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Editorial on the Research Topic

Modeling and numerical simulations with di�erential equations in

mathematical biology, medicine, and the environment

The main objective of this Research Topic has been to bring academics, engineers,

researchers and scientists to share recent ideas, methods, trends, problems and solutions

in mathematical biology, medicine and the environment. There were four topic editors and

the issue was open from August 2021 to May 2022 with a further extension of 6 months until

November 2022 to submit papers. Fifteen papers were submitted, out of which ten were

accepted and published. A total of 22 authors contributed papers in that Research Topic.

Manuscripts in this Research Topic were requested through a general call on the

website https://www.frontiersin.org/research-topics/25070/modeling-and-numerical-

simulations-with-differential-equations-in-mathematical-biology-medicine-and and

invitation was sent by email to about 200 academics. All submissions were subjected to

rigorous peer-review process following the well-known policies and standards of Frontiers

in Applied Mathematics and Statistics. Every submission was reviewed by two or three

experts in the field.

In the following paragraphs, we give a short summary of the 10 published papers in that

Research Topic.

Appadu and Tijani obtain the numerical solution of a 1D generalized Burgers-Huxley

equation under specified initial and boundary conditions using Forward Time Central Space

and a non-standard finite difference scheme. There are two proposed solutions and they

show that only one is correct. Error analysis and convergence tests are performed.

Attia (A) models the progression of the non-alcoholic fatty liver disease (NAFLD)

process by continuous time Markov chains with nine states. Maximum likelihood is used

to estimate the transition intensities among the states.

Mhlanga and Rundora look at the existence and uniqueness of strong solutions to the

Cauchy problem of stochastic equations. Sufficient and necessary conditions for existence
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of a global positive solution of non-homogeneous stochastic

differential equations with a non-Lipschitzian diffusion coefficient

are obtained.

Oukouomi Noutchie et al. extends on the work of Jia and

Qin on sexually transmitted disease models with a novel class of

non-linear incidence. The existence, uniqueness, boundedness and

positivity of solutions are established.

Kehinde et al. solve a two-dimensional semilinear singularly

perturbed convection-diffusion problem. The approach requires

linearization of the continuous semilinear problem using quasi

linearization technique and nonstandard finite difference methods.

Convergence tests are performed.

Kinyili et al. address the question of whether to drop or

to continue wearing face masks especially after being vaccinated

among the public. A deterministic mathematical model that takes

into account vaccination program and wearing of face masks as

intervention strategies is developed for COVID-19.

Attia (B) looks at the deleterious effects of obesity type II

diabetes and insulin resistance, systolic and diastolic hypertension

on the rate of progression of fibrosis in patients with non-alcoholic

fatty liver disease (NAFLD).

Agbavon et al. obtain numerical solution for Fisher’s equation

using a numerical experiment with three different cases. The three

cases correspond to different coefficients for the reaction term. The

three methods are Forward Time Central Space, nonstandard and

explicit exponential finite difference schemes. They determine if

the optimal time step size is influenced by choice of the numerical

methods or the coefficient of reaction term. Convergence tests

are performed.

Anwar et al. construct mathematical model to understand viral

dynamics within plants. They analyse the dynamics of two models

of virus transmission in plants.

Kwofie et al. formulate a mathematical model to study crime

dynamics and incorporate educational programs as a tool to assess

the population-level impact on the spread of crime. The least square

method is used.
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1D Generalised Burgers-Huxley:
Proposed Solutions Revisited and
Numerical Solution Using FTCS and
NSFD Methods
Appanah R. Appadu* and Yusuf O. Tijani

Department of Mathematics and Applied Mathematics, Nelson Mandela University, Gqeberha, South Africa

In this paper, we obtain the numerical solution of a 1-D generalised Burgers-Huxley

equation under specified initial and boundary conditions, considered in three different

regimes. The methods are Forward Time Central Space (FTCS) and a non-standard finite

difference scheme (NSFD). We showed the schemes satisfy the generic requirements

of the finite difference method in solving a particular problem. There are two proposed

solutions for this problem and we show that one of the proposed solutions contains

a minor error. We present results using FTCS, NSFD, and exact solution as well as

show how the profiles differ when the two proposed solutions are used. In this problem,

the boundary conditions are obtained from the proposed solutions. Error analysis and

convergence tests are performed.

Keywords: Burgers-Huxley equation, three different regimes, FTCS, NSFD, proposed solutions, error analysis,

convergence tests

1. INTRODUCTION

The study of nonlinear partial differential equation continues to fascinate many researchers
due to their ubiquitous application in every area of science and technology. Because of their
complexity, many of these nonlinear partial differential equations do not always have explicit
solutions using a known finite combination of elementary functions [1]. Some non linear partial
differential equations, on the other hand, become integrable following a symbolic transformation.
The analytical solution becomes available in this instance. Some analyses of most numerical and
semi-analytical methods are studied using the heat equation. The linearity of this differential
equation makes it a test case for many problems, it takes the form

∂u

∂t
= D

∂2u

∂x2
, (1)

where D is the diffusivity term or coefficient of diffusion. Burgers [2] while studying turbulence
in flow resulted in the investigation of a non linear partial differential equation that contains an
advective term in addition to the diffusion term and it may be regarded as a prototype in the theory
of nonlinear diffusive waves. The equation takes the form

∂u

∂t
= −αu

∂u

∂x
+ D

∂2u

∂x2
. (2)
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Many approximate solutions have been documented for
Equation (2) subject to different initial and boundary conditions,
we mention the works of Abazari and Borhanifar [3] and
Mukundan and Awasthi [4].

The FitzHugh-Nagumo model is a well-known reaction-
diffusion system proposed by Hodgkin and Huxley [5] for the
conduction of electrical impulses through a nerve fibre. A decade
later, FitzHugh [6] and Nagumo et al. [7] solved the challenge by
reducing the original four-variable system to a simplified model
with only two variables. The differential equation is expressed as

∂u

∂t
= D

∂2u

∂x2
+ βu (1− u) (u− γ ) . (3)

The Newell-Whitehead-Segel equation is applicable in nonlinear
systems that describe the emergence of stripe patterns. This
equation, on the other hand, is used as a mathematical model
in a variety of systems, including Rayleigh-Benard convection,
chemical reactions, and Faraday instability, and is given by

∂u

∂t
= D

∂2u

∂x2
+ βu (1− u) (u+ 1) . (4)

The generalised Huxley equation which models the propagation
of neural pulses, the motion of liquid crystal walls, and the
dynamics of nerve fibres is expressed as

∂u

∂t
= D

∂2u

∂x2
+ βu

(

1− uδ
) (

uδ − γ
)

. (5)

We note here that δ is an arbitrary constant. The nonlinear
partial differential equation which generalises (Equations 1–5)
and can be thought of as an archetypal equation for explaining
the interplay between reaction mechanisms, convection effects,
and diffusion transport is called the generalised Burgers-Huxley
which takes the form

∂u

∂t
= D

∂2u

∂x2
− αuδ

∂u

∂x
+ βu

(

1− uδ
) (

uδ − γ
)

. (6)

Equation (6) can as well be thought of as a combination of
Burger’s equation with advective term and Huxley’s equation
with non linear reaction term with diffusion, hence the name.
It is worth noting that, for δ = 1, Equation (6) yields the
Burgers-Huxley equation. Wang et al. [8] obtained a closed
form solution for Equation (6) and all of its variances. There
have been many semi-analytical and numerical methods used in
obtaining an approximate solution to the generalised Burgers-
Huxley equation, many authors have compared some numerical
solutions to the exact solution obtained in Wang et al. [8] and
these works are [9–18], among many others. However, there is
a minor discrepancy between the closed form solution obtained
by Wang et al. [8] and the one obtained by Deng [19] using
the first-integral approach. To the best of our knowledge, few
researchers have compared their methods with the exact solution
in [19], these include [20] using the modified exponential finite
differencemethod, Ervin et al. [21], andNourazar et al. [22] using
the homotopy perturbation method.

Many drawbacks of the approximation analytical approaches
include slow convergence at long propagation t, expensive
computer memory usage, and difficulty in finding a closed
form formula for the resulting series expression ([9, 10]). To
this end, we cannot overemphasise the need for analysing
the two proposed solutions from Wang et al. [8] and
Deng [19]. In this study, we will obtain solution of the
generalised Burgers-Huxley equation using the classical finite
difference scheme (FTCS) and non-standard finite difference
scheme (NSFD).

2. ORGANISATION OF THE PAPER

The structure of the paper is as follows. In section 3, we
present the numerical experiment and describe some estimation
tools. Section 4 is devoted to the analysis of the two proposed
solutions. In section 5, we present the two numerical methods
(FTCS and NSFD) and study some of their properties. We
present the numerical results from FTCS and NSFD schemes
using the reference solution of Wang et al. [8] as a benchmark
in section 6 and the proposed solution of Deng [19] as
a measure in section 7. Section 8 contains the dynamics
of the travelling wave phenomenon of the Burgers-Huxley
equation. Conclusion and final remarks of this study are given
in section 9.

3. NUMERICAL EXPERIMENT

We solve the generalised 1-D Burgers-Huxley Equation (6) which
is given by

∂u

∂t
= D

∂2u

∂x2
− αuδ

∂u

∂x
+ β(1+ γ )u1+δ − βγ u− βu2δ+1, (7)

subject to the following initial conditions

u(x, 0) =
[

γ

2
+
γ

2
tanh{σγ x}

]
1
δ

, (8)

where α > 0, β > 0, 0 < γ < 1, and δ > 0 is a positive constant,
x ∈ [0, 1] and t ≥ 0. The boundary conditions are obtained from
exact solution.

Wang et al. [8] used the non linear transformation to obtain a
closed form solution for Equation (6) given as

u1(x, t) (9)

=
[

γ

2
+
γ

2
tanh

{

σγ

(

x−
{

(α + ρ)γ + (1+ δ)(α − ρ)
2(1+ δ)

}

t

)}]
1
δ

,

where σ =
δ(ρ − α)
4(1+ δ)

and ρ =
√

α2 + 4β(1+ δ).

Deng [19] claimed there is a minor error in the proposed
solution given byWang et al. [8] using the first-integral approach,
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which is based on the ring theory of commutative algebra. Deng
[19] presented a new proposed solution given as

u2(x, t) (10)

=
[

γ

2
+
γ

2
tanh

{

σγ

(

x−
{

(α − ρ)γ + (1+ δ)(α + ρ)
2(1+ δ)

}

t

)}]
1
δ

,

where σ =
δ(ρ − α)
4(1+ δ)

and ρ =
√

α2 + 4β(1+ δ).

The closed-form expressions are given in Equations (9) and

(10) both lie in the interval (0, γ
1
δ ), refer to the work of Ervin

et al. [21].We fix the coefficient of diffusion to be equal to one and
we obtain the solution of generalised Burgers-Huxley equation in
three distinct regimes using two finite difference methods. In this
study, we consider three different cases as follows:

(1) α = 1.0, β = 1.0, γ = 0.01, δ = 4.0.
(2) α = 1.0, β = 5.0 (β > α), γ = 0.01, δ = 4.0.
(3) α = 5.0 (α > β), β = 1.0, γ = 0.01, δ = 4.0.

We used finite difference technique; Forward time central space
(FTCS) and non-standard approaches in obtaining numerical
solutions for the numerical experiment. The solution domains
are discretised into cells as (xj, tn), where xj = jh, ; (j = 1, 2, ...,N)

and tn = nk, ; (n = 1, 2, ...), where h = 1−0
N−1 is the spatial mesh

size and the values of h selected for computations are explicitly
specified for each instance. The temporal step size is denoted by
k. The following estimation techniques were used to assess the
accuracy of the schemes as well as to check the exact solution
with oversight

Absolute Error =
∣

∣u (x, t)− U
(

xj, tn
)

,
∣

∣

L1 = h

N
∑

j=1

∣

∣u (x, t)− U
(

xj, tn
)∣

∣ , (11)

and

L∞ = max
∣

∣u (x, t)− U
(

xj, tn
)∣

∣ .

where u(x, t) and U(xj, tn) are the exact and numerical
solutions, respectively.

The rate of convergence in space and time are computed using

RT =

ln

(

Ek

E k
2

)

ln

(

k

0.5k

) , (12)

where Ek =
∣

∣

∣

∣L∞
∣

∣

∣

∣ stands for maximum norm errors at
grid point k. All numerical simulations are done in MATLAB
computing platform on an Intel Core-i5, 2.50 GHz PC with 5GB
RAM. We use the two different proposed solutions from Wang
et al. [8] and Deng [19] in order to test the performances of our
two finite difference methods.

4. ANALYSIS OF THE PROPOSED
SOLUTIONS

Before we begin solving a differential equation, we must first
answer three basic questions which are due to Hadamard [23].
However, we keep in mind that non linear partial differential
equations may have multiple solutions in different space
functions. For example, a problem may have multiple solutions,
only one of which is bounded. We would argue the uniqueness of
the solution in the space of bounded functions. This is the case
of the closed form solution provided in Wang et al. [8] and Deng
[19]. The question of well-posedness, existence, and uniqueness
of the solution to the Burgers-Huxley Equation (7) has been
recently reported by Mohan and Khan [24]. One classic test for
possible closed form solution to any differential equation is the
Painleve test, which informs us about the possible integrability of
the differential equation.

In this section, we will subject the two proposed solutions in
Equations (9) and (10) to test using the ansatz technique on the
Burgers-Huxley equation. We consider the case where D = β =
δ = 1 and γ = 1, we have our equation now as

∂u

∂t
−
∂2u

∂x2
+ αu

∂u

∂x
− 2u2 + u+ u3 = 0. (13)

Using the closed form expression of Wang et al. [8], we assume
the solution of Equation (13) to be

u1(x, t) =
[

1

2
+

1

2
tanh

{

σ

(

x−
{

3α − ρ
4

}

t

)}]

, (14)

where σ =
ρ − α
8

and ρ =
√
α2 + 8. By substituting Equation

(14) into Equation (13) and using the Maple symbolic package in
differentiating term by term before simplification, we obtain

∂u

∂t
−
∂2u

∂x2
+ αu

∂u

∂x
− 2u2 + u+ u3

=
8− ρα + α2

32 cosh

[(

ρ

8
−
α

8

)(

x−
3αt

4
+
ρt

4

)]2
. (15)

By using the closed form expression of Deng [19], we assume the
solution of Equation (13) in the form

u2(x, t) =
[

1

2
+

1

2
tanh

{

σ

(

x−
{

3α + ρ)
4

}

t

)}]

, (16)

we substitute the assumed solution Equation (16) into Equation
(13) and using theMaple symbolic package to differentiate before
simplification of terms, we obtain

∂u

∂t
−
∂2u

∂x2
+ αu

∂u

∂x
− 2u2 + u+ u3 = 0. (17)

REMARK 1. The supposed solution using Deng [19] closed-form
expression satisfy Equation (13). However, the assumed solution
utilising the closed-form expression of Wang et al. [8] does not
satisfy Equation (13). We expect the remainder to be zero but
obtained some terms on the right hand side of Equation (15).
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FIGURE 1 | 3D plots of the remainder for the two proposed solutions of Wang et al. [8] and Deng [19] for the three cases using x ∈ [0, 1] and t ∈ [0, 1].
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Figure 1 gives the plots of the remainder from the two proposed
solutions using the three test cases. We observed that remainder
becomes extremely small, around (10−13) in case of Deng [19]
but this is not the case for [8] proposed solution.

5. NUMERICAL METHODS

The study of stability, consistency, positivity, and boundedness of
NSFD for the case δ = 4 was done in Appadu et al. [25], we have
reproduced some of the main analyses.

5.1. FTCS Scheme
Using the FTCS scheme for Equation (7), we have

Un+1
j − Un

j

k
=

(

Un
j+1 − 2Un

j + Un
j−1

h2

)

− α(Un
j )
δ
Un
j+1 − Un

j−1

2h

+ β(1+ γ )(Un
j )
δ+1 − βγUn

j − β(Un
j )

2δ+1.

(18)

By making Un+1
j the subject, we have

Un+1
j = Un

j +
k

h2

(

Un
j+1 − 2Un

j + Un
j−1

)

−
kα

2h
(Un

j )
δ

(

Un
j+1 − Un

j−1

)

+ kβ(1+ γ )(Un
j )
δ+1

−kβγUn
j − kβ(Un

j )
2δ+1. (19)

By using the freezing coefficient method and Von-Neumann
stability analysis, we obtain the amplification factor as

ξ = 1− I
kα

h
Umax sinw+

k

h2
(2 cosw− 2)

+kβ(Umax)
4(1+ γ )− kβγ − kβ(Umax)

8. (20)

Since 0 ≤ U(xj, tn) ≤ γ 1/δ , it follows that Umax = γ 1/4. On
simplification, we obtain

| ξ |=

√

(

1−
4k

h2
sin2

w

2

)2

+
(

kα

h
sinw

)2

. (21)

Stability is guaranteed when 0 ≤ | ξ | ≤ 1 for w = [−π ,π].
Region of stability is k ≤ 0.005. We next study the consistency.

We expand using Taylor’s series expansion around (tn, xj)
using Equation (19) and obtain

U + kUt +
k2

2
Utt +

k3

6
Uttt +O(k4)

= U +
k

h2

(

h2Uxx +
h4

12
Uxxxx +O(h6)

)

−
kα

2h
Uδ

(

2hUx +
1

3
h3Uxxx +O(h5)

)

+ kβ(1+ γ )Uδ+1

−kβγU − kβU2δ+1. (22)

Dividing throughout by k and simplifying, we have

Ut − Uxx + αUδUx − β(1+ γ )Uδ+1 + βγU + βU2δ+1

= −
k

2
Utt −

k2

6
Uttt − α

h2

6
UδUxxx +

h2

12
Uxxxx +O(k3)

+O(h4), (23)

and as k, h → 0, we recover the generalised Burgers-Huxley
equation. We note that the FTCS scheme is first-order accurate
in time and second-order accurate in space.

REMARK 2. The generalisation of Equation (18) to a higher
dimension is quite straight-forward. In R

m, the approximate
solution in the reaction term becomes Un

{j1 ,j2 ,··· ,m}. The diffusion

term △U and advection term takes the form of the generalised
finite difference, refer to Prieto et al. [26].

5.2. Non-standard Finite Difference
The use and popularity of the NSFD scheme are due to
anomalous behaviour of the traditional finite difference scheme
when used in discretisation of some continuous differential
equation. In particular, some partial differential equations are
of practical importance. The idea of NSFD scheme gained
the popular attention from many researchers after the work
of Mickens [27]. Some noteworthy failure of standard finite
difference methods is the lack of preservation of physical
properties like positivity and boundedness for equations arising
inmathematical biology [27]. The derivations are primarily based
on the notion of dynamical consistency, which includes features
like special solutions with predetermined stability. There are
certain guidelines to follow while developing such techniques.
They are as follows:

• Linear or non linear terms are modelled non-locally on the
computational grid.

e.g. u3n ≈ 3un+1(un)
2 − 2(un)

3.
• Use of non-classical denominator functions.
• The order of the difference equation should be the same as

the order of the differential equation. In general, spurious
solutions arise when the order of the difference equation is
greater than the order of the differential Equation [27].

• The discrete approximation should preserve some important
properties of the corresponding differential equation.

We discretise the 1-D generalised Burgers-Huxley equation i.e.

ut = uxx − αuδux + β(1+ γ )u1+δ − βγ u− βu2δ+1,

using the forward Euler in time and the usual second order
approximation in the diffusion term.We employed the non-local
discretisation in the advection and reaction terms as employed in
Appadu et al. [25, 28].

To this end, we propose the following non standard finite
difference scheme for Equation (7):

Un+1
j − Un

j

φ(k)
=

[

Un
j+1 − 2Un

j + Un
j−1

[ψ(h)]2

]

−αUn+1
j (Un

j )
δ−1

(

Un
j − Un

j−1

ψ(h)

)

+β(1+ γ )
[

2(Un
j )
δ+1 − (Un

j )
δUn+1

j

]

− βγUn+1
j
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−βUn+1
j (Un

j )
2δ . (24)

where φ(k) =
eβk − 1

β
and ψ(h) =

eh − 1

h
. To restate in a more

concise form, we have

Un+1
j =

(1− 2R)Un
j + R(Un

j+1 + Un
j−1)

+2φ(k)β(1+ γ )(Un
j )
δ+1

1+ αr(Un
j )
δ−1(Un

j − Un
j−1)+ φ(k)βγ

+φ(k)β(1+ γ )(Un
j )
δ + φ(k)β(Un

j )
2δ

. (25)

The denominator functions are defined as R =
φ(k)

[ψ(h)]2
and

r =
φ(k)

ψ(h)
.

5.2.1. Positivity
If 1−2R ≥ 0 and 1−αrγ ≥ 0 the numerical solution fromNSFD
obeys

0 ≤ Un
j ≤ γ

1
δ , H⇒ 0 ≤ Un+1

j ≤ γ
1
δ ,

for all considered values of n and j.
PROOF: Since α,β ∈ R

+, and γ ∈ (0, 1). For positivity, we
require 1 − 2R ≥ 0 and 1 − αrγ ≥ 0. Substituting R and using
1− 2R > 0, we obtain

(

eβk − 1

β

)(

β

eβh − 1

)2

≤
1

2
, (26)

which gives

k ≤
1

β
ln

(

1+
(eβh − 1)2

2β

)

. (27)

Simplifying 1− αrγ ≥ 0 and after some manipulation, we have

k ≤
1

β
ln

(

1+
(eβh − 1)

αγ

)

. (28)

Thus, the positivity condition rests on the following conditions:

k ≤















1

β
ln

(

1+
(eβh − 1)2

2β

)

,

1

β
ln

(

1+
(eβh − 1)

αγ

)

.

(29)

On substituting h = 0.1, and evaluating for different values of α,
β , and γ we obtain

(a) k ≤ 5.515× 10−3 and k ≤ 2.4438 for α = β = 1.0.
(b) k ≤ 8.244×10−3 and k ≤ 8.375×10−1 for α = 1.0, β = 5.0.
(c) k ≤ 5.515× 10−3 and k ≤ 1.1325 for α = 5.0, β = 1.0.

We chose the time of the experiment to be t = 1.0. For positivity,
we require k ≤ 5.515× 10−3 for all the three cases.

5.2.2. Boundedness
We assume 0 ≤ Un

j ≤ γ
1
δ for all considered values of n and j.

Therefore,

(Un+1
j − γ

1
δ )

[

1+ αr(Un
j )
δ−1(Un

j − Un
j−1)+ φ(k)βγ

+φ(k)β(1+ γ )(Un
j )
δ + φ(k)β(Un

j )
2δ

]

= (1− 2R)Un
j + R(Un

j+1 + Un
j−1)+ 2φ(k)β(1+ γ )(Un

j )
δ+1

−γ
1
δ − αrγ

1
δ (Un

j )
δ−1(Un

j − Un
j−1)− φ(k)βγ 1+ 1

δ

−φ(k)βγ
1
δ (1+ γ )(Un

j )
δ − φ(k)βγ

1
δ (Un

j )
2δ ≤ (1− 2R)γ

1
δ

+2Rγ
1
δ + 2φ(k)β(1+ γ )(Un

j )
δ+1 − γ

1
δ

−αrγ
1
δ (Un

j )
δ−1(Un

j − Un
j−1)− φ(k)βγ

1+ 1
δ

− φ(k)βγ
1
δ (Un

j )
2δ ≤ 2φ(k)β(1+ γ )(Un

j )
δ+1

−αrγ
1
δ (Un

j )
δ−1(Un

j − Un
j−1)− φ(k)βγ

1+ 1
δ

−φ(k)βγ
1
δ (1+ γ )(Un

j )
δ − φ(k)βγ

1
δ (Un

j )
2δ

≤ φ(k)β(1+ γ )(Un
j )
δ+1 − αrγ

1
δ (Un

j )
δ−1(Un

j − Un
j−1)

−φ(k)βγ 1+ 1
δ − φ(k)βγ

1
δ (Un

j )
2δ

≤ −αr(Un
j )
δ−1(Un

j − Un
j−1) ≤ 0. (30)

This implies that 0 ≤ Un+1
j ≤ γ

1
δ . Hence, boundedness property

is satisfied.

5.2.3. Consistency
We consider Equation (25) and using the Taylor’s series
expansion around (nk, jh), we obtain

U + kUt +
k2

2
Utt +

k3

6
Uttt +O(k4) (31)

=

(

1− 2R

)

U + R

(

2U + h2Uxx +
h4

12
Uxxxx +O(h6)

)

+2kβ(1+ γ )Uδ+1

1+ αrUδ−1

(

hUx −
h2

2
Uxx +O(h3)

)

+kβγ + kβ(1+ γ )Uδ + kβU2δ

.

Since R =
φ(k)

[ψ(h)]2
, r =

φ(k)

ψ(h)
and φ(k) ≈ k, ψ(h) ≈ h, we

therefore approximate R as
k

h2
and r as

k

h
.

Equation (31) after some simplification can be rewritten as

(

U + kUt +
k2

2
Utt +

k3

6
Uttt +O(k4)

)

Γω

= U + kUxx +
kh2

12
Uxxxx + 2kβ(1+ γ )Uδ+1,

(32)
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where Γω =
[

1+αkUδ−1

(

Ux− h
2Uxx+O(h2)

)

+kβγ +kβ(1+

γ )Uδ + kβU2δ

]

.

Expanding, simplifying, and dividing throughout by k, gives

αUδUx −
h

2
αUδUxx + α

h2

6
UδUxxx + βγU + β(1+ γ )Uδ+1

+βU2δ+1 +
(

Ut +
k

2
Utt +

k2

6
Uttt +O(k3)

)

Γω = Uxx

+
h2

12
Uxxxx + 2β(1+ γ )Uδ+1. (33)

As k, h → 0, we recover the generalised Burgers-Huxley equation
which is given by Equation (7).

5.2.4. Accuracy
Using Equation (33), we have

Ut − Uxx + αUδUx − β(1+ γ )Uδ+1 + βγU + βU2δ+1

= −
[

αkUδ−1

(

Ux −
h

2
Uxx +

h2

6
Uxxx

)

+kβγ + kβ(1+ γ )Uδ + kβU2δ

]

Ut

−
(

k

2
Utt +

k2

6
Uttt

)[

1+ αkUδ−1

(

Ux −
h

2
Uxx +

h2

6
Uxxx

)

+kβγ + kβ(1+ γ )Uδ + kβU2δ

]

(34)

+
h

2
αUδUxx −

h2

6
αUδUxxx +

h2

12
Uxxxx +O(k4)+O(h3).

We deduce that NSFD has first-order accuracy in time and
second order in space.

5.2.5. Stability
We consider Equation 24, using the freezing coefficient
technique, we obtain

Un+1
j − Un

j

= R

[

Un
j+1 − 2Un

j + Un
j−1

]

− rα(Umax)
δ

(

Un
j − Un

j−1

)

+φ(k)β(1+ γ )
[

2(Un
j )(Umax)

δ − (Umax)
δUn+1

j

]

− φ(k)βγUn+1
j − φ(k)βUn+1

j (Umax)
2δ , (35)

whereUmax = γ
1
δ . We use the ansatzUn

j = ξneIjw where w is the

phase angle and obtain

ξn+1eIjw = ξneIjw + R
[

ξneI(j+1)w − 2ξneIjw + ξneI(j−1)w
]

−rαγ
(

ξneIjw − ξneI(j−1)w
)

+ φ(k)β(1+ γ )γ
[

2ξneIjw − ξn+1eIjw
]

−φ(k)βγ ξn+1eIjw − φ(k)βγ 2ξn+1eIjw. (36)

The amplification factor, ξ in Equation (36) takes the form

ξ =

1− 2R+ R(eIw + e−Iw)+ 2φ(k)βγ (1+ γ )
−αrγ (1− e−Iw)

1+ φ(k)βγ 2 + φ(k)βγ + φ(k)βγ (1+ γ )
, (37)

TABLE 1 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 1.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.66808× 10−1 2.66711× 10−1 9.70955× 10−5 2.66701× 10−1 1.07217× 10−4

0.5 2.66997× 10−1 2.66727× 10−1 2.69371× 10−4 2.66699× 10−1 2.97924× 10−4

0.9 2.67185× 10−1 2.67088× 10−1 9.68712× 10−5 2.67077× 10−1 1.07212× 10−4

TABLE 2 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 5.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.71286× 10−1 2.70774× 10−1 5.12597× 10−4 2.70423× 10−1 8.62784× 10−4

0.5 2.71735× 10−1 2.70311× 10−1 1.42389× 10−3 2.69334× 10−1 2.40108× 10−3

0.9 2.72181× 10−1 2.71670× 10−1 5.10520× 10−4 2.71320× 10−1 8.60918× 10−4

TABLE 3 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 5.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.66130× 10−1 2.66062× 10−1 6.81536× 10−5 2.66055× 10−1 7.52697× 10−5

0.5 2.66221× 10−1 2.66031× 10−1 1.89299× 10−4 2.66011× 10−1 2.09794× 10−4

0.9 2.66311× 10−1 2.66243× 10−1 6.81112× 10−5 2.66235× 10−1 7.57484× 10−5
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=

1− 2R+ R(2 cosw)+ 2φ(k)βγ (1+ γ )
−αrγ (1− cosw+ I sinw)

1+ 2φ(k)βγ (1+ γ )
. (38)

=
1− 2R+ R(2 cosw)+ 2φ(k)βγ (1+ γ )− αrγ (1− cosw)

1+ 2φ(k)βγ (1+ γ )

−I
αrγ sinw

1+ 2φ(k)βγ (1+ γ )
. (39)

The scheme is stable whenever the Von-Neumann condition,
|ξ | ≤ 1 is satisfied. The modulus of amplification factor is given
by

|ξ | =
√

(R(ξ ))2 + (I(ξ ))2,

where R(ξ ) and I(ξ ) are the real and imaginary parts of ξ ,
respectively. From Equation (39), we get

|ξ | =

√

√

√

√

√

√

√

(

1− 2R+ R(2 cosw)+ 2φ(k)βγ (1+ γ )

−αrγ (1− cosw)
)2 +

(

αrγ sinw
)2

(

1+ 2φ(k)βγ (1+ γ )
)2

, (40)

where w ∈ [−π ,π]. On differentiation and solving for w, we
obtain w = 0, π , and−π . We note for w = 0, we get |ξ | = 1.

Substituting w = π or−π in Equation (40) yields

|ξ | =
1+ 2φ(k)βγ (1+ γ )− 4R− 2αγ r

1+ 2φ(k)βγ (1+ γ )
. (41)

which is

− 1 ≤
1+ 2φ(k)βγ (1+ γ )− 4R− 2αγ r

1+ 2φ(k)βγ (1+ γ )
≤ 1. (42)

FIGURE 2 | A plot of initial, numerical profiles, and profile from proposed solution [8] vs. x for the three test cases using FTCS and NSFD at t = 1.0 using h = 0.1 and

k = 0.00125. (A) α = 1.0, β = 1.0, and γ = 0.01. (B) α = 1.0, β = 5.0, and γ = 0.01. (C) α = 5.0, β = 1.0, and γ = 0.01.
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After some simplification,

2R+ αγ r ≤ 1+ 2φ(k)βγ (1+ γ ). (43)

We note from Equation (43) that

2R ≤ 1 H⇒ 1− 2R ≥ 0 and αγ r ≤ 1 H⇒ 1− αγ r ≥ 0,

which are the conditions for positivity.

The inequalities

αγ r ≤ 2φ(k)βγ (1+ γ ) and 2R ≤ 2φ(k)βγ (1+ γ )

are 2φ(k)βγ (1+ γ )− αγ r ≥ 0 and 2φ(k)βγ (1+ γ )− 2R ≥ 0.
Thus, the conditions for stability are

1− 2R ≥ 0, 1− αγ r ≥ 0, 2φ(k)βγ (1+ γ )− 2R ≥ 0,

and 2φ(k)βγ (1+ γ )− αγ r ≥ 0. (44)

FIGURE 3 | Plot of absolute error vs. x for the three test cases at t = 1.0 using h = 0.1 and k = 0.00125. (A) α = 1.0, β = 1.0, and γ = 0.01. (B) α = 1.0, β = 5.0, and

γ = 0.01. (C) α = 5.0, β = 1.0, and γ = 0.01.

TABLE 4 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 1.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.64625× 10−1 2.64625× 10−1 1.08007× 10−7 2.64625× 10−1 1.41772× 10−7

0.5 2.64818× 10−1 2.64818× 10−1 3.00189× 10−7 2.64818× 10−1 3.93692× 10−7

0.9 2.65011× 10−1 2.65010× 10−1 1.08071× 10−7 2.65010× 10−1 1.41709× 10−7
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We would like to point out that we have obtained the conditions
of positivity for stability.

REMARK 3. The generalisation of Equation (24) to a higher
dimension rests on the fact that terms (reaction and advection)
with non-standard approximation Un+1 should have a minus sign.
In R

m, the approximate solution in the reaction term becomes
Un
{j1 ,j2 ,··· ,m}. The diffusion term △U and advection term takes the

form of the generalised finite difference, refer to Prieto et al. [26].
In Appadu et al. [25], we have constructed a few versions of NSFD
methods to solve a 2D generalised Burgers-Huxley equation.

6. NUMERICAL RESULTS AND ERROR
ANALYSIS USING PROPOSED SOLUTION
FROM WANG ET AL.

In this section, we have reproduced some results obtained by
Appadu et al. [29]

Case 1: α = β = 1.0 and γ = 0.01.
Case 2: α = 1.0, β = 5.0, and γ = 0.01.
Case 3: α = 5.0, β = 1.0, and γ = 0.01.

In Table 1, we observed the absolute error of the FTCS scheme
to be of order 10−4 − 10−5 while that from NSFD scheme is of
the order 10−4. The relative error of both schemes is of order
10−3 − 10−4. When the reaction coefficient β dominates the
advection coefficient α, we noticed a decline in the accuracy
of both schemes as the absolute and relative errors increase to
magnitude of order 10−3−10−4 and 10−3, respectively, as shown
in Table 2. Absolute and relative errors decrease to 10−4 − 10−5

and 10−4 when α > β , we refer to Table 3. Figures 2, 3 shed
more light on the behaviour and performance of the FTCS and
NSFD scheme with respect to the exact solution of Wang et al.
[8].

REMARK 4. There is always deviation in the numerical profiles
(FTCS and NSFD) with the profile from proposed solution of

FIGURE 4 | A plot of initial, numerical profiles, and profile from proposed solution [19] vs. x for the three test cases using FTCS and NSFD at t = 1.0 using h = 0.1

and k = 0.00125. (A) α = 1.0, β = 1.0, and γ = 0.01. (B) α = 1.0, β = 5.0, and γ = 0:01. (C) α = 5.0, β = 1.0, and γ = 0.01.
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Wang et al. [8] as depicted in Figure 1, despite performing grid
refinement i.e., k → 0.

7. NUMERICAL RESULTS AND ERROR
ANALYSIS USING PROPOSED SOLUTION
FROM DENG

The results in this section are novel and are not taken from any
reference.

Case 1: α = β = 1.0 and γ = 0.01.
Case 2: α = 1.0, β = 5.0, and γ = 0.01.
Case 3: α = 5.0, β = 1.0, and γ = 0.01.

Table 4 show the absolute error of the FTCS and NSFD schemes
to be of order 10−7 while the relative error of both schemes is of
order 10−6 − 10−7. When the reaction coefficient β dominates
the advection coefficient α, we noticed a decline in the accuracy
of both schemes (FTCS andNSFD) as the absolute errors increase

to magnitude of order 10−5−10−7 and relative error to 10−6 and
10−5, respectively, as shown in Table 6. In Tables 5, 7, 9 show
the rate of convergence as we perform grid refinement in time.
Figures 4, 5 shed more light on the behaviour and performance

TABLE 5 | L1, L∞ errors and rate of convergence (in time) for α = 1.0, β = 1.0,

and γ = 0.01 (Case 1) at some different time-step size k with spatial mesh size

h = 0.1 using FTCS and NSFD at t = 1.0.

Scheme k L1 Error L∞ Error Rt

FTCS 0.005 1.9810× 10−6 3.0018× 10−7 −
0.0025 1.9608× 10−6 2.9711× 10−7 1.484× 10−2

0.00125 1.9506× 10−6 2.9558× 10−7 7.479× 10−3

NSFD 0.005 2.5984× 10−6 3.9369× 10−7 −
0.0025 1.1361× 10−6 1.7213× 10−7 1.193

0.00125 4.0451× 10−7 6.1282× 10−8 1.489

FIGURE 5 | Plot of absolute error vs. x for the three test cases at t = 1.0 using h = 0.1 and k = 0.00125. (A) α = 1.0, β = 1.0, and γ = 0.01. (B) α = 1.0, β = 5.0, and

γ = 0.01. (C) α = 5.0, β = 1.0, and γ = 0.01.
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FIGURE 6 | 3D plots of solution vs. t vs. x using FTCS, NSFD, and proposed solution [19] for α = 1, β = 1, δ = 1.0, and γ = 0.1 using k = 0.005 and h = 0.1.

TABLE 6 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 1.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.59166× 10−1 2.59166× 10−1 3.13176× 10−7 2.59160× 10−1 5.80488× 10−6

0.5 2.59680× 10−1 2.59680× 10−1 8.72601× 10−7 2.59664× 10−1 1.60915× 10−5

0.9 2.60191× 10−1 2.60191× 10−1 3.14074× 10−7 2.60185× 10−1 5.79044× 10−6

TABLE 7 | L1, L∞ errors and rate of convergence (in time) for α = 1.0, β = 1.0,

and γ = 0.01 (Case 2) at some different time-step size k with spatial mesh size

h = 0.1 using FTCS and NSFD at t = 1.0.

Scheme k L1 Error L∞ Error Rt

FTCS 0.005 5.75636× 10−6 8.72601× 10−7 −
0.0025 5.28394× 10−6 8.00967× 10−7 1.235× 10−1

0.00125 5.04769× 10−6 7.65145× 10−7 6.601× 10−2

NSFD 0.005 1.0623× 10−4 1.6091× 10−5 −
0.0025 4.7996× 10−5 7.2693× 10−6 1.146

0.00125 1.8799× 10−5 2.8461× 10−6 1.352

of the FTCS and NSFD schemes with respect to the proposed
solution of Deng [19].

8. THE DYNAMICS OF A TRAVELLING
WAVE BY THE BURGERS-HUXLEY
EQUATION

The Burgers-Huxley equation is a non linear PDE that
exhibits many complex phenomena among which is the wave
phenomenon. The proposed solutions are given in Equations
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TABLE 8 | A comparison between the exact and numerical solutions at some values of x for α = 1.0, β = 1.0, and γ = 0.01 at time t = 1.0.

t x Exact FTCS Abs Error (FTCS) NSFD Abs Error (NSFD)

1 0.1 2.64598× 10−1 2.64598× 10−1 2.54332× 10−7 2.64598× 10−1 1.42838× 10−7

0.5 2.64690× 10−1 2.64691× 10−1 7.06786× 10−7 2.64691× 10−1 3.97948× 10−7

0.9 2.64782× 10−1 2.64783× 10−1 2.54418× 10−7 2.64783× 10−1 1.43706× 10−7

TABLE 9 | L1, L∞ errors and rate of convergence (in time) for α = 1.0, β = 1.0,

and γ = 0.01 (Case 3) at some different time-step size k with spatial mesh size

h = 0.1 using FTCS and NSFD at t = 1.0.

Scheme k L1 Error L∞ Error Rt

FTCS 0.005 4.6644× 10−6 7.0678× 10−7 −
0.0025 4.6441× 10−6 7.0371× 10−7 6.291× 10−3

0.00125 4.6339× 10−6 7.0217× 10−7 3.156× 10−3

NSFD 0.005 2.6265× 10−6 3.9794× 10−7 −
0.0025 1.1622× 10−6 1.7608× 10−7 1.176

0.00125 4.2962× 10−7 6.5089× 10−8 1.435

(9) and (10) both exhibit the dynamics of a travelling wave.
A travelling wave is a wave that moves in a certain direction
while maintaining a stable form. In this section, we show the
travelling wave dynamics of the Burgers-Huxley equation using
the proposed solution by Deng [19] and behaviour of the
approximate solutions by looking at Equation (7) in an extended
domain for the spatial variable x ∈ [−100, 100] and t ∈ [0, 1].
The plots are displayed in Figure 6.

9. CONCLUSION

In this work, we examined the two proposed solutions provided
by Wang et al. [8] and Deng [19] for the generalised Burgers-
Huxley equation. The FTCS and NSFD schemes are designed
to approximate the solution of the generalised Burgers-Huxley
equation. The numerical estimation tools of absolute error,
relative error, and rate of convergence serve as the means of
benchmarking the two proposed solutions. We observed that
despite the consistency of the two (FTCS and NSFD) finite
difference schemes and working within their region of stability,
the results deviate from the proposed solution from Wang et al.
[8] upon grid refinements. This directly has a greater impact
on its error analysis as shown in Figure 1 and Tables 1–3. This
anomalous behaviour was not experienced using the proposed
solution of Deng [19] as seen in Figure 3 and Tables 4–9. In
conclusion, the proposed solution of Wang et al. [8] indeed

contains a minor error while the solution provided by Deng

[19] is the true exact solution for the generalised Burgers-
Huxley equation for the initial conditions given by Equation
(8). In our future work, we will consider an application in
microfluidic, microfluidics deals with the flow of fluids and
suspensions in channels of sub-millimetre-sized cross-sections
under the influence of external forces. In these instances, viscosity
dominates over inertia, ensuring the absence of turbulence and
the appearance of regular and predictable laminar flow streams,
which implies an exceptional spatial and temporal control of
solutes. The equation modelling microfluidics is as follows [30]:







∇ · u = 0,

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −▽P + η∇2u+ ρg (45)

we will approach the set of partial differential equations given in
Equation (45) using FTCS, NSFD, and possibly other methods.
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A global increase in the prevalence of obesity and type 2 diabetes is strongly connected

to an increased prevalence of non-alcoholic fatty liver disease (NAFLD) worldwide. In this

article, the progression of the NAFLD process is modeled by continuous time Markov

chains (CTMCs) with nine states. Maximum likelihood is used to estimate the transition

intensities among the states. Once the transition intensities are obtained, the mean

sojourn time and its variance are estimated, and the state probability distribution and

its asymptotic covariance matrix are also estimated. A hypothetical example based on

a longitudinal study assessing patients with NAFLD in various stages is discussed. The

mean time to absorption is estimated, and the other abovementioned statistical indices

are examined. In this article, the maximum likelihood estimation (MLE) function is utilized

in a new approach to compensate for the missing values in the follow-up period of

patients evaluated in longitudinal studies. A MATLAB code link is provided, at the end of

the article, for the estimation of the transition rate matrix and transition probability matrix.

Keywords: multistate Markov chains, non-alcoholic fatty liver disease, continuous time Markov chains, maximum

likelihood estimation, mean sojourn time, longitudinal study, mean time to absorption

INTRODUCTION

Continuous time Markov chain (CTMC) is commonly used to model data obtained from
longitudinal studies inmedical research and to investigate the evolution and progression of diseases
over time. Estes et al. [1] used multistate Markov chains to model the epidemic of non-alcoholic
fatty liver disease (NAFLD). Younossi et al. [2] used multistate Markov chains to demonstrate the
economic and clinical burden of NAFLD in the United States and Europe.

According to the American Association for Study of Liver Disease, American College of
Gastroenterology, and the American Gastroenterological Association, NAFLD to be defined
requires (a) evidence of hepatic steatosis (HS) either by imaging or by histology and (b) no causes
of secondary hepatic fat accumulation, such as significant alcohol consumption, use of steatogenic
medications, or hereditary disorders [3]. This is the same definition established by the European
Association for the Study of the Liver (EASL), the European Association for the Study of Diabetes
(EASD), and the European Association for the Study of Obesity (EASO) [4]. NAFLD can be
categorized histologically into the non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis
(NASH). NAFL is defined as the presence of ≥ 5% HS without evidence of hepatocellular injury in
the form of hepatocyte ballooning. NASH is defined as the presence of≥ 5% HS and inflammation
with hepatocyte injury (ballooning), with or without any fibrosis.
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In Attia [5], non-alcoholic fatty liver disease (NAFLD) can
be modeled by the simplest form of a multistate model for the
health-illness-death process as illustrated in Figure 1. The system
is composed of 4 states. State 1 represents the individuals with
high risk factors such as type 2 diabetes, hypercholesterolemia,
obesity, and hypertension. State 2 represents patients suffering
from NAFLD with all possible substates that are explained and
clarified in a more elaborate manner in this paper. The death
state is represented by two states highlightening the competing
risk factors for death: state 3 represents the death state as a
complication of NAFLD and state 4 represents the death state
from other causes than the complications of NAFLD. For this
general and abstract system, 5 rates of transitions among states
are estimated using the maximum likelihood estimation (MLE)
function and quasi-Newton. Once the transition rate matrix
is obtained, exponentiation of this rate matrix will yield the
transition probability matrix to estimate the eight probability
density functions (PDFs). All diseases can be modeled by this
abstract form (health-illness-death process), what makes each
disease unique from the other is the detailed substages of the
illness state: how many substates that encompass the illness state,
how the movements among these states can take place, and the
definitions specified for each of these substates. In this article;
the system is composed of nine unique different states. Each

Abbreviations: CC, compensated cirrhosis (stage 4); CTMCs, continuous time

Markov chains; CVS, cardiovascular disease; DCC, decompensated cirrhosis (stage

5); EASD, European Association for the Study of Diabetes; EASL, European

Association for the Study of Liver; EASO, European Association for the Study of

Obesity; EM, extramortality (stage 9); HCC, hepatocellular carcinoma (stage 8);

HS, hepatic steatosis; LT, liver transplant (stage 6); NAFLD, non-alcoholic fatty

liver disease; NAFL-NO FB, non-alcoholic fatty liver with no fibrosis (stage 1);

NASH, non-alcoholic steatohepatitis; NASH-NO FB, non-alcoholic steatohepatitis

with no fibrosis (stage 2); NASH-FB, non-alcoholic steatohepatitis with fibrosis

(stage 3); PLT, postliver transplant (stage 7); PNPLA-3, patatin-like phospholipase

domain containing protein 3 gene variants; TE, transient elastography; T2DM,

type 2 diabetes mellitus.

FIGURE 1 | The simplest multistate model for analysis of NAFLD (health-illness-death process) [2].

state defines specific biological changes in the whole journey of
the disease, and from each state, the patient can be in the death
state without specifying the cause of death for simplicity. This
more complicated system of the NAFLD process is composed of
22 rates in addition to 49 PDFs to be estimated. The transition
rate matrix differs from the simple model as the number and
movement among the states are more specified and complicated;
consequently, the PDFs are different.

A MATLAB code illustrating all the calculations is published
in the code Ocean site at the URL: https://codeocean.com/
capsule/8641183/tree/v2 with doi: 10.24433/CO.6022979.v2.

A full detailed description of a simple form of the model
to enhance understanding of the difference between the two
forms of the model is illustrated in a thorough explanation in
the Supplementary Materials for the simple model (refer to
Supplementary Material).

In this article, NAFLD is modeled as a multistage disease
process consisting of nine stages, as depicted in Figure 2 [2].
As shown in Figure 2, the patient can move across the stages
of the disease process. Whereas, remission rates are allowed
from stage 4 (compensated liver cirrhosis) to earlier stages, the
patient progresses to HCC and liver transplantation once he
arrives at stage 5 (decompensated liver cirrhosis), and remission
rates are not allowed. Death state can be reached from any
state. The patient can move from the first 5 stages to stage 8
(HCC) with a higher rate of progression from stage 4 (CC)
or stage 5 (DCC) to stage 8 (HCC) compared to the first
3 stages. A brief definition of each stage is illustrated below
the figure.

