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Editorial on the Research Topic 
Genomic selection and characterization in Cereals


INTRODUCTION
Genomics is the branch of biological science in which the genomic content and structure of an individual genome are evaluated to ascertain expression and characterize its functions at the molecular, cellular, and cytological levels, and higher, in an ecosystem. Advancements based on multi-omic approaches have been reported in genetic and breeding studies of sustainable food security and climate-resilient crop improvements. The integration of biotechnology and bioinformatics has resulted in significant progress in identifying, analyzing, and verifying various structural, functional, and comparative genomic features in living beings.
Cereals have not only been selected as a staple food but also as a source of nutrients and income worldwide. The identification and verification of major and minor genes contributing to sustainable food security and resistance to biotic and abiotic stresses will be essential for breeding climate-resilient varieties and hybrids.
Peer-reviewed studies were collected on the latest trends, which covered three areas of genetics: forward, reverse, and comparative genetics. The articles characterized double haploids (DH), near-isogenic lines (NILs), diverse populations, segregating populations, and other domesticated germplasm, and presented models and marker-based genomic selection for improving crop yield and resistance to environmental stresses. These articles focused on rice, wheat, maize, and Sorghum crops.
WHEAT
Wheat is a major staple food grown in 89 countries and consumed by 2.5 billion people. Genetic improvement of wheat is indispensable for meeting the dietary requirements of a global population of ∼9.8 billion in 2050. The identification and induction of multi-ovary genes from mutant to semi-dwarf wheat lines through hybridization improved the grain yield potential of wheat Irshad et al. Three-pistil (multi-ovary) wheat is also a useful genetic resource for the commercial hybrid-seed production of wheat. Among insect pests, multivoltine insects, including saddle gall midge, orange, and yellow wheat blossom midges, fruit flies, and thrips are catastrophic for the environment in Europe. Arif et al. identified 246 QTLs resistant to these insects using genome-wide association studies (GWAS) in winter- and spring-wheat populations. The potential candidate genes were predicted to be involved in stomatal immunity and closure, and leaf-blade cuticular wax development, leading to the formation of physical barriers to insects. Some other candidates were predicted to be involved in the production and regulation of certain enzymes against stress stimuli. One study revealed two stable and five environment-specific QTLs for inducing stripe-rust resistance in wheat Tehseen et al.
Sandhu et al. explored the scope of multi-trait genomic selection (GS) models for predicting qualitative traits through cross-validation, independent-prediction, and independent-and-across-location prediction for a panel of 666 soft-white-wheat genotypes grown for 5 years. The results revealed that the overall prediction accuracies of the multi-trait GS model for within- and across-location prediction were 5.5% and 7.9% better, respectively, than the single or uni-trait models. Merrick et al. compared the regression and classification-based genomic selection models in winter wheat for the skewed phenotypes of infection type (IT) and stripe-rust-disease-severity (SEV). The best combination of relative efficiency and accuracy was found for the square root-transformed phenotypes using ridge-regression-best-linear-unbiased-prediction and support-vector-machine-regression models. The study concluded that breeders can accurately predict their breeding lines with skewed phenotypes by using non-parametric and linear regression models over combined years.
Tehseen et al. collected 600 bread-wheat landraces from eight ecological zones and characterized them with 11,830 high-quality SNPs Tehseen et al. The research suggested the model-based methods (DAPC and PCA) along with the STRUCTURE method is the best way for precise dissection of the population structure. The study explored the complex genetic architecture of studied landraces from the Fertile Crescent region using population structure analysis and estimation of genetic diversity.
Another study characterized 1,285 advanced breeding lines using historical multi-environment data for GS in breeding programs Ballén-Taborda et al. This study revealed that multi-institutional partnerships and genomics-enabled breeding are a useful approach for accelerating the varietal development process.
RICE
Rice is the second top staple cereal food worldwide. The number of panicles per plant is a major yield component in rice. The nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC) plays a significant role in the structural development of plants, including panicle number. A study identified 258 members of the NB-ARC gene family in rice and characterized them for their structural, functional, and expression patterns. These genes were shown to be expressed in panicles, leaves, and roots, and regulated plant growth at panicle development stages. Among the NB-ARC genes, GNP12 has been characterized as regulating rice yield by improving panicle features (panicle length and panicle grain number) and grain length in its eight major identified haplotypes Pan et al.
Another novel study evaluated multiple stress tolerance at the seed-germination stage to enhance the direct-seeded rice pattern. A total of 117 QTLs from 99 loci governing salinity, anaerobic, and combined (anaerobic and salinity) stress tolerance in rice were detected Islam et al. The study also observed two genes, OsMT2B (Os01g0974200) and OsTPP7, involved in multi-stress tolerance. Another study evaluated the genomic factors of low-temperature tolerance and the accumulation of essential minerals in a gene pool of near-isogenic lines (NILs) for genomic selection in japonica rice Ali et al. The study revealed the genomic regions associated with zinc, calcium, magnesium, chromium, phosphorous content, and low-temperature tolerance in rice at the booting stage Ali et al. The genomic regions significantly associated with chilling stress tolerance may not only help germplasm screening in rice breeding-targeted areas but also the biofortification of essential nutrients in grains. High cadmium accumulation in plants is a serious threat and known to cause cancer in humans. The GWAS-based characterization study of the rice genome found eight QTLs and 1,656 differentially expressed genes (DEGs), of which 799 and 857 DEGs were respectively expressed in root and shoot for Cd accumulation. A locus, LOC_Os11g11050, significantly associated with cadmium reduction was validated for marker-assisted genomic selection Wang et al.
Genomic selection by identification of the right parental combinations to maximize heterosis in hybrid breeding is also a well-known breeding and genetic tool. Hussain et al. revealed the temperature-sensitive genetic male sterility (TGMS) and cytoplasmic male sterility (CMS) lines and reported the best heterotic groups for hybrid rice breeding.
The reproductive stage in rice is vulnerable to drought causing a significant decrease in crop yield. Ahmad et al. characterized green super rice for morpho-physiological and molecular responses to drought at pre-anthesis. The germplasm was evaluated for certain drought-responsive genes (OsDSM1, OsSADRI, and OsDT11), and also mined for novel drought-responsive genes (LOC_Os02g11960, LOC_Os11g36190, LOC_Os12g04500, and LOC_Os12g26290) that enhance drought tolerance in rice breeding Ahmad et al.
Genomic selection by multi-trait (MT) genomic prediction is a useful tool for conserving phenotyping resources. It exploits the information from auxiliary or non-target traits and can enhance the prediction accuracy of target traits. Epistatic effects along with haplotype-based evaluation can improve the predictive ability in MT model genomic selection with additive effects Muvunyi et al.
MAIZE
In maize, flowering time is among the most important agronomic traits that contribute to total yield. A study evaluated genomic variation and heterochromatic knob content Carvalho et al. and revealed that chromosome nine of the maize genome is associated with the heterochromatic knob that could reduce flowering time
BARLEY
Barley (Hordeum vulgare) is the fourth most economically important cereal worldwide. Various genomic selection and characterization models have been studied in barley. However, the multi-parent advanced generation inter-cross (MAGIC) lines were found to be the most suitable for understanding the genetic basis of several traits and dissecting epistatic traits (Tao et al., 2022). This population, along with empirical analyses, was better than QTL mapping and/or epistatic effects at predicting grain yield.
SORGHUM
Two-component signal-transduction-system (TCS) genes assist plants in various physiological and cellular processes, such as cell division, leaf senescence, nutrition signaling, stress resistance, and chloroplast division. There are three types of proteins for developing these systems Irshad et al.: the response regulators (RRs) (Arif et al.), histidine kinases (HKs), and (Tehseen et al.) histidine phosphotransfer (HPs) proteins. A study on the Sorghum bicolor genome identified 37 TCS genes containing 13 HKs, five HP proteins, and 19 RRs (3 type-A, 7 type-B, 2 type-C, and 7 pseudo-RRs). Expression validation by qRT-PCR and RNA-seq confirmed the responsive expression of these TCS genes to salt and drought stresses in Sorghum leaves Zameer et al.
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Chilling stress at booting stage can cause floret deterioration and sterility by limiting the supply of food chain and the accumulation of essential mineral elements resulting in reduction of yield and grain quality attributes in rice. Genomic selection of chilling tolerant rice with reference to the accumulation of mineral elements will have great potential to cope with malnutrