al., 2019; Dille et al., 2021; Ding
et al., 2021), glaciers (Altena et al., 2019), and dunes (e.g., Ali et al.,
2020; Ding et al., 2020a; Ding et al., 2020b). Bontemps et al. (2018)
were the first to construct a complete network of matching pairs
from 16 SPOT–5 images covering 35 years and inverted it to
monitor landslide deformations. Large differences in solar
angles affected the matching results, leading to seasonal signals,
while large temporal separation affected the temporal decorrelation
(Bontemps et al., 2018; Lacroix et al., 2019). The inversion of the
full network is promising for controlling uncertainties and
improving spatial coverage; however, generating full networks
from the available free archives [i.e., Landsat-8 (L-8) and
Sentinel-2 (S-2)] would increase the computational cost and
data burden. Recently, some studies (e.g., Ali et al., 2020; Ding
et al., 2020b; Ding et al., 2021) have simulated small baseline subset
(SBAS) approaches used in InSAR for application in the optical
image matching domain, selecting only pairs with certain baseline
thresholds. SBAS-based optical image matching mainly aims to
reduce computation times and data burdens (Bui et al., 2020) and
improve the quality of pairs by limiting probable cast shadows,
while achieving higher spatial coverage with lower uncertainty. The
presented SBAS-based optical image matching approach has
shown potential for capturing the temporal patterns of various
targets, including dunes (Ding et al., 2020a; Ali et al., 2020; Ding
et al., 2020b) and landslides (Ding et al., 2021), with low
uncertainty and high spatial coverage.

The Bodélé depression (BD) in Chad is a 133,532 km2

elongated paleolake that is gaining importance as a global
source of mineral dust and a natural aeolian laboratory
because it is considered the dustiest place on the Earth
(Bristow et al., 2009). Barchan dunes are the predominant
dune morphology in the BD, but their geochemical formation
differs between the center and the margins of the BD (Hudson-
Edwards et al., 2014). The crust of the Barchan dunes inside the
depression is composed of diatomite with a lower density than
quartz, which is the major dune constituent along the margins of
the depression. Accordingly, dunemigration is faster in the center
of the BD than elsewhere, and these Barchan dunes are
considered the fastest worldwide (Bristow et al., 2009). The
geomorphological formation of the dunes detected by the two
L-8 frames varied between the two formations (see Figure 1B).
The Barchan dunes in the BD, have been studied using OICC
three times in the existing literature. Vermeesch and Drake
(2008) first used COSI-Corr, along with ASTER images, to test
the performance of the correlation as the temporal separation was
adjusted. They reported the effect of temporal decorrelation in
reducing the signal-to-noise ratio of the results. Vermeesch and
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Leprince (2012) matched seven adjacent optical images from
different sensors to track dune migration over 26 years. They
reported that variations in migration rates were up to 10%,
equivalent to a 0.2% variation in wind speed per year, indicating
stability in wind conditions. Recently, Baird et al. (2019) proposed a
workflow to extract representative dune migration rates by feeding
Landsat-5 data into the correlation engine.

From the existing literature, previous studies at BD have not
provided a complete picture of the behavior of dune migration on
short time scales (i.e., monthly, or weekly). Only the study by
Vermeesch and Leprince (2012) produced long time series of
matching measurements, using seven images covering the period
from 1984–2010. The time-series presented did not provide
information on the behavior of dune migration and associated
wind patterns on a short time scale due to the sparse temporal
samplings. Furthermore, the adjacent paring criterion of
matching images to produce time series fails to provide high
spatial coverage and low uncertainties. Moreover, monitoring the
fast-moving targets requires matching images with short time

separation, however, these short time spans would be affected by
a large fraction of geolocation errors (Fahnestock et al., 2016). To
best monitor the temporal evolution of dune migration with
dense spatial and temporal coverage and low uncertainties, the
application of optical image matching selection and inversion
algorithm is feasible in monitoring the temporal evolution. The
inversion algorithm first selects the appropriate images by
constraining the cloud coverage. However, the number of
available scenes (i.e., cloud-free) is primarily limited by cloud
cover, especially during the rainy seasons prevalent in tropical
regions, resulting in a reduction in temporal sampling. Therefore,
the fusion of two or more sensors is considered feasible in
providing a dense temporal sampling, to reveal the complex
deformation patterns up to a weekly time scale. The main
objectives of the study can be summarized as follows: 1) to
broadly apply the time series selection algorithm from optical
images and inversion to monitor the status of dune activity of the
Bodélé Depression dunes with dense time series in the last decade
(2013–2021), 2) to test the feasibility of merging the matching

FIGURE 1 |Geographical position and geological formation of the study area. Panel (A) indicates the location of the Bodélé Depression. The inset shows the location of
the BD in Africa. The background in panel (A) is amosaic of Landsat-8 false colors. The black rectangles denote the coverage of Landsat-8 (i.e., P:183/R:48 and P:184/R:48).
The blue rectangles denote the coverage of Sentinel-2A/B (i.e., TR33QYV and TR33QZU). The red rectangles represent the dune fields for which we discuss the
spatiotemporal variability inSection 4.6. The red pentagrams represent the reference points used for absolute calibration, while the green triangles represent the points
for which we extracted the temporal evolution of dunemigration in Section 4.5. The three colored polygons in panel (A) represent the overlap areas between Landsat-8 and
Sentinel-2, where we performed the inversion of the fused offset maps. Panel (B) shows the geological and geomorphological formations of Chad. The black rectangle
represents the area shown in panel (A). The green rectangles denote the Sentinel-1A coverage (i.e., descending tracks 07 and 80). Panel (C) shows the location of the BD in
the gap between the Tibesti and Ennedi mountains, and the current coverage of Lake Chad to the southwest. The background is the MODIS surface reflectance.

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 8088023

Ali et al. Spatiotemporal Observation of Bodélé-Depression Dunes

35

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


measurements from two sensors in condensing the time series
and increasing the redundancy level, and 3) to study the
spatiotemporal variability of dune migration in both seasonal
and decadal changes. The rest of this study is organized as follows:
the description of the geographical and geomorphological
location and the data used are discussed in Section 2.
Secondly, the methodology and rationale employed in this
study are outlined in Section 3. Thirdly, the results and
discussion of the temporal evolution of the Bodélé depression
dunes are discussed in Section 4. After that, reflection on
previous studies and the merit of the optical mage matching
selection and inversion algorithm are investigated. At the end, the
concluded remarks are summarized in Section 5.

2 STUDY AREA AND DATASETS

2.1 Geological and Environmental Settings
of the Bodélé Depression
There are several localized “hotspots” of dust production in the
central Sahara, the most important being the BD in northern Chad
(Goudie and Middleton, 2001; Chappell and Bristow, 2005).
Historically, the BD hosted Lake Mega-Chad, which has now
completely disappeared, exposing the lake sediments to
deflation (Bristow et al., 2009). The BD is considered the largest
source of aerosol dust worldwide; it is a 24,000 km2 area that
delivers about 6.5 million tons of Fe and 0.12 million tons of P to
the Atlantic Ocean and Amazon Basin annually (Bristow et al.,
2009). This can be explained by the following two factors: 1) A
strong surface wind, known as the Bodélé low-level jet (LLJ), is
directed at the BD (Washington et al., 2006). The location of the
depression on the downwind side of the gap between the Tibesti
and Ennedi Mountains on the border with Libya (Figure 1C)

increases the leverage and activity of the northeast trade winds in
the depression. 2) As a sub-basin of the Mega-Chad paleolake, the
BD is a large source of erodible sediments, including lacustrine
diatomaceous Earth (Washington et al., 2006; Warren et al., 2007).
In addition, the area is a sparsely vegetated, hyper-arid region that
provides extreme erodibility (Koren et al., 2006). The sediments
produce white crusts of diatomaceous Earth that are easily mined
and transported by the wind, forming some of the largest and
fastest-moving Barchan dunes worldwide (Figure 1). There are
two types of dunes in the area; the dunes at the edges of the
depression are composed mainly of quartz, while those in the
center contain diatomaceous Earth pellets. It is noteworthy that the
central dunes have higher dune velocities than the marginal dunes
because of their low density (Warren et al., 2007).

2.2 Datasets
2.2.1 Optical Images
We used satellite imagery from the free archives of L-8 and S-2 to
feed into the COSI-Corr correlation engine to capture quantitative
measurement of the dune migration up to 1/10 of pixel size
(Leprince et al., 2007). The two sensors have similar
characteristics in terms of their spectral properties and spatial
and temporal resolutions (Roy et al., 2014; Kääb et al., 2016). We
selected images with low cloud cover (less than 1%), and we have
checked visually the images to avoid the selection of images
contaminated by haze or dust, yielding a total of 168 images: 95
images obtained from two L-8 frames and 73 images from two S-2
tiles (Figure 1A). The temporal coverage of the L-8 and S-2 images
is summarized in Figure 2, while Supplementary Tables S1–S4
provide an inventory of the metadata of the images. Both products
are orthoimages with atmospheric correction of the reflectance
values and geometric correction based on a refined geometric
model. The processing chains of the L-8 products and S-2 data are

FIGURE 2 | Temporal distribution of data used in the study. Landsat-8 frames (P:183/R:48) and (P:183/R:48) (43 and 52 scenes, respectively), Sentinel-2 tiles
(TR33QYV and TR33QZU) (56 and 17 scenes, respectively), and Sentinel–1 descending orbits (07 and 80) (30 and 29 scenes, respectively). The cloud cover threshold
for Sentinel-2 tile TR33QZU was set to 20% due to the cloud and dust. Detailed acquisition information is listed in Supplementary Tables S1–S5.
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considered identical in terms of the radiometric and geometric
corrections, orthorectification, and resampling to a map grid (Roy
et al., 2014; Kääb et al., 2016). We used the panchromatic (band 8)
and NIR infrared band (8a) of S-2 to feed the correlation engine,
according to the recommendations of Ali et al. (2020).

2.2.2 SAR Images
Radar imagery was used to determine themobility of the sand dunes.
In the dune environment, the phase from interferometric synthetic-
aperture radar (InSAR) may not be suitable for tracking the rapid
movement of sand dunes directly (i.e., 50 m/y). Alternatively, we used
the metric of coherence, which represents the degree of similarity

between repeat-pass observations, to map the stability of sand dunes
(Wegmüeller et al., 2000; Ullmann et al., 2019). To provide an
extensive spatial coverage and a stable revisit time (i.e., 12 days),
we used two descending paths (Figure 1B) of Sentinel-1B data in
2019. Details of the images used for interferogram generation are
presented in (Figure 2; Supplementary Table S5).

2.2.3 ECMWF/ERA Interim Metrological Data
We acquired the average monthly U and V wind components for
each year from 2013 to 2021, measured in m/s with a resolution of
0.1 × 0.1 °, from the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Dee et al., 2011). The U and V components

FIGURE 3 | Flowchart of the processing chain. The steps outlined by the blue dashed rectangle represent the processing steps to estimate the multitemporal
spatial coherence. The steps outlined by the red dashed rectangle denote the optical image matching selection and inversion algorithm. The green dashed rectangle
denotes the concept of combining tandem images when merging data from the two sensors.
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represent the eastward and northward components of the wind,
respectively, at a height of 10m above the surface of the Earth. The
two components were combined to estimate the wind speed and
direction. The averagemonthly wind speed and direction values for
a selected region inside the BD for each year are displayed in
Supplementary Figure S1. Also, we acquired the wind records for
selected years (Supplementary Figure S1) from 1984 to 2007 to
validate the comparison of dune velocities between the different
decades in Section 4.5.4.

3 METHODS

Figure 3 shows a flowchart outlining the main methodology and the
structure of this article, including the following four main parts. In
part 1, we used the Sentinel-1 imagery to delineate the stagnant
regions by estimating the mean spatial coherence map (MSC) (see
Section 3.1). We generated a network of interferograms from two
descending tiles covering the study area during (Jan/2019-Dec/2019)
and stacked the coherence maps to estimate the MSC to help define
the stagnant regions. In Part 2, we applied optical image matching
selection and the inversion algorithm to create a time series of dune
movement from 2013–2021. The inversion algorithm involved
several steps: Generation of a network of offset maps from the
selected images, feature tracking of the selected pairs in the COSI-
Corr environment, application of refinement steps to control the
aberrant measurements, before the inversion of the time series we
introduced the fusion between the offset maps of the two sensors,
and post-processing of the inverted results. The fusion between time
series was introduced to address the feasibility of the fusion in
condensing the temporal coverage of time series especially when
images are contaminated by large cloud cover. In part 3, we
investigated the spatiotemporal variability of dune velocities in
seasonal and decadal scales. In part 4, we compared the time
series results from the inversion of each sensor individually and
to the inversion of the fused time series. Additionally, we evaluated
the performance of the inversion algorithm in controlling the
uncertainties, whereas we compared the uncertainties of the
individual offset maps before and after the inversion.

3.1 Multitemporal Spatial Coherence From
SAR Images
Interferogram generation was performed by the InSAR Scientific
Computing Environment (Agram et al., 2016). For each orbital
path, we first generated a co-registered stack using geometrical
co-registration and the enhanced spectral diversity method
(Fattahi et al., 2017). We then removed the contribution of
topography using the 1-arc Shuttle Radar Topography Mission
DEM (Farr et al., 2007). We formed a network configuration that
connected each image with two subsequent acquisitions. We did
not filter the wrapped interferograms further to avoid potential
contamination of the signal. The resultant interferograms were
multi-looked using a 5 × 20 azimuth and range directions. From
the resultant interferograms, we estimated the complex
coherence, which represents the correlation between two SAR
acquisitions (Touzi et al., 1999), as follows:

c �
∣∣∣∣∑N

k�1f kg
+
k

∣∣∣∣���������������
∑N

K�1
∣∣∣∣f k

∣∣∣∣2∑N
K�1

∣∣∣∣gk
∣∣∣∣2

√ (1)

where fk and gk are the complex values from the primary and
secondary SAR images surrounding the given pixel with window
size N, and fkg+

k is the complex conjugate operation for each
interferogram. Using the coherence map stacks, the mean value of
the spatial coherence cMSC was estimated to delineate the spatial
coherence in the study area, as follows:

γMSC(i) �
1

2N − 3
∑

2N−3
n�1

∣∣∣∣γn(i)
∣∣∣∣ (2)

where i is the target pixel, N is the total number of acquisitions,
and cn(i) is the coherence of the interferogram.

We used multitemporal spatial coherence (MSC) as a proxy
for stagnant areas delineation, similar to the method used by
Manzoni et al. (2021). The spatial distribution of the MSC is
displayed in Supplementary Figure S2. The threshold used to
define the stagnant areas in that study was set by trial and error,
whereas we iteratively tested several threshold values from 0.70 to
0.90. The optimum threshold was selected to achieve the best
match with the average annual magnitudes (AAMs) extracted
from the inversion of one rate solution. AAMs were determined
after removing outliers representing the linear velocity of the
dunes. AAMs below 0.5 m/y were assumed to be stagnant. The
threshold MSC used to define stagnant areas was set iteratively to
best match the lower values of the AMMs. Practically, we set the
threshold of the MSC to 0.85 to define the stagnant areas. The
spatial distribution of the active and stagnant areas is displayed in
Supplementary Figure S3.

3.2 Optical Image Matching Selection and
Inversion
3.2.1 Image Selection and Network Establishment
For the selected images (N + 1), a number of pairs can be
generated that is between N≤M≤ N(N+1)

2 (Berardino et al.,
2002). In previous studies (Ali et al., 2020; Ding et al., 2020b),
the baselines of the matching process (i.e., radiometric, temporal,
and spatial baselines) were defined and weighted according to
their effect on the measurement uncertainties as follows: Sun
elevation difference, Sun angle difference, temporal baseline, and
spatial baseline.We estimated the baselines for all possible pairing
combinations and then set the thresholds to limit the choices. The
thresholds were determined iteratively by considering their prior
weights and preserving the network configuration (i.e., the
connectivity of the established networks) (Reinisch et al.,
2017). Increasing the maximum temporal baseline allows more
pairs to be selected; however, it is recommended to limit the
maximum temporal baseline to reduce surface changes and
temporal decorrelations. We set the maximum temporal
baseline to 6.5 and 3.5 years for L-8 and S-2, respectively,
considering the nature of migration in the study area, and the
selected window size. No limits were set for the shortest temporal
baseline to promote good network connectivity. Short temporal
separation values preserve surface changes and are necessary for
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monitoring fast targets; however, they are prone to large
geolocation error effects (Fahnestock et al., 2016). Thus, we
assigned a weighting criterion for the deformation maps based
on their temporal separation (Section 3.2.5). After several trials,
baseline thresholds were determined for both the L-8 and S-2
networks (Supplementary Table S6). Details of the baselines of
all pairs are listed in Supplementary Tables S7–S13.

3.2.2 Optical Images-based Feature Tracking
The selected pairs were matched in the frequency domain of the
correlation engine (COSI-Corr) (Leprince et al., 2007). Such
correlations are generally performed in two steps: 1) a coarse
estimation is provided using large sliding windows, and 2)
subpixel accuracy is provided using smaller windows (Beaud
et al., 2021). Three parameters were determined: the step size,
which determines the spatial resolution of the displacement
maps, and the initial and final window sizes. The optimal
window size was selected after testing several window sizes
and comparing the results in terms of the uncertainty of the
stable targets. The parameters used to complete the matching
process for L-8 and S-2 are summarized in Supplementary Table
S6. These parameters were prepared in text files and fed into the
batch processor of the correlation engine to decrease human
intervention. The ground resolution of the deformation maps was
unified as 60 m by setting step sizes of four and six pixels for L-8
and S-2, respectively. Each deformation map yielded
displacement in the East–West (EW) and North–South (NS)
directions, together with a signal-to-noise-ratio (SNR) map,
which is considered a measure of correlation quality
(Bontemps et al., 2018; Beaud et al., 2021).

3.2.3 Refinement of the Deformation Fields
Prior to the inversion of the offset maps, several filtering
processes were applied to control the uncertainty and help
capture real deformations (Figure 3): 1) The outliers were
discarded. We estimated the yearly migration rates of all the
deformation maps and pixels with SNR≤ 0.90 and velocities
≥ 250m/y were discarded from the EW and NS deformation
maps. 2) Orbital noise was removed from the deformation fields.
The orbital residual usually stems from the orthorectification and
co-registration residuals (Ali and Xu, 2019; Ding et al., 2020b).
Notably, the removal of such orbital errors generally requires the
identification of stable ground. To better identify stable regions,
we used a mask based on the MSC and AAMs (Section 3.1). After
masking the deformable regions, polynomial surfaces were fitted
and then removed from the raw deformations. 3) Absolute
calibration of the deformation fields was conducted. Co-
registration bias is assumed to be a uniform shift in both
directions (i.e., EW and NS) over the entire deformation field
(Friedl et al., 2021). We extracted a small stable area and
estimated the median of the measurements, then corrected the
deformation fields by adding or subtracting the determined
medians (Friedl et al., 2021). 4) Non-local mean filtering was
applied to the COSI-Corr environment to preserve the fine details
of the correlation and control additive white noise (Shukla and
Garg, 2020). This was achieved using the parameters summarized
in Supplementary Table S6.

3.2.4 Preparation of the Fusion Between Two Sensors
The following points summarize the preparation of the fused
deformation maps before inversion (see the green dashed
rectangle in Figure 3): 1) The deformation maps of each sensor
for the overlapping regions were extracted, resampled to a
common geographic grid, and reordered chronologically. 2) The
epochs from the two sensors were merged and reordered, and two
epochs were considered tandem nodes (Usai, 2003) when the
images were separated by less than 5 days. 3) Boundary
adjustment was applied to account for variation in the temporal
span owing to the merging process (Samsonov et al., 2020). The
deformation maps were adjusted by multiplying the deformation
values by the ratio between the new and old-time intervals. 4) The
deformation maps, with identical start and end dates, were merged
using median fusion (Samsonov et al., 2020).

3.2.5 Inversion of Displacement Time Series
We inverted the deformation maps associated with each sensor, and
the overlapping zones between the two sensors, separately. We used
the parameterization of Berardino et al. (2002) to construct the
relationship between the displacement d and the mean velocity
between each adjacent epoch v through design matrix B, according
to Eq. 3. Design matrix B is an M ×N matrix, where each row
contains the time increments between the master and slave of the
pair (Berardino et al., 2002). The mean velocities between adjacent
epochs can be obtained by inverting the matrix (B’PB) where P is
the weight of each deformation map. We performed the inversion
using a pixel-wise strategy with a flexible designmatrix B using either
least-squares inversion (Usai, 2003), according to Eq. 4, or singular
value decomposition, according to Eq. 5 (Berardino et al., 2002),
based on the matrix condition (i.e., full rank or rank deficient). We
restricted the inversion to pixels for which the stack size exceeded a
certain threshold (75%) to strike a balance between ensuring good
spatial coverage and reducing the oscillation of the singular value
decomposition solution caused by a large number of subsets
(Reinisch et al., 2017). We retrieved the pairs by back
substitution after the first round of inversion, and then a second
round of inversion was executed as per Bontemps et al. (2018). For
the fusion between the two sensors, similar inversion procedures
were applied. We determined the weight of each map according to
the assumption that the error of the velocity reaches 0.1 × PS for a 1-
year separation (Mouginot et al., 2017). Consequently, the velocity
expression deteriorates, especially for short-time separations TS,
according to Eq. 6 (Mouginot et al., 2017) (see Supplementary
Table S14). Accordingly, we applied weighting criteria considering
the precision of the estimated velocities. The estimated weights
assigned for each time interval are listed in Supplementary
Table S14.

Bv � d (3)

vLS � (B′PB)−1B′Pd (4)

vSVD � VS+U ′B′Pd (5)

ϵ � 0.1 × PS × 365.25
TS

(6)

where the U is an orthogonal matrix with dimension M ×M,
including the eigenvector of matrix B’PB; the S+ matrix is an
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M ×M diagonal matrix including the singular values of σ i; V is a
matrix with the dimensions of N × N including the eigenvectors
of (B’PB); ϵ is the velocity error; and PS is the pixel ground
resolution. The symbols ′ and −1 denote the transpose and the
inverse of matrix, respectively.

3.3 Post-Processing
We converted the mean velocities between each adjacent epoch
obtained by the inversion into cumulative displacement Dm for
both EW and NS, according to Eq. 7. The values were temporally
related to the first scene (Supplementary Tables S1–S4) and
spatially to the reference points (see Figure 1). The AAM and the
corresponding prevailing migration direction (PMD) were
estimated according to Eqs 8, 9, respectively. After acquiring
the displacement, we applied the following refinement steps: 1)
Masking pixels comes from the inversion of offset maps
belonging to more than two subsets. 2) Masking non-active
pixels using the stagnant mask obtained in previous steps. 3)
Estimating the migration direction at each time stamp and then
applying a median filter with a 3 × 3 window size. 4) Calculating
the Euclidean norm representing the magnitudes. 5) Estimating
the cumulative projected displacements (CPD) by projecting the
displacement of each epoch in the PMD. The projection was
performed by multiplying the magnitude of migration of each
epoch by the cosine of the difference between the migration
direction and the PMD.

Dm � ∑m

i�2viti (7)

�v � (�B′P�B)
−1
�B′Pd (8)

PMD � atan(
EW

NS
) (9)

where EW and NS are linear velocity in the east-west and the
north-south directions, respectively; �B is a M × 1 matrix
includes the time separation between the master and slave
images for each offset map and �v is the AAM in m/yr.

3.4 Assessment of the Spatiotemporal
Variability of Dune Migration
The BD exhibited large spatial variability in dune migration rates
owing to the presence of different dune morphologies, chemical
formations, and the interactions between wind speed and
topography (Hudson-Edwards et al., 2014). To better capture
the spatiotemporal variability of dune migration, we investigated
four aspects as follows: 1) We compared the AAMs of the active
aeolian features extracted from the L-8 solution with various dune
fields spatially distributed across the study area (see Figure 1). For
each selected dune field, we calculated the median, first and third
quartiles, and interquartile range. We performed two significance
tests (F-test andWelch’s two-sample test) to compare the extent to
which the variance and mean of each dune field were significantly
different compared to other dune fields, as described by Rouyet
et al. (2019). Similarly, the tests were applied to assess the
significance of the PMDs and MSCs. 2) To gain new insights

into the variability of migration rates and direction, we used the
redundancy of the offset maps and extracted the dune velocities
(m/y) from all pairs. We then estimated the geometric mean of all
active pixels associated with each dune field for each deformation
map and extracted boxplots of each dune field representing the
distribution of the geometric mean of the dune velocities between
the different offset maps. The geometricmeanwas used rather than
the normal mean to avoid overestimation as recommended by
Baird et al. (2019). Similarly, we estimated the average migration
direction and the corresponding concentration ratio (CR) of the
active pixels associated with each dune field for all the deformation
maps, according to Eqs 10, 11, respectively.We also drew a boxplot
representing the variability of migration direction to examine the
probable migration directions expected in the study area. 3) We
examined the spatiotemporal variability of migration rates between
different seasons from the inversion of the fused offset maps. We
estimated the median velocity of the velocity values in similar
seasons over the entire time series and estimated the seasonal
sliding coefficients (SSC) representing the ratio of the median
velocities between two seasons. 4) We examined the variability of
dune velocities between different decades, by employing the
matching between three Thematic Mapper images (17/01/1984,
1/12/1998, and 24/1/2007) to capture dune migration in two
previous decades (see Table 1) and compare the results to our
more recent rates (i.e., from 2013 to 2021). We mainly used the
Thematic Mapper instead of the Enhanced Thematic Mapper due
to the failure of Scan Line Corrector (SLC) after May 2003. We
used band 4) of the Thematic Mapper sensor to fed into the
correlation engine as per Baird et al. (2019).

�θ � atan⎛⎜⎝∑i�n
i�1(sin θi)

∑i�n
i�1(cos θi)

⎞⎟⎠ (10)

CR � 1
n

�����������������������������

⎡⎣∑
i�n
i�1 (sin θi)⎤⎦

2

+ ⎡⎣∑
i�n
i�1 (cos θi)⎤⎦

2

√√

(11)

where θi is the migration direction at velocity location. θ is the
average direction and CR is the degree of concentration, where it
ranges from 0 to 1.

4 RESULTS AND DISCUSSION

4.1 Network Configurations
In total, 222 and 219 groups of L-8 (183/48, and 184/48) and 295
and 81 groups of S-2 (TR33QYV, and TR33QZU) were matched,
respectively, to generate the deformation networks
(Supplementary Table S15). The temporal distributions of the
selected pairs are shown in Supplementary Figures S4, S5. The
inversion ratio defined by Ding et al. (2020b) ranged from 4.26 to
5.26 for the separated networks. The fusion between L-8 and S-2
at the overlapping regions (see Figure 1) allowed us to obtain
three dense temporal networks; the numbers of pairs are shown in
Supplementary Table S15. The temporal distribution of the fused
networks is attached in Supplementary Figure S6. Owing to the
fusion, the inversion ratio reached a maximum of 5.95, with a

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 8088028

Ali et al. Spatiotemporal Observation of Bodélé-Depression Dunes

40

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


maximum epoch of 95 time points covering the observation period.
The inversion of the time series was performed pixel-by-pixel using
a flexible design matrix, where only pixels with more offset maps
than the threshold number (Supplementary Table S15) were
considered in the inversion. During inversion, the number of
subsets for each pixel was estimated. The percentages of valid
pixels belonging to up to two subsets are listed in Supplementary
Table S15. Owing to the flexible inversion procedure, the spatial
coverage of the different inversion networks reached 100%, with a
lower limit of 98%.

4.2 Spatial Patterns of Dune Migrations and
Sand Transport
Figure 4 shows the AAMs within the coverage area of the two
overlapping L-8 images. Notably, the AMMs of the L-8 frames
were merged into a mosaic after being spatially linked to the

reference points. Spatial heterogeneity was observed in the dune
migration patterns; a detailed examination of the evidence for
such spatial variability is presented in Section 4.5. It is common
to find considerable geographic variability as a function of surface
characteristics (e.g., vegetation cover, soil moisture, soil
geochemical formation, and particle size), meteorological
factors (e.g., wind speed and stability), and the presence of
human activity. As shown in Figure 4, the maximum velocity
of the aeolian features covered by the two L-8 frames was
44.80 m/y, while the maximum velocities for tiles TR33QYV
and TR33QZU were 53.60 and 68.80 m/y, respectively. In
terms of migration direction, most of the active dune fields
migrated toward the southwest, which is consistent with the
LLJ blowing from the northeast. We focused mainly on the
following two areas in our detailed analysis: area in the BD
and area in the northwest dune field (see Figure 1A). To
better understand the magnitude and directional variability, we

TABLE 1 | Dune migration rates and average migration direction over three observation periods.

Period ID Observation period dd.mm.
yyyy

Active area (Km2) Median celerity (m/y) Average migration direction
(°)

Period 1 17.01.1984–01.12.1998 2,457.47 9.66 240.72
Period 2 01.12.1998–24.01.2007 2,736.85 9.25 237.17
Period 3 16.05.2013–22.07.2021 2,303.28 6.61 238.72

FIGURE 4 | Average annual magnitudes of dune migration for Landsat-8 (A) and two Sentinel-2 images: TR33QYV (B) and TR33QZU (C). The black and red
polygons in panel (A) denote the coverage of TR33QYV and TR33QZU, respectively. The background is light gray canvas© using Esri ArcMap 10.3.
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extracted sand roses from the L-8, representing the frequency
distributions of the AAMs and PMDs of the active aeolian
features within the BD and the dune fields in the northwest of
the study area, as shown in Figure 5. Similar sand roses for the S-2
tiles are shown in Supplementary Figure S7. The active features
in the BD migrated 10.85 ± 4.80 m/y on average toward 244.6° ±
15.26°, while those in the dune fields in the northwest migrated
11.10 ± 4.48 m/y on average toward 266.57° ± 9.16°. On average,
the active aeolian features within the coverage of the TR33QZU
and TR33QYV S-2 tiles migrated 6.88 ± 9.04 m/y toward
237.69° ± 22.13° and 4.69 ± 9.54 m/y toward 235.22° ± 45.60°,
respectively.

4.3 Assessment of Activity Status and Sand
Transport
We used the mask generated by theMSC tomask out the stagnant
areas. Active aeolian features covered approximately 6,100 km2 of
the total area of the L-8 frames, and the spatial distribution of the
active dune fields is shown in Supplementary Figure S3. Active
aeolian features accounted for approximately 1,096 and
2,310 km2 within the depression and in the northwestern dune
fields, respectively, representing 60% of the active area covered by
the L-8 frames. To better capture the abilities of dunes to act as a
source of sand supply, move to support other dune fields resulting

in variability in dune morphology, or move into stable areas and
convert to semi-active/active dune fields, we estimated the area of
encroachment (AE) of sand features and dunes, as described by
Ding et al. (2020b). We divided the ground covered by the L-8
frames into patches of 100 km2, and estimated the AE of each
patch. All sand features and dunes associated with each patch
were included in the AE calculations. The higher the AE, the
greater the ability of the patch to act as a sand supplier. The AEs
ranged from 25 to 4,200 m2/y. The spatial distribution of the
patch AEs is shown in Supplementary Figure S8. The active
dune areas within the BD can encroach approximately ∼530 m2/
y, and the dune fields located in the northwest can encroach
approximately ∼1,330 m2/y. The average PMDs and CRs of each
patch were estimated and displayed in Supplementary Figure S9.
The average PMDs of most of the patches were aligned toward the
southwest and west, although those of some patches were aligned
toward the northeast. The CRs estimated for each patch were
higher in the northwestern dune field, while the patches within
the BD showed less consistency in their migration directions,
revealing large directional variability. This variability within the
BD is consistent with Baird et al. (2019), who reported a median
directional change of up to 39.26°. This considerable variability in
PMDs can be interpreted by the presence of seasonal variations in
the prevailing wind direction, changes in the morphology of the
sand features, and the complexity of the wind regime. Such
directional variability associated for the aeolian features in the
BD may interpret the small AE scored in the BD in compared to
the Northwest dune field.

4.4 Temporal Evaluation of Dune Migration
Patterns
4.4.1 Historical Movement Patterns
We extracted the cumulative displacement time series for 16 sites
spatially distributed across the dune fields covered by the L-8
frames (see Figure 1A). These sites were carefully selected for
their migration rates to represent the migration patterns across
the different dune fields. Themedian and standard deviation were
measured over 3 × 3 adjacent pixels around each point. Our time
series inversion provided continuous monitoring of dune
migration patterns for nearly 9 and 6 years, as shown in
Figures 6,7, respectively. Some of these points were selected in
the overlapping areas between the two sensors, and we compared
the time series extracted from the independent sensors with each
other and with the fusion between the two sensors (Section
4.6.1). Figure 6 shows the temporal evolution of the points (P01-
P08) extracted from the L-8 inversion, whereas points from P09-
P16 are displayed in Supplementary Figure S10. The S-2 time
series results for nine points located in the ground coverage of the
S-2 frames are shown in Figure 7, while the time series results of
these points as extracted from the inversion of the fusion between
the two sensors are shown in Supplementary Figure S11. The
maximummigration rates (∼30 m/y) occurred at points P02, P04,
P07, P13, P14, and P16. The minimummigration rate occurred at
P06 (∼10 m/y). The other nine points showed moderate
migration rates of 15.5–23.5 m/y.

FIGURE 5 | Sand roses illustrating the relationship between dune
migration rates and migration direction for active dune areas in the Bodélé
Depression (A) and the northwestern dune field (B).
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4.4.2 Seasonality of Movement Patterns and
Interpretations
The degree of correlation between the cumulative time series and
the best linear fit (black lines, Figures 6, 7) exceeded 97%, showing

an almost linear increasing trend. However, seasonal signals in the
time series displacements were also observed. To better assess the
seasonality in the temporal patterns, we subtracted the value of the
linear fit from the CPD (Supplementary Figure S12). The

FIGURE 6 | Cumulative projected displacements over time extracted from the inversion of the deformation maps belong to two Landsat-8 frames. The dashed
colored areas in the background represent the different seasons: red, blue, green, and magenta refer to summer, winter, autumn, and spring, respectively. The black
dashed lines denote the best linear fit of the cumulative projected displacement. Red and blue triangles denote the points belonging to the coverage of (183/48) and (184/
48), respectively.

FIGURE 7 | Similar to Figure 6, the time series extracted from the inversion of two Sentinel-2 tiles. Red and blue triangles denote the inversion of pairs belonging to
T33QYV and T33QZU, respectively.
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magnitude of the seasonality reached a maximum of ∼30m/y at
points P02 and P03. The presence of these seasonal signals can be
attributed to the seasonality of the effective wind regime and dust
storms. The seasonality of the dune pattern was supported by
observing the direction of migration in each epoch; epochs with a
migration direction against the PMD experienced a decrease in net
migration. The temporal evolution of the CPDs denoted an inactive
status when the migration direction was aligned in the opposite
direction to the PMD, leading to a decrease in net migration.
Temporally, the dunes experienced lowermigration rates during the
summer months (i.e., June to August). However, the activity status
improved during the winter months, when the dune migration
direction was consistent with the PMD. The ECMWF data (see
Supplementary Figure S1) showed that the wind was from the
northeast in all months except the summer months, when it blew
from the southwest. As for the wind speed, the data also showed that
the speed reached its minimum values in the summer months.
Interestingly, the variability in wind direction was observed in all
years from 2013 to 2020, indicating the presence of seasonal
fluctuations in the wind regime. As the BD is one of the dustiest
places worldwide, dust storms occur frequently, leading to changes
in the sand transport system. Previous studies have reported that
dust storms aremost common in winter because of the northeasterly
direction of Bodélé LLJ. These reports are consistent with the
observed temporal patterns of dune migration and the activity
states extracted from the CPDs. It is assumed that the seasonal
signals observed in the time series are not closely coupled with the
residuals of seasonal illumination, especially in our study area, which
is dry, vegetation-free, and has nearly flat terrain. Consequently, this
seasonal variability may be closely related to the activity of the wind
regime in the study area. Despite the selection criteria applied to limit
the radiometric baselines, which aim to control both seasonal signals
and cast shadows, the probability of finding such seasonal signals is
still present. Moreover, seasonal signals may be a natural
characteristic of dune dynamics owing to the tightly coupled
relationship between wind activity and dune migration. It is
worth noting that dunes are considered complex monitoring
targets compared to glaciers and landslides, as the latter targets
are mainly controlled by gravitational forces and melting conditions
(Stumpf et al., 2016). Such controlling factors allow filtering out
divergent directions from the deformation fields and provide a
strong indication of the quality of the matching results and
inversion (Stumpf et al., 2016). Consequently, in extracting the
time series of dune migration, we paid close attention to the
possibility of such seasonal signals being present within the
temporal patterns. We attempted to control the presence of
divergent seasonal signals through the selection criterion, post-
processing, and the projection of the displacement in the PMD,
to help capture the true temporal patterns.

4.5 Spatiotemporal Variability of Dune
Velocities
4.5.1 Evidence of Spatial Variability of AAMs, MSCs
and PMDs
The AAMs, PMDs, and MSCs were analyzed for the ten dune
fields, as shown in Figure 8. The AAMs varied spatially between

the ten dune fields: 1) The median AAMs value varied from 3.0 to
9.0 m/y, with a maximum value in “Area-10” in the northwest of
the study area, consistent with previous results of high
encroachment areas in the northwest dune filed. The
interquartile values of the active aeolian features varied from
3.85 to 17m/y. 2) The median PMDs varied from
approximately 240–269°, with an interquartile range of
6.2–14.2°, consistent with previous reports of northeasterly
winds prevailing in the study area. 3) The median MSC of the
active features varied from 0.32 to 0.48. The results of the F-test and
Welch’s test are presented in Supplementary Tables S16, S17. The
results show that the hypothesis of no significant difference in the
means and variance between different dune field pairs can be
rejected in most cases, with some exceptions, indicating that the
migration rates and corresponding directions varied significantly
in the spatial domain. The hypothesis of similar AAM means and
variances was accepted for 4 and 3 pairs out of 45 pairs,
respectively. The hypothesis of similar PMD means and
variances was accepted for 5 pairs out of 45 pairs. Interestingly,
the rejection of the hypothesis highlighted spatial variability in the
dune migration patterns, which can be attributed to variability in
geochemical formation, wind energy, sand transport conditions,
dune height and orientation, and wind–topography interactions.

4.5.2 Spatiotemporal Variability in Dunes Velocity
Between Different Offset Maps
Figure 9 shows boxplots of the estimated geometric means of the
active features associated with each dune field extracted from
different offset maps, for both migration magnitudes and
directions. The median of the geometric mean varied from
11.12 to 17.83 m/y, with an interquartile range of
3.07–12.86 m/y. The geometric means extracted from the
AAMs of the same ten dune fields are shown as blue
diamonds in Figure 9A. It appears that the fusion of all
annual rates tends to underestimate the migration rates; the
medians of the geometric means estimated from the AAMs
were lower in all cases. This may be attributed to the fact that
the fusion of offset maps showing different directions would lead
to a reduction in net migration rates. The median of the average
directions of the ten dune fields varied between 236.15° and
269.40° with an interquartile range of 3.21°–19.94°. The large
interquartile range in “Area 1” may be attributed to the presence
of protodunes or sandy patches with variable migration
directions. The median CR ranged from 0.117 to 0.928, with
an interquartile range of 0.095–0.243. It is worth noting that large
CRs indicate the homogeneity of PMDs of active aeolian features
associated with each dune field. In particular, the maximum
variation in migration direction up to 20° corresponds to a CR
of 0.98. The mean values estimated from the PMDs are shown as
black diamonds in Figure 9B. The means of the PMDs were
nearly identical to the medians of the boxplots, demonstrating the
potential of fusion in reliably estimating migration direction.