NAFLD stages are modeled as time-homogenous CTMCs,
that is, Pij (1t) depends on 1t and not on t, with constant
transition intensities λij over time, exponentially distributed time
spent within each state and patient events following a Poisson
distribution. The states are finite and can be defined or identified
based on various aspects, such as clinical symptoms and invasive

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 February 2022 | Volume 7 | Article 76608521

https://codeocean.com/capsule/8641183/tree/v2
https://codeocean.com/capsule/8641183/tree/v2
https://doi.org/10.24433/CO.6022979.v2
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Attia Novel Approach of Multi-State Markov Chains

FIGURE 2 | Disease model structure. NAFL-NO FB, non-alcoholic fatty liver with no fibrosis (stage 1); NASH-NO FB, non-alcoholic steatohepatitis with no fibrosis

(stage 2); NASH-FB, non-alcoholic steatohepatitis with fibrosis (stage 3); CC, compensated cirrhosis (stage 4); DCC, decompensated cirrhosis (stage 5); LT, liver

transplant (stage 6); PLT, post liver transplant (stage 7); HCC, hepatocellular carcinoma (stage 8); EM, extramortality (stage 9). [2].

or non-invasive investigations. The gold-standardmethod for the
classification of histopathological changes in the liver is invasive
liver biopsy. It is presently the most trustworthy procedure
for diagnosing the presence of steatohepatitis and fibrosis in
patients with NAFLD [6]. The limitations of this procedure
are cost, sampling error, and procedure-related morbidity and
mortality. MR imaging, by spectroscopy [7] or by proton density
fat fraction [8], is an excellent non-invasive technique for
quantifying HS and is being widely used in NAFLD clinical
trials [9]. The use of transient elastography (TE) to obtain
continuous attenuation parameters is a promising tool for
quantifying hepatic fat in an ambulatory setting [10]. However,
non-invasive quantification of HS in patients with NAFLD is
limited in routine clinical care. Additionally, one of the most
recent biological markers is the keratin (K18) and its caspase-
cleaved fragments (cK18). There are many scoring systems that
can identify the stages of the disease process [11]. NAFLD
has a higher prevalence rate in individuals with risk factors
such as visceral obesity, type 2 diabetes mellitus (T2DM),
dyslipidemia, hypertension, older age, male sex, and Hispanic
ethnicity [12].

For simplicity, all individuals are assumed to enter the disease
process at stage one, and they are all followed up with the same
length of the time interval between measurements.

The article is divided into eight sections. In Section 1, the
transition probabilities are thoroughly discussed. In Section 2,
transition rates are clarified. In Section 3, the mean sojourn time
and its variance are reviewed. In Section 4, the state probability
distribution and its covariance matrix are discussed. In Section
5, the life expectancy of the patients is considered. In Section 6,
the expected numbers of patients in each state are obtained. A
hypothetical numerical example is used in Section 7 to illustrate
the above concepts. Finally, a brief summary is comprehended

in Section 8. A link to the MATLAB code is provided
at the end of the article (refer to Supplementary Material,
Appendix A & B).

1. TRANSITION PROBABILITIES

NAFLD is modeled by multistate Markov chains that define a
stochastic process:

[

(X(t), t ∈ T)
]

over a finite state space S = { 1, 2, . . . , 9}
and T = [0, t ] and t < ∞.

The transitions can occur at any point in time and, hence, are
called continuous time Markov chains, in contrast to the discrete
time Markov chains in which transitions occur at fixed points in
time. The rates at which these transitions occur are constant over
time and, thus, are independent of t; that is, the transition of the
patient from state i at time = t to state j at t = t + s where s =
1t depends on the difference between two consecutive time

points. In addition, it is defined as θij (t) = lim1t→0
Pij(1t)−I

1t
or the Q matrix; while, the I matrix is the identity matrix, the
thetas are the transition rates among states (in this model, they
are 22 rates).

For the above multistate Markov model demonstrating the
NAFLD process, the forward Kolmogorov differential Equations
(1) are as follows:

d

dt
P (t) = PQ =
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(1)

Solving the Kolmogorov differential equations will
give the transition probability matrix Pij (t) (refer to
Supplementary Material Section 1).

Pij (t) satisfies the following properties:

1. Pij (t + s) =
∑

i.j.l∈S Pil (t)Plj (s), ∀ t ≥ 0, s ≥ 0, i, j, l ∈
S; obeying kolmogrov equations.

2.
∑

S Pij (t) = 1.
3. Pij (t) ≥ 0, ∀ t ≥ 0 and i, j ∈ S.

The Q matrix satisfies the following conditions:

1.
∑

S qij (t) = 0.
2. qij (t) ≥ 0 i 6= j.
3. −

∑

S qij (t) = qii i = j.

where qij is the ( i, j) th entry in the Qmatrix emphasizing that Pij
depends only on the interval between t1 and t2 and not on t1.

2. MAXIMUM LIKELIHOOD ESTIMATION
OF THE Q TRANSITION RATE MATRIX

Let nijr be the number of individuals in state i at tr−1 and in state j
at time tr . Conditioning on the distribution of individuals among
states at t0, the likelihood function for θ is (2):

L (θ) =
τ

∏

r=1







k=9
∏

i,j=1

[

Pij (tr−1, tr)
]nijr







(2)

where k is the index of the number of states

log L (θ) =
τ

∑

r=1

k=9
∑

i.j=1

nijr log P
ij
(tr−1, tr) where τ = (tr−tr−1) .

According to Kalbfleisch and Lawless [13], applying the quasi-
Newton method to estimate the rates mandates calculating the
score function S (θ) (3), which is a vector–valued function for
the required rates and is the first derivative of the log likelihood

function. The second derivative of the probability transition
function with respect to theta is assumed to be zero.

S (θ) =
∂

∂θh
log L (θ) =

τ
∑

r=1

k
∑

i,j=1

nijr
∂Pij (τ ) /∂θh

Pij (τ )
,

h = 1, . . . , 22 while Pij (τ ) =
nijr

ni+
, such that ni+ =

k
∑

j=1

nijr .

S (θ) = τ e3τd3(3)

where S (θ) is the score function.
3 is the eigenvalue for each Q matrix in each τ

(refer to Supplementary Material Section 2). Taking the second
derivative of log L (θ) (4):

∂2

∂θg∂θh
log L (θ)

=
τ

∑

r=1

k
∑

i,j=1

nijr

{

∂2Pij (τ ) /∂θg∂θh

Pij (τ )
−

∂Pij (τ ) /∂θg∂Pij (τ ) /∂θh

P2ij (τ )

}

(4)

Assuming the second derivative is zero and
nijr

Pij(τ )
= ni+ where

ni+ =
∑9

j= 1 nij then:

Mij (θ) =
∂2

∂θg∂θh
log L (θ) =

−
τ

∑

r=1

k
∑

i,j=1

ni+
∂Pij (τ ) /∂θg∂Pij (τ ) /∂θh

Pij (τ )
.

The quasi-Newton formula is (5).

θ1 = θ0 + [M (θ0)]
−1 S (θ0) (5)

According to Klotz and Sharples [14], the initial θ0 =
nijr
ni+

for 1t = 1.

For this NAFLD process (refer to
Supplementary Material Section 2).

3. MEAN SOJOURN TIME

It is the mean time spent by a patient in a given state i of the
process. It is calculated in relation to transition rates θ̂ . These
times are independent and exponentially distributed random
variables with mean 1

λi
where λi = −λii; i = 1, . . . , 8.

According to Kalbfleisch and Lawless [13], the asymptotic
variance of this time is calculated by applying the multivariate
delta method (6):

var (si) =
[

(

qii

(

θ̂
))−2

]2
∑22

h=1

∑22

g=1

∂qii

∂θg

∂qii

∂θh
[M (θ)]−1

∣

∣

θ=θ̂
(6)

where si is the mean sojourn time.
For this NAFLD process (refer to

Supplementary Material Section 3).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 February 2022 | Volume 7 | Article 76608523

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Attia Novel Approach of Multi-State Markov Chains

4. STATE PROBABILITY DISTRIBUTION

According to Cassandras and Lafortune [15], it is the probability
distribution for each state at a specific time point given the
initial probability distribution. Thus, using the rule of total
probability, a solution describing the transient behavior of a chain
characterized by Q and an initial condition π (0) is obtained by
direct substitution to solve (7):

π (t) = π (0)P (t) . (7)

The stationary probability distribution when t goes to infinity
or, in other words, when the process does not depend on
time is obtained by differentiating both sides of the following
Equation (8):

π (t) = π (0)P (t) = π (0) eQt (8)

differentiate both sides to obtain d
dt

π (t)
∣

∣

∣

t=0
= π (0)Q.

d

dt
πi (t)

∣

∣

∣

∣

t=0

=
[
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]
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.

[

π1 π2 π3 π4 π5 π6 π7 π8 π9

]

at a specific time point is
obtained by solving this system of differential equations.
Solving these differential equations for this complex chain
is cumbersome.

If the limit of πz = limt→∞ πz (t) exists, then there is a
stationary or steady state distribution, and as t → ∞, d

dt
πj (t) =

0, since πz (t) does not depend on time. Therefore, d
dt

π (t) =
π (t)Q will reduce to π (t)Q = 0. The stationary state
probability distribution is obtained by solving π(t)Q = 0 subject
to

∑

all z πz = 1.
For this NAFLD process (refer to

Supplementary Material Section 4).

4.1. Asymptotic Covariance of the State
Probability Distribution
The multivariate delta method is applied to the following
function Q′π = F (θh,πi) = 0 to obtain the asymptotic
covariance matrix of the state probability distribution, as π is not
a simple function of theta.

Differentiating F (θh,πi) implicitly with respect to θh is used
in the following manner (9):

∂

∂θh
F (θh,πi) =

∂

∂θh
Q′πi = 0. (9)

∂

∂θh
Q′πi =

[

Q′]
[

∂

∂θh
πi

]

+ πi

[

∂

∂θh
Q

′
]T

= 0

let′s call πi

[

∂

∂θh
Q

′
]T

= C (θ) .

[

Q′]
[

∂

∂θh
πi

]

+ C (θ) = 0.

solving for

[

∂

∂θh
πi

]

,

[

∂

∂θh
πi

]

= −
[

Q
′
]−1

C (θ) .

Let

[

∂

∂θh
πi

]

=A (θ) .

By multivariate delta method

var (π) = A (θ) var (θ)A (θ)
′
, where var (θ) = [M (θ)]−1 .

For this NAFLD process: (refer to
Supplementary Material Section 4.1).

5. LIFE EXPECTANCY OF THE PATIENT IN
THE NAFLD PROCESS

The disease process is composed of eight transient states and one
absorbing state (death state). So, the Q matrix is partitioned into
four sets:

Q =
[

B A
0 0

]

,

where

B =
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.

Additionally, the differential equations can be partitioned into
the following (10):

[

Ṕ(t) Ṕk (t)
]

=
[

P (t) Pk (t)
]

[

B A
0 0

]

(10)

B is the transition rate matrix among the transient states and
column vector A is the transition rate from each transient state
to the absorbing (death) state.

A = −B1T such that1T is a column vector of
(

k− 1
)

× 1

with all its elements equal to one
[

Ṕ(t) Ṕk (t)
]

=
[

P (t) Pk (t)
]

[

B A

0 0

]

can be written as :

P′ (t) = P (t)B and Ṕk (t) = P (t)A.

The solution to Ṕ (t) = P (t)B is P (t) = P (0) eBt
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then Ṕk (t) = P (0) eBtA.

and eBt = 1+ Bt +
(Bt)2

2!
+

(Bt)3

3!
+

(Bt)4

4!
+ · · · =

∞
∑

j=0

(Bt)j

j!
.

If τk is the time taken from state i to reach the absorbing death
state from the initil time

Fk (t) = pr [ τk ≤ t] = pr
[

X (t) = k
]

= Pk (t) = 1T − P (t) 1T

= 1T − P (0) eBt1T .

The moment theory for the Laplace transform can be used to
obtain the mean of the time that has the above cumulative
distribution function. CTMC can be written in a Laplace
transform (11) such that:

[

sP∗(s) − P (0) sP∗k (s)
]

=
[

P∗ (s) P∗k (s)
]

[

B A
0 0

]

(11)

∴ sP∗ (s) − P (0) = P∗ (s)B and sP∗k (s) = P∗ (s)A.

Rearrange:

∴ sP∗ (s) − P∗ (s)B = P (0) .

P∗ (s) [sI − B] = P (0) → P∗ (s) = P (0) [sI − B]−1.

∴ sP∗k (s) = P∗ (s)A → P∗k (s)

=
1

s
P∗ (s) A =

1

s
P (0) [sI − B]−1A.

F∗k (s) =
1

s
P (0) [sI − B]−1A.

f ∗k (s) = s F∗k (s) = P (0) [sI − B]−1A;

where A = −B1T .

Mean time to absorption:

E (τk) = (−1)
df ∗k (s)

ds

∣

∣

∣

∣

s=0

= (−1) P (0) [sI − B]−2A
∣

∣

s=0

= P (0) [−B]−1 1T .

For this NAFLD process: (refer to Supplementary

Material Section 5).
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0

0

0

0

0

0.2248

0

0

0

0

0

0

−0.5502

0

0

0.2844

−0.346

0

0

0.188

−0.9375

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.05

0.0067

0.0128

0.0469

0

0

0.75

0.11

0.059

0

0

0.11

0.099

0.1875

−0.423

0

0

0

−0.7419

0

0.423

0.7419

0





























6. EXPECTED NUMBER OF PATIENTS IN
EACH STATE

Let u (0) be the size of patients in a specific state at a specific time
t = 0. The initial size of patients U (0) = uj (0), as there are
eight transient states and one absorbing state, where uj (0) is the
initial size or number of patients in state j at time t = 0 given that
u9 (0) = 0, i.e., the initial size of patients in state 9 (absorbing
death state) is zero at initial time point t = 0. As the transition
or the movement of the patients among states is independent, at
the end of the whole time interval (0, t) and according to Chiang
[16], there will be uj (t) patients in the transient states at time
t, and there will also be u9 (t)patients in state 9 (death state) at
time t.

E
[

uj (t) |uj (0)
]

=
9

∑

j=1,i=1

uj (0) Pij (t) ,

i & j = 1, . . . , 9

For this NAFLD process: (refer to
Supplementary Material Section 6).

7. HYPOTHETICAL NUMERICAL EXAMPLE

To illustrate the above concepts and
discussion, a hypothetical numerical example
is introduced. It does not represent real data
but it is for demonstrative purposes (refer to
Supplementary Material Section 7).

A study was conducted over 15 years on 1,050
patients with risk factors for developing NAFLD such
as type 2 diabetes mellitus, obesity, and hypertension
acting alone or together as a metabolic syndrome. The
patients were scheduled to be followed up every year
by a liver biopsy to identify the NAFLD cases, but
the actual observations were recorded as shown in the
(Supplementary Material). Table 1 shows the observed
transition counts.

The observed transition rate matrix Q over the whole period
of the study (15 years) is:
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TABLE 1 | The observed transition counts in the whole period of the study (15 years) regardless of the time interval between observations.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 Total

State 1 1,175 859 112 32 30 0 0 0 15 2,223

State 2 14 498 195 31 28 0 0 0 10 776

State 3 6 15 152 67 29 0 0 15 14 298

State 4 0 0 5 49 31 0 0 12 12 109

State 5 0 0 0 0 51 19 15 6 10 101

State 6 0 0 0 0 0 1 12 0 3 16

State 7 0 0 0 0 0 0 15 0 11 26

State 8 0 0 0 0 0 0 0 8 23 31

State 9 0 0 0 0 0 0 0 0 0 0

The estimated transition rate matrix Q̂ is:

Q̂ =





























−0.397
0.02
0

0.39
−0.281
0.05

0
0.25

−0.365
0
0
0

0
0
0

0.041
0
0

0
0
0

0
0
0

0
0
0

0
0

0.225

0
0
0

0
0
0

−0.538
0
0

0.281
−0.348

0

0
0.19

−0.934
0
0
0

0
0
0

0
0
0

0
0
0

0
0

0.047

0.007
0.011
0.043

0
0

0.767

0.109
0.059
0

0.107
0.099
0.167

−0.421
0
0

0
−0.745

0

0.421
0.745
0





























.

Using the above approach as illustrated in the main text and Supplementary Materials, the estimated Q̂ transition rate matrix is nearly
approaching equality to the observed transition rate matrix.

var
(

θ̂
)

= 1× 10−13

[

v1 v2
v3 v4

]

where

v1 =

























0.3292
0.0327
0.4414
0.0827
0.4004
0.0268
0.2540
0.1517

0.0327
0.0064
0.0428
0.0108
0.0385
0.0053
0.0268
0.0159

0.4414
0.0428
0.5922
0.1100
0.5373
0.0350
0.3400
0.2032

0.0827
0.0108
0.1100
0.0228
0.0995
0.0088
0.0650
0.0387

0.4004
0.0385
0.5373
0.0995
0.4876
0.0315
0.3082
0.1843

0.0268
0.0053
0.0350
0.0088
0.0315
0.0044
0.0219
0.0130

0.2540
0.0268
0.3400
0.0650
0.3082
0.0219
0.1967
0.1174

0.1517
0.0159
0.2032
0.0387
0.1843
0.0130
0.1174
0.0702

























.

v2 , v3, and v4 are all zero matrices of size (8 by 14), (14 by 8), and (14 by 14), respectively.
Transition probability matrix at 1 year:

P (1) =





























0.6751
0.0143
0.0004

0.279
0.7625
0.0364

0.0345
0.1819
0.7017

0
0
0

0.0007
0
0

0.0262
0
0

0
0
0

0
0
0

0
0
0

0.0025
0.0190
0.144

0.0002
0.0018
0.0209

0

0
0.0001
0.0012

0.5868
0
0

0.1810
0.7061

0

0.0147
0.1015
0.3930

0
0
0

0
0
0

0
0
0

0
0

0.0002

0.0006
0.0044
0.0347

0.0082
0.016
0.0606

0.0039
0.0416
0.3938

0.0630
0.0344

0

0.1237
0.1163
0.2132

0.6564
0
0

0
0.4747

0

0.3436
0.5253

1





























.
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Mean time spent by the patient in state 1 is∼2 years and 6 months; in state 2, the mean sojourn time is∼3 years and 6 months; in state
3, it is ∼2 years and 9 months; in state 4, it is ∼1 year and 10 months; in state 5, it is ∼2 years and 10 months; in state 6, it is ∼1 year
and 1 month; in state 7, it is∼2 years and 5 months and last; in state 8, the mean sojourn time is∼1 year and 4 months.

If a cohort of 5,000 patients with NAFLD has an initial distribution of
[

0.62 0.22 0.081 00.03 0.028 0.005 00.007 0.009 0
]

and the initial counts of patients in each state are
[

3100 1100 405 150 140 25 35 45 0
]

, then at 1 year, the state probability

distribution is
[

00.4217 0.3437 0.1191 00.035 0.0274 0.0054 00.0079 0.0112 0.0287
]

and the expected counts of patients

are
[

2109 1718 595 175 137 27 39 56 144
]

.
To calculate the goodness of fit for the multistate model used in this example, it is similar to the procedure used in the contingency

table, and it is calculated in each interval and then summed:
Step 1: H0 = future state does not depend on the current state. H1 = future state depends on the current state .
Step 2: Calculate the Pij (1t = 1)

Pij (1t = 1) =





























0.6751
0.0143
0.0004

0.279
0.7625
0.0364

0.0345
0.1819
0.7017

0
0
0

0.0007
0
0

0.0262
0
0

0
0
0

0
0
0

0
0
0

0.0025
0.0190
0.144

0.0002
0.0018
0.0209

0
0.0001
0.0012

0.5868
0
0

0.1810
0.7061

0

0.0147
0.1015
0.3930

0
0
0

0
0
0

0
0
0

0
0

0.0002

0.0006
0.0044
0.0347

0.0082
0.016
0.0606

0.0039
0.0416
0.3938

0.0630
0.0344

0

0.1237
0.1163
0.2132

0.6564
0
0

0
0.4747

0

0.3436
0.5253

1





























.

Step 3: Calculate the expected counts in this interval by multiplying each row in the probability matrix with the corresponding total
marginal counts in the observed transition counts matrix in the same interval to obtain the expected counts.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 Total

State 1 1000.5 413.5 51.13 3.705 0.3 0 0 0.8892 12.15 1482

State 2 7.4074 394.97 94.22 9.842 0.9324 0.0518 0 2.2792 8.288 518

State 3 0.08 7.28 140.34 28.8 4.18 0.24 0.04 6.94 12.12 200.02

State 4 0 0.0511 1.9126 42.8364 13.213 1.0731 0.2847 4.599 9.0301 73

State 5 0 0 0 0 47.3087 6.8005 2.7872 2.3048 7.7921 66.9933

State 6 0 0 0 0 0 3.93 3.938 0 2.132 10

State 7 0 0 0 0 0 0 11.1588 0 5.8412 17

State 8 0 0 0 0 0 0 0 9.494 10.506 20

State 9 0 0 0 0 0 0 0 0 0 0

Step 4: Apply
9

∑

i=1

9
∑

j=1

(Oij−Eij)
2

Eij
= 2219.118 ∼ χ2

(9−1)(9−1)(0.05)
.

The same steps are used for the observed transition counts in 1t = 2 and 1t = 3 with the following results:

Pij (1t = 2) =





























0.4597
0.0206
0.001

0.4023
0.5920
0.0535

0.0984
0.2674
0.5028

0
0
0

0.0019
0
0

0.0339
0
0

0
0
0

0
0
0

0
0
0

0.0134
0.0519
0.1862

0.0019
0.0099
0.0555

0.0001
0.0008
0.0055

0.3481
0
0

0.2345
0.4986

0

0.0328
0.1116
0.1544

0
0
0

0
0
0

0
0
0

0.0000
0.0002
0.0022

0.0032
0.013
0.0508

0.0210
0.0442
0.1425

0.0182
0.0967
0.4133

0.074
0.0406

0

0.2566
0.2525
0.4323

0.4308
0
0

0
0.2254

0

0.5692
0.7746

1





























.
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The expected counts are:

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 Total

State 1 272.6 238.56 58.351 7.946 1.1267 0.0593 0 1.8976 12.453 593

State 2 4.2642 122.54 55.35 10.743 2.0493 0.1656 0.0414 2.691 9.1494 207

State 3 0.08 4.28 40.224 14.896 4.44 0.44 0.176 4.064 11.4 80

State 4 0 0.0551 0.9831 10.0949 6.8005 0.9512 0.5278 2.146 7.4414 29

State 5 0 0 0 0 13.4622 3.0132 2.6109 1.0962 6.818 27

State 6 0 0 0 0 0 0.6176 1.6532 0 1.729 4

State 7 0 0 0 0 0 0 3.0156 0 3.984 7

State 8 0 0 0 0 0 0 0 1.8032 6.197 8

State 9 0 0 0 0 0 0 0 0 0 0

applying :

9
∑

i=1

9
∑

j=1

(Oij−Eij)
2

Eij
= 158.571 ∼ χ2

(9−1)(9−1)(0.05).

The same steps are used for the observed transition counts 1t = 3 in with the following results:

Pij (1t = 3) =





























0.3161
0.0225
0.0016

0.4386
0.4669
0.0595

0.1584
0.2974
0.3675

0.0001
0
0

0.0029
0
0

0.0333
0
0

0
0
0

0
0
0

0
0
0

0.0308
0.0803
0.1827

0.0066
0.023
0.0835

0.0006
0.0024
0.0111

0.2092
0
0

0.2293
0.352
0

0.0418
0.0945
0.0607

0
0
0

0
0
0

0
0
0

0.0002
0.0011
0.0068

0.0079
0.0217
0.0555

0.0408
0.0847
0.2319

0

0.036
.1282
0.3321

0.0663
0.0364

0

0.3811
0.3889
0.6072

0.2828
0
0

0
0.107
0

0.7172
0.893
1





























.

The expected counts are:

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 Total

State 1 46.783 64.913 23.443 4.5584 0.9768 0.0888 0.0296 1.1692 6.0384 148

State 2 1.148 23.812 15.1674 4.0953 1.173 0.1224 0.0561 1.1067 4.3197 51

State 3 0.0288 1.071 6.615 3.2886 1.503 0.1998 0.1224 0.999 4.1742 18

State 4 0.0007 0.0203 0.2331 1.4644 1.6051 0.2926 0.252 0.4641 2.6677 7

State 5 0 0 0 0 2.464 0.6615 0.8974 0.2548 2.7223 7

State 6 0 0 0 0 0 0.1214 0.6642 0 1.2144 2

State 7 0 0 0 0 0 0 0.5656 0 1.4344 2

State 8 0 0 0 0 0 0 0 0.321 2.679 3

State 9 0 0 0 0 0 0 0 0 0 0

applying :

9
∑

i=1

9
∑

j=1

(Oij−Eij)
2

Eij
= 65.37 ∼ χ2

(9−1)(9−1)(0.05).

Step 5: Sum up the above results to get:

9
∑

i=1

9
∑

j=1

t=3
∑

l=1

(

Oijl − Eijl
)2

Eijl
= 2443.06 ∼ χ2

(df=192)(0.05)
.

Therefore, from the above results, the null hypothesis is rejected, whereas the alternative hypothesis is accepted, and the model
fits the data to mean that the future state depends on the current state with the estimated transition rate and probability matrices
as obtained.

8. CONCLUSION AND SUMMARY

Continuous time Markov chains are suitable mathematical and statistical tools to be used for the analysis of disease evolution over
time. CTMCs are the type of multistate model utilized to study this evolution in patients with NAFLD, with the main phenotypes
being NAFL and NASH, as well as to study the associated presence of fibrosis and its stages. The prevalence of NAFLD is rapidly
increasing worldwide and parallels the epidemics of obesity and type 2 diabetes. Metabolic syndrome is a well-known risk factor.
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In this study, NAFLD is modeled in a more elaborative
expanded form, which includes nine states: the first eight states
are the states of disease progression as time elapses, while
the ninth state is the death state. The importance of such
analysis is that health policy makers can predict the number
of affected patients at each stage, the needed investigations and
medications for each of them, and the costs and budgets that
medical insurance should assign to this disease burden. This
analysis is of great value and benefit to physicians, as they can
conduct longitudinal studies to explore further investigations
that better define each stage specifically and efficiently and to
explore further treatment needed for each stage. An example
of a non-invasive diagnostic tool is the circulating level of
cytokeratin-18 fragments; although promising, it is not available
in a clinical care setting, and there is no established cutoff value
for identifying NASH [17]. Genetic polymorphism of patatin-
like phospholipase domain-containing protein 3 gene variants
(PNPLA-3) is associated with NASH and advanced fibrosis;
however, testing for these variants in routine clinical care is not
supported and needs further study.

A hypothetical example of factitious non-real data is used to
emphasize the attributes that need to be estimated:

❖ Transition rate matrix among the various states.
❖ Transition probability matrix among states.
❖ Mean sojourn time in each state.
❖ Life expectancy in each state; in other words, mean time to

absorption (death state).
❖ Expected number of patients in each state.
❖ State probability distribution at specific time points in

the future.

Such analysis may give better insights to physicians, especially
when new drug classes will soon be released on the market.
What drug classes are to be used first? How can the disease
be monitored throughout the journey of treatment? What
investigations are to be used in such monitoring? How to modify
the drug treatment? What is the target that needs to be achieved,
and how can this target be maintained? Moreover, in the late
stage of the disease, when patients suffer from decompensated
liver cirrhosis, liver transplantation is the treatment of choice to
such patients, which increases the economic burden of NAFLD,
as was the disease course during treatment in the early stages.
Additionally, a load of what are the best economic non-invasive
tests to be used in primary health care units for stratification and
identification of high-risk patients, whether to perform genetic
tests in health insurance settings, and when to refer for liver
biopsy in secondary or special clinics should be considered.
All these questions can be answered from longitudinal studies
conducted on susceptible individuals. Over and above, some of
the recently investigated non-invasive scoring systems of fibrosis
need further external validation to be generalized in ethnicities
other than the one tested upon. There are some controversies
regarding the cutoff points of these scoring systems among
countries and ethnicities within the same country. Although liver
biopsy is considered the standard method for the diagnosis of
NAFLD and staging it, its limitations encourage the development
of various non-invasive tests, which necessitate better correlation
between the findings obtained from the biopsy and the results

of these tests to minimize misclassification errors, which hamper
good diagnosis and prognosis of the patient. These tests should be
easy, feasible, convenient, and have a high safety profile to be used
repeatedly in patients for follow-up in such longitudinal studies.

A multistate model represented by CTMC is a valuable
statistical methodology for longitudinal studies in medical
research to better comprehend and understand the
pathophysiology or the mechanism of the NAFLD process,
and the interactions between the different modifiers, either
external or internal modifiers. The external modifiers reside in
bad dietary habits with excessive fat and carbohydrate ingestion,
and sedentary life, whereas the internal modifiers are represented
in genetic factors affecting the metabolism of the food stuff (fat
and carbohydrates) and other cellular functions, such as risk
factors for fibrogenesis (formation of fibrous tissue); fibrosis
is a detrimental predictor factor for disease progression to
liver cirrhosis and its complications. The importance of such
understanding has a great impact on revealing the genes that
must be tested if ever needed, for whom to do such a test,
and should it be in the utilities or services offered by medical
insurance. Moreover, should the degradation byproducts
resulting from extracellular matrix destruction be used in routine
clinical practice to mirror the fibrosis stages?

In Egypt, there are scarce data or maybe no available data
about the prevalence of NAFLD and its phenotypes. Guidelines
for risk stratification and identification are also lacking. Thus,
more longitudinal studies are needed to address these issues.

Multistate models can also be used for the analysis of
competing risks of death in such patients, as the first and second
most common causes of death in patients with NAFLD are
cardiovascular diseases (CVDs) and kidney diseases, whereas
liver-related mortality is the third most common cause of death.

Other statistical methodologies, such as semi-Markov and
hidden Markov chains, can be used to model NAFLD,
especially hidden Markov CTMC can be used to model
misclassification errors encountered in studies analyzed by time-
homogenous CTMC.

Hint: A MATLAB code is edited to calculate the
statistical indices in the hypothetical example. The code
can be found published in the code ocean site with the
following URL: https://codeocean.com/capsule/7628018/tree/v3;
doi: 10.24433/CO.7719785.v3.
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Supplementary Data-sheet 1 | Excel sheet for the timeline of the participants.

Supplementary Data-sheet 2 | Supplementary material for the simple data

model.

Supplementary Data-sheet 3 | Supplementary material for the expanded model.

Supplementary Data-sheet 4 | MATLAB code, Appendix A (rate) and Appendix

B (probability).
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Non-homogeneous Stochastic
Differential Equations
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In this article, we treat the existence and uniqueness of strong solutions to the Cauchy

problem of stochastic equations of the form dXt = αXt dt + σX
γ

t dBt,X0 = x > 0.

The construction does not require the drift and the diffusion coefficients to be Lipschitz

continuous. Sufficient and necessary conditions for the existence of a global positive

solution of non-homogeneous stochastic differential equations with a non-Lipschitzian

diffusion coefficient are sought using probabilistic arguments. The special case γ = 2

and the general case, that is, γ > 1 are considered. A complete description of every

possible behavior of the process Xt at the boundary points of the state interval is provided.

For applications, the Cox-Ingersoll-Ross model is considered.

Keywords: geometric Brownian motion, Itô diffusion, Lipschitz continuous, scale function, speed measure

1. INTRODUCTION

The theory of stochastic differential equations was developed by [1]. Stochastic differential
equations are valuable tools for modeling systems and processes with stochastic disturbances in
many fields of science and engineering. For the general theory of stochastic differential equations,
one can refer to [2–5]. Several authors have discussed results concerning the existence and
uniqueness of solutions of stochastic differential equations [2, 6, 7]. Mishura and Posashkova
[8] provided a sufficient condition on coefficients which ensures almost surely positivity of
the trajectories of the solution of the stochastic differential equation with non-homogeneous
coefficients and non-Lipschitz diffusion. Appleby et al. [9] investigated highly non-linear stochastic
differential equations with delays and showed that properties on the coefficients of stochastic
differential equations that guarantee stability also guarantee positivity of solutions as long as the
initial value is non-zero. Xu et al. [10] investigated the global positive solution of a stochastic
differential equation, where they generalized the mean-reverting constant elasticity of variance
process by replacing the constant parameters with the parameters modulated by a continuous-time,
finite-state, Markov chain. Zhang [11] treated the properties of solutions to stochastic differential
equations with Sobolev diffusion coefficients and singular drifts. Bae et al. [12] proved the existence
of and uniqueness of solution to stochastic differential equations under weakened and Hölder
conditions and a weakened linear growth condition. Conditions for positivity of solutions of
fractional stochastic differential equations with coefficients that do not satisfy the linear growth
Lipschitz continuous conditions were obtained by [13].
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The aim of this article is to prove the existence of a global
positive solution of stochastic differential equations of the form

dXt = αXt dt + σX
γ
t dBt ,X0 = x > 0, (1)

where Bt is a standard Brownian motion, for different values of γ
where α denotes the drift, σ denotes the volatility. X = (Xt)t≥0

describes the underlying asset price. Such stochastic differential
equations arise in modeling asset prices and interest rates on
financial markets and it is crucial that Xt never becomes negative.
Mao and Yuan [2] discussed the analytical properties when 1

2 ≤
γ ≤ 1 and showed that for a given initial value X0 = x > 0,
the solution of (1) remains positive with probability 1, namely,
Xt > 0 for all t ≥ 0 almost surely. The cases γ = 0 and γ = 1
give rise to the Ornstein-Uhlenbeck process and the Geometric
Brownianmotion, respectively, and this has been dealt with in the
literature, see [4, 5, 14, 15]. When γ > 1, the diffusion coefficient
of Equation (1) does not satisfy the linear growth condition,
even though it is locally Lipschitz continuous. In view of this,
it is not straightforward from the general theory of stochastic
differential equations to obtain a unique global positive solution
to Equation (1) that is defined for all t ≥ 0. Nevertheless, there
is a way to overcome such difficulties which we present in this
article and we also provide detailed proofs that there is unique
solutions to equations of the form (1). This article is an extension
of the work done in [16] and [17] to non-homogeneous stochastic
differential equations.

This article is structured as follows. In Section 2, we consider
the existence of a positive global solution for non-homogeneous
stochastic differential equations with non-Lipschitz coefficients.
In particular, we treat the case γ = 2 and prove that if α ≥ 0
and x ≥ 0 is arbitrary, then a unique strong solution of Equation
(1) exists. Section 3 deals with the existence and uniqueness
of a positive global solution to non-homogeneous stochastic
differential equation (1). In particular, we consider the general
case, that is, γ > 1. We provide a detailed proof of the existence
of a unique solution to Equation (1). In Section 4, we investigate
the behavior of the underlying process Xt at the boundaries of the
state space (0,∞). The main tool used are simple probabilistic
arguments. We only require the coefficients of our model to
be continuous in the usual sense. In Section 5, we provide a
brief conclusion.

2. EXISTENCE OF POSITIVE GLOBAL

SOLUTIONS: γ = 2

We want to prove that a unique global positive solution to
Equation (1) exists and investigate its properties. We notice that
if X0 = x = 0, then by strong uniqueness we have Xt = 0 for all
t ≥ 0. In addition, if a solution Xt exists for all t < τ (ω) ≤ ∞ for
some x > 0 and XT = 0 for some T = T(ω) < τ (ω), then by the
Strong Markov property we haveXt = 0 for all t ∈ [T(ω), τ (ω)].
In particular, x ≥ 0 implies that Xt ≥ 0.

We call (�,F , (Ft),P) a stochastic basis if (�,F ,P) is a
complete probability space and (Ft) is a right continuous
filtration on � augmented by the P-null sets. Let B = (Bt)t≥0

be a standard Brownian motion defined on a stochastic basis
(�,F , (Ft),P).

We consider a stochastic differential equation of the form

dXt = α(Xt) dt + σ (Xt) dBt , (2)

where the coefficients α :R → R and σ :R → R are both Borel
measurable functions. By the definition of stochastic differential,
Equation (2) is equivalent to the stochastic integral equation:

Xt = x+
∫ t

0
α(Xs) ds+

∫ t

0
σ (Xs) dBs. (3)

Definition 2.1. [2, p. 48] An R-valued stochastic process
{Xt}t∈[0,T] is called a solution of Equation (2) if it has the
following properties:

1. {Xt} is continuous and Ft-adapted.

2.
∫ t
0 | α(Xs) | ds < ∞ and

∫ t
0 σ 2(Xs)ds < ∞.

3. Equation (3) holds for every t ∈ [0,T] with probability 1.

Definition 2.2. [18, p. 167] A solution (X,B) of Equation (2)
defined on (�,F , (Ft),P) is said to be a strong solution if X is
adapted to the filtration {FB

t }, that is, the filtration of B = (Bt)t≥0

completed with respect to P.

Definition 2.3. [7, p. 300] A weak solution is a triple
((�,F ,P), (B,X), (Ft)) where (�,F ,P) is a probability space,
{Ft} is a filtration of sub-σ -fields of F satisfying the usual
conditions, X is a continuous, adapted R-valued process, B is the
standard Brownian motion such that Equation (3) is satisfied.

Remark 2.1.

1. Definition 2.2 says that if the probability space (�,F ,P), the
filtration {Ft}t≥0, the Brownian motion Bt and the coefficients
α(x) and σ (x) are all given in advance, and then the solution
Xt is constructed, such a solution is called a strong solution.

2. Definition 2.3 says that if we are only given the coefficients
α(x) and σ (x), and we are allowed to construct a suitable
probability space, a filtration and find a solution to the
Equation (2), then such a solution is called a weak solution.

A solution {Xt}t∈[0,T] is said to be unique if any other solution
{Xt} is indistinguishable from {Xt}, that is

P(Xt = Xt ∀ 0 ≤ t ≤ T) = 1.

Following [19], we impose the following hypothesis:
(H) The drift coefficient is globally Lipschitz, that is, for all

x, y ∈ R,

| α(x)− α(y) |≤ K | x− y | (4)

where K is a fixed constant, while the diffusion coefficient is
globally Hölder continuous, that is, for all x, y ∈ R,

| σ (x)− σ (y) |≤ h(| x− y |) (5)
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where h :[0,∞) → [0,∞) is a strictly increasing function with
h(0) = 0 and the integral

∫ ε

0

du

h2(u)
= ∞, ∀ε > 0.

It is known [see [19]] that under the hypothesis (H), the strong
uniqueness solution holds for the stochastic differential equation
(2).

For the case γ = 2, Equation (1) takes the form

dXt = αXt dt + σX2
t dBt . (6)

If we let Yt = ln | Xt | then an application of Itô’s formula yields

dYt = (α −
1

2
σ 2X2

t ) dt + σXt dBt (7)

which is equivalent to

ln | Xt |= ln | x | +αt −
1

2
σ 2

∫ t

0
X2
s ds+ σ

∫ t

0
Xs dBs. (8)

This solution presents a challenge as the coefficients in Equation
(8) do not satisfy the linear growth and Lipschitz conditions.
However, there is a way to go around this. In the next result we
prove the existence of a global solution to Equation (6) following
arguments presented in [20].

Theorem 2.1. Suppose α ≥ 0 and x ≥ 0 is arbitrary, then the
stochastic differential equation of the form (6) has a unique, strong
solution Xt defined for all t ≥ 0.

Proof: The result is proved by a truncation procedure. For each
n ≥ 1, we set α = αn(x) and the truncation function

σn(x) =
{

σx2 if | x |≤ n,
σn2 if | x |> n

.

Then, αn(x) and σn(x) satisfy the hypothesis (H). Hence, there is

a unique solution Xt = X
(n)
t defined for all t to the equation

X
(n)
t = x+

∫ t

0
αn(X

(n)
s ) ds+

∫ t

0
σn(X

(n)
s ) dBs. (9)

Define the stopping time

τn = inf{t > 0; | X(n)
t |≥ n}, n = 1, 2, .... (10)

Then, by strong uniqueness we have

X
(n)
t (ω) = X

(n+1)
t (ω) for all t ≤ τn a.s. (11)

Therefore,

τn = inf{t > 0; | X(n)
t |≥ n} < inf{t > 0; | X(n+1)

t |≥ n+ 1} =
τn+1. (12)

Hence, {τn} is an increasing sequence of stopping times. Put

τ (ω) = lim
n→∞

τn(ω) ≤ ∞.

Then, for t < τ (ω), a process Xt can be defined by setting

Xt(ω) = X
(n)
t (ω), if t < τn(ω). (13)

It is clear that if t < τ (ω) then one can easily show that t <

τn(ω) for some n. Therefore, by (11), this defines Xt(ω) uniquely.
Hence, we have

Xt = x+
∫ t

0
αXs ds+

∫ t

0
σX2

s dBs for t < τ (ω). (14)

3. EXISTENCE AND UNIQUENESS OF

POSITIVE GLOBAL SOLUTION

In this section, we provide a detailed proof that there
is a unique positive global solution to Equation (1). In
particular, we focus on the case γ > 1. To establish the
existence of a unique positive global solution, we need the
following result.

Lemma 3.1. [3, p. 57] The coefficients of Equation (1)
satisfy the local Lipschitz condition for given initial
condition X0 = x > 0, that is, for every integer k > 1,
there exists a positive constant Lk and x, y ∈ [0, k]
such that

| αx− αy |2 + | σxγ − σyγ |2≤ Lk | x− y |2 . (15)

Therefore, there exists a unique local solution to Equation (1).

We now state our result in the following theorem.

Theorem 3.1. For any given initial value X0 = x > 0, α and
σ > 0 there exists a unique positive global solution Xt to Equation
(1) on t ≥ 0 for γ > 1.

Proof: It is clear that the coefficients of Equation (1) are locally
Lipschitz continuous. Therefore, for any given initial value X0 =
x > 0, there is a unique local solution Xt , t ∈ [0, τ (ω)] of
Equation (1) where τ (ω) is the explosion time. To prove that the
solution is global, it suffices to show that τ (ω) = ∞ almost surely.
We prove this by contradiction. If τ (ω) 6= ∞, then we can find a
pair of positive constants ǫ and T such that

P(τ (ω) ≤ T) > ǫ. (16)

For each integer n > 1, we define a stopping time

τn = inf{t ≥ 0 : | Xt |≥ n}. (17)

Since τn → τ (ω) almost surely, we can find a sufficiently large n0
for which

P(τn ≤ T) >
ǫ

2
, for all n ≥ n0. (18)
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For θ ,β > 0, we define a function V ∈ C2 as

V(X) : = θ
√
X + βX−2, (19)

which is continuously twice differentiable in X. We observe that
V(X) → +∞ as X → +∞ or X → 0. For any 0 < t < T, an
application of Itô formula gives

dV(Xt) = LV(Xt) dt + σXγ

(

1

2
θX

− 1
2

t − 2βX−3
t

)

dBt , (20)

where

LV(Xt) = αXt

(

1

2
θX

− 1
2

t − 2βX−3
t

)

+
1

2
σ 2X

2γ
t

(

−
1

4
θX

− 2
3

t + 6βX−4
t

)

. (21)

By boundedness of polynomials, there exists a constant K
such that

αXt

(

1

2
θX

− 1
2

t − 2βX−3
t

)

+
1

2
σ 2X

2γ
t

(

−
1

4
θX

− 2
3

t + 6βX−4
t

)

≤K.

(22)
Therefore, for any t ∈ [0,T]

E[V(Xt∧τn )] = V(x)+ E

[∫ t∧τn

0
LV(Xs) ds

]

≤ V(x)+ KT

+KE

[∫ t

0
E[V(Xs∧τn )] ds

]

. (23)

The application of the Grownwall inequality yields

E[V(XT∧τn )] ≤ [V(x)+ KT]eKT (24)

which is equivalent to

E[V(Xτn )1{τn≤T}] ≤ [V(x)+ KT]eKT . (25)

On the other hand, we define

Mn = inf{V(Xt) | Xt > n, t ∈ [0,T]}. (26)

As n → +∞,Mn → +∞. It now follows from (18) and (26) that

[V(x)+ KT]eKT ≥ MnP({τn ≤ T}) ≥
1

2
ǫMn. (27)

Letting n → +∞ yields a contradiction, so we must have τ (ω) =
∞ almost surely. Therefore, there exists a unique positive global
solution Xt to Equation (1) for all t ≥ 0.

4. ANALYSIS OF THE SOLUTION AT THE

BOUNDARIES OF THE STATE SPACE

We now investigate the behavior of the underlying process Xt

at the boundaries of the state space (0,∞) using probability
arguments. Xt is the solution of the stochastic differential

equation (1), where Xt is defined on the state space (0,∞), that
is, the whole positive real line.

We first consider the Itô diffusion of the form

dXt = α(Xt) dt + σ (Xt) dBt , X0 = x, (28)

where α :R → R and σ :R → R are functions satisfying the
hypothesis (H). Note that here we do not have the time argument.
We assume that the state space of Xt is a finite or infinite interval.
Such a process is a continuous Markov process and under weak
regularity conditions the drift coefficient α(x) and the diffusion
coefficient σ (x) are characterized, respectively, by

α(x) = lim
h↓0

h−1E[Xh − x] (29)

and

σ 2(x) = lim
h↓0

h−1E[(Xh − x)2] = lim
h↓0

h−1Var(Xh). (30)

For details about these conditions as well as the foregoing, see
[21]. The above conditions can conveniently be weakened to give
the following three conditions.

h−1E[(Xh − x)1{|Xh−x|≤1}] → α(x), (31)

h−1E[(Xh − x)21{|Xh−x|≤1}] → σ 2(x), (32)

and

h−1
P(|Xh − x| > ε) → 0 ∀ ε > 0, (33)

where 1{·} is the indicator function. These conditions enable us
to perform the analysis of (28) without assuming the Lipschitz
conditions to the coefficients. We will, however, assume that α(x)
and σ (x) are continuous.
Fix q ∈ R and define the scale function u by

u(x) =
∫ x

q
exp

(

−
∫ t

q

2α(z)

σ 2(z)
dz

)

dt, u(q) = 0. (34)

The function u has a continuous, strictly positive derivative and
u′′ exists almost everywhere and satisfies

u′′(x) = −
2α(x)

σ 2(x)
u′(x). (35)

We also introduce the speed measure

m(dx) =
2

u′(x)σ 2(x)
dx. (36)

Now, let p(t, x, y) be the transition density of Xt . Then, the
Kolmogorov backward equation is given by

∂p

∂t
=

1

2
σ 2(x)

∂2p

∂x2
+ α(x)

∂p

∂x
. (37)

At t = 0, p(0, x, y) = δ(x−y), where δ(·) is Dirac’s delta function.
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Let [a, b] be a fixed interval and start the process at X0 = x ∈
(a, b). We want to find the probability p+(x) that the process Xt

hits b before it hits a. By the Markov property, we have

p+(x) = E[p+(Xs)]+ O
(

P(|Xs − x| > ε)
)

.

It follows from Equation (33) that

s−1
(

P(|Xs − x| > ε)
)

→ 0,

when s ↓ 0 if a + ε < x < b − ε. Using the Itô’s formula and
Equation (37), we can show that p+(x) satisfies the Kolmogorov’s
backward equation

1

2
σ 2(x)p′′+(x)+ α(x)p′+(x) = 0, (38)

for x ∈ (a, b) with the boundary conditions p+(a) = 0 and
p+(b) = 1. The explicit solution to Equation (38) is

p+(x) = A

∫ x

q
exp

(

−
∫ t

q

2α(z)

σ 2(z)
dz

)

dt + B. (39)

We can write Equation (39) in the form

p+(x) = Au(x)+ B, (40)

where u(x) is of the form Equation (34) for a fixed q ∈ (a, b), with
A and B constants. Now, an application of boundary conditions
p+(a) = 0 and p+(b) = 1 gives:

A =
1

u(b)− u(a)
and B =

−u(a)

u(b)− u(a)
,

so that

p+(x) =
u(x)− u(a)

u(b)− u(a)
. (41)

Equations (34) and (41) will be important when applied to our
specific problem.

Following similar arguments, we define

e(x) = E[Tab], (42)

where Tab = inf{t > 0 :Xt /∈ (a, b)}. An application of the
Markov property gives

e(x) = s+ E[e(Xs)]+ O(P(|Xs − x| > ε)).

Dividing by s and letting s tend to 0 and an application of the Itô
formula gives

1

2
σ 2(x)e′′(x)+ α(x)e′(x) = −1. (43)

This equation can be solved by the standard Green function
techniques as follows. The corresponding homogeneous
equation is

e′′(x)+
2α(x)

σ 2(x)
e′(x) = 0

and its solution is

e(x) =
u(x)− u(a)

u(b)− u(a)
, (44)

with boundary conditions e(a) = 0 and e(b) = 1 where u(x)
is defined in Equation (34). The Green function, G(a,b)(x, y), is
calculated as

G(a,b)(x, y) =
{

1
W · e1(x)e2(y) if x ≤ y,
1
W · e1(y)e2(x) if x ≥ y,

(45)

where e1 and e2 take the form of Equation (44) and W is the
Wronskian given by

W =
u′(x)

u(b)− u(a)
.

