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Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes. Physiological characterization of the barley collection showed the genetic diversity of barley adaptation strategies to LN and highlighted a genotype x environment interaction. In all genotypes, N limitation resulted in global biomass reduction, an increase in C concentration, and a higher resource allocation to the roots, indicating that this organ undergoes important adaptive metabolic activity. The most important diversity concerned leaf nitrogen use efficiency (LNUE), root nitrogen use efficiency (RNUE), root nitrogen uptake efficiency (RNUpE), and leaf nitrogen uptake efficiency (LNUpE). Using LNUE as a target trait reflecting barley capacity to deal with N limitation, this trait was positively correlated with plant nitrogen uptake efficiency (PNUpE) and RNUpE. Based on the LNUE trait, we determined three classes showing high, moderate, or low tolerance to N limitation. The transcriptomic approach showed that signaling, ionic transport, immunity, and stress response were the major functions affected by N supply. A candidate gene encoding the HvNRT2.10 transporter was commonly up-regulated under LN in the three barley genotypes investigated. Genes encoding key enzymes required for lysine biosynthesis in plants, dihydrodipicolinate synthase (DHPS) and the catabolic enzyme, the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase are up-regulated in Laanaceur and likely account for a hyperaccumulation of lysine in this genotype. Our work provides key physiological markers of North African barley response to low N availability in the early developmental stages.

Keywords: NUE (nitrogen use efficiency), crop/stress physiology, barley, natural variability, lysine (amino acids)


INTRODUCTION

Barley is a staple crop known for its great adaptability to harsh environments. It was one of the first domesticated crops and is the fourth most productive cereal crop after rice, wheat, and maize (FAOSTAT). Barley (Hordeum vulgare L.) shows a very large genetic diversity and is grown under a large array of environmental and soil conditions with areas of production at high altitudes and latitudes as well as in desert regions (Ryan and Sommer, 2012; Muñoz-Amatriaín et al., 2014; Dawson et al., 2015).

Barley is mainly used for animal feed, human consumption, and malting. Today, barley is gaining value in the field of nutrition, not only for its original flavor but also for its nutritional value especially because of its high content in β-glucans and low gluten (Baik and Ullrich, 2008; Chutimanitsakun et al., 2013). Barley is considered for several benefits to human health, such as reduction of blood cholesterol and glucose levels as well as weight loss by increased satiety, control of heart disease, and type-2 diabetes (Baik and Ullrich, 2008). In some parts of the world, such as Ethiopia, North Africa, and Asia, it is used in human food more frequently than in the rest of the world (Baik and Ullrich, 2008).

Mediterranean climate and soils impose drastic constraints on agriculture. Barley is one of the best-adapted species to the Mediterranean conditions (Pswarayi et al., 2008). Climate change and the growing Mediterranean population will further increase environmental constraints on barley culture in a near future (Cammarano et al., 2019). Fortunately, barley shows great potential for biomass production under Mediterranean climates. As is the case for most cereals, barley yields are strongly dependent on nitrogen fertilization (Oscarsson et al., 1998; Sedlář et al., 2011; Stupar et al., 2017). Importantly, nitrogen fertilization impacts plant tolerance to abiotic and biotic stresses (Fagard et al., 2014; Abid et al., 2016; Mur et al., 2017; Ding et al., 2018; Verly et al., 2020). The genetic diversity in terms of barley tolerance to nitrogen starvation has been explored (Oscarsson et al., 1998; Górny, 2001; Sinebo et al., 2004; Quan et al., 2016, 2019; Karunarathne et al., 2020). However few data are available concerning the diversity of molecular responses of barley to nitrogen limitation (Møller et al., 2011; Quan et al., 2016, 2019; Karunarathne et al., 2020, 2021).

World agriculture benefited from unprecedented changes in agronomic practices during the “Green Revolution” due to technological progress after Second World War. Major crop yields doubled per capita over a 50 year period in some regions of the world, such as Asia and South America (Lassaletta et al., 2016; Pretty, 2018). During that period, new crop varieties were bred, and inorganic fertilizers and chemically synthesized pesticides and herbicides were produced and used. Their application was combined with the modernization of agricultural machinery (Lassaletta et al., 2016; Pretty, 2018). In particular, it is estimated that the use of synthetic inorganic nitrogen (N) fertilizers has increased 8- during the last 50 years (Lassaletta et al., 2016; Pretty, 2018). Nowadays, the industrial Haber-Bosch process uses 1–2% of the world’s fossil-fuel energy output for the synthesis of ammonia that is the basis for the production of the other N fertilizers as nitrate salts, ammonium-nitrate, and urea (Chen et al., 2018). However, because crops do not take up more than 30–50% of the N available in the soil (Wang et al., 2018), the extensive use of N fertilizers caused major detriments to ecosystems and animal health (Schlesinger, 2009; Withers et al., 2014).

In the context of a growing population and shrinking farmlands, cereals yields and nutritional quality is fundamental because cereal grains provide 60% of the food necessary to feed the world population, either directly as part of the human diet or indirectly as animal feed (Hirel et al., 2007; Lafiandra et al., 2014; Landberg et al., 2019). Nitrogen is one of the key elements that determine plant growth and yield formation (Hirel et al., 2007; Masclaux-Daubresse et al., 2010). It is thus essential to optimize N use efficiency (NUE) in crops. NUE is most commonly defined as the grain or biomass yields obtained per unit of available N in the soil (Xu et al., 2012; Han et al., 2015; Li et al., 2017; Hawkesford and Griffiths, 2019). Nitrogen uptake refers to processes involved in the acquisition of nitrogen compounds from the soil. Nitrogen assimilation refers to processes associated with the N utilization and N metabolism that transform inorganic nitrogen into organic nitrogen in planta. Nitrogen remobilization refers to processes associated with the recycling and reuse of organic nitrogen within the plant and its transfer from organs to organs. Nitrogen uptake, assimilation, and remobilization contribute to plant NUE (Hirel et al., 2007; Lea and Miflin, 2018) that can be also estimated considering the three components that are N uptake efficiency (NupE), N utilization efficiency (NutE), and nitrogen remobilization efficiency (NRE) (Han et al., 2015; Li et al., 2017).

Nitrogen (N) is present in the soil in the form of nitrate (NO3–), ammonium (NH4+), or amino acids, with their availability depending upon physical factors, such as pH and temperature. Most plants adapted to alkaline pH in aerobic soils, which is the case for most arable lands, use mostly NO3– as their N source (Hirel et al., 2007; Masclaux-Daubresse et al., 2010; O’Brien et al., 2016; Xu, 2018). Nitrate is taken up by the roots and then transported in the plant via plasma membrane located transporters that are either low-affinity transporters (LATs) or high-affinity transporters (HATs) (Léran et al., 2014; O’Brien et al., 2016; Kant, 2018; Wang et al., 2018; Zhang et al., 2018). Following uptake, NO3– is reduced to nitrite (NO2–) by the cytosolic enzyme nitrate reductase (NR). Then, NO2– is further reduced to ammonium by the plastid nitrite reductase (NiR). Ammonium derived from direct uptake or NO3– reduction is finally incorporated into amino acids via the combined activity of the two enzymes glutamine synthase (GS) and glutamate synthase (GOGAT) (Masclaux-Daubresse et al., 2010; Wang et al., 2018; Hirel and Krapp, 2020).

Although barley is a major crop requiring N fertilization in poor soils, such as those of North Africa, and despite functional and evolutionary genomics tools developed on this species, little is known about the diversity of physiological and molecular mechanisms in barley responses to N limitation.

In the present work, we investigated the diversity of a collection of north African barley genotypes in terms of growth under limiting N conditions and in terms of N nutrition physiological traits related to N nutrition including amino acid content that led to the identification of a barley genotype accumulating five times more lysine than the others. To gain further insight into the molecular mechanisms involved in barley adaptation to N limitation, a transcriptomics approach revealed that N supply has an impact on ionic transport, signaling, stress responses, and immunity. We identified candidate genes controlling N deficiency response and lysine biosynthesis in barley.



MATERIALS AND METHODS


Plant Material and Growth Conditions

The origin of barley genotypes is indicated in Table 1. Seeds were provided by M. Bennaceur from the National Gene Bank of Tunisia and by Université Sidi Mohamed Ben Abdellah. The barley North African collection used in this study contains nine Moroccan genotypes that correspond to commercialized varieties (herein named M1 to M9), one Tunisian variety (herein named T6), and one Egyptian variety (herein named E6) Table 1. The North African barley collection used in this study displays different characteristics in particular, with regard to their yield and tolerance to drought (Hellal et al., 2019) and it was recently described for its response to Cd (Ayachi et al., 2021). The European cultivar Golden Promise (herein named GP), which is a reference genotype since its genome is fully sequenced and for which Agrobacterium-mediated transformation is possible (Schreiber et al., 2020), was included in the analyses as a reference line. Seeds were surface-sterilized then sown on the sand under long days 16 h day (23°C)/8 h night (18°C). They were watered three times a week with the same nutrient solution containing either 0.5 mM nitrate (Low N, LN) or 5 mM ample nitrate (High N, HN). Reducing tenfold nitrate concentration involves necessarily compensation of counterion changes. Although this is not a perfect method, there is no other way for that and most care was taken to design the mineral composition of the nutritional solution so that there is no other major deficiency or toxicity. Most importantly, the K levels are not limiting both under LN and HN (Epstein et al., 1963; Gierth and Mäser, 2007; Genies et al., 2021). Watering was applied by sub-irrigation of the pots and maintained for 2 h before nutritive solutions were discarded. The nutrient solution composition is described in Supplementary Table 1. Plants were harvested 14 days after sowing by separating shoot and root which were weighed separately. The experiments were performed four times with eight plants in each biological replicate.


TABLE 1. Names and characteristics of the barley collection genotypes used in this study.
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Determination of Nitrate Uptake Into the Shoots and Roots Using 15N Labeling During 24 h

To determine 15N uptake over 24 h before harvesting, thus on day 13 after sowing, a 15N labeling was performed. On day 13 after sowing, the unlabeled watering solution was replaced by a 15N-containing solution that had the same nutrient composition as the Low N and High N solutions except that the natural 14NO3– was replaced by nitrate with 10% 15NO3– enrichment (w/w). All the pots were watered for 24 h, using an equal volume of labeled solutions. Cutting the shoots stopped 15N uptake in the shoots. Roots were extracted from sand and carefully rinsed before freezing in liquid nitrogen. Shoot and root tissues were harvested, weighed for fresh weight quantification, then ground in liquid nitrogen and stored at -80°C for further experiments.

Dry weight was calculated based on the weight of lyophilized tissues for amino acid analysis (see below). This allowed the calculation of the percentage of dry matter in each sample.



Quantification of Total Nitrogen, Total Carbon, and 15N Enrichment

The experiment dried again 50 mg of ground frozen plant material before weighting 5,000 μg of dry material in tin capsules to determine the total N and C concentrations using the FLASH 2000 Organic Elemental Analyzer (Thermo Fisher Scientific Villebon, France) and the 15N enrichment using the Delta V Advantage isotope ratio mass spectrometer (Thermo Fisher Scientific, France). The data obtained are N% (g of N per 100 g of DW), C% (g of C per 100 g of DW), and A% (Atom percent) that represent the 15N enrichment in the sample [15N/(total N)]. Since the natural 15N abundance in N labeled samples was 0.3663 (A% control), specific enrichments due to the 15N uptake were calculated as E% = (A% - 0.3363).



Amino Acid Analysis

For amino acid determination, 10 mg of lyophilized dry matter was extracted with a solution containing 400 μl of MeOH and 0.25 nmol/μl of Norvaline, which was used as the internal standard (Sigma Aldrich, St. Louis, MO, United States). The extract was stirred for 15 min, and it was then re-suspended with 200 μl of chloroform (agitation for 5 min) and 400 μl of double-distilled water (ddH2O). After centrifugation (12,000 rpm, 10°C, 5 min), the supernatant was recovered, evaporated, and dissolved in 100 μl of ddH2O. Derivatization was performed using an Ultra Derivatization Kit AccQ tag (Waters Corp, Milford, MA, United States), following the protocol of the manufacturer (Waters Corp, Milford, MA, United States). The amino acid profile was determined by ultra-performance liquid chromatography coupled with a photodiode array detector (UPLC/PDA) H-Class system (Waters Corp, Milford, MA, United States) with an ethylene bridge hybrid (BEH) C18 100 × 2.1 mm column (pore size: 1.7 μm).



Plant Growth and N Nutrition Trait Indicators

The plant phenotypic traits and indicators were measured or calculated based on the formula detailed in Supplementary Table 2.



Inoculum Preparation and Pathogen Infection

For each of the three barley cultivars M4, M5, and GP, seeds were sown at a rate of 10 seeds/pot in plastic pots 7 cm in diameter filled with 300 g of sand. They were watered three times a week with either LN or HN solutions. Plants were grown in a growth chamber (Aralab) at 23°C under white fluorescent light (130 μmol m–2 s–1), with a 14- and 10-h photoperiod and 80% relative humidity as previously described by Backes et al. (2021b). A detached leave assay was carried out to evaluate the susceptibility of the three genotypes to the pathogen Pyrenophora teres. For each condition, 30 plants were inoculated and recorded. Three independent biological replicates were performed. Briefly, leaves of 10-day-old barley plants were excised and placed on Petri dishes containing 1% of agar. Leaves were then injured with a wooden pick and then a volume of 10 μl of suspensions containing P. teres spores at a concentration of 105 spores/mL was deposited at the leaf wound area. The incidences of net blotch disease symptoms, represented by the presence of necrosis on barley leaves, were recorded at 10 days post-infection.



RNA-Seq Analysis

Furthermore, three independent biological replicates were produced. Leaves were collected on plants at three leaf developmental growth stages corresponding to 14 days after sowing, cultivated in two conditions, LN or HN. Each sample is composed of the leaf (tissue) of 1–2 plants. Total RNA was extracted using the Nucleosol extraction kit according to the supplier’s instructions and was further purified using the RNA Clean & Concentrator Kits (Zymo Research®, California, United States). RNA-seq libraries were constructed by the POPS platform (IPS2) using the TruSeq Stranded mRNA library prep kit (Illumina®, California, United States) according to the supplier’s instructions. The libraries were sequenced in Single end (SE) mode with 75 bases for each read on a NextSeq500 to generate between 5 and 62 million SE reads per sample.

Adapter sequences and bases with a Q-Score below 20 were trimmed out from reads using Trimmomatic (version 0.36; Bolger et al., 2014) and reads shorter than 30 bases after trimming were discarded. Reads corresponding to rRNA sequences were removed using sortMeRNA (version 2.1; Kopylova et al., 2012) against the silva-bac-16s-id90, silva-bac-23s-id98, silva-euk-18s-id95, and silva-euk-28s-id98 databases.

Filtered reads were then mapped and counted using STAR (version 2.7.3a; Dobin et al., 2013) with the following parameters –alignIntronMin 5 –alignIntronMax 60000 –outSAMprimaryFlag AllBestScore –outFilterMultimapScoreRange 0 –outFilterMultimapNmax 20 on the Hordeum_vulgare.IBSC_v2.48.gtf and its associated GTF annotation file.

Between 76.28 and 77.7% of the reads were associated with annotated genes (a mean of 76.9, 76.6, and 76.7%, respectively for GP, M4, and M5 barley cultivars). Statistical analysis was performed with Wilcoxon’s test (Supplementary Figure 7). When comparing the percentages of assigned read samples per cultivar, the difference between the means is not statistically significant. The three cultivars mapped similarly onto Morex reference. Morex reference has a higher version (v2) than GP reference (v1). The reference annotation should be better for Morex.

A gene is analyzed if it is present at more than 1 read per million in several samples greater than or equal to the minimum number of replicates. The resulting raw count matrix was fed into edgeR (Robinson et al., 2010) for differential expression testing by fitting a negative binomial generalized log-linear model (GLM) including a condition factor and a replicate factor to the TMM-normalized read counts for each gene. We performed pairwise comparisons of each of the depleted conditions to the control condition. The distribution of the resulting p-values followed the quality criterion described by Rigaill et al. (2018). Genes with an adjusted p-value (FDR; Benjamini and Hochberg, 1995) below 0.05 were considered as differentially expressed.



Statistical Analysis

Analysis of variance followed by Tukey’s honestly significant difference (HSD) test, as well as two-sample t-tests, were used in this study. All statistical analyses were performed using the free software environment R Version 4.0.2.1. The least-square means were calculated using the R package emmeans.




RESULTS


Global Trends of the Impact of Nitrogen Nutrition on Barley Physiological Traits

Although barley is commonly grown in North Africa, little is known about the mechanisms involved in its tolerance to low N availability, a common feature in this cultivation area. Global changes for N nutrition physiological indicators in the barley species were determined depending on nitrogen availability by considering the entire barley collection (Table 2). Nitrogen limitation resulted in the reduction of plant DW mainly due to a decrease in leaf DW. By contrast, root DW was higher under LN compared to HN, which globally resulted in a decrease of the shoot/root ratio (SR) under LN. As expected, barley nitrogen concentration was strongly reduced under LN irrespective of a plant organ. In contrast, carbon concentration was higher under LN. As expected, the global trend of the collection indicates that nitrogen uptake efficiencies (LNUpE, RNUpE, and PNUpE) were lower under LN in both shoots and roots, certainly due to the fact that nitrate was less available under LN. The biomass produced per unit of N reflects nitrogen use efficiency (NUE) in plants at the vegetative stage. As such NUE, in our case, can be calculated as the ratio between biomass and N concentration (Chardon et al., 2010). As expected, NUE was higher under LN than under HN. It is interesting to notice that leaf NUE (LNUE) was slightly lower under N limitation than under HN, while root NUE (RNUE) was sharply higher under LN than HN (Table 2). Partitioning of dry matter and N was different under LN and HN. Dry matter and N partitioning in roots, RP%DW and RP%N, respectively, were higher under LN than under HN (Table 2), thus reflecting the fact that shoot/root was decreased under LN relative to HN. Similarly, under LN, nitrogen was taken up more efficiently to the roots than to the shoots. This is illustrated by the higher partitioning of 15N in roots (RP%15N) under LN compared to HN (Table 2).


TABLE 2. Comparison of global trends of physiological traits within the barley collection under HN and LN.
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Altogether these data indicate that barley responds to nitrogen limitation by a global biomass reduction, an increase in C concentration, and a higher resource allocation (DW, N, and C) to the roots.



Exploring Natural Variation for N and C Management Within the Barley Collection

To determine the effect of genotype (G) and N nutrition on the nitrogen-related physiological indicators, a three-way ANOVA was applied. We also checked the interaction between these factors (GXN) and the effect of biological replicates (E). ANOVA results in concerned traits related to (i) biomass and elemental (C,N) distribution in aerial parts and roots presented in Table 3A; (ii) plant capacity to take up and use N for biomass production (Table 3B); (iii) relative partitioning of biomass, C and N between leaves and roots (Table 3C).


TABLE 3. Level of significance of the variance sources for biomass and C and N concentrations in barley cultivated under limiting or ample nitrate.

[image: Table 3]
These data show that nitrate nutrition significantly affects all traits except root dry weight.

The genotypic effect was also significant for most physiological traits, except the shoot/root (SR) ratio. Interestingly, the N-uptake (PNUp) and NUE (LNUE and PNUE) related traits are more impacted by the genotype effect than by the nutrition effect, as indicated by the sum of squares for the genotype effect which is larger than that of the nutrition effect (Table 3). Thus, in barley, NUE can be improved via breeding since the genetic factor plays a significant role in this trait.

The genotypic by nutrition (GxN) interaction effect is significant for several traits for which the plant response to the nutrition depends on the genotype (Table 3). For example, the total N uptake (PNUp) is higher under HN than LN for all genotypes and we can clearly distinguish two groups of genotypes with different PNUp under HN and LN. The GP, M2, M4, M9, T6 genotypes exhibit the lowest PNUp scores whereas the PNUp of M1, M3, M5, M6, M7, M8, and E6 reached higher scores (Figure 1A). The clustering of these genotypes follows the same trend for leaf DW (LDW) but only under HN (Figure 1B) indicating that these traits are correlated as shown in Supplementary Figure 1. For plant NUE (PNUE), it is not possible to cluster genotypes in different groups. We can notice five genotypes (GP, M6, M8), showing similar PNUE values under HN and LN, while all the others present lower PNUE under HN than LN (Figure 1C). This suggests that for the five genotypes mentioned above, low N does not affect NUE. Last, for root N partitioning (RP%N), all genotypes show lower values under HN than under LN, but the T6 genotype clearly behaves as an outlier with significantly lower RP%N under LN compared to other accessions (Figure 1D).


[image: image]

FIGURE 1. Different genotypes by N supply interactions within the barley North African collection. Plants were grown for 14 days under LN or HN then leaves and roots were harvested separately and frozen under liquid nitrogen. The physiological parameters were measured as indicated in the “Materials and Methods” section. Traits displaying GXN interactions are illustrated by different GXN patterns. (A) Total plant N uptake (PNUpE). (B) Leaf dry weight (LDW). (C) Plant nitrogen use efficiency (PNUE). (D) Root nitrogen partitioning (RP%N). Mean values under HN are plotted against mean values under LN. Four independent experiments were performed. Stars indicate a significant difference between LN and HN (Student’s test, 13 ≤ n ≤ 16, p < 0.05). Bars represent SE.


These four examples illustrate the diversity of the pattern of GxN responses in the barley collection. Thus, depending on the trait we observe, nutrition may cause different modifications according to the genotypes. Interestingly, GP, M6, and M8 are resilient for PNUE whatever the N supply.



Deciphering Groups of Barley Genotype Displaying Similar GxN Responses to N Supply

To compare the traits between the barley genotypes and determine common patterns shared within the collection under LN and HN, a hierarchical clustering analysis (HCA) was applied to key physiological variables. This allowed us to identify the traits that displayed the most conserved trends and those that showed the highest variation among the genotypes. Genotypes presenting similar profiles could then be clustered (Figure 2).
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FIGURE 2. Hierarchical clustering analysis (HCA) showing groups of genotypes sharing similar physiological traits. Plants were grown for 14 days under LN or HN then leaves and roots were harvested separately and frozen under liquid nitrogen. The physiological parameters were measured as indicated in the “Materials and Methods” section. The color scale is based on the value of the normalized mean for each trait. Normalization was made for the LN and HN conditions separately. The clustering under LN was chosen to determine three subgroups (A1, A2, and A3) labeled with the indicated colors. HCA was constructed with the R package.


Clustering clearly separated the two nutritional conditions (clusters A and B) indicating that nitrate supply is the main factor affecting barley physiological traits. Several traits displayed opposite trends in LN and HN for the whole barley collection. This clustering shows that most traits related to the roots reached higher values under LN than under HN, and the opposite is observed for the shoots. Interestingly, the traits that displayed genetic variation among the collection and reflected different responses to nitrate supply of the barley genotypes are essentially related to N uptake (leaf and root nitrogen uptake efficiency and total nitrogen uptake), leaf and root DW, and nitrogen use efficiency (leaf and root NUE) (Figure 2).

Under low N conditions (cluster A), genotypes are distributed into three groups. The A3 group is clearly the most efficient because it displays the best leaf NUE amongst the entire collection. The A3 genotypes have a bigger root system and higher root N uptake efficiency than the others. The A1 group is the less efficient based on leaf NUE which coincided with lower total N uptake per plant, lower leaf dry weight as well as lower leaf and root N uptake efficiencies. The A2 group displays intermediate characteristics with reduced capacity to use nitrogen resources to produce biomass. Indeed, what clearly distinguishes A2 from A3 is the leaf NUE.

Data from A group (plants under LN) highlight the different strategies of barley genotypes to deal with limiting nitrate as previously suspected from ANOVA (Figure 2 and Supplementary Figure 2). In the most performant genotypes (A3 group), the highest leaf NUE is associated with the highest root nitrogen uptake efficiency, root biomass, and root NUE. Taken together, the data from barley grown under low nitrate show that performance in N use is linked to high root biomass and high N uptake.

Under the HN condition (cluster B), three groups, B1, B2, and B3, display different behaviors. The B1 genotypes are characterized by high leaf and root N uptake, high leaf NUE, and higher leaf and root DW. These B1 genotypes are more performant than the others for nitrogen uptake, translocation, and assimilation; they efficiently use their N resources to produce biomass. The B2 and B3 genotypes are less performant. Indeed, in contrast with B1 genotypes, they exhibit lower N uptake, lower leaf NUE, and lower root dry weight. It is then interesting to focus on what distinguishes B2 from B3. In the B2 group, root biomass is more important than in the B3 group. However, in B2, N uptake in the root is lower than in B3, and as a consequence, there is a lack of N uptake in the shoots that display per se low leaf NUE. Then, B3 seems more performant than B2 since, with less root biomass, it can take up nitrogen more efficiently in both root and shoot. Taken together, data from the B group (plants under HN) highlight the different strategies developed by plants to use nitrate when it is not limiting. Performance for N utilization in the shoot is linked to larger roots and higher plant N uptake capacity. Some genotypes (M2, M4, M9) are able to fine-tune their leaf NUE with reduced root biomass.

Interestingly, genotypes with poor performance under LN (sub-cluster A1) also displayed poor performance under HN (B2/B3), and genotypes with high performances under LN (sub-cluster A3) also kept high performances under HN (B1). With the exception of GP and M9, all the other intermediate genotypes from sub-cluster A2 performed relatively better under HN indicating that these genotypes are less tolerant to low nitrate availability than the others. The A1 sub-cluster contains the T6, GP, M2, and M4 genotypes. Interestingly, M2 and M4 belong to B3 and GP and T6 to B2, indicating that they are poorly performant under both LN and HN.

We were able to identify four genotypes M1, M8, E6, and M3 that displayed good performance in both LN and HN. Genotypes that perform poorly under both LN and HN are T6, M2, and M4 due to their reduced root biomass and low N uptake.

Taken together, our data indicate that an increase in the root nitrogen sink strength and of global C content are the most conserved responses to nitrogen limitation among the studied genotypes. The most heterogeneous responses are related to N uptake efficiency and NUE, which highlight different metabolic adaptation strategies to N limitation. Dissecting the molecular mechanisms building such a diversity deserves further attention for a better comprehension of the genetic diversity of plant strategies for adaptation to nitrate limitation.



Diversity of Amino Acid Concentrations in the Barley Collection Grown Under Low or Ample N Supply

Nitrogen metabolism is strictly related to amino acid composition, which can play diverse roles in plant physiology and tolerance to stress (Rai, 2002; Zeier, 2013; Galili et al., 2016). Thus, to better characterize the nitrogen metabolism in the barley collection, amino acid concentrations were determined in leaves and roots under LN and HN using HPLC.

As expected, total free amino acid concentration was significantly higher under HN than under LN in both shoot and root (Supplementary Figure 3). To know how amino acid distribution between aerial parts and roots is controlled in response to N supply, we compared total amino acid contents in leaves and roots for each genotype. All the genotypes accumulated higher amounts of amino acids in shoot than root under LN except M3 (Figure 3A). The contrast between root and shoot was less important under ample N supply and only four genotypes (GP, M1, M2, M8) contained significantly higher amounts of amino acids under HN.
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FIGURE 3. Amino acid distribution in barley leaves and roots under LN and HN. Plants were grown for 14 days under LN or HN then leaves and roots were harvested separately and frozen under liquid nitrogen. Following freezing in liquid nitrogen, AA were quantified by HPLC as indicated in the “Material and Methods.” (A) Comparison of total amino acids levels in leaves were plotted against levels in roots of barley genotypes under LN and HN as indicated. The strait line represents the Y = X curve. Bars represent SE. Stars indicate a significant difference between LN and HN for each barley genotype (Student’s test, 13 ≤ n ≤ 16, p < 0.05). Colors of the dots correspond to the classes defined in Figure 1. (B) Individual amino acid % in the barley collection under LN or HN. Four independent experiments were performed. Stars indicate significant difference between LN and HN (Student’s test, 13 ≤ n ≤ 16, p < 0.05). Bars represent SE.


Since amino acids have different roles in plant metabolism (Häusler et al., 2014), we investigated the influence of N supply on the concentration of individual amino acids. The relative proportion of each amino acid was calculated as % of total amino acids. Globally, the percentages of individual amino acids depended on the organ and the N nutrition (Figure 3B). For instance, in both shoot and root, accumulations of GABA branched-chain amino acids (BCAA: isoleucine, leucine, valine), phenylalanine, serine, tyrosine, and lysine under N limitation was paralleled with a decrease of the percentage of glutamine and threonine. Aspartate and glutamate percentage was also decreased under LN but only in leaves.

Hierarchical clustering based on the relative proportions of individual amino acids was performed independently for the shoot (Figure 4A) and root (Figure 4B). In leaves, clustering clearly separated LN and HN. In the root, there was no HN or LN-dependent clustering.
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FIGURE 4. Genetic diversity of amino acid composition in barley leaves and roots under LN and HN. Plants were grown for 14 days under LN or HN then leaves and roots were harvested separately and frozen under liquid nitrogen. The following freezing in liquid nitrogen AA was quantified by HPLC as indicated in the Material and methods. (A,B) Hierarchical clustering analysis of the amino acid % under LN or HN in leaves and roots, respectively, showing genotypes sharing similar amino acid profiles. The color scale is based on the value of the normalized mean for each trait. Normalization was made for the LN and HN conditions separately. The colored circles in front of each genotype label represent the above-mentioned group A, B, C in Figure 2. HCA was constructed with the R package. (C) Level of lysine in leaves of each genotype under HN or LN. The different letters indicate values significantly different at P < 0.05 as determined using R-ANOVA Newman–Keuls (SNK) comparisons. (D) Picture showing the senescing phenotype of M4 leaves under LN. An enlargement of the senescing leaf is shown on the right. White scale bar = 5 cm.


Interestingly, HCA facilitated the identification of two genotypes (M4 and T6) that did not cluster with any other genotype irrespective of nutrition or organs (Figure 4). The M4 genotype indeed accumulated five times more lysine in shoot than any other genotype, irrespective of N conditions (Figure 4C). Under low N, M4 also displayed higher proportions of branched-chain amino acids (isoleucine, leucine, and valine) and proline in shoots compared to all the other genotypes (Figure 4A and Supplementary Figure 4). Under high N, in addition to lysine, proportions of glutamine, isoleucine, and leucine were also higher in the M4 shoot compared to other genotypes (Figure 4A and Supplementary Figure 5). The percentage of glutamate and aspartate in the M4 shoot were among the lowest irrespective of N nutrition. Interestingly, the M4 genotype displayed an early senescing phenotype on leaves 12 days after sowing under LN (Figure 4D) that may explain the special amino acid profile of this barley genotype.

The T6 genotype was also quite different from others. It exhibited low glutamate and aspartate percentage in shoot under LN and higher isoleucine, phenylalanine, proline, and leucine percentages (Figure 4A and Supplementary Figure 3). In the root, T6 is characterized by a higher percentage for most of the minor amino acids except lysine and aspartate under HN (Figure 4B and Supplementary Figure 4). Under LN, the T6 root did not distinguish itself from other genotypes. The most prominent amino acid feature of T6 is a higher percentage of serine and proline.

Clustering of the barley genotypes according to their amino acid profiles in roots or leaves (Figure 4) was different from clustering based on physiological traits (Figure 2). This suggests complex relationships between N assimilation and amino acid homeostasis.



Transcriptional Changes in Limiting N Relative to Ample N Conditions

To further characterize the molecular processes taking place in barley in response to nitrate limitation, an RNAseq transcriptomic approach was undertaken on leaves of three barley genotypes displaying different physiological responses to N supply: GP, M4, and M5. This approach is aimed at identifying genes that are related to barley adaptation to nitrate limitation. The rationale behind the choice of these three genotypes was the following. First, the M4 genotype displays very poor adaptation to low N with early senescing leaves under LN while the M5 genotype had intermediate N adaptation traits under LN with high leaf and root N uptake efficiencies and leaf and root biomass under LN as shown in HCA (Figures 2, 4). The GP genotype was included since it is one of the most used genotypes in barley genomics studies. In addition, the poor response of GP PNUE to N availability is a shared feature with M5 (Figure 1). Significant GO overrepresented functions encoded by genes differentially expressed in the three genotypes were found to be related to stress responses, defense, signaling, and cytoskeleton remodeling (Figure 5). The differential regulation of defense-related genes prompted us to test the impact of N on barley tolerance to Pyrenophora teres Drechsler (anamorph Drechslera teres) one of the major pathogens affecting barley especially in Morocco (Jebbouj and El Yousfi, 2009; Backes et al., 2021a). Disease severity was higher under HN compared to LN in M5 and GP (Supplementary Figure 6).
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FIGURE 5. Differentially regulated genes under LN and HN in GP, M4, and M5. Plants were grown for 14 days under LN or HN then leaves were frozen under liquid nitrogen. RNA was extracted from leaves and RNAseq was performed as indicated in “Materials and Methods” section. Upset plot for overlapping up and down differentially expressed genes in M4, M5, and GP barley genotypes under LN or HN. The number of genes in each category is indicated on top of each bar. Functional categories overrepresented in the set of genes are indicated next to the arrows (geneontology.org). Thick arrows indicate up-regulated genes, thin arrows indicate down-regulated genes.


In order to determine genes differentially expressed in the three genotypes and that could be candidate markers for nitrate limitation, we looked for genes commonly regulated in the three genotypes in LN vs. HN. There were no common genes with similar expression profiles in the three genotypes. However, 12 genes were up-regulated both in GP and M4 (Supplementary Table 4). They encode functions related to senescence, stress response, and ionic transport. Interestingly, the nitrate transporter encoding gene annotated HvNRT2.10 (HORVUHr098550 orthologous to AtNRT2.7) is up-regulated in GP and M4. Although not statistically significant, we could observe an up-regulation of this gene in M5 LN compared to HN with a p-value close to the level of significance (p = 0.06). These data suggest that HvNRT2.10 is commonly up-regulated in the three genotypes further supporting this gene as a candidate involved in nitrate nutrition under N limitation. Six genes were found to be commonly down-regulated in GP and M5, three of them encode transcription factors, and the three others encode iron-containing proteins (Supplementary Table 5).

Together, these data indicate that functions related to stress, immunity, signaling, senescence, and ionic transport are affected by N limitation in barley.



Genotypic Diversity of Barley Transcriptome Supports Amino-Acid Profiles

Since we found that lysine was highly accumulated in M4 leaves compared to the other genotypes, we investigated genes involved in the lysine metabolic pathway in the transcriptome of M4 compared to the two other genotypes M5 and GP. For this purpose, the transcriptomic profile of M4 was compared to the average of the transcript levels of each gene in GP and M5 (hereafter referred to as “GP+M5”) under HN because of the variance of the transcriptome under HN was lower than under LN (data not shown). Lysine is synthesized through a branch of the Asp family pathway. The first reactions leading to lysine biosynthesis (Jander and Joshi, 2009) are catalyzed by aspartate kinase, dihydrodipicolinate synthase, and reductase. At least eight genes putatively involved in lysine biosynthesis, degradation, and transport were differentially expressed in M4 compared to M5+GP. Two genes encoding putative dihydrodipicolinate reductase (HORVU1Hr1G078290 and HORVU7Hr1G117980) are up-regulated in M4 and a third one putatively encoding the same enzyme (HORVU4Hr1G086020) was down-regulated (Figure 6). A gene encoding a putative aspartate kinase (HORVU7Hr1G085930) and three genes encoding putative lysine histidine transporter 1 (HORVU2Hr1G123160, HORVU7Hr1G074640, and HORVU7Hr1G074660) were found to be up-regulated in M4 (see RNAseq data). In addition, a gene encoding the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase was found to be upregulated in M4 compared to GP+M5 (HORVU61G083050). In addition to lysine accumulation, M4 leaves accumulate higher levels of BCAA (leucine, isoleucine, and valine, Figure 4 and Supplementary Figures 4, 5). Consistently, genes encoding three key steps involved in BCAA biosynthesis were found to be differentially expressed in M4 compared to GP+M5 as follows (Binder et al., 2007; Binder, 2010). The branched-chain amino acid transaminase encoding genes HORVU2Hr1G096380, HORVU3Hr1G032400 are upregulated in M4 by a log2 fold change (log2 FC) of 1 and 1.4, respectively. The threonine aldolase encoding genes HORVU2Hr1G097910 and HORVU4Hr1G085690 are down-regulated in M4 by a log2 FC of -.53 and -.6, while HORVU1Hr1G046630 is up-regulated by a log2 FC of 1.26. The isopropylmalate dehydrogenase encoding genes HORVU2Hr1G124400, HORVU3Hr1G059060, HORVU3Hr1G000570 are up-regulated in M4 by a log2 FC of 0.35, 3.35, and 0.54, respectively while HORVU7Hr1G066450 is down-regulated in M4 by a log2 FC of -6.58.
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FIGURE 6. Simplified Lysine biosynthesis and catabolism pathways were found to be differentially expressed in M4 compared to GP and M5. Genes encoding enzymes of these pathways are indicated with their accession numbers in front of the corresponding enzyme. For each gene, the log2 of the fold change (log2FC) corresponds to the expression in M4 compared to the mean of the gene expression level in M5 and GP. Red and blue boxes correspond to biosynthesis and catabolism of lysine, respectively. Black dots represent intermediate enzymatic steps that were omitted for simplification.


Thus, transcriptomic data are consistent with the M4 phenotype and its amino acid composition profile.




DISCUSSION

Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition under global change and the need for reduction of nitrogen fertilizers inputs. Barley culture in north Africa is mainly performed under rainfall conditions and nitrogen input is a limiting factor to the same extent as water availability (Ryan et al., 2008; Ryan and Sommer, 2012). Indeed, North African soils are calcareous with low organic matter content thus requiring N fertilization (Ryan and Sommer, 2012). However, for economic and environmental reasons, it is crucial to improve the management of N fertilization. Therefore, it is crucial to characterize the Mediterranean varieties with respect to their adaptation to different nitrogen supplies. We worked on a panel of north African barley genotypes thus, adapting to the Mediterranean climate and environment.

Our goal was to focus on the response of these genotypes to low N and to decipher the diversity of their physiological and molecular responses to N supply at early stages of development. Here, we have considered that the most performant genotypes are those displaying higher leaf NUE under LN.

Traits affected by N supply at the level of the whole barley collection are an increase in C content in the whole plant and increased root biomass. Partitioning of root C, N, and biomass was increased in roots compared to leaves under LN. These are well-known responses of plants to LN and the major role of root in this response is well-known (Lea and Miflin, 2018; Sun X. et al., 2020). Interestingly, leaf carbon concentration was positively correlated with several root traits (root NUE, root 15N partitioning, root carbon partitioning, and root biomass partitioning) (Supplementary Figure 1). Similarly, positive correlations were observed between leaf and root N uptake efficiencies indicating coordination of both processes. In addition, leaf biomass was positively correlated with plant nitrogen uptake and leaf NUE indicating an important role of N uptake and utilization in building the aerial biomass of barley plants (Supplementary Figure 1). Root allocation of C and N is generally observed as a general response to N deficiency (Zhang et al., 2007; Kobe et al., 2010; Krapp et al., 2011). Root DW was higher under LN compared to HN, which globally resulted in a decrease of the shoot/root ratio (SR) under LN, in good accordance with previous reports (Van Der Werf and Nagel, 1996; Lea and Azevedo, 2007). In contrast, carbon concentration was higher under LN which is consistent with the fact that under N deficiency, plants usually accumulate sugars, starch, or fructan (Wang et al., 2000; Lemaître et al., 2008). Here we verified that NUE was higher under LN than under HN which is a shared feature with other plant species (Chardon et al., 2010; Masclaux-Daubresse and Chardon, 2011; Lammerts van Bueren and Struik, 2017). Higher NUE in LN-grown plants is explained by the fact that low N supply results in a tradeoff that favors the use of metabolic resources to support growth and survival. Conversely, when nitrogen is not limiting, a proportion can be stored under the form of nitrate in vacuoles and is not directly metabolized. These data show that nitrate nutrition significantly affects all traits except root dry weight, in good accordance with the physiological responses to N limitation previously reported (Van Der Werf and Nagel, 1996; Lea and Azevedo, 2007). These data make sense since the capacity of larger root systems to better explore the soil allows a higher nitrate uptake and a more efficient translocation of inorganic nitrogen to the shoot available for growth and biomass production (Gastal and Lemaire, 2002).

Other traits display different variations depending on the barley genotype in response to nitrogen supply highlighting a GxN interaction: root development and nitrogen uptake processes. For instance, root dry weight increased under LN for some genotypes while it was lower under LN for other genotypes. Similar trends were observed for maize where LN affected shoot biomass negatively but had different impacts on root biomass indicating that root plasticity allows a reliable marker of adaptation to LN (Chun et al., 2005). Root growth under LN is known to be mainly due to increased auxin levels in the root but this may be counteracted by the action of other hormones mainly abscisic acid, ethylene, and cytokinin (Sakakibara et al., 2006; Sun X. et al., 2020). Thus, different root developments in the barley genotypes in response to N limitation may reflect different hormonal regulatory mechanisms. The diversity of physiological responses allowed us to classify the barley genotypes into three categories; tolerant, moderately tolerant, and poorly tolerant to LN based on their leaf NUE. Interestingly the two genotypes GP and T6 originating from Europe and Tunisia, respectively, exhibited lower root biomass under LN and low leaf NUE. It remains to be determined whether this classification is also observed in the field.

The investigation of the impact of N supply on the transcriptome of three barley genotypes led to the identification of a low number of differentially expressed genes compared to other studies (Comadira et al., 2015; Quan et al., 2019). Nevertheless, significant GO overrepresented functions encoded by genes differentially expressed in the three genotypes were found to be related to stress responses and to signaling (Figure 5). Down-regulated genes in M4 under LN were related to microtubule-binding motor protein suggesting a down-regulation of cell vesicular trafficking and/or an arrest in cell development. Signaling, ionic transport, and metal enzymes are common over-represented functional categories in our study and in the aforementioned transcriptomic analyses. The differential expression of genes related to defense in the RNAseq is in agreement with the observed impact of N supply on barley susceptibility to one of the major pathogens affecting barley especially in Morocco (Jebbouj and El Yousfi, 2009; Backes et al., 2021a). It is known that N nutrition can affect plant tolerance to pathogens but positive and negative correlations have been observed depending on the plant-pathogen interaction considered (Fagard et al., 2014; Mur et al., 2017; Sun Y. et al., 2020). In the case of the barley-P. teres interaction, N enhances susceptibility.

The low number of differentially expressed genes found in the present study may be due to the long-lasting stressful conditions experienced by the plants from seed sowing to harvest under LN. Indeed, at the time of harvest, i.e., 14 days after sowing, most of the metabolic processes may have been adjusted and stabilized under LN and HN. Among the genes found to be commonly up-regulated, the putative nitrate transporter coding gene HvNRT2.10 (HORVUHrG098550) orthologous to the Arabidopsis AtNRT2.7 gene, is of particular interest since it was found in a QTL mapping study as involved in barley tolerance to low N (Karunarathne et al., 2020). This gene is closely related to OsNRT2.4 (Guo et al., 2020) which encodes a dual affinity nitrate transporter and was found to be involved in rice N nutrition although no phenotype was found for the knockout mutant (Wei et al., 2018). Further investigation of the function of HvNRT2.10 in barley nitrogen nutrition deserves attention.

Nitrogen limitation altered amino acid composition in leaves and roots. The overall soluble amino acid concentration decreased under LN. While roots appeared as C and N metabolic sinks under LN for most genotypes, partitioning of soluble amino acids in roots varied depending on the genotype. Most genotypes concentrated amino acids in leaves under LN while this partitioning was more diverse under HN suggesting variability for the role of amino acids in barley coping with N deficiency.

Interestingly, leaf amino acid composition was correlated with nitrogen supply. Indeed, we found that the profiles of amino acids under LN were strictly different from the profiles under HN. Thus, an important impact of nitrogen nutrition can be observed in the aerial part of the plant. Notwithstanding the nutritional effect, an important genetic diversity of relative amino acid composition was observed between barley genotypes.

Nitrate limitation resulted in elevated levels of the amino acids GABA, Tyr, Leu, Ileu, Val, Phe, Ser, Lys in roots and leaves of the barley plants. In addition to being vital components of proteins, these amino acids display additional properties, such as signaling, stress tolerance or provide precursors for other compounds. For instance, GABA is known to be involved in plant stress tolerance to biotic and abiotic stresses (Ramesh et al., 2017; Xu et al., 2021). More specifically, GABA was described as triggering a better N uptake under stress conditions, such as salt stress or N limitation (Chen et al., 2020; Khanna et al., 2021). BCAA (Leu, Ileu, Val) are known to accumulate in response to abiotic stresses presumably to serve as a substrate for biosynthesis of stress proteins (Joshi et al., 2010). They are also known to serve as substrates in the biosynthesis of lipids and glucosinolates (Binder et al., 2007). Tyrosine accumulation in barley genotypes in response to LN may be linked to the role of this amino acid as a precursor for several products that could be involved in response to low N, such a tocopherol providing an antioxidant effect, or electron carrier or defense compounds (Schenck and Maeda, 2018; Xu et al., 2020). Phenylalanine is the precursor of phenylpropanoids known to be involved in tolerance to biotic stresses (Lynch and Dudareva, 2020). Accumulation of stress-related amino acids is consistent with the RNAseq data showing enhanced stress response signatures in LN barley leaves compared to HN. Interestingly, serine accumulation is mainly produced via increased photorespiration rate which is known to be able to provide ammonia under nitrogen deficiency (Shi and Bloom, 2021).

The investigation of amino acid content in this barley collection revealed that M4 stood out with a high lysine content. Interestingly, lysine was part of the amino acids accumulating in all genotypes under LN but reached five times higher levels in M4. In another study investigating amino acid content in four barley varieties, the authors found diversity in the lysine content of grains (Jood and Singh, 2001). In maize, the opaque mutant was identified as accumulating 69% more lysine in its endosperm compared to the parental line (Mertz et al., 1964; Wang et al., 2019). Interestingly, lysine accumulation in the endosperm is related to reduced levels of endosperm proteins like alpha-zein in maize (Wang et al., 2019) and hordein in barley (Schmidt et al., 2015). The level of lysine in M4 grains was not higher than that of M5 or GP (data not shown).

Lysine biosynthetic and catabolic pathways were extensively studied in plants because this is amino acid cannot be synthesized by human or monogastric bodies and it is present in low amounts in cereals (Galili, 2002; Galili et al., 2016). The key enzymes required for its biosynthesis in plants have been identified: dihydrodipicolinate synthase (DHPS) and the catabolic enzyme bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) (Galili et al., 2016). To increase the level of lysine, several approaches using DHPS overexpression or down-regulation of LKR/SDH or both were successful (Galili et al., 2016). Mutant forms of DHPS from Nicotiana sylvestris protoplasts resulted in lysine accumulation due to the loss of DHPS negative feedback regulation by lysine (Negrutiu et al., 1984). Strikingly, M4 transcript levels of genes encoding the two limiting steps in lysine biosynthesis and turnover, DHPS and LKR/SDH, are up-regulated compared to M5 and GP, suggesting that these genes are responsible for high lysine levels in M4. Thus, the accumulation of lysine in M4 might be due to altered negative feedback regulation of the DHPS enzyme. In addition, BCAA (leucine, isoleucine, and valine) accumulate to higher levels in M4 in agreement with the upregulation in the genotype M4 of genes encoding key enzymes involved in the biosynthesis of BCAA, the branched-chain amino acid transaminase, and the isopropylmalate dehydrogenase (Binder et al., 2007; Binder, 2010). One gene encoding a putative isopropylmalate dehydrogenase (HORVU3Hr1G069300) is down-regulated in M4 suggesting a fine-tuned regulation of this biosynthetic pathway depending on the isoforms. Interestingly, two genes encoding the threonine aldolase are downregulated. This is consistent with the reports indicating that this enzyme competes for threonine, the first amino acid in the BCAA biosynthesis pathway (Joshi et al., 2006).

Our work provides key physiological markers of North African barley adaptation to low N availability in the early developmental stages, in particular the HvNRT2.10 gene. Candidate genes involved in key steps of lysine metabolism were identified with a potential link with immunity. Further investigation of the role of these genes in barley nitrogen metabolism and immunity would provide valuable data for sustainable barley production under harsh conditions.
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Switchgrass (Panicum virgatum L.) has immense potential as a bioenergy crop with the aim of producing biofuel as an end goal. Nitrogen (N)-related sustainability traits, such as nitrogen use efficiency (NUE) and nitrogen remobilization efficiency (NRE), are important factors affecting switchgrass quality and productivity. Hence, it is imperative to develop nitrogen use-efficient switchgrass accessions by exploring the genetic basis of NUE in switchgrass. For that, we used 331 diverse field-grown switchgrass accessions planted under low and moderate N fertility treatments. We performed a genome wide association study (GWAS) in a holistic manner where we not only considered NUE as a single trait but also used its related phenotypic traits, such as total dry biomass at low N and moderate N, and nitrogen use index, such as NRE. We have evaluated the phenotypic characterization of the NUE and the related traits, highlighted their relationship using correlation analysis, and identified the top ten nitrogen use-efficient switchgrass accessions. Our GWAS analysis identified 19 unique single nucleotide polymorphisms (SNPs) and 32 candidate genes. Two promising GWAS candidate genes, caffeoyl-CoA O-methyltransferase (CCoAOMT) and alfin-like 6 (AL6), were further supported by linkage disequilibrium (LD) analysis. Finally, we discussed the potential role of nitrogen in modulating the expression of these two genes. Our findings have opened avenues for the development of improved nitrogen use-efficient switchgrass lines.

Keywords: nitrogen use efficiency, nitrogen remobilization efficiency, switchgrass, accessions, genome wide association study


INTRODUCTION

Nitrogen (N) is a major macronutrient, which is essential for plant biomass and yield production. In the past 50 years, the application of synthetic N fertilizer to farmland has resulted in a dramatic increase in crop yields but with considerable negative impacts on the environment (Han et al., 2015). A large proportion of the applied N (50–70%) is lost from the plant-soil framework (Lam et al., 1996; Ranjan and Yadav, 2019). Excessive use of N fertilizer degrades the natural resources, such as air, soil, underground water, and contributes to global warming (Byrnes, 1990; Glass et al., 2002; Chien et al., 2016). Synthetic nitrogen fertilizer production and N2O from use of synthetic N fertilizers contribute to 0.8 and 1.3% of global greenhouse gas emissions, respectively (Jensen and Schjoerring, 2011; Langholtz et al., 2021). Therefore, new solutions are needed to decrease applied N without yield penalty to maximize the nitrogen use efficiency (NUE) of crops. A study conducted on simulating 20% increase in NUE in row crops has shown to reduce N requirements by 1.27 metric tons per year and increase farmers’ net profits by 1.6% per year by 2026 over the base simulation for the same period (Langholtz et al., 2021).

Switchgrass (Panicum virgatum L.) is a perennial grass native to North America and developed as a potential bioenergy crop due to its high biomass production, ability to grow in marginal land, low input requirements for maintenance, and high cellulose content (Sanderson et al., 1996; Adler et al., 2006). It has been reported that a substantial proportion of nutritive elements are removed with each biomass harvest from switchgrass, although it remobilizes nutrients from shoots to roots, each growing cycle during senescence (Yang et al., 2009). Studies have shown that the total N removed with one-cut fall biomass harvest ranges from 31 to 63 kg N per ha per year, while, for two-cut system, it ranges from 90 to 144 kg per ha per year over the 5 years of measurement (Reynolds et al., 2000). With such high nutrient withdrawal, it is inevitable that N depletion from soil will occur over time and necessitate the addition of N fertilizer to maintain sustainable switchgrass production. Therefore, the development of nitrogen-use-efficient switchgrass cultivars is imperative for the sustainable production of biofuel. To develop nitrogen-use-efficient switchgrass cultivars, we need to have a better understanding of the NUE and its genetic architecture.

Several definitions and calculations of NUE have been published, which encompass a wide range of NUE calculations, as well as acknowledge that different NUE indices have distinctive functions (Good et al., 2004; Ladha et al., 2005; Dobermann, 2007; Sadeghpour et al., 2014; Ernst et al., 2020; Congreves et al., 2021). Hence, it is recommended to use multiple NUE approaches or NUE-related indices to ensure the better representation of different insights (Van, 2007; Fixen et al., 2015; Congreves et al., 2021). NUE is complex and possesses several components. Nitrogen remobilization efficiency (NRE) is one of the important components of NUE in switchgrass. For perennial grass, such as switchgrass, improving NRE from aboveground to underground organs during yearly shoot senescence is equally important for sustainable production of switchgrass (Yang et al., 2016) and should be considered for developing nitrogen use-efficient switchgrass varieties. NRE has been investigated intensively at the agronomic level (Lemus et al., 2008; Yang et al., 2009; Strullu et al., 2011; Dohleman et al., 2012; o Di Nasso et al., 2013) but very limited at the genetic level. Therefore, the present study will add a foundational understanding of the genetic basis of NRE in switchgrass.

Nitrogen use efficiency is a quantitative trait and governed by polygenes. A quantitative genetics approach, such as genome wide association study (GWAS), has been a powerful tool to dissect the genetic architecture of complex traits (Lander and Schork, 1994; Mackay, 2001; Doerge, 2002). GWAS for NUE has been used in several crops, such as barley (Karunarathne et al., 2020), maize (Morosini et al., 2017; He et al., 2020), rice (Xin et al., 2021), wheat (Cormier et al., 2014; Hitz et al., 2017), and mustard (Gupta et al., 2021). Several genes were highlighted in the previous studies, regulating the genetic basis of NUE. Previous studies showed ammonium (AMT) and nitrate transporters (NRT1/NRT2) play important roles in the N uptake and transport in rice (Huang et al., 2017; Wang et al., 2018) and barley (Karunarathne et al., 2020). Several transcription factors and protein kinases were reported in a plant N regulatory network of Brassicajuncea (Goel et al., 2018). Studies also reported on manipulation of genes, regulating primary and secondary N assimilatory pathways to improve NUE (Pathak et al., 2008; Karunarathne et al., 2020). GWAS and downstream genomic analysis was found to be effective in understanding the genetic basis of NUE in several of these crops, but the genetic basis of NUE in switchgrass is not studied yet.

It has been reported that the most fundamental approach to enhanced NUE cultivar development necessitates plant evaluation under both low and high N conditions (Han et al., 2015). This helps in comparative evaluation of performance of a genotype at both low and high N conditions and facilitates the identification of the NUE-efficient genotype (Han et al., 2015). In the present study, our switchgrass experimental population is also grown at a contrasting N fertility condition—low N and moderate N conditions. Since NUE is regulated by biological, physiological, environmental, genetic, agronomic, and developmental factors (Congreves et al., 2021), no single measure of NUE could unravel the complexity of its genetic basis. Therefore, in the present study, we have used a holistic approach to target the genetic basis of NUE by using GWAS of not only the absolute dry biomass trait at low and moderate N but also the different NUE indices, such as NUE and NRE. We performed GWAS analysis on total dry biomass and NUE using 331 diverse switchgrass accessions as well as NRE using 150 diverse accessions that were field grown under two different N treatments. These traits are closely related to NUE in plants and have been widely used in the physiological, agronomical, and genetic studies of NUE (Ball Coelho et al., 2006; Lemus et al., 2008; Yang et al., 2009; Sadeghpour et al., 2014; Karunarathne et al., 2020). Our assumption is that the genes and the biological process uncovered from the GWAS analysis of the NUE and related traits should depict the genetic basis to improve the NUE. Here, we highlighted the several SNPs and candidate genes for NUE and related traits in switchgrass. We used linkage disequilibrium analysis to further support the GWAS-derived candidate genes and, finally, put forward an interesting discussion on the role of N in modulating the expression of these GWAS candidate genes. To our knowledge, this is the first report on the genetic basis of NUE of field-grown switchgrass.



MATERIALS AND METHODS


Field Experimental Design

A highly diverse panel of 331 switchgrass accessions (Lovell et al., 2021) was planted in May 2019 in a 75.2 m × 122.5 m dimension at The University of Tennessee Plant Sciences Unit of the East Tennessee Research and Education Center (ETREC) (latitude: 35°54′11.14″N; longitude: 83°57′33.31″W; and elevation: 255.7 m.). Planting details and experimental design can be found in Li et al. (2020) and Xu et al. (2021). Briefly, the 331 accessions were planted under two nitrogen (N) fertility treatments: one with moderate nitrogen (135 kg of N ha–1), while the other with low (0 kg of N ha–1) supplementation in 2019 and 2020. Each of the 330 accessions has four replicates in the field (2 replicates per N treatment), totaling 1,320 switchgrass plants, plusone control AP13 (“Alamo”) grown with 40 replicates (20 at low and 20 at moderate nitrogen), which were arranged in honeycomb design with ∼2.5 m interplant spacing. AP13 is the reference sequenced lowland cultivar, which is broadly used as a reference genome for switchgrass (Lovell et al., 2021). The field is equipped with a weather station (HOBO, RX3000, Bourne, MA, United States). The average temperature was 23.8°C, and the average precipitation was 0.03 mm during the period of July 2020 to December 2020.



Biomass Quantification

The dry biomass for each switchgrass accession was quantified as previously described (Li et al., 2020). Briefly, the biomass for each plant was quantified at the end of season after plant senescence. The aboveground biomass of individual plants was harvested and weighed. Subsequently, ten random tillers were harvested from each plant and oven-dried at 45°C for 72 h. Weight of the 10 tillers before and after drying was used to determine the ratio of dry-to-fresh weight. Total dry biomass was determined by calculating the percentage of water loss recorded for each subsample and subsequently applying the water loss percentage to the respective total wet biomass weight for individual plants.



Nitrogen Use Efficiency Index Calculation

The following equations were adopted from Ball Coelho et al. (2006), Lemus et al. (2008), Sadeghpour et al. (2014) to calculate NUE.
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BMYf = Biomass yield (BMY) of the fertilized plant.

BMYu = Biomass yield of the unfertilized plant.

Ns = Nitrogen fertilizer at the given rate.



Nitrogen Quantification

The detail of the nitrogen quantification was previously described in Xu et al. (2021). Briefly, nitrogen content of the aboveground biomass was measured via near-infrared spectroscopy (NIRS) using a FOSS 6500 NIR system (Silver Spring, MD, United States). Nitrogen content was measured at two developmental time points during the field-growing season: one in August 2020 at mid-season (M) and the other in December 2020 at the end of season (S). A total of 150 accessions in two replicates in two N treatments and two time points (150 × 2 × 2 × 2 = 1,200 samples) were used, i.e., 300 plants at mid-season at low N, 300 plants at mid-season at moderate N, 300 plants at the end of season at low N, and 300 plants at the end of season at moderate N were used. The 150 accessions were chosen based on biomass yield data of the 2019 growing season (Li et al., 2020). Two tillers containing both stems and leaves were collected from each plant, and the samples were oven dried at 45°C for 72 h. The dried tillers were then chipped into 5–8 pieces, each around 4–6 inch long, prior to milling. The chipped samples were milled with a Wiley Mill (Thomas Scientific, Model 4, Swedesboro, NJ, United States) through a 20-mesh screen (1.0-mm particle size).



Nitrogen Remobilization Efficiency Index Calculation

Nitrogen remobilization efficiency index calculation was performed by adopting the equation from Yang et al. (2009).
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where M and S represent nitrogen content at the green/mature (mid-season) and senescent (the end of season) stages, respectively. Since we took N samples at two different time points (M and S) from each of the 150 accessions grown at low N condition and moderate N condition, we calculated NRE for low N and NRE for moderate N condition separately.



Phenotypic Data

We evaluated five NUE-related traits. All traits were treated independently. NUE ratio/indices traits were derived prior to calculation of the best linear unbiased predictions (BLUP) to minimize noise. We removed outliers using the median absolute deviation (MAD) method such that any phenotypic values with MAD > 4 from the population median for a particular trait were removed. Variance components were estimated from a mixed linear model where accession and replication were fitted as random effects and were used to estimate broad sense heritability on a line-mean basis as previously described (Holland et al., 2003).



Genome Wide Association Study and Linkage Disequilibrium Analysis

Methods for SNP variant calling were described previously (Lovell et al., 2021). Briefly, whole-genome resequencing data for 331 genotypes were obtained using Illumina genetic analyzers at the DOE Joint Genome Institute. After removing SNPs with more than 10% missing genotypes, the genotypes with more than 10% missing SNPs, the SNPs with severe departure from Hardy Weinberg Equilibrium (SNPs with HWE > 1E-50 removed), and the SNPs with minor allele frequency (MAF < 0.01), the SNPs with r2 ≥ 0.95, a total of 11,976,627 SNPs were available for the downstream analysis.

Genome-wide association tests for all phenotypic traits were performed using the genome-wide complex trait analysis (GCTA) software using the following linear model (Yang et al., 2011). Phenotypic BLUPs, a genetic relationship matrix, and 11,976,627 SNPs were used for the association test. Univariate GWAS was run for six phenotypic traits using the following model:

[image: image]

where y is a phenotypic vector of size n x 1, with n representing sample size, β is a q x 1 vector of fixed effect that includes the first three eigenvectors from the PCA analysis of the genomic data with its incidence matrix X (an n x q matrix of covariates), u is the p x 1 vector of additive SNP effects with its incidence matrix W (an n x p genotype matrix), α is the n x 1 vector of random effects that include the genetic relationship matrix (GRM), and ε is the n x 1 vector of residual random effects.

Since the Bonferroni threshold for multiple hypothesis correction is too stringent for significant SNPs, the genome-wide threshold of significance in this study was set to 8. × 10–8 (1/N, with N = 11,976,627 SNPs). Bonferroni assumes each tested SNP is independent, but the presence of LD between SNPs makes that assumption incorrect and overly stringent. Previously, a similar threshold set was being widely used in other species, such as maize and Arabidopsis (Wen et al., 2014; Wu et al., 2021; Zhu et al., 2021). Candidate gene lists were obtained from the 10-kb interval of the peak GWAS SNP. However, if the gene was not found within that range, we chose the nearest gene left and right from the peak GWAS SNPs. Gene annotations of the candidate genes were based on the orthologs of Arabidopsis thaliana and rice (Oryza sativa).

Pairwise LD values between peak GWAS SNPs and SNPs within 20-kb interval SNPs (10 kb up and downstream) of peak GWAS SNPs were calculated using squared allele-frequency correlations (r2) using plink version 1.9 (Chang et al., 2015). All SNPs were filtered at a 1% minor allele frequency. We also computed the proportion of variance in phenotype explained (PVE), as previously described in Shim et al. (2015), for those GWAS peak SNPs that were in moderate-to-strong LD with the SNPs underlying associated candidate genes.




RESULTS


Characterization of the Phenotypic Variability of Nitrogen Use Efficiency and the Related Traits

The extent of the phenotypic variability of dry biomass at low and moderate N and NUE was assessed using the 331-switchgrass diversity panel, while the N content at mid-season and the end of season, NRE at low N and NRE at moderate N were assessed using 150 switchgrass accessions grown at low and moderate N conditions. The full data used to perform the phenotypic variability of NUE and the related traits can be found in Supplementary Tables 1, 2. A descriptive statistical summary of the absolute traits (dry biomass at low and moderate N, and N content at mid-season and the end of season), as well as derived NUE indices (NUE and NRE), is presented in Table 1.


TABLE 1. A descriptive statistical summary [mean, standard error (SE), and range] of NUE and related traits and their estimated heritability at low- and moderate-N conditions on a switchgrass diversity panel.
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We found that the mean dry biomass at the end of season for both low and moderate N conditions in the switchgrass GWAS panel to be similar; however, the range for dry biomass at moderate N (0.03–9.11 Kg) was larger compared to dry biomass at low N (0.08–7.77 Kg) (Table 1). The heritability of dry biomass at both low and moderate N is high (low-0.94 and moderate-0.93) (Table 1), indicating the trait is highly heritable and, therefore, provides the basis for further genetic improvement.

Using the absolute dry biomass traits at low and moderate N, we also calculated NUE as derived traits using Equation 1 (see Section “Materials and Methods”). The mean NUE was found to be 0.67 kgkg/m2. We found a broad range of NUE in our diversity panel, including negative values. The negative values indicate that the dry biomass at low N is higher compared to the dry biomass at moderate N, and, as such, those lines could be even more effective to explore further as nitrogen use efficient lines. While the heritability of absolute dry biomass at low and moderate traits was found to be high, the heritability of NUE was found to be low (0.39), indicating derived indices, such as NUE, are much more complex and should be influenced much more by the environment and governed by multiple genes (Table 1).

Regarding the N content in tillers, we found that the mean N content of the switchgrass accessions at the end of season for both low and moderate N conditions (0.72 and 0.76%, respectively) is lower than the mean N content at the mid-season (1.04 and 1.14%, respectively) (Table 1), indicating the plant during senescence lowers the N content in tillers regardless of N fertilizers treatment. Also, the mean N content at moderate N condition was found to be relatively higher than the mean N content at low N at both mid-season and end-of-season harvests (Table 1). Overall, the heritability of the N content for the end of season was found to be higher as compared to mid-season N content; however, the heritability was found to be consistent for mid-season low and moderate N conditions (0.59 for low N and 0.54 for moderate N), as well as the end-of-season low and moderate N conditions (0.74 for low N and 0.78 for moderate N) (Table 1). In addition to the absolute N content in tillers at mid-season and the end of season, we also calculated NRE as a derived trait at low N and moderate N conditions. The mean NRE for moderate N (0.32) was found to be higher compared to mean NRE for low N (0.29), indicating that moderate nitrogen treatment has potentially enhanced the remobilization use efficiency compared to low-nitrogen treatment. The heritability of NRE at moderate N (0.64) is higher than at low N (0.54) (Table 1).



Top 10 Nitrogen Use Efficiency Accessions in the Switchgrass Genome Wide Association Study Panel

We used two different perspectives to identify the top 10 NUE lines (Table 2); (1) accessions ranked based on the NUE negative value (highest fold change of low N/moderate nitrogen) and (2) accessions ranked based on the NUE positive value (highest fold change of moderate N/low nitrogen). Category 1 indicates those accessions that were highly N use efficient even under the low-N condition, while Category 2 indicates those accessions that showed highest performance when supplemented with moderate N but do poor with low-N treatment. Our analysis identified J504.C as the most efficient NUE accession in Category 1 with fold change of (10.28), followed by J612.C (3.79), J008.C (3.66), Performer TCL-32 (3.09), and J226.A (2.48) (Table 2.1). J504.C, J612.C, J008.C, and J226.A are all lowland tetraploid accessions collected from Missisipppi, Rhode Island, Arkansas, and Texas, United States, respectively. Performer TCL-32 was collected from North Caroline, NC, United States, but the information on its ploidy level was not found.


TABLE 2. Top 10 nitrogen use-efficient switchgrass accessions.
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In Category 2, Accession J477.B was found to be the most efficient NUE accession with fold change of 4.61, followed by J500.B (4.33), J006.C (3.49), J466.B (2.75), and J516.C (2.65) (Table 2.2). J500.B, J006.C, and J516.C are all lowland tetraploid accessions collected from Mississippi, North Carolina, and New York, United States, respectively. J477.B is tetraploid and collected from Arkansas, United States, but the information on lowland or upland was not found. Similar information was not found for Accession J466.B. All the NUE-ranked accessions from the switchgrass GWAS panel can be found in Supplementary Table 3.



Correlation Analysis Among the Nitrogen Use Efficiency and the Related Traits

We performed a pairwise Pearson correlation analysis to access the relationship between NUE and the related traits. The pairwise correlation that was significant at false discovery rate (qFDR-values < 0.05) was only included for further explanation (Figure 1 and Supplementary Tables 4A,B). Dry biomass at low N had a strong positive correlation with dry biomass at moderate N (r, 0.88) (Figure 1 and Supplementary Tables 4A,B). NUE had a significant positive correlation with dry biomass at moderate N (r, 0.35; qFDR-value, 0.00013), while an insignificant negative correlation with dry biomass at low N (r, −0.14; qFDR-value, 0.22), inferring strong contribution from moderate N toward the plant biomass (Figure 1 and Supplementary Tables 4A,B).
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FIGURE 1. Correlation analysis among the NUE and the related traits. Pairwise Pearson correlation analysis between NUE and related traits was performed using the best linear unbiased predictions (BLUPs) of the switchgrass diversity panel. The correlation matrix was visualized in R v.3.4.3 (R Core Team). Each dot represents a significant correlation coefficient (r) at false discovery rate (qFDR) values < 0.05. Blue dots indicate a strong positive correlation, while light blue indicates a moderate positive correlation. Similarly, red dots indicate a strong negative correlation, while orange indicates a moderate negative correlation. The stronger the correlation (positive or negative), the bigger are the blue and red dots, respectively, and vice versa. MidS.(N) and EndS.(N) indicate the % of N content in tillers at the mid season and the end of season, respectively. The unit of dry biomass is Kg; NUE (nitrogen use efficiency) is Kg Kg/m2; and NRE (nitrogen remobilization efficiency) is % (percent of total).