4.5.3 Spatiotemporal Variability of Dunes Velocities in
Different Seasons
Figure 10 shows the variability of the horizontal velocity for ten
selected points during the measurement period from 2013 to

Frontiers in Environmental Science | www.frontiersin.org January 2022 | Volume 9 | Article 80880212

Ali et al. Spatiotemporal Observation of Bodélé-Depression Dunes

44

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


2020. The velocity varied during the observation period, with an
almost increasing trend during the winter and autumn months.
The velocities reached a maximum of ∼220 m/y at P13. Although
no clear trend was found to represent the behavior of velocity
variation, seasonal variability was observed in the velocity

patterns of all the points. The seasonal variability in dune
velocity was supported by the wind records extracted from the
ECMWF data (Supplementary Figures S13, S14), where the
wind speed and direction for the ten selected points were
displayed. It was observed that the wind speed showed a

FIGURE 8 | Boxplots of the AAM (A), PMD (B), and MSC (C). The box plots were plotted for 4,000 pixels belonging to ten dune fields (see Figure 1). The outliers
were discarded from the visualization; however, they were considered in estimating the median, and the interquartile ranges.

FIGURE 9 | Spatiotemporal variability of the dune migration rates (A), and directions (B). Box plots represent the variability of geometric means of dune velocities
and the average migration direction of the active aeolian features belonging to each dune field for all the pairs. The blue and black diamonds in (A,B), respectively,
represent the geometric means estimated for the active aeolian features belonging to the AAM and PMD solutions.
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FIGURE 10 | Time series of dune velocities as extracted from the inversion of offset maps belong to Landsat-8 frame 183/48. The blue pentagrams represent the
acquisition epochs. The red lines denote the continuous dune velocities.

FIGURE 11 | Median seasonal velocity at different points belong to Landsat-8 frame 183/48 (A). The seasonal sliding coefficients denote the ratio between the
different seasonal velocities (B).
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fluctuation with lower speeds in the summer months (June to
August). Additionally, the wind directions mainly from the
northeast with variable directions mainly in summer months.
To better capture the seasonal variability in the measured
velocity, we estimated the median velocities for the acquisition
epochs belonging to each season. Figure 11A shows the
variability in the median velocities between different seasons.
Interestingly, the median velocities recorded during the
summer showed the lowest velocities. We estimated the
SSC, which represents the variability of the median
velocities between different seasons (Figure 11B). The
winter/summer sliding coefficient showed the highest
values, ranging from 1.30 to 2.90 with a median of 2.05. In
contrast, the median velocities changed slightly in spring and
autumn compared to winter, and the median SSCs were 1.14
and 1.36 for winter/spring and winter/autumn, respectively
(Figure 11B). The maximum median velocity peaked during
the autumn and winter months. The variability in dune
velocities at different times of year is expected and can be
attributed to seasonal changes in wind strength. The wind
records extracted from ECMWF data between 2013 and 2020
(Supplementary Figure S1) showed that the median monthly
wind speeds from May to September ranged from 1.20 to
3.40 m/s, with the lowest values in the summer months (June

to August). The median wind speed increased up to ∼6.5 m/s in
the winter months. In terms of migration direction, the
medians of the monthly directions ranged from 233.24° to
250.03° for all months except July and August, when they were
44.95° and 32.74°, respectively. The observed seasonal velocity
patterns were consistent with the behavior of the wind regime,
and both were consistent with previous reports of the
prevailing northeasterly LLJ, especially during winter
(Vermeesch and Leprince, 2012).

4.5.4 Spatiotemporal Variability of Dune Velocities
Between Different Decades (1984–2021)
Figure 12 shows the frequency distributions of the magnitude
and direction of the active features within the BD (Figure 1) over
three periods (Table 1). The active features within the BD had a
strong tendency to migrate toward the southwest and south-
southwest; the average migration directions are summarized in
Table 1. The differences between the average directions reached a
maximum of 3.5°, demonstrating the consistency of the dune
migration direction over longer time. Individual examination of
the directional differences (Figure 12D) showed variability in the
directions between periods 1–2 and between periods 2–3
(Table 1), with median differences of 9.45° and 21.4°,
respectively. These individual variations can be attributed to

FIGURE 12 | Frequency distribution of the active dune and sandy patches in the Bodélé Depression for three observation periods: (A) 1984–1998, (B) 1998–2007,
and (C) 2013–2021. Units in (A–C) are in m/y. (D) Histogram of the difference between period 1 and 2 and periods 2 and 3 in terms of magnitude (Right) and direction
(Left).
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the presence of sand features and protodunes, as well as the
formation of new sand features owing to the deflation of sand and
dust storms. The large median directional difference between
periods 2–3may also be owing to the high ground resolution of L-
8, which could capture more detailed information than Landsat-
5. Directional differences of up to 90° may occur owing to change
in morphological interactions and the inability of the correlation
to capture these morphological changes, especially over longer
time intervals. In addition, continuous sand transport and dust
storms may affect sand flux in the BD, leading to the birth of new
dune generations or the conversion of stable fields to active/semi-
active status. The percentage of active areas within the BD ranged
from 26 to 30% of the total area, with the lowest value between
2013 and 2021. The geometric mean velocities ranged from 6.61
to 9.66 m/y, with the lowest values recorded for the most recent
observation periods. Comparatively, Baird et al. (2019) reported
accelerating dune velocities averaging 2.56 ± 12.60 m/y, with
some accelerating aeolian elements moving at more than
20 m/y. Here, a comparison between the migration velocities
recorded in periods 1 and 2 showed nearly stable conditions with
an average acceleration of 0.36 ± 14.20 m/y. In contrast, an
average deceleration of 3.2 ± 15.20 m/y was observed when
comparing periods 2 and 3. To add new insights to the
comparison between migration patterns captured at different
observation periods, we compared the average annual wind
speed with the geometric mean of the migration rates between
similar observation periods. Vermeesch and Leprince (2012)
reported that a 1% increase in wind speed results in a ∼3%
change in dune velocity and associated dust production. The
median annual average wind speeds were 5.24 and 4.84 m/s for
periods 2 and 3, respectively, representing a 7.63% decrease in
wind speed. The percentage decrease in the migration rate was
28.2%. The ratio between the changes in dune speed and wind
speed was approximately 3.50%, which corresponds to the ideal
ratio between wind speed and dune speed. The comparison
showed strong agreement between the wind speed extracted
from the ECMWF and the migration rates estimated from the
image matching. However, despite the good agreement between
the wind speed and dune velocities, dependence on the matching
results rather than the wind speeds could still be considered
valuable because 1) the wind speeds from the ECMWF have a
coarse resolution (i.e., 0.1 × 0.1 °), 2) the matching measurements
can be validated and evaluated, and 3) the matching results
provide indications of the migration rates that can be used in
vulnerability analysis, stability planning, and modeling.

4.6 Validation and Uncertainty Estimation
4.6.1 Cross-Validation
Table 2 summarizes the AAM and PMD values, and the slope of
the linear fit for the points covered by L-8 and the points
overlapped by L-8 and S-2. There are some inconsistencies
between the slope of the linear fit of the CPDs extracted from
S-2 and from both L-8 and the fusion; the medians of the absolute
difference (MAD) reached ∼4.23 and 6.81 m/y for the differences
between S-2/L-8 and S-2/fusion, respectively. The comparison
between L-8 and the fusion showed the worst consistency, with a
MAD of ∼9.25 m/y. These large differences can be attributed to 1) T
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differences in the observation periods in the S-2 time series and
both the L-8 and the fusion time series; 2) the different
performance of the inversion networks (i.e., the different
condition numbers of the design matrices); and 3) the radical
differences in the temporal and spatial resolutions of the sensors
and their orthorectification and co-registration accuracy. With
respect to AAMs, the comparisons between S-2/L-8 and S-2/
fusion showed MADs of ∼7.0 and 6.81 m/y, respectively. The
comparison between the AAMs of L-8 and the fusion showed a
MAD of 0.7 m/y. Despite the stability of the inversion of one rate
owing to large redundancy and good network connectivity, we
noticed a larger differences between the AAMs of S-2 and both L-
8 and the fusion than between L-8 and the fusion. This can be
interpreted by the different observation periods between S-2/L-8
and S-2/fusion. In terms of the PMDs, the directions extracted
from S-2 showed strong agreement with both L-8 and the fusion;
the MAD were 3.4° and 2.7° for S-2/L-8 and S-2/fusion,
respectively. Moreover, the MAD between L-8 and the fusion
was 2.5°. From a detailed examination of the temporal patterns
extracted from the different inversions, we observed that, for
networks with lower temporal sampling (i.e., T33QZU which had
only 17-time epochs owing to cloud and haze constraints), the
cumulative time series showed two increasing trends with almost
stable conditions where no epochs were included (see Figure 7).
In comparison, the inversion of TR33QYV captured more details,
showing almost linearly increasing trends with low seasonality
signals, except for P4 (see Figure 7). However, the fusion between
the two sensors (Supplementary Figure S11) provided higher
temporal sampling that allowed observation of the temporal
evolution up to a weekly time scale. This led to design
matrices with higher condition numbers, consequently
affecting the stability of the inversion. More seasonality was
recorded in the inversion of the merged networks than in the
inversions of either L-8 or S-2. The comparisons between the
different inversions at different points showed some
inconsistencies, especially in the migration magnitudes, but the
migration directions showed higher homogeneity regardless of
the network configuration and the observation period.

4.6.2 Uncertainty Estimation
We used a stable area of 7.25 km2, as shown in Figure 1, to
evaluate the uncertainty of the inverted results. We estimated the
standard deviation of the measurements as an indicator of
uncertainty (Bontemps et al., 2018; Lacroix et al., 2019; Ali et
al., 2021). We captured the effect of the inversion in controlling
uncertainty by comparing the uncertainties of the individual
offset maps before and after inversion (Bontemps et al., 2018).
Figure 13 shows the uncertainties of the individual offset maps
after inversion and the percentage of improvement in the
uncertainties for the L-8 frames. Similar maps for S-2 and the
fusion can be found in Supplementary Figure S15. After
inversion, the uncertainties varied from 0.27 to 1.90 m and
from 0.29 to 1.36 m with averages of 0.70 and 0.62 m for L-8
and S-2, respectively. The percentages of improvement in the
uncertainty after inversion were, on average, 35 and 44% for L-8
and S-2, respectively. We also extracted the uncertainties in the
inverted results of the CPDs; the uncertainties were, on average,

0.95 m and 0.74 for L-8 and S-2, respectively. It is interesting to
note that the uncertainty levels of the inverted results were within
the resolution of the matching technique (i.e., about a fifth to a
tenth of the ground resolution).

4.7 Reflections on Previous Studies
To date, three studies have focused on monitoring dune
migration in the BD using optical image matching techniques
with different image sources and with different study periods.
Vermeesch and Drake (2008) first used a correlation engine with
ASTER images at different time intervals and integrated the
displacements with dune heights extracted from ASTER stereo
images to estimate sand flux. They reported variability in dune
velocities, noting that the velocities were 2.5 times higher between
December 2006 and January 2007 than between October 2005
and January 2007, and attributed this to the presence of the
Bodélé LLJ, which is prevalent during the winter months. A
similar trend was observed in our time series, with the winter and
summer velocities scoring the highest and the lowest velocities,
respectively.

Vermeesch and Leprince (2012) monitored dune acceleration
over a 26-year period between 1984 and 2010 using a matching
procedure along with seven images from different archives. They
used the time series of dune velocities to draw conclusions about
the wind conditions in the Sahara Desert, especially in the
absence of meteorological observations. They reported that
dune velocities of less than 10% over 26 years, equivalent to a
∼0.2% change in wind speed. We believe that the sparse temporal
sampling of the extracted time series (i.e., seven images spanning
26 years) missed many details about dune movement and
seasonal patterns. In our study, due to the dense temporal
sampling, we estimated the median velocity for each season
and found that the SSC of the velocities between winter and
summer scored ∼2 revealing the activity of the wind in the winter
due to the Bodélé LLJ. The effect of acquisition epochs on the
temporal patterns was supported in our study, while the inversion
of the S2TR33QZU offset maps was limited to 17 epochs due to
cloud cover and dust. The inversion showed two increasing linear
trends (see Figure 7) with a plateau in between, lacking provide
details that can be captured in case of dense acquisition dates. In
summary, our study introduced dense spatiotemporal
monitoring of dune dynamics and associated drivers inside
and outside the BD. It is worth noting that detailed studies on
the spatiotemporal patterns of dune dynamics in the BD have
been lacking in the literature.

4.8 Contribution of the Inversion of Optical
Image Matching for Monitoring the Earth’s
Surface
The optical image matching selection and inversion algorithm
provides a valuable tool for monitoring surface processes over
time, with the advantage of reducing uncertainty and enhancing
spatial coverage, especially when using free archives that provide
a huge amount of data with dense temporal resolution (Ali et al.,
2020; Ding et al., 2020b). As free archives of optical imagery
(i.e., L-8 and S-2) offer temporal sampling ranges of 5–16 days,
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the number of available images is inherently limited by cloud
cover, especially in wet seasons in tropical regions (Dille et al.,
2021). Limiting the selection of images to those with no/low cloud
cover to preserve the matching uncertainty (Lacroix et al., 2018)
would affect the number of images and consequently limit the
temporal sampling of the time series. Additionally, slow-moving
targets require large time separation to help measure real
displacement and avoid a large fraction of geolocation errors
in the matching results (Fahnestock et al., 2016). However, long
temporal baselines affect the temporal sampling of the time series
(Dille et al., 2021). Therefore, dependence on the fusion between
the time series of two or more sensors with overlapping temporal
coverage provides a good alternative to increase the temporal
sampling of the time series especially at locations where the
images usually contaminated by cloud or haze and enhance
understanding of the surface process. In this work, we
introduced the fusion of time series from two sensors at
overlapping locations to increase the density of the temporal
sampling. The comparison between the individual time series
from each sensor with the fused time series revealed the potential
of the fusion of offset maps with similar ground resolutions in
providing dense temporal sampling at up to a weekly time scale.
The fusion procedure avoids the high computational costs and

data burdens associated with the inversion of a full network.
However, fusion provides higher inversion ratios, and the
configuration of the network and condition number of the
matrix should be considered to preserve the quality of the
inverted results. The density of the temporal sampling of the
time series can, therefore, be improved by matching images from
different sensors, considering the effect of the radiometric
variation of both images (Necsoiu et al., 2009). Although the
matching of different sensors would provide a simple framework
for inversion, differences in the radiometric properties and Sun
angles between the two images could affect the quality of the
offset maps. Matching networks created via matching images
from different sensors can be applied to guarantee good
connectivity of the design network and dense temporal
sampling, revealing the complex patterns of surface
deformations.

5 CONCLUSION

In this work, we extended the application of the optical image
matching selection and inversion algorithm using L-8 and S-2
data to gain new insights into the spatiotemporal patterns of dune

FIGURE 13 |Uncertainty of the offset maps after inversion (A) and the percentage of improvement in the uncertainty before and after inversion (B) for the Landsat-8
frame P183/R48. (C) and (D), similar to (A,B) but for the Landsat-8 frame P184/R48. The colored cells represent the pairs with the master on the y-axis and slave on the
x-axis. Each pair is defined by the acquisition dates. The acquisition dates of each frame can be found in Supplementary Tables S1, S2. Units in A and C are in (m) while
(B, D) are percentages.
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migration in the BD during 2013–2021. Images from the L-8 and
S-2 archives with low cloud cover were selected to control
uncertainty and improve spatial coverage. The selected images
were used to generate networks of matched pairs by setting
radiometric and temporal baselines. Using the MSC, stagnant
and moving targets were automatically differentiated. The
inversion was performed using a pixel-by-pixel strategy and
flexible design matrices that covered a large area (up to 98%
of the total area of the two L-8 frames). The AAMs and their
corresponding PMDs exhibited large spatial variability that can
be attributed to various factors such as soil moisture, soil particles,
sand transport, wind energy, and wind–topography interactions.
The PMDs showed a tendency of migration toward the
southwest, which is consistent with the prevailing
northeasterly direction of the Bodélé LLJ. The temporal
patterns of dune migration showed significant seasonal
variation, which can be attributed to the seasonality of the
effective wind regimes and dust storms. The average monthly
wind speeds and directions extracted from the ECMWF showed
that northeasterly winds were predominant in all months except
the summer months. In addition, the wind speed was lowest
during the summer months and highest during winter.
Comparison between the inversions of the different networks
showed some discrepancies owing to the different performances
of the inversions, based on the different networks. Inversion
reduced the uncertainty by, on average, 35 and 44% for L-8 and S-
2, respectively. In addition, fusion between the two sensors
allowed the temporal sampling to be condensed to reveal
complex short-term patterns of surface deformation. The
fusion of two or more sensors would be a promising
alternative for monitoring temporal evolution with dense
temporal coverage, especially in regions with heavy cloud
cover in tropical areas.
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DS-InSAR Based Long-Term
Deformation Pattern Analysis in the
Mining Region With an Improved
Phase Optimization Algorithm
Yuling Du1,2, Shiyong Yan1,2*, Feng Zhao1,2, Ding Chen1,2 and Haolei Zhang1,2

1MNR Key Laboratory of Land Environment and Disaster Monitoring, China University of Mining and Technology, Xuzhou, China,
2School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China

The environment management and land utilization of the abandoned mining region is
critically dependent on precise monitoring and comprehensive understanding of mining
subsidence. In order to overcome the shortcomings of the traditional distributed target
phase optimization method in the space continuity constraints of adjacent pixels, an
improved phase optimization algorithm was proposed, which combines region growing
and time series interferometric synthetic aperture radar with distributed scatterers (DS-
InSAR). By using 17 L-band and 51 C-band SAR images, the characteristics of temporal
and spatial distribution in Peibei mining area of Xuzhou, China, were obtained during the
period from 2007 to 2011 and the period from 2017 to 2020. With the long-term
monitoring, the evolution of deformation in the mining area was carried out. The
modified phase optimization technique has proven its ability in the density of
measurement points and the influence of noise in space, which is promising for the
detection of large gradient deformation and the accurate analysis of surface deformation in
mining areas. The study has been concentrated toward detecting continuous subsidence
in the mining region. Coal mines in operation are usually accompanied by unstable ground,
and the uplift or second subsidence has sometime occurred in the closed mine region.
Conclusively, the presented methodology is practically feasible for long-term deformation
pattern analysis in coal-exhausted mining areas.

Keywords: DS-InSAR technology, phase optimization algorithm, surface deformation, comparative analysis, mining
region

INTRODUCTION

The exploitation and utilization of coal resources play an important role in global economic
development. Peibei mining area, the largest coal production base in East China, has made
outstanding contributions to rapid growth of China’s economy in the 20th century. However,
many environmental problems and geological disasters caused by the high-intensity and large-scale
mining bring severe damage to our lives and property (Yang et al., 2017; Dong et al., 2021). Due to the
strong hysteresis property of surface subsidence caused by underground mining, the phenomenon of
ground subsidence has occurred even in some coal mines that are idled or closed (Zhao, 2003).
Meanwhile, the transformation and development of the old mining areas are also hindered by surface
unstable phenomena (Mi et al., 2017). Moreover, with the impact of coal capacity reduction and
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urban economic development on land demand, the land in
mining regions needs to be urgently reutilized for urban
construction and development. Therefore, it is of great
significance to carry out the long-term monitoring and
comparative analysis of surface deformation in the mining area.

The time series interferometric synthetic aperture radar (TS-
InSAR) technology with advantages in efficient monitoring of
large scale is less affected by spatiotemporal incoherence (Wang
et al., 2013); thus, it has been widely used for accurate
measurements of surface deformation, such as cities (Chen
et al., 2013), landslides (Ao et al., 2019), glacier movements
(Lin et al., 2019), and mining areas (Li et al., 2016; Lu et al.,
2016). Nevertheless, the capability of the traditional InSAR time
series approach is often limited by the scarcity of artificial targets
and the coverage of sparse vegetation, which increases the
difficulty in obtaining deformation features because of the lack
of monitoring points (Zhang et al., 2015), especially in the mining
region. The SqueeSAR technology has been widely used in recent
years, whereby the concepts of distributed scatterer (DS) and
persistent scatterer (PS) are first being introduced, respectively
(Ferretti et al., 2011; Cao et al., 2015; Du et al., 2018). In order to
make full use of distributed targets, a number of phase
optimization methods are proposed. Phase optimization
determines the phase quality and affects the measurement
point’s density, the application of which provides a practical
value about the monitoring of surface deformation in mining
areas. The maximum likelihood estimation (MLE) (Monti and
Stefano, 2008) method assumes that only subscatterers with a
single dominant scattering mechanism exist in the resolution cell,
and a probability density function model of the distributed target
is required. The eigenvalue decomposition (EVD) (Gianfranco
et al., 2014) method is used in covariance matrix or coherent
matrix, while the corresponding eigenvector with the largest
eigenvalue can be considered to be the reconstructed
interferometric signals. The eigen-decomposition-based
maximum-likelihood-estimator of interferometric phase (EMI)
(Ansari et al., 2018) was proposed, which increases the model
complexity of conventional phase estimators to improve the
estimation performance. Although the aforementioned
methods adopt different strategies to reduce the decorrelation
of DS pixels, however, the phase continuity between adjacent
pixels is not carefully considered, and noise on the deformation
monitoring results is neglected in the process of optimizing the
DS phase value.

According to the aforementioned issues, an improved phase
optimization method combining region-growing algorithm and
T-EVD is presented. The subsidence area of Peibei mining area in
Xuzhou city, Jiangsu Province, China, is selected as the research
area, and the ALOS/PALSAR data and Sentinel-1 data covering
the study area are processed by this method. Then, deformation
in the mining area from February 2007 to March 2011 and
January 2017 to December 2020 is obtained, and the evolution
of surface subsidence in the mining area in the last 10 years is
shown. The final results obtained from the synthesized analysis
are promising to identify potential risks and develop further
techniques to mitigate the impact of mining areas on
environment and resources.

STUDY AREA AND DATASETS

Peibei mining region, located in the northwest of Xuzhou city,
Jiangsu Province, is one of the important mine resource
basements in the eastern part of China. There are main eight
mines in the study area as indicated in Figure 1 (Dong et al.,
2014), including Yaoqiao (YQ) Coal Mine, Longdong (LD) Coal
Mine, Xuzhuang (XZ) Coal Mine, Kongzhuang (KZ) Coal Mine,
Zhangshuanglou (ZSL) Coal Mine, Sanhejian (SHJ) Coal Mine,
Peicheng (PC) Coal Mine, and Longgu (LG) Coal Mine. The
surface classification information is obtained from the global land
cover dataset (Gong et al., 2019). Meanwhile, due to the rapid
development of coal-mining operations, a lot of land resources
were occupied, resulting in the reduction of traditional land
resources. In recent years, with the closure of some coal mines
such as SHJ coal mine and PC coal mine, the land was restored by
the government, which increased the area of wetlands and waters
(Zhang et al., 2016). The study region, with the temperate
monsoon climate, is featured with very longer summer and
winter. Generally, there is a large seasonal difference in land
cover, especially in the region with bare land and sparse
vegetation; most of them yield the similar characteristics such
as the typical distributed targets, which would easily lead to
incoherence in traditional SAR interferometry processing.

In this article, the surface deformation in Peibei mining area is
measured with both L-band ALOS/PALSAR during
2007.2–2011.3 and C-band Sentinel-1A during 2017.1–2020.12
in an ascending orbit. The used dataset description is shown in
Table 1. In order to avoid the serious incoherence phenomenon
caused by the relative long temporal baseline and the adverse
effects on the extraction of surface subsidence in the mining
region, two periods were separated for research during
2017–2020 because of the large changes caused by mining
operation and different surface coverage. In addition, the
SRTM DEM with 30 m resolution provided by USGS is used
for geocoding and topographic phase compensation for SAR data.

MATERIALS AND METHODS

For monitoring and identifying the land subsidence of mining areas,
the improved DS-InSAR technology with combination of PS points
and DS points was proposed and used in this article, which fully
optimizes the phase quality with both region growing and T-EVD.
The main data processing flowchart is shown as follows:

1) Statistically homogenous pixels (SHPs) identification and
selection:

In order to process homogenous patches without the impact of
PS targets, SHP should be identified from the beginning. Several
statistical techniques have been used to detect SHP, such as the
Kolmogorov–Smirnov test, Anderson–Darling test, generalized
likelihood ratio test, fast SHP selection (Jiang et al., 2014), and
two-sample t-test. All these methods are based on evaluating the
similarity of the amplitude distribution of two image pixels.
Hypothesis testing is used to analyze the similarity of sample
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distribution characteristics, and adaptive multi-view processing is
performed on points with the same statistical attributes as the
target pixel. In this article, the two-sample t-test is used because of
the high efficiency in identification and selection of SHPs
(Shamshiri et al., 2018). The two-sample t-test is defined as:

H0: μ1 � μ2 H1: μ1 ≠ μ2 ,

where μ1 and μ2 are the averaged amplitudes of the populations. The
corresponding test statistic for the same sample sizes is as follows:

t � �A(P1) − �A(P2)���������
σ2(P1)+σ2(P2)

N

√ ,

whereN is the sample size, �A(P1) and �A(P2) are the samplemeans,
and σ2(P1) and σ2(P2) are the sample variances. A pixel-centered
estimation window (15 × 15) is defined for each pixel to select the
homogenous statistical population. Then, the predefined significance
level (0.05) is used to test the difference between the amplitude vector
of the central pixel and that of all pixels within the window. Finally,
pixels with the number of SHPs greater than 20 are used as
distributed scatterers candidates (DSCs) (Ferretti et al., 2011;

Jiang and Guarnieri, 2020), and the coherent values of SHPs
below 20 are preserved as PS candidate points.

2) Optimized phase estimation:

The phase optimization plays an important key role in
exploring the available DSC points. First, the coherent matrix is
calculated based on the SHPs, and then the spatiotemporal phase
optimization of DSC points is realized by using both the T-EVD
and region growing method in this article, and the general data
process flowchart is shown in Figure 2. With the help of combined
filtering operation, the phase-optimized interferometry fringes
have been largely improved, especially in low-coherent areas,
where negative influence of incoherence noise has been
effectively suppressed along with the DSC exploitation.

Assuming a homogenous point set Ω containing NSHPs pixels
with similar scattering properties, the coherence matrix for the
homogenous point set can be expressed as:

T̂ � E[yyT] � 1
NSHPs

∑
y∈Ω

yyH,

where y � [y1 y2 y3...yN]T is the normalized complex observation
of N SAR images. In addition, the interferometric phase and the
estimated coherence value can be described in the coherence matrix,

T̂ �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
∣∣∣∣~γ1,2

∣∣∣∣ exp(jφ1,2) /
∣∣∣∣~γ1,N

∣∣∣∣ exp(jφ1,N)∣∣∣∣~γ2,1
∣∣∣∣ exp(jφ2,1) 1 /

∣∣∣∣~γ2,N
∣∣∣∣ exp(jφ2,N)

..

.
∣∣∣∣~γN,1

∣∣∣∣ exp(jφN,1)
..
.

∣∣∣∣~γN,2

∣∣∣∣ exp(jφN,2)
1 ..

.

/ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

� ∣∣∣∣T̂
∣∣∣∣+Φ,

where Φ represents the N×N matrix with the interferometric
phases ϕm,n between the mth image and the nth image, |T̂|

FIGURE 1 | Geographical elements and land cover in the Peibei mining area, Xuzhou city, China. (A) Land cover mapping based on Sentinel-2. (B) Google Maps.
(C) Itensity map of ALOS/PALSAR. (D) Itensity map of Sentinel-1.

TABLE 1 | Basic information of data.

Type ALOS/PALSAR Sentinel-1A Sentinel-1A

Band L-band C-band C-band
Scenes 17 26 25
Period 2007.2–2011.3 2017.1–2018.12 2019.1–2020.12
Master image 20090225 20171210 20200105
Pass direction Ascending Ascending Ascending
Polarization HH VV VV
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represents the N×N matrix with the estimation of the
corresponding coherence ~γ, and + is the Hadamard product.

Generally, there are multiple and undermined scattering
mechanisms interacting with each other existing in the
resolution unit, especially for the middle resolution SAR
imagery. According to the characteristic of the coherence
matrix, it can be written in the form of

T̂ � UΛUH � ∑
N

i�1
λI · ui · uH

i ,

where Λ � [λ1, λ2, . . . , λN] is a N×N diagonal matrix with the
eigenvalues, and U � [u1, u2, . . . , uN] corresponds to orthogonal
eigenvectors. Generally, the eigenvalue λi is defined as the weight
of different scattering mechanisms in the resolution unit. In
reality, the number of dominant scattering mechanisms is
unknown. Thus, the phase component of eigenvector u1,
corresponding to the maximum eigenvalue λ1 in coherency
matrix T̂, could be generally used as an optimized estimation
of the interferometric phase (Cloude and Pottier, 1997). The
corresponding phase optimization function is as follows:

ϕ̂T−EVD � argmax
φ

⎧⎨
⎩Re⎛⎝∑

N

m�1
∑
N

n>m
[|u1||u1|T]mn

∣∣∣∣T̂
∣∣∣∣mn

exp(j(φmn

− (ϕ̂om − ϕ̂on)))⎞⎠
⎫⎬
⎭,

where ϕ̂om and ϕ̂on– represent the optimized phases of DS with a
single master image, and ϕmn represents the adaptive multi-view
interferometric phase.

However, in the process of constructing the coherence matrix
by the T-EVD method, the spatial information between
homogenous pixel points is lost, and the optimized phase
value space is not sufficiently constrained. In order to
eliminate acnode noise existing in the EVD-based optimized
phase and further improve the quality of interferometry, the
spatial filter window, generated by the region growing method
relaying on the difference of interferometric phase differences, is
used to realize the re-optimization of the DSC phase. Thus, the

method fully utilizes the pixel connectivity in interferograms
(Wang and Qin, 2009).

In this research, the center pixel of the preset window (15 × 15)
is used as the initial seed point to select the pixels whose phase
value could represent primary phase characteristics in the
window. In order to preserve the fringe characteristics of the
InSAR image, the phase difference threshold T of adjacent pixels
is set at the growth criterion R, which is used to determine
whether the selected window should continue to extend. Then,
the final filter template can generate windows with various
directions and sizes according to actual surface scenes, which
would not be restricted by a regular shape.

R:
∣∣∣∣∣G(i, j) − G(i, j)(8)

∣∣∣∣∣≤T,

where G(i, j) represents the pixel phase value of point
coordinates (i, j), and point (i, j)(8) represents the pixel point
within the eight neighborhoods of point (i, j). In addition, the
higher the coherence is, the more reliable the phase is. Therefore,
the weighted average of the interferometric phase in the filter
window is calculated, and the coherence is the weight ρi:

�G(i, j) � G1ρ1 + G2ρ2 +/ + Gkρk
n

,

where n is the sum of the weights ρi(i � 1, 2,/, k), and
Gi(i � 1, 2,/, k) represents the phase values of the
corresponding points within the window.

3) Phase optimization quality evaluation:

In order to measure the extent of temporal incoherence on
DSC and evaluate the quality of phase optimization, the temporal
coherence γDS (Ferretti et al., 2011) is defined to make a fitting
and comparison of the original phase and the optimized phase.
The original interferometric phase would be replaced with the
optimized phase value once the γDS is greater than the threshold,
and then the corresponding SHP point is used as the DS point:

γDS �
1

N(N − 1)∑
N

n−1
∑
N

m ≠ n

expj(ϕmn−(ϕ̂om−ϕ̂on)).

FIGURE 2 | Schematic diagram of phase optimization.
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4) Observation targets fusion:

The selection of high-quality point targets is mainly based on
high signal–noise ratio and stable phase scattering characteristics.
The amplitude dispersion method and phase stability analysis are
used in StaMPS to select high-quality point targets. Based on the
amplitude deviation index, pixels greater than 0.4 are used as the
initial permanent scatterer candidate (PSC). In addition, phase
stability analysis is then further performed on each candidate
point by calculating the temporal coherence coefficient to
determine whether the PS points could satisfy the selection
requirements (Figures 3A,C). Finally, along with the selected
DS points in aforementioned (3), the observation targets could be
obtained by the combination of PSs and DSs (Figures 3B,D).

5) TS-InSAR analysis:

Following this, analysis is performed in accordance with the
traditional TS-InSAR data processing flow, such as residual
terrain correction, phase unwrapping, and both GACOS-based
(Yu et al., 2017) and temporal–spatial statistical-based
atmospheric estimation and correction.

The entire process is shown in Figure 4.

RESULTS AND ANALYSIS

Spatial Distribution of Deformation Area
Compared with the results of traditional persistent scatterer
interferometric synthetic aperture radar (PS-InSAR)

(Figure 5), the negative influence of noise obtained from the
deformation field was reduced, and then smooth results and clear
boundary information of the subsidence region could be obtained
by using the presented method. The improved method can
increase the number of points by an average of about
14.3 times by comparing with the traditional PS-InSAR
technology. By comparing the average coherence
corresponding to the interferogram with the longest spatial
baseline, it can be seen that the average coherence can be
improved by about 1.63 times with the improved
method.(Table 2). The subsidence results in Peibei mining
area were calculated by the proposed method in this article
along with both ALOS/PALSAR and Sentinel-1A data covering
three periods from February 2007 to March 2011 (Figure 6A),
January 2017 to December 2018 (Figure 6B), and January 2019 to
December 2020 (Figure 6C). It can be seen that the spatial
distribution and density of the measurement points were
uniform during each period. But, the subsidence distribution
was obviously yielded in Peibei mining area.

The comparison of monitoring results during different periods
showed that there are different types in spatial evolution of
deformation, such as expansion, offset, and reduction, and
corresponding magnitude of subsidence also significantly
varied. It can be seen that there were five obvious subsidence
areas from 2007 to 2011 (Figure 6A). Among them, the region
with the largest subsidence existed in ZSL Coal Mine, which
included three obvious subsidence centers with the deformation
ranging between −120 and −60 mm/year. In SHJ Coal Mine, there
were two obvious subsidence areas with the deformation varying
in the range between −90 and −70 mm/year. There are three

FIGURE 3 | Distribution of high coherent targets in the study area. (A) PSs distribution of ALOS/PALSAR. (B) Combination of PSs and DSs distribution of ALOS/
PALSAR. (C) PSs distribution of Sentinel-1. (D) Combination of PSs and DSs distribution of Sentinel-1.
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obvious subsidence regions in PC Coal Mine with the subsidence
value ranging from −60 to −30 mm/year, which were mainly
located in the south of Peixian county and the west of Peicheng
town. In addition, YQ Coal Mine had a comparatively small
subsidence area as well.

During the period from 2017 to 2018 (Figure 6B), the surface
was stable in LG and LD coal mines. However, there was
localized subsidence in PC, KZ, and XZ coal mines, and
large-scale subsidence in ZSL, YQ, and SHJ coal mines.
Then, the surface of PC Coal Mine became stable between
2019 and 2020 (Figure 6C), and the deformation of the SHJ,

YQ, ZSL, XZ, and KZ coal mines were significantly reduced at
the same period.

In conclusion, the subsidence is mainly concentrated in ZSL,
YQ, SHJ, and PC coal mines, where both the different
deformation evolution patterns and serious large-scale
subsidence could be observed.

Subsidence in Typical Mining Areas
In order to understand the evolution of goafs in different mining
areas during different temporal periods, ZSL, YQ, SHJ, and PC
coal mines were selected for further comparative analysis

FIGURE 4 | Workflow of the study.

FIGURE 5 | Subsidence result obtained by DS-InSAR. (A) Tradition method. (B) Improved method.

TABLE 2 | Comparison of points and coherence of different methods.

Year/method PS-InSAR
(point number/coherence)

DS-InSAR (point number/coherence)

EVD method Improved method

2007–2011 92954/0.26 975749/0.46 1697846/0.50
2017–2018 95390/0.25 781364/0.35 1553943/0.37
2019–2020 99264/0.24 568148/0.35 825417/0.36
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(Table 3). In addition, the cumulative subsidence curve of
different research periods for the same location in each mine
is given in Figure 7, which would be benefit for analyzing the
evolution characteristics of each coal mine.

As shown in Table 3, three obvious subsidence centers could
be found in ZSL Coal Mine during different monitoring periods.
As data display, the mining was put into production in December
1986 and still in progress now. However, compared with the
deformation results from 2007 to 2011, the results obtained from

2017 to 2020 yield that the subsidence center of R1 and R2
expanded gradually and then finally merged into a new large one,
which was mainly caused by continuous underground mining
operations in ZSL coal mines during corresponding periods.
However, with the increase of the exploiting depth and the
expansion of the mining range, the subsidence region was
spatially expanding along with a comparative decrease in the
magnitude of subsidence. Also, the subsidence occurred in R3, a
excavate coal subside seeper area located in ZSL Coal Mine, was

FIGURE 6 | Average deformation rate map of Peibei mining area. (A) 2007–2011. (B) 2017–2018. (C) 2019–2020.

TABLE 3 | Comparison of subsidence distribution during different periods in typical mining regions.
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reduced significantly, and the surrounding region became stable
except for the northwest corner. It could be seen that the
gradually stable surface status has mainly been brought by the
goaf overburden strata compaction since the closure of the
mining operation.

YQ Coal Mine was put into production in December 1976.
Comparing the subsidence process in YQ Coal Mine (Table 3),
the surface subsidence was evolved from partial to extensive
during the period before 2020, while there was an expansion
and offset to the southwest and the northeast in spatial evolution
of deformation. Apparently, the subsidence range and magnitude
of the mining area was reduced in 2020, but the operation is still
in progress. Therefore, regular monitoring of YQ Coal Mine is
needed to be carried out for improving the efficiency in
development and utilization of the abandoned goaf.
Furthermore, with the time series deformation obtained in the
YQ mining region (Figure 7), it can be seen that the slope of the
deformation curve during different monitoring periods had
varied from steep to gentle, which is closely related to the
comprehensive of multiple coal seams and the increase in
exploiting depth.

The subsidence occurred in R2, located on the east side of SHJ
Coal Mine, has slowed down significantly. The production of the
mine started in August 1988. Due to the long-term natural
compaction of the overburden in the goaf, the surface has
been basically stable in recent years. However, there are still
two obvious subsidence centers observed during the period from
2017 to 2019 on the south side of the SHJ Coal Mine, which
corresponds to the actual mining activity at last. In addition, the
surface subsidence caused by underground mining exhibits
temporal hysteresis in SHL Coal Mine closed in May 2019, so
that the surface instability is only often presented in the initial

stage after mine closures. Furthermore, it can be seen that the
region of R1 in SHJ coal mines tended to stabilize in 2020.

PC Coal Mine, which is nearest to the city, was established in
1971 and shut down earlier in August 2013. Compared with the
three obvious subsidence centers during the period from 2007 to
2011, the surface subsidence of the goaf was weakened
significantly in 2017, and there was no obvious subsidence
during period from 2018 to 2020, which could be considered a
stable goaf. The accumulated subsidence observed in Figure 7
was mainly caused by the combination of overburden strata
gravity and groundwater level. With the further compaction of
the overburden layer and the rise of the groundwater level, the
surface gradually stabilized with slight uplift.

In order to verify the results of this method, the subsidence
rate of PS points obtained by the traditional PS-InSAR method
was used as a reference value; the nearest point within 20 m was
selected from the result of DS-InSAR as the point with the same
name. In addition, correlation estimation is given on the points
with the same name observed in both PS and DS-InSAR
technology (Figure 8), and the corresponding difference could
indicate the capability of the presented DS-InSAR in the mining
region. There are 16,742 points with the same name in PALSAR
data, and the average and standard deviation of those are
1.64 mm/year and 2.51 mm/year (Figures 8A,C), respectively.
For Sentinel-1 data, a total of 12,404 points were selected with the
average and standard deviation of 1.22 mm/year and 2.04 mm/
year (Figures 8B,C), respectively. Moreover, referring to the
ellipse shown in Figure 8B, large gradient subsidence in the
mining region is much easier to be detected by the DS-InSAR
method because of the improving accuracy of phase unwrapping
along with the increasing observed points and interferometric
phase optimization. The aforementioned analysis shows that the

FIGURE 7 | Accumulated ground deformation of the coal mines deformation center in different time periods. The corresponding locations are indicated in Table 3
with white stars.
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results of corresponding points obtained from the traditional PS-
InSAR and DS-InSAR are congruous, which proves the
consistency between the two monitoring methods.

DISCUSSION

Compared with the conventional PS-InSAR results, the DS-
InSAR approach could largely increase the number and spatial
distribution density of measurement points by fully exploiting PS
andDS points in the mining region. According to the reduction of
the distance between measurement points along with the
increasing point density, the phase unwrapping operation
could be partly improved by overcoming large distance
between two adjacent points. Therefore, the deformation
characteristics could be apparently reflected in the results
obtained by the present method. In addition, the phase
optimization processing of the DS target, filtering with both
region growing and T-EVD algorithm, could improve the
quality of the extracted deformation by weakening the
negative influence of noise. The results obtained with DS-
InSAR could provide a decision-making support for the land
recycling in the abandoned mining region, which proved
adaptability of the presented approach in surface activities
analysis of the mining region.

Satellite imagery with C- and L-bands covering different
temporal periods was only used for comparison and evolution
analysis of subsidence in different mining stages owing to the
limitation of data acquisition capability. In order to study the
evolution of surface deformation fully in mining areas, it is
necessary to use more abundant data to carry out a more in-
depth and deliberate monitoring and analysis in the future. The
comparison results of different periods indicate that the surface
deformation during mining operation is mainly caused by
underground mining activities. However, both the subsidence
center and the deformation range changed along with the
variation of the exploiting depth and actual mining. In recent
years, some inefficiency and obsolete coal mines were closed
gradually, and the phenomenon of surface rebound had been
observed with DS-InSAR in some closed mines. In addition,

affected by many factors such as the stability of the reserved coal
pillars, the compaction of the stratum soil, and the restoration,
small fluctuations in surface deformation would be occurring in
the mining region. Along with an increase in the closure time, the
surface of the mining region gradually became stabilized. In
addition, the uplift or secondary subsidence of the surface
might occur in some mining areas due to the changes in the
groundwater level and the geological environment. Therefore,
carrying out a comparative analysis of surface subsidence in
Peibei mining area in the past 10 years is of great significance
for understanding the surface deformation, stability evaluation,
and development and utilization of mining areas.

CONCLUSION

An improved processing approach was proposed by combining
region growing algorithm and T-EVD for phase optimization of
distributed scatterers in this article. The number of measurement
points could be largely increased, and the negative influence of
noise can be weakened, which significantly improved the
accuracy and reliability of PS-InSAR technology in surface
deformation monitoring in the mining region. The long-term
surface subsidence of mining areas in Peibei as well as 68 scenes of
multi-source SAR data was calculated and analyzed with the
proposed method in the past 10 years. Also, the deformation
patterns over the mining region were comparatively studied
during the different periods.

The results indicate that coal mines in operation were usually
accompanied by the unstable surface with the subsidence.
Obviously, with the deepening of the exploiting depth and
the expansion of mining, the range of subsidence was
expanding, while the mining intensity was decreasing. The
surface gradually became stabilized along with the closure of
the mining operation. However, the phenomenon of uplift or
second subsidence could be sometime observed in the closed
mine region, which might be brought by the variation of the
groundwater level change along with the complex geological
conditions. Thus, it is necessary to continuously carry out
regular surface deformation monitoring in the mining area.

FIGURE 8 | Correlation diagram of the deformation rate and statistical histogram of the deformation rate difference of the same name between different monitoring
results.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 7999469

Du et al. Deformation Pattern of the Coal Mine

62

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Generally, the proposed method is not only favorable for
detecting the deformation position and influencing the range
of goafs, but also promising for general survey of wide area and
large gradient surface deformation and detection of subsidence
in the mining area, which are vital for land restoration in mining
areas and the prevention of related geological disasters.
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The excessive exploitation of coal resources has caused serious land subsidence,
which seriously threatens the lives of the residents and the ecological environment
in coal mining areas. Therefore, it is of great significance to precisely monitor and
analyze the land subsidence in the mining area. To automatically detect the subsidence
basins in the mining area from the interferometric synthetic aperture radar (InSAR)
interferograms with wide swath, a lightweight model for detecting the subsidence basins
with an anchor-free and adaptive sample assignment based on the YOLO V5 network,
named Light YOLO-Basin model, is proposed in this paper. First, the depth and width
scaling of the convolution layers and the depthwise separable convolution are used to
make the model lightweight to reduce the memory consumption of the CSPDarknet53
backbone network. Furthermore, the anchor-free detection box encoding method is
used to deal with the inapplicability of the anchor box parameters, and an optimal
transport assignment (OTA) adaptive sample assignment method is introduced to solve
the difficulty of optimizing the model caused by abandoning the anchor box. To verify the
accuracy and reliability of the proposed model, we acquired 62 Sentinel-1A images over
Jining and Huaibei coalfield (China) for the training model and experimental verification.
In contrast with the original YOLO V5 model, the mean average precision (mAP) value of
the Light YOLO-Basin model increases from 45.92 to 55.12%. The lightweight modules
of the model sped up the calculation with the one billion floating-point operations
(GFLOPs) from 32.81 to 10.07 and reduced the parameters from 207.10 to 40.39 MB.
The Light YOLO-Basin model proposed in this paper can effectively recognize and
detect the subsidence basins in the mining areas from the InSAR interferograms.

Keywords: InSAR, subsidence basin detecting, YOLO V5, depthwise separable convolution, anchor-free, optimal
transport assignment (OTA)

INTRODUCTION

Large-scale land subsidence resulting from coal mining has caused a series of ecological and
environmental problems, including destroying farmlands, damaging buildings, and even inducing
geological disasters (Wang et al., 2021a; Yuan et al., 2021). It threatens the lives and property of the
local residents and restricts the economic sustainable development in mining areas (Fan et al., 2018;
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Wang et al., 2020). Therefore, it is of great significance to
continuously monitor and analyze the land subsidence in mining
areas. Traditional geodetic surveying methods mainly include
precise leveling, total station measurement, and global navigation
satellite system (GNSS) (Fan et al., 2018). These methods
have some limitations such as low spatial resolution, limited
monitoring area, and low observation efficiency (Chen et al.,
2015; Chen Y. et al., 2020; Shi M. Y. et al., 2021). Interferometric
synthetic aperture radar (InSAR) technology has become a new
means for monitoring the surface deformation in mining areas
with the advantages of day/night data acquisition, all-weather
imaging capability, and strong penetrability (Ng et al., 2017; Chen
B. Q. et al., 2020; Wang et al., 2020).

Currently, the main research directions of InSAR technology
for monitoring mine subsidence have evolved from acquiring
single surface deformation information to three-dimensional
deformation information or subsidence prediction based on
deformation theory (Yang et al., 2017a,b, 2018a,b; Chen et al.,
2021; Dong et al., 2021; Fan et al., 2021). Most of these works
are targeted at one or more subsidence basins. However, the
imaging mode of mainstream synthetic aperture radar (SAR)
satellites, such as ALOS-2 and RadarSat-2, has an image width
of more than 80 km. The image width of the interferometric
wide swath (IW) mode of the Sentinel-1A satellite even reaches
250 km (Zheng et al., 2018). It is time-consuming and labor-
intensive to search for subsidence basins with a radius of only a
few hundred meters in a wide range of images. At present, there
have been few studies on the automatic detection of subsidence
basins from the InSAR interferogram. Hu et al. (2013) proposed
a differential interferometric synthetic aperture radar (D-InSAR)
based illegal-mining detection system, aiming to increase both
accuracy and efficiency of underground-mining detection. The
detection results are highly dependent on the quality of the
phase unwrapping and subjective processing experience. By using
the methods of D-InSAR technology, geographic information
system (GIS), and mining subsidence, Xia et al. (2018) proposed
a novel theory of effectively recognizing the subsidence basins.
This method can detect subsidence basins without manual
intervention. However, like the method proposed by Hu et al.
(2013), the detection accuracy will also be affected by the quality
of the phase unwrapping. Yang et al. (2018c) proposed a space-
based method for recognizing the subsidence basins by relating
the geometric parameters of subsidence basins to the InSAR
derived line of sight deformation with the probability integral
method (PIM). This method can determine the boundary of the
subsidence basins, but it is not suitable for detecting subsidence
basins in large-scale areas. Du et al. (2019) proposed a feature-
point-based method for efficiently detecting subsidence basins.
Du first used D-InSAR to monitor subsidence basins caused
by mining and then used the PIM to determine the inflection
and boundary points of the subsidence basins. Wang et al.
(2021b) proposed a model for detecting the subsidence basin
based on the histogram of oriented gradient features and support
vector machine classifier. This method is limited by the feature
detection operator and cannot effectively detect the subsidence
basin with obscure edge features and too small scope. Bala
et al. (2021) proposed a circlet transform method for detecting

subsidence basins. This method reduces manual intervention,
but the detection time is longer. Due to the long detection
time, the above methods are difficult to carry out in a large-
scale area. Furthermore, these methods conduct detection mostly
based on the deformation gradient and the shape characteristics
of the subsidence basin on the deformation map. The quality
of the phase unwrapping is susceptible to atmospheric effects
and noises, resulting in lower detection accuracy. Therefore, we
propose a new method to detect subsidence basins from InSAR
interferogram with large-scale areas.

After underground coal mining, a series of subsidence
basins will appear in the mining area. Subsidence basins are
scattered and large in number in the InSAR interferogram. It is
difficult to identify these subsidence basins manually. The single
subsidence basin of the mining area in the InSAR interferogram
is approximately concentric circles or concentric ellipses, with a
small scale and obvious edge features. Currently, the convolution
neural network (CNN)-based objection detection method has
been widely applied in many research fields (LeCun et al., 2015;
Shi et al., 2020; Ren et al., 2021). For SAR images, it is mainly
used to identify ships (Chang et al., 2019; Jiang et al., 2021;
Wu Z. T. et al., 2021) and marine oil spills, etc. The CNN-
based objection detection method can realize the automatic
detection of subsidence basins. CNN-based objection detection
frameworks primarily consist of three components, including
backbone network, neck network, and detection head (Chen
Q. S. et al., 2020; Fu K. et al., 2020). The backbone network
mainly extracts the basic features of the input image, such as the
ResNet (He et al., 2016; Xie et al., 2017) series and the DarkNet
series. The main function of the neck network is to further
strengthen the features extracted by the backbone network.
For example, the feature pyramid network (FPN) combined
features of different scales with lateral connections in a top-
down manner to construct a series of scale-invariant feature
maps, and multiple scale-dependent classifiers were trained on
these feature pyramids (Lin et al., 2017a). The detection head
network is responsible to predict and refine the bounding box,
calculating the bounding box coordinates, confidence score, and
classification score. According to the different head networks,
object detection frameworks can be primarily divided into two
categories. One is two-stage detectors that have high detection
accuracy, mainly including R-CNN (Girshick et al., 2014), Fast-
RCNN (Girshick, 2015), and Faster-RCNN (Ren et al., 2015),
etc. Two-stage detectors first use a region proposal network to
generate a sparse set of candidate object bounding boxes and then
to extract features from each candidate bounding box for the
following classification and bounding box regression tasks. The
other is one-stage detectors that achieve high inference speed,
mainly including the YOLO series (Redmon et al., 2016; Redmon
and Farhadi, 2017, 2018; Bochkovskiy et al., 2020), SSD (Liu
et al., 2016), and RetinaNet (Lin et al., 2017b), etc. One-stage
detectors generate prediction boxes, confidence scores, and object
classes concurrently.

At present, many CNN-based object detection methods have
been proposed, most of which are designed to detect objects in
natural images. However, there are two problems for recognizing
the subsidence basins when directly using these methods. First,
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due to the various object categories and shapes in natural images,
big networks (such as DarkNet53, Resnet101) are often used
as the backbone. However, the shape of the subsidence basin
is relatively simple and the detection category is single, hence
there is no need for a heavy network to detect subsidence
basin. In addition, with the continuous development of SAR
satellites, the image width is also increasing, then it will also
increase the burden on the computer hardware when using heavy
networks. Second, the anchor boxes obtained by clustering object
structure in natural images are not suitable for the detection of
subsidence basins.

The YOLO V5 model, a one-stage detector, has the advantages
of high accuracy and fast speed. It has been widely used in
various domains such as face recognition, text detection, and logo
detection (Wu W. et al., 2021; Yan et al., 2021; Zhao et al., 2021).
In order to automatically recognize and detect subsidence basins
in large-scale mining areas with high accuracy, we proposed a
lightweight detection model with adaptive sample assignment.
The proposed model is based on the path aggregation network
(PANet) of YOLO V5.

The main sections of this paper are organized as follows.
In section “Data and Materials,” the model proposed in this
paper for detecting the subsidence basins from the InSAR
interferogram is described. It mainly includes the depthwise
separable convolution, anchor-free, and OTA adaptive sample
assignment. The experimental results and quantitative evaluation
are presented in Section “Method.” Section “Results and
Analysis” shows the discussions and the analysis of each module
in the proposed model and the comparison results with the
original YOLOV5 model. Finally, some valuable conclusions of
this study are drawn in Section “Discussion.”

DATA AND MATERIALS

Study Area
We selected the Jining and Huaibei mining areas in China as
the study areas. The two mining areas are rich in coal resources
and have a long mining history. There are many mines in the
two areas with a complex distribution. The Jining mining area
(115◦50′–117◦48′E, 34◦58′–35◦59′N) is located in the southwest
of Shandong Province, China, with a cumulative proven coal
reserve of nearly 15.1 billion tons. The Huaibei mining area
(116◦23′–117◦12′E, 33◦16′–34◦14′N) is located in the north of
the Huaihe River of Anhui Province, China, with a cumulative
proven coal reserve of 13 billion tons. The locations of the study
areas are shown in Figure 1.

Experimental Data
We used 24 Sentinel-1A images acquired from November 2017
to March 2020 over the Jining mining area and used 34
Sentinel-1A images acquired from November 2017 to March
2020 over the Huaibei mining area. The specific information
of the partial interferometric pairs is shown in Table 1. The
experimental Sentinel-1A data are interferometric wide swath
imaging mode (Level 1 single-look complex images products)
and in VV polarization with the 38.9◦ incidence angle. The
revisit period of Sentinel-1A is 12 days and has a pixel size of

about 2.33 × 13.91 m. Moreover, the shuttle radar topography
mission digital elevation model (SRTM DEM) released by the
National Aeronautics and Space Administration (NASA) was
applied to remove both the flattening and terrain phases in
D-InSAR data processing.

In order to obtain the differential interferograms of the
two mining areas, we used the two-pass D-InSAR technology
(Ou et al., 2018; Dai et al., 2020) to process these Sentinel-1A
data. The procedures of D-InSAR technology mainly include
interferogram generation, SAR simulation based on digital
elevation model (DEM), differential processing between the
real interferogram and the simulated interferogram, phase
unwrapping, transformation from phase to deformation, and
geocoding (Ilieva et al., 2019; Chen D. H. et al., 2020).
Figure 2 is a flow chart of the two-pass D-InSAR data
processing. Interferograms with serious decoherence and large
noise influence were excluded. We set the temporal baseline
threshold of the interferogram to 36 days and the spatial
baseline threshold to 200 m. The longest spatial baseline of
the interferogram in this paper is 155.71 m. We obtained 62
interferograms in the Jining and Huaibei mining areas. The ratio
of multi-looking is 1:5. The pixel size in the range direction is
18.54 m, and the pixel size in the azimuth direction is 13.89 m
for the interferogram. The interferograms are too large to be
used by the deep neural architecture, which generally accepts
an image with a size of 416 × 416 as an input. Therefore, we
segment the interferograms into smaller sub-images with a size
of 416 × 416 according to the standard of the YOLO V5 model.
The image data annotation software called “LabelImg” was used
to draw the outer rectangular boxes of the subsidence basins on
each sub-image, realizing the manual annotation of the border
and labels of the ground truth box. The ground truth boxes
were annotated according to the features of the subsidence basin.
The subsidence basin on the InSAR interferogram is a series of
approximately circular or elliptical interferometric fringes with a
small scale and obvious edge features (Wang et al., 2021b). We
have obtained a total of 1,160 sample images. In this study, 812
sample images were randomly selected from 1,160 images as the
training samples; the remaining 30% were selected as the testing
samples, which had a total of 348 images. The partial examples of
the sample datasets are shown in Figure 3. In order to alleviate the
over-fitting phenomenon during the training model incurred by
limited sample datasets, rotation, translation, and flipping were
used for data augmentation.

We selected two Sentinel-1A images acquired from December
2020 to January 2021 over the Jining mining area and two
Sentinel-1A images acquired from January 2021 over the Huaibei
mining area, constituting a total of two interferometric pairs to
test the performance of the proposed model for detecting the
subsidence basins from the interferograms. The parameters of the
two interferometric pairs are listed in Table 1.

METHOD

To automatically detect the subsidence basins from the InSAR
interferograms, a lightweight detection model with an adaptive
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FIGURE 1 | Location of the study area. (A) The geographic location of the Jining mining area; (B) geographic location of the Huaibei mining area.

TABLE 1 | Sentinel-1A interferometric pairs for constructing the training/testing datasets and verifying the performance of the proposed model.

Mining area Master image Slave image Path Frame Temporal baseline/d Perpendicular baseline/m

Datasets Jining 28/11/2017* 22/12/2017 142 111 24 101.52

Jining 11/11/2018 05/12/2018 142 111 22.76

Jining 30/11/2019 24/12/2019 142 111 56.14

Huaibei 10/12/2017 03/01/2018 142 106 81.53

Huaibei 11/11/2018 05/12/2018 142 106 21.79

Huaibei 18/11/2019 12/12/2019 142 106 115.70

Verifying data Jining 30/12/2020 11/01/2021 142 111 12 25.10

Huaibei 11/01/2021 23/01/2021 142 106 −22.02

*Date/month/year.

sample assignment based on the YOLO V5 model was proposed.
We first use the channel number scaling and depthwise separable
convolution (Howard et al., 2017) to make the CSPDarknet53
network lightweight, and then model the prediction boxes as a
width and height fit problem based on the center point like the
anchor-free strategy in FCOS (Tian et al., 2019). In addition, we
also introduced an OTA (Ge et al., 2021) that assigns positive and
negative samples in an adaptive manner. The proposed model for
detecting the subsidence basin was named the Light YOLO-Basin
model. The network architecture of the Light YOLO-Basin model
is shown in Figure 4.

YOLO V5 Network
The YOLO V5 model, as the basic framework for detecting
the subsidence basins in this paper, mainly consists of three
components: backbone network, neck network, and detection
head. The backbone network is designed to extract the features
of the subsidence basin, mainly composed of the CSPDarknet53
network and spatial pyramid pooling (SPP) (Purkait et al., 2017).
The neck network adopts the path aggregation network instead
of feature pyramid networks in YOLO V5. The detection head,
as the final detection part of the model, is used to output the
detection results of the subsidence basin. It utilizes the high-
level semantic information outputted from the neck network to
classify the category and regress the location of the objects.

The loss function of the YOLO V5 network mainly consists of
three parts: bounding box regression loss, classification loss, and

confidence loss (Shi P. F. et al., 2021). Since this paper only has
the category of the subsidence basins, we only used confidence
loss and bounding box regression loss, as shown in Formula (1).

Loss = Lobj + λLDIoU (1)

where Lobj and LDIoU mean confidence loss and bounding box
regression loss, respectively. λ is the balancing factor and the
value is 5 (Yan et al., 2021).

The Light YOLO-Basin model used the Focal Loss (Lin et al.,
2017b) function confidence loss to alleviate the problem caused
by the imbalanced number of hard and easy samples, as shown
in Formula (2), in which the positive sample p with the high
confidence is the easy sample and vice versa. Focal loss reduces
the weight of easy samples so that the model can focus more on
hard samples, ensuring that the contributions of all samples to
model parameter updating are relatively balanced.

Lobj =
{
−α

(
1− p

)γ log (p) , y = 1
− (1− α) pγlog

(
1− p

)
, y = 0

(2)

where y = 1 means positive samples and y = 0 means negative
samples; the parameter α is used to balance the weight of
the positive and negative samples during the model training;
the parameter γ is used to balance the weight of the easy
samples in the model; the parameter p ε [0,1] is the model
estimated probability for the confidence loss. The bounding
box regression loss of the original YOLO V5 model adopts

Frontiers in Ecology and Evolution | www.frontiersin.org 4 March 2022 | Volume 10 | Article 84046468

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-840464 March 2, 2022 Time: 15:30 # 5

Yu et al. Subsidence Basin Detecting

FIGURE 2 | The data processing flow of the two-pass differential
interferometric synthetic aperture radar (D-InSAR). The blue part is the data
processing implemented in the paper.

generalized intersection over union loss (GIoU Loss), but it only
focuses on the overlapping areas and other non-overlapping
areas, which ignores the impact of the bounding box on the
IoU. The Light YOLO-Basin model used distance IoU loss (DIoU
Loss) (Luo et al., 2020) as the bounding box regression loss. DIoU
Loss is defined as Formula (3). It not only considers the distance
of the center and the overlapping area between the ground truth

box and prediction box, but also minimizes the center point
distance.

IoU = |A∩B|
|A∪B|

LDIoU = 1−IoU + ρ2(b,bgt)
c2

(3)

where A represents the area of the prediction box and B
represents the area of the ground truth box; the parameter b and
bgt mean the center points of the prediction box A and ground
truth box B, respectively; ρ2 is the Euclidean Distance between
b and bgt ; the parameter c represents the diagonal length of the
smallest closed shape that includes the ground truth box A and
the prediction box B.

The detection head module of the YOLO V5 model directly
uses a single convolutional layer to calculate the classification
loss, confidence loss, and bounding box regression loss. However,
there is no classification loss in our study, the structure of
the detection head requires to be changed. Some researches
demonstrated that there is a conflict between classification
and regression tasks (Song et al., 2020; Wu et al., 2020), so
referencing the ideas of FCOS (Tian et al., 2019) and the literature
(Song et al., 2020), the Light YOLO-Basin model used double-
head as the detection head module. The Light YOLO-Basin
model architecture after decoupling is shown in Figure 4. The
double-head splits the output features of the subsidence basin
into regression and confidence branches. The regression branch
provides prediction box coordinates. Meanwhile, the confidence
branch calculates the probability of positive samples.

The Lightweight of the CSPDarknet53
Network
At present, the YOLO V5 model has achieved great success in
natural image datasets such as PASCAL VOC, ImageNet, and
MS COCO. However, compared with objects in natural images,
subsidence basins on the interferograms have more obvious edges
and texture features and simpler shapes. Intuitively, the detection

FIGURE 3 | Some examples of sample datasets. (A) Partial training data; (B) partial testing data. The red boxes represent the manual annotation of the ground truth
box in panel (A).
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FIGURE 4 | Architecture of the Light YOLO-Basin network. SPP is spatial pyramid pooling. Upsample uses bilinear interpolation. Obj and distance intersection over
union loss (DIoU) represent confidence loss and bounding box regression loss, respectively. In addition, convolution modules that can be lightweight are in orange.

FIGURE 5 | Comparison results between the mean average precision (mAP) and parameters/inference memory of the three versions of YOLO V5 (Large, Middle,
and Small) model. The abscissa in panel (A) represents the parameter amount of the model; the abscissa in panel (B) means the inference memory of the model for
processing a 416 × 416 image. The numerical values of the mAP of the three versions of the YOLO V5 model.

of the subsidence basins on the interferogram from D-InSAR is
simpler than the multi-category detection on natural images. This
also leads to the conjecture of whether the heavy CSPDarknet53
network is necessary for detecting the subsidence basins. In
order to verify that, we used the three versions of the YOLO V5
model (Large, Middle, and Small) to detect the subsidence basins
from the interferograms. The variation of detection accuracy
is shown in Figure 5. Experimental results show that as the
number of parameters and computations of the model reduces,
the detection accuracy of the model shows a rising trend instead
of decreasing. The results demonstrate that the detection of
subsidence basins does not require a heavy network. In addition,
since the swath of SAR images is large wide, for example, the
swath of Sentinel-1 is about 250 km, a lightweight model is used

to detect subsidence basins from the interferograms to lighten
the burden on the computer hardware. Therefore, we introduced
depthwise separable convolutions to make the CSPDarknet53
network lightweight.

Compared with standard convolution, depthwise separable
convolution generally sacrifices a small amount of detection
accuracy to save the computations and parameters of the
model. Depthwise separable convolution is a form of factorized
convolutions that factorizes a standard convolution into a
depthwise convolution and a pointwise convolution. Firstly,
the depthwise convolution applies a single convolution to each
channel feature map to extract feature information and keeps
the number of feature maps unchanged. Secondly, the pointwise
convolution applies multiple 1 × 1 convolutions to combine the
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FIGURE 6 | The structure diagram of depthwise separable convolution. W and H are the spatial width and height of the feature map, respectively. C is the number of
feature channels; N is the number of feature channels after depthwise separable convolution.

FIGURE 7 | Location encoding of bounding box in YOLO V5 and Light YOLO-Basin. (A) Location encoding of YOLO V5 bounding box. The red box denotes the
anchor box and the black box denotes the prediction box. Pw and Ph mean the width and height of the anchor box, respectively; tw and th are the predicted ratio of
the width and height between the prediction box and anchor box. (B) Anchor-free location encoding of the bounding box. The black box denotes the prediction box;
tw and th directly predicted the width and height. bx and by , respectively represent the coordinates of the center point x and y of the prediction box; bw and bh

represent the width and height of the prediction box, respectively. tx and ty are the offsets between the center point of the prediction box and the top left corner of
the cell computed by the model; σ is the Sigmoid function; Cx and Cy are the coordinates of the top left corner of the cell.

FIGURE 8 | Sample assignment of YOLO V3, YOLO V5, and optimal transport assignment (OTA). Panel (A) is the image with bounding box; panel (B) is the sample
assignment of YOLO V3; panel (C) is the sample assignment of YOLO V5; panel (D) is the adaptive sample assignment of OTA. The value is the transporting cost
value in panel (D). The blue grid and the green box denote the positive sample and the ground truth box, respectively, and the red point is the center point of the
ground truth.

feature maps obtained by the depthwise convolution. The process
of performing depthwise separable convolution on a feature map
with the size of W × H × C (W and H are the spatial width
and height of the feature map, respectively, and C is the number
of feature channels) is shown in Figure 6. The computation
of the standard convolution is 3 × 3 × C × N × W × H,

while the computation of the depthwise separable convolution is
3× 3× C×W× H+1× 1× C× N×W× H = (3× 3+N)×
(C × W × H), which is approximately 1/N + 1/(3 × 3)
of the standard convolution. The parameter of the standard
convolution is 3 × 3 × C × N, while the parameter of the
depthwise separable convolution is 3× 3× C+ 1× 1× C× N,
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FIGURE 9 | Results of qualitative comparison experiment. Large, Middle, and Small mean the three models produced by scaling, respectively. (A) Cropped original
image; (B) detection results of subsidence basins using YOLO V5 model; (C) detection results of subsidence basins using YOLO-Basin model; (D) detection results
of subsidence basins using Light YOLO-Basin. (E) Ground truth box.

which is about 1/N + 1/(3 × 3) of the standard convolution.
The depthwise separable convolution has the effect of drastically
reducing the computation and model size. In this study,
the depthwise separable convolution is introduced into the
CSPDarknet53 network, which is combined with the scaling of
the depth (the number of convolutional layers) and the width
(the number of channels of the convolution kernel) to realize the
lightweight of the model, as shown in the orange part of Figure 4.

Anchor-Free and Adaptive Sample
Assignment
YOLO V5, an anchor-based method, predicts boxes by fitting
the deviation of the anchor boxes, where the anchor boxes
have a preset width and height. Although anchor-based methods
improve the detection accuracy to a certain extent, there are still
some drawbacks (Fu J. M. et al., 2020). First, a large number
of anchor boxes are used in the model, resulting in excessive
redundant computation and slowing down the detection speed
of the model. Second, only a tiny fraction of the anchor boxes
is labeled as positive samples, resulting in a huge imbalance
between positive and negative samples. Third, fixed anchor boxes
cannot be applied to various data, which increases the difficulty
of model optimization. Anchor boxes generally require to be reset
according to different data. Currently, the anchor boxes obtained
by clustering objects in natural images are quite different from the
features of the subsidence basins in the InSAR interferograms.
In addition, since the training data cannot represent all the

subsidence basins, the anchor-boxes obtained by clustering the
characteristics of the subsidence basins cannot guarantee their
versatility. Therefore, we used an anchor-free method to detect
the subsidence basins from interferograms.

The location of the prediction box in the original YOLO V5
model is determined by the center point and the width and
height of the anchor box, as shown in Figure 7A. The coordinate
value of the center point is represented by the offset from the
top left corner of the cell, and the width and height are the
scaling ratios of the corresponding anchor box. However, if
the anchor box is abandoned, the width and height cannot be
expressed. Hence, the Light YOLO-Basin model directly fits the
width and height instead of the ratio of the anchor box and
keeps the computation of the center point unchanged to achieve
anchor-free (Law and Deng, 2018; Duan et al., 2019), as shown
in Figure 7B.

The lack of the constraint of anchor boxes in the anchor-
free method increases the degree of freedom of the model and
also increases the difficulty of optimizing the prediction box.
Adopting IoU at a certain threshold as positive and negative
assignment criterion, which is commonly used in anchor-based
detection methods, is usually not suitable for the anchor-free
method. For example, the two-stage Faster R-CNN network labels
the prediction box with an IoU value greater than 0.7 as a positive
sample and less than 0.3 as a negative sample; the one-stage
YOLO V3 model labels the prediction box with the highest IoU
value as a positive sample, as shown in Figure 8B. Moreover,
based on the anchor-free method, using a certain IoU threshold
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FIGURE 10 | Detection results of partial subsidence basins in the Interferometric synthetic aperture radar (InSAR) interferogram with wide swath. We select two
differential interferograms obtained from the experimental data in Table 1 to test the performance of the Light YOLO-Basin model. Panels (A,B) are representative
areas selected from the detection results of the Jining mining area; panels (C,D) are representative areas selected from the detection results of the Huaibei mining
area.

to assign prediction boxes will cause a large number of useful
prediction boxes to be discarded. To increase the number of
positive samples, the YOLO V5 model expands the selection
range of positive samples to the surrounding pixels, reducing
the difficulty of model optimization, as shown in Figure 8C.
However, the YOLO V5 model still selects a fixed number of
positive samples with a certain IoU threshold, and it cannot
adaptively determine the number and assignment of hard and
easy positive samples. Therefore, we used the OTA (Ge et al.,
2021) to model the positive and negative samples assignment
as an optimal transmission problem, which selects and balances
positive and negative samples in an adaptive manner.

The OTA method treats the ground truth box as the supplier
in the optimal transport theory, and the prediction box in
the model training as the demander. The unit transportation
cost between each demander and supplier is defined as the
weighted summation of losses between the ground truth box
and prediction box. If a demander receives enough goods from
the supplier, this demander becomes one positive sample. The
model needs the best positive and negative samples assignment
solution to minimize the global transportation cost. Concretely,
assuming that there are m ground truth boxes and n prediction
boxes for image I, the ground truth box, namely supplier, holds
k units of goods, while the prediction box, namely demander,
needs d units of goods. ci,j represents the transporting cost of
each unit of good from the i-th supplier to the j-th demander.

The positive and negative sample assignment problem can be
defined as finding an optimal transmission strategy π = {πi,j|i =
1, 2, ...,m, j = 1, 2, ..., n} to minimize the transportation cost, as
shown in Formula (4). The formula behind s.t. is a condition that
needs to be satisfied during optimization.

min
π

m∑
i=1

n∑
j=1

ci,jπi,j

s.t.
m∑
i=1

πi,j = dj,
n∑
j=1

πi,j = ki (4)

m∑
i=1

ki =
n∑
j

dj

πi,j = 0, i = 1, 2, · · ·m,j = 1, 2, · · · n

The key of the OTA is how to define the transportation
cost. The original OTA method defines transportation cost
between the ground truth box and the prediction box as the
weighted summation of their regression loss and classification
loss. Since there is only the category of subsidence basin in
our study, the transporting cost was defined as the weighted
summation of confidence loss and bounding box regression loss.
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The computation equation is as follow:

ci,j = Lobj
(
Pobjj ,Gobj

i

)
+ αLreg(Pboxj ,Gbox

i ) (5)

where Lobj and Lreg represent the binary cross-entropy and

bounding box regression loss; Pobjj and Gobj
i denote the

confidence score of the model prediction box and ground truth
box, respectively; Pboxj and Gbox

i , respectively, represent the
coordinates of the prediction box and the ground truth box. α

is the balanced coefficient with the value of 3. The visualization
result of transporting cost value is shown in Figure 8D.

The original OTA method uses Sinkhorn-Knopp Iteration
(Cuturi, 2013) to solve the optimal transmission problem, but the
multiple iteration optimization of the Sinkhorn-Knopp greatly
reduces the training efficiency of the model. Hence, the Light
YOLO-Basin adopted an approximate method to solve the
optimal transmission problem. The OTA solution mainly consists
of two parts: (1) k value, which is the number of positive samples
of each ground truth box; (2) the assignment of the k value, that is,
how the positive samples are assigned to the prediction box. Since
the cost matrix has been determined, the assignment solution
of k can be simplified to assign k of each ground truth box to
the prediction box with the lowest cost in turn, as shown in the
blue grid in Figure 8D. The determination of the value of k for
each ground truth box is simplified to a statistical problem: first,
sorting all the prediction boxes in the model according to the IoU
value, and then adding up the cost value of the prediction box
with the top Z (default 10) IoU value to round to get the estimated
value of k, as shown in Formula (6).

ki = sum
(
TopZIoU

(
λ∗ci,j

))
, j = 1, 2, · · · n (6)

where ki means the k value of the i-th ground truth box; λ is set
to 0.1 derived from experiments.

RESULTS AND ANALYSIS

Experimental Setting
Accuracy Evaluation Index
The average precision (AP) and mAP (Li et al., 2017; Sun et al.,
2021) were used to evaluate the performance of the Light YOLO-
Basin model proposed in this study. The detection results mainly
include four categories: true-positive (TP) and false-positive
(FP)are the numbers of positive samples that are correctly
predicted and incorrectly predicted, respectively; true-negative
(TN) and false-negative (FN) mean the number of negative
samples that are correctly predicted and incorrectly predicted,
respectively. Precision refers to the proportion of all detected
samples that are correct, and recall refers to the proportion of the
objects recognized by the model among all the objects that require
to be recognized. The precision (P) and recall (R) are defined in
Formula (7). The P-R curve takes the precision as the ordinate
and the recall as the abscissa.

P =
TP

TP + FP

R =
TP

TP + FN
(7)

The AP measures the detection performance of a single category,
as shown in Formula (8). The evaluation indicators of the Light
YOLO-Basin model proposed in this paper are AP50 : AP95. AP50
: AP95 is the value of AP at different IoU thresholds that the
IoU ranges from 0.5 to 0.95 and the step size is 0.05. The mAP
measures the detection performance of all the categories. Since
there is only the category of subsidence basin in this paper, mAP
is defined as the average AP at different IoU thresholds, as shown
in Formula (9).

AP =
∫ 1

0
P (R) dR (8)

mAP =
∑9

i=0 AP50+i∗5

10
(9)

Training Settings
The experiment was conducted using the Microsoft Windows,
64-bit operating system. The central processing unit (CPU) is
Intel Core i5-8300H. The graphics processing unit (GPU) is
NVIDIA GeForce GTX 1050 Ti (4GB video memory). The deep
learning framework is Facebook PyTorch 1.8. In this study, all
subsidence basin detection models in this paper were trained by
the adaptive moment estimation (Adam) optimization method
(Kingma and Ba, 2014). The initial learning rate is set to 0.001 and
decayed according to the formula 0.001∗(1− (iter/max_iter)0.9),
where iter is the current number of iterations and the maximum
number of iterations (max_iter) is set to 60,000.

Results
According to the standard of the YOLO V5 model, we divided
the Light YOLO-Basin into three versions: Large (L), Middle
(M), and Small (S). The three versions are distinguished by
three scaling ratios of the depth (the number of convolutional
layers) and the width (the number of channels of the convolution
kernel), which are (1.0, 1.0), (0.67, 0.75), and (0.33, 0.50),
respectively. The model that does not introduce depthwise
separable convolution in this paper is called YOLO-Basin.
Examples of the qualitative comparison results of the Light
YOLO-Basin model and the YOLO V5 model are shown in
Figure 9. It can be seen that the Light YOLO-Basin model
can detect the subsidence basin misdetected by the YOLO
V5 model. Importantly, in order to verify the performance
of the Light YOLO-Basin model in the actual scene, we
selected two representative InSAR interferograms with the size
of 7,636 × 8,205 and 8,127 × 10,338, respectively. We first cut
the whole images regularly to obtain a large number of sub-
images with a size of 416× 416, then used the Light YOLO-Basin
model to detect the subsidence basins for each sub-image, and
finally stitched the detection results of each sub-image. Figure 10
exhibits part of the detection results of subsidence basins using
the Light YOLO-Basin model. It can be seen that most subsidence
basins have been correctly detected. 42 and 40 subsidence basins
were detected in Jining and Huaibei mining areas, respectively.
Regardless of the time consumption on image segmenting and
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TABLE 2 | Quantitative experiment comparison between the Light YOLO-Basin model and the YOLO V5 model.

Method Backbone mAP (%) AP50 (%) AP60 (%) AP70 (%) AP80 (%)

YOLO V5-L CSPDarknet-53 45.92 88.33 80.76 61.91 21.94

YOLO V5-M CSPDarknet-53 46.82 86.57 78.43 63.15 28.31

YOLO V5-S CSPDarknet-53 47.65 89.78 84.36 65.70 20.12

YOLO-Basin-L CSPDarknet-53 49.96 87.45 82.79 69.21 30.89

YOLO-Basin-M CSPDarknet-53 51.77 89.08 84.23 69.18 36.21

YOLO-Basin-S CSPDarknet-53 51.92 90.03 85.12 71.24 35.32

Light YOLO-Basin-L Light CSPDarknet-53 53.46 88.95 84.02 71.68 40.53

Light YOLO-Basin-M Light CSPDarknet-53 54.61 90.37 86.48 75.29 41.96

Light YOLO-Basin-S Light CSPDarknet-53 55.12 90.64 86.21 75.20 43.17

Light CSPDarknet-53 represents the CSPDarknet-53 backbone network after introducing the depthwise separable convolution. L, M, and S represent the three versions
of YOLO V5, YOLO-Basin, and Light YOLO-Basin model Large, Middle, and Small, respectively. The bold values is the maximum value of each column.

TABLE 3 | The experiment for test the accuracy and efficiency of lightweight module.

Method Backbone mAP (%) Parameters (MB) GFLOPs Inference memory (MB)

YOLO-Basin-L CSPDarknet-53 49.96 207.10 32.81 434.96

YOLO-Basin-M CSPDarknet-53 51.77 108.99 19.25 285.76

YOLO-Basin-S CSPDarknet-53 51.92 55.08 11.99 172.22

Light YOLO-Basin-L Light CSPDarknet-53 53.46 92.09 16.63 559.73

Light YOLO-Basin-M Light CSPDarknet-53 54.61 60.12 12.54 352.60

Light YOLO-Basin-S Light CSPDarknet-53 55.12 40.39 10.07 198.95

The bold values is the maximum value of each column.