Therefore, the solution to Equation (43) is given by

e(x) =
∫ b

a
G(a,b)(x, y)m(dy),

where G(a,b)(x, y) is given by

G(a,b)(x, y) =











2(u(x)−u(a))(u(b)−u(y))
u(b)−u(a)

if x ≤ y,

2(u(y)−u(a))(u(b)−u(x))
u(b)−u(a)

if x > y,

(46)

andm(dy) is given by Equation (36).
We now consider Equation (1). We note that the diffusion

coefficient σ (x) = σxγ in Equation (1) is defined only on (0,∞),
that is, the state space of the process is made up of the positive
reals. The process Xt in Equation (1) is a diffusion process, and
the coefficients σ and α are continuous on (0,∞). Following the
arguments in [17], we investigate the behavior of Equation (1) at
the boundaries of the state space. It is of interest whether or not
the boundary points 0 and/or ∞ can be reached by the process
Xt in a finite time.

A boundary point is said to be accessible if it can be reached in
finite time with positive probability. Otherwise it is inaccessible
[17]. The accessible boundary points are of two different types,
namely, the exit and regular boundary points. For the exit
boundary, the process is absorbed after the boundary is reached
while the regular boundary point is imposed on a standard
Brownian motion and could either be absorbed or reflected once
the boundary is reached. The inaccessible boundaries are also of
two types, namely, the entrance and natural boundary points. The
boundary is said to be of entrance type if it is possible to start the
process at infinity and then reach the interior of the state interval,
otherwise it is called natural.

Let [a, b] be a fixed interval and the process Xt starts in X0 =
x ∈ (a, b). Let α and σ be continuous on a state interval whose
interior is (c, d). We note that we may have c = −∞ and/or
d = +∞. It is assumed that σ 2(x) > 0 on (c, d). Further,
let (̃c,˜d) = (u(c), u(d)), where u is the scale function given by
Equation (34).
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Definition 4.1. A natural upper boundary point d is said to be
attracting if there is a positive probability that Xt shall converge to
d as t → ∞.

The following classification theorem, taken from [17], will be
the framework of the analysis of Equation (1).

Theorem 4.1. Let u be the scale function given by Equation (34)
and m(dy) be the speed measure given by Equation (36). Let b be
a point in the interior of the state space (c, d). Then, the following
statements hold.

1. A necessary and sufficient condition for d to be accessible is that

u(d) < ∞ and

∫ d

b
(u(d)− u(y))m(dy) < ∞.

2. An accessible boundary point d is regular if and only if
∫ d

b
m(dy) < ∞. Otherwise it is exit boundary.

3. An inaccessible boundary point d is natural if and only if
∫ d

b
u(y)m(dy) = ∞.

4. A natural boundary point d is attracting if and only if u(d) <

∞ and at the same time

∫ d

b
m(dy) = ∞.

We are now in a position of analyzing the non-
homogeneous stochastic differential equation (1), repeated
here for convenience,

dXt = αXt dt + σX
γ
t dBt , γ > 1, X0 = x > 0. (47)

This is a diffusion process with α(x) = αx, σ (x) = σxγ and
natural state interval c = 0 to d = ∞. Let b be a point in
the interior of this state interval. From Equation (34) and (36),
we calculate the scale function and speed measure, respectively,
corresponding to Equation (47) to be

u(x) =
σ 2

2α

(

b2γ−1 − x2γ−1 exp

(

α

σ 2(1− γ )
(b2−2γ − x2−2γ )

))

,

and

m(dy) =
1

σ 2y2γ
exp

(

−
α

σ 2(1− γ )
(b2−2γ − y2−2γ )

)

dy. (48)

It remains only to classify our boundary points on the basis of
these results. We note that

u(d) =
σ 2

2α

(

b2γ−1−d2γ−1 exp

(

α

σ 2(1− γ )
(b2−2γ − d2−2γ )

))

.

Since d = ∞ in our state space (0,∞), we use a
limiting argument:

lim
d→∞

u(d) =
σ 2b2γ−1

2α
,

provided 0 < γ < 1
2 . Now, since b is a finite fixed

point in (0,∞), the limit is finite. We also need to investigate
the integral

∫ d

b
(u(d)− u(y))m(dy) =

∫ d

b

1

2αy
dy−

1

2α
exp

(

−α

σ 2(1− γ )
d2−2γ

)

d2γ−1

×
∫ d

b

1

y2γ
exp

(

α

σ 2(1− γ )
y2−2γ

)

dy. (49)

We observe that as d → ∞ the term exp
(

− α
σ 2(1−γ )

d2−2γ
)

approaches 0 provided 0 < γ < 1. So in this case we
remain with

∫ d

b
(u(d)− u(y))m(dy) ≈

∫ d

b

1

2αy
dy −→ ∞ as d → ∞.

We therefore, according to Theorem 4.1, conclude that the upper
boundary point d = ∞ is inaccessible if 0 < γ < 1. Now for the
lower boundary point 0 we have

u(0) =
σ 2b2γ−1

2α
< ∞,

since b is a finite fixed point in the state space (0,∞). We
also have

∫ b

0
(u(0)− u(y))m(dy) =

∫ b

0

1

2αy
dy → ∞, as y → 0.

This shows that the boundary point 0 is inaccessible for all γ 6= 1.
It remains to establish whether our boundary points are natural
or not. Theorem 4.1 says the boundary point d is natural if and
only if

∫ d

b
u(y)m(dy) = ∞.

Now,

∫ d

b
u(y)m(dy) =

∫ d

b

(

b2γ−1

2αy2γ
exp

(

−
α

σ 2(1− γ )
(b2−2γ − y2−2γ )

)

−
1

2αy

)

dy

=
b2γ−1 exp

(

−α

σ 2(1−γ )
b2−2γ

)

2α

∫ d

b

1

y2γ
exp

(

α

σ 2(1− γ )
y2−2γ

)

dy

−
∫ d

b

1

2αy
dy.

We observe that for 0 < γ < 1 the integral

∫ d

b

1

y2γ
exp

(

α

σ 2(1− γ )
y2−2γ

)

dy
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explodes to infinity very fast as d → ∞. Although the
second integral,

∫ d

b

1

2αy
dy,

also tends to infinity as d → ∞, the whole integral
∫ d
b u(y)m(dy)

tends to infinity as d → ∞ because the second integral goes to
infinity very slowly as compared to the first one. Hence,

∫ d

b
u(y)m(dy) = ∞,

provided 0 < γ < 1. This tells us that the boundary point d = ∞
is natural if 0 < γ < 1.
Using similar arguments, we can show that

∫ b

0
u(y)m(dy) = ∞.

Therefore, for 0 < γ < 1, the boundary point 0 is natural.
Next, we investigate if our natural boundary points are attracting.
According to Theorem 4.1 the boundary point d is attracting if

and only if u(d) < ∞ and at the same time

∫ d

b
m(dy) = ∞.

Now we have already seen that u(d) < ∞ if d = 0 and/or d = ∞
provided 0 < γ < 1. Further

∫ d

b
m(dy) =

1

σ 2
exp

(

−
α

σ 2(1− γ )
b2−2γ

)

×
∫ d

b

1

y2γ
exp

(

α

σ 2(1− γ )
y2−2γ

)

dy,

which, for the reason given before, explodes to infinity as d → ∞
for all 0 < γ < 1. Therefore,

∫ ∞

b
m(dy) = ∞,

for 0 < γ < 1. Hence, the upper boundary point d = ∞ is
attracting for 0 < γ < 1. Similarly the lower boundary point 0 is
shown to be attracting.

Now, we have established that both boundary points are
attracting when 0 < γ < 1. In this case we will show that, by
Equation (41), our process will converge to ∞ with probability
p+(x), where x = X0 ∈ (0,∞). It turns out that

p+(x) =

∫ x

0
exp

(

−
α

σ 2(1− γ )
y2−2γ

)

dy

∫ ∞

0
exp

(

−
α

σ 2(1− γ )
y2−2γ

)

dy

, 0 < γ < 1. (50)

Evaluating the integrals yields

p+(x) = lim
y→∞

(

x

y

)2γ−1

exp

(

α

σ 2(1− γ )
(y2−2γ − x2−2γ )

)

= 0,

for 1
2 < γ < 1. This shows that although the upper boundary

d = ∞ is attracting for 0 < γ < 1, the process Xt will not
converge to ∞ if 1

2 < γ < 1. Furthermore, the process Xt

converges to 0 with probability 1 − p+(x) which turns out to
be 1 in this case. Thus it is certain that Xt will converge to 0
when 1

2 < γ < 1. We observe that if 0 < γ < 1
2 we have a

problem since, in this case, it is not possible to proceed using a
probabilistic argument. Our analysis is not complete if we do not
consider the case γ > 1. We now proceed to make this analysis.
As seen earlier

u(d) =
σ 2

2α

(

b2γ−1 − d2γ−1 exp

(

α

σ 2(1− γ )
(b2−2γ − d2−2γ )

))

.

If γ > 1, for example, if γ = 2, we have

u(d) −→ −∞ as d → ∞,

since α, σ and b are fixed positive numbers. Therefore, we have

lim
d→∞

u(d) < ∞ ∀ γ > 1.

Observe also that for such γ we have that

u(0) =
σ 2b2γ−1

2α
< ∞,

effectively. Now, we consider again Equation (49). If γ > 1, for
instance, γ = 2, we have

∫ d

b
(u(d)−u(y))m(dy) =

∫ d

b

1

2αy
dy−

d3

2α
e

α

σ2d2

∫ d

b

1

y4
e
− α

σ2y2 dy.

We immediately observe that as d → ∞,
∫ d
b (u(d)−u(y))m(dy) → −∞ since the integral

∫ d

b

1

2αy
dy goes

to∞ very slowly. Therefore, effectively we have

∫ d

b
(u(d)− u(y))m(dy) < ∞,

for the boundary point d = ∞ and whenever γ > 1. This,
together with u(d) < ∞ for d = ∞ and γ > 1, shows that
the upper boundary point d = ∞ is always accessible whenever
γ > 1. However, it is clear that if d = 0,

∫ b

0
(u(0)− u(y))m(dy) =

∫ b

0

1

2αy
dy = ∞,

which shows that the lower boundary point 0 is always not
accessible for γ > 1. In fact, the boundary point 0 is always
inaccessible for all γ 6= 1 as also shown earlier. So from definition
we have seen that the upper boundary point∞ can be reached in
finite time with positive probability provided γ > 1.
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Finally we want to classify the accessible boundary point ∞,
that is. is it regular or exit? From Theorem 4.1 it is regular if and

only if

∫ d

b
m(dy) < ∞. Now, as obtained earlier on

∫ d

b
m(dy) =

1

σ 2
exp

(

−
α

σ 2(1− γ )
b2−2γ

)

×
∫ d

b

1

y2γ
exp

(

α

σ 2(1− γ )
y2−2γ

)

dy.

If γ > 1, the integral is always less than∞ because of the negative
exponent since α, σ are fixed positive numbers. So we have

∫ d

b
m(dy) < ∞ ∀γ > 1

since in this case the exponent is always negative. Hence for
γ > 1, the accessible upper boundary point ∞ is always regular,
i.e., apart from absorption and reflection there are also other
possibilities after the boundary point is reached.
We, therefore, have the following result.

Theorem 4.2. Let x ∈ (0,∞) with α ∈ R arbitrary. Then,
the stochastic differential equation (1) has a unique strong global
solution Xt : t ≥ 0. The solution has the following properties:

1. x = 0 implies that Xt = 0 for all t > 0 and x ≥ 0 implies
Xt > 0 for all t ≥ 0.

2. If 1
2 < γ < 1, then lim

t→∞
Xt = 0 with probability 1 − p+(x)

where p+(x) is given by Equation (50).
3. If γ > 1, then lim

t→∞
Xt = ∞ with positive probability.

4. If γ = 1, we have the usual Geometric Brownian motion
whereas if γ = 0, we have the Ornstein-Uhlenbeck process.

In mathematical finance, our result is of particular interest
for the Cox-Ingersoll-Roll (CIR) model which describes the
stochastic evolution of interest rates (rt)t≥0 by the stochastic
differential equation

drt = α(µ − r) dt + σ
√
rt dBt , t ≥ 0,

with r0 ≥ 0 and αµ ≥ 1
2σ

2 where α, µ and σ denote
real constants.

5. CONCLUDING REMARKS

In this article, we proved the existence of global positive solutions
to non-homogeneous stochastic differential equations whose
diffusion coefficient is non-Lispchitz. We relied on both the
classical sense and probabilistic arguments. We provided detailed
proofs in both cases. The probability arguments save as an
alternative method of dealing with non-homogeneous stochastic
differential equations where classical methods cannot be applied.
Using the scale function and the speed of measure, we provided a
complete classification of boundary types and boundary behavior
of Equation (1). The results of this article can be applied to
Cox-Ingersoll-Ross model. In addition, the positivity of solutions
is important to other non-linear models that arise in sciences
and engineering.
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Despite the availability of an abundant literature on singularly perturbed problems,

interest toward non-linear problems has been limited. In particular, parameter-uniform

methods for singularly perturbed semilinear problems are quasi-non-existent. In this

article, we study a two-dimensional semilinear singularly perturbed convection-diffusion

problems. Our approach requires linearization of the continuous semilinear problem

using the quasilinearization technique. We then discretize the resulting linear problems

in the framework of non-standard finite difference methods. A rigorous convergence

analysis is conducted showing that the proposedmethod is first-order parameter-uniform

convergent. Finally, two test examples are used to validate the theoretical findings.

Keywords: semilinear singularly perturbed problems, two-dimensional partial differential equations, fitted

operator finite difference method, quasilinearization, error analysis, uniform convergence

1. INTRODUCTION

The study of singularly perturbed problems has flourished since the publication of Prandtl’s seminal
work in 1904 on “boundary layers” [1]. Many researchers have paid attention to the theoretical and
computational aspects of those problems. The usual task has been to provide means of dealing with
the challenges that come with the perturbation parameter and its impact on the solution behavior.
While countless successes have been recorded in the case of linear singularly perturbed problems
[see for example [2–7]], little attention has been paid to the non-linear case.

In this article, we study the two-dimensional singularly perturbed semilinear convection-
diffusion problems

− ε(uxx + uyy)+ a1(x, y)ux + a2(x, y)uy = −f (x, y, u(x, y)), (x, y) ∈ � : = (0, 1)× (0, 1), (1.1)

subject to boundary conditions

u(x, y) = u0(x, y), (x, y) ∈ ∂�, (1.2)

where ε is the perturbation parameter with 0 < ε ≪ 1. The semilinear source term f (x, y, u(x, y))
and the coefficient functions a1(x, y), a2(x, y) are assumed to be sufficiently smooth and satisfy
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a1(x, y) > α1 > 0, a2(x, y) > α2 > 0, ∀ (x, y) ∈ �̄, (1.3)

fu(x, y, u) > β > 0, ∀ (x, y) ∈ �̄, (1.4)

where α1,α2 and β are constants and ∂� is the boundary of�.
Under these conditions (1.1)-(1.2) has a unique solution which
displays boundary layers at x = 1 and y = 1 when ε approaches
zero.

Problems such as (1.1)-(1.2) are encountered in diverse
areas of applied mathematics and engineering such as
aerodynamics, liquid crystal modeling, chemical reactor
theory, magnetohydrodynamics, oceanography, fluid mechanics,
heat conduction, quantum mechanics [see [8–13]]. The difficulty
with such problems is that researchers have to deal with both
the perturbation parameter and the complexity due to the
semilinearity, besides the higher-dimensional aspect. Perhaps,
that is the reason why only few people have shown some interest
in them.

Sirotkin and Tarvainen [14] proposed the parallel two-level
Schwarz methods and studied their convergence properties.
Boglaev proposed a number of methods. In [15], he constructed
a blocked domain decomposition algorithm. He achieved a first-
order rate of convergence on both meshes. In [16], he proposed a
uniform monotone iterative method on layer adapted meshes. In
[17], he developed a monotone Schwarz algorithm. Boglaev and
Duoba [18] designed a multi-domain decomposition algorithm
to solve a singularly perturbed advection-diffusion problem with
a parabolic layer. The authors achieved a first-order convergence
result. Kopteva [19] and Stynes [20] propose finite element
methods. Also, Newton and Picard methods were described as
the numerical solver for the concerned problems by Vulkov and
Zadorin in [21].

All the methods above are based on the use of non-uniform
meshes and are essentially first order accurate. Due to the
design of the mesh-grid and hence, that of the methods,
the order of convergence is usually affected adversely by a
logarithmic factor. In this article, we propose a method based
on the non-standard finite difference rules of Mickens [22].
It is worth mentioning that these methods are designed on
uniform grids. To the best of our awareness, this is the
first time that such methods are used on elliptic singularly
perturbed semilinear problems in two dimensions. These
methods were used in [23, 24] for linear elliptic reaction-diffusion
and reaction-convection-diffusion problems in two dimensions,
respectively.

We adopt the quasilinearization approach to convert the
semilinear problem into a sequence of linear problems. Then,
we design a fitted operator numerical method on the converted
problems. We show that the method is first order uniformly
convergent in both x and y variables with respect to the
perturbation parameter. Numerical experiments corroborate the
theoretical results.

The rest of the article is structured as follows: In Section 2, we
use the quasilinearization technique to linearize the concerned
problem and present some qualitative properties of the solution

and its derivatives. In Section 3, we present the proposed fitted
operator finite difference method while in Section 4, we perform
the convergence analysis. In Section 5, we provide some test
models to show the efficiency of the presented scheme as well
as to validate the theoretical result. The article ends with a brief
conclusion in Section 6.

2. QUASILINEARIZATION

We transform the semilinear equation (1.1) using the
quasilinearization approach. We choose a reliable initial guess
u(0)(x, y) = u0(x, y) ≡ u(0). Then, we consider a truncated Taylor
series expansion of f (x, y, u) about the initial approximation as
follows.

f (x, y, u(1)) = f (x, y, u(0))+ (u(1) − u(0))

(

∂f

∂u

)

(x,y,u(0))

+ · · · .

(2.1)
We then derive the following iterates through the process by
deriving the steps that involve u(2)(x, y), u(3)(x, y), and so on.
Assuming that this process converges, we obtain the recurrence
relations

f (x, y, u(r+1)) = f (x, y, u(r))+ (u(r+1)− u(r))

(

∂f

∂u

)

(x,y,u(r))

+ · · · ,

(2.2)
where r is the iteration number (or iteration index) with r =
0, 1, · · · .

Substituting (2.2) into (1.1) results in a 2D linear singularly
perturbed convection diffusion problem of the form

Lu(x, y) ≡ −ε
(

uxx + uyy
)

+ a1(x, y)ux + a2(x, y)uy

+b(x, y)u = z(x, y), (x, y) ∈ �̄,
(2.3)

u(x, y) = u0(x, y), (2.4)

where

b(x, y) =
∂f

∂u
, and z(x, y) = f (x, y, u(r))− u(r)

∂f

∂u
. (2.5)

We solve the linear problem (2.3)–(2.4) using fitted operator
finite difference scheme. The successive iteration of the 2D linear
equations(2.3)–(2.4), with iteration function (2.5) converges to
the solution of the semilinear problem (1.1)–(1.2). We take the
convergence stopping criteria as

‖ur+1 − ur‖< Tol,

where Tol is the tolerance.
The solution of (2.3)-(2.4) enjoys the properties below [25].

Lemma 2.1. (Continuous maximum principle) Assume that
ν(x, y) is sufficiently smooth function which satisfy ν(x, y) >

0, ∀ (x, y) ∈ ∂�. Then Lν(x, y) > 0, ∀ x ∈ �, implies that
ν(x, y) > 0, ∀ (x, y) ∈ �̄.
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Lemma 2.2. (Uniform stability estimate) Let u(x,y) be the solution
of (2.3)-(2.4) then we have

‖u(x, y)‖ 6 α−1‖z‖, ∀x ∈ �, (2.6)

where α = min{α1,α2} is independent of ε.

Lemma 2.3. Let u(x,y) be the solution of (2.3)-(2.4) and
a(x), b(x), z(x) be smooth functions. Then

|u(i,j)(x, y)| 6 C

(

1+ ε−(i+j) exp

(

−
α1(1− x)

ε

)

exp

(

−
α2(1− y)

ε

))

, (x, y) ∈ �̄,

(2.7)

where α1,α2 and C positive constant independent of ε.

3. SCHEME FOR THE PROBLEM

Let n and m be two positive integers, we partition the domain
� : = [0, 1] × [0, 1] into n and m equal intervals so the step
sizes are h = 1/n and k = 1/m, we obtain the nodes as xi =
x0+ ih, i = 1, . . . , n−1 and yj = y0+ jk, j = 1, . . . ,m−1 where
x0 = y0 = 0 and xn = yn = 1. We denote the approximation of
u(xi, yj) at the grid points of xi and yj by the unknown Uij.

We write the discrete version of (2.3)–(2.4) as

L
h,k(Ui,j) ≡− ε

[

Ui+1,j − 2Uij + Ui−1,j

(φij)
2
h

]

− ε

[

Ui,j+1 − 2Uij + Ui,j−1

(φij)
2
k

]

+ a1ij
Uij − Ui−1,j

h

+ a2ij
Uij − Ui,j−1

k
+ bijUij = zij , i = 1, . . . , n− 1, j = 1, . . . ,m− 1,

(3.1)

with boundary conditions of the four sides as

Ui,0 = U0,j = Ui,m = Un,j = u0ij, i = 0, 1, . . . , n, j = 0, 1, . . . ,m.
(3.2)

The denominator functions φ2
ij are given by

(φij)
2
h =

εh

a1ij

(

exp

(

a1ijh

ε

)

− 1

)

= h2 +O

(

h3

ε

)

, (3.3)

and

(φij)
2
k =

εk

a2ij

(

exp

(

a2ijk

ε

)

− 1

)

= k2 +O

(

k3

ε

)

. (3.4)

We rewrite (3.1) in five term recurrence relation as

−rh+
l

Ui+1,j − rh−
l

Ui−1,j + rclUij − rk+
l

Ui,j+1 − rk−
l

Ui,j−1 = zij,

i = 1(1)n− 1, j = 1(1)m− 1,

(3.5)

where

rh+l =
ε

(φij)
2
h

, rh−l =

(

ε

(φij)
2
h

+
a1ij

h

)

, rk+l =
ε

(φij)
2
k

, rk−l =

(

ε

(φij)
2
k

+
a2ij

k

)

,

rcl =
2ε

(φij)
2
h

+
2ε

(φij)
2
k

+
a1ij

h
+

a2ij

k
+ bij , and l = (i− 1)(m− 1)+ j.

We form a linear system

AU = G,

where U = [Ui0, . . .Un−1,0;U1,1 . . .Un−1,1; . . . ;U1,j . . .Un−1,m−1]
T .

A is pentadiagonal matrix of size (n−1)(m−1)×(n−1)(m−1)
and G is a column vector of size (n− 1)(m− 1) with their entries
respectively described as follows.

Al,l+1 = −rk+
l

, i = 1(1)n− 1, j = 1(1)m− 2,

Al,l−1 = −rk−
l

, i = 1(1)n− 1, j = 2(1)m− 1,

Al,l = rcl , i = 1(1)n− 1, j = 1(1)m− 1,

Al,l+(n−1) = −rh+
l

, i = 1(1)n− 2, j = 1(1)m− 1,

Al,l−(n−1) = −rh−
l

, i = 2(1)n− 1, j = 1(1)m− 1,

(3.6)

and

Gl = zl + rh−l × U(0, y1)+ rk−l × U(x1 , 0), i = 1, j = 1,

Gl = zl + rh−l × U(0, yj), i = 1, j = 2(1)m− 2,

Gl = zl + rh−l × U(0, ym−1)+ rk+l × U(x1 , 1), i = 1, j = m− 1,

Gl = zl + rk−l × U(xi , 0), i = 2(1)n− 2, j = 1,

Gl = zl , i = 2(1)n− 2, j = 2(1)m− 2,

Gl = zl + rk+l × U(xi , 1), i = 2(1)n− 2, j = m− 1,

Gl = zl + rh+l × U(1, y1)+ rk−l × U(xn−1 , 0), i = n− 1, j = 1,

Gl = zl + rh+l × U(1, yj), i = n− 1, j = 2(1)m− 2,

Gl = zl + rh+l × U(1, ym−1)+ rk+l × U(xn−1 , 1), i = n− 1, j = m− 1.

(3.7)

We provide some results that we will use to prove the
convergence of the proposed method. These results are similar
to those presented in [24] and can be proven in a similar manner.

Lemma 3.1. (Discrete maximum principle). Let ϑi,j be a discrete
function define on � satisfying ϑ0,j > 0, ϑn,j > 0, j = 1(1)m −
1, ϑi,0 > 0, ϑi,m > 0, i = 1(1)n − 1 and L

h,kϑi,j 6 0, ∀ i =
1(1)n− 1, j = 1(1)m− 1 then ϑi,j > 0 ∀ i = 0(1)n, j = 0(1)m.

Lemma 3.2. (Uniform stability estimate) if µi,j is any mesh

function such that µi,j = 0 on ∂�(N,M). Then

|µl,s| 6
1

α
max

1≤j≤n−1, 1≤j≤m−1
|Lh,kµi,j| ∀l = 0(1)n, s = 0(1)m,

(3.8)
where α = min{α1, α2}.

4. CONVERGENCE ANALYSIS

The truncation error of the scheme presented in Section 3 is
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TABLE 1 | Maximum pointwise errors and rate of convergence for Example 5.1

when n = m = {4, 8, 16, 32, 64, 128, 512, 1, 024}.

↓ ε 8 16 32 64 128 512 1,024

1 4.89E-04 1.18E-04 2.95E-05 7.38E-06 1.84E-06 4.61E-07 1.16E-07

2.05 2.00 2.00 2.00 2.00 1.99

10−1 3.90E-03 1.39E-03 5.71E-04 2.54E-04 1.17E-04 5.48E-05 2.61E-05

1.49 1.28 1.17 1.12 1.09 1.07

10−2 4.70E-02 1.16E-02 6.14E-03 3.30E-03 1.80E-03 9.71E-04 5.35E-04

2.01 0.92 0.91 0.91 0.89 0.86

10−3 3.69E-02 1.89E-02 5.17E-03 1.40E-03 5.05E-04 1.93E-04 7.78E-05

0.97 1.87 1.84 1.47 1.39 1.31

10−4 3.69E-02 1.90E-02 9.63E-03 4.81E-03 2.41E-03 1.20E-03 6.00E-04

0.96 0.98 0.99 1.00 1.00 1.00

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−15 3.69E-02 1.90E-02 9.63E-03 4.81E-03 2.41E-03 1.20E-03 6.00E-04

0.96 0.98 0.99 1.00 1.00 1.00

En 3.69E-02 1.90E-02 9.63E-03 4.81E-03 2.41E-03 1.20E-03 6.00E-04

Pn 0.96 0.98 0.99 1.00 1.00 1.00

L
h,k(u− U)ij = (L−L

h,k)uij

= −ε(uxx)ij − ε(uyy)ij + a1ij(ux)ij + a2ij(uy)ij

+
ε

(φij)
2
h

(ui+1,j − 2uij+ ui−1,j)+
ε

(φij)
2
k

(ui,j+1 − 2uij+ ui,j−1)

−
a1ij

h
(uij − ui−1,j)−

a2ij

k
(uij − ui,j−1)

= −ε(uxx)ij − ε(uyy)ij +

(

ε

h2
−

a1ij

h
+

a21ij

ε
−

a31ij

ε2

)

×
(

h2(uxx)ij +
h4

12
(uxxxx)ijη1ij

)

+

(

ε

k2
−

a2ij

k
+

a22ij

ε
−

a32ij

ε2

)

×
(

k2(uyy)ij +
h4

12
(uyyyy)ijη2ij

)

+
(

a1ijh

2
(uxx)ij +

a1ijh
2

6
(uxxx)ij

)

+
(

a2ijk

2
(uyy)ij +

a2ijk
2

6
(uyyy)ij

)

where η1ij ∈ (ui+1,j , ui−1,j), η2ij ∈ (ui,j+1 , ui,j−1)

= −
a1ijh

2
(uxx)ij +

(

a21ij

ε
(uxx)ij −

a21ij

6
(uxxx)ij +

ε

12
(uxxxx)ijη1ij

)

h2

+

(

a1ij

12
(uxxxx)ijη1ij −

a31ij

ε3
(uxx)ijη1ij

)

h3 +

(

a21ij

12ε
(uxxx)ij

)

h4

−

(

a31ij

12ε2
(uxxxx)ijη1ij

)

h5 −
a2ijk

2
(uyy)ij

+

(

a22ij

ε
(uyy)ij −

a22ij

6
(uyyy)ij +

ε

12
(uyyyy)ijη2ij

)

k2

+

(

a2ij

12
(uyyyy)ijη2ij −

a32ij

ε3
(uyy)ijη2ij

)

k3 +

(

a22ij

12ε
(uyyy)ij

)

k4

−

(

a32ij

12ε2
(uyyyy)ijη2ij

)

k5

Applying the bound on the solution and its derivatives in
Lemma 2.3 and by Lemma 5.2 of [26], we obtain

|Lh,k(u− U)ij| 6 C(h+ k).

TABLE 2 | Maximum pointwise errors and rate of convergence for Example 5.2

when n = m = {4, 8, 16, 32, 64, 128, 512, 1, 024}.

↓ ε 8 16 32 64 128 512 1,024

1 2.38E-03 6.44E-04 1.65E-04 4.15E-05 1.04E-05 2.56E-06 6.44E-07

1.88 1.97 1.99 2.00 2.00 2.01

10−1 1.89E-02 6.30E-03 1.73E-03 4.42E-04 1.12E-04 2.80E-05 6.98E-06

1.59 1.87 1.96 1.98 2.00 2.01

10−2 3.41E-02 2.31E-02 1.42E-02 6.37E-03 2.80E-03 1.11E-03 3.89E-04

0.56 0.71 1.16 1.20 1.33 1.50

10−3 3.41E-02 2.32E-02 1.56E-02 1.02E-02 5.80E-03 3.10E-03 1.60E-03

0.56 0.57 0.61 0.81 0.90 0.95

10−4 3.41E-02 2.32E-02 1.56E-02 1.02E-02 5.80E-03 3.10E-03 1.61E-03

0.56 0.57 0.61 0.81 0.90 0.95

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

10−15 3.41E-02 2.32E-02 1.56E-02 1.02E-02 5.80E-03 3.10E-03 1.61E-03

0.56 0.57 0.61 0.81 0.90 0.95

En 3.41E-02 2.32E-02 1.56E-02 1.02E-02 5.80E-03 3.10E-03 1.61E-03

Pn 0.56 0.57 0.61 0.81 0.90 0.95

Now, using Lemma (3.2) we have

max
0≤i≤n, 0≤j≤m

|(u− U)ij| 6 C(h+ k). (4.1)

The analysis above is the proof of the following theorem:

Theorem 4.1. Let u(x, y) be the solution of (2.3)-(2.4) and U(x, y)
be the numerical approximation of u(x, y) using the scheme (3.1)-
(3.2). If a1(x, y), a2(x, y), b(x, y) and z(x, y) are sufficiently smooth
functions, then there exists a constant C independent of ε , h and k
such that

max
0≤i≤n, 0≤j≤m

|(u− U)ij| 6 C(h+ k). (4.2)

5. NUMERICAL RESULTS

In order to validate and confirm our theoretical results, we
present two test examples. Since the exact solutions of our models
are not available; we oblige to use the double mesh principle
[27] to evaluate the maximum pointwise error and the ε-uniform
error as follows

En,mε = max
(xi ,yj)∈�̄n,m

∣

∣

∣
Un,m
i,j − U2n,2m

i,j

∣

∣

∣
, En,m = max

ε
En,mε , (5.1)

where Un,m
i,j is the discrete solution on the mesh �n,m and U2n,2m

i,j

is the discrete solution on the mesh �2n,2m. The corresponding
rate of convergence and the ε-uniform rate of convergence are
formulated as

Pn,mε = log2

(

En,mε

E2n,2mε

)

, Pn,m = max
ε

Pn,mε . (5.2)

We define the iteration stopping criterion as

‖U(r+1) − U(r)‖ 6 10−8, r = 1, 2, . . . . (5.3)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 April 2022 | Volume 8 | Article 86127643

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Kehinde et al. NSFD Discretization of Semilinear Problems

FIGURE 1 | Plots of the approximate solution of Example 5.1 with n = m = 32. (A) ε = 1. (B) ε = 10−1. (C) ε = 10−2. (D) ε = 10−4.

Example 5.1. Boglaev [16], Consider the following singularly
perturbed semilinear problem

−ε(uxx + uyy)+ a1(x, y)ux + a2(x, y)uy + f (x, y, u) = 0,

(x, y) ∈ � : = (0, 1)2,

u = 1 on ∂�,

where a1(x, y) = a2(x, y) = 0.1, f (x, y, u) =
u− 4

5− u
.

Example 5.2. Boglaev [15], Consider the following singularly
perturbed semilinear problem

−ε(uxx + uyy)+ a1(x, y)ux + a2(x, y)uy + f (x, y, u) = 0,

(x, y) ∈ � : = (0, 1)2,

u = 1 on ∂�,

where a1(x, y) = a2(x, y) = 1, f (x, y, u) = 1− exp(−u).
To demonstrate the efficiency of the proposed scheme, we

tabulate the maximum pointwise errors and the corresponding
order of convergence. For the sake of simplicity, we considered
same values of m and n as shown in Tables 1, 2. These tables
indicate a first-order uniform rate of convergence that conforms
to the theoretical findings in Section 4. In producing our tables,
we were limited by the software used as it could not handle
large matrices. Had we been able to produce the tables for
larger values of n and m (say, 64, 128, 512, etc.), we would
have seen that the rate of convergence is one for Example 5.2
as well.

Figures 1, 2 are plots of the numerical solution of
examples 5.1 and 5.2, respectively, for n = m =
32 and different values of ε. These plots exhibit
the layer behavior of the numerical solution as ε

approaches zero.
We wished to compare our results with those existing in

the literature however we noticed that authors that published
work on this problem focused more on the number of iterations
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FIGURE 2 | Plots of the approximate solution of Example 5.2 with n = m = 32. (A) ε = 1. (B) ε = 10−1. (C) ε = 10−2. (D) ε = 10−4.

while our focus is on maximum nodal errors and rates
of convergence.

6. CONCLUSION

In this article, we constructed a fitted operator finite
difference method to solve two-dimensional semilinear
singularly perturbed convection-diffusion problems. First,
we converted the semilinear problems into a sequence of linear
two-dimensional singularly perturbed convection-diffusion
problems via the quasilinearization technique. Next, we
discretized the problem using the presented non-standard
numerical scheme. Then, we performed the error analysis
of the method and found that it is first order uniformly
convergent in both x and y variables with respect to the
perturbation parameter ε. We used two test examples to
illustrate the robustness of the method and to validate the
theoretical findings.
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The question of whether to drop or to continue wearing face masks especially after being

vaccinated among the public is controversial. This is sourced from the efficacy levels

of COVID-19 vaccines developed, approved, and in use. We develop a deterministic

mathematical model that factors in a combination of the COVID-19 vaccination program

and the wearing of face masks as intervention strategies to curb the spread of the

COVID-19 epidemic. We use the model specifically to assess the potential impact

of wearing face masks, especially by the vaccinated individuals in combating further

contraction of COVID-19 infections. Validation of the model is achieved by performing its

goodness of fit to the Republic of South Africa’s reported COVID-19 positive cases data

using the Maximum Likelihood Estimation algorithm implemented in the fitR package.

We first consider a scenario where the uptake of the vaccines and wearing of the face

masks, especially by the vaccinated individuals is extremely low. Second, we consider

a scenario where the uptake of the vaccines and wearing of the face masks by people

who are vaccinated is relatively high. Third, we consider a scenario where the uptake

of the vaccines and wearing of the face masks by the vaccinated individuals is on an

upward trajectory. Findings from scenario one and scenario two, respectively, indicate a

highly surging number of infections and a low recorded number of infections. For scenario

three, it shows that the increased extent of wearing of the face masks by the vaccinated

individuals at increasing levels of vaccine and face mask average protection results in a

highly accelerated decrease in COVID-19 infections. However, wearing face masks alone

also results in the reduction of the peak number of infections at increasing levels of face

mask efficacy though the infections delay clearing.

Keywords: mathematical modeling, COVID-19 epidemic, deterministic models, pharmacological and non-

pharmacological measures, computer-aided simulations

1. INTRODUCTION

COVID-19 is themost recent to be experienced in humans among the known coronaviruses such as
Severe Acute Respiratory Syndrome (SARS) andMiddle East Respiratory Syndrome (MERS) [1, 2].
However, COVID-19 caused by Severe Acute Respiratory Syndrome-Corona-Virus-2 (SARS-CoV-
2) [2–6] has taken the longest time to clear from the human host. It seems to be themost devastating
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coronavirus with its severity and rapidly spreading trend.
Following its first report in December 2019 at Wuhan, Hubei
province in China [5, 7–9], it has been among the greatly
challenging global health emergencies in recent history [10, 11],
especially with many countries world-wide engaged in battling
the epidemic. Most countries have experienced at least three
waves of the disease triggered by divergent SARS-CoV-2 variants
probably resulting from themutational characteristic of the virus.
Each outbreak of the waves has been witnessed to re-surge the
plateau number of infections to the extent of even surpassing the
peak number of infections for the previous wave. As of January
27, 2022 (06:26 GMT), the world had recorded 363,305,191
COVID-19 positive cases with 5,646,069 deaths. The Republic of
South Africa alone had confirmed 3,594,499 COVID-19 positive
cases with 67,019 active cases and 94,651 fatalities [12].

Several non-pharmaceutical measure protocols implemented
in most countries globally in the prolific effort to contain the
spread of the epidemic have been relatively successful [13].
Among these non-pharmaceutical measures is the use of face
masks by the general public. Although there was a lot of
controversy on the use of face masks during the early outbreak
of the disease, it was very well implemented and has played
a key role in protection against contraction of the COVID-19
infections. Face masks have been proved to offer wide protection
against both coarser droplets and finer aerosol transmission [2].
Now that COVID-19 has been reported to spread from human
to human via fine respiratory droplets, it clearly implies that
face masks have played a key role in breaking the chain of
transmission for the epidemic.

On the side of the pharmaceutical pathway, over 50 companies
commenced thorough scientific investigations in early 2020 to
develop vaccines against COVID-19 [11, 14]. The fruits of
these rigorous efforts were the discovery of vaccines such as
Pfizer-BioNTech, Moderna, Oxford-AstraZeneca, and Johnson
and Johnson’s Janssen (J&J) vaccine [14, 15] among others.
Furthermore, some regulatory bodies such as Europe Medicine
Agency (EMA), US Food and Drug Administration (FDA), and
UK Medicine and Health Products Regulatory Agency (MHRA)
approved these vaccines for emergency use [11, 16]. The Pfizer-
BioNTech vaccine was first approved for use in the UK on
December 2, 2020, while the Oxford-AstraZeneca and Moderna
vaccines were, respectively, approved on December 20, 2020, and
January 8, 2021 [14]. J&J vaccine was approved for use by the US
Food and Drug Administration and first rolled out on February
18, 2021, in the Republic of South Africa [12].

Pfizer-BioNTech, Oxford-AstraZeneca, and Moderna
vaccines are prescribed to be administered in two doses whereas
J&J vaccine is a single-dose prescribed administration [11].
Establishment on monitoring of mass vaccination campaigns
and clinical trials have shown that Pfizer-BioNTech, Oxford-
AstraZeneca, and Moderna vaccines can offer high levels of
moderate to severe COVID-19 symptomatic protection when
the two shots are administered 2–4 weeks apart [17–20].
However, most countries globally have a great challenge in
the delivery of vaccines mainly due to the supply inadequacy
and restricted capacity of distribution [11, 15]. The COVID-19
vaccines are being procured by most low- and middle-income

countries via the COVAX Advance Market Commitment (AMC)
Facility which is a world-wide risk-sharing mechanism for the
collaborative procurement of the COVID-19 vaccines [11, 21].

Based on the clinical history regarding the pharmacological
action of a wide range of existing vaccines against various
diseases, these vaccines have full protection capacity while
administered against the targeted disease. The administration
of these vaccines demands no further protection action by the
patient once administered. However, the COVID-19 vaccines
are controversial since, among the so far approved vaccines
being used, no single vaccine offers 100% protection against
the contraction of the disease. It is clearly evidenced that
even when one is vaccinated against COVID-19, there is a
possibility of being infected following exposure. Furthermore,
most vaccines have a prescription of two-dose administration
after some prescribed duration apart. This again gives room for
chances of contracting the virus while waiting to receive the
second dose and even when there is a delay in availing the second
dose. In view of these shortcomings, one natural question arises:
Which friendly non-pharmaceutical protocol can be adopted
after vaccination? This study attempts to address this question
using mathematical modeling.

Mathematical modeling has been widely used by scientists
in assessing the impacts of both pharmacological and
non-pharmacological strategies in an effort to combat the
transmission of the SARS-CoV-2 [1, 22–30]. Particularly, in Sun
andWang [23], mathematical modeling is used to investigate the
transmission dynamics of the COVID-19 epidemic. Similarly,
more studies are also done in Lukman et al. [31], Wong et al.
[22], Sameni [32], Bedi et al. [33], Boukanjime et al. [24], Garba
et al. [1], Zhao et al. [34], Gilbert et al. [35], Peirlinck et al.
[36], Ishtiaq [6], Salgotra et al. [37], and Amaro et al. [38]
on the spread dynamics of COVID-19 using different devised
mathematical models. In Eikenberry et al. [2], mathematical
modeling is adopted to assess the potential impact of the use of
face masks by the general public as a control measure strategy
against the COVID-19 epidemic spread. Similar modeling
studies addressing the effectiveness of the use of face masks to
control the spread of COVID-19 are also done in Yang et al.
[39], Li et al. [40], Howard et al. [41], Shen et al. [42], and
Stutt et al. [43]. In Garba et al. [1], a compartmental model is
employed to study the impacts of social distancing among the
public as an intervention strategy to curb the transmission of the
COVID-19 pandemic. Modeling studies on the impacts of social
distancing besides other containment measure protocols against
transmission of SARS-CoV-2 is similarly done in Nyabadza et al.
[44], Bastos and Cajueiro [5], Kennedy et al. [25], Lyra et al. [29],
and Mason et al. [45]. In Olivares and Staffetti [16], the impact
of vaccination, testing against COVID-19 and social distancing
is studied using mathematical modeling. In Moore et al. [14],
Moghadas et al. [15], Foy et al. [21], Sadarangani et al. [26], Iboi
et al. [46], and Gumel et al. [47], similar studies on assessing the
potential impacts of vaccination strategy and/or in presence of
other containment measures are also done. We note that, among
the studies mentioned above, none has considered the aspect
of wearing face masks especially after vaccination, hence, it is
worthy to bridge this gap.
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Therefore, this study seeks to develop a deterministic
mathematical model that combines vaccination programs against
COVID-19 and the use of face masks as intervention strategies in
curbing the spread of the epidemic. The model principally aims
to assess the potential impact of wearing face masks, especially on
vaccinated individuals.

We organize the rest of the article as follows: In Section 2, we
formulate the model. Section 3 presents analytical results of the
model covering positivity of solution, biological feasible region,
and stability analysis of the infection free equilibrium. In Section
4, we present numerical results and discussion including model
calibration, sensitivity analysis, and simulations. Finally, Section
5 gives the conclusion.

2. MODEL FORMULATION

On the grounds of the challenges and drawbacks associated with
the entire COVID-19 vaccination program (refer to Section 1),
we modify the standard SEIR deterministic model to incorporate
a combination of vaccination and wearing of face masks as
intervention strategies to combat the spread of the COVID-
19 epidemic. For this reason, we add a compartment for
vaccinated individuals wearing face masks and a compartment
for individuals wearing face masks but not vaccinated. Assuming
human-to-human transmission, we subdivide the total human
population N(t) into seven mutually exclusive classes namely the
susceptible class (S(t)), the class of individuals who are vaccinated
and wearing face masks (Smv(t)), the class of individuals wearing
face masks but not vaccinated (Sm(t)), the latent class (E(t)), the
infectious class of individuals who are symptomatic (Is(t)), the
infectious class of individuals who are asymptomatic (Ia(t)), and
the class of individuals who have recovered from the COVID-
19 infections (R(t)). Therefore, the total human population over
time t for the proposed model is

N(t) = S(t)+ Smv(t)+ Sm(t)+ E(t)+ Is(t)

+Ia(t)+ R(t). (1)

We stress that the model factors in the use of face masks,
especially by the vaccinated individuals since it is evidenced that
the so far developed and approved COVID-19 vaccines being
used do not offer 100% protection against the disease. Moreover,
most of them are even 2-shots vaccines administered after some
duration apart thus allowing chances for contracting the disease
while waiting for the second dose. Thus, the main aim of this
study is to assess the potential impact of the use of face masks
by vaccinated individuals in reducing COVID-19 infections.

The model basically indicates that the susceptible individuals
(S(t)) can either progress to the class of individuals who are
vaccinated and wearing face masks (Smv(t)), or join the class
of individuals who are using (wearing) face masks but not
vaccinated (Sm(t)), or progress to the class of individuals who
are initially neither vaccinated nor wearing face masks (E(t)).
The model assumes that individuals who are neither vaccinated
nor wearing face masks are highly prone to the infections and,
thus, proceed directly to latency. The latent class E(t) though

mainly contains individuals who are initially neither vaccinated
nor wearing face masks, individuals who get vaccinated and/or
wear face masks over time may join the class following exposure
to the disease. The susceptible population either gets vaccinated
and wear face masks at the rate of ω, or wear face masks
only at the rate of (1 − ω)δ, or progress to latency at the
rate of (1 − ω)(1 − δ) following effective contact rate of β
with either symptomatic or asymptomatic infectious individuals.
Based on the aforementioned challenges associated with the
whole vaccination program, the vaccinated individuals wearing
face masks can progress to the latent class E(t) at the rate of
(1−α), following exposure to the infection by either symptomatic
or asymptomatic infectious individuals. Here, we note that the
vaccinated individuals wearing faces masks are less prone to
the contraction of the infections due to their boosted immunity
and masks’ protection effected by the vaccine and mask average
protection denoted by α on the model. Similarly, the individuals
wearing face masks only (Sm(t)) progress to the latent class at
the rate of (1 − σ ) following their close contact with either
symptomatic or asymptomatic infectious individuals. Notably,
these individuals are still protected to some extent against
infections due to the masks efficacy of σ . We note that wearing
face masks and using face masks means the same in this study.

All the exposed individuals collected in the class of latency
E(t), can either progress to the symptomatic class of infectious
individuals at the rate of ηρ or the asymptomatic class of
infectious individuals at the rate of (1−ρ)η. These are individuals
who have completed the incubation period and shed the virus,
thus, causing COVID-19 infections. Since the epidemic has been
endemic, we consider a recruitment rate of Ŵ. Despite the fact
that individuals from all the seven classes of the model can die
naturally at the rate of µ, the symptomatic and the asymptomatic
infectious individuals can die due to COVID-19, respectively, at
the rates of εs and εa. Thus, the COVID-19 epidemic induced

deaths for the model are given by dD(t)
dt

= εsIs + εaIa. The
symptomatic and the asymptomatic individuals recover from
the disease at the rates of φ and ψ , respectively. The recovered
individuals are collected in class R(t). Figure 1 illustrates the
proposed model. The resultant system of nonlinear ordinary
differential equations for the model is

dS

dt
= Ŵ − (ω + (1− ω)δ + µ)S− (1− ω)(1− δ)γ0S (2)

dSmv

dt
= ωS− ((1− α)γ1 + µ)Smv (3)

dSm

dt
= (1− ω)δS− (1− σ )γ2Sm − µSm (4)

dE

dt
= (1− ω)(1− δ)γ0S+ (1− α)γ1Smv

+ (1− σ )γ2Sm − (η + µ)E (5)
dIs

dt
= ρηE− (φ + εs + µ)Is (6)

dIa

dt
= (1− ρ)ηE− (ψ + εa + µ)Ia (7)

dR

dt
= φIs + ψIa − µR (8)
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FIGURE 1 | The proposed model incorporating a combination of vaccination against COVID-19 and wearing of face masks.

where

γi = βi(ξ Is + Ia), i = 0, 1, 2 (9)

defines the force of infections for the model with ξ < 1 denoting
the modification parameter since the asymptomatic individuals
are assumed to be more infectious than the symptomatic
individuals. We describe the other parameters of the model
in Table 1.