It is surprising to not see any significant correlation between any of the absolute dry biomass traits or their derivative traits (NUE) with that of absolute N content at mid-season and at the end of season, as well as their derivative traits (NRE) (Figure 1 and Supplementary Tables 4A,B). This might be due to the low sample size of N content at mid-season and the end of season at both low and moderate N conditions. It is interesting to observe that NRE is negatively correlated with the end of season (N) while positively correlated with mid-season (N) regardless of two N treatment conditions (Figure 1 and Supplementary Tables 4A,B). The strongest significant negative correlation was found between NRE at moderate N and end-of-season N content at moderate N (r, −0.83) (Figure 1 and Supplementary Tables 4A,B)



Potential Candidate Genes in the Switchgrass Genome Wide Association Study Panel

To uncover the genetic architecture of NUE, dry biomass at moderate N and dry biomass at low N, we explored the natural variation in the 331-switchgrass diversity panel genotyped with 11,976,627 SNP markers. The SNP numbers are after the minor allele frequency (MAF) filtration at 1%. For NRE at low N and NRE at moderate N, we explored the natural variation in 150 switchgrass accessions. We used the mixed linear model using GCTA (Yang et al., 2011) to perform the GWAS. At the specified threshold, overall, we obtained 19 unique (i.e., non-redundant) SNPs across Chromosome 2 (2K), 3 (3K), 4 (4K), 6 (6K), 7 (7K), 8 (8K), 13 (4N), 14 (5N), 15 (6N), and 18 (9N) (Figure 2 and Supplementary Table 5).
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FIGURE 2. A summary of GWAS of NUE and the related traits. The heatmap of GWAS of NUE and the related traits demonstrating significant SNP distribution across chromosomes. All five traits on y-axis were significant at the genome-wide threshold level of significance at 8.0 × 10–8 (1/N, with N = 11,976,628, where N is the total number of SNP markers used in this GWAS study). The x-axis shows the chromosome number for significant SNPs, while the y-axis shows all traits with significant SNP-trait associations. The width of the gray bar of a given chromosome number on the x-axis indicates the chromosomal position of that chromosome. The units of traits in y-axis; NUE (nitrogen use efficiency) is Kg Kg/m2; NRE at moderate and low N is %; dry biomass for low and moderate N is Kg; rectangles represent SNPs that are color coded based on p-value.


We identified 32 unique candidate genes from the 10-kb interval, as well as from the nearest left and right from each unique GWAS peak SNPs (Supplementary Table 5). The GWAS candidate gene list of NUE and the related traits in switchgrass, along with its Arabidopsis and rice orthologous gene description, can be found in Supplementary Table 5.



Linkage Disequilibrium Analysis Supports Genome Wide Association Study Candidate Genes

We found the GWAS peak SNP Chr06N_45879490 (located in Chromosome 06N at 45879490 bp) being significantly associated with the dry biomass at moderate N (p-value, 5.43E-10), which led to two candidate genes: Pavir.6NG264600 and Pavir.6NG264700 (Supplementary Table 5). Gene Pavir.6NG264600 was found to be 7703 bp away from SNP Chr06N_45879490, while Pavir.6NG264700 was just 9 bp away from the SNP Chr06N_45879490 (Supplementary Table 5).

We also performed the pairwise LD analysis using the squared allele-frequency correlations (r2) between the GWAS peak SNP and the SNPs across 20 kb (10 kb up/downstream) of the peak SNPs. Emphasis was given between the GWAS peak SNPs and SNPs, residing within the candidate genes within the 20 kb region to better understand the LD association between them. Our LD analysis strongly supported the Pavir.6NG264700 to be a strong candidate gene for dry biomass at the moderate-N condition (Figure 3A). The peak SNP Chr06N_45879490 (Figure 3A—a purple arrow) was found to be in moderate to strong LD with the top 4 SNPs (Figure 3A—a red arrow, Supplementary Table 6), residing within gene Pavir.6NG264700, i.e., Chr06N _45879322 (r2, 0.57), Chr06N _45879172 (r2, 0.55), Chr06N _45879369 (r2, 0.52), Chr06N _45879412 (r2, 0.43) (Figure 3A and Supplementary Table 6). The SNPs residing within gene Pavir.6NG264600 had low LD (r2, 0.1), with the GWAS peak SNP Chr06N_45879490, suggesting gene Pavir.6NG264700 is worthwhile to explore for downstream analysis as compared to gene Pavir.6NG264600 (Figure 3A). We computed PVE for SNP Chr06N_45879490 and was found to be 0.104.
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FIGURE 3. Pairwise LD analysis between the peak SNP and the SNP underlying genes. Pairwise LD estimates (r2) of the GWAS peak SNP with SNPs spanning a 20-kb (±10 kb) interval from the GWAS peak SNP. A scatterplot of the association results and LD estimates with the GWAS peak SNP (A) Chr06N_45879490 (dry biomass moderate N) and (B) Chr08K_12432787 (NUE), with SNPs spanning a 20-kb interval from their respective positions (bp). The negative log10-transformed p-values (left, y-axis) and r2 (right, y-axis) from the GWAS analysis are plotted against the genomic physical position. Vertical lines are the negative –log10 transformed p-values for individual SNPs from the GWAS results. Red triangles are pairwise LD r2 estimates of SNPs with the GWAS peak SNP (a purple triangle). Shaded bars designate genes. Gene Pavir.6NG264700 in panel (A) is caffeoyl-CoA O-methyltransferase (CCoAOMT), and gene Pavir.8KG136200 in panel (B) is alfin-like 6 (AL6).


Next, we identified another interesting GWAS peak SNP Chr08K_12432787, which was significantly associated with the NUE (p-value, 4.07E-8) that led to the candidate gene Pavir.8KG136200 (Supplementary Table 5). Interestingly, the gene was found to be residing within the GWAS peak SNP Chr08K_12432787 (Figure 3B and Supplementary Table 5).

We again performed the pairwise LD analysis using the squared allele-frequency correlations (r2) between the GWAS peak SNPChr08K_12432787 and the SNPs residing within the candidate genes within the 20 kb region (10 kb up/down stream of GWAS peak SNP) to better understand the LD association between them. Our LD analysis strongly supported Pavir.8KG136200 to be a strong candidate gene for NUE (Figure 3B). The peak SNP Chr08K_12432787 (Figure 3B—a purple arrow) was found to be in strong LD with the SNPs Chr08K_12432786 (r2, 0.78) (Figure 3—a red arrow just below the purple arrow, Supplementary Table 7) residing within gene Pavir.8KG136200, supporting our candidate gene for NUE. On the other hand, GWAS peak SNPChr08K_12432787was found to be in low LD with SNP residing within gene Pavir.8KG136001 (Figure 3B and Supplementary Tables 5, 7). We also computed the PVE for SNP Chr08K_12432787 and was found to be 0.083.




DISCUSSION

Understanding the genetic basis of NUE is the key for developing nitrogen use-efficient switchgrass lines. To our knowledge, there is no documented study on the genetic basis of NUE in field-grown switchgrass at two contrasting nitrogen fertility treatments. Here, we studied the genetic basis of NUE in switchgrass. Our results provide interesting insights into the genetic architecture of NUE and its relationship among the various NUE-related traits. We highlighted CCoAOMT and AL6 as important candidate genes to regulate NUE and the potential role of N treatments in modulating the expression of these genes.


Response of N Fertilization to Switchgrass Accessions May Not Be Immediate and Requires Longer Establishment Time

We found the mean dry biomass for the switchgrass diversity panel grown in low- and moderate-N conditions to be similar (Table 1). One of the potential reasons to have a similar dry biomass mean for low- and moderate-N-grown switchgrass may be due to the early establishment of the switchgrass panel (Wolf and Fiske, 2009; Fike et al., 2017). The dry biomass data presented here were collected in the 2nd year of the switchgrass field trial. It has been reported that the time required to reach switchgrass full productivity can vary widely. The production guides often suggest that switchgrass stands may not be fully established (i.e., not fully productive) until the third growing season (Wolf and Fiske, 2009; Fike et al., 2017), which might be one of the reasons that the response to N fertilization could not be fully seen. Switchgrass productivity in response to N depends on several factors that include genotype; location; environmental conditions, such as precipitation and soil; and managements, such as harvest frequency and timing (Fike et al., 2017). Interestingly, our analysis on the mean N content at moderate N was found to be relatively higher than the mean N content at low N at both the mid-season and the end of season (Table 1). This indicates that the response to N treatment has started to show up but may need longer duration to significantly impact other phenotypic traits, such as dry biomass yield.



Accessions Having Negative Nitrogen Use Efficiency Values Should Be Considered Acceptable, While Negative Nitrogen Remobilization Efficiency Values Should Be Considered Unacceptable for Breeding Switchgrass

We have found a range of both positive and negative values when calculating NUE and NRE in our study (Tables 1, 2). These positive and negative signs would play important roles in subsequent selection of switchgrass accessions for improving their NUEs. Positive NUE values of a switchgrass accession indicate the performance of the accession improved by the application of N fertility treatment as compared to the unfertilized condition (higher N responsiveness), and, hence, breeders could select these lines for the areas where there is ample abundance of N fertilizers (Han et al., 2015). However, care should be taken in applying the recommended dose of fertilizers to gain the benefit while, at the same time, mitigating the unwanted environmental consequences. Negative NUE values of a switchgrass accession indicate that the accession performs best even under low N and does not need to be supplemented with N fertilizers (high-genetic N efficiency) (Han et al., 2015). These accessions will be best to use from an NUE point of view and can be suitable to those areas with low-fertility soil status (Han et al., 2015). Hence, both categories of NUE could help breeders produce nitrogen use-efficient switchgrass accessions based on the choice of availability of N fertilization, response of accessions to N fertilizers, and with respect to protect the environment due to heavy use of N fertilizers. We identified the top 10 switchgrass accessions ranked based on the most positive and negative NUE values (Table 2); however, we want to emphasize that this result is based on a single location here at Knoxville, TN. Additional experiments are needed to evaluate these top accessions at different locations and at multiple time points to check the stability and consistency for both high-genetic N efficiency and high-N responsiveness. Therefore, these experiments warrant additional future evaluations. These selected accessions open the avenues to further breed for nitrogen use-efficient switchgrass accessions. It further explores the differential genes and the gene network to understand the underlying biological mechanism for the nitrogen use-efficient lines under contrasting N fertility conditions. Similar to NUE, we found NRE also had both positive and negative values in its distribution (Table 1). Positive NRE of a switchgrass accession indicates the N content in the tillers of the mid-season is higher than the N content in tillers at the end of season (Yang et al., 2016), which is an acceptable trait for breeding nitrogen remobilization efficiency. However, negative NRE values indicate N content in tillers of the end of season is higher than the N content in tillers at the mid-season, indicating these accessions are not favorable to breed further as they are inefficient to remobilize the N content (Yang et al., 2009). This information will be important for breeders to select the switchgrass accession that has the highest N content at the mid-season growth but lowest at the end-of-season growth.



Gene Related to the Lignin Biosynthesis (CCoAOMT) Was Found to Be Associated With Nitrogen Use Efficiency-Related Traits

We found GWAS peak SNPChr06N_45879490 significantly associated with dry biomass at moderate N that led to candidate gene Pavir.6NG264700 (Supplementary Table 5). Pavir.6NG264700 was predicted to best hit the orthologous gene caffeoyl-CoA O-methyltransferase (CCoAOMT) in rice (LOC_Os08g38900) and S-adenosyl-L-methionine-dependent methyltransferases superfamily protein in Arabidopsis (AT4G34050) (Supplementary Table 5).

CCoAOMT is one of the key enzymes reported to be involved in the biosynthesis of monolignols (Wagner et al., 2011; Shen et al., 2013; Liu et al., 2016). In angiosperms, this enzyme is required for the biosynthesis of G- and S-type lignins (Meyermans et al., 2000; Wagner et al., 2011). Evidence has shown that the downregulation of CCoAOMT in Pinus rediata, Medicago sativa, and Populustremula × Populus alba leads to significant decrease of the G-type lignin but not the S-type lignin, inferring that CCoAOMT is mainly required for the biosynthesis of the G-type lignin (Zhong et al., 2000; Guo et al., 2001; Wagner et al., 2011; Liu et al., 2016). Previous studies in several species, such as maize (Li et al., 2013), pine (Wagner et al., 2011), and poplar (Lu et al., 2004), have reported that the suppression of CCoAOMT causes lignin reductions. Most of the CCoAOMT studies were conducted to understand its direct functional role; however, there are limited studies shown on the response of CCoAOMT on the environmental alternation, such as stress or change in plant or soil nutritional status.

A study conducted by Camargo et al. (2014) in Eucalyptus shows that the nitrogen fertilization could modulate the expression of CCoAOMT expression and its impact on the lignin and total biomass of the plant. Consequently, this would be important to improve the quality and composition of lignocellulosic feedstock, such as switchgrass. The study reported Eucalyptus (another bioenergy crop potential of producing lignocellulosic biofuels) grown at contrasting N treatments could be identified with significant differential expression levels of CCoAOMT between the two N contrasting treatments, supporting the dynamic role of N in regulating the expression of CCoAOMT (Camargo et al., 2014). Camargo et al. (2014) also reported that the expression of phenylpropanoid and lignin biosynthesis genes, such as phenylalanine ammonia lyase (PAL), Cinnamate-4-hydroxylase (C4H), 4-coumarate CoA ligase (4CL), caffeic acid O-methyltransferase (COMT), and CCoAOMT were downregulated in response to high N fertilization while upregulated in the N-limiting condition (Camargo et al., 2014).

CCoAOMT was mainly described as a key gene in the lignin biosynthesis pathway. Yet, with our GWAS result (Supplementary Table 5) and support from our LD analysis (Figure 3A and Supplementary Table 6), as well as from a previous study (Camargo et al., 2014), we propose CCoAOMT as a strong candidate gene for NUE in switchgrass. It is possible that N fertilization could affect the composition and quality of switchgrass lignocellulosic feedstock by modulating the expression of a lignin biosynthesis gene, such as CCoAOMT (Camargo et al., 2014). The future study should consider investigating the gene expression study of the CCoAOMT at two different N fertilization conditions in switchgrass.



AL6-a Transcription Factor and a Strong Candidate for Nitrogen Use Efficiency in Switchgrass

Genome wide association study peak SNP Chr08K_12432787, which was significantly associated with the NUE, led to the candidate gene Pavir.8KG136200 and was predicted to best hit the orthologous PHD finger protein in rice (LOC_Os11g14010) and AL6 in Arabidopsis (AT2G02470) (Supplementary Table 5). A limited study is found in the literature for the functional analysis of AL6. However, one study showed that AL6 is involved in the root hair elongation during phosphate deficiency in Arabidopsis (Chandrika et al., 2013). The study identified a T-DNA mutant line from a large-scale genetic screen and found that it has a defect in root hair elongation, specifically under the low-phosphate condition. It was also shown that the mutant phenotype was caused by a mutation in the homeodomain protein AL6 (Chandrika et al., 2013). The study further concluded that the AL6 controls the transcription of a suite of genes (ETC1, NPC4, SQD2, and PS2); all of which are critical to root hair elongation (Chandrika et al., 2013). Up to now, to our knowledge, there has been no report on the possible role of the AL6 gene in the N-deficient condition in the literature.

Since we identified AL6 as a candidate gene associated for the NUE trait (Supplementary Table 5) and this gene is also supported by LD analysis (Figure 3B and Supplementary Table 7), our hypothesis is that, like the phosphate-deficiency condition, AL6 may also regulate root hair elongation genes in the N-deficient condition. Hence, the variable expression of AL6 in different switchgrass lines at different N conditions might be the reason for the natural variation of nitrogen use-efficient lines in our diversity GWAS panel. The roles of root hair elongation and growth are critical to nutrient absorption, uptake, and utilization and would be strong factors to contribute directly to the NUE. Gaudin et al. (2011) reported a decrease in root hair length under N stress in maize (Gaudin et al., 2011), while Foehse and Jungk (1983) found that tomato, rape, and spinach significantly increase root hair length when the nitrate concentration was decreased from 1,000 to 2 mM (Foehse and Jungk, 1983), suggesting the response to root hair in response to N availability may be species specific. For a future study, we will be exploring the functional role of AL6 in switchgrass root hair in response to two N treatments, low and moderate. We will also perform the differential gene expression analysis of AL6 at low and moderate N conditions using RNAseq analysis. It would be interesting to observe either of our hypothesis is supported or rejected.




CONCLUSION

We have shown here that, by targeting NUE using a holistic approach, we can dissect its genetic architecture to identify novel SNPs and genes. We found genes related to lignin biosynthesis (CCoAOMT) and gene encoding root hair elongation (AL6), regulating the natural variation of NUE and related traits in switchgrass. We also highlighted the N fertilizer application potentially plays a role in modulating not only the biomass quantity but, more importantly, the biomass quality and composition. We identified the top ten nitrogen-efficient switchgrass accessions and uncovered the relationship among the various NUE-related traits. Our findings provide exciting possibilities to explore the underlying biological mechanism of NUE and to use marker-assisted selection and GWAS-assisted genomic selection in developing nitrogen use-efficient switchgrass cultivars.



DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.



AUTHOR CONTRIBUTIONS

VS performed the experiments, processed and analyzed the data, and wrote the manuscript. HC performed the BLUP and GWAS analysis and assisted in writing the methodology. DK performed GWAS model optimization. YX assisted in writing and revisions to the manuscript. LH, CP, and BW participated in the field experiments and data collection. XW and MS performed nitrogen quantification analysis. DJ performed statistical and computational analysis. RM and MM designed the experiments, participated in result interpretation, supervised the work, and assisted in writing and revisions to the manuscript. CS conceived the study and its coordination, acquired funding, and assisted in interpretation of the results and the revisions to the manuscript. All authors contributed to the text and approved the final manuscript.



FUNDING

This work was supported by funding from the Center for Bioenergy Innovation. The Center for Bioenergy Innovation is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science (DE-AC05-000R22725).



ACKNOWLEDGMENTS

We thank Thomas Juenger, University of Texas—Austin, for providing the switchgrass GWAS panel. We wish to acknowledge Joint Genome Institute (JGI) for providing genome sequences for the switchgrass GWAS accessions. We also thank Sujan Mamidi and Jeremy Schmutz from Hudson Alpha Institute for their contribution to sequence alignment and variant calling of the genotypic dataset. We also wish to acknowledge Bryce Trull, Eric Stuart, and Kamryn Cregger for their assistance in harvesting and postharvest processing of the switchgrass diversity panel and the East Tennessee Research and Education Center (ETREC)—Plant Sciences Unit for their assistance in field experiments.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.893610/full#supplementary-material



REFERENCES

Adler, P. R., Sanderson, M. A., Boateng, A. A., Weimer, P. J., and Jung, H.-J. G. (2006). Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J. 98, 1518–1525. doi: 10.2134/agronj2005.0351

Ball Coelho, B., Roy, R., and Bruin, A. (2006). Nitrogen recovery and partitioning with different rates and methods of sidedressed manure. Soil Sci. Soc. Am. J. 70, 464–473. doi: 10.2136/sssaj2005.0122

Byrnes, B. (1990). Environmental effects of N fertilizer use—An overview. Fertil. Res. 26, 209–215. doi: 10.1007/BF01048758

Camargo, E. L. O., Nascimento, L. C., Soler, M., Salazar, M. M., Lepikson-Neto, J., Marques, W. L., et al. (2014). Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant Biol. 14:256. doi: 10.1186/s12870-014-0256-9

Chandrika, N. N. P., Sundaravelpandian, K., Yu, S. M., and Schmidt, W. (2013). Alfin-Like 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis. New Phytol. 198, 709–720. doi: 10.1111/nph.12194

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., and Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. doi: 10.1186/s13742-015-0047-8

Chien, S. H., Teixeira, L. A., Cantarella, H., Rehm, G. W., Grant, C. A., and Gearhart, M. M. (2016). Agronomic effectiveness of granular nitrogen/phosphorus fertilizers containing elemental sulfur with and without ammonium sulfate: a review. Agron J. 108, 1203–1213. doi: 10.2134/agronj2015.0276

Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., and Arcand, M. M. (2021). Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 12:637108. doi: 10.3389/fpls.2021.637108

Cormier, F., Le Gouis, J., Dubreuil, P., Lafarge, S., and Praud, S. (2014). A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor. Appl. Genet. 127, 2679–2693. doi: 10.1007/s00122-014-2407-7

Dobermann, A. (2007). “Nutrient use efficiency–measurement and management,” in General Principles of FBMPs, IFA International Workshop on Fertilizer Best Management Practices, ed. IFA (Paris: International Fertilizer Industry Association(IFA)), 1–30.

Doerge, R. W. (2002). Multifactorial genetics: mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3:43. doi: 10.1038/nrg703

Dohleman, F. G., Heaton, E. A., Arundale, R. A., and Long, S. P. (2012). Seasonal dynamics of above-and below-ground biomass and nitrogen partitioning in M iscanthus× giganteus and P anicum virgatum across three growing seasons. GCB Bioenergy 4, 534–544. doi: 10.1111/j.1757-1707.2011.01153.x

Ernst, O. R., Kemanian, A. R., Mazzilli, S., Siri-Prieto, G., and Dogliotti, S. (2020). The dos and don’ts of no-till continuous cropping: evidence from wheat yield and nitrogen use efficiency. Field Crops Res. 257:107934. doi: 10.1016/j.fcr.2020.107934

Fike, J. H., Pease, J. W., Owens, V. N., Farris, R. L., Hansen, J. L., Heaton, E. A., et al. (2017). Switchgrass nitrogen response and estimated production costs on diverse sites. GCB Bioenergy 9, 1526–1542. doi: 10.1111/gcbb.12444

Fixen, P., Brentrup, F., Bruulsema, T., Garcia, F., Norton, R., and Zingore, S. (2015). “Nutrient/fertilizer use efficiency: measurement, current situation and trends,” in Managing Water and Fertilizer for Sustainable Agricultural Intensification, eds P. Drechsel, P. Heffer, H. Magen, R. Mikkelsen, and D. Wichelns (Paris: International Fertilizer Industry Association (IFA)), 270.

Foehse, D., and Jungk, A. (1983). Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 74, 359–368. doi: 10.1007/BF02181353

Gaudin, A. C., Mcclymont, S. A., Holmes, B. M., Lyons, E., and Raizada, M. N. (2011). Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress. Plant Cell Environ. 34, 2122–2137. doi: 10.1111/j.1365-3040.2011.02409.x

Glass, A. D., Britto, D. T., Kaiser, B. N., Kinghorn, J. R., Kronzucker, H. J., Kumar, A., et al. (2002). The regulation of nitrate and ammonium transport systems in plants. J. Exp. Bot. 53, 855–864. doi: 10.1093/jexbot/53.370.855

Goel, P., Sharma, N. K., Bhuria, M., Sharma, V., Chauhan, R., Pathania, S., et al. (2018). Transcriptome and co-expression network analyses identify key genes regulating nitrogen use efficiency in Brassica juncea L. Sci. Rep. 8:7451. doi: 10.1038/s41598-018-25826-6

Good, A. G., Shrawat, A. K., and Muench, D. G. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 9, 597–605. doi: 10.1016/j.tplants.2004.10.008

Guo, D., Chen, F., Inoue, K., Blount, J. W., and Dixon, R. A. (2001). Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13, 73–88. doi: 10.1105/tpc.13.1.73

Gupta, N., Gupta, M., Akhatar, J., Goyal, A., Kaur, R., Sharma, S., et al. (2021). Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L. Plant Mol. Biol. 105, 161–175. doi: 10.1007/s11103-020-01076-x

Han, M., Okamoto, M., Beatty, P. H., Rothstein, S. J., and Good, A. G. (2015). The genetics of nitrogen use efficiency in crop plants. Annu. Rev. Genet. 49, 269–289. doi: 10.1146/annurev-genet-112414-055037

He, K., Xu, S., Zhang, X., Li, Y., Chang, L., Wang, Y., et al. (2020). Mining of candidate genes for nitrogen use efficiency in maize based on genome-wide association study. Mol. Breeding 40:83. doi: 10.1007/s11032-020-01163-3

Hitz, K., Clark, A. J., and Van Sanford, D. A. (2017). Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments. Field Crops Res. 200, 1–9. doi: 10.1371/journal.pone.0228775

Holland, J. B., Nyquist, W. E., and Cervantes-Martínez, C. T. (2003). Estimating and interpreting heritability for plant breeding: an update. Plant Breed. Rev. 22, 9–112 doi: 10.1002/9780470650202.ch2

Huang, S., Zhao, C., Zhang, Y., and Wang, C. (2017). “Nitrogen use efficiency in rice,” in Nitrogen in Agriculture-Updates, eds K. Amanullah and S. Fahad (London: IntechOpen), 188–208.

Jensen, L., and Schjoerring, J. (2011). “Benefits of nitrogen for food, fibre and industrial production,” in The European Nitrogen Assessment, eds M. A. Sutton, C. M. Howard, and J. W. Erisman (Cambridge: Cambridge University Press), 32–61. doi: 10.1017/cbo9780511976988.006

Karunarathne, S. D., Han, Y., Zhang, X.-Q., Zhou, G., Hill, C. B., Chen, K., et al. (2020). Genome-wide association study and identification of candidate genes for nitrogen use efficiency in barley (Hordeum vulgare L.). Front. Plant Sci. 11:1361. doi: 10.3389/fpls.2020.571912

Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., and van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv. Agron. 87, 85–156. doi: 10.1016/S0065-2113(05)87003-8

Lam, H. M., Coschigano, K., Oliveira, I., Melo-Oliveira, R., and Coruzzi, G. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Biol. 47, 569–593. doi: 10.1146/annurev.arplant.47.1.569

Lander, E. S., and Schork, N. J. (1994). Genetic dissection of complex traits. Science 265, 2037–2048. doi: 10.1126/science.8091226

Langholtz, M., Davison, B. H., Jager, H. I., Eaton, L., Baskaran, L. M., Davis, M., et al. (2021). Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Sci. Total Environ. 758:143602. doi: 10.1016/j.scitotenv.2020.143602

Lemus, R., Parrish, D. J., and Abaye, O. (2008). Nitrogen-use dynamics in switchgrass grown for biomass. Bioenergy Res. 1, 153–162. doi: 10.1007/s12155-008-9014-x

Li, F., Piasecki, C., Millwood, R. J., Wolfe, B., Mazarei, M., and Stewart, C. N. Jr. (2020). High-throughput switchgrass phenotyping and biomass modeling by UAV. Front. Plant Sci. 1, doi: 10.3389/fpls.2020.574073

Li, X., Chen, W., Zhao, Y., Xiang, Y., Jiang, H., Zhu, S., et al. (2013). Downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw. Genet. Mol.Biol. 36, 540–546. doi: 10.1590/S1415-47572013005000039

Liu, S. J., Huang, Y. H., He, C. J., Cheng, F., and Zhang, Y. W. (2016). Cloning, bioinformatics and transcriptional analysis of caffeoyl-coenzyme A 3-O-methyltransferase in switchgrass under abiotic stress. J. Integr. Agric. 15, 636–649. doi: 10.1016/S2095-3119(16)61363-1

Lovell, J. T., MacQueen, A. H., Mamidi, S., Bonnette, J., Jenkins, J., Napier, J. D., et al. (2021). Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438–444. doi: 10.1038/s41586-020-03127-1

Lu, J., Zhao, H., Wei, J., He, Y., Shi, C., Wang, H., et al. (2004). Lignin reduction in transgenic poplars by expressing antisense CCoAOMT gene. Prog. Nat. Sci. 14, 1060–1063. doi: 10.1080/10020070412331344801

Mackay, T. F. (2001). The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339. doi: 10.1146/annurev.genet.35.102401.090633

Meyermans, H., Morreel, K., Lapierre, C., Pollet, B., De Bruyn, A., Busson, R., et al. (2000). Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J. Biol. Chem. 275, 36899–36909. doi: 10.1074/jbc.M006915200

Morosini, J. S., de Freitas Mendonça, L., Lyra, D. H., Galli, G., Vidotti, M. S., and Fritsche-Neto, R. (2017). Association mapping for traits related to nitrogen use efficiency in tropical maize lines under field conditions. Plant Soil 421, 453–463. doi: 10.1007/s11104-017-3479-3

o Di Nasso, N. N., Roncucci, N., and Bonari, E. (2013). Seasonal dynamics of aboveground and belowground biomass and nutrient accumulation and remobilization in giant reed (Arundo donax L.): a three-year study on marginal land. Bioenergy Res. 6, 725–736. doi: 10.1007/s12155-012-9289-9

Pathak, R. R., Ahmad, A., Lochab, S., and Raghuram, N. (2008). Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr. Sci. 94, 1394–1403.

Ranjan, R., and Yadav, R. (2019). Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 42, 1086–1113. doi: 10.1080/01904167.2019.1589497

Reynolds, J., Walker, C., and Kirchner, M. (2000). Nitrogen removal in switchgrass biomass under two harvest systems. Biomass Bioenergy 19, 281–286. doi: 10.1016/S0961-9534(00)00042-8

Sadeghpour, A., Gorlitsky, L., Hashemi, M., Weis, S., and Herbert, S. (2014). Response of switchgrass yield and quality to harvest season and nitrogen fertilizer. Agron. J. 106, 290–296. doi: 10.2134/agronj2013.0183

Sanderson, M., Reed, R., McLaughlin, S., Wullschleger, S., Conger, B., Parrish, D., et al. (1996). Switchgrass as a sustainable bioenergy crop. Bioresour. Technol. 56, 83–93. doi: 10.1016/0960-8524(95)00176-X

Shen, H., Mazarei, M., Hisano, H., Escamilla-Trevino, L., Fu, C., Pu, Y., et al. (2013). A genomics approach to deciphering lignin biosynthesis in switchgrass. Plant Cell 25, 4342–4361. doi: 10.1105/tpc.113.118828

Shim, H., Chasman, D. I., Smith, J. D., Mora, S., Ridker, P. M., Nickerson, D. A., et al. (2015). A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One 10:e0120758. doi: 10.1371/journal.pone.0120758

Strullu, L., Cadoux, S., Preudhomme, M., Jeuffroy, M.-H., and Beaudoin, N. (2011). Biomass production and nitrogen accumulation and remobilisation by Miscanthus× giganteus as influenced by nitrogen stocks in belowground organs. Field Crops Res. 121, 381–391. doi: 10.1016/j.fcr.2011.01.005

Van, L. L. (2007). Evaluation of different nitrogen use efficiency indices using field-grown green bell peppers (Capsicum annuum L.). Can. J. Plant Sci. 87, 565–569. doi: 10.4141/P06-116

Wagner, A., Tobimatsu, Y., Phillips, L., Flint, H., Torr, K., Donaldson, L., et al. (2011). CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J. 67, 119–129. doi: 10.1111/j.1365-313X.2011.04580.x

Wang, W., Hu, B., Yuan, D., Liu, Y., Che, R., Hu, Y., et al. (2018). Expression of the nitrate transporter gene OsNRT1. 1A/OsNPF6. 3 confers high yield and early maturation in rice. Plant Cell 30, 638–651. doi: 10.1105/tpc.17.00809

Wen, W., Li, D., Li, X., Gao, Y., Li, W., Li, H., et al. (2014). Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 5:3438. doi: 10.1038/ncomms4438

Wolf, D. D., and Fiske, D. A. (2009). Planting and Managing Switchgrass for Forage, Wildlife, and Conservation. Virginia Cooperative Extension, 418-013. Blacksburg, VA: Virginia Polytechnic Institute and State University.

Wu, X., Feng, H., Wu, D., Yan, S., Zhang, P., Wang, W., et al. (2021). Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22:185. doi: 10.1186/s13059-021-02377-0

Xin, W., Wang, J., Li, J., Zhao, H., Liu, H., Zheng, H., et al. (2021). Candidate gene analysis for nitrogen absorption and utilization in japonica rice at the seedling stage based on a genome-wide association study. Front. Plant Sci. 12:670861. doi: 10.3389/fpls.2021.670861

Xu, Y., Shrestha, V., Piasecki, C., Wolfe, B., Hamilton, L., Millwood, R. J., et al. (2021). Sustainability trait modeling of field-grown switchgrass (Panicum virgatum) using UAV-based imagery. Plants 10:2726. doi: 10.3390/plants10122726

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82. doi: 10.1016/j.ajhg.2010.11.011

Yang, J., Worley, E., Ma, Q., Li, J., Torres-Jerez, I., Li, G., et al. (2016). Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum. New Phytol. 211, 75–89. doi: 10.1111/nph.13898

Yang, J., Worley, E., Wang, M., Lahner, B., Salt, D. E., Saha, M., et al. (2009). Natural variation for nutrient use and remobilization efficiencies in switchgrass. Bioenergy Res. 2, 257–266. doi: 10.1007/s12155-009-9055-9

Zhong, R., Morrison, W. H. III, Himmelsbach, D. S., Poole, F. L., and Ye, Z.-H. (2000). Essential role of caffeoyl coenzyme AO-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol. 124, 563–578. doi: 10.1104/pp.124.2.563

Zhu, F., Alseekh, S., Koper, K., Tong, H., Nikoloski, Z., Naake, T., et al. (2021). Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. Plant Cell 34, 557–578. doi: 10.1093/plcell/koab251


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Shrestha, Chhetri, Kainer, Xu, Hamilton, Piasecki, Wolfe, Wang, Saha, Jacobson, Millwood, Mazarei and Stewart. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.










	 
	ORIGINAL RESEARCH
published: 14 June 2022
doi: 10.3389/fpls.2022.881204





[image: image]

Comparative Transcriptomic Analyses of Nitrate-Response in Rice Genotypes With Contrasting Nitrogen Use Efficiency Reveals Common and Genotype-Specific Processes, Molecular Targets and Nitrogen Use Efficiency-Candidates

Narendra Sharma, Supriya Kumari†, Dinesh Kumar Jaiswal† and Nandula Raghuram*

University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India

Edited by:
Khurram Bashir, Lahore University of Management Sciences, Pakistan

Reviewed by:
M. Z. Abdin, Jamia Hamdard, India
Aysha Kiran, University of Agriculture, Faisalabad, Pakistan

*Correspondence: Nandula Raghuram, raghuram@ipu.ac.in

†These authors have contributed equally to this work

Specialty section: This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

Received: 01 March 2022
Accepted: 26 April 2022
Published: 14 June 2022

Citation: Sharma N, Kumari S, Jaiswal DK and Raghuram N (2022) Comparative Transcriptomic Analyses of Nitrate-Response in Rice Genotypes With Contrasting Nitrogen Use Efficiency Reveals Common and Genotype-Specific Processes, Molecular Targets and Nitrogen Use Efficiency-Candidates. Front. Plant Sci. 13:881204. doi: 10.3389/fpls.2022.881204

The genetic basis for nitrogen (N)-response and N use efficiency (NUE) must be found in N-responsive gene expression or protein regulation. Our transcriptomic analysis of nitrate response in two contrasting rice genotypes of Oryza sativa ssp. Indica (Nidhi with low NUE and Panvel1 with high NUE) revealed the processes/functions underlying differential N-response/NUE. The microarray analysis of low nitrate response (1.5 mM) relative to normal nitrate control (15 mM) used potted 21-days old whole plants. It revealed 1,327 differentially expressed genes (DEGs) exclusive to Nidhi and 666 exclusive to Panvel1, apart from 70 common DEGs, of which 10 were either oppositely expressed or regulated to different extents. Gene ontology analyses revealed that photosynthetic processes were among the very few processes common to both the genotypes in low N response. Those unique to Nidhi include cell division, nitrogen utilization, cytoskeleton, etc. in low N-response, whereas those unique to Panvel1 include signal transduction, protein import into the nucleus, and mitochondria. This trend of a few common but mostly unique categories was also true for transporters, transcription factors, microRNAs, and post-translational modifications, indicating their differential involvement in Nidhi and Panvel1. Protein-protein interaction networks constructed using DEG-associated experimentally validated interactors revealed subnetworks involved in cytoskeleton organization, cell wall, etc. in Nidhi, whereas in Panvel1, it was chloroplast development. NUE genes were identified by selecting yield-related genes from N-responsive DEGs and their co-localization on NUE-QTLs revealed the differential distribution of NUE-genes between genotypes but on the same chromosomes 1 and 3. Such hotspots are important for NUE breeders.
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INTRODUCTION

Reactive nitrogen (N) impacts all 17 sustainable development goals including food security. It is quantitatively the most important nutritional requirement for plant growth and agricultural productivity and is therefore supplied in various organic and inorganic forms including urea, ammonium salts, and nitrates. However, poor nitrogen use efficiency (NUE) in agriculture is one of the major reasons for anthropogenic nitrogen pollution that affects soil, air, water, health, biodiversity, and climate change (Sutton et al., 2019). It has already crossed our planetary boundaries, in addition to the loss of fertilizers worth billions of dollars (Sutton et al., 2019). The advocacy of the International Nitrogen Initiative and others over the last two decades led to the UNEP resolution on Sustainable Nitrogen Management in 2019 (Raghuram et al., 2021). Improving agricultural NUE is critical to meet the emerging calls to halve the nitrogen waste (Sutton et al., 2021), especially in agrarian countries.

Plant biology has a central role in understanding and improving crop NUE (Raghuram and Sharma, 2019; Udvardi et al., 2021; Madan et al., 2022). This has to begin with cereals that dominate global crop production and fertilizer demand, of which rice is predominant, due to its lowest NUE (Norton et al., 2015). It is the third most-produced and second most consumed crop in the world, apart from being a post-genomic model crop. This is evidenced by genome sequences of 3000 rice genotypes (Li et al., 2014) and growing functional genomics of N (Li et al., 2018; Pathak et al., 2020; Mandal et al., 2022). Further, the recent NUE phenotype (Sharma et al., 2018, 2021; Pathak et al., 2021) growing quantitative trait loci (QTL) and genotyping (Kumari et al., 2021) make rice an ideal target crop for NUE improvement. A recent simulation showed that $743 million per year could be saved by a 20% increase in rice NUE (Langholtz et al., 2021), while the global expenditure in that direction is not even a tiny fraction of it. Therefore, improving rice NUE is a highly desirable economic and environmental goal.

Nitrogen use efficiency can be understood in terms of uptake/utilization or remobilization efficiencies but is agronomically best expressed as yield or harvested N per unit N input (Raghuram and Sharma, 2019). Among the various N-fertilizers used as inputs, urea is the most predominant form of N-fertilizer used in the rice-growing and developing countries, whereas nitrates and ammonium salts are predominant in cropping in the developed world. However, soil microbial conversions ensure that nitrate is the predominant form of N available to all crops including rice, regardless of the form of N-supply (Coskun et al., 2017). This is one of the reasons why nitrate-transcriptomes are predominant even in the rice functional genomics literature (listed in Kumari et al., 2021). They are also available for subspecies Indica (Pathak et al., 2020) and Japonica (Mandal et al., 2022).

Nitrate uptake is mediated by nitrate transporters followed by intracellular conversion into ammonium ions by the sequential action of nitrate reductase (NR) and nitrite reductase (NiR) and assimilated into amino acids by the glutamine synthetase and glutamate synthase (GS-GOGAT) cycle (Raghuram and Sharma, 2019). All other metabolites containing N are generated by transamination of amino acids, which also provide the main organic N-pool for translocation and secondary remobilization during senescence, which is particularly important in cereals (Snyder and Tegeder, 2021). All these processes have been targeted for understanding and improving NUE with varying results (Mandal et al., 2018; Raghuram and Sharma, 2019; Sinha et al., 2016, 2020; Madan et al., 2022).

In rice, several genes such as OsGRF4, OsDof1, NADH-GOGAT, OsNPF6.1, OsNRT2.3b, OsNRT2.1, OsPTR9, OsNPF8.20, OsNRT1.1A, OsFBP1 have been reported to increase NUE (Kumari et al., 2021 and references cited therein) including alanine aminotransferase (Good et al., 2007), OsPTR9 (Fang et al., 2013), and DEP1 (Sun et al., 2014). In addition to these genes, some interesting QTLs have been identified as linked to NUE (Sinha et al., 2018; Waqas et al., 2018; Kumari et al., 2021). Transcriptomic studies in rice revealed thousands of nitrate-responsive genes totaling 23,626 numbers (Mandal et al., 2022) but they were all limited to single genotypes. This limits the utility of functional genomic studies in the genetic dissection of NUE. The only studies that compared the transcriptomes of two genotypes for NUE were in the context of ammonium nitrate (Sinha et al., 2018; Subudhi et al., 2020). Therefore, in the present study, we undertook a comparative transcriptome analysis for NUE in two Indica rice genotypes with contrasting NUE, Nidhi and Panvel1, as identified earlier (Sharma et al., 2018, Sharma et al., 2021) to understand the genes/processes underlying NUE.



MATERIALS AND METHODS


Plant Material, Growth Conditions, and Nitrate-Treatments

Two genotypes of rice (Oryza sativa ssp. Indica), namely, Nidhi and Panvel1 were chosen, based on contrasting germination, yield, and NUE (Sharma et al., 2018, Sharma et al., 2021). Seeds of Nidhi were procured from the Indian Institute of Rice Research, Hyderabad, India, whereas seeds of Panvel1 were from Panvel, Maharashtra, India. Seeds of modal weight were selected (Sharma et al., 2018) and surface sterilized using 0.1% mercuric chloride for 50 s followed by several washes with ultrapure water and allowed to soak in it for 2 h. They were sown in pots filled with nutrient-depleted sand (Sharma et al., 2019) saturated with Arnon-Hoagland medium (Hoagland and Arnon, 1950) with normal (15 mM) or low nitrate concentration (1.5 mM) as control and test conditions as described earlier (Sharma et al., 2021). The pots were replenished with media to saturation every few days and plants were grown for 21 days in the greenhouse at 28°C and 70% relative humidity with 270 μmol m–2s–1 light intensity and 12/12 h photoperiod. For microarray the treated and control tissues from three independent biological replicates were frozen in liquid N2 and stored at −80°C till further use.



Total RNA Extraction and Microarray

The total RNA was isolated from 21-day whole plants using TRIzol reagent (Invitrogen, Carlsbad, CA, United States) as per the manufacturer’s instructions. Microarray analyses were performed under MIAME compliant conditions using independent biological triplicates. Microarray analysis was performed at Genotypic Technologies (Bengaluru, India). RNA was quantified using a NanoDrop spectrophotometer (ND2000, Thermo Fisher Scientific, Waltham, MA, United States). The integrity of the isolated RNA samples was determined by the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, United States) as per the manufacturer’s instructions. The ratio of 18S and 28S rRNA was obtained from 2100 Expert software (Agilent Technologies, Palo Alto, CA, United States) and the RNA integrity number was obtained from RIN Beta Version Software (Agilent Technologies, Palo Alto, CA, United States). The RNA samples used for microarray hybridization had RIN values above 6. They were reverse transcribed using 500 ng of each RNA sample into double-stranded cDNA using MMLV-RT enzyme and random primer tagged to a T7 polymerase promoter. The double-stranded cDNA was then used as a template to generate Cy3- labeled cRNA by in vitro transcription using RNaseOUT (Invitrogen, United States), inorganic pyrophosphatase, and T7 RNA polymerase at 40°C as per the manufacturer’s instructions [Agilent Quick Amp labeling kit (p/n:5190-0444, United States)]. Labeled cRNA was purified using Qiagen RNeasy columns (Qiagen, Cat No: Cat#74104) and assessed for yields and specific activity. Agilent Rice Gene Expression 8 × 60 K (AMADID 48014) microarrays were customized to include nuclear and organellar gene probes. Labeled cRNA samples of 600 ng each were fragmented and hybridized onto microarrays using the gene expression hybridization kit (Agilent’s in situ Hybridization kit 5188-5242) in an Agilent’s Surehyb hybridization chamber at 65°C for 16 h. The hybridized slides were washed and scanned using an Agilent microarray scanner.



Microarray Data Analysis

Scanned images were processed using Agilent Feature Extraction Software (Version-11.5, United States) to obtain raw data, which were analyzed using Agilent Gene-Spring GX software (Version-12.6.1, United States). The data were normalized using the 75th percentile shift method of global normalization that adjusts the locations of all the spot intensities and provides fold expression values relative to controls. The raw and processed data were deposited in the NCBI-GEO database (GSE140257). The transcripts showing geometric mean fold change value ± 1 (log2FC) with statistically significant cut-of (P ≤ 0.05) were considered as differentially expressed genes (DEGs) in the low nitrate-treated samples relative to the normal nitrate controls. The Student’s t-test was used to calculate the P-value among the replicates. During the data analysis using R studio (Version 1.2.5042, Boston, ME, United States), we observed that one of the three biological replicates was a consistent outlier, causing either non-significant or negative correlation with the other two biological replicates and affecting the robust identification of DEGs. This problem persisted despite quantile normalization and Data-Driven Haar-Fisz for Microarrays (DDHFm) transformation and therefore, the data were re-analyzed with R studio (Version 1.2.5042, Boston, ME, United States) using raw intensity values of the best two significantly correlated replicates and used for the rest of the downstream analysis.



Functional Classification, Subcellular Localization of Differentially Expressed Genes, and Data Analysis

Gene Ontology (GO) based functional annotation was performed using EXPath 2.0. Protein subcellular localization was predicted using the cropPAL database (Hooper et al., 2016) using default parameters for rice plants. MS Excel was used for filtering the data and the Student’s t-test. Venn selection1 was used to make Venn diagrams.



Construction of Protein-Protein Interaction Network

The experimentally validated interactors associated with DEGs were retrieved from BioGRID,2 STRING,3 PRIN,4 and MCDRP5 databases. They were used to construct protein-protein interaction (PPI) networks in Cytoscape 3.9.0 (Shannon et al., 2003) and the expression values of DEGs were mapped onto networks. PPI subnetworks/molecular complexes were obtained using the molecular complex detection (MCODE) plugin in Cytoscape. Transcriptional regulatory networks (TRN) were developed using Cytoscape for DEG-encoded transcription factors based on rice ortholog information retrieved from Arabidopsis (Gaudinier et al., 2018). The expression values of DEGs were used to label the nodes in the networks. Expath was used for GO analysis of DEGs.



Physiological Measurements

Potted plants grown for 21 days were used to measure photosynthesis, stomatal conductance, and transpiration rate using the LI-6400XT Portable Photosynthesis System (LI-COR Biosciences, Lincoln, NE, United States). The net photosynthetic rate was measured in terms of CO2 assimilated as μmol (CO2) m–2s–1; transpiration was measured in terms of mol (H2O) m–2s–1; stomatal conductance was measured in terms of mmol (H2O) m–2sec–1; internal water use efficiency was measured in terms of μmol CO2/mol (H2O) and transpiration efficiency was measured in terms of μmol (CO2)/mmol (H2O) m–2s–1. The Student’s t-test was performed on test vs. control data. The reference CO2 concentration was 410 ± 20 μmol mol–1 during the measurements. All LICOR measurements were carried out at the time of maximal photosynthetic activity between 12:00 p.m. and 5:00 p.m. IST. All the measurements were done in five independent replicates.



RT-qPCR Validation of Nitrate-Responsive Expression of Differentially Expressed Genes

Total RNAs were isolated from 21 days old whole potted plants grown in normal and low nitrate concentrations (15 mM as control and 1.5 mM as a test). 3 μg each of total RNA was reverse transcribed into cDNA using PrimeScript 1st strand cDNA synthesis kit (Takara, Kusatsu, Shiga, Japan). To avoid amplification from genomic DNA, primers spanning exon-exon junctions were designed using the Quant Prime tool.6 The primer sequences are provided in Supplementary Table S4. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) reactions were carried out in three technical replicates and two independent biological replicates in an Agilent Aria-Mx Real-Time PCR System. Each 10 μl reaction mix contained 1 μl of undiluted cDNA, 1.0 μl of forward and 1.0 μl of reverse primers (10 μM), and 5 μl of KAPA SYBR FAST Master Mix (2×) Universal (Kapa Biosystems, Wilmington, MA, United States). The relative changes in gene expression were quantified by the 2–△△CT method (Livak and Schmittgen, 2001) using actin genes (BGIOSGA013463) as internal controls. Melting curve analyses of the amplicons were used to determine the specificity of RT-qPCR reactions. The data were statistically analyzed by unpaired t-test using the software MS Excel.



Retrieval of Molecular Functions and Identification of MicroRNAs and Their Targets

Transcription factors (TFs) encoded by DEGs were retrieved from the databases PlantPAN3.7

For transcription factor binding sites (TFBS) prediction, 2 kb promoter upstream sequences of the translational start site of the TFs were downloaded from RAPDB and subjected to Regulatory Sequence Analysis Tools (RSAT).8 To find out the motif sequences 6,7 and 8 mer sequences with a significance level (P < 0.05) were obtained from transcription factor binding sites (TFBS). Tomtom v 5.1.1 tool9 (Gupta et al., 2007) with default settings was used to filter redundant motifs and define known conserved regulatory elements (CREs) based on the Arabidopsis DAP motifs database. GoMo tool10 was used for the identification of detection of possible biological and molecular functions (Buske et al., 2010). Transporters encoded by DEGs were retrieved from the Rice transporters database11 and Transport DB 2.0.12 Plant microRNA (miRNA) database was used to retrieve the miRNAs that target NUE-related genes (PMRD13). The database Plant PTM Viewer was used to finding the products of DEGs associated with post-translational modifications (PTM).14



Identification of Nitrogen Use Efficiency-Genes and Their Co-localization Onto Nitrogen Use Efficiency-QTLs

Nitrogen use efficiency genes were defined as N-responsive and yield-related genes, as reported by Kumari et al. (2021). The yield-related genes reported therein were further updated from literature and databases and used for Venn selection with the N-responsive DEGs identified in the genotypes Nidhi and Panvel1 to obtain the NUE genes in them. Similarly, NUE-QTLs reported therein were further updated from literature and the NUE genes identified in Nidhi and Panvel1 were co-localized onto NUE-QTLs as described by Kumari et al. (2021).




RESULTS


Nitrate-Responsive Transcriptomes of Rice Genotypes With Contrasting Nitrogen Use Efficiency

In this study, we used two Indica rice genotypes Nidhi and Panvel1 identified previously (Sharma et al., 2018, Sharma et al., 2021) as a contrast for their nitrate response and NUE (Figures 1A,B). They were grown in pots with low nitrate (1.5 mM for the test) and normal nitrate (15 mM for control) and total RNAs were isolated from 21 days old whole plants and used for whole transcriptome microarray analysis. Nitrate metabolism marker enzymes genes, viz., nitrate reductase (NR), and nitrite reductase (NiR) were used to assess the effects of low nitrate in both the genotypes. In both the genotypes, NR and NiR transcripts were significantly reduced in low nitrate compared with normal nitrate (Figures 1C,D). The raw microarray data were deposited in GEO at NCBI under the accession number GSE140257. After comparing the data from three independent replicates, the best two replicates with higher correlation coefficients were selected. Their scatter plots showed good correlations between the two replicates (Supplementary Figure S1). Transcripts showing geometric mean fold change value ± 1.0 (log2FC) with statistically significant cut-off (p-value ≤ 0.05) were used to identify the differentially expressed genes (DEGs). As visualized in the volcano plot (Figure 1E), 1,397 DEGs were detected in Nidhi, out of which 712 were upregulated and 685 DEGs were downregulated in response to low nitrate (Figure 1E and Supplementary Table S1). Similarly, a total of 735 DEGs were detected in Panvel1, of which 376 were upregulated while 359 were downregulated (Figure 1F and Supplementary Table S1). Many of the well-known N-regulated genes figured among the DEGs identified in this study, confirming the overall reliability of our transcriptome data (Supplementary Table S2). Interestingly, only 70 DEGs were common between these two genotypes, of which 41 were upregulated, while 29 DEGs were downregulated (Figure 1G and Supplementary Table S1). Further, Nidhi showed differential expression of many more genes than Panvel1, clearly indicating a more extensive genome-wide nitrate response in the genotype Nidhi. The sequences of proteins encoded by the DEGs were retrieved from RAP-DB and their subcellular localizations were predicted by the CropPAL2 tool (Hooper et al., 2016) using default parameters and rice as the reference organism. In the case of multiple predicted localizations, the first hit was considered. In both the cultivars, DEG-encoded proteins were predominantly located in the cytosol, followed by nucleus and plasma membranes among others (Figure 1H). Interestingly, plasma membrane-associated protein-encoding DEGs were comparatively higher in Nidhi, whereas plastid localized proteins were predominant in Panvel1 (Figure 1H).


[image: image]

FIGURE 1. Nitrate-responsive transcriptomes in Nidhi and Panvel1. (A) Representative image of 21 days old Nidhi and Panvel1 plants grown in nutrient-depleted soil supplemented with AH media containing normal (15 mM) and low (1.5 mM) nitrate. (B) Leaf chlorophyll content (SPAD value) was estimated earlier in Nidhi and Panvel1 (Sharma et al., 2021). Quantitative RT-PCR was used to calculate the relative mRNA expression of nitrate reductase (C) and nitrite reductase (D) genes in 21 days old Nidhi and Panvel1 plants. Test samples were low nitrate, whereas normal nitrate samples were used as control. The actin gene was used as a reference gene to normalize the expression data. Data represent the mean ± SE of three technical replicates. An unpaired t-test was performed in GraphPad Prism. Experiments were performed repeatedly with two independent biological replicates. Volcano plots for differential gene regulation are shown for Nidhi (E) and Panvel1 (F). Scattered dots represent different transcripts and the horizontal dashed line corresponds to the P-value cut-off (P = 0.05). Red scattered dots represent the mapping of upregulated genes, whereas downregulated genes are by green dots. (G) Venn diagram shows commonly and uniquely up or downregulated DEGs between Nidhi and Panvel1. (H) Predicted subcellular localization of DEGs encoded proteins in Nidhi and Panvel1. **P < 0.01, ***P < 0.001, ****P < 0.0001.




Nitrate Induces Common and Distinct Processes/Pathways in Contrasting Genotypes

An important purpose of comparatively analyzing contrasting genotypes is to identify the key cellular processes involved in NUE. For this purpose, Gene Ontology (GO)-based functional annotation of DEGs was performed using EXPath 2.0 tool (Chien et al., 2015). It revealed photosynthesis, response to light stimulus, protein-chromophore linkage, and carbohydrate metabolism among others, as enriched biological processes regulated by nitrate that are common to both the genotypes (Figure 2 and Supplementary Table S3). Cell cycle/division, nitrogen utilization, ammonium transport, ammonia assimilation cycle, and processes related to cytoskeleton among others were highly enriched only in Nidhi under low nitrate conditions (Supplementary Table S3). However, biological processes related to signal transduction, protein import into the nucleus and mitochondria, phosphorelay signal transduction, chromatin organization, transport of ions, water, and carbohydrate, and response to heat and ozone among others were enriched only in Panvel1 (Supplementary Table S3).
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FIGURE 2. Heat map was constructed using Heatmapper, which represents enriched top ten gene ontology (GO) terms (biological processes) for contrasting rice genotypes Nidhi and Panvel1. Minus log P values were plotted against the respective GO term.




Validation of Selected Differentially Expressed Genes by RT-qPCR

The expression pattern of DEGs associated with photosynthesis, transport, and flowering time were validayted by RT-qPCR (Figure 3). One of them that is common to both the genotypes codes for B-Box-Containing Protein 19 (OsBBX19, Os06g0298200) and was upregulated. Two DEGs light-harvesting protein CP29 (OsCP29, Os07g0558400) and Chloroplast Signal Recognition Particle 43 (SRP43, Os03g0131900) exclusive to Nidhi were downregulated. Three DEGs were exclusive to Panvel1, two of which were upregulated: Big Grain Like 1 (BGL1, Os03g0414900) and Phytoclock 1 (OsPCL1, Os01g0971800) while sulfate transporter 3;2 (Ossultr3;2, Os03g0161200) was downregulated. The list of primers used in this study is provided in Supplementary Table S4.
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FIGURE 3. Validation of expression profile of nitrate responsive genes by RT-qPCR. Relative change in the gene expression was calculated by the comparative Ct value method and the actin gene was used for data normalization. The control values were taken as zero and the test values are shown as the average of three technical and two independent biological replicates (+SE) except gene BGL1 for which the calculations were done based on three technical replicates of a biological replicate. Each sub-figure compares gene expression of RT-qPCR and microarray for Nidhi versus Panvel1 for gene OsBGl1 (A), OSBBX19 (B), OsSULTR3;2 (C), OsCP29 (D), OsSRP43 (E), and OsPCL1 (F).




Differential Regulation of Transporters May Contribute to Nitrogen Use Efficiency in Contrasting Genotypes

Nitrate-responsive transporters have been implicated in source-sink dynamics (Tegeder and Masclaux-Daubresse, 2018) and NUE (Wang et al., 2018; Zhang Z. et al., 2020; Kumari et al., 2021). To discriminate the effects of nitrate on different transporters in Nidhi and Panvel1, DEGs were searched in Transport DB (see text footnote 12) and Rice Transporter database and associated transporters were retrieved. Sixty-six and twenty-seven nitrate-responsive transporters belonging to 22 and 18 families, respectively, were detected in Nidhi and Panvel1 (Figure 4A and Supplementary Table S5). Two transporters belonging to distinct families, a potassium permease (KUP; Os12g0515400) and a sodium symporter (DASS; Os03g0575200), were similarly regulated in both the genotypes, whereas 64 transporters were exclusive to Nidhi and 25 were exclusive to Panvel1. Nidhi revealed a higher number of downregulated transporters than upregulated, while approximately equal numbers of up- and downregulated transporters were detected in Panvel1.
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FIGURE 4. (A) Heat map was constructed using Heatmapper, which represents the expression pattern of nitrate regulated differentially expressed genes (DEGs) of the top two transporters’ families for Nidhi and Panvel1 rice contrasting genotypes. For Nidhi, the top two transporter families are Amino Acid/Auxin Permease (AAAP) Family and Amino Acid-Polyamine-Organocation (APC) Family, while for Panvel1 they are Drug/Metabolite Transporter (DMT) Superfamily and Major Intrinsic Protein (MIP) Family. (B) Expression pattern of nitrate regulated DEGs of top two transcription factors’ families for Nidhi and Panvel1 rice contrasting genotypes. For Nidhi, the top two TFs families are WRKY and ARF, while for Panvel1 they are AP2 and bHLH.


This clearly shows that nitrate differentially regulates various transporters in contrasting genotypes. The extent to which this may contribute to their differences in NUE needs to be examined, in order to consider such transporters as targets for NUE improvement. Venn analyses of these transporters found in Nidhi with NUE-related genes in rice predicted by Kumari et al. (2021) revealed nine transporters, viz. OsCAX1a, OsTPC1, OsMGT1, OsYSL15, OsMST4, OsHAK1, OsAMT1;1, Os-YSL16 and OsMATE2 as related to NUE. Seventeen of the 66 transporters identified in Nidhi in this study were associated with biotic/abiotic stress, root, hormones, etc., whereas 40 of them are completely novel and functionally unvalidated (Supplementary Table S5). In the case of Panvel1, three transporters, viz. OsSUT1, NPF7.1, and Lsi3 are associated with NUE (Kumari et al., 2021), nine were linked with other functions such as abiotic stress, micro and macronutrient transport, photosynthesis, pollen germination, etc., and 15 are completely novel and functionally unvalidated (Supplementary Table S5). Hence, our analysis identified 12 transporters as potential targets to improve NUE in rice for the first time on the basis of their differential regulation in contrasting genotypes, including 53 novel candidates (Supplementary Table S5).



Differential Involvement of Transcription Factors and Their Binding Sites in Nitrogen Use Efficiency

To identify any differential transcriptional regulation in the contrasting genotypes for N-response/NUE, DEGs from both genotypes were searched in the rice transcription factors database PlantPAN3 (see text footnote 7). We identified 37 transcription factors (TFs) in the genotype Nidhi and 27 TFs in the genotype Panvel1, with only two TFs common to both (Figure 4B and Supplementary Table S6). In Nidhi, they belonged to 20 TF classes including 9 major classes (>2 genes) totaling 26 genes and 11 minor classes (<2 genes) totaling 11 genes. In Panvel1 the TFs belonged to 11 classes, including 5 major classes (>2 genes) totaling 21 genes and 6 minor classes (<2 genes) totaling 6 genes.

In Nidhi, all the identified members of TCP and AP2 TF families were upregulated, while the members of WRKY, bHLH, bZIP, NAC, and NAM TF families were downregulated under low nitrate. In Panvel1, AP2 and bHLH TF family members were upregulated, while only HSF TF family members were downregulated. Among the other major TF families, Myb/SANT more members were upregulated than downregulated in both the genotypes, but this was true for the ARF family only in Nidhi. In the C2H2 family, there were more members of downregulated than upregulated TFs in the genotype Nidhi, while in the genotype Panvel1, there were an equal number of up and downregulated TFs of the Homeodomain/HD-ZIP family.

Venn selection of these TFs found in Nidhi with the predicted NUE-related genes in rice (Kumari et al., 2021) revealed four TFs, viz. OsAP2/ERF-40, OsMYB102, OsDREB1, and OsNAC5 as differentially regulated by nitrate, relative to Panvel1. Among them, twenty-two were associated with biotic/abiotic stress, root/leaf development, panicle architecture, hormones, etc., whereas nine of them are completely novel and functionally unvalidated (Supplementary Table S6). In Panvel1, six TFs, viz., OsPCL1, OsBLR1, HSfA2d, R2R3-MYB, OsEPR1, and OsNAC3 figure among the predicted NUE-related genes (Kumari et al., 2021), while fifteen TFs were linked with other functions such as abiotic stress, spikelet meristem, stamen development, chloroplast development, and hormone metabolism, etc. Four other TFs are completely novel and functionally unvalidated (Supplementary Table S6).

These results clearly indicate that nitrate regulates common and exclusive TFs, which may control different N-response/NUE in Nidhi and Panvel1. Further, in addition to our validation of some of the predicted NUE-related TFs as differentially regulated by nitrate among contrasting rice genotypes, we identified 13 TFs as novel candidates in contrasting rice genotypes (Supplementary Table S6) to improve NUE.

Transcription factors are known to regulate target genes by binding the cis-acting motifs present in their promoter regions. To further discriminate the distinct N-response/NUE in the contrasting genotypes Nidhi and Panvel1, TF binding sites (TFBS) were predicted/searched using Regulatory Sequence Analysis Tools (RSAT) (see text footnote 8). Transcription factor binding sites for the transcription factors exclusively N-responsive in the genotype Nidhi revealed the majority of binding sites for AP2-EREBP and Cys2His2 (C2H2) followed by TCP, G2 like, and FAR1. This indicates that the NUE-related TFs are themselves regulated by nitrate through these families of TFs. Annotation analysis of these motifs revealed various interesting biological and molecular functions, which include regulation of transcription, translation, ATPase activity, and structural constituent of ribosome, while two motifs were not annotated. All cis-regulatory sites (CREs) are novel NUE-related CREs in rice (Supplementary Table S7).

In Panvel1, promoter regions for the transcription factors exclusively N-responsive in this genotype contain binding sites for GRF, AP2-EREBP followed by bzip, MYB, HSF, TCP, and Cys2His2 (C2H2). This indicates that these NUE-related TFs are themselves regulated by these families of TFs in Panvel1 as well. Annotation analysis of these motifs revealed many interesting biological and molecular functions, which include regulation of transcription, translation, response to auxin stimulus, kinase activity, and peroxidase activity, while three motifs were not annotated. All CREs identified in the present study are novel NUE-related CREs in rice (Supplementary Table S7).

To further delineate the contrasting N-response/NUE of Nidhi and Panvel1 in the context of global regulation of TFs, we predicted a DEG-associated transcriptional regulatory network (TRN). For this purpose, we used ortholog information available in Arabidopsis (Gaudinier et al., 2018) to retrieve the corresponding rice DEGs from the PlantGDB database as described earlier (Pathak et al., 2020). Then, we constructed DEG-associated TRN for Nidhi and Panvel1 in Cytoscape and mapped the expression value of DEGs onto the networks (Figure 5). Venn analysis was performed to identify the common and unique genes associated with the TRNs developed in Nidhi and Panvel1. It revealed 51 genes common to both the genotypes, whereas 42 and 15 genes were exclusive to Nidhi and Panvel1 TRNs, respectively (Supplementary Table S8). High-affinity nitrate transporter, glutamine synthetase, nodulin MtN3 family protein, and NIN protein among others were common to both the genotypes. MADS-box family gene (OsMADS18), auxin-regulated gene involved in organ size (ARGOS), and Ser/Thr protein phosphatase family protein among others were exclusive to N-response in Nidhi, whereas heat stress transcription factor B-1 and TCP family transcription factor among others were exclusively N-responsive in Panvel1 (Supplementary Table S8). Further, GO-based functional annotation of TRNs using the EXPath tool revealed response to nitrate and auxin and regulation of transcription as common GO terms in both the cultivars, whereas exclusive GO terms in Nidhi were cell differentiation, carbohydrate transport, and protein dephosphorylation, among others. Those exclusive to Panvel1 were responses to salicylic acid and cold and root development (Supplementary Table S9).
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FIGURE 5. Predicated nitrate-responsive transcriptional regulatory network (TRN) in Nidhi (A) and Panvel1 (B). Nitrate-regulated Arabidopsis TRNs (Gaudinier et al., 2018) were used to identify the DEGs-associated interactors in rice. Orthologous information was retrieved from the PlantGDB database and networks were constructed in Cytoscape ver 3.9.0. Expression values of DEGs were mapped onto the networks where red color nodes represent upregulated DEGs and blue color nodes correspond to downregulated DEGs. Light gray color nodes represent interactors but not DEGs in Nidhi and Panvel1.




MicroRNA-Mediated Post-transcriptional Regulation of N-Response in Contrasting Genotypes

MicroRNA are involved in the post-transcriptional regulation of gene expression in plants (Michlewski and Cáceres, 2019). To understand the possible role of post-transcriptional regulation in contrasting NUE rice genotypes, DEG-associated microRNAs were retrieved from the Plant miRNA database (see text footnote 13). A subset of nitrate-regulated genes in contrasting rice genotypes comprised 35 miRNAs targets in Nidhi and 21 in Panvel1 (Supplementary Table S10). Out of the 35 miRNA targets found in Nidhi, 22 were upregulated whereas 13 were downregulated. Similarly, out of 21 targets in Panvel1, 11 were upregulated and 10 were downregulated. Two miRNAs osa-miR167c and osa-miR441a were common between Nidhi and Panvel1. Venn analyses of these miRNAs with those targeting reported NUE-related genes in rice (Kumari et al., 2021) revealed three miRNAs osa-miR1440, osa-miR170a, and osa-miR399e exclusively in Nidhi. Overall, our analysis in contrasting genotypes identified 54 miRNAs as novel candidates (Supplementary Table S10) to be validated further for their role in improving NUE in rice.

Gene ontology analysis of target genes of miRNA in Nidhi using ExPath 2.0 revealed the role of post-translational modifications, viz., phosphorylation, de-phosphorylation, hydrolase activity, and phosphatase activity (Supplementary Table S10). Some other associated GO terms were metal ion binding, sequence-specific DNA binding, protein dimerization activity, oxidoreductase activity regulation of transcription, and DNA-template. Gene ontology for target genes of miRNA in Panvel1 showed processes such as cytosol, metal ion binding, plasma membrane, oxidation-reduction process, and protein binding. The details of their genes, functions, and gene ontology analysis along with references are provided in Supplementary Table S10. This gene ontology analysis indicates differential regulation of miRNA targets in contrasting rice genotypes and predominant post-transcriptional regulation by nitrate in the genotype Nidhi than in Panvel1.



Genotype-Specific N-Responsive Protein-Protein Interaction Networks

To understand the contrasting N-response/NUE of Nidhi and Panvel1 in terms of the underlying pathways, we developed DEG-associated PPI networks (Supplementary Figures S2, S3). Experimentally validated interactors associated with DEGs were retrieved from STING, BioGRID, MCDRP, and PRIN databases for this purpose. Nitrate-responsive PPI networks were constructed in Cytoscape and the expression value of DEGs was mapped onto the network for each genotype (Supplementary Figures S2, S3). In the case of Nidhi, the PPI network consisted of 528 nodes and 1622 edges, whereas 215 nodes and 368 edges were present in Panvel1. Venn analysis showed that 29 interactors were common in both the genotypes, whereas 500 and 186 exclusive interactors were detected in Nidhi and Panvel1, respectively (Supplementary Table S11). GO annotation of interactors involved in the PPI network revealed signal transduction, phosphorylation, cell cycle, and post-translational protein modification among others, as highly enriched exclusive GO terms in Nidhi. In Panvel1, highly enriched GO terms were a response to heat, protein refolding, water homeostasis, cell redox homeostasis, specification of floral organ identity, and protein import into mitochondrial matrix among others (Supplementary Table S12). To reduce the network complexity for better interpretation, MCODE algorithm-based sub-clustering of networks was performed in Cytoscape. We detected 13 network subclusters/molecular complexes in Nidhi, and 6 subclusters in Panvel1 (Figure 6 and Supplementary Table S4). Those with MCODE score > 3 and node number > 3 were considered for further analyses (Supplementary Table S13). In Nidhi, subcluster 1 with the highest MCODE score consisted of 23 nodes and 242 edges, whereas 11 nodes and 48 edges were present in cluster 1 in Panvel1. EXPath-based GO enrichment analyses revealed that important sub-clusters in Nidhi were primarily involved in cytoskeleton organization, cell wall, and related processes, whereas in Panvel1, they were chloroplast development and related processes (Supplementary Table S13).
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FIGURE 6. Nitrate-responsive protein-protein interaction (PPI) sub-clusters/molecular complexes in Nidhi and Panvel1. DEGs-associated interactors were retrieved by STRING, BioGRID, PRIN, and MCDRP databases. Experimentally validated interaction pairs were used to construct the PPI networks in Cytoscape (Supplementary Figures S2, S3). Molecular complexes/sub-clusters of PPI networks were identified using the MCODE plugin in Cytoscape. Thirteen and six sub-clusters/molecular complexes were detected in Nidhi and Panvel1, respectively. Important nitrate-responsive sub-clusters/molecular complexes identified in Nidhi and Panvel1 are shown (A,B) and the remaining are given in Supplementary Figure S4. Red and blue color nodes correspond to the up and downregulated DEGs, respectively. Light gray color nodes represent the interactors, which are not DEGs.