TABLE 4 | Roadmap of the Light YOLO-Basin model in terms of mAP and average precision (AP) (%).

mAP (%) AP50 (%) AP60 (%) AP70 (%) AP80 (%)

YOLOV5-S 47.65 89.78 84.36 65.70 20.12

+Depthwise 46.98 86.77 79.19 66.01 24.34

+Anchor-free and OTA 54.84 91.52 86.82 75.85 40.88

+Double-head 54.62 88.62 86.17 75.48 42.75

+Focal Loss 55.12 90.64 86.21 75.20 43.17

The bold values is the maximum value of each column.

TABLE 5 | Ablation study for loss function.

Loss mAP (%) AP50 (%) AP60 (%) AP70 (%) AP80 (%)

IoU loss 54.91 90.28 87.40 74.70 41.41

GIoU loss 54.08 89.67 85.73 74.89 42.01

DIoU loss 55.12 90.64 86.21 75.20 43.17
CIoU loss 54.89 91.27 87.86 75.05 40.98

The bold values is the maximum value of each column.

TABLE 6 | Ablation study of Z in optimal transport assignment (OTA).

Z mAP (%) AP50 (%) AP60 (%) AP70 (%) AP80 (%)

5 54.12 90.33 86.81 74.62 38.63

10 55.12 90.64 86.21 75.20 43.17

15 54.47 90.70 88.43 75.91 37.43

20 54.15 90.01 85.15 74.52 42.31

The bold values is the maximum value of each column.

stitching, the Light YOLO-Basin model only consumed 16.28 s to
detect the whole image. We made statistics on the deformation
values of the detected subsidence basins from the Jining and
Huaibei mining areas, among which, the deformation value of the
subsidence basin with the smallest deformation is 1.5 cm.

Quantitative Evaluation
The detection accuracy of the Light YOLO-Basin model and
the YOLO V5 model are shown in Table 2. The experimental
results demonstrate: (1) with the same experimental method,
the smaller the scaling ratio of the model is, the higher the
detection accuracy is. The value of mAP increased from 45.92%
of the YOLO V5-L model to 47.65% of the YOLO V5-S model.
This further verified the hypothesis proposed above that the
detection of subsidence basins does not require a heavy network.
(2) Benefiting from the introduction of the anchor-free detection
box encoding method and OTA, the mAP value of the YOLO-
Basin-S model has greatly improved compared to the YOLO
V5-L model which was 6% higher than that of the original
YOLO V5-L model. By comparing the detection accuracy in
Table 2, it can be found that the improvement of the YOLO-
Basin model detection accuracy is mainly manifested by the
strict evaluation indicators such as AP70 and AP80. The AP70
value increased from 65.70 to 71.24%, and the AP80 value
increased by 15.20%. (3) The detection accuracy of the Light
YOLO-Basin model is further improved, benefiting from the
introduction of the depthwise separable convolution. Similarly,
the improvement of the Light YOLO-Basin model detection
accuracy is also mainly manifested by the evaluation indicators
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FIGURE 11 | The detection results using different spatial resolutions of DEM. Panel (A) is the result using DEM data with a spatial resolution of 30 m; panel (B) is the
result using DEM data with a spatial resolution of 90 m.

FIGURE 12 | The influence of noise on the detection results. Panel (A) is the detection result of this paper to remove noise; panels (B,C) are the detection results
under Gaussian complex noise with the variance of 0.001 and 0.01, respectively.

such as AP70 and AP80. The AP70 value improved from 71.24
to 75.20%, and the AP80 value increased by 7.85% compared
to the non-lightweight model. In summary, on the one hand,
the experimental results prove the effectiveness of anchor-free
and OTA methods in detecting the subsidence basins. On the
other hand, depthwise separable convolution can improve the
detection accuracy of the Light YOLO-Basin model with less
model parameters.

DISCUSSION

Efficiency Experiment of the Lightweight
Module
The lightweight module of the Light YOLO-Bain model mainly
includes scaling and depthwise separable convolution. The
lightweight detection model needs to pay attention to two
aspects: (1) whether the lightweight module can improve model
computing efficiency and reduce memory utilization; (2) whether
the lightweight module affects detection accuracy. We used
network parameters, GFLOPs, and inference memory as the
evaluation indicators of model efficiency and mAP as the
evaluation indicator of model accuracy. The results are shown in
Table 3. The image size is set to 416 × 416 and the batch size is
set to 1 when training the model.

Firstly, by analyzing the values of the evaluation indicators
of model efficiency in Table 3, introducing depthwise separable

convolution and scaling can exponentially decrease the number
of model parameters and speed up model training. The
improvement of model efficiency by depthwise separable
convolution is mainly reflected in the number of model
parameters and detection speed. Note that the smaller the model
is, the smaller the effect of the depthwise separable convolution is.
In addition, since the depthwise separable convolution factorizes
a standard convolution into two parts, the computation memory
utilization of the model increases. Table 3 indicates the use
of scaling and depthwise separable convolution has a better
lightweight effect on the model. Secondly, observing the model
accuracy evaluation indicators data in Table 3, compared with
the detection method of natural images, the lightweight of the
model can improve the accuracy of the detection of subsidence
basins rather than reducing the accuracy. Compared with the
YOLO-Basin-S model, the Light YOLO-Basin-S model increases
the mAP value from 51.92 to 55.12%.

Ablation Study for Detection Head and
Loss Function
To address the problem caused by the anchor boxes, the Light
YOLO-Basin model introduces the anchor-free method and the
OTA method. In addition, we also changed the neck network and
loss function of the YOLO V5 model, as seen in Section “YOLO
V5 Network.” We used mAP and AP50 : AP95 as the evaluation
indicators of model accuracy in Table 4, showing the accuracy
changes of the modules added to the YOLO V5-S model.
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FIGURE 13 | Detection results of different multi looking numbers of the interferogram. Panels (A–D) are the detection results with multi looking ratios of 1:5, 1:4, 1:3,
and 1:2, respectively.

It visually shows the change of model accuracy with added
different modules in Table 4. By analyzing the changes in
model accuracy, we can draw the following three conclusions:
(1) The anchor-free detection box encoding method and OTA
have the greatest effect on improving the detection accuracy of
the model, greatly increasing the value of AP70 and AP80. The
accuracy evaluation indicators mAP has also been significantly
improved, increasing from 47.65 to 55.12%. (2) The introduction
of depthwise separable convolution did not improve the detection
accuracy of the YOLO V5 model. However, it can improve the
accuracy of the Light YOLO-Basin model, perhaps benefiting
from the combined effects of depthwise separable convolution
and OTA. (3) Compared with the OTA, the double-head and
Focal loss only less improve the accuracy.

We also analyzed the influence of different IoU loss functions
on the Light YOLO-Bain model accuracy, as shown in Table 5. It
can be seen from Table 5 that the detection accuracy is the highest
when we used the DIoU loss function. Hence, we used DIoU loss
as the bounding box regression loss function.

Ablation Study for Optimal Transport
Assignment
To avoid the inefficient iterative computation of Sinkhorn-Knopp
Iteration, we used statistical methods to estimate the k value
corresponding to the ground truth box in the Light YOLO-Bain
model, each of which represents the number of corresponding

positive samples. The k value is obtained by adding up the
cost value of the prediction box of the top Z in the IoU
value and rounding it. Hence, the number of Z determines the
size of the k value to a certain extent. According to Formula
(6), the larger the value of Z is, the larger the corresponding
k value is. That is, each ground truth box is assigned more
positive samples. However, too many positive samples will divide
the poorly optimized prediction boxes into positive samples,
resulting in incorrect detection of the Light YOLO-Bain model.
Too few positive samples will cause the imbalance of positive and
negative samples, increasing the difficulty of model optimization.
Therefore, it is important to choose a suitable Z. Table 6 shows
the effect of different values of Z on the accuracy of the Light
YOLO-Basin model. It can be seen that the detection accuracy
of the model is highest when the value of Z is 10.

Robustness of Light YOLO-Basin Model
To test the robustness of the model, we, respectively, tested
the effects of DEM, decorrelation noise, and the number of
interferogram multi looking on detection. We first conducted
a set of comparative experiments using DEM with a spatial
resolution of 30 and 90 m. The detection results of subsidence
basins using different levels of DEM are shown in Figure 11.
Since the DEM does not affect the features of the subsidence
basins, it has little influence on the detection results where
14 and 13 subsidence basins were detected using DEM with
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a spatial resolution of 30 and 90 m, respectively. Note that
the spatial resolution of DEM used in this paper is 30 m.
Then, to test the effect of decorrelation noise on detection, the
Gaussian complex noise was used to simulate the decorrelation
noise. Figure 12 gives the influence of noise on the detection
results. It can be seen that noise has a greater influence on the
detection results. Hence, we used the Goldstein filtering method
to remove image noise in this paper. Finally, we conducted a
set of comparative experiments with different numbers of multi-
looking. The comparison of the detection results is shown in
Figure 13. It can be seen that the number of interferogram multi-
looking changes the aspect ratio of the subsidence basin but has
little effect on the detection result of the subsidence basin. We
adopted a more appropriate ratio of multi looking is 1: 5.

CONCLUSION

Based on the YOLO V5 network architecture, the Light YOLO-
Basin model for automatically detecting subsidence basins
from interferograms was proposed in this paper. The Light
YOLO-Basin model uses depthwise separable convolution as the
lightweight module and introduces the anchor-free detection box
encoding method and OTA to solve the problem caused by fixed
anchor boxes. Through experiment, the valuable conclusions can
be obtained as follows:

1. Depthwise separable convolution generally sacrifices a
small amount of accuracy to improve the detection
efficiency. The depthwise separable convolution of the
Light YOLO-Basin model can improve the detection speed
and reduce the model parameters from 207.10 to 40.39 MB.
More importantly, the detection accuracy of the Light
YOLO-Basin model has also been significantly improved.
The value of mAP is increased by 3.2% compared with the
non-lightweight model, which verifies the assumption that
it does not require a heavy network when detecting the
subsidence basins from interferograms.

2. It can effectively detect the subsidence basins through
combined anchor-free and OTA adaptive sample
assignment methods. The ablation experiments in this
study indicate that anchor-free and OTA methods in the
Light YOLO-Basin model increase the value of mAP from
46.98 to 54.84%, and the value of AP50, AP60, and AP70
increase by 4.75, 7.63, and 9.84%, respectively.

3. We introduce the Focal Loss function in the Light YOLO-
Basin model when computing the confidence loss to
balance the weight of the hard and easy samples during
model training, increasing the value of mAP from 54.62 to
55.12% and AP50 from 88.62 to 90.64%.

The Light YOLO-Basin model proposed in this paper has
good performance to detect subsidence basins from InSAR
interferograms with wide swaths. This study also has some
limitations. When making sample datasets, the labeling of
training samples has a greater impact on the detection accuracy of
the model. For subsidence basins with poor visual interpretation,
the Light YOLO-Basin model also has false detection or missing
detection in the poor interferogram. In addition, the reason
why the depthwise separable convolution improves the detection
accuracy of the subsidence basin may be related to the shape of
the subsidence basin on the InSAR interferogram. We will solve
these above problems in future works. We will propose a better
detection model by analyzing the difference in morphological
characteristics between the subsidence basin on the InSAR
interferogram and the object in the natural image.
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Coseismic Displacement and Slip
Distribution of the 21 May 2021 Mw 6.1
Earthquake in Yangbi, China Derived
From InSAR Observations
Yongsheng Li1,2, Yujiang Li1*, Kuan Liang1, Hao Li1 and Wenliang Jiang1

1National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China, 2Key Laboratory of Landslide
Risk Early-warning and Control, Ministry of Emergency Management of China, Chengdu, China

On 21May 2021, aMw 6.1 earthquake struck Yangbi County, Yunnan Province, China. In this
study, InSAR data from Sentinel-1 SAR images were processed to image the coseismic
deformation fields of the Yangbi earthquake. Then, the optimal slip model was obtained by
applying the particle swarm optimization method. The interferometry results revealed that the
earthquake triggered obvious surface deformation near the epicenter, while the earthquake did
not produce an obvious surface rupture zone from field investigation. The optimal slip model
suggests that the strike of the seismogenic fault responsible for this event is 139°, the dip angle
is 81°, and the average rake angle is -170°. Additionally, the slip was concentrated mainly at
depths of 2–8 km, the maximum dip-slip amount was 0.5 m, and the cumulative seismic
moment reached 1.43 × 1018 N·m, equivalent to a Mw 6.1 earthquake. The geodetic and
geophysical inversion results demonstrate that the Yangbi earthquake was dominated by a
steeply dipping dextral strike-slip rupture. The rupture fault generally strikes NNW-SSE, which
is consistentwith that of theWeixi-Qiaohou fault, andmay be a relatively new fault formedby an
E-W-oriented extension of the western boundary of the Sichuan-Yunnan block. Finally, based
on the InSAR results in combination with the spatial distribution characteristics of ground
fissures and the strong historical earthquakes, we analyzed the tectonic background
preceding the Yangbi earthquake and analyzed the relationship between the Yangbi
earthquake and strong historical earthquakes in the region, thereby providing empirical
evidence for analyzing seismic risk and fault rupture parameters, interpreting seismic
deformation characteristics, and better understanding the seismogenic background of the
western boundary of the Sichuan-Yunnan block.

Keywords: Yangbi Mw 6.1 earthquake, InSAR, slip distribution, focal mechanism inversion, stress change
background

INTRODUCTION

According to the China Seismic Network, on 21 May 2021, a Mw 6.1 earthquake struck Yangbi County,
Yunnan Province, at (25.67°E, 99.87°N), the depth of hypocenters was 8 km (Li C. et al., 2021; Hu et al.,
2021). Different research institutions have provided focal mechanism solutions for this earthquake using
the global or regional network data (Table 1). This earthquake is generally characterized as a dextral
strike-slip event (Liu et al., 2021). Based on the earthquake epicenter, this event occurred along the
western boundary of the Sichuan–Yunnan block, which is consistent with the movement properties and

Edited by:
Chen Yu,

Newcastle University, United Kingdom

Reviewed by:
Lingyun Ji,

China Earthquake Administration,
China

Chisheng Wang,
Shenzhen University, China

Wu Zhu,
Chang’an University, China

*Correspondence:
Yujiang Li

yujiangli@ninhm.ac.cn

Specialty section:
This article was submitted to

Environmental Informatics and Remote
Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 19 January 2022
Accepted: 11 February 2022
Published: 09 March 2022

Citation:
Li Y, Li Y, Liang K, Li H and Jiang W
(2022) Coseismic Displacement and
Slip Distribution of the 21 May 2021
Mw 6.1 Earthquake in Yangbi, China
Derived From InSAR Observations.

Front. Environ. Sci. 10:857739.
doi: 10.3389/fenvs.2022.857739

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 8577391

ORIGINAL RESEARCH
published: 09 March 2022

doi: 10.3389/fenvs.2022.857739

81

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.857739&domain=pdf&date_stamp=2022-03-09
https://www.frontiersin.org/articles/10.3389/fenvs.2022.857739/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.857739/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.857739/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.857739/full
http://creativecommons.org/licenses/by/4.0/
mailto:yujiangli@ninhm.ac.cn
https://doi.org/10.3389/fenvs.2022.857739
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.857739


trends of the Red River and Weixi–Qiaohou fault zones (Figure 1),
the latter of which has been characterized by dextral strike-slip
movement since the late Quaternary (Chang et al., 2016a; Zhang K.
et al., 2021). There are no obvious surface ruptures that have been
found in field investigations. Consequently, the identity and
geometric characteristics of the seismogenic fault responsible for
the Yangbi earthquake need to be further clarified. In particular,

intensive research must be conducted to ascertain whether the
Weixi–Qiaohou fault zone, which represents the closest fault to
the epicenter of the Yangbi event or an unknown hidden fault, was
responsible for this earthquake, and the characteristics of such a
hidden fault must be thoroughly investigated.

In recent years, earth observation technologies such as
interferometric synthetic aperture radar (InSAR) have been

TABLE 1 | Focal mechanisms and fault parameters from different studies.

Source Epicenter Focal
mechanisms

Mag
(Mw/Ms)

Depth (km) References

Lon (°E) Lat (°N)

Regional seismic network 99.87 25.67 138°/82°/-161° Mw 6.0 5 http://www.cea-igp.ac.cn/kydt/278248.html
P-wave 99.87 25.67 141°/68°/-153° Ms 6.4 - http://www.cea-igp.ac.cn/kydt/278248.html
Far-field body wave 100.008 25.67 135°/82°/- Mw6.1 11 http://www.cea-igp.ac.cn/kydt/278248.html
USGS 100.016 25.744 135°/82°/-165° Mw 6.1 9 https://earthquake.usgs.gov/earthquakes/eventpage/

us7000e532/executive
InSAR 99.934 25.644 139°/81°/-170° Mw 6.1 6 Yang Z. et al., 2021
InSAR 99.87 25.67 316°/86°/- Mw 6.14 3–13 Zhang K. et al., 2021
InSAR 99.93 25.64 139°/81°/-171° Mw 6.1 6 This Study

FIGURE 1 | Active faults and seismotectonic background of the region surrounding the Yangbi earthquake. The China Earthquake Networks Center provided the
locations of historical earthquakes. The yellow dots denote the Yangbi Mw 6.1 mainshock and aftershock (Su et al., 2021).
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employed to remotely monitor the Earth’s surface to quantify global
surface microdeformation globally with high precision (Li et al.,
2020; Li K. et al., 2021; Li B. et al., 2020). In this paper, the InSAR
coseismic deformation fields of the Yangbi earthquake were mapped
using Sentinel-1 images acquired in terrain observation with
progressive scans (TOPS) mode, and the focal mechanism and
fault slip distribution were calculated and discussed. Analyzing
the focal mechanism of the Yangbi Mw6.1 earthquake has
essential theoretical and practical significance for fundamentally
understanding the seismotectonic background, the structural
deformation mechanism, and the activities along the block
boundary in NW Yunnan. In particular, studying the
seismotectonic activity in this region is crucial to understanding
the tectonic background of the southeastern Qinghai–Tibet Plateau.

TECTONIC SETTING

The Yangbi earthquake occurred along the southwestern
boundary of the rhombic Sichuan–Yunnan block (Figure 1),
which has been forming since the early Cenozoic as a result of the
eastward extrusion of the Qinghai–Tibet Plateau. During this
time, the southeastward motion of the Sichuan–Yunnan block
resulted in the development of a series of active right-lateral,
oblique NW-trending faults in this region, obstructed by the
South China block. The Sichuan–Yunnan block shifted toward

the SE and rotated clockwise around the East Himalayan tectonic
junction. Consequently, the Sichuan–Yunnan block is the most
representative active block (featuring the strongest lateral
extrusion) along the eastern margin of the Qinghai–Tibet
Plateau (Long et al., 2021) and, being a research hotspot for
studying the movement and tectonic deformation of rigid blocks,
is the focus of many investigations on active tectonics and
earthquake monitoring and prediction (Chang et al., 2016b).
The northeastern and eastern boundaries of the Sichuan-
Yunnan block are controlled by the Ganzi-Yushu, Xianshuihe-
Anninghe-Zemuhe, and Xiaojiang fault segments and other fault
zones, all of which are characterized by sinistral strike-slip and
high slip rates. In particular, the eastern boundary of this block
has a clear structure and frequently experiences earthquakes (Ren
et al., 2007).

The Yangbi earthquake occurred in an active fault zone
traversing the western boundary of the Sichuan-Yunnan block
and is where the Weixi-Qiaohou-Weishan fault connects with
the Red River fault, both of which are NW-trending dextral
strike-slip faults. The main well-known active segments are
situated near the epicenter of the 2021 Yangbi event. As major
faults, the Weixi-Qiaohou-Weishan fault and Red River fault
control the crustal deformation along the southwestern
boundary of the Sichuan-Yunnan block (Wang S. et al.,
2021). Using the cut-and-paste (CAP) waveform inversion
method (Wang Y. et al., 2021a), the epicenter of the Yangbi

FIGURE 2 | (A) Coseismic deformation fields of the Yangbi earthquake are calculated from Sentinel-1 descending track 163. (B) Coseismic deformation fields
calculated from ascending track 99. The red line represents the inferred ruptured fault, and the black dotted lines indicate the cross-sections perpendicular to the
inferred fault.
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earthquake sequence was shown to be approximately 3–10 km
SW along the Weixi–Qiaohou fault and the long axis of the
aftershock area was reported to trend NW–SE.

The Weixi–Qiaohou fault is a large-scale boundary fault that
starts in northwestern Weixi County and connects with the Red
River fault in southernWeishan, spanning approximately 280 km

FIGURE 3 | (A) Profile of the coseismic LOS deformation along line A-A′ in Figure 2A. (B) Profile of the coseismic LOS deformation changes along line B-B′ in
Figure 2B.

FIGURE 4 | Quadtree downsampling results of the coseismic deformation fields corresponding to (A) descending track 163 in Figure 2A and (B) ascending track
99 in Figure 2B.
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with a general strike of NNW–SSE (Figure 1). The fault shows
strong late Quaternary activity, which has manifested in
new active landforms such as straight fault troughs, clear
fault triangles, and fault scarps (Ren et al., 2007; Duan et al.,
2021). The fault is dominated by dextral strike-slip with a
minor normal slip component, and ridges and water systems
show apparent synchronous dextral dislocations along the
fault (Li D. et al., 2021). Because the historical records of
earthquakes in this region are not noteworthy, this area has
received little attention for many years. However, many
moderately strong earthquakes have recently occurred, such
as the 2017 Yangbi Ms5.1 earthquake (25 km from the
epicenter of the 2021 Yangbi Mw6.1 earthquake), the 2016
Yunlong Ms5.0 earthquake (59 km from the epicenter), and
the 2013 Eryuan Ms5.5 earthquake (31 km away from the
epicenter) (Figure 1). These phenomena suggest that the
tectonic activity in this region is gradually increasing.

INSAR COSEISMIC DEFORMATION

The focal mechanisms and waveform inversion results reported
by previous studies show that the seismogenic fault that produced
the Yangbi earthquake exhibited dextral strike-slip motion (Ye
et al., 2021; Yang Z. et al., 2021). However, the overall
deformation amplitude is small from field investigation, and
there are almost no signs of rupture on the surface. To image
the coseismic deformation field generated by this earthquake, the
Sentinel-1 satellite equipped with C-band SAR launched by the
European Space Agency was employed in this paper. Sentinel-1
descending track 135 and ascending track 99 data with
interferometric wide swath (IW) mode were obtained
(Figure 1). Using an automatic seismic deformation
monitoring system for Sentinel-1 SAR data (Li Y. et al., 2021),
the ascending and descending InSAR coseismic deformation
fields were obtained, as shown in Figure 2. The Advanced

FIGURE 5 | Uncertainties and trade-offs for the nonlinear inversion computed using Monte Carlo analysis.
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Land Observing Satellite Global Digital Surface Model (ALOS
World 3D) with a 30-m resolution was used as external digital
elevation model (DEM) data to eliminate the phase contribution
of undulating terrain (Tadono et al., 2014). Additionally, an
adaptive Goldstein filtering algorithm was applied to filter the
original interferograms (Goldstein et al., 1988), and theminimum
cost flow algorithm was used for phase unwrapping (Chen and
Zebker, 2000). The atmospheric delay error was preliminarily
corrected by the Generic Atmospheric Correction Online Service
for InSAR (GACOS) method (Yu et al., 2018), and the residual
orbit was fitted by linear fitting.

The resulting coseismic deformation field based on Sentinel-1
satellite data can clearly describe the spatial distribution and

magnitude of deformation caused by the Yangbi earthquake
(Figure 2). The results predominantly indicate that the strike
of the fault is NNW–SSE, which is consistent with recent
aftershock location findings (Su et al., 2021). After correcting
the atmospheric contribution, the coseismic interferogram of the
descending track in Figure 2A reflects a clear deformation
pattern. The long axis is distributed in the NW–SE direction.
There are obvious deformation signals distributed on both sides
of the inferred fault (the surface to the SW of the fault is moving
away from the satellite, while that to the NE is moving toward the
satellite). Cross sections perpendicular to the inferred fault were
selected to conduct a profile analysis (Figure 3A), revealing that
the maximum deformation in the line-of-sight (LOS) direction
on the NE side reached approximately 8 cm, while that on the SW
side was approximately 5 cm. The ascending coseismic
interferogram (Figure 2B) shows an obvious deformation
pattern moving toward the satellite in the epicenter area,
reaching 5 cm in the LOS direction (Figure 3B). However, the
deformation field cannot accurately describe the coseismic
deformation characteristics of this strike-slip earthquake,
mainly because the azimuth of the ascending track is nearly
consistent with the fault strike. Therefore, the SAR sensor is not
sensitive enough to capture the deformation signal parallel to the
surface movement direction.

FOCAL MECHANISM INVERSION

After unwrapping the InSAR interferograms, the data were
downsampled using the quadtree method constrained by the
data resolution (Lohman and Simons 2005; Feng et al., 2018;
2019). The large deformation gradients in the downsampled
interferograms are mainly in the areas with large surface
deformation, while the deformation gradients are low in the
far field (Figure 4). This downsampled measurement ensures
the inversion accuracy and dramatically reduces the

FIGURE 6 | Trade-off curves line the residuals (ξ) and roughness (ψ). The solid line represents the normalized log(ψ + ξ).

FIGURE 7 |Contour map of the log function with variations in the dip and
smoothing coefficients (α2). The red star indicates the global minimum.
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computational cost of the inversion. Then, the downsampled
deformation fields were employed as inversion constraints,
and the geometric parameters and slip distribution of the fault
were estimated by a two-step inversion method (Feng et al.,
2013). The fault parameters and slip mechanism of the Yangbi
earthquake were studied as described below.

Uniform Slip
We assumed a uniform slip model to determine the fault’s
geometric parameters of the fault, including epicenter location
(latitude/longitude), strike, dip, and top and bottom depths.
Then, the rupture slip distribution on the rectangular fault
plane was estimated by a nonlinear inversion algorithm (Feng
et al., 2013; Li B. et al., 2020; Yang J. et al., 2021). We used the
Particle Swarm Optimization and okada inversion package
(PSOKINV) (Feng et al., 2013) to ensure that the source
parameters could be successfully retrieved under relatively few
parameter constraints. The adaptive function is defined as

σ �
������������
(W(D − GS))2

N

√

, (1)

where G is Green’s function, with the coefficient matrix
representing the surface motion in response to 1 m of dip-slip
on a uniform fault, S is the slip vector at each patch, W is the
weight matrix,D is the observed surface deformation, andN is the
number of observed deformations (Feng et al., 2013).

To evaluate the reliability of the nonlinear inversion of source
parameters, we added Gaussian-distributed error to the original
observations to generate 100 perturbed datasets. Then, we
performed a Monte Carlo test to estimate the uncertainties
and trade-offs for the geometric parameters during the
nonlinear inversion (Parsons et al., 2006). The test results

(Fig. 5) revealed that the uncertainties are small and that the
trade-offs are strong enough to indicate that the nonlinear
inversion estimates are reliable.

The nonlinear inversion results suggest that the major
seismogenic fault is a dextral strike-slip fault with a strike of
~139°, a dip of ~81°, and an average rake angle of approximately
-173°. Moreover, the optimal inverted slip model suggests that
coseismic slip was concentrated at a depth of 7.2 km with a
maximum slip of ~0.7 m.

Distributed Slip
We then conducted a linear inversion to estimate the slip
distribution during the Yangbi earthquake and fixed the
optimal geometry of the fault plane determined from the
uniform slip solution. The fault plane was extended to 24 km
long and 18 km wide, and the size of each slip patch was set
to 1 km × 1 km. To prevent physically impossible oscillatory
slip and determine the optimal fitting solution, we applied a
log function f( δ , a2) � log(ψ + ξ) to find the optimal dip
angle and smoothing factor for the distributed slip model. ξ
and ψ represent the residual and slip roughness, respectively,
and a2 and δ represent the smoothing factor and dip angle,
respectively (Burgmann et al., 2002). According to the
literature, the above log function can effectively determine the
optimal dip and smoothness coefficient simultaneously (Feng
et al., 2013).

With normalization, the residual curve is a monotonically
decreasing function, while the roughness is a monotonically
increasing function. The optimal smoothing factor was
determined to be a2 ≈1.2 (Figure 6). We set the dip angle in
the range of [78°, 85°] and the smoothing factor in the domain of
[0.1 5] and then iterated the dip angle and smoothing factor to
perform an additional grid search for the optimal dip. The

FIGURE 8 | Optimal slip distribution of the Yangbi earthquake. The gray arrows represent the hanging wall’s motion direction relative to the footwall.
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optimal dip angle and smoothing coefficients were determined
by obtaining global minima of 81° and 1.2, respectively
(Figure 7).

Finally, we obtained the best-fitting slip model shown in
Figure 8, suggesting that this event ruptured on a dextral
strike-slip fault with a strike of ~139°, a dip of ~81°, and an
average rake angle of -170°. A slip was concentrated mainly at
depths of 2–8 km and spanned a distance of 20 km. The
maximum amount of slip reached 0.5 m at a depth of 6 km,
and the corresponding moment magnitude was Mw 6.1. Figure 9
represents the observed displacements, simulated results derived
from the optimal slip model, and residuals between the
observation and simulation. Our distributed slip model can
sufficiently explain the general deformation pattern from both
tracks. There are no notable residual fringes except for some
contributions from the atmospheric disturbance in the far field

(Figures 9C,F), which suggest that the inversion results are stable
and reliable.

DISCUSSION

Verification of the Field Investigation
Results
Seismic activity produces ground fissures due to either shear or
tensile stresses that alter the stress state of rock and soil masses
near the Earth’s surface (Li C. et al., 2021). To accurately map
and quantitatively measure the surface rupture associated with
the Yangbi earthquake, we carried out a field investigation
around the epicenter of this event. No obvious surface rupture
was found, but we discovered that many fresh cracks had
formed during the earthquake. By measuring the trends of

FIGURE 9 | (A) and (D) Observed coseismic deformation fields for descending track 135 and ascending track 99, respectively. (B) and (E) Corresponding
simulated deformation. (C) and (F) Corresponding residuals. Positive values represent movement toward the satellite, while negative values represent movement away
from the satellite.

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 8577398

Li et al. Coseismic Displacement of Yangbi Mw6.1 Earthquake

88

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


these fissures in the field, we determined that these fissures
trend mostly NW–SE, and the fissures show the characteristics
of dextral strike-slip. The spatial distribution of crack locations
illustrates that the fissured area is roughly distributed in a
NW–SE strip that is completely consistent with the fault
determined from InSAR (Figure 10). These ground fissures
have obvious directionality, and their strikes are consistent
with that of the rupturing fault. Therefore, we infer that their
locations are controlled by the fault. We selected several
representative points for analysis. At points a and b in
Figure 10A, the spatial orientations of the ground fissures
are basically consistent with those of the inferred fault (Figures
10B,C). In contrast, those of the ground fissures at points c and
d are disordered, with the ground fissures distributed in all
directions (Figures 10D–G). We stipulate that this irregular
distribution results from slope and terrain influences. There
are no obvious surface cracks near the Weixi–Qiaohou fault,
which has a low earthquake intensity. Therefore, the field
investigation further verified that the seismogenic structure
of the earthquake was a new NW-trending blind fault.

Rupture Structure and Seismogenic
Mechanism
The Weixi–Qiaohou, Red River, Jinshajiang, and
Deqin–Zhongdian–Daju faults constitute the western
boundary of the active Sichuan–Yunnan block. They,
therefore, play essential roles in the formation, evolution,
and movement of the block (Li et al., 2021). Specifically, the

southwestern boundary of the Sichuan–Yunnan block exhibits
a high strike-slip rate in response to the lateral extrusion of
crustal material from the Qinghai–Tibet Plateau. The
boundary of the block is not a single fault but rather a
group of dispersed and complex dextral strike-slip faults
(Long et al., 2021). The evolutionary history of these faults
reflects mutual structural transformation, stress generation,
and strain weakening between them. The tectonic interactions,
stresses, and deformation among these faults may constitute
the main mechanism of absorbing the eastward extrusion of
the Qinghai–Tibet Plateau. In this process, some fault activities
weaken, and new faults arise with the expansion of existing
major faults.

The fault location determined by InSAR and the spatial
distribution of relocated aftershocks show that the
seismogenic fault of the Yangbi earthquake is far from
known active faults and is approximately 4–10 km from the
nearest segment of the Weixi–Qiaohou–Weishan fault zone
(Fig. 11). According to the characteristics of coseismic
deformation, the seismogenic segment belongs to a branch
fault at the junction between the Weixi–Qiaohou–Weishan
fault and Red River fault zones and may be a secondary fault of
the Weixi–Qiaohou–Weishan fault (Chang et al., 2016b; Yang
J. et al., 2021). The seismogenic fault is associated with and
parallel to the Weixi–Qiaohou fault. The formation of this
structure may be related to the southeastward motion of the
Sichuan–Yunnan block and the clockwise rotation in SW
Yunnan (Fig. 11). The clockwise rotation in SW Yunnan
exerts a drag force on the SW wall of the NW-SE-trending

FIGURE 10 | Remote sensing images of the epicenter of the Yangbi earthquake and its on-site photos of ground fissures. (A) Optical image of the earthquake
epicenter acquired on 19 November 2020, by the Gaofen-2 sensor, The red dotted line indicates the estimated fault of this event. The solid red line represents the Weixi-
Qiao fault (B) Field photo of the ground fissure at point a, (C) reveals point b (D), (E), (F) represent point c, and (G) indicates point d.
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seismogenic fault. This may be the main dynamic cause of this
quake event. In addition, the EW extension results in the dip
component of the fault (Chang et al., 2016a; Long et al., 2021).

Stress Change Background of Earthquake
Occurrence
The Yangbi event was a strong earthquake that occurred on a
secondary fault in the Sichuan–Yunnan block. The characteristics
of the regional stress field are critical to understanding its
seismogenic mechanism. Thus, the focal mechanism solutions
of 27 strong historical earthquakes (Mw > 6.5) in this region (Li
et al., 2020; Zhang et al., 1989) were utilized to estimate the stress
tensor (Gephart and Forsyth, 1984; Wan, 2015), and then we
obtained the three principal stress directions and stress shape
factors on a 0.1°×0.1° grid (Angelier, 1979).

Using the optimal stress tensor obtained from themethod of Li
et al. (2020), the potential rupture plane of future strong
earthquakes in the region was determined (Figure 12). The
NW–SE-trending seismogenic faults in the vicinity of the
Yangbi earthquake epicenter are characterized by dextral
strike-slip, which is consistent with the InSAR inversion
results (139°/81°/-170°), the focal mechanism parameters
derived from seismological data (Long Y. et al., 2021; Wang Y.
et al., 2021b), and the fault motion characteristics implied by the

FIGURE 11 | Three-dimensional schematic of the seismogenic fault responsible for the Yangbi earthquake and a DEM of the surrounding terrain.

FIGURE 12 | The potential rupture plane of future strong earthquakes in
the region is determined based on historical earthquake focal mechanisms
(WQF: Weixi-Qiaohou fault; RRF: Red River fault).
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focal mechanisms of aftershocks (Zhang et al., 2022). The
direction of the maximum principal compressive stress
and principal compressive strain in the region is NNW–SSE
(Hu et al., 2017; Wang and Shen, 2020), which can effectively
explain the seismogenesis of the Yangbi earthquake and the
earthquakes in the surrounding area dominated by dextral
strike-slip.

Since the occurrence of the Yangbi earthquake, many studies
have focused on the impact of the earthquake on the future
seismic risk of the surrounding faults (Yang Z. et al., 2021; Zhang
B. et al., 2021), although few studies have addressed the possible
relationship between the Yangbi earthquake and strong historical
earthquakes in the region. Based on the potential rupture planes
of future strong earthquakes shown in Figure 13, the optimal and
auxiliary rupture planes were used as the receiving fault for a
stress tensor projection. The maximum Coulomb stress was
selected to represent the stress change at the source (Toda and
Enescu, 2011) to analyze the changes in the Coulomb stress on the
seismogenic fault caused by strong historical earthquakes. The
historical earthquake source model and medium model are
referred to Li Y. et al. (2020). According to the resulting
Coulomb stress changes (Figure 12), strong historical
earthquakes produced an obvious stress increase at the
epicenter of the Yangbi earthquake, and the stress increment
exceeded the stress trigger threshold of 0.1 bar, which promoted
the occurrence of the Yangbi earthquake. In addition, we found
the northwestern RRF is also within the influence scope of

positive Coulomb stress changes, which inferred that the
northwestern RRF is an area requiring special attention.

CONCLUSION

In this study, the coseismic deformation field produced by the
Yangbi earthquake that occurred on 21 May 2021, was derived
from Sentinel-1 ascending and descending track data. Taking the
deformation fields as constraints, a two-step inversion strategy was
applied to estimate the geometric structure and slip distribution of
the rupture plane. The PSOKINVmethod was employed to find the
best solution that minimizes the fitting function in the whole
parameter domain. The inferred optimal slip model suggests that
the rupture surface of the earthquake trends NNW–SSE and is
predominantly a steeply dipping dextral strike-slip fault. This reveals
that the coseismic slip distribution was controlled by secondary
faults west of theWeixi–Qiaohou fault. The earthquake nucleated at
a shallow depth on the rupture plane, and the major seismogenic
fault was a dextral strike-slip fault with a strike of ~139°, a dip of ~81°

to the southwest, and an average rake angle of -170°. A maximum
slip of ~0.5 m was achieved at a depth of 6 km. The cumulative
seismic moment reached up to 1.43 × 1018 N·m, equivalent to a
magnitude of Mw 6.1. According to the resulting Coulomb stress
changes, the strong historical earthquakes produced an obvious
stress increase at the epicenter of the Yangbi earthquake and
promoted the occurrence of the Yangbi earthquake. The efficient
and accurate analysis of the focal mechanism of the Yangbi
earthquake is of great significance for interpreting coseismic
deformation characteristics and facilitating the rapid deployment
of earthquake emergency rescue personnel. Moreover, this work is
expected to benefit further research on the geological structure and
kinematic mechanism of the Weixi–Qiaohou fault and the active
prediction of geological disasters.
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Automatic Identification of Slope
Active Deformation Areas in the
Zhouqu Region of China With
DS-InSAR Results
Yuanjian Wang1, Ximin Cui1*, Yuhang Che1, Peixian Li1, Yue Jiang2 and Xiaozhan Peng1

1School of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China, 2School of
Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China

Zhouqu has narrow terrain and steepmountains on both sides of the Bailong River. It is one
of the most serious landslide disaster areas in China due to the fracture development of
rock and complex geological conditions. To identify the slope active deformation areas
(SADAs) in the region accurately, the Distributed Scatter Interferometric Synthetic Aperture
Radar (DS-InSAR) technique was used based on the process of the sentinel ascending
and descending orbit data. Deformation results of the region from January 2019 to
February 2021 were obtained. A new method for automatically identifying SADA while
accounting for radar geometric distortion was established to quickly and efficiently identify
SADA from the large-scale deformation results in the region. The SADA identified by this
method can eliminate the region affected by geometric distortion. Based on the method,
62 SADAs including 12 in the upstream and 50 in the downstream of Zhouqu County were
identified. Compared with 12 typical landslide areas in the study area, 9 typical landslides
match with the detected SADA. The SADA is mainly concentrated in the section from the
downstream of Zhouqu County to Lianghekou, and statistical analysis showed that the
vegetation coverage and topographic slope angle are two main reasons for this difference.
At the same time, the analysis of the typical landslide time-series deformation reveals that
the slope deformation activity mainly takes place during the rainy season. It has high
correlation with precipitation. These results of the study provided an important reference
for geological disaster prevention in the Zhouqu region.

Keywords: DS-InSAR, slope active deformation areas, automatic identification, geometric distortion, temporal and
spatial characteristics

1 INTRODUCTION

The process and phenomenon of slope geotechnical body sliding downward with a certain
acceleration along the continuous penetrating damage surface is called landslide (Aleotti and
Chowdhury 1999). As the global population continues to grow and the interaction between man
and nature intensifies, the landslide has become one of the serious natural disasters threatening
human survival and development, and especially under the influence of heavy rainfall and
earthquake, the damage caused by landslide disaster is more serious (Schuster and Highland
2007; Zhang et al., 2020). The movement of landslides is sliding rather than tipping or rolling.
Slow landslide movements last longer, usually not catastrophically and suddenly, and do not
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terminate the movement immediately (Sun et al., 2016; Kavoura
et al., 2020; Novellino et al., 2021). Slope angle, height, rock
weathering, fissures, geological structure, hydrogeological
conditions, etc. are all factors that cause landslides (Dai et al.,
2002; Vilímek et al., 2021). Quickly identifying the deformation of
slope areas can provide help for landslide investigation and
interpretation. The Zhouqu region is a typical geological
disaster-prone area, and there have been many geological
disaster events in the history of the area. Several large
mudslide disasters occurred around the Zhouqu region in
1978, 1989, 1992, and 2010, which caused great loss of life
and property (Zhang et al., 2018; Dai et al., 2021). The
Xieliupo landslide, which was in the downstream of the
county, has continued to deform, and a large landslide occurred
in 1981, causing blockage of the river and inundation of villages
(Sun et al., 2015). The Suoertou landslide located in the upstream of
Zhouqu County, with its landslide volume of tens of millions
of cubic meters, has been in the creeping slip deformation stage
since the last century after the resurrection. On 8 August 2010, a
mudslide formed in the northern mountainous area of the Zhouqu
region due to heavy rainfall, causing most of the Zhouqu region to
be destroyed and death of 1,765 people, and on 12 July 2018, a
large-scale destabilization occurred in the landslide of Jiangdingya
in Nanyu Township, blocking the Bailong River to form a weir,
making the issue of landslide stability in the region once again
attract great attention from all walks of life (Wang 2013; Zhang
et al., 2016). Therefore, early identification of the SADA in the
region is important to protect the lives and properties of local
residents and infrastructure safety.

In the past decade, landslides in the Zhouqu region have
become a hot spot for geological hazard research. Numerous
scholars have conducted research from the perspectives of
landslide genesis, hazard evaluation, and detection methods.
Bai et al. (2012) evaluated the landslide susceptibility of the
Zhouqu area using GIS and logistic regression models. Cui
et al. (2013) studied the influence of complex topography and
landscape on the scale of landslide and debris flow disasters in the
Zhouqu region. Jiang et al. (2016) discussed the activity
mechanism of the Xieliupo landslide using GPS monitoring
data. Zhang et al. (2018) used InSAR technology to identify
the slow landslides in the Zhouqu region and analyzed the
patterns of the movements of typical landslides. Dai et al.
(2021) used InSAR technology to identify landslides around
Zhouqu county. InSAR is increasingly used by researchers in
landslide monitoring, and although the technology is limited in
sudden landslide monitoring, it has a promising future in the
fields of wide-area potential landslide identification and slow
landslide activity pattern research.

Traditional surface deformation monitoring techniques and
means, such as level measurement and GPS measurement, are
characterized by high monitoring accuracy and flexibility.
However, with the increasing requirements of deformation
monitoring, these point-based surface deformation monitoring
techniques and means have the shortcomings of large workload,
high cost, and low spatial sampling rate, which can hardly meet
the requirements of a long-time and large-scale surface
deformation monitoring. With the development of space

geodesy technology, Interferometric Synthetic Aperture Radar
(InSAR), which is an important method for deformation
monitoring, has gradually matured and is widely used in
deformation monitoring (Hilley et al., 2004; Zhao et al., 2012;
Wild et al., 2018). The Differential InSAR (D-InSAR) is
susceptible to the influence of atmospheric and spatio-
temporal decoherence factors. In order to overcome the
disadvantages of the D-InSAR technique, Ferretti et al. (2001)
proposed the Persistent Scatterer InSAR (PS-InSAR) algorithm in
2001, which can effectively weaken the effects of atmospheric
delay and spatio-temporal decoherence by detecting and
calculating the features (such as buildings, concrete dikes,
rocks, and artificial corner reflectors) that can maintain strong
and stable characteristics to radar waves in long time sequences.
Compared with persistent scatterers, the unstable phase of radar
echoes of concrete, fields, and other surface features targets limits
the PS-InSAR point target extraction and reduces the spatial
sampling rate of deformation information. To compensate for the
disadvantage of the PS-InSAR technique in the poorly coherent
region with small point density, Ferretti et al. (2011)proposed a
method to combine PS points and Distributed Scatter (DS) points
for solving, which is based on the feature that similar DS points
have the same statistical properties, and the density of points is
increased by screening DS points with specific thresholds to
obtain more detailed surface deformation information, which
is suitable for natural scenes such as landslides in mountainous
areas. InSAR technology can not only capture landslide signals on
a large scale from the spatial scale but also orbit the movement of
landslides in a longer period from the temporal scale, which has
unique monitoring advantages such as long time, large range, fast
acquisition, and accuracy.

In the high mountain canyon area, due to the characteristics of
synthetic aperture radar and side-view imaging, SAR images
inevitably show geometric distortion phenomena (including
shadow, layover, and foreshortening), resulting in a decrease
in the resolution, and the monitoring accuracy becomes low
or even cannot be monitored (Cigna et al., 2014; Liu et al., 2018;
Ren et al., 2021). Carrying out accurate qualitative and
quantitative geometric distortion analysis can help to correctly
judge the reliability of InSAR deformation monitoring results and
improve the accuracy of SADA identification.

Conventional ground survey methods to identify potential
landslides are time consuming and laborious, and numerous
studies have been conducted using automatic and semi-
automatic methods to identify Active Deformation Areas
(ADAs) and then determine whether the target is a landslide.
Barra et al. (2017) proposed a method to automatically identify
ADA based on PS-InSAR results and update the geohazard database
in real time; Luo et al. (2021) proposed a method for automatic
identification and evaluation of geological hazards based on spatial
and temporal characteristics of deformation. The automatic
identification method can efficiently and accurately identify and
separate potential landslide hazard areas from large-scale data.

In this study, the Sentinel-1A ascending and descending data
covering the study area are processed by a time-series InSAR
processingmethod that takes into account the DS points to obtain
the deformation results of the study area. Based on previous
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studies, an automatic identification method of SADA based on
InSAR deformation results and terrain visibility is proposed. The
method not only considers the spatial distribution of deformation
in the monitoring area but also takes into account the visibility of
SAR satellites in the monitoring area, which improves the
accuracy of potential SADA identification and judgment.
Based on the results of automatic identification and optical
images and other information, this study analyzes the spatial
and temporal characteristics of deformation of typical landslides
in the study area. This study will provide a reference for automatic
identification of deformation areas and active landslide
prevention in complex terrain.

2 Study Area
The Bailong River Basin is located in the transition zone
between the first and second terraces of China’s landforms
and is the intersection of three major geomorphic units: the
Loess Plateau, the Sichuan Basin, and the Qinghai–Tibet
Plateau. Affected by tectonic movements, concentrated
rainfall, and human activities, landslides and mudslides are
frequent and widespread in the basin, making it one of the

four major geological disaster-prone areas in China (Ma et al.,
2020). The Zhouqu region is located in the middle reaches of the
Bailong River Basin in southern Gansu. The Bailong River enters
from the northwest of the Zhouqu region and passes through the
city in the southeast. The terrain is high in the west and low in
the east. The elevation, slope, and aspect of the study area are
shown in Figure 1. From the figure, it can be seen that the region
has large mountains, deep ditches, and broken terrain, and the
relative height difference between the valley peaks reaches more
than 1,000 m, and the slope of the ditch is large, which is
conducive to the development of gravity geological phenomena
such as collapse (Zhang et al., 2016).

The average annual precipitation in the study area is 434 mm,
which is low, but because the rain falls mostly from May to
September and the rainfall is mostly in the form of continuous
rain and heavy rainfall, this concentrated rainfall provides
hydrodynamic conditions for the formation of landslide and
debris flow geological disasters (Zhang and Matsushima,
2016). At the same time, due to the loose geological structure
in the area, engineering activities such as slope reclamation, water
conservancy, highway construction, and hydroelectric power

FIGURE 1 | Location map of the study area. (A) Elevation map. (B) Slope angle map. (C) Aspect map.
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station construction directly destroy the rock structure of the
slope and reduce the stability of the slope, even directly lead to
landslides and landslides, coupled with the narrow terrain in the
mountainous area, the unreasonable piling or random dumping
of construction debris, etc., and deteriorate the already fragile
ecological environment. In addition, the vegetation cover of the
section from Zhouqu County to Lianghekou along the Bailong
River is poor, and it is mainly debris landslides, most of which are
rocky landslides re-activated, large in scale, mostly large and giant
landslides, and large in number, mainly medium and deep
landslides, which are the key areas of concern in this study.

3 DATA AND METHODS

3.1 Data
This study uses the 45 Sentinel-1A ascending images and
43 Sentinel-1A descending images covering the study area
from January 2019 to February 2021 for estimating the
deformation rate in the study area, and the data coverage is
shown in Figure 2. The external reference DEM is required for
terrain phase removal, geocoding, during the InSAR data
processing. The DEM is also required for terrain visibility
calculation, and the ALOS 12.5 m DEM provided by JAXA is

used in this study. The basic parameters of Sentinel-1A data used
are shown in Table 1.

3.2 Data Process
3.2.1 DS-InSAR
Compared with other monitoring targets, the surface of the slope
is mostly covered with natural features and fewer artificial
structures. PS-InSAR mostly monitors man-made feature
targets, which is suitable for urban ground settlement
monitoring, and it is difficult to obtain detailed and accurate
deformation information for the monitoring of distributed
scatterer targets such as grass and bare ground with fewer
points extracted. Because the DS-InSAR method can improve
the distribution density of points and obtain richer and more
reliable deformation information for targets such as landslides,
we use this method.

The DS-InSAR method to obtain the deformation mainly
consists of the following steps:

(1) Selecting a master image: the temporal and spatial baselines
between all image pairs are calculated, a temporal and spatial
baseline distribution map is generated, and an image with the
centered temporal and spatial baseline is selected as the
master image.

FIGURE 2 | The spatial coverage of the images used in the study.

TABLE 1 | SAR data parameters.

Satellite Direction Time Angle of
incidence

Heading Resolution

Sentinel-1A Ascending 20190104–20210210 36.26° −10.44° 5m*20m
Sentinel-1A Descending 20190104–20210210 39.15° −169.85° 5m*20m
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(2) Image coregistration: the SAR image is coregistered with the
master image. The coregistration accuracy is greater than
0.001 pixels.

(3) Calculating the interferogram phase: all the coregistered
images are combined with the master image in pairs
according to the time series. The interferometric phase is
calculated pixel by pixel to generate a time-series
interferogram set.

(4) Selecting PS and DS: the selection of the DS consists of two
main steps: homogeneous time dimensional filtering and
phase optimization estimation. They are described in
detail in the following.

(5) The flat earth phase and topographic phase are removed.
(6) From the differential interferometric phase, the spatio-

temporal deformation is estimated and the time-series
deformation phase of each point target is obtained.

(7) Deformation calculation: based on the radar wavelength
parameters, the unwrapping phase is converted into
millimeter-scale deformation variables in the line-of-sight
direction.

Two key steps of the DS-InSAR technique are homogeneous
pixel identification and phase reconstruction, respectively (Goel
and Adam 2014; Fornaro et al., 2015; Cao et al., 2016). Distributed
targets are usually represented as neighboring pixels with
homogeneous scattering characteristics and obey the same
statistical distribution on the time-series SAR magnitude
images. Therefore, spatial adaptive filtering of the
interferometric phase is generally performed first, and then, a
statistical test is used to determine statistically homogeneous pixels
for each pixel to extract distributed targets (Jiang et al., 2015). Since
the spatial adaptive filtering causes the interferometric phases to
not strictly satisfy the phase consistency, it is necessary to adopt a
certain phase optimization algorithm to construct a set of single
master image optimized phase values under the condition of phase
consistency and obtain a set of best-fit phases after the adaptive
multi-look process to minimize the effect of the decoherence
phenomenon of the distributed targets.

In this study, spatial adaptive filtering based on the KS hypothesis
testing method is used to identify homogeneous pixels, and phase
triangulation is used to estimate the optimal phase. The KS

FIGURE 3 | DS-InSAR processing chain used in the study.
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hypothesis test is based on the cumulative distribution function and
is used as a method to test whether a distribution conforms to a
certain theoretical distribution or to compare whether two empirical
distributions are significantly different from each other. In the time-
series SAR image set, the backscattered intensity information of
homogeneous pixels is similar in the time dimension, and when the
test statistic of the intensity information in the time dimension of
two pixels is less than the critical value at the significant level, the two
pixels are considered to be homogeneous pixels. The DS-InSAR
processing flow chart is shown in Figure 3.

3.2.2 Decomposition of Deformation Along the Aspect
In mountainous areas with complex topography, the surface
deformation information is complicated, and it is difficult to
obtain accurate surface deformation using single orbit data,
especially for slope areas, where the deformation has a high
correlation with slope angle and aspect. Therefore, this study
adopts a combination of ascending and descending orbits and
external DEM to obtain the deformation information along the
aspect in the Nanyu landslide, and the results can more truly

reflect the motion of unstable slopes. The relationship between
the line-of-sight (LOS) deformation (Dlos) and the three-
dimensional motion can be shown as follows (Zhao et al., 2016):

Dlos � Du cos θ −Dn sin θ cos(α − 3
2
π) −De sin θ sin(α − 3

2
π),

(1)
where θ and α represent the radar incidence angle and satellite
heading angle, Dn, De, and Du represent the north–south
direction deformation, the east–west direction deformation,
and the vertical direction deformation, respectively.

Since the horizontal motion of a slope generally points along
the aspect, it can be assumed that the deformation of a slope can
be decomposed into two directions, Dhor and Du, and then, the
functional relationship for solving the joint ascending and
descending can be expressed as follows:

(Du

Dhor
) � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θA,−sin θA cos(β − αA + 3
2
π)

cos θD,−sin θD cos(β − αD + 3
2
π)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(DA
los

DD
los

), (2)

where θA and θD are the radar incidence angles from the ascending
and descending orbits, respectively; αA and αD are the satellite
heading angles from the ascending and descending orbits,
respectively; and β represents the aspect of the point. The final
deformation along the aspect of the slope (Df) can be expressed as

Df �
�������������
(Dhor)2 + (Du)2

√
. (3)

3.2.3 Automatic Identification Method of SADA
The method of automatic identification SADA is divided into
four steps:

(1) The DS-InSAR deformation results are read in a shapefile
format. The data are spatially filtered by sliding window point

FIGURE 4 | Geometric distortion diagram of radar side-view imaging.
When illuminated towards the satellite, foreshortening (C–D) occurs when the
slope angle is less than or equal to, and layover (B–A) occurs when the slope
angle is greater than. When backward facing the satellite, shadowing
(G–H) occurs when the slope angle is greater.

FIGURE 5 | Average deformation velocities in the LOS direction are derived from (A) ascending images and (B) descending images. The black boundary is the
extent of each SADA.
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by point to remove outliers and isolated points from the data.
The radius of the sliding window is set to two times the spatial
resolution of the data, and 40 m is used. Z-score
normalization is used to determine the outliers, and the
outliers are determined when the normalized value of the
deformation rate is greater than 3 or less than −3. If the
number of adjacent points in the sliding window is less than
one, it is considered as an isolated point.

(2) The absolute value of the deformation rate threshold is set
to filter out the obvious deformation points. All
deformation points are constructed into Delaunay
triangulation irregular net, and edges larger than the
radius of clustering are eliminated to form numerous
isolated triangulation irregular net clusters. A recursive
approach is used to cluster the deformation points and
generate polygonal active deformation areas. Combined
with the experience of previous studies, the absolute value
of the rate threshold adopted is 15 mm/a, and the
clustering radius is set to three times the image
resolution, i.e., 60 m.

(3) Combined with the DEM data, the slope of each ADA is
calculated, and the ADA with a slope greater than 10° is
considered as SADA.

(4) The obtained SADA is overlaid with the terrain visibility
map, and unreliable areas such as overlay and shadow areas
are removed to obtain the final accurate SADA.

The abovementioned process involves the following main
parameters:

(1) Denoising radius: this parameter is mainly used to remove
noise points; when the number of PS + DS points in the
radius of influence of a point is small, the point is deleted.

(2) Number of neighboring points: it is determined whether PS
or DS points are isolated points; when the number in the
influence radius is less than this value, they are isolated
points.

(3) Rate threshold: this parameter is used to determine the
points where deformation occurs. Unlike other studies
where the rate threshold is determined based on the
standard deviation of the rate, this method takes into
account the monitoring accuracy of the conventional
time-series InSAR method and the flexibility of the actual
operation process and directly gives the upper and lower
limits of the rate threshold, automatically extracts the
deformation points with a certain step size several times,
and generates multiple ADA results for judging potential
landslides.

(4) Clustering radius: points within this radius are considered as
the same deformation area.

(5) Minimum number of PS + DS points within the ADA: the
number of PS + DS points within each ADA must be greater
than this value; otherwise, it is not considered as an ADA.

FIGURE 6 | Visibility results of sentinel-1A from the (A) ascending orbit and (B) descending orbit.

TABLE 2 | SAR data observation information ratio.

Type Ascending (%) Descending (%) Ascending and descending

Shadow 0.2 0.4 0
Parallel Illumination 0.1 0.1 0
Layover 11.8 9 0.2%
Low sensitivity 14.1 15.0 0.7%
Sensitivity 71.2 72.7 96.4%
Flat area 2.6 2.6 2.7%

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 10 | Article 8834277

Wang et al. Identifying Deformation Areas with DS-InSAR

100

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


(6) Slope angle: the slope angle of the ADA is greater than this
threshold value, and then, it is considered as a SADA.

3.3 Terrain Visibility
The distortion on the SAR images is mainly of the types of layover,
shadow, and foreshortening, depending on the geometric
parameters of the radar satellite acquisition data, the angle of the

LOS direction, and the slope angle and aspect of the terrain. Figure 4
shows the geometric distortion of radar side view imaging. When
illuminated towards the satellite, foreshortening (c–d) occurs when
the slope angle is less than or equal to θ, and layover (b–a) occurs
when the slope angle is greater than θ. When backward facing the
satellite, shadowing (g–h) occurs when the slope angle is greater than
90 − α (Dun et al., 2021).

FIGURE 7 | The distribution map of unreliable SADA. The image shows one SADA in the geometric distortion area from ascending data, and three SADA in the
geometric distortion area from descending data.

FIGURE 8 | SADA and landslide maps. (A) Final result of the SADA distribute and (B) typical landslide distribute.
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4 RESULTS AND ANALYSIS

4.1 Deformation Identification Results
The LOS direction surface deformation results for the study area
obtained using the DS-InSARmethod are shown in Figure 5. The
annual average deformation rate in the LOS direction of the
ascending orbit ranges from −79 to 47 mm/a, and the absolute
value of the large deformation rate exceeds 20 mm/a. The annual

average deformation rate in the LOS direction of the descending
orbit ranges from −66–79 mm/a. The larger deformation areas
obtained from the descending orbit coincide with the ascending
orbit, which are mainly distributed on both sides of the gully from
Zhouqu County to Lianghekou.

Based on the results of surface deformation in the study area,
combined with previous research results and experience, the
SADA was detected with the absolute value of deformation

FIGURE 9 | Deformation from the descending orbit data.

FIGURE 10 | The deformation along the aspect.
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rate greater than 15 mm/a as the threshold value. Through the
automatic identification program, 40 SADAwere identified in the
ascending orbit data, covering an area of about 5.37 km2, and 48
SADA were identified in the descending orbit data, covering an
area of about 6.32 km2. Comparing the results of the ascending
and descending orbit identification, a total of 16 SADA were
found to overlap, but the specific extent was not exactly the same,
and the results of the SADA identification for the ascending and
descending orbits are shown in Figure 5.

4.2 Identifying the Results of SADA With
Terrain Visibility
Due to the special of radar side view imaging, geometric
distortion such as layover and shadow may be produced
according to the angle of incidence and different terrain
features. In mountainous areas with large topographic relief,
the aspect and slope angle characteristics are decisive factors
for generating geometric distortion, and the topography needs to
be fully considered first. In this study area, there are several

FIGURE 11 | Motion direction map of Nanyu landslide.

FIGURE 12 | Landslide body division map.
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geometric distortions on SAR images along the undulating sides
of the river. In order to improve the accuracy of identification, the
relationship between the location of SADA and geometric
distortion must be considered comprehensively, the areas that
may be inaccurate are eliminated, and the results are refined.
Based on the incidence angle, heading angle, and external DEM
data of the satellite, the terrain visibility results of the ascending
and descending orbit SAR satellites in the study area were
obtained, and the results are shown in Figure 6. The
percentage of each visibility type for ascending and descending
orbits were counted, and the results are shown in Table 2. From
the results, it can be seen that there are many geometric distortion
areas in the single orbit data, among which the percentage of
layover and shadow areas in the ascending orbit data is 12.0%,
and the percentage of stacked and shadowed areas in the
descending orbit data is 9.4%. For most of the layover and
shadow areas, the ascending and descending orbit data can
complement each other, and after the combination of
ascending and descending orbit, the area of stacked and
shadowed areas is only 0.2%.

As shown in Figure 7, based on the aboveobtained visibility
results, geometric distortion analysis and verification were
performed on the SADA identified from this study area,
among which one SADA on the ascending orbit was located
in the geometric distortion area, and three SADAs on the
descending orbit were located in the geometric distortion area.
It should be noted that the purpose of our automatic extraction
method is to obtain the deformation area more efficiently, and the
deformation area obtained after eliminating the geometric
distortion area is the result we like to obtain, and the
abovementioned process is automatic.

To count the total number identified, optical images are
needed to assist. For the same landslide, different parts of the
deformation may be identified in the ascending and descending
results, so it is necessary to combine the optical images to
determine whether the identified deformation areas are
located on the same slope to avoid double counting. After

combining the integrated identify SADA with the
GoogleEarth long time-series optical images and eliminating
the unreliable areas located in geometric distortion, the final
statistics obtained a total of 62 SADA found in this study area,
and the study area was divided into two sections with the
Zhouqu County as the boundary, of which there were 10
upstream and 52 downstream, and the final result of the
SADA is shown in Figure 8A. By comparing with 12 typical
landslides in the study area, 9 typical landslides match with the
detected SADA, which indicates the high accuracy of this
method. In addition, Sun et al. (2016) used InSAR to identify
four typical deformation areas, all of which are located in the
identified 62 SADAs. Dai et al. (2021) used SBAS-InSAR to
detect 23 active landslides around Zhouqu County, which are
highly consistent with the SADA obtained in this paper.

4.3 Nanyu Landslide Deformation Analysis
The Nanyu landslide is located on a large paleo-landslide
body which includes two large landslides: the Nanyu
landslide and the Jiangdingya landslide. Due to many
repeated activities, the surface of the Nanyu landslide is
undulating and part of the area has been artificially
transformed into an arable land. The trailing edge of the
landslide is steep, forming a chert ridge. The longitudinal
gully of the landslide is developed, and the deep gully of
erosion on the east and west sides is the boundary of the
landslide (Zhang et al., 2018). The landslide body has a loose
structure, and the main components are gravel and loess.

4.3.1 Spatial Characteristics of Deformation
As shown in Figure 9 and Figure 10, the deformation of the
whole Nanyu landslide obtained from the descending orbit data
and the deformation along the aspect obtained from the
decomposition of the ascending and descending orbit are
shown, respectively. From the monitoring results, it can be
seen that there is obvious deformation of the Nanyu landslide
located on the northwest side of the landslide body. From the
aspect deformation rate diagram, the deformation rate of the top
of the landslide is more than 70 mm/a, and the maximum can
reach 102 mm/a, while the deformation rate of the middle and
lower part is about 20 mm/a~40 mm/a. The rate of the trailing
edge of the landslide is much larger than the front edge, which
indicates that the movement mode of the landslide is pushing
type. The direction of movement of each point of the Nanyu
landslide is shown in Figure 11. The landslide belongs to the
overall decline, and the bottom of the slope slides into the river
after the rapid decline, so there is no obvious siltation
phenomenon on the slope.

4.3.2 Temporal Characteristics of the Deformation
As shown in Figure 12, to study the temporal characteristics of
landslide deformation, the landslide body was divided into three
parts, front, middle, and back, and the average deformation of
each part was calculated separately. The calculation was carried
out only for the points where the deformation rate was greater
than 15 mm/a. The cumulative deformation curves of the three
parts are shown in Figure 13. The average deformation rate of the

FIGURE 13 | Time-series deformation and precipitation of three parts.
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front part is −21 mm/a, and the cumulative deformation is
−44 mm; the average deformation rate of the middle part is
−30 mm/a, and the cumulative deformation is −64 mm; the
average deformation rate of the back part is −48 mm/a, and
the cumulative deformation is −96 mm. During the monitoring
time period, the deformation trend of the three parts is more
consistent, and all of them show the deformation away from the
satellite direction.

As shown in Figure 13, the landslide deformation did not
accelerate immediately with the increase in precipitation at
the beginning of the rainy season in June each year but began
to accelerate when the precipitation reached its peak in

August. This indicates that the accelerated deformation of
the landslide is related to the high intensity of intensive
precipitation. When the rainfall is not enough to make the
landslide unstable, the accelerated deformation of the
landslide body lags behind the rainfall, and the accelerated
deformation of the landslide body continues after each cycle
of rainfall. This phenomenon is highly consistent with the
study results of Yang et al. (2014) and Ma et al. (2020).
Significantly, the acceleration of landslide deformation in
2019 is less than in 2020, which correlates well with the
magnitude of the rainfall peak, suggesting that more
intense precipitation triggers faster deformation.

FIGURE 14 | Factors influencing landslides. (A) Vegetation coverage and fault distribution map of study area, (B) relative frequency distributions of slope angle, (C)
relative frequency distributions of vegetation coverage.
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5 DISCUSSION

Landslides occur as a result of coupled internal and external
dynamics. Fault distribution, slope, vegetation coverage,
precipitation, and human activities can all affect landslides.

5.1 Active Faults and Slope
Fault is the basic factor controlling the formation and
development of landslides. Fault activity causes slope
fragmentation and changes in the regional tectonic stress field
so that landslides are distributed along major active fault zones.
As shown in Figure 14A, the spatial distribution of the identified
SADA is highly correlated with the distribution of active faults,
which indicates that faults are one of the important factors
affecting landslides in the area. As shown in Figure 14B, the
slope of the SADA and the whole study area were counted
separately, and the maximum frequency slope of the SADA
area is 15°, which is smaller than the maximum frequency
slope of the whole study area of 38°, which indicates that the
landslides in this area are mostly developed on smaller slopes,
which is consistent with the study of Zhang et al. (2018). The
focus should be on the gentle slopes within the influence of faults
in future disaster control.

5.2 Vegetation Coverage
As an important factor in the surface evolution, vegetation is
constantly influencing the surrounding soil evolution,
hydrological evolution, and geomorphological evolution, which
are all closely related to the formation of landslides. As shown in
Figure 14A and Figure 14C, the vegetation coverage of the study
area was calculated based on Landsat8 images. The vegetation
coverage of SADA and the whole study area were counted
separately, the average vegetation coverage of SADA was 0.42,
and the average vegetation coverage of the whole study area was
0.66. The distribution of SADA in this study area was negatively
related to the vegetation coverage, and the higher the vegetation
coverage in this study area, the less likely landslides occurred.

5.3 Precipitation
Continuous and concentrated rainfall plays an important role in
inducing landslide damage (Qiu et al., 2020). The spatial and
temporal distribution of precipitation in the study area is uneven.
As shown in Figure 13, 70% of precipitation is distributed from
June to September, with more localized and concentrated heavy
precipitation. Higher precipitation was seen in the southeastern
part of the study area than in the northwestern part (Li et al.,
2015). This precipitation characteristic leads to landslide
susceptibility in the southeastern part of the study area.

5.4 Human Activities
The population in this study area is distributed along the river
valley, and there is very little land available for development.
Therefore, human activities that are not conducive to slope
stability, such as excavating the foot of the slope and filling
the ditch to create land, occur frequently. Figure 15 shows the
presence of numerous traces of human activities on the Nanayu
landslide. There are trails and roads on the landslide, which
destroy the slope structure and reduce the stability of the
landslide. In addition, most of the transportation routes were
built along the river valleys, and human engineering activities
were particularly intense (Ma et al., 2020).

In this study, the DS-InSAR technology is used to process SAR
data, and the results monitored by different orbit data are slightly
different, which is due to the fact that SAR satellites are side-view
imaging systems, and the use of ascending and descending orbit
data can play a complementary effect. Since the SAR satellite flies
along the north–south direction, it is not sensitive to the
deformation in the north–south direction for either the
ascending or descending orbit data, so the subsequent
introduction of Pixel Offset Tracking or Multiple Aperture
InSAR methods can be considered to assist in the deformation
area identification. Since C-band sentinel data are used in this
study, compared with L-band SAR data, the penetration ability of
this band is weaker for vegetation, which may lead to difficulties
in obtaining valid and reliable observations on slopes partially
covered with vegetation. Otherwise, for areas with more
vegetation cover, it is necessary to use high-resolution optical
images, stratigraphic lithology and other data, and ground
investigation to make interpretations and judgments.

The proposed identification method relies on the validity of
InSAR monitoring results, and for low-coherence regions,
accurate InSAR monitoring results cannot be obtained, and
the SADA cannot be identified by this method. In addition, it
is worth noting that the accuracy of terrain visibility depends on
the accuracy of DEM, which is also the limitation of the method.

6 CONCLUSION

Based on the DS-InSAR deformation monitoring results, this
study proposes a method for automatic identification of SADA.
Compared with previous studies, the method can identify SADA
from large-scale deformation data efficiently and rapidly; also, the
accuracy of identification can be improved by considering the

FIGURE 15 | Optical image of Nanyu landslide.
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influence of SAR image geometric distortion in the high
mountain canyon area.

The method was used to identify the areas on both sides of the
Bailong River in the Zhouqu region. The study showed that
landslide hazard detection using single orbit radar satellite data
could lead to the leakage of landslide hazards easily, and a total of
62 SADA were identified in the study area by integrating the
deformation results obtained from ascending and descending
orbit images and SAR visibility analysis results. It is proven that
the results of deformation area identification have high accuracy.

The deformation of theNanayu landslide began to accelerate when
the precipitation reached its peak and lasted for a period of time. The
deformation of this landslide has a high correlation with rainfall.
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Predicting the Settlement of Mine
Waste Dump Using Multi-Source
Remote Sensing and a Secondary
Consolidation Model
Reza Tabish1,2, Zefa Yang1,2*, Lixin Wu1,2, Zhihua Xu3, Zhanpeng Cao1,2, Kaihui Zheng4 and
Yanqing Zhang5

1School of Geosciences and Info-Physics, Central South University, Changsha, China, 2Key Laboratory of Metallogenic
Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education,
Changsha, China, 3College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing, China,
4North Weijiamao Power and Coal Co., Ltd., Ordos, China, 5North United Electric Power Co., Ltd., Hohhot, China

The settlement (or subsidence) of mine waste dump is likely to cause landslides, thereby
imposing threats on the safety of human beings and other local properties. Hence, it is
essential to accurately predict the settlement for the early-warning of settlement-induced
geohazards. Traditional mechanical methods require in situ mechanical parameters and
the geological structure of mine waste dump, narrowing their practical applications. In this
paper, we proposed a remote sensing-basedmethod for predicting the settlement of mine
waste dump without the requirement for field observations. Firstly, the historical settlement
and thickness of mine waste dump were measured by space-borne interferometric
synthetic aperture radar (InSAR) and photogrammetry techniques, respectively.
Secondly, the temporal evolution of the settlement of mine waste dump was described
by a secondary consolidation model. Thirdly, the parameters of the secondary
consolidation model were inverted based on the InSAR-measured historical
settlements and photogrammetry-estimated thickness. Finally, the evolution trend of
the settlement of the mine waste dump was predicted with the secondary
consolidation model and its inverted parameters. The proposed method was tested
over a mine waste dump in Weijiamao open-pit mine, China. The result shows that the root
mean square error of the predicted time-series settlement is about 0.8 cm. The presented
method will be beneficial to the assessment and early-warning of the settlement-related
geohazards of mine waste dumps over a large area.

Keywords: mine waste dump, InSAR, ground deformation analysis, consolidation settlement, secondary
consolidation model

1 INTRODUCTION

For open-pit mining activities, earth materials (e.g., rock and soil) overlying ore deposits have to be
mined. These materials are usually placed in heaps or fills (referred to as mine waste dump) over an
area where they will not restrict the exploration of underground ore. Mine waste dump, especially
associated with large open-pit mining activities, is possibly one type of the largest man-made
structure in terms of volume and mass. For instance, a mine waste dump located in the Elk Valley
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region of British Columbia, Canada associated with a large coal
open-pit mining has a cumulative height of up to 400 m and a
mass of 8.5 billion tons of earth materials (Hawley and Cunning
2017). Since mine waste dump generally consists of soil and/or
disaggregated rock (Lianhuan et al., 2018; Cho and Song 2014),
the weak and loose structure of mine waste dump would cause
settlement (or subsidence). The settlement potentially causes
geohazards like landslides and further impose threats on the
safety of human beings, mine’s equipment, and other
infrastructures around the mine (Pinto et al., 2014). Therefore,
it is essential to accurately predict the settlement of mine waste
dump for assessing and controlling the settlement-related
geohazards.

The numerical analysis is one of the most common methods
for predicting the settlement of mine waste dump and further
assessing the geohazard risks (Behera et al., 2016; Verma et al.,
2013; Ashutosh et al., 2013). In the numerical analysis, the
geotechnical parameters and material samples of the
concerned mine waste dumps are firstly in situ collected.
Then, the material properties of the collected samples (e.g.,
unit weight, cohesion, internal friction angle, and Young’s
modulus) are analyzed by laboratory tests. Finally, numerical
methods (e.g., finite element method and limit equilibrium
method) are utilized to predict the potential settlement and
assess the risk of settlement-related geohazards. The numerical
analysis methods can take the complex and irregular geometries,
various types of material properties of mine waste dumps into a
model, thus it usually could reliably assess the geohazard risks, if
the geotechnical and material parameters are accurate (Kainthola
et al., 2013). However, this, in return, implies that the numerical
analysis methods rely on the geotechnical properties and material
parameters of mine waste dump that need to be field surveyed or
laboratory tested. Limited by the high cost, labor-intensive, and
time-consuming characteristics of field surveying or laboratory
tests, the numerical analysis methods are usually used in a local
mine waste dump, rather than in numerous dumps in a large area
simultaneously.

Interferometric synthetic aperture radar (InSAR) is a useful
remote sensing technique, which is able to monitor ground
surface displacements over a wide coverage (e.g., with a swath
width of 250 km for Sentinel-1) with a high spatial resolution
(e.g., 0.25 m for TerraSAR-X) (Gabriel et al., 1989; Massonnet
et al., 1993; Massonnet and Feigl 1998; Bürgmann et al., 2000). It
has become an important alternative to terrestrial surveying
techniques for monitoring surface deformation relating to
various geohazard events, including landslides (Pierluigi et al.,
2019; Carlà et al., 2019; Li et al., 2020), earthquakes (Atzori et al.,
2019; Yu et al., 2020), volcanic eruptions (Suwarsono et al., 2019),
land settlement associated with mining activities (Chen et al.,
2020; Yuan et al., 2021; Qingsong et al., 2021), and consolidation
processing over mine waste dumps (Gong et al., 2021; Williams
et al., 2021; Juan et al., 2021). If we can predict the settlement
trend of mine waste dump based on InSAR observations of
historical settlement, the geotechnical and material parameters
required by the numerical analysis methods will be unnecessary.
In other words, the settlement of numerous mine waste
dumps over a large area can be predicted without the

requirement for field observations in theory. This cannot be
achieved by numerical analysis methods. However, to the best
of our knowledge, it is rather rare to do that to date Roland et al.,
2020.

In this paper, we proposed a new method for predicting the
settlement of mine waste dump based on multi-source remote
sensing techniques and a secondary consolidation model. More
specifically, the historical settlement and thickness of the
concerned mine waste dump were then estimated by space-
borne InSAR and high-resolution photogrammetry techniques.
A secondary consolidation model was then utilized to model the
settlement evolution of mine waste dump on a basis of pixel-by-
pixel. Thirdly, the parameters of the secondary consolidation
model were inverted in the least-square sense. Finally, the
settlement trend of the concerned mine waste dump was
predicted based on the inverted model parameters and the
secondary consolidation model. The proposed method is
theoretically able to predict ground surface settlement of mine
waste dump in a long time due to soil consolidation without in
situ surveying. Therefore, it offers a new tool for assessing the
stability risk of waste dump over a wide area (e.g., thousands of
square kilometers) that cannot be achieved by traditional
numerical analysis methods.

2 STUDY AREA AND DATASETS

2.1 Study Area
In this study, a mine waste dump located in Weijiamao open-pit
mine, China (marked by the red star in Figure 1), was selected to
test the proposed method. The mine waste dump started to
normally operate in the year of 2012 and ceased the operation
in the year 2017. Since the mine waste dump is located above
the loess plateau, and some infrastructures (e.g., industry
buildings and roads) are nearby it (see Figure 1D). Therefore,
it is essential to predict the settlement of the mine waste
dump for assessing its stability and assessing geohazards (e.g.,
landslides).

2.2 Datasets
Ninety SAR images spanning from 30 May 2017 to 14 May 2020
over the study area were firstly collected for monitoring the
historical settlement. These 90 SAR images were acquired by
the Terrain Observation with Progressive Scan imaging mode of
the C-band Sentinel-1A satellite in an ascending orbit (track 113
and frame 126). The pixel spacing of the collected Sentinel-1 SAR
images is about 2.3 and 14.1 m in the range and azimuth
directions, respectively. The mean temporal separation of the
collected SAR images is about 12 days.

In addition, two pairs of ZiYuan-3 (ZY-3) stereo images
were collected for extracting high-resolution digital elevation
models (DEMs) and further estimating terrain elevation and
its changes pattern in this study. The ZY-3 surveying satellite
was launched on 9 January 2012, and it can acquire images
from nadir, forward, and backward viewing angles with spatial
resolutions of 2.5, 3.5, and 3.5 m, respectively (Zhang et al.,
2014). In this study the collected ZY-3 image pairs were
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acquired on 10 October 2012 (close to the date of the
normal operation of the concerned mine waste dump), and
5 May 2019 (after the cease date of dumping operation),
respectively.

3 METHODOLOGY

3.1 Retrieving Historical Settlement Using
Time-Series InSAR
Time-series InSAR techniques can observe historical
displacements of Earth’s surface over time based on a series
of co-registered SAR acquisitions. In the past decades several
algorithms or toolbox have been developed for time series
InSAR processing (Osmanoğlu et al., 2016), e.g.,
Interferometric Point Target Analysis (IPTA) (Werner
et al., 2003), Small Baseline Subset (SBAS) (Berardino et al.,
2002), Permanent Scatterer InSAR (PSInSAR) (Ferretti et al.,
2001), SqueeSAR (Ferretti et al., 2011), and so on. In this

section, we take the IPTA toolbox as an example to briefly
review the main processing steps to generate time-series
displacements.