3. ANALYTICAL RESULTS

We present some results regarding the epidemiological
properties of the proposed model (Equations 2–8).

3.1. Positivity of the Solution
Lemma 3.1:

Let S(0) > 0, Smv(0) > 0, Sm(0) > 0, E(0) > 0, Is(0) > 0,
Ia(0) > 0 and R(0) > 0. Then S(t) > 0, Smv(t) > 0, Sm(t) > 0,
E(t) > 0, Is(t) > 0, Ia(t) > 0 and R(t) > 0, ∀ t ≥ 0.
Proof

Suppose that the solution of the model (Equations 2–8) is not
positive for all t ≥ 0. Then there exist a first time t∗ > 0 such that

t∗ = inf{t | S(t) = 0 or Smv(t) = 0 or Sm(t) = 0 or E(t) = 0 or

Is(t) = 0 or Ia(t) = 0 or R(t) = 0}.

If S(t∗) = 0, then ∀ t ∈ (0, t∗), S(t) > 0, Smv(t) > 0, Sm(t) > 0,
E(t) > 0, Is(t) > 0, Ia(t) > 0 and R(t) > 0, dS(t∗)

dt
< 0. In

TABLE 1 | Parameter description for the model (Equations 2–8) and their

estimated values.

Symbol Parameter description Value

per day

Source

Ŵ Recruitment rate 11,244 [44]

βi Effective contact rate 1.0598 [44]

ω Extent of vaccination and face masks use (0,1) Variable

δ Measure of face masks use by unvaccinated 0.66 Assumed

α Measure of vaccine and mask average protection (0,1) Variable

ρ Measure of symptomatic development 0.38 Fitted

η Incubation period 0.1961 [16, 21]

ξ Infectious rate by the symptomatic individuals 0.3214 [46]

σ Measure of face mask efficacy (0,1) Variable

φ Rate of recovery by the symptomatic individuals 0.1429 [46, 48]

ψ Rate of recovery by the asymptomatic individuals 0.3217 Fitted

εs Rate of death by the symptomatic individuals 0.035 [1]

εa Rate of death by the asymptomatic individuals 0.018 [1]

µ Rate of natural death 0.0001 [48]

contradiction from Equation (2) we have dS(t∗)
dt

= Ŵ > 0 which
implies that S(t) > 0 for all t ≥ 0. Arguing similarly, it can be
verified that Smv(t) > 0, Sm(t) > 0, E(t) > 0, Is(t) > 0, Ia(t) > 0
and R(t) > 0 for all t ≥ 0.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 April 2022 | Volume 8 | Article 87228450

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Kinyili et al. Impact Analysis Using Mathematical Modeling

3.2. Biological Feasible Region
Lemma 3.2:

Let �R =

{

(S, Smv, Sm,E, Is, Ia,R) ∈ R
7
+ : S + Smv + Sm

+E+ Is + Ia + R ≤ Ŵ
µ

}

be a biological feasible region defined for all t ≥ 0. Then, �R

is positively invariant and absorbing with respect to the model
(Equations 2–8).
Proof

We compute the time derivative of the total population N(t) in
line with Equation (1) along the solution to obtain

dN

dt
= Ŵ − µN − εsIs − εaIa

≤ Ŵ − µN. (10)

Solving Equation (10) by integration and the Gronwall Inequality
with N(0) = N0 we get

N(t) ≤
Ŵ

µ

(

1− e−µt
)

+ N0e
−µt . (11)

Employing comparison theorems on ODEs [49],
Equation (11) gives

lim
t→∞

N(t) ≤
Ŵ

µ
. (12)

From Equation (12), we see that N ≤ Ŵ
µ
, ∀t ≥ 0. This shows that

N is bounded and, therefore, infers that the biological feasible
region �R is positively invariant and absorbing for all t ≥
0. Hence, the dynamics of the model (Equations 2–8) can be
considered in�R for all t ≥ 0 [50].

3.3. Infection Free Equilibrium and
Stability Analysis
At the instant when no individual is infected in the population
of concern, then this situation is referred to as infection-free
equilibrium [48, 51]. We find that the proposed model has a
unique infection-free equilibrium denoted and defined as

E
∗ =

(

S∗, S∗mv, S
∗
m, 0, 0, 0, 0

)

(13)

where,

S∗ =
Ŵ

ω + (1− ω)δ + µ
,

S∗mv =
Ŵω

(ω + (1− ω)δ + µ)µ
,

S∗m =
Ŵ(1− ω)δ

(ω + (1− ω)δ + µ)µ
. (14)

3.3.1. Reproduction Number and Local Stability
We analyze the model’s infection-free equilibrium local
asymptotic stability by first computing the reproduction
number. Since the model incorporates vaccination and the use
of face masks as control measure strategies against COVID-19,
some proportion of the susceptible population has adopted
the measures, and thus, we define the vaccination-mask
reproduction number which we denote by Rvm. The Rvm here
is defined as the mean secondary number of infections sourced
by one infectious individual when introduced into a susceptible
population where a proportion is vaccinated and/or wear face
masks. We adopt the next generation operator technique for
the computation of the Rvm [51]. The Jacobian for secondary
infectionsF and transfer of infections V for the model (Equation
2–8) are respectively given by

F =





0 βξŴ

ω+(1−ω)δ+µℓ
βŴ

ω+(1−ω)δ+µℓ

0 0 0
0 0 0



 , (15)

where

ℓ = (1− ω)(1− δ)+
(1− α)ω

µ
+

(1− σ )(1− ω)δ
µ

and

V =





η + µ 0 0
−ρη φ + µ 0

−(1− ρ)η 0 ψ + µ



 , (16)

thus

FV
−1 =







βŴ

(ω+(1−ω)δ+µ)(η+µ)ℓ
{

ρηξ
φ+µ + (1−ρ)η

ψ+µ

}

βŴξ

(ω+(1−ω)δ+µ)(φ+µ)ℓ
βŴ

(ω+(1−ω)δ+µ)(ψ+µ)ℓ

0 0 0
0 0 0






. (17)

Hence, the model’s reproduction number is

Rvm =
βŴ

(ω + (1− ω)δ + µ)(η + µ)
ℓ

{

ξρη

φ + µ
+

(1− ρ)η
ψ + µ

}

.

(18)

Therefore, the infection-free equilibrium of the proposed model
is locally asymptotically stable if

Rvm =
βŴ

(ω + (1− ω)δ + µ)(η + µ)

ℓ

{

ξρη

φ + µ
+

(1− ρ)η
ψ + µ

}

< 1. (19)

We note that the symptomatic and the asymptomatic individuals
account for the new COVID-19 infections, and therefore, we can
re-write (Equation 18) as

Rvm = Rvm−s +Rvm−a (20)
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where

Rvm−s =
βŴ

(ω + (1− ω)δ + µ)(η + µ)
ℓ

{

ξρη

φ + µ

}

(21)

and

Rvm−a =
βŴ

(ω + (1− ω)δ + µ)(η + µ)
ℓ

{

(1− ρ)η
ψ + µ

}

. (22)

3.3.2. Global Stability
We adopt the approach used by Castillo-Chavez
et al. [51] to prove the global stability of the model’s
infection-free equilibrium.
Theorem 3.3.2

Let the model be expressible in the form, dP
dt

= Y(P,Q), dQ
dt

=
M(P,Q), M(P, 0) = 0, where P denotes the collection of non-
disease classes and Q represents the collection of disease classes
of the model. The equilibrium point E∗ = (P∗, 0) of the model is
globally asymptotically stable (g. a. s) if and only ifRvm < 1 and
satisfies the following conditions

C1 :
dP
dt

= Y(P, 0), P∗ is globally asymptotically stable.

C2 : M(P,Q) = NQ − ˜M(P,Q), ˜M(P,Q) ≥ 0 for (P,Q) ∈ R
7
+

where N = ∂M
∂Q E

∗ and R
7
+ is the region where the model

makes biological sense.

Proof

We deduce that P = (S, Smv, Sm,R)
T and Q = (E, Is, Ia)

T from
the model (Equations 2–8). The infection-free equilibrium of the
model is E∗ = (P∗, 0) =

(

S∗, S∗mv, S
∗
m, 0, 0, 0, 0

)

as established by
Equation (13). The point E∗ = (P∗, 0) is g. a. s ifRvm < 1, hence

dP

dt
= Y(P, 0)

=













Ŵ − (ω + (1− ω)δ + µ)S
ωS− µSmv

(1− ω)δS− µSm
0
0













,

and, therefore, C1 is satisfied. We next check the satisfaction of
C2 as

NQ =





−(η + µ) 0 0
ρη −(φ + µ) 0

(1− ρ)η 0 −(ψ + µ)









E
Is
Ia





and
M(P,Q) =





β(ξ Is + Ia)(1− ω)(1− δ)S+ (1− α)β(ξ Is + Ia)Smv + (1− σ )εβ(ξ Is + Ia)Sm
ρηE− (φ + µ)Is

(1− ρ)ηE− (ψ + µ)Ia



 .

UsingM(P,Q) = NQ− ˜M(P,Q) then,

˜M(P,Q) =







β(ξ Is + Ia)
{

(1− ω)(1− δ)
(

1− S
N

)

+ (1− α)
(

1− Smv
N

)

+ (1− σ )ε
(

1− Sm
N

)}

0
0






.

therefore ˜M(P,Q) ≥ 0 hence C2 is satisfied. Thus, we
conclude that the model’s infection-free equilibrium is globally
asymptotically stable wheneverRvm < 1.

4. NUMERICAL RESULTS AND
DISCUSSION

4.1. Calibration of the Model
We use the Maximum Likelihood Estimation algorithm
implemented in the fitR package for calibrating the model
(Equations 2–8). The public data used are the daily COVID-19
positive cases as reported by the government of the Republic of
South Africa from June 01, 2020, to September 08, 2020 [12].
The goodness of fit is established in Figure 2.

4.2. Sensitivity Analysis
We perform the sensitivity analysis for the model graphically
using Equation (18) to assess the impacts of the parameters of
interest on the vaccination-mask reproduction numberRvm. The
cardinal parameters of scrutiny for this research are ω for the
measure of the extent of vaccination and face mask use, α for
the measure of vaccine and face mask average protection, and
σ for the measure of face mask efficacy. The vaccine and face
mask average protection here refers to the mean value protection
against the contraction of the infections brought about by the
combination of the vaccine efficacy and face mask efficacy. This
aspect only occurs to those people who are vaccinated and still
wear face masks. They enjoy double protection in which one is
facilitated by the vaccine and the second is facilitated by the face
mask. Those people who wear face masks only enjoy the benefit
of face masks protection brought about by the face mask efficacy.
We define to have a poor extent of vaccination and face mask
use, a poor extent of vaccine and face mask average protection,
and poor face mask efficacy if each of the parameters approach
zero whereas the perfect extent of vaccination and face mask use,
the perfect extent of vaccine and face mask average protection,
and perfect face mask efficacy are attained when each of the
parameters tends to unity, hence, 0 < ω < 1, 0 < α < 1, and
0 < σ < 1. We consider four levels of the extent of vaccine and
face mask average protection (α) such that α = 20%, α = 50%,
α = 70%, and α = 95%. For the face mask efficacy (σ ), we also
consider four levels, i.e., σ = 20%, σ = 40%, σ = 60%, and
σ = 80%. The impacts assessment is depicted in Figure 3.

The figure demonstrates the variation of the reproduction
number with ω when α and σ are simultaneously endorsed in
at increasing levels as aforementioned. We clearly observe that
Rvm decreases gently with an increase in ω at each level of
α and σ . Distinctively, the figure reveals an incredible shift of
Rvm values tending to less than unity when the α and σ levels

are simultaneously increased. We see that increasing levels of α
and σ accelerates the reduction in the value of the reproduction
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FIGURE 2 | Calibration of the model (Equations 2–8) to COVID-19 positive reported cases (01 June–08 September, 2020) in the Republic of South Africa. The black

dotted line shows the reported data while the red-continuous line depicts the model’s goodness of fit. Parameter values used are as listed in Table 1 where

ω = 0.00001, α = 0.00001, and σ = 0.00001.

number. This distinct observed trend stipulates that increasing
the extent of vaccination against COVID-19 simultaneously with
the wearing of face masks, highly reduces the value of basic
reproduction. This consequentially leads to the speeding up of
the stabilization of the infection-free equilibrium, hence, leading
to the eradication of the epidemic over a relatively shorter time.

4.3. Simulations
We test for different scenarios with respect to the parameters of
interest via numerical simulations using the calibrated model.
We concentrate the simulations on the disease classes of the
model which include the latent class, the symptomatic, and
the asymptomatic infectious classes. The principal purpose of
the model (Equations 2–8) was actually to assess the impact
of wearing face masks on those individuals who are vaccinated
against the COVID-19 epidemic. This is based on the grounds
that with the already developed and approved vaccines in use, it
is evidenced that no vaccine offers 100% efficacy, and therefore,
individuals who are vaccinated have a chance of contracting
the infections. Furthermore, some vaccines are prescribed to
be administered in 2 doses after some duration apart, and
thus, a vaccinated individual can also contract the infections
while waiting to receive the second dose. Hence, we carry out
simulations varying the aforementioned parameters of interest
for this study. The other parameter values used are listed
in Table 1.

We first consider a scenario where the uptake of the vaccines
and wearing of the face masks especially by the vaccinated
individuals is extremely low. Second, we consider a scenario
where the uptake of the vaccines and wearing of the facemasks by
people who are vaccinated is relatively high. Third, we consider a
scenario where the uptake of the vaccines and wearing of the face
masks by the vaccinated individuals is on an upward trajectory.
Under this third scenario, we consider four levels of the extent of
vaccine and face mask average protection (α) such that α = 20%,
α = 50%, α = 70%, and α = 95% as considered during
the sensitivity analysis. For the face mask efficacy (σ ), we also
consider four level that is, σ = 20%, σ = 40%, σ = 60%, and
σ = 80%.

Figures 4A–C, respectively, show the trajectory of the
symptomatic, the asymptomatic, and the latent classes of the
model (Equations 2–8) when the uptake of the COVID-
19 vaccines and wearing of face masks by the vaccinated
individuals is extremely low. In this situation, we clearly
observe a highly surging number of recorded symptomatic
infections, asymptomatic infections, and latent cases as a
result. This observation suggests that the absence or low
implementation of these control measure strategies would lead
to a resurgence in the peak number of COVID-19 infections
as well as rising exposure cases. Furthermore, it is observed
that the infections take a relatively long time to clear from the
human host.
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FIGURE 3 | Change of the reproduction number with ω as α and σ increase. Parameter values used are listed in Table 1.

Figures 5A–C, respectively, illustrate the trajectory of the
symptomatic, the asymptomatic, and the latent classes of the
model (Equations 2–8) when the uptake of the COVID-19
vaccines and wearing of face masks by the vaccinated individuals
is relatively high. The Figures show low numbers of recorded
symptomatic infections, asymptomatic infections, and latent
cases consequentially. These observations stipulate that serious
uptake or implementation of these control measure strategies
would result in an accelerated reduction in the peak number
of COVID-19 infections and reduction in the latent cases.
Moreover, we observe that the infections clear within a relatively
shorter time span.

Figures 6A–D (left-hand-side sub-figures) and Figures 1–4
(right-hand-side sub-figures), respectively, show the trajectory
of the symptomatic cases and the asymptomatic cases of the
model (Equations 2–8) as ω varies when α = 20%, α = 50%,
α = 70%, and α = 95%. We observe that the number of
symptomatic infections and the asymptomatic infections reduces
as ω increases at each level of α. Remarkably, we see that a
concurrent increase in ω and α accelerates the reduction in
the number of both symptomatic and asymptomatic infections.
In other words, continuous increase in ω at relatively higher
levels of α, speed up reduction in the recorded symptomatic and
asymptomatic infections. This situation results in a decrease in
the cumulative peak number of infections. These observations are
explained by the fact that, when more people are vaccinated and
continue to wear face masks, their chances of being infected are
highly reduced following the combined protection brought about

by the vaccine efficacy and the face mask efficacy. Therefore, we
infer that serious uptake of the COVID-19 vaccines with the
simultaneous wearing of face masks even after vaccination can
eradicate the epidemic within a relatively shorter period of time.

We note that wearing the face masks by the general public is
one of the non-pharmaceutical control measure protocols which
was immediately introduced right from the early outbreak of the
COVID-19 pandemic. As it is captured in Section 1, it was highly
and well implemented hence playing a key role in containing
the spread of the pandemic. In reality, wearing face masks has
been greatly adhered to by a greater proportion of the population
in various countries where the COVID-19 epidemic has been
seriously observed. Although this model assumes that about 66%
of the Republic of South Africa’s population at higher risk of
contracting the disease wear face masks, especially in public
areas, we consider varying the parameter δ for the measure of
wearing of the face masks by unvaccinated individuals. This is
done considering four levels of the face masks efficacy denoted
by σ such that σ = 20%, σ = 40%, σ = 60%, and
σ = 80%. The trajectories of the symptomatic infections and
the asymptomatic infections of the model (Equations 2–8) are,
respectively, established by the Figures 7A–D (left-hand-side
sub-figures) and Figures 1–4 (right-hand-side sub-figures) of
Figure 7. The figure shows that as δ increases at each level of σ ,
the peak number for both the symptomatic and the asymptomatic
infections decreases. However, we observe that as δ increases
at each level of σ , the infections delay clearing, hence, taking a
relatively long time span. This observation implies that the use of
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FIGURE 4 | (A) Trajectory of the symptomatic infections for the model (Equations 2–8) when the uptake of the COVID-19 vaccines and the use of face masks by the

vaccinated is extremely low. (B) Trajectory of the asymptomatic infections for the model (Equations 2–8) when the uptake of the COVID-19 vaccines and the use of

face masks by the vaccinated is extremely low. (C) Trajectory of the latent cases for the model (Equations 2–8) when the uptake of the COVID-19 vaccines and the

use of face masks by the vaccinated is extremely low. Trajectory of the symptomatic, asymptomatic, and latent classes of the model (Equations 2–8) when the uptake

of the COVID-19 vaccines and the wearing of face masks by the vaccinated is extremely low.
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FIGURE 5 | (A) Trajectory of the symptomatic infections for the model (Equations 2–8) when the uptake of the COVID-19 vaccines and the use of face masks by the

vaccinated is relatively high (80%). (B) Trajectory of the asymptomatic infections for the model (Equations 2–8) when the uptake of the COVID-19 vaccines and the use

of face masks by the vaccinated is relatively high (80%). (C) Trajectory of the latent cases for the model (Equations 2–8) when the uptake of the COVID-19 vaccines

and the use of face masks by the vaccinated is relatively high (80%). Trajectory of the symptomatic, asymptomatic, and latent classes of the model (Equations 2–8)

when the uptake of the COVID-19 vaccines and the use of face masks by the vaccinated is relatively high (80%).
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FIGURE 6 | (A–D) Simulations of the model (Equations 2–8) showing the trajectory of the number of symptomatic infections (left-hand-side sub-figures) and the

number of asymptomatic infections (right-hand-side sub-figures) as ω varies at changing levels of α.
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FIGURE 7 | (A–D) Simulations of the model (Equations 2–8) showing the trajectory of the number of symptomatic infections (left-hand-side sub-figures) and the

number of asymptomatic infections (right-hand-side sub-figures) as δ varies at changing levels of σ .
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FIGURE 8 | (A–D) Simulations of the model (Equations 2–8) showing the trajectory of the latent cases as ω varies at changing levels of α (left-hand-side sub-figures)

and the latent cases as δ varies at changing levels of σ (right-hand-side sub-figures).
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the face masks alone may facilitate the clearance of the infections
from the human host though within a relatively long time as
compared to when vaccination is combined with the wearing of
the face masks. The advantage for both cases is that the plateau
number of infections keeps on reducing.

Additionally, as a result of a greatly accelerated reduction
in the recorded numbers of both the symptomatic and the
asymptomatic COVID-19 infections across all the observed levels
of α and σ , the plateau number of the latent cases keep on
decreasing, respectively as ω and δ increase. This observation is
clearly evidenced by Figures 8A–D (left-hand-side sub-figures)
and Figures 1–4 (right-hand-side sub-figures), respectively, for
varying values of ω at the aforementioned levels of α and for
changing values of δ at the earlier stated levels of σ . This trend is
completely in order since as much as the peak infections reduce,
then the risk of exposure decreases hence triggering low latent
cases consequentially.

5. CONCLUSION

In this study, we developed a modified SEIR deterministic model
which factored in the combination of the COVID-19 vaccination
program and the wearing of face masks as intervention strategies
to curb the spread of COVID-19 infections. The developed
model principally aimed at assessing the potential impact of
wearing the face masks, especially by the vaccinated individuals
in combating further contraction and spread of COVID-19. This
special consideration was made since it was learned that people
who are already vaccinated still had a probability of further being
infected following their exposure to infectious individuals. This
was based on the reasons aforementioned in Section 1.

Analytical results on epidemiological properties of the model
ascertained that the model’s solution remained positive and
bounded within a defined biological feasible region for all non-
negative time. We further adopted the Maximum Likelihood
Estimation algorithmwhich was implemented in the fitR package
to calibrate the developed model. We used the Republic of South
Africa’s COVID-19 positive cases reported data from June 01,
2020, to September 08, 2020, in calibrating the model. This
important exercise was performed majorly to authenticate the
model for use in testing different scenarios. For the sensitivity
analysis, we used the expression for the reproduction number
Rvm to plot the Rvm against the ω for the measure of the extent
of vaccination and face mask use, while endorsing α for the
measure of vaccine and face mask average protection and σ for
the measure of face mask efficacy at simultaneously increasing
levels. It was found that Rvm decreased gently with an increase
in ω at each level of α and σ . Uniquely, it was discovered that
there was an incredible shift of Rvm values tending to less than
unity when the α and σ levels were simultaneously increased.
Furthermore, increasing the levels of α and σ accelerated the
reduction in the value of the reproduction number.

For the numerical simulations, we first considered a scenario
where the uptake of the vaccines and wearing of the face
masks especially by the vaccinated individuals was extremely
low. Second, we considered a scenario where the uptake of
the vaccines and wearing of the face masks by people who are
vaccinated was relatively high. Third, we considered a scenario
where the uptake of the vaccines and wearing of the face masks
by the vaccinated individuals was on an upward trajectory. Under
the third scenario, we considered four levels of the extent of
vaccine and face mask average protection (α) such that α = 20%,
α = 50%, α = 70%, and α = 95%. We also considered four
levels of the face mask efficacy (σ ), such that σ = 20%, σ = 40%,
σ = 60%, and σ = 80%.

Results indicated a highly surging number of infections
and a low recorded number of infections for scenario one
and scenario two, respectively. For the third scenario, it
was observed that the increased extent of wearing face
masks by the vaccinated individuals at increasing levels of
vaccines and face mask average protection resulted in a highly
accelerated decrease in COVID-19 infections. This situation
triggered the clearance of the COVID-19 infections from
the human host within a relatively shorter period of time.
Wearing face masks alone also resulted in a reduction in
the peak number of infections at increasing levels of face
mask efficacy though the infections were delayed to clear.
This aspect would make the clearance of the COVID-19
infections take a relatively long span of time. Thus, this study
advocates for the continued wearing of face masks even after
full vaccination.
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In this paper, we develop and extend the work of Jia and Qin on sexually transmitted

disease models with a novel class of non-linear incidence. Awareness plays a central

role both in the susceptible and the infectious classes. The Existence, uniqueness,

boundedness, and positivity of solutions are systematically established. Concavity

arguments and the occurrence of a vertical asymptote are essential in the proof of the

existence of a unique endemic equilibrium. Conditions for the stability of all steady states

are investigated. In particular, numerical simulations are performed in order to capture

the asymptotic behavior of solutions.

AMS Classification: 92D30, 34D23.

Keywords: stability, non-linear response, concavity, vertical asymptote, awareness, disease

1. INTRODUCTION

Disease incidence plays a crucial role in mathematical epidemiology and it is essential in the
computation of the basic reproduction number. Non-linear incidences are known to induce
complex or chaotic behavior as oppose to standard incidences frequently used in classical infectious
diseasemodels [1–6]. A class of non-linear incidences particularly useful in themodeling of sexually
transmitted diseases was introduced in [7] by the authors in the modeling of HIV/AIDS epidemic.
The model considered however was not properly conceptualized as the density of individuals with
full-blownAIDS not receiving ARV treatment did not bear any influence on the infection rate of the
disease. In addition a number of inaccuracies are displayed in this paper like the unknown variable
T missing in the third equation of system (2.1) and also a mistake occurred in the computation of
the sign of a3 in the proof of the stability of the endemic equilibrium. The purpose of this paper
is to develop and extend the work on [7] by deriving a realistic model for sexually transmitted
diseases with a proper non-linear incidence rate with a valid biological significance and perform
a full analysis of the resulting model. In Section 2, the model is derived and presented. Well-
posedness analysis, positivity and boundedness are considered in Section 3 followed by stability
analysis of the critical points of the system in Section 4, numerical simulations in Section 5 and the
conclusion.

2. THE MODEL

In this paper, a model with five compartments is formulated with non-linear incidence Sg(t, I)
incorporated into it. The incidence is presumed to be a time dependent non-linear response to the

63

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.860840
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.860840&domain=pdf&date_stamp=2022-05-26
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:23238917@nwu.ac.za
https://doi.org/10.3389/fams.2022.860840
https://www.frontiersin.org/articles/10.3389/fams.2022.860840/full


Oukouomi Noutchie et al. Dynamics of Diseases Under Awareness and Treatment

size of the infectious population.
The compartments are denoted by S(t), I(t),T(t),A(t) and

R(t) which represent the number of susceptible individuals, the
number of infected individuals with the potential of transmitting
the disease as they are not under treatment and do not take
any form of protection while engaging in sexual activities, the
number of individuals under treatment, the number of infectious
individuals engaging in safe sex, and heathy individuals that
engage in safe sex, respectively, at time t. The model represented
in Figure 1 is governed by the system of nonlinear ordinary
differential equations
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

dS

dt
= Ŵ − Sg(t, I)− (ω1 + d)S,

dI

dt
= Sg(t, I)+ ν1T − (d + τ1 + τ2)I,

dT

dt
= τ2I − ν2T − (d + ν1)T,

dA

dt
= τ1I − dA+ ν2T,

dR

dt
= ω1S− dR,

(1)

endowed with initial conditions
S(0) ≡ S0 > 0, I(0) ≡ I0 > 0, T(0) ≡ T0 ≥ 0, A(0) ≡ A0 ≥

0, R(0) ≡ R0 ≥ 0.
The parameters in the evolution system (1) are described in
Table 1:
The total populationN(t) is given by S(t) + I(t) + T(t) + A(t) +
R(t). By adding all the equations of the system (1), we obtain the
rate of change of N(t), which is given by

dN

dt
= Ŵ − dN (2)

and N(t) varies over time and is nearing a stable fixed point
Ŵ

d
as

t → ∞. Therefore, the biologically feasible region for the system
(1) is given by

9=

{

(S, I,T,A,R) ∈ R
5
+ | 0 < S(t)+I(t)+T(t)+A(t)+R(t)≤

Ŵ

d

}

.

It is easy to see that the set 9 is positively invariant. Next we
present a systematic analysis of our evolution equation.

3. MATHEMATICAL ANALYSIS

We start by investigating the well-posedness of
the model (1). Given the fact that the variables
represent biologically densities, it is important to
show that all the variables remain positive at all
time.

Lemma 1. For any non-negative initial conditions
(S0, I0,T0,A0,R0), system (1) has a local solution which is
unique.

Proof : Let x = (S, I, T, A, R), system (1) can be rewritten
as x′(t) = f (t, x(t)), where f :R6 → R

5 is aC1 vector field. By the
classical differential equation theory, we can confirm that system
(1) has a unique local solution defined in a maximum interval
[0, tm). �

Lemma 2. For any non-negative initial conditions
(S0, I0,T0,A0,R0), the solution of (1) is non-negative and
bounded for all t ∈ [0, tm).

Proof : We start by showing positivity of the local solution
for any non-negative initial conditions. It is easy to see that S(t) ≥
0 for all t ∈ [0, tm). Indeed, assume the contrary and let t1 > 0
be the first time such that S(t1) = 0 and S′(t1) < 0. From the
first equation of the system (1), we have S′(t1) = Ŵ > 0, which
presents a contradiction. Therefore S(t) ≥ 0 for all t ∈ [0, tm).
Using the same argument, positivity I(t), T(t), A(t) and R(t) in
the interval [0, tm) are established. Furthermore from (2), we have
that

N(t) =
Ŵ

d
+ N(0)e−dt ≤

Ŵ

d
+ N(0). (3)

Therefore the solution N(t) is bounded in the interval [0, tm). �

Theorem 1 For any non-negative initial conditions
(S0, I0,T0,A0,R0), system (1) has a unique global solution.
Moreover, this solution is non-negative and bounded for all t ≥ 0.

Proof : The solution does not blow up in a finite time
as it is bounded, it is therefore defined at all time t ≥ 0.
Other properties of the solution follow from lemma (1) and
lemma (2). �

Setting m = d + τ1 + τ2 and n = d + ν1 + ν2, system (1)
transforms into a reduced system























































































dS

dt
= Ŵ − Sg(t, I)− (ω1 + d)S,

dI

dt
= Sg(t, I)+ ν1T −mI,

dT

dt
= τ2I − nT,

dA

dt
= τ1I − dA+ ν2T,

dR

dt
= ω1S− dR.

(4)

4. MODELS WITH TIME INDEPENDENT
NON-LINEAR RESPONSE

In this section, we assume that the non-linear response function
is not time dependent, ie g(t, I) ≡ g(I). Following [7], it is further
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FIGURE 1 | Flow diagram.

TABLE 1 | Biological meaning of parameters.

Parameter Biological meaning

Ŵ Recruitment rate

d Natural death rate

τ1 The rate at which infected individuals adhere to safe sex practices

τ2 The rate at which infected individuals receive antiviral drugs

ω1 The rate at which susceptible individuals adhere to safe sex practices

ν1 The rate of defaulting from treatment

ν2 The rate at which treated individuals adhere to safe sex practices .

assumed that

(H1) : g(0) = 0, g′(0) > 0, g′′(I) ≤ 0 for I ≥ 0,

(H2) : lim
I→0+

g(I)

I
= k, 0 < k < ∞.

4.1. The Basic Reproduction Number
In this section, we use the next generation method [8] to
obtain the basic reproduction number. Let z be the transpose of
(I,A,T, S,R). We rewrite the system (4) in the matrix form

dz

dt
= F(z)− V(z),

where

F(z) =













Sg(I)
0
0
0
0













and

V(z) =













mI − ν1T
dA− τ1I − ν2T

nT − τ2I
Sg(I)+ (ω1 + d)S− Ŵ

dR− ω1S













.

The disease free equilibrium of system (4) takes the form

E0 = (I0,A0,T0, S0,R0) =
(

0, 0, 0,
Ŵ

ω1 + d
,

ω1Ŵ

d(ω1 + d)

)

.

Following [8], we compute the basic reproduction number
using the formula below

R0 = ρ(FV−1),

where

F =









∂F1
∂E

∂F1
∂I

∂F1
∂T

0 0 0
0 0 0









∣

∣

∣

∣

(E0 ,I0 ,T0 ,S0 ,R0)

=







αŴ

ω1 + d
0 0

0 0 0
0 0 0







and

V =













∂V1
∂E

∂V1
∂I

∂V1
∂T

∂V2
∂E

∂V2
∂I

∂V2
∂T

∂V3
∂E

∂V3
∂I

∂V3
∂T













∣

∣

∣

∣

(E0 ,I0 ,T0 ,S0 ,R0)

=





m 0 −ν1
−τ1 d −ν2
−τ2 0 n




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and ρ is the spectral radius of the matrix FV−1. Given the fact
that

V−1 =
1

d(mn− ν1τ2)

















nd 0 −ν1d

τ1n− ν2τ2 mn− ν1τ2 ν2m− ν1τ1

τ2d 0 md

















,

it follows that

R0 =
αnŴ

(ω1 + d)(mn− ν1τ2)
. (5)

4.1.1. Stability of the Disease-Free Equilibrium
The stability of the disease-free equilibrium will be investigated
in this subsection.

Theorem 2 The disease free equilibrium E0 is globally
asymptotically stable if 0 < R0 < 1, and unstable ifR0 > 1.

Proof : The Jacobian matrix (JE0 ), evaluated at E0, is given
by

JE0 =







































−(ω1 + d)
−αŴ

ω1 + d
0 0 0

0
αŴ

ω1 + d
−m ν1 0 0

0 τ2 −n 0 0

0 τ1 ν2 −d 0

ω1 0 0 0 −d







































. (6)

The characteristic equation that results from the Jacobian matrix
(JE0 ) is given by det(JE0 − λI) = 0. Thus, we get

(d+λ)2[(ω1+d)+λ]

[(

m−
αŴ

ω1 + d
+ λ

)

(n+ λ)− ν1τ2

]

= 0.

(7)
The characteristic equation (7) has three negative real roots,
which are

λ1 = −d,

λ2 = λ3 = −(ω1 + d),

and the other 2 roots, λ4 and λ5, are roots of the equation

f (λ) =
[(

m−
αŴ

ω1 + d

)

+ λ

]

(n+λ)−ν1τ2 ≡ λ2+a1λ+a2 = 0,

(8)
where

a1 = m+ n−
αŴ

ω1 + d
,

a2 = mn− ν1τ2 −
αnŴ

ω1 + d
.

We now need to consider the signs of λ4 and λ5. Note that

mn− ν1τ2 > 0.

Assuming

R0 =
αnŴ

(ω1 + d)(mn− ν1τ2)
< 1,

we have that

mn− ν1τ2 −
αnŴ

ω1 + d
= a2 > 0.

Moreover

αnŴ

ω1 + d
< mn− ν1τ2 < mn.

It implies that

m−
αŴ

ω1 + d
> 0.

It follows that a1 > 0. As a result the roots λ4 and λ5 are
strictly negative. We can conclude that all roots of (7) have
negative real parts, therefore, the disease free equilibrium is
locally asymptotically stable [8–10]. Furthermore assuming that

R0 =
αnŴ

(ω1 + d)(mn− ν1τ2)
> 1,

we have that a2 < 0, it follows that the characteristic equation
f (λ) = 0 has a least a strictly positive root. Therefore, the disease
free equilibrium E0 is unstable.

4.2. Existence of an Endemic Equilibrium
In this subsection, we investigate the existence of an endemic
equilibrium for the system (4).

Proposition 1. The system of differential equations (4) admits a
unique endemic equilibrium if and only ifR0 > 1.

Proof : Let E∗ = (S∗, I∗,T∗,A∗,R∗) be an equilibrium
point. Then the components of E∗ satisfy the following set of
equations























































Ŵ − S∗g(I∗)− (ω1 + d)S∗ = 0,

S∗g(I∗)+ ν1T
∗ −mI∗ = 0,

τ2I
∗ − nT∗ = 0,

τ1I
∗ − dA∗ + ν2T

∗ = 0,

ω1S
∗ − dR∗ = 0.

(9)

From the last three equations of the system (9), we have that

T∗ =
τ2I

∗

n
,

A∗ =
τ1 +

ν2τ2

n
d

I∗,

R∗ =
ω1S

∗

d
.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 May 2022 | Volume 8 | Article 86084066

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Oukouomi Noutchie et al. Dynamics of Diseases Under Awareness and Treatment

Substituting T∗,A∗ and R∗ into the first two equations, we obtain

Ŵ − S∗g(I∗)− (ω1 + d)S∗ = 0,

S∗g(I∗)−
(ν1τ2

n
−m

)

I∗ = 0.

It follows that

S∗ =

(

m−
ν1τ2

n

)

I∗

g(I∗)
(10)

and

Ŵ −
(

m−
ν1τ2

n

)

I∗ − (ω1 + d)

(

m−
ν1τ2

n

)

I∗

g(I∗)
= 0. (11)

Next we set

h(I) : =
(ω1 + d)

(

m−
ν1τ2

n

)

I

Ŵ −
(

m−
ν1τ2

n

)

I
. (12)

It is enough to show that there exists a point I∗ ∈ R
+ such that

h(I∗) = g(I∗). In other words, we will show that the curves of the
functions h and g intersect at a point I∗.

Note that

I =
nŴ

mn− ν1τ2

is a vertical asymptote of the function h(I). For all

0 < I <
nŴ

mn− ν1τ2
,

we have that

h′(I)=

(ω1+d)
(

m− ν1τ2
n

) [

Ŵ−
(

m− ν1τ2
n

)

I
]

+(ω1+d)
(

m− ν1τ2
n

)2
I

[

Ŵ−
(

m− ν1τ2
n

)

I
]2

=
Ŵ(ω1+d)

(

m− ν1τ2
n

)

[

Ŵ−
(

m− ν1τ2
n

)

I
]2

> 0

and

h′′(I) =
2
[

Ŵ −
(

m−
ν1τ2

n

)

I
]

(

m− ν1τ2
n

)2
Ŵ(ω1 + d)

[

Ŵ −
(

m− ν1τ2
n

)

I
]4

=
2Ŵ(ω1 + d)

(

m−
ν1τ2

n

)2

[

Ŵ −
(

m−
ν1τ2

n

)

I
]3

> 0.

It follows that the function h is increasing and concave upward in
the interval

[

0,
nŴ

mn− ν1τ2

)

with a vertical asymptote at the right end of the interval. Note that
the function g is increasing and concave downward in the closed
interval

[

0,
nŴ

mn− ν1τ2

]

.

As a result if

g′(0) > h′(0) =
(ω1 + d)

(

m−
ν1τ2

n

)

Ŵ
,

which is equivalent to the condition R0 > 1, then Equation (12)
has a unique root I∗ in the interval

(

0,
nŴ

mn− ν1τ2

)

.

Furthermore if

I >
nŴ

mn− ν1τ2
,

then h(I) < 0. There is no intersection point with g(I) since g
is a positive function. Therefore there exists a unique endemic
equilibrium point E∗ = (S∗, I∗,T∗,A∗,R∗) provided thatR0 > 1.
In addition if

g′(0) ≥ h′(0) =
(ω1 + d)

(

m−
ν1τ2

n

)

Ŵ
,

equivalent to the condition R0 ≤ 1, there is no endemic
equilibrium for the system (4).

4.2.1. Stability of the Endemic Equilibrium
Lemma 3. Let g(I) be a positive smooth function defined on the
interval [0,∞). Suppose that assumptions H1 and H2 hold, then
the following inequality is satisfied

1−
Ig′(I)

g(I)
≥ 0 for any I > 0. (13)

Proof :

We have that

d[g(I)− Ig′(I)]

dI
= −Ig′′(I) ≥ 0

as g′′(I) ≤ 0. This implies that the function g(I) − Ig′(I) is
increasing on the interval [0,∞). Given the fact that g(0) −
0g′(0) = 0, it follows that g(I)− Ig′(I) ≥ 0. �

Theorem 3 If R0 > 1, then the endemic equilibrium E∗ is
locally asymptotically stable.
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Proof : The Jacobian matrix of the endemic equilibrium is
given by

JE∗ =

































−g(I∗)− (ω1 + d) S∗g′(I∗) 0 0 0

g(I∗) S∗g′(I∗)−m ν1 0 0

0 τ2 −n 0 0

0 τ1 ν2 −d 0

ω1 0 0 0 −d

































. (14)

The characteristic equation that results from the Jacobian matrix
(JE∗ ) is given by det(JE∗ − λI) = 0. Thus, we get

(d + λ)2(λ3 + b1λ
2 + b2λ + b3) = 0, (15)

where

b1 = g(I∗)+ ω1 + d +m+ n− S∗g′(I∗),

b2 = (m+ n)[g(I∗)+ω1+d]−S∗g′(I∗)(ω1+d+n)+mn−ν1τ2,

b3 = (mn− ν1τ2)[g(I
∗)+ ω1 + d]− n(ω1 + d)S∗g′(I∗).

The characteristic Equation (15) has a negative real double root

λ1 = λ2 = −d,

and three other roots, λ3, λ4 and λ5, which are the roots of the
equation

λ3 + b1λ
2 + b2λ + b3 = 0. (16)

From Lemma (3), we have that

1−
I∗

g(I∗)
g′(I∗) ≥ 0. (17)

It follows that

m− S∗g′(I∗) = m−

(

m−
ν1τ2

n

)

I∗

g(I∗)
g′(I∗)

> m

[

1−
I∗

g(I∗)
g′(I∗)

]

≥ 0. (18)

Hence,

b1 = g(I∗)+ ω1 + d +m+ n− S∗g′(I∗) > 0 using 18,

b2 = (m+n)[g(I∗)+ω1+d]− S∗g′(I∗)(ω1+d+n)+mn−ν1τ2

= (m+n)g(I∗)+(ω1+d)
[

m+n−S∗g′(I∗)
]

−nS∗g′(I∗)+
mn− ν1τ2

= (m+ n)g(I∗)+ (ω1 + d)
[

m+ n− S∗g′(I∗)
]

+

n

[

m−
(

m− ν1τ2
n

)

I∗

g(I∗)
g′(I∗)

]

− ν1τ2

= (m+ n)g(I∗)+ (ω1 + d)
[

m+ n− S∗g′(I∗)
]

+

(mn− ν1τ2)

[

1−
I∗

g(I∗)
g′(I∗)

]

> 0 using 17,

and

b3 = (mn− ν1τ2)[g(I
∗)+ ω1 + d]− n(ω1 + d)S∗g′(I∗)

= (mn− ν1τ2)
[

g(I∗)+ ω1 + d
]

− (ω1 + d)

[

(mn− ν1τ2)I
∗

g(I∗)
g′(I∗)

]

= (mn− ν1τ2)

[

g(I∗)+ ω1 + d − (ω1 + d)
I∗

g(I∗)
g′(I∗)

]

= (mn− ν1τ2)

{

g(I∗)+ (ω1 + d)

[

1−
I∗

g(I∗)
g′(I∗)

]

}

> 0

using 17.

Moreover we have that

b1b2 − b3

= b1

{

(m+ n)g(I∗)+ (ω1 + d)
[

m+ n− S∗g′(I∗)
]

}

− (mn− ν1τ2)g(I
∗)

+ b1

{

(mn− ν1τ2)

(

1−
I∗

g(I∗)
g′(I∗)

)

}

−

{

(mn− ν1τ2)

[

(ω1 + d)

(

1−
I∗

g(I∗)
g′(I∗)

)]

}

.

It follows that

b1b2−b3

> n

{

(m+n)g(I∗)+(ω1+d)
[

m+n−S∗g′(I∗)
]

}

−mn g(I∗)+

{

(mn−ν1τ2)

[

(ω1+d)

(

1−
I∗

g(I∗)
g′(I∗)

)]

[

g(I∗)+m−S∗g′(I∗)
]

}

> 0.

As a result, by the Routh−Hurwitz stability criterion [11],
all the roots of the characteristic polynomial (15) have strictly
negative real parts. Therefore the endemic equilibrium is locally
asymptotically stable.

5. NUMERICAL SIMULATIONS

In this section, we provide numerical simulations for the
evolution system of ordinary differential equations (1) to support
the theoretical findings. Without loss of generality we set

g(I) =
α(t)I

1+ β(t)I
.

Note that conditions of assumptions (H1) and (H2) are satisfied.
Furthermore we let

Ŵ = 150,ω1 = 1, d = 2, ν1 = 1,

ν2 = 1, τ1 = 2, τ2 = 3.
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FIGURE 2 | Static simulation for disease-free equilibrium.

FIGURE 3 | Static simulation for endemic equilibrium.

Next we explore two scenarios involving static simulations and
time-dependent simulations respectively.

5.1. Static Simulations
Picking α = 1

12 and β = 1 and substituting in the expression

of the basic reproduction number, we get that R0 = 2
3 < 1.

According to Theorem 2 the disease-free equilibrium, E0 =
(50, 0, 0, 0, 25), is globally asymptotically stable. In Figure 2, it
clearly shows that the disease eventually dies out.

Picking α = 1
5 and β = 0.1 and substituting in the

expression of the basic reproduction number, we get that R0 =
1.6 > 1. According to Theorem 3 the endemic equilibrium,
E∗ = (42.5, 3.6, 2.7, 4.9, 21.2), is locally asymptotically stable. In
Figure 3, all the graphs converge to the endemic equilibrium.

FIGURE 4 | Simulation with time dependence for disease-free equilibrium.

FIGURE 5 | Simulation with time dependence for endemic equilibrium.

5.2. Time-Dependent Simulations
Picking α(t) = 1

5+2t , it can be observed in Figure 4 that graphs
converge to the disease free equilibrium as time increases. It
therefore suggests the global asymptotical stability of the disease
free equilibrium and the extension of the disease in time.

Picking α(t) = t2 + 5
4 , Figure 5 clearly shows that the

susceptible population vanishes in a short span of time and the
disease essentially affects all people in the population.

6. CONCLUDING REMARKS

In this paper, we formulated and investigated a mathematical
model describing the dynamics on sexually transmitted disease
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models with a novel class of non-linear incidence. We
showed that the derived non-autonomous system of differential
equations governing the evolution of the process was well-posed
and the solution happened to be positive and bounded. The
role of awareness in the susceptible and infectious classes was
explored and investigated. A vertical asymptote and concavity
arguments were critical in the proof of existence of an endemic
equilibrium for the system and its asymptotical stability. In
particular, numerical simulations were performed in order to
predict the asymptotic behavior of solutions and support the
theoretical findings.
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Log-Linear Model and Multistate
Model to Assess the Rate of Fibrosis
in Patients With NAFLD
Iman M. Attia*

Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt

In this paper, the deleterious effects of obesity, type II diabetes, and insulin resistance,

systolic and diastolic hypertension on the rate of progression of fibrosis in patients with

non-alcoholic fatty liver disease (NAFLD) are illustrated using a new approach utilizing

the Poisson regression to model the transition rate matrix. The observed counts in the

transition count matrix are used as the response variables and the covariates are the risk

factors for fatty liver. Then, the estimated counts from running the Poisson regression are

used to estimate the transition rates using the continuous-time Markov chains (CTMCs)

followed by exponentiation of the estimated rate matrix to obtain the transition probability

matrix at specific time points. A depicted, hypothetical, observational, prospective

longitudinal study of 150 participants followed up every year for a total of 29 years

recording their demographic characteristics and their timeline follow-up is demonstrated.

The findings revealed that insulin resistance expressed by HOMA2-IR had the most

deleterious effects among other factors on increasing the rate of fibrosis progression

from state 1 to state 2, from state 2 to state 3, and from state 3 to state 4. The higher the

level of HOMA2-IR is, the more rapid the rate of progression is. This analysis helps the

health policymakers andmedical insurancemanagers to allocate the financial and human

resources for investigating and treating high-risk patients with NAFLD. In addition, this

analysis can be used by pharmaceutical companies to conduct longitudinal studies to

assess the effectiveness of the newly emerging anti-fibrotic drugs.

Keywords: log-linear model, multistate model, non-alcoholic fatty liver disease, NAFLD, Poisson regression,

continuous-time Markov chains, longitudinal studies, HOMA2-IR

INTRODUCTION

Continuous-time Markov chains (CTMCs) are valuable mathematical and statistical tools. They
are of great potential to evaluate the disease progression over time. NAFLD is an increasingly
worldwide epidemic, paralleling the rise in the incidence of obesity and type II diabetes which are
approaching a pandemic level. This emerging health problem is mainly due to sedentary life styles
and western eating habits of ingesting high-fat and cholesterol diets. The pathological milestone
for NAFLD is insulin resistance and hyperinsulinemia. This hyperinsulinemia will eventually result
in type II diabetes with adverse complications like vascular diseases and fatty liver disease. On the
other hand, NAFLD can cause type II diabetes, as the prevalence of diabetes in NAFLD ranges
between 18 and 45%. Moreover, the prevalence of NAFLD in type II diabetic patients ranges
between 49 and 75% [1].
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Non-alcoholic fatty liver disease can be modeled using the
simplest form for health, disease, and deathmodel. It is composed
of four states. One state is for susceptible individuals with
risk factors like type II diabetes, dyslipidemia, obesity, and
hypertension. The second state is the NAFLD phenotypes. The
other two competing states for death are: one for liver-related
mortality as a complication of NAFLD and the other state is the
death causes unrelated to liver disease [2]. This model is shown
in Figure 1.

In addition, NAFLD can be modeled in more elaborate
expanded form which includes nine states [3]. The first eight
states are the states of disease progression over time and the ninth
state is the death state [2], as illustrated in Figure 2.

Moreover, fibrogenesis is a dynamic process that goes back
and forth among the early stages of the expanded model. Stages
of fibrous tissue formation are early seen in NAFLD process.
Fibrosis progresses if the risk factors for its formation are
not eliminated. Fibrosis is an ominous sign for loss of liver
functions. When the fibrous tissue develops, a subset of the
early states is used to relate these risk factors to the rates.
Definition of each state is shown in Figure 3 [4, 5]. F0 indicates
that there is no fibrous tissue. F1 means that fibrous tissue is

Abbreviations: CC, compensated cirrhosis (stage 4); CTMC, continuous-time

Markov chains; DCC, de-compensated cirrhosis (stage 5); EM, extramortality

(stage 9); HCC, hepatocellular carcinoma (stage 8); LT, liver transplant (stage 6);

NAFLD, non-alcoholic fatty liver disease; NAFL-NO FB, non-alcoholic fatty liver

with no fibrosis (stage 1); NASH, non-alcoholic steatohepatitis; NASH-NO FB,

non-alcoholic steatohepatitis with no fibrosis (stage 2); NASH-FB, non-alcoholic

steatohepatitis with fibrosis (stage 3); PLT, post-liver transplant (stage 7); T2DM,

type 2 diabetes mellitus.

FIGURE 1 | General model structure [2].

deposited due to non-alcoholic steatohepatitis (NASH) and not
due to any other causes of liver disease; all other stages (F2
and F3) are maintained and are progressing over time by the
presence of NASH till the liver cirrhosis (F4). If this NASH is
well-treated by controlling the risk factors that induce it, the
fibrous tissue formation and deposition will regress as shown in
the Figure 3.

Kalbfleisch and Lawless [6] related the instantaneous rate of
transitions from state i to state j to covariates, by regression
modeling of the Q transition rate matrix using log-linear model
for the Markov rates.

The previous studies, as will be later mentioned in the
discussion, mainly included the evaluation of 2 paired biopsies,
initial and second biopsies, then grouping the patients according
to the findings into stable, regressors, slow progressors, and rapid
progressors without precise estimation of specific transition rates
among states and without proper estimation of the predictive
value of each variable on these specific rates. The rate of fibrosis
progression was estimated by dividing the difference in fibrosis
stage between biopsies by the time interval (in years), and this
was performed to account for the time differences between
the biopsies [7]. Additionally, either univariate or multivariate
linear regression was used to relate the risk factors with the rate
of progression. As will be later mentioned in the discussion,
some studies utilized multivariate logistic regression instead of
linear regression.

This depicted study differs from the previous studies in
many aspects. First, it proposes recording multiple repeated
observations over time. Second, it suggests running Poisson
regression to relate the transition rates among states with the risk
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FIGURE 2 | Disease model structure [2]. NAFL-NO FB, non-alcoholic fatty liver with no fibrosis (stage 1); NASH-NO FB, non-alcoholic steatohepatitis with no fibrosis

(stage 2); NASH-FB, non-alcoholic steatohepatitis with fibrosis (stage 3); CC, compensated cirrhosis (stage 4); DCC, de-compensated cirrhosis (stage 5); LT, liver

transplant (stage 6); PLT, post-liver transplant (stage 7); HCC, hepatocellular carcinoma (stage 8); EM, extramortality (stage 9).

FIGURE 3 | NAFLD with the evolving fibrosis stages [4]. F0, no fibrosis (stage 0); NASH-FB-1, non-alcoholic steatohepatitis with mild fibrosis (stage 1); NASH -FB-2,

NASH with moderate fibrosis (stage 2); NASH -FB-3, NASH with advanced or severe fibrosis (stage 3); CC, compensated cirrhosis (stage 4) which is the more severe

or advanced form of fibrosis.

factors. Third, it recommends using continuous-time Markov
chains to obtain the transition probabilities and predict the
expected counts of patients in each state at a specific time
point in the future. The counts of each transition can be
modeled as a function of some explanatory variables reflecting
the characteristics of the patients. The Poisson regression model
specifies that each response yi is drawn from a Poisson population
with parameter λi, related to the covariates. The primary
equation of the model is

P
(

Y = yi|Xi

)

=
exp (−λi)×λ

yi
i

yi!
.

The most common formulation for the λi is the log-linear model:

ln λi = X
′
iβ = b0 + b1xi1 + b2xi2 + b3xi3 + . . . .+ bkxim.

where β is the k × 1 parameter vector, m is the number of
predictors, and Xs are the predictors.

The expected number of events per period is given by:

E
[

yi
∣

∣Xi

]

= var
[

yi
∣

∣Xi

]

= λi = exp
(

X
′
iβ

)

.

The observed counts in the transition counts matrix are used
as response variables. The covariates are the risk factors for
the fatty liver, where the participants are subjected to the same
follow-up periods. Then, the estimated counts obtained from
running the Poisson regression are used as input to estimate
the transition probability matrix using the CTMC. The author
clarifies this procedure using a hypothetical example in the form
of an observational prospective longitudinal study.

Attia [8] used the same data in previous work. Still, in
this article, the author discusses the issue of multicollinearity,
the equidispersion Poisson of response variables in the
presence of excess zeros, and more comparisons between this
work and previous works. Finally, the author highlights the
benefit of such analysis to pharmacoeconomic evaluation and
healthcare economics.

MATERIALS AND METHODS

Patients
A total of one hundred fifty participants were followed up every
year for 29 years, and during each visit, the characteristics

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 June 2022 | Volume 8 | Article 89924773

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Attia Log-Linear and Multistate Models in NAFLD Patients

TABLE 1 | Summary of transition counts among the states.

Counts Transition

0→ 1

Transition

1→ 2

Transition

2→ 3

Transition

3→ 4

Transition

1→ 0

Transition

2→ 1

Transition

3→ 2

Transition

2→ 0

Transition

3→ 1

0 63 96 121 128 121 127 130 138 139

1 58 43 23 22 24 17 17 11 9

2 25 9 4 3 5 3 1 2

3 4 2 2 2 1

TABLE 2 | Observed transition counts of the patients over the 29 years.

State 0 State 1 State 2 State 3 State 4 total

State 0 1,909 120 15 6 0 2,050

State 1 36 1,116 67 28 0 1,247

State 2 13 30 703 37 0 783

State 3 11 14 23 50 22 120

State 4 0 0 0 0 0 0

4,200

of the participants were recorded like sex (0 = female, 1 =
male), age, body mass index (BMI), low-density lipoprotein
(LDL)-chol, homeostatic model assessment-insulin resistance
(HOMA2-IR), and systolic blood and diastolic blood pressure.
For each participant, the recorded value is the mean of the
follow-up measurements. The age is the median value. The
participants were followed up till the end of the study or having
liver cirrhosis (F4).

Statistical Analysis
The relationship between the response variable (counts of
transitions) and the predictors was non-linear as shown by
Lowess smoother. Restricted cubic spline was used to obtain a
suitable functional form of the predictors to fit a Poisson model
using STATA 14. The CTMCs were used to obtain transition
probability matrix and transition rate matrix. p-Value of <0.05
was considered statistically significant; all tests were two-sided
tests (refer to Appendix A).

RESULTS

Summary of the transition counts among the states is shown
in Table 1. The observed counts of the participants over the 29
years of follow-up are demonstrated in Table 2. The distribution
of these counts was Poisson (mean = variance). The dispersion
indices for the nine response variables ranged between 0.82 and
1.34. In Appendix B, more figures illustrate the dispersion of
these response variables. They were also correlated with high
statistical significance (p-value= 0.000) as shown in Table 3.

Initial observed rates are as follows:

λ01 =
120

2050
= 0.059, λ12 =

67

1247
= 0.0537,

λ23 =
37

783
= 0.047 , λ34 =

22

120
= 0.183

µ10 =
36

1247
= 0.0288, µ21 =

30

783
= 0.0383,

µ32 =
23

120
= 0.191, µ20 =

13

783
= 0.016,

µ31 =
14

120
= 0.116

Although the response counts showed excess zeros, they fitted
Poisson distribution and the zero inflated Poisson model. Their
mean and variance were approximately equal as evident by
their dispersion indices. So, Poisson regression was conducted
for each transition count. Most statistical software packages
conduct Poisson regression or generalized linear model utilizing
log-link function with only one response variable. Thus, using
STATA14, Poisson regression was conducted with one response
variable. The response variable could not be used as a matrix to
conduct the regression as multivariate regression with multiple
response variables.

The application of Lowess smoother showed the non-
linear relationship between the predictors and the response
variables as shown in Figure 4. In Supplementary Materials,
more figures illustrating these relationships between the different
predictors and response variables are clearly shown (refer to also
Appendix B).

The continuous predictors (age, BMI, HOMA2-IR, LDL-chol,
and systolic and diastolic blood pressure) were highly correlated
with a correlation coefficient of 0.99 and a condition number
for data matrix (X’X) of 453.57. The condition number for
the data matrix (X’X) constructed from the transformed
variables used in the analysis (HOMAsp1, HOMAsp2,
LDLsp2, sysPS2, diasPS2) was 54.89. These transformed
variables were also highly correlated. However, the condition
number did not exceed 100. Thus, this multicollinearity
can be considered non-harmful, and it will not affect the
analysis [9].

The observed counts were the response variables used
to fit the Poisson regression model. For each transition
count, the model that represented the most explainable
covariates with their estimated beta coefficients and the
corresponding incidence rate ratios were illustrated in
Appendix B. The transitions were subdivided into progressive
transitions and regressive transitions. The main important
result is that HOMA2-IR is positively correlated with all
progressive transitions and is inversely related to the regressive
transitions, with control of other variables, as shown in
Tables 4, 5.
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TABLE 3 | Correlation between the different response variables.

F0→ F1 F1→ F2 F2→ F3 F3→ F4 F1→ F0 F2→ F1 F3→ F2 F2→ F0 F3→ F1

F0→ F1 1 0.794

(0.000)

0.794

(0.000)

0.70

(0.000)

0.798

(0.000)

0.719

(0.000)

0.693

(0.000)

0.559

(0.000)

0.548

(0.000)

F1→ F2 0.798

(0.000)

1 0.785

(0.000)

0.709

(0.000)

0.76

(0.000)

0.762

(0.000)

0.719

(0.000)

0.728

(0.000)

0.711

(0.000)

F2→ F3 0.794

(0.000)

0.785

(0.000)

1 0.82

(0.000)

0.99

(0.000)

0.928

(0.000)

0.868

(0.000)

0.768

(0.000)

0.791

(0.000)

F3→ F4 0.709

(0.000)

0.709

(0.000)

0.82

(0.000)

1 0.813

(0.000)

0.898

(0.000)

0.897

(0.000)

0.687

(0.000)

0.643

(0.000)

F1→ F0 0.798

(0.000)

0.76

(0.000)

0.99

(0.000)

0.813

(0.000)

1 0.911

(0.000)

0.867

(0.000)

0.753

(0.000)

0.778

(0.000)

F2→ F1 0.719

(0.000)

0.765

(0.000)

0.928

(0.000)

0.898

(0.000)

0.911

(0.000)

1 0.921

(0.000)

0.824

(0.000)

0.81

(0.000)

F3→ F2 0.693

(0.000)

0.719

(0.000)

0.868

(0.000)

0.897

(0.000)

0.867

(0.000)

0.921

(0.000)

1 0.798

(0.000)

0.796

(0.000)

F2→ F0 0.559

(0.000)

0.728

(0.000)

0.768

(0.000)

0.687

(0.000)

0.753

(0.000)

0.824

(0.000)

0.798

(0.000)

1 0.935

(0.000)

F3→ F1 0.548

(0.000)

0.711

(0.000)

0.791

(0.000)

0.643

(0.000)

0.778

(0.000)

0.81

(0.000)

0.796

(0.000)

0.935

(0.000)

1

In each cell, the Pearson correlation coefficient, for transitions among the different states, is shown with the significant p-value below this coefficient between the brackets.

FIGURE 4 | Lowess smoother showing the non-linear relationship between the transition counts from F0 to F1 and the HOMA2-IR levels.

Progressive Transitions With Rates
λ01, λ12, λ23, λ34
Persons with high insulin resistance (elevated HOMA2-IR) had
60 times the rate of transition from F0 to F1 compared to persons
with normal level of HOMA2-IR (persons with normal insulin
sensitivity), also the rate increased to 240 times for the rate of
transition from F1 to F2, increased to 480 times for the rate of
transition from F2 to F3, and increased tomore than 50,000 times

for the rate of transition from F3 to F4. Statistically speaking,

the expected increase in log count of transition from F0 to F1

for one-unit increase in transformed HOMA is 4.096, which is

highly statistically significant (p = 0.000). The expected increase

in log count of transition from F1 to F2 for one-unit increase
in transformed HOMA is 5.486, which is highly statistically
significant (p = 0.000). The expected increase in log count of
transition from F2 to F3 for one-unit increase in transformed
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TABLE 4 | Parameters for each transition.

LDLsp2 HOMAsp1 SysSP2 LDLsp2# HOMAsp1 LDLsp2# SysSP2 HOMAsp1# SysSP2

Transition from F0 to F1

b̂ co.(P) 0.523 (0.032) 4.096 (0.000) −0.628 (0.070) −0.179 (0.011) 0.003 (0.000) 0.151 (0.122)

CI for b̂ co (0.046, 1.000) (3.452, 4.740) (−1.308, 0.052) (−0.317, −0.041) (0.002, 0.003) (−0.040, 0.342)

IRR 1.687 60.097 0.534 0.836 1.003 1.163

CI for IRR (1.047, 2.718) (31.569, 114.4) (0.270, 1.054) (0.728, 0.960) (1.002, 1.003) (0.960, 1.408)

Transition from F1 to F2

b̂ co.(P) 0.311 (0.432) 5.486 (0.000) −0.314 (0.564) −0.105 (0.367) 0.079 (0.616)

CI for b̂ co (−0.465, 1.086) (4.366, 6.606) (−1.383, 0.754) (−0.332, 0.123) (−0.231, 0.389)

IRR 1.364 241.179 0.730 0.901 1.083

CI for IRR (0.628, 2.962) (78.690, 739.192) (0.251, 2.126) (0.717, 1.131) (0.794, 1.476)

Transition from F2 to F3

b̂ co.(P) −1.480 (0.031) 6.174 (0.046) 2.497 (0.010) 0.390 (0.042) −0.001 (0.687) −0.655 (0.017)

CI for b̂ co (−2.823, −0.137) (0.112, 12.237) (0.602, 4.391) (0.014, 0.766) (−0.005, 0.004) (−1.191, −0.118)

IRR 0.228 480.318 12.143 1.477 0.999 0.520

CI for IRR (0.059, 0.872) (1.118, 2.06e+5) (1.826, 80.754) (1.014, 2.151) (0.995, 1.004) (0.304, 0.889)

Transition from F3 to F4

b̂ co.(P) 0.452 (0.000) 10.866 (0.000) 0.073 (0.141) −0.166 (0.000)

CI for b̂ co (0.345, 0.559) (8.119, 13.613) (−0.024, 0.171) (−0.201, −0.131)

IRR 1.571 52375.984 1.076 0.847

CI for IRR (1.412, 1.748) (3,357.9, 8.17e+5) (0.976, 1.187) (0.818, 0.877)

B co. (p), the estimated B coefficient with p-value in the brackets; CI for B co., confidence interval for the estimated B coefficient; IRR, incidence rate ratio; CI for IRR stands for

confidence interval for IRR; LDLsp2, the transformed LDL variable using restricted cubic spline method; HOMAsp1, the transformed HOMA2-IR variable using restricted cubic spline

method; sysSp2, the transformed systolic blood pressure variable using restricted cubic spline method; LDLsp2 # HOMAsp1, interaction between the 2 variables.

HOMA is 6.174, which is not highly statistically significant (p =
0.046). The expected increase in log count of transition from F3 to
F4 for one-unit increase in transformed HOMA is 10.866, which
is highly statistically significant (p= 0.000).

Regressive Transitions With Rates
µ10, µ21, µ32, µ20, µ31
Persons with high insulin resistance (elevated HOMA2-IR) had
0.011 times the rate of transition from F1 to F0 compared to
persons with normal level of HOMA2-IR (persons with normal
insulin sensitivity), also the rate decreased to 0.037 times for
the rate of transition from F2 to F1, decreased to 0.005 times
for the rate of transition from F3 to F2, decreased to 0.066
times for the rate of transition from F2 to F0, and decreased to
0.084 times for the rate of transition from F3 to F1. Statistically
speaking, the expected decrease in log count of transition from
F1 to F0 for one-unit increase in transformed HOMA is 4.489,
which is not statistically significant (p = 0.13). The expected
decrease in log count of transition from F2 to F1 for one-unit
increase in transformed HOMA is 3.288, which is not statistically
significant (p = 0.242). The expected decrease in log count of
transition from F3 to F2 for one-unit increase in transformed
HOMA is 5.214, which is not statistically significant (p = 0.103).
The expected decrease in log count of transition from F2 to F0
for one-unit increase in transformed HOMA is 2.713, which is
highly statistically significant (p = 0.000). The expected decrease
in log count of transition from F3 to F1 for one-unit increase

in transformed HOMA is 2.476, which is highly statistically
significant (p= 0.000).

Validation and Residual Analysis
Poisson model fitted the data. When comparing the full
model to the null model, there was a marked decrease in
the deviance goodness of fit. Also, the akaike information
criteria (AIC) and bayesian information criteria (BIC) were
less than their values in the null model, indicating the full
model improvement. In addition, there was an increase in the
pseudo-R2, indicating the ability of the model to predict the
outcome better than the null model. The output results of the
null model for each of the transition counts are shown in
Tables 6, 7.

The observed rates were approximately equal to the estimated
rates after running the Poisson model as shown in Table 8.

Analysis of residuals especially Pearson residuals, for all
transitions, revealed that they were not normally distributed.
The Q-Q plot for these residuals did not exhibit normality.
The Pearson dispersion statistics for each count was less than
one supporting no evidence of overdispersion of the fitted
model despite the apparent excess zeros (Appendix B, Table
21). Generalized Poisson regression did not fit the data. In
Appendix C, more figures of these residuals are presented [10,
11].

This observational study aims to obtain preliminary
and explanatory ideas about the effects of each risk factor
on the different transition counts among the states. This
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TABLE 5 | Parameters for each transition.

LDLsp2 HOMAsp2 SysSP2 LDLsp2# HOMAsp2 LDLsp2# SysSP2 HOMAsp2# SysSP2

Transition from F1 to F0

B co.(P) −0.454 (0.063) −4.489 (0.130) 1.340 (0.000) 0.290 (0.002) −0.010 (0.005) −0.286 (0.048)

CI for B co (−0.932, 0.024) (−10.294, 1.316) (0.729, 1.951) (0.102, 0.478) (−0.017, – 0.003) (−0.571, −0.002)

IRR 0.635 0.011 3.820 1.337 0.990 0.751

CI for IRR (0.394, 1.024) (0.000, 3.730) (2.074, 7.034) (1.108, 1.612) (0.983, 0.997) (0.565, 0.998)

Transition from F2 to F1

B co.(P) −0.128 (0.499) −3.288 (0.242) 0.913 (0.000) 0.152 (0.022) −0.010 (0.003) −0.114 (0.317)

CI for B co (−0.499, 0.243) (−8.800, 2.224) (0.519, 1.307) (0.022, 0.282) (−0.017, −0.003) (−0.338, 0.109)

IRR 0.880 0.037 2.492 1.164 0.990 0.892

CI for IRR (0.607, 1.275) (0.000, 9.244) (1.681, 3.694) (1.022, 1.326) (0.983, 0.997) (0.713, 1.116)

Transition from F3 to F2

B co.(P) 0.302 (0.154) −5.214 (0.103) 0.422 (0.142) 0.002 (0.984) −0.012 (0.006) 0.132 (0.375)

CI for B co (−0.113, 0.716) (−11.478, 1.05) (−0.142, 0.987) (−0.198, 0.202) (−0.02, −0.003) (−0.16, 0.425)

IRR 1.352 0.005 1.526 1.002 0.998 1.142

CI for IRR (0.893, 2.047) (0.000, 2.859) (0.868, 2.683) (0.821, 1.223) (0.98, 0.997) (0.852, 1.529)

LDLsp2 HOMAsp2 SysSP2 DiasSP2

Transition from F2 to F0

B co.(P) 0.076 (0.335) −2.713 (0.000) −0.123 (0.010) 0.358 (0.001)

CI for B co (−0.079, 0.231) (−4.102, −1.324) (−0.216, −0.030) (0.143, 0.573)

IRR 1.079 0.066 0.884 1.430

CI for IRR (0.924, 1.260) (0.017, 0.266) (0.806, 0.970) (1.154, 1.773)

Transition from F3 to F1

B co.(P) 0.145 (0.038) −2.476 (0.000) −0.129 (0.004) 0.276 (0.003)

CI for B co (0.008, 0.282) (−3.769, −1.183) (−0.216, −0.042) (0.093, 0.459)

IRR 1.156 0.084 0.879 1.318

CI for IRR (1.008, 1.326) (0.023, 0.306) (0.805, 0.959) (1.098, 1.582)

B co. (p), the estimated B coefficient with p-value in the brackets; CI for B co., confidence interval for the estimated B coefficient; IRR, incidence rate ratio; CI for IRR stands for

confidence interval for IRR; LDLsp2, the transformed LDL variable using restricted cubic spline method; HOMAsp2, the transformed HOMA2-IR variable using restricted cubic spline

method; sysSp2, the transformed systolic blood pressure variable using restricted cubic spline method; DiasSp2, the transformed diastolic blood pressure variable using restricted

cubic spline method; LDLsp2 # HOMAsp1, the interaction between the 2 variables.

Poisson regression is not aiming for future prediction
of counts. Although the residuals are not normally
distributed, such analysis can give fair provisional ideas
about the effects of the risk factors. The Poisson model
gives unbiased estimates for the regression coefficients,
but these coefficients’ statistical significance should be
cautiously taken.

CTMCs Utilize the Estimated Counts From
Log-Linear Model to Obtain the Transition
Probability Matrix
For each of the transitions from state (i) to state (j), where λij
denotes the counts of transition from state (i) to state (j), and after

running the Poisson model, the linear predictor ln λij = X
′
nB

for each participant (n) is exponentiated, E
[

yn
∣

∣Xn

]

= λij =
exp

(

X
′
nB

)

, to obtain the expected counts of transition that this

participant had accomplished during this 29 years. Then, the

result is rounded to the appropriate integer and summed to get
all counts for this transition and then compared to the observed
counts accomplished by all participants.

The ni+ is the total marginal transition counts out of this state,
which is assumed to be constant. The estimated counts from
running the Poisson model will be substituted in the transition
count table. Because the marginal counts are assumed to be the
same and when using the initial rates calculated as θ0 = nij

ni+
where the nij is the transition counts from state i to state j, the
Q matrix can be estimated. (Hint: the numerators below are the
estimated counts obtained from running the Poisson regression).

Q̂ =












−λ01

µ10

µ20

0

0

λ01

− (λ12 + µ10)

µ21

µ31

0

0

λ12

− ( λ23 + µ21 + µ20)

µ32

0

0

0

λ23

− ( λ34 + µ32 + µ31)

0

0

0

0

λ34

0












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TABLE 6 | Comparison between null and full model as regards the progressive transitions.

Cons. Co. C.I. of CO. Log pseu. like Pseudo R2 Deviance GOF Pearson GOF AIC BIC

Transition F0 to F1

Null model −0.223 (−0.385, −0.061) −171.273 0.000 149.236 122.5 344.55 347.56

P = 0.007 P = 0.4792 P = 0.944

Full model −9.510 (−10.930, −8.089) −110.43 0.355 27.55 24.458 234.86 255.94

P = 0.000 P = 1 P = 1

Transition F1 to F2

Null model −0.806 (−1.046, −0.566) −130.82 0.000 146.133 150.16 263.64 266.65

P = 0.00 P = 0.551 P = 0.458

Full model −14.884 (−17.555,−12.213) −67.887 0.481 20.27 18.12 147.77 165.84

P = 0.000 P = 1 P = 1

Transition F2 to F3

Null model −1.4 (−1.767,−1.032) −95.146 0.000 127.853 194.08 192.29 195.3

P = 0.000 P = 0.894 P = 0.007

Full model −20.866 (−35.160, −6.572) −37.87 0.6020 13.29 12.42 89.73 110.81

P = 0.004 P = 1 P = 1

Transition F3 to F4

Null model −1.92 (−2.307,−1.532) −64.23 0.000 84.46 128 130.46 133.47

P = 0.00 P = 1 P = 0.89

Full model −34.034 (−41.608, −26.459) −26.97 0.58 9.94 8.96 63.94 78.99

P = 0.000 P = 1 P = 1

TABLE 7 | Comparison between null and full model as regards the regressive transitions.

Cons. Co. C.I. of CO. Log pseu. like. Pseudo R2 Deviance GOF Pearson GOF AIC BIC

Transition F1 to F0

Null model −1.427 (−1.795, −1.059) −93.039 0.000 124.25 189 188.08 191.08

P = 0.000 P = 0.931 P = 0.015

Full model −5.916 (−6.912, −4.921) −38.14 0.59 14.46 13.55 90.29 111.36

P = 0.000 P = 1 P = 1

Transition F2 to F1

Null model −1.609 (−2.024, −1.195) −83.54 0.000 117.021 200 169.08 172.09

P = 0.000 P = 0.975 P = 0.003

Full model −7.666 (−8.875, −6.457) −29.96 0.64 9.86 8.97 73.92 94.99

P = 0.000 P = 1 P = 1

Transition F3 to F2

Null model −1.875 (−2.307, −1.444) −68.208 0.000 94.574 166.13 138.42 141.43

P = 0.000 P = 0.999 P = 0.16

Full model −7.363 (−8.855, −5.871) −26.37 0.61 10.89 9.77 66.74 87.81

P = 0.000 P = 1 P = 1

Transition F2 to F0

Null model −2.446 (−3.009, −1.882) −45.487 0.000 66.3 160. 92.97 95.98

P = 0.000 P = 1 P = 0.253

Full model −7.034 (−8.015, −6.053) −15.63 0.656 6.65 7.36 41.26 56.31

P = 0.000 P = 1 P = 1

Transition F3 to F1

Null model −2.446 (−3.048, −1.843) −46.18 0.000 69.133 183.15 94.36 97.37

P = 0.000 P = 1 P = 0.029

Full model −7.584 (−8.934, −6.235) −14.18 0.693 5.14 6.09 38.36 53.42

P = 0.000 P = 1 P = 1

Cons.Co, constant coefficient; C.I. of CO., confidence interval of constant; Log pseu.like., Log pseudolikelihood.
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TABLE 8 | The comparison between observed and estimated response rate after fitting Poisson model.

Comparison between observed and

estimated progressive counts

Comparison between observed and

estimated regressive counts

Observed

response count

Estimated mean

response count

Observed

response count

Estimated mean

response count

0→ 1 Mean 0.8 0.8 1→ 0 Mean 0.24 0.24

Variance 0.658 0.619 Variance 0.305 0.314

1→ 2 Mean 0.45 0.45 2→ 1 Mean 0.2 0.2

Variance 0.45 0.45 Variance 0.268 0.284

2→ 3 Mean 0.25 0.25 3→ 2 Mean 0.15 0.15

Variance 0.32 0.318 Variance 0.171 0.173

3→ 4 Mean 0.15 0.15 2→ 0 Mean 0.09 0.09

Variance 0.126 0.126 Variance 0.093 0.101

3→ 1 Mean 0.09 0.09

Variance 0.106 0.11

where

λ01 =
120

2050
= 0.059, λ12 =

64

1247
= 0.051,

λ23 =
35

783
= 0.045 , λ34 =

20

120
= 0.167

µ10 =
36

1247
= 0.029, µ21 =

26

783
= 0.033,

µ32 =
19

120
= 0.158, µ20 =

12

783
= 0.015,

µ31 =
13

120
= 0.108

The probability matrix at any specific time point in the future can
be obtained by exponentiation of this matrix because the chain
is homogenous continuous-time Markov chains with constant
rates over time. This result can also be obtained by solving the
forward Kolmogorov differential equations, which will yield the
same result as the exponentiation of the estimated Qmatrix (refer
to Appendix D).

The transition probability matrix is obtained by
exponentiation of this estimated Q̂matrix after 1 year:

P (t = 1) = exp
(

Q̂t
)

=













P00
P10
P20
P30
0

P01
P11
P21
P31
0

P02
P12
P22
P32
0

P03
P13
P23
P33
0

P04
P14
P24
P34
P44













=













0.944
0.027
0.014
0.002
0

0.055
0.925
0.033
0.086
0

0.001
0.047
0.915
0.125
0

0
0.001
0.035
0.651
0

0
0.0001
0.003
0.136
1













Goodness of Fit for the Multistate Markov
Model
To calculate goodness of fit for multistate model used in this
example, it is like the procedure used in contingency table:

TABLE 9 | The expected transition counts after one year of the follow-up.

State 0 State 1 State 2 State 3 State 4

State 0 1934.175 112.955 2.87 0 0

State 1 34.168 1153.101 58.484 1.122 0.125

State 2 11.275 25.604 716.367 27.248 2.506

State 3 0.276 10.356 14.94 78.144 16.284

State 4 0 0 0 0 0

Step 1: H0 = future state does not depend on the current state
H1 = future state depends on the current state

Step 2: After obtaining the estimated Q matrix, the probability
matrix is calculated in time interval equals one because the
participants’ follow-up period was done every year.

pij (△t = 1) = exp
(

Q̂×△t
)

=













P00
P10
P20
P30
0

P01
P11
P21
P31
0

P02
P12
P22
P32
0

P03
P13
P23
P33
0

P04
P14
P24
P34
P44













=













0.9435
0.0274
0.0144
0.0023

0

0.0551
0.9247
0.0327
0.0863

0

0.0014
0.0469
0.9149
0.1245

0

0
0.0009
0.0348
0.6512

0

0
0.0001
0.0032
0.1357

1













Step 3: Calculate the expected counts in this interval.

Eij = ni+ Pij (t).

n1+ = 2050, n2+ = 1247, n3+ = 783, n4+ = 120

Multiplying each row in the probability matrix with the
corresponding total marginal counts in the observed transition
counts table in the same interval yields the expected counts as
shown in Table 9.
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Step 4: The observed counts, Oij, are shown in Table 2. The
expected counts, Eij, are obtained from the previous step and
are shown in Table 9. Then, apply the Pearson statistic formula
which yields a value of 1,140.097 with high statistical significance

(p = 0.000). Apply
∑5

i=1

∑5
j=1

(Oij−Eij)
2

Eij
= 1140.097 ∼

χ2
(5−1)(5−1)(.05)

.

So, from the above results, the null hypothesis is rejected
while the alternative hypothesis is accepted and the multistate
Markov model fits the data, that is to mean, the future state
depends on the current state with the estimated transition rates
and probability matrices as obtained.

Health Economics
This transition probability matrix can predict the count of
patients in each state at specific time point, for example, if a
cohort of 6,000 patients with the following number in each state
is

[

3000 1800 1020 180 0
]

, after 1 year the predicted counts

will be
[

2895 1879 1044 154 28
]

. This count can be achieved
by multiplying the initial count distribution of the patients with
the transition probability calculated at the required specific time

point, pij (t) = exp
(

Q̂t
)

E
[

uj (t) |uj (0)
]

=
5

∑

j=1,i=1

uj (0)Pij (t) i, j = 1, .., 5

Let u (0) be the size of patients in a specific state at specific time
t = 0. The initial size of patients is U (0) = uj (0), as there are
4 transient states (F0 to F3) and 1 absorbing state (F4), where
uj (0) is the initial size or the number of patients in state j at time
t = 0 given that u5 (0) = 0, i.e., initial size of patients in state 5
(absorbing state) is zero at initial time point= 0. As the transition
or the movement of the patients among states is independent,
at the end of the whole time interval (0, t), there will be uj (t)
patients in the transient states at time t, and there will also be
u5 (t)patients in state 5 (F4= liver cirrhosis) at time t.

In addition, the state probability distribution π (t) , which is
the probability distribution for each state at a specific time point
given the initial probability distribution π (0), can be estimated
by applying the following formula:

π (t) = π (0)P (t ) .

In this example, the cohort of 6,000 patients has
initial probability distribution of

[

0.5 0.3 0.17 0.03 0
]

,
after 1 year, the state probability distribution will be
[

0.4825 0.3131 0.174 0.0257 0.0046
]

.
Pharmaco-economic evaluation can be assessed in three

categories: the cost-benefit analysis, the cost-effectiveness
analysis, and the cost-utility analysis. The evaluation utilizes the
predicted number of patients in each state estimated every year,
the state probability distribution predicted every year, the costs
of investigations and treatments, and the quality adjusted life
years for the patients [12, 13].

This approach differs from the one used by Rustgi et al.
[14] who depends on calculating the cost-effectiveness analysis

by following a cohort of patients, all starting at the same
initial state till death. While in the approach proposed in this
article, sampling the population and estimating the transition
probability matrix to predict the counts in the future, any cohort
of patients can be followed up utilizing the information gained
from sampling the high-risk population.

DISCUSSION

The following discussion elucidates the agreements and
comparisons between the findings in this study with the findings
in the previous one high-lightening the effects of various factors
on progression rate of fibrosis in NAFLD patients.

Hui et al. [15] conducted a study on 17 patients who had
previous liver biopsy showing evidence of steatosis with or
without the presence of necroinflammation and fibrosis. Those
patients underwent second liver biopsies with a median of 6 years
apart (range: 3.8–8 years). More than half of them developed
progressive fibrosis compared to the initial biopsy; because that
these patients suffered from steatohepatitis, although there was
no significant correlation between the degree of steatohepatitis
and the degree of fibrosis between the two biopsies. However,
the correlation was significant between the initial stage of
fibrosis and the fibrosis grade in the second biopsy. Also,
the clinical and laboratory parameters were not statistically
significant between the recorded values during the first and
the second biopsies. The changes in these parameters also
showed no significant correlation with changes in the scores of
steatosis, necroinflammation, or fibrosis. There was a negative
correlation, although non-significant, between the change in
the score of fibrosis and each of the changes: in the BMI,
plasma total cholesterol levels, plasma triglyceride levels, and
glycosylated hemoglobin. During the follow-up, two patients
developed type II diabetes and one developed hypertension but
without progression of fibrosis, their initial biopsy revealed F0,
and the second one was also F0. Another patient developed type
II diabetes with evolution of the fibrosis from F0 to F2, and
another 2 patients developed hypertension with advancement of
fibrosis from F0 to F1.

Fassio et al. [16] conducted a study on 22 patients who
had liver biopsy with evidence of NASH and found that 31.8%
(7 patients = P group, progressors) had progression of liver
fibrosis over a median follow-up of 4.7 years. The other group
was 68.2% (15 patients = NP group, non-progressors) and did
not progress over a median follow-up of 4.3 years. The rate
of progression in the entire population was estimated as 0.059
fibrosis units per year (mean difference in fibrosis score divided
by mean interval in years between the first and second biopsies
= 0.32/5.34 = 0.059), the rate of progression in the P group
was 1.85/6.59 = 0.28. There was no statistical difference as
regards the clinical, biochemical, grade of steatosis, and grade of
inflammation between the two groups except for the presence of
obesity and higher BMI (progressor was more obese with higher
BMI than the non-progressor) whether this was performed
during the initial liver biopsy or the final liver biopsy.Within each
group, the gradients between the final and basal results were not
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statistically significant as regards the clinical, biochemical, grade
of steatosis, and grade of inflammation between the two groups
including the BMI.

Adams et al. [7] conducted a study on 103 patients who
had performed two liver biopsies with mean follow-up period
of 3.2 ± 3 years (range = 0.7–21) between the first and the
second biopsies. A total of 38 patients were progressors, 35
patients were stable, and 30 patients were regressors. No clinical
or biochemical variables were statistically different among the
progressors, stable, and regressors. The rate of fibrosis change
varied from −2.05 to 1.7 stages/year and calculated as stated
in the introduction. Using univariate regression model, the
presence of diabetes, AST/ALT ratio, steatosis grades, and fibrosis
stage were the only significant variables. By multivariate linear
regression analysis and adjusting for age and BMI, only the
presence of diabetes and earlier fibrosis stage were significantly
associated with a higher rate of fibrosis progression. He also
found no significant correlation between rate of progression
and HOMA.

There are many studies performed by Ekstedt et al. [17], Teli
et al. [18], Pais et al. [19], Argo et al. [20], Evans et al. [21],
Hamaguchi et al. [22], and Wong et al. [23]. The reader can refer
to them (refer to Appendix E).

The findings of the present study demonstrate that HOMA2-
IR has a positive and a statistically significant effect on
progression of fibrosis among the different states. Running
multivariate Poisson regression reveals that the main players for
progression are the HOMA2-IR, LDL-chol, and systolic blood
pressure explaining about 35–60% of variability in the rates of
progression. However, HOMA2-IR has a negative effect that is
not statistically significant on the rate of remission or regression
from F1 to F0, from F2 to F1, and from F3 to F2, but it is
statistically significant on the rate of remission from F2 to F0
and from F3 to F1. Poisson regression model explained that the
same factors and their interactions were responsible for about 60–
70% of variability in the rates of remission among the states. The
high HOMA2-IR levels significantly decrease the effects of high
LDL levels on the progression rate from F0 to F1 and from F3
to F4. Thus, this interaction can be a protective mechanism to
slow down the progression rate of fibrosis. The low HOMA2-
IR levels significantly increase the effect of low LDL levels on
the remission rate from F1 to F0 and from F2 to F1. Thus,
this interaction can be a protective mechanism to accelerate the
remission rate of fibrosis. The rate of fibrosis decreases with the
help of rigorous control of the blood level of insulin, glucose,
cholesterol, and blood pressure. The high levels of systolic blood
pressure significantly decrease the effect of low LDL levels on
the remission rate of fibrosis from F1 to F0, from F2 to F1, and
from F3 to F2. Thus, controlling the most harmful factors like
hyperinsulinemia and hypercholestrolemia, even in the absence
of strict control of hypertension, can still benefit repressing
the fibrogenesis. Lifestyle modification, in the form of physical
exercise and a low caloric diet, and controlling the risk factors
greatly impact arresting the process of fibrogenensis.

The newly emerging anti-fibrotic drugs will also help
physicians treat fibrogenesis. In the FLINT study conducted
on 283 non-cirrhotic patients taking obeticholic acid (OCA),

25mg daily; the improvement in the histology detected by
NAFLD activity score (NAS) was two points or more with no
deterioration of fibrosis, and 35% of patients taking OCA had a
decrement in fibrosis score by at least one stage in comparison
with 19%in the placebo arm. REGENERATE study (still in
progress, with the estimated primary completion date is on
September 2025 as shown on clinicaltrials.gov official site) will
evaluate safety and efficacy of obeticholic acid (OCA) in NASH
patients with fibrosis who are randomized to a daily dose of
25mg, 10mg, and placebo, with endpoints like amelioration of
fibrosis by at least one stage and decaying of NASH with no
deterioration of fibrosis. At 18 month of randomization, liver
biopsy revealed statistically significant histological amelioration
of fibrosis and decaying of NASH with no deterioration in
fibrosis for both 10 and 25mg doses. In the GOLDEN study,
conducted on 274 NASH patients, 120mg elafibranor taken daily
for 52 weeks induced decaying of moderate to severe NASH
in a meaningfully higher percentage of patients than placebo;
these patients also showed lowering in fibrosis stage compared
to non-resolving NASH patients. The RESOLVE-IT trial (last
update was on 30 November 2020, as shown on clinicaltrials.gov
official site, but the study is still in progress according to Guirguis
et al. [24]) emerged in May 2020 had shown that 19.2% of
patients, on 120mg daily elafibranor, had NASH decay without
deterioration of fibrosis compared to 14.7% in the placebo group,
which was not statistically significant. Furthermore, 24.5% of
patients had shown fibrosis amelioration of more than one stage
compared to 22.4% in the placebo group, which was also not
statistically significant. In CENTAUR trial, conducted over 289
patients taking cenicriviroc (CVC), 150mg daily and placebo for
52 weeks, no comparative betterment in NAS between NASH
group and placebo was seen; however, there was one stage or
more amelioration of fibrosis with no deterioration of NASH
in the group taking the CVC compared to placebo group. The
AURORA trial (primary completion dates were October 2021
according to clinicaltrials.gov site while the completion date
will be October 2028 according to Guirguis et al. [24]) will
evaluate long-term safety and efficacy of 150mg daily CVC
for the treatment of fibrosis in NASH adult at 2 phases: the
first has endpoint of at least one stage amelioration of fibrosis
without deterioration of NASH at month 12, and phase 2 has
endpoint that is cirrhosis, liver-related outcome as HCC, and all
causes of mortality. In a small, open-label, randomized phase
II trial including 72 biopsy-proven NASH patients (NAS ≥ 5
and stage 2–3 liver fibrosis) receiving 18mg daily selonsertib for
24 weeks, there was a significant improvement in liver disease
activity, fibrosis, stiffness, liver fat content, and progression to
cirrhosis [25].

FLINT, GOLDEN, and CENTAUR are phase IIb placebo-
controlled randomized control trials (RCTs), whereas
REGENERATE, RESOLVE-IT, and AURORA are randomized,
placebo-controlled, double-blinded, multicenter phase III trials.

The distribution of the counts was Poisson distribution (mean
= variance); that is to mean, these counts were equidispersed.
However, all the counts showed excess zeros except for the
transition from F0 to F1 where the zeros constituted 42% of
the total count of this transition. Tlhaloganyang and Sakia
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found that the equidispersed counts data with excessive zeros
can be modeled with Poisson regression, the best model to
represent the data. Also, the AIC scores obtained by them
after running Poisson regression, on their tested data whether
simulated or real, were less than the AIC scores after running
ZIP on the same datasets [26]. In this article, the predictors were
normally distributed, and applying the restricted cubic spline
transformation was used to better specify the functional form
of these predictors. The raw predictors and the transformed
predictors were highly correlated. But the condition number
obtained from the transformed predictors is below 100, which is
not harmful for the analysis as shown in the Results. Vatcheva
et al. [27] highlighted the fact that the majority of researchers
do not mention the multicollinearity diagnostics when running
the regression models, discussed the causes and effects of this
lack, and proposed some remedies to treat multicollinearity
such as: principal component analysis, partial least squares
regression, and ridge regression analysis. Akram et al. [28]
used principal component ridge type estimator for the inverse
Gaussian regression model. Many investigators such as, Liu [29],
Kibria and Lukman [30], and Lukman et al. [31] had proposed
different techniques to manage the multicollinearity problem
between the predictors when running regression models. Some
of them, who developed methods for Poisson regression, are
Månsson and Shukur [32], Månsson et al. [33], Lukman et al.
[34], Lukman et al. [35], and Qasim et al. [36]. In this paper, none
of thesemethods were used as the Poissonmodel wasmainly used
to give preliminary vision about the effects of the high-risk factors
on the transition counts. Also, it was not used for prediction, and
the condition number was<100. Once the estimated counts were
obtained, they were fed to the CTMC to estimate the transition
rate matrix and transition probability matrix at any specified time
point. Thus, physicians can follow a cohort of any patients in
various states and obtain their state probability distribution at
different time points.

The strength of this study is the conduction of multiple
frequent repeated observations over a long period of follow-up on
a large number of high-risk participants for developing NAFLD
and performing a liver biopsy during each visit. Although this
may be realistically infeasible during each visit, non-invasive
techniques [37, 38] can substitute the invasive liver biopsy. The
advantage of techniques like MRI and machine learning [39],
to assess the liver texture and correlate these findings with the
histological findings in liver biopsy, can overcome this weakness.
Liver biopsy can also be reserved in situations where non-
invasive tests are inconclusive. These non-invasive tests decrease
the number of liver biopsies each patient may encounter. The
proposed follow-up period is too long to wait for the obtained
results, which can be overcome by using adaptive clinical trials.
The weakness of the study is the presence of dependency among
the response variables which was not treated by the statistical
analysis used in this study. A copula modeling discrete random
vectors like the counts in this study can be used in future analysis.
However, a copula of discrete vectors is not fully identifiable
and thus causes serious inconsistencies [40], especially when
modeling nine variables like the variables used in this study.

CONCLUSION

In the present study, running Poisson regression model is
used to obtain the expected counts of transition among states.
These counts are used as input into the homogenous CTMC.
Using this CTMC, the transition rate matrix is estimated, and
thus, the probability of progression of participants from specific
state to another one at specific time point can be estimated
by exponentiation of this rate matrix. This probability matrix
at any specific time point multiplied by the initial probability
distribution of a cohort of patients can be used to predict the
number of the participants in each state later on at different
time points. This predicted number of participants helps health
policymakers and insurance managers allocate the human and
financial resources to investigate and treat the high-risk patients
for developing NAFLD. The Poisson regression model relates
these high-risk covariates to the transition rates among states.
Also, this approach can be used in the clinical trials to assess
the effectiveness of the newly emerging anti-fibrotic drugs. The
epidemiologists can utilize this methodology to estimate the
effect of risk factors on the incidence rates of progression
and remission among the different states of liver fibrosis due
to NAFLD.

This hypothetical study is coded by stata-14 and is published
in code ocean site with the following URL: https://codeocean.
com/capsule/4752445/tree/v3.

The code to estimate the Q transition rate matrix for the
observed transition counts using continuous-timeMarkov chains
is published in the code Ocean site with following URL: https://
codeocean.com/capsule/6377472/tree/v2.

The code for solving the forward Kolmogorov equations
using the estimated Q rate matrix is published in the code
Ocean site with following URL: https://codeocean.com/capsule/
7258626/tree/v1.

The dataset is present on IEEE Data Port site with the
following URL: https://ieee-dataport.org/documents/fibrosis-
nfld#files, with the following doi: 10.21227/dr5j-gs46.

REGENERATE study URL: https://clinicaltrials.gov/ct2/
show/NCT02548351.

RESOLVET-IT study URL: https://clinicaltrials.gov/ct2/show/
NCT02704403.

A medical appendix briefly clarifies the stages of
fibrosis due to NAFLD. See also the presentation (in the
Supplementary Materials).
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In this study, we obtain a numerical solution for Fisher’s equation using a numerical

experiment with three different cases. The three cases correspond to different coefficients

for the reaction term. We use three numerical methods namely; Forward-Time Central

Space (FTCS) scheme, a Nonstandard Finite Difference (NSFD) scheme, and the Explicit

Exponential Finite Difference (EEFD) scheme.We first study the properties of the schemes

such as positivity, boundedness, and stability and obtain convergence estimates. We

then obtain values of L1 and L∞ errors in order to obtain an estimate of the optimal time

step size at a given value of spatial step size. We determine if the optimal time step size

is influenced by the choice of the numerical methods or the coefficient of reaction term

used. Finally, we compute the rate of convergence in time using L1 and L∞ errors for all

three methods for the three cases.

Keywords: Fisher’s equation, FTCS, NSFD, EEFD, optimal, convergence estimate, rate of convergence, coefficient

of reaction

1. INTRODUCTION

The most enthralling recent progress of nonlinear science in particular mathematical science of
partial differential equations, theoretical physics, chemistry, and engineering sciences has been a
growth of strategy or procedure to try to find exact solutions for nonlinear differential equations.
This is substantial due to the fact that countless mathematical models are described by nonlinear
differential equations. To mention few among others the inverse scattering transform [1], the
singular manifold method [2], the transformation method [3], the tanh-function method [4], and
the Weierstrass function method [5] are subservient in many applications and known as stunning
techniques to look for solutions of exactly solvable nonlinear partial differential equations.