Nitrate-Regulated Differential Post-translational Modifications in Contrasting Genotypes

Initial gene ontology analysis of N-responsive DEGs in Nidhi using ExPath 2.0 revealed terms associated with post-translational modifications (PTM), viz., phosphorylation, de-phosphorylation, hydrolase activity, and phosphatase activity (Supplementary Table S14). In order to find out the N-responsive DEG-encoded proteins that can be modified post-translationally, gene ids were searched in the PTM viewer database (see text footnote 14). We found 475 IDs for Nidhi, of which a maximum number of PTMs (258) were found for phosphorylation followed by Hydroxyisobutyrylation (156), Acetylation (50), Carbonylation (20), Glycosylation (6), and one each of Malonylation, Succinylation, and Ubiquitinylation. Similarly, out of the 185 IDs for PTMs in Panvel1, the majority were Phosphorylation (85), followed by Hydroxyisobutyrylation (65), Acetylation (23), Carbonylation (9), N-glycosylation (2), and 1 for Ubiquitinylation (Supplementary Table S14). Venn analyses of these PTM genes with predicted NUE-related transporters and transcription factors in rice (Kumari et al., 2021) revealed post-translational modifications in the products of 7 DEGs of Nidhi and 3 DEGs of Panvel1. Out of these 7 genes, five were transporters and two were TFs. Out of the five transporters, four transporters, namely, OsCAX1a, OsMGT1, OsHAK1, and AMT1.1 were modified post-translationally by phosphorylation, while OsTPC1 was modified by acetylation. Out of the two TFs, OsCOL4 was modified by acetylation while OsAP2/ERF-40 by phosphorylation. Out of the 3 genes in Panvel1, two encoding TFs OsPCL1 and OsBBX26, and one encoding transporter OsSUT1 were modified by phosphorylation. Overall, our analysis identified 660 post-translationally modified proteins differentially regulated by nitrate in contrasting genotypes, of which the nature of PTM was known for only ten of them. The remaining 650 are novel and need detailed characterization and shortlisting for their role in NUE (Supplementary Table S14).



Yield Association and QTL Co-localization of N-Responsive Differentially Expressed Genes Reveals Nitrogen Use Efficiency Candidates

We have earlier shown that yield association is the most important distinction between N-response and NUE, whether for the phenotype (Sharma et al., 2021) or genotype (Kumari et al., 2021). Using an updated and expanded list of 3,532 yield-related genes in rice from literature and databases and the N-responsive DEGs identified in each of the contrasting genotypes, Venn Selection was performed and the resulting common genes are termed NUE-genes. This exercise with 1,327 DEGs exclusive to Nidhi revealed 188 NUE-genes (Figure 7A). Among these, 36 NUE- related genes (Nidhi nitrate) co-localized onto 9 NUE-QTLs regulating 7 phenotypic traits including grain yield response (GR), plant height (PH), panicle length, (PL) root length (RL), relative shoot dry weight (RSW), thousand-grain weight (TGW), spikelet per primary panicle (SPY). The maximum number of 18 NUE-genes co-localized onto chromosome 3, followed by 8 on chromosomes 1, 3 on chromosome 11, and two each on chromosomes 6 and 11 (Figure 7B and Supplementary Table S15). GO analysis of these 36 NUE- genes revealed Cyano-amino acid metabolism, starch, and sucrose metabolism as important pathways at FDR ≤ 0.05 (Supplementary Table S16).
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FIGURE 7. (A) Venn selection of yield-related and Nidhi nitrate genes revealed 188 NUE-genes. Among them, only 36 NUE-genes colocalized onto 9 NUE-QTLs. (B) Venn selection of yield-related and Panvel nitrate genes revealed 98 NUE-genes. Among them, only 26 NUE-genes colocalized to 16 NUE-QTLs. (C,D) Representative figure of Nidhi nitrate NUE genes colocalized on chromosomes 1 and 3. (E,F) Representative figure of Panvel nitrate NUE genes colocalized on chromosomes 1 and 3. Gene id is given on the right side of the map and the physical location of genes is given on the left side of the map (in mb).


Similar Venn selection using 665 N-responsive DEGs exclusive to Panvel1 and 3532 yield-related rice genes from literature resulted in 98 NUE-genes. Among these, 26 were co-localized onto 16 NUE-QTLs regulating 11 phenotypic traits including a number of productive tillers (PTN), grain yield response (GR), harvest index (HI), nitrogen use efficiency (NUE), panicle length (PL), plant height (PH), relative biomass (RBM), relative shoot dry weight (RSW), spikelet fertility percentage (SFP), spikelet per primary panicle (SPY), and thousand-grain weight (TGW). The maximum number of 9 genes were co-localized onto chromosome 3, 8 genes on chromosome 1, 2 genes each on chromosomes 2 and 7, and one gene each co-localized onto chromosomes 4, 5, 6, 8, and 11 (Figure 7 and Supplementary Table S15). GO analysis of these 36 NUE - genes revealed photosynthesis, carbon metabolism, and pyruvate metabolism along with others as important pathways at FDR ≤ 0.05 (Supplementary Table S16).



Nitrate Influences Photosynthetic and Water Use Efficiencies in Contrasting Genotypes

To experimentally validate some of the common physiological processes, viz. photosynthesis, transpiration, water stress, and stomatal conductance in the contrasting rice genotypes Nidhi and Panvel1, they were grown in the greenhouse for 21 days as described in materials and methods. They were used to measure photosynthesis, transpiration, stomatal conductance, photosynthetic efficiency, transpiration efficiency, and internal water use efficiency. For the purpose of better understanding of NUE, the relative percentage was calculated in low nitrate over normal nitrate for each of the measured parameters. All three relative efficiencies in low nitrate (1.5 mM) over normal nitrate (15 mM) were found to be significantly higher (P < 0.05) for the high NUE genotype Panvel1 than for low NUE genotype Nidhi (Figure 8). These results are in line with our earlier results (Kumari et al., 2021). The relative rate of transpiration and stomatal conductance were significantly higher (P < 0.05) in the genotype Nidhi than in Panvel1, while the opposite pattern was found in the high NUE genotype Panvel1 (Figure 8). Interestingly, relative photosynthesis was significantly higher in low nitrate in genotype Panvel1 while it was not found significant in the genotype Nidhi (Figure 8).
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FIGURE 8. Validation of biological processes: Validation was done using Licor instrument 6400XT (LI-COR, Lincoln, NE, United States) on 21 old days grown plants. Plants were grown in nutrient-depleted soil and fertilized with Arnon Hoagland medium having nitrate as the sole source of N with 15 mM concentration as control while 1.5 mM, was used as a test. Measurement was done in five biological replicates. Percent increase or decrease (relative measurement) for each of the measurements was calculated in low nitrate over normal nitrate. (A) Relative photosynthesis was measured in terms of μmol (CO2) m–2s–1. (B) Relative transpiration was measured in terms of mol (H2O) m–2s–1, and (C) Relative stomatal conductance was measured in terms of mol (H2O) m–2sec–1). (D) Relative carboxylation efficiency was measured in terms of μmol (CO2)/m2s1/Ci as the ratio of photosynthesis and internal CO2 concentration, (E) Relative internal water use efficiency was measured in terms of μmol (CO2)/mol (H2O), and (F) Relative transpiration efficiency was measured in terms of μmol (CO2)/mmol H2O m–2s–1. The test of significance for low nitrate over normal nitrate for each of the individual bars has been shown as star (P < 0.05), while NS represents non-significance.





DISCUSSION

Understanding the genetic determinants of NUE is crucial for crop improvement toward NUE and much remains to be done despite the rapid recent progress in this direction (Raghuram and Sharma, 2019). This study used comparative microarray analysis of nitrate response in two Indica rice genotypes, viz. Nidhi and Panvel1 with contrasting NUE toward dissection of the genetic basis for NUE, as well as to identify its underlying biological processes. The two genotypes, namely, Nidhi and Panvel1 were previously characterized as contrasting for NUE (Sharma et al., 2018, Sharma et al., 2021). Their potted whole plants were grown in nutrient-depleted sand as described earlier (Sharma et al., 2019) to ensure precise control of the N-form (nitrate) and N-dose (1.5 or 15 mM) and avoid uncertainties typical in the field soils. The differential N-response and NUE of both the genotypes (Figures 1A,B) was confirmed by RT-qPCR analysis of the expression of nitrate reductase and nitrite reductase (Figures 1C,D). Following microarray analysis, some genes/processes that could explain the differences in NUE were identified and validated, apart from localizing them in QTLs known to be associated with NUE as discussed below.

Our previous transcriptomic analyses revealed many unreported genes/processes involved in nitrate-response in Indica rice (Pathak et al., 2020) as well as in Japonica (Mandal et al., 2022). Further, a meta-analysis of all N-responsive transcriptomes together with yield-related genes predicted and shortlisted some NUE-related genes (Kumari et al., 2021). Comparative transcriptomic analyses of contrasting genotypes are expected to take these studies to the next level, but they were confined to ammonium nitrate response so far (Sinha et al., 2018; Subudhi et al., 2020), hence the current comparative study was conducted with nitrate.

We hypothesized that contrasting NUE between genotypes can be traced to the differential expression of genes and can reveal the underlying biological processes/pathways. We found that the majority of the DEGs were unique or genotype-specific, while a small but significant fraction of the 70 common DEGs were either oppositely regulated between the genotypes, or differed in their extent of up or downregulation.

Another interesting finding was that among the 10 nitrate-responsive DEGs that were common to both the genotypes but were oppositely regulated, there was one gene that was predicted to be NUE related by Kumari et al. (2021). This gene is associated with GDP-mannose 3,5-epimerase activity (OsGME1, GO:0047918) and is related to both grain yield (Oryzabase) and N-response (Kumari et al., 2021). In our study, it was downregulated in the low NUE genotype Nidhi and upregulated in the high NUE genotype Panvel1, making it another attractive candidate for further validation of its role in NUE.

Photosynthesis is considered to be a key process that determines N response and NUE in crops (Long, 2020), through the regulation of associated genes in rice (Kumari et al., 2021; Sharma et al., 2021; Mandal et al., 2022). We sought to further validate these findings using contrasting genotypes in this study. Our gene ontology (GO) analyses of the nitrate-responsive biological processes (Supplementary Table S3) revealed photosynthesis/photosystem, response to light, and translation as prominently regulated by nitrate in both contrasting rice genotypes. Our physiological data validated this finding (Figure 8), with increased carbon fixation, photosynthetic efficiency, and internal water use efficiency in low nitrate relative to normal nitrate in the genotype Panvel1 compared to Nidhi. Therefore, these processes might explain, at least in part, the superior NUE of the genotype Panvel1 over Nidhi.

Similarly, our RT-qPCR data revealed differential regulation of CP29 (LHCB4) by nitrate in a genotype-specific manner. It has been established that along with other light-harvesting proteins, this gene is involved in energy dissipation in Arabidopsis thaliana (De Bianchi et al., 2008). Our results indicate the involvement of light-harvesting in NUE, in addition to carbon fixation discussed above. Interestingly, PPI networks of proteins encoded by DEGs in Nidhi and Panvel1 revealed a sub-cluster/molecular complex associated with chloroplast development/processes in Panvel1, but not in Nidhi (Supplementary Figure S3). Chloroplast development and associated processes such as N-assimilation are considered hotspots for NUE improvement in plants (Sandhu et al., 2021). Our earlier greenhouse/field experiments demonstrated that Panvel1 had higher chlorophyll contents (Sharma et al., 2021), which may in part explain its higher NUE via better management of N-related cellular homeostasis.

Transporters are known to regulate N-response/NUE in many crops (Mandal et al., 2018; Raghuram and Sharma, 2019; Madan et al., 2022), including rice (Pathak et al., 2020; Kumari et al., 2021; Nazish et al., 2021; Mandal et al., 2022). But they were not validated in contrasting genotypes to the best of our knowledge. In our present study, Nidhi revealed nine N-responsive transporters among many known to be associated with NUE, apart from an additional 17 linked with other functions and 40 others that are completely novel and functionally unvalidated (Kumari et al., 2021). In Panvel1, we found three nitrate-responsive transporters previously associated with NUE, nine linked with other functions, and 15 others that are completely novel and functionally unvalidated (Supplementary Table S5). Hence, our results validate the genotype-dependent expression of 55 transporters and aid in shortlisting them from many more transporters predicted to be associated with NUE by Kumari et al. (2021). Eleven of them have been independently validated for their role in NUE in rice (Katayama et al., 2009; Fang et al., 2013, 2017; Fan et al., 2014, 2016; Ranathunge et al., 2014; Chen et al., 2016, 2017; Wang et al., 2018; Gao et al., 2019; Tang et al., 2019) making the rest of our shortlisted transporters attractive candidates in future efforts to improve NUE.

Transcription factors (TFs) are known to regulate N-response/NUE in many crops and cereals (Mandal et al., 2018; Raghuram and Sharma, 2019; Pathak et al., 2020; Kumari et al., 2021; Madan et al., 2022). But they were not validated in contrasting genotypes to the best of our knowledge. In our present study, Nidhi transcriptome revealed four N-responsive transcription factors among many known to be associated with NUE, apart from an additional 22 linked with other functions and 11 others that are completely novel and functionally unvalidated (Kumari et al., 2021). In Panvel1, we found six nitrate-responsive TFs previously associated with NUE, 15 linked with other functions, and six others that are completely novel and functionally unvalidated (Supplementary Table S5). Hence, our results validate the genotype-dependent expression of 17 transcription factors and aid in shortlisting them from many more TFs predicted to be associated with NUE by Kumari et al. (2021). Seven of them have been independently validated for their role in NUE in rice (Lijavetzky et al., 2003; Kurai et al., 2011; Sun et al., 2016; Tang et al., 2019; Alfatih et al., 2020; Gao et al., 2020; Wu et al., 2021), making the rest of our shortlisted TFs attractive candidates for future efforts toward improving NUE. We also identified many enriched binding motifs for NUE-associated N-responsive TFs in the present study for the first time for further validation of their role in NUE and shortlisting the targets for crop improvement.

Transcriptional regulatory networks can be used to predict the underlying interactions in pathways that regulate various responses. They were used to construct transcription regulatory networks and study N-response/NUE in rice (Pathak et al., 2020; Mandal et al., 2022). But they were not examined in contrasting genotypes to the best of our knowledge. We used Arabidopsis orthologs information to construct nitrate-responsive TRN in both the genotypes (Figure 5 and Supplementary Table S8). The TF classes common to both the genotypes include AP2 domain-containing protein, no apical meristem protein, bZIP, and NAC domain-containing protein, and their target genes such as high-affinity nitrate transporter, glutamine synthetase, NIN protein, calcium/calmodulin-dependent protein kinases. Lactate/malate dehydrogenase was identified as a common expression of downregulated DEG in both the genotypes, whereas 16 and 7 DEGs were exclusive to TRN developed in Nidhi and Panvel1, respectively. Interestingly, the TRN captures some of the already validated individual targets in rice NUE such as nitrate reductase (Gao et al., 2019), glutamine synthetase1 (Brauer et al., 2011), and urea transporter (Beier et al., 2018), make the rest of the interactors in the TRN as attractive candidates in future efforts to improve NUE.

MicroRNAs are known to regulate N-response/NUE in a few crops (Zuluaga and Sonnante, 2019; Kumari et al., 2021). But they were not validated in contrasting genotypes to the best of our knowledge. In our present study, three N-responsive miRNAs among many known to be associated with NUE in Nidhi, apart from an additional 32 that are completely novel and functionally unvalidated (Kumari et al., 2021). In Panvel1, none of the miRNAs was found to be linked with NUE thus all 21 are completely novel and functionally unvalidated (Supplementary Table S10). Five of them have been independently reported for their role in yield (osa-miR1440; Liu et al., 2020, MIR396e and MIR396f; Zhang J. et al., 2020), phosphate starvation, and root traits (osa-miR399e; Dai et al., 2012) and NUE also including osa-miR170a (Kumari et al., 2021).

Our RT-qPCR validation of higher expression of the N-responsive DEG, big grain like1 (BGL1) in Panvel1 under low nitrate (relative to Nidhi), indicates its role in yield and NUE, as ectopic expression of BGL1 leads to high yield through cell division and organ development enhancement (Lo et al., 2020). Similarly, a mutation in Phytoclock1 has been reported for early flowering in wheat (Mizuno et al., 2016) and our RT-qPCR results show lower expression of this N-responsive gene in Panvel1 relative to Nidhi. We earlier showed that flowering time is an important phenotypic trait for NUE (Sharma et al., 2021), indicating that the Phytoclock gene could also be one of the attractive candidates to manipulate NUE. Our RT-qPCR validation of the N-responsive upregulation of B-Box-Containing Protein 19 revealed far higher expression in Panvel1 relative to Nidhi. This gene has been reported for various kinds of stresses (Shalmani et al., 2019) and our results on its differential N-regulation in contrasting genotypes show the first indication of convergence between NUE and stress pathways. This is an underexplored area with considerable potential (Jangam et al., 2016).

An important caveat of transcriptome-based inferences is that they often ignore the role of post-translational modifications (PTMs). Recently, PTMs have been reported to play roles in nitrogen utilization, signal transduction, and response to sudden changes in nitrogen availability (Kumari and Raghuram, 2020). Our study revealed PTMs related to phosphorylation and ubiquitination among others, which could play their role in NUE. This is in line with the reported regulation of the ubiquitination pathway in controlling source-to-sink nitrate remobilization in Arabidopsis (Liu et al., 2017). We identified 475 N-responsive PTMs in Nidhi and 185 PTMs in Panvel1, demonstrating large differences between genotypes and opening an underexplored avenue to be tested for the role of specific PTMs in NUE.

Identification and characterization of QTL is a major driver of genetic improvement for any trait. But its progress for NUE has been slow, largely due to the poor characterization of the NUE phenotype, which became available recently for rice (Sharma et al., 2021). It was also pointed out recently that even though several QTL studies exist for NUE in rice, there is inadequate convergence between QTL and functional genomics (Kumari et al., 2021 and references cited therein). Earlier only N-responsive genes were co-localized on NUE-QTLs or yield QTLs (Chandran et al., 2016; Sinha et al., 2018) irrespective of their role in yield or NUE. But in the present study, we co-localized NUE genes (N-responsive and yield-related genes) to NUE-QTLs to identify NUE-candidates. On that basis, we found the maximum number of 18 NUE-genes in Nidhi and 9 NUE genes in Panvel1 co-localized with NUE- QTLs on chromosome 3. In addition, there were 8 NUE-genes each on chromosome 1 in both Nidhi and Panvel1. These results advance the findings of Kumari et al. (2021), who reported these two chromosomes as the hotspots for NUE-QTLs in rice. This information could be of great value to breeders. Finally, GO analysis of those NUE-related DEGs co-localized onto NUE-QTLs revealed that carbon fixation, carbon metabolism, and photosynthesis as important processes for NUE in Panvel1 relative to Nidhi, revalidating our findings based on gene expression and physiological data described in the earlier sections.



CONCLUSION

Transcriptomic analysis of nitrate-response in two rice genotypes contrasting for NUE revealed differential involvement of biological processes, transporters, transcription factors and their networks, miRNAs, post-translational modifications, and NUE-candidates co-localized onto NUE QTLs in a genotype-dependent manner.
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Nitrogen (N) and Water (W) - two resources critical for crop productivity – are becoming increasingly limited in soils globally. To address this issue, we aim to uncover the gene regulatory networks (GRNs) that regulate nitrogen use efficiency (NUE) - as a function of water availability - in Oryza sativa, a staple for 3.5 billion people. In this study, we infer and validate GRNs that correlate with rice NUE phenotypes affected by N-by-W availability in the field. We did this by exploiting RNA-seq and crop phenotype data from 19 rice varieties grown in a 2x2 N-by-W matrix in the field. First, to identify gene-to-NUE field phenotypes, we analyzed these datasets using weighted gene co-expression network analysis (WGCNA). This identified two network modules ("skyblue" & "grey60") highly correlated with NUE grain yield (NUEg). Next, we focused on 90 TFs contained in these two NUEg modules and predicted their genome-wide targets using the N-and/or-W response datasets using a random forest network inference approach (GENIE3). Next, to validate the GENIE3 TF→target gene predictions, we performed Precision/Recall Analysis (AUPR) using nine datasets for three TFs validated in planta. This analysis sets a precision threshold of 0.31, used to "prune" the GENIE3 network for high-confidence TF→target gene edges, comprising 88 TFs and 5,716 N-and/or-W response genes. Next, we ranked these 88 TFs based on their significant influence on NUEg target genes responsive to N and/or W signaling. This resulted in a list of 18 prioritized TFs that regulate 551 NUEg target genes responsive to N and/or W signals. We validated the direct regulated targets of two of these candidate NUEg TFs in a plant cell-based TF assay called TARGET, for which we also had in planta data for comparison. Gene ontology analysis revealed that 6/18 NUEg TFs - OsbZIP23 (LOC_Os02g52780), Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330), Oshox13 (LOC_Os03g08960), LOC_Os11g38870, and LOC_Os06g14670 - regulate genes annotated for N and/or W signaling. Our results show that OsbZIP23 and Oshox22, known regulators of drought tolerance, also coordinate W-responses with NUEg. This validated network can aid in developing/breeding rice with improved yield on marginal, low N-input, drought-prone soils.
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Introduction

Nitrogen (N) and water (W) are essential resources for plant productivity that are becoming increasingly limited in marginal soils world-wide (Gibbs and Salmon, 2015; Hsieh et al., 2018). Moreover, applications of N and W in agriculture are costly resources to society (Williamson, 2011; Keeler et al., 2016; D'Odorico et al., 2020). Most studies in major crops like rice, examine the effects of N and drought separately (Anantha et al., 2016; Li et al., 2017; Volante et al., 2017; Zhao et al., 2017). More recently, studies that examine how the interaction between N and W availability affects rice phenotypes and gene regulation have been examined (Swift et al., 2019; Araus et al., 2020; Plett et al., 2020; Sevanthi et al., 2021).

Several studies have shown that genes critical to N-uptake, sensing and metabolism have been associated with a drought phenotype. For example, NRT1.1/CHL1/NPF6.3 the a dual-affinity nitrate transporter (Liu et al., 1999) is expressed in the guard cells in Arabidopsis. Moreover, nrt1.1/chl1 mutant is more drought tolerant compared to wild-type. The loss of NRT1.1/CHL1 reduced the stomatal opening and transpiration rates which contribute to its drought-tolerant phenotype (Guo et al., 2003). Next, mutants in nitrate reductase in both Arabidopsis (NIA1 and NIA2) and rice (OsNR1.2) exhibit a drought-tolerant phenotype with reduced water loss (Lozano-Juste and Leon, 2010; Han et al., 2022). Transcription factors (TFs) are also at the center of N-by-W response. NLP7 is a master regulator of nitrogen signaling in Arabidopsis (Alvarez et al., 2020). The nlp7 mutant shows drought resistant phenotype, similar to nrt1.1/chl1 (Castaings et al., 2009). Putting these findings together, it has been hypothesized that NLP7 regulates NRT1.1/CHL1 expression in guard cells and further controls stomatal opening and hence drought tolerance. Another TF in rice, drought and salt tolerance (DST), also bridges between N-assimilation and stomata movement that provides a path to crop improvement under marginal soil (lowN-lowW) (Han et al., 2022).

On the genome-wide level, our current manuscript explores on the gene regulatory networks (GRN) involved in N-by-W interactions by mining the N-by-W response RNA-seq and phenotype dataset from field grown rice (Swift et al., 2019). In our previous Swift et al 2019 study, we used linear models to discover that N-by-W signaling (N/W, molarity and/or NxW synergistic interactions) significantly correlate with rice field phenotypes, compared to genes that respond only to W-dose or N-moles (Swift et al., 2019). That dataset – which we use in our current analysis includes transcriptomic and phenotypic data for 19 rice varieties that vary in their drought and N-response. These 19 rice varieties were treated in a 2x2 N-by-W matrix of two N-doses (fertilized vs. without N) and W-doses (high vs. low water) in field experiments conducted at the International Rice Research Institute (IRRI) in the Philippines (Swift et al., 2019) (Figure 1). While our Swift et al., 2019 study determined the importance of the N-by-W gene responses (e.g., N/W and NxW) to phenotypic field outcomes in rice, the goal of our present study is to determine the GRNs underlying TF→target gene→phenotype interactions that correlate with NUE phenotypes in the rice N-by-W field study.




Figure 1 | Flow-chart for generation of a high-confidence GRN of TF→target gene→NUEg phenotype from rice field data. Gene expression and phenotype data from field grown rice used to generate the WGCNA modules and GRN were obtained from 19 rice varieties of varying drought resistance, grown under a 2x2 N-by-W matrix with four combinations of N and W conditions (Low vs High) from Swift et al., 2019 (Swift et al., 2019)1. Step 1. N-by-W matrix: RNA-seq and field phenotype data: The differentially expressed (DE) rice genes that respond exclusively to either N:W, W and N were identified using DESeq2 analysis from field gene expression data (Swift et al., 2019). Step 2. WGCNA analysis: network modules-to-phenotype: The genes/TFs highly correlated with field phenotypes were identified using the field gene expression counts of the 22,436 normalized genes and 10 field phenotypes as inputs into weighted gene co-expression network analysis (WGCNA). Step 3. GENIE3 analysis: TF→target gene predictions: The TF→target gene predictions between 90 TFs highly correlated with the NUE grain yield (NUEg) from WGCNA analysis (Step 2) and the total 10,815 N-and/or-W response genes from Swift et al., 2019 (Step 1) determined using the network inference program GENIE3 resulted in ((90 TFs*10,815 DE genes) - 90 TFs) = 973,260 edges or TF→target gene predictions) Step 4. Network validation (AUPR) and "pruning": Validation data for 3 TFs in the GENIE3 network was located using rice.connectf.org (Brooks et al., 2020), which consisted of 9 RNA-seq/ChIP-seq in planta datasets. This rice validation data confirmed 5,683 predicted edges for the 3 TFs was used to calculate the area under the precision/recall curve (AUPR) using automated functions in ConnecTF (Brooks et al., 2020). This AUPR was then used to select a precision cut-off and "prune" the network for high-confidence edges of the GENIE3 gene regulatory network (GRN), again using automated functions in ConnecTF. The "pruned" GENIE3 network consists of 8,826 high-confidence edge predictions for 88 TFs and 5,716 genes linked to the NUEg phenotype from WGCNA. Step 5. High-confidence GRN: There are 18/88 TFs in the pruned network that regulated a significant number of the genes highly correlated with NUEg as identified in the WGCNA modules, for a total of 551 DE N-and/or-W Response Genes (Step 2).*See Table 1 and Supplementary Figure 3 for TF prioritization results and pipeline.



To develop sustainable agricultural solutions to feed a growing population, in this study we exploit a systems biology approach to uncover and validate the gene regulatory networks (GRNs) by which rice (Oryza sativa) plants sense and respond to the combination of N- and W- availability to promote crop productivity. To this end, we connected gene-to-NUE phenotype using weighted gene correlation analysis (WGCNA) (Langfelder and Horvath, 2008). Next, for the target genes that correlate with NUE phenotypes, we identified TF-to-target gene relationships in a gene regulatory network (GRN) using GENIE3 (Huynh-Thu et al., 2010). We then validated the TF-to-target gene network predictions via precision/recall (AUPR) analysis using validated TF-target gene data obtained in planta using the ConnecTF platform (https://rice.connectf.org). Additionally, we applied the plant cell-based Transient Assay Reporting Genome-wide Effects of Transcription factors (TARGET) system (Bargmann et al., 2013; Brooks et al., 2019), which we adapted in rice to validate the high-confidence TF-to-gene network for the N-by-W response genes whose expression level correlate with NUE.

Overall, we identified six TFs that regulate genes involved in both N and/or W signaling: OsbZIP23 (LOC_Os02g52780), Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330), Oshox13 (LOC_Os03g08960), LOC_Os11g38870, LOC_Os06g14670. Two of these TFs are known regulators of drought tolerance - OsbZIP23 and Oshox22 – (Xiang et al., 2008; Zhang et al., 2012; Dey et al., 2016; Zong et al., 2016). Our present study shows that these TFs involved in drought responses are also responsive to N-by-W interactions. Moreover, we show that these six TFs control N-and/or-W response genes that correlate with NUEg. This information can now be applied to develop/breed rice plants with improved yield, on marginal, low N-input, drought-prone soils and on fields where water and N are limited due to climate change.



Materials and methods


Source of N-by-W response data (transcriptome and phenotype) for 19 rice varieties

Field phenotypic data collection and conditions for 19 rice varieties (Indica and Japonica) can be found in Swift et al., 2019 (Swift et al., 2019). The details of the treatments are in Swift et al., 2019, but as an overview: For the +N treatment, 150 kg/ha dose of (NH4)2SO4 was applied at 23 days after sowing (DAS). The -N treatment had no addition of fertilizer. Plants in the -W condition were covered from rain with a rainout shelter (intermittent watering was applied to ensure growth), while plants in the +W condition received rainfall and normal watering. Water-use-efficiency (WUE) was determined from leaves with carbon isotope discrimination as outlined in Swift et al., 2019 (Swift et al., 2019). The nitrogen usage data was calculated using the Kjeldahl N (KJ N) method which determined the nitrogen content from 1 gram of leaf samples. The total KJ N is determined as in (Bremner and Mulvaney, 1982; Bremner, 1996) by converting organic nitrogen forms to NH43+ and then measuring the concentration. To calculate N-uptake, we used the Kjeldahl N percent (KJ N%) and vegetative shoot dry weight (SDW) measurements from Swift et al., 2019 collected from leaf samples. We then used the N uptake measurement to calculate NUEg and NUE biomass (NUEb).

	

	

	

The field transcriptomic data consisted of 19 rice varieties (Indica and Japonica) of varying drought tolerant phenotypes, grown under four N-by-W treatment conditions, with three replicate leaf samples for RNA-seq for a total of 228 RNA-seq samples. Expression counts for 228 RNA-seq samples were normalized with the DESeq2 package (Love et al., 2014). The TFs and TF families from the N-and/or-W DE gene lists were identified based on the Plant Transcription Factor Database v4.0 categorization (Jin et al., 2017). See data availability in Swift et al., 2019 (Swift et al., 2019) for source phenotypes and transcriptome data.



Potential index (IPO) calculation of NUE under low vs. high N and W conditions

To compare NUEg among the 19 rice varieties, we calculated the potential index (IPO) as similar to Ndiaye et al, 2019 (Ndiaye et al., 2019). For the calculation, each variety's NUEg was compared with the conditional average, using the formula below.

	

The IPO is the potential index of variety i; Yij is the NUEg of variety i for the condition j where j is HWHN, HWLN, LWHN or LWLN;   is the conditional mean of all 19 varieties under condition j. The IPO is a relative value that shows the increase or decrease of a specific variety's NUEg, over the mean values. An IPO > 0 indicates better NUEg, whereas IPO< 0 indicates worse NUEg (Figure 2). The NUEg phenotype data was downloaded from Swift et al, 2019 (Swift et al., 2019).




Figure 2 | The NUEg phenotype for 19 rice varieties measured under four N-by-W conditions. We used the Potential index (IPO) (Ndiaye et al., 2019) on 19 rice varieties which differ in their drought resistance to assess the NUEg values under (A) high water and (B) low water conditions with varying N-doses. (A) DHWHN, high-W/high-N; HWLN, high-W/low N; (B) LWHN, low-W/high N; LWLN, low-W/low-N.





WGCNA analysis: Gene-to-field phenotype correlation

The normalized counts files for each treatment and genotype were averaged as inputs into WGCNA to match the averaged field phenotypes for each biological replicate. This resulted in 76 transcriptomic and phenotypic values (19 varieties and 4 treatments) as inputs into WGCNA. The transcriptome counts file consists of counts for 22,436 genes in 76 samples. The R package, WGCNA, was used to perform the weighted correlation network analysis using step-by-step network construction and module detection (Langfelder and Horvath, 2008). We selected a MEDissThres of 0.5 to combine modules correlated with each other. We averaged the absolute value of the NUEg GS, WUE GS, and module membership (MM) scores for the genes in each module to select a cut-off value for highly correlated genes. (Figure 3C and Supplemental Figure 1). Overlapping module gene lists and N-and/or-W DE gene lists were made with Venny 2.1 web tool (Oliveros, 2015). To determine the Z score and p-value of the NUEg and WUE genes that overlap with N-and/or-responsive DE gene lists, we used the Genesect function in Virtual Plant 1.3 (Katari et al., 2010) (Figures 3B, D and Supplementary Figure 1).




Figure 3 | WGCNA modules named "grey60" and "skyblue" are highly correlated with NUEg in field grown rice. (A) Heatmap of the correlation values for the Module Eigengene (ME) values with field phenotypes from WGCNA. Red and blue colors note positive and negative correlation, respectively, for the ME for each module of co-expressed genes. Modules significantly associated with traits have a p value< 0.05, denoted by an asterisk*. (B, D) N-and/or-W DE genes and TFs for N:W, W and N -response genes derived from ANOVA analysis in Swift et al., 2019 (Swift et al., 2019). Heatmap of the Z-score for each overlap (Z-score ≥ 10). The p-value< 0.001 is denoted with an asterisk*. Z-score and p-values were calculated using the Genesect function in VirtualPlant 1.3 (Katari et al., 2010). (B) Significance of intersection between the genes in each co-expression module from WGCNA (Supplementary Data 1) and the N, W, and N:W DE genes, identified using Genesect function in VirtualPlant 1.3. (C) Scatterplots of the WGCNA Gene Significance (GS) for NUEg, versus the Module Membership (MM) for the grey60 and skyblue modules exhibit a significant correlation p-value< 0.001 with NUEg. The genes with a GS and MM cut-off scores above the average score for the genes in each module were selected for further analysis (1,209 grey60 + 282 skyblue genes = 1,491 genes). (D) Significance of gene intersection (using Genesect) between the union of the genes and TFs with an above-average GS and MM score from the WGCNA grey60 and skyblue modules (grey60&skyblue) and the N:W, W, or N- responsive DE genes. Union of the genes in grey60 and skyblue modules: N-and/or-W response DE TFs (29 + 61 = 90 total) used for GENIE3 network analysis and N-and/or-W response DE genes (322 + 777 = 1,099 total) used to prioritize TFs from the pruned GENIE3 network (Supplementary Data 2).





GENIE3 analysis of GRNs and validation of TF→ target gene predictions by AUPR and "network pruning"

The GENIE3 package in R (Huynh-Thu et al., 2010) was used for network inference analysis. The gene expression data used to make the GENIE3 network consisted of the normalized counts of 228 RNA-seq samples for 10,815 N-and/or-W DE genes from Swift et al., 2019 (Swift et al., 2019) (Figure 1 Step 3). The 90 TFs for GENIE3 were selected from the two WGCNA modules (grey60 and skyblue) that are highly correlated with NUEg and are also N-and/or-W responsive (Figure 3D and Supplementary Data 4). The total unpruned network of 973,260 edges were uploaded to ConnecTF-Rice (rice.connectf.org) for network pruning and AUPR analysis (Brooks et al., 2020). This analysis is based on the in planta TF-target gene validation data for OsbZIP23, OsABF1, and OsNAC14 that is housed in the ConnecTF database (Brooks et al., 2020) (Figure 4 and Supplementary Figure 2). Gene Ontology (GO) biological process analysis was conducted using g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) with settings for only annotated genes and a significance threshold of 0.05 calculated with Benjamini-Hochberg FDR (Raudvere et al., 2019) (Table 1). For this analysis the gene IDs for target genes and genes associated with GO terms were converted between MSU7 and RAPDB gene designations. Cytoscape v3.9.1 was used for network visualization (Paul Shannon et al., 1971) (Figure 5).




Figure 4 | Validation of GENIE3 network using rice TF-perturbation datasets in Area Under the Precision Recall (AUPR) curve analysis. 4.1. GENIE3: The GENIE3 network ranked TF→target gene predictions for 90 N-and/or-W DE TFs (from the grey60 and the skyblue modules, Figure 3D), and 10,815 DE genes - each TF→target gene edge is given a weight. 4.2 The validated TF→target gene data used to "prune" the network predictions was identified using the rice TF data housed in the ConnecTF database (https://rice.connectf.org) (Brooks et al., 2020) (Supplementary Figure 2). Data for three TFs, OsbZIP23, OsABF1, and OsNAC14 were then used to validate the predicted GENIE3 edges with a total of 10,941 validated edges between all three TFs. 4.3. Area Under the Precision-Recall (AUPR) curve was calculated with the rice shoot in planta validation data for the three TFs. AUPR analysis shows that the ranking for the validated TF→target gene edges of the GENIE3 network (blue line) is significantly better (p-value<0.001, permutation test), than a set of randomly validated edges (Note: gray dashed lines are for the highest and lowest AUPR that resulted from random validated edges). A precision cut-off of 0.31 (red dashed line) was selected as the highest precision value before the curve flattens, and the "pruned" network edges were exported as an automated function in ConnecTF (Brooks et al., 2020). 4.4 The pruned GENIE3 network consists of 8,826 edges for 88 TFs and 5,716 genes that pass an edge score threshold of 0.0581. Source data of the original GENIE3 network vs. the high-confidence "pruned" GENIE3 network are supplied as Supplemental Data 4 and 5. Precision and Recall are calculated as in Brooks et al., 2019, 2020 (Brooks et al., 2019, 2020).




Table 1 | Ranked list of 18 prioritized TFs that correlate with NUEg based on high-confidence edges to N-and/or-W DE genes in WGCNA modules (grey60 and skyblue).






Figure 5 | High-confidence GRN of rice TFs Targeting N-and/or W response DE genes correlated with NUEg connected to nitrogen and drought GO terms. This network consists of the TFs from Table 1 that regulate target genes associated with the gene ontology (GO) terms, "nitrate assimilation" (GO:0042128), "ammonia assimilation cycle" (GO:0019676), "response to water deprivation" (GO:0009414), and "response to abscisic acid" (GO:0009737). These GO terms were selected based upon the enrichment of these terms in the TF-target genes for each TF candidate from Table 1 using g:Profiler (Raudvere et al., 2019). The full list of GO terms for each TF is in Supplementary Data 8. To create this network the 551 total target genes from Table 1 were examined for the genes associated with the selected GO terms. This left 23/551 target genes and 14/18 TFs from Table 1 that regulate them. For simplicity and significance, we highlight the 6 TFs in red and their target genes because they regulate genes related to both nitrogen and water, either directly or indirectly. All 6 TFs were also associated highly with NUEg and WUE (Table 1). Edges for this network include either high-confidence GENIE3 edges, or validated GENIE3 edges for OsbZIP23 and OsABF1 for which we had TARGET data, and in planta data. The total network is in list in Supplemental Data 7.





Plasmid construction for TF-perturbation experiments using TARGET assay in plant cells

The coding sequences of OsABF1 and OsbZIP23 were determined as listed in Phytozome 13 (Goodstein et al., 2012) and were synthesized by GENEWIZ (South Plainfield, NJ) with the GATEWAY cassette for cloning into the p1107 destination plasmid (Supplementary Figure 4). Entry vectors were cloned into the p1107 plasmid using the LR Clonase II reaction according to manufacturer's instructions (Invitrogen). The p1107 plasmid for rice TARGET has a pBeaconRFP_GR (Bargmann et al., 2013) backbone with the following modification. The 35S promoters were replaced with maize Ubiquitin promoter subcloned from pTDM-C (Wu et al., 2016). A biotin ligase recognition peptide (BLRP) was fused at the N-terminal of the GATEWAY cassette, which is followed by the GR protein. All junctions were sequenced and verified for in frame TF-GR fusion proteins. The plasmid map and sequence (.FASTA) are provided in Supplemental Data File 1.



TARGET temporal TF perturbation experiment in rice leaf cells and RNA-sequencing

The rice protocol was adapted from our Arabidopsis TARGET protocol (Bargmann et al., 2013; Brooks et al., 2019) with some modifications. Rice seeds (Nipponbare) were sterilized by 70% ethanol for 3 mins followed by 50% commercial bleach for 30 min with rotation. The rice seeds were germinated in the dark for 4 days. The germinated rice seeds were transferred to ½ MS plates without sugar for 13 days in the growth chamber, under 16 h light/8 h dark diurnal cycle, at temperatures 27 and 25°C respectively and 70% humidity. On the day of the TARGET experiment, rice shoot tissue was cut into small (1 mm) pieces and stirred with cell-wall digestion solution (1.5% cellulase RS, 0.3% macerozyme R10 (Yakult Honsha), 0.6M mannitol, 10 mM MES (pH 5.7), 1 mM CaCl2, 5 mM b-mercaptoethanol, and 0.1% BSA) in a flask. The flask was vacuumed infiltrated for 20 minutes and shaken at 50 rpm in the dark for 4 hours. Rice shoot protoplasts were filtered through a 40 µm cell strainer (BD Falcon, USA) and spun down for 5 min at 500 g. The rice shoot protoplasts were then washed with 10 mL W5 solution (150 mM NaCl, 1M CaCl2, 1M KCl, 200 mM MES pH 5.7) three times, then resuspended in MMG solution (400 mM D-mannitol, 10 mM MgCl2, 4 mM MES pH 5.7) to 1.0x106 cells/mL. For protoplast transfection with vector, 1.0x105 cells were mixed with 40 µg plasmid DNA and 110 µL 40% PEG solution (40% 4000 PEG (Sigma, 81242), 400 mM D-mannitol, 50 mM CaCl2). The mixture was incubated at room temperature for 10 minutes. After incubation, the protoplasts were washed with W5 solution three times and resuspended in 1 mL WI solution (400 mM D-mannitol, 1M KCl, 200 mM MES pH 5.7). The transfected protoplasts were stored in the dark overnight. The next day, transfected protoplasts were treated with 30 µM cycloheximide (CHX) for 20 minutes (to block translation of secondary TF2 targets genes), before a three-hour 10 mM dexamethasone (DEX) treatment (to induce TF-GR nuclear import). After 3 hours, TF vector and control empty vector transfected protoplasts were FACS sorted for RFP signals into 150 µL TRI regent for RNA extraction (Zymo, R2061) (Supplementary Figure 5). We used Lexogen QuantSeq 3' mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen, 015.2x96) for making RNA-Seq libraries. The libraries were pooled and sequenced on the Illumina NextSeq 500 platform at NYU-CGSB Genomics Core facility.



RNA-seq analysis of TARGET assay for validation of TF-target direct regulated genes

The UMI-incorporated RNA-Seq libraries of TF-transfected and empty vector control were analyzed following Lexogen's guidance (https://www.lexogen.com/quantseq-3mrna-sequencing/). The reads' UMI were extracted from raw fastq files using `extract` command from UMI-tools v1.1.1 (Smith et al., 2017). Then the fastq files were trimmed by fastp 0.21.0 (Chen et al., 2018). The clean fastq files were aligned to MSU7 (Kawahara et al., 2013) genome using STAR 2.7.6a (Dobin et al., 2013). The aligned reads with the identical UMI were deduplicated using `dedup` command from UMI-tools v1.1.1 (Smith et al., 2017). The gene counts matrix was generated by featureCounts v2.0.1 (Liao et al., 2014) from the deduplicated bam files. The TARGET DE genes for OsABF1 and OsbZIP23 were identified using DESeq2 package (Love et al., 2014) by comparing TF vs Empty Vector with a Benjamin & Hochberg adjusted p-values< 0.05. Differentially expressed (DE) genes identified for OsABF1 and OsbZIP23 are listed in Supplementary Data 9. Overlap between in planta and TARGET data was conducted with Venny 2.1 (Oliveros, 2015) and the significance was determined with Genesect in Virtual Plant 1.3 (Katari et al., 2010). The calculations for precisions, recall and F-score for the GENIE3 network was the same as in Brooks et al., 2019 (Brooks et al., 2019) (Supplementary Figure 6).




Results


Phenotypic variation in NUEg in 19 rice varieties grown in N-by-W matrix field

The N-by-W response field data set used in our current study consisted of 19 rice varieties treated in a 2x2 matrix of four N-and/or-W treatment conditions (Figure 1) (Swift et al., 2019), comprising: well-watered (HW) with low-or-high N (HWLN, HWHN) (Figure 2A) vs. Low-W (LW) with low-or-high N (LWHN, LWLN) (Figure 2B) (For treatment details see Materials & Methods, and Swift et al., 2019. To refine our focus to NUEg, we examined how each of the 19 rice varieties performed for NUEg in the field (Figure 2). To identify the rice varieties with higher NUEg in the four different N-by-W field conditions, we adapted the Potential Index (IPO) (Ndiaye et al., 2019) of NUEg for our N-by-W field dataset (Figure 2). The IPO for NUEg indicated the relative performance of each of the 19 rice varieties, compared to the conditional average (dotted lines). Under the well-watered (HW) condition, none of the rice varieties performed well under both LN and HN conditions (Figure 2A). For example, IR64 showed the highest NUEg values under HWLN, but only average NUEg values under HWHN conditions (Figure 2A). By contrast, Tainung67 showed the highest NUEg values under HWHN, but only average NUEg values under HWLN conditions (Figure 2A). However, under LW treatments, there was one variety, IR108, that performed well under both LWLN and LWHN conditions, with the highest IPO-NUEg compared to the other 18 varieties (Figure 2B). In line with this finding, the IR108 variety has been released under the variety name "Sukha dhan 5" to be used in the drought-prone regions of Nepal (Anantha et al., 2016). The IPO analysis reveals that this phenotypic dataset covers a range of rice NUEg values. Therefore, we used this NUEg phenotype data from the 2016 growing season data and the corresponding transcriptome data of Swift et al 2019, for the ensuing network-to-NUE phenotype analysis (Figure 1).



Identification of N-and/or-W responsive DE genes highly correlated with NUEg

To discover the relationships between genes and field phenotypes including NUEg, we used WGCNA (Langfelder and Horvath, 2008) (Figure 1, Step 2, and Figure 3). The WGCNA analysis identified 11 co-expression modules for the 22,436 genes from the rice transcriptome data from the N-by-W field plot (Figure 1, Step 2, Figure 3A, Data in Supplemental Data 1). The genes in each of the WGCNA co-expression modules contribute to a Module Eigengene (ME) value based upon their Module Membership (MM) score. The MM score is the contribution of the individual gene to the ME value of the module (Langfelder and Horvath, 2008). We used the ME value to determine module correlation with each of the rice phenotypes from the N-by-W field plots (Figure 3A). The ME score for two WGCNA modules, grey60 (3,050 genes) and skyblue (744 genes) was significantly and highly correlated with the NUEg and WUE phenotype data in the N-by-W plot (Figure 3A). The ME value of the grey60 module was negatively correlated with NUEg (-0.71), while the ME value of the skyblue module was positively correlated with NUEg (+0.73) (Figure 3A). However, each WGCNA module contains subsets of genes that can be either positively or negatively correlated with NUEg. In WGCNA, this gene expression-to-phenotype correlation is called Gene Significance (GS), as shown for the plot of MM vs. GS in Figure 3C.

To identify which WGCNA modules had a significant representation of genes responding to N-and/or-W signals, the genes comprising each module were overlapped with the N-and/or-W responsive DE genes from Swift et al 2019 (Swift et al., 2019) (Figure 3B). This analysis uncovered a significant overlap of the N:W- and W- responsive gene lists with the genes in the WGCNA modules - grey60 and skyblue - which are each highly correlated with NUEg and WUE (Figure 3A). This demonstrates that the genes in the WGCNA modules - grey60 and skyblue - not only correlate with the NUEg phenotypes from the N-by-W matrix field plots but are also enriched in genes responsive to N-and/or-W signals (Figure 3B). Additionally, the blue and lightyellow WGCNA modules are enriched in genes that respond to N-moles, but not to the interaction of N and W. While the WGCNA modules - blue and lightyellow - do not correlate significantly with NUEg, each of these modules correlates significantly with chlorophyll concentration (Figure 3A), a trait known to be regulated by N and used to determine N-status and the need for fertilizer in the field (Fageria et al., 2010).

Next, we performed two analyses that enabled us to prioritize the N-and/or-W response DE TFs and genes within each of the two WGCNA modules - grey60 and skyblue - that are most highly correlated with the NUEg phenotype (Figures 3C, D). The genes with MM scores closes to -1 or 1 are highly connected to their WGCNA module. In addition, genes with GS scores that have a high absolute value for a specific trait are also more biologically significant (Langfelder and Horvath, 2008). Therefore, to filter genes in each module that were highly correlated with NUEg, we identified genes with high absolute values for both their MM and GS scores. To do this, we first plotted the absolute values of the MM vs. GS scores for each gene in the WGCNA modules - grey60 and skyblue - which are highly correlated with NUEg (Figure 3C). Next, we calculated the average MM and GS scores for the genes in each of these two modules. This enabled us to set a cut-off and identify genes whose absolute MM and GS values were great than or equal to the average of the genes in each module (Figure 3C, upper right quadrant).

This analysis identified a combined total of 131 TFs and 1,491 genes highly relevant to NUEg in the two WGCNA modules: grey60 (104 TFs & 1,209 genes) and skyblue (27 TFs & 282 genes) (Figure 3C). Next, to identify whether genes highly relevant to NUEg are significantly enriched in N-and/or-W response gene, we performed a Genesect analysis (Katari et al., 2010) (Figure 3D). This analysis revealed significant overlaps between the N:W and W responsive gene lists from Swift et al 2019 (Swift et al., 2019), with the genes highly correlated with NUEg (131 TFs and 1,491 genes) from the combined grey60 and skyblue WGCNA modules (Figure 3D). The resulting overlap consisted of 90 TFs and 1,099 genes that are highly associated with NUEg and N-and/or-W responsive (Supplementary Data 2). Next, we determined which of these TFs and genes correlated NUEg were also highly associated with the WUE phenotype. To do this, we conducted the same analysis pipeline as described above for NUEg, in which we determine a new GS cut off value for WUE (Supplementary Figure 1A). This resulted in 79 TFs and 976 genes that are highly correlated with WUE and are N-and/or-W responsive (Supplementary Figure 1B, Supplementary Data 3). We find that 72 (80%) NUEg TFs and 815 (74%) NUEg genes are also highly correlated with WUE, thus suggesting a dual role for these genes/TFs in regulating both N and W responses.

For further analysis, we prioritized 90 TFs from the GENIE3 analysis that are; i) N-and/or-W responsive and ii) highly correlated to NUEg from the combined WGCNA modules - grey60 and skyblue. This analysis resulted in 29 TFs that are N:W-responsive and 61 TFs that are W-responsive (Figures 3C, D).



Validation of TF→target GRN predictions in WGCNA modules associated with NUEg

To predict TF→target gene interactions in GRNs important for NUEg, we used GENIE3, a random forest network inference method (Huynh-Thu et al., 2010). This analysis will identify potential master TF regulators of the NUEg response amongst the 90 TFs (29 TFs N:W-responsive and 61 TFs W-responsive) (Figure 3D) that are highly correlated with NUEg (e.g., members of WGCNA grey60 and skyblue models) (Figures 3A, C). To identify and rank these 90 TFs from these NUEg modules, we generated a GRN using 90 potential TF-regulators of 10,815 DE (N-and/or-W response genes) from the field N-by-W matrix (Figure 1, Step 1). The output of GENIE3 ranks the TF→target gene predictions in the order of confidence for each of the 90 TFs and the 10,815 DE genes N-and/or-W responsive (Figure 4). In total, the resulting GENIE3 inferred network ranks numerical confidence scores for each TF and target gene, excluding self-regulation of the TF ((90 TF x 10,815 genes) - 90 TFs) = 973,260 TF-target edges (Figure 4 and Supplemental Data 4).

Our next goal was to validate the TF-target gene interactions in our predicted GRN, using TF-target gene data validated in planta. To this end, we used experimentally validated TF-target gene interactions from TF perturbation data in rice, housed in the ConnecTF platform (https://rice.connectf.org) (Brooks et al., 2020) (Figure 4 and Supplementary Figure 2). The ConnecTF database includes published rice RNA-seq and ChIP-seq data available as of June 2020. To validate the GRN, we uploaded the TF→target gene interactions predicted by the GENIE3 network into ConnecTF and filtered for validated TF-regulation (RNA-seq) and TF-binding (ChIP-seq) data from rice in planta datasets (Figure 4 and Supplementary Figure 2, Supplementary Data 4). We focused our analysis on validated TF-target gene datasets from rice leaf tissue, given that the source RNA-seq data used to make the GENIE3 network was from rice leaves (Supplementary Figure 2).

Our query of the ConnecTF rice TF database identified experimental TF-target gene validation datasets for three TFs in rice leaf tissue from our GENIE3 network (Figure 4 and Supplemental Figure 2). The three validated rice TFs are OsABF1 (Zhang et al., 2017), OsbZIP23 (Zong et al., 2016), and OsNAC14 (Shim et al., 2018). These three validated rice TFs include a total of nine datasets with 10,941 validated target genes from TF-regulation and/or TF-binding data (Figure 4 and Supplementary Figure 2). We then used this in planta data as "gold-standard" data to validate the TF→target gene predictions from our GENIE3 network using Area Under the Precision Recall (AUPR) curve analysis, which is an automated function in the ConnecTF platform (Figure 4). The results show that the AUPR for the TF→target gene predictions (edges) in the rice GENIE3 network were significantly higher than the random TF-target gene edges (P-value<0.001, permutation test) (Figure 4). Given the AUPR curve, we were able to select a precision threshold of 0.31 (e.g., TF→target gene edge score ≥ 0.0581). This cut-off score is equivalent to the TF→target gene predictions being accurate 1/3 of the time and this level of accuracy is comparable to other similar network validation AUPR studies (Varala et al., 2018; Brooks et al., 2019). The GENIE3 network was then pruned for only the high-confidence TF→target gene predictions using this precision cut-off score. This network pruning for precision, resulted in a GRN containing 8,826 high confidence edges connecting 88 TFs and 5,716 target N-and/or-W response DE genes (Figure 4 and Supplementary Data 5).



Prioritization of master TFs that regulate NUEg in response to N-and/or-W signaling

Our next goal was to prioritize candidate N-and/or-W response TFs with a significant influence on NUEg from the pruned GENIE3 network. To this end, we overlapped the pruned high confidence TF→target edges for the 88 TFs in the GENIE3 network with the 1,099 genes from the two WGCNA modules that are highly correlated with NUEg - grey60 & skyblue - N-and/or-W DE genes = 322 N:W response genes + 777 W-response genes) (Supplementary Figure 3). We calculated the significance of the overlapping TF→target genes with the 1,099 NUEg genes. To prioritize the 88 TFs, we ranked them by the Z-score for the overlap (Supplementary Data 6). We found 18 TFs whose high confidence TF→targets gene edges had the highest significant overlap (P-value<0.001, Z score ≥ 10) with the 1,099 genes in the NUEg WGCNA modules – grey60 and skyblue (Table 1). This analysis links 18 TFs→ 551 N-and/or-W response target genes→NUEg. Among the 18 TFs, OsbZIP23 is predicted to regulate the most of the NUEg correlated genes, compared to the other 17 TFs (Table 1). Additionally, we find that 16/18 TFs (all except EIL4 and IDEF4) are also highly corelated with WUE (Table 1 and Supplemental Data 3).

Of these 18 TFs, multiple TFs have published functions in drought tolerance including, OsABF1 (Zhang et al., 2017), OsbZIP23 (Xiang et al., 2008; Dey et al., 2016; Zong et al., 2016), Oshox22 (Zhang et al., 2012), and OsERF48 (Jung et al., 2017). Of note, OsABF1, OsbZIP23, and Oshox22 are N:W-responsive genes based on the N-and/or-W response DE gene lists from Swift et al 2019 (Supplemental Data 6), suggesting their new function in regulating N:W responses, in addition to drought (Table 1). Published functions for other candidate TFs in the 18 TF list include, N-signaling (LOB39) (Obertello et al., 2015; Yang et al., 2017), ABA signaling (OSBZ8) (RoyChoudhury et al., 2008), ethylene signaling (OsERF1) (Hu et al., 2008), iron homeostasis (IDEF2, OsIRO3, and OsIRO2) (Ogo et al., 2007, 2008; Masuda et al., 2019; Wang et al., 2020), starch biosynthesis (RSR1) (Fu and Xue, 2010), and grain yield (OsSPL9) (Hu et al., 2021) (Table 1). OsIRO2 was also found to regulate NUE in a N-response gene network in rice (Ueda et al., 2020).



Gene ontology for target genes for prioritized TFs

To further determine the mechanism of the prioritized TFs in regulating NUEg, we performed Gene Ontology (GO) analysis on the NUEg target genes from Table 1 regulated by each TF using g:Profiler (Table 1 and Supplemental Data 7) (Raudvere et al., 2019). For each TF, we focused on the relevant biological process GO terms related to water and nitrogen signaling. We found that the target genes of the TFs, LOB39, LOC_Os11g38870, and LOC_Os06g14670, were enriched for GO terms related to nitrogen including, "nitrate assimilation," and "ammonia assimilation cycle" (Table 1). Further, we found that the target genes of the TFs, OsbZIP23, Oshox22, Oshox13, LOC_Os06g14670, were enriched for GO terms related to drought including, "response to water deprivation," and "response to abscisic acid" (Table 1). LOC_Os06g14670 was the only TF enriched for nitrogen and drought-related GO terms. We did not identify any GO enrichment for the TF-target genes of OsERF48, OsIRO3, LOC_Os03g08470, OSBZ8, RSR1 and IDEF2. However, we did identify some other GO terms of interest for the remaining TFs including, "sulfur compound metabolic process" for EIL4, "cell communication" ERF65, "response to temperature stimulus" for OsABF1, "phosphorus metabolic process" for OsERF1, "iron ion homeostasis" for OsIRO2, and "zinc ion homeostasis" for OsSPL9 (Supplemental Data 8). While these enriched GO terms suggest the relevance of these TFs in other cell processes, we focus on the TFs that regulate the target genes associated with the nitrogen and water related GO terms.



High-confidence GRN of TFs that target nitrogen and drought-related genes

To identify the TFs that regulate both nitrogen and water response from our list of prioritized TFs, we took the subset of the GENIE3 network that includes 18 TFs→ 551 N-and/or-W response target genes associated with NUEg, and identified the target genes from this list of 551 that were part of the GO terms "nitrate assimilation", "ammonia assimilation cycle", "response to water deprivation," and "response to abscisic acid" (Supplemental Data 7). This resulted in a list of 23 target genes regulated by 14 TFs (Supplemental Data 7). We found six TFs that regulated both nitrogen and water related target genes either directly (OsbZIP23, LOB39, LOC_Os11g38870, LOC_Os06g14670, and Oshox13) or indirectly (Oshox22 via regulation of OsbZIP23) (Figure 5). While OsABF1 did not regulate genes related to nitrogen, it is included in the network visualization because it is annotated for the water-related GO terms and is regulated by OsbZIP23 and Oshox22 (Figure 5).

The target genes involved in nitrate and ammonia assimilation that are regulated by the TFs in our high-confidence GRN include validated regulators of NUE, glutamate synthetase 1 (OsGOGAT), and nitrite reductase (OsNiR) (Lee et al., 2020; Yu et al., 2021) (Figure 5). We also find regulation of the putatively expressed nitrate reductase 1 (NIA1) gene, which is necessary for nitrate assimilation (Subudhi et al., 2020). The TFs, OsbZIP23, LOB39 and LOC_Os11g38870 regulate nitrate assimilation genes, while OsbZIP23, Oshox13, and LOC_Os06g14670 regulate the ammonia assimilation gene. OsbZIP23 is the only TF that regulates genes in both nitrate and ammonia assimilation genes (Figure 5).

Furthermore, each TF regulates genes involved in water deprivation and/or ABA signaling (Figure 5). These genes include the TFs OsbZIP46 and OsbZIP72, which are known positive regulators of drought tolerance and function in coordination with OsbZIP23 and OsABF1, two other prioritized TFs in our network (Lu et al., 2009; Chang et al., 2017; Zhang et al., 2017; Song et al., 2020). We also find regulation of the rice aquaporins, OsPIP1;1, OsPIP1;2, and PIP2A that facilitate water transport (Sakurai et al., 2005; Xu et al., 2019). In addition, there are genes that regulate multiple components involved in the ABA signaling pathway including, the ABA drought receptors, OsPYL1, OsPYL6 (Li et al., 2015; Santosh Kumar et al., 2021a), the clade A type 2C protein phosphatases, OsPP2C51, OsPP2C30 (Zong et al., 2016; Santosh Kumar et al., 2021a), and the ABA-activated protein kinase, SAPK6 (Chang et al., 2017). Overall, this result demonstrates that a subset of our prioritized candidate TFs regulates both nitrogen and water genes.



Network validation with in vivo TARGET assay

To further validate the nitrogen and drought-related edges in our high-confidence GRN (Figure 5), we performed in vivo Transient Assay Reporting Genome-wide Effects of Transcription factors (TARGET) assays to identify the direct TF-target genes for these TFs. We selected OsbZIP23 and OsABF1 for TARGET assays because we could compare the accuracy of our TARGET results with the available in planta data for these TFs in ConnecTF (Brooks et al., 2020). The TARGET TF-perturbation assay in isolated plant cells has been previously used to identify direct TF→regulated target genes in Arabidopsis (Bargmann et al., 2013; Varala et al., 2018; Brooks et al., 2019). In this paper, we adapt the vectors and the TARGET temporal TF-perturbation assay to rice shoot cells (Supplementary Figure 4).

The TARGET TF-perturbation assay identifies the direct TF→ regulated target gene interactions because; i) there is timed nuclear entry of the TF, and ii) translation of regulated secondary (TF2) transcription factors is blocked by cycloheximide treatment. TF-regulated DE genes are identified by comparison to an empty vector control. The TARGET assay identifies direct TF→target genes as follows: i) the TF is fused to the glucocorticoid receptor (GR) protein that when expressed in the plant cells, ii) the TF-GR fusion is retained in the cytoplasm by HSP90 binding, iii) upon dexamethasone (DEX) treatment, the GR binding is released and the TF is imported into the nucleus where it can regulate expression (Bargmann et al., 2013; Brooks et al., 2019) (Supplementary Figure 5). iv) Additionally, cycloheximide + DEX treatment inhibits translation of mRNA for TF2s. Therefore only the target genes of the over-expressed TF are identified, when compared to the empty vector control (Brooks et al., 2019).

Based on our TARGET assay, OsbZIP23 directly regulates 3,095 target genes, while OsABF1 directly regulates 2,151 target genes in rice shoot protoplasts (Supplementary Figure 6 and Supplemental Data 9). To determine the accuracy of our TARGET results, we took the overlap between the TARGET results and the in planta binding and expression data for each TF from ConnecTF (Zong et al., 2016; Zhang et al., 2017; Brooks et al., 2020). We found a significant overlap between the TARGET and in planta DE genes (Supplemental Figure 6A). This significant overlap suggests that the plant cell-based TF-target data can accurately identify in planta TF-regulated genes. Additionally, we find the TARGET data is as accurate, if not even better, than the in planta data at validating the predicted TF→target genes in the GENIE3 network, with a higher F-score and similar precision and recall values (Supplementary Figure 6B).

Given that the TARGET data was accurate in identifying OsbZIP23 and OsABF1 target genes, we used the TARGET and in planta data to validate the nitrogen and drought-related edges in our high-confidence GRN (Figure 5). We confirm with TARGET that OsbZIP23 directly regulates genes involved in nitrogen and drought responses including, NIA1 involved in nitrate assimilation (Subudhi et al., 2020), ABCG4 involved in abiotic stress responses (Matsuda et al., 2012), and the rice aquaporin, OsPIP1;2, that improves yield in rice (Xu et al., 2019). Additionally, we confirm with OsbZIP23 TARGET and in planta data that OsbZIP23 regulates drought associated genes OsDhn1 and OsPP2C30 (Lee et al., 2013; Santosh Kumar et al., 2021b). Furthermore, we confirm the role of OsABF1 in regulating drought signaling, as it regulates the drought-associated gene OsPP2C51 in both TARGET and in planta datasets (Figure 5) (Zong et al., 2016).

Overall, our TARGET results show that the high-confidence edges inferred in our GENIE3 network accurately predict TF→target genes, thus further confirming the role of OsbZIP23 in regulating both NUEg and WUE. In addition, we find a new function for OsbZIP23 in mediating NUEg phenotypes, as previous studies show its role in drought responses (Xiang et al., 2008; Dey et al., 2016; Zong et al., 2016). Thus, our combined network inference and validation approach reveals new TFs in regulating NUEg (Table 1).




Discussion

In this study, we sought to identify GRNs that control NUEg in response to two key interacting components that regulate rice productivity: N and W. By exploiting transcriptomic and phenotypic data collected from 19 rice varieties grown in a 2x2 N-by-W matrix in the field (Swift et al., 2019), we identified and validated the role GRNs comprised of N-and/or-W response genes for their role in TF→target gene→ NUEg phenotype relationships. The TF to N-by-W response gene information now encoded in this high-confidence GRN correlated to NUEg, can now be applied to develop/breed rice plants with improved yield marginal, low N-input, drought-prone soils – which are increasing in the face of climate change.


High-confidence GRN identifying master regulators of NUEg responsive toN-and/or-W signals

We were able to link the TF→target gene→NUEg phenotype using a combination of four approaches (i) WGCNA-based gene-to-trait co-expression network (Langfelder and Horvath, 2008), (ii) GENIE3, a random forest machine learning approach to GRN inference for predicting TF-target interactions (Huynh-Thu et al., 2010), (iii) Experimental validation of GRN predictions and Network "pruning" by AUPR (Varala et al., 2018; Brooks et al., 2019), and (iv) Network validation using TARGET, an approach which uses plant cells to identify direct TF→target gene interactions (Bargmann et al., 2013; Brooks et al., 2019). Using this pipeline (Figure 1), the WGCNA approach identified two network modules that were highly correlated to NUEg called "grey" and "skyblue". Next, we constructed a GRN for the genes in this module, based on their N-and/or-W response DE genes. Finally, we used experimental data for TF-target genes validated in planta (Zong et al., 2016; Zhang et al., 2017; Shim et al., 2018) as well as ones we generated in rice leaf cells for this study. These validated rice TF datasets were used to conduct precision/recall analysis of our GRN. This enabled us to set a precision cut-off score to prune the network for high confidence TF-target predictions for all TFs in the GRN.

Overall, our GRN analysis and validation identified OsbZIP23 and Oshox22 as top candidate master regulators of NUEg in response to N and W signaling. These two TFs are network hubs, as they regulate the largest number of DE genes (N-and/or-W responsive) that are highly correlated with NUEg in the grey60 and skyblue WGCNA modules (Table 1 and Supplemental Data 6). Further validating their known role in drought, these two TFs have published functions in regulating drought tolerance through the plant hormone abscisic acid (ABA) signaling responses (Xiang et al., 2008; Zhang et al., 2012, 2017; Park et al., 2015) (Table 1). Our current study, now links these two well-known drought TFs to regulation by N-and/or-W signaling and NUEg. Our results are also in line with previous studies that show OsbZIP23 activity to be dependent upon phosphorylation by SAPK2 (Zong et al., 2016), an osmotic stress/ABA-activated protein kinase, which promotes nitrate uptake and assimilation under drought stress (Lou et al., 2020).

In addition to the TF hubs (OsbZIP23 and Oshox22), we identify four TFs with novel functions NUEg and WUE gene regulation in our GRN. We identified four TFs (LOB39, Oshox13, LOC_Os11g38870, and LOC_Os06g14670), that regulate genes involved in both N and/or W responses using GO analysis of their predicted TARGET genes in the high-confidence GRN (Table 1 and Figure 5). Unlike OsbZIP23 and Oshox22, the TFs Oshox13, LOC_Os11g38870, and LOC_Os06g14670TFs had until now unknown functions in both nitrogen and drought regulation (Table 1). LOB39 expression is regulated by nitrogen, however it was previously not known to be involved in drought (Obertello et al., 2015). OsbZIP23, LOB39 and LOC_Os11g38870 regulate nitrate assimilation genes NIA1 and OsNiR, which is a known to promote nitrogen assimilation and NUE in coordination with OsNLP4 (Figure 5) (Yu et al., 2021). Furthermore, OsbZIP23, Oshox13 and LOC_Os06g14670 regulate the ammonia assimilation gene OsGOGAT1, which improves NUE in low N conditions in coordination with the ammonium transporter OsAMT1;2 (Lee et al., 2020). While it is known that rice prefers ammonia uptake compared to nitrate (Sasakawa and Yamamoto, 1978; Hachiya and Sakakibara, 2017), we find the TFs in this network regulate both pathways, with OsbZIP23 regulating genes involved in both.

We also examined the mechanism of transcriptional regulation between these master TFs in the NUEg GRN by validating TF→target gene interactions using TARGET, a plant cell-based assay that identifies direct TF→TARGET gene interactions (Bargmann et al., 2013; Varala et al., 2018; Brooks et al., 2019). We find that Oshox22 regulates nitrogen and water responses indirectly via candidate TFs OsbZIP23, and OsABF1 (Figure 5). We then validate the TF→target gene interactions for OsbZIP23 and OsABF1 TFs with the TARGET assay. We confirm that OsbZIP23 regulates both nitrogen and drought response genes, and OsABF1 regulated drought response genes, with TARGET and in planta data.

Overall, these finding supports previous studies that show the regulation of these two essential signals N-and-W are linked (Swift et al., 2019; Araus et al., 2020; Plett et al., 2020). Our work presents a path of how ABA/drought induced signaling regulates both N and W responses which ultimately affect crop phenotypes, such as NUEg, the trait of focus in our study.



Validation of GRNs in rice using ConnecTF as a platform to validate and prune for high-confidence networks

In our study, we demonstrate the usefulness of ConnecTF as a platform - now applied to rice - to integrate published TF-binding and TF-expression datasets to identify and validate target genes in GRNs (Brooks et al., 2020) (Figure 4 and Supplementary Figure 2). While some GRN studies use an arbitrary cut-off value for network pruning as in other network studies (Ueda et al., 2020), we show how TF-perturbation data can be used as a "gold-standard" for GRN validation and "network pruning", using automated AUPR functions in ConnecTF (Brooks et al., 2020) (Figure 4). We performed Precision/Recall analysis of the GRN for NUEg – using the TF-target gene validation sets for rice housed in the ConnecTF database. This enabled us to empirically select a TF→target precision cut-off value of 0.31 from the AUPR curve. This AUPR cut-off represents that approximately 1/3 of our GENIE3 network predictions are validated (Figure 4). This precision cut-off is comparable to what we find in other network studies in Arabidopsis that use AUPR analysis (Varala et al., 2018; Brooks et al., 2019). Overall, the automated AUPR function in ConnecTF provides an accurate, and facile means to validate GRN predictions in any rice GRN that researchers can load onto the site. Importantly, these cut-off values for TF→target gene validated edges established a cut-off score that can be applied to all TF→target gene edges in the network – including TFs which have not been validated. This enables the generation of a high-confidence network for all TFs in the GRN.



bZIP family TFs as regulators of N and W signaling

In our high-confidence GRN we identify nine bZIP TFs as regulators in our "pruned" network (Supplementary Data 6). Members of the bZIP family of TFs are known to regulate drought stress responses in multiple crops species in addition to rice, including Glycine max, Zea mays and Hordeum vulgare (Joshi et al., 2016). Additionally, bZIP family TFs regulate ABA hormone responses, which play a crucial role in regulating the drought response in plants in general (Joshi et al., 2016; Zong et al., 2016; Zhang et al., 2017; Araus et al., 2020). In our high-confidence GRN studies that focus on genes correlated with NUEg, we find that bZIP TFs regulate N-signaling as well as drought responses in rice. In line with our finding, previous studies examining N-responses in rice, identified bZIP transcription factors that regulate NUE (Ueda et al., 2020).

We identified three bZIP family members - OsABF1, OsbZIP23, and OSBZ8 - as top-regulators of N-and/or-W signaling in regulating NUEg (Table 1). Additionally, we find regulation of two other bZIP TFs, OsbZIP72 and OsbZIP46, in our NUEg GRN regulated by Oshox22 and OsbZIP23, respectively (Figure 5). This finding is significant, as OsbZIP23, OsbZIP46, OsbZIP72 are part of the same subgroup-III of bZIP TFs and are known to be coordinated in their regulation of ABA signaling and drought responses (Lu et al., 2009; Hossain et al., 2010; Song et al., 2020). Additionally, ObZIP46 improves drought tolerance in coordination with the ABA-activated protein kinase, SAPK6, which is another target gene in our NUEg GRN (Figure 5) (Chang et al., 2017). Overall, our NUEg GRN results link bZIP TFs in rice as mediating N-and/or-W response genes that control NUEg. We validate the TF→target genes predictions in our high-confidence GRN for NUEg for two bZIP TFs, OsbZIP23 and OsABF1, using the TARGET assay.



Functional validation of TFs in rice: TARGET assay to identify direct TF→target gene interactions in rice cells

The TARGET system allows researchers to identify the validated TF-target gene interactions for any TF of interest using a rapid plant cell based temporal TF perturbation assay (Bargmann et al., 2013; Brooks et al., 2019). The key to this assay is the inducible TF nuclear localization and its ability to identify direct TF-target genes based on RNA-seq data (Bargmann et al., 2013). Previously, the TARGET assay has been used to identify direct TF→target gene interactions in Arabidopsis root or shoot cells (Bargmann et al., 2013; Varala et al., 2018; Brooks et al., 2019). In this study we establish the TARGET system in rice leaf protoplasts (see Methods). We then used the rice TARGET assay to identify the direct regulated target genes of the rice TFs OsbZIP23 and OsABF1 (Supplementary Data 9). Our analysis shows that the TF target genes identified in rice leaf protoplasts using TARGET, are comparable and show a significant overlap with genes identified in planta (Supplementary Figure 6A). Additionally, in this study, we demonstrate that the accuracy of rice TARGET data is comparable to in planta data at validating network predictions (Supplementary Figure 6B). This finding suggests that rice TARGET data can be used to validate GRN predictions in rice, as was shown in Arabidopsis (Varala et al., 2018; Brooks et al., 2019; Brooks et al.,2020; Cirrone et al., 2020). In our study, we validated that OsbZIP23 regulates both nitrogen and water-related genes including, NIA1 which is involved in nitrate assimilation (Subudhi et al., 2020), OsDhn1 which is induced by drought (Lee et al., 2013), OsPIP1;2 which is an aquaporin that improves yield (Xu et al., 2019), ABCG4 which is involved in abiotic stress responses (Matsuda et al., 2012), and OsPP2C30 which a core regulator in the ABA signaling pathway (Zong et al., 2016). Overall, our study supports that the TARGET assay is a fast and reliable approach to identify the direct TF→target genes in rice, bypassing the time-consuming process of developing transgenic rice. Importantly, the rapid rice TARGET TF-perturbation assay, can be used to prioritize rice TFs for more laborious studies in planta.



Our network approach is transferrable to any phenotype in any organisms

The method we applied in this study relies on two inputs: a transcriptome-wide gene expression table and collected phenotypes from the same samples. With the reduced cost of RNA-Seq, especially with the 3′ RNA-sequencing (Weih, 2014; Groen et al., 2020; Weng and Juenger, 2022), it is much more feasible for researchers to obtain transcriptome expression data from many samples. Moreover, the software we used are all open-source and publicly available. This includes WGCNA (Langfelder and Horvath, 2008) for gene-to-phenotype correlation, GENIE3 (Huynh-Thu et al., 2010) for GRN inference and ConnecTF (Brooks et al., 2020) for network pruning. Putting these together, our network approach is not limited in rice research, but can be applied to any organism for any phenotype or trait.




Conclusions

By using a combination of WGCNA and GENIE3 network methods, we present a gene regulatory network that links TF→target gene→NUEg phenotype to determine the mechanism of N-and/or-W signaling to the regulation of NUEg (Figure 1). We also show how to use TF-validation datasets from rice to validate inferred networks using ConnecTF (https://rice.connectf.org) (Brooks et al., 2020). In addition, we apply the cell-based TARGET temporal TF-perturbation system to rice to identify direct TF→target genes interactions and validate inferred gene networks. Overall, we identify a new role for OsbZIP23 and Oshox22 as regulators of the N-and/or-W signaling and regulation of NUEg, in addition to ABA/drought signaling. More broadly, we have identified 18 prioritized TFs and their targets that correlate with NUEg, and results from this network approach can potentially be used to optimize rice varieties to thrive in marginal low-N/arid soils, which are increasing in the face of global climate change.
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Excessive use of nitrogen (N) fertilizer for sugarcane cultivation is a significant cause of greenhouse gas emission. N use-efficiency (NUE) of sugarcane is relatively low, and considerable effort is now directed to exploit biological nitrogen fixation (BNF) in sugarcane. We hypothesize that genetic base-broadening of sugarcane using high-BNF Saccharum spontaneum, a wild progenitor of sugarcane, will help develop N-efficient varieties. We found remarkable genetic variation for BNF and growth in S. spontaneum accessions, and BNF in some accessions remained highly resilient to inorganic N application. Physiological and molecular analyses of two S. spontaneum accessions with high-BNF capacity and growth, namely G152 and G3, grown under N replete and low N conditions showed considerable similarity for total N, NH4-N, soluble sugar, indoleacetic acid, gibberellic acid, zeatin and abscisic acid content; yet, they were strikingly different at molecular level. Global gene expression analysis of G152 and G3 grown under contrasting N supply showed genotype effect explaining much of the gene expression variation observed. Differential gene expression analysis found an over-representation of carbohydrate and amino acid metabolism and transmembrane transport genes in G152 and an enrichment of lipid metabolism and single-organism processes genes in G3, suggesting that distinctly divergent metabolic strategies are driving N-related processes in these accessions. This was attested by the remarkable variation in carbon, N, amino acid and hormone metabolism-related gene expression in G152 and G3 under high- and low-N supply. We conclude that both accessions may be achieving similar BNF and growth phenotypes through overlapping but distinctly different biochemical and molecular mechanisms.
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1 Introduction

Nitrogen (N) is one of the major essential elements for plant growth and development. Both carbon fixation and sugar production are directly affected by N deficiency in sugarcane (Robinson et al., 2008). In natural ecosystems, mineralization of organic pools provides the N used by the plants, and thus the growth of natural vegetation in general remains relatively low compared to those in managed agricultural ecosystems. Yet, to feed the growing world population, agriculture intensification through continuous high-input cropping became the norm for many crop production regions (Kopittke et al., 2019). This paradigm shift in crop cultivation driven by Green Revolution has made remarkable achievements in food production and food security. However, it also resulted in overuse of agro-chemicals causing severe unintended adverse impacts on environment and human health (Yang et al., 2021). Excessive use of agrochemicals, particularly inorganic N fertiliser, led to soil acidification, reduced soil fertility and crop productivity, ground water and air pollution, eutrophication and increased agriculture carbon footprint (Guo et al., 2010). Currently, about 120 Tg (million metric tonnes) of inorganic N is used annually worldwide (FAO, 2019) with 60-80% of it is lost to the environment due to a combination of excessive inorganic N fertiliser input and the low crop nitrogen use efficiency (NUE) (Robinson et al., 2014; Luo et al., 2022). The need for reduced N fertiliser input for sustainable crop production is now well recognised globally (Udvardi et al., 2021). To realise this outcome, it is also recognised that a multi-pronged crop production strategy involving transformational innovations in agronomy, increased use of organic sources of N including biologically fixed N, and improved crop genetics is needed (Rossetto et al., 2022; Luo et al., 2022).

Sugarcane is a fast-growing high-biomass crop cultivated in both tropical and sub-tropical countries. It provides most of the sugar and about 35% of ethanol produced globally (FAO, 2020; Yang et al., 2021). Sugarcane is mostly cultivated under rainfed condition, often in low fertile N-limited soils. It is highly responsive to N supply and, consequently, overuse of inorganic N fertiliser to boost cane yield is widespread (Robinson et al., 2011; Yang et al., 2022). For instance, N application rate for sugarcane ranges from 400 kg ha−1 in certain production regions in India to 1381 kg ha−1 in some areas of China, the two major sugarcane producing countries (Robinson et al., 2011; Yang et al., 2022). As with most other crops, NUE of sugarcane is relatively low, with crop recovering 20-40% of N applied even in well-managed production systems following best crop management practices (Luo et al., 2022). The substantial loss of applied N fertiliser to ground water, run off and atmosphere, and the attended environmental costs prompted considerable effort to improve sugarcane crop NUE in many cane producing countries. This include exploring the use of enhanced efficiency fertilisers, and increasing the soil organic N pool through crop residue retention, organic amendments such as sugar mill by-products and legume intercropping (Bell, 2014; Moreira et al., 2021). Also, considerable effort is now underway in researching and exploiting biological N fixation (BNF) to reduce inorganic N use for sustainable production of sugarcane and other crops (Solanki et al., 2020; Soumare et al., 2020).

Biological N fixation by diazotrophs, a diverse group of bacteria and archaea capable of fixing atmospheric N2 to NH3, is a significant source of N used by plants in different ecosystems, including agro-ecosystems (Solanki et al., 2020; Imran et al., 2021). Diazotrophs can be symbiotic endophytes as nodulating and non-nodulating bacteria or it can be associative diazotrophs inhabiting on rhizosphere and the bulk soil surrounding the root system, or on above-ground plant body (Imran et al., 2021). Growth improvement by rhizospheric and endophytic diazotrophs has been reported in sugarcane (Shastri et al., 2020; Singh et al., 2021a; Singh et al., 2021b). Under field condition, diazotrophs contribute up to 15% of crop N demand (Imran et al., 2021). In addition, they possess a number of plant growth promoting properties such as phytohormone production, solubilisation of minerals, control of pathogens, abiotic stress tolerance and siderophore formation in many crops including sugarcane (Singh et al., 2021b; Singh et al., 2021c). Reports from Brazil suggest that BNF accounts for a significant proportion, 60-80% in some cases, of N used by commercial sugarcane crops (Boddey et al., 1991). There are numerous reports of sugarcane BNF by associative diazotrophs from Brazil, China and India but attempts to detect sugarcane BNF in some other countries were unsuccessful. The reasons for the conflicting results are unclear, but strong host genotype specificity and soil environmental sensitivity of diazotrophs are now well-recognised (Imran et al., 2021). Considering the remarkable variation for host genotypic compatibility of diazotrophs (Malviya et al., 2022) and the inherent narrow genetic base of current commercial sugarcane varieties in general (Hemaprabha et al., 2022), we studied the abundance and diversity of rhizosphere diazotrophs in sugarcane ancestral species and found large rhizospheric microbial diversity in the analysed species (Malviya et al., 2022). Of the five wild Saccharum species analysed, Saccharum spontaneum is the most crossable, highly genetically diverse and ubiquitous in distribution. Being a versatile sugarcane progenitor with remarkable genetic diversity, we were interested in identifying accessions with high BNF capacity and desirable growth features useful for introgression breeding. As part of this research, we studied a population of 33 S. spontaneum accessions representing Chinese Saccharum spp germplasm collection covering very diverse tropical and sub-tropical ecological regions for their BNF property to identify accessions with high N fixing capacity. In most sugarcane production systems external N input is necessary for achieving economic yield. Because of this inevitability, we were interested in understanding the impact of externally applied inorganic N fertiliser on S. spontaneum BNF and how it affects carbon, N, amino acid and hormone metabolism at the molecular level. Hence, two S. spontaneum accessions with high BNF, well-developed stalk, high brix and flowering propensity were selected for further physiological and molecular studies to gain more insights into BNF and carbon, N, amino acid and hormone metabolism in this species, and the results are presented here.



2 Materials and methods


2.1 Plant materials and growing conditions

Wild accessions of sugarcane (Saccharum spp. interspecific hybrids) progenitor Saccharum spontaneum L. were used for this study. They were sourced from the Chinese S. spontaneum collection maintained in the germplasm garden of Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences (SRI), Nanning, Guangxi, China. Nanning has a hot humid subtropical climate with annual temperatures ranging between 2°C and 35°C. It receives, on average, 1300 mm rainfall yearly with an annual mean humidity of 79%. For this study, thirty-three S. spontaneum accessions collected from very diverse tropical and sub-tropical agroclimatic conditions of Southern China, where sugarcane is grown commercially, were selected. All the selected accessions were free of pests and diseases, never fertilised, and grew well in the garden.



2.2 Screening of S. spontaneum population for BNF and growth attributes

Ten-month-old S. spontaneum plants were used for population screening experiment. Plants selected for the screening experiment were grown individually in large pots with soil collected from SRI germplasm garden in a naturally-lit glasshouse. They were not fertilised or sprayed with any chemicals prior to and during the screening experiment. The soil was irrigated as and when needed. The plants of all 33 accessions were divided equally into three blocks (six to eight plants of each accession in one replicate block), and in each block, they were arranged randomly. These accessions were screened for BNF activity using nitrogenase assay, and plant height (from soil surface to the dewlap of the youngest fully expanded leaf), stalk number and brix (using juice expressed from 10 cm of the basal part of stem) were also determined. Brix of expressed juice was measured by refractometry using ATR-P Refractometer (Schmidt and Haensch, Germany). For each accession there were six independent measurements from plants randomly selected from 3 replicate blocks.


2.2.1 BNF assay: Nitrogenase activity of S. spontaneum accessions

Nitrogen fixation ability of S. spontaneum test clones was determined by assaying in vivo nitrogenase activity in nitrogen-free medium as described previously (Hardy et al., 1968). Lamina (1 g) of the youngest fully expanded leaf from each plant was sampled, cut into 0.5 cm long pieces and immediately transferred to 50 mL Erlenmeyer flask containing 10 mL of nitrogen-free assay medium. Then, under sterile condition, flask headspace air was removed and replaced with acetylene gas (10% v/v) and the flasks were incubated at 28 0C for 48 h on a gyratory shaker set at 120 rpm. At the end of the incubation, 0.5 mL of headspace gas was removed from each flask and analyzed in a GC-17A gas chromatograph (Shimadzu, Japan) with DB-1,701 column (Agilent, Santa Clara, United States) using the flame ionization detector (FID) at 80 0C and the injector at 110 0C, with 35 mL min−1 flow rate of carrier gas. For each accession, nitrogenase activity of six individual plants selected randomly from 2 replicated blocks were determined. The amount of ethylene (C2H4) produced by each accession was calculated and presented as nmol C2H4 produced g−1 fresh weight h−1.




2.3 Impact of inorganic N fertiliser application on BNF in high-BNF S. spontaneum accessions

Six accessions with high BNF activity identified in the BNF screening experiment, namely G03, G152, G177, G720, G824 and G1926, were selected for studying the sensitivity of N fixation to high N condition. Single node cuttings from 12-month-old healthy plants were planted in unfertilized moist garden soil in plastic trays with perforated bottom and kept in a naturally-lit glasshouse for sprouting and plantlet development. One month after planting the cuttings, plantlets of uniform size were transplanted into 30 lit pots with unfertilized soil. All pots were watered regularly to avoid moisture stress. Two weeks after transplanting, potted plants were divided into two equal groups; one for high nitrogen (HN) and the other for low nitrogen (LN) treatments. All HN plants were supplied with Murashige and Skoog (MS) mineral nutrients (2 lit pot-1) (Murashige and Skoog, 1962), which contained 18.8 mM KNO3 and 20.6 mM NH4NO3, while those in LN received MS mineral nutrients without N (2 lit pot-1) once every three weeks. This N treatment was continued during the 5-month experimental period. The experiment followed a completely randomized block design with three replicated blocks. For both treatments, there were 5 plants of each accession in a single block (replicate). At the end of the experiment, middle portion of the youngest fully-expanded leaf was sampled and nitrogenase activity was determined as described above. For each accession, three biological replicates from each block were used for the enzyme assay.



2.4 Physiological and molecular responses of selected high-BNF S. spontaneum accessions G3 and G152 to inorganic N application

Two high-BNF S. spontaneum accessions with high brix, good stalk development, high stalk number, high propensity for flowering and a relatively low impact of applied inorganic N on their N fixation activity, namely G152 and G3, were selected for further physiological and molecular characterization. Plants were raised and the experiment was conducted as described in section 2.2. except for the following conditions. Experiment was continued for 7 months. The experiment followed a completely randomized block design with three replicated blocks for each treatment. Each block had 6-8 plants of each accession for HN and LN treatments.

At the end of the experiment, leaf tissue from the youngest fully expanded leaf and root samples were harvested for measuring nitrate reductase (NR) and glutamine synthetase (GS) activity, and total N, NH4-N, soluble protein and soluble sugars content. Leaf tissue was also used for BNF assay and transcriptome analysis. For NR and GS activity, lamina (1 gm) from the youngest fully-expanded leaf and root tips (10 mm from the tip) were collected and immediately snap-frozen in liquid nitrogen. The tissue samples were collected between 09.30 and 13.00 hours to minimise the effect of diurnal variation.



2.5 Shoot growth and content of total N, NH4-N and soluble sugars in G3 and G152 grown under externally supplied inorganic N

At the end of seven months of growth, shoot height and stalk number of experimental plants were measured. For chemical analyses, oven dried (80 0C for 5 days) leaf and root tissues were finely powdered and used for total N, NH4-N and soluble sugars content measurement. Total N was determined by acid digestion of samples following Kjeldahl method. NH4-N and soluble sugars content were measured using Plant Ammonium Nitrogen Activity Assay Kit (# BC1520, Solarbio, China), and Plant Soluble Sugar Content Assay Kit (# BC0035, Solarbio, China), respectively, following manufacture’s instruction. For each treatment, eight independent plants (measurements) randomly selected from different replicated blocks were used for analysis.


2.5.1 BNF activity of S. spontaneum accessions G3 and G152 grown under externally supplied inorganic N

Nitrogen fixation ability of S. spontaneum test clones supplied with and without N was determined by measuring in vivo nitrogenase activity of youngest fully expanded leaf tissue of seven-month-old plants in N-free medium as described in section 2.2.1.



2.5.2 Nitrate reductase and glutamine synthetase activity of S. spontaneum accessions G3 and G152 grown under externally supplied inorganic N

Frozen leaf and root tissue samples were ground to a fine powder and used for nitrate reductase (NR, EC 1.7.1.1) and glutamine synthetase (GS, EC 6.3.1.2) activity assays. Five ml of the extraction buffer (50 mM Tris HCl, 1 mM MgSO4, 1 mM EDTA, 10 mM cysteine, 1% insoluble PVP) was mixed with 1 g of tissue and the homogenate was kept for 30 min on ice with occasional stirring. The homogenate was then centrifuged at 4°C at 12000 rpm for 10 min and the supernatant was used for enzyme activity measurement. The NR activity was measured by methods developed by Bories and Bories (1995), and expressed as the amount of NO2 produced g−1 fresh weight of tissue. The GS activity was measured according to Bressler and Ahmed (Bressler and Ahmed, 1984), and expressed as nmol γ-glutamyl-monohydroxamate (GHA) produced mg−1 protein min−1. Soluble protein content of sampled tissues was determined with bicinchoninic acid (BCA) method using bovine serum albumin as standard. For each treatment, eight independent plants randomly selected from different replicated blocks were used for analysis.



2.5.3 Changes in endogenous level of plant hormones in G3 and G152 grown under externally supplied inorganic N

The frozen leaf samples of G3 and G152 plants grown with and without external N were finely powdered in liquid nitrogen. The powdered tissue (1 g) was extracted with cold methanol (10 ml) containing 1 mM butylated hydroxytoluene at 4°C for 16 h in dark as described previously (Gong et al., 2017). These samples were then centrifuged at 2000 rpm for 20 min at 4°C and the pH of supernatants collected was adjusted to 2.8, then extracted thrice with an equal volume of ethyl acetate, and the extract was evaporated to dryness in a vacuum centrifuge (RVC 2-25 CDplus, Christ, Germany). The dried samples were redissolved in 0.5 ml of methanol with 0.1M glacial acetic acid as the mobile phase for high performance liquid chromatography (HPLC) analysis. Hormones were quantified using RIGOL L-3000 HPLC system (RIGOL, Beijing, China) as described previously (Yang et al., 2014). Analysis was done using a Kromasil C18 column (250 mm*4.6 mm, 5 μm; EKA chemical Inc) with 100% methanol (A) and 0.1M acetic acid (B) as mobile phases and a flow rate set at 1 mL/min. Extracted samples (10 μL) were injected into column and gibberellic acid (GA3), abscisic acid (ABA), zeatin riboside (ZR) and indole-3-acetic acid (IAA) were detected at wavelengths 210 nm, 254 nm, and 275 nm, respectively. Plant hormone standards with known concentration were used for establishing calibration curves, which were used for quantifying hormones in the test samples.




2.6 Statistical analysis

All data presented here are analysed using analysis of variance (ANOVA) in Genstat statistical system, 19th Edition (VSNI, 2017).



2.7 Molecular analysis of high-BNF S. spontaneum accessions to understand carbon, N, amino acid and hormone metabolism-related gene expression


2.7.1 Plant materials and RNA isolation

Youngest fully expanded leaves harvested from G152HN, G152LN, G3HN and G3LN plants (see section 2.4. for experimental details) were immediately snap-frozen in liquid nitrogen. Total RNA was isolated using TRIzol™ Reagent (Thermo Fisher Scientific, Wilmington, USA) and the RNA quality was monitored on 1% agarose gel. RNA purity was determined using the NanoPhotometer® (IMPLEN, CA, USA). RNA samples were quantified spectrophotometrically using Qubit® RNA Assay Kit in Qubit® 2.0 Flurometer (Life Technologies, CA, USA) and RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Two biological replicates were used for each treatment for molecular analyses.



2.7.2 cDNA library construction and sequencing

A total of 1.5 μg RNA per sample was used for preparing the RNA for sequencing. Sequencing libraries were prepared using MGIEasy RNA library preparation kit (MGI, Shenzhen, China) and index codes were added to attribute sequences to each sample. PCR products were purified (MGIEasy DNA purification magnetic bead Kit) and the library quality was determined using the Agilent Bioanalyzer 2100 system. After purification, the double stranded PCR library was unzipped and then looped to form single stranded circular DNA. The rolling circle amplification (RCA) technology is used to form DNA nanoball (DNB), the DNB is loaded into the chip through the automatic sample loading system and fixed. The chip loaded with DNB was put into DNBSEQ-T7 for sequencing, and 150 bp double-ended sequencing reads was obtained. The transcriptome sequencing data are deposited into the National Center for Biotechnology Information (NCBI) SRA database under accession number PRJNA847754 and can be accessible with the following link https://www.ncbi.nlm.nih.gov/sra/PRJNA847754



2.7.3 Data processing, transcriptome assembly and functional annotation

The raw reads in fastq format were initially processed through Perl scripts. After removing reads containing adapter and ploy-N, and low-quality reads, the clean reads obtained were used for Q20, Q30 and GC content. These high-quality clean reads were used for all the downstream analyses.

Clean reads were de novo assembled into transcriptome using Trinity v2.11.0 (Grabherr et al., 2011). Non-redundant unigenes were determined through sequence splicing and redundancy removal from all sample unigenes. The unigenes with lengths >200 bp were used for further analyses. All the assembled unigenes were searched and annotated using NCBI non-redundant protein sequences (Nr; https://www.ncbi.nlm.nih.gov/guide/), NCBI non-redundant nucleotide sequences (Nt; https://www.ncbi.nlm.nih.gov/guide/), Protein family (Pfam; http://www.pfam.org/), Gene Ontology (GO; http://geneontology.org/), Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology database (KO; https://www.genome.jp/kegg/ko.html), Swiss-Prot (https://web.expasy.org/docs/swiss-prot_guideline.html), and Clusters of Orthologous Groups of proteins (KOG/COG; ftp://ftp.ncbi.nih.gov/pub/COG/KOG), with an E-value cut-off of 1E-5.



2.7.4 Analysis of differential gene expression in response to inorganic nitrogen application

The unigenes obtained were assembled into a Ref and the clean data for each sample were aligned back into the assembled Ref. Gene expression of all samples were calculated using RSEM v1.2.8. For the gene read counts of each library, DESeq2 v3.11 was used to estimate the transcripts per million values for each gene. Differential gene expression analysis of different comparative groups was performed using DESeq R package (1.18.0). DESeq provides statistical routines for determining differential expression in digital gene expression data using a model based on the negative binomial distribution. The resulting p -values were adjusted using the Benjamini and Hochberg’s approach for controlling the false discovery. Genes with an adjusted p-value < 0.05 and an absolute value of log2ratio (treatment/control) ≥ 1 were considered as differentially expressed genes (DEGs).



2.7.5 GO and KEGG enrichment analysis

Gene Ontology (GO) enrichment analysis of differentially expressed genes was implemented by the GOseq R package, following gene length bias correction. GO terms with corrected p-value < 0.05 were considered significantly enriched by differential expressed genes. For KEGG pathway analysis we used KOBAS software to test the statistical enrichment of differential gene expression genes in KEGG pathways.



2.7.6 Analysis of differential expression of genes involved in amino acids, nitrogen, carbon and hormone metabolism in response to N application

To expand our understanding how high N supply affects key metabolic pathways that regulate growth in S. spontaneum with BNF capacity we generated gene expression heatmaps and clustering of DEGs involved in carbon, nitrogen, amino acid and hormone metabolism of G3 and G152 accessions grown under external N supply. This analysis was performed with pheatmap R package using the FPKM value.



2.7.7 Quantitative real time RT-PCR analysis

The RNA-Seq data was validated by quantitative real time RT-PCR analysis (qRT-PCR) using ten genes. The expression of eight selected genes were normalized using three reference genes, namely, glyceraldehyde-3-phosphate dehydrogenase (GAPDH); acyl-CoA dehydrogenase (ACAD);clathrin adaptor complex (CAC). The primers used for each gene are given in Table S9. The RNA for qRT-PCR was prepared as described in the section 2.7.1. cDNA was synthesized with HiScript II Q RT SuperMix (Vazyme, China) according to the manufacturer’s instructions. The qPCR reaction mixture (20 μL) consisted of 1 μL cDNA, 10 μL ChamQ Universal SYBR qPCR Master Mix (Vazyme, China), 0.4 μL forward primer, 0.4 μL reverse primer and 8.2 μL H20. The qPCR reaction followed a pre-denaturing step (95 °C for 3 min), amplification steps (95 °C for 20 s, 58 °C for 20 s, 72 °C for 25 s, and fluorescence acquisition) of 40 cycles, and a melting curves step (continue capturing fluorescence from 60°C to 95°C). The qPCR was performed on A qTOWER Real-Time Thermal Cyclers (Analytik Jena, Germany) was used for qPCR. The 2−ΔΔct method was used to calculate the relative gene expression.





3 Results


3.1 Substantial genetic variation for BNF, shoot growth, stalk number and brix exist in S. spontaneum accessions

Analysis of nitrogenase activity in S. spontaneum accessions showed remarkable variation for BNF capacity among the clones tested (Figure 1). For example, accession G152, the clone with the highest BNF activity, recorded 72-fold greater enzyme activity than the poorest performer, G103. Among the 33 clones tested, 15 had a relatively high BNF activity (>50 nmol C2H4 mg-1 protein h-1). A similar trend was also evident for plant height, stalk number and brix (Figures 2, 3) although the range of variation for these traits was much smaller than that of BNF (Figure 2). On average, a six-fold variation was evident for plant height, stalk number and brix at the end of the experiment.




Figure 1 | Nitrogenase activity measured by acetylene reduction assay of 33 S. spontaneum accessions showing large variation in their BNF activity. Values are mean of 6 independent measurements; l.s.d. 9.8, p < 0.001.






Figure 2 | Variation in shoot length, stalk number per stool and brix (%) of S. spontaneum accessions Values are mean of 6 independent measurements; shoot length l.s.d. 15.4, p < 0.001; shoot number l.s.d. 1.2, p < 0.001; brix l.s.d. 1.09, p < 0.001.






Figure 3 | Effect of external application of inorganic N on nitrogenase activity of six high-BNF S. spontaneum accessions. Values are mean of 6 independent measurements; l.s.d. 12.4, p < 0.001. HN, high N; LN, low N.





3.2 Sensitivity of BNF to inorganic nitrogen varies greatly among high-BNF S. spontaneum accessions

Analysis of nitrogenase activity in six high BNF accessions grown under externally supplied inorganic N showed remarkable genotypic variation for BNF activity (Figure 3). External application of inorganic N had a relatively low impact on the nitrogenase activity (20-25% reduction) of accessions G152 and G3, whereas the activity was reduced by 42-53% in other four accessions tested. The N-induced reduction in nitrogenase activity was significant for all accessions (p<0.01)



3.3 External nitrogen supply boosted shoot growth and content of total N, NH4-N and soluble sugars but reduced BNF in S. spontaneum accessions

External application of inorganic N significantly (p<0.01) increased shoot length and stalk number in both accessions (Table 1). Under external N supply, stalk length was increased by 19% in G3 and 22% in G152, whereas a more remarkable rise in stalk number, 46 – 50%, was observed in both accessions. Similar to shoot growth, total N and NH4-N content of leaf and root tissues of G152 and G3 accessions also showed a substantial increase when plants received external N supply (Figures 4A, B). Total N content variation was more pronounced in roots than in leaf tissue for both accessions, but that was not the case for NH4-N; there was very little variation for root NH4-N in G152 and G3plants. Compared with total N content, N-induced increase in soluble sugar was markedly lower in leaf and root tissues except for G3 leaf tissue (Figure 4C).


Table 1 | Effect of external application of inorganic N on stalk length and stalk number of S. spontaneum accessions G3 and G152.






Figure 4 | Effect of external application of inorganic N on leaf and root nitrogen (A), NH4-N (B) and soluble sugars (C) content in S. spontaneum accessions G152 and G3. Values are mean of 6 independent measurements; L, leaf; R, root; HN, high N, low N, LN; total N l.s.d. 1.02, p < 0.001; NH4-N l.s.d. 0.52, p < 0.01; soluble sugars l.s.d. 0.64, p < 0.01.



From the six high-BNF accessions tested for their BNF-response to externally applied inorganic N (Figure 3), two accessions with BNF least affected by external N and desirable agronomic features as well as flowering propensity, G152 and G3, were selected for more detailed physiological and molecular analyses. Consistent with the results of the previous experiment (Figure 3), external application of N significantly reduced (19-23%; P<0.001) the nitrogenase activity in both accessions (Figure 5).




Figure 5 | Effect of external application of inorganic N on nitrogenase activity of S. spontaneum accessions G152 and G3. Values are mean of 6 independent measurements; l.s.d. 7.3, p < 0.01. HN, high N; LN, low N.



Activity of NR in both leaf and root tissues of G152 and G3 accessions was substantially increased with the application of inorganic N (Figure 6A; p<0.001). The percentage increase in roots was much greater (2.4 to 3.5-fold) than that of leaf, and in both accessions rate of enzyme induction in leaf tissue was somewhat similar (~1.5 fold) (Figure 6A). As with NR, GS activity also showed an increasing trend in leaf and root tissues though the N-induced enzyme induction was not as pronounced as in NR, except for the G3 leaf tissue (Figure 6B).




Figure 6 | Effect of external application of inorganic N on leaf and root nitrogenase (A) and glutamine synthetase (B) activity in S. spontaneum accessions G152 and G3. Values are mean of 6 independent measurements; NR Ls.d. 0.58, p < 0.01; GS l.s.d. 1.29, p < 0.001; L, leaf; R, root; HN, high N; LN, low N.





3.4 Nitrogen supply increased auxin, gibberellin and cytokinin content and nitrate reductase activity remarkably, but not so for abscisic acid and glutamine synthetase

Inorganic N application had a remarkable effect on endogenous hormones in both G152 and G3 accessions (Table 2). The endogenous level of growth promoting hormones IAA, GA3 and ZR in both accessions increased by 60-80%, except for a doubling of ZR in G152. No consistent and significant change in ABA content was noticed with N application.


Table 2 | Effect of external application of inorganic N on endogenous levels of hormones in the leaf tissue of S. spontaneum accessions G152 and G3.





3.5 RNA sequencing, de novo assembly of reads and functional annotation of unigenes

In the RNA-Seq experiment, the number of clean reads obtained from each library after trimming and filtering ranged between 44725188 and 481766948, with average 6.83 (range 6.09-7.07) gigabases, 93.6% Q30 (range 91.82-94.4%) and 53.5% GC (range 50.48-55.07%) content. Out of 266228 transcripts obtained, 110947 unigenes with a mean length of 1087 bp (range 201- 17867 bp) were identified (Table S1).

The function of all unigenes obtained were annotated using seven databases. (Table S2–S4). In this analysis, transcriptome assembled from RNA-Seq data was used as reference. Out of a total of 110947 unigenes identified, 64.9% (72056), the largest proportion of unigenes, were annotated from NT, followed by 67404 (60.8%) in NR. The lowest number of genes annotated, 8435 (7.6%), was in KOG. It is important to note that 76.6% (84986) of all the unigenes identified were annotated at least in one of the seven databases used in this study.



3.6 Differential gene expression in high-BNF S. spontaneum accessions grown under external N supply: Genotype effect far outweighed treatment effect

In the gene expression study, the impact of external application of N on the expression of genes associated with carbon, N, amino acids and hormones in leaf tissues of two high-BNF S. spontaneum accessions, G152 and G3, was analysed. Four different pair-wise comparisons, i.e., same accession with contrasting N treatments, high N and low N, comparison (G152 HN vs G152 LN; G3HN vs G3 LN) and different accessions with the same N treatment comparison (G152 HN vs G3 HN; G152 LN vs G3 LN), were performed to identify DEGs (Figure S1). In the initial global analysis of differential gene expression using the threshold of an adjusted p value of <0.05 and log2FoldChange >1 based on DESeq2 method, 864 genes were found to be differentially expressed between G152HN and G152LN with 360 genes downregulated and 504 upregulated (Figure S1). For the same comparison (HN vs LN) in G3, the number of DEGs was less than half of what was found in G152 (HN vs LN), and more genes were downregulated (155) than upregulated (87). In contrast to treatment comparison (HN vs LN for the same genotype), the genotype comparison (G152HN vs G3HN, G152LN vs G3LN) showed a substantially large number of DEGs, >2000 in each comparison, irrespective of the treatment (Figure S2). However, the pattern of gene expression in genotype comparison under high N treatment (G152HN vs G3HN) was just opposite of low N treatment (G152 LN vs G3 LN) with more downregulated DEGs under HN while the opposite was true for LN.

In order to identify common and unique genes that expressed differentially in response to N application in G152 and G3 accessions, Venn diagrams of DEGs were prepared (Figure S2). There were 28 common DEGs among G152 and G3 for treatment (HN vs LN) comparisons (Figure S2A), In this comparison (HN vs LN), G152 accession showed four-fold greater DEGs than that of G3 (Figure S2A). However, when G152 and G3 accessions were grown under similar soil N condition (Figure S2B), 1101 common DEGs were found. And, a similar number of DEGs was also found for genotype comparison under HN and LN conditions (Figure S2B). Interestingly, there were no common DEGs across all pair-wise comparisons (Figure S2C).



3.7 Carbohydrate, amino acid and energy metabolism DEGs over-represented in G152 in response to external N, while lipid, secondary metabolites and carbohydrate metabolism dominated in G3

To determine the potential functions of DEGs identified in this study, we performed gene ontology (GO) enrichment analysis and they were grouped into two main GO functional categories- biological processes and molecular functions. There was large variation for functional classes between all four pair-wise comparisons (Figure 7). For instance, DEGs identified in G152 HN vs LN comparison were mostly mapped to regulation of proteolysis, peptidases, catalytic activity, amino acid, protein and carboxylic acid metabolism and membrane transport GO terms in biological process and molecular functions categories combined (Figure 7A). Most of the DEGs in this comparison were upregulated with transmembrane transport and amino acid biosynthesis being the most enriched ones. In contrast, DEGs found in G3HN vs LN comparison were enriched for single-organism process, fatty acid, lipid and carboxylic acid metabolism, and anion homeostasis for biological processes, and fatty acid and iron binding for molecular functions (Figure 7B). Another interesting observation noted in this analysis was that when both accessions grown under the same N supply conditions (HN or LN) were compared, a substantially greater number of DEGs was highly enriched in samples from HN than those from LN (Figures 7C, D). Also, in the genotype comparison under HN condition, DEGs were mostly up-regulated whereas an opposite trend was true for LN plants (Figures 7C, D). Under LN condition, highly enriched DEGs were attributed to phosphorylation and metabolism of phosphorous-containing compounds GO terms in biological processes category, while protein kinase, transferases form the most enriched GO terms in molecular functions category. In the comparison of genotypes grown under HN, highly enriched DEGs identified were mapped to phosphorylation and DNA metabolic processes for biological processes, and nucleotide binding, kinases, carbohydrate derivative-binding, phosphotransferases, and anion binding, for molecular processes (Figures 7C, D). Also, it is interesting to note that under LN growth condition, though only minimally enriched, cytokinin biosynthesis was up-regulated (Figure 7C).




Figure 7 | Gene ontology (GO) annotation of DEGs in S. spontaneum accessions G152 and G3 grown in high and low N treatments. The DEGs used here were identified by pairwise comparisons between high N and low N treatments and between genotypes (p-value < 0.05). (A), G152HN vs G152LN; (B), G3HN vs G3LN; (C), G152 LN vs G3 LN; (D), G152 HN vs G3 HN.



In order to gain more insights into the potential metabolic roles of genes differentially expressed in G152 and G3 accessions, they were mapped to various metabolic pathways in KEGG database (Figure 8). The genes differentially expressed in G152 in response to external N supply were mostly mapped to metabolism category with amino acid metabolism and carbohydrate metabolism being the most enriched pathways followed by lipid, energy, other amino acids, terpenoids and polyketides metabolism and biosynthesis of secondary metabolites (Figure 8A). Transport and catabolism, and signal transduction in cellular processes and environmental information processing categories, respectively, were the other significant pathways identified in G152 HN vs G152 LN comparison (Figure 8A). As with G152, DEGs identified in G3 HN vs LN comparison were mostly over-represented in metabolism category (Figure 8B). However, in G3, DEGs were most enriched for lipid metabolism pathway followed by biosynthesis of secondary metabolites and carbohydrate and amino acid metabolism pathways. Transport and catabolism, membrane transport and signal transduction pathways were also significantly enriched.




Figure 8 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis of S. spontaneum accessions G152 and G3 grown under high N and low N conditions. The DEGs used here were identified by pairwise comparisons between high N and low N treatments and between genotypes (p-value < 0.05). (A), G152HN vs G152LN; (B), G3HN vs G3LN; (B), G152 LN vs G3 LN; (D), G152 HN vs G3 HN.



Unlike the large variation in representation of DEGs in various KEGG metabolic pathways seen between G152 and G3 grown under contrasting N supply (HN vs LN comparison) (Figures 8A, B), there were remarkable similarity for enrichment of DEGs in G152 and G3 grown under same N level (HN or LN) (Figures 8C, D). Carbohydrate metabolism was the most over-represented category in this genotype comparison, followed by amino acid, energy, lipid and nucleotide metabolism, and biosynthesis of secondary metabolites. Significantly, DEGs mapped to component pathways of genetic information processing category and that of transport and catabolism, and environmental adaptation, showed greater representation in genotype comparison (Figures 8C, D) than in treatment comparison (Figures 8A, B).



3.8 Distinct genotype- and N-dependent differential expression of genes involved in amino acids, carbon, nitrogen and hormones metabolism

Expression of DEGs involved in amino acid, carbon, N and hormones were further studied to gain more insights into metabolic responses of G152 and G3 accessions to inorganic N fertiliser application (Figure 9). A large number of amino acid metabolism-related genes were differentially expressed in response to external N supply in both accessions (Figure 9; Table S5). Also, there was substantial genotypic variation for this gene expression response. For instance, many amino acid metabolism-related genes that are up-regulated in G152 under high N condition were either down-regulated or remained unchanged under low N, and vice versa (Figure 9). This include glutamine synthetase, asparagine synthase, alanine transaminase, glutamate synthase, tryptophane synthase, etc. A similar result was also found for G3 grown under HN and LN conditions (Figure 9; Table S5). Several genes up-regulated in G3 under HN, such as alanine transaminase, glutamate dehydrogenase, glutamate synthase, asparagine synthase and serine acetyltransferase were either down-regulated or remained unchanged under LN condition. A similar notable result was the substantial variation in amino acid gene expression observed between G152 and G3 grown under same N condition (HN or LN). For instance, caffeoyl-CoA O-methyltransferase gene activity did not change in G152HN but it was down-regulated in G3HN. Proline dehydrogenase gene was up-regulated in G152 LN but its activity hardly changed in G3 LN (Figure 9). There was little change in the expression of serine O-acetyltransferase in G152HN but was over-expressed in G3HN, and it was down-regulated in G152LN with little change in G3LN. Collectively, these results show large N-induced and genotype-dependent variation for amino acid metabolism in the S. spontaneum accessions tested.




Figure 9 | Expression of genes of involved in amino acids, carbon, nitrogen and hormones in response to external N application in S. spontaneum accessions G152 and G3.



As with amino acid metabolism, expression of DEGs involved in carbon metabolism changed significantly in G152 and G3 accessions in response to inorganic N fertiliser application (Figure 9, Table S6). For example, in both G152 and G3, genes encoding fructose-bisphosphate aldolase, phosphoglycerate kinase and pyruvate dehydrogenase were down-regulated under HN condition whereas, under LN condition, they were over-expressed in G152 but remained unchanged in G3 (Figure 9, Table S6). In contrast, phosphenolpyruvate carboxylase, 6-phosphofructokinase 1 and ribulose phosphate 3-epimerase were over-expressed in G152HN but its expression did not change under LN condition. However, all these three enzymes were down-regulated in G3 irrespective of its soil N condition. Similar to amino acid metabolism, remarkably opposite expression patterns of DEGs were observed between G152 and G3 grown under HN or LN condition. This further attests the fact that genotypic variation is remarkably greater than treatment effect for carbon metabolism in the test accessions.

Consistent with the activity of amino acid and carbohydrate metabolism genes, expression of DEGs involved in N metabolism also showed remarkable variation under contrasting N supply in G152 and G3 accessions (Figure 9, Table S7). As an example, expression of nitrate and nitrite transporters and nitrate reductase genes was mostly inhibited in G152 and G3 grown under high N condition whereas their activity under low N was strongly up-regulated in G152 but remained mostly unaffected in G3. Contrarily, glutamate synthase expression was not affected in G152HN but was down-regulated in G3HN.The gene activity was either down-regulated or unaffected under LN condition in both accessions. In general, N metabolism gene expression showed remarkable variation in different genetic background and contrasting soil N conditions.

Genes involved in plant hormones auxin, gibberellin, cytokinin, abscisic acid and brassinosteroid metabolism were substantially altered by externally applied inorganic N in high-BNF S. spontaneum accessions G152 and G3 (Figure 9, Table S8). Under high N supply condition, (+)-abscisic acid 8’-hydroxylase gene expression was up-regulated conspicuously in G152 but it remained unchanged or down-regulated under low N supply in G152, and in G3 in both soil N conditions. A similar observation was also evident for GA2-oxidase except for G152LN plants where the gene activity was down-regulated. With regard to auxin metabolism, auxin-responsive GH3 genes involved in auxin homeostasis were slightly down-regulated in G152HN, G152 LN and G3HN plants but were up-regulated in G3LN (Figure 9, Table S8). A somewhat similar trend was also observed for transcripts of cytokinin dehydrogenase, a gene regulating cytokinin homeostasis. In contrast, a cytochrome P450 gene involved in brassinosteroid biosynthesis was strongly up-regulated in G152HN plants but not in plants from the other three treatments. In brief, as with external N treatment, genotype also had a pronounced effect on hormone metabolism in the test plants.



3.9 Expression of DEGs tallied well with qRT-PCR results

The reliability of RNA-Seq data was confirmed by qRT-PCR analysis of 8 randomly selected unigenes involved in amino acid (c43527_g3_i1; c45156_g2_i0), carbon (c47126_g2_i0; c59722_g4_i0; c66987_g0_i0) and nitrogen metabolism (c51974_g0_i0; c55068_g0_i0; c56112_g2_i0) (Figure 10). The expression data from RNA-Seq was consistent with qRT-PCR except for a few minor quantitative variations.




Figure 10 | Validation of RNA-Seq data by analysing the expression of nine genes involved in amino acid, carbon and nitrogen metabolism by qRT-PCR.






4 Discussion

One of the important and novel results of this study is the finding that large genetic variation for BNF and brix exists in S. spontaneum accessions (Figures 1 - 3). And, some of the accessions have remarkably high capacity for BNF and favourable stalk traits including brix content (~10%). This result has considerable practical significance in that the native N fixing property of S. spontaneum could be introgressed into commercial sugarcane breeding population, similar to disease resistance, abiotic stress tolerance, vigour, ratooning, stalk population traits previously introduced (Lakshmanan et al., 2022). There are very few reports on BNF in S. spontaneum (Dong et al., 2018; Malviya et al., 2022), and extensive screening of geographically diverse accessions for BNF has not been reported. The data presented here forms the first evidence that high-BNF S. spontaneum with desirable agronomic attributes could be a potentially valuable genetic source for sugarcane BNF improvement through breeding. This is particularly relevant at present as sugarcane is touted as a sustainable food and energy crop (Yang et al., 2021; Camargo et al., 2022). However, its sustainability and carbon neutrality remain unclear (Yang et al., 2021; Camargo et al., 2022; Luo et al., 2022). As an example, China is a major sugarcane producing country and the excessive use of N fertiliser in sugarcane crop for a long period of time led to extensive soil degradation, soil and water pollution and crop productivity plateau (Luo et al., 2022). Thus, minimising fertiliser input, particularly N fertiliser use, for sugarcane production is critical for controlling soil degradation, improving crop NUE and regaining soil health and crop productivity.

While the large genetic variation for BNF in Chinese S. spontaneum is promising, little is known about its sensitivity to external N. This knowledge is very important for S. spontaneum introgression to improve NUE because significant quantities of inorganic N supply is needed to sustain economic yield in almost all sugarcane growing countries and any change in N input reduction is likely to be gradual. Also, BNF alone cannot meet crop N demand and sustain economic yield as observed in Brazilian sugarcane production. Hence, we studied the sensitivity of N fixation to externally applied inorganic N in high-BNF S. spontaneum accessions. The results showed remarkable resilience of BNF to relatively high externally supplied inorganic N in two (G152 and G3) out of six accessions grown in soil (Figure 4), demonstrating the potential of S. spontaneum for reducing external N requirement for sugarcane production through variety improvement (Liu et al., 2020; Udvardi et al., 2021).

Externally applied N is known to inhibit BNF even in high-N fixers like legumes (Liu et al., 2020; Imran et al., 2021; Udvardi et al., 2021). This is not surprising in that ready availability of fixed N inhibits N fixation (Udvardi et al., 2021). Hence, more experiments were conducted to further understand the physiological and molecular aspects of external N effect on BNF in S. spontaneum accessions G152 and G3. It appears that external N supply affects N and carbon metabolism differently in different accessions and even in different tissues. For example, external N supply inhibited BNF in both accessions but it greatly increased total N content of leaf and root tissues (Figure 5A). However, a different pattern was evident for NH4-N and soluble sugars with external N increasing their contents in leaf tissues of G152 and G3 but not so in the roots. This indicates that the effect of external N supply on carbon and N metabolism in S. spontaneum is organ-specific with a remarkable effect on leaves but has a minimal impact on roots (Figure 5). Such organ- and tissue-specific variation on carbon and N metabolism has been reported previously (Lawlor, 2002). Here, it is also interesting to note that different N metabolic enzymes responded differently to external N supply. For instance, NR activity was upregulated markedly in leaf and root tissues in response to external N in both varieties but GS activity was not much affected (Figure 6). Differential organ-specific expression of NR and GS enzymes in response to external N supply has been reported in other crops (Prinsi and Espen, 2015; Iqbal et al., 2020). Further, it is worth noting that the upregulation of N metabolism enzymes in leaf tissues of G152 and G3 was opposite of BNF activity. Collectively, these results suggest that external N supply may be regulating N and carbon metabolism differently in different organs and genotypes, and key N metabolism enzymes within each organ, in S. spontaneum.

Hormones regulate all aspects of plant growth and development. And, it is well established that nutrient availability, particularly macro-nutrients, determine plant growth and development (Krouk et al., 2011). It is also now well-established that plant growth, hormones and plant nutrition are finely coordinated through a network of hormonal and nutritional signal (Krouk et al., 2011). Since carbon and N are very central to growth and development of every organism, it is not surprising that its uptake, use and storage in plants are under hormonal regulation (Krouk et al., 2011; Yu et al., 2016). From the results of our study, it is clear that external N supply markedly increased plant growth promoting hormones such as auxin (IAA), gibberellin (GA3), and cytokinin (ZR) with little effect on abscisic acid in the leaf tissues of both varieties (Table 2). These results are corresponding well with the increased shoot elongation growth and shoot number observed in plants grown with external N supply (Table 1). Modulation of nutrient uptake, its use and remobilization, and plant grown by externally applied hormones, especially plant growth promoters, has been observed in many plant species (Lu et al., 1992; Krouk et al., 2011).

Regulation of carbon and nitrogen is tightly linked to plant-environment interactions and it determine plant growth and development (Raven et al., 2004). Thus, to gain more insights into the modulation of shoot growth, BNF, N and carbon metabolism and tissue composition elicited by externally applied N in S. spontaneum accessions G152 and G3, we analysed the expression of genes involved in carbon, N, amino acid and hormone metabolism in both accessions grown under externally supplied N (Figure 9). Here, we first discuss some of the general but important trends in gene expression as affected by N application, followed by more specific findings related to the inter-linked processes of carbon, N, amino acids and hormone metabolism. Overall, N application significantly altered >2000 genes in both accessions combined, with genotype accounting for most of the variation (Figure S1, S2). This suggests that large genetic variation in gene expression exists between G152 and G3, and that G152 is relatively more sensitive to applied N. This contention is further corroborated by the very small number of common DEGs (28) found between the two accessions when their N treatment effects were compared (Figure S2). However, in contrast to treatment effect (LN vs HN for each accession) where G152 had almost thrice the number of DEGs detected in G3, the number of DEGs were similar when both accessions grown under same N condition (HN or LN) were compared (Figure S1, S2). Also, there was remarkable similarity of classes of DEGs associated with different cellular activities under LN and HN as shown in Figures 8C, D. However, it is interesting to note that more genes were found to be up-regulated under low N whereas high N had an opposite effect (Figure S1). Contrasting expression of genes involved in plant nutrition under different nutrient availability has been reported previously. For instance, under low N growth condition high- affinity N transporters are strongly up-regulated whereas they are down-regulated when N is replete (Dreyer and Michard, 2020). An opposite expression pattern occurs for low-affinity N transporters.

External application of inorganic N markedly up- and down-regulated genes in all metabolic pathways studied (Figures 7–9). More specifically, the set of genes involved in N, carbon, amino acid and hormone metabolism showed remarkably varied expression patten in different genotypes and N supply condition (Figure 9), giving further evidence of the complexity and variation in molecular mechanism regulating these pathways in different genetic background. A clearer picture of differential gene expression has emerged with GO and KEGG analyses. GO analysis of DEGs revealed very large difference in gene expression pattern between G152 and G3 (Figure 7). In G152, applied N caused remarkable effect on carbon and N metabolism and transport processes with more up-regulation than down-regulation, while single organism processes and lipid and carboxylic acid metabolism were the most affected (more down- than up-regulation) in G3. It appears that under low N, activity of genes associated with phosphorylation, kinase activity and metabolism of phosphate-containing compounds are more affected (more down- than up-regulation). In contrast, under HN, expression of genes involved in nucleotide binding, kinase activity, DNA metabolism are more altered (more up- than down-regulation) (Figure 7). These results were further corroborated by the KEGG analysis of DEGs, with amino acid, carbohydrate and N metabolism dominating in G152 in response to N and DEGs of lipid metabolism enriching far in excess than others in G3 (Figure 8).

The overall picture arising from the molecular analysis is that the two accessions may be achieving the same outcome of relatively high shoot growth (Table 1) and remarkable resilience of BNF (Figure 3) possibly through different metabolic strategies (Figures 7, 8). Uptake, transport and use of N and other minerals needed for plant growth involve considerable energy. It appears that G152 may be directly utilising photosynthate to drive N assimilation and use (Figure 8) whereas G3 may be relying more on lipids for the same (Figure 8). Further, the molecular evidence points towards a remarkable difference in expression of a large number of same genes or their alleles associated with carbon, N, amino acid and hormone metabolism in different genetic background and contrasting N supply conditions.



5 Conclusion

Reducing N fertiliser use for sugarcane production is critical for reducing soil acidification and carbon footprint. While optimisation of cropping system will help improve the environmental sustainability of sugarcane production, replicating the Brazilian experience of low N input farming using varieties with BNF capacity that complement improved cropping system would be a very desirable outcome. Until now, efforts to breed or select N-efficient sugarcane varieties proved unsuccessful, suggesting the genetic complexity of sugarcane NUE and possibly the limited BNF capacity in the current breeding pool. In this context, exploring sugarcane progenitor S. spontaneum, the species with very large eco-climatic adaptability including very low-fertile marginal soils, to breed for N-efficient clones would be a logical approach. Our S. spontaneum screening experiments provided the first evidence of large genetic variation for BNF capacity existing in this species. Further, BNF property of a small number of clones proved to be quite resilient to external inorganic N application, without which economic crop production remains unattainable. Molecular characterization of high-BNF accessions unraveled the diversity of gene activity and metabolic pathways associated with carbon, N, amino acid and hormone metabolism operating in different S. spontaneum accessions. Understanding the genetic elements and the molecular mechanism(s) underpinning BNF in S. spontaneum would be the next logical step for research. It is concluded that S. spontaneum accessions with high BNF capacity could be a valuable tool to improve N-efficiency in sugarcane.
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There is a large demand to reduce inputs for current crop production, particularly phosphate and nitrogen inputs which are the two most frequently added supplements to agricultural production. Gene characterization is often limited to the native species from which it was identified, but may offer benefits to other species. To understand if the rice gene Phosphate Starvation Tolerance 1 (PSTOL) OsPSTOL, a gene identified from rice which improves tolerance to low P growth conditions, might improve performance and provide the same benefit in wheat, OsPSTOL was transformed into wheat and expressed from a constitutive promoter. The ability of OsPSTOL to improve nutrient acquisition under low phosphate or low nitrogen was evaluated. Here we show that OsPSTOL works through a conserved pathway in wheat and rice to improve yields under both low phosphate and low nitrogen. This increase is yield is mainly driven by improved uptake from the soil driving increased biomass and ultimately increased seed number, but does not change the concentration of N in the straw or grain. Overexpression of OsPSTOL in wheat modifies N regulated genes to aid in this uptake whereas the putative homolog TaPSTOL does not suggesting that expression of OsPSTOL in wheat can help to improve yields under low input agriculture.




Keywords: PSTOL, phosphate, nitrogen, wheat, uptake, N15, nitrogen use efficiency, phosphate use efficiency



Introduction

There is a strong desire to reduce inputs in agriculture to make large scale farming more sustainable and lessen our impact on the surrounding environment. Phosphorous (P) and nitrogen (N) are added in large quantities as chemical fertilizers in modern agricultural practices. Both elements are essential macronutrients which are required for all major developmental processes in plants and are key for both completing the life cycle and maintaining food production. Their mobility within the soil, mechanisms of uptake and the plant scavenge response to their limitation differ (Marschner, 1995).

Recent advances in our understanding of the molecular mechanisms by which different plant species adapt to different abiotic stresses, including the regulation and expression of key genes and growth habits have enabled the design of more effective breeding strategies to produce highly resilient crops (Xu et al., 2006; Magalhaes et al., 2007; Gamuyao et al., 2012; Milner et al., 2022). A number of the underlying genes involved in the response of plants to low P and N are highly conserved and play similar roles in a number of diverse plant species including both model system and crop species (Borah et al., 2018; Milner et al., 2022). Thus, a greater understanding of the pathways involved, the key genes involved in P and N acquisition and signaling will allow breeders and plant molecular biologists to develop more efficient crops. Identification of these conserved pathways and genes from “model” organisms, and the subsequent transfer of this knowledge to crop species, would therefore allow farmers to optimize fertilizer use worldwide, resulting in increased efficiency of food production with lower environmental cost.

One such gene, believed to be important in increased nutrient use efficiency, is the recent identification of a key gene under the PUP1 locus from rice. The gene has been shown to be a serine/threonine receptor-like kinase, named Phosphate Starvation Tolerance 1 (PSTOL), is a major gene involved in tolerance to growth on low P soils (Heuer et al., 2009; Chin et al., 2011; Gamuyao et al., 2012; Vigueira et al., 2016). The PUP1 locus was originally identified in an upland variety of rice, Kasalath, yet is absent from most rice cultivars including the current reference japonica variety Nipponbare and indica variety 93-11 (Wissuwa et al., 2002; Vigueira et al., 2016). Rice varieties which have this genomic introgression containing a functional PSTOL gene, show greater biomass, larger root systems leading to increased tiller number and yield increases of up to 30% when grown under low P conditions whereas no deleterious consequences were seen when grown under normal soil fertility conditions (Chin et al., 2011; Gamuyao et al., 2012). The identification of OsPSTOL and its role in helping rice tolerate low P conditions has led to the belief that one could increase the PUE by incorporation of PSTOL type genes into many crop species. However when OsPSTOL was first identified the authors also suggested that other elements may also benefit from in increased root growth and make the plant more efficient to low nitrogen (N) conditions and drought (Gamuyao et al., 2012), but as yet no data been presented to substantiate the possibility of a role outside of PUE.

Others have identified homologous PSTOL-like genes in both maize and sorghum, based upon QTL analysis and sequence homology (Hufnagel et al., 2014; Azevedo et al., 2015; Bernardino et al., 2019). Further evidence of the role of PSTOL-like genes in PUE has been supported through QTL mapping rather than direct molecular characterization of candidate genes. Criteria to identify other potential PSTOL like genes has included identification of protein domains such as ATP kinase domains and on DNA sequence conservation meeting certain bioinformatic cut-offs for genes underlying these QTL. Some of these homologues appear to have differences in their gene structure such as number and length of introns and UTRs. Despite the lack of a highly conserved gene in most plant species, it is critical to understand whether other PSTOL genes exist in other important crop species and if they can be exploited. Our previous study identified a putative wheat PSTOL gene (TaPSTOL) and characterized its role in PUE and other important agronomic phenotypes (Milner et al., 2018). As the overexpression of TaPSTOL was not able to replicate the yield increase seen with overexpression of OsPSTOL in rice, we suggested that either wheat lacked the other genes downstream of PSTOL to increase yields or a critical domain within the coding sequence itself was the reason for the lack of increased yields.

Here, we set out to test whether the differences seen in a plants ability to maintain yield on low P is due to the presence of the OsPSTOL or TaPSTOL genes per se or if other parts of an unknown pathway underlie the differences seen in yield increases. We also test whether expression of OsPSTOL can overcome other nutrient deficiencies to see if the presence of OsPSTOL is only beneficial to low phosphate conditions.



Methods

Cloning: The OsPSTOL coding sequence from European Molecular Biology Laboratory (EMBL) (AB458444.1) was synthesized with a ribosomal binding site, CCACC, immediately upstream of the ATG start codon and flanked with gateway attL1/attL2 sites (Genewiz). The synthesized sequence was then recombined into the binary vector pSc4ActR1R2 using a Gateway LR Clonase II kit (Thermofisher) to create the plasmid pMM007 for stable wheat transformation. In pMM007 OsPSTOL is driven by the OsActin promoter and terminated by the Agrobacterium tumefaciens nopaline synthase terminator (tNOS).

Wheat Transformation: Wheat cv. Fielder plants were grown in controlled environment chambers (Conviron) at 20°C day/15°C night with a 16 h day photoperiod (approximately 400 μE m− 2 s− 1). Immature seeds were harvested for transformation experiments at 14–20 days post-anthesis. Isolated immature wheat embryos were co-cultivated with A. tumefaciens for 2 days in the dark [35]. Subsequent removal of the embryonic axis and tissue culture was performed as previously described [36]. Individual plantlets were hardened off following transfer to Jiffy-7 pellets (LBS Horticulture), potted up into 9 cm plant pots containing M2 compost plus 5 g/l slow-release fertilizer (Osmocote Exact 15:9:9) and grown on to maturity and seed harvest in controlled environment chambers. TaPSTOL overexpression line OE-1 was also grown for comparison (Milner et al., 2018).

DNA analysis of transformed wheat plants: Wheat plantlets which regenerated under G418 selection in tissue culture were transferred to Jiffy-7 pellets and validated using an nptII copy number assay relative to a single copy wheat gene amplicon, GAMyb for wheat, normalized to a known single copy wheat (Milner et al., 2018). Primers and Taqman probes were used at a concentration of 10 μM in a 10 μl multiplexed reaction using ABsolute Blue qPCR ROX mix (Thermofisher) with the standard run conditions for the ABI 7900 HT for wheat. The relative quantification, ΔΔCt, values were calculated to determine nptII copy number in the T0 and subsequent generations. Primers for the copy number determination are listed in Suppl. Table 1. Homozygous and null transgenic lines were identified on the basis of copy number for the selection gene and segregation analysis in the T1 generation. Null segregates were used for further study and referred to as WT Fielder.

Plant growth conditions: Plants were grown in a controlled growth chamber under 16 h light with 20°C/15°C day/night temperatures for all conditions tested. To study low P conditions WT and transgenic wheat lines were grown under in sand and fertilized twice a week with nutrient solution (Magnavaca et al., 1987) containing 3 μM KH2PO4, 1.3 mM NH4NO3, 3.52 mM Ca(NO3)2, 0.58 mM, KCl, 0.58 mM K2SO4, 0.56 mM KNO3, 0.86 mM Mg(NO3)2 0.13 mM H3BO3, 5 μM MnCl2, 0.4 μM Na2MoO4, 10 μM ZnSO4, 0.3 μM CuSO4, Fe(NO3)3 and 2 mM MES (pH 5.5) twice a week until maturity. For low N conditions wheat and plants were grown on TS5 low fertility soil to control total nitrogen with a starting nitrogen level of 0.1 mg/l (Bourne Amenity, Kent, UK). Ammonium nitrate was then added to reach a final concentration in the pots equivalent to field fertilizer application of 70, 140 or 210 kg N/ha which equates to 23.3, 46.6, or 70 mg/1 L pot. Each pot also received 4.2 mg Ca, 2.7 mg K, 0.62 mg Mg, 0.04 mg P, 0.56 mg S, 0.008 mg B, 0.13 mg Fe, 0.015 mg Mn, 0.0012 mg Cu, 0.0024 Mo, 0.0045 Zn, 0.00 mg Na, and 0.63 mg Cl per pot added as Magnavaca solution which was added 10 days after sowing.

Whole plant measurements: Total above ground biomass, which is the leaves stems without the grain, seed weight (yield per plant), seed number, seed size, tiller number. Biological replicates each contained at least 14 plants per line and were grown until seed maturation. Tissues were allowed to dry for a further two weeks before harvesting and sampling or measurements were taken.

N tissue measurements: Samples were measured using the Dumas method. The samples were dried for 17 hours at 100°C and then milled on a 1mm hammer mill. Prior to testing the sample were dried at 104°C for 3 hours and 1g of sample was loaded on the instrument (Leco TruMacN Dumas gas analyser), following the manufacturer’s instructions. Samples were converted to gases by heating in a combustion tube at 1150°C. Interfering components are removed from the resulting gas mixture. The nitrogen compounds in the gas mixture or a representative part of the mixture, are converted to molecular nitrogen which is quantitatively determined by a thermal conductivity detector. The nitrogen content is then calculated by a microprocessor.

RNA isolation and cDNA synthesis for gene expression analysis: Wheat seedlings were grown for seven days in 2.2 L pots containing Magnavaca solution as listed above and amended with 3 μM KH2PO4 for low P treatments or omitting 1.3 mM NH4NO3, and 3.52 mM Ca(NO3)2 for low N treatment. Plants were grown for an additional 7 days before harvesting tissue and separating the samples into root and shoot tissues for analysis. Total RNA was isolated from both roots and shoots for each treatment using a RNeasy Kit (Qiagen) and treated with DNaseI (Thermofisher) prior to cDNA synthesis from 500 ng of total RNA using Omniscript RT Kit (Qiagen). The cDNA was diluted 1:2 with water and 0.5 μL was used as template in each RT-PCR reaction. Expression levels were quantified by quantitative PCR in triplicate reactions from three biological replications using SYBR Green JumpStartTaq ReadyMix (SIGMA) with the standard run conditions for the ABI 7900 HT. OsPSTOL expression was compared to TaUbi. Primers used for amplification of transcripts are listed in Suppl. Table 1.

15N uptake: To measure N uptake a similar protocol as previously reported (Milner et al., 2022), briefly roots from 2 week old seedlings were exposed to 15 NO3 for 10 min, then washed in 0.1 mM CaSO4 for 2 min, harvested separated into root and shoot tissue, and dried at 70°C for 48 h before grinding. Dried tissue was then placed in 2mL microfuge tubes with 2 x 5mm diameter stainless steel beads and shaken in a genogrinder until a fine powder was obtained. Dried and ground samples were carefully weighed (0.5 mg) into tin capsules, sealed and loaded into the auto-sampler. Samples were analyzed for percentage carbon, percentage nitrogen, 12C/13C (δ13C) and 14N/15N (δ15N) using a Costech Elemental Analyzer attached to a Thermo DELTA V mass spectrometer in continuous flow mode. The excess 15N was calculated based on measurements of δ15N and tissue N%. The absolute isotope ratio (R) was calculated for labelled samples and controls, using Rstandard (the absolute value of the natural abundance of 15N in atmospheric N2; 1).