The IPTA processing begins with the stack of co-registered
SAR images for the construction of interferometric pairs. Firstly,
point targets are selected based on some indicators such as low
temporal variability of the backscatter and high coherence. Then,
the stacks of interferometric phases on those point targets are
processed by traditional differential InSAR chains (e.g., differential
interferogram generation, adaptive filtering, and phase
unwrapping). Thirdly, a stepwise iteration is conducted to
estimate linear deformation phases, height error phases, and
non-linear deformation phases at those point targets. Finally,
time-series displacements at those point targets along the line-of-
sight (LOS) direction are obtained by transforming the linear and
non-linear deformation phases. Since mine waste dump is
primarily made of soft soil, and the settlement generally
dominates the deformation; that is, the horizontal component of
deformation is generally much smaller than the settlement.

FIGURE 1 | (A,B) Location of the study area; (C,D) are optical images of the focusedmine waste dump in the years of 2012 and 2019, respectively. The red circle in
(D) represents the location of the selected reference pixel for InSAR processing.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8853463

Tabish et al. Settlement Prediction of Mine Waste Dump

111

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Consequently, we neglected the contribution of horizontalmovements
on InSAR LOS deformation and further convert the LOS deformation
to settlement by:

dv(i, j, tobs) � dLOS(i, j, tobs)/cos θ(i, j) (1)
where dv is a settlement at an arbitrary point target (i, j), tobs �
[ tobs1 tobs2 / tobsM ] is a vector of acquisition dates of the
collected M SAR images; dLOS is the deformation in the LOS
direction (positive towards the satellite, and negative away from
the satellite), and θ is the incidence angle of SAR sensor.

3.2 Modeling and Predicting Time-Series
Settlement With a Consolidation Model
The gradual reduction in the volume of soil under sustained load is
called consolidation (Terzaghi et al., 1996). Commonly, the
consolidation settlement is divided into the primary stage which
is normally expected load applied on the soil by the dissipation of
pore pressure, and the secondary consolidation stage which is
continuing under constant effective stress (Hanrahan and Barden
1968). In soft soil such as mine waste dump clearly, the primary
consolidation usually occurs in the operation period, and the
secondary consolidation will continue after the operation.
Consequently, InSAR-measured subsidence is mainly due to the
secondary consolidation, if we neglect other factors potentially
causing subsidence (e.g., rainfall) (Zhang et al., 2019).
According to (EBMEG 2006), the secondary consolidation
can be modeled by:

dv(t) � c · ΔH · log10
t

Tp
(2)

where dv(t) is the time-series settlement due to secondary
consolidation, c is the coefficient of secondary consolidation, ΔH
is the thickness of mine waste dump, t is the entire estimation time
(including the primary and secondary consolidation), and Tp is the
main consolidation completion time. Note that the settlement is
defined as positive, and uplift is defined as negative in Eq. 2.

In Eq. 2, theTp and t can be determined based on the operation
procedure and the expected period that will predict. Consequently,
the key issue for predicting time-series settlement of mine waste
dump using Eq. 2 is determining the coefficient of secondary
consolidation (namely c). As stated in Introduction Section, the
historical settlement of themine waste dump can be obtained using
time-series InSAR. In addition, the parameter c can be generally
considered as constant during the secondary consolidation. Thus,
for a point target (i, j), the coefficient of secondary consolidation
can be estimated based on InSAR observations of historical time-
series settlement using a least-square sense, i.e.,

ĉ(i, j) � (ATPA)−1APL (3)
Where

A � [ΔH(i, j) · log10tobs1Tp
ΔH(i, j) · log10tobs2Tp

/ ΔH(i, j) · log10tobsMTp
]
T

L � [dv(i, j, tobs1) dv(i, j, tobs2) / dv(i, j, tobsM) ]T; P is
a weighting matrix. Having obtained the coefficient of secondary

consolidation, the settlement in the future could be predicted
based on Eq. 2. The general methodology workflow is shown in
Figure 2.

4 RESULTS

4.1 Historical Time-Series Displacements
Retrieval Using IPTA Toolbox
In this study, the collected 90 C-band ascending Sentinel-1A
images from 30 May 2017 to 14 May 2020, were processed
using the IPTA InSAR toolbox. More specifically, the image
acquired on December 10, 2019, was selected to be the master
image, and the remaining images were co-registered with it. Then,
a threshold of the maximum perpendicular baseline of 200 m and
the longest temporal separation of 90 days was designated to
select small baseline interferograms (whose temporal-spatial
baselines are shown in Figure 3). Then, the IPTA was used to
process the formed small baseline interferograms to generate
time-series LOS displacements from 30 May 2017 and 14 May
2020 (see Supplementary Figure S1 in Supplementary
Material). In which, a pixel located in a factory that is
considered to be stable (marked by a red circle in Figure 1D)
nearby the focused mine waste dump was selected to be the
reference pixel, in order to reduce error propagation as much as
possible (Cao et al., 2021). In addition, the phase errors due to
uncertainties of the used external digital elevation model was
iteratively estimated in the IPTA processing chain. Finally, the
historical time-series settlement of the mine waste dump was
estimated using Eq. 1.

Figure 4 shows the estimated accumulative settlement and the
annual settlement velocity of the concerned mine waste dump
from 30May 2017 to 14 May 2020. Owing to the bare surface, the
mine waste dump was monitored with dense InSAR observations
(a total of 4658 coherent points). As is seen in Figure 4, the
settlement on the edge of the mine waste dump is smaller than
that on the central part. In addition, the maximum settlement rate
and accumulative settlement in the mine waste dump, which
occurred in the middle toward the south-west part of the mine
waste dump, are −0.103 m/yr and −0.369 m, respectively. Such a
large settlement is likely to cause geohazards. To analyze the
temporal evolution of mine waste dump settlement intuitively, we
plotted the time-series settlement at randomly selected three
points (P1- P3, marked by black triangles in Figure 4A). The
results are plotted in Figure 5. As is seen, the time-series
settlement from 30 May 2017 to 14 May 2020 at these three
points approximately follows an exponential growth. This is a
typical pattern associated with secondary consolidation of soil.

4.2 Estimating the Parameters of the
Secondary Consolidation Model Using
InSAR Observations and ZY-3 DEMs
4.2.1 Estimating Soil Thickness of the Mine Waste
Dump Based on ZY-3 Images
Prior to the parameter estimation of the secondary consolidation
model, the soil thickness of theminewaste dumpwas estimated using
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photogrammetry technique based on ZY-3 stereo images. The main
procedure for generating DEMs with ZY-3 stereo pairs are three
steps. Firstly, ground control points (GCPs) and tie points are
manually and/or automatically be collected from a different image
view. The block adjustment is then conducted based on the collected
GCPs and tie points. Finally, DEM is generated based on the ZY-3
stereo pairs. Readers can refer to (Yanan et al., 2012; Guo et al., 2015)

for the more detailed processing of DEM generation using stereo
images. As stated in Datasets Section, the ZY-3 satellite can acquire
stereo images from nadir, forward, and backward viewing angles.
Generally, the accuracy of the generated DEMs using the stereo pair
formedwith the forward and backward viewing images is higher than
that with other views (Cai et al., 2015; Liu et al., 2021). Thus, we
generated DEMs of the mine waste dump using the ZY-3 forward
and backward stereo pairs in the years of 2012 and 2019 for
estimating the dump soil thickness.

More specifically, to associate projection coordinates with
the location on a raw image, 20 well-distributed GCPs were
manually collected. With the increase in the number of GCPs,
it can improve the accuracy and quality of DEMs (Shen et al.,
2017). The GCPs were selected on the stable area, such as road
intersections, the corner of the road, the building, etc. The tie
points were automatically obtained by the Fast Fourier
Transform Phase matching method on overlap area in the
stereo images and achieved sub-pixel accuracy. The block
adjustment model was used based on the rational function
model. Note that, before calculating the soil thickness of the
mine waste dump, the slope and aspect-based method (Nuth
and Kääb 2011) was used to co-register the two DEMs in the
years 2012 and 2019 (shown in Figures 6A,B), in order to
ensure that the corresponding pixels in the two DEMs
represent the same geo-location.

Figure 6C shows the soil thickness of the mine waste dump
estimated by calculating the difference of these two co-registered
DEMs in the years of 2012 and 2019. In which, the positive value

FIGURE 2 | The workflow of the presented method.

FIGURE 3 | The temporal and perpendicular baseline of the formed
small baseline interferograms.
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indicates increased elevation, and the negative value indicates decreased
elevation. As can be seen from Figure 6C, the maximum thickness of
the mine waste dump byMay 2019 is about 85m, which occurs in the
center-south and west-east parts. The location of the maximum
thickness that occurred is spatial coincidence with the maximum
settlement occurred. This validates again that the settlement of
mine waste dumps is related to soil thickness.

4.2.2 Estimating the Parameters of the Secondary
Consolidation Model
Since the coefficient of the secondary consolidation could be
considered as constant at the same point, we could
theoretically estimate it using the thickness of the mine
waste dump and historical settlement in any period of the
secondary consolidation. It should be pointed out that the
mine waste would be tamped using tools like road rollers after
putting them in the dump site, thus the primary consolidation
of the mine waste dump has been completed during the
tamping operation. This implies that the time-series

settlement obtained by InSAR from 2017 to 2020 were
mainly caused by soil secondary consolidation. Hence, we
estimated the coefficient of the secondary consolidation
model at each target point of the IPTA processing using
Eq. 3 based on the estimated soil thickness and the InSAR
observations of time-series settlement from 30 May 2017 to 5
May 2019 (near to the acquisition date of 14 May 2019 of the
lastest ZY-3 images in this study). Note that the time-series
InSAR observations of settlement from 5 May 2019 and 14
May 2020 were used to validate the accuracy of the predicted
settlement due to the unavailability of in situ settlements. The
estimated coefficients of the secondary consolidation model of
the mine waste dump were plotted in Figure 6D.

4.3 Predicting Settlement Trends Using the
Secondary Consolidation Model
Having obtained the coefficients of the mine waste dump,
settlement in the future can be predicted using Eq. 2. Figure 7

FIGURE 4 | Accumulative settlement (A) and the annual settlement velocity (B) over the focusedmine waste dump in the period from 30May 2017 to 14May 2020.

FIGURE 5 | (A–C): Time-series settlement at the points P1-P3 whose locations are marked by black triangles in Figure 4.
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shows the predicted settlement of the mine waste dump in the
years 2025, 2030, and 2035 (i.e., after 5, 10, and 15 years). As
can be seen, the secondary consolidation significantly
increased with increasing the timescale. The maxim
secondary consolidations after 5, 10, and 15 years of
primary consolidations are –0.4575, –0.6045, and –0.7241 m,
respectively. This, in return, suggests that the focused mine
waste dump has not been stable by now, a significant large

settlement may occur in the future, and the governor should
pay more attention to the potential geohazards.

4.4 Accuracy Evaluation of the Predicted
Settlement
As stated previously, the InSAR observations of time-series
settlement from 5 May 2019 and 14 May 2020, which did not

FIGURE 6 | (A,B) are the generated DEMs in the years 2012 and 2019; (C) Soil thickness of the mine waste dump estimated by calculating the difference of the two
co-registered ZY-3 DEMs in the years of 2012 and 2019, respectively; (D) Estimated parameters of the secondary consolidation model and its background is the
elevation difference between the years 2012 and 2019.
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be used to invert the parameters of the secondary consolidation,
were used for accuracy evaluation in this section, due to the lack
of the in situ settlement measurements. More specifically, we first
predicted the time-series settlement at the acquisition dates of the
collected Sentinel-1 images from 5 May 2019 to 14 May 2020
using the inverted coefficients and the secondary consolidation
model. Then, the time-series InSAR settlements in the same
epochs were considered as references for assessing the
reliability of the predicted settlements.

Figure 8 shows a scatterplot between the InSAR-measured
and the predicted settlements from 5May 2019 and 14May 2020.
As is seen, most of them both settlements agree well with each

other with a root mean square error (RMSE) of 0.008 m. In
addition, we fitted the relationship between both of them with a
linear function (marked by a red line in Figure 8). The results
show that the slope and intercept of the fitted line are about 1.04
and 0.003, respectively, and the R-square is around 0.93. These
results suggest that the predicted settlement using the presented
method is reliable. In order to intuitively demonstrate the
differences between the InSAR-measured and the predicted
settlement of the mine waste dump, we added the predicted
time-series settlements at the points P1, P2, and P3 in Figure 5,
where the InSAR-measured time-series settlement between 30
May 2017 and 14 May 2020 are plotted. As is shown, the InSAR-

FIGURE 7 | Predicted settlement of the mine waste dump in 2025 (A), 2030 (B), and 2035 (C), respectively, using the secondary consolidation model and its
inverted parameters.

FIGURE 8 | Scatter plot between the InSAR-measured and the predicted cumulative settlement from 5 May 2019 to 14 May 2020. The red line is the fitted linear
trend between the both.
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measured and the predicted settlements (red line) have a good
agreement with each other. This further indicates that the
presented method in this study is feasible.

5 DISCUSSION

5.1 Influence of InSAR and DEM Errors on
the Parameter Estimation of the Secondary
Consolidation Model
In this study, the coefficient of the secondary consolidation model
was estimated with historical InSAR observations of time-series
settlement and ZY-3 DEMs. Since errors are inevitably contained
in InSAR observations and ZY-3 DEMs, the accuracy of the
estimated coefficient of the secondary consolidation model would
be degraded. Simulation analyses were conducted to illustrate this
issue in detail in this section.

5.1.1 Influence of InSAR Errors on the Parameter
Estimation
We firstly assumed a real coefficient of c = 0.008 (the mean of its
common range from 0.004 to 0.012 for soil) and a dump thickness of
△H = 40m. Then, the real time-series settlement of secondary
consolidation was simulated using Eq. 1 based on the real
coefficient and dump thickness. Thirdly, InSAR observations of
the settlement were generated by adding different level Gaussian
noise (with the same mean of zero and different standard deviations
(STDs) from zero to 25mm) to the real time-series settlement.
Finally, the InSAR observations with different error levels were
used to estimate the coefficient of the secondary consolidation. To
reduce the influence of the generation of Gaussian errors, the above
steps were repeated 1000 times. The results are plotted in Figure 9A.
Note that, Gaussian noise may well not simulate the real error of
InSAR displacement observations due to its complex error sources
(e.g., decorrelation noise, unwrapping errors, and atmospheric phase

screen) (Zebker and Villasenor 1992; Li et al., 2019; Yunjun et al.,
2019; Cao et al., 2021). However, the main aim of using Gaussian
noise simulation in this section is to analyze the influence of InSAR
error magnitude on the accuracy of the estimated coefficient. In this
regard, it is unnecessary to simulate the errors of InSAR displacement
observations accurately.

It can be seen from Figure 9A that, with the error increasing of
InSAR observations, the STDs of the estimated coefficient
(calculating with the results of the 1000 repeated simulation) are
increased but below 0.001 in this simulated case. In addition, the
mean of the coefficient estimate approximately equals the real one
(i.e., 0.008), although the STD of InSAR observations increases from
zero to 25mm. This result indicates that the errors of InSAR
observations have an insignificant influence on the coefficient
estimation of the secondary consolidation. This conclusion is
theoretically expectable. According to Eq. 3, the error propagation
of InSAR observations into the estimated coefficient is inversely
proportional to the thickness of the mine waste dump.
Generally, the thickness of the mine waste dump is much
larger than the error magnitude of InSAR observations. This
implies that the errors of InSAR observations will be
dramatically mitigated when they propagate into the
estimated coefficient. Based on InSAR observation samples
over a far-field and stable area nearby the focused mine
waste dump in the real data experiment, we observed that
the statistical mean and STD of the far-field InSAR
observations were about –0.001 and 0.005 m. Such an error
level has an insignificant influence on the estimated coefficient
of the focused mine waste dump in this case.

5.1.2 Influence of Dump Thickness Errors on the
Parameter Estimation
A simulation analysis was carried out to show the influence of
dump thickness errors on the parameter estimation in this
section. More specifically, the parameters of the secondary
consolidation model were the same as those in Influence of

FIGURE 9 | Influences of InSAR observation errors (A) and dump thickness errors on the estimated coefficients of secondary consolidation (B).
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InSAR Errors on the Parameter Estimation Section. However,
InSAR observations were assumed to be error-free and the
estimation of dump thickness was designated by a range from
20 to 60 m (indicating a relative error to the real one from –50
to 50%). Then, the estimation of dump thickness with
different error levels were used to inverted the model
parameters using Eq. 3, respectively, and the result is
plotted in Figure 9B.

As can be seen from Figure 9B, the dump thickness errors have a
significant influence on the accuracy of the estimated coefficient of
secondary consolidation. For instance, about 50% of errors would be
caused when the uncertainty of the dump thickness reaches up to
50% (i.e., –20m in this study). According to the comparison of the
ZY-3-derivedDEMswith ICESat-2 elevation observations (with error
levels of centimeters, see Supplementary Figure S2 in
Supplementary Material), the accuracies of the ZY-3 DEM
products in the years 2012 and 2019 are about 6.4 and 5.3 m,
respectively. Such an error level would cause a maximum error of
about 0.0016 (occupying 20% of the real coefficient) in this
simulation case.

5.2 Error Influence of the Secondary
Consolidation Model Parameters on the
Accuracy of the Predicted Settlement
The settlement of the mine waste dump was modeled and
further predicted using the secondary consolidation model in
Eq. 2 in this study. As can be seen from Eq. 2, besides the
model inaccuracy, the reliability of the predicted settlement
primarily depends on two factors, i.e., the errors of dump
thickness and the estimated coefficient of secondary
consolidation. In this section, simulation analyses were
conducted to demonstrate the error influence of these two
parameters on the accuracy of the predicted settlement.

5.2.1 Influence of the Coefficient Errors on the
Accuracy of the Predicted Settlement
Similar to the simulation in Influence of InSAR and DEM Errors on
the Parameter Estimation of the Secondary Consolidation Model
Section, we firstly simulated the real time-series settlement of the
mine waste dump (see red line in Figure 10A) by assuming that c =

FIGURE 10 | (A,C): Examples of the influence of thickness errors and coefficient errors on the predicted settlement, respectively; (B,D): Relationship of the
predicted settlement relative errors with thickness and coefficient relative errors, respectively.
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0.008 and △H = 40m. Then, we assumed that the estimated
coefficients were 0.004–0.012, which indicates error levels from
−50 to 50%. Finally, the estimated coefficients with different error
levels were used to predict time-series settlement, and the results are
plotted in Figure 10A for comparison. It can be seen from
Figure 10A that the error of the estimated coefficient significantly
affects the reliability of the predicted settlement using the secondary
consolidation model. The larger the error of the estimated coefficient
is, the lower the reliability of the predicted settlement, and vice versa.
Even for the same error in the estimated coefficient, the error
magnitude of the predicted settlement would be increased with
the increase of the predicted time.

Figure 10B plots a comparison between the relative errors
of the predicted settlement to the maximum predicted one
(referred to as relative error of settlement) and the relative
errors of the estimated coefficient to the real one (referred to
as relative error of coefficient). As is shown, the settlement
relative error is linearly proportional to the coefficient relative
errors with an intercept of zero and a slope of about 16° in the
simulation case. In addition, it can be seen from Figure 10B
that the maximum relative error of the predicted settlement is
about 14.3% when the maximum relative error of the
coefficient reaches up to 50%.

5.2.2 Influence of the Dump Thickness Errors on the
Accuracy of the Predicted Settlement
Figure 10C shows a comparison of the dump thickness errors on the
accuracy of the predicted settlement. In which, the real parameters of
the secondary consolidationmodel were given as c = 0.008 and△H =
40m, and the estimated dump thicknesses were 20–40m (indicating
relative errors of –50–50% of the real thickness). As can be seen from
Figure 10C, the error of the estimated dump thickness imposes a
significant effect on the accuracy of the predicted settlement. The
larger the error is, the lower the accuracy is, and vice versa. In
addition, as is shown in Figure 10D where the relationship between
the relative errors of the predicted settlement and the dump thickness,
both the relative errors are linearly proportional with each other.
When the maximum relative error of the coefficient reaches up to
50%, the error of 14.3% of the maximum predicted settlement will be
caused.

6 CONCLUSION

In this study, a remote sensing-basedmethodwas proposed to predict
the time-series settlement of mine waste dump. The test over
Weijiamao open-pit mine, China, shows that the presented
method can reliably predict the time-series settlement of the mine
waste dump, with an accuracy of 0.008m. In this presented method
the coefficient estimation of the secondary consolidation is sensitive
to the error of thickness estimation but is insensitive to the error of
InSAR observations. In addition, both the errors of thickness
estimation and the estimated coefficient have a significant
influence on the predicted settlement of mine waste dump using
the secondary consolidation model. Therefore, it is important to
obtain the thickness of the concerned mine waste dumps at a high

accuracy level. In addition, it should be pointed out that the
contribution of horizontal movements of mine waste dump was
neglected when we estimated settlement from single-track
InSAR observations of LOS displacements. Such a strategy
would cause errors in the estimated settlement, and further
degrading the accuracy of the predicted settlement. This issue
will be our future research topic.
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Time Series Multi-Sensors of
Interferometry Synthetic Aperture
Radar for Monitoring Ground
Deformation
Chuanguang Zhu1*, Sichun Long1*, Jixian Zhang2, Wenhao Wu1 and Liya Zhang1

1School of Earth Sciences and Geospatial Information Engineering, Hunan University of Science and Technology, Xiangtan,
China, 2National Quality Inspection and Testing Center for Surveying and Mapping Products, Ministry of Natural Resources of the
People’s Republic of China, Beijing, China

A stack of images is a prerequisite for the multi-temporal interferometric synthetic aperture
radar (MT-InSAR) due to the wrapped nature of the interferometric phase. Although the SBAS
technique can relieve the requirement of the amount of SAR data, dozens of SAR acquisitions
could be regarded as the minimum requirement. However, due to the limitation of the imaging
capability of the spaceborne SAR system, the amount of available SAR data acquired from
only one SAR sensor is often not enough to satisfy the requirement for phase unwrapping
based on the Nyquist sampling assumption. Fortunately, there sometimes may be more than
one SAR stack, that is, stacks of SAR data acquired from different SAR systems. In this study,
we propose a methodology to detect ground deformation by combining multiple SAR images
acquired from different satellite systems for MT-InSAR analysis. First, the low-pass
deformation is estimated based on time series SAR acquisitions with low spatial resolution
and long wavelengths such as ENVISAT ASAR (ASAR). This information is then incorporated
into the processing of time series of SAR acquisitions with high spatial resolution and short
wavelength, such as TerraSAR-X (TSX). Specifically, the low-pass deformation will be
subtracted from each differential interferogram generated from short-wavelength SAR
images, and the rest of the MT-InSAR analysis will be based on the double-differentiation
interferograms. Then, the residual deformation will be calculated from these double-
differentiation interferograms and together with the low-pass deformation forms the full
deformation. As the principal component of deformation has already been subtracted, the
phase gradient of those double-differentiated interferogramswill be smooth enough to facilitate
the phase unwrapping. Between January 2009 and September 2010, 14 ASAR images and
11 TSX images acquired fromTianjin, China are selected as the test data. A rootmeans square
error (RMSE) of 9.1mm/year is achieved from 11 TSX images, while a rootmeans square error
of 3.7mm/year is achieved from 14 ASAR images. However, an RMSE of 1.6mm/year is
achieved when integrating 11 TSX images and 14 ASAR images for MT-InSAR analysis. The
experiments show that the proposed method can effectively detect ground deformation.

Keywords: multitemporal interferometric synthetic aperture radar, ground deformation, Nyquist sampling, multiple
satellite systems, spaceborne SAR
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INTRODUCTION

Land subsidence, caused by mining and excessive extraction of
groundwater, is a common hazard in contemporary society
(Marghany, 2021; Marghany, 2022). Moreover, in coastal areas
with low topography, land subsidence can cause more risky
damages such as flooding and even inundation (Hu et al.,
2009). Measurement of the magnitude of deformation is
required to study the land subsidence and control its
development.

Differential Synthetic Aperture Radar (DInSAR), a newly
emerging space geodetic technique developed in the 1980s
(Gabriel et al., 1989; Massonnet et al., 1993), has been proven
as a powerful technique for mapping ground deformation caused
by earthquake, landslide, and excessive extraction of
underground water with high precision and spatial resolution
over a large area. Nevertheless, DInSAR may fail due to low
correlation caused by spatiotemporal baselines and atmospheric
artifacts (Zebker and Villasenor, 1992; Zebker et al., 1997; Bamler
and Hartl, 1998; Massonnet and Feigl, 1998; Hanssen et al., 1999;
Li et al., 2004), particularly in vegetated areas. Marghany
(Marghany, 2013 and Marghany, 2014) have presented two
approaches to eliminate the temporal decorrelation to reduce
phase unwrapping error.

Fortunately, it was found that some ground targets can
maintain the characteristics of stable scattering over long
intervals of time (Sousa et al., 2011). With the advantage of
these coherent targets, several advanced approaches to multi-
temporal InSAR (MT-InSAR) have been presented to overcome
the technical limitations of DInSAR since the late 1990s (Ferretti
et al., 2000; Ferretti et al., 2001; Berardino et al., 2002; Hooper
et al., 2004; Lanari et al., 2004; Wegmüller et al., 2010).

These MT-InSAR approaches differ primarily in the
algorithms of coherent target selection and deformation
estimation. In some MT-InSAR algorithms, a priori
information is required to model the deformation (Hooper
et al., 2007). Only this scatterer, whose behavior of
deformation is close to the predetermined model, will be
identified as a coherent target, also referred to as a permanent
scatterer (PS). In contrast, the Stanford Method for PS (StaMPS)
algorithm, developed by Hooper et al., uses the spatial correlation
of the interferogram phase to identify coherent targets, and it does
not require prior knowledge of the variations of deformation in
time series (Hooper et al., 2007). Moreover, it is found that the
density of coherent targets identified by StaMPS is significantly
increased in rural areas with few buildings (Sousa et al., 2011).
Therefore, in this study, the StaMPS approach is used while the
suburb of Tianjin is chosen as the study area.

The crucial limitation of the MT-InSAR, including the
StaMPS, is the wrapped nature of the interferometric phase,
which will introduce 2π-ambiguities to the unknown
parameters to be estimated. Adding more information, such as
an explicit functional model and prior information, to the
MT-InSAR is one way to solve this impasse (Heuff and
Hanssen, 2020). Dehghani et al. (2013) presented a method
that combines DInSAR and Persistent Scatterer InSAR (PSI)
to monitor severe ground subsidence. The linear term of

subsidence was estimated using DInSAR based on the
interferograms with small temporal baselines and then
subtracted from all interferograms used for PSI analysis
(Dehghani et al., 2013). However, lack of availability of SAR
data with high coherent interferograms is mainly the limitation of
this method (Sadeghi et al., 2013). In order to overcome this
limitation, the periodogram approach is used to estimate the
principal component of deformation (Sadeghi et al., 2013). This
approach strongly depends on the discretization of the parameter
in solution space. However, it is difficult to yield a unique solution
as there are alternative solutions based on a different distribution
of the unknown parameters (Kampes and Hanssen, 2004).
Pawluszek-Filipiak and Borkowski (Pawluszek-Filipiak and
Borkowski, 2020) present a method that adopts PSI and
DInSAR to estimate the subsidence in the surrounding and
central subsidence basins based on the same SAR dataset.
Then, the PSI and DInSAR results are merged based on
regularized spline functions, yielding the final ground
deformation.

The objective of adding more information is to reduce the
spatiotemporal variability of the interferometric phase. The
interferometric phase will be smooth enough, and the phase
gradients are small if the revisit time is short enough. In other
words, the deformation can be accurately estimated by MT-
InSAR without any additional information if the available SAR
images are acquired with high temporal sampling. However, the
number of available SAR images is often not enough to satisfy the
requirement due to limited capability of the spaceborne sensor to
collect SAR acquisitions.

Until now, many spaceborne SAR satellites, such as Envisat,
ALOS-1/2, TSX, Tandem-X (TDX), COSMO-SkyMed (CSK),
Radarsat-1/2, and Sentinel-1, have been launched, which
allows us to observe the Earth with different wavelength,
repeat time, spatial resolution, and incidence angle. With the
advantage of an increasing number of SAR satellites, there may be
more than one SAR stack, for example, several stacks of SAR
datasets acquired from several SAR systems covering the
same area.

In order to reduce the likelihood of ambiguity errors caused by
severe deformation based on finite SAR data, we have developed a
newmethodology to integrate two different datasets, for example,
ASAR with longer and TSX with shorter wavelength, for MT-
InSAR analysis. First, the low-pass deformation pattern is
estimated based on the time-series ASAR dataset, which
represents an initial estimation (that is, the principal
component) of the ground deformation. Then, this result will
be subtracted from each interferogram generated from the TSX
dataset to reduce the phase gradients and meet the Nyquist
sampling criterion, and the rest of the MT-InSAR analysis will
be based on these double-differentiated TSX interferograms. As
the principal component of deformation has already been
subtracted, the phase gradient of those double-differentiated
TSX interferograms will be smooth enough to better facilitate
the phase unwrapping. Therefore, the residual deformation could
then be estimated more accurately and reliably from the time-
series TSX dataset. As the final step, the residual deformation
derived from TSX, together with that from ASAR, forms the full
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deformation. Through the synergic use of multi-frequency SAR
images, the process of deriving ground deformation from time
series InSAR analysis can be improved in terms of accuracy and
robustness. In addition, the algorithm is capable of extending the
applications of achieved SAR data on ground deformation
monitoring, especially in the case that considering the
historical deformation information. The experiments show that
the proposed method can effectively detect the ground
deformation with an accuracy of mm/yr by combining multi-
sensor SAR data to reduce the phase unwrapping errors.

METHODOLOGY

StaMPS was designed by Hooper et al. (Hooper et al., 2007) to
overcome the limitation of the absence of man-made buildings on
most of the Earth’s surface and prior knowledge of the temporal
behavior of the ground deformation, and it has been successfully
applied in many cases lacking in anthropogenic features
(Costantini et al., 2016; Tiwari et al., 2016; Dwivedi et al., 2017).

The small baseline method implemented in the standard
StaMPS software, referred to as StaMPS-SB for simplicity, is
used in the following study as there are only a few SAR
acquisitions with irregular gaps. StaMPS-SB focuses on these
pixels that show a slowly decorrelating filtered phase (SDFP) over
a short interval of time to mitigate atmospheric effects and
improve the coherence (Hooper, 2008). According to the way
that StaMPS-SB selects SDFP pixels, some candidates will be first
chosen based on amplitude dispersion with a relatively low
threshold. Then, the final SDFP pixels will be selected through
an iterative procedure calculating the noise level of each
candidate.

As shown in (Hooper et al., 2007), the wrapped
interferometric phase, φx,i, of the xth in the ith flatted and
topographically corrected interferogram can be expressed as
the wrapped sum of five terms,

φx,i � w{ϕD,x,i + ϕA,x,i + ϕS,x,i + ϕθ,x,i + ϕN,x,i}, (1)

where ϕD,x,i is the phase contribution due to the movement along
the line-of-sight (LoS) direction, ϕA,x,i is the phase caused by
changes in atmospheric delay between two SAR acquisitions, ϕS,x,i
is the residual phase due to inaccuracies of satellite position, ϕθ,x,i
is the residual phase due to the look angle error mainly caused by
the inaccuracy of DEM such as SRTM-DEMwhich is usually used
to correct the topographic phase, ϕN,x,i is the phase noise term
due to variability in scattering, thermal, decorrelation, etc., and
w{·} is the wrapping operator.

The absolute phase difference between adjacent SDFP pixels
may be larger than π due to the spatially uncorrelated component
of the signal. Therefore, the spatially uncorrelated portion of ϕθ,x,i
should be estimated and subtracted from φx,i before phase
unwrapping. The three-dimensional phase unwrapping
algorithm adopted by StaMPS-SB contains two steps. First, the
differential phase between adjacent pixels is unwrapped in the
temporal domain under the Nyquist assumption that the
differential phase is less than π. Then, the unwrapped

differential phase is used to build a priori probability density
functions (PDFs) in each interferogram. Also, these PDFs will be
converted into cost functions and fed into the optimization
routines of a two-dimensional statistical-cost network-flow
algorithm to obtain the final unwrapped results (Hooper, 2010).

After unwrapping, the spatially correlated portion of ϕθ,x,i can
be estimated using the least squares solution. Then, the
atmosphere ϕA,x,i and the orbit errors ϕS,x,i will be estimated
by high-pass filtering in the temporal domain followed by low-
pass filtering in the spatial domain. Finally, subtracting these
nuisance terms leaves the deformation phase ϕD,x,iand the
spatially uncorrelated errors which can be regarded as random
noise.

The phase-unwrapping algorithm adopted by StaMPS-SB is
typically based on the Nyquist sampling assumption that the
differential phase between adjacent SDFP pixels is less than π. In
order to satisfy this condition, the spatially uncorrelated portion
of ϕθ,x,i should be estimated and subtracted from the original
signal before unwrapping. However, the deformation phase
ϕD,x,i, if too large, can also lead to the differential phase
being greater than π, especially when only a few SAR
acquisitions are available.

Fortunately, many spaceborne SAR satellites, such as Envisat,
ALOS-1/2, TSX, and Sentinel-1., have been launched, which
allows us to observe the Earth using multiple SAR sensors
with different wavelength, repeat time, spatial resolution, and
incidence angle. With the advantage of an increasing number of
SAR satellites, there may be more than one SAR stack, for
example, several stacks of SAR datasets acquired from
different SAR systems covering the same area. In this study,
we have developed a new StaMPS-SB procedure to integrate two
different SAR datasets, that is, ASAR with longer and TSX with
shorter wavelength for MT-InSAR analysis. The flowchart
applied in this study is shown in Figure 1.

In the proposed method, the deformation ϕD,x,i can be
expressed as

FIGURE 1 | Flowchart of the implemented method.
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ϕD,x,i � ϕlp
D,x,i + ϕres

D,x,i, (2)
where φlp

D,x,i is the low-pass (that is, principal) component
deformation and ϕresD,x,i is the residual deformation.

First, ϕlpD,x,i is estimated based on the time-series ASAR dataset,
which represents an initial estimation (that is, the principle
component) of the ground deformation. Then, this
information will be subtracted from each differential
interferogram generated from the TSX dataset to fulfill the
Nyquist sampling criterion.

It should be noted that the date of ASAR and TSX acquisitions
is inconsistent. Also, the location of SDFPs selected from ASAR
and TSX is also different from each other. Therefore, the
deformation retrieved from ASAR has been first interpolated
in time to match the date of TSX data. The quadratic polynomial
was used tomodel the evolution of deformation in time. Then, the
time-interpolated deformation was interpolated in the space
domain using the Kriging method (Figure 2).

After interpolation processing in time and space followed by
conversion of LoS direction, the low-pass deformation derived

from ASAR can be incorporated into the processing of the TSX
dataset according to the longitude and latitude of each SDFP. The
matching error based on the geographical coordinates is about a
few meters, which is acceptable as the deformation is spatially
correlated.

Once subtracting the low-pass deformation, further analysis
will be based on the double-differentiated TSX interferograms. As
the principal component of ground deformation has already been
subtracted, the double-differentiated phase will be smooth
enough (Figure 3) to facilitate phase unwrapping. Therefore,
the residual deformation could then be estimated more accurately
and reliably from the time-series TSX dataset using the standard
StaMPS-SB procedure. As the final step, the residual deformation
derived from TSX, together with that from ASAR, forms the final
deformation.

STUDY AREA AND AVAILABLE DATA

The suburb of western Tianjin, shown in Figure 4, is chosen as
the study area. Tianjin, one of the four municipalities in China, is
located in the North China Plain (Liu et al., 2014). Tianjin lies in a
semi-arid and semi-humid climate region and suffers from water
shortage as the annual precipitation is less than 500 mm. Due to
the shortage of surface water sources and small amount of
precipitation, the groundwater has been extracted to meet the
agricultural and industrial needs for decades, which leads to
severe ground subsidence with maximum cumulative
subsidence of 3.22 m in history (Yi et al., 2011). The rates of
ground subsidence have visibly increased since the 1950s,
reaching 80–100 mm/year from 1967 to 1985 (He et al., 2006a;
He et al., 2006b). After the 1980s, some measures, such as
injection and restricting exploitation of groundwater, have
been taken to reduce the subsidence rate. However, the
ground subsidence rate is still very high (approximately
137 mm/year), and the phenomenon of subsidence has even
worsened since 2010 (Zhu et al., 2015).

FIGURE 2 | Extracting the deformation rate of SDFP pixels in TSX by
Kriging interpolation in space. The mesh grid is generated from the
deformation rate derived from ASAR images. The black dots denote the SDFP
pixels selected from TSX acquisitions.

FIGURE 3 | TSX interferogram (A) before and (B) after subtracting the initial deformation derived from ASAR acquisitions. The temporal and perpendicular
baselines are 429 days and 25 m, respectively.
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The performance of the presented method will be investigated
using ASAR and TSX images with the ground coverage represented
by red and blue rectangles, respectively, in Figure 4. The ASAR
dataset, which consisted of 14 acquisitions spanning the intervals of
time from 23 January 2009 to 10 September 2010 (seeTable 1), was
acquired in Stripmap mode with an incidence angle of 23° along
descending orbit path direction. The ASAR acquisitions have a
longer wavelength of about 5.6 cm and a coarser spatial resolution
of approximately 5 m in the azimuth direction and 20m in the
ground range direction. The TSX dataset, which consisted of
11 acquisitions spanning the interval time from 27 March
2009 to 6 September 2010 (see Table 1), was acquired in

Stripmap mode, with an incidence angle of 41° along
descending orbit path direction. The TSX acquisitions have a
shorter wavelength of about 3.1 cm and a higher spatial
resolution of approximately 3.3 m in the azimuth direction and
2.7 m in the ground range direction.

There are nine leveling bench-marks (BM1-BM9) that are
denoted by red dots in Figure 4, located within the study area.
The subsidence rate, derived from the leveling data with high-
level precision, can be used to evaluate the accuracy of the
presented method.

EXPERIMENTAL RESULTS AND
DISCUSSION

Due to the irregular gaps in SAR acquisitions and serious ground
deformation, the StaMPS-SB approach is used in the following
experiments. Using the multi-master SBAS approach, only these
interferograms with smaller geometric and temporal baselines
than the predefined threshold are used for MT-InSAR analysis,
which can improve the interferometric coherence by minimizing
the decorrelation effects caused by geometric and temporal
baselines.

It should be noted that the ground deformation, retrieved from
the InSAR technique, is along the LoS direction and composed of
the horizontal and uplifted components. However, previous
studies (Yi et al., 2011; Zhu et al., 2015) have suggested that
the deformation is dominated by vertical components as the
ground displacement is mainly caused by over-extraction of
groundwater in this study area. Therefore, the ground
deformation along the vertical direction is simply obtained by
dividing the cosine of the incidence angle.

Results From the Standard StaMPS-SB
Approach Based on 11 TSX Acquisitions
In this section, the standard StaMPS-SB approach is used to
estimate the ground deformation based on a few SAR acquisitions
(i.e., 11 TSX images).

FIGURE 4 | Location of the study area. The two insets depict the
geographical location of Tianjin in China and the ground coverage of ASAR
(red rectangle) and TSX (blue rectangle). The 22 BMs are used to evaluate the
results derived from different methods.

TABLE 1 | Envisat ASAR and TerraSAR-X dataset.

Envisat ASAR TerraSAR-X

No. Date Perpendicular baseline (m) Interval (days) No. Date Perpendicular baseline (m) Interval (days)

1 20090123 0 0 1 20090327 37.8 0
2 20090227 80.2 35 2 20090418 -30.9 22
3 20090508 -212.2 105 3 20090510 25.5 44
4 20090612 145.9 140 4 20090601 37.3 66
5 20090717 -35.5 175 5 20090623 -81.8 88
6 20090821 -110.6 210 6 20090908 37.8 165
7 20091030 -199.5 280 7 20091113 0 231
8 20091204 7.1 315 8 20091216 116.5 264
9 20100319 -26.8 420 9 20100702 -83.7 462
10 20100423 162.0 455 10 20100804 76.6 495
11 20100528 -228.0 490 11 20100906 6.9 528
12 20100702 42.7 525
13 20100806 -366.2 560
14 20100910 -45.3 595
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A fully connected network of interferograms is the
foundation for MT-InSAR analysis using the StaMPS-SB
approach. However, it is difficult to automatically achieve
the optimal network due to the irregular intervals of the
11 TSX acquisitions, especially with a wide gap (198 days)
between 16 December 2009 and 2 July 2010. Therefore, the
interferograms were initially generated with a relatively low
threshold, that is, specifying 250 m as the temporal baseline,
90 days as the geometric baselines, and 0.5 as the coherence
threshold. Then, on the premise of a connected network, the
interferograms with low coherence are manually removed
from the network of interferograms. In addition, some
interferograms with high coherence were manually
generated and appended to the original stacks to increase
the temporal sampling. A total of 24 interferograms with
high coherence are finally obtained (seen in Figure 5A) and
used for MT-InSAR analysis.

Then, the ground deformation is estimated using the standard
StaMPS-SB approach based on the 24 interferograms. Finally,
39892 SDFP pixels have been detected. The mean rate of
deformation is converted to the vertical direction and
compared with leveling measurements. The result is shown in
Figure 6A. The negative rate indicates that the study area suffered
ground subsidence during this period. In addition, the spatial
pattern of subsidence is almost similar to that detected by Zhu

et al. (2015) except for the one in zone Z1. A maximum
subsidence rate of 90 mm/year is detected in zone Z1 in this
study based on 24 interferograms generated from 11 TSX
acquisitions. However, a maximum subsidence rate of
110 mm/year is suggested by Zhu et al. (2015) based on
48 TSX acquisitions.

Results From the Proposed Method Based
on 11 TSX and 14 ASAR Acquisitions
In this section, the ground deformation is estimated using the
proposed method by integrating 11 TSX and 14 ASAR
acquisitions.

First, the ground subsidence is estimated using the standard
StaMPS-SB approach based on 34 interferograms (as seen in
Figure 5B) generated from 14 ASAR acquisitions. Also, the result
is evaluated and validated by comparing it with the leveling
measurements. The result is shown in Figure 7B. The
comparison suggests an RMSE of 3.7 mm/yr and a correlation
coefficient of 0.969, which demonstrates that the results derived
from the ASAR dataset can be used as prior information. Then,
the subsidence is subtracted from each interferogram generated
from TSX acquisitions, and the residual deformation is extracted
based on these double-differentiated TSX interferograms. Finally,
40147 SDFP pixels have been detected.

FIGURE 5 | Distribution of temporal and perpendicular baselines of interferograms generated from (A) 11 TSX acquisitions, (B) 14 ASAR acquisitions, and (C)
29 TSX acquisitions. The black dots denote the SAR acquisitions; black lines denote the interferograms.
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Figure 6B depicts the final results derived from the proposed
method. As shown in Figure 6, the spatial distribution of the
ground subsidence derived from the proposed method agrees
with that of 11 TSX images except the one in zone Z1. A
subsidence rate of 80–110 mm/yr is detected by the proposed
method in zone Z1, and the results agree with those of Zhu et al.
(2015) and Luo et al. (2014).

Results From the Standard StaMPS-SB
Approach Based on 29 TSX Acquisitions
In order to further evaluate the performance of the presented
method, we collect 29 TSX acquisitions used by Zhu et al. (2015).
These acquisitions are acquired during the same period as the
11 TSX (i.e., from 27 March 2009 to 6 September 2010).
145 interferograms (as seen in Figure 5C) with a maximum
temporal interval of 264 days and geometrical baselines of 117 m
are generated based on the 29 acquisitions. Also, the ground
subsidence is estimated using the standard StaMPS-SB approach
and compared with that from the presented method. The spatial
distribution of the subsidence rate is shown in Figure 6C.

Clearly, in Figure 6, the results obtained from the proposed
method based on the integration of 11 TSX and 14 ASAR
acquisitions (Figure 6B) agree with those of the standard

StaMPS-SB approach based on 29 TSX acquisitions
(Figure 6C).

DISCUSSION

This section is devoted to analyzing the performance of the
proposed method by comparing the results with the leveling
measurements.

Comparison Between the Leveling
Measurements and the Results From
11 TSX Acquisitions
In order to quantitatively evaluate the performance of the
standard StaMPS-SB approach with a few TSX acquisitions,
the ground subsidence derived from 11 TSX acquisitions is
compared with leveling measurements. Also, the results are
shown in Figure 7A. It should be noted that the InSAR-
derived subsidence rate is estimated by calculating the mean of
the rate of all the SDFP pixels located within a 50 m radius of each
leveling bench-marks (BM1–BM9). One standard deviation
calculated from these SDFP pixels is also represented by the
error bar in Figure 7A.

FIGURE 6 | Deformation rate derived from (A) 11 TSX acquisitions using the standard StaMPS approach, (B) 11 TSX acquisitions and 14 ASAR acquisitions using
the proposed method, and (C) 29 TSX acquisitions using the standard StaMPS approach.
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It can be seen from Figure 7A that the differences between
these two distinct measurements are slight (about 5 mm/year) in
BM3–BM9, where the rate of ground subsidence is less than
70 mm/year. The slight differences may result from some
uncertainties, such as temporal uncertainty due to the different
temporal resolution of distinct data, positional uncertainty due to
inaccurate coordinate of leveling bench-marks and SDFP pixels,
and the uncertainty caused by the conversion of ground
subsidence from the LoS direction to the vertical direction.

However, there are significant differences between the two
distinct measurements in BM1 (with a difference of 25.5 mm/
year) and BM2 (with a difference of 22.1 mm/year), both of which
are located in zone Z1. The subsidence is seriously
underestimated using the standard StaMPS-SB approach based
on the 11 TSX acquisitions. The statistical calculation between the
InSAR-derived results and the leveling measurements suggests

that the RMSE is up to 9.1 mm/yr, while the correlation
coefficient is only 0.862.

Previous studies (Luo et al., 2014; Zhu et al., 2015) show that
the ground subsidence is serious in zone Z1, where the maximum
rate of subsidence is up to 110 mm/year. In order to detect the
serious subsidence, more SAR acquisitions are needed for the
standard StaMPS-SB approach to satisfy the assumption that the
deformation is strongly correlated in space within a proper
distance and can be accurately estimated using the band-pass
filtering method. In addition, more SAR acquisitions are also
needed to smooth the phase gradient as almost all phase
unwrapping methods are based on the assumption that the
interferometric phase field varies slowly. However, as only
11 TSX acquisitions are available, the ground subsidence is
seriously underestimated using the standard StaMPS-SB
approach.

FIGURE 7 | Comparison between deformation rates derived from leveling measurement and (A) 11 TSX acquisitions using standard StaMPS-SB, (B) 14 ASAR
acquisitions using standard StaMPS-SB and (C) integration of 11 TSX acquisitions and 14 ASAR acquisitions using the proposed method.
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Comparison Between the Leveling
Measurements and the Results From
11 TSX and 14 ASAR Acquisitions
For further validation, the subsidence rate obtained from the
proposed method is also compared with the leveling
measurements, and the linear regression between these two
measurements is calculated and shown in Figure 7B.
Compared with that of the standard StaMPS-SB, the statistical
calculation suggests that the RMSE and maximum difference
reduce from 9.1 mm/yr to 1.6 mm/yr and 25.5 mm/yr to 4.7 mm/
yr, respectively. Moreover, the correlation coefficient increases
from 0.862 to 0.992 at the same time. The comparison
demonstrates a significant improvement in the precision of
deformation monitoring, which suggests that high-accuracy
subsidence can still be achieved from a few TSX images by
integrating with ASAR images.

In addition, it can also be seen from Figure 6B that although
the accuracy of deformation has been improved, the subsidence
rate on all nine benchmarks derived from the proposed method is
less than the leveling measurements. These differences may be
caused by the error of leveling measurement on BM8 which has
been selected as the reference point to calibrate the InSAR results
and the inaccurate location of BM8 as well.

In addition, more SDFPs, that is, 40147 SDFPs have been
finally detected. According to the method that StaMPS-SB selects
SDFP, some candidates will be first selected based on amplitude
dispersion. Then, the candidates will be filtered in a small
window, such as 50 m × 50 m, to determine the spatially
correlated phase. If the difference of deformation between one
pixel and others in the small patch is much greater, this pixel,
even if it has a very stable phase response in all interferograms,
will also be discarded.

Comparison Between the Leveling
Measurements and the Results From
29 TSX Acquisitions
The comparison with leveling measurements suggests a
correlation coefficient of 0.979 and an RMSE of 3.0 mm/year.
Both the statistical analyses demonstrate that the results obtained
from 29 TSX images can be used to evaluate the performance of
the proposed method.

There are 33087 common SDFP pixels between the ones
identified based on 11 TSX acquisitions and those based on
29 TSX acquisitions. Then, we compare the subsidence rate
correspondence to these common SDFP pixels. The results are
shown in Figure 8A. It can be seen from Figure 8A that there is a
significant bias (about 20 mm/yr) between these two
measurements. The difference of rate in about 22% of
common SDFP pixels is more than 10 mm/yr, which results in
a low correlation coefficient of 0.86 and a high RMSE of 7.4 mm/
yr. The subsidence derived from 11 TSX acquisitions is
underestimated when the deformation velocity reaches over
70 mm/yr in this study. This can be explained by the inference
mentioned before, that is, the large deformation cannot be
accurately estimated if there are no adequate acquisitions.

There are 33306 common SDFP pixels between the ones
identified using the proposed method based on the integration
of 11 TSX and 14 ASAR acquisitions and those using the standard
StaMPS-SB approach based on 29 TSX acquisitions. The
subsidence rates in correspondence to these common SDFP
pixels are shown in Figure 8B. Compared with the results
shown in Figure 8A, the difference between the results
derived from the integration of 11 TSX and 14 ASAR
acquisitions and that from the 29 TSX acquisitions is
significantly reduced. The proportion of the difference with
more than 10 mm/yr decreases from 22% to 4.5%. In a few
SDFP pixels with a proportion of less than 0.4%, the
difference in subsidence rate is more than 20 mm/yr, which
may be caused by the errors in initial subsidence information
obtained from ASAR data. However, the statistical calculation
shows a significant improvement in the correlation coefficient
which increases from 0.86 to 0.969, and in the RMSE, which
decreases from 7.4 mm/yr to 3.9 mm/yr.

Comparison of Time Series Displacement
Figure 9 shows the evolution of the displacements of SDFPs located
within a radius of 50 m of the eight benchmarks. It is difficult to
accurately retrieve absolute time-series displacements because only
two periods of leveling measurements are available. Therefore, the
relative time series displacements at BM1 to BM9 are calculated by
reference to these SDFPs near the BM8. It can be seen from Figure 9
that the displacement will be underestimated if only 11 TSX data are
available, especially when the actual displacement is relatively large.
However, the presentedmethod can effectively detect the time-series
displacement by combining multi-sensor SAR data. In addition, the
time series displacement derived from the present method is
smoother than the other, which is due to the low-pass filtering in
the time domain to extract the residual displacement.

Overall, the validation of the accuracies using the leveling
measurements and the results obtained by different methods with
different numbers of SAR acquisitions verify the ability of the
proposed method to detect the deformation with high accuracy
through a few high spatial resolutions of TSX integrated with the
coarser resolution ASAR acquisitions.

CONCLUSION

In this study, a methodology integrating different SAR
acquisitions derived from different SAR satellites with different
wavelengths has been presented for MT-InSAR analysis. By
integrating multiple SAR sensors, the presented method can
overcome the limitation of imaging capability of a single SAR
satellite.

We estimate the ground displacement using 11 TSX
acquisitions and 14 ASAR acquisitions. In addition, we also
estimate the ground displacement by integrating 11 TSX and
14 ASAR acquisitions based on the presented method. Both the
InSAR-derived displacements are compared with the leveling
data. The statistical calculation shows that the correlation is
0.862, 0.969, and 0.992 and the RMSE is 9.1 mm/yr, 3.7 mm/
yr, and 1.6 mm/yr.
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FIGURE 8 | Comparison between deformation rates derived from 29 TSX acquisitions and (A) 11 TSX acquisitions using standard StaMPS-SB and (B) integration
of 11 TSX acquisitions and 14 ASAR acquisitions using the proposed method.

FIGURE 9 | Time series of displacement at (A–G) BM1 ~ BM7 and (H) BM9 derived from three sets of SAR datasets, that is, the 29 TSX acquisitions only, the
11 TSX acquisitions only, and the combination of 11 TSX and 14 ASAR acquisitions. It should be noted that the time series of displacement is relative to BM8.
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In addition, we estimate the ground displacement using
29 TSX acquisitions over the same period and compare the
results with that estimated from the integration of 11 TSX and
14 ASAR acquisitions. The correlation coefficient is
0.969 between the two distinct measurements.
Furthermore, the RMSE is 3.9 mm/yr, which suggests that
the accuracy of the InSAR-derived displacement using the
integration of two small SAR datasets coincided with that of
one large dataset.

The results from these experiments suggest that the presented
method is capable of estimating ground displacement by
integrating the datasets from multiple SAR sensors. Still, the
presented method can extend the applications of archived SAR
data on ground deformation monitoring and will potentially play
an important role in the case of insufficient scenes of the image
from a single SAR sensor.
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Source Model for the 2022 Qinghai
Menyuan Ms 6.9 Earthquake Based on
D-InSAR
Jiangtao Liao1, Chuntao Liang1,2*, Chaoliang Wang1, Feihuang Cao1, Chengming Ye1 and
Yinghui Yang2

1Key Laboratory of Earth Exploration and Information Techniques (Chengdu University of Technology), Ministry of Education,
Chengdu, China, 2State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of
Technology), Chengdu, China

On 8 January 2022, anMs 6.9 earthquake occurred inMenyuan County, Qinghai Province,
China. This earthquake ruptured a patch of the Qilian-Haiyuan fault in the northeast margin
of the Qinghai-Tibet Plateau. In order to understand the seismogenic structure of this
earthquake and analyze the fault activity, we use differential synthetic aperture radar
interferometry (D-InSAR) technology to obtain a complete co-seismic displacement field
on the surface, and use pixel tracking algorithm to extract the trace of the ruptured fault.
The slip distribution of the seismogenic fault was inverted using the steepest descent
method, and the Coulomb stress change caused by the earthquake was also calculated.
Surface deformation results show that theMenyuan earthquake produced obvious surface
displacements in an area of 50 × 40 km2. The displacements are mainly distributed in the
western segment of the Lenglongling fault and the eastern segment of the Tolaishan fault.
The maximum displacements in the ascending and descending orbits in the LOS direction
are 59.7 and 94.7 cm, respectively. The co-seismic slip results show that the strike, dip
and average slip angles of the seismogenic fault are 108°, 79° dipping to SW, and 4°,
respectively. On the whole, the fault is mainly of left-lateral, with a small amount of thrust
component and only one co-seismic rupture center in our inversion result. The rupture
center is located at a depth of ~5 km below the surface, and the maximum slip is 3.1 m.
The total seismic moment released by this earthquake is 1.28 × 1019 N·m, and the
corresponding moment magnitude is 6.67. Finally, the static Coulomb stress change
results show that parts of the Lenglongling fault, the Tolaishan fault, the Sunan-Qilian fault
and the Minyue-Damaging fault are loaded, emphasizing the importance for earthquake
risk assessment of these fault.

Keywords: Menyuan earthquake, D-InSAR, deformation filed, slip distribution, coulomb stress

INTRODUCTION

At 01:45 on 8 January 2022, a magnitude 6.9 earthquake occurred in Menyuan County, Haibei
Prefecture, Qinghai Province (37.77 N, 101.26 E) with a focal depth of 10 km. The epicenter is 54 km
away from Menyuan County, with an average altitude of about 3,674 m within 5 km (http://www.
cenc.ac.cn/). The area is sparsely populated. Nine people were injured in the earthquake. Many
buildings, including the Lanxin Railway, were severely damaged with a maximum intensity of IX
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(China Earthquake Administration; Lu et al., 2022). As of April 1,
two aftershocks of magnitude 5 or above were recorded, which
occurred 26 min and 4 days after the earthquake, respectively,
and the Ms 5.2 earthquake was the largest aftershock on
January 12.

This earthquake occurred on the Qilian-Haiyuan fault zone on
the northeastern margin of the Qinghai-Tibet Plateau (Figure 1).
Since the Cenozoic, the northeastern margin of the Qinghai-Tibet
Plateau has expanded into the mainland under the double effects
of the continuous northeast compression of the Indian plate and
the resistance of the adjacent strong Alashan block (Zhang et al.,
2003; Shi et al., 2018). The GPS velocity field shows that the
crustal displacement of the northeastern margin of the Qinghai-
Tibet Plateau is NE-EW, and the continuous northward
expansion is the major tectonic cause for the frequent
occurrence of strong earthquakes in this area (Wang and
Shen, 2020). Qilian-Haiyuan fault is a large active fault in the
study area, which is dominated by strike-slip. It starts from the
Muli-Jiangcang fault in the west, and stretches eastward as the
Tuolaishan fault, the Lenglongling fault, the Jinan fault, the
Qianghe fault, the Maomaoshan fault, the Laohushan fault, the
Haiyuan fault, the Liupanshan fault. Since 1900, two M ≥
8 earthquakes have occurred on this fault—Haiyuan M 81/2

earthquake in 1920 and the Gulang M 8 earthquake in 1927
(Zhu et al., 2022). The Menyuan Ms 6.9 earthquake occurred in a
region with a risk code of A3 in the middle part of Qilian
Mountains (Xu et al., 2017). It is located at the intersection of
the Lenglongling fault and the Tolaishan fault (Fan et al., 2022; Xu

et al., 2022; Yang et al., 2022). The Lenglongling fault is connected
to the Jinqianghe fault in the east and the Tolaishan fault in the
west. It is a Holocene sinistral strike-slip and thrust fault with a
strike of NWW and a total length of about 150 km (Xu et al.,
2016). On 26 August1986 and 21 January2016, two historical
earthquakes of M 6.4 occurred on a blind thrust fault developed
on the northeast of Lenglongling fault, at 28 and 33 km from this
epicenter, respectively (Liu et al., 2019; He et al., 2020).

After the Menyuan Ms 6.9 earthquake, some scientific
research teams responded quickly, and made significant
research achievements in the field geological surveys, precise
location of aftershocks, focal mechanism solutions, fault slip
distribution, regional Coulomb stress changes, regional deep
structures and so on (Feng et al., 2022; Liang et al., 2022; Pan
et al., 2022; Peng et al., 2022; Wang et al., 2022; Yang et al., 2022;
Zhu et al., 2022). Field investigation reveals that the surface
rupture mainly includes linear shear cracks, oblique tension
cracks, tension shear cracks, extrusion bulge and other types. It
is the rupture of the left-order part of the left-lateral strike-slip
fault under the tensile stress regime, and it is considered that the
fault is ruptured bilaterally initiating from the compressional
bend (Li et al., 2022a; Pan et al., 2022). The aftershock location
results show a distinct spatiotemporal migration exist from the
west to the east (Fan et al., 2022; Xu et al., 2022; Yang et al.,
2022). Focal mechanism results show that the earthquake is a
strike-slip type. Further, the source characteristics of aftershocks
vary from the mainshock zone to the east side. Focal
mechanisms of aftershocks near the mainshock are similar to

FIGURE 1 | Tectonic backgrounds of the Menyuan Ms 6.9 earthquake. (A) The green and blue dashed rectangles represent the data coverage of ascending and
descending orbits of Sentinel-1 satellites, respectively; the black rectangle represents the scope of the study area. The black and red solid lines constitute together the
Qilian-Haiyuan Fault, and the latter is seen as the Tianzhu Gap (Gaudemer et al., 1995). The yellow circles represent historical earthquakes with surface wave magnitude
(Ms) larger than 7 since 1900 (data from Sichuan Earthquake Administration). Black beach balls represent focal mechanisms of M ≥ 5.0 events (Global CMT, since
1976). Brown arrows represent the GPS velocity field with respect to the Eurasian frame (Wang and Shen, 2020). The red star represents the Ms 6.9 earthquake. The
background image is DEM from SRTM (Farr and Kobrick, 2000). (B) Topography of the study area [black box in Figure (A)] and aftershock distribution. The mainshock is
marked by the red star. Pink circles represent two Ms ≥ 5.0 aftershocks (Yang et al., 2022); black beach balls represent the focal mechanisms of two Ms 6.4 Menyuan
earthquakes in 1986 and 2016. The solid black line represents the surface fault trace (Xu et al., 2016). (C)Geographical location of the study area. The red box marks the
extent of figure (A). MJF: Muli-Jiangcang Fault, TLSF: Tuolaishan Fault, LLLF: Lenglongling Fault, JQHF: Jinqianghe Fault, MMSF: Maomaoshan Fault, LHSF: Laohushan
Fault, HYF: Haiyuan Fault, LPSF: Liupanshan Fault, SNQLF: Sunan-Qilian Fault, MYDMYF: Minyue-Damaying Fault, HCSTF: Huangcheng-Shuangta Fault, MYF:
Menyuan Fault, DBSF: Dabanshan Fault, RYSF: Riyueshan Fault.
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that of the mainshock, and the reverse component increases to
the east side obviously (Liang et al., 2022). The finite fault
inversion results show that the fault is dominated by left-lateral
strike-slip with a maximum slip of 3.5 m. The Coulomb stress
change results show that the earthquake is located at the positive
stress zone of the 2016 Menyuan earthquake (Li et al., 2022b;
Peng et al., 2022). The historical strong earthquakes on the
northeastern margin of the Qinghai-Tibet Plateau have a stress
loading effect on the Muli-Jiangcang and Tuolaishan faults in
the western segment of the Qilian-Haiyuan fault zone, as well as
the Jinqianghe-Laohushan fault in the middle segment (Zhu
et al., 2022). In addition, the thickness of crust changes
dramatically in the eastern part of the Qilian block, and this
earthquake is located at the transition zone where physical
properties of the crustal medium rapidly change (Wang
et al., 2022).

Results above show that the fault structure is complex. Some
problems still remained unclear. For example, the influence of the
earthquake on the adjacent faults is not resolved. Previous studies
mainly focused on quick disaster emergency response after the
earthquake. The ascending orbit images used in the InSAR-based
deformation observation only covered part of the rupture area, so the
interferogram was incomplete. Would the results be improved by
using ascending orbit data that completely covered the rupture zone?

In this paper, the co-seismic displacement field is obtained by
D-InSAR technology, using the data of synthetic aperture radar
(SAR) in ascending and descending orbits covering the seismic
rupture area. At the same time, based on Pixel Tracking
technology, the range and azimuth offset maps of the
ascending and descending orbits are obtained, and the surface
fault traces are also extracted. Then, the linear inversion of the
distributed slip model is carried out. Based on the finite fault
model, the Coulomb stress change caused by the earthquake are
calculated. Finally, and the stress condition of the adjacent faults
after the earthquake is analyzed.

INSAR DATA AND PROCESSING

According to the principle of minimum time interval of SAR data
coverage, the Level 1 Single-Look Complex data (SLC) in
Sentinel-1 Interferometric Wide (IW) mode is used. The
ascending orbit (T128A) and the descending orbit (T33D)
each contain two images to form an interferometry pair. The
detailed parameters of the image pairs are shown in Table 1. The
time baselines of the satellite images of the ascending and
descending orbits are both 12 days. The ascending orbit image
pair were collected 3 days before and 9 days after the earthquake.
The descending orbit image pair were collected 10 days before

and 2 days after the earthquake. So, more afterslip is included in
the ascending orbit pair. In addition, the corresponding spatial
perpendicular baselines of the two pairs of images are both less
than 60 m, indicating that the topographic phase has little
influence on the interferometry phase, increasing the
sensitivity of the deformation phase.

In this paper, the open-source software ISCE (InSAR Scientific
Computing Environment, Rosen et al., 2012) is used for two-pass
differential interference processing of the SAR data in ascending
and descending orbits. Firstly, the software achieves accurate image
registration through enhanced spectral diversity (ESD) algorithm
(Fattahi et al., 2017), which makes the azimuth matching accuracy
higher than 0.001 pixels, avoiding the phase jump caused by
adjacent image bursts, and greatly improving the reliability of
interference results. The precise orbit (POEORB) data of European
Space Agency (ESA) is used to eliminate orbit errors (https://
scihub.copernicus.eu/). The 30-m resolution SRTM elevation data
product published byNASAwas used to simulate the terrain phase,
and the interferogram is obtained by the second difference. In
order to improve the signal-to-noise ratio of the interferograms, the
multi-look ratio of range direction and azimuth direction is set as 5:
1. A weighted power spectrum adaptive algorithm for phase
filtering (Goldstein and Werner, 1998). Then, the phase
unwrapping is carried out based on the minimum cost flow
algorithm, to obtain the geocoded Line Of Sight (LOS)
displacement. The atmospheric errors in InSAR measurement
mainly come from the influence of the ionosphere and
troposphere, and the ionosphere has less influence on the C
band due to the relatively short wavelength (Gray et al., 2000).
Therefore, the tropospheric atmospheric delay model provided by
the General Atmospheric Correction Online Service (GACOS) of
Newcastle University was used for atmospheric correction (Yu
et al., 2018). The residual error of orbit will produce long
wavelength noise, so a linear trend is removed from the line of
sight (LOS) displacement result. Finally, the co-seismic LOS
deformation field after atmospheric correction and detrending is
obtained. (Supplementary Figure S1).

COSEISMIC DEFORMATION

In this paper, D-InSAR technology was used to obtain the
interferograms of the ascending and descending orbit SAR
data (Figure 2). Except for a small incoherent area in the
deformation center caused by deformation jump on the fault
trace, strong coherence is preserved among the most area,
showing continuous interference fringes. Both ascending and
descending interferograms show the typical “butterfly shape”
of strike slip rupture (Figures 2A,C). The deformation zone is

TABLE 1 | Basic parameters of the SAR data.

Orbit direction Track path Time of acquisition Perpendicular
baseline(m)

Incidence (°) Azimuth (°) Time interval
(day)References Secondary

Acending 128 20220105 20220117 38.19 35.93 349.54 12
Descending 33 20211229 20220110 56.59 38.10 190.22 12
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about 50 × 40 km2, mainly along the Lenglongling fault and the
eastern section of Tuolaishan fault.

For an earthquake, the co-seismic deformation fields of
ascending and descending orbits are different, which is mainly
caused by the difference of incidence angle and flight azimuth
(Hu et al., 2010). The relation between three component of
deformation and the LOS displacement is:

ulos � [−sinθcosα sinθsinα cosθ ]p⎡⎢⎢⎢⎢⎢⎣
ue

un

uz

⎤⎥⎥⎥⎥⎥⎦ (1)

Where ulos, ue, un, uz are the LOS, east, north and vertical
displacement respectively; θ are the incidence angle of radar
pulse; α represents the azimuth angle of satellite flight.
According to the average incidence and azimuth angle of
ascending and descending tracks (Table 1), the
contribution values of the east-west, north-south and
vertical displacements to the LOS displacement of
ascending and descending orbits are (−0.5770, −0.1065,
0.8097) and (0.6072, −0.1095, 0.7869), respectively. It can
be seen that the Sentinel-1 satellite is most sensitive to vertical
deformation, but insensitive to north-south deformation. And
the opposite characteristics and great differences between the
ascending and descending interferograms are mainly due to
east-west displacement. The results of T128 ascending orbit
show that the displacement at the northern side of
seismogenic fault are mainly positive with a maximum
value of 42.72 cm (LOS direction), and are mainly negative

at the southern side with a minimum value of -59.65 cm (LOS
direction). On the contrary, the displacement results of
T33 descending orbit show that negative values are mainly
observed at the northern side (−71.52 cm) and positive values
is mainly observed at the southern side (94.65 cm) of the fault.
Considering the geometric characteristics of satellite flight
and right-sided look and LOS changes, the earthquake is
associated with sinistral strike-slip faulting. The absolute
LOS displacement on the south side of the fault is greater
than that on the north side, which may result from slip on
dipping fault plane as suggested by focal mechanism
solutions. Meanwhile, the focal mechanism results show
that the earthquake contains a small amount of thrust
component (Table 2). Thus, it could be inferred that the
south side of the fault is the hanging wall, and the north side is
the footwall, slightly inclined to SW.

Figure 3 shows four displacement profiles in the ascending
and descending tracks. The displacement gradually decreases
away from the fault. Compared with the AA’ and DD’ sections
far from the epicenter, BB “and CC” sections near the epicenter
have obviously larger relative displacements, indicating that
the ground deformation caused by the earthquake decreases
from the center to both sides. The surface displacement caused
by the Menyuan Ms 6.9 earthquake gradually decreased from
the center of the rupture zone to both ends, and the
displacement on both sides of the cross-fault was opposite
in direction but similar in size, indicating that the seismogenic
fault has a high dip Angle.

FIGURE 2 | Interferogram and co-seismic deformation field (LOS direction) of Menyuan Ms 6.9 earthquake. (A,C) are the interferograms of T128 ascending orbit
and T33 descending orbit, respectively. Focal mechanism solutions from GCMT, GFZ, and USGS are displayed with the red, blue, and green focal spheres. The red star
marks the epicenter of themainshock. (B,D) are the LOS co-seismic deformation fields of T128 ascending orbit and T33 descending orbit, respectively. The dashed lines
labeled by (A–D) are four cross-fault profiles shown in Figure 3, and the red solid lines represent the seismogenic faults. Black arrows indicate satellite flight
direction (AZI) and right-looking observation direction (LOS).
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FAULT GEOMETRY CONSTRAINTS AND
SLIP DISTRIBUTION INVERSION

After the Menyuan Ms 6.9 earthquake, different institutions
and researchers quickly conducted focal mechanism
inversion, and the results were somewhat different
(Table 2). Xu et al. (2022) and Liang et al. (2022) have
used more waveform data to obtain a more reliable
solution of focal mechanism, which shows that the focal
depth was shallow, both at 4 km. Compared with the
teleseismic records, InSAR observations can provide more
near-field constraints for the inversion of fault geometry and
slip distribution. In order to determine the fine motion
characteristics of seismogenic faults, the down-sampling
process is carried out on the basis of co-seismic surface
displacement, and then the slip distribution of the fault is
inverted based on the classical elastic dislocation model.

InSAR co-seismic deformation field usually contains millions
of points, and adjacent observation points have strong spatial
continuity (Hanssen, 2001; Ji et al., 2017). In order to improve the
calculation efficiency and reduce the influence of unreliable
values in inversion, filter and downsampling preprocess are
applied to the LOS displacement data. Firstly, the
interferograms of ascending and descending orbit are masked
according to the coherence. Sampling points with coherence
greater than 0.5 are extracted to ensure the high quality co-
seismic deformation data (Yu et al., 2020). Then, an adaptive
quadtree method based on gradient variation is applied to
downsample the co-seismic deformation data (Decriem et al.,
2010; Bagnardi and Hooper, 2018). For each point, independent
incidence and azimuth angles are used. This method retains the
main characteristics of the original deformation field completely,
and reduces the number of sampling points in the far field.
Finally, 872 LOS displacement samples of the ascending orbit and

TABLE 2 | Focal mechanism solutions of the Menyuan Ms 6.9 earthquake.

Source Epicenter (°) Depth (km) Nodal plane 1
(°)

Nodal plane
2 (°)

Magnitude

Strike dip
rake

Strike dip
rake

USGS 37.828,101.290 13 13 75 178 104 88 15 Mw 6.61
GCMT 37.800,101.310 14.8 14 89 172 104 82 1 Mw 6.7
GFZ 37.780,101.320 15 193 74 172 285 82 16 Mw 6.6
Li et al —— —— 104 80 0 (AB) 109 80 5(BC) Mw 6.7
Xu et al 37.77,101.258 4 197 74 171 290 81 16 Mw 6.62
Liang et al 37.77,101.26 4 196 69 174 288 85 21 Mw 6.4
This research 37.79,101.26 4.9 —— 108 79 4 Mw 6.67

FIGURE 3 |Co-seismic displacement profiles of the MenyuanMs 6.9 earthquake (LOS direction). (A)Cross-fault displacement profiles of the T128 ascending orbit,
with profile location shown in Figure 2; (B) Cross-fault displacement profiles of the T33 descending orbit. Gray circles are the data within 1 km along the profile. The
vertical gray dotted line indicates the location of the faults, of which the southern branch fault (fault2) is located about 1 km south from the main fault.
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908 LOS displacement samples of the descending orbit are
obtained (Supplementary Figure S2).

Spatial Characteristics of the Fault
Fault traces on the surface are extracted from the range and
azimuth offset map. Amplitude pixel tracking method is used to
obtain the range and azimuth offset of the Menyuan Ms
6.9 earthquake (Figure 4). The basic principle of this method
is to calculate the pixel offsets in the range direction and azimuth
direction according to the cross-correlation of amplitudes on the
basis of sub-pixel registration of two SAR images (Hu et al., 2010).
This method greatly compensates the insensitivity of InSAR to
the north-south ground displacement, and helps to explain the
incoherent phenomenon caused by the local large rupture near
the fault. The azimuth offset results of T128 ascending and
T33 descending orbits are opposite on both sides of the fault,
showing a sharp color discontinuity (Figures 4B,D). Utilizing the
offset maps with the boundary between positive and negative
offset values, the surface traces of seismogenic fault can be
extracted by outlining the discontinuity (Zhang et al., 2011;
Hua et al., 2021). The finally obtained surface trace is
composed of two faults (Figures 2B,D), of which the average

strike of the small south branch is 77°, and the main north fault is
108°, with a total length of 49.5 km.

In the addition, the four profiles of the co-seismic deformation
fields of the ascending and descending orbits (Figure 3) show that
the displacements on both sides of the cross fault are
approximately complementary. The existing focal mechanism
solutions show that the dip angle of the seismogenic fault is
close to vertical (Table 2), so the range of dip angle is set to
70°–90°. In order to select the optimal dip angle, a grid search with
step of 1° was conducted in the inversion (Li et al., 2018), and the
optimal dip angle was obtained as 79° (Figure 5A).

Distributed Slip Model
According to the uniform isotropic elastic half-space dislocation
model, the slip on the seismogenic fault plane can be linearly
projected to the earth’s surface by Green’s function (Okada,
1985). The relationship between the slip distribution of the
fault and the co-seismic displacement field is as follows:

u � G(m)s + ε (2)
where u represents the co-seismic displacement measured by
InSAR; G(m) represents Green’s function related to fault

FIGURE 4 | The results of the Pixel-Tracking method for the ascending and descending orbit amplitudes. (A,C) are the range offset of the T128 ascending orbit and
the T33 descending orbit, respectively, and the positive and negative values indicate the decreasing and increasing of the horizontal surface displacement along the
distance direction from the satellite and to the target point (the range direction); (B,D) are the azimuth offset of the T128 ascending orbit and the T33 descending orbit,
respectively, and the positive and negative values represent the forward and backward displacement of the horizontal displacement along the flight direction of the
satellite, respectively. The red star indicates the epicenter. Black arrows indicate satellite flight direction (AZI) and right-looking observation direction (LOS).
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parameters m; s represents the slip vector on the fault plane; ε
represents the data observation error.

Generally speaking, the inversion of fault parameters includes the
location, length, width, depth, strike and dip angle of the fault, and
the slip vector on the fault, which is a highly nonlinear problem.
Usually “two-step” inversion is adopted. Firstly, geometric
parameters of seismogenic faults are resolved using a nonlinear
inversion method (Bagnardi and Hooper, 2018). Then, according to
the linear relationship between u and s, the least square solution is
obtained (Feng and Li, 2010). Especially, the Menyuan Ms
6.9 earthquake produced obvious surface ruptures. So the
geometric shape along strike of the fault can be determined
according to the surface rupture (Fukahata and Wright, 2008).
Further, the dip angle of faults can be estimated according to the
aftershock distribution, focal mechanisms and tectonic settings.
Therefore, the slip distribution of faults can be directly solved by
a linear inversion method.

In this paper, the Steepest Descent Method (SDM) inversion
method (Wang et al., 2013) was used to solve the rake and slip size
of each discrete sub-fault in the distribution slip model. This
method has been widely used in GPS and InSAR co-seismic
displacement inversion (Chen et al., 2018; Shi et al., 2019; Yu
et al., 2020; He et al., 2022). SDM is an iterative optimization
algorithm with better convergence and less dependence on the
initial value. In order to minimize the objective function in each
calculation, a step size proportional to the negative gradient is
used in each iteration.

Meanwhile, in order to ensure smoothness and continuity
between each sub-faults, a smoothing factor is added in the
inversion process, and the objective function is as follows:

F(m) � ‖G(m)s − u‖2 + α2‖Hτ‖2 (3)

where α2 denotes the smoothing factor used to control the
roughness of the slip distribution; H denotes the finite-
difference approximation of the Laplace operator; τ denotes
the shear stress drop.

In the process of inversion, Poisson’s ratio is set to 0.25, the top
depth of the fault is 0 km, and the dip angle is 79° (Figure 5A).
Referring to the focal mechanisms of themainshock (USGS, GCMT,
and GFZ), the slip angle is empirically constrained to -15°–25° to
accelerate the convergence. According to the relocation results of
aftershocks, the aftershock concentrates at 5–10 km depth, and a few
of aftershocks occurred between 11 and 20 km depth (Xu et al., 2022;
Yang et al., 2022). Thus, the width of the fault was set to 20 km
corresponding to the depth of 19.6 km. Then, the whole fault plane is
divided into a 2 × 2 km rectangle, with 250 sub-faults in total. The
maximum slip is set at 10 m. At the same time, the weight of
ascending and descending orbit deformation was set to 0.8:1, taking
into account the impact of afterslip in the ascending displacement.
Independent incidence and azimuth angles are used for each
sampling point (Zhang et al., 2011).

In order to further ensure the stability and reduce the
uncertainty of the inversion, a grid search method was
adopted to obtain the L-curve between model roughness
and fitting residual for a series of smoothing factor
(Figure 5B). Consequently, the optimal smoothing factor
0.05 was selected.

Figure 6 shows the fault slip distribution of the Menyuan Ms
6.9 earthquake. On the whole, the joint inversion results of
ascending and descending orbits are similar to those of Yang
et al. (2022), but different from those of Li et al. (2022a). This may
be related to the difference in the geometry of faults. It can be seen
from the slip distribution results that the slip is mainly

FIGURE 5 | Determination of the optimal fault dip angle and the smoothing factor. (A) The misfit-dip curve. The light blue star indicates the optimal dip angle of 79°.
(B) The model roughness and the fitting residual curve. The star indicates the best smoothing factor of 0.05.
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concentrated in the strike range of 12–30 km, and 0–10 km along
the dip. The maximum slip is 3.12 m at a depth of about 5 km,
and the average slip of the main fault is 0.48 m (Supplementary
Figures S3–S5).

Slip directions of fault patches show that the rupture is
mainly sinistral strike-slip. In the slip center on the main fault,
a small amount of thrust slip component exists.The inversion
results show that the seismic moment is 1.28 × 1019 N·m, and
the equivalent moment magnitude is 6.67, consistent with the
GCMT result.