In Kudryashov [6] developed a new numerical method for the solution of
nonlinear partial differential equations. Amajor novelty of that technique is the
utilization of finite Fourier series for the numerical approximation of the spatial
derivative terms of the equations. It was proved that the precision of this method
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is that the order of accuracy is greater than that found by
approximating the spatial derivative terms by finite-difference
methods [6]. The numerical performance of this method, which
was called the Accurate Space Derivatives (ASD) approach, can
be run accurately by the utilization of the Fast Fourier Transform
(FFT) algorithm [7]. In Kudryashov [6], the ASD approach was
used to obtain the solution of nonlinear hyperbolic equations
depicting convective fluid flows. Furthermore, the ASD approach
was used in Gazdag and Canosa [8] to solve Fisher’s equation, a
nonlinear diffusion equation portraying the rate of advance of a
new advantageous gene within a population of constant density
inhabiting a one dimensional habitat [9]. An outstanding and
compendious debate of Fisher’s equation in the framework of the
genetic problem can be found in Moran [10] and Kendall [11].
Kolmogorov [12] used the traveling waves with wave speed c
to solve the problem. They showed that by assuming that when
the initial condition belongs to the interval [0, 1], the speed of
propagation c of the waves is superior to two and the solution
is in the form u(x, t) = w(ξ ) where ξ = x − ct. They further
demonstrated that there are no solutions for c ∈ [0, 1).
Fisher’s equation has a limitless number of traveling wave
solutions and each wave propagates at a characteristic speed,
c > 2. This result appears to point out that the velocity of
gene advance is undefined. Gazdag and Canosa [8] studied
the problem of the indeterminacy of the diffusion speed of
Fisher’s equation which has not been plainly investigated in
Kolmogorov [12]. Furthermore, a modification was made by
Fisher [9] to his original model, he demonstrated that the rate
of gene advance became the minimum one when c = 2.
Kendall [11] investigated a linear model portraying a population
that undergoes a Brownian motion and spreads geometrically
at the same time. Canosa [13] demonstrated that all waves are
stable against local perturbations but are linearly unstable against
general perturbations of limitless magnitude. It is worthy to
emphasize that the traveling wave profiles of Fisher’s equation are
similar to some of the steady-state solutions of the Korteweg-de
Vries-Burgers equation which is a third-order nonlinear partial
differential equation integrating diffusive and dispersive effects
which have been found useful to represent blood flow through
an artery, shallow water waves and plasma shocks disseminating
perpendicularly to a magnetic field [13, 14].

Kudryashov [6] showed that a simple stability analysis enables
us to see the estimation which is unstable against the roundoff
errors growing up at the right tail of the waves. This is due to
the physical nature of the problem depicted by the equation,
not to the numerical method utilized and moreover entailed an
exponential growth of the solution when roundoff errors are
exponentially small. This simple issue makes it hard to do a strict
simulation of the solutions of Fisher’s equation. Kudryashov [6]
went on with the removal of the forward tail of the wave of
advance. This removal is necessary for the numerical stability of
the Accurate Space Derivatives (ASD) approach and is physically
conclusive because it is approximately equivalent to assuming
that the role of long-distance dissipation in the spread of the gene
is insignificant and probably effective for some species but not
for others. Other numerical computations present how fast the
asymptotic minimum speed wave is reached from an initial step

function and confirm the local stability analysis of Kudryashov
[6] which unveils that local perturbations are flattened very
rapidly, even from superspeed waves. Another amazing result of
the estimation is obtained for an initial dispensation localized in
space which further gives rise to two identical waves of minimum
speed evolution cases, one disseminating to the right and the
other to the left.

1.1. Some Generalized and Conserved
Fisher’s Equation
Fisher’s equation can be represented as generalized or conserved
forms. Fisher’s equation is the elementary model of spatial
dynamics, in which competitive interactions between individuals
happen locally. In Kudryashov and Zakharchenko [15], the
generalized form is written as

ut = ux(u
l ux)+ ua (1− ub) (1)

where t stands for time, x stands for spatial coordinate, u is a
population density, and a, b, and l are all positive parameters.
Fisher’s equation can also forecast circumstances where
population regulation happens globally due to the existence
of a secondary agent (the controller agent is itself dispersed
over a scale significantly greater than the dispersal distance of
the individuals themselves). It is, thus, of notice to envisage a
simple model of spatial population dynamics in which the total
population size is controlled via a nonlocal mechanism. In that
case in Newman et al. [16], the conserved equation is written as

ut = D∇2 u+ r(t) u(t)− K(t) u(t)2 (2)

where D stands for the mobility of the individuals, r stands
for the reproduction rate in the absence of competition. K is
a parameter representing the carrying capacity of the system
and regulating the population density through competition. The
auxiliary equation related to Equation (2) is

r(t) = K(t)

∫

dd x u(x, t) (3)

It is worth mentioning that Fisher’s equation belongs to the
class of partial differential equations called Reaction-Diffusion
equations. This class of equations has broad applications in
science and engineering for instance transport of air, adsorption
of pollutants in soil, food processing, and modeling of biological
and ecological systems [17, 18]. Several reaction-diffusion
equations involve traveling waves fronts yielding a fundamental
role in the understanding of physical, chemical, and biological
phenomena [19]. Reaction-diffusion systems clarify how the
condensation of one or more substances diffused in space varies
by the impact of two operations: first, it is local chemical reactions
in which the substances are modified into each other, and second,
it is the diffusion that sustains the substances to smear over a
surface in space [20]. Reaction-diffusion systems are regularly
used in chemistry. Nonetheless, the system can also portray the
dynamical processes of non-chemical nature. Reaction-diffusion
systems have mathematically the form of semi-linear parabolic
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partial differential equations. They are often written in the form
of

ut = D∇2 u+ R(u), (4)

where each component of vector u(x, t) stands for the
concentration of one substance, x is the space variable, and
t is the time. D is the diffusion coefficient and R represents
the reaction term. The solution of reaction-diffusion equations
shows an ample scale of behaviors, enclosing the formation
of traveling waves. These waves are like phenomena and self-
organized patterns which are e.g., stripes, hexagons, or more
complicated fabrics such as dissipative solutions [20]. Reaction-
diffusion equations are also grouped as one component, two
components, or more component diffusion equations counting
upon the component involved in the reaction. The basic reaction-
diffusion equation regarding the concentration u of a mere
substance in one spatial dimension is

ut = Duxx + R(u). (5)

If the reaction R(u) term goes away, then the equation gives a
pure diffusion process and if the thermal diffusivity term appears
instead of diffusion term D then the equation will turn into a
parabolic partial differential equation in one dimensional space
[20]. The choice R(u) = u (1− u) yields Fisher’s equation. Those
reaction-diffusion equations arise also in flame propagation, the
branching Brownian motion process, and nuclear reactor theory
[20]. Many methods such as Adomian Decomposition [21],
Variational Iteration [22], Factorization [23], Nonstandard Finite
Difference, and Exponential Finite Difference methods [24, 25]
are used to solve Fisher’s equation.
Anguelov et al. [26] investigated the same Fisher’s equation by the
means of a periodic initial data with θ-non standard approach
and found that the Nonstandard Finite Difference approach is
elementary stable in the limit case of space independent variable,
stable in regard to the boundedness and positivity property.
Finally also stable in regard to the conservation of energy in the
stationary case.

Let us consider simple Fisher’s equation given by

ut = uxx + R(u), (6)

where R(u) = u(1− u) and x ∈ R, t positive. The boundary and
initial conditions are as follows

lim
x→+|ǫ|∞

u(x, t) =











1 if ǫ = 1

0 if ǫ = −1,

(7)

u(x, 0) = u0(x). (8)

Hagstrom and Keller [27] revealed that when a positive function
is taken as an initial condition satisfying

u0(x) ∼ exp(−α) when x → ∞, (9)

then the solution u develops a traveling wave speed in function of
α which is

c(α) =

{

α + 1
α
, α ≤ 1,

2, α ≥ 1.
(10)

2. ORGANIZATION OF THE ARTICLE

The organization of this article is as follows. In Section 3, we
present the general form of the exact solution of Fisher’s equation
and in Section 4, we describe the numerical experiment [28].
In Section 5, we make use of Forward in Time Central Space
(FTCS) in order to discretize Fisher’s equation, study the stability
and consistency and we also obtain error estimates. Sections 6,
7 discuss stability, consistency, and error estimates for NSFD
and EEFD schemes. In Section 8, we conclude by presenting
the important highlights of this article. The computations are
performed by making use of MATLAB R2014a software on an
intel core2 as CPU.

3. EXACT SOLUTION

In this section, we present the exact solution of generalized
Fisher’s equations as described in Kudryashov and Zakharchenko
[15]. The nonlinear evolutional equation of that generalized
Fisher’s equation gives one dimensional diffusion models (for
insect, animal dispersal, and invasion) as

ut = ux(u
l ux)+ ua (1− ub), (11)

where t stands for time, x stands for spatial coordinate, u is
population density, and a, b, and l are positive parameters. The
first term, ux(u

l ux) on the right-hand side of Equation (11)
stands for the growth of population. The term ul represents the
diffusion process depending on the population density.

Let us consider l 6= 0 and u(x, t) = v(ξ ) and ξ = s x − ct,
s 6= 0. Equation (11) gives the following nonlinear ordinary
differential equation

s2
d

dξ

(

vl
dv

dξ

)

+ va − va+b + c
dv

dξ
= 0. (12)

For l 6= 0, vl = w. Replacing v by w
1
l in Equation (12) gives

s2

l
w2

ξ + s2 wwξξ − l w
a+b+l−1

l + w
a+l−1

l + ξ wξ = 0. (13)

Using the Q function method as it is in Kudryashov [29], one has

w(ξ ) =
P
∑

j=0

Pj Q
j(ξ ), Q(ξ ) =

1

1+ eξ−ξ0
(14)

where P stands for the pole order and ξ0 stands as an arbitrary
constant. Q(ξ ) is the solution of

Qξ = Q− Q2. (15)
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Using Equation (15), we obtain wξ and wξξ by using polynomials
of Q. Replacing w ≃ QP into Equation (15), we have for b ≥ 0,
the following equality

a+ b+ l− 1

l
= 2+

2

P
. (16)

To have an integer value a+b+l−1
l

, P should be 1 or 2. In that case

w(ξ ) =

{

P0 + P1 Q(ξ )

P0 + P1 Q(ξ )+ P2 Q
2(ξ )

(17)

For P = 1, a = 3 l+ 1− b, Equation (13) becomes

s2

l
w2

ξ + s2 wwξξ − l w4 + w4− b
l + ξ wξ = 0. (18)

We have the following solutions

w(x, t) =



































No exact solutions, b = l and b = 3 l,

±1± 2Q(± 2 l√
2l+1

x± 2 l
2l+1

t), b = 2 l,

±1± 2Q(± 2 l√
2l+1

x± 4l (l+1)
2l+1

t), b = 4 l,

or

±i± 2 i Q(± 2 l√
2l+1

x± 4l (l+1)
2l+1

i t), b = 4 l.

(19)

We finally get as exact solution

u(x, t) =







































l

√

±1± 2Q
(

± 2 l√
2l+1

x± 2 l
2l+1

t
)

, V1 = ± 1√
2l+1

,

l

√

±1± 2Q
(

± 2 l√
2l+1

x± 4l (l+1)
2l+1

t
)

, V2 = ± 2 (l+1)√
2 l+1

,

or

l

√

±i± 2 i Q
(

± 2 l√
2l+1

x± 4l (l+1)
2l+1

i t
)

, V2 = ± 2 (l+1)√
2l+1

,

(20)

where V1 and V2 stand for velocity.
For P = 2, a = 2 l+ 1− b. With the same reasoning as above,

we have

u(x, t) =



















No exact solutions, b = 2 l and b = 3 l,

l

√

2(3 l+2)
l+1

(

Q
(

± l√
l+1

i x
)

− Q2
(

± l√
l+1

i x
))

, b = l.

(21)

The case of l = 0, a = 1 and b = 2, one obtains the Burgers-
Huxley equation and the case of l = 0, a = 1, b = 1, we have
Fisher’s equation. The exact solution of Equation (11) is described
in Li et al. [28] as a scaled Fisher’s equation in the form

ut = uxx + ρu(1− u), (22)

with x ∈ R, t positive, and ρ is a positive constant. The
Equations (7) and (8) stand for boundary and initial conditions,

respectively. The traveling exact solution to this problem as
presented in Polyanim and Zaitsev [30] is

u(x, t) =
[

1+ c exp

(
√

ρ

6
x−

5ρ

6
t

)]−2

, (23)

where c = 5
√

ρ/6 stands for the wave speed with the minimum
value, 2

√
ρ.

4. NUMERICAL EXPERIMENTS

We consider the following problem from Qiu and Sloan [31].

Solve

ut = uxx + ρ u(1− u),

for x ∈ [−0.2, 0.8] and t ∈ [0, Tmax] whereTmax = 2.5×10−3.
The initial data is given by

u(x, 0) =
[

1+ exp

(
√

ρ

6
x

)]−2

. (24)

The exact solution is given by

u(x, t) =
[

1+ exp

(
√

ρ

6
x−

5ρ

6
t

)]−2

. (25)

The boundary conditions are as follows

u(−0.2, t) =
[

1+ exp

(

−0.2

√

ρ

6
−

5ρ

6
t

)]−2

and

u(0.8, t) =
[

1+ exp

(

0.8

√

ρ

6
−

5ρ

6
t

)]−2

.

We consider three cases ρ namely; 1, 102, 104, and obtain a
solution at time, t = Tmax.

DEFINITION 1. Miyata and Sakai [32]. For a vector x ∈ R
N ,

‖ x ‖1=
∑N

i=1 |xi| and ‖ x ‖∞= max{|xi|, i = 1, · · ·,N}.

DEFINITION 2. Sutton [33]. Suppose {tn}N0 forms a partition of
[0,T],with tn = n1t for n = 0, · · ·,N,where1t = T/N. Suppose
a vector x ∈ R

N , defined by

‖ x ‖LP(0,tn)=

{

(

‖ x ‖LP(0,tn−1) +τ (xn)p
)
1
p for p ∈ [0,∞),

max{‖ x ‖LP(0,tn−1), x
n} for p = ∞.

(26)

The rate of convergence with respect to time is defined by

ratei(t) =
log(xi(t))− log(xi−1(t))

log(1ti)− log(1ti−1)
.
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5. FORWARD IN TIME CENTRAL SPACE

The discretization of Equation (22) using the FTCS method gives
[34].

un+1
m − unm

k
=

unm+1 − 2unm + unm−1

h2
+ ρunm(1− unm), (27)

which leads to

un+1
m = (1− 2R)unm + kρunm(1− unm)+ R(unm+1 + unm−1), (28)

or

un+1
m = (1− 2R+ k ρ) unm − k ρ (unm)

2 + Runm+1 + Runm−1,

(29)

where R = k
h2
.

5.1. Stability
The investigation regarding the stability of the scheme given by
Equation (28) was done in Agbavon et al. [35]. Nevertheless, we
highlight briefly some points. The stability of finite difference
methods discretizing nonlinear partial differential equations is
not straightforward. Subsequently, freezing the coefficients is
needed before using Von Neumann stability analysis [36].

THEOREM 1. Agbavon et al. [35]. The FTCS scheme given by
Equation (28) is conditionally stable, and the stability region is

k ≤
h2

2
(30)

for given spatial step size h > 0 and the time step size k > 0.
FTCS is first order and second order accurate in time and space,
respectively.

Proof. The stability region of the Zabusky and Kruskal scheme
using the Korteweg de Vries (KdV) equation was found by Taha
and Ablowitz [37] by using the freezing coefficients method
and Von Neumann Stability Analysis. The derived scheme by
Zabusky and Kruskal [38] for the KdV equation, ut + 6uux +
uxxx = 0 is

un+1
m − un−1

m

2k
+ 6

(

unm+1 + unm + unm−1

3

)(

unm+1 − unm−1

2h

)

+
1

2h3

(

unm+2 − 2unm+1 + 2unm−1 − unm−2

)

= 0.

(31)

Taha and Ablowitz [37] express u ux as umax ux and utilize the
ansatz
unm = ξneImw where w stands for the phase angle. They obtain

(

ξ − ξ−1
)

(2k)−1 + (h)−1 (6umax)I sin(w)+ (2h3)−1(e2Iw

−2eIw + 2e−Iw − e−2Iw) = 0,

which can be rewritten as

ξ = ξ−1 − (h)−1 (12kumax)I sin(w)− (h3)−1k(e2Iw

−2eIw + 2e−Iw − e−2Iw) (32)

where umax = max |u(x, t)|. The requirement for the linear
stability is

(h)−1k
∣

∣2umax − (h2)−1
∣

∣ ≤ 2(3
√
3)−1. (33)

For obtaining the stability region of the FTCS scheme discretizing
Equation (28), we rewrite Equation (28) using the same idea as

un+1
m =

(

1− (h2)−12k
)

unm + (h2)−1(k)(unm+1 + unm−1)

+k ρ unm − k ρ (unm)
2. (34)

Utilization of Fourier series analysis on Equation (34), gives the
amplification factor

ξ = 1− (h2)−1(2k)(1− cos(w))+ kρ(1− umax), (35)

where umax is frozen coefficient. For the numerical experiment
considered, we have umax = 1, and therefore,

ξ = 1− (h2)−1(4k) sin2
(w

2

)

. (36)

The stability is obtained by solving |ξ | ≤ 1 for w ∈ [−π ,π], and

we obtain k ≤ h2

2 .
Using Taylor series expansion about the point (n,m) of
Equation (28), we get

u+ kut +
k2

2
utt +

k3

6
uttt + O(k4)

=
(

1− (h2)−1(2k)+ kρ
)

u− kρu2

+(h2)−1(k)

(

u+ hux +
h2

2
uxx +

h3

6
uxxx +

h4

24
uxxxx + O(h5)

)

+(h2)−1(k)

(

u− hux +
h2

2
uxx −

h3

6
uxxx +

h4

24
uxxxx + O(h5)

)

,

(37)

which can be written as

ut − uxx − ρu(1− u) = −
k

2
utt −

k2

6
uttt

+
h2

12
uxxxx + O(k4)+ O(h5). (38)

Hence, FTCS is first order and second order accurate in time and
space, respectively.

5.2. Error Estimates
THEOREM 2. Let u ∈ C4,2(Q), Q defined by Q = {(x, t)/ a ≤
x ≤ b, 0 < t ≤ T, a, b ∈ R}. If spatial step size, h and time
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step size, k are such that the stability condition (30) holds, then the
error estimate, Enm for Equation (28) is given by

Enm ≤ (1+ 3 k ρ)n E0m +
1

9

Mh2

ρ k

[

(1+ 3 k ρ)n − 1
]

(39)

where M = max{(x,t)} ∈Q

{

|uxxxx(x, t)|, |utt(x, t)|
}

and 2 such
that 2(k, h)uttt = O(k, h) → 0, for k, h → 0.

Proof.
Forward in Time Central Space scheme is given by

un+1
m = (1− 2R+ k ρ) unm − k ρ (unm)

2 + Runm+1 + Runm−1.(40)

Taylor series expansion about (n, m) gives

7v+ kvt +
k2

2
vtt +

k3

6
vttt + O(k4)

=
(

1− (h2)−1(2k)+ kρ
)

v− kρv2

+(h2)−1(k)

(

v+ hvx +
h2

2
vxx +

h3

6
vxxx +

h4

24
vxxxx + O(h5)

)

+(h2)−1(k)

(

v− h vx +
h2

2
vxx −

h3

6
vxxx +

h4

24
vxxxx + O(h5)

)

,

(41)

which can be rewritten as

vt − vxx − ρ v (1− v) = −
k

2
vtt −

k2

6
vttt +

h2

12
vxxxx + ..., (42)

and let 2(k, h)vttt = O(k, h) = − k2

6 vttt → 0 for k, h → 0. The
exact discrete equation is

un+1
m = (1− 2R) unm + kρ unm(1− unm)+ R(unm+1 + unm−1)

+
k

2
utt(x, τn)−

h2

12
uxxxx(Xm, t) (43)

where xm < Xm < xm+1 and tn < τn < tn+1. We define

enm = unm − vnm H⇒ en+1
m = un+1

m − vn+1
m .

It follows that

en+1
m = (1− 2R) (unm − vnm)+ k ρ unm(1− unm)

−k ρ vnm(1− vnm)+ R (unm+1 + unm−1)

−R (vnm+1 + vnm−1)+
k

2
utt(x, τn)−

h2

12
uxxxx(Xm, t). (44)

We have

en+1
m = (1− 2R) (unm − vnm)+ k ρ unm − k ρ (unm)

2 − k ρ vnm

+k ρ (vnm)
2 + R (unm+1 − vnm+1)

−R (unm−1 − vnm−1)+
k

2
utt(x, τn)−

h2

12
uxxxx(Xm, t), (45)

which can be rewritten as

en+1
m = (1− 2R) (unm − vnm)+ k ρ (unm − vnm)

−k ρ (unm − vnm)(u
n
m + vnm)+ R (unm+1 − vnm+1)

−R (unm−1 − vnm−1)+
k

2
utt(x, τn)−

h2

12
uxxxx(Xm, t). (46)

Using the properties of absolute values |a + b| ≤ |a| + |b| for
a, b ∈ R, we have

|en+1
m | ≤ |1− 2R| |enm| + |k ρ| |enm| + |k ρ| |enm||u

n
m + vnm|

+R |enm+1|

+R |enm−1| +M

(

k

2
+

h2

12

)

, (47)

where M = max{(x,t)∈Q}
{

|uxxxx(x, t)|, |utt(x, t)|
}

. Since 0 ≤
unm ≤ 1 and 0 ≤ vnm ≤ 1, based on numerical experiment
chosen, we have

|en+1
m | ≤ |1− 2R| |enm|

+k ρ |enm| + 2 k ρ |enm| + R |enm+1|

+R |enm−1| +M

(

k

2
+

h2

12

)

. (48)

Let Enm = max0<m<N

{

|enm|)|
}

. We have

|en+1
m | ≤ (|1− 2R| + k ρ + 2 k ρ + 2R) |Enm|

+M

(

k

2
+

h2

12

)

, (49)

and for stability R ≤ 1/2, therefore, |1− 2R| = 1− 2R ≥ 0. We
finally obtain

|en+1
m | ≤ (1+ 3 k ρ)Enm

+ M

(

k

2
+

h2

12

)

. (50)

Let En+1
m = (1+ 3 k ρ)Enm +

(

k
2 +

h2

12

)

M. We have

For n = 0, E1m = (1+ 3 k ρ)E0m +
(

k
2 +

h2

12

)

M.

For n = 1, we have

E2m = (1+ 3 k ρ)E1m +
(

k

2
+

h2

12

)

M (51)

= (1+ 3 k ρ)2 E0m + (1+ 3 k ρ)1
(

k

2

+
h2

12
) M + (1+ 3 k ρ)0

(

k

2
+

h2

12

)

M (52)

= (1+ 3 k ρ)2 E0m +
[

(1+ 3 k ρ)1

+(1+ 3 k ρ)0 ]

(

k

2
+

h2

12

)

M (53)
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For n = 2, we have

E3m = (1+ 3 k ρ)3 E2m +
(

k

2
+

h2

12

)

M (54)

= (1+ 3 k ρ)3 E0m + (1+ 3 k ρ)2 (
k

2

+
h2

12

)

M + (1+ 3 k ρ)1
(

k

2
+

h2

12

)

M (55)

+ (1+ 3 k ρ)0
(

k

2
+

h2

12

)

M

= (1+ 3 k ρ)3 E0m + [ (1+ 3 k ρ)2

+ (1+ 3 k ρ)1 + (1+ 3 k ρ)0 ]

(

k

2
+

h2

12

)

M (56)

For n, we have

Enm = (1+ 3 k ρ)En−1
m +

(

k

2
+

h2

12

)

M

= (1+ 3 k ρ)n E0m +
[

(1+ 3 k ρ)n−1

+ (1+ 3 k ρ)n−2 + · · +(1+ 3 k ρ)1

+ (1+ 3 k ρ)0 ]

(

k

2
+

h2

12

)

M

= (1+ 3 k ρ)n E0m +

[

n−1
∑

i=0

(1+ 3 k ρ)i

]

(

k

2
+

h2

12

)

M

= (1+ 3 k ρ)n E0m +
[

1− (1+ 3 k ρ)n

1− (1+ 3 k ρ)

](

k

2
+

h2

12

)

M

= (1+ 3 k ρ)n E0m −
1

3 k ρ

[

1− (1+ 3 k ρ)n
]

(

k

2
+

h2

12

)

M

(57)

Hence, for k ≤ h2

2 , we can also write

Enm ≤ (1+ 3 k ρ)n E0m +
1

9

Mh2

ρ k

[

(1+ 3 k ρ)n − 1
]

(58)

6. NONSTANDARD FINITE DIFFERENCE
SCHEME (NSFD)

Over the past decade, the NSFD has been used extensively and
often abbreviated as NSFD. The method was introduced by
Mickens for the approximation of solutions of partial differential
equations and is largely based on the concept of dynamical
consistency [39] which plays a significant role in the construction
of discrete models whose numerical solution can be complicated
to compute. The dynamical consistency is bound to a precise
property of a physical system (and varies according to the
systems). To mention few among others these properties include
the preservation of positivity, boundedness, monotonicity of the
solutions, and stability of fixed-points [39]. The main advantage
of this method was the dismissal of the primary numerical
instabilities [40] caused by the use of standard methods. In order

to reduce numerical sensitivities appearing using the classical
finite difference methods, these NSFD were developed.
For practical use, the construction of NSFD methods is based on
the following basic rules [39]:

(1) The order of discrete derivatives should be equal to the order
of corresponding derivatives appearing in the differential
equation.

(2) Discrete representation for derivatives, in general, have non
trivial denominator functions, e.g.,

ut ≈
un+1
m − unm
φ(1t, λ)

(59)

where

φ(1t, λ) = 1t + O(1t2). (60)

6.1. Example of the Definition of the
Function φ

Consider the following decay equation and logistic growth
equation, respectively as in Anguelov et al. [26]











u′ = λ u, u(0) = u0, λ 6= 0,

u′ = λ u(1− u), u(0) = u0, λ > 0,

(61)

and the respective solutions at the time t = tn+1 are











u(tn+1) = u0 e
λ tn+1 ,

u(tn+1) = u0
e−λ tn+1+(1−e−λ tn+1 ) u0

.

(62)

Let u(tn) = un. We have















un+1−un

(eλ1t−1)λ−1 = λ un,

un+1−un

(eλ1t−1)λ−1 = λ un(1− un).

(63)

The Equation (63) is called the exact scheme. The function φ can
be then defined as

φ(1t, λ) =
eλ1t − 1

λ
or φ(1t, λ) =

1− e−λ 1t

λ

(3) Nonlocal discrete representations of nonlinear terms. For
instance

u2m ≈ um um+1, , u
2
m ≈

(

um−1 + um + um−1

3

)

um, (64)

and

u3 ≈ 2u3m − u2mum+1, u
3
m ≈ um−1umum+1. (65)
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In Agbavon et al. [35], followed by the rule of Mickens [39] a
NSFD

for Equation (22) is

un+1
m − unm
φ(1t)

=
unm+1 − 2unm + unm−1

(1x)2

+ ρunm − ρ

(

unm+1 + unm + unm−1

3

)

un+1
m , (66)

where

φ(1t) = φ(k) =
1− e−λ k

λ
; (1x)2 = h2. (67)

The Equation (66) gives the following single expression

un+1
m =

(

1− 2φ(k)
h2

+ ρ φ(k)
)

unm + φ(k)
h2

(

unm+1 + unm−1

)

1+ ρφ(k)
3

(

unm+1 + unm + unm−1

)

. (68)

6.2. Positivity and Boundedness
In this section, the dynamical consistency and some useful
relationship between time and space step-sizes of NSFD are
presented.

THEOREM 3. The dynamical consistency (positivity and
boundedness) of NSFD constructed in Equation (68) holds
for Equation (22) and for relevant time step k, spatial step h if the
following conditions hold

(a) φ(k) ≤ h2

2−ρ h2
[1− Ŵ] with Ŵ = 1− 2 (h2)−1φ(k)+ ρ φ(k),

(b) For uim ∈ [0, 1], ∀ i. Ŵ = (h2)−1(φ(k)) = 1
2

[

1

1− ρh2

2

]

and

Ŵ′ = σ Ŵ .

Proof.
We assume u(x, 0) = h(x) ∈ [0, 1]. We have, therefore, u(x, t) ∈
[0, 1] [24]. We assume also unm ≥ 0. The quantity un+1

m from
Equation (68) is positive (un+1

m ≥ 0) if only

Ŵ = 1− 2(h2)−1φ(k)+ ρ φ(k) ≥ 0, (69)

It follows that

0 ≤ 1− Ŵ = (2(h2)−1 − ρ)φ(k) ≤ 1. (70)

Hence, in Mickens [24], the condition required for positivity is

φ(k) ≤
h2

2− ρ h2
[1− Ŵ] and 0 ≤ Ŵ < 1, ρ h2 6= 2. (71)

We investigate next the boundedness by assuming unm ∈ [0, 1].
Equation (68) is rewritten as follows

un+1
m =

Ŵunm + R
(

unm+1 + unm−1

)

1+
(

ρφ(k)
3

)

(unm+1 + unm + unm−1)
. (72)

where Ŵ = 1− 2(h2)−1φ(k)+ ρ φ(k), R = φ(k)
h2

.
Following the idea of Mickens [24], Equation (72) takes the
symmetric form if Ŵ = R. Therefore, it follows that

Ŵ =
φ(k)

h2
=

1

3
+

ρ φ(k)

3
. (73)

We also have from Equation (71)

φ(k) ≤
h2

2− ρ h2
[1− Ŵ] H⇒

φ(k)

h2
≤

1

2

[

1

1− ρh2

2

]

(74)

Based on the symmetric condition, we can take

Ŵ =
φ(k)

h2
=

1

2

[

1

1− ρh2

2

]

(75)

With regard to the symmetric condition (Equations 73), Equation
(72) can be rewritten as

un+1
m =

Ŵ (unm + unm+1 + unm−1)

1+
(

ρ φ(k)
3

)

(unm+1 + unm + unm−1)
. (76)

We know by the assumption that unj ∈ [0, 1], ∀ j. We have

0 ≤
unm + unm+1 + unm−1

3
≤ 1. (77)

By multiplying Equation (77) by 1− ρh2

2 and dividing by 1− ρh2

2
and expanding, we have

unm + unm+1 + unm−1

3
[

1− ρh2

2

] −
[

ρh2

2

]

unm + unm+1 + unm−1

3
[

1− ρh2

2

] ≤ 1. (78)

From Equation (78), we have

unm + unm+1 + unm−1

3
[

1− ρh2

2

] ≤ 1+ ρ
h2

2

1

3

[

1

1− ρh2

2

]

(unm + unm+1

+unm−1). (79)

Let Ŵ
′ = σ Ŵ, σ 6= 0. Then

Ŵ
′
=

σ

2

[

1

1− ρh2

2

]

= σ
φ(k)

h2
(80)

If σ
2 = 1

3 , then σ = 2
3 and using Equation (79), we have

Ŵ
′
(unm + unm+1+unm−1) ≤ 1+

ρ φ(k)

3
(unm + unm+1 + unm−1). (81)
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Hence,

0 ≤ un+1
m =

Ŵ
′
(unm + unm+1 + unm−1)

1+
(

ρ φ(k)
3

)

(unm+1 + unm + unm−1)
≤ 1. (82)

Thus, the boundedness of un+1
m .

6.3. Error Estimate
THEOREM 4. Let u ∈ C4,2(Q) where Q is defined by

Q = {(x, t)/ a ≤ x ≤ b, 0 < t ≤ T, T > 0, a, b ∈ R}.

Assume h and k are such that the Theorem 3 is satisfied and
enm = unm − vnm, is the defined error of the scheme constructed.
NSFD is consistent, and the estimate error enm is defined by

|enm| ≤ Enm = (3Ŵ)n E0m +
(

1− (3Ŵ)n

1− 3Ŵ

)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

]

(83)

where Ŵ defined in 3 M is defined by M =
max{(x,t)} ∈Q

{

|uxxxx(x, t)|, |utt(x, t)|
}

, and 2i, i = 1, 2, 3
such that

21(φ(k), h) = ρ
h2

3
u− ρ h2

φ(k)2

6
utt

22(φ(k), h) = −
φ(k)2

6
+ ρ

φ(k)

3
[

φ2(k)

2
u+ h2

φ2

6
uxx + h4

φ(k)2

72
uxxxx

]

23(φ(k), h) = −φ(k) v− ρ h2
φ(k)

3
− ρ h4

φ(k)

36
uxxxx (84)

and
21(φ(k), h) uxx + 22(φ(k), h) uttt + 23(φ(k), h) ut =

O
(

φ(k), h
)

→ 0 when φ(k) → 0 and h → 0.

Proof.

vn+1
m =

Ŵvnm + R
(

vnm+1 + vnm−1

)

1+
(

ρφ(k)
3

)

(vnm+1 + vnm + vnm−1)
, (85)

where Ŵ = 1− 2φ(k)
h2

+ ρφ(k), R = φ(k)
h2

. Taylor series expansion
of Equation (85) about (tn, xm) gives

(

v+ φ(k) vt +
(φ(k))2

2
vtt +

(φ(k))3

6
vttt + O

(

(φ(k))4
)

)

(

1+ ρ
φ(k)

3

{

v+ v+ h vx + h2

2 vxx + h3

6 vxxx + h4

24 vxxxx

+v− h vx + h2

2 vxx − h3

6 vxxx + h4

24 vxxxx

})

=
(

1−
2φ(k)

h2
+ ρ φ(k)

)

v

+
φ(k)

h2

{

v+ h vx + h2

2 vxx + h3

6 vxxx + h4

24 vxxxx

+v− h vx + h2

2 vxx − h3

6 vxxx + h4

24 vxxxx

}

This gives

v+ φ(k) vt +
(φ(k))2

2
vtt +

(φ(k))3

6
vttt

+ρ
φ(k)

3

(

v+ φ(k) vt +
(φ(k))2

2
vtt +

(φ(k))3

6
vttt

)

(

3 v+ h2 vxx +
h4

12
vxxxx

)

= v+
(

−
2φ(k)

h2
+ ρ φ(k)

)

v+
φ(k)

h2

(

2 v+ h2 vxx ++
h4

12
vxxxx

)

.

(86)

It follows after division by φ(k) and simplification, we have

vt +
(φ(k))

2
vtt +

(φ(k))2

6
vttt

+
ρ

3

(

φ(k) vt +
(φ(k))2

2
vtt +

(φ(k))3

6
vttt

)

(

3 v+ h2 vxx + h4

12 vxxxx

)

+
ρ

3
v(3 v)+

ρ

3
v
(

h2 vxx + h4

12 vxxxx

)

= vxx + ρ v+
h2

12
vxxxx. (87)

It follows that

vt − vxx + ρ v2 − ρ v

=



























(

h2

12 − ρ h4

36 v
)

vxxxx −
(

φ(k)
2 + ρ h4 φ(k)2

72 vxxxx + ρ
φ2(k)
2 v

)

vtt

+
(

ρ h2

3 v− ρ h2 φ(k)2

6 vtt

)

vxx

+
(

− φ(k)2

6 + ρ
φ(k)
3

[

φ(k)2

2 v+ h2 φ2(k)
6 vxx + h4 φ(k)2

72 vxxxx

])

vttt

+
(

−φ(k) v− ρ h2 φ(k)
3 − ρ h4 φ(k)

36 vxxxx

)

vt



























(88)

If φ(k) → 0 and h → 0, Equation (88) reduces to vt − vxx +
ρ v2 − ρ v → 0. Hence, the consistency.
For the simplicity of the proof, we consider the function 2i,
i = 1, 2, 3 such that

21(φ(k), h) = ρ
h2

3
v− ρ h2

φ(k)2

6
vtt

22(φ(k), h) = −
φ(k)2

6
+ ρ

φ(k)

3
[

φ2(k)

2
v+ h2

φ2

6
vxx + h4

φ(k)2

72
vxxxx

]

23(φ(k), h) = −φ(k) v− ρ h2
φ(k)

3
− ρ h4

φ(k)

36
vxxxx (89)

and 21(φ(k), h) vxx + 22(φ(k), h) vttt + 23(φ(k), h) vt =
O
(

φ(k), h
)

→ 0 when φ(k) → 0 and h → 0.
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The exact discrete equation is

un+1
m =

Ŵunm + R
(

unm+1 + unm−1

)

1+ ρφ(k)
3 (unm+1 + unm + unm−1)

+
(

φ(k)

2
+ ρ h4

φ(k)2

72
uxxxx(εm, t)+ ρ

φ2(k)

2
u

)

utt(x, τn)

−
(

h2

12
− ρ

h4

36
u

)

uxxxx(εm, t) (90)

where Ŵ = 1− 2φ(k)
h2

+ ρφ(k), R = φ(k)
h2

, and xm < εm < xm+1

and tn < τn < tn+1.

We define enm = unm − vnm ≡ en+1
m = un+1

m − vn+1
m . It

follows by considering symmetry condition Ŵ = R

un+1
m − vn+1

m

=































Ŵ
(

unm+1+unm+unm−1

)

1+ ρφ(k)
3 (unm+1+unm+unm−1)

−
Ŵ
(

vnm+1+vnm+vnm−1

)

1+ ρφ(k)
3 (vnm+1+vnm+vnm−1)

+
(

φ(k)
2 + ρ h4 φ(k)2

72 uxxxx(εm, t)+ ρ
φ2(k)
2 u

)

utt(x, τn)

−
(

h2

12 − ρ h4

36 u
)

uxxxx(εm, t)































. (91)

It follows

en+1
m

=
Ŵ
(

enm+1 + enm + enm−1

)

(

1+ ρφ(k)
3 (unm+1 + unm + unm−1)

) (

1+ ρφ(k)
3 (vnm+1 + vnm + vnm−1)

)

+
(

φ(k)

2
+ ρ h4

φ(k)2

72
uxxxx(εm, t)+ ρ

φ(k)2

2
u

)

utt(x, τn)

−
(

h2

12
− ρ

h4

36
u

)

uxxxx(εm, t) (92)

Let M = max{(x,t)} ∈Q

{

|uxxxx(x, t)|, |utt(x, t)|
}

and Enm =
max0<m<N{|enm|}. We have

(

1+
ρφ(k)

3
(unm+1 + unm + unm−1)

)

(

1+
ρφ(k)

3
(vnm+1 + vnm + vnm−1)

)

> 1,

∀ uni , v
n
i ∈ [0, 1], i = m− 1, m, m+ 1

and by using Theorem 3, we have

|en+1
m | ≤ |Ŵ|(|enm+1| + |enm| + |enm−1|)

+
∣

∣

∣

∣

(

φ(k)

2
+ ρ h4

φ(k)2

72
uxxxx(εm, t)+ ρ

φ(k)2

2
u

)∣

∣

∣

∣

|utt(x, τn)| +
∣

∣

∣

∣

−
(

h2

12
− ρ

h4

36
u

)∣

∣

∣

∣

|uxxxx(εm, t)|

≤ 3Ŵ Enm +
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2 (93)

Let

En+1
m = 3Ŵ Enm +

(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2.

We have

|en+1
m | ≤ En+1

m = 3Ŵ Enm +
(

φ(k)

2

+ρ
φ(k)2

2
+

h2

12
+ ρ

h4

36
) M + ρ h4

φ(k)2

72
M2 (94)

For n = 0, E1m = 3Ŵ E0m +
(

φ(k)
2 + ρ

φ(k)2

2 + h2

12 + ρ h4

36

)

M +

ρ h4 φ(k)2

72 M2

For n = 1, we have

E2m = 3Ŵ E1m +
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2

= 3Ŵ ( 3Ŵ E0m +
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2 )

+
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

= (3Ŵ)2 E0m + (1+ 3Ŵ)
[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

]

(95)

For n = 2, we have

E3m = 3Ŵ E2m +
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

= 3Ŵ

(

32 Ŵ2 + (1+ 3Ŵ)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2 ])

+
(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

= (3Ŵ)3 E0m + (1+ 3Ŵ + (3Ŵ)2)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M

+ρ h4
φ(k)2

72
M2] (96)
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By recurrence for n, we have

En+1
m = (3Ŵ)n E0m +

(

i−1
∑

i=0

(3Ŵ)i

)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

]

= (3Ŵ)n E0m +
(

1− (3Ŵ)n

1− 3Ŵ

)

[(

φ(k)

2
+ ρ

φ(k)2

2
+

h2

12
+ ρ

h4

36

)

M + ρ h4
φ(k)2

72
M2

]

(97)

7. EXPLICIT EXPONENTIAL FINITE
DIFFERENCE SCHEME

The EFFD method was developed by Bhattacharya [41]
(primarily called the Bhattacharya method) for the numerical
solution of the heat equation. The Exponential Finite
Difference method was utilized to solve Burgers’ equation
and generalized Huxley and Burgers-Huxley equations [42–44].
Later, Macías-Díaz and Ĩnan [45] used modified exponential
methods to obtain the solution of the Burgers’ equation.
Furthermore, Inan et al. [46] utilized the EEFD method
for numerical solutions for the Newell-Whitehead-Segel
type equations which are very useful in biomathematics.
They showed convergence, consistency, and stability of the
method.

In this section, we obtain numerical solutions of the equation
by EEFD method. The solution domain are discretized into cells
as (xm, tn) in which xm = mh, (m = 0, 1, 2, ...,N) and tn =
nk, (n = 0, 1, 2, ...), h = 1x = b−a

N is the spatial mesh size and
k = 1t is the time step, unm denotes the EEFD approximation
and u(x, t) denotes the exact solution.

Dividing Equation (6) by u gives

∂ ln u

∂t
=

1

u

(

u (1− u) +
∂2u

∂x2

)

. (98)

Using the finite difference approximations for derivatives,
Equation (98) gives

un+1
m = unm exp

{

k
(

1− unm
)

+ R

(

unm+1 − 2unm + unm−1

unm

)}

(99)

where R = k
h2
. Equation (99) gives the expression for the EEFD

method for Fisher’s equation.

7.1. Convergence and Estimate Error
For stability analysis, we require non-iterative exponential
time-linearization and iterative exponential quasilinearization
techniques for Equation (6) which are found in the discretization
of the time derivative, the freezing of the coefficients of the
resulting linear ordinary differential equations, and the piecewise
analytical solution of these ordinary differential equations. These

techniques give three-point finite difference expressions that
depend in an exponential manner on either the diffusion,
reaction, and transient terms or the diffusion and reaction terms.
Following the idea of Ramos [25], we transform (Equations 6,
99) into a linear ordinary differential equation by discretizing
the time derivative by means of θ-method [25] and linearizing
the nonlinear source term, u(1 − u), with respect to either the
previous time level or the previous iteration with Jacobian, J =
d(u(1−u))

du
= 1− 2 u:

a) If the linearization is performed with respect to the previous
time level, one obtains

un+1
m − unm

k
= θ

un+1
m−1 − 2 un+1

m + un+1
m+1

h2

+(1− θ)
unm−1 − 2 unm + unm+1

h2

+unm(1− unm)

+θ Jnm (un+1
m − unm) (100)

which yields a non-iterative time linearization method.
b) If the linearization is performed with respect to the previous

iteration, one obtains

ui+1
m − unm

k
= θ

ui+1
m−1 − 2 ui+1

m + ui+1
m+1

h2

+(1− θ)
unm−1 − 2 unm + unm+1

h2

+(1− θ) unm(1− unm)+ θ un+1
m (1− ui+1

m )

+θ Ji+1
m (ui+1

m − unm) (101)

which corresponds to an iterative quasilinear technique and
i = 1, 2, · · · , n.

Equations (100) and (101) can be solved in closed form in
(xm−1, xm+1) subject to the following conditions:

u(xm−1) = um−1, u(xm) = um, u(xm+1) = um+1 (102)

and yield exponential solutions in (xm−1, xm+1) which are
analytical in that interval and continuous everywhere. Since
Equations (100) and (101) are very similar, we will only present
in detail exponential methods for Equation (100) in the following
subsections.

7.1.1. Time-Linearized Full Exponential Techniques
The piecewise analytical solution of Equation (100) can be
rewritten as

(

θ Jnm −
1

k

)

un+1
m + θ

un+1
m−1 − 2 un+1

m + un+1
m+1

h2

=
(

θ Jnm −
1

k

)

unm − (1− θ)
unm−1 − 2 unm + unm+1

h2

−unm(1− unm). (103)
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TABLE 1 | L1 and L∞ errors at some different values of time-step size, k with ρ = 1 at time, Tmax = 2.5× 10−3 with spatial mesh size, h = 0.01 using three methods.

Values of k
FTCS NSFD EEFD

L1 error L∞ error L1 error L∞ error L1 error L∞ error

Tmax/52 5.4192 × 10−9 6.3334 × 10−9 3.2264 × 10−8 3.7216 × 10−8 4.1091 × 10−9 5.1492 × 10−9

Tmax/100 2.8854 × 10−9 3.3694 × 10−9 1.7026 × 10−8 1.9624 × 10−8 2.0683 × 10−9 2.6091 × 10−9

Tmax/200 1.5135 × 10−9 1.7645 × 10−9 8.7757 × 10−9 1.0098 × 10−8 9.6251 × 10−10 1.2354 × 10−9

Tmax/300 1.0563 × 10−9 1.7645 × 10−9 6.0260 × 10−9 6.0260 × 10−9 5.9431 × 10−10 7.7761 × 10−10

Tmax/400 8.2780 × 10−10 9.6234 × 10−10 4.6512 × 10−9 5.3361 × 10−9 4.1024 × 10−10 5.4763 × 10−10

Tmax/500 6.9066 × 10−10 8.0194 × 10−10 3.8264 × 10−9 4.3837 × 10−9 2.9973 × 10−10 4.1032 × 10−10

Tmax/600 5.9924 × 10−10 6.9502 × 10−10 3.2766 × 10−9 3.7488 × 10−9 2.2612 × 10−10 3.1904 × 10−10

Tmax/700 5.3392 × 10−10 6.1863 × 10−10 2.8838 × 10−9 3.2954 × 10−9 1.7352 × 10−10 2.5366 × 10−10

Tmax/800 4.8495 × 10−10 5.6136 × 10−10 2.5894 × 10−9 2.9554 × 10−9 1.3402 × 10−10 2.0476 × 10−10

Tmax/900 4.4686 × 10−10 5.1681 × 10−10 2.3602 × 10−9 2.6910 × 10−9 1.0334 × 10−10 1.6694 × 10−10

Tmax/1,000 4.1639 × 10−10 4.8117 × 10−10 2.1769 × 10−9 2.4795 × 10−9 7.8784 × 10−11 1.3668 × 10−10

Tmax/1,100 3.9144 × 10−10 4.5199 × 10−10 2.0269 × 10−9 2.3064 × 10−9 5.8705 × 10−11 1.1192 × 10−10

Tmax/1,200 3.7066 × 10−10 4.2769 × 10−10 1.9019 × 10−9 2.1622 × 10−9 4.1956 × 10−11 9.1419 × 10−11

Tmax/1,300 3.5308 × 10−10 4.0714 × 10−10 1.7962 × 10−9 2.0402 × 10−9 3.0241 × 10−11 7.4118 × 10−11

Tmax/1,400 3.3801 × 10−10 3.8953 × 10−10 1.7056 × 10−9 1.9356 × 10−9 2.3908 × 10−11 5.9401 × 10−11

Tmax/1,500 3.2496 × 10−10 3.7427 × 10−10 1.6270 × 10−9 1.8449 × 10−9 2.1174 × 10−11 4.6738 × 10−11

Tmax/1,600 3.1353 × 10−10 3.6091 × 10−10 1.5583 × 10−9 1.7656 × 10−9 2.0904 × 10−11 3.5802 × 10−11

Tmax/1,700 3.0345 × 10−10 3.4913 × 10−10 1.4976 × 10−9 1.6956 × 10−9 2.2344 × 10−11 4.2194 × 10−11

Tmax/1,800 2.9449 × 10−10 3.3866 × 10−10 1.4438 × 10−9 1.6335 × 10−10 2.4984 × 10−11 4.8536 × 10−11

Tmax/2,000 2.9449 × 10−10 3.3866 × 10−10 1.3521 × 10−9 1.5279 × 10−10 3.2504 × 10−11 5.9412 × 10−11

Bold values indicate the lowest errors.

TABLE 2 | L1 and L∞ errors at some different values of time-step size, k with ρ = 102 at time, Tmax = 2.5× 10−3 with spatial mesh size, h = 0.01 using three methods.