(1) Rsample or control = [(δ15N/1000)+1] x Rstandard

Then, molar factional abundance (F) and mass-based factional abundance (MF) were calculated (2,3,4)

(2) F= Rsample or control/(Rsample or control+1)

(3) MF= (F x 15) x/[(F x 15)+ ((1-F)x 14)]

(4) ΔMF = MFsample - MFcontrol

The excess 15N in mg in a total tissue was calculated as in (5)

(5) Excess 15N (g)= ΔMF x Tissue DW (g) x Tissue N%/100

Chlorophyll measurements: Leaf chlorophyll content was determined using the method developed by Hiscox et al. (Hiscox and Israelstam, 1979). Chlorophyll was extracted from 100mg of fresh leaf tissue from six plants into 20mL DMSO, mixed for on a rotary shaker for 30 mins and then placed at 4°C overnight. Chlorophyll measurements were taken at 645 and 663 nm (spectrophotometer Jenway model 7315, Staffordshire, UK).

Carbon assimilation measurements: An LI-6800 portable photosynthesis infrared gas analyzer system (LI-COR) equipped with a multiphase flash fluorimeter was used to assess physiological differences for photosynthetic parameters between transgenic and WT wheat plants. Measurements were taken on the fourth leaf of plants grown on TS5 low fertility soil (Bourne Amenity, Kent, UK). Ammonium nitrate or K2PO4 was then added to reach a final concentration in the pots equivalent to field fertilizer application of 70 kg N/ha for low N or 50 kg P/ha for Phosphate deficiency. Plants were grown in a climate-controlled chamber with supplemented light (250 µmol.m-2/s-1) for a 16hr day and 20°C/15°C day night temperatures for wheat. All measurements were also normalized for the amount of area of the measuring disk. Measurements were carried out on consecutive days between 1 and 8 h post dawn, measuring three plants total selected at random from each treatment per day.



Results


Growth on low P

To understand if the lack of a response of plants expressing TaPSTOL was due to some other mitigating factor other than OsPSTOL wheat plants were transformed with OsPSTOL driven by the OsActin promoter as described previously for TaPSTOL (Milner et al., 2018). Three highly expressing OsPSTOL wheat transgenic lines were compared to the previously created TaPSTOL overexpressing line (OE-1), and WT Fielder for their ability to improve growth under low P conditions (Milner et al., 2018). As seen in Figure 1, the three transgenic wheat lines expressing OsPSTOL showed increased biomass and increased yield compared to either TaOE-1 or WT wheat plants when grown under low P conditions (p val 0). When compared to a null segregant, lines expressing OsPSTOL but not TaPSTOL showed increased biomass and yields when grown on low P soil (Figure 1). This includes increased yields of 29 to 47% compared with the null segregant. The yield increase is most likely due to higher biomass production leading to higher seed set as the number of seeds per plant was significantly higher in wheat lines expressing OsPSTOL (Figure 1C). There was a significant difference found in yields between TaOE-1 and WT wheat lines in their yield on low P grown plants, but above ground biomass produced per plant was not significantly different, similar to previous reports (Milner et al., 2018). Similar to previous reports not significant differences were seen in either the root or shoot P concentration relative to WT wheat plants (Suppl. Figure 1) (Pariasca-Tanaka et al., 2009).




Figure 1 | Agronomic traits of transgenic wheat plants expressing either OsPSTOL or TaPSTOL grown under low P conditions. (A) Above ground biomass (B) yield per plant (C) seeds per plant (D) thousand grain weight (TGW). A star indicates a significant difference (p val <0.05) between an overexpression line and WT.





Growth on low N

To determine if expression of OsPSTOL can lead to increased yield under other nutrient limiting conditions such a low N, the three transgenic wheat lines were grown under three N levels to study the transgenes effect on growth. The three levels of N were equivalent to 70, 140 and 210 kg/ha N levels in soil. As shown with growth in low P growth conditions, increases in both biomass and yield were seen in plants expressing OsPSTOL, but not TaPSTOL (Figure 2). This difference is mainly driven by growth under the higher N levels as no significant differences were seen in OsOE-1 or OsOE-2, either in above ground biomass or per plant yield at the lowest N level (p vals, 0.07 and 0.33). At higher N levels (140 and 210) significant differences were seen in OE-2 and OE-3 for both traits. As seen previously with growth on low P, the gains in yield were mainly driven by increased biomass leading to increased seed set and consequently higher yields.




Figure 2 | Agronomics of Os and TaPSTOL lines grown under a range of N levels. (A) Above ground biomass (B) Yield per plant (C) seeds per plant (D) Thousand Grain Weight (TGW). A star indicates a significant difference between an overexpression line and WT (pval < 0.05).



N levels in the grain and leaf tissue were measured by DUMAS to determine whether many of the same phenotypes of overexpression of OsPSTOL were seen under low N as when grown under low P conditions. No significant differences were seen in the straw N levels for any of the OsOE lines or TaOE line compared to WT (Figure 3). In the grain a significant difference in N content could be seen with significant differences in N concentrations for two of three OsPSTOL overexpression lines, OsOE-1 and OsOE-3, with OsOE-2 was just outside the 0.05 cutoff for significance relative to WT (p vals 0.03, 0.0005, 0.07). No significant difference was observed in N content of the TaOE-1 lines relative to WT wheat in the grain under any N level tested (p val. 0.31). Only OsOE-3 had significantly more N in the grain under 210 kg/ha treatments (p val 0.02) and no other direct comparison between a line at the same treatment was significantly different.




Figure 3 | N content of Os and TaPSTOL lines grown under a range of N levels. (A) Percent nitrogen in the flag leaf (B) Percent nitrogen in the grain. A star indicates a significant difference between an overexpression line and WT (pval < 0.05).



To understand if the N deficiency increased transcript levels of OsPSTOL or if transcript levels are higher only in response to low P, we tested expression of both OsPSTOL in the rice variety Kasalth by qPCR and TaPSTOL expression in Fielder. As seen in Figure 4, OsPSTOL can be activated by low N growth conditions although this change in transcript level is lower than that of low P conditions (Figure 4A). But both low N and low P growth conditions significantly increased OsPSTOL expression in the roots of Kasalath rice plants. TaPSTOL expression was also measured in Roots of wheat cv. Fielder via qPCR and no change in transcript levels could be seen in response to N level relative to replete, although low P did significantly increase TaPSTOL expression (Figure 4B).




Figure 4 | Transcript levels of OsPSTOL or TaPSTOL in the roots under different nutrient levels in rice and wheat. Expression values shown are PSTOL transcript levels relative to transcript levels of OsUbi for rice (A) and TaUbi for wheat (B) plants grown under low nitrogen (low N), low phosphate (low P) and replete nutrient levels in hydroponic solution. Data shown as the mean values (central line), lower and upper quartiles (box), minimum and maximum values (whiskers), and outliers as individual points. The statistical analysis was performed with ANOVA and post hoc Tukey test, * correspond to significant differences between transcript levels of either line under either treatment (p < 0.05).





LICOR

To understand how OsPSTOL activates enhanced biomass we measured the rate at which plants were able to fix carbon under low P or low N conditions. When measuring C assimilation rates under low N and low P no significant differences could be seen the levels of C being fixed under the given growth conditions or replete conditions (Figure 5A). This was further supported by the levels of chlorophyll in the leaves of the treated plants as again no significant differences were seen between lines under each condition tested (Figure 5B).




Figure 5 | Spot measurements of C assimilation and chlorophyll content in plants overexpressing either OsPSTOL or TaPSTOLOE-1 relative to WT grown under low nitrogen (low N) or low phosphate (low P) conditions. (A) Spot measurements of C assimilation grown in growth chamber conditions which include a light intensity of 250 µmol m2 /s and CO2 level of 400 ppm. (B) Chlorophyll content of plants grown under low nitrogen (low N) or low phosphate (low P) conditions.





N Uptake and Expression of N related genes

To further understand how expression of OsPSTOL in wheat is allowing for increased growth under a range of N conditions we studied direct uptake of N in the form of ammonium nitrate, with each N atom labeled as 15N. When comparing rates of uptake in the roots of N deprived plants a significant difference in the amount of N being taken up per g of tissue was observed (Figure 6). This was found only in plants overexpressing OsPSTOL as no significant differences in uptake were seen in the roots of plants overexpressing TaPSTOL relative to WT roots (p val 0.13).




Figure 6 | Uptake of 15N in the roots and shoots of overexpression lines expressing either OsPSTOL (OsOE-3) or TaPSTOL (TaOE-1) relative to WT. Data are shown as mean values (central line), lower and upper quartiles (box), minimum and maximum values (whiskers), and outliers as individual points. The statistical analysis was performed with ANOVA and post hoc Tukey test. Asterisks indicate a significant difference (p < 0.05) between WT and an OE line in the same tissue.



The expression of four genes known to be differentially regulated under low N conditions in wheat were selected to test the N-responsiveness at the transcript level of the OsOE line (OE-3), TaOE-1 relative to WT (Figure 7) (Buchner and Hawkesford, 2014). The genes selected encode the high and low-affinity N uptake transporters (TaNRT2.1 and TaNRT1), an N transporter involved in N translocation through the plant (TaNPF7.1), and glutamate dehydrogenase (TaGDH2), an enzyme involved in N remobilization in response to limiting carbon. Expression of a number of the genes were differentially expressed in the transgenic lines relative to WT Fielder. Measurements of TaGDH2 transcript levels showed no significant differences in the roots of OsOE-3, TaOE-1 or WT. There was a significant increase in TaGDH2 transcript levels seen in shoots of OsOE-3 compared to WT (pval <0.001). For TaNRT1, transcripts in roots of OsOE-3 showed significantly lower expression under replete conditions (p val < 0.001). Both OsOE3-3 and TaOE-1 showed higher transcript levels of TaNRT1 in the shoots under both low N and replete conditions (pval <0.001). Analysis of TaNPF7.1 transcript levels in the roots showed similar expression to that of TaNRT1 with only OsOE-3 showing significantly lower expression than WT (p val <0.001). In the shoots TaNPF7.1 transcript levels were higher under low N growth conditions in OsOE-3 and TaOE-1 relative to WT, but no difference in expression was seen in plants grown under replete N levels (p val <0.001). The high affinity uptake transporter TaNRT2.1 showed significantly higher transcript levels in the roots of both OsOE-3 and TaOE-1 under both low N and replete growth conditions (p val <0.01). No significant difference in the transcript levels of TaNRT2.1 was seen in the shoots of either overexpression line relative to WT under either N growth conditions.




Figure 7 | Transcript levels for N regulated genes TaNRT1, TaNRT2.1, TaNPF7.1, and TaGDH2 in transgenic wheat plants expressing either OsPSTOL (OsOE-3) or TaPSTOL (TaOE-1). Expression values shown are relative to the expression of TaUbi under in wheat plants grown under low nitrogen (low N) and replete nitrogen (replete) levels in hydroponic solution. Root specific expression is in the panels on the left and shoots specific expression in panels on the right for each gene. Data shown as the mean values (central line), lower and upper quartiles (box), minimum and maximum values (whiskers), and outliers as individual points. The statistical analysis was performed with ANOVA and post hoc Tukey test, * correspond to significant differences between transcript levels of either line under either treatment (p < 0.05).






Discussion

To be able to translate our understanding of how plants tolerate various abiotic conditions it is important to understand if orthologous genes are present in various species or if the gene is part of a wider pathway. In this work we set out to understand why differences in the expression of TaPSTOL relative to OsPSTOL were seen (Gamuyao et al., 2012; Milner et al., 2018). To do this we created new transgenic material to make direct comparisons in a consistent genetic background and observe the transgene’s effects. From this we have learned that OsPSTOL can activate a conserved pathway in other cereal species and increase biomass production and ultimately yield under P limiting growth conditions (Figure 1). This suggests that wheat lacks a fully functional PSTOL type gene and that TaPSTOL is not the functional ortholog of OsPSTOL in wheat even though it is 92.7% similar (Milner et al., 2018). This is not that surprising as many different rice varieties including both reference varieties of japonica and indica also do not contain a functional OsPSTOL gene (Vigueira et al., 2016). The presence of a PSTOL type gene may have been selected in rice for under conditions for which wheat is not widely grown or has lost, as further mutations the near the N terminus of TaPSTOL locus reduced the N terminus of the protein. Or perhaps it was a chance event in rice and has never been present in wheat. This would fit with why no other direct ortholog of PSTOL has been found in any other species in the past decade (Milner et al., 2018; Bernardino et al., 2019).

It was found however that the benefits of overexpressing OsPSTOL in wheat conferred increased yields under a range of N conditions. This includes under N levels approximately 1/3 that of what current best practices in the UK for some transgenic lines (Figure 2). This mechanism of action seems to be by increasing biomass which leads to greater seed set. This was seen under both low P growth conditions as well as low N growth conditions (Figures 1 and 2). To further understand how OsPSTOL expression conferred tolerance to low N measurements of uptake, tissue concentrations and expression of N related genes were undertaken. From this it was found that OsPSTOL expression increased N uptake from the soil but did not change overall levels of N in the above ground tissues including the grain. This increased uptake of N was seen via differences in N regulated genes such as the high affinity uptake transporter NRT2.1 the low affinity and N sensor NRT1 and genes involved in N translocation NPF7.1 (Figure 7) (Ho et al., 2009; Buchner and Hawkesford, 2014). This direct measurement of increased N uptake in plant overexpressing OsPSTOL is the first direct evidence that OsPSTOL increases uptake of nutrients to help aid growth.

This increased uptake did not change other physiological parameters including carbon assimilation or increased chlorophyll content suggesting that OsPSTOL helps plants take up or acquire more nutrients and does not alter perception of those nutrients unlike more recent reports involving altered brassinosteroid genes (Milner et al., 2022). We also show that OsPSTOL transcript levels can be seen under low N levels further supporting a role for OsPSTOL in nutrient uptake rather than just P directly. However this increase in transcript levels might be due to the cross talk of N and P in plants and not a direct activation of OsPSTOL by a N sensing transcription factor per se (Hong et al., 2012; Borah et al., 2018; Medici et al., 2019; Zhu et al., 2021).

Overall, it appears that OsPSTOL is able to aid in multiple nutrient deficiencies in different plant species by helping acquire the nutrients which are limiting growth. It is tempting to wonder if a combination of genes such as the recently cloned OsNRT2.3b or SPDT in combination with OsPSTOL could dramatically increase grain production under lower inputs (Fan et al., 2016; Yamaji et al., 2016).
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Nitrate ( ) transporters have been identified as the primary targets involved in plant nitrogen (N) uptake, transport, assimilation, and remobilization, all of which are key determinants of nitrogen use efficiency (NUE). However, less attention has been directed toward the influence of plant nutrients and environmental cues on the expression and activities of   transporters. To better understand how these transporters function in improving plant NUE, this review critically examined the roles of   transporters in N uptake, transport, and distribution processes. It also described their influence on crop productivity and NUE, especially when co-expressed with other transcription factors, and discussed these transporters’ functional roles in helping plants cope with adverse environmental conditions. We equally established the possible impacts of   transporters on the uptake and utilization efficiency of other plant nutrients while suggesting possible strategic approaches to improving NUE in plants. Understanding the specificity of these determinants is crucial to achieving better N utilization efficiency in crops within a given environment.
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1 Introduction

Nitrogen (N) is an essential element required for plant growth and overall yield; hence, the demand and use of N-based chemical fertilizers have consistently increased over the years. Approximately 60-70% of the applied N fertilizers are lost to the environment (Mohanty et al., 2020), causing severe environmental havoc such as pollution, global warming, biodiversity loss, and major plant physiological disorders. Since the increasing rate of N application is becoming increasingly alarming, minimizing fertilizer use while maintaining a high crop yield would be imperative. Thus, improving plants’ nitrogen use efficiency (NUE) is one of the inherent ways of overcoming these crises associated with crop production. Efficient N utilization is a critical factor in crop yield improvement, and research has shown that over 1.0 billion US dollars might be saved with a one percent NUE increment (Kant et al., 2011a).

Crop NUE is the measure of seed yield, grain, or fruit corresponding to a unit of soil N supplied, depending on the individual species of plant. NUE can also be expressed in terms of N uptake efficiency (NUpE), N transport efficiency (NTE), N remobilization efficiency (NRE), and N utilization (assimilation) efficiency (NUtE) (Bharati and Mandal, 2019), all of which are key determinant factors of NUE in plants. N is made available to plants in organic and inorganic forms; nitrate ( ) and ammonium. Due to the mobility nature of  , it gets easily leached; thus, its availability to plants becomes limiting (Jin et al., 2015).   functions as a signaling molecule, inducing the expression of NO3
--related genes involved in its uptake, transport, assimilation, vegetative and reproductive development. Plants take up   from the root, assimilate  , and subsequently transport it to the shoot, where it can be remobilized to sink organs (Iqbal et al., 2020).   transporters are the main drivers involved in the uptake of   to the remobilization stage.

Indeed, several studies have discussed the relationship between   uptake transport activities in plants while addressing the mechanisms involved in transport, sensing, and signaling processes (Fan et al., 2017; Zuluaga and Sonnante, 2019; Vidal et al., 2020). Therefore, optimizing the activities of   transporters is a prerequisite for plants to utilize N supplies. Some studies have elucidated the functional roles of these   transporters in plant NUE improvement. However, less is known about the influence of essential nutrients and environmental cues on the expression and activities of   transporters. To better understand the extent to which these transporters can function in improving plant NUE, an illustration of their response to changes in plant environmental cues, including salinity, pathogenic and drought stress, and contamination from heavy metals, becomes expedient. Even if these conditions are being optimized, it is crucial to explore the possible aftermath effect of these   transporters on the efficiency of other plant nutrient elements and related factors. These necessities ignite a few questions: 1) Does stress affect   transporter activities directly or indirectly? and 2) Do the activities of these   transporters exert a positive or negative effect on the uptake of other nutrients? To resolve these issues, this review critically summarized the roles of   transporters in N uptake, transport, and distribution processes and their functions in crop productivity and NUE, especially when coexpressed with other transcription factors. This review focuses on the functional roles of these nitrate transporters in assisting plants in adverse environmental conditions. We also discussed the impact of these   transporters on the uptake and utilization efficiency of other plant nutrients while describing possible strategic approaches to improving NUE in plants. The contribution of nitrate transporters in nitrate and auxin crosstalk for root growth and NUE is also reviewed. Understanding the specificity of all these factors is crucial for better N utilization efficiency of crops.



2 Nitrate uptake and transport systems

Most agricultural fields, especially, those used for commercial crop production, are   deficient with significant spatiotemporal fluctuations, inhibiting N utilization (Kant, 2018). Plants have evolved two major   uptake mechanisms to survive. The first is the low-affinity transport system (LATS), which facilitates nitrate uptake under high soil-N (millimolar concentration; > 0.5 mM), while the other is the high-affinity transport system (HATS), which drives nitrate under insufficient soil-N (micromolar range) (Léran et al., 2014; Iqbal et al., 2020; Raddatz et al., 2020). Four families of   transporters have been widely known to participate in plant nitrate uptake and transport: nitrate transporter 1/or peptide transporter NPF (NRT1), nitrate transporter 2/nitrate-nitrite-porter NRT2/NNP, slow anion channel-associated homologs (SLAC/SLAH), and chloride channel (CLC) (Tsay et al., 1993; Bergsdorf et al., 2009; Maierhofer et al., 2014; Von Wittgenstein et al., 2014). Among them, NPF (NRT1) and NRT2 and homologs have been identified as the major channels actively involved in root nitrate uptake and long-distance transport between and within plant organs (Hsu and Tsay, 2013; Wang et al., 2021b). In this review, proteins or genes void of prefixes connote Arabidopsis plant species.

Phylogenetic studies revealed that the NPF family comprises 53 identified Arabidopsis genes, and over 130 genes exist in higher plants (Zhang et al., 2020). Generally, NPF transporter genes have low affinity for  , except for Chlorate resistant 1/nitrate transporter 1 (CHL1
/
NRT1.1), also called NPF6.3, a dual-affinity nitrate transporter that operates as both a low- and high-affinity transporter (Liu and Tsay, 2003). The regulatory mechanism involved in the dual-affinity system enables the rapid switch between these two affinity modes. Under a low external supply of  , NPF6.3 (CHL1
/
NRT1.1) functions as a high-affinity   transporter and is phosphorylated, whereas it becomes dephosphorylated under a high   supply to perform a low-affinity transporter role (Liu and Tsay, 2003; Noguero et al., 2018). Thus, the affinity of the NPF6.3 transporter for   uptake depends on the phosphorylation state at the T101 residue, which is subject to the status of N in the medium NPF6.3 (CHL1/NRT1.1) is expressed in various plant tissues, including younger leaves, flower buds, and roots, where it participates in root   uptake and translocation (Noguero et al., 2018). In addition to NPF6.3 (CHL1/NRT1.1), NPF4.6 (NRT1.2) and NPF2.7 (NAXT1) are the two putative NPF genes that coordinate   influx and efflux in plant roots, respectively (
Figure 1
). NPF4.6 (NRT1.2) is primarily expressed at the root tip where it takes up   (Huang et al., 1999), whereas NPF2.7 (NAXT1), is expressed in the root zone but in the cortex, performs  
-efflux functions (Segonzac et al., 2007). A considerable amount of NRT1 family members have been identified in other crops, including wheat (Triticum aestivum) (Kumar et al., 2022), rice (Oryza sativa) (Yang et al., 2020), cucumber (Cucumis sativus) (Migocka et al., 2013), potato (Solanum tuberosum) (Zhang et al., 2021a), and apple (Malus × domestica Borkh.) (Wang et al., 2018b), with their unique expression at either the root or shoot of plants. The expression pattern of these transporters is a clear indication of their active involvement in uptake and long-distance   transport.




Figure 1 | 
Key nitrate transporters involved in nitrate uptake, transport, and remobilization in plants. Nitrate transporters involved in   acquisition from the root include NRT2.1, NRT2.2, NPF4.6 (NRT1.2), NRT2.4, NRT2.5, and NPF6.3 (NRT1.1). NPF2.7 performs the   efflux function. In addition to the uptake function, NRT2.4 and NRT2.5 facilitates root-to-shoot   transport. NRT1.5 is responsible for xylem loading, while NRT1.8 and NRT1.9 functions to unload   from the xylem. NRT1.4 regulates   homeostasis, and the expression of NRT1.7 in the phloem of the minor vein promotes nitrate remobilization from mature to younger leaves. At shoot, NRT1.6 and NPF5.5 act as a   remobilizer, remobilizing   in the embryo. NRT2.7 enhances   storage in the seed vacuole.




Unlike the NRT1 family, NRT2 family members are high-affinity   transporters (HATs). There are eight identified NRT2 family members, of which seven have been characterized (Von Wittgenstein et al., 2014). Four (NRT2.1, NRT2.2, NRT2.4, and NRT2.5) out of the seven characterized NRT2 transporters have been actively involved in the influx of   into Arabidopsis root cells (O’Brien et al., 2016). Detailed functions of these transporters in uptake of   are presented in (
Figure 1
).

Nitrate transporters are the major channels mediating root-to-shoot   transport. Transport is predominantly mediated by NRT1 and NRT2 transporters, such as NPF7.3 (NRT1.5), NPF7.2 (NRT1.8), NPF2.3, and NPF2.9 (NRT1.9). NPF7.3 (NRT1.5) is expressed in pericycle cells, where it facilitates xylem loading of   (
Figure 1
). Knockout nrt1.5 mutant plants had reduced amounts of   translocated from the roots to the shoots. However, when NRT1.5 was reduced in nrt1.5, no   translocation defect was observed, suggesting the existence of another mechanism facilitating nitrate xylem loading (Lin et al., 2008). The low-affinity nitrate transporters NRT1.8 and NRT1.9 perform similar roles of unloading   from the xylem (
Figure 1
), consequently reducing   concentration within the xylem. Knockout mutants of such transporters (NRT1.8 and NRT 1.9) exhibited increased amounts of   in the xylem and, by implication, accelerated root-shoot transport of nitrate (Li et al., 2010; Wang and Tsay, 2011). In addition, the uptake and transport function of the NRT1 and NRT2 homologs have also been revealed in rice (OsNRT1.1B and OsNRT2.3, respectively) (Tang et al., 2012; Hu et al., 2015; Fan et al., 2017), and tomato, LeNRT2.3 (Fu et al., 2015).

While   is relocated to the shoot, a larger proportion of N is delivered to the sink organs (e.g., seeds, fruits, roots, and younger leaves), especially for the anabolic development of new tissues, prioritized by the growth stage or physiological condition of individual plants, a process called N remobilization (Snyder and Tegeder, 2021). NRT1.4, localized in the leaf petiole, regulates   accumulation within the petiole while maintaining the homeostasis of available   between the leaf lamina and petiole (
Figure 1
). The nrt1.4 mutant had a low   content in its petiole, a major   storage organ, indicating the involvement of NRT1.4 in nitrate homeostasis and leaf development (Chiu et al., 2004). Another   transporter, NRT1.7, predominantly expressed in the phloem of minor veins, enhances nitrate relocation from older to younger leaves (
Figure 1
) (Fan et al., 2009). However, the extent of   transfer and the proportion of   remobilized to the sink organ remain unclear.   storage in seeds is mediated by specific   transporters that remobilize   into embryos during seed formation. The expression of NRT1.6 within the host embryo and seed coat demonstrates a potential role of this transporter in mediating embryonic   relocation at the reproductive phase of the parent plant (
Figure 1
) (Almagro et al., 2008). Similar to NRT1.6, NPF5.5 also mediates   transport into the embryo (
Figure 1
) (Léran et al., 2015; Iqbal et al., 2020). NRT2.7, a high-affinity   transporter in the tonoplast, plays specific   storage roles in the seed vacuole (Chopin et al., 2007). In the tonoplast, CLCa and CLCb were observed to perform a similar localization pattern, where they also participate in   storage (Von Der Fecht-Bartenbach et al., 2010). While   accumulation in seed vacuoles has been well documented, relatively less is understood about the characterization of transporter genes involved in   efflux out of the vacuole. An in-depth understanding of the specificity of these N transporters, from chronological studies, is the first step toward exploiting and optimizing NUE in plants.



3 Nitrogen assimilation in relation to NUE

For efficient   assimilation, a larger proportion of   assimilated after root uptake is diverted back to the cytosol, where it is converted to nitrite by nitrate reductase (NR). The nitrite obtained is relocated to plastids for subsequent reduction. At this stage, nitrite is converted to ammonium ( ) by the nitrite-reducing enzyme nitrite reductase (NiR) and then finally incorporated as an amino acid through the glutamine synthetase (GS) and glutamate synthase (GOGAT) cycle (Wilkinson and Crawford, 1993; Li et al., 2017a). Nitrogenous compounds incorporated via glutamine (free amino acid) and glutamate serve as a major checkpoint for regulating N utilization efficiency and are further enhanced by the synergetic expression of NR and   transporters (Li et al., 2020; Snyder and Tegeder, 2021). However, a recent study opined an improved grain yield and NUE on concurrent coexpression of OsNRT1.1B and indica OsNR2, indicating the positive regulatory roles of OsNR2 and OsNRT1.1B in uptake of N in rice (Gao et al., 2019b).

The two functionally similar forms of GS, cytosolic GS1, and plastidic GS2, encoded by single or multiple gene families, have been reported to significantly influence N assimilation (Miflin and Habash, 2002). While cytosolic GS1 facilitates root N reassimilation and remobilization during protein turnover, GS2 isoforms primarily assimilate   produced during chloroplast photorespiration (Ferreira et al., 2019). Although GS1 is responsible for   reassimilation, some GS family members drive N assimilation when   is abundant. A good example is GLN1;2 in Arabidopsis, which drives N assimilation when   is abundant, compared to the gln1;2 mutant, which exhibits reduced GS activity, rosette biomass, and higher   concentration under such conditions. Due to the principal roles of GS in N assimilation, specific focus has been directed toward overexpressing GS family members to improve N assimilation in different plant species, such as Triticum aestivum (Hu et al., 2018), and Oryza sativa (Bao et al., 2014).

Despite the fundamental roles of GS in improving   assimilation, seed yield, and NUE (Hu et al., 2018; Gao et al., 2019a), attempts to improve NUE by overexpressing GS1 have yielded inconsistent results (Check 
Table 1
 for details). For instance, TaGS2-2Ab-overexpressing lines in wheat had increased spike number, seed yield, and NUE under poor and rich N supply compared to their wild type, due to an increased root N uptake and remobilization capacity (Hu et al., 2018). Following a similar trend, overexpressing HvGS1-1 using its promoter confers improved grain yield and NUE on barley subjected to low and high N conditions (Gao et al., 2019a). In contrast, Bao et al. (2014) opined a drastic reduction in fresh and dry weight of OsGS1;1- and OsGS1;2-overexpressing lines in rice seedlings, with a further poor growth phenotype at the tillering and heading stages under limited and sufficient N conditions. The results suggest that the GS-overexpressing lines and plant biomass are negatively correlated. Further research is required to understand the underlying mechanisms of GS activity to improve NUE in plants.


Table 1 | 
Nitrogen assimilatory genes involved in nitrogen use efficiency.




Unlike GS, relatively few studies have addressed alterations in the expression of genes encoding NADH-dependent GOGAT (a key enzyme in N assimilation) and plastid-localized ferredoxin-dependent (Fd-GOGAT) (Good et al., 2004; Xu et al., 2012). The two kinds of GOGAT differ in their electron donor specificity. Fd-GOGAT is predominantly involved in the reassimilation of photorespiratory  . In contrast, NADH-GOGAT participates in the assimilation of non-photorespiratory   and the synthesis of glutamate needed for plant development (Lee et al., 2020). Many attempts have been devoted to studies on the fundamental roles of both NADH-GOGAT and Fd-GOGAT in the growth and seed development of Arabidopsis (Somerville and Ogren, 1980), Hordeum vulgare L. (Kendall et al., 1986), and Oryza sativa (Zeng et al., 2017). However, few research studies have altered the genetic expression of GOGAT to promote seed yield and NUE, while those that focused on NADH-GOGAT had rather limiting outcomes. For example, overexpression of ZmNADH
-
GOGAT in maize confers drastic reduction on shoot biomass with no considerable alterations in kernel yield when N is abundant (Cañas et al., 2020). Meanwhile, the overexpression lines of OsNADH
-
GOGAT resulted in an increase in rice grain weight under limited N (Yamaya et al., 2002). Interestingly, Lee et al. (2020) recently revealed that the synergetic expression of OsNADH
-
GOGAT1 and OsAMT1;2 confers an increase in NUE under both high and low N supply. While transgenic lines had improved seed protein levels without any yield alteration under N-sufficient conditions, seed quality and overall yield increased under N starvation. These observations imply that the combined expression of N-transporters and GOGAT improves N uptake, N assimilation, and NUE rather than the negative effect of the expression of AMT or GOGAT alone. Consequently, understanding the factors involved in the synergetic expression of   transporters and GOGAT under rich and poor N conditions in plants is imperative to augment NUE.



4 Nitrate sensing and signaling

In addition to its nutritional roles,   functions as a major signaling element regulating several plant physiological processes, such as leaf expansion (Walch‐Liu et al., 2000), induction of root architectural changes (Walch‐Liu and Forde, 2008), regulation of root development, and regulation of floral induction (Marín et al., 2011). The first step in signaling is through external nitrate perception by the dual affinity   transporter NPF6.3 (NRT1.1), induced immediately after   treatment. NRT1.1 switches between two states of nitrate conditions (low and high   conditions) (Wang et al., 1998; Bouguyon et al., 2015; Hu et al., 2015).



4.1.  Roles of transcription factors in N use regulation.

Several transcription factors (TFs) have been reported to play critical roles in NUE regulation by modulating the expression of  responsive genes. Detailed functions of TFs involved in NUE improvements are outlined in 
Table 2
. DNA binding with one finger (Dof1) TFs increases N use in plants. The transgenic expression of ZmDof1 in A. thaliana (Yanagisawa et al., 2004), TaDof1 in wheat (Hasnain et al., 2020), ZmDof1 in rice (Kurai et al., 2011), wheat and sorghum (Peña et al., 2017) improve N assimilation and plant growth under N starvation.


Table 2 | 
Transcription factors (Tfs) involved plant nitrogen use efficiency.




The key regulators of nitrate assimilatory genes, teosinte branched1-cycloidea-proliferating cell factor1-20 (TCP20) and NIN-like protein (NLP), NLP6 and NLP7 interact with each other under N sufficient and N–starved condition to control   response to root growth (Guan et al., 2017), a strong indication of NLP’s involvement in   signaling-related responses. Moreover, overexpression of NLP7 results in positive regulation of key nitrate metabolites, total N contents,   uptake, and signaling-related genes while improving plant biomass under poor and rich N conditions in Arabidopsis. This peculiar function suggests NLP7 as a master regulator of the primary nitrate response and its importance in plant N use (Yu et al., 2016). Further research on NLP family members reveals that overexpressing ZmNLP6 and ZmNLP8 in Arabidopsis replaces the roles of NLP7 in   signaling, and metabolism (Cao et al., 2017). In a recent study by Wu et al. (2021), overexpression of OsNLP4 in rice increased grain yield and NUE by 30% and 47%, respectively, under moderate N conditions. Contrary to NLP, three lateral organ boundary domain TFs (LBD37, LBD38, and LBD39) negatively regulate nitrate uptake and assimilatory genes, and thus could be candidates for improving NUE in plants (Rubin et al., 2009).

A putative MADS-box TF, ANR1, associated with lateral root growth and elongation (Zhang and Forde, 1998), functions as a downstream regulator of NRT1 in response to nitrate (Remans et al., 2006). In addition, AGL21 (AGAMOUS-Like 21) functions in lateral root initiation and growth by regulating auxin biosynthetic genes under N-deficient conditions (Yu et al., 2014). Although, other TFs efficiently utilizing N in Arabidopsis and cereal crops (especially rice) have been identified, the focus on identifying these genes in other crops has been minimal.



4.2 Nitrate-induced MicroRNA regulation

MicroRNAs (miRNAs) are small noncoding RNAs containing approximately 20-24 nucleotides with diverse regulatory potentials (Zhou et al., 2020). Studies have shown that miRNAs regulate gene expression pathways related to plant growth and developmental processes in response to nitrate (check 
Table 3
 for further details) (Zuluaga and Sonnante, 2019). The upregulation or downregulation of miRNAs primarily anchors on their capacity to regulate key target N-related genes (Zhao et al., 2011). Research has also examined the crucial roles of miR169 family members in cereal crops. A drastic reduction in the expression level of miR169 was observed in N-starved maize (Zhao et al., 2012) and wheat (Qu et al., 2015), upregulating TaNFYA-Bi under such conditions. Despite the numerous miRNA-related NUE phenotypes identified, little is known about the regulatory mechanisms involved. Thus, further research is required to fully understand how N use can be optimized in plants.


Table 3 | 
MicroRNAs involved in nitrogen use efficiency.






5 Nitrate transporters involved in NUE and yield improvement

Nitrate transporters have been shown to play diverse NUE and yield improvement roles in plants (Check 
Table 4
 for details). In Arabidopsis, NRT1.1 transgenic lines habouring Cauliflower Mosaic Virus (CaMV) 35S promoter were observed to increase the uptake of  , however, this did not necessarily improve seed yield (Liu et al., 1999). In contrast, the expression of the NRT1.1 homolog OsNRT1.1B driven by the CaMV-35S promoter or its native promoter increased NUE and grain yield in rice. The key regulatory roles in   nitrate signaling, absorption, and assimilation enable OsNRT1.1B to be a major contributor of rice NUE (Hu et al., 2015). Although, the crucial roles of OsNRT1.1B in NUE and yield improvement have been well studied, the underlying regulatory mechanism has not been elucidated. Similar to OsNRT1.1B, overexpression of the spliced form OsNRT1.1A also exhibits an approximately 50% grain yield and NUE increase, coupled with shortened maturation times (Wang et al., 2018c). The observations of this latter experiment could be successfully used to develop early maturing and high-yielding varieties in some other crops. The elevated expression of OsNPF8.20 (OsPTR9) leads to increased   uptake, better root formation, and ultimately, an increased tiller and panicle number, indicating that OsNPF8.20 improves grain yield and NUE in rice breeding (Fang et al., 2013). Similarly, OsNPF7.20-overexpressing lines exhibited a drastic increase in rice tiller number, fresh weight, dry weight, and grain yield. In contrast, an opposite effect was conferred on the RNA interference (Ri) lines and osnpf7.2 mutant line under mixed nitrate supply (0.5-8 mM  ) (Wang et al., 2018a). In their experiment on the modification of   transporters in Arabidopsis and rice, Liu et al. (1999) and Hu et al. (2015) reported some discrepancies in the response of these plants to the modified transporters. This may be due to the tolerance and sensitivity of both crops to   and  . Arabiodopsis thrives under aerobic conditions where the   transport system is well optimized, whereas rice thrives best in anaerobic environments where the   transport system is optimized. Hence, manipulating   and   transporters for improved efficiency in Arabidopsis and rice, respectively, would generate little or no effect on their NUE. Several   transporter genes in plants whose expression and subcellular localization pattern greatly determine the gene’s function are essential in genetic manipulations of plant traits. As such, deep insight into the function of a gene and the environment to which plants are better adapted can encourage precise manipulation of NUE in crops. The influence of nitrate transporters on crop yield was also reported in tomatoes, where overexpression of LeNRT2.3 improved   uptake, root-to-shoot   transport, plant biomass, and fruit weight (Fu et al., 2015).


Table 4 | 
Nitrate transporter genes involved in plant nitrogen use efficiency.




The expression of several NRT2 transporters has also been found to influence yield and NUE under N-starved conditions. NRT2.2 was upregulated to improve N uptake, assimilation, and plant growth under low   conditions (Li et al., 2007). Under the same  stressed conditions, TaNRT2.5, highly expressed in wheat, increases   uptake and root growth (Guo et al., 2014). Chen et al. (2016) conducted a study on transgenic rice and observed that OsNRT2.1, which has the OsNAR2.1 promoter (pOsNAR2.1: OsNRT2.1), was upregulated in the roots and culms. This upregulation significantly increases the overall yield, biomass, and NUE in transgenic lines harboring OsNAR2.1 (pOsNAR2.1: OsNRT2.1). However, the reverse (decrease in NUE) was obtained with the constitutive promoter of OsNRT2.1 (pUbi: OsNRT2.1). These variations could be accrued to alterations in the localization and abundance of OsNRT2.1 in the plant tissue (Chen et al., 2016). Further investigations regarding the importance of the NRT2 gene in NUE showed that two variants, OsNRT2.3a and OsNRT2.3b, were identified in rice. The elevated expression of OsNRT2.3b enhances intracellular pH balance under the synergetic supply of   and  , thereby increasing the uptake capacity of other nutrients (P, N, and Fe) and ultimately increasing grain yield and NUE by 40% (Fan et al., 2016b). This result demonstrates the importance of pH sensing by OsNRT2.3b in improving plant NUE and adaptation of rice to changes due to different  
-
  supplies. However, this N uptake and transport function observed in OsNRT2.3b was lost in OsNRT2.3a (Fan et al., 2016b; Chen et al., 2020a). OsNRT2.3a cannot independently improve crop yield and NUE due to its inability to increase the expression of OsNAR2.1 (Chen et al., 2020a). Thus, the coexpression of OsNRT2.3a with the OsNAR2.1 promoter becomes imperative to enhance rice N use. The literature reviewed thus far has demonstrated a need for most NRT family members to be coexpressed with specific promoters to effectively enhance plant growth, biomass, and NUE, especially in Arabidopsis and rice; however less in known in other crop species.



6 Nitrate transporters and environmental cues: Influence of environmental stress factors and inducers on nitrate allocation to roots

Numerous studies have investigated the crucial roles of   transporters in mediating the uptake and long-distance transport of  ; however, less is known towards understanding transport systems involved in   reallocation under biotic and abiotic stresses.   transporters play crucial roles in the plants’ response to adverse environmental conditions. Indeed, plants acclimatize better to environmental stress when less   is allocated to the shoot. Thus, this section examines the contribution of   transporters in assisting plants to strive in adverse environmental conditions.

The quantity of   translocated from roots to shoots varies under diverse environmental conditions, as this could positively or negatively affect plant NUE. Hence,   redistribution in plants is a prerequisite to improved plant growth under N shortages and adverse conditions (Fan et al., 2017). Stressed plants tend to uptake and transport less   to the shoot while retaining more nitrate in its root than required (
Figure 2
). Such   allocation to the root as induced by environmental fluctuations (including biotic and abiotic stress) is referred to as “stress-initiated nitrate allocation to roots” (SINAR) (Zhang et al., 2018). Over two decades ago, Hernandez et al. (1997) investigated the inherent effects of cadmium (Cd2+) on   uptake, and distribution in pea plants. They found that   was increasingly retained at the plant root, and fewer   were reallocated to the shoot of Cd-treated pea compared with the control, thereby disrupting the NUE of plants (
Figure 2
). However, the study could not elucidate the mechanism underlying the fluctuation in the root-to-shoot transport of  . Many years later, several research investigations have shown the active involvement of   transporters in regulating Cd2+ uptake and other SINAR-related stress conditions (Lin et al., 2008; Zhang et al., 2014). Mao et al. (2014) reported NRT1.1 as a potential regulator of Cd2+ uptake in plants. They observed that plants exposed to Cd2+ stress exhibit repression of NRT1.1 and, as such, exert a negative influence on plant N nutrition (
Figure 2
). Thus, the loss of NRT1.1 function reduced Cd2+ in the roots and shoots, improving plant biomass production under Cd2+ stress (
Figure 2
). Although the disruption of NRT1.1 activity induced by Cd2+ stress negates   uptake, it enhances plant tolerance to Cd2+ stress by reducing Cd2+ influx into the root. A recent study by Jian et al. (2019) opined that overexpression of NRG2 (which functions downstream of NRT1.1) in wild-type and nrt1.1 increased root   over shoot nitrate, thus alleviating Cd2+ toxicity. These findings demonstrate the involvement of NRT1.1 in regulating cadmium uptake while coordinating nitrate allocation to the root. NRT1.1 also regulates Zn accumulation in Arabidopsis by improving   uptake in the wild type through a  dependent pathway under Zn stress (
Figure 2
) (Pan et al., 2020).




Figure 2 | 
Roles of nitrate transporters in plant response to adverse environmental conditions. Environmental cues including heavy metals (Cd2+ and Zn), salinity, drought, and pathogenic stress engender reduction in plant growth and NUE. The resulting stressed plants accumulate more   at the root (A) while retaining less in the shoot (B). Under Cd2+ or Zn stress, nitrate transporters, NRT1.1, NRT1.5 and NRT1.8 concurrently regulates Cd2+ or Zn uptake and   allocation to the root (C). The transporters involved in root-to-shoot allocation of   under salinity include NPF2.3, NRT1.1, NRT1.5, and NRT1.8 (D). NRT2.1 promotes plants’ tolerance to drought stress (E). In addition to NRT2.1, NRT2.2, NRT2.5 and NRT2.6 are involved in biotic stress regulation (F).




In addition to NRT1.1, NRT1.5 and NRT1.8 regulate the acropetal reallocation of   to shoots under cadmium and salinity stress (Fan et al., 2017a). Such stresses activate antagonistic expression of the two latter genes (NRT1.5 and NRT1.8), with reduced expression of NRT1.5/NPF7.3 (Chen et al., 2012) and increased expression of NRT1.8/NPF7.2 (
Figure 2
) (Li et al., 2010). From the study conducted by Li et al. (2010), loss of NRT1.8 function displays greater sensitivity to Cd2+ stress than wild-type plants under high   conditions. However, an opposite effect was observed, with nrt1.5 mutants having greater Cd2+ tolerance in relation to the control. The Cd2+ sensitivity observed with the ntr1.8 mutants could be due to Cd2+ translocation to its shoots, thus counteracting the plant adaptive strategy that supports Cd2+ accumulation in plant roots. The upregulation of NRT1.8 expression triggers nitrate removal from the xylem under Cd2+-stressed conditions. This result suggests a strong link between Cd2+ tolerance and   allocation.

In addition to NRT1.5 and NRT1.8, NPF2.3 also contributes to the SINAR response under salt stress. Nitrate allocation to the shoot was drastically reduced under salt-stressed conditions due to the unaltered expression of NPF2.3 and partial expression of the NPF7.3 gene in the root stele. However, the loss of NPF2.3 function led to the reduced root-to-shoot allocation of   (
Figure 2
) (Taochy et al., 2015). These data demonstrate the quantitative and physiological contribution of the   efflux transporter NPF2.3 to   allocation to the shoot under salinity (Taochy et al., 2015; Chao et al., 2021). Alvarez-Aragon and Rodriguez-Navarro (2017) also found Na+ accumulation to be partially defective in the nrt1.1 mutant, demonstrating the partial contribution of NRT1.1 to  dependent Na+ transport (
Figure 2
). Plants expressing these   related genes in response to heavy metal or salt stress exhibit enhanced   uptake, plant growth, and tolerance to heavy metal- or salt-stressed environments.

Previous physiological research investigations have shown varying impacts of   and   availability on water uptake and transport in plants subjected to water stress (Guo et al., 2007). They found that the assimilation rate and stomatal conductance of  
-fed plants surpassed those of NO3
--fed plants; thus,   nutrition improves rice seedling tolerance to drought (Guo et al., 2007). Li et al. (2016a) revealed that the high-affinity NO3- transporter NRT2.1 alters   accumulation to regulate root hydraulic conductivity (
Figure 2
). They found NRT2.1 to be a positive regulator of plasma membrane intrinsic protein PIPs. This latter study unraveled the link between    use, water stress, and NRT2.1 expression, indicating the potential roles of NRT2.1 in drought tolerance (Li et al., 2016a). However, a more recent investigation has shown how the high-affinity   transporter partner protein OsNAR2.1 positively regulates drought-related responses to stress and enhances drought tolerance in rice (
Figure 2
) (Chen et al., 2019).

Ample agronomic evidence exists regarding the impact of excessive N fertilizer use on the incidence rate of plant diseases (Fagard et al., 2014; Fan et al., 2017). For example, excessive N fertilizer application triggers the severity of powdery mildew caused by a biotrophic pathogen that saps plant nutrients. Interestingly, a reduction in N fertilizer application has been found to reduce Arabidopsis tolerance to Erwinia amylovora. These findings indicate a complex relationship between N uptake, metabolism, and disease infection processes. Thus, it is evident that N status affects plant tolerance or susceptibility to diseases under specific environmental conditions (Fagard et al., 2014). Unfortunately, the molecular mechanism underlying the impact of   transporters on fungal infection or pathogenic attack is not fully understood. To investigate the possible mechanisms involved in N uptake by the biotrophic pathogen, Pike et al. (2014) characterized the low-affinity transporter VvNPF3.2 (in grapevine) and cloned Arabidopsis ortholog NPF3.1. In this study, powdery mildew pathogen infection was shown to upregulate the expression of VvNPF3.2 and NPF3.1 in vascular tissues, major and minor veins of leaves. The loss of NRT2.1 and NRT2.2 under N-deficient conditions resulted in increased resistance to Pseudomonas syringae pv tomato DC3000 infection (
Figure 2
) (Li et al., 2007; Camanes et al., 2012). Additionally, in the NRT2 family, the roles of two putative high-affinity   transporters, NRT2.5 and NRT2.6, were investigated in response to rhizospheric bacterium STM196 using single and double Arabidopsis mutants (Kechid et al., 2013). The study revealed that mutations in NRT2.5 and NRT2.6 inhibited plant growth and abolished root system architecture in response to STM196. Hence, Arabidopsis leaves expressing NRT2.5 and NRT2.6 appear to play crucial roles in the plant response to STM196 in a   uptake-independent manner (
Figure 2
). The expression of both genes (NRT2.5 and NRT2.6) is also crucial for promoting plant growth mediated by STM196 (Kechid et al., 2013). Recently, T-DNA mutants of NRT2.5 showed stronger resistance to Pseudomonas syringae pv. tomato DC3000 inoculation compared to its wild-type counterpart, an indication of NRT2.5 role in plant biotic defense (Du Toit et al., 2020; Devanna et al., 2021). These research findings have demonstrated the functional roles of   transporters in the plant response to biotic stress, while suggesting safe, innovative, and sustainable means of controlling crop pathogens.Mycorrhizal colonization of rice root also appears to promote the expression of a putative nitrate transporter, OsNPF4.5. This result improved growth and yield properties in host plant (Wang et al., 2020c). However, inactivation of OsNPF4.5 resulted in the reduction of arbuscule incidence, as well as a depletion in symbiotic nitrogen uptake in rice (Wang et al., 2020c).

Another member of the nitrate and peptide transporters family (NPF), OsNPF8.1 (OsPTR7), a putative peptide transporter in rice (localized in the cell plasma membrane), has been reported as permeable to methylated arsenic species, especially, dimethylarsenate (DMA). OsNPF8.1 is involved in long-distance transport of arsenic in rice (Tang et al., 2017). However, the peptide-mediated transport of arsenic species has been linked with imbalance nutrient (especially, phosphate) supply in plants (Finnegan and Chen, 2012). Consequently, it is imperative to investigate the activity of OsNPF8.1 on N uptake, as well as the collateral accumulation of DMA, its clinical significance and nutrient imbalance in economically significant crops.



7 Could nitrate uptake and utilization affect the efficiency of other plant nutrients?

Balanced nutrition is paramount to maintaining good human health, and this is achievable by eating a balanced diet. In plants, maintaining an appropriate nutrient balance is also required because excessive accumulation of a specific nutrient might affect the uptake of the other and vice versa (Aluko et al., 2021). This nutritional balance ultimately affects crop growth and plant nutrient use efficiency (Bouain et al., 2019). Such nutritional crosstalk coexists between phosphorus (P) and N, the most limiting nutrient element required for crop growth and development. Phosphorus starvation reduces nitrate uptake capacity in tobacco (Rufty et al., 1990), maize (De Magalhães et al., 1998), and barley (Lee, 1982). These phenomena demonstrate the mechanisms involved in optimizing nutrient uptake and utilization to maintain plant homeostatic balance. Molecular evidence indicates that nitrogen limitation adaptation (NLA) ubiquitin offsets   deficiency induced by excessive P via degradation of PHT1, the phosphate transporter (Kant et al., 2011b). The phenotypic analysis illustrated the functional role of nitrate-inducible garp-type transcriptional repressor 1.2 (NIGT1.2) in integrating N and P signals. Under sufficient P supply, NIGT1.2 was not activated due to the coexpression of PHR1 and SPXs, which are P-sensor proteins and repressors of PHR1, respectively (Medici et al., 2015). However, PHR1 was detached from the inhibitors SPX1/2/3/4 to promote the expression of NIGT1 clade genes under P-starved conditions. Thus, nitrate uptake is suppressed due to P deficiency through the PHR1-NIGT1-NRT2.1 pathway (Maeda et al., 2018). With such development, N uptake regulation via the PHR1-NIGT1 path could be a good adaptative mechanism under P starvation (Maeda et al., 2018). Another recent study found that NIGT1.2 increased the expression of phosphate transporters (PHT1;1 and PHT1;4) but repressed the nitrate transporter NRT1.1, an indication that NIGT1.2 could maintain a balance between N and P to improve N uptake and utilization under (phosphorus) P starvation (Wang et al., 2020b).

The highly   inducible NRT1.1-controlled GARP transcription factor, HRS1, and its closest homolog, HHO1, function downstream of NRT1.1, NLP6, and NLP7. However, HRS1 and HHO1 act as major primary root growth inhibitors only when the media is P-starved in the presence of  , indicating extensive integration of the N and P signaling networks (Medici et al., 2015). Following the previous discussion on how HRS1 mediates N and P crosstalk, Medici et al. (2019) found that PSR marker gene responses depend on the N supplied. Indeed, transcript levels of PHO2 were coordinated by nitrate availability accumulated during both high and low supplies of nitrate. Notably, this nitrate-induced strategy of PSR regulation is conserved in plants. However, several PSR genes were not regulated by   in a pho2 mutant, indicating that PHO2 incorporates nitrate signals into PSR (Medici et al., 2019). Upon P starvation, NRT1.1 is downregulated, while PHO2 functions to positively regulate NRT1.1. In rice, the genes induced by P starvation OsIPS1, OsSPX1, and the P transporter OsPT1 only respond to P starvation when nitrate is present (Medici et al., 2019). On the overall assessment, these findings elucidate the complexity of nitrate and phosphorus responses while emphasizing the principal roles of NRT1.1 in regulating the interaction.

Another macronutrient required for plant health is potassium (K+), as it strongly coordinates nitrate ( ). Previous reports indicated that NRT1.5 facilitates the long-distance transport of   and K+ in a nitrate-dependent manner (Meng et al., 2016; Zheng et al., 2016). NRT1.5, expressed in the pericycle of root cells, participates in the xylem loading of nitrate. When there is a K deficit, NRT1.5 directly triggers the movement of K+ to the root xylem for root-to-shoot transport. This investigation demonstrates the crucial role of NRT1.5 in root-to-shoot K+ transport and its involvement in the synergetic regulation of  /K+ distribution in plants (Li et al., 2017b). Another study reported that MYB59 activates the expression of NRT1.5 and binds directly to its promoter to ensure a controlled nutrient distribution from root to shoot. When plants become deficient in  /K+, the expression of MYB59 and NRT1.5 is repressed to maintain a balanced  /K+ distribution between the roots and shoots (Du et al., 2019).



8 Nitrate transporter regulates nitrate and auxin crosstalk for root growth and nitrogen uptake

Evidence has shown the impact of changes in N status on auxin distribution in plants (Hou et al., 2021). Compared with moderate N supply, limited   supply engenders auxin deposition in the roots of Arabidopsis, wheat, soybean, maize, and rapeseed (Caba et al., 2000; Tian et al., 2008; Asim et al., 2020), indicating the importance of in situ auxin synthesis in the root (Yang et al., 2022). Thus, the in situ auxin synthesis and the shoot-to-root polar transport jointly contributes to auxin deposition in the root under N limitation (Yang et al., 2022). In contrast, a 30% reduction in root indole-3-acetic acid (the putative among natural auxins) content was observed when the amount of   supplied to rice dropped from 2.5mM to 0.01mM (Sun et al., 2014b). Perhaps, the discrepancies in N induced auxin response stems from varying plant growth conditions and the species involved. Nevertheless, all these findings demonstrate the importance of nitrate and auxin crosstalk in root development, and the mechanism of such responses are triggered by the activities of   transporters.

In addition to the   transport and signaling function, NRT1.1, among other transporters, facilitates basipetal transport of auxin and negatively regulates auxin biosynthetic genes, TAR2 and LAX3, under   deficiency (Maghiaoui et al., 2020). As a consequence, NRT1.1 removes auxin (required for lateral root growth) deposited at the lateral root primordia, inhibiting lateral root growth under such condition. All these inhibitory effects of NRT1.1, including root growth reduction and patchy auxins are alleviated in response to high   supply (Maghiaoui et al., 2020). Thus, NRT1.1-mediated auxin transport was disrupted and its (NRT 1.1) expression repressed, to facilitate lateral root growth and auxin accumulation at the root tip under increasing   supply (Remans et al., 2006). These findings indicated that NRT1.1 functions in reprogramming root system architecture in response to   availability. However, the integrated function of this molecular circuit is yet unraveled.

Although, it is understood that external N status regulates auxin biosynthetic genes and signaling pathways. However, less is known about the identities of auxin-related genes that are N-responsive, and whether these genes reprogram plant N metabolism to improve crop NUE is yet unexplored. To this end, Zhang et al. (2021b) identified DULL NITROGEN RESPONSE1 (DNR1) as an intriguing QTL regulating auxin and N crosstalk for NUE improvement in rice. DNR1 mediates plant N metabolism by counteracting the auxin deposited in response to N availability. This process enhances auxin biosynthesis and induces AUXIN RESPONSE FACTOR, a major regulator of N-responsive genes to improve NUE and grain yield.

Out of the identified   transporters, the functions of the   transceptor’s (NRT1.1) in auxin regulation has been the most investigated. However, less is known about the versatile functions of other   related proteins in regulating other plant developmental traits.



9 Integrated approaches to improve plant NUE

Genetic modification of crops has been a promising strategy for improving plant N use through diverse breeding techniques during the past few decades. Indeed, several   transporter genes, their regulators, and other  responsive genes regulating NUE have been well studied. However, mechanisms involved in this regulation, which specifically describes the strategies involved in NUE improvement, have been overlooked due to difficulties in identifying N-specific phenotypes. (Hu et al., 2015) revealed that genetic variation of the major quantitative trait locus (QTL) NRT1.1B (OsNPF6.8) promotes NUE divergence between Indica and Japonica rice subspecies. They found that NRT1.1B from indica improved the tiller number, NUE, and grain yield of Japonica rice. Several other QTL-based approaches have generated signaling proteins, transcriptional regulators, and components of hormonal pathways that regulate plant NUE. One of these is a QTL study that used positional cloning and genetic complementation to map out DEP1 (Dense and erect panicles 1), a heterotrimeric G protein that confers a significant yield increase (Sun et al., 2014a). Under moderate N fertilization, plants harboring the dominant allele DEP1-1 display N-insensitive vegetative growth, as well as improved N uptake and assimilation, thereby increasing yield (Sun et al., 2014a). This result implies that modulating the activity of DEP1 could provide a lasting strategy for grain yield increases in rice. Another QTL study showed that the accumulation of the growth inhibitor DELLA confers semi-dwarfism and reduces NUE in rice (Li et al., 2018). However, the NUE and grain yield of green revolution varieties are restored by tilting the GRF4–DELLA stability toward an increased abundance of GRF4. This study indicated that regulating physiological activities and plant growth induced by efficient N use could open up innovative breeding ideas for sustainable food security (Li et al., 2018). Although QTL analysis has also informed the recent NUE gene identification strategy in crop species such as maize (Zhang et al., 2019), the importance of QTL analysis is yet unknown in some other higher plants.

In addition to QTL analysis, other analytical studies involving genome-wide association studies (GWAS) could be used to identify an array of NUE candidate genes in Arabidopsis (Atwell et al., 2010), maize (Li et al., 2013), rice (Si et al., 2016), and other crop species (Korte and Farlow, 2013; Ogura and Busch, 2015). An elite haplotype of the nitrate transporter OsNPF6.1HapB was recently identified using GWAS (Tang et al., 2019). This allele improved nitrate uptake, NUE, and grain yield under N-deficient conditions. In the same study, the NUE-related transcription factor OsNAC4 was used to transactivate OsNPF6.1HapB
, thereby increasing plant NUE and grain yield. This result suggests that the NAC42-NPF6.1 signaling cascade is a promising strategy for improving NUE and rice yield (Tang et al., 2019).

To further identify the genes enhancing NUE, Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 along with the Cas9 nuclease (CRISPR/CAS9) system was developed. CRISPR/CAS9 has been deployed to facilitate easy and robust technology to edit genes for improved plant N use. Multiple applications of CRISPR/CAS9 technology have been demonstrated in major crops, including sorghum, rice, and tomatoes (Ito et al., 2015; Ma et al., 2015). Notably, CRISPR/CAS9 mostly mutates negative growth regulators instead of overexpressing positive regulators, thereby providing prospects for crop breeding (Tiwari et al., 2020). A related strategy described one of the Bric-a-Brac/Tramtrack/Broad gene family members, BT2, that downregulates the NRT2.1 and NRT2.4 genes (Araus et al., 2016), thus reducing   uptake and NUE under low   conditions. When this BT2 gene was mutated in Arabidopsis, a 65% increment in nitrate uptake was observed, while mutation of OsBT2 yielded a 20% increase in NUE compared to wild-type under poor   supply (Araus et al., 2016). To date, the functions and features of a significant number of negative regulators or inhibitors of nitrate transporters have yet to be functionally characterized in plants. Hence, it is plausible that gene editing or mutating their expression by CRISPR/Cas9 appears to be a promising strategy for achieving future breeding goals (Tiwari et al., 2020).

It is essential to note that incorporating transcriptomics, proteomics, and metabolomics, which characterize the expression profile, could facilitate the identification of agronomically induced genes or pathways. Moreover, computational and system biology could aid in identifying candidate genes during domestication.



10 Conclusion and future perspectives

Nitrate transporters have not only been shown to function in plant uptake and transport capacity; their vital roles and potential in improving plant N use have also guaranteed the possibility of meeting future global food demands. Indeed, improved   uptake and utilization (  transport, remobilization, and assimilation) through transporter activity is a prerequisite to attaining increased NUE and overall plant growth. With the understanding that the activities of these   transporters are enhanced when co-expressed with their specific promoters or Tfs, it becomes imperative to select and integrate NO3

–
specific promoters with their transporters for efficient plant N utilization. An excellent way to improve   utilization could be to carefully select senescence-specific promoters (primarily expressed in source organs or leaves) to facilitate phloem-expressed nitrate transporters. Most research works have successfully established the impact of nitrate transporters on adverse environmental conditions (biotic and abiotic stress). They have also addressed their relationships with other plant nutrients only under controlled conditions; however, field-based studies affirming these functions are scarce.

Moreover, relatively few   transporters performing complex interplay functions have been identified, while the established ones were found to play multiple physiological roles in environmental and nutritional stresses. The underlying mechanisms behind these multipurpose functions are unknown, and the extent to which these transporters can mitigate abiotic stress is unresolved. Thus, to understand and manipulate the functional roles of nitrate transporters in enhancing plant NUE under diverse conditions, future research should address some critical questions, including the following, but not limited to:


	
How do the combined effects of biotic/abiotic stressors influence nitrate transporter activities, and to what extent?


	
Does the uptake of other macro- and micronutrients alter the expression or impair the prospective function of nitrate transporters and vice versa?


	
Is there a possibility of having nutrient imbalance feedback due to alterations in the expression of either nitrate transporters or the transporters of other nutrients (macro- and micronutrients)?


	
If the activities of nitrate transporters are eventually established to significantly affect the uptake of other nutrients and vice versa, what molecular techniques could be factored in to recuperate such imbalance?


	
Could the crosstalk between N-responsive and auxin biosynthesis genes affect the uptake of other essential nutrients by plants?


	
Could specific   transporters or related genes function or be expressed differently in diverse crop species?


	
Could models be developed to project or predict the possible influence of biotic and abiotic environmental parameters, as well as their complex interplay on the NUE of individual plant species?





Developing profound resolutions to these questions will afford us a better understanding of how nitrate transporters could be maximized to enhance plant NUE under adverse environmental conditions. Knowledge of these factors will also help settle crises related to plant nutritional imbalance and cross-talk, thereby achieving plant breeding goals for quality and sustainable food production.
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Rice is an important target to improve crop nitrogen (N) use efficiency (NUE), and the identification and shortlisting of the candidate genes are still in progress. We analyzed data from 16 published N-responsive transcriptomes/microarrays to identify, eight datasets that contained the maximum number of 3020 common genes, referred to as N-responsive genes. These include different classes of transcription factors, transporters, miRNA targets, kinases and events of post-translational modifications. A Weighted gene co-expression network analysis (WGCNA) with all the 3020 N-responsive genes revealed 15 co-expression modules and their annotated biological roles. Protein-protein interaction network analysis of the main module revealed the hub genes and their functional annotation revealed their involvement in the ubiquitin process. Further, the occurrences of G-quadruplex sequences were examined, which are known to play important roles in epigenetic regulation but are hitherto unknown in N-response/NUE. Out of the 3020 N-responsive genes studied, 2298 contained G-quadruplex sequences. We compared these N-responsive genes containing G-quadruplex sequences with the 3601 genes we previously identified as NUE-related (for being both N-responsive and yield-associated). This analysis revealed 389 (17%) NUE-related genes containing G-quadruplex sequences. These genes may be involved in the epigenetic regulation of NUE, while the rest of the 83% (1811) genes may regulate NUE through genetic mechanisms and/or other epigenetic means besides G-quadruplexes. A few potentially important genes/processes identified as associated with NUE were experimentally validated in a pair of rice genotypes contrasting for NUE. The results from the WGCNA and G4 sequence analysis of N-responsive genes helped identify and shortlist six genes as candidates to improve NUE. Further, the hitherto unavailable segregation of genetic and epigenetic gene targets could aid in informed interventions through genetic and epigenetic means of crop improvement.




Keywords: WGCNA (weighted gene co-expression network analyses), G-quadruplexes (G4), NUE (nitrogen use efficiency), epigenetic regulation, hub genes, nitrogen, N-responsive genes, rice





Introduction

Nitrogen (N) is quantitatively the most important input for crop production after water. However, excessive or imbalanced use of N fertilizers exacerbated by inadequate biological N-fixation or legume-based crop rotation led to poor N use efficiency (NUE). The predominant contribution of N-fertilizers to pollution, biodiversity loss, and climate change made them a global economic and environmental concern (Sutton et al., 2019; Kanter et al., 2020; Raghuram et al., 2021; Sutton et al., 2021; Winiwarter et al., 2022). While agronomic practices and controlled-release fertilizers have been important, crop improvement for NUE is increasingly being advocated at both global (Udvardi et al., 2021) and national levels (Móring et al., 2021). The biological avenues for crop improvement have been extensively reviewed (Long et al., 2015; Mandal et al., 2018; Sinha et al., 2020; Madan et al., 2022; Raghuram et al., 2022).

Rice is the third most produced and consumed crop in the world which feeds half the global population (Norton et al., 2015). It has the lowest NUE among cereals and therefore, accounts for the highest consumption of N-fertilizer among them. Further, its rich germplasm diversity, genomic and functional genomic resources (Kawahara et al., 2013; Li et al., 2014; Chen et al., 2016; Li et al., 2018; Huang et al., 2019) make it an ideal crop to improve NUE (Sharma et al., 2021). Thousands of N-responsive genes have been reported using transcriptome studies in rice (Kumari et al., 2021 and references cited therein), including subspecies indica (Pathak et al., 2020) and japonica (Mandal et al., 2022). The delineation of the phenotype for N-response and NUE (Sharma et al., 2018; Sharma et al., 2021) enabled its integration with the fast-growing transcriptomic data (Sharma et al., 2021). The development of nutrient-depleted soil (Sharma et al., 2019) enabled N-form-specific studies on nitrate or urea to understand the implications of different N-fertilizers used in developed and developing countries for NUE improvement in rice.

But distinguishing between genes for N-response/NUE and shortlisting the fewest possible target genes for NUE is a work in progress (Kumari et al., 2021; Sharma et al., 2022) that could benefit from newer means for systematic shortlisting. In the meantime, there have been several attempts to validate the candidate genes with varying success (Madan et al., 2022, Raghuram et al., 2022), indicating further scope for identification and shortlisting of more candidates. Important recent progress in this regard has been in the comparative transcriptomics of contrasting NUE genotypes in rice, which projected some potentially important genes (Neeraja et al., 2021; Sharma et al., 2022; Sharma et al., 2023).

Being a quantitative trait, NUE requires the coordinated action of a large number of N-responsive genes contributing to yield. Co-expression network analysis could be an important method to identify coexpressed gene modules but was never employed to understand their roles in NUE or to identify/shortlist candidate gene targets on that basis. Weighted gene co-expression network analysis (WGCNA) is the most popular systems biology tool to identify the modules associated with specific biological processes (Ruprecht et al., 2017; Zhang et al., 2019; Sun et al., 2020). WGCNA has been used to identify key salt-responsive genes in rice (Zhu et al., 2019) and Arabidopsis (Amrine et al., 2015), the potential regulatory mechanism of carotenoid accumulation in chrysanthemum (Lu et al., 2019), receptor-like protein genes involved in broad-spectrum resistance in pepper (Kang et al., 2022) and in the co-expression analysis of rice and maize genes (Chang et al., 2019; Zheng et al., 2019).

There is also growing recognition of epigenetic transcriptional reprogramming in response to nutrients (Séré and Martin, 2020) and epigenetic regulation of N-response through miRNAs (Nischal et al., 2012; Islam et al., 2022) and chromatin remodeling (Li et al., 2021 and references cited therein). An emerging mode of epigenetic regulation that was never explored for NUE involves a special type of non-canonical structure known as a G4 sequence or G-quadruplex. It is produced by Hoogsteen hydrogen bonding in DNA and RNA sequences that contain four short segments of guanine (Burge et al., 2006, Sengupta et al., 2021). While being spread out across the entire genome, these G4 sequences are often abundant in promoter regions, gene UTRs, and telomeres (Griffin and Bass, 2018) It is well recognized that they contribute significantly to chromatin remodelling, gene control, epigenetic regulation, genomic instability and genetic disorders (Shao et al., 2020; Varshney et al., 2020). Despite such significance, the occurrence and roles of G4 DNA and G4 RNA in plant species have not been well studied, barring a few reports on stress (Kopec and Karlowski, 2019). Genome-wide studies of G-quadruplexes have the potential to accelerate progress toward a thorough understanding of their biological implications and practical applications in plants (Cagirici and Sen, 2020; Li et al., 2022). It is therefore of significant interest to investigate the potential of G4 sequences as a fresh method of crop development for NUE.