In the joint inversion results of ascending and descending
orbits, the correlation coefficient between the observed and the
simulated deformation is 98.87%. The root mean square error
(RMSE) ascending descending orbits are 5.5 and 5.6 cm,
respectively.

As can be seen from the spatial distribution of residuals

(Figures 7C,F), the fitting residuals are small in the whole.

The largest residuals appear in the area near the surface

rupture zone. This may be caused by displacement errors from

strong incoherence in the zone and the complexity of the very

shallow rupture.
Figure 8 shows the histogram of fitting residuals. The

distribution of ascending fitting residual is more
concentrated (Figure 8A). Except for a few large residuals
in the descending orbit, most of the residuals are close to zero,
showing approximate Gaussian distribution. The ascending
average fitting residual error is 1.52 cm with the variance of
2.8 mm, and the descending average fitting residual error
is −0.93 cm with the variance of 3.1 mm.

FIGURE 6 | Fault slip distribution of the Menyuan Ms 6.9 earthquake. (A,B) are the slip distributions of the main fault and theminor branch fault along the fault strike,
respectively; black arrows represent the slip vector, and its direction represents the movement direction of the hanging wall relative to the foot wall; the blue star indicates
the location of the mainshock determined by Yang et al. (2022).

FIGURE 7 | Fitting results in distributed slip model inversion. (A–C) represent the observed deformation, simulated deformation and the fitting residual of the
T128 ascending orbit, respectively; (D–F) are same for the T33 descending orbit. The background image is DEM.
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DISCUSSION

Regional Seismogenic Environment and
Source Characteristics
From the perspective of historical earthquakes, there were twoMs
6.4 earthquakes in 1986 and 2016 around the Lenglongling fault
(Figure 1). Coulomb stress analysis results show that the
2016 Menyuan Ms 6.9 earthquake has a loading effect on the
2022 Menyuan Ms 6.9 earthquake (Li et al., 2022a; Peng et al.,
2022). Judging from the trace of shallow fault, Menyuan Ms
6.9 earthquake occurred at the intersection of Tolaishan fault and
Lenglongling fault (Figure 1B), which belongs to the compression-
bending zone on the Qilian-Haiyuan fault zone, and is prone to
stress concentration (Pan et al., 2022). Geological survey shows that
although the Tuolaishan fault and Lenglongling fault are mainly left-
lateral strike-slip faults, their slip rates are different: the eastern
segment of the former is about 3–4mm/a, while the latter is about
6.4 ± 0.7 mm/a (Guo et al., 2017). P-wave velocity structure shows
that there is an obvious low-velocity zone below the earthquake
source (Wang et al., 2022; Xu et al., 2022), and the eastern part of the
Qilian Mountains is located at the region where crustal thickness
changes dramatically. This makes the source region favorable to
stress concentration (Wang et al., 2022).

Based on the co-seismic deformation field of the ascending and
descending orbits obtained by InSAR, the fault slip distribution is
inverted. Its focal mechanism shows that theMs 6.9 earthquake was a
sinistral strike-slip event with a small amount of thrust component.
The average strike of the seismogenic faults was 108°, and the dip angle
was 79°. The average rake is 4° and there is only one rupture center
(Figure 6). Combining the spatial position of the maximum slip
(Figure 6A) and the deformation coverage shown in the co-seismic
deformation field (Figure 2D) and azimuth offset (Figure 4D) of
T33 descending orbit, we can conclude that the seismogenic fault of
this earthquake is thewest part of the Lenglongling fault. It is belonged

to a left-stepped echelon fault system, forming a tensional zone with
the adjacent Tolaishan fault. Stress transfer between the faults is likely
to occur, whichmay be the cause of surface rupture at the eastern end
of Tolaishan fault (Pan et al., 2022).

To sum up, under the continuous northward expansion of the
northeastern margin of the Tibetan Plateau, the shallow faults in
the area around Menyuan are characterized by compressing and
bending with inconsistent slip rates. In the deep crust, great
differences of physical properties exist. In addition, the historical
earthquake had a stress loading effect on the rupture. These
conditions may jointly promote the strain accumulation in the
western segment of Lenglongling fault and ultimately lead to the
occurrence of this earthquake.

The Relationship Among Aftershock,
Surface Rupture Traces and Co-seismic
Slip Distribution
Figure 9 is the surface rupture trace delineated according to the
obvious amplitude azimuth offset and the boundary between
positive and negative displacement in the co-seismic
deformation field (Figures 2B,D). Its overall shape is similar to
the surface rupture distribution map shown by Peng et al. (2022).
Coupled with the relocation of aftershocks, it is revealed that this
earthquake produced obvious surface rupture. According to the
aftershock distribution in Figures 9A,B the aftershocks in 2–9 days
after the earthquake continued to expand in the SE direction along
the surface rupture trace and are concentrated in the eastern
section of the fault. Aftershocks are evenly distributed on both
sides of the fault in the eastern segment. However, aftershocks are
mainly distributed on the south side of the in the middle and
western segment, indicating a possible deflection of the fault.

At the same time, there is an obvious varying dipping angles from
east to west in the aftershock profiles (Figure 10). The fault plane is

FIGURE 8 | Histograms of the fitting residuals. (A,B) represent the fitting residual histograms of the inversion results of the T128 ascending orbit and the
T33 descending orbit. The red solid line indicates the Gaussian distribution curve fitted by the distribution.
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determined by surface rupture and distribution of aftershocks. We
tested a new fault geometry that each section has a different dip angle
(Supplementary Figure S6). However, the results are similar to those
obtained with uniform 79° dip (Supplementary Figures S7, S8) and
the correlation coefficient between the observed and the simulated
deformation is also over 98%. So 79° may be the average of these dips.

The aftershock (purple solid circles) is projected onto the
seismogenic fault surface (Figure 11). The results show that the
aftershock extended along the east and west sides from the source
location within the depth range of 2–12 km. Meanwhile, the main
shock depth (7.05 km) was close to the depth (5 km) where the

maximum slip of the fault was 3.12 m. In addition, most of
aftershocks occurred in the position where the co-seismic slip
was small.

Therefore, the stress release associated with the aftershocks
was either triggered by the mainshock or it was a
compensation to the stress release associated with the
mainshock.

Regional Seismic Hazard Assessment
In general, after an earthquake of moderate magnitude or above,
the co-seismic dislocation of the fault will cause static co-seismic

FIGURE 9 | Surface rupture traces and aftershock distribution. (A) The background image is the azimuth offset of the ascending orbit, and the small white circles
represent the aftershocks in 9 days after the mainshock (Yang et al., 2022); (B) The background image is the azimuthal offset of the descending orbit, the white small
circles represent the aftershocks of 2 days after the earthquake (Yang et al., 2022). Green lines denote the seismogenic faults; the yellow star represents the epicenter of
the mainshock; pink circles represent two aftershocks with magnitude≥ 5.0, which occurred on January 8 and 12 from left to right, respectively.

FIGURE 10 | Dip angles determined from aftershock profiles of different fault sections. (A) Green lines, the yellow star and pink circles denote the seismogenic
faults, the epicenter of the mainshock and two aftershocks with magnitude ≥ 5.0, respectively. (B–F) represent the five aftershocks profiles (aa’, bb’, cc’, dd’, ee’). Fault
positions are marked by the green rectangles.
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permanent deformation, which will change the Coulomb stress in
the near and far field. the Coulomb failure stress change (ΔCFS)
can be used to analyze the triggering of aftershock, and the
interaction between earthquakes and faults (King et al., 1994;
Xu et al., 2018). According to Coulomb instability criterion, the
Coulomb stress change can be expressed as:

ΔCFS � Δτs + μ′Δσn (4)

where Δτs represents the change in shear stress; μ′ represents the
effective coefficient of friction on the fault;Δσn represents the change
in normal stress (dilation for positive);ΔCFS represents the coulomb
stress change on the receiver faults caused by the slip of the source
fault, with a positive value indicating stress loading and a negative
value indicating inhibition of rupture of the receiver fault. In this
paper, Coulomb 3.3 software (Toda et al., 2011) was used to calculate
the co-seismic Coulomb stress changes caused by Menyuan Ms
6.9 earthquake (Figure 12).

The receiver fault was set as seismogenic fault itself (strike =
108°, dip angle = 79°, dip angle =4°) with a friction coefficient of
0.4 (King et al., 1994). The co-seismic Coulomb stress changes
at the depths of 0, 5, 10 and 15 km are calculated respectively
(Figure 12). The results show that the coulomb stress
loading region is mainly distributed in the eastern segment
of Tuolaishan fault and the western segment of
Lenglongling fault, and a few parts of the Minyue-
Damaying fault, Minyue-Yongchang fault and Daban
Mountain fault in the NS direction. The static Coulomb
stress change at 10 km shows that the largest aftershock (Ms
5.2) occurred in the positive area of the Lenglongling fault
4 days after the mainshock. The aftershock mainly migrated
towards to SE direction (Fan et al., 2022; Yang et al., 2022),
which may be caused by stress loading yielded by the
mainshock.

FIGURE 11 | Fault slip model of the main fault and aftershocks. Red lines
represent the contour of the slip; the blue star represents the mainshock
location determined by Yang et al. (2022); the cyan circles denote two
aftershocks with magnitude ≥ 5.0.

FIGURE 12 | Regional co-seismic static Coulomb stress changes at different depths. (A–D) represent the changes of static Coulomb stress at depths of 0, 5, 15,
and 10 km, respectively. White circles represent aftershocks in 10 days after the earthquake, including two M ≥ 5 aftershocks (pink circles) (Yang et al., 2022), which are
located at the specified depth within 2 km up and down; the gray solid lines indicate the fault traces in this area.
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There are many faults in this area, and the stress disturbance at
the depth of 10 km on six faults is also calculated (Figure 13). The
results show that some parts of the Lenglongling fault, the
Tolaishan fault, the Sunan-Qilian fault, and the Minyue-
Damaying fault are loaded, indicating high seismic risk in the
future. At the same time, the whole Qilian-Haiyuan fault
(Figure 1A), the Jinqianghe-Maomaoshan-Laohushan fault is
located in the “Tianzhu Gap” between the present earthquake
and the Haiyuan earthquake in 1920 (Gaudemer et al., 1995; Li
et al., 2017), so the risk of these faults is also worth noting.

CONCLUSION

In this paper, the co-seismic deformation field (LOS direction) of
Menyuan Ms 6.9 earthquake in 2022 is obtained by D-InSAR
technology. The co-seismic slip distribution of the fault is
inverted by the Steepest Descent Method, and the disturbance
of Coulomb stress changes on the surrounding faults is calculated
and analyzed. This provides a reference for further research on
the seismogenic property and seismic risk of the Qilian-Haiyuan
fault. The main conclusions are as follows:

1) The seismogenic fault of the Menyuan Ms 6.9 earthquake is
the western segment of Lenglongling fault, and surface

deformation filed caused by the co-earthquake is 50 km
by 40 km approximately. According to the distribution of
ground deformation in the LOS direction and azimuth
offsets of the ascending and descending orbits. The
Menyuan Ms 6.9 earthquake can be identified as a
sinistral strike-slip event.

2) The co-seismic slip distribution shows that the main
seismogenic fault strike 108°, dip 79° and rake 4°. The
slip is concentrated at a depth of 0–10 km, with an
average slip of 0.48 m and the maximum slip of 3.12 m,
which is located at a depth of about 5 km. The seismic
moment is 1.28 × 1019 N·m, and the corresponding moment
magnitude is Mw 6.67.

3) The results of Static Coulomb stress changes show that
some parts of Lenglongling fault, Tolaishan fault, Sunan-
Qilian fault, and Minyue-Damaying fault are loaded by
the Menyuan Ms 6.9 earthquake. Risk of strong
earthquake on these faults in the future deserves
attention.
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FIGURE 13 | Static Coulomb stress changes on the surrounding faults at depth of 10 km. The colored lines represent the changes of the static Coulomb stress on
the surrounding faults caused by the dislocation of the seismogenic fault, and the positive represent the stress loading. Fault parameters are from Xu et al. (2016). The
calculation parameters are: Menyuan Fault (reverse fault, dip 45°, rake 90°); Lenglongling Fault (left-lateral, dip 90°, rake 0°); Tolaishan Fault (left-lateral, dip 90°, rake 0°);
Sunan-Qilian Fault (reverse fault, dip 45°, rake 90°); Minyue-Damaying fault (reverse fault, dip 45°, rake 90°); Huangcheng-Shuangta Fault (reverse fault, dip 45°, rake
90°). Grey lines indicate the fault traces in this area; black line indicates the “Tianzhu Gap”, including the LLLF and the JQHF, MMSF, LHSF to its east. The background
image is DEM.
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Co- and Post-seismic Deformation
Mechanisms of the 2020 Mw6.0 Jiashi
Earthquake in Xinjiang (China),
Revealed by Sentinel-1 InSAR
Observations
T. Wang1, S. N. Zhu2*, C. S. Yang1, Y. J. Wei2, C.Y. Zhao1 and H.C. Hou1

1College of Geology Engineering and Geomatics, Chang’an University, Xi’an, China, 2China Institute of Geo-Environment
Monitoring, Beijing, China

On 19 January 2020, an Mw6.0 earthquake occurred in Jiashi County, Xinjiang, China.
This earthquake is a strong earthquake that occurred in the Kepingtage Belt. The
monitoring and inversion of the co-seismic and post-earthquake will help further
understand the geometry and movement properties of this tectonic belt. In this study,
Sentinel-1A images were used to analyze the deformation of co-seismic and post-seismic
events. The Okada elastic dislocation model was used to invert the geometric parameters
of the fault and co-seismic slip distribution. The results showed that the maximum uplift
and maximum subsidence deformations from the ascending images were 55 and 45mm,
respectively. The maximum uplift and subsidence deformations from the descending
images were 62 and 28mm, respectively. The inversion results show that the earthquake
was induced by a fault with a length of 23.5 km, width of 4.7 km, and depth of 7.2 km. This
earthquake was a typical dip-slip event. The distributed inversion results of post-
earthquake deformation show that the maximum co-seismic slip and maximum post-
seismic slip are located on the same fault plane, mainly distributed on the edge of the co-
seismic fault, between the two faults.

Keywords: jiashi earthquake, co-seismic deformation, post-earthquake deformation, slip distribution, coulomb
stress

1 INTRODUCTION

On 19 January 2020, an earthquake with Mw 6.0 occurred in the Jiashi area of Xinjiang, China. The
focal depth was 16 km; aftershocks have continued since then. According to the China Earthquakes
Networks Centre (CENC), four aftershocks with magnitudes greater than Mw 4.0 occurred around
the main shock on the same day, including one Mw 5.2. This earthquake caused one death, two
injuries, and damage to more than 4,000 houses. Some roads, bridges, reservoirs, and other facilities
were damaged, causing a direct economic loss of 1.62 billion yuan (Ren et al., 2020). The Ministry of
Emergency Management of China announced the top ten natural disasters in the country in 2020,
and this Jiashi earthquake ranked seventh.

Many scholars conducted research after the earthquake (Table 1). Li. et al. (2021) determined the
fault model based on the simulated annealing algorithm and used the Steepest Descent Method
(SDM) to calculate the slip distribution of the fault. Wen et al. (2020) obtained the co-seismic
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deformation field with Interferometric synthetic aperture radar
(InSAR) and Global Positioning System (GPS), and the faults of
the earthquake were analyzed. Zhang et al. (2021) inverted the
parameters of the seismogenic fault and calculated the co-seismic
slip distribution based on the triangular dislocation element. Guo
et al. (2021) relocated the earthquake and studied the focal
mechanism solution. The aforementioned studies used
different datasets and methods to monitor earthquakes, and
the results were different, these differences are mainly reflected
in the magnitude of coseismic deformation, which may be related
to the method. However, the evolution of post-earthquake
deformation has not been studied. Therefore, we conducted a
joint study on co-seismic and post-seismic deformation using
InSAR technology and analyzed the impact of the earthquake on
the surrounding faults. Concurrently, we analyzed the post-
earthquake deformation trend. Our study provided new data
for understanding the mechanism of earthquakes and activities of
the Kepintag nappe belt.

2 REGIONAL GEOLOGICAL BACKGROUND

The 2020 Jiashi Mw6.0 earthquake is another strong earthquake
with a magnitude greater than Mw 6.0, which has occurred in the
Jiashi earthquake swarm since 2003. A strong Jiashi earthquake
swarm occurred in the northernmargin of the Tarim Basin on the
northeastern side of the Pamir Plateau, adjacent to the Tianshan

arc nappe structural belt to the north (Figure 1). The Pamir
Plateau is one of the regions with the strongest continental plate
dynamics, while the Tianshan Mountains are typical
intercontinental collision orogenic belts in the world (Lai
et al., 2002). The epicenter was located in the South Tianshan
foreland fold-thrust belt, with the Tianshan fold belt in the north,
the West Kunlun-Pamir Plateau in the southwest, and the rigid
Tarim Basin in the east and south. The Pamir Plateau is the
deepest part of the Indian Plate and is wedged into the Eurasian
continent. The Tianshan Mountains also experienced strong
compression, uplift, folding, and thrust southward, forming a
typical Cenozoic orogenic belt in the continental interior (Qiao
and Guo, 2007; Zhang, 2003). The relative movement between the
South Tianshan Mountains and Tarim Basin resulted in a large
stress difference on the tectonic boundary, making the area more
seismically active. In the past 20 years, most of the intense
activities occurring in the southwestern Tianshan Mountains
have been concentrated on the Kepingtage thrust fault (Tu.
et al., 2008; Xu et al., 2006). The earthquake occurred in the
western segment of the Kepingtage fault zone at the southern foot
of the Tianshan Mountains. The Kepingtage Fault is located on
the northwestern margin of the Tarim Basin, where there are
several rows of arc-shaped thrusting rock ridges extending from
EW to NE, forming an arc-shaped structural belt protruding to
the southeast (Fang et al., 2009). The Kepingtage Fault is
approximately 220 km long and is divided into two segments,
east and west, by the SN-trending Piqiang fault zone. The
Kepingtage Fault has strong seismic activity, causing the
alluvial fan to rupture and form several faults and steep ridges
at the foot of the Kepingtag Mountain. This makes the epicenter
area present a complex topography with a relative height
difference of several kilometers (Guo et al., 2021). Therefore,
the tectonic conditions in this area are complex, and the tectonic
activities are strong. Research on the mechanism of this
earthquake is of great significance for an in-depth
understanding of regional fault activity and earthquake
prediction.

3 DATA AND PROCESSING

Sentinel-1A images were used to obtain the co-seismic
deformation fields. Two images closest to the earthquake were
selected to reduce the impact of post-earthquake deformation and
decoherence noise on the co-seismic deformation field as much as
possible. The pre-earthquake image in the ascending orbit was

TABLE 1 | Focal mechanism solutions of the Jiashi earthquake.

Mw Longitude (°E) Latitude (°N) Np1 (Strike,Dip,
and Rake)

Np2 (Strike,Dip,
and Rake)

USGS Mw6.0 77.108 39.835 221/20/72 60/71/96
GCMT Mw6.0 77.19 39.80 196/38/31 80/71/124
CENC Ms6.4 77.21 39.83 - -
Chen et al. (2021) - - - 270/15/85 -
Zhang et al. (2021) Mw6.1 77.28 39.90 276/10.7/84.1 -
Zhu et al. (2017) Mw5.87 - - 76/81/109 190/21/26

FIGURE 1 | Geological overview of the study area.
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obtained on 16 January 2020, and the post-earthquake image was
obtained on 28 January 2020. The pre-earthquake image in
descending orbit was acquired on 10 January 2020, and the
post-earthquake image was acquired on 22 January 2020. The
related parameters are listed in Table 2. The perpendicular
baselines of the interference pair are 9.4 m and -58.3 m,
respectively (Table 2).

Datasets were processed using the GAMMA software, which
supports the whole process of SAR data processing (Werner et al.,
2001). Differential interferometry (D-InSAR) was used to obtain
the co-seismic deformation field (Massonnet et al., 1993; Shan,
2002), and the terrain phase was removed using the Shuttle Radar
Topography Mission 30 m digital elevation model. We used
precise orbital data to correct orbital deviation (https://s1qc.
asf.alaska.edu/aux_poeorb/). The multi-look ratio in the range
and azimuth was 8:2 to reduce noise in the interferogram.
Because the phase in the original interferogram is wrapped, we
adopted the minimum cost flow (MCF) method based on the
Delaunay triangulation for phase unwrapping (Eineder et al.,
1998; Werner and Wegmuller, 2002). Finally, we removed the
terrain-related atmospheric delay error using the terrain
correlation method.

Since the post-earthquake images from descending orbit have
not been updated after 10 March 2020, they cannot meet the
parameters required for long-term surface deformation

monitoring. Therefore, we only collected Sentinel-1 SAR
images from the ascending orbit to monitor post-earthquake
deformation. A total of 32 images, covering the study area from 9
February 2020 to 23 March 2021, were processed using SBAS-
InSAR. The SBAS-InSAR technology can generate a series of
interferograms by setting temporal and spatial baseline
thresholds. SBAS-InSAR technology not only ensures the
quality of the interferograms but also increases the density of
the coherent points. Differential processing and phase
unwrapping are performed on high-quality interferograms,
and finally, each subset is jointly solved by singular value
decomposition (SVD) to obtain the time-series deformation
(Berardino et al., 2002; Zhu, et al., 2017; Chen, et al., 2020).
Interferograms were also multi-looked at a ratio of 8:2 in range
and azimuth for post-earthquake deformation field monitoring.
The spatial and vertical baselines were set at ±100 m and 80 days,
respectively. The interference combinations are shown in
Figure 2. Image registration was performed using amplitude-
based image registration (Chen, et al., 2021). Gaussian filtering
was applied to the interferograms to reduce noise and improve
their coherence. Interferograms were unwrapped using the same
method as that used for co-seismic deformation. A terrain-based
correlation method was used to estimate and remove the
atmospheric delay phase. Simultaneously, the trend error was
estimated and eliminated based on a quadratic polynomial fitting

TABLE 2 | Detailed parameters of the co-seismic interference pair.

No. Orbit Pass Direction Master Image Slave Image Incidence_angle Perpendicular
Baseline

1 T129A Ascending 2020/01/16 2020/01/28 39.1273 9.410 m
2 T034D Descending 2020/01/10 2020/01/22 33.6703 −58.273 m

FIGURE 2 | Interferometric combination of post-earthquake deformation field.
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model. Finally, interferograms with smaller atmospheric and
unwrapping errors were selected and post-seismic deformation
was obtained.

4 CO- AND POST-SEISMIC DEFORMATION
ANALYSIS

4.1 Co-seismic Deformation Field
We obtained the co-seismic deformation field according to the
above method (Figure 3). There are two thrust faults in this area
(as shown in Figure 3): the Kepintag Fault and Ozgertawu Fault.
Based on the monitoring results, the co-seismic deformation field
was relatively integral and there was no sign of decoherence. This
means that the fault did not rupture at the surface. The two
deformation fields have the same situation, which is more
consistent with others (Li, et al., 2021; Wen,et al., 2020; Wen-
ting et al., 2020). The maximum uplift deformation in the line of
sight (LOS) from the ascending images was 55 mm, and the
maximum subsidence was 45 mm. The descending co-seismic

deformation field showed that the maximum uplift and
subsidence were 62 and 28 mm (Figure 2), respectively.

We extracted a profile for the co-seismic deformation, and the
results are shown in Figure 4A. We observed that the
deformation trends along the profile were similar. There was a
slight difference in magnitude. We adopted an internal
coincidence accuracy evaluation method to verify the accuracy
of the results. First, we selected the public area of the deformation
field and converted the deformation in the LOS to vertical
deformation according to the incidence of each pixel. Then,
the results from the descending images in the vertical
direction subtracted those from the ascending images, and
statistical analysis was performed on the difference. The results
are shown in Figure 4B. The difference conforms to a normal
distribution, and the standard deviation is 11 mm.

4.2 Post-earthquake Deformation Field
The period of an earthquake can be divided into three stages:
interseismic, co-seismic, and post-seismic (Salvi et al., 2012).
Interseismic refers to the relative motion of plates between

FIGURE 3 | Co-seismic displacement field of Jiashi earthquake. (A) is from ascending interferogram (T129A); (B) is from descending interferogram (T034D).

FIGURE 4 | Co-seismic displacement profile of AA′ from T129A and T034D, and residual distribution of the co-seismic deformation field.
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two earthquakes. This is the process of accumulating energy when
the fault is in a locked state. If the energy accumulation of the
faults reaches a maximum, the fault reaches the critical rupture
condition. At this time, an earthquake occurs and the
accumulated energy is gradually released. Post-earthquake
deformation is the response and adjustment of the crust and
upper mantle to change and can directly reflect the rheological
properties of the lithosphere. The temporal and spatial
distribution of post-earthquake data varies greatly, and the
time scale can range from a few days to a few months to
hundreds of years (Bürgmann et al., 2001; Gourmelen and
Amelung, 2005). Its spatial scale can span a few kilometers
near a seismogenic fault (Jónsson et al., 2003) or across a
global scale (Casarotti et al., 2001). Three models are usually
used to describe post-earthquake deformation: afterslip
(Harrington and Brodsky, 2006), the coupling effect between
the lower crust and the upper mantle with viscoelastic relaxation
properties (Pollitz et al., 2000), and the pore rebound effect of the
crustal porous medium (Peltzer et al., 1996). After an earthquake,
all three deformation mechanisms may exist and function in
different spaces and times. The afterslip occurs because after the
earthquake, the fault continues to slide in the direction of co-
seismic due to inertia; afterslip plays a role in a short time after the
earthquake. Poroelastic rebound is the same as afterslip, mainly
occurring in the upper crust, and the deformation trend is
opposite to that of co-seismic (Pollitz et al., 2000; Jónsson
et al., 2003). The viscoelastic relaxation effect was caused by
the stress change between the lower mantle and the upper crust.
The viscoelastic relaxation effect plays a role for a long time after
an earthquake, and the effect in the far-field is more substantial
(Pollitz et al., 2000). Therefore, we believe that the short-term
viscoelastic relaxation effect was not the post-seismic
deformation mechanism of this earthquake.

After an earthquake, the energy accumulated is often released
slowly during the main shock and post-seismic events, squeezing
the surrounding faults, and deforming the surrounding fractures,
resulting in aftershocks. To analyze the influence of the post-
earthquake on the surrounding faults, we used the SBAS-InSAR to
obtain the deformation field after the earthquake, since the

epicenter of the earthquake was relatively close to the Kepintag
and Ozgwu faults (Figure 5). The time span of post-earthquake
images is from 9 February 2020, to 23March 2021. During the 447
days, the results showed that the overall uplift was dominant
between the Kepingtage fault and the Ozgwu fault, with a
maximum uplift of 8 mm (Figure 5). However, south of the
Kepingtage fault is in a subsidence state, indicating that the
blocks between the two faults are in a state of compression.
Simultaneously, post-earthquake deformation mainly occurs on
the fault, which belongs to the stress change caused by co-seismic
rupture. The post-seismic deformation trend was the same as that
of the co-seismic deformation, so the poroelastic rebound effect
was excluded. Therefore, we initially believe that the post-
earthquake deformation mechanism was an afterslip. In
addition, aftershocks were distributed in the area with a larger
deformation (Figure 5).We selected a point (square in Figure 5) in
the region with significant deformation characteristics to extract
the post-earthquake deformation time series (Figure 6). We used a
post-earthquake afterslip model function to fit the post-earthquake
deformation time series at this point (Barnhart et al., 2018)

y � a × log10(1 + t) (1)
where y is the accumulated deformation in the LOS(m), t is the
time interval from the mainshock after the earthquake, and a
represents the coefficient of the logarithmic function.

The results show that when a = -0.01264 and t = 240 days after
the main shock, the fitting results agree with the post-earthquake
deformation time series results. The post-earthquake
deformation trend is consistent with co-seismic deformation.
Based on the extracted post-earthquake deformation time
series, we believe that the post-earthquake deformation
mechanism of the Jiashi earthquake was an afterslip.

5 INVERSION AND ANALYSIS OF FAULT

The inversion of co-seismic deformation is one of the important
means to improve the understanding of seismogenic structures

FIGURE 5 | Post-earthquake deformation rate. Yellow circles:
aftershock, red star: epicenter, rectangle: selected point, KPTG and AZGW:
two faults.

FIGURE 6 | Post-earthquake deformation time series and a fitting result
at point A.
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and to evaluate regional earthquake disasters. In this paper, the
Okada elastic dislocation model is used to study the co-seismic
deformation. The inversion is divided into two parts. First, we
assumed that the slip was uniform, and the Geodetic Bayesian
Inversion Software (GBIS) was used to search for the source
parameters. The fault is further divided into patches after the
geometric parameters of the fault are obtained and the slip of each
patch is calculated.

5.1 Co-seismic Uniform Slip Inversion
The inversion for this earthquake was implemented using the
Okada elastic dislocation model in the open-source software
GBIS (Bagnardi and Hooper, et al., 2018). It is necessary to
downsample the InSAR data before inversion to improve
efficiency. We adopted the quadtree sampling method, which
can retain more points in the region with large deformation and
retain fewer points in the region with smaller deformation. Co-
seismic deformation inversion was then performed by setting the
source parameters of the fault. The parameters included length,
width, depth, strike angle, dip angle, strike-slip, and dip-slip. The
Okada elastic dislocation model is equivalent to treating a

seismogenic fault as a rectangle embedded in a uniform elastic
half-space model. In the inversion, the parameter was set to a
length of 1–80 km, width of 3–80 km, depth of 5–80 km, strike
angle of 90°–360°, and dip angle of 0–90°, with the strike-slip and
dip-slip being -2 and 2 m, respectively. The Monte Carlo search
method was used to search, and the best fitting value of each
parameter of the fault was obtained, including the optimal and
average values. The inversion results are presented in Table 3.
Figure 7 shows InSAR observations, models, and residuals. It can

be seen that the model results reflect the InSAR observations well,
and there are residuals at some epicenter points. The inversion
results showed that the dip-slip was considerably larger than the
strike-slip, and that the seismogenic fault was dominated by a
dip-slip. The depth of the epicenter is 7.2 km, which is greater
than the width 4.65 km of the fault, indicating that the
seismogenic fault does not appear exposed to the surface.

5.2 Co-seismic Slip Distribution Inversion
The co-seismic deformation field can only grasp the
destructiveness, damage range, and magnitude of the
earthquake but cannot determine the geological structure of
the earth’s internal faults and the direction information of the
seismogenic faults. Therefore, to analyze the geological structure
of this earthquake, we used the SDM inversion program (Wang,
et al., 2013a; Wang, et al., 2013b) to calculate the slip distribution
of faults using the Okada elastic half-space dislocation model (Xu
et al., 2010; Motagh et al., 2015). During the inversion, a co-
seismic deformation field was used as the constraint, and an
initial fault geometric model was established according to the
GBIS inversion. Simultaneously, the fault was appropriately

TABLE 3 | Fault parameters for uniform slip inversion.

Optimal Mean Median 2.5% 97.5%

Fault Length (km) 23.461 23.373 23.368 22.413 24.361
Fault Width (km) 4.65 4.891 4.729 4.005 5.450
Fault Depth (km) 7.192 7.125 7.133 6.798 7.385
Fault Dip (°) 10.245 10.78 10.604 8.228 13.6489
Fault Strike (°) 266.379 266.328 266.323 265.49 267.193
Str-slip (m) −0.182 −0.161 −0.162 −0.225 −0.095
Dip-slip (m) 0.586 0.539 0.548 0.43637 0.612

FIGURE 7 | Comparison of non-linear inversion results. (A), (B), (C) are observation ,model,residual from T064A respectively (D), (E), (F) are observation ,model,
residual from T034D respectively.
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extended along the strike and dip, and the seismogenic fault was
set to 60 km × 40 km. We divided the fault into 2 × 2 km patches
along the strike and dip, with a total of 600 patches. The
smoothing factor was determined by weighing the compromise
curve between the roughness and the residual. Finally, a
smoothing factor of 0.05 was selected as the optimal result
(Figure 8). The distributed slip inversion is shown in
Figure 9. The fitting result between the observation and the
model was 96.2%, indicating our optimal model can fit the fault
geometry reasonably well. Compared with others, the rectangular

dislocation model can inverse this co-seismic deformation well.
The residuals of the distributed slip inversion were considerably
reduced compared with the uniform slip distribution inversion.
Figure 9 indicates that the ruptures are concentrated 22–46 km
along the strike and 10–18 km along the dip. The average slip
angle was −176.29°, the average slip was 0.04 m, and the
magnitude was Mw6.1, indicating the co-seismic fault to be a
reverse fault with a small strike-slip motion (Figure 10).
According the focal mechanism solution from Table 1, this
earthquake belongs to thrust type, indicating that our result is

FIGURE 8 | Roughness and fitting residual curve.

FIGURE 9 | Distributed slip inversion results. (A), (B), and (C) are observation, model, and residual, respectively, of T129A; (D), (E), and (F) are observation, model,
residual, respectively, of T034D.

FIGURE 10 | Two-dimensional slip distribution. The arrow indicates the
movement direction of the block.
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consistent with the USGS and GCMT. As shown in Figure 10, the
epicenter of the Jiashi earthquake was located on the Kepingtag
fault. We believe that this was a dip-slip earthquake that occurred
on the Kepingtag nappe belt.

5.3 Post-earthquake Deformation Inversion
Figure 4 shows that the post-earthquake deformation and
aftershocks are mainly concentrated between the Keping and
Ozgwu faults and are located near the seismogenic fault. We used
the SDM method to invert the accumulated deformation within
447 days after the earthquake to further analyze the post-
earthquake deformation mechanism. According to the post-
earthquake deformation, we set the fault length to 60 km and
width to 48 km, to invert the post-earthquake slip distribution.
The InSAR observations, model, and residuals are shown in
Figures 11A,B,C, respectively. From the inversion, the
simulation effect of the main deformation region after the
earthquake was good and the residual was relatively small.
Some minor deformations have not been simulated south of
the Ozgwu Fault. Larger residuals were mainly distributed in the
northwest corner (Figure 11), which may be related to the
viscoelastic relaxation effect or tectonic movement changes.
Figure 12 shows the post-earthquake two-dimensional slip
distribution. Several slip patches were found in the shallow

fault layer. The first slip is located to the west of the Keping
fault, approximately 14 km from the epicenter, 0–12 km along the
strike, and 0–9 km along the dip, and the slip is 0.06 m. The
second slip was located to the north of the epicenter, far from the
epicenter, 15–24 km along the strike, and 36–45 km along the dip,
and the slip reaches 0.05 m. These phenomena indicate that the
post-earthquake geological tectonic activity in this area was only
more active in these two places, and themagnitude was also small.
Regional tectonic activity gradually stabilized after the
earthquake, and further earthquakes were less likely.

Comparing the results of the co-seismic and post-earthquake
slip distributions, the maximum slip of the co-seismic is 0.32 m
and post-earthquake depth is 3.88 km. The maximum slip of
post-earthquake is 0.06 m and the depth is 0.31 km. The
maximum slip of co-seismic and the post-earthquake occurred
on the same fault plane and were separated by 20 km. The post-
earthquake deformation mechanism exhibits thrust and strike-
slip, while co-seismic belongs to thrust. Similar mechanisms exist,
but the co-seismic and post-seismic maximum slip patches are
located at different locations on the same fault plane, suggesting
that the post-seismic motion is likely driven by stress
concentrations at the co-seismic patch edges (Amiri et al., 2020).

6 DISCUSSION

6.1 Earthquake Analysis
Presently, the greater the intensity and frequency of intermediate
seismic activity in the western Himalayan tectonic structure, the
more intense the strong earthquake activity in the Tianshan
seismic belt. The active periods of several strong earthquakes
in the history of the Tianshan area show migration from west to
east (Zhang and Shao, 2014). This indicates that there is a
dynamic relationship between the strong earthquake of the
western Himalayan tectonic structure and the strong activity
of the Tianshan seismic belt in Xinjiang, China, i.e., the West
Himalayan tectonic knot has a triggering effect on the seismic
activity of the Tianshan seismic belt. The earthquake occurred in
the South Tianshan foreland fold-thrust belt, which is located
northeast of the Pamir Plateau. The Pamir Plateau structure is
mainly affected by the combined action of the northward
subduction of the Indian plate and the southward subduction
of the Tianshan Mountains (Sippl et al., 2013), indicating that the

FIGURE 11 | Post-earthquake deformation inversion results. (A), (B), and (C) are observation, model, and residual, respectively. Yellow circles represent the largest
co-seismic slip, and blue circles represent the largest post-earthquake slip.

FIGURE 12 | Two-dimensional slip distribution results of faults after
earthquake.
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Tianshan Block is thrust over the Tarim Basin. In such tectonic
environments, moderate and strong earthquakes occur frequently
in the Jiashi area. The Jiashi Mw6.0 earthquake occurred in an
area with substantial thrusting movement and was an inevitable
rupture event under a prominent tectonic background with a
typical thrusting movement.

6.2 Coulomb Stress
The rupture of a co-seismic fault causes the redistribution of the
surrounding stress. Based on Coulomb3.3 (Lin and Stein, 2004;
Toda et al., 2005), we assumed that the shear modulus was 3.2 ×
104 MPa; moreover, the friction coefficient was set to 0.4, and the
Poisson’s ratio was 0.25. Combined with the co-seismic slip
distribution, we calculated Coulomb stress changes
(Figure 13A). Simultaneously, taking the thrust fault as the
receiver faults, the Coulomb stress was calculated at depths of
5 and 10 km (Figures 13B,C). If the Coulomb stress is positive, it
is called the stress-loading area, and the corresponding risk
increases. Conversely, if the Coulomb rupture stress is
negative, fault rupture will be suppressed. The negative area is
called the “stress shadow area,” wherein the possibility of
triggering an earthquake will be weakened (Yongge et al.,
2002). However, this is an ideal scenario. The Coulomb stress
distribution is more complicated and is generally affected by the
fault geometry, crust, Green’s function, and errors in
observational data. Therefore, the calculation results of the
Coulomb stress should be analyzed in detail. The result
indicated that the co-seismic coulomb stress distribution was
negative near the epicenter, suggesting that it was in a state of
stress release. As the depth of projection increases, the stress
range decreases gradually. The Coulomb stress at a depth of 5 km
was in a state of stress loading near the epicenter, and the positive
value of stress loading was around the Kepintag fault
(Figure 13B). The depth was 10 km, and the stress loading
was relieved. The Coulomb stress distribution is in good
agreement with the shallow fault deformation mechanism,
which may be related to various factors such as the actual
fault geometry and formation properties.

7 CONCLUSION

We used Sentinel-1A images and D-InSAR to obtain the co-
seismic deformation field of the 2021 Jiashi earthquake. The
monitoring results show that the maximum uplift caused by the
earthquake is 62 mm, located south of the epicenter, with a
maximum subsidence of -45 mm, located north of the
epicenter. The inversion of the Okada elastic uniform half-
space model shows that the earthquake was induced by a
length of 23.5 km, a width of 4.7 km, and a depth of 7.2 km.
At the same time, the dip-slip component is larger than the strike-
slip component, indicating that the seismic fault plane is
dominated by dip-slip. The co-seismic slip distribution showed
that the magnitude was Mw6.1, the main slip was concentrated at
22–46 km along the strike and 10–18 km along the dip, and the
average slip angle was -176.29°. The regional fault is thrust with a
small strike-slip component, which is consistent with the focal
mechanism solution results given by the USGS, GCMT, and other
institutions. Post-earthquake deformation monitoring based on
SBAS InSAR technology showed that the post-earthquake
deformation rate was 25 mm/yr within 447 days. The nature of
the movement between them is uplifting deformation, and the
post-earthquake deformation mechanism is afterslip.
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