Values of k
FTCS NSFD EEFD

L1 error L∞ error L1 error L∞ error L1 error L∞ error

Tmax/52 3.2613 × 10−5 6.9142 × 10−5 6.3178 × 10−5 1.3471 × 10−4 2.2654 × 10−5 7.2263 × 10−5

Tmax/100 1.7120 × 10−5 3.6652 × 10−5 3.3705 × 10−5 7.2133 × 10−5 1.1628 × 10−5 3.7401 × 10−5

Tmax/200 8.7183 × 10−6 1.9060 × 10−5 1.7709 × 10−5 3.8414 × 10−5 5.6602 × 10−6 1.8584 × 10−5

Tmax/300 5.9159 × 10−6 1.3196 × 10−5 1.2371 × 10−5 2.7303 × 10−5 3.6732 × 10−6 1.2324 × 10−5

Tmax/400 4.5154 × 10−6 1.0268 × 10−5 9.7020× 10−6 2.1809× 10−5 2.6794 × 10−6 9.1874 × 10−6

Tmax/500 3.6749 × 10−6 8.5169 × 10−6 8.1001 × 10−6 1.8545 × 10−5 2.0833 × 10−6 7.3251 × 10−6

Tmax/600 3.1146 × 10−6 7.3489 × 10−6 7.0319 × 10−6 1.6379 × 10−5 1.6864 × 10−6 6.0864 × 10−6

Tmax/700 2.7143 × 10−6 6.5146 × 10−6 6.2689 × 10−6 1.4842 × 10−5 1.4024 × 10−6 5.2014 × 10−6

Tmax/800 2.4141 × 10−6 5.8925 × 10−6 5.6966 × 10−6 1.3689 × 10−5 1.1903 × 10−6 4.5376 × 10−6

Tmax/900 2.1806 × 10−6 5.4093 × 10−6 5.2515 × 10−6 1.2802 × 10−5 1.0244 × 10−6 4.0219 × 10−6

Tmax/1,000 1.9941 × 10−6 5.0227 × 10−6 4.8954 × 10−6 1.2093 × 10−5 8.9174 × 10−7 3.6143 × 10−6

Tmax/1,100 1.8416 × 10−6 4.7064 × 10−6 4.6040 × 10−6 1.1513 × 10−5 7.8356 × 10−7 3.2846 × 10−6

Tmax/1,200 1.7144 × 10−6 4.4428 × 10−6 4.3612 × 10−6 1.1030 × 10−5 7.0876 × 10−7 3.0099 × 10−6

Tmax/1,300 1.6068 × 10−6 4.2197 × 10−6 4.1557 × 10−6 1.0621 × 10−5 6.5558 × 10−7 2.7774 × 10−6

Tmax/1,400 1.5153 × 10−6 4.0298 × 10−6 3.9797 × 10−6 1.0274 × 10−5 6.1557 × 10−7 2.5767 × 10−6

Tmax/1,500 1.4371 × 10−6 3.8658 × 10−6 3.8279 × 10−6 9.9737 × 10−6 5.8466 × 10−7 2.4043 × 10−6

Tmax/1,600 1.3698 × 10−6 3.7222 × 10−6 3.6960 × 10−6 9.7113 × 10−6 5.6048 × 10−7 2.2528 × 10−6

Tmax/1,700 1.3113 × 10−6 3.5956 × 10−6 3.5803 × 10−6 9.4798 × 10−6 5.4168 × 10−7 2.1186 × 10−6

Tmax/1,800 1.2601 × 10−6 3.4830 × 10−6 3.4781 × 10−6 9.2740 × 10−6 5.2654 × 10−7 2.0034 × 10−6

Tmax/2,000 1.1748 × 10−6 3.2916 × 10−6 3.3055 × 10−6 8.9242 × 10−6 5.0458 × 10−7 1.807 × 10−6

Bold values indicate the lowest errors.
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TABLE 3 | L1 and L∞ errors at some different values of time-step size, k with ρ = 104 at time, Tmax = 2.5× 10−3 with spatial mesh size, h = 0.01 using three methods.

Values of k
FTCS NSFD EEFD

L1 error L∞ error L1 error L∞ error L1 error L∞ error

Tmax/52 3.6440 × 10−1 1.6012 1.1960 × 10−1 9.1526 × 10−1 over flow over flow

Tmax/100 6.5143 × 10−2 6.9877 × 10−1 7.0119 × 10−2 7.1253 × 10−1 1.3594 × 10−2 1.5978 × 10−1

Tmax/200 3.2980 × 10−2 3.9927 × 10−1 3.6170 × 10−2 4.1776 × 10−1 1.0084 × 10−2 1.1786 × 10−1

Tmax/300 2.0726 × 10−2 2.5613 × 10−1 2.3034 × 10−2 2.7854 × 10−1 8.9264 × 10−3 1.0476 × 10−1

Tmax/400 1.4262 × 10−2 1.7830 × 10−1 1.6098× 10−2 1.9602× 10−1 8.3519 × 10−3 9.8394 × 10−2

Tmax/500 1.0268 × 10−2 1.2943 × 10−1 1.1810 × 10−2 1.4691 × 10−1 8.0087 × 10−3 9.4591 × 10−2

Tmax/600 7.5556 × 10−3 9.5604 × 10−2 8.8965 × 10−3 1.1270 × 10−1 7.7810 × 10−3 9.2071 × 10−2

Tmax/700 5.5928 × 10−3 7.1037 × 10−2 6.7882 × 10−3 8.7558 × 10−2 7.6182 × 10−3 9.0294 × 10−2

Tmax/800 4.1067 × 10−3 5.2473 × 10−2 5.1924 × 10−3 6.8387 × 10−2 7.4974 × 10−3 8.8949 × 10−2

Tmax/900 2.9425 × 10−3 3.7988 × 10−2 3.9442 × 10−3 5.3326 × 10−2 7.4020 × 10−3 8.7921 × 10−2

Tmax/1, 000 2.0059 × 10−3 2.6389 × 10−2 2.9442 × 10−3 4.1202 × 10−2 7.3264 × 10−3 8.7094 × 10−2

Tmax/1,100 1.2403 × 10−3 1.6901 × 10−2 2.1334 × 10−3 3.1242 × 10−2 7.2643 × 10−3 8.6421 × 10−2

Tmax/1,200 6.2582 × 10−4 9.0012 × 10−3 1.4824 × 10−3 2.2920 × 10−2 7.2120 × 10−3 8.5864 × 10−2

Tmax/1,300 1.9347× 10−4 2.3239× 10−3 9.7801 × 10−4 1.5866 × 10−2 7.1694 × 10−3 8.5384 × 10−2

Tmax/1,400 4.2509 × 10−4 4.3457 × 10−3 6.3252 × 10−4 9.8126 × 10−3 7.1310 × 10−3 8.4982 × 10−2

Tmax/1,500 8.3336 × 10−4 8.7691 × 10−3 4.5235× 10−4 4.5623× 10−3 7.0992 × 10−3 8.4631 × 10−2

Tmax/1,600 1.1913 × 10−3 1.3138 × 10−2 5.0611 × 10−4 5.3708 × 10−3 7.0703 × 10−3 8.4321 × 10−2

Tmax/1,700 1.5077 × 10−3 1.7003 × 10−2 8.4385 × 10−4 7.6874 × 10−3 7.0451 × 10−3 8.4052 × 10−2

Tmax/1,800 1.7895 × 10−3 2.0446 × 10−2 1.1467 × 10−3 1.0154 × 10−2 7.0231 × 10−3 8.3812 × 10−2

Tmax/2,000 1.5538 × 10−2 1.8402 × 10−1 1.6628 × 10−3 1.5383 × 10−2 6.9852× 10−3 8.3399× 10−2

Bold values indicate the lowest errors.

Let
(

θ Jnm − 1
k

)

un+1
m + θ

un+1
m−1−2 un+1

m +un+1
m+1

h2
= zn+1

m .
Equation (103) becomes

zn+1
m =

(

θ Jnm −
1

k

)

unm − (1− θ)
unm−1 − 2 unm + unm+1

h2

−unm(1− unm) (104)

which accounts for diffusion, reaction, and transient effects in
the differential operator [25]. The solution of Equation (104)
depends on the sign of Dn

m ≡ θ Jnm − 1
k
. We have the following

three cases:

a) If Dn
m = 0, the solution of Equation (104) subject to the

condition (102) gives the finite difference expression

zn+1
m =

unm−1 − 2 unm + unm+1

h2
. (105)

b) If Dn
m = −θ (λm)

2 < 0,the solution of Equation (104) subject
to the condition (102) gives the three-point finite difference
expression

zn+1
m =

Dn
m

2

(

unm−1 − 2 cosh(λm h) unm + unm+1

1− cosh(λm h)

)

. (106)

c) If Dn
m = θ (λm)

2 > 0, the solution of Equation (104) subject
to the condition (102) gives the three-point finite difference
expression

zn+1
m =

Dn
m

2

(

unm−1 − 2 cos(λm h) unm + unm+1

1− cos(λm h)

)

. (107)

REMARK 1. We can make the following remarks

a) The values θ = 1
2 , 1, corresponding to the time linearization

methods.
b) The quasilinear full exponential corresponds to the iterative

solution of

zi+1
m = −(1− θ)

unm−1 − 2 unm + unm+1

h2

−(1− θ) unm(1− unm)− θ uim(1− uim)+ θ Jim uim −
unm
k
(108)

for i = 1, 2 , ·· , n − 1, have analogous solutions to those
reported in time-linearized full exponential techniques section
and the cases θ = 1

2 and 1, corresponding to the quasilinear
methods.

7.1.2. Time-Linearized Exponential Techniques
The time-linearized exponential techniques presented in this
section consider the following differential operator.

θ Jnm un+1
m + θ

un+1
m−1 − 2 un+1

m + un+1
m+1

h2
= θ Jnm unm

−(1− θ)
unm−1 − 2 unm + unm+1

h2
+

um − unm
k

−unm(1− unm) (109)
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A

B

C

FIGURE 1 | Plot of initial solution, numerical solution of (FTCS), NSFD, and EEFD respectively in (A–C) and exact solution against x at time, Tmax = 2.5× 10−3 using

h = 0.01 and optimal value of time step size of k for three different values of ρ namely 1, 102, and 104.

Let θ Jnm un+1
m + θ

un+1
m−1−2 un+1

m +un+1
m+1

h2
= zn+1

m . The Equation (109)
becomes

zn+1
m = θ Jnm unm − (1− θ)

unm−1 − 2 unm + unm+1

h2

+
um − unm

k
− unm(1− unm) (110)

which only accounts for reaction and diffusion processes
and whose solutions depend on the sign of Jnm. We
have therefore the solution of Equation (110) subject
to the condition (Equation 102) gives the solution in
form of:

a) If Jnm = 0

um−1 −
(

2+
h2

k

)

um + um+1

= −
h2

k
(unm + k unm (1− unm)), tn < t < tn+1. (111)

b) If Jnm = −(λm)
2 < 0

um−1 −
2+ (k Jnm − 1)(e−λm h + eλm h)

k Jnm
um

+um+1

=
2− (e−λm h + eλm h)

k Jnm
[−um + k (Jnm um − unm (1− unm))],

tn < t < tn+1. (112)
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c) If Jnm = (λm)
2 > 0

um−1 − 2
1+ (k Jnm − 1)cos(λm h)

k Jnm
um + um+1

= 2
1− (cos(λm h)

k Jnm
[−um + k (Jnm um − unm (1− unm))],

tn < t < tn+1. (113)

REMARK 2. The quasilinear full exponential corresponds to the
iterative solution of

θ Jim un+1
m + θ

un+1
m−1 − 2 un+1

m + un+1
m+1

h2
= θ Jnm unm

−(1− θ)
unm−1 − 2 unm + unm+1

h2
+

um − unm
k

−(1− θ) unm(1− unm)− θ uim (1− uim) (114)

for i = 1, 2 · · · n− 1, have analogous solutions to those reported
in time-linearized exponential techniques Section 7.1.2.

REMARK 3. The principal primacy of the full exponential
techniques is that they reckon for the reaction, diffusion,
and transient terms in finding the homogeneous solution of
Equation (103). Notwithstanding, this technique also has the
disadvantage that the time step cannot be chosen carelessly
because, if k ≪ 1

θ Jni
then the reaction terms do not influence the

values of λm despite the fact that they do influence the particular
solution of Equation (103) through zn+1

m . On top of that, the
portion of the transient term influences the ordinary differential
operator and, therefore, the homogeneous solution, though the
other part influences the particular solution. These obstacles are
fully suppressed with the exponential techniques displayed in the
time-linearized exponential techniques and the quasilinear full
exponential in Section 7.1.2.

THEOREM 5. Ramos [25]. The schemes displayed in
Equations (100) and (101) are convergent and convergence
is reached when

(enm)
2 =

1

N

N
∑

j=1

(ui+1
j − uij)

2 ≤ 10−|α| (115)

where i = 1, 2 · · ·n and |α| is an integer obtained from numerical
computation, N denotes the number of grid points, and enm is the
error which is defined by enm = unm − vnm.

Proof. The full proof of this theorem is detailed in Ramos [25].

8. NUMERICAL RESULTS

The stability region of FTCS is k ≤ h2

2 . For h = 0.01, we
obtain k ≤ 5 × 10−5. In the case of NSFD, the condition for

TABLE 4 | Rate of convergence in time for FTCS using different values of ρ at

time, Tmax = 2.5 × 10−3 with h = 0.01.

Values

of ρ

Values of k Rate of convergence

in time using L1

Rate of convergence

in time using L∞

error

1 Tmax/100

Tmax/200 0.9309 0.9332

Tmax/400 0.8705 0.8746

Tmax/800 0.7714 0.7776

102 Tmax/100

Tmax/200 0.9736 0.9433

Tmax/400 0.9492 0.8924

Tmax/800 0.9034 0.8012

104 Tmax/100

Tmax/200 0.9820 0.8075

Tmax/400 1.2094 1.1631

TABLE 5 | Rate of convergence in time for NSFD using different values of ρ at

time, Tmax = 2.5 × 10−3 with h = 0.01.

Values

of ρ

Values of k Rate of convergence

in time using L1

Rate of convergence

in time using L∞

error

1 Tmax/100

Tmax/200 0.9561 0.9585

Tmax/400 0.9159 0.9202

102 Tmax/100

Tmax/200 0.9284 0.9090

Tmax/400 0.8681 0.8167

104 Tmax/100

Tmax/200 0.9769 0.7702

TABLE 6 | Rate of convergence in time for EEFD using different values of ρ at

time, Tmax = 2.5 × 10−3 with h = 0.01.

Values

of ρ

Values of k Rate of convergence

in time using L1

Rate of convergence

in time using L∞

error

1 Tmax/100

Tmax/200 1.1030 1.0795

Tmax/400 1.2306 1.1727

102 Tmax/100

Tmax/200 1.0384 1.0091

Tmax/400 1.0789 1.0162

Tmax/800 1.1714 1.0176

104 Tmax/100

Tmax/200 0.4317 0.4388

positivity gives φ(k) ≤ h2

2 where φ(k) = 1−eλ k

λ
. We tabulate

L1 and L∞ errors at certain values of k using ρ = 1, h = 0.01,
at time, Tmax = 2.5 × 10−3 using FTCS, NSFD, and EEFD
schemes at certain various values of time-step size as chosen from
Tmax/52, Tmax/100, Tmax/200, · · · , Tmax/1,800, Tmax/1,900 and
Tmax/2,000. The errors are shown in Table 1.
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In the case of FTCS, NSFD, minimum L1, and L∞ errors occur
at k = Tmax/2,000 while in the case of EEFD, the errors are least
k = Tmax/1,600. The least error is of order 10

−9 and 10−10 in
the case of NSFD and FTCS respectively while the least error is
of order 10−11 in the case of EEFD. EEFD is a better scheme than
FTCS at all values of k used.

We obtain values for L1 and L∞ errors at certain values of k
using ρ = 102, h = 0.01, at time, Tmax = 2.5 × 10−3 using the
three methods in Table 2. The schemes behave differently. In all
the three methods FTCS, NSFD, and EEFD, the L1 and L∞ errors
keep on decreasing as the values of k are decreased gradually from
k = Tmax/52 to k = Tmax/2,000.

L1 and L∞ errors for the third case using ρ = 104,
h = 0.01 are displayed in Table 3. Again, the schemes behave
differently from each other. Optimal k using FTCS occurs when
k ≅ Tmax/1,300. The optimal k using NSFD and EEFD
are k ≅ Tmax/1,500 and k ≅ Tmax/2,000, respectively.
Once that optimal is reached the error starts increasing again.
The least L1 and L∞ errors using NSFD are 4.5235 × 10−4

and 4.5623 × 10−3. The corresponding errors are 1.9347 ×
10−4 and 2.3239 × 10−3 when FTCS is used. In the case of
EEFD, least L1 is 6.9852 × 10−3 and least L∞ is 8.3399 ×
10−2.

We obtain plots of numerical solution vs. x at time, Tmax =
2.5 × 10−3 using three methods FTCS, NSFD, and EEFD in
Figure 1.

9. CONCLUSION

We have investigated in this paper the spectral analysis and
optimal step sizes for some finite difference methods discretising
Fisher’s equation. We used three methods namely; FTCS, NSFD,
and EEFD in order to solve Fisher’s equation with a coefficient
of reaction being 10, 102, and 104. We studied the properties of
the methods such stability, positivity, and boundedness. This is
the one of rare article which includes the estimate errors for the
methods studied. Numerical results are displayed at optimal time
step size with h = 0.01 for the three cases for the three methods
used. We also obtained numerically the rate of convergence as
shown in Tables 4–6. We have shown from Tables 1–3 that all
the three methods (FTCS, NSFD, and EEFD) perform well for the
small coefficient of reaction. It is worthymentioning that freezing
coefficient technique with Von Neumann Stability Analysis only
present an approximate stability region for standard methods
discretising non linear partial differential equations which might

give reason to the standard method in Table 1 to perform
better than the NSFD. Furthermore the NSFD in regard to
the discrete representation derivative in Mickens [39] rule has
nontrivial denominator function and make use of positivity and
boundedness conditions. Finally the results are dependent on
initial conditions used. For ρ = 1, the difference in L1 and
L∞ errors from the three methods is very small which lead to
conclude that the best methods are FTCS and NSFD. Also for
ρ = 102 and ρ = 104, the best method are EEFD and NSFD,
respectively. Our results matched with the one found in Lubuma
and Roux [47] for numerical experiment for small reaction
term. Moreover, Lubuma and Roux [47] proved that NSFD is
elementary stable. As NSFDmethods, the EEFD displayed in this
article do not require any knowledge of the exact solution of the
differential equation. Contrast to that, the best finite difference
scheme is stable for large grid sizes but costly in inaccuracies at
the propagation front.
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Plant disease incidence rate and impacts can be influenced by viral interactions

amongst plant hosts. However, very few mathematical models aim to

understand the viral dynamics within plants. In this study, we will analyze the

dynamics of two models of virus transmission in plants to incorporate either

a time lag or an exposed plant density into the system governed by ODEs.

Plant virus propagation model by vector (PVPMV) divided the population into

four classes: susceptible plants [S(t)], infectious plants [I(t)], susceptible vectors

[X(t)], and infectious vectors [Y(t)]. The approximate solutions for classes S(t),

I(t), X(t), and Y(t) are determined by the implementation of exhaustive scenarios

with variation in the infection ratio of a susceptible plant by an infected vector,

infection ratio of vectors by infected plants, plants’ natural fatality rate, plants’

increased fatality rate owing to illness, vectors’ natural fatality rate, vector

replenishment rate, and plants’ proliferation rate, numerically by exploiting

the knacks of the Adams method (ADM) and backward di�erentiation formula

(BDF). Numerical results and graphical interpretations are portrayed for the

analysis of the dynamical behavior of disease by means of variation in physical

parameters utilized in the plant virus models.

KEYWORDS

plant virus propagation model by vector (PVPMV), Adams method (ADM),

backward di�erentiation formula (BDF), ordinary di�erential equations (ODEs),

virus transmission, time lag

Introduction

Plants provide food for humans and many other animals. They also provide

medicines, clothing fibers, and are necessary for a healthy atmosphere. Plants, on the

other hand, are susceptible to diseases, which are mostly triggered by viruses. The plant

is frequently killed by these viruses. As a result, virus-related crop losses cost billions

of dollars annually. Virus propagation is primarily carried out by a vector; insects

which bite infectious plants become infected and subsequently infect susceptible plants.

Seasonal behavior is common among insect vectors. They are most active throughout

the summer and almost nearly dormant during the winter. Chemical pesticides are
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often employed as a control to battle vectors. Regrettably, these

chemicals are not only overpriced, but they are also harmful to

humans, animal life, as well as environment. Another option is

to introduce a predator species, or just boost the population of

one that already exists, to predate upon the insects as well as limit

the virus’s transmission. The vector population can be controlled

with a combination of pesticides and predators. An effective

mathematical model can be exploited to study the dynamics

of pathogenic plant diseases. Indeed, mathematical analysis and

numerical simulations are quite valuable in comprehending the

dynamics of plant disease propagation and evaluating the impact

of various disease control techniques.

Several mathematical models have been established to

provide a detailed exposition of how to analyze, interpret, and

forecast plant pathogenic farming epidemics as a mechanism

for formulating and testing crop countermeasures and control

measures [1–4]. A variety of epidemiology models based

upon those used mostly in animal or human epidemiology

have been created to assess the population ecosystem of viral

infections [5–10]. The delay differential equations can be

used to define relatively different formulations of epidemic

proliferation. The application of delayed differential equations

in epidemiological studies extends back to Van Der Plank’s

pioneering work [11], when these models were first proposed

to represent plant diseases. The work of Van Der Plank

seemed to have a limited impact on epidemic models, owing

to the model hypotheses being particularly specific to plant

pathology. However, a version of the Van Der Plank model

has been shown to be well-suited to characterize human/animal

diseases [12]. Stella et al. investigated the dynamics of the

plant epidemic model and the presence and stability of

distinct model equilibria. In the absence of delay, the Routh-

Hurwitz criterion is employed to assess the stability of the

disease free and epidemic equilibrium. In the existence of

delay, the stability of epidemic equilibrium is also studied

[13]. The bifurcation modulation of a fractional mosaic virus

TABLE 1 Description and default parameters setting of for non-linear

PVPMV [25].

Parameters Description Value

N Total density of plants 100

γ Rate of infection of a susceptible plant by an

infected vector

0.01

γ1 Infection ratio of vectors by infected plants 0.01

υ Plants’ natural fatality rate 0.1

r Vectors’ natural fatality rate 0.2

� Vector replenishment rate 10

c Plants’ increased fatality rate owing to illness 0.1

m Plants’ proliferation rate 5

δ Time delay 2

infectious disease model of Jatropha curcas with agricultural

understanding and an executing delay was examined by Liu

et al. Hopf bifurcation generated by the executing delay

is explored for the unconstrained system by examining the

corresponding characteristic equation [5]. Basir et al. developed

a mathematical model that included multiple time delays as

well as a Holling type-II functioning responses. The basic

reproductive number and delays in time are used to determine

the presence and stability of the equilibria. The delayed system’s

cost-effectiveness was assessed using the optimal control theory

[14]. Ray et al. proposed a mathematical model to analyze

TABLE 2 Scenarios for model A and model B of non-linear PVPMV.

Model A Model B

Scenario 1 for the rate of infection of a susceptible plant by an infected vector

C-1 γ = 0.001 γ = 0.001

C-2 γ = 0.004 γ = 0.004

C-3 γ = 0.006 γ = 0.006

C-4 γ = 0.007 γ = 0.007

C-5 γ = 0.009 γ = 0.009

Model A Model B

Scenario 2 for the rate at which an infected plant infects a susceptible vector

C-1 γ1 = 0.001 γ1 = 0.001

C-2 γ1 = 0.002 γ1 = 0.002

C-3 γ1 = 0.003 γ1 = 0.003

C-4 γ1 = 0.004 γ1 = 0.004

C-5 γ1 = 0.005 γ1 = 0.005

Model A Model B

Scenario 3 for disease’s additional fatality rate

C-1 c= 0.1 c= 0.1

C-2 c= 0.2 c= 0.2

C-3 c= 0.3 c= 0.3

C-4 c= 0.4 c= 0.4

C-5 c= 0.5 c= 0.5

Model A Model B

Scenario 4 for the plants’ natural fatality rate

C-1 r= 0.1 r= 0.1

C-2 r= 0.2 r= 0.2

C-3 r= 0.3 r= 0.3

C-4 r= 0.4 r= 0.4

C-5 r= 0.6 r= 0.6

Model A Model B

Scenario 5:υ plants’ natural fatality rate for model A, � vector

replenishment rate for model B

C-1 υ = 0.1 � = 10

C-2 υ = 0.2 � = 100

C-3 υ = 0.3 � = 110

C-4 υ = 0.4 � = 210

C-5 υ = 0.5 � = 250
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the dynamics that included the incubation period as a time

delay component for the vector-borne plant epidemic. The

occurrence and stability of equilibrium have been investigated

based on the reproduction number. Hopf bifurcation causes

stability variations in the delaying and non-delaying systems

[15]. Abraha et al. studied a mathematical model that included

two time delays in agricultural pest management as well as

the effect of farmer awareness. They assumed that the number

of healthy parasites in the particular crop is proportionate

to the growth of self-aware individuals. A saturation term is

used to model the effects of awareness. The basic reproductive

FIGURE 1

Working procedure of design approach for non-linear PVPMV.

number, as well as time delays, are used to determine the

presence and stability of the equilibrium. Whenever time

delays reach the optimum values, stability transitions occur

due to Hopf-bifurcation. The delayed system’s cost-effectiveness

was analyzed using adaptive control theory [16]. Phan et al.

designed a system of differential equations including delay to

represent the cell-to-cell propagation of infection by cereal

and barley yellow dwarf pathogens throughout the plant. The

model may capture a broad range of biologically pertinent

phenomena through disease-free, epidemic, bilateral mortality

equilibria, and a persistent periodical orbit by including a

ratio-dependent incident function and logistic proliferation

of healthy cells [17]. Blyuss et al. developed and analyzed

a mathematical model for controlling the mosaic disease

with natural microbiological biostimulants that, in addition

to promoting plant development, also protect plants from

infection via an RNA interference mechanism. They revealed

how characteristics of biostimulants affect disease dynamics,

and in particular, how they determine whether the mosaic

disease is eliminated or preserved at a consistent level, by

measuring the resilience of the system’s equilibria [18]. Alemneh

et al. introduced and assessed/analyzed an eco-epidemiological

model of maize streak virus infection dynamics in order to

evaluate the optimal strategy for preserving maize populations

from the disease. To obtain an optimum controlling strategy,

they applied the Pontryagin’s maximum criterion to derive the

Hamiltonian, control characterization, adjoint variables and the

optimization system [19]. Amelia et al. presented amathematical

model of the yellow virus’s spread in red chili plants, using

the logistical function to predict the increase of insects as

disease vectors. By calculating the dominating eigenvalue of

the next generational matrix, we may determine the value

of the fundamental reproduction number namely R0 of the

model [20]. Kendig et al. investigated a mathematical model

TABLE 3 Numerical outcomes of non-linear PVPMV model A for case-1 of scenario 2.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 90.0000 10.0000 47.0000 47.0000 90.0000 10.0000 47.0000 47.0000

3 46.2099 53.7901 44.1326 30.5029 45.8928 54.1072 44.0134 30.1343

6 44.9054 55.0946 41.4564 22.0639 45.0189 54.9811 41.3998 21.8527

9 49.4698 50.5302 40.4576 16.9624 49.6415 50.3585 40.4446 16.8286

12 54.5650 45.4350 40.4169 13.6554 54.7283 45.2717 40.4251 13.5665

15 59.1522 40.8478 40.8143 11.4206 59.2932 40.7068 40.8314 11.3592

18 63.0405 36.9595 41.3740 9.8525 63.1582 36.8418 41.3936 9.8086

21 66.2645 33.7355 41.9611 8.7120 66.3616 33.6384 41.9803 8.6795

24 68.9206 31.0794 42.5148 7.8546 69.0006 30.9994 42.5323 7.8298

27 71.1121 28.8878 43.0115 7.1912 71.1783 28.8217 43.0270 7.1718

30 72.9859 27.0141 43.4595 6.6495 72.9307 27.0692 43.4460 6.6652
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FIGURE 2

(A) Dynamics of susceptible plants for the varition in γ1 using ADM for model A. (B) Dynamics of susceptible plants for the varition in γ1 using

BDF for model A.

FIGURE 3

(A) Dynamics of infected plants for the varition in γ1 using ADM for model A. (B) Dynamics of infected plants for the varition in γ1 using BDF for

model A.
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FIGURE 4

(A) Dynamics of susceptible vectors for the varition in γ1 using ADM for model A. (B) Dynamics of susceptible vectors for the varition in γ1 using

BDF for model A.

FIGURE 5

(A). Dynamics of infected vectors for the varition in γ1 using ADM for model A. (B) Dynamics of infected vectors for the varition in γ1 using BDF

for model A.
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FIGURE 6

(A) Dynamics of susceptible plants for the varition in υ using ADM for model A1. (B) Dynamics of susceptible plants for the varition in υ using

BDM for model A1.

FIGURE 7

(A) Dynamics of infected plants for the varition in υ using ADM for model A1. (B) Dynamics of infected plants for the varition in υ using BDF for

model A1.
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FIGURE 8

(A) Dynamics of infected plants for the varition in υ using ADM for model A1. (B) Dynamics of infected plants for the varition in υ using BDF for

model A1.

FIGURE 9

(A) Dynamics of susceptible vectors for the varition in r using ADM for model A1. (B) Dynamics of susceptible vectors for the varition in r using

BDF for model A1.
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depicting the propagation of two viruses in a plant density,

parameterized assuming empirically determined transmitting

values, and discovered that nutrient pathogen communication

could influence disease transmission. Thus, epidemic dynamics

were regulated by interactions that affected propagation through

viral density-independent pathways [21]. Shaw et al. compared

themodel based on individual and ordinary differential equation

mathematical models to investigate the impact of insect vector

living cycle and behavioral factors on the transmission of

vector borne plant viruses. They discovered that evacuating

virus infected species proved more effective than removing

vector-infested species in terms of reducing infection [22].

The interactions within the plants, vectors and predators were

described by Charpentier et al. using a system of ordinary

differential equations. They used direct and indirect approaches

to find the controls that minimize the optimization function

subjected to population factors [23]. Jittamai et al. presented a

mathematical framework to analyze the dynamics for Cassava

Mosaic Virus, which is accelerated by both contaminated

cuttings plantings and whitefly propagation. The model was

used by the authors to determine the optimal cost-effective

disease control strategy [24]. Charpentier recently presented two

plant virus propagation models to illustrate the two perspectives

of incorporating the delays. He numerically studied the models’

stability [25].

Numerical techniques are generally employed in science

as well as engineering to solve mathematical problems where

exact solutions are difficult or impossible to obtain. Analytical

solutions are only possible for a limited differential equation.

For solving ordinary differential equations, there are a variety

of analytical approaches. Even though, there are many ordinary

differential equations (ODEs) whose solutions can be obtained

in closed form using known analytical techniques, necessitating

the progression and application of numerical methods in order

TABLE 4 Numerical outcomes of non-linear PVPMV model A1 for case-1 of scenario 5.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 90.000 10.0000 47.0000 47.0000 90.0000 10.0000 47.0000 47.0000

3 7.253847 92.7462 13.9510 60.1967 13.8285 86.1715 14.7278 59.4199

6 28.1173 71.8826 10.0509 53.2016 33.6215 66.3785 10.7929 52.4597

9 32.5847 67.4153 11.5980 45.6751 35.5494 64.4506 12.0058 45.2673

12 27.8969 72.1031 10.8913 43.1003 34.2496 65.7504 11.5894 42.4022

15 32.9806 67.0194 11.3024 40.8883 38.2692 61.7308 12.0642 40.1265

18 33.1879 66.8121 11.5152 39.6871 38.5764 61.4236 12.2555 38.9467

21 33.4720 66.5280 11.5338 39.1260 39.1839 60.8161 12.3340 38.3258

24 33.9535 66.0464 11.6013 38.7608 39.5901 60.4099 12.4137 37.9484

27 34.0761 65.9239 11.6318 38.5669 39.7538 60.2462 12.4507 37.7480

30 34.1658 65.8342 11.6456 38.4635 39.8670 60.1330 12.4722 37.6369

TABLE 5 Numerical outcomes of non-linear PVPMV model A2 for case-1 of scenario 1.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 90.0000 10.0000 10.0000 47.0000 90.0000 10.0000 10.0000 47.0000

3 85.2381 17.0689 8.8230 39.7728 82.4143 20.0025 9.23605 39.4695

6 85.9571 18.0416 8.87925 36.8224 82.6595 21.6085 9.86141 36.1337

9 88.3295 16.933 8.82304 35.5548 85.0741 20.6993 10.1945 34.4088

12 90.7455 15.3976 8.47258 35.1839 87.6295 19.2833 10.0901 33.6603

15 92.7167 13.9604 7.9416 35.3571 89.7366 17.9531 9.71931 33.5382

18 94.2317 12.6973 7.3321 35.8644 91.3260 16.8256 9.24056 33.7840

21 95.2509 11.7055 6.7767 36.4903 92.4830 15.8834 8.7472 34.2194

24 96.00428 10.8327 6.2490 37.1941 93.3156 15.0854 8.28247 34.7336

27 96.5393 10.0799 5.7780 37.8979 93.9153 14.3967 7.8615 35.2635

30 96.9228 9.4206 5.36171 38.5714 94.3505 13.7927 7.4860 35.7768
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FIGURE 10

(A) Dynamics of susceptible plants for the varition in γ using ADM for model A2. (B) Dynamics of susceptible plants for the varition in γ using

BDF for model A2.

FIGURE 11

(A) Dynamics of infected plants for the varition in γ using ADM for model A2. (B) Dynamics of infected plants for the varition in γ using BDF for

model A2.
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FIGURE 12

(A) Dynamics of susceptible vectors for the varition in γ using ADM for model A2. (B) Dynamics of susceptible vectors for the varition in γ using

ADM for model A2.

to obtain the numerical solutions of a differential equation under

the predefined initial condition. Various researchers have been

intrigued by developing numerical techniques for solving initial

value problems in ODEs in current years. Many researchers

exploited various numerical techniques to approximate the

solution of several mathematical models, yielding superior

findings than a few of the existing ones in the literature,

such as [26–30]. Recently research workers concentrated their

efforts on numerically solving various mathematical models

in the field of epidemiology such as COVID-19 [31], HIV

model [32], tuberculosis transmission model [33], predator-

prey mathematical model [34], mathematical model of cancer

treatment [35]. Although the precision and stability of the

aforementioned techniques are significant, they need a lot

of memory and a long computation time. As a result, the

numerical treatments for such approaches provide significant

challenges that must be overcome in order to guarantee the

precision and consistency of the solution. Therefore, ADM can

be used to reliably confront one- and multi-dimensional stiff

and non-stiff problems. The discrepancy between the predicted

and corrected values might be used as one indicator of the

error being made at each step. This gives a rather simple way

to regulate the step size used in the integration. The widely

used multistep ADM may approximate the solution of a first-

order differential equation. In comparison to the equivalent-

order Runge–Kutta method, these methods generally preserve

reasonably good stability and accuracy properties while being

more computationally efficient. When used with high order

systems, this can significantly reduce computing time and effort.

The most widely used techniques for treating stiff and non-stiff

ODEs are implicit multistep techniques that utilize the BDF

method. These methods were first used to confront a complex

problem by Curtis and Hirschfelder [36]. Numerous implicit

approaches have been created over time and are the subject of

in-depth literature discussion; see [37–43]. To that end, the goal

of this study is to apply the precise and stable ADM [44–48] and

BDF methods to determine an initial value problem solution.

The paramount characteristics of this study are as follows: -

• The dynamics of two models of virus transmission

in plants are investigated numerically to incorporate

either a time lag or an exposed plant density

into the system governed with non-linear

delayed ODEs.

• The approximate solutions for classes S(t), I(t), X(t), and

Y(t) are determined by the implementation of exhaustive
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FIGURE 13

(A) Dynamics of infected vectors for the varition in γ using ADM for model A2. (B) Dynamics of infected vectors for the varition in γ using ADM

for model A2.

TABLE 6 Numerical outcomes of nonlinear PVPMV model B for case-1 of scenario 3.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 30.0000 5.0000 42.0000 9.0000 30.0000 5.0000 42.0000 9.0000

3 81.2187 20.0001 34.8550 15.7049 80.6520 20.5766 34.4587 16.0901

6 64.5971 36.5518 23.2982 27.0091 64.1159 37.0125 22.9842 27.3170

9 54.1651 46.1322 16.9357 33.2329 53.9550 46.3141 16.8181 33.3472

12 50.4141 49.2806 14.8998 35.1928 87.6295 19.2833 10.0901 33.6603

15 49.4357 50.0592 14.3831 35.6677 49.4218 50.0701 14.3756 35.6742

18 49.2174 50.2283 14.2635 35.7644 49.2146 50.2304 14.2619 35.7655

21 49.1758 50.2592 14.2378 35.7775 49.1754 50.2595 14.2375 35.7775

24 49.1714 50.2617 14.2332 35.7752 49.1714 50.2616 14.2331 35.7751

27 49.1733 50.2597 14.2328 35.7718 49.1733 50.2596 14.2328 35.7717

30 49.1753 50.2578 14.2331 35.7694 49.1753 50.2577 14.2331 35.7693

scenarios with variation in the infection ratio of a

susceptible plant by an infected vector, infection ratio

of vectors by infected plants, plants’ natural fatality rate,

plants’ increased fatality rate owing to illness, vectors’

natural fatality rate, vector replenishment rate, and plants’

proliferation rate.

• The approximate solutions of the non-linear plant virus

propagation by a vector (PVPMV) are determined by
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FIGURE 14

(A) Dynamics of susceptible plants for the varition in c using ADM for model B. (B) Dynamics of susceptible plants for the varition in c using BDF

for model B.

TABLE 7 Numerical outcomes of non-linear PVPMV model B1 for case-1 of scenario 5.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 30.0000 5.0000 42.0000 9.0000 30.0000 5.0000 42.0000 9.0000

3 97.0808 2.6966 42.3118 8.23704 97.0728 2.70300 85.5535 10.1141

6 97.7627 2.0623 43.5322 6.7690 97.5514 2.24878 109.2329 10.9489

9 98.2168 1.6433 44.6376 5.52769 97.6434 2.15890 121.877 11.7585

12 98.5571 1.3297 45.5658 4.52489 97.5842 2.21071 128.3769 12.6420

15 98.8229 1.0848 46.3316 3.71820 97.4567 2.32606 131.4595 13.6115

18 99.0345 0.8898 46.9610 3.0663 97.2924 2.4755 132.6472 14.6478

21 99.2048 0.7329 47.4786 2.5363 97.1064 2.6450 132.7857 15.7296

24 99.3428 0.6057 47.9050 2.1033 96.9074 2.82649 132.3457 16.8395

27 99.4555 0.5019 48.2568 1.7477 96.7010 3.0148 131.5909 17.9620

30 99.5478 0.4168 48.5477 1.4548 96.4914 3.2060 130.6708 19.0838

exploiting the knacks of the Adams method (ADM) and

backward differentiation formula (BDF) for sundry cases.

• Numerical and graphic interpretations of outcomes

illustrate the significance/potential of these numerical

methods as efficient, accurate, stable and viable

computational procedures.

The remaining layout of the paper is as follows:

Section Mathematical models presents mathematical

models with relevant descriptions, Section Learning

methodologies describes learning methodologies for the

problem, Section Results and discussion provides results

and discussion based on the numerical simulations,

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

113

https://doi.org/10.3389/fams.2022.1001392
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Anwar et al. 10.3389/fams.2022.1001392

FIGURE 15

(A) Dynamics of infected plants for the varition in d using ADM for model B. (B) Dynamics of infected plants for the varition in d using BDF for

model B.

and Section Conclusions concludes with future

research recommendations.

Mathematical models

Two plant virus models are presented here in this

section. The mathematical model of plant virus propagation

by a vector with a constant plant density is first presented.

Second, a saturated and non-constant plant density plant virus

propagation model is presented.

Plant virus propagation model by a
vector: Model A

We investigate two models of vector-borne plant virus

transmission. Both of these are basic, and the objective is to

explore how different techniques of introducing the delay affect

the outcomes. There are two plant densities in the first, model

A: susceptible [S(t)], healthier and susceptible to infection, and

infectious [I(t)], previously infected. Because we assume that

plants may not recover, we should not have a recovered class.

There are also two vector populations: susceptible [X(t)] and

infectious [Y(t)]. This model is a simplified form of the models

provided in [49, 50].

Model A assumes that: plants as well as vectors that are

new to this field, are susceptible, and the overall plant density

remains stable at N because a farmer may replace any dead

plants with healthy new ones, that the interaction among both

the vector as well as plant is a mass movement, that the viruses

decapitate plants but not the vectors who do not contract the

disease, and the disease cannot be recovered from either plants

or vectors. The model’s parameters are the γ infection ratio

of a susceptible plant by an infected vector, γ1 infection ratio

of vectors by infected plants, υ plants’ natural fatality rate, c

plants’ increased fatality rate owing to illness, r vectors’ natural

fatality rate, and vector replenishment rate (according to birth

or/and emigration).

Model A is represented by the system of ODEs as

follows [25]:

S′ (t) = υ (N − S (t)) + cI (t) − γY (t) S (t) , (1)

I′ (t) = γY (t) S (t) − (c+ υ) I (t) , (2)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (3)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (4)
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FIGURE 16

(A) Dynamics of susceptible vectors for the varition in d using ADM for model B. (B) Dynamics of susceptible vectors for the varition in d using

BDF for model B.

There are two delays in virus transmission via a vector.

One is being the time required for the virus to propagate

throughout the plant after it has been infected. The other is

the time required for the virus to propagate within the vector

after it has been infected. Because the virus is not reproducing

in the vector, the second is significantly smaller than the first.

For the sake of simplicity, we’ll assume that the second delay

is zero.

We will incorporate the delays in two ways: the first is based

on the premise that a susceptible needs the time delay to become

infectious after coming into contact with an infectious [50, 51].

This is supposed to be model A1 [25]:

S′ (t) = υ (N − S (t)) + cI (t) − γY (t − δ) S (t − δ) , (5)

I′ (t) = γY (t − δ) S (t − δ) − (c+ υ) I (t) , (6)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (7)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (8)

It would be possible to replace the exposed density [E(t)]

with a delay-accounting density. After coming into contact with

an infectious, a susceptible become exposed or dormant, unable

to infect. The exposed becomes infectious at the rate η = 1/δ .

Then the model A2 will be:

S′ (t) = υ (N − S (t)) + cI (t) − γY (t) S (t) + υE (t) , (9)

E′ (t) = γY (t) S (t) − υE (t) − ηE (t) , (10)

I′ (t) = ηE (t) − (c+ υ) I (t) , (11)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (12)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (13)

Epidemic models involving an exposed class are widely

known for plant virus propagation [52, 53]. Models

containing exposed densities have the advantage of not

requiring the initial/staring conditions to be presented at an

interval equal to the delay, as delay differential equations

(DDEs) require.

Plant virus propagation model by vector:
Model B

We construct a further plant virus propagation model which

is based on the models presented in [54, 55], but revised

to include healthy vectors and mass response interactions

for the disease. It takes into account four different densities:
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FIGURE 17

(A) Dynamics of infected vectors for the varition in d using ADM for model B. (B) Dynamics of infected vectors for the varition in d using BDF for

model B.

susceptible plants [S(t)], infectious plants [I(t)], susceptible

vectors [X(t)] and infectious vectors [Y(t)]. Because the plants

grow in a logistical manner, the overall plant density does

not remain constant. All emerging vectors are subject to

susceptible, and their growth rate is continuously attributed

to births as well as emigration. Plants are unable to recover

and insects do not contract the disease, as it does in

model A.

Model B, which propagates plant viruses is as follows [25]:

S′ (t) = mS (t)

(

1−
S (t) + I (t)

N

)

−
γ S (t)Y (t)

1+ βS (t) + aY (t)
, (14)

I′ (t) = γ S (t)Y (t) − (r + c) I (t) , (15)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (16)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (17)

Here, m represents the plants’ proliferation rate, N

their maximum capacity of carrying, and γ the rate of

infection of a susceptible plant by an infected vector,

r represents the plants’ natural fatality rate, and c

represents the virus’s additional fatality rate. � represents

the rate at which susceptible vectors are recruited, γ1

represents the rate at which an infected plant infects a

susceptible vector, and r represents the vectors’ natural

fatality rate.

We will incorporate the delay in two different ways, just like

we did with model A. The first assumes that a susceptible takes

the time delay to get infected after coming into contact with

an infected [50, 51]. Then model B∗ may be expressed in the

form [25]:

S′ (t) = mS (t)

(

1−
S (t) + I (t)

N

)

−
γ S (t − δ)Y (t − δ)

1+ βS (t − δ) + aY (t − δ)
, (18)

I′ (t) =
γ S (t − δ)Y (t − δ)

1+ βS (t − δ) + aY (t − δ)
− (r + c) I (t) , (19)

Y ′ (t) = γ I (t) − rY (t) . (20)

In the alternative version, we uphold [54, 55] in which the

plant ceases being susceptible immediately after interaction with

an infected insect, but it requires a delay period to become
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FIGURE 18

(A) Dynamics of susceptible plants for the varition in � using ADM for model B1. (B) Dynamics of susceptible plants for the varition in � using

BDF for model B1.

infected. Because the plant could die at any time, the surviving

rate is directly proportional e−rδ , where r is the plant’s fatality

rate and δ is the delay. Then model B1 will be of the form [25]:

S′ (t) = mS (t)

(

1−
S (t) + I (t)

N

)

−
γ S (t)Y (t)

1+ βS (t) + aY (t)
, (21)

I′ (t) = e−rδ γ S (t − δ)Y (t − δ)

1+ βS (t − δ) + aY (t − δ)

− (r + c) I (t) , (22)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (23)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (24)

A susceptible plant is infected by an infected vector at time

(t − δ) in model B∗, as well as the susceptible plant becomes

infective at time t. A susceptible plant is infected by an infected

vector that takes t to infect in model B1, with e−rδ indicating the

average rate of infectious susceptible who survived in time t.

Incorporating an exposed density [E(t)], as before, is an

alternate with the same boon and bane. The model B2 with

exposed class is as follows [25]:

S′ (t) = mS (t)

(

1−
S (t) + I (t)

N

)

−
γ S (t)Y (t)

1+ βS (t) + aY (t)
, (25)

E′ (t) = γY (t) S (t) − υE (t) − ηE (t) , (26)

I′ (t) = ηE (t) − (c+ υ) I (t) , (27)

X′ (t) = � − γ1I (t)X (t) − rX (t) , (28)

Y ′ (t) = γ1I (t)X (t) − rY (t) . (29)

Learning methodologies

Adams method

The Adams method (ADM) is a two-step procedure for

solving an ODE [56–61]. First, to use an explicit approach,

the predictive step determines a crude approximation of the

target number. The corrector step streamlines the preceding

approximation using a different mechanism, usually an

implicit one.
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FIGURE 19

(A) Dynamics of infected plants for the varition in � using ADM for model B1. (B) Dynamics of infected plants for the varition in � using BDF for

model B1.

The predictor-corrector technique, which is based on set of

Equations (1)–(4), is represented as follows:

dS

dt
= f (t, S, I, Y) , S (t0) = S (0) ,

dI

dt
= f (t, Y , S, I) , I (t0) = I (0) ,

dX

dt
= f (t, I, X) , X (t0) = X (0) ,

dY

dt
= f (t, I, X, Y) , Y (t0) = Y (0) , (30)

To obtain a two-step predictor solution for first equation

of set (30) for the non-linear plant virus propagation model by

vector, use the following expression:

Sk+1 = Sk +
6

4
hf

(

tk, Sk
)

−
1

2
hf

(

tk−1, Sk−1

)

,

We have the following two-step corrector equation after

evaluating the first equation in the nonlinear plant virus

propagation model by vector:

Sk+1 = Sk +
1

2
hf

(

tk+1, Sk+1

)

+ f
(

tk, Sk
)

,

Backward di�erentiation method

The backward differentiation formula (BDF) is a collection

of implicit approaches for solving ordinary differential

equations numerically [62–64]. They are linear multi-step

algorithms that use information from previously determined

time points to approximating the derivative of a function for

a particular function and time, improving the precision of

the approximations. These techniques are particularly useful

for solving stiff differential equations [65]. In 1952, Charles F.

Curtiss and Joseph O. Hirschfelder introduced the methods for

the first time.

Consider the initial value problem as:

dz

dt
= g (t, z) , z (t0) = z0,

BDF can be written in generic form as follows:

l
∑

m=0

cmzn+m = hαg
(

tn+l, zn+l

)

,

where the step size is denoted by h, g is being calculated

for an unknown zn+l. BDF techniques are implicit
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FIGURE 20

(A) Dynamics of susceptible vectors for the varition in � using ADM for model B1. (B) Dynamics of susceptible vectors for the varition in � using

BDF for model B1.

and may require non-linear equations to be solved

at each step. The coefficients cm as well as α are

considered to obtain order l, which is the highest

feasible order.

Table 1 [25] lists the default settings for the non-linear

PVPMV parameters, while the nomenclature describes the

parameters. These default settings utilizing in all of the scenarios

of non-linear PVPMV.

Results and discussion

The approximate numerical outcomes for model A [25]

having a constant plant density and model B [25] having a non-

constant plant density are presented in this study. The ADM and

BDF methods are used to explore the dynamics of first order

non-linear plant virus propagation models by a vector for three

variants of models A and B, respectively with inputs from [0,

30] and step size 0.1 for cases 1–5 of each distinct scenarios

of nonlinear PVPMV. As shown in Table 2, the approximate

solution for the variants of model A is obtained by creating

different scenarios with cases 1–5 and varying the γ infection

ratio of a susceptible plant by an infected vector, γ1 infection

ratio of vectors by infected plants, υ plants’ natural fatality rate,

c plants’ increased fatality rate owing to illness, r vectors’ natural

fatality rate, and � vector replenishment rate. Similarly, the

approximate solution for the variants of model B is determined

by using the impact of variation inmwhich represents the plants’

proliferation rate, γ the rate of infection of a susceptible plant

by an infected vector, r represents the plants’ natural fatality

rate, and c represents the disease’s additional fatality rate. �

represents the rate at which susceptible vectors are recruited, γ1

represents the rate at which an infected plant infects a susceptible

vector, and r represents the vectors’ natural fatality rate as

shown in Table 2. Figure 1 depicts the working procedure of the

designed approach for non-linear PVPMV.

Case study-I: Model A [25]

The three different models of plant virus propagation by

a vector based on the system of ODEs without delay (model

A), with delay (model A1), and without delay but including

exposed class [E(t)] (model A2) as presented in Equations (1–

4), (5–8), and (9–13) are numerically solved employing the

ADM and BDF methods invoking he Mathematica routine

with inputs [0, 30] and step size 0.1. Numerical outcomes and
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FIGURE 21

(A) Dynamics of infected vectors for the varition in � using ADM for model B1. (B) Dynamics of infected vectors for the varition in � using BDF

for model B1.

TABLE 8 Numerical outcomes of nonlinear PVPMV model B2 for case-1 of scenario 4.

Time (Days) ADM Case 1 BDF Case 1

S I X Y S I X Y

0 30.0000 5.0000 42.0000 9.0000 30.0000 5.0000 42.0000 9.0000

3 86.3176 12.1709 12.3955 34.3073 86.6904 11.9595 12.0366 34.5894

6 73.7772 17.7705 24.1041 25.7580 74.2162 17.6038 23.6978 26.0241

9 61.1327 21.313 35.7658 19.2102 61.5174 21.2481 35.4136 19.3792

12 51.7536 21.8141 44.2058 15.5981 51.9920 21.8310 43.9967 15.6787

15 46.8476 20.9704 48.3739 14.0416 46.9494 21.0005 48.2913 14.0724

18 45.1048 20.2721 49.7273 13.5023 45.1322 20.2880 49.7077 13.5115

21 44.7574 19.9889 49.9509 13.3643 44.7596 19.9935 49.9503 13.3661

24 44.7835 19.9234 49.9091 13.3482 44.7814 19.9241 49.9111 13.3481

27 44.8401 19.9201 49.8597 13.3550 44.8386 19.9199 49.8609 13.3547

30 44.8703 19.9244 49.8356 13.3608 44.8697 19.9243 49.8361 13.3607

simulations are determined for five distinct scenarios of each

model comprising cases 1–5 for non-linear PVPMV and selected

random scenarios from each model for discussion. We first

presented the dynamical behavior of S(t), I(t), X(t) and Y(t)

classes of scenario 2 for model A of non-linear PVPMV. The

numerical outcomes of non-linear PVPMV model A for case-1

of scenario 2 against the classes S(t), I(t), X(t) and Y(t) are listed

in Table 3.

Figures 2A,B illustrate the dynamics of susceptible plants

utilizing the ADM and BDF methods, respectively, for the
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FIGURE 22

(A) Dynamics of susceptible plants for the varition in r using ADM for model B2. (B) Dynamics of susceptible plants for the varition in r using BDF

for model B2.

variation in infection ratio of the vectors by infected plants,

i.e., γ1 for model A. It has been discovered that increasing

the value of γ1 causes the susceptible density of plants to

drop. The impacts of infected plants are shown in Figures 3A,B

for varied values of γ1. As can be seen from the graph,

increasing the value of γ1 increases the density of infected plants.

Figures 4A,B demonstrate that how the behavior of susceptible

vectors changes as the value of γ1 changes. For higher values

of γ1 there is an increase in the density of infected vectors.

Figures 5A,B show the effects of infected vectors for various

values of γ1. Increasing the value of γ1 increases the density of

infected plants, as shown in the graphic.

The dynamics of plants’ natural fatality rate i.e., υ is

explored for all four classes S(t), I(t), X(t) and Y(t) using the

strength of ADM and BDF methods for scenario 5 of the

model A1. As seen in Figures 6A,B, raising the value of υ

causes the density of susceptible plants to grow. The density

of infected plants decreased as the value of υ increased, as

seen in Figures 7A,B. Figures 8A,B show the effects of plants’

natural mortality rate i.e., υ for class X(t) of model A1. As can

be seen in the graphs, increasing the value of υ will increase

the number of susceptible vectors. For class Y(t) of model

A1, the influence of plants’ natural fatality rate, i.e., υ is also

computed. The rate of infected vectors reduces as the value of

the infected vectors increases, as seen in Figures 9A,B. Table 4

shows the numerical outcomes of non-linear PVPMV model

A1 for case-1 of scenario 5 against the classes S(t), I(t), X(t)

and Y(t).

Similarly, the dynamics for all four classes S(t), I(t), X(t) and

Y(t)are analyzed by varying the infection ratio of a susceptible

plant by an infected vector which is denoted by γ for scenario

1 of model A2 and graphical illustrations are presented in

Figures 10–13, respectively. Numerical outcomes classes S(t),

I(t), X(t) and Y(t) in model A2 for case-1 of scenario 1 are

computed and provided in Table 5. Figures 10A,B depict the

influence of the infection ratio of a susceptible plant by an

infected vector on susceptible plants using the ADM and BDM

methods, respectively. It is permissible to observe that when

the value of γ rises, the density of susceptible plants decreases.

Figures 11A,B describe the effects of the infection ratio of

a susceptible plant by an infected vector on infected plants.

One may observe that the density of infected plants increased

in correlation with the value of γ . Figures 12A,B illustrate

progressive increase in the density of susceptible vectors as the

value of γ increases, whereas Figures 13A,B demonstrate the

opposing behavior in the case of infected vectors.
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FIGURE 23

(A) Dynamics of infected plants for the varition in r using ADM for model B2. (B) Dynamics of infected plants for the varition in r using BDF for

model B2.

Case study-II: Model B

The three segregated models of plant virus transmission by a

vector, as described in Equations (14–17), (21–24), and (25–29),

are numerically solved employing the ADM and BDF methods

invoking the Mathematica routine. We construct five distinct

scenarios incorporating cases 1–5 for non-linear PVPMV

and chosen random scenarios from each model are used to

determine numerical outcomes and simulations. For model B of

non-linear PVPMV. We first described the dynamical behavior

of the S(t), I(t), X(t), and Y(t) classes in scenario 3 for the

variation in disease’s additional fatality rate i.e., c. for model B.

For all four classes S(t), I(t), X(t), and Y(t) numerical outcomes

are determined and provided in Table 6 for case-1 of scenario 3

of model B. Figures 14A,B illustrate the dynamics of susceptible

plants using the ADM and BDF methods for the variability in

the disease’s additional fatality rate i.e., c. It has been discovered

that as the value of c is elevated, the susceptible density of plants

increases. The impact of disease’s additional fatality rate i.e., c

on infected plants can be seen in Figures 15A,B. It is clear from

Figures that increasing the value of c will result in reduction

the density of infected plants. Figures 16A,B demonstrate the

behavior of susceptible vectors for the variation in disease’s

additional fatality rate of model B. One may see that the density

of susceptible vectors will increase as the value of c is increased.

The influence of disease’s additional fatality rate on infected

vectors is presented in Figures 17A,B. It is observed from Figures

that increasing the value of c causes the density of infected

vectors to decrease.

Secondly, the dynamics of susceptible vectors’ recruited

rate i.e., � is investigated for all four classes S(t), I(t), X(t),

and Y(t) utilizing the strength of ADM and BDF methods

for scenario 5 of the model B1 and numerical outcomes of

all four classes S(t), I(t), X(t), and Y(t) for the case-1 of

scenario 5 is listed in Table 7. Figures 18A,B portrayed the

behavior of susceptible plants density for the different values

of �, and it is noticed that the number of susceptible plants

decreases for the higher values of �. Figures 19A,B illustrated

that as the value of � increases, the number of infected

plants goes up. The dynmics of susceptible vectors for the

variation in vectors’ recruited rate i.e., c are presented in

Figures 20A,B. One may witness that in Figures 20A,B the

density of susceptible vectors goes in continous behavior for the

first two cases and next three cases vectors density increased

in the range of 0 to 10 days then steadily decreased and

shows their steady behavior for next 20–30 days. As a result,
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FIGURE 24

(A) Dynamics of susceptible vectors for the varition in r using ADM for model B2. (B) Dynamics of susceptible vectors for the varition in r using

BDF for model B2.

for higher values of �, the density of susceptible vectors

increases. Figures 21A,B portrayed the impact of susceptible

vectors’ recruited rate on infected vectors for model B1. The

infected vectors show a steady behavior for the first two

cases, also a steady behavior for the next three cases in 0–5

days, and then a gradual increase in 5–30 days, as shown in

Figures 21A,B.

Finally, the dynamics of vectors’ natural fatality rate i.e.,

r is investigated for all four classes S(t), I(t), X(t), and Y(t)

utilizing the strength of ADM and BDF methods for scenario

4 of the model B2. The respective numerical outcomes for

case-1 of scenario 4 is provided in Table 8. The impact of

vectors’ natural fatality rate on susceptible plants is presented

in Figures 22A,B As observed in graphical representation, the

density of susceptible plants increased up to 90, then decreased

between 3 and 10 days before returning to their steady state

behavior. Also, the density of susceptible plants increased for the

higher value of r as shown in Figures 22A,B, while the infected

plants depicted reverse behavior as shown in Figures 23A,B.

The influence of vectors’ natural fatality rate r on susceptible

vectors can be observed in Figures 24A,B for model B2. The

number of susceptible vectors appears to decrease as the value

of r increases. Similarly, the dynamics of infected vectors

is portrayed in Figures 25A,B utilizing the ADM and BDF

fro model B2, respectively. The number of infected vectors

dropped as the natural fatality rate r of the vectors increased in

model B2.

Conclusions

In this paper, we analyzed the dynamics of two models

of virus transmission in plants to incorporate either a time

lag or an exposed plant density into the system governed

with non-linear delayed ODEs. The presented models may

effectively predict susceptible plants [S(t)], infected plants

[I(t)], susceptible vectors [X(t)], and infectious vectors [Y(t)].

Numerical analysis of the plant virus propagation model

by a vector (PVPMV) is conducted through exhaustive

scenarios with variation in different parameters used in

the models. The approximate solution of the non-linear

PVPMV is determined by exploiting the knacks of the

Adams method (ADM) and backward differentiation formula

(BDF) method We found delayed models to have a greater

degree of realism since they account for the time between

contact and infection. Processes are affected by delay
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FIGURE 25

(A) Dynamics of infected vectors for the varition in r using ADM for model B2. (B) Dynamics of infected vectors for the varition in r using BDF for

model B2.

and mathematically delay influences the dynamics along

with stability. Moreover, the presented study proved to be

extremely useful in controlling the plant outbreak in the

subsequent seasons.

The dynamics of non-linear fluid dynamic models may

be investigated in the future utilizing the strength of Adams

predictor corrector method and BDF method [66–69].
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Nomenclature

Symbols

N Total plant density r Plants’ natural fatality rate

c Plants’ increased fatality rate m Plants’ proliferation rate

S(t) Susceptible plants X(t) Susceptible vectors

I(t) Infected plants Y(t) Infectious plants

S(t0) Initial conditions for S(t) X(t0) Initial conditions for X(t)

I(t0) Initial conditions for I(t) Y(t0) Initial conditions for Y(t)

Greek Letters

γ Infection ratio of a susceptible plant by an infected vector, γ1 Infection ratio of vectors by infected plants

υ Plants’ natural fatality rate � Vector replenishment rate

δ Time delay

Abbreviations

ODEs Ordinary differential equations ADM Adams method

COVID-19 Coronavirus disease of 2019 BDF Backward differentiation formula

HIV Human immunodeficiency virus PVPMV Plant virus propagation by a vector

DDEs Delay differential equations
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Introduction: Crime and criminal activities have huge influences on society and

societal development. The socialmakeup of the society has a significant impact on the

propagation of crime within a population. It is a well-known reality that crime spreads

across society like an infectious disease, despite the fact that there are many elements

that might a�ect this dynamic. So, understanding crime and the factors influencing

its spread are essential in formulating policies to reduce the prevalence and impacts

of crime.

Methods: We formulate a deterministic mathematical model using a system of

nonlinear ordinary di�erential equations incorporating education programs as tools

to assess the population-level impact on the spread of crime. The model has a

global asymptotically stable crime-free equilibriumwhenever a certain criminological

threshold, known as the e�ective reproduction number RE, is less than unity.

Results and discussion: The model is fitted with prison data reported from July 2021

to June 2022 by the State of Illinois in The United States. The simulations are carried

out to assess the population-level impact of the widespread use of the intervention

programs and the compliance rate in the State of Illinois. We hypothetically fixed the

e�cacy of the intervention programs at 25% while varying the compliance rate (by

the general public). With no compliance, a high level of active criminal population was

recorded. As the compliance rates were significantly improved, the active population

level decreased. The global sensitivity analysis is performed primarily to determine

the parameters with the most e�ect on the spread of crime in the State of Illinois. The

results demonstrate that the e�ective community contact rate, βc, for the criminally

active individuals is the main driver of crime in the State of Illinois.

KEYWORDS

crime dynamics, e�ective reproduction number, stability analysis, sensitivity analysis, USA

1. Introduction

One of the illegal ways to undermine human civilized society is through crime. It is crucial to

thoroughly handle this issue because it has existed for a very long time [1]. Crime is a significant

sociological problem that has been researched extensively in the scientific literature [2]. It is

difficult to provide a concrete definition of crime because every society has its own norms and

values. However, what constitutes a crime is an illegal act or a perpetrator’s deviant conduct, its

effective punishment can be imposed by a criminal legislating institution [3, 4], and the victims of

these acts. Crime mainly rises from the combination of three factors: a driven offender, a suitable

target, and the absence of an able guardian [5–7]. In view of this, all crimes require opportunity

but not every opportunity is followed by crime. The spread of crime usually happens as a result

of coming into contact with criminally active groups of people. We may not realize the spread

of crime until it becomes predominant. Consequently, it goes without saying that crime imposes

costs on society.
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Mathematical modeling is a powerful tool that has been employed

to examine the spread of crime. One of its main goals is to

understand the condition under which the spread of crime within

a population will disappear or persist. For instance, the United

States (U.S) government spends more on the criminal justice system

than any other country. Public spending on its prison system has

increased by six times the rate of government spending on higher

education over the past two decades [8]. A statistical model of

criminal behavior is demonstrated [10]. The role of technology in

combating social crime is studied using a deterministic model [11].

Here, authors considered a deterministic compartment model and

emphasized the need for technology to combat crime in society.

A mathematical model considering serious and minor criminal

activities are formulated and analyzed [12]. In González-Parra et

al. [2], authors have studied a mathematical model by considering

crime as a social epidemic. Here, authors have considered several

compartments and have assumed that a judge or a police officer can

also become a criminal if they come into contact with criminals. An

interesting mathematical model for the dynamics of the spread of

crime is formulated and analyzed [8], where authors have shown

that if they relax the assumption that crime initiates only through

contagion, then the crime-free equilibrium is no longer possible and

the model system can tend to either lower the crime equilibrium or

increase the crime equilibrium. For example, the epidemic spread

of drug use has been modeled using differential equations [13–15].

In Gonzalez et al. [16], the authors constructed a model examining

the dynamics of peer pressure on college-age bulimia, focusing

on the effects of the intervention at two stages of the disease.

The Optimal control for crime at its minimal level during festive

periods such as Christmas and Valentine’s day, and entertainment

events, such as music awards, have also been studied and presented

[17].

Introducing fear to combat crime, will reduce the expectation

of a benefit, and consequently the intention to engage in crime

after considering the cost. Similar research on mathematical models

of crime stems from Becker’s perspective of crime as a rational

decision-making [18] mechanism whereby the individual compares

the benefits and costs (punishment) associated with criminal activity

against criminal alternatives. For example, Freedman et al. [19]

developed a model that depicts that crime is concentrated in

places where the possible monetary benefit from committing a

crime (the probability of not being convicted due to the reward

of the crime) exceeds the cost of criminal opportunity. Wang

et al. [20] generalized this approach allowing for the cost of

an opportunity to be heterogeneous across future criminals and

depending on the level of crime in a given society and estimated

the amount of group crime activity in equilibrium. Another study

focused on sanction policies that reduce crime through general

or specific deterrence [21, 22]. Recently, Durlauf and Nagin [23]

reviewed this research and concluded that incarceration is not the

optimal approach to combat crime. From several research studies,

increase in prison sentence lengths are associated with weak to

modest declines in crime, while micro-level studies suggest that

experiencing incarceration does not seem to prevent reoffending.

Their findings show that the most significant deterrent effects

come from implementing tactics that increase the perceived risk of

apprehension. Recidivism rates in the United States vary depending

on the crime. In the case of property and drug-related offenses, the

likelihood of rearrest within 3 years after release is about 70% [24].

The present study is a development of a new mathematical model

for studying crime dynamics and incorporating education programs

as a tool to curtailing the menace of crime and criminality in the

United States of America (particularly in the State of Illinois). The

model takes the form of Kermack-McKendrick, a compartmental,

deterministic system of nonlinear differential equations [25]. We

consider some relevant aspects of the crime dynamics, including

incarceration, desistance by criminals, and how released criminals

return to their previous crime life. It is worth mentioning that

the model under study exhibits certain features as illustrated in

Srivastav et al. [1]. The model parameterized using available crime

data obtained from the Illinois Department of Corrections Prison

Population Data Sets. In addition, the parameterization of the model

provides an insight into the assessment of some of the education

programs.

The rest of the article is organized as follows; In Section 2,

we present the model formulation while the basic properties

of the model are presented in Section 3. The local and

global stability analysis of the Crime-free equilibrium is

presented in Section 4. In Section 5, we present both the

global and local sensitivity analysis of the model, and

finally, we present numerical simulations and discussions in

Section 6.

2. Model formulation

We present a model to assess the various education programs

to curtail criminality in the State of Illinois. The total population

denoted as N(t) is subdivided into mutually exclusive compartments

of susceptible individuals (i.e., individuals who are at risk

of becoming criminals) S(t), criminally active individuals (i.e.,

individuals who are actively involved in crime at any given

time) C(t), criminals in prison (i.e., individuals who are caught

in the act of crime and are put in prison) P(t), and reformed

Individuals (i.e., individuals who have come out of prison and

leading a normal life), R(t). We consider the following assumptions:

(a) a homogeneously-mixed population [i.e., all individuals (both

susceptible and criminals)] in the community are assumed to have

an equal probability of coming into contact with one another),

(b) exponentially-distributed waiting time in each criminological

compartment, and (c) human demographic processes (i.e., migration,

births or deaths due to causes other than the crime being modeled).

Susceptible individuals join the criminal group when there is effective

interaction with either criminal or prison individuals. A standard

incidence

λ =
(1− εη)

(

βcC + βpP
)

N
,

measures the force of crime, where βc and βp are community

contact rates for both active criminals and criminals in prison,

respectively, 0 < η ≤ 1 is the proportion of community

members who observe the education programs introduced, 0 <

ε ≤ 1 is the efficacy of the education programs (low values

of η imply limited compliance of the intervention programs by

the public, whiles values of η near unity signify widespread

observance of the intervention programs). Again, values of ε

close to zero imply that the intervention programs may not
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FIGURE 1

Flow diagram of the model (Equations 1–4).

TABLE 1 Description of state variables of the model (Equations 1–4).

State variables Description

S Susceptible individuals

C Criminally active individuals

P Criminals in prison

R Reformed individuals

be a major tool to stop or reduce the spread of crime in

the community.

Based on this fact (and noting the flow diagram in Figure 1), the

basic model for the spread of crime dynamics in a community is

given by the following deterministic system of nonlinear differential

equations (where a dot represents differentiation with respect to time

t):

Ṡ = 3− λS+ (1− θ)νR− µS (1)

Ċ = λS+ ωP + θνR− (µ+ α + τ )C (2)

Ṗ = αC − (µ+ γ + ω)P (3)

Ṙ = γP + τC − (µ+ ν)R (4)

Equation (1) describes the dynamics of the law-abiding individuals

in the community S(t). The first term 3 refers to a fixed

number of individuals who join the susceptible population either

through migration or birth. The term (1 − θ)νR refers to the

proportion of individuals who recover fully and return to the

susceptible class. Equations (2) and (3) describe the dynamics within

the active criminal population C(t) and prison population P(t),

respectively, either through incarceration, desistance, recidivism, or

proportion of individuals that return to their previous criminal

life after they have been released from prison. Equation (4)

highlights the modification in the reformed class R(t), which

describes the movement from R(t) to C(t) and C(t) to R(t).

The term ν describes the rate at which reformed individuals

recover fully and return to the susceptible class S(t). We

assume natural deaths occurrence in all compartments. The

description of the variables and parameters are given in Tables 1, 2,

respectively.

TABLE 2 Description of parameters of the model (Equations 1–4).

Parameter Description

3 Recruitment rate

µ Natural mortality rate

βc Community effective contact rate for criminally active individuals

βp Community effective contact rate for criminals in prison

ν Rate of movement of individuals from the reformed class to either

C or S

τ Rate of desistance by criminals

ω Rate at which incarcerated individuals go back to crime

(recidivism)

α Rate of incarceration

γ Rate at which individuals move from P to R after completing their

prison terms

ε Efficacy of the intervention programs (education)

η Proportion of community members who observe the education

programs

θ Fraction corresponding to movement of individuals from R to C

3. Basic properties of the model

Lemma 1. (Positivity) Let t > 0. In this model, if the initial conditions

satisfy S(0) > 0,C(0) > 0, P(0) > 0,R(0) > 0, then for all t ∈ [0, t0],

S(t),C(t), P(t), and R(t) will remain positive in R
4
+ for arbitrary t0.

Proof: With all the parameters used in the system being non-

negative, we can thus place a lower bound on each of the equations

making up the model. Thus,

Ṡ = 3+ (1− θ)νR−
[

(1− εη)(βcC + βpP)+ µN
N

]

S ≥ −
[

(1− εη)(βcC + βpP)+ µN
N

]

S (5)

Ċ =
(1− εη)(βcC + βpP)

N
S− (µ+ α + τ )C ≥ −(µ+ α + τ )C

(6)

Ṗ = αC − (µ+ γ + ω)P ≥ −(µ+ γ + ω)P (7)

Ṙ = γP + τC − νR ≥ −νR. (8)
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By applying basic differential equations method (separation of

variables), we can resolve these inequalities to produce

S ≥ S0e
−1t > 0,

C ≥ C0e
−(µ+τ+α)t > 0,

P ≥ P0e
−(µ+γ+ω)t > 0,

R ≥ R0e
−νt > 0,

where 1 =
(1− εη)(βcC + βpP)+ µN

N
. Thus, for all t ∈

[0, t0], S(t),C(t), P(t), and R(t) will be positive and remain in R
4
+.

Lemma 2. (Boundedness) There exists an SM ,CM , PM ,RM > 0

such that for S(t),C(t), P(t),R(t) lim supt→∞
(

S(t)
)

≤ SM ,

lim supt→∞
(

C(t)
)

≤ CM , lim supt→∞
(

P(t)
)

≤ PM ,

lim supt→∞
(

R(t)
)

≤ RM for all t ∈ [0, t0] for arbitrary t0.

Proof: Since the model Equations (1)–(4) monitors human

populations, all the associated parameters and state variables are

positive, and adding the four equations of the model Equations

(1)–(4) gives us

Ṅ = 3− µN. (9)

Solving Equation (9) yields

N =
3

µ
−
(

N0 −
3

µ

)

e−µt .

The upper bound can be found by taking the lim sup of both sides as

t −→ ∞ to get
3

µ
. So N is bounded below by 0 and above by

3

µ
.

Therefore for t ∈ [0, t0], S(t),C(t), P(t),R(t) are bounded.

The model (Equations 1–4) is biologically and mathematically

well-posed in the domain

D =
{

(S,C, P,R) ∈ R
4
+ : 0 ≤ N ≤

3

µ

}

.

Thus, the domain,D is positively invariant.

4. Stability analysis of crime-free
equilibrium

4.1. Crime-free equilibrium

The model has a crime-free equilibrium (CFE), obtained by

setting the right-hand sides of Equations (1)–(4) to zero, given by

E0 : = (S∗,C∗, P∗,R∗) =
(

3

µ
, 0, 0, 0

)

, (10)

with N∗ = S∗ + C∗ + P∗ + R∗ = 3/µ.

4.2. Crime e�ective reproduction number

For infectious diseases, one of the most important threshold

parameters is the basic reproduction number, denoted by R0, which

is required to determine the transmission dynamics of an infectious

disease in a population. However, in criminal dynamic models, R0,

is a threshold parameter that measures the average number of new

criminals produced by the relapse and interaction of the criminal

population with the susceptible population [26].

The basic tool for examining epidemic thresholds in complex,

structured models is the so-called next-generation matrix [27]. We

use the next-generation method to compute the crime effective

reproduction numberRE for our model. Here, we assumed that each

function is at least twice continuously differentiable in each variable

f =





(1− εη)
(

βcC + βpP
)

S

N
0



 and v =

(

(µ+ α + τ )C − ωP
(µ+ γ + ω)P − αC

)

,

(11)

where f is the rate of appearance of a new crime in a compartment

and v is the rate of transfer of individuals into and out of a

compartment. We linearized the two expressions earlier with respect

to C and P to obtain

F =







βc (1− ε η) βp (1− ε η)

0 0






and

V =







α + µ+ τ −ω

−α γ + µ+ ω






,

since S∗ = N∗. The effective or control reproduction number,

denoted byRE, is then given byRE = ρ(FV
−1) where ρ(·) denotes

the spectral radius (dominant eigenvalue). It follows that

RE = Rc +Rp,

where

Rc =
βc(1− ηε)

(µ+ α + τ )(1− ψ)
and

Rp =
αβp(1− ηε)

(µ+ α + τ )(µ+ γ + ω)(1− ψ)
.

Thus by expressingRE in terms ofR0, we obtainRE = (1− ηε)R0.

In the absence of intervention strategies (i.e., ε = 0 = η), the

effective reproduction number is given by

R0 =
βc

(µ+ α + τ )(1− ψ)
+

αβp

(µ+ α + τ )(µ+ γ + ω)(1− ψ)
,

where ψ =
(

α

µ+ α + τ

)(

ω

µ+ γ + ω

)

.

Remark. The expression ψ represents the proportion of active

criminals incarcerated and reverted back to be criminals or the

likelihood that a criminal will return to being a criminal again. The

terms
1

(µ+ α + τ )
and

1

(µ+ γ + ω)
are the duration of stay in

compartments C and P, respectively. The expression
α

(µ+ α + τ )
is

the proportion of active criminals that are imprisoned or the probability

that a criminal will be sent to prison, and
ω

(µ+ γ + ω)
is the

proportion of prisoners that are released and go back into criminality.
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RE is the number of individuals a criminal activist can

influence during the period of successful criminal behavior where

intervention programs are introduced into the community. The

effective reproduction number RE of the model (Equations 1–4)

is expressed as the sum of two constituents reproduction numbers,

namely the average number of new crimes generated by a typical

active criminal in a community, denoted by Rc, and the average

number of crimes generated by a typical criminal in prison, denoted

byRp.

4.3. Local stability analysis of crime-free
equilibrium

Theorem 4.1. The CFE (E0) of the model (Equations 1–4) is locally

asymptotically stable (LAS) if RE < 1. If RE > 1, the crime rises to a

peak and then eventually declines to zero.

Proof: The local stability of the CFE (E0) is determined by using the

eigenvalues of the Jacobian matrix at E0, given by

J⋄(E0) =











−µ βc (ε η − 1) βp (ε η − 1) −ν (θ − 1)

0 −K1 − βc (ε η − 1) ω − βp (ε η − 1) ν θ

0 α −K2 0

0 τ γ −K3











,

(12)

where K1 = (µ + α + τ ), K2 = (µ + γ + ω), and K3 = (µ + ν).

It is easy to see that the first negative eigenvalue is λ1 = −µ. The
remaining eigenvalues are obtained below:

J⋆ =







−K1 − βc (ε η − 1) ω − βp (ε η − 1) ν θ

α −K2 0

τ γ −K3






.

The characteristic polynomial of the aforementioned matrix J⋆ is

given by

P(λ) = λ3 + a1λ
2 + a2λ+ a3,

where

a1 = K1 + K2 + K3 − βc(1− ε η),

a2 = K1 K2 − K3 βc − α βp − α ω − K2 βc + K1 K3 + K2 K3 − ν τ θ
+ K2 βc ε η + K3 βc ε η + α βp ε η, and

a3 = K3(K1K2 − αω)(1−RE)+ νθ(K2τ + α + γ ).

Applying the Routh-Hurwitz criterion [28], it is clear that a1 > 0 if

K1 + K2 + K3 > βc(1 − ε η). It should be emphasized that RE < 1

makes a3 > 0. Furthermore, if RE > 1, then a3 < 0. The condition

RE < 1, makes

K1K2 − αω > αβpK2βc, (13)

K1K3 + K2K3 − ντθ > K3βc. (14)

The two inequalities (Equations 13–14) imply that a2 > 0. Finally,

we need to show that a1a2 > a3. After algebraic manipulations, we

have that a1a2 > a3. Thus, the crime-free equilibrium of the model

(Equations 1–4) is locally asymptotically stable whenever RE < 1,

otherwise unstable.

The criminological implication of Theorem 4.1 is that a small

influx of active criminal individuals in the community will not

generate an outbreak of crime in the community if RE < 1. That

is, the spread of crime rapidly dies out (when RE < 1) if the initial

number of active criminal individuals in the community are in the

basin of attraction of the CFE (E0). For instance, when R0 = 2,

one active criminal in the community will, on average, influence

two other individuals during the duration of his/her successful

criminal behavior. Hence, in this case, the crime will be spreading

exponentially until intervention strategies are implemented in the

community and/or a certain proportion of the public is educated. In

this article, since intervention measures are put in place to help stop

or reduce the spread of crime, the rate at which crime spreads will be

minimized. In order for crime elimination to be independent of the

initial size of the sub-populations of the model, it is necessary to show

that the crime-free equilibrium (E0) is globally asymptotically stable.

4.4. Global asymptotic stability of the
crime-free equilibrium

The global asymptotic stability of the crime-free equilibrium of

the model (Equations 1–4) can be established for the special case, that

is in the absence of re-committing the crime (i.e., θ = 0).

Theorem 4.2. Consider the special case of the model (Equations

1–4) in the absence of re-committing the crime (i.e., θ = 0), the

crime-free equilibrium (E0) of the model (Equations 1–4) is globally

asymptotically stable inD wheneverRE < 1.

The proof of Theorem 4.2 is based on using a comparison theorem

[29].

Proof: Consider the special case of the model (Equations 1–4) in the

absence of re-committing the crime. Let us assume that RE < 1.

The equations for the crime compartments for the special case of

the model (Equations 1–4) can be re-written in terms of the next

generation matrices (F and V) as follows:

d

dt

[

C(t)

P(t)

]

= (F − V)

[

C(t)

P(t)

]

−M

[

C(t)

P(t)

]

, (15)

where (with S∗ and N∗ as defined in Section 11),

(F − V) =

[

βc (1−ǫ η)S∗
N∗ − (α + µ+ τ ) βp (1−ǫ η)S∗

N∗ + ω
α −(γ + µ+ ω)

]

,

and

M = (1− ε η)
(

1−
S

N

)

[

βc βp

0 0

]

. (16)

Since S ≤ N for all t > 0 in D, it follows that the matrixM, defined

in Equation (16), is non-negative. Hence, the Equation (15) can be

re-written in terms of the following inequality:

d

dt

[

C(t)

P(t)

]

≤ (F − V)

[

C(t)

P(t)

]

. (17)

If RE < 1, this implies that all eigenvalues of the next generation

matrix FV
−1 are negative. Equivalently, we can claim that F − V
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is a stable matrix [27]. Thus, it can be concluded that the linearized

differential inequality system (Equation 17) is stable wheneverRE <

1. Hence, it follows from aforementioned analysis that

(C(t), P(t)) → (0, 0), as t → ∞.

Eventually after substituting C(t) = P(t) = 0 into the differential

equations for the rate of change of the R(t) and S(t) compartments

shows that

R(t) → 0 and S(t) → S∗ as t → ∞.

Hence, we can finally claim that the CFE (given in Section 11) for the

special case of the model (Equations 1–4) (with θ = 0) is globally

asymptotically stable inD wheneverRE < 1.

The criminological implication of Theorem 4.2 shows that, for

the special case of the model (Equations 1–4) with θ = 0, the overall

crime can be eliminated from the community ifRE is brought to and

maintained to a value less than unity.

5. Sensitivity analysis

We use sensitivity analysis to determine the robustness of model

predictions to parameter values since there usually are errors in

data collection and presumed parameter values [30]. Sensitivity

indices also enable us to quantify the change in the state variables

that results from changes in the parameters [9]. Sensitivity analysis

is used to discover parameters that have a high impact on the

crime reproductive number and should be targeted by intervention

strategies. We define the normalized forward sensitivity index (NFSI)

of the effective crime reproduction number as the relative change in

R0 occasioned by the relative change in each of the parameters. The

normalized forward sensitivity index of a variable to a parameter is

the ratio of the relative change in the variable to the relative change

in the parameter. Since the effective crime reproduction number R0

is differentiable with respect to all the parameters, we define the

sensitivity index as follows:

Definition 1. For an effective crime reproduction number, R0,

differentiable with respect to the parameter q, the normalized forward

sensitivity index (NFSI) is defined as

ϒR0
q =

∂R0

∂q
×

q

R0
. (18)

Using this definition, we estimate the sensitivity indices of the

parameters of the effective crime reproduction number as follows:

ϒ
R0
βc

=
βc (γ + µ+ ω)

αβp + βc (γ + µ+ ω)

ϒ
R0
βp

=
αβp

αβp + βc (γ + µ+ ω)

ϒR0
τ = −

τ (γ + µ+ ω)
(γ + ω)(α + µ+ τ )+ µ(µ+ τ )

ϒR0
γ = −

αγ (βcµ+ α + µ+ τ )(γ + µ+ ω)))
(αβp + βc(γ + µ+ ω))(α(γ + ω)+ (µ+ τ )(γ + µ+ ω))(γ + µ+ ω)

ϒR0
ω = −

αω(βcµ+ α + µ+ τ )(γ + µ+ ω)))
(αβp + βc(γ + µ+ ω))(α(γ + ω)+ (µ+ τ )(γ + µ+ ω))(γ + µ+ ω)

ϒR0
α = −

α (γ + µ+ ω)
(

βc(γ + ω)− βp(µ+ τ )
)

(

α βp + βc γ + βc µ+ βc ω
) (

α γ + α ω + γ µ+ γ τ + µω + µτ + ω τ + µ2
)

TABLE 3 Baseline values of the fixed parameters of the model (Equations

1–4).

Parameter Value Source

N 2, 746, 388 [31]

µ 1/(74.7× 52) week−1 [32]

3 707.0302 week−1 Estimated

α 0.005 week−1 [33]

γ 0.0159 week−1 [34]

ε 0.43 (dimensionless) [35]

η 0.52 (dimensionless) [36]

θ 0.7 (dimensionless) [22]

ν 0.003 week−1 [34]

TABLE 4 Baseline values of fitted (estimated) parameters of the model

(Equations 1–4), obtained by fitting the model with the weekly crime data

for Illinois for the period July 1st, 2021 to June 30th, 2022.

Parameter Estimated
value

Parameter Estimated
value

βc 0.1543 week−1 βp 0.0010 week−1

τ 0.0100 week−1 ω 0.1067 week−1

The simulations of the model were Equations (1–4) were carried out using the parameters

estimated from the weekly crime data for the State of Illinois.

The final sign of the last index is dependent on the value of

the numerator. It is easily verifiable that all the index values are

less than 1. Since the effective crime reproductive number plays a

critical role in the spread of crime, it is important to identify the most

effective approach in bringing down ourR0. To this end, we perform

numerical simulations using the baseline parameter values given in

Tables 3, 4 to identify which parameters are sensitive to the effective

reproductive number.

Parameter Sensitivity

index

Parameter Sensitivity

index

βc 0.999736 βp 0.000264

τ −0.160078 γ −0.000251

ω −0.001686 α −0.798448

µ −0.039537

We observe that community contact rate for active criminals βc
has nearly one to one corresponding relationship with the crime

reproductive number R0 such that a 10% change in βc results in
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a 9.9% change in R0. So the crime reproductive number is most

sensitive to βc. The crime reproductive number also has a direct

proportional relationship with the parameter βp. However, the effect

is much lower, a 100% change in βp only leads to 0.26% change in the

crime reproductive number. The crime reproductive numberR0 has

an inverse proportional relationship with parameters τ ,ω, γ ,α,µ;

an increase in any of them will bring about a decrease in crime

reproductive numberR0.

5.1. Data fitting and parameter estimation

In this section, we have fitted the observed weekly cumulative

crime data for Illinois from the period of 1 July 2021 to

30 June 2022 [37]. The time series illustration of the least

squares fit of the model (Equations 1–4) is depicted in Figure 2,

showing the model estimation (i.e., blue curve which is plotted

for the criminals in prisons as formulated in Equation 3)

represents the cumulative weekly crimes compared to the observed

cumulative weekly crime data (i.e., red dots) for the aforementioned

time period.

The developed model has a total of 13 different parameters, out

of which 8 parameters are known from the existing literature

which is shown in Table 3. We have calculated the daily

recruitment rate (3) as a product of the total population (N)

of Illinois, which is based on the projections of the latest U.S.

census [31] and the weekly natural mortality rate (µ). The

developed model was fitted using a standard nonlinear least

squares approach, which involved using the inbuilt Matlab

R2022a optimizer function “lsqcurvefit,” which will be used

to obtain the best values of the remaining four unknown

parameters. SSE minimizes the sum of the squared differences

between each observed cumulative crime data points and the

corresponding cumulative crime points obtained from the

model (Equations 1–4). The estimated values of the unknown

parameters which are obtained from the fitting are shown in

Table 4. The effective reproduction number for the set of the

fixed and fitted parameters for the model (Equations 1–4) is

RE = 11.4223.

6. Numerical simulations and
discussions

To demonstrate some of the various theoretical results contained

in this paper, the model (Equations 1–3) is simulated using the

baseline values shown in Table 3 (unless otherwise stated), to assess

the population-level impact of the interventions programs (in a form

of education) against crime level in Illinois. It is worth noting that

throughout the simulations, Matlab R 2022a was used, and the initial

conditions considered are S(0) = 2, 742, 386,C(0) = 3, 950, P(0) =
2, and R(0) = 50. We also simulated the model (Equations 1–

3) using the calibrated parameters in Table 4, coupled with other

estimated parameters in Table 3 to assess the population-level impact

of mitigation strategies. First of all, we simulated the model to

assess the population-level impact of the incarceration on the active

criminal population. The population-level impact of incarceration is

measured by the reduction of the active criminal population.

FIGURE 2

Data fitting of the model (Equations 1–4) using weekly crime data for

Illinois from 1 July 2021 to 30 June 2022. The simulations of the

model (Equations 1–4) carried out using the parameters estimated

from the weekly crime data for the Illinois. The values of the fixed and

fitted parameters used for the purpose of the data fitting and

parameter estimation are shown in Tables 3, 4, respectively.

FIGURE 3

E�ect of varying the incarceration rate α on the criminal population.

Simulation displaying the active criminal population, as a function of

time. The values of the parameters are used from Tables 3, 4 with the

values of α being varied.

One thing that is important in the fight against crime is the rate

of uptake into correctional facilities of criminals. We varied the rate

of uptake into rehabilitation (α) and we found that as the rate of

incarceration increases, the number of criminals in the population

reduces as a result. Thus, the more criminals are incarcerated and

put in rehabilitation programs, the more crime reduces. This can be

seen in Figure 3. This observation is consistent with the conclusion

from similar studies done by Nyabadza et al. [9] and Berenji et

al. [38]. Liedka et al. [39] observed that there exists a negative

relationship between prison(incarceration) and crime. Rose et al. [40]

observed that within 3 years of incarceration, the risk of committing

new assault crimes, property crimes, and drug crimes reduced by

38%, 24%, and 30%, respectively.

In Figure 4, the simulations are carried out to assess the

population-level impact of the widespread use of the intervention

programs and the compliance rate in the Illinois. This Figure shows

a marked decrease in the active criminal population with varying

efficacy and compliance rates. For (a), we hypothetically fixed the

efficacy of the intervention programs at 25% while varying the

compliance rate (by the general public). With no compliance, a high

level of the active criminal population (approximately 2,020,650)

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org
134

https://doi.org/10.3389/fams.2022.1086745
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Kwofie et al. 10.3389/fams.2022.1086745

FIGURE 4

E�ect of intervention programs in the Illinois community. The simulation of the model (Equations 1–3), showing the weekly crime levels, as a function of

time, for the assessment of the impact of the intervention programs (ε) and the compliance rate (η); (A) 25% e�cacy of intervention programs, (B) 50%

e�cacy of intervention programs, (C) 75% e�cacy of intervention programs, and (D) 100% e�cacy of intervention programs for Illinois. Allowing for the

assessment of the combined e�ect of the intervention strategies and how the masses comply with the policies. The improvement in the intervention

strategies and compliance rate are measured in terms of the percentage reduction of crime levels in Illinois. The other parameter values used are given in

Tables 3, 4.

was recorded. As the compliance rates were significantly improved,

the active population level decreased. For (b), we hypothetically

improved the efficacy rate by fixing it at 50% and realized that

increasing the compliance rates by 25% dramatically flattens the

active criminal population curves. However, with such an efficacy

level coupled with the varying compliance rates, the crime level in

the community may still persist. Even though the use of intervention

programs with low-level of efficacy rates may not lead to the

elimination of crime in the community, they have the potential of

reducing the burden of crime in the community (Figure 4B). An

interesting observation was made when the efficacy and compliance

were 75 and 25%, respectively. The burden of active criminal

populations reduces, almost leading to the eventual eradication of

crime in the population. In order to effectively measure the impact

of the intervention programs, it is imperative to consider further

increasing the efficacy levels while varying the compliance rates. For

a case where 100% of the populace in Illinois complies with the

intervention programs with a low-efficacy rate of 50%, the number

of active criminals in the community will be reduced. As it is clear

that it will be impossible to have everyone comply with the education

programs. However, with the right set of strategies, many of the

populace may understand the message and eventually comply with it.

Authors in Zitko [41] made a comparison of state-level education

data and crime and incarceration rates, and they realized that states

that have focused the most on education (in general, financial

support) tend to have lower rates of violent crime and incarceration.

Although education cannot be seen as a “cures all" or a panacea that

will ensure declines in criminal behavior or crime rates, research

indicates that increased spending on high-quality education can

have a favorable impact on public safety. Many trends have been

supported by contemporary research that has examined possible

connections between education and criminal behavior. Both the idea

that people with learning difficulties are more likely to engage in

violent behavior and the idea that education levels (both greater

and lower) are important in the manifestation of criminal behavior

have empirical backing. Numerous criminologists have examined

the connection between intelligence and crime in their writings,

frequently discovering an inverse link between the two. In other

words, criminologists have discovered that those with lower IQs

are more likely to commit a crime than people with higher IQs

[42]. However, James Oleson’s “Criminal Genius” sheds light on

the offenses–drawn from self-reports and interviews–committed

by high-IQ individuals, a group understudied in the field of

criminology [42].
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FIGURE 5

Partial rank correlation coe�cients (PRCCs) showing the e�ects of the

model parameters on the response variable (which in our case is the

crime population as a function of time). The baseline values of the

parameters used are given in Tables 3, 4.

FIGURE 6

The contour plot of the e�ective (or control) reproduction number

RE , as a function of the intervention programs (ǫ) and the compliance

rate (η). The other parameter values used for the contour plot are

given in Tables 3, 4, respectively.

6.1. Global sensitivity analysis

The model (Equations 1–3) has 12 parameters and the purpose of

the sensitivity analysis is to measure the impact of the sensitivities

of the parameters on the outcome of the numerical simulation

results (with respect to a particular response function). The standard

uncertainty and sensitivity analysis, using the Latin Hypercube

Sampling technique and partial rank correlation coefficients (PRCCs)

were applied to ascertain the sensitivities of the parameters against

the crime compartment which is a function of time (as a response

function) [43]. Other response functions, such as the crime effective

reproduction number (RE), could have been used to measure such

sensitivities of the parameters. To do the sensitivity analysis, each

model parameter’s range (lower and upper bound) and distribution

must first be defined, followed by the division of each range into

1,000 equal sub-intervals. A 1,000× 12matrix is created by randomly

selecting parameter sets from this space without replacing them [44,

45]. The values of the response function (crime compartment which

is a function of time) are obtained for each row of this matrix, and

then PRCCs are computed to analyze the contributions of uncertainty

and variability in specific parameters to uncertainty and variability

in the response function. High PRCC values near 1 or -1 are seen

as significantly correlated with the response function, whereas low

PRCC values are regarded as negatively (or positively) correlated

with the response function. We assume, for simplicity, that each of

the 12 parameters of the model (Equations 1–3) obeys a uniform

distribution, and the range for each parameter is obtained by taking

20% to the left, and then 20% to the right, of its baseline value (given

in Tables 3, 4) [43].

In Figure 5, the parameters that have a great impact on the

response variable are the community effective contact rate for

criminally active individuals (βc), the rate of desistance by criminals

(τ ), and the recidivism rate (ω). This explains that the effective

community contact rate for criminally active individuals is the main

driver of crime in our society.

We depict the contour plots of the effective reproduction

number RE as a function of the intervention programs (ǫ) and

the compliance rate (η) at steady-state in Figure 6. As expected,

the increment in the efficacy of the intervention programs along

with the increment in the proportion of community members

who observe the education program (i.e., the compliance rate) has

a significant impact on the reduction of RE. Furthermore, it is

notable from Figure 6 that to keep and maintain RE to a value

less than unity, we need to keep the intervention programs and

the compliance rate above 95%. On the contrary, if due to any

reasons, the intervention programs and the compliance rate both

drop down drastically to 20% or even much lower than it, so for

this scenario, we could observe that the value of RE increases

dramatically to 14 or even above. Overall, our study shows that

to effectively control crime in the community, it is necessary and

sufficient to keep the efficacy of the intervention programs and

the compliance rate of the education programs above 95%. Thus,

a strategy that emphasizes the significant increments in ǫ and η

would notably enhance the prospects of crime elimination in the state

of Illinois.

7. Conclusion

In this paper, we developed a mathematical model that

incorporates programs in curtailing crime dynamics. The

deterministic model was fitted with crime data from Illinois

[37] in the United States (U.S.) by means of a least squares method.

We present both local and global asymptotic analysis for the

crime free equilibrium. We observed globally asymptotically stable

crime-free equilibrium whenever the effective crime reproduction

number RE is less than one, i.e., RE < 1. By using the partial

rank correlation coefficients (PRCCs) method, we are able to

estimate the parameters that have a significant influence on the

model. We observed that the community effective contact rate
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for criminally active individuals (βc), the rate of desistance by

criminals (τ ), and the recidivism rate (ω) tend to have a great

impact on the spread of crime, see, Figure 5. The numerical

simulation shows that with an efficacy level of 75% with varying

compliance levels (0 − 100%), the burden of crime will be

reduced drastically.
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