In the present study, we compiled the largest number of shared N-responsive genes from 8 out of 16 N-responsive transcriptomic datasets in rice and analyzed them by WGCNA. We identified fifteen functional modules of co-expressed genes and the most relevant module for N-response/NUE and the associated biological processes. We validated some genes/processes linked to NUE phenotype and identified novel candidate genes for improving N-response/NUE in rice. We also identified and catalogued sequences of G4 quadruplexes among NUE-related genes and validated their differential expression in contrasting genotypes. A hypothesis/model integrating genetic and epigenetic regulation of NUE has been proposed.





Materials and methods




Compilation and annotation of N-responsive genes

To identify N-responsive genes in rice, 16 rice N-responsive microarray datasets available at NCBI GEO were examined. A list of over 18,000 N-responsive genes was compiled from these N-responsive datasets using uniform criteria of Log2FC ≥1, p-value <0.05 with default redundancy removal, as described in Kumari et al. (2021). As very few genes were common to all the N-responsive microarray datasets compiled for this study, individual datasets that were mainly responsible for minimal common genes were eliminated progressively. This led to the shortlisting of eight N-responsive datasets (Supplementary Table S1) that had the maximum number of 3020 common N-responsive genes (Supplementary Table S2). Gene ontology (GO) enrichment analyses for functional annotation of N-responsive genes were performed Expath 2.0 tool (Chien et al., 2015) using default parameters. The biological processes were obtained using AgriGO v2. (http://systemsbiology.cau.edu.cn/agriGOv2/index.php) and visualized using Heatmapper (http://www.heatmapper.ca).





Weighted gene co-expression network construction and module identification

In order to independently identify co-expressed N-responsive genes, we performed Weighted Gene Co-expression Network Analysis (WGCNA), using 3020 common genes (Supplementary Table S2) from eight N-responsive transcriptomic datasets (Supplementary Table S1). We used version 1.69 of the WGCNA software at Bioconductor (http://bioconductor.org/biocLite.R) on the RStudio platform (1.2.5042). The soft threshold method for Pearson correlation analysis of the expression profiles was used to determine the connection strengths and construct a weighted co-expression network among the genes. Average linkage hierarchical clustering was carried out to group the genes based on topological overlap dissimilarity in network connection strengths. To obtain the correct module number and clarify gene interactions, we restricted the minimum gene number to 20 for each module and used a threshold of 0.25. To identify the significant modules related to rice traits, three available experimental criteria in microarray datasets were used as traits including the age of the plant used for tissue sampling, type of tissue (root/shoot/whole plant), and N-treatment. Two approaches were used to identify the significant modules. The first approach used the relationship between the traits and Module eigengenes (MEs), which are the major components for principal component analysis of genes in a module with the same expression profile. The second approach used the relationship between module membership versus gene significance.





Functional annotation of significant modules

All the genes from each of the modules were analyzed separately using Expath 2.0 (Chien et al., 2015) for their functional annotation by gene ontology (GO) to identify biological, cellular, and molecular processes. In order to study the protein-protein interactions, all the genes from the turquoise module (WGCNA) were used for separate searches for their interacting protein partners on the STRING database version 11 (https://string-db.org/cgi/input.pl?sessionId=Xv9nzTk5s6NX&input_page_show_search=on).





Data mining for transporters, transcription factors, kinases, and miRNA targets

N-responsive genes encoding transporters were retrieved from the Rice transporters database (https://ricephylogenomics.ucdavis.edu/transporter/), RAP-DB (https://rapdb.dna.affrc.go.jp/), and Transport DB2.0 (http://www.membranetransport.org/transportDB2/index.html). Similarly, N-responsive genes encoding transcription factors (TFs) were retrieved from the databases PlantPAN2 (http://plantpan2.itps.ncku.edu.tw/TF_list_search.php#results), RAP-DB, STIFDB (http://caps.ncbs.res.in/stifdb/), PlantTFDB (http://planttfdb.cbi.pku.edu.cn/index.php?sp=Osj) and Rice Frend (http://ricefrend.dna.affrc.go.jp/multi-guide-gene.html). Kinases were searched by using iTAKdatabase (http://itak.feilab.net/cgi-bin/itak/index.cgi). Plant microRNA database (PMRD- http://bioinformatics.cau.edu.cn/PMRD/) was used for searching the miRNAs that target N-responsive genes.





Physiological measurements

In order to measure the N-responsive changes in terms of physiological parameters of rice plants, a contrasting pair of rice genotypes namely Nidhi and Panvel1were used for their known low and high NUE respectively (Sharma et al., 2018; Sharma et al., 2021). They were grown in trays filled with nutrient-depleted soil (Sharma et al., 2019) for 21 days. They were fertigated with media (Hoagland and Arnon, 1950) containing urea as the sole source of N at a normal dose of 15mM as control, or a low dose of 1.5mM as a test. These 21 days-old plants were used to measure photosynthesis and transpiration rate using LI-6400XT Portable Photosynthesis System (LI-COR Biosciences, Lincoln, NE, USA). Net photosynthetic rate was measured in terms of CO2 assimilated as µ mol CO2/m2s1; transpiration was measured in terms of mol (H2O)/m2s1. Student’s t-test was performed on the test vs. control data. The reference CO2 concentration was 410 ± 20 μmol mol−1 during the measurements. All LI-COR measurements were carried out at the time of maximal photosynthetic activity between 12:00 noon and 5:00 pm IST. All the measurements were done in at least four replicates.





G-quadruplex sequences and post-translational modifications

All the gene IDs carrying G4 sequences in exon, promoter, gene, CDS, and UTRs regions were downloaded from the PlantG4DB database (http://ccbb.jnu.ac.in/PlantG4DB/). After combining them and removing redundant gene IDs, they were searched for the N-responsive genes having G4 sequences. To find out the genes associated with post-translational modifications (PTM), all genes associated with PTMs were retrieved from Plant PTM Viewer (https://www.psb.ugent.be/webtools/ptm-viewer/experiment.php), which contains PTM data collected from published reports (Møller and Kristensen, 2006; Nakagami et al., 2010; Xie et al., 2015; He et al., 2016; Qiu et al., 2016; Xiong et al., 2016; Zhang et al., 2016; Hou et al., 2017; Meng et al., 2017; Qiu et al., 2017; Wang et al., 2017; Ying et al., 2017; Mujahid et al., 2018).





RNA isolation and RT-qPCR analysis

Leaves were harvested from twenty-one days old plants of rice genotypes Nidhi and Panvel1 (contrasting-NUE genotypes) grown in pots with media containing normal or low nitrate levels (15 mM and 1.5 mM potassium and calcium nitrate) and immediately frozen in liquid nitrogen as 100 mg aliquots. Total RNAs were isolated using RNAiso Plus solution and 5 µg each were reverse transcribed using PrimeScript™1st strand cDNA synthesis kit as per the instructions of the supplier (Takara, Japan). Exon spanning primers were designed using the Quant Prime tool (https://quantprime.mpimp577golm.mpg.de/?page=about). RT-qPCR was performed using SYBR Green qPCR MasterMix (GBiosciences, USA) and Aria Mx Real-time PCR System (Agilent technologies, Singapore). The relative abundance of transcripts was calculated by the 2–△△CT method (Livak and Schmittgen, 2001) using actin  gene (LOC_Os01g64630) as an internal control. The data were statistically analyzed using GraphPad Prism 6 software. These experiments were performed using two biological and three technical replicates.






Results

Co-expression analysis of N-responsive genes requires a large enough dataset as well as a large enough number of such datasets. Fortunately, most of the publicly available N-responsive transcriptome datasets (including our own) are available as microarrays, many of which captured thousands of differentially expressed genes. In total, 16 N-responsive microarrays data available at NCBI GEO were used. Venn selections between them revealed that the largest number of 3020 N-responsive DEGs were shared by only 8 transcriptome datasets (Supplementary Figure 1). They were used for the rest of the study and their results are described below.




N-responsive genes associated with NUE-phenotypic traits

In order to find the trait-gene association, we mined for all the traits associated with the 3020 N-responsive genes in the Oryzabase rice database (Kurata and Yamazaki, 2006) yielded 806 genes related to various traits. Among them, 259 genes fell into three phenotypic categories we identified earlier based on lifelong evaluation of 25 traits using six rice genotypes under different N conditions (Sharma et al., 2021). They include133 genes linked to nine vegetative traits (V1-V9), 110 genes linked to 12 reproductive traits (R1-R12), and 16 genes linked to germination (G) rate and ratio (Figure 1; Supplementary Table S3). Six genes across these three categories were associated with all the eight phenotypic traits that we identified earlier for NUE (Sharma et al., 2021). These traits were, germination, flowering, shoot length, fresh and dry biomass, root length, chlorophyll content and total plant height. The six genes associated with all these 8 NUE traits were, Os06g0603000 (Photoperiod-sensitivity-5), Os07g0497100 (Chromatin Remodeling 4), Os08g0162100 (ABERRANT SPIKELET AND PANICLE1), Os04g0498600 (S-adenosylmethionine decarboxylase), Os08g0127100 (Lysine/Histidine transporter 1), and Os03g0669200 (heterotrimeric G protein beta 1 subunit, RGB1). They could be tested on priority for nitrogen use efficiency.




Figure 1 | NUE traits checked during various growth phases. The mining of N-responsive genes into the rice database identified genes broadly linked to vegetative traits including germination (G, V1-V9) and reproductive stages (R1-R12) linked to NUE-phenotypic traits. The number of genes associated with each corresponding trait is denoted in the bracket.







Biological pathways and sub-cellular locations of genes involved in N-response/NUE

Gene Ontology (GO) analysis of all 3020 N-responsive genes using EXPath 2.0 for biological processes based on P values and FDR showed the involvement of translation, salt stress, water deprivation, amino acid biosynthetic process, cold stress, tricarboxylic acid cycle, peptidyl-serine phosphorylation, photosynthesis, mRNA splicing and respiration, among others. The details of GO-enrichment analyses are provided in Supplementary Table S4. The top 20 statistically significant biological processes (P < 0.05) were visualized using Heatmapper (Figure 2). Similar processes were also obtained when GO analysis was carried out using AgriGO v2. They include translation, carbohydrate metabolism, hormone, and photosynthesis (Supplementary Table S5). Many DEGs were also mapped to calcium metabolism, amino acid metabolism, ubiquitination, and tricarboxylic acid cycle among others, suggesting crosstalk between these pathways.




Figure 2 | Gene Ontology analysis of N-responsive genes. GO analysis of the N-responsive genes performed using Expath for biological processes based on P values and FDR. The top 20 statistically significant biological processes (P < 0.05) were visualized using Heatmapper.







Co-expression network analysis reveals coregulated modules of N-responsive genes

Out of the 16 N-responsive microarray datasets considered, only eight of them had the maximum number of shared N-responsive genes (3020) and only these 3020 genes were used for the WGCNA analysis. Prior to analysis, it was verified that the sample dendrogram and corresponding traits of all the 3020 N-responsive genes passed the cutoff thresholds and were suitable for network analysis (Figure 3A). As the soft threshold power value is a critical parameter that affects the independence and average connectivity degree of the co-expression modules, β = 6 was selected with scale-free R2 = 0.928 for the analysis, based on prior screening for network topology (Figure 3B). The gene co-expression network was constructed using hierarchical clustering of the calculated dissimilarities resulting in fifteen different modules (Figures 3C, D; Supplementary Table S6). We employed eigengenes as indicative patterns and evaluated the similarity of each module by correlating their respective eigengenes (Figure 3E). The turquoise module, which encompasses 29% of the genes, had the highest count of genes with a total of 875 (Figure 3F). The blue module had the next largest number with 479 genes, followed by the brown module with 334 genes, yellow with 270, green with 165, black with 133, and so on.




Figure 3 | Weighted gene co-expression analysis (WGCNA) and module’s associated processes of N-responsive genes. (A) All eight N-responsive datasets passed the cutoff thresholds, and the sample dendrogram as well as the corresponding traits were deemed suitable for network analysis. (B) Topology of the network analyzed for various soft-thresholding powers. On the x-axis, the weight parameter β is represented, while the left figure’s y-axis represents the correlation coefficient squared between log(k) and log(p(k)) in the corresponding network. On the right graph’s y-axis, the mean of all gene adjacency functions in the corresponding gene module is represented. (C) Matrix showing Module-Trait Relationships (MTRs) of 15 different modules under different conditions. The y-axis denotes the module names, while the x-axis denotes the conditions. The numbers in the table correspond to the Pearson correlation coefficients, and the color legend is used to show the correlation level. The heatmap’s right side displays the correlation’s intensity and direction, with red indicating a positive correlation and green indicating a negative correlation. (D) A hierarchical cluster tree of the common genes displaying coexpression modules is shown. The assigned modules are depicted by branches and color bands, while the major tree branches are labeled in distinct colors. Genes are represented by the tips of the branches. (E) The interaction between co-expression based on eigengenes as indicative patterns and evaluated the similarity of each module by correlating their respective eigengenes and cluster dendrogram is displayed. The axes’ colors indicate their respective modules, and the heatmap’s yellow intensity represents the degree of overlap, with darker yellow denoting greater overlap. Indicative patterns and evaluated the similarity of each module by correlating their respective eigengenes. (F) Showing the turquoise module, which includes 29% of the genes, had the largest number of genes.







Significant modules reveal the enrichment of photosynthesis and other processes

To identify the physiological processes involved in N-response/NUE, we examined the correlation between genes from the significant co-expression modules with their process annotations. The identification of the modules was based on two criteria: a module-trait relationship with an R2 value greater than 0.5 and a significant p-value for the relationship between module membership and gene significance. Two modules, namely black and turquoise, were identified based on these criteria (Figure 3C). Nevertheless, the turquoise module demonstrated a higher score than any other module according to the second criterion, suggesting its stronger correlation with the NUE traits (Figure 3F). Both modules exhibited a negative correlation with the treatment and age of the plant from which the tissue was sampled. However, a positive correlation was observed in the turquoise module with respect to the type of tissue sampled. These findings suggest that the spatial co-regulation of gene expression in different tissues/organs of the plant may be more significant in N-response/NUE than temporal co-regulation in terms of different stages of development.

Gene ontology analysis of all the modules revealed their involvement in various processes (Supplementary Tables S4, S5), as well as their significance in each module (Figure 3F). It revealed photosynthesis as the most significant process in the turquoise module, TCA cycle in the blue module, translation in the brown/yellow module, respiration in the green module and other physiological processes including proteolysis and defense in the black module (Supplementary Table S7). Other significant processes include jasmonic acid mediated signaling pathway, seed coat development, glutamate metabolic process, response to cold, D-xylose metabolic process, cellular amino acid metabolic process.





PPI network of co-expressed N-responsive genes reveals hub genes

In view of better functional annotation of the co-expressed genes from the turquoise module, this module was chosen for protein-protein interaction (PPI) network analysis. All the interacting partners of the turquoise module were retrieved from the STRING database (Szklarczyk et al., 2015, Supplementary Table S8). They were found to have a highly significant PPI enrichment score (1.0e-16). They were ranked by the experimentally validated protein–protein interaction score and their networks with 518 nodes and 3104 edges were visualized by Cytoscape version 3.91 (Figure 4A) to reveal the interaction modules involved in the associated processes (Supplementary Table S7). Gene Ontology was performed using ExPath2.0 to find out the processes aided by such protein interactions (Supplementary Table S8). It revealed photosynthesis, transport, protein-chromophore linkage, glycolytic process, sterol biosynthetic process, mRNA splicing, chromatin organization and oxidation-reduction among others that need interaction between products of co-expressed N-responsive genes (Supplementary Table S8).




Figure 4 | Protein-protein interaction (PPI) network and Hub Genes. Network based on functional annotation of the co-expressed genes from the turquoise module. The interactors were identified using STRING database and visualized by Cytoscape based highly significant PPI enrichment score (1.0e-16). (A) Interaction modules involved in the associated processes; (B) The highly connected genes called as Hub Genes among the interactors of the top 10 genes.



To select the hub genes from the network, firstly CytoHubba plugin was used with the MCC algorithm, which provided the top 10 genes with default parameters. Secondly, the MCODE plugin was used to identify the x highly connected genes among the interactors of these top 10 genes. The CYTOHUBBA and MCODE plugins only provide statistically significant genes or gene clusters by default. Therefore, these x highly connected genes qualify to be called as hub genes (Figure 4B). Their functional annotation revealed their involvement in the ubiquitin process.





Transcription factors and transporters coordinate N-response/NUE

N-response spans thousands of genes and a fraction of those that are additionally associated with yield contribute to NUE as a multi-genic trait (Kumari et al., 2021; Sharma et al., 2021). Identification of the most contributing genes has been a challenge and could be aided by shortlisting them from the functional groups emerging from co-expression analyses, such as transcription factors (TFs), transporters, etc. We searched for the 3020 N-responsive genes among different TF databases and identified 67 classes of TFs encoded by 210 N-responsive genes. They include 26 major classes (≥3 genes) totaling 156 genes and 41 minor classes (¾2 genes) totaling 54 genes (Supplementary Table S9). They are AP2/ERF-ERF, MYB-related, NAC, bZIP, AUX/IAA, PHD, bHLH, C3H, and GRAS among others (Figure 5A; Supplementary Table S9). Among the co-expressed modules, the turquoise module was predominant for transcription factors (55) followed by blue (33), yellow (22), brown (20), pink (16), red (14), and nine others. Gene counts based on Venn analysis of these 210 TFs with predicted NUE-related TFs (Kumari et al., 2021) confirmed 32 of them. Only one of them (Dof1) was previously reported as associated with NUE (Kurai et al., 2011), but our analysis offers many more (31) TFs as candidates to improve N-response/NUE.




Figure 5 | Transcription factors, Transporters, and Kinases associated with NUE. (A) 67 classes of TFs encoded by 210 N-responsive genes; (B) 15 Major and 32 minor transporter gene families identified in 92 and 45 N-responsive genes respectively; (C) Nine kinase families identified in 98 N-responsive genes.



N-transporters are important regulators of source-sink dynamics (Tegeder and Masclaux-Daubresse, 2018) and some were indeed associated with NUE (Masclaux-Daubresse et al., 2010; Wang et al., 2018; Wang et al., 2019; Hou et al., 2021, Nazish et al., 2021). We searched for the 3020 N-responsive genes among Rice transporter DB, RAP DB, Transport DB2, and identified 15 major transporter’s families (≥3 genes) totaling 92 genes and 32 (≤2 genes) minor transporters families totaling 45 genes (Supplementary Table S10). The top 5 transporter’s families are the mitochondrial carrier (MC) family, major facilitator superfamily (MFS), H+- or Na+-translocating F-type, V-type and A-type ATPase (F-ATPase) superfamily, drug/metabolite transporter (DMT) superfamily, ABC transporter superfamily (Figure 5B). Their detailed description has been provided in Supplementary Table S10. Among the coexpressed modules, the turquoise module has maximum transporters followed by blue, brown, pink, black, and others. A Venn analysis comparing these 132 transporters to earlier predicted NUE transporters confirms 17 of them as NUE transporters. Out of the analyzed transporters, AMT1.1 and NRT1.1 were validated in the field for NUE. Thus, our analysis identified several other transporters as potential candidates for improving N-response/NUE.





Protein kinases in N-response/NUE

Protein kinases are known to play an important role in N-response and NUE in crops (Fataftah et al., 2018; Hsieh et al., 2018; Jiang et al., 2018; Perchlik and Tegeder, 2018; Xiong et al., 2019). Here, we identified 98 N-responsive genes encoding 9 kinase families (Figure 5C; Supplementary Table S11) using the database iTak (http://itak.feilab.net/cgi-bin/itak/index.cgi). They are glycogen synthase kinase (GSK) and CDC-like kinase (CLK; CMGC: 27), receptor-like kinases (RLK: 26), Ca2+/calmodulin-dependent protein kinases (CAMK: 22), Tyrosine kinase-like (TKL: 9), casein kinase 1(CK1: 6), AGC (3), serine/threonine protein kinase (STE: 3), a numb-associated family of protein kinases (NAK: 1) and with-no-lysine protein kinases (WNK: 1). Among the coexpressed modules, the turquoise module was predominant for kinases (25) followed by blue (15), brown (11), yellow (10), green (8) and nine others. Venn analysis of these 98 kinases with the previously predicted NUE-related kinases in rice (Kumari et al., 2021) enabled shortlisting of 18 of them as potentially critical for NUE. Among them, four kinases namely GUDK, OsBSK3, OSK1, and OSK3 were previously field-validated for yield but not for NUE. Thus, our analysis offers a shortlist of kinases as candidates to improve N-responsive yield and therefore NUE.





miRNAs in N-response/NUE

To understand the role of miRNAs in post-transcriptional regulation of N-response/NUE, targets for miRNAs were searched among the 3020 N-responsive genes using the Plant miRNA database. The search identified 67 unique miRNA targets. The details of their genes and functions along with references are provided in Supplementary Table S12. Their gene ontology analysis by ExPath2.0 revealed the GO terms such as pollen development, splicing, and RNA processing among others (Supplementary Table S12). This indicates the role of these miRNA targets in regulating yield through RNA splicing. Among the coexpressed modules, the turquoise module was predominant for these miRNA targets (15) followed by blue (14), brown (10), magenta (6), and eight others. Venn analysis of these 67 miRNA targets with the previously predicted NUE-related miRNA targets (Kumari et al., 2021) enabled shortlisting of 4 of them as potentially related to NUE. They are, osa-miR1424, osa-miR170a, osa-miR1848 and osa-miR1861. These identified microRNAs have previously been reported to play a role in regulating rice grain development (Lu et al., 2008; Zhu et al., 2008) but not in NUE. Thus, our analysis offers a shortlist of miRNA targets as candidates to improve NUE.





N-regulated post-translational modifications in rice

Initial gene ontology analysis of N-responsive DEGs in Nidhi revealed many terms associated with post-translational modifications (PTM) such as phosphorylation, de-phosphorylation, hydrolase activity, glycosylation, and ubiquitination (Supplementary Table S13). In order to find N-responsive DEG-encoded proteins that can be modified post-translationally, the 3020 N-responsive genes were searched in the PTM viewer database (https://www.psb.ugent.be/webtools/ptm-viewer/experiment.php). We found 1918 gene IDs in the entire WGCNA data, of which the maximum number of PTMs (1056) were found for Lysine 2-Hydroxyisobutyrylation followed by Phosphorylation (651), Lysine Acetylation (102), Carbonylation (71), Ubiquitination (20), N-glycosylation (12), Succinylation (4) and Malonylation (2) (Supplementary Table S13). Gene counts using Venn analyses between these PTM genes and previously predicted NUE-related transcription factor genes in rice (Kumari et al., 2021) shortlisted16 DEGs encoding post-translationally modulated TFsfor NUE. Out of the 16 TFs, 14 (ASD1, DOS, OsbZIP12, OsNAC6, OsHAM2, OsPRR73, OsBIHD1, OsSPL9, OsHDT1, OsABF3, OsARF10, OsFBH1, OsNTL5 and OsMYBS2) underwent post-translational modification by phosphorylation, while the remaining two (OsC3H33 and OsCOL4) were modified by acetylation (Supplementary Table S13).

Similarly, 11 transporters with post-translational modifications were also found. Of these, six (OsLAX1, AMT1.1, OsEIN2, OPT, OsNPF2.4 and OsSUT2(t)) were modified via phosphorylation, while OsPAPST1 and OsABCC1 were modified by 2-Hydroxyisobutyrylation. Additionally, OsBT1-3 and OsABCC13 were modified via acetylation, while OsHT was modified through ubiquitination (Supplementary Table S13). Among the coexpressed modules, the turquoise module was predominant for these PTMs (550) followed by blue (304), brown (233), yellow (169), green (113) and ten others (Supplementary Table S13). Notably, out of these all TFs and transporters identified in this analysis, only one transporter namely AMT1.1 was field-validated for NUE in rice (Ranathunge et al., 2014). This analysis offers many more post-translationally regulated N-responsive genes involved in NUE from coexpression modules.





G-quadruplex sequences could epigenetically regulate N-responsive yield and NUE

To determine the presence of G4 sequences in N-responsive genes, we obtained the complete Oryza sativa G4 sequence data from PlantG4DB. After removing duplicate genes, we identified unique gene IDs that contained G4 sequences and performed Venn Selection with our 3020 N-responsive genes to identify 2298 genes. They were found to be distributed on all 12 chromosomes, though chromosomes 1, 2, and 3 accounted for over 50% of them. A detailed search for G4Q subclasses revealed that 2065 genes contained them in their mRNA/gene region, 1977 in their exons, 1649 in their CDS, 716 in 5’UTRs, 399 in promoters, and 161 in 3’UTR regions (Supplementary Table S14). Their statistical significance was confirmed by Fischer’s exact test and the details are provided in Supplementary Table S15. We also found a 17.6% higher occurrence of G4s in the plus/antisense strand compared to the negative/sense strand.

Among the identified WGCNA modules, 674 genes of the turquoise module were found to have G4 sequences followed by blue, brown, and other modules. Their details are presented in Supplementary Table S16. Gene ontology analysis of these N-responsive genes having G4 sequences revealed that they were involved in carbohydrate metabolism, nitrogen transport, signaling, respiration, and water deprivation among others (Supplementary Table S17). As yield association is an important differentiator in N-response and NUE (Sharma et al., 2021), we used a list of 3532 yield related genes compiled from journal literature and online databases as described earlier (Kumari et al., 2021). Their Venn selection with the 2298 genes having G4 sequences revealed 389 genes as both N-responsive and yield associated and therefore NUE-related (Supplementary Table S18). To our knowledge, this is the first shortlisting of G4s genes as important candidates for epigenetic improvement of NUE.

To confirm the differential N-responsiveness of some of these shortlisted genes, we selected 18 NUE-related genes (N-responsive and yield-associated genes) containing different location categories of G4 sequences (5’UTR, 3’UTR, cds, exon, mRNA and promoter) for further validation by RT-qPCR. The list of primers used in this study is provided in Supplementary Table S19. As negative controls, we used a non-N responsive gene without G4 sequences (Os01g0940000) and a non-N responsive gene with G4 sequences (Os09g0456200). Their expression was nearly unaltered, whether in terms of genotypes or N-treatments (Supplementary Figure 2). In addition, actin was used as an internal housekeeping control for RT-qPCR to test low nitrate response against normal nitrate. Relative to these controls, the expression of 7 test genes was validated for differential expression, either in terms of genotype or nitrate response (Supplementary Figure 2). Interestingly, 4 out of these 7 genes showed contrasting patterns of N-response between contrasting genotypes, while the other 3 showed similar up or downregulation by nitrate in both the genotypes. The genes that showed contrasting patterns were, OsCYP20-2 (Os05g0103200), OsGLP2-1 (Os02g0532500), TubA2 (Os11g0247300) and OsDXS2 (Os06g0142900), while the other three genes namely SPDT (Os06g0143700), OsASNase2 (Os04g0650700) and OsNRT1.1A (Os08g0155400) showed a similar pattern of regulation. These differences in regulation could be of particular interest to further dissect the mechanism of regulation of NUE, or to validate their potential for crop improvement.





G-quadruplex sequences differentiate genes involved in N-response and NUE

G-quadruplex sequences are known in genes that are associated with energy homeostasis, oxidative stress, and signaling pathways such as AMP kinases and TOR kinases (Xu et al., 2010; Robaglia et al., 2012; Dobrenel et al., 2013). TOR kinases have their role in the development of leaf and shoot via the GTPase ROP2 in response to nitrogen (Tulin et al., 2021). Therefore, we propose that nitrogen-responsive genes are important targets for the formation of G-quadruplex sequences and are regulated based on external N-availability. Gene ontology analysis of the N-responsive genes containing G4 sequences reveals their involvement in carbohydrate metabolism, water deprivation, nitrogen transport, respiration, among others (Supplementary Table S17). Interestingly, their Venn selection with the previously reported NUE-related genes revealed that 17% of the N-responsive genes containing G4 sequences are related to yield therefore, NUE. This provides the first ever estimate that upto 17% of the N-responsive genes could participate in NUE through epigenetic regulation mediated by G-quadruplex sequences, subject to further validation. Thus, G4 sequences could provide an effective means for differentiating between N-response and NUE at the gene level. The remaining 83% of them could either use genetic mode of regulation or other forms of epigenetic regulation besides G4Q.





NUE involves better photosynthesis, transpiration, and seed germination in low urea

From the gene ontology (GO) analysis of N-responsive genes containing G4s genes constituting the turquoise co-expression module, photosynthesis transpiration and seed germination were chosen for physiological validation by LICOR, while the genes tested above by RT-qPCR span other processes such as metabolic and abiotic stress processes, apart from chlorophyll and photosynthesis. Using 21 days old potted rice plants, photosynthesis and transpiration were measured on a pair of contrasting rice genotypes namely, Nidhi (low NUE) and Panvel1 (high NUE) using LICOR6400XT as described in materials and methods. Photosynthesis was significantly higher (P < 0.05) in low urea (1.5 mM N) over normal urea (15 mM N) for the high NUE genotype Panvel1, while it was lesser in the case of Nidhi (Figure 6A). A similar pattern was also observed for transpiration, though not found to be statistically significant (Figure 6B). In an independent experiment to test N-responsive germination in another high NUE genotype of rice (Vikramarya), surface sterilized and presoaked seeds were grown in Petri plates on moist cotton containing Arnon Hoagland medium (Sharma et al., 2018). The media contained either normal Ndose given as urea (15mM), 50% of normal N (7.5mM), or 10% N (1.5mM). By counting the visibly germinated seeds, it emerged that the highest % germination was found in 10% of normal urea (1.5 mM), followed by 50% N and 100%N (Figure 6C).




Figure 6 | N-responsive changes in physiological parameters in a contrasting pair of rice genotypes. Changes measured in (A) Photosynthesis; (B) Transpiration and (C) Germination under low urea and normal conditions in Nidhi (low NUE) and Panvel1 (high NUE) rice genotypes. The test of significance (P < 0.05) has been shown as the star, while NS represents non-significance.








Discussion

Several transcriptomic datasets of N-responsive genes are now available in various crops including rice, and they contain a vast amount of valuable information that has yet to be fully utilized. They include the underlying processes, shortlisting of candidate genes, identification of QTLs, miRNAs and their targets (Kumari et al., 2021). Some of them are specific to different sub-species of rice, such as indica (Pathak et al., 2020; Sharma et al., 2022), japonica (Mandal et al., 2022, others) or different sources of N such as nitrate, ammonium, or urea (Sharma et al., 2021). But together, they span diverse genotypes, N-forms and growth conditions yielding thousands of DEGs and enabling comprehensive meta-analyses. Identification of co-expressed genes/modules by methods such as WGCNA is one of the ways to distill the essence from all these datasets, but so far this was done only with individual N-responsive transcriptomic datasets in rice (Coneva et al., 2014; Zhang et al., 2019; Ueda et al., 2020; Yang et al., 2020b). Therefore, the present study utilized 16 microarray datasets for which the DEGs could be extracted from publicly available datasets and shortlisted 8 of them that shared the largest number of 3020 DEGs for WGCNA and other analyses.

Even though several RNAseq transcriptomes have also been published (SRP253184), very few of them revealed their DEGs and their small number of a few hundred DEGs did not meet the criteria for WGCNA and hence not considered for this study. Our analyses of the 3020 N-responsive DEGs common to 8 transcriptomes included WGCNA for genetic regulation and G-quadruplex sequences and miRNAs for epigenetic regulation to quantify their relative contribution to the NUE trait and to propose a model for its regulation.

Genes with similar expression patterns may participate in similar biological processes or networks. Further, positively coexpressed genes within the same pathway tend to cluster in close proximity within the pathway structure, whereas negatively correlated genes generally occupy more distant positions (Mao et al., 2009). Similar results were found in plants when coexpression networks of 1,330 genes derived from the AraCyc metabolic pathway database of Arabidopsis thaliana were analyzed (Wei et al., 2006). Our WGCNA of 3020 N-responsive genes shared by 8 N-responsive microarray datasets yielded 15 modules. The turquoise module had the largest number of 875 genes with the highest significance and proportion of functional categories. Of these, 34% were transporters, 26% TFs, >22% miRNAs, 25.5% kinases, >28% PTMs, and>29% G4 sequences. This module contains the largest number of predicted NUE-related genes by Kumari et al. (2021), apart from the field-validated ammonium transporter and nitrate transporter (OsNPF2.4, Fan et al., 2016). This makes the turquoise module the most suitable one to identify hub genes and important processes for NUE. They include photosynthesis, water transport, and seed germination, which we had earlier shown as important processes for N-response/NUE (Sharma et al., 2018; Kumari et al., 2021; Sharma et al., 2021; Mandal et al., 2022; Sharma et al., 2022).

Gene ontology analyses revealed that biosynthesis and transport of nitrogen, photosynthesis, water deprivation, translation, signal transduction, respiration and peptide biosynthetic process were prominent biological classes of N-responsive genes (Supplementary Table S4; Figure 2), suggesting the role of nitrogen-responsive genes in respiration, photosynthesis, and water deprivation, etc. These findings extend our experimental observations in indica (Sharma et al., 2018; Sharma et al., 2022) Kumari et al. (2021) and japonica rice (Mandal et al., 2022), which also indicated the importance of some transcription factors. In this study, we found 210 DEGs encoding transcription factors falling into 67 categories (Supplementary Table S7). A few genes associated with NAC, MYB and GRASS are among the top categories, while DOF and MADS are among the bottom and have been implicated earlier in yield or NUE (Madan et al., 2022). Among them, DOF1 is well-known to improve NUE (Yanagisawa et al., 2004) and ARF4 has been reported to improve yield (Hu et al., 2018). Therefore, it may be attractive to validate the remaining TFs reported here for their role in NUE.

Nitrogen-responsive transporters can uptake either nitrate or ammonium ions, amino acids, or urea through their respective families of transporters for plant growth, development, yield, and NUE (Kumari et al., 2021; Madan et al., 2022; Sharma et al., 2022). In this study, the 132 transporters encoded by urea-responsive genes include 17 that we previously predicted to be involved in NUE (Kumari et al., 2021; Supplementary Table S8). Interestingly, the mitochondrial carrier family tops among the other transporter families and their further characterization, and shortlisting might reveal new targets for NUE.

A common limitation of transcriptomic analyses is that they do not adequately account for the role of post-translational modifications (PTMs) in the response to environmental signals despite their importance in signal transduction. They have also not been explored in N-response till recently (Pei et al., 2019; Wang et al., 2021; Han et al., 2022) and NUE (Sharma et al., 2022). Our bioinformatic analysis revealed 8 types of N-responsive PTMs of 1918 proteins, of which Lysine 2-Hydroxyisobutyrylationemerged as most predominant, followed by phosphorylation for their potential role in N-response/NUE (Supplementary Table S12). Phosphorylation has recently been acknowledged to be a crucial PTM for N response (Han et al., 2022) and NUE (Sharma et al., 2022). Here, we report that the overall targets of PTM in N-response/NUE include 14 transcription factors (Supplementary Table S13) and 6 transporters (Supplementary Table S14).

G4s are considered to act as molecular switches to regulate gene expression in metazoan cells (Eddy and Maizels, 2006). In plants, a few studies have reported the role of G4 sequences, such as in transport and gene expression (Garg et al., 2016), growth and development (Yang et al., 2020b), hydrolase activity (Cagirici et al., 2021), stress response, energy status, and sugar availability (Yadav et al., 2017). Here, we report their role in N-response or NUE for the first time. We found the highest occurrence of G4Q in the turquoise module of N-responsive DEGs in rice. The occurrence of G4s in their mRNAs, exons and CDS suggests their role in the regulation of gene expression (Andorf et al., 2014), while their occurrence in UTRs suggests their role in post-transcriptional regulation (Wang et al., 2015). Among the subtypes of G4s, we found that G2 sequences were >99% in the N-responsive DEGs.

The association of different types of G4s with different genomic regions is considered to suggest their role in different regulatory processes. For example, G2 G4s are implicated in the regulation of transcription and translation (Varshney et al., 2020), while G3 G4s are considered important for promoter regulation (Hegyi, 2015). Gene ontology analysis of all the DEGs containing G4s suggests their involvement in carbohydrate metabolism, nitrogen transport, signaling, respiration, and water deprivation among others (Supplementary Table S17). These observations are in line with the findings of Yadav et al. (2017), who linked G4s with carbohydrate metabolism and water deprivation. Therefore, it is attractive to validate their role in N-response/NUE, for which we provide a prioritized list of 389 G4s-containing genes common to N-response and grain yield (Supplementary Table S18). Further, their regulation needs to be examined in both genetic and epigenetic terms, as G4 sequences are also known to be involved in epigenetic regulation (Cavalieri and Spinelli, 2019; Mukherjee et al., 2019; Reina and Cavalieri, 2020; Wu et al., 2021). Accordingly, the confirmed candidates may be targeted to improve NUE either genetically or epigenetically.

Our RT-qPCR studies validated the nitrate-regulation of seven G4Q harboring genes related to NUE (N-responsive and yield-related) in two Indian rice genotypes (Supplementary Figure 2) that we earlier characterized as contrasting for NUE (Sharma et al., 2018; Sharma et al., 2021). Four of these genes showed contrasting patterns of nitrate regulation between the contrasting genotypes, while the other three genes showed similar up/down regulation between genotypes. These differences in gene expression could be due to genetic and/or epigenetic reasons including G4Q and need further investigation using many more genes in wider germplasm. It also remains to be seen whether post-transcriptional regulation of these genes by G4Qs causes measurable changes in their protein levels and whether they correlate with measurable variation of NUE in the germplasm.

Interestingly, G4 sequences can play a potential role in mitochondria (Falabella et al., 2019) and mitochondrial transporters are emerging as an important class of putative G4s-containing candidates in our study. Further, our earlier findings demonstrated the role of mitochondrial respiration in N-response/NUE (Sharma et al., 2018). Taken together, these two lines of evidence indicate the potentially important role of mitochondria in the epigenetic regulation of N-response/NUE, which was so far attributed only to miRNAs. Further, validation of the role of G4s in mitochondrial regulation of NUE could offer novel means to shortlist candidate genes for crop improvement towards NUE.

Finally, based on our results, we present a model that summarizes the regulatory mechanisms potentially activated by G4 quadruplexes in response to variations in external nitrogen levels (Figure 7). Interestingly, only 17% of the G4s-containing N-responsive genes are found to be related to yield, indicating that only those G4s-containing genes that are both N-responsive and yield-related contribute to NUE. These findings add to our previous experimental distinction between N-response at the level of phenotype as well as genotype (Kumari et al., 2021; Sharma et al., 2021; Sharma et al., 2022) and could facilitate the shortlisting of target genes for crop improvement towards NUE as well as to choose between genetic or epigenetic means.




Figure 7 | A hypothetical model of the underlying regulatory processes that may be triggered by G-quadruplexes in response to change in the availability of external nitrogen.
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Higher grain yield in high-yielding rice varieties is mostly driven by nitrogen (N) fertilizer applied in abundant amounts leading to increased production cost and environmental pollution. This has fueled the studies on nitrogen use efficiency (NUE) to decrease the N fertilizer application in rice to the possible extent. NUE is a complex physiological trait controlled by multiple genes, but yet to be completely deciphered in rice. With an objective of identifying the promising physiological traits associated with NUE in rice, the performance of 14 rice genotypes was assessed at N0, N50, N100, and N150 for four (two wet and two dry) seasons using agro-morphological, grain yield, flag leaf traits, photosynthetic pigment content, flag leaf gas exchange traits, and chlorophyll fluorescence traits. Furthermore, the data were used to derive various NUE indices to identify the most appropriate indices useful to screen rice genotypes at N50. Results indicate that with the increase in N application, cumulative grain yield increased significantly up to N100 (5.02 t ha−1); however, the increment in grain yield was marginal at N150 (5.09 t ha−1). The mean reduction of grain yield was only 26.66% at N50 ranging from 15.0% to 34.2%. The significant finding of the study is the identification of flag leaf chlorophyll fluorescence traits (Fv/Fm, ΦPSII, ETR, and qP) and Ci associated with grain yield under N50, which can be used to screen N use efficient genotypes in rice under reduced N application. Out of nine NUE indices assessed, NUpE, NUtE, and NUEyield were able to delineate the high-yielding genotypes at N50 and were useful to screen rice under reduced N conditions. Birupa emerged as one of the high yielders under N50, even though it is a moderate yielder at N100 and infers the possibility of cultivating some of the released rice varieties under reduced N inputs. The study indicates the possibility of the existence of promising genetic variability for grain yield under reduced N, the potential of flag leaf chlorophyll fluorescence, and gas exchange traits as physiological markers and best suitable NUE indices to be deployed in rice breeding programs.




Keywords: maximum quantum yield of PSII, actual quantum yield of PSII, electron transport rate, nitrogen use efficiency, nitrogen, rice





Introduction

Rice, a grain crop, is the prime source of food for more than half of the global population (Ogawa et al., 2016; Lee, 2021). Owing to the development of high-yielding cultivars, and the application of chemical fertilizers, rice production has been continuously improved during the last 50 years, keeping pace with the increasing global population (FAO, 2018). Nitrogen (N) is one of the key nutrient elements required for growth and development of rice. However, soil N content in agricultural land cannot sustain the higher yields of improved rice varieties. Hence, the application of N fertilizer has become unavoidable to enhance rice yield (Wang et al., 2022). However, most of the fertilizers applied in agriculture is the main source of environmental losses of reactive N compounds contributing to N pollution globally (Sutton et al., 2013) as well as in South Asia (Raghuram et al., 2021). Global N fertilizer consumption has already exceeded 110 million tons per year (Hu et al., 2023). The excess application of N fertilizers is more intense in China and India, which account for nearly 50% of the global rice production and consumption (Muthayya et al., 2014).

In India, from 1961 to 2013, the percentage N fertilizer application in total N input in production of cereal crops enhanced from 8%–10% to 71%–75% (Sapkota et al., 2023). As price of fertilizers are at record levels and may remain elevated, there has been a huge burden on the country’s economy. In parallel to the higher N fertilizer application, nitrogen use efficiency (NUE) has also been observed to be decreasing continuously and is evolving to be a major problem in restraining production of rice. In 2013, NUE was in the range of 20%–24% (except 32% for wheat) due to several-fold increase in the use of N fertilizers and imbalanced usage of fertilizer nutrients (Sapkota et al., 2023). In China, the average application rate of N fertilizer has reached 180 kg/hm2, which is 75% higher than the world average. However, the NUE is only 28%–35%, which is 15%–20% lower than that of the global average NUE (Liu et al., 2013; Han et al., 2015). It is projected that only 30% to 50% of the applied N fertilizer is utilized by rice (Ladha et al., 2020), thus resulting in enormous N leaching, and increased soil acidification and water eutrophication, leading to N-related environmental pollution, which is also a concern for climate change. In addition to the crop production practices targeting NUE, developing N efficient rice varieties to reduce the global climate change impacts should be one of the major research objectives (Neeraja et al., 2016). Reducing the cost of production and minimizing the environmental pollution through loss of N in field by using rice cultivars having higher NUE that can reduce the application of N fertilizers without a greater reduction in grain yield to feed the ever-increasing global population are need of the hour (Ciampitti and Vyn, 2011; Sharma and Bali, 2017).

India faces a dual challenge with N in terms of both food and the environment. On the one hand, India consumes 17 million tons of N fertilizer each year, which represents 14% of the global total. On the other hand, since the green revolution in 1970, the use of N fertilizer has increased at an annual rate of approximately 6% (Sutton et al., 2017). In 2022–2023, the Government of India allocated US$7.6 billion for urea subsidies. India loses US$10 billion worth of reactive N each year as fertilizer value. India is second only to China in terms of N production and consumption (Tewatia and Chanda, 2017). Studies on NUE in India began two to three decades ago in order to achieve sustainable agriculture (Abrol et al., 2007; Abrol et al., 2008; Galloway et al., 2008). As most of the genetic potential to enhance NUE lies unutilized in the germplasm of agricultural crops, focus should be on screening and utilizing them to improve NUE rather than for N-responsive yield alone (Metson et al., 2021). At the Indian Council of Agricultural Research-Indian Institute of Rice Research (ICAR-IIRR), screening of indigenous and exotic rice germplasm, varieties, landraces, and advanced breeding lines at various N levels was carried out as part of National Innovations on Climate Resilient Agriculture (NICRA), Newton-Bhabha Virtual Centre on Nitrogen Efficiency of Whole-cropping Systems for improved performance and resilience in agriculture (NEWS India-UK) and South Asian Nitrogen Hub (SANH) projects. Donors with promising performance at 50% of the recommended N level were identified and mapping populations were established (Subrahmanyam et al., 2019). Some promising breeding lines for NUE were tested under All India Coordinated Rice Improvement Project (AICRIP) across multiple locations from 2018 and identified for NUE in rice.

NUE can be enhanced agronomically up to a certain level, beyond which biological crop improvement alone can break the barrier for further improvement (Chakraborty and Raghuram, 2011). Based on this insight, research on the biological basis of N-response and NUE in diverse crops gained momentum (Raghuram and Sharma, 2019). Understanding physiological processes of the plant controlling N utilization under various N management practices is vital to improve NUE (Ciampitti and Vyn, 2011; Sharma and Bali, 2017). NUE is a multigenic quantitative trait, involving various N-responsive mechanisms that are yet to be fully characterized (Mandal et al., 2022). Earlier studies have documented the association between N application rate on crop photosynthetic traits, NUE, and yield (Makino et al., 2003; Paponov and Engels, 2003; Yang et al., 2010; Kong et al., 2016; Liu et al., 2019; Ochieng’ et al., 2021; Shah et al., 2021). Photosynthesis is the plant’s most crucial process for growth, biomass production, and yield (Chen et al., 2018). Two of the key traits to determine photosynthetic capacity are specific leaf area and leaf N content (Hikosaka, 2004; Poorter et al., 2009), which enhances chlorophyll content, enzyme content, and enzyme activity, and ultimately improves photosynthetic efficiency (Giersch and Robinson, 1987; Nasar et al., 2020; Noor Shah et al., 2021; Ochieng’ et al., 2021). Chlorophyll is highly sensitive to variations in the N content in the soil as a great part (70% of leaf N) of N was reported to part of the pigment’s composition (Paul, 1990; Kopsell et al., 2004; Fathi and Zeidali, 2021; Moenirad et al., 2021).

Photosynthetic rate (Pn) and photosynthetic nitrogen use efficiency (PNUE), which is the ratio of Pn to leaf N content, are the two primary attributes affecting the photosynthesis and nutrient utilization by plant leaves (Nasar et al., 2022). Furthermore, PNUE also reflects the N allocation and the overall photosynthesis of the plant (Zhong et al., 2019; Nasar et al., 2021). The greater the photosynthetic rate, the higher the PNUE and the leaf N utilization rate of the plant (Ghannoum et al., 2005). Therefore, studying the photosynthesis and PNUE of the plant is a crucial way to reveal its effect on NUE of the crops. The reduced quantum yield under N deficiency situations can be ascribed to the reduced photosynthetic capacity of the plant, which is due to the reduction of the production of key enzymes like Rubisco in the photosynthesis process (Qi et al., 2013). In contrast, sufficient N in the plant enhances quantum yield through enhancing leaf area index and photosynthetic electron transfer chain (Qi et al., 2013; Moenirad et al., 2021). Hence, plant breeding programs should emphasize on improving the N uptake, utilization, and remobilization of plant-available N (Laperche et al., 2006).

In rice, the relationship between leaf traits and NUE is yet to be characterized (Xin et al., 2022). Similarly, plant traits associated with N-efficient varieties have not been completely explored (Zhu et al., 2022). In order to identify the physiological traits associated with NUE in rice under reduced application, a set of 14 genotypes with varying yield potential were assessed under four graded levels of N (N0, N50, N100, and N150) for four seasons by deploying agro-morphological, grain yield, flag leaf traits, photosynthetic pigment content, flag leaf gas exchange traits, chlorophyll fluorescence traits, and NUE indices as criteria.





Materials and methods




Plant materials and seasons

Based on studies conducted earlier under NEWS project, genotypes with varying yield potential, viz., Anjali, Birupa, Daya, Heera, Indira, Nidhi, N22, Tella Hamsa, VL Dhan 209, Vasumati, IR64, GQ25, Varadhan, and MTU 1010, were selected for characterization of their physiological traits. Details of rice genotypes used in the study are given in Table 1. The trial was conducted at ICAR-IIRR farm during four seasons [Kharif-2020 (wet), Rabi-2021 (dry), Kharif-2021 (wet), and Rabi-2022 (dry)]. For the two wet seasons, seeds were sown in the month of June and seedlings were transplanted in the month of July. For the two dry seasons, seeds were sown in the month of December and seedlings were transplanted in the month of January. N was applied in the form of urea in three equal splits at the basal stage, maximum vegetative stage, and panicle initiation stage. Crop was cultivated by following the standard package of practices of crop production and crop protection.


Table 1 | Details of rice genotypes included in the study.







Meteorological data

Important weather parameters recorded during the crop growing period is given in Table 2. During wet season 2020, mean maximum temperature was 30.7°C while mean minimum temperature was 21.9°C. The mean relative humidity was 93.4%, with a total rainfall of 1,375.6 mm and mean bright sunshine hours was 4.8 h day−1. During dry season 2021, mean maximum temperature was 32.4°C while mean minimum temperature was 16.1°C. The mean relative humidity was 87.5%, with a total rainfall of 16.8 mm and mean bright sunshine hours was 7.9 h day−1. During wet season 2021, mean maximum temperature was 30.7°C while mean minimum temperature was 22.6°C. The mean relative humidity was 93.9%, with a total rainfall of 823.8 mm and mean bright sunshine hours was 5.0 h day−1. During dry season 2022, mean maximum temperature was 32.5°C while mean minimum temperature was 17.3°C. The mean relative humidity was 84.4%, a total rainfall of 14.0 mm was received, and mean bright sunshine hours was 7.5 h day−1.


Table 2 | Important weather parameters recorded during crop growing period at IIRR, Hyderabad.







Soil analysis and experimental design

The experimental plot soil was clay in texture, slightly alkaline (pH 8.25), non-saline (EC - 0.76 dS/m), and medium in organic carbon content (0.53%). Soil available nitrogen was low (213 kg/ha) with high available phosphorus (92 kg/ha) and potassium (641 kg/ha). Experiments were arranged in a split-plot design with nitrogen application rates as the main plot and genotypes as the subplot with three replications. The size of each plot was 15 m2 (5.0 m long, 3.0 m wide, and 12 rows with a 25-cm row spacing). Four graded levels of N, viz., N150 [150% recommended dose of N (RDN)—150 kg N ha−1], N100 (100% RDN—100 kg N ha−1), N50 (50% RDN—50 kg N ha−1) and N0 (0% RDN—0 kg N ha−1), were used.





Morpho-physiological traits and grain yield

The number of days taken for 50% of plants to flower in each genotype and each treatment was noted as days to 50% flowering and was expressed in days. The number of days taken from sowing to physiological maturity was recorded and was expressed in days. The flag leaf traits along with SLA and SLW were measured from five randomly selected leaves per plot in three replications during 50% flowering stage (Kumar et al., 2021). Flag leaf length was measured from top to bottom of leaf and width was measured at the widest leaf part using ruler and flag leaf area was calculated using the formula given by (Quarrie and Jones, 1979).

	

Flag leaf thickness is measured using a digital caliper and expressed in millimeters (mm). The flag leaves were oven dried after measuring length, width, and thickness for 3 days at 80°C and flag leaf dry weight was recorded using an electronic balance (Sartorius, Germany). Specific leaf area (SLA) was calculated by dividing leaf area with leaf dry weight, employing the formula of Kvet (1971), and expressed in cm2 g−1. Specific leaf weight (SLW) was determined by dividing leaf dry weight with leaf area, using the formula of Pearce (1968) and expressed in mg cm−2.

At physiological maturity, plots of 1 m2 area were harvested and threshed grain weight was determined after drying to 14% moisture content and converted to t ha−1 and straw weight was also recorded for the same (Kumar et al., 2021). Total dry matter was calculated as sum of the dry weights of the plant components and converted to t ha−1 (Amanullah and Inamullah, 2016).





Photosynthetic pigment content

For the quantitative determination of leaf chlorophyll content, at 50% flowering stage, five plants were randomly chosen in each plot and the flag leaf was labeled to investigate gas exchange traits and photosynthetic pigment content. For the determination of pigment content, leaf tissue of each sample was cut into small pieces with a sharp razor blade and 25 mg of cut leaf pieces was placed into 10-mL tubes containing 10 mL of 80% acetone and stored in the dark for 48 h to ensure complete extraction of leaf chlorophyll pigment. The absorbance of the chlorophyll solution was measured by using a UV-VIS double beam spectrophotometer (Evolution 201, Thermo Scientific, USA). Chlorophyll a, chlorophyll b, and carotenoids were measured at 663.2, 646.8, and 470.0 nm, respectively, and expressed in mg g−1 fresh weight (fw). The content of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids were calculated as per the formulas given by Lichtenthaler and Wellburn (1983).





Flag leaf gas exchange traits

Gas exchange traits in flag leaf such as photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), and internal CO2 concentration (Ci) were recorded at 50% flowering stage by using the Infra-Red Gas Analyzer portable photosynthesis measurement system (6400XT, LICOR, USA) attached to a leaf chamber fluorometer, which was used as the light source. During measurements, the photosynthetically active radiation (PAR) was kept at 1,200 µmol m−2 s−1. The CO2 concentration was maintained at 387 ± 6 ppm. These measurements were made between 10:00 a.m. and 12.00 noon at all the sampling dates. Pn was expressed in μmol (CO2) m−2 s−1, gs was expressed in mol (H2O) m−2 s−1, E was expressed in mmol (H2O) m−2 s−1, and Ci was expressed in ppm. PNUE was calculated as given by Ye et al. (2019a).





Chlorophyll fluorescence characteristics

Chlorophyll fluorescence traits were measured with MINI PAM-II Photosynthesis Yield Analyzer (Heinz Walz GmbH, Germany) during 50% flowering stage. The instrument was connected to a desktop PC with WinControl-3 software. The flag leaves were dark-adapted for 30 min before recording fluorescence traits and the following fluorescence traits were calculated: the maximum quantum yield of PSII (Fv/Fm), actual quantum yield of PSII (ΦPSII), electron transport rate (ETR), coefficient of photochemical quenching (qP), and coefficient of non-photochemical quenching (qN) (Maxwell and Johnson, 2000).





Nitrogen content estimation and NUE indices

Flag leaf samples collected at 50% flowering stage were used to determine flag leaf N content, and grain and straw samples were collected from 1 m2 area at harvest. Samples were dried under shade and then in hot air oven at 60°C. Oven-dried samples were ground to fine powder using a grinder and stored in butter paper covers for estimating N concentration. The samples were digested in sulfuric acid (H2SO4) using block digestion unit and analyzed for their total N content by the micro Kjeldahl distillation method using automatic N analyzer (Kjeltec 8400 Analyzer FOSS, Denmark) with steam distillation and the N content was expressed as percentage. NUE indices such as nitrogen uptake efficiency (NUpE), nitrogen utilization efficiency (NUtE), nitrogen use efficiencyyield (NUEyield), agronomic efficiency (AE), physiology efficiency (PE), partial factor productivity (PFP), apparent nitrogen recovery efficiency (ANRE), and nitrogen harvest index (NHI) were calculated as per formulas given in Congreves et al. (2021) and nitrogen utilization index (NUI) was calculated as per the formula given in Huang et al. (2018).

	

	

	

	

	

	

	

	

	

where Plant N is the amount of N in a plant, Yield N is the amount of grain N in a plant, Plant Nf is the amount of N in a fertilized plant, Plant N0 is the amount of N in a non-fertilized plant, Yieldf is the grain yield of a fertilized plant, and Yield0 is the grain yield of a non-fertilized plant.





Statistical analysis

Two-way analysis of variance (ANOVA) was performed using an open source software R (R Core Team, 2012) with Agricolae package (de Mendiburu, 2012). Statistical significance of the parameters means was determined by performing Fisher’s LSD test to test the statistical significance.






Results

ANOVA indicates that 29 morpho-physiological traits including grain yield and N uptake traits noted significant variation with treatment and among the genotypes (Table 3). Interaction between treatment and genotypes was significant except for E, chlorophyll a, total chlorophyll, and carotenoids. Season × genotypes was significant except for flag leaf thickness, SLA, SLW, and Fv/Fm. Season × treatment was significant for Pn, gs, E, days to 50% flowering, days to physiological maturity, chlorophyll a, total chlorophyll, carotenoids, PNUE, total dry matter, grain N uptake, straw N uptake, and total N uptake. Season × treatment × genotypes was significant for gs, E, days to physiological maturity, and photosynthetic pigments. Among the NUE indices, ANOVA showed significant effect of treatment and variation among genotypes and interaction between treatment and genotypes. Three indices (NUtE, NUEyield, and NUI) noted significant interaction for season × treatment and six indices (ANRE, NUpE, NUtE, NUEyield, NUI, and NHI) noted significant interaction for season × genotypes. Significant interaction was not observed in any of the indices for season × treatment × genotypes.


Table 3 | ANOVA for morpho-physiological parameters, grain yield and nitrogen use efficiency indices.







Cumulative data of four seasons




Morpho-physiological traits and grain yield

The genotype-wise values of all the measured traits of the study are presented in Tables 4–7. The range and mean values of morpho-physiological traits along with grain yield and NUE indices at various grades of N fertilizer application are presented in Table 8. Mean grain yield significantly increased from 2.82 to 5.09 t ha−1 and total dry matter significantly increased from 7.43 to 10.89 t ha−1 with the increase in N fertilizer application among the treatments (from N0 to N50, N100, and N150). Among the genotypes, Vasumati at N50 and MTU 1010 at N100 recorded the highest grain yield (4.22 and 5.84 t ha−1), while N22 recorded the lowest (2.46 and 3.28 t ha−1) at N50 and N100. The highest total dry matter was recorded in Varadhan (9.87 and 12.08 t ha−1) whereas N22 recorded the lowest (6.29 and 7.37 t ha−1) at N50 and N100. With increased N application from N0 to N150, mean days to 50% flowering and physiological maturity significantly increased from 96 to 101 days and 125 to 130 days. Among the genotypes, days to 50% flowering ranged from 83 (Anjali) to 111 days (Birupa) at N50 and 84 (Anjali) to 112 days (Birupa) at N100. Days to maturity ranged from 114 (Anjali) to 137 days (Daya) at N50 and 114 (Anjali) to 138 days (Birupa) at N100.


Table 4 | Cumulative mean values of morpho-physiological traits along with grain yield and NUE indices at N0 in different genotypes.




Table 5 | Cumulative mean values of morpho-physiological traits along with grain yield and NUE indices at N50 in different genotypes.




Table 6 | Cumulative mean values of morpho-physiological traits along with grain yield and NUE indices at N100 in different genotypes.




Table 7 | Cumulative mean values of morpho-physiological traits along with grain yield and NUE indices at N150 in different genotypes.




Table 8 | Range and mean values of morpho-physiological traits along with grain yield and NUE indices at graded N application for cumulative data of four seasons.



Flag leaf length, width, area, thickness, and dry weight increased significantly with increased application of N. From N0 to N150, mean values of flag leaf length increased from 26.3 to 35.2 cm, flag leaf width increased from 1.28 to 1.55 cm, flag leaf area increased from 25.4 to 41.1 cm2, flag leaf thickness increased from 0.281 to 0.374 mm, and flag leaf dry weight increased from 0.121 to 0.170 g. Among the genotypes, Indira exhibited the highest flag leaf length (34.8 and 37.2 cm), area (39.2 and 43.0 cm2), and dry weight (0.177 and 0.185 g), while the lowest flag leaf length (24.6 and 27.8 cm), area (24.3 and 28.3 cm2), and dry weight (0.111 and 0.123 g) were observed in IR64, at N50 and N100. The highest flag leaf width (1.52 and 1.60 cm) was noticed in Heera at N50 and N100, whereas MTU 1010 exhibited the lowest values (1.28 and 1.35 cm). Flag leaf thickness was the highest (0.347 mm) in Birupa and the lowest in GQ25 (0.280 mm) at N50, and the highest (0.371 mm) in N22 and the lowest (0.312 mm) in Varadhan at N100. SLA increased significantly with increased application of N whereas significant reduction in SLW is observed. From N0 to N150, mean values of SLA increased from 209.0 to 241.1 cm2 g−1 and SLW decreased from 4.80 to 4.15 mg cm−2. Among the genotypes, SLA ranged from 213.5 (Heera) to 223.5 cm2 g−1 (Tella Hamsa) at N50, and from 220.7 (N22) to 236.0 cm2 g−1 (Nidhi) at N100. SLW ranged from 4.48 (Tella Hamsa) to 4.69 mg cm−2 (Heera) at N50, and from 4.25 (Nidhi) to 4.54 mg cm−2 (N22) at N100.





Photosynthetic pigment content

Among the treatments, mean contents of chlorophyll a increased significantly from 1.71 to 2.91 mg g−1 fw, chlorophyll b increased significantly from 0.478 to 0.921 mg g−1 fw, total chlorophyll increased significantly from 2.19 to 3.83 mg g−1 fw, and carotenoid increased significantly from 0.510 to 0.802 mg g−1 fw with the increase in N application from N0 to N150. Among the genotypes, the highest chlorophyll a content (2.34 and 3.03 mg g−1 fw) was recorded in Heera at N50 and Varadhan at N100 while the lowest content (1.81 and 2.32 mg g−1 fw) was recorded in N22 at N50 and N100. IR64 at N50 and Varadhan at N100 recorded the highest contents of chlorophyll b (0.756 and 0.939 mg g−1 fw),whereas N22 at N50 and Heera at N100 recorded the lowest contents (0.512 and 0.675 mg g−1 fw). Total chlorophyll content was the lowest (2.33 and 3.01 mg g−1 fw) in N22 at N50 and N100 and the highest (3.03 and 3.97 mg g−1 fw) in MTU 1010 at N50 and Varadhan at N100. Carotenoid content was the highest (0.710 and 0.834 mg g−1 fw) in Varadhan at N50 and Heera at N100 and the lowest (0.554 and 0.673 mg g−1 fw) in N22 at N50 and N100.





Flag leaf N content and gas exchange traits

Mean Pn increased significantly from 15.7 to 25.4 µmol (CO2) m−2 s−1, gs increased significantly from 0.281 to 0.706 mol (H2O) m−2 s−1, and E increased significantly from 4.94 to 8.42 mmol (H2O) m−2 s−1 while Ci decreased significantly from 279.6 to 256.5 ppm with an increase in N application from N0 to N150. MTU 1010 exhibited the highest Pn [1.3 and 26.0 µmol (CO2) m−2 s−1], gs [0.550 and 0.750 mol (H2O) m−2 s−1], and E [7.24 and 8.47 mmol (H2O) m−2 s−1], and the highest Ci (296.5 and 287.7 ppm) was observed in Daya at N50 and Tella Hamsa at N100, while the lowest Pn [17.9 and 22.0 µmol (CO2) m−2 s−1] was observed in Tella Hamsa at N50 and N22 at N100, the lowest gs [0.370 and 0.581 mol (H2O) m−2 s−1] was recorded in Daya at N50 and Tella Hamsa at N100, the lowest E [5.29 and 7.16 mmol (H2O) m−2 s−1] was noticed in N22 at N50 and Nidhi at N100, and the lowest Ci (242.4 and 238.1 ppm) was recorded in Nidhi at N50 and Daya at N100. Among the treatments, mean flag leaf N content increased significantly from 2.11% to 2.86% and mean PNUE increased significantly from 15.8 to 21.6 μmol (CO2) g−1 N s−1 with an increase in N application from N0 to N150. Flag leaf N content was the highest (2.68% and 2.96%) in Tella Hamsa at N50 and IR64 at N100 and the lowest (2.23% and 2.43%) in Daya at N50 and N100. MTU 1010 exhibited the highest PNUE [19.4 and 22.6 μmol (CO2) g−1 N s−1] at N50 and N100 whereas Anjali exhibited the lowest [14.9 and 18.0 μmol (CO2) g−1 N s−1].





Chlorophyll fluorescence traits

Fv/Fm, ΦPSII, ETR, and qP have increased significantly with an increase in application of N, whereas qN has significantly decreased. Mean values of Fv/Fm increased from 0.792 to 0.820, ΦPSII increased from 0.309 to 0.390, ETR increased from 21.5 to 27.5, qP increased from 0.499 to 0.628, and qN decreased from 0.426 to 0.348 with increased N application from N0 to N150. Among the genotypes, MTU 1010 recorded the highest Fv/Fm (0.814 and 0.823) at N50 and N100, whereas Daya at N50 and N22 at N100 recorded the lowest (0.792 and 0.805). ΦPSII was the highest (0.354 and 0.388) in MTU 1010 at N50 and Tella Hamsa at N100 and the lowest (0.297 and 0.335) in Nidhi at N50 and N100. MTU 1010 at N50 and Tella Hamsa at N100 recorded the highest ETR (25.1 and 27.4) whereas Nidhi at N50 and Birupa at N100 recorded the lowest (21.8 and 25.3). qP was the highest (0.564 and 0.622) in VL Dhan 209 at N50 and MTU 1010 at N100 and the lowest (0.474 and 0.553) in Nidhi at N50 and N100. GQ25 exhibited the highest qN (0.414 and 0.396) at N50 and N100 whereas Indira exhibited the lowest qN (0.361 and 0.341).





Nitrogen uptake and NUE indices

Increased N application from N0 to N150 resulted in a significant increase in mean grain N uptake from 30.6 to 69.1 kg N ha−1, mean straw N uptake from 24.5 to 41.2 kg N ha−1, and as total plant from 55.1 to 110.3 kg N ha−1. Grain N uptake ranged from 28.8 (N22) to 52.3 kg N ha−1 (MTU 1010) at N50, and from 41.8 (N22) to 80.5 kg N ha−1 (MTU 1010) at N100. Straw N uptake ranged from 22.5 (N22) to 37.6 kg N ha−1 (MTU 1010) at N50, and from 26.5 (N22) to 42.6 kg N ha−1 (VL Dhan 209) at N100. Total N uptake ranged from 51.4 (N22) to 89.8 kg N ha−1 (MTU 1010) at N50, and from 68.3 (N22) to 120.5 kg N ha−1 (MTU 1010) at N100.





Multiple correlation analysis

Multiple correlation analysis (Figures 1, 2) of morpho-physiological traits along with grain yield separately at N50 and N100 indicates that several traits were highly significantly correlated with grain yield in both N treatments. Interestingly, the correlations of Fv/Fm, ΦPSII, ETR, qP, and Ci with grain yield were only significant at N50. Furthermore, ΦPSII, ETR, and qP showed a significant negative correlation and qN noted a non-significant positive correlation with flag leaf nitrogen (FLN) at N100. In contrast, ΦPSII, ETR, qP, and qN noted a significant positive correlation with FLN at N50.




Figure 1 | Correlation among the morpho-physiological parameters along with grain yield at N50. GY, Grain yield; TDM, Total dry matter; DFF, Days to 50% flowering; DPM, Days to physiological maturity; FLL, Flag leaf length; FLW, Flag leaf width; FLA, Flag leaf area; FLT, Flag leaf thickness; FLDW, Flag leaf dry weight; SLA, Specific leaf area; SLW, Specific leaf weight; CHLa, Chlorophyll a; CHLb, Chlorophyll b; TCHL, Total chlorophyll; CAR, Carotenoids; Pn, Photosynthetic rate; gs, Stomatal conductance; E, Transpiration rate; Ci, Internal CO2 concentration; FLN, Flag leaf N content; PNUE, Photosynthetic nitrogen use efficiency; Fv/Fm, Maximum quantum yield of PSII; ΦPSII, Actual quantum yield of PSII; ETR, Electron transport rate; qP, Coefficient of photochemical quenching; qN, Coefficient of non-photochemical quenching. *** - p≤ 0.001, **- p≤ 0.01, *- p≤ 0.05, • - p≤ 0.1.






Figure 2 | Correlation among the morpho-physiological parameters along with grain yield at N100. GY, Grain yield; TDM, Total dry matter; DFF, Days to 50% flowering; DPM, Days to physiological maturity; FLL, Flag leaf length; FLW, Flag leaf width; FLA, Flag leaf area; FLT, Flag leaf thickness; FLDW, Flag leaf dry weight; SLA, Specific leaf area; SLW, Specific leaf weight; CHLa, Chlorophyll a; CHLb, Chlorophyll b; TCHL, Total chlorophyll; CAR, Carotenoids; Pn, Photosynthetic rate; gs, Stomatal conductance; E, Transpiration rate; Ci, Internal CO2 concentration; FLN, Flag leaf N content; PNUE, Photosynthetic nitrogen use efficiency; Fv/Fm, Maximum quantum yield of PSII; ΦPSII, Actual quantum yield of PSII; ETR, Electron transport rate; qP, Coefficient of photochemical quenching; qN, Coefficient of non-photochemical quenching. *** - p≤ 0.001, **- p≤ 0.01, *- p≤ 0.05, • - p≤ 0.1.







Correlation of grain yield with NUE indices

As it is inevitable to reduce N fertilizer application by 50% in agriculture for environmental sustainability, in addition to the above traits, various NUE indices were also calculated to identify their applicability to assess the genotypes. Grain yield value is not required to derive NUpE, ANRE, NUI, and NHI. Therefore, these four indices along with other indices were compared with grain yield to assess their suitability to identify promising genotypes at reduced N cultivation conditions. NUpE was highly significantly positively (R2 > 0.8) correlated with grain yield at all the N levels and seasons (Figure 3). MTU 1010 (14), IR64 (11), VL Dhan 209 (9), and Heera (4) exhibited higher NUpE and grain yield at N0. MTU 1010 (14), Vasumati (10), Varadhan (13), Heera (4), Indira (5), and Birupa (2) showed maximum NUpE along with grain yield at N50. MTU 1010 (14), Vasumati (10), Varadhan (13), VL Dhan 209 (9), and Indira (5) recorded higher NUpE and grain yield at both N100 and N150 [except VL Dhan 209 (9)]. N22 (7) noted the least NUpE and grain yield at all the N levels. ANRE noted a significant (R2 ≥ 0.5) or highly significant (R2 ≥ 0.7) positive correlation with grain yield at all the N levels and seasons (Figure 4). Varadhan (13), Vasumati (10), and Indira (5) exhibited maximum ANRE along with grain yield at all the N levels whereas N22 (7) and Tella Hamsa (8) showed the least ANRE as well as grain yield. Although non-significant, NUI noted a negative relationship with grain yield at all other grades of N content in both wet and dry seasons, except for both the dry seasons at N50 and the dry season (2021) at N150 (Figure 5). NHI noted a significant (R2 ≥ 0.5) or non-significant (R2< 0.5) positive correlation with grain yield at all the N levels and seasons (Figure 6). Vasumati (10), Birupa (2), Indira (5), and Heera (4) noted a higher NHI along with grain yield N0 and N50 [also Varadhan (13)]. MTU 1010 (14), Vasumati (10), Varadhan (13), and Indira (5) showed higher grain yield and NHI at both N100 and N150. N22 (7) and Tella Hamsa (8) showed the least NHI along with grain yield at all the N levels.




Figure 3 | Relationship between nitrogen uptake efficiency (NUpE) and grain yield of rice genotypes at different N levels and seasons. 1, Anjali; 2, Birupa; 3, Daya; 4, Heera; 5, Indira; 6, Nidhi; 7, N22; 8, Tella Hamsa; 9, VL Dhan 209; 10, Vasumati; 11, IR64; 12, GQ25; 13, Varadhan; and 14, MTU 1010.






Figure 4 | Relationship between apparent nitrogen recovery efficiency (ANRE) and grain yield of rice genotypes at different N levels and seasons. 1, Anjali; 2, Birupa; 3, Daya; 4, Heera; 5, Indira; 6, Nidhi; 7, N22; 8, Tella Hamsa; 9, VL Dhan 209; 10, Vasumati; 11, IR64; 12, GQ25; 13, Varadhan; and 14, MTU 1010.






Figure 5 | Relationship between nitrogen utilization index (NUI) and grain yield of rice genotypes at different N levels and seasons. 1, Anjali; 2, Birupa; 3, Daya; 4, Heera; 5, Indira; 6, Nidhi; 7, N22; 8, Tella Hamsa; 9, VL Dhan 209; 10, Vasumati; 11, IR64; 12, GQ25; 13, Varadhan; and 14, MTU 1010.






Figure 6 | Relationship between nitrogen harvest index (NHI) and grain yield of rice genotypes at different N levels and seasons. 1, Anjali; 2, Birupa; 3, Daya; 4, Heera; 5, Indira; 6, Nidhi; 7, N22; 8, Tella Hamsa; 9, VL Dhan 209; 10, Vasumati; 11, IR64; 12, GQ25; 13, Varadhan; and 14, MTU 1010.



NUtE was positively correlated with grain yield at all the N levels (Supplementary Figure 1). However, the correlation was significant only in the dry seasons from N50 to N150. Birupa (2), Varadhan (13), Vasumati (10), and Indira (5) have shown higher NUtE and grain yield at N50. Indira (5), VL Dhan 209 (9), Vasumati (10), and Varadhan (13) exhibited higher NUtE along with grain yield at N100 and N150 [except VL Dhan 209 (9)]. Tella Hamsa (8) noted the least NUtE along with grain yield at most of the N levels. NUEyield noted a significant positive correlation (R2 = 1) with grain yield at all N levels and seasons (Supplementary Figure 2). MTU 1010 (14), VL Dhan 209 (9), IR64 (11), and Heera (4) showed higher NUEyield along with grain yield at N0. Vasumati (10), Birupa (2), MTU 1010 (14), Varadhan (13), and Indira (5) have exhibited maximum NUEyield and grain yield at N50. At N100 and N150, MTU 1010 (14), Vasumati (10), Varadhan (13), Indira (5), and VL Dhan 209 (9) have shown higher grain yield and NUEyield. N22 (7) and Tella Hamsa (8) have shown the least NUEyield and grain yield at all N levels. AE showed significantly positive correlation with grain yield at all N levels and seasons except for wet season 2021 at N0 (Supplementary Figure 3). Vasumati (10), Varadhan (13), and Birupa (2) exhibited higher AE along with grain yield at N50. At this N level, VL Dhan 209 (9) and IR64 (11) were good in grain yield and least in AE, while N22 (7) and Tella Hamsa (8) were better than VL Dhan 209 (9) and IR64 (11) in AE but poor in grain yield. At N100 and N150, Varadhan (13), MTU 1010 (14), Vasumati (10), and Indira (5) noted maximum AE and grain yield whereas N22(7) and Tella Hamsa (8) noted the least AE and grain yield. PE noted a non-significant positive correlation with grain yield at all N levels in most of the seasons while it noted a non-significant negative correlation at N100 and N150 levels in wet season 2020 (Supplementary Figure 4). MTU 1010 noted higher PE along with grain yield at all N levels. Moreover, all the tested genotypes noted similar PE values at both N100 and N150 and differed in yield. PFP noted a highly significant positive correlation (R2 = 1) with grain yield at all N levels and seasons (Supplementary Figure 5). Vasumati (10), Varadhan (13), MTU 1010 (14), and Indira (5) noted higher PFP along with grain yield at all the N levels whereas N22 (7) and Tella Hamsa (8) were the least.







Discussion

Nitrogen (N) is an essential nutrient for the growth, development, and maintenance of rice (Wang et al., 2022). As soil N fertilizer alone is not adequate for increase in rice production, farmers add higher amounts of N fertilizer expecting that increased application of N fertilizer will result in the enhanced yields (West et al., 2014; Wang et al., 2022). Higher N fertilizer inputs are leading to serious environmental problems and low production efficiency (Wang et al., 2022). As only 30 to 50% of applied N is reported to be utilized by rice, reduction of N fertilizer application by 50% of the recommended N was chosen as the current target for NUE in rice (Ladha et al., 2020). Variation in rice varietal response to graded N application, especially 50% of recommended N, has been studied (Singh et al., 1998; Singh et al., 2014; Vijayalakshmi et al., 2015). Application of N fertilizer without considering the NUE of a particular variety leads to not only reduced use efficiency but also environmental pollution and increased cost of cultivation. In the present study, to evaluate the genotype response with varying yield potential to graded N application, 14 rice genotypes were assessed at four levels of N fertilizer. To identify physiological traits associated with grain yield in selecting promising genotypes at reduced N application (50% of the recommended N), flag leaf characteristics (including N content), photosynthetic pigment content, gas exchange traits, and chlorophyll fluorescence characteristics were studied. In addition, NUE indices were also estimated for their suitability to select N efficient genotypes under reduced N application.

Under N50, a reduction of 26.99% of grain yield in comparison with N100 was observed while 43.88% reduction was observed under N0. However, only marginal increment in grain yield (1.31%) was observed from N100 to N150 (Figure 7). Birupa exhibited the least reduction (15.31%) in grain yield at N50 compared to N100 whereas Daya exhibited the highest reduction (34.20%). Genotypic differences were earlier reported for grain yield of rice at different N levels (Singh et al., 1998). Thus, to achieve the reduction of N fertilizer application, the selection of genotypes is crucial because of their inherent response for N. With the increased N application, previous studies also reported increase in grain yield, which is attributed to increased tillering, number of panicles, and grains (Devika et al., 2018; Zhang et al., 2020; Bama et al., 2021; Karmakar et al., 2021; Liang et al., 2021; Xin et al., 2022; Zhu et al., 2022) and increase in total dry matter accumulation (Pan et al., 2012; Singh et al., 2014; Jyothi Swaroopa and Lakshmi, 2015; Zhang et al., 2020). Days to 50% flowering and days to physiological maturity also increased significantly with increased N application due to increased vegetative growth phase (Mahajan et al., 2011; Rajesh et al., 2017; Wani et al., 2017; Ghoneim and Osman, 2018; Bv et al., 2019; Ye et al., 2019b; Mandal et al., 2022) and increased tillering (Wang et al., 2016).




Figure 7 | Effect of increased levels of N application on grain yield of rice genotypes in different seasons.



As expected, six flag leaf traits (FLL, FLW, FLA, FLT, FLDW, and SLA) have shown a significant increase and specific leaf weight (SLW) has shown a significant decrease with increased N application in the present study. Earlier studies have also reported a significant increase in length and width of flag leaf (Bahmaniar and Ranjbar, 2007), an increase in leaf area and leaf thickness with increased N application (Vijayalakshmi et al., 2015), a significant increase in leaf thickness from 0.31 mm at N0 to 0.54 mm at N150 (Devika et al., 2018), and a significant and the highest increase in leaf thickness and leaf dry mass at N270 (Hou et al., 2020) in rice. Similarly, reduction in SLW of rice with increased N application (Yang et al., 2003; Huang et al., 2008), under sufficient N compared to low N treatment in inbred indica rice cultivars (Liu and Li, 2016) and 2.9% to 11.1% reduction as the N application levels gradually increased from N0 to N270 (Hou et al., 2020), was reported, supporting our observations. Likewise, SLA increase was also reported with increase in N application at crown root initiation stage in wheat (Alam, 2014).

In congruence with our results, the photosynthetic pigment contents were elevated (Jinwen et al., 2009; Cisse et al., 2020; Hou et al., 2020) or showed an upward trend in indica hybrid rice (Peng et al., 2021) and japonica rice (Gong et al., 2022) with the increase in N application rates. Appropriate N application was shown to improve the enzyme and chlorophyll content of plant leaves, thereby improving the photosynthetic activities of the plant (Giersch and Robinson, 1987; Nduwimana, 2020).

Pn and E are the crucial physiological processes for NUE and Pn was significantly higher for the higher NUE genotypes, relative to the lower NUE genotypes (Kumari et al., 2021). Increased amounts of nitrate supply significantly enhanced Pn, gs, and E (Mandal et al., 2022). As noted in this study, with the increase in N application level from 0 to 200 kg ha–1, Pn, gs, and E were also increased gradually, while Ci values were decreased (Gong et al., 2022). Increased N application increased the Pn that noted a positive correlation with leaf N content (Fallah, 2012; Rajesh et al., 2017; Bv et al., 2019; Zhang et al., 2020), increased the E (Zhang et al., 2020), and increased the gs at the vegetative stage (Roy Chowdhury et al., 2014). Significantly higher values were recorded for gs and E with N100 compared to N0 (Vijayalakshmi et al., 2015). Compared with low N (0 kg N ha−1), Pn, gs, and E were significantly higher under medium (120 kg N ha−1) and high N (180 kg N ha−1) levels (Pan et al., 2016). A significantly higher Pn of 29.52 µmol (CO2) m−2 s−1 at 150% of RDN was noted compared with a Pn of 17.41 µmol (CO2) m−2 s−1 at 0% of RDN (Devika et al., 2018). Flag leaf N content increased significantly with increased N application and is in accordance with the earlier findings (Swarna et al., 2017; Cisse et al., 2020; Hou et al., 2020). Leaf N plays a crucial role in photosynthesis, which ultimately affects biomass production (Ladha et al., 1998). PNUE is the photosynthetic capacity per unit leaf N. PNUE is a key component of NUE and an indicator of the relationship between leaf N and Pn. In the current investigation, PNUE increased with an increase in rate of N application. The higher the PNUE, the higher the crop N utilization rate (Mugo et al., 2021). Leaf N allocation is an important factor influencing PNUE. Suitable N application can improve the leaf photosynthetic rate, which helps to increase the PNUE, which, in turn, enhances the crop yield (Zhao et al., 2013).

Among the chlorophyll fluorescence traits, Fv/Fm, ΦPSII, ETR, and qP showed an increasing trend, while qN decreased as the N rate increased as reported in hybrid rice (Peng et al., 2021). The application of the appropriate amount of N could increase the solar energy conversion efficiency in the PSII reaction center of rice leaves by improving the electron transfer efficiency and enhancing electron flow (Zhang et al., 2017; Fu et al., 2021). Among the total traits of the study, in comparison with N100, most of the chlorophyll fluorescence traits (Fv/Fm, ΦPSII, ETR, and qP) and Ci among the gas exchange traits were significantly correlated with grain yield at N50. As these traits were measured using flag leaf, the correlation of these traits with FLN revealed significant differences between N50 and N100. Hence, flag leaf at 50% flowering can be a good source to assess chlorophyll fluorescence traits under reduced N conditions and can differentiate rice genotypes varying in yield and NUE. In photosystem II of light reaction, Fv/Fm explains the maximum photochemical conversion (quantum yield), ΦPSII explains the effective photochemical conversion, ETR explains the amount of electron transfer at the reaction center in PSII, and qP represents the functional or open proportion of PSII involved in photochemical conversion. The available literature indicates that N-deficient conditions like N50 can result in improper formation and function of PSII affecting photochemical conversion followed by yield (Jin et al., 2012) and reduce carboxylation efficiency (Huang et al., 2004), whereas proper or optimum availability of N improves the function of PSII, quantum efficiency, and grain yield (Liu and Xu, 2018). Hence, results obtained in the current investigation suggest the usage of these physiological traits (Fv/Fm, ΦPSII, ETR, qP, and Ci) to screen genotypes under N50 with known low-yielding and high-yielding genotypes as checks. As optimum N can show the highest quantum efficiency followed by yield and genotype-specific optimum N requirement is unknown, Birupa, a moderate yielder at N100, emerged as one of the top five yielders at N50 and vice versa in the case of VL Dhan 209. It indicates differential response of the genotypes for yield potential with varied levels of N.

Increase in grain, straw, and total N uptake with increased N application as observed in the present study is in concurrence with the earlier findings (Tayefe et al., 2011; Swarna et al., 2017; Bama et al., 2021). AE, PE, ANRE, and PFP are indices for NUE proposed by Dobermann (2007). AE represents the contribution of fertilizer N towards yield in comparison to a non-fertilized control and is helpful to assess the contribution of added N fertilizer in enhancing the yield. PE represents the contribution of fertilizer N from the plant tissues to increase yield and is useful to identify plants that have a superior ability in producing yield per unit of available N. ANRE is the percentage of fertilizer N that is taken up by the plant and it aids in studying crop response to the applied N fertilizer. Both PE and ANRE account for background (available) soil N (Congreves et al., 2021). N application rate showed a significant effect on AE, PE, and ANRE and was maximum with N100 followed by N50 and minimum with N150. Among the treatments, cumulative mean values of AE ranged from 15.1 at N150 to 22.0 at N100, PE ranged from 41.5 at N150 to 46.1 at N100, and ANRE ranged from 36.8 at N150 to 48.5 at N100. AE and ANRE of rice were decreased with increasing N application over N100 and indicated that the capability of increase in yield per kilogram of applied N declined remarkably with increasing N application greater than N100. PE also decreased with increasing N application over N100 and showed that yield increased per kilogram N accumulated in rice plant was decreased with increasing N application greater than N100. AE was 16–36 in Boro rice (Islam et al., 2015) and 0.52–17 in T. Aman rice (Hussain et al., 2016). AE significantly increased with increasing N levels up to 165 kg N ha−1 and decreased with further uplift in N application in some recently released Egyptian rice varieties (Ghoneim and Osman, 2018). AE decreased at N120 and N150 (Mboyerwa et al., 2022). Similarly, ANRE increased at first, reached the maximum under optimum N application, and thereafter declined significantly under higher N levels (Ye et al., 2007) and at N160 (Katuwal et al., 2021). PE also decreased significantly at N150 (Kumar et al., 2015). The diminishing trend of PE at higher N rates pointed out that rice plants are unable to absorb or utilize N at higher rates of N application or the rate of N uptake by plant cannot keep pace with the loss of N. AE, PE, and ANRE decreased gradually with an increase in N rate from 3.5 to 14 g m−2 in nerica-4 (Yesuf and Balcha, 2014). Partial factor productivity (PFP) is the simplest form of NUE efficiency and is calculated as yield per applied N. It is a convenient index for comparing management practices on a single crop type. Mean values of PFP decreased significantly with increase in N application from 73.3 at N0 to 33.9 at N150 in the present study and is in accordance with previous findings (Pan et al., 2017; Rea et al., 2019). Similar results were also reported by other researchers in their studies (Ye et al., 2007; Cheng et al., 2011; Tayefe et al., 2011).

NUpE is the percentage of available soil N taken up by the plant (Moll et al., 1982) and is useful for sustainable cultivation of rice. The cumulative mean NUpE values increased with an increase in N application from 28.8 at N0 to 32.2 at N100 and declined to 29.0 at N150. NUtE is the contribution of plant N towards yield (Moll et al., 1982). NUtE decreased with increased N application and mean NUtE ranged from 51.5 (N0) to 46.2 (N150). Similarly, higher NUtE was recorded at 0% RDN, and the lower value was recorded at 150% RDN (Devika et al., 2018). Three rice cultivars with similar growth periods tested under different N levels had dissimilar grain yield, N absorption, and utilization rates (Xin et al., 2022). They also found that at low N, rice yield was mainly limited by NUpE, while at high N, yield was mainly limited by NUtE. Increased flag leaf N content and delayed leaf senescence could improve NUtE (Vijayalakshmi et al., 2013). Hence, to maintain stable grain yield at different N levels, both N uptake and utilization efficiencies should be simultaneously improved. In low N conditions, NUpE is more important than NUtE (Witcombe et al., 2008; Khan et al., 2017). NUEyield indicates the contribution of available N towards grain yield (Novoa and Loomis, 1981) and enables comparison of yield potential among genotypes. Among the treatments, mean NUEyield increased from 14.7 at N0 to 15.6 at N100 and decreased to 13.4 at N150. It is indicated that NUEyield did not increase linearly with the amount of N application (Kunta and Thatikunta, 2020). Likewise, NUEyield increased up to 100% RDN and decreased with a further increase in N levels up to 150% RDN and also concluded that the application of excess N was not effectively utilized by the crop and the production rate per unit of N applied was low (Kumar et al., 2008). Lower PE under high N supply results in lower NUEyield (Li et al., 2012). With the increase in N application rates (0, 160, 210, 260, 315, and 420 kg N ha−1), NUEyield increased up to 210 kg N ha−1 and then decreased (Liang et al., 2021). NUI is the contribution of plant N towards accumulation of plant biomass (Huang et al., 2018). NUI decreased significantly with increased application of N and mean NUI decreased from 136.1 at N0 to 99.3 at N150. NHI is the amount of plant N present in the yield component (grain in the case of rice) (Moll et al., 1982) and can be used to identify plants with greater N translocation efficiency to the economic part. NHI increased with increase in N application rate from N0 (55.4) up to N100 (63.2) and slightly decreased with N150 (62.5). The increase in NHI up to N100 may be due to the increase in grain yield, and the transfer of N to the grain is greater than the increase in total plant N. Although NHI of rice decreased with increasing N application over N100, N ratio in straw enhanced over grain. NHI may be useful in selecting crop genotypes for higher grain yield (Fageria and Baligar, 2005). Out of nine NUE indices assessed in 14 genotypes under graded N levels, NUpE, NUtE, and NUEyield delineated the best-performing genotypes under N50.

Screening of 14 genotypes under four graded N levels across four seasons revealed wide genotypic variation in their response in terms of grain yield. An increase of agro-morphological traits, photosynthetic pigments, and flag leaf traits (except SLW) was observed with an increase of N fertilizer application. At N50, Fv/Fm, ΦPSII, ETR, qP, and Ci of flag leaf at flowering noted significant association with grain yield. Of the 14 genotypes, the top 5 (MTU 1010, Indira, Varadhan, VL Dhan 209, and Vasumati) grain yielders at N100 were identified as promising genotypes for efficient use of N by NUpE, NUtE, and NUEyield indices at N50. Moreover, NUEyield is the product of NUpE and NUtE. Hence, among the nine indices, these three (NUpE, NUtE, and NUEyield) can be further used to identify promising genotypes at N50.





Conclusion

The present study has clearly demonstrated the existence of genetic variability among the rice genotypes through N response under graded N levels. The grain yield penalty ranged only from 15% to 34.2% at N50 across the 14 genotypes in comparison with N100, suggesting the possibility of reduction of N fertilizer application. Most importantly, through the evaluation of flag leaf physiological traits at the flowering stage, chlorophyll fluorescence traits (Fv/Fm, ΦPSII, ETR, and qP) and Ci were identified to be associated with grain yield under N50, which could be deployed in the breeding for NUE in rice. Among the tested genotypes, Birupa, which is a relative moderate yielder at N100, emerged as a high yielder under N50, which indicates the potential of the moderate-yielding genotypes at N100 to produce better grain yield at N50. Therefore, this study recommends the evaluation of the released rice varieties at N50 to determine their suitability under low N input conditions. Among the nine NUE indices studied, NUpE, NUtE, and NUEyield are useful to identify promising genotypes at N50.
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Supplementary Figure 1 | Relationship between nitrogen utilization efficiency (NUtE) and grain yield of rice genotypes at different N levels and seasons. 1, Anjali; 2, Birupa; 3, Daya; 4, Heera; 5, Indira; 6, Nidhi; 7, N22; 8, Tella Hamsa; 9, VL Dhan 209; 10, Vasumati; 11, IR64; 12, GQ25; 13, Varadhan and 14, MTU 1010.

Supplementary Figure 2 | Relationship between nitrogen use efficiencyyield (NUEyield) and grain yield of rice genotypes at different N levels and seasons. 1, Anjali; 2, Birupa; 3, Daya; 4, Heera; 5, Indira; 6, Nidhi; 7, N22; 8, Tella Hamsa; 9, VL Dhan 209; 10, Vasumati; 11, IR64; 12, GQ25; 13, Varadhan and 14, MTU 1010.

Supplementary Figure 3 | Relationship between agronomic efficiency (AE) and grain yield of rice genotypes at different N levels and seasons. 1, Anjali; 2, Birupa; 3, Daya; 4, Heera; 5, Indira; 6, Nidhi; 7, N22; 8, Tella Hamsa; 9, VL Dhan 209; 10, Vasumati; 11, IR64; 12, GQ25; 13, Varadhan and 14, MTU 1010.

Supplementary Figure 4 | Relationship between physiological efficiency (PE) and grain yield of rice genotypes at different N levels and seasons. 1, Anjali; 2, Birupa; 3, Daya; 4, Heera; 5, Indira; 6, Nidhi; 7, N22; 8, Tella Hamsa; 9, VL Dhan 209; 10, Vasumati; 11, IR64; 12, GQ25; 13, Varadhan and 14, MTU 1010.

Supplementary Figure 5 | Relationship between partial factor productivity (PFP) and grain yield of rice genotypes at different N levels and seasons. 1, Anjali; 2, Birupa; 3, Daya; 4, Heera; 5, Indira; 6, Nidhi; 7, N22; 8, Tella Hamsa; 9, VL Dhan 209; 10, Vasumati; 11, IR64; 12, GQ25; 13, Varadhan and 14, MTU 1010.
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Protein hydrolysates have gained interest as plant biostimulants due to their positive effects on plant performances. They are mainly composed of amino acids, but there is no evidence of the role of individual of amino acids as biostimulants. In this study we carried out in vitro experiments to monitor the development of Arabidopsis seedlings on amino acid containing media in order to analyze the biostimulant properties of the twenty individual proteinogenic amino acids. We demonstrated that proteinogenic amino acids are not good nitrogen sources as compared to nitrate for plant growth. Biostimulant analyses were based on leaf area measurements as a proxy of plant growth. We developed the Amino Acid Use Efficiency index to quantify the biostimulating effect of individual amino acids in the presence of nitrate. This index allowed us to classify amino acids into three groups, characterized by their inhibiting, neutral, and beneficial effects regarding leaf area. Glutamine and asparagine demonstrated the most significant effects in promoting leaf area in the presence of nitrate supply. The stimulating effect was confirmed by using the L and D enantiomeric forms. Both L-glutamine and L-asparagine stimulated leaf area at low concentrations, emphasizing their biostimulating properties. Our plant growth design and AAUE index pave the way for the identification of other bioactive molecules in protein hydrolysates and for the comparison of biostimulant performances.
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Introduction

In a context where the world’s population is estimated to be about 9.3 billion people by 2050 (Department of Economic and Social Affairs, 2022), agriculture must face the twin challenges of assuring food security and reducing pressure on the environment and natural resources (Searchinger et al., 2013). To date, the use of fertilizers essentially in the form of ammonium nitrate assures the stability of agricultural crop yield. However, in many countries, the overuse of those fertilizers is responsible for nitrogen leaching in groundwater (Sun et al., 2019) and for nitrous oxide emission (Billen et al., 2013). In addition, the synthesis of ammonium nitrate fertilizers through the Haber Bosch process is costly and fossil energy-consuming. To tackle these-substantial negative environmental consequences, it is crucial to identify and characterize sustainable inputs that can improve the plant nitrogen use efficiency.

Biostimulants constitute a suitable answer to this challenge. They are a novel category of agricultural inputs recently defined by the European Parliament. They stimulate nutrient use efficiency, tolerance to abiotic stress, quality trait, or availability of confined nutrients in the soil or rhizosphere independently of the product’s nutrient content (Regulation EU, 2019). Moreover, they participate in a circular economy allowing upcycling of by-products or waste from other industries (Baglieri et al., 2014; Colla et al., 2015). There are 7 classes of biostimulants; among them protein hydrolysates (PHs) are produced from strong acid or alkaline hydrolysis of plants, vegetable by-products, or animal sources (i.e. leather, viscera, feather, blood) (Colla et al., 2015; du Jardin, 2015; Xu and Geelen, 2018). Due to their mode of production PHs mostly contain amino acids (AAs) and small peptides. Their foliar or root application can promote the growth and yield of crops. For instance, PHs could enhance the yield of soybean and pepper by 32% and 22% respectively (Paradiković et al., 2011; Kocira, 2019). They could also enhance the root growth and fruit weight of tomatoes and the fresh biomass of lettuce (Cerdán et al., 2013; Rouphael et al., 2017; Malécange et al., 2022). The above positive effects might be associated with the stimulation of leaf sugar accumulation and nitrogen assimilation (Schiavon et al., 2008; Ertani et al., 2013). Nevertheless, despite plenty of examples of their positive effects and because of the diversity and inconsistency of source materials used for these products, the identity of the bioactive molecules of PHs remains to be determined.

In PHs from animal or vegetable sources, total amino acids can represent 27% to 68.5% of the total nitrogen content and individual amino acids vary from 2% to 18% of the total product depending on the sources of materials used to produce them (Calvo et al., 2014; Colla et al., 2014; Lucini et al., 2015; Ambrosini et al., 2021). It is well known that amino acids are essential molecules in plants as building blocks of proteins. They are also involved as precursors of tremendous specialized metabolites for plant adaptation to environmental stresses (Zhao, 2010; Maeda and Dudareva, 2012; Hildebrandt et al., 2015). Soil can contain free amino acids and plant roots possess transporters on plasma membranes for their absorption (Näsholm et al., 2009; Tegeder and Rentsch, 2010; Tegeder and Masclaux-Daubresse, 2018; Yang et al., 2020; Yao et al., 2020). Amino acid transporters described in literature belong to families as AAP (Amino acids permease), LHT (Lysine Histidine like transporter) and ProT (Proline transporter). Once they are absorbed by the plant, amino acids can be directly used for root growth or loaded to xylem to be transported to the aerial parts and contribute to general plant growth (Tegeder, 2014). Several publications report that amino acids alone are not efficient sources of nitrogen for plant growth. For example, Forsum et al. (2008) demonstrated that when Arabidopsis thaliana (Arabidopsis) seedlings were grown on amino acids, only six [Glutamine (Gln); Asparagine (Asn), Aspartate (Asp), Glycine (Gly), Alanine (Ala) and Arginine (Arg)] over the ten tested supported plant growth. However at equivalent supply of nitrogen, amino acids were weaker to promote growth compared to nitrate (Forsum et al., 2008). Nutritive effect of amino acids on plant growth is also dependent of their enantiomeric forms. Even if the L and D forms can be both absorbed by roots (Forsum et al., 2008), it seems that plants lack the capacity to metabolize the D-form in contrast to microbes (Bollard, 1966; Forsum, 2016). At the concentration of use described in literature, the positive effects of PHs cannot be explained by the nutritive effect of the amino acids they contain. Thus, we can hypothesize that the amino acids composing PHs display biostimulant effects.

In this study we examined the individual effects of the 20 proteinogenic amino acids on the growth of Arabidopsis seedlings. To discriminate biostimulant effect from nutritive effect, we first monitored leaf area when amino acids were provided as sole source of nitrogen. Next, we analyzed the positive, neutral or inhibitory effects of individual amino acids on plant growth, when provided in addition of a sufficient nitrate supply (KNO3). We then developed a new index AAUE (Amino acids use efficiency) as an indicator of the biostimulating effect of individual amino acids. The biostimulant activities of amino acids were then confirmed by decreasing the concentrations of amino acids supplied into the plant growth medium, and by using enantiomeric forms.





Materials and methods




Plant material and growth conditions

Seeds of the Arabidopsis thaliana Columbia wild type (Col-0) have been provided by the Versailles Resource center (INRA Versailles France, http://dbsgap.versailles.inra.fr/vnat/). In vitro culture was carried out using surface-sterilized seeds on horizontal agar plates. Using toothpick, seeds were sown on 0.8% agar medium with 1% sucrose, 2.5 mM KH2PO4, 2 mM MgSO4, 5 mM KCl, 2 mM CaCl2, 0.015 mM bromocresol purple (pH 5.8), 3.6 mM MES, 0.014 mM Fe-EDTA, supplemented with 1X microelements (Estelle and Somerville, 1987) and Morel and Wetmore vitamins. The concentrations of KNO3 and/or amino acids supplied in the media are indicated in the legends of the figures. All solutions had a pH of 5.8. After sowing, agar plates were incubated in a cold dark room at 4°C for 48 h for seed stratification and then transferred to a climate chamber (12 m2) under long day conditions (16/8 h photoperiod at 90 µmol photons m-2 s-1 with OSRAM LUMINUX COOL DAYLIGHT fluorescent lamps (L36W/865), 21°C day temperature and 18°C night temperature, relative humidity of 63%. Despite the global control of all the environmental parameters, there were still local uncontrolled variations due to the size of the chamber. To minimize related stochastic variation, the location of the plates in the growth chamber was changed regularly and all the experiments were repeated several times. Depending on experiments, the seed density was 16, 40, or 100 seeds per plate and is indicated in the legends of the figures. The culture duration was 12 days for high seed density and 14 days for low seed density.





Leaf area imaging

All agar plates were imaged 12 or 14 days after sowing. Images were obtained using Gel doc Systems (Biorad®) with white trays. Then leaf area was determined using ImageJ software. (Version 1.53C).





Determination of amino acid use efficiency

The contribution of an amino acid to plant growth was obtained by comparing the leaf area of the plants grown on plates containing amino acid and nitrate [AA + KNO3], nitrate alone [KNO3] or no nitrogen [0N]. To estimate contribution of individual amino acids to plant growth, we developed the AAUE index (Amino Acid Use Efficiency), that calculates the gain of growth in the presence of AA and nitrate compared to the gain in the presence of nitrate only, according to the equation below:

 

with   is the leaf area of plants grown with amino acid and 3 mM nitrate in one plate,   is the mean of leaf area of plants grown without nitrogen,   is the mean of leaf area of plants grown with 3 mM nitrate only.

For plates corresponding to the control conditions (3 mM KNO3; Ctrl 3N) and (5 mM KNO3; Ctrl 5N), AAUE was calculated using the (Equation 2, 3):

 

and

 

where Area(3N) and Area(5N) are the leaf area of plants grown with 3 mM KNO3; or with 5 mM KNO3 respectively.

In each experiment, 2 to 8 plates were prepared for each growth medium. On each plate, leaf area was estimated as the ratio of the total green area in the plate divided by the number of plants. We then calculated the mean of leaf areas for all the control conditions and computed the AAUE index by plate using the (Equations 1–3).





Statistical analyses

Two-way ANOVA (R software package) was used to assess the effects of experiment (Exp), media (Med) and their interaction factors (Med×Exp) on the trait variation. Med is the media tested in the plates (different nitrogen sources), Exp is a batch of plates tested on the same date and Med×Exp is an interaction between the two main factors. Before statistical analysis, the homogeneity of variance and normality of distribution of data were tested. For Figures 1, 2, these data did not fulfil the normality and homoscedasticity hypotheses, thus we used a log(x) and log(x+1) transformation respectively of data before running ANOVA with the lm function. Each contrast between the control condition and the other media conditions was tested by using marginal means with the function contrast of the R package “emmeans”. Bar plots and curves were generated in R (R version 4.2.1). Pairwise differences between conditions were carried out by t-test using Bonferroni correction to adjust multiple comparisons (p value< 0.05, with n the total number of values per condition).




Figure 1 | Glutamine and KNO3 are the best nitrogen sources for in vitro plant growth. Representative pictures of mediocre, weak and optimal plant growth phenotypes (A), scale = 0.80 cm. Plant growth was determined measuring leaf area (B). Seedlings (100 per plate) of the Col-0 accession were grown for 12 days on agar media containing 1% sucrose and 5 mM of one of the twenty proteinogenic amino acids. Media also contained 0.1 mM KNO3 to relieve dormancy and permit homogenous germination (Alboresi et al., 2005). The growth of the seedlings was determined by analyzing leaf area expressed in pixels per plant. The control consists of an agar medium containing 1% sucrose and 5 mM KNO3 (Ctrl 5N, light grey). Data represent mean values obtained in 3 independent experiments containing 0-2 repeats. Error bars indicate the standard error of the mean. Stars indicate significant differences with Ctrl 5N (t-test, n= 4-6), and levels of significance for media (Med), experiment (Exp) and their interaction (Med*Exp) effects from ANOVA (full ANOVA results are shown in Supplementary Table 1); ns p-value >0.05, ***p-value< 0.001.






Figure 2 | The new index “Amino acid use efficiency” (AAUE) distinguish inhibitory, neutral and beneficial amino acid nitrogen sources according to plant growth. Eighty seedlings of the Col-0 accession were grown for 12 days on an agar medium containing 1% sucrose, 3 mM KNO3, and 2 mM of one of the 20 proteinogenic amino acids. The controls consisted of agar medium containing 1% sucrose with 3 mM KNO3 (Ctrl 3N, light grey). Representative illustration of growth phenotypes for two amino acids presenting inhibitory or stimulating effects (A), scale = 1.3 cm. AAUE were calculated from the leaf areas of plants grown on the different amino acid containing media according to Materiel and Methods (B). Data are mean values obtained in 8 independent experiments containing 0-2 repeats. Error bars indicate the standard error of the mean. AAUE classifies amino acids into three groups: Group 1 (AAUE<1); group 2 (AAUE= 1); group 3 (AAUE> 1). Stars indicate significant differences with the Ctrl 3N (t-test, n= 6-16), and levels of significance for media (Med), experiment (Exp) and their interaction (Med*Exp) effects from ANOVA (full ANOVA results are shown in Supplementary Table 1); *p-value<0.05, **p-value<0.01, ***p-value<0.001.








Results




Amino acids as nitrogen source for plant growth are less efficient than nitrate

To investigate amino acids as nitrogen sources for plant growth, we measured leaf area on seedlings grown for 12 days in vitro on agar media containing either 5 mM of one of the twenty proteinogenic amino acids, or 5 mM of KNO3 as a control condition (Ctrl 5N). The use of amino acids as nitrogen source to sustain plant growth and metabolism is complex. It depends on the capacity of each amino acid to be absorbed at root level, mobilized in the plant tissue and then catabolized or use by amino-transferases. We then decided to start our study by providing each amino acid at equal molarity without considering their nitrogen stoichiometries.

We observed that the growth of the Arabidopsis seedlings was significantly reduced on amino acid containing media compared to Ctrl 5N, except in the case of glutamine (Gln), as illustrated by Figure 1A. In our experimental conditions, Gln was the only amino acid to promote plant growth to the same level as Ctrl 5N (Figure 1B). Leaf area was reduced by 52% compared with Ctrl 5N when the only nitrogen sources were glutamate (Glu) or alanine (Ala). With asparagine (Asn), aspartate (Asp), glycine (Gly), arginine (Arg), cysteine (Cys) and proline (Pro), the reduction of leaf area ranged between 69% to 88% of Ctrl 5N. Isoleucine (Ile), histidine (His), serine (Ser), and threonine (Thr) were the worst nitrogen sources as leaf area was reduced by at least 99% compared to Ctrl 5N. Seedlings barely developed after seed germination on media containing tyrosine (Tyr), valine (Val), methionine (Met), tryptophan (Trp), lysine (Lys), leucine (Leu) or phenylalanine (Phe) (Figure 1B). Altogether results show that except for glutamine, all the other amino acids are not a good source of nitrogen for the Arabidopsis seedling growth. The growth on amino acid media is independent of the N stoichiometry. For example, growth on Arginine, which has four nitrogen atoms per molecule, was 44% of that obtained with alanine that provides only one nitrogen atom per molecule.





Detecting inhibitory, neutral, and beneficial effects of amino acid supplies on plant growth in the presence of nitrate using amino acid use efficiency indicator

Since we found that none of the twenty amino acids were as good nitrogen sources as nitrate for plant growth, we then questioned about the potential stimulating effects of individual amino acids on growth when nitrate is sufficient in growth medium. To test how amino acids could interfere with plant growth, we used a new agar medium that combined each amino acid (2 mM) with KNO3 (3 mM). Contrasted growth rates were then observed depending on the nature of the amino acid. For example, Figure 2A illustrates the opposite effects of leucine and glutamine on plant growth by comparison to KNO3 (3 mM; Ctrl 3N). Leaf areas were measured like in Figure 1, and we defined the “Amino acid use efficiency” (AAUE) index as the indicator of the relative plant growth on [nitrate plus amino acid] relative to [nitrate alone] [see Material and Methods, Equations 1–3)]. AAUE determined for each media allowed us to distinguish three different groups of amino acids (Figure 2B). Group 1 gathers the majority of the amino acids (12 in total) with AAUE significantly lower than 1. Growths on Group 1 media were decreased by 23% for Arg up to 100% for Tyr compared to Ctrl 3N (Figure 2B). Group 2 contains the three amino acids Pro, Gly, and Ala, and is characterized by an AAUE equivalent to 1, meaning that the presence of these amino acids in the growth medium was neutral and did not improve or reduce plant growth compared to Ctrl 3N (Figure 2B). The presence of amino acids from Group 3 (Asp, Glu, Cys, Asn, and Gln) is beneficial to plant growth relative to Ctrl 3N, as shown by their AAUE significantly higher than 1 (Figure 2B). AAUE was increased by 19% for Asp and up to 46% for Gln relative to Ctrl 3N. As Groups 1 and 2 amino acids did not stimulate plant growth under our conditions, by contrast with group 3, we decided to focus on the characterization of group 3 amino acids.

To better evaluate AAUE of the potential beneficial AA (group 3), we introduced Ctrl 5N (5 mM KNO3) as a new nitrate control condition and decreased the density of plants. Ctrl 5N provided the same nitrogen concentration (stoichiometry) as the [2 mM amino acid + 3 mM nitrate] condition when using Asp, Glu and Cys. Comparing the AAUE of the group 3 amino acids to the AAUE of Ctrl 5N, we found that only AAUE of Asn and Gln were significantly higher than the AAUE of Ctrl 5N (20% and 28% increase respectively; Supplementary Figures S1A, B). We concluded that Asp, Glu, Cys had no biostimulant effect in our experimental design.





Bio-stimulating effects of asparagine and glutamine on plant growth are independent of enantiomeric forms and can be observed at low concentrations

To investigate the potential bio-stimulating effects of Asn and Gln on plant growth, we decided to (i) compare the enantiomeric L and D forms and (ii) to decrease the concentrations of Asn and Gln in growth media. In the experiment testing enantiomeric forms, the concentrations of the Gln and Asn were decreased to 1 mM to reach the same nitrogen stoichiometry as Ctrl 5N. The AAUE of the Asn (1 mM) and Gln (1 mM) L and D enantiomeric forms were then compared to Ctrl 5N. The AAUE of L-Asn, D-Asn, L-Gln and D-Gln were all significantly higher than the AAUE of Ctrl 5N (Figures 3A, B). This indicated that the bio-stimulant action of Asn and Gln was independent of the enantiomeric forms and thus independent of the possible assimilation and use in plant metabolism of these molecules. An experiment using lower concentration of L-Asn and L-Gln showed that adding 0.25 mM of one of these amino acids (1/12th of the nitrate concentration) was enough to provide a positive effect on plant growth compared to the N equivalent control (Figure 4). This emphasizes the potential of Asn and Gln as bio-stimulants of leaf area development.




Figure 3 | Both L and D enantiomers of asparagine and glutamine stimulate plant growth in presence of KNO3. Scale = 1.3 cm. In this experiment 16 seedlings of Col-0 accession were grown for 14 days on an agar medium containing 1% sucrose, 3 mM KNO3 and 1 mM of asparagine or glutamine. Control consists of an agar medium containing 1% sucrose and 3 mM (Ctrl 3N, light grey) or 5 mM of KNO3 (Ctrl 5N, light grey). Note that adding 1 mM of Asn or Gln to 3 mM nitrate medium results in 5N nitrogen stoichiometry as found in the 5 mM nitrate control. Representative pictures of plant growth (A). Plant growth estimated using AAUE index (B). Data represent mean values obtained in 2 independent experiments containing 3 or 4 repeats. Error bars indicate the standard error of the mean. Stars indicate significant differences with the Ctrl 5N (t-test, n= 6-8), and levels of significance for media (Med), experiment (Exp) and their interaction (Med*Exp) effects from ANOVA (full ANOVA results are shown in Supplementary Table 1); ns p-value > 0.05, *p-value<0.01, **p-value<0.01, ***p-value<0.001.






Figure 4 | Asn and Gln stimulate plant growth at lower concentration. In this experiment, 16 seedlings of Col-0 accession were grown for 14 days on an agar medium containing 1% sucrose, 3 mM KNO3 and 0.00, 0.25, 1.00 or 2.00 mM asparagine (dark grey circle) or glutamine (grey triangle). N equivalent controls consisted in 1% sucrose media with 3.00, 3.50, 5.00 and 7.00 mM of KNO3 (light grey square). Both total N concentrations (top) and Asn and Gln concentrations (down) are presented on the X axis. Data represent the AAUE mean values obtained in 2 independent experiments containing 5-8 repeats. Error bars indicate the standard error of the mean. Different letters indicate significant differences between the AAUE obtained on the three media with equivalent N concentration (p-value<0.05, t.test, n=10-16). Stars indicate levels of significance for media (Med), N concentration (N Conc) and experiment (Exp) effects from ANOVA (full ANOVA results are shown in Supplementary Table 1); ns p-value>0.05, *** p-value<0.001.








Discussion

PHs have been described in the literature to promote plant growth and plant fitness of crops in the field (Ertani et al., 2013; Santi et al., 2017). In this study, we aimed at deciphering the role of each proteinogenic amino acid as a bioactive molecule that could stimulate plant growth and contribute to the PHs biostimulating effects. In our experimental condition, none of the twenty proteinogenic amino acids could better satisfy seedling nitrogen demand than nitrate, when used as the sole source of nitrogen. Our results were consistent with Forsum et al. in 2008, who tested ten amino acids as the sole source of nitrogen and showed that none of them were as effective as nitrate. To evaluate whether proteinogenic amino acids could have different effects on plant growth in the presence of nitrate, we then developed a new index called Amino acid use efficiency (AAUE) that was based on leaf area measurements.

AAUE facilitated the identification of amino acids providing inhibiting, neutral or stimulating effects on seedling growth when added to media containing nitrate. Among the twenty proteinogenic amino acids, we identified twelve amino acids that behaved as growth inhibitors, and three amino acids with neutral effect on plant growth, according to our experimental design. Inhibiting effects of several amino acids have already been identified, as for example in the case of branched chain amino acids, which inhibit plant growth as they have negative feedback on the synthesis of the other branched chain amino acids (Binder, 2010; Xing and Last, 2017). The feedback-inhibition of aspartate kinase by Lys, which is blocking the entrance enzyme into the Asp pathway, may also explain the negative effect of lysine on plant growth (Yang and Ludewig, 2014). Basic-, hydroxyl- and sulfur-containing amino acids were shown to severely block primary root growth at least when provided as sole source of nitrogen (Yang and Ludewig, 2014).

Regarding neutral effect, it was not surprising to find proline, that was a mediocre nitrogen source in our first experiment (Figure 1). More unexpected was the neutral effect of alanine that was one of the best nitrogen sources in Figure 1. Besides inhibitory and neutral amino acids, the five candidates (Glu, Asp, Cys, Asn, and Gln) displaying positive effects on plant growth were considered for better characterization. Taking into account nitrogen stoichiometry, determination of AAUE eliminated Glu, Asp and Cys from the potential biostimulating amino acids and led us to focus on Asn and Gln. The biostimulant properties of Gln and Asn were then completed showing that both amino acids can stimulate plant growth at low concentrations (0.25 mM; 1/12th of the nitrate supply) (Figure 4) thus independently of a potential carbon bonus effect. The absence of potential carbon bonus effect in our experiment was supported by the lack of growth stimulation by Asp and Glu that are built on the same carbon backbone as Gln and Asn.

In plants, amino acids are mainly present as L- enantiomeric forms. Several reports show that plants can uptake D- enantiomeric forms when available in the soil or growth medium (Bollard, 1966; Forsum, 2016). However, if and how plants utilize the D-amino acid forms remains debated and largely unclear. Gördes et al. (2011) and Gördes et al. (2013) showed that most of the D-amino acids can be absorbed by Arabidopsis seedlings. Whether racemisation of D amino acid occurs in planta remained unclear, but authors showed that most of the D-AAs could be metabolized and form D-Glu and D-Ala. The fact that L and D enantiomeric forms of Asn and Gln could stimulate plant growth to the same level in presence of nitrate (Figure 3) led us to conclude to their biostimulant properties.

Positive effects of Asn and Gln on plant growth have already been reported but without considering explicitly biostimulant effects. For instance, it was shown that supplying asparagine and glutamine at 1 mM could increase shoot length of Phaseolus vulgaris (Haroun et al., 2010). Glutamine application was reported to increase maize shoot dry weight by 7% (Hassan et al., 2020).

Processes for PHs production through chemical hydrolysis leads to the total conversion of asparagine and glutamine into Asp and Glu (Rouphael et al., 2020). While several of the inhibiting amino acids identified in our study are present in PHs, the fact that PHs can enhance plant growth suggests that mixtures of inhibitory, neutral and stimulating amino acid can mitigate the effects of inhibitory amino acids and possibly facilitate the expression of biostimulant effects that are independent from Asn and Gln. Accordingly, Bonner et al. (1992) demonstrated that the combination of amino acids could overcome amino acid inhibition. For instance, the inhibition of plant growth by glycine, alanine, proline and asparagine were partially antagonized by glutamine in woodland tobacco (Bonner et al., 1992). Correlative studies comparing PHs amino acid composition and biostimulant efficiency would be interesting to study and improve commercialized PHs. Such studies should also consider the supplementation of PHs with Gln and Asn regarding the biostimulant properties demonstrated here. In that context new sourcing of raw materials rich in these two amino acids has to be discovered. One other issue of PHs study is the racemisation of amino acids and the role of enantiomeric forms (Cavani et al., 2003). In the case of Gln and Asn, our study nicely shows that both the L and D enantiomeric forms display biostimulating effects.

In conclusion our study shows stimulating effect on Arabidopsis only for Gln and Asn. We could not identify biostimulating effect for any other amino acids composing protein hydrolysates. Then, our study cannot explain the biostimulating effect of protein hydrolysates on plant growth by the property of only one of the individual amino acids from their formula. Nevertheless, our in vitro system and AAUE index offer a new tool to estimate quantitatively the biostimulating effects of any kind of compounds. It would be now of interest to test amino acid mixtures. How our experimental design and index can be adapted to different plant species is also an interesting development. It would elucidate the biostimulant × plant species interaction, which is crucial for selecting the best combinations of amino acids depending on crops.
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Treatment

Low N
Moderate N

Low N

Moderate N

Trait

Dry biomass end-of-season
Dry biomass end-of-season
NUE
Midseason nitrogen
End-of-season nitrogen
NRE
Midseason nitrogen
End-of-season nitrogen
NRE

Unit

Kg
Kg
KgKg/m?
%

%

%

%

%

%

Trait category

Absolute
Absolute
Derived
Absolute
Absolute
Derived
Absolute
Absolute
Derived

No. lines

676
674
670
295
297
294
293
256
262

Mean

227
2.29
0.67
1.04
0.72
0.29
1.14
0.76
0.32

SE

0.06
0.06
1.45
0.01
0.01
0.01
0.01
0.01
0.02

Range

0.08-7.77
0.03-9.11
(—242.36)-178.51
0.48-1.65
0.26-1.63
(—1.24)-0.74
0.62-1.74
0.09-1.50
(~1.06)-0.92

Heritability

0.94
0.93
0.39
0.59
0.74
0.54
0.54
0.78
0.64

The traits were categorized as absolute and derived traits. The derived traits, such as nitrogen use efficiency (NUE), were calculated from the absolute dry biomass at low
and moderate N, while NRE was derived from N content on tillers at midseason and end-of-season growth stages. More details of calculation of these derived traits can
be found in Section “Materials and Methods.” Dry biomass was measured in a full panel (330 accessions), with two replications each in low- and moderate-N treatments
plus AP13 as control with 20 replications in low N and 20 replications in moderate N, while N content in tillers was measured using 150 accessions, with two replications
each of low- and moderate-N treatments.
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2.1 Switchgrass Mean total dry Mean total dry NUE (KgKg/mz) Fold change (Low
accession Biomass_Moderate N (Kg) Biomass_Low N (Kg) N/Moderate N)
J504.C 0.62 6.37 —195.61 10.28
J612.C 0.17 0.66 —16.57 3.79
J008.C 0.90 3.31 —81.74 3.66
Performer TCL-32 0.88 2.72 —62.63 3.09
J226.A 2.26 5.61 —113.70 2.48
2.2 Switchgrass Mean total dry Mean total dry NUE (KgKg/m?) Fold change
accession Biomass_Moderate N (Kg) biomass_Low N (Kg) (Moderate N/Low N)
Jar7.B 3.24 0.70 86.34 4.61
J500.B 2.24 0.52 58.52 4.33
J006.C 1.80 0.52 43.72 3.49
J466.B 5.42 1.97 117.31 2.75
J516.C 2.51 0.95 53.08 2.65

The top 10 accessions were categorized into two categories. 2.1 shows the top five NUE accessions based on the fold change (low N/moderate N), while 2.2 shows the
top five NUE accessions based on the fold change (moderate N/low N). The essence of these two categories is mentioned in text. The means from the two replicates
from each of low-N and moderate-N accessions were taken from untransformed data to calculate the NUE. The NUE was calculated based on the Equation 1 in Section
“Materials and Methods”.
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Level of significance

Sum of squares

LDW RDW PDW LN% RN% PN% LC% RC% PC% LDW RDW PDW LN% RBRN% PN% LC% RC% PC%
G o 250 29 1 23.4 21 3.0 1.0 3.8 9.0 6.5
N 40.9 0.6 291 824 58.7 76.7 77.5 295 50.2
E 79 8.4 85 55 12.0 10.7 15 6.4 6.4
GXN * 8.0 134 3.8 21 1:2 11 3.0 5.0 1.6
GXE * * * 4.6 10.5 77 1.4 3.8 1.9 6.2 7.0 8.6
NXE o o o 0.3 0.8 1.8 2.6 2.9 41 0.1 4.3 4.7
GXNXE * o * * 35 6.6 7.4 1.0 2.4 1.0 1.0 5.9 3.1
R 9.8 30.6 18.2 29 16.4 3.4 6.9 329 18.9
B: Level of significance Sum of squares

LNUE RNUE PNUE LNUpE RNUpE PNUpE PNUp LNUE RNUE PNUE LNUpE RNUpE PNUpE PNUp

G 40.0 141 33.2 181 14.8 12.8 23.7
N 26 12.0 5.8 9.1 38 35 231
E e o o 2.7 19.0 4.2 20.9 21.5 32.7 4.5
GXN * * > * 12.6 3.5 6.1 4.9 7.3 3.0 3.0
GXE e " * e ke 8.7 9.7 101 10.1 4.6 5.4 6.5
NXE * o 14 44 25 8.3 7.0 9.7 40
GXNXE i i 5 1.4 9.3 10.3 9.5 8.7 74 8.3
R 20.6 28.0 27.8 22.0 324 25.8 16.6
C: Level of significance Sum of squares

LP%DW RP%DW SR LP%N RP%N LP%15N RP%15N LP%DW RP%DW SR LP%N RP%N LP%15N RP%15N
G o 5.0 6.1 21 5.4 5.8 7.0 6.8
N 32.1 37.1 41.9 51.9 52.2 50.4 54.0
E . 14.9 15.8 241 8.4 8.7 4.4 35
GXN ox 5.3 6.0 3.9 47 46 6.0 6.6
GXE * 9.0 5.6 4.7 5.9 6.1 4.7 4.3
NXE * * * 1.2 1.7 0.8 2.6 22 1.9 2.1
GXNXE * * 6.7 6.1 5.1 2% 3.0 3.0 3.2
R 258 21.5 175 18.3 17.4 225 19.5

G, N, and E stand for the following factors respectively: “Barley genotype,” “N nutrition,” and “experiment replicate.” The significance of the interaction between these
factors is indicated as follows GXN, NXE, GXE, and GXNXE. R: residuals. The highest sum of squares for each trait is in bold. Three-way ANOVA was applied to the data

set. Sub-tables represent A: biomasses, C and N content; B: Nitrogen uptake and use efficiency, C: partitioning of biomass, C and N.

*Significant at 0.05 probability level.
**Significant at 0.01 probability level.
**Significant at 0.001 probability level.





OPS/images/fpls-13-893610/cross.jpg
3,

i





OPS/images/fpls-13-893610/fpls-13-893610-e000.jpg
NUE (Kgkg/m?) = (BMYj — BMY,)/N; 1)





OPS/images/fpls.2023.1074839/im180.jpg
NO;





OPS/images/fpls.2023.1074839/im18.jpg
NO;





OPS/images/fpls.2023.1268739/fpls-14-1268739-g006.jpg
Nitrogen Harvest Index

Kharif-2020 (Wet Season)
701 R=0.53,p=0.051

65

60 10..2

Kharif-2021 (Wet Season)
R=0.34,p=0.23

Rabi-2021 (Dry Season)
R=0.41,p=0.15

Rabi-2022 (Dry Season)
R=0.47,p=0.086

65

R=0.46, p=0.094

10
.

3
.. 2.
e @
” 1/1213./5
7113 o
° [ ]
55 7's'6 o0 M
50
701 R=0.75,p=0.0021
14
654

R=0.38,p=0.19

)
4
12 5
7 Go. ®
LS 13
° 3%1
8 9 14

0SIN-¥1

o N (] < n ©

Grain Yield (t/ha)





OPS/images/fpls.2023.1074839/im179.jpg
NO;





OPS/images/fpls.2023.1268739/fpls-14-1268739-g005.jpg
Nitrogen Utilization Index

Kharif-2020 (Wet Season)
R=+0.059,p=0.84
®

Kharif-2021 (Wet Season)
R=-03,p=0.29

Rabi-2021 (Dry Season)
R=-0.25,p=04

Rabi-2022 (Dry Season)
R=-0.23,p=042

160+ A
2
1504 7 10°
2 2
° 3/; 1.1.3‘10 e 10®
10 )
1401 —*—2 L oo® .5
i \ 4 Soq 9
130{ %o, "4 *4 7" 1 g1
8 12 14 8 11 o 1% o
®e e 14 8 4 e
120 12 14 ° .
R=-0.0065, p=0.98 R=-0.079,p=0.79 R=0.19,p=0.52 R=0.015,p=0.96
1504
2
4 N
7 5
. 3% e 10 Z
130 10 12, 5 2 =
N2e9 43 7 3" 8 3 °% J o 3eyge 10 =
e ® o o 1 % e o o 13 19 °
® 6.12 ® 2 5 7 ... 13
[
110 R 6 "/f; g S 8.5 " 4
R=-0.064,p=0.83 R=-0.02,p=0.95 R=-0.096,p=0.74 R=-0.086,p=0.77
1504
—'
<
125+ 24 5 12 =
o
o

150

125+

R=-0.14,p=0.63

5
7 399
R LV ik
[ ]

R=-0.5,p=0.066

N (2] < n

R=0.12,p=0.69

o N (] < n ©

Grain Yield (t/ha)

R=-0.23,p=042

0SIN-¥1






OPS/images/fpls.2023.1074839/im178.jpg
NO;





OPS/images/fpls.2023.1268739/fpls-14-1268739-g004.jpg
80

60

404

Kharif-2020 (Wet Season)

R=0.62,p=0.018

Kharif-2021 (Wet Season)
R=042,p= 0.1130

Rabi-2021 (Dry Season)
R=0.46, p=0.095

Rabi-2022 (Dry Season)
R=0.52, p=0.057

[
o
1

[2]
o
1

H
o
1

R=0.73, p=0.0029

Apparent Nitrogen Recovery Efficiency
[+
o

[2]
o
1

404

20

R=0.68, p=0.0077

R=0.78, p=0.00089

o N © < n

[Te]
Grain Yield (t/ha)

R=0.71, p=0.0044






OPS/images/fpls.2023.1074839/im177.jpg
NO;





OPS/images/fpls.2023.1268739/fpls-14-1268739-g003.jpg
Nitrogen Uptake Efficiency

Kharif-2020 (Wet Season)
R=0.8, p=0.00065

Kharif-2021 (Wet Season)
R=0.95, p = 3e-07

14
..11

Rabi-2021 (Dry Season)
R=0.88, p = 3.4e-05

Rabi-2022 (Dry Season)

R=0.91, p=5.3e-06
14

HODN

w
[3,]
1

w
o
1

457 R=083, p=000022
401

351 "

30

254

R=0.96, p=4.2e-08

o N (] < n

Grain Yield (t/ha)






OPS/images/fpls.2023.1074839/im176.jpg
NO;





OPS/images/fpls.2023.1268739/fpls-14-1268739-g002.jpg
600 1200

135

1.8 110

20 40 1.5 3.0 200 250 0.30 0.38 1id

20 26

7 9

3.5

2.0

025 045

0.7

0.4

110 125 140

0.30

0.36
11l

200 230 260

1.0 25 3.9

20

28
I

0.25

300 600

A EE x| % e A Kk * *% % de A % de A EX | * %k A
GY O 0.36 0.38 067 0.15 0052 -0.30 - 0.19 0.20 0.31 0.29 0.32 0.23 0.31 0417 018 o0s 0056 A ] 55 042 oo
% de A % de A Kk * * % %A % Je A % %A %k EL L -

TDM 0.40 0.42 oo 0.16 0.11 -0.27 0057 0.16 -0.17 0.31 0.30 0.33 022 0.34 0.12 0.18 0078 013 oo 0061 0084 0.14 pres

F) * % - * %k Jede A * %
0 0.22 0039 0.15 0.16 0.20 0.29 0.24 0083 o018 oo 02 03t 015 027 020 082 e ooore

%k * * % ¥ EL | EEL|
0.23 ooz 0.19 -0.19 0.26 035 0.31 0.079 0.10 0.091 0.073 001 -0.19 0.086 0.059 aom 0.069 003

0002

0.18

0042

25 40

012

0

0.16

s
@
TTTTTT

0081

04

0.078

0.18

05 09

013

04 07

0.088

0.082

200 300

0.10

§
TTTTTTT

077 083

0.02 -

*%kN
0.27

gN

300 500

80 95 110

25 35 45

010 016 022

04 06 08

TTT
200 260 320

030 040

105

80

26 34

010 020

38 46

10

30

20

030 045





OPS/xhtml/Nav.xhtml




Contents





		Cover



		Nitrogen use efficiency: Plant biology to crop improvement



		Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Material and Growth Conditions



		Determination of Nitrate Uptake Into the Shoots and Roots Using 15N Labeling During 24 h



		Quantification of Total Nitrogen, Total Carbon, and 15N Enrichment



		Amino Acid Analysis



		Plant Growth and N Nutrition Trait Indicators



		Inoculum Preparation and Pathogen Infection



		RNA-Seq Analysis



		Statistical Analysis









		RESULTS



		Global Trends of the Impact of Nitrogen Nutrition on Barley Physiological Traits



		Exploring Natural Variation for N and C Management Within the Barley Collection



		Deciphering Groups of Barley Genotype Displaying Similar GxN Responses to N Supply



		Diversity of Amino Acid Concentrations in the Barley Collection Grown Under Low or Ample N Supply



		Transcriptional Changes in Limiting N Relative to Ample N Conditions



		Genotypic Diversity of Barley Transcriptome Supports Amino-Acid Profiles









		DISCUSSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		REFERENCES









		The Genetic Architecture of Nitrogen Use Efficiency in Switchgrass (Panicum virgatum L.)



		INTRODUCTION



		MATERIALS AND METHODS



		Field Experimental Design



		Biomass Quantification



		Nitrogen Use Efficiency Index Calculation



		Nitrogen Quantification



		Nitrogen Remobilization Efficiency Index Calculation



		Phenotypic Data



		Genome Wide Association Study and Linkage Disequilibrium Analysis









		RESULTS



		Characterization of the Phenotypic Variability of Nitrogen Use Efficiency and the Related Traits



		Top 10 Nitrogen Use Efficiency Accessions in the Switchgrass Genome Wide Association Study Panel



		Correlation Analysis Among the Nitrogen Use Efficiency and the Related Traits



		Potential Candidate Genes in the Switchgrass Genome Wide Association Study Panel



		Linkage Disequilibrium Analysis Supports Genome Wide Association Study Candidate Genes









		DISCUSSION



		Response of N Fertilization to Switchgrass Accessions May Not Be Immediate and Requires Longer Establishment Time



		Accessions Having Negative Nitrogen Use Efficiency Values Should Be Considered Acceptable, While Negative Nitrogen Remobilization Efficiency Values Should Be Considered Unacceptable for Breeding Switchgrass



		Gene Related to the Lignin Biosynthesis (CCoAOMT) Was Found to Be Associated With Nitrogen Use Efficiency-Related Traits



		AL6-a Transcription Factor and a Strong Candidate for Nitrogen Use Efficiency in Switchgrass









		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		REFERENCES









		Comparative Transcriptomic Analyses of Nitrate-Response in Rice Genotypes With Contrasting Nitrogen Use Efficiency Reveals Common and Genotype-Specific Processes, Molecular Targets and Nitrogen Use Efficiency-Candidates



		INTRODUCTION



		MATERIALS AND METHODS



		Plant Material, Growth Conditions, and Nitrate-Treatments



		Total RNA Extraction and Microarray



		Microarray Data Analysis



		Functional Classification, Subcellular Localization of Differentially Expressed Genes, and Data Analysis



		Construction of Protein-Protein Interaction Network



		Physiological Measurements



		RT-qPCR Validation of Nitrate-Responsive Expression of Differentially Expressed Genes



		Retrieval of Molecular Functions and Identification of MicroRNAs and Their Targets



		Identification of Nitrogen Use Efficiency-Genes and Their Co-localization Onto Nitrogen Use Efficiency-QTLs









		RESULTS



		Nitrate-Responsive Transcriptomes of Rice Genotypes With Contrasting Nitrogen Use Efficiency



		Nitrate Induces Common and Distinct Processes/Pathways in Contrasting Genotypes



		Validation of Selected Differentially Expressed Genes by RT-qPCR



		Differential Regulation of Transporters May Contribute to Nitrogen Use Efficiency in Contrasting Genotypes



		Differential Involvement of Transcription Factors and Their Binding Sites in Nitrogen Use Efficiency



		MicroRNA-Mediated Post-transcriptional Regulation of N-Response in Contrasting Genotypes



		Genotype-Specific N-Responsive Protein-Protein Interaction Networks



		Nitrate-Regulated Differential Post-translational Modifications in Contrasting Genotypes



		Yield Association and QTL Co-localization of N-Responsive Differentially Expressed Genes Reveals Nitrogen Use Efficiency Candidates



		Nitrate Influences Photosynthetic and Water Use Efficiencies in Contrasting Genotypes









		DISCUSSION



		CONCLUSION



		DATA AVAILABILITY STATEMENT



		AUTHOR CONTRIBUTIONS



		FUNDING



		ACKNOWLEDGMENTS



		SUPPLEMENTARY MATERIAL



		FOOTNOTES



		REFERENCES









		Validation of a high-confidence regulatory network for gene-to-NUE phenotype in field-grown rice



		Introduction



		Materials and methods



		Source of N-by-W response data (transcriptome and phenotype) for 19 rice varieties



		Potential index (IPO) calculation of NUE under low vs. high N and W conditions



		WGCNA analysis: Gene-to-field phenotype correlation



		GENIE3 analysis of GRNs and validation of TF→ target gene predictions by AUPR and "network pruning"



		Plasmid construction for TF-perturbation experiments using TARGET assay in plant cells



		TARGET temporal TF perturbation experiment in rice leaf cells and RNA-sequencing



		RNA-seq analysis of TARGET assay for validation of TF-target direct regulated genes









		Results



		Phenotypic variation in NUEg in 19 rice varieties grown in N-by-W matrix field



		Identification of N-and/or-W responsive DE genes highly correlated with NUEg



		Validation of TF→target GRN predictions in WGCNA modules associated with NUEg



		Prioritization of master TFs that regulate NUEg in response to N-and/or-W signaling



		Gene ontology for target genes for prioritized TFs



		High-confidence GRN of TFs that target nitrogen and drought-related genes



		Network validation with in vivo TARGET assay









		Discussion



		High-confidence GRN identifying master regulators of NUEg responsive toN-and/or-W signals



		Validation of GRNs in rice using ConnecTF as a platform to validate and prune for high-confidence networks



		bZIP family TFs as regulators of N and W signaling



		Functional validation of TFs in rice: TARGET assay to identify direct TF→target gene interactions in rice cells



		Our network approach is transferrable to any phenotype in any organisms









		Conclusions



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Supplementary material



		References









		Physiological and molecular insights into the resilience of biological nitrogen fixation to applied nitrogen in Saccharum spontaneum, wild progenitor of sugarcane



		1 Introduction



		2 Materials and methods



		2.1 Plant materials and growing conditions



		2.2 Screening of S. spontaneum population for BNF and growth attributes



		2.2.1 BNF assay: Nitrogenase activity of S. spontaneum accessions









		2.3 Impact of inorganic N fertiliser application on BNF in high-BNF S. spontaneum accessions



		2.4 Physiological and molecular responses of selected high-BNF S. spontaneum accessions G3 and G152 to inorganic N application



		2.5 Shoot growth and content of total N, NH4-N and soluble sugars in G3 and G152 grown under externally supplied inorganic N



		2.5.1 BNF activity of S. spontaneum accessions G3 and G152 grown under externally supplied inorganic N



		2.5.2 Nitrate reductase and glutamine synthetase activity of S. spontaneum accessions G3 and G152 grown under externally supplied inorganic N



		2.5.3 Changes in endogenous level of plant hormones in G3 and G152 grown under externally supplied inorganic N









		2.6 Statistical analysis



		2.7 Molecular analysis of high-BNF S. spontaneum accessions to understand carbon, N, amino acid and hormone metabolism-related gene expression



		2.7.1 Plant materials and RNA isolation



		2.7.2 cDNA library construction and sequencing



		2.7.3 Data processing, transcriptome assembly and functional annotation



		2.7.4 Analysis of differential gene expression in response to inorganic nitrogen application



		2.7.5 GO and KEGG enrichment analysis



		2.7.6 Analysis of differential expression of genes involved in amino acids, nitrogen, carbon and hormone metabolism in response to N application



		2.7.7 Quantitative real time RT-PCR analysis















		3 Results



		3.1 Substantial genetic variation for BNF, shoot growth, stalk number and brix exist in S. spontaneum accessions



		3.2 Sensitivity of BNF to inorganic nitrogen varies greatly among high-BNF S. spontaneum accessions



		3.3 External nitrogen supply boosted shoot growth and content of total N, NH4-N and soluble sugars but reduced BNF in S. spontaneum accessions



		3.4 Nitrogen supply increased auxin, gibberellin and cytokinin content and nitrate reductase activity remarkably, but not so for abscisic acid and glutamine synthetase



		3.5 RNA sequencing, de novo assembly of reads and functional annotation of unigenes



		3.6 Differential gene expression in high-BNF S. spontaneum accessions grown under external N supply: Genotype effect far outweighed treatment effect



		3.7 Carbohydrate, amino acid and energy metabolism DEGs over-represented in G152 in response to external N, while lipid, secondary metabolites and carbohydrate metabolism dominated in G3



		3.8 Distinct genotype- and N-dependent differential expression of genes involved in amino acids, carbon, nitrogen and hormones metabolism



		3.9 Expression of DEGs tallied well with qRT-PCR results









		4 Discussion



		5 Conclusion



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Supplementary material



		References









		OsPSTOL but not TaPSTOL can play a role in nutrient use efficiency and works through conserved pathways in both wheat and rice



		Introduction



		Methods



		Results



		Growth on low P



		Growth on low N



		LICOR



		N Uptake and Expression of N related genes









		Discussion



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Supplementary material



		References









		Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency



		1 Introduction



		2 Nitrate uptake and transport systems



		3 Nitrogen assimilation in relation to NUE



		4 Nitrate sensing and signaling



		4.1. Roles of transcription factors in N use regulation.



		4.2 Nitrate-induced MicroRNA regulation









		5 Nitrate transporters involved in NUE and yield improvement



		6 Nitrate transporters and environmental cues: Influence of environmental stress factors and inducers on nitrate allocation to roots



		7 Could nitrate uptake and utilization affect the efficiency of other plant nutrients?



		8 Nitrate transporter regulates nitrate and auxin crosstalk for root growth and nitrogen uptake



		9 Integrated approaches to improve plant NUE



		10 Conclusion and future perspectives



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		References









		Weighted gene co-expression network analysis of nitrogen (N)-responsive genes and the putative role of G-quadruplexes in N use efficiency (NUE) in rice



		Introduction



		Materials and methods



		Compilation and annotation of N-responsive genes



		Weighted gene co-expression network construction and module identification



		Functional annotation of significant modules



		Data mining for transporters, transcription factors, kinases, and miRNA targets



		Physiological measurements



		G-quadruplex sequences and post-translational modifications



		RNA isolation and RT-qPCR analysis









		Results



		N-responsive genes associated with NUE-phenotypic traits



		Biological pathways and sub-cellular locations of genes involved in N-response/NUE



		Co-expression network analysis reveals coregulated modules of N-responsive genes



		Significant modules reveal the enrichment of photosynthesis and other processes



		PPI network of co-expressed N-responsive genes reveals hub genes



		Transcription factors and transporters coordinate N-response/NUE



		Protein kinases in N-response/NUE



		miRNAs in N-response/NUE



		N-regulated post-translational modifications in rice



		G-quadruplex sequences could epigenetically regulate N-responsive yield and NUE



		G-quadruplex sequences differentiate genes involved in N-response and NUE



		NUE involves better photosynthesis, transpiration, and seed germination in low urea









		Discussion



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Supplementary material



		References









		Promising physiological traits associated with nitrogen use efficiency in rice under reduced N application



		Introduction



		Materials and methods



		Plant materials and seasons



		Meteorological data



		Soil analysis and experimental design



		Morpho-physiological traits and grain yield



		Photosynthetic pigment content



		Flag leaf gas exchange traits



		Chlorophyll fluorescence characteristics



		Nitrogen content estimation and NUE indices



		Statistical analysis









		Results



		Cumulative data of four seasons



		Morpho-physiological traits and grain yield



		Photosynthetic pigment content



		Flag leaf N content and gas exchange traits



		Chlorophyll fluorescence traits



		Nitrogen uptake and NUE indices



		Multiple correlation analysis



		Correlation of grain yield with NUE indices















		Discussion



		Conclusion



		Data availability statement



		Author contributions



		Funding



		Conflict of interest



		Supplementary material



		References









		Discovery of the biostimulant effect of asparagine and glutamine on plant growth in Arabidopsis thaliana



		Introduction



		Materials and methods



		Plant material and growth conditions



		Leaf area imaging



		Determination of amino acid use efficiency



		Statistical analyses









		Results



		Amino acids as nitrogen source for plant growth are less efficient than nitrate



		Detecting inhibitory, neutral, and beneficial effects of amino acid supplies on plant growth in the presence of nitrate using amino acid use efficiency indicator



		Bio-stimulating effects of asparagine and glutamine on plant growth are independent of enantiomeric forms and can be observed at low concentrations









		Discussion



		Data availability statement



		Author contributions



		Funding



		Acknowledgments



		Conflict of interest



		Supplementary material



		References























OPS/images/fpls.2023.1074839/im175.jpg
NO;





OPS/images/fpls.2023.1268739/fpls-14-1268739-g001.jpg
110 130 200 900

1.8

200 240 026 0.36 1id

3.0

12 20 20 3.5 1.5

6 8

20 30 4

0.45

0.20

040 0.65

200 800 1100 110 125 140 12 16 0.26 0.32 200 230 20 3.0 4.0 12 18 6 ¢ 3.0 0.20 0.3° 0.40  0.60
L1111 | O | | — | O | L1111 1 | I | I T I | | O L1 1 | I | T | | O |
A * %A e e | e *% e e e * %A e e e * E
GY |0 0.43 0.45 ovs 007 001 wom o0m o2 003 0.32 023 0.31 0.30 0.37 0.15 025 0.21 oot 0.15 0.15 0.21 0.18 o |
e e e e 4| *%xd *% e e *%A *% A *% *% e e
TDM 0.41 043 oozs 0068 oos7 a1 os1 oore oo 0.29 0.20 0.28 0.28 0.36 017 0.25 023 003 0.15 013 0.19 0.16 -
+ * . . * . s * . wok =
DFF O 0.19 0050 0.19 0.14 0.16 013 014 0.16 013 0.16 011 017 007 a0 014 023 aon ore 014 o o E
. . . *% * *% *k . dekH
DPM 0.13 007 0.15 0.15 0.12 0.14 015 0.21 0.19 0.22 0.12 0.23 pr 00s2 0.15 -0.28 oors oas 0084 oo 009
ok
024
014
-0.10 C
014
013 =
0.12
012 E
006
|
_
*k
022 [
-
0.088 F
e
0.22
0093 E
s
0.21
002
013
4 aN E
' & o (S o & o = =
|||||||r‘ TTTTTTT TTTTTTT TTTTTTT TTT T T T TT
200 350 80 95 110 55 35 20 30 40 010 016 40 48 02 068 10 04 07 10 03 06 290 280 340 077 081 18 29 26 030 045

200 400

105

220 320 03 07 04 08 02 08 40 48 010 0.18 20 35 25 35 80

077 083

26

18

030 050





OPS/images/fpls.2023.1074839/im174.jpg
NO;





OPS/images/fpls.2023.1268739/crossmark.jpg
©

2

i

|





OPS/images/fpls.2023.1074839/im173.jpg
NO;





OPS/images/fpls.2023.1135675/fpls-14-1135675-g007.jpg
Nitrogen treatment/influx

Promote G-quadraplex formation

Gene ontology driven
processes

Carbohydrate met
Signaling
G-quardaplex . . Water depravation
sequences in Positive assocnatfon Nitrogen transport

promoter of gene expression Respiration

Leads to NUE adaptaion

G-quardaplex .
epigenetically

sequences in
gene body

Negative association
of gene expression

Pointing these genes may be
regulated genetically as well
as epigenetically

N-responsive genes having G4 sequences






OPS/images/fpls.2023.1074839/im172.jpg
NO;





OPS/images/fpls.2023.1135675/fpls-14-1135675-g006.jpg
NS
Panvell
1 OVIS 100

*I

S50Vs100

Urea dose

NS
Nidhi

I*

Nidhi

S w Swown oW i © N o wn o
- = e S ¥ Ry ISueVaSiqdeg @fdaSa0S
BIIN MO[ “JIM SISdyjussojoyd BN MO[ JaM uoneaidsueay uoneuIuLId3

U 3SBAIIIP 10 ISLAIIUI JUIIdJ U ISBIIIIP A0 ISBIIIUI JUIIIdJ ur dFueYD JUINIdJ

om & ]

{(!0





OPS/images/fpls.2023.1135675/fpls-14-1135675-g005.jpg
-4

s dHPD
e SEINTTASO

s GEX/SEWWERY AL

s AMRAAL

= 094 VE-ANS/INS
= JHS

s I TS

s NI PIY
-
Y OPIISI
e [X AN

s [N

== ) MIA-SAVIN
w1

s T

= SAT

= ASH

= 10Y)0-FT H

= g-AV-d AV

st X QN -4H

s G [ 10)EAIIROD)

— V'V D

s VLIV D

s IN1-0D-TDTI

— ]

s ([P V
e €€ ] L6
s 7.1V 1d
s €A JA
DIWH

s "] T -GH
—— V]V O-TITD
rm—JO([-T )T

m— X {[OY 11 ],

— NS

[ — T
—— OYI[-7)-d U VO
mm— 0
—— Sy .10
mm——— 172
mmm—— ] Y/-€ 6]
— Y I|-TY [V

Transcription Factors

s ——— p3YE[2.4-6 A W
P T T et
- = soud3 Jo JdqUINN

o

Kinases

S v =

& 8 £ =
S9Ud3 Jo JdquINN
' upayoad Apiwiey ENIN UHNPON
e pig Jortodsuen peyding
e z-19)10dsueay asorng
wapiodsued], urjoIg
w uppjoad driodyue Xnjyd WNISE)oq
= | 1oyeppoey Japiodsuey eydsoyd
= VINVLILSO
= op LAAA\SWZ dZ1EW JO 30100310
' 7 J9y10dsue.n) winissejoq
w 1pyi0dsue.ny wnisauew MI-VI0D)
w £ Jpiodsueny pddo)
w HOD Sojowoy duosadeyd aaddo)
e ¢ J9)t0dsSURL] WnjuowWuy
= Apwe g Aemiped 410321998 11 9dAL
w Aqwey Sundfivy Uiy UMy,
= Z-PUURYD) UOHED) JANIIIS-UON
w Krugy-dng aseddipg apLieydIEsijog
m dwrean:a9)10dsuea LU0y [BRIN
= [QuuEy)) O] PAES-NEWEN)
s Kqrue g a0310dsurA], Uo| BRI V40D
= {1 ,{ 10)EN[IE{ UOISRIIQ uoBE)
= (e 10)0dpuy Uone):+78)
Apuey 1ori0dwiss +EN:PRY g
ey (VVV) 10dnuy 4av:d.Ly
= J{UNQNS ISEIO[SULL) [ELIPUOYION N
s 119)0.d 3suodsas Area-pasepq
g yi[-19)10dsuray pre outwy
o we | 719)10dwAS uonE):ISEqodRNN
s e, Ja)s0dsue] dunss) 1EwososA]
wom e 49310dXF PRV dpEWOIY
ey UONEIOUESIQ-IUIWEA0d-VY
s A[IUIE ] 9SEAULID UIXNY/PIY oUWy
ms g dng Puuey) uoy Ppares-a3e) oA
o {uey1adng ased Ly 2d8-g
m (e A9)10dsue., opndadosio
—SEIO[SUEL ], UD)0A] [BLIPUOYIOIA
" JSRYIUAS J LV 1B[ONIBA
s ]| A9)10dsue.L) 9)eNIN
(e | u)01g dAsuLnu] Jofe iy
s 3sgyeydsoydoasy Supedosuen+H
o ([IWE ] uIxouuy
s ugp)0.d uriodenby
m— {[[wgysadns 9)0dsuen DGV
mm—-dng 19)10dsueL], ajoqeR/Anaa
—y-dnG 35T LV BULI0SULH-+EN/+H
—_C ey jadng 10)eN[pE J0le N

e ———
e e Awe g () J91LIED) [BLIPUOYIONI

~ Huds jo taquiny

Transporters

&
-





OPS/images/fpls-12-807798/fpls-12-807798-g003.jpg
TotalAA pmol/pg DW under HN nutrition

TotalAA pmol/pg DW under LN nutrition

o

i

LU

i AAL
o
|

TG
MO
=
MG

LA
Wil )

Mm2*

M1

110

GP*

70
g0

sanea

M3*

M5

-0

e

=

#

O

b
x

M{

"
ME* —1

JYIE

1

| M3

b

GP*

. 4

1

A — = T

Ma*

[

100

a0

70

a0

80

uh
ud

-
u

uwy
~r

40

Roots

Roots

9% 2UIINI]

b

l c d

- T E—
0f UIIDS
o H

— -

c

o w <
= L= o
% 2Ul|0Jd

= N

]

c

% dUIPA|D

% duIue|y

v
O
Lo |

-

L
Yy
-

1014
65
001

04 dulue|ejAuayd

c

b
c [

%

8
aulweIn|o

10
0

201

4
w3 =
- -—

05
0.04

0 aUISAT

001

L2
<

o7 BUISOJAL

04 AUILOAIY L





OPS/images/fpls-12-807798/fpls-12-807798-g004.jpg
ROOTS

LEAVES

™ o™ ' 20

00 00 0000000 @
=
2223 2222722 2
A0 DNONWO
LSs2 Zhse20T ©

(.
o4

-‘/ -
1

o

0000 ©0 CO000®
2222 Z2Z ZZZZ2Z
SET TE NeNTTY
WMo O 79W6P2
22UZE 22 S=2=2=202

;

;

AT (T T B O]

][ |

© NONOONMNT™—

=E

® 0000000000 ® 00

Z 2222222 2222
z 2222222222 T TTTTZIT 21T
NOODOT=N LMW
= T =l = ) b=

| | Threonine

o
© S22282=50G 2

vu| s

-
T T 7T TS N s .
=i

1D

o o

il

s g N (op]
' ] '

Proline
GABA
Phenylalanine

Valine
Leucine
Isoleucine
Tyrosine
Alanine
Threonine
Glutamine
Serine
Glutamate
Aspartate

Lysine
Glycine

.

Glutamine

Glutamate

Aspartate

Proline
Glycine

GABA
Alanine
Serine
Tyrosine
Phenylalanine
Lysine

Isoleucine

Leucine
Valine

e 4

High nitrate

Low nitrate






OPS/images/fpls-12-807798/fpls-12-807798-g001.jpg
0.0019

0.0017

0.0015

0.0013

0.0011

0.0009

PNup under HN

0.0007

0.0005
O |

Total N Uptake (mg 15N per plant /h)

M1*
MS*

e
R i

M3*

M23
GPY '

M4*

T6*

0004

0.0006 0.0008 0.001 0.0012

PNup under LN

0.0014

Plant Nitrogen Use Efficiency (DW/N%)

0.021

0.019 M1*
< M8
h
[T, i
—
w M6 M3* ' + ‘
g 0.015 GP : * y
— Te* M4*

0013 Ma* i E

* M2*
0.011
0.011 0.013 0.015 0.017 0.018 0.021

PNUE under LN

o © ©o o o
g8 8 8 8§ B8

LDW under HN

o
o
]

0.05

0.04

M

Leaf dry weight (g/plant) .
L

L

, +6 : E6* Ms* M7

0.025

O

RP%N under HN
o ©o o o 4, e @
> = @ e b 2 B

(=]
-
o

=]
-
£

/

0.03

0.035 0.04
LDW under LN

0.045 0.05 0.055

Root Nitrogen Partitioning

021

023

0.25 027 0.29
RP%N under LN





OPS/images/fpls-12-807798/fpls-12-807798-g002.jpg
Subgroup
Al

A2

A3

Genotypes
T6, M2, M4, GP
M9, M5, M6, M7

M1, M8, E6, M3

Characteristics
Non tolerent to LN and poor on HN
Intermediate

Tolerant to LN and performant on HN

T6 LN
GP LN
M2 LN
M4 LN

M5 LN
M7 LN
M6 LN
M9 LN

E6 LN
M1 LN
M3 LN
M8 LN

M1 HN
M6 HN
M7 HN
M8 HN
E6 HN
M3 HN
M5 HN
GP HN
T6 HN

M2 HN
M4 HN
M9 HN





OPS/images/fpls-12-807798/fpls-12-807798-t001.jpg
Code in
this work

Official
name

Adrar

Taffa

Massine

Laannaceur

Oussama

Firdaws
Tamellalt

Amalou

Amira

Manel

Giza 2000

Golden
Promise

Country of
origin

Morocco

Morocco

Morocco

Morocco

Morocco

Morocco
Morocco

Morocco

Morocco

Tunisia

Egypt

Europe

References
describing the
genotype

Hellal et al., 2019

Hellal et al., 2019

Hellal et al., 2019

Hellal et al., 2019

Hellal et al., 2019

Hellal et al., 2019
Hellal et al., 2019

Hellal et al., 2019

Hellal et al., 2019

Row type

2 rows

6 rows

6 rows

6 rows

6 rows

6 rows
2 rows

6 rows

6 rows

6 rows

6 rows

2 rows

Spring/
winter
type

Spring type

Winter type

Winter type

Winter type

Winter type

Winter type
Spring type

Winter type

Winter type

Spring type

Spring type

Spring type

Hulled/
hulless

Hulled

Hulled

Hulled

Hulled

Hulled

Hulled
Hulled

Hulled

Hulled

Hulled

Hulled

Hulled

Saidi et al., 2005)

Medium type

Medium type

Medium type

Medium type

Medium type

Medium type
Medium type

Early type

Medium type

Early type

Early type

Early type

Earliness of maturity Disease resistance
(Badraoui et al., 2009;
Noaman et al., 2007;
Mlaouhi et al., 2020;

(Badraoui et al., 2009; Noaman
et al., 2007; Saidi et al., 2005)

Resistant to powdery mildew,
susceptible to Rhynchosporium,
moderately resistant to rust
Moderately resistant to powder
mildew and rust; susceptible to
Rhynchosporium

Moderately resistant to powdery
mildew and yellow rust, susceptible
to Rhynchosporium and moderately
susceptible to brown rust
Moderately susceptible to powdery
mildew and Rhynchosporium,
susceptible to rust

Susceptible to powdery mildew and
Rhynchosporium, susceptible to
yellow and brown rust

Resistant to powdery mildew
Moderately susceptible to powdery
mildew, susceptible to
Rhynchosporium, moderately
resistant to yellow and brown rust
Moderately resistant to powdery
mildew, susceptible to
Rhynchosporium, moderately
resistant to yellow and brown rust
Resistant to powdery mildew,
susceptible to Rhynchosporium
and rust

Moderately resistant to powdery
mildew and Rhynchosporium,
moderately resistant to net blotch
Moderately resistant to leaf Rust.
Resistant to powdery mildew and
net blotch

Susceptible to net blotch and
powdery mildew

Year of
release

1998

1994

1994

1991

1995

1998
1984

1997

1996

1996

2003

1968
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Short-name Trait name and unit HN *>or*< LN

PDW Plant dry weight (mg/plant) 78.18 ns 59.47

LDW Leaf dry weight (mg/plant) 58.57 > 39.56

RDW Root dry weight (mg/plant) 19.07 & 19.82

PN% Nitrogen concentration in the whole 517 e 3.32
plant (gN/100 gDW)

LN% Nitrogen concentration in shoot 5.67 K= 3.83
(gN/100 gbw)

RN% Nitrogen concentration in root 3.69 g 232
(gN/100 gbw)

PC% Carbon concentration in the whole 356.2 *g 37.19
plant (gC/100 gDW)

LC% Carbon concentration in shoot 35.92 S 37.85
(9C/100 gbw)

RC% Carbon concentration in root 32.99 & 36.28
(9C/100 gbw)

PNUE Plant NUE (mg DW/%N) 16.3 Y& 16.9

LNUE Leaf NUE (mg DW/%N) 10.72 ¥ 9.92

RNUE Root NUE (mg DW/%N) 5.38 < 7.33

PNUpE Plant N uptake efficiency 411 K= 3.63
mg °N/100 mg DW

LNUpE Leaf N uptake efficiency 3.77 g 3.26
mg "®N/ 100 mg DW

RNUpE Root N uptake efficiency 4.92 o 4.46
mg "®N/100 mg DW

LP%DW Biomass partitioning in shoot 0.75 > 0.67

RP%DW Biomass partitioning in root 0.25 % 0.33

SR Shoot DW to root DW ratio 3.08 > 1.96

LP%N Nitrogen partitioning in shoot 0.83 > 0.75

RP%N Nitrogen partitioning in root 0.17 *< 0.25

LP%15N 15N partitioning in shoot 07 s 0.6

RP%15N 5N partitioning in root 0.3 ot 0.4

PNUp Plant N uptake (Total _Nitrogen.Uptake)  4.11 g 3.62

(mg "°N per plant/h)

HN and LN indicate the mean of the considered trait over the whole individuals of
the collection under high or low N, respectively. *> or *< indicates that the mean is
significantly different between HN and LN, t studentp < 0.05.

SE, standard error for the variable over the whole individuals of the collection; ns,
non-significant.
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Complete network Hub genes

mapped onto cytoscape, found dense cluster using plugin
MCODE and calling them as HUB genes

Interactors of these 10 genes were searched among them,






OPS/images/fpls.2023.1074839/im17.jpg
NO;





OPS/images/fpls.2023.1135675/fpls-14-1135675-g003.jpg
A

B

Sample dendrogram and trait heatmap

Height

Treatment
Tissue

Growing
time

Height

w w - —
= n = n

N
n

e
= n S

.Minus log P of module membership Vs. gene sig
5
>

'
n

Dynamic tree yut

—

0
5
13
5

[
s
R
§
%

o
~ N
& ¥
§ 8
I
&

§
=

3
S
5

d 4

&
§
&

}

&
Sy
$

Gene dendrogram and module colors

ICa cium-mediated signaling

Y
]
x®
-
=
=
Z
=
£
&
@
2
@
<9
e
£
a
=
e
@
=
<
=
-
Z
L2
=
«
<
&}
—~
f)
é

Scale free topology model fit, signed R*2

e
P

e
s
1
IS

e
&

Scale independence

&2
10121415‘
9

r 2

6

5

2
d

L .
5 5
Soft thres]hooldl :pggver

trograde transport

process

romatic a.a. biosynthetic

novo' GDP-L-fucose biosynthetic process

Ureide catabolic process

s Number of genes

1200

1000—

Mean connectivity

rmation of translation initiation complex

800 -

600 |

0.0 -

Mean connectivity

q'214151a

5 5
Soft thres]hﬂold1 :pggver

C

MEbrown
MEgreen
MEDblack

MEturquoise

MEpurple

MEsalmon

MEred

MEyellow

MEmagenta
MEblue

MEcyan
MEtan
MEgreenyellow
MEpink
MEgrey

k) ko)

aom o aa

T\'eam“"“\ T\Ss“e %““\e

cro™

Network heatmap plot

Wm%%

erobic respiration

Minus log P

Translation

9200

800

700

600

Tri carboxylic acid cycle

400

300

200

100

1000

Jmpow 0) urepadd sauIB Jo JdqUINN

Module-trait relationship





OPS/images/fpls.2023.1074839/im169.jpg
NO;





OPS/images/fpls.2023.1135675/fpls-14-1135675-g002.jpg
Column Z-5core  (yene Ontology Terms

-4-2 0 2 4

GO:0006412
G0O:0002181
GO:0009651
G0O:0000028
GO:0009414
G0O:0008652
G0O:0009409
G0O:0006099
GO:0015991
GO:0018105
GO:0009768
GO0O:0000381
G0O:0045292
GO:0018107
GO:0009765
G0O:0009060
GO:0000027
GO:0006886
GO:0006457
G0O:0034599

Translation

Cytoplasmic Translation

Response To Salt Stress

Ribosomal Small Subunit Assembly
Response To Water Deprivation
Cellular A.A Biosynthetic Process
Response To Cold

Tricarboxylic Acid Cycle

ATP Hydrolysis Coup. Pro.Tranp
Peptidyl-Serine Phosphorylation
Photosynthesis, Light Harv. Photo.l
Regulation Of Alt. mRNA Splicing
mRNA Cis Splicing, Via Spliceosome
Peptidyl-Threonine Phosphorylation
Photosynthesis, Light Harvesting
Aerobic Respiration

Ribosomal Large Subunit Assembly
Intracellular Protein Transport

Protein Folding
Cellular Response To Oxidative-

Stress





OPS/images/fpls.2023.1074839/im168.jpg
NO;





OPS/images/fpls.2023.1135675/fpls-14-1135675-g001.jpg
I R7(30)

| R8(16)
TR
[ R10(18)
_R11(D)
_ RI12(55)
AT 1 RIQ) .~ RSQ23)
L A% T R2®)
W v33) T R3(25)
= V4(46) U R4(14)
V5(2)
v B vo29)
W viae)
W vse)

. G@6)

-

Germination Seedling Tillering Panicle Initiation

Flowering Harvest

(V1-V9) (R1-R12)





OPS/images/fpls.2023.1074839/im167.jpg
NO;





OPS/images/fpls.2023.1135675/crossmark.jpg
©

2

i

|





OPS/images/fpls.2023.1074839/im166.jpg
NO;





OPS/images/fpls.2023.1074839/table4.jpg
20

OsNPF8.20
(OsPTRY)

OsNPF6.5
(NRT1.1B)

OsNPF8.9
(OsNRT1.1a and
OsNRT1.1b)

OsNRT2.1

OsNPF7.3
(OsPTR6)

OsNRT2.3a

OsNRT2.3b

NRTL.7

OsNPF6.1HapB

OsNRTLIA
(OsNPF6.3)

OsNPF2.4

OsNPF2.2

LeNRT2.3

NRT2.7

NPE3

OsNPF7.9

OsNPF5.16

OsNPF3.1

‘MeNPF4.5

Rice

Rice

Rice

Rice

Rice

Rice

Rice

Arabidopsis,
tobacco, and
rice

Rice

Rice

Rice

Rice

Tomato

Arabidopsis

Arabidopsis

Rice

Rice

Rice

Cassava

Expression pattern

Root tips, leaves, stems, and
panicles

Root epidermis, root hairs,
and vascular tissues

Roots

Root, leaf sheaths, and leaf
blades

Roots and shoots

Culms

Phloem

Old leaves

Root cells

Epidermis, Root
vascular tissues,
parenchyma cells of both
culms and leaf sheaths

Root epidermis, phloem
companion cells, and xylem
parenchyma

Leaves and branches

Rhizodermal and pericycle
cells in roots.

Seeds and siliques

Root epidermis

Xylem parenchyma cells

Roots, leaf sheaths, and tiller
basal parts

Culms, panicle and, aerial
parts of the roots

Root

Promoter region
Ubi promoter
CaMV 35S or native

promoter

Ubi promoter

Ubi and NAR2.1
promoter

Ubi promoter

P35S:NRT2.3a

Pp35S:0sNAR2.1-p35S:

OsNRT2.3a

CaMV 35S8/Ubi
promoter

NRT1.7 promoter
(NRT1.7p:NC4N::3")

Transactivation of
OsNPF6.1HapB by
OsNAC42

CaMV 35S promoter

Ubiquitin promoter

OsNPF2.2 promoter-
B-glucuronidase

CaMV 358 promoter

CaMV 35 promoter

CaMV 35 promoter

CaMV 35 promoter

Ubiquitin promoter

PYLCRISPR/Cas9
vector

CaMV35$ promoter

Summary of findings

Increases NH uptake, lateral root, and grain
yield.

Improves NUE and grain yield

+ Increases shoot biomass under the hydroponic
system

« Under low N conditions, OsNRT1.1b enhances
N content and growth, but loss of function in
OsNRT1.1a

 pUbi: OsNRT2.1 exhibits decreased NUE
« pOsNAR2.1:0sNRT2.1 exhibits increased NUE

Improved growth under various N supplies but
decreased NUE on excessive NH] supply

« p355: NRT2.3a exhibits no improvement yield
and NUE

« p358:0sNAR2.1-p35S: OsNRT2.3a increases
rice yield and NUE

« Increases the uptake of other mineral nutrients
« Improves grain yield and NUE by 40%

« NO;- accumulation at the younger leaves

« Enhances NO,- remobilization to the sink,

« Improves plant growth and yield under low
and high NOs- supply

« Improves N uptake and signaling pathway
under N starvation

« Improves NUE and yield

« Enhances N-utilization and flowering, and
grain yield

« Shortens maturation time

« Increases the expression of N-utilization and
flowering-related genes.

Enhances N acquisition and long-distance
transport

Affects root-to-shoot NOs- transport and plant
growth.

Enhances NOy- uptake, and transport to the
shoot

Regulates nitrate content in mature seeds

Partly regulates gibberellin distribution
Regulates NO;- allocation
Coordinates growth and stress tolerance

Improves sheath NO;- content, tiller number,
and biomass

« Enhances NUE
« May participate in shoot N allocation

« Regulates N uptake and utilization, thus
improving NUE in cassava.

« Improves photosynthesis and N-enzymatic
activities.

Reference

(Fang et al,,
2013)

(Hu et al,, 2015)

(Fan et al.,
2016a)

(Chen et al.,
2016)

(Fan et al., 2014)

(Fan et al.,
2016b; Chen
et al., 2020a)

(Fan et al,,
2016a)

(Chen et al,,
2020b)

(Tang et al.,
2019)

(Wang et al,,
2018¢)

(Xia et al,, 2015)

(Li et al., 2015)

(Fu et al,, 2015)

(David et al,,
2014)

(Tal et al,, 2016
(Guan et al.,
2022)

(Wang et al.,
2022)

(Yang et al,,

2023)

(Liang et al.,
2022)
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Host species

Transgenic approach

Summary of findings

Reference

OsmiR393

Osa-
miR528

TaMIR444a

TaMIR2275

RDDI

Rice

Creeping
Bentgrass

Tobacco
Tobacco

Rice

Mutation

Overexpression

Overexpression
Overexpression

Overexpression

Represses N-promoted tillering

Increases total N, chlorophyll synthesis, and biomass
accumulation

Increases N uptake and plant biomass under N- limitation

Improves N and biomass accumulation under N starvation.

Increases N-uptake and grain yield under low N

(Li et al,, 2016b)

(Yuan et al., 2015)

(Gao et al,, 2016)
(Qiao et al., 2018)

(Iwamoto and Tagiri,
2016)
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Host
species

Transgenic
approach

Summary of findings

REE

MADS-box

Dof

bzZIP

NLP

MYB

Lateral organ boundary
domain (LBD)

Zinc-finger proteins

NAC

NE-Y

ZYF

ANRI

AGL21

OsMADS25

OsMADS57

CmANRI

ZmTMM1

ZmDofl

Dof1(Dof1.7)

ZmDofl

TaDof!

TGA4

TabZIP60

HY5/HYH

TGA1/4

OsNLP1

OsNLP4

ZmNLP6 and
ZmNLP8

ZmNLP5

NLP7

OsMYB305

SiMYB3

MYB59

LBD37
LBD38
LBD39

GATA4

TaNAC2-5A

NAM-B1

TaNFYA-B1

TaZFP593;

Arabidopsis
Arabidopsis

Rice

Arabidopsis

Arabidopsis

Rice

Tobacco

Wheat and

Sorghum

Wheat

Arabidopsis

Wheat

Arabidopsis

Arabidopsis

Arabidopsis

Maize

Arabidopsis

Rice

Arabidopsis/
and rice

Arabidopsis

Arabidopsis

Arabidopsis

Wheat

wheat

Wheat

Wheat

PR, Primary roots; PEPC, Phosphoenolpyruvate carboxylas.

Overexpression

Overexpression

Overexpression

Overexpression

Overexpression

Overexpression
Constitutive
expression

Overexpression

Constitutive

expression

Overexpression

Overexpression

Downregulation
(RNAi)

Knockout

Mutation based

Overexpression

Overexpression

Overexpression

Mutation based

Overexpression

Overexpression

Overexpression

Mutation based

Overexpression

Downregulation

Overexpression

Downregulation
(RNAI)

Overexpression

Overexpression

Rapid early seedling developments
Increases lateral root (LR) density and length

« Promotes nitrate accumulation and upregulates
other NO;- responsive genes
« Positively regulates primary and LR development

« Regulates nitrate root-to-shoot transport
« Upregulates OsNRT2.1/2.2/2.4 and OsNRT2.3a.

« Improves lateral root growth and development
under moderate NO;- regime
* 7.5%-116.2% increase in root auxin level

Increases NR, GS, and PEPC activity and LR
elongation

Improves N assimilation and growth under N-
deficient condition

Increases plant length, total protein, and N
assimilation under low N

« Negatively affects photosynthesis, plant height, and
biomass under poor-N

« Reduces the expression of photosynthetic-
regulatory genes

+ Regulates Carbon and N metabolism under N-
limiting conditions.
« Improves different agronomic traits

« Alleviates N-starvation
« Enhances nitrate transport and assimilation
capacity.

« Stimulates lateral root branching, spike number
and increases N uptake

«; Accelerates NADH-dependent glutamate synthase
(NA-H - GOGAT) activity

« Improves grain yield by more than 25% under
field-based conditions

Upregulates NRTLI and improves N-uptake

« Increases the expression of NRT1.1, NRT2.1,
represses NIA2
« Decreases LR growth and root hair density

Increases plant growth, yield, and NUE under
diverse N supplies.

Improves plant biomass, yield, and NUE under
moderate N

« Increases biomass and yield by 15% and 45%
under low N
« Contributes to NUE

« Decreases in root NO5- accumulation
« Reduces ear, seed kernels, and leaves N contents
« Suppresses shoot NH," content.

Increases plant growth under low and high-N
conditions

« Improves nitrate uptake, N assimilation, and
growth
« Improve NUE

« Improves seed N, grain weight, total N, and root
growth

« Upregulates OSNRT2.1, OsNRT2.2, OsNiR2, and
OsNAR2.1

« Reduces K*/NO;- root-to-shoot transport
« Represses NRTL.1 expression.

Downregulates several N-related genes

« Higher shoot biomass and root hair density
« Fewer LRs, and shorter PRs

« Increases tiller number and dry weight under low
NO;- starvation

« Improved grain and shoot N, harvest index, and
grain yield

« Enhances leaf N to grain remobilization

Increases root growth, N uptake, and grain yield

« Improves root system architecture, N uptake, and
grain yield under low N

(Gan et al., 2012)
(Yu et al,, 2014)

(Yu et al,, 2015)

(Huang et al., 2019)

(Sun et al,, 2018)

(Liu et al,, 2020)

(Yanagisawa et al., 2004;
Kurai et al,, 2011)

(Wang et al,, 2013)

(Pefia et al., 2017)

(Hasnain et al,, 2020)

(Zhong et al., 2015)

(Yang et al., 2019)

(Jonassen et al., 2009)

(Canales et al., 2017)

(Alfatih et al., 2020)

(Wang et al,, 2021a)

(Cao et al., 2017)

(Ge et al,, 2020)

(Yu et al,, 2016)

(Wang et al., 2020a)

(Ge et al,, 2019)

(Du et al,, 2019)

(Rubin et al,, 2009)

(Shin et al,, 2017)

(He et al., 2015)

(Uauy et al., 2006)

(Qu et al,, 2015)

(Chen et al., 2017)
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Host Transgenic

species approach

1 0sGS1;2 Rice Overexpression « Improves N utilization efficiency (Braver et al., 2011)
« Enhances N harvest index

« May not lead to less N input under field condition

2 GSL;1, GS1;2 Rice Overexpression Poor yield and growth phenotypes under different N (Bao et al., 2014)
conditions.

3 OsNADH-GOGAT  Rice Overexpression Enhances N utilization and grain filling (Yamaya et al., 2002)

4 OsAlaAT Rice Overexpression Increases nitrate uptake efficiency, tiller number, and (Shrawat et al., 2008; Beatty et al.,
grain yield 2009)

5 OsAATI-3 Rice Overexpression Increases protein and amino acids in seeds (Zhou et al., 2009)

6 ASNI Arabidopsis Overexpression « Increases seedlings’ tolerance to low N supply (Lam et al,, 2003)

« Improves protein content in the seeds

7 HVGSL.1 Barley Cisgenic expression Increased grain yields and NUE (Gao et al,, 2019a)

8 TaGS2-2Ab Wheat Transgenic expression Improves grain yields and NUE under different N (Hu et al,, 2018)
conditions

9 ZmGlnl-3/ Maize Mutation Exhibits reduced kernel size and number (Martin et al., 2006)

ZmGlnl-4
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Grain yield (g m?) 1.88 343 2.82 2.46 4.22 3.67 328 5.84 5.02 3.48 5.83 5.09

Total dry matter (g m?) 529 9.18 7.43 6.29 9.87 8.74 7.37 12.08 10.65 7.89 12.48 10.89
Days to 50% flowering 81 109 96 83 111 98 84 112 99 86 113 101

Days to maturity 112 136 125 114 137 127 114 138 129 116 140 130

Flag leaf length (cm) 237 310 26.3 24.6 34.8 29.2 278 372 325 30.8 39.5 352
Flag leaf width (cm) 116 1.44 1.28 1.28 1.52 1.38 1.35 1.60 1.47 1.43 1.72 1.55
Flag leaf area (cm?) 208 316 254 243 39.2 30.2 283 43.0 358 33.8 50.9 41.1

Flag leaf thickness (mm) 0.238  0.329 0.281 0.280 = 0.347 0.312 0312 | 0371 0.342 0.338 0.420 0.374
Flag leaf dry weight (g) 0.098  0.154 0.121 0.111 0.177 0.138 0123 0.185 0.157 0.139 | 0211 0.170
Specific leaf area (em? g'l) 1982 | 2153 209.0 213.5 | 2235 219.0 2207 | 2360 2283 2325 2489 241.1
Specific leaf weight (mg cm?) 4.66 5.05 4.80 4.48 4.69 4.57 4.25 4.54 4.39 4.02 4.30 4.15
Chlorophyll a content (mg g" fw) 1.53 1.89 171 1.81 234 215 232 3.03 2.64 2.66 3.13 291

Chlorophyll b content (mg g'l fw) 0370 | 0.552 0478 0.512  0.756 0.649 0.675 | 0.939 0.819 0.768 1019 0.921
Total Chlorophyll content (mg g™ fw) 1.96 241 2.19 233 3.03 2.80 3.01 397 3.46 343 4.07 383
Carotenoid content (mg g™ fw) 0457 = 0582 0.510 0.554 0710 0.631 0.673  0.834 0744 | 0729  0.893 0.802
Photosynthetic rate (umol [CO,] m? s 144 | 167 15.7 179 | 213 193 220 | 260 237 232 | 273 254
Stomatal conductance (mol [H,0] m?s?) 0238  0.322 0.281 0.370  0.550 0.460 0.581 0.750 0.636 0.625 0.790 0.706
Transpiration rate (mmol [H,0] m¥gh) 4.15 5.50 4.94 5.29 7.24 6.30 7.16 847 7.72 7.44 8.95 8.42
Internal CO, concentration (ppm) 263.1 3064 281.1 2424 2965 2713 238.1 287.7 2644 2287 | 2737 2573
Flag leaf N (%) content 1.92 235 2.11 223 2.68 249 243 2.96 275 2.54 3.07 2.86
Photosynthetic nitrogen use efficiency (umol [CO,] g™

[N] ) 133 17.6 15.8 14.9 19.4 17.3 18.0 226 20.0 19.9 232 21.6
Maximum quantum yield of PSII 0.780  0.807 0.792 0.792  0.814 0.802 0.805 = 0.823 0.815 0.813 0.832 0.820
Actual quantum yield of PSII 0.288  0.338 0.309 0.297 0354 0334 | 0335 0388 0374 | 0363 0409 | 0.390
Electron transport rate 20.3 232 215 21.8 25.1 235 253 274 26.5 26.1 29.0 27.5
Coefficient of photochemical quenching 0474 0517 | 0499 0.474  0.564 0537 | 0553 0.622 0598 | 0557 | 0.655 | 0.628
Coefficient of non-photochemical quenching 0.391  0.464 0.426 0.361 0.414 0.389 0.341 0.396 0.366 0.328 0.368 0.348
Grain N uptake (kg N ha) 203 414 30.6 28.8 52.3 44.1 41.8 80.5 65.7 45.9 83.4 69.1

Straw N uptake (kg N ha™") 17.9 343 24.5 225 37.6 304 26.5 42.6 379 29.6 47.1 41.2
Total plant N uptake (kg N ha™") 382 75.7 55.1 514 89.8 74.5 68.3 1205 103.7 75.6 126.6 1103
Agronomic efficiency - - - 6.8 29.2 17.0 14.0 29.1 220 10.6 19.8 15.1

Physiological efficiency - - - 315 57.7 45.9 403 545 46.1 35.1 47.1 415
Partial factor productivity - = E 49.3 84.5 733 32.8 584 50.2 232 38.9 339
Apparent nitrogen recovery efficiency - - - 20.2 61.4 387 30.1 629 485 24.9 49.0 36.8
Nitrogen uptake efficiency 199 395 28.8 20.0 35.0 29.0 212 375 322 19.9 333 29.0
Nitrogen utilization efficiency 45.3 56.4 515 4.9 534 494 44.1 514 486 4.2 49.0 46.2
Nitrogen use efficiency 9.8 17.9 14.7 9.6 16.5 143 10.2 18.2 15.6 9.1 153 13.4
Nitrogen utilization index 121.3 148.3 136.1 107.5 1254 118.0 96.0 109.5 103.4 90.3 104.3 99.3

Nitrogen harvest index 49.0 60.6 55.4 54.7 63.0 59.0 59.3 66.7 632 59.0 65.8 62.5





OPS/images/fpls.2023.1074839/im196.jpg
NO;





OPS/images/fpls.2023.1268739/table7.jpg
Genotype  Anjall Birupa Daya Heera Indira Nidhi N2z Tella Hamsa Dhan 209 Vasumati R64 Gazs Varaghan MTU 101 Mean
Gy a1 516 521 500 58 464 348 388 530 566 547 512 52 581 509
™M 1056 1126 1108 1086 198 1032 789 875 1139 20 u2s 115 1248 s 1089
DEF 8 us 2 3 108 105 2 5 105 m 104 105 9% o5 101

DM 16 110 10 19 131 131 123 120 134 138 135 134 129 2 130

L 393 351 23 37 95 3L6 73 3 390 352 308 36 89 s 352
W 154 160 150 L6t 172 159 148 143 167 152 146 170 L5 L 155
HA 54 a1 362 a9 09 37 a4 368 s 102 38 29 25 2 a1

BT 0348 0420 0377 0393 0377 0354 032 0332 0393 0381 0400 0338 0351 0371 0374
HDW 0190 o179 0152 0173 0211 0151 0 0157 0202 0167 0139 012 [ 0147 0170
s 2393 2357 2376 17 17 288 201 2353 2120 2101 213 2187 289 25 2111
st 419 425 a1 a1 a1 103 a7 125 a1 a7 an 403 10 30 415
cHia 286 301 27 284 299 274 266 268 305 306 304 291 299 313 291

cHp os21 053 0855 0921 1019 0985 0768 0590 0851 0915 0554 o012 0930 093 0921
TCHL 78 395 360 376 101 368 an 357 400 400 399 s 392 107 383
cAr 0785 0821 0730 0791 o813 o079 o7 0757 0316 0857 0308 o072 0831 0803 os02
Pn 58 251 204 256 261 22 238 255 56 252 21 258 26 73 254

- 0655 0667 069 o741 o680 0625 0671 0710 0679 om0 o717 o 0790 0767 0706
E 865 853 821 839 829 744 762 857 856 592 830 892 501 895 s

c 75 515 2121 2574 262 233 287 218 2694 2568 2688 2690 w7 732 2573
BN 303 267 263 303 282 292 254 296 281 201 307 292 30 275 286
PNUE 207 24 26 206 29 199 28 204 23 20 20 20 22 22 26
FFa 0822 0821 o821 0819 o819 0821 0813 0823 0819 0819 0814 0820 021 0832 0820
obsit 0391 0376 0404 0386 0405 0363 0380 032 0409 0381 0395 0390 0380 0401 0390
FTR 267 261 281 82 200 263 266 24 23 27 77 74 284 74 75
@ 0617 0609 0619 0615 0607 0557 0629 063 063 0613 0619 0639 o618 0655 o628
a~ 0362 0334 0356 0328 0329 0319 032 0351 0344 0319 0358 0368 0362 033 0348
GNU 665 &5 4 703 70 63 59 513 3 791 n7 698 70 s34 1

sNU 00 21 06 122 08 296 B 26 84 27 25 71 52 2
™y 1065 1096 1100 1125 1200 1011 756 o1 s 25 ns4 n23 1251 1266 103
AE 158 150 168 11 190 150 106 106 129 187 11 166 198 159 151

PE s 09 29 351 59 106 s 370 06 96 52 24 s w1 as
vrp 27 304 350 34 19 09 22 259 353 27 365 1 381 18 59
ANRE 364 381 399 319 2 373 29 279 a2 s 28 296 190 59 368
NUpE. 280 28 289 296 316 274 199 212 294 22 304 295 29 33 20
NUE 161 s a8 el 190 7 160 22 74 165 76 58 161 59 62
NUEjag 29 16 58 52 153 122 91 102 159 " 14 15 151 153 14

N 9.1 1037 1012 970 1008 96 103 950 1021 901 983 997 1005 903 9.3
NH @5 6L6 60 26 650 07 08 590 618 616 &7 o @5 658 &5

Where, GY, Grain yield (t ha''); TDM, Total dry matter (t ha'); DEF, Days to 50% flowering DPM, Days to physiological maturity; FLL, Flag leaf length (cm); FLW, Flag leaf width (cm); FLA, Flag leaf area (cm?); FLT, Flag leaf thickness (mm); FLDW, Flag leaf dry weight
(g)s SLA, Specific leafarea (cm* g '); SLW, Specific eaf weight (mg cm ); CHLa, Chlorophyll a (mg g fw); CHLb, Chlorophyll b (mg g fw); TCHL, Total chlorophyll (mg g ' fw); CAR, Carotenoids (mg &' fw); Pn, Photosynthetic rate (ymol [CO5] m ™ s '); gs, Stomatal
conductance (mol [H,0] m* s”); E, Transpiration rate (mmol [H;0] m'* s™); Ci, Internal CO, concentration (ppm); FLN, Flag leaf N content (%); PNUE, Photosynthetic nitrogen use effciency (tmol [CO,] g [N] s™); F/Fy,, Maximum quantum yield of PSIL; PSII,
‘Actual quantum yield of PSII; ETR, Electron transport rate; qP, Coefficient of photochemical quenching; qN, Coefficient of non-photochemical quenching: GNU, Grain N uptake (kg N ha '); SNU, Straw N uptake (kg N ha'"); TNU, Total plant N uptake (kg N ha'); AE,
Agronomic efficiency; PE, Physiological efficiency: PFP, Partal factor productivity: ANRE, Apparent nitrogen recovery effciency; NUpE, Nitrogen uptake efficiencys NULE, Nitrogen utlization effciency: NUE,.q, Nitrogen use efficiencyyias NUL Nitrogen wtilization
index; NHI, Nitrogen harvest index.
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type Anjai Birupa Daya [ Indir Nidhi N22 TT— Vasuma R64 Gazs Varadhan MTU Mean
av 150 I sa1 13 73 156 328 37 549 545 510 so8 566 84 502
™M 1000 1031 1w 1099 1186 1034 737 836 uz 16 1061 1050 1208 s 1065
DrF s 2 m 55 107 104 51 5 103 10 102 103 9 o %
ey m 138 138 s 13 13 12 1w 133 17 135 132 s 15 19
L 348 345 307 107 2 24 2 27 357 322 s 311 357 29 25
W L3 153 L 160 151 Las Laa 137 158 146 136 155 L4l 135 L7
A 374 5 330 368 130 326 371 s 22 354 23 362 39 284 358
B 0320 0370 031 0350 0334 033 ot 033 0345 0346 035 o o3 o310 o032
HLDW o168 o 014 o160 o1ss o1 018 0149 018 0153 oz s o166 o1 o157
sia 220 250 261 2506 n21 2360 207 262 286 2505 25 187 6 258 283
suw 451 445 3 ™ 3 a2 451 3 438 135 37 s 140 a4 139
ciita 267 255 268 275 24 23 23 260 278 w 267 308 2 260
citp 0692 0925 0697 0675 0890 0776 oe91 0750 osun 0918 095 0850 0939 09 o819
TCHL 305 360 324 335 i 364 320 301 327 i 345 I 370 3.69 352 397 375 I 346
car 0695 072 0734 0834 0774 oest 0673 0714 0743 0766 o7t 0736 083 o072 0744
p.. s 56 24 28 21 21 20 23 28 27 28 240 215 260 27
& 0595 o6t o6t o6t 0619 059 0607 o381 o617 o6t o6t osi2 063 0750 o636
G 2560 2685 2381 2569 2646 2166 2500 277 54 3 2566 2681 2676 816 2604
E 730 738 799 795 267 716 745 73 so1 750 275 s 794 847 m
BN 295 251 243 291 267 27 2 291 276 2 296 279 293 260 275
PNUE 150 214 23 190 219 189 01 182 199 195 186 03 102 26 200
EJE, 0813 00 o8 0sts osut o819 0305 0817 081 o812 osut o817 o817 082 os1s
opsit 0376 0365 031 0366 0373 0335 0373 0388 0384 0376 0384 o 0n 036 074
TR 260 53 20 265 2 54 260 24 269 262 27 268 73 265 25
ar osss 0585 0608 0580 0579 0553 0593 059 o617 osts 066 o618 0608 oo 0598
a~ 0366 0356 0370 0343 o3l 0366 o077 0357 0361 0361 073 0396 0391 0363 036
G a3 602 67 s 743 0 s s02 709 ns o8 71 ns 505 67
s\u 346 361 74 103 381 384 265 313 126 106 100 102 20 101 379
™y 969 963 1051 1099 24 1034 63 815 135 1 1058 w073 s 1205 07
AE 26 191 259 179 26 27 140 144 23 259 174 us »1 212 20
e s22 s ™ 103 s 165 163 108 46 s m 57 w2 sis i61
e 180 152 51 513 3 186 528 4 549 545 510 508 s66 4 502
ANRE 449 9 550 453 sss ss2 301 312 ™ a3 295 543 29 m 85
NUpE 101 9 27 12 349 22 n2 263 353 352 329 53 356 s 22
NUtE 198 s02 s08 168 st 74 ™ ™ 186 186 85 77 197 185 186
NUEyu m 150 165 160 78 151 102 m 171 169 159 155 176 182 156
Ut 1010 1095 1062 1005 1064 1010 1078 988 1038 1012 1oL 1024 1061 960 1034
NI 643 a5 65 03 660 27 sl 593 a4 51 a0 24 6 7 @2

Where, GY, Grain yield (t ha''); TDM, Total dry matter (t ha''); DFF, Days to 50% flowering DPM, Days to physiological maturity; FLL, Flag leaf length (cm); FLW, Flag leaf width (cm); FLA, Flag leaf area (cm?); FL, Flag leaf tickness (mm); FLDW, Flag leaf dry weight
(g)s SLA, Specific leaf area (cm* g'); SLW, Specific eaf weight (mg cm); CHLa, Chlorophyll a (mg g fv); CHLb, Chlorophyll b (mg g fw); TCHL, Total chlorophyll (mg ' fw); CAR, Carotenoids (mg &' fw); Pn, Photosynthetic rate (ymol [CO] m* s™); gs, Stomatal
conductance (mol [H,0] m* s); E, Transpiration rate (mmol [H,0] m* s™); Ci, Internal CO, concentration (ppm); FLN, Flag leaf N content (%); PNUE, Photosynthetic nitrogen use effciency (tmol [CO,] g* [N] s™); F/Fy,, Maximum quantum yield of PSI; PSII,
Actual quantum yield of PSII; ETR, Electron transport rate; qP, Coefficient of photochemical quenching; qN, Coefficient of non-photochemical quenching; GNU, Grain N uptake (kg N ha™'); SNU, Straw N uptake (kg N ha™'); TNU, Total plant N uptake (kg N ha"'); AE,
Agronomic effciency; PE, Physiological efficiency; PP, Partial factor productivity: ANRE, Apparent nitrogen recovery effciency; NUpE, Nitrogen uptake efficiency; NULE, Nitrogen utilzation efficiency; NUEy, Nitrogen use efficiencyyse NUL Nitrogen utilization
index; NHI, Nitrogen harvest index.
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Genotype Anjall Birupa Daya era Indira N22 Tella Hamsa Dhan 209 Vasumati IR64 Ga2s Varadhan U1010  Mean
GY 318 408 349 392 401 342 246 296 3 422 374 379 420 412 367
DM 7.77 959 844 9.26 9.49 817 629 7.38 887 986 886 892 9.87 963 874
DFF 8 m 109 8 105 103 89 87 102 108 101 101 95 93 98
DPM 14 137 137 116 131 131 120 n7 131 135 133 131 127 124 127
FLL 298 319 287 265 348 270 308 283 330 284 246 275 315 258 292
FLW 137 135 140 152 151 134 134 130 147 134 132 143 133 128 138
FLA 305 323 300 301 392 270 311 276 363 286 23 296 314 246 302
FLT 0297 0347 0318 0329 0.303 0309 0338 0298 0318 0309 0329 0280 0.283 0310 0312
FLDW 0.142 0.148 0134 0.141 0177 0.126 0.142 0.123 0.166 0128 o1 0135 0.141 0115 0.138
SLA 2156 2183 2229 2135 210 2141 2197 2235 2184 230 2181 2194 2230 2150 2190
SLW 464 459 449 4.69 453 4.68 456 448 458 449 459 456 449 466 457
CHLa 203 228 217 234 223 199 181 205 215 221 215 215 226 232 215
CHLb 0.674 0731 0568 0.654 0.705 0621 0512 0588 0673 0731 0756 0536 0.629 0703 0.649
TCHL 270 301 274 299 293 261 233 264 283 294 291 269 289 303 280
CAR 0.568 0.661 0644 0.701 0.648 0569 0554 0636 0601 0624 0.589 0676 0710 0656 0.631
Pn 181 199 189 197 19.1 18.1 188 179 200 198 193 196 194 23 193
& 0.400 0519 0370 0425 0.456 0422 0419 0537 0.446 0466 0401 0.506 0517 0550 0.460
ci 2686 2826 2965 2657 2731 2424 2554 713 2774 2684 2662 2646 2811 2850 713
E 628 643 557 637 616 615 529 6.67 646 649 606 680 630 724 630
FIN 263 228 223 267 248 249 232 268 244 247 263 249 262 239 249
PNUE 149 193 193 159 174 158 179 150 182 181 162 175 166 194 173
F/F 0.799 0812 0792 0.805 0.804 0794 0799 003 0799 0804 0.803 0802 0.801 0814 0.802
oPSIT 0.339 0336 0311 0.328 0.336 0297 0339 0336 0351 0339 0338 0329 0338 0354 0334
ETR 21 25 22 234 239 218 236 230 239 241 237 234 27 251 235
aP 0546 0519 0527 0514 0.541 0474 0527 0537 0564 0563 054 0545 0555 0563 0537
N 0.387 0371 0382 0399 0.361 0393 0394 0386 0384 0391 0394 0414 0412 0383 0.389
GNU 384 474 398 484 487 416 288 362 440 516 440 168 96 523 441
SNU 282 297 289 316 308 202 25 300 318 299 323 310 322 376 304
T™NU 666 771 687 800 795 708 514 662 757 815 763 778 818 898 745
AE 127 234 154 14 211 205 16 132 68 273 75 23 292 139 170
PE 490 506 169 425 440 454 164 410 315 456 429 90 50.1 577 459
PEP 636 816 699 783 80.7 68.4 493 59.1 742 845 747 758 8.1 824 733
ANRE 293 93 372 307 515 452 264 319 211 614 202 198 603 281 387
NUpE 259 300 268 312 310 276 200 258 295 318 297 303 319 350 290
NUEE 479 534 511 49.0 513 484 482 449 490 522 9.1 492 516 460 9.4
NUEyjaq 124 159 136 153 157 133 96 s 145 165 146 148 164 161 143
NuL 1168 1254 1232 158 1203 1157 1231 19 nzs 1219 1166 1157 1214 1075 1180
NHI 577 616 582 60.5 613 588 560 547 580 630 576 600 608 582 590

‘Where, GY, Grain yield (tha'!), TDM, Total dry matter (tha'"); DEF, Days to 50% flowering; DPM, Days to physiological maturit; FLL, Flag leaflength (cm); FLW, Flag leaf width (cm): FLA, lag leafarea (cm?); FLT, Flag leaf thickness (mim): FLDW, Flag leaf dry weight (s SLA,
Specific leaf area (cm’ g); SLW, Specifc leaf weight (mg e ); CHLa, Chlorophyll a (mg g ' fi)s CHLb, Chlorophyll b (mg ' fi)s TCHLTotal chlorophyll (mg g fiv): CAR, Carotenoids (mg.g ! i Pn, Photosynthetic rate (ymol [CO,] ™ s): gs, Stomatal conductance (mol
[H,0] m™s™); E, Transpiration rate (mmol [H;0] ms™); Ci, Internal CO, concentration (ppm}; FLN, Flag leaf N content (%); PNUE, Photosynthetic nitrogen use efficiency (umol [CO,] g" [N] s"); E/F, Maximum quantum yield of PSIL; ®PSII, Actual quantum yield of PSIL;
ETR, Electron transport rate, qP-Coefficient of photochemical quenching; qN, Coeffcient of non-photochemical quenching; GNU, Grain N uptake (kg N ha''); SNU, Straw N uptake (kg N ha''); TNU, Total plant N uptake (kg N ha™'; AE, Agronomic effciency; PE, Physiological
efficiency; PEP, Partial factor productivity; ANRE, Apparent nitrogen recovery efficiency; NUpE, Nitrogen uptake efficiency; NULE, Nitrogen utlization efficiency; NUE,iq. Nitrogen use effciencyyias; NUI, Nitrogen utilization index; NHI, Nitrogen harvest index.
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Genotype Anjali Birupa Daya N22 TellaHamsa VLDhan209 Vasumat IR64 GQ25 Varadhan U 1010 Mean
GY 254 291 272 334 298 239 188 230 337 286 336 263 275 343 282
TDM 696 774 7.10 849 767 646 529 641 8.64 744 8.56 698 7.17 9.18 743
DFF 81 109 108 81 102 100 87 8 9 107 9 9 9 92 9%
DPM n2 136 135 s 129 128 18 s 129 134 130 129 125 123 125
FLL 268 288 259 244 310 251 262 27 288 260 28 253 281 26 263
FLW 129 128 130 144 136 128 121 119 138 121 L16 134 124 126 128
FLA 261 275 251 265 316 241 207 212 298 27 208 254 263 23 254
FLT 0268 0329 0277 0297 0271 0257 | 0298 0246 0295 0286 03 0238 0.260 0301 0281
FLDW 0123 0129 0120 0127 0154 ons | one 0.102 0141 o3 0098 0122 0124 0.108 0121
SLA 2121 2130 2086 2089 2055 2033 1982 2074 2121 2100 224 2084 2107 2153 2090
SLw 472 470 480 480 487 492 505 484 472 477 473 480 475 466 480
CHILa 153 174 174 184 169 159 159 155 169 182 181 171 182 189 171
CHIb 0428 0511 0478 0447 0486 0499 | 0370 0421 0513 0503 0453 0502 0552 0527 0478
TCHL 1.96 225 22 228 217 209 196 197 220 232 226 222 237 241 219
CAR 0462 0511 0508 0582 0514 0481 | 0517 0457 0481 0532 0517 0489 0512 0544 0510
Pn 151 164 152 159 154 146 144 146 163 163 159 161 163 167 157
& 0277 0322 0272 0296 0285 0216 | 0238 0218 0292 0287 0256 0295 0.306 0317 0281
E 464 507 an 494 491 465 415 496 500 539 508 490 550 528 494
G 2879 2889 2877 2730 2752 2690 | 2631 2734 2827 2824 2755 | 2802 2895 3064 2811
FIN 229 201 192 225 198 204 195 232 200 209 235 215 215 208 211
PNUE 141 175 169 150 164 149 148 133 176 166 146 158 161 174 158
F/Ey, 0792 0799 0786 079 0792 0791 | 0780 0781 0789 0799 0794 0795 0.794 0807 0792
oPSII 0320 0318 0288 0305 0303 0292 0306 0319 0.297 0313 0319 0298 0316 0338 0309
ETR 27 212 205 214 211 203 216 219 212 217 21 205 24 232 s
P 0513 0496 0474 0497 0.487 0484 | 0489 0508 0498 0512 0514 0488 0517 0505 0499
N 0425 0.408 0414 0443 0391 0464 | 0435 0438 0422 0424 0407 0447 0436 0410 0426
GNU 276 305 277 381 311 261 203 26 365 308 353 287 295 a4 306
SNU 23 219 24 265 26 22 179 26 287 200 309 22 22 343 215
T™NU 519 524 501 646 58 482 382 502 652 508 662 529 517 757 551
NUpE 271 274 262 37 281 252 199 262 340 265 316 276 270 395 288
NUE 93 557 548 520 560 98 494 457 520 564 510 499 531 453 515
NUE g4 133 152 12 175 155 125 98 120 176 149 7.5 137 143 179 147
NuI 1349 1483 1429 1319 1439 1346 | 1387 1280 1333 1466 1300 1323 1389 1213 1361
NHI 534 585 555 590 57.9 539 530 90 559 606 534 543 571 547 554

Where, GY, Grain yield (t ha"); TDM, Total dry matter (t ha '); DFF, Days to 50% flowering; DPM, Days to physiological maturity; FLL, Flag leaf length (cm); FLW, Flag leaf width (cm); FLA, Flag leaf area (cm?); FLT, Flag leaf thickness (mm); FLDW, Flag leaf dry weight
(8): SLA, Specific leaf area (cm* g'); SLW, Specific leaf weight (mg cm™); CHLa, Chlorophyll a (mg g fiv); CHLb, Chlorophyll b (mg g fiw); TCHL, Total chlorophyll (mg g ' fw): CAR, Carotenoids (mg &' fw); Pn, Photosynthetic rate (ymol [CO5] m* s'); gs, Stomatal
conductance (mol [H,0] m*s™); E, Transpiration rate (mmol [H,0] m s"'; Ci, Internal CO, concentration (ppm); FLN, Flag leaf N content (%); PNUE, Photosynthetic nitrogen use effciency (mol [CO,] g [N] s'); F,/Fy, Maximum quantum yield of PSIL; @PSII,
Actual quantum yield of PSIL; ETR, Electron transport rate; qP, Coefficient of photochemical quenching; qN, Coefficient of non-photochemical quenching; GNU, Grain N uptake (kg N ha '); SNU, Straw N uptake (kg N'ha); TNU, Total plant N uptake (kg N ha™'); NUpE,
Nitrogen uptake efficiency; NULE, Nitrogen utilization efficiency; NUEyiaq; Nitrogen use efficiencyyias: NUI, Nitrogen utilization index; NHINitrogen harvest index.
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Weather Parameter

2020-21
Kharif (Wet)

Mean Max.Temperature (°C)
Mean Min.Temperature (°C)
Mean Relative Humidity (%)
Total Rainfall (mm)

Mean Sunshine duration (h day™")

30.7
219 ‘
934
1375.6

4.8

2021-22
Rabi (dry) Kharif (Wet)
324 30.7
16.1 226
875 ‘ 93.9
168 823.8
79 5.0

Rabi (dry)





OPS/images/fpls.2023.1074839/im190.jpg
NO;





OPS/images/fpls.2023.1268739/table1.jpg
Anjali (IET-16430)
Birupa (IET-8620)
Daya (OR-131-13-13)
Heera (IET-10973)

Indira CR MUT587-4
(IET2412)

Nidhi (IET-9994)

N22 (Nagina-22)

Tella Hamsa
1R64 (IET-9671)

GQ25 (INGR20001)
Restorer line

Varadhan
MTU 1010 (IET-15644)

Vasumati (IET 15391
RP3135-17-12-8-8)

VL Dhan 209

Parentage

PR-19-2 x RR-149-1129
ADT-27 x IR-8 x Annapurna
Kumar x CR-57-49

CR-404-48 x Cr-289-1208
Tainan 3 mutant
Sona x ARC-14529
A selection from Rajbhog

HR-12 x T(N)1

IR-5857-33- 2-1 x IR-2061-465- 1-5-5
(Samba Mahsuri/SC5126-3-2-4)

Swarna x 9314)/BR 827-35
Krishnaveni x IR-64

PR-109/Pakistani Basmati selection
from local collection

Himdhan/K39 / VL Dhan 211

Year of
release

2002
1994
1985

1989

1980

1997

1978

1975

1991

2011

2008

2000

2002

2006

Duration

90-95
130-135
120-125

65-68

125

120-125

85-102

110-115

115-120

130-135

125

120

135

160- 165

Ecosystem

Rain fed Direct Seeded

Irrigated Medium and Rain fed Lands
Irrigated Medium

Rainfed Upland

Irrigated

Irrigated Early

Promising germplasm identified with tolerance to
biotic and abiotic stresses

Irrigated

Irrigated

Irrigated

Irrigated

Irrigated Medium Lands

Irrigated

Rainfed
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A negative regulation of endopeptidase activity
negative regulation of peptidase activity
negative regulation of proteolysis
regulation of endopeptidase activity
regulation of peptidase activity
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Rank. TF Name  Significant overlap of pruned GENIE3 target genes w/  Relevant N and/or W GO terms associated with TF-target ~ TFs with High GS Published TF

1,099 N-and/or-W DE genes in WGCNA modules genes that overlap with N-and/or-W DE genes in and MM for NUEg Function
(grey60&skyblue) #TF,s / #genes (Z score) ‘WGCNA modules (grey60&skyblue) &/or WUE in (Reference)
WGCNA
1. OsbzIP23 17 TFys/159 genes (52.2) "Response to water deprivation” NUEg & Drought tolerance
WUE (Xiang 2008; Dey
2016; Zong 2016)
2. Oshox22 11 TE,5/93 genes (39.3) “Response to water deprivation” & "Response to abscisic acid" NUEg & Drought tolerance
WUE (Zhang et al., 2012)
3.LOB39 5 TFys/53 genes (30.9) “Nitrate assimilation” NUEg & N-responsive gene
WUE (Obertello 20
Yang 2017)
4. Oshox13 5 TFys/52 genes (27.6) "Response to water deprivation” NUEg & Unknown/Novel
WUE
5.LOC_Os11g38870 0 TF;5/37 genes (25.9) “Nitrate assimilation” NUEg & Unknown/Novel
WUE
6. LOC_Os06g14670 4 TF;5/49 genes (24.2) "Response to water deprivation” & "Ammonia assimilation cycle" NUEg & Unknown/Novel
WUE
7. ERF65 7 TFys/53 genes (32.1) No N and/or W GO terms found NUEg & Unknown/Novel
WUE
8. OSERF48 6 TE,s/57 genes (27.3) No N and/or W GO terms found NUEg & Drought tolerance
WUE (Jung 2017)
9. 0sIRO3 2 TFys/24 genes (16.4) No N and/or W GO terms found NUEg & Tron homeostasis
WUE (Wang 2020)
10. LOC_0s03g08470 /20 gene (152) No N and/or W GO terms found NUEg & Unknown
WUE
11. OSERF1 4TE,s/25 genes (15.2) No N and/or W GO terms found NUEg & Ethylene response
WUE (Hu 2008)
12. OsABF1 5 TRas/61 genes (13.6) No N and/or W GO terms found NUEg & Drought tolerance
WUE (Zhang 2017)
13. OsIRO2 1 TF,/15 genes (13.3) No N and/or W GO terms found NUEg & Tron homeostasis/
WUE N-signaling
(Ogo 2007; Ueda
2020)
14, OSBZ8 1 TFy/19 genes (12.8) No N and/or W GO terms found NUEg & ABA response
WUE (RoyChoudhury
2008)
15. RSRI 4 TE,s/18 genes (10.2) No N and/or W GO terms found NUEg & Starch biosynthesis
WUE (Fu 2010)
16. OsSPLY 0 TEys/15 genes (10.0) No N and/or W GO terms found NUEg & Grain yield
WUE (Hu 2021)
17. EILA 4 TE;5/40 genes (18.4) No N and/or W GO terms found NUEg Unknown/Novel
18. IDEF2 5 TE;5/96 genes (10.7) No N and/or W GO terms found NUEg Iron homeostasis

(Ogo 2008)

Total "Response to water deprivation” & "Response to abscisic acid"
52 TF,s/551 genes

First the TEs were ranked by the Z score for the overlap between the TF—target genes and the 1,099 N and/or W DE genes in WGCNA modules (grey60 & skyblue) associated with NU
for nitrogen and/or water GO terms; and third, for if the TF was highly associated with both NUEg and WUE.

econd, for if the overlapping target genes for each T were enriched
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Treatmen GA3(ug/g FW) ABA (ug/g FW)

GSM152 HN ‘ 73.1 1.83 ‘ 0.19

GSM152 LN ‘ 411 11 ‘ 024 058
GSM3 HN ‘ 126.5 1.34 ‘ 026 1.09
GSM3 LN ‘ 73.3 079 ‘ 022 0.68
Ls.d. (5% level) ‘ 7.1 02 ‘ 001 0.11
p ‘ <0.01 <001 ‘ <0.004 0.001

Values are mean of 6 independent measurements. IAA, indole-3-acetic acid; GA3, gibberellic acid; ABA, abscisic acid; ZR, zeatin riboside.
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Treatments Stalk lengtl

G3HN

G3LN

G152HN

G152LN

Ls.d.

214

177

231

186

19.6

P<0.01

Stalk number stool
12
9.2
14
8.2
24

P<0.01

Values are mean of 6 independent measurements. HN, high N; LN, low N.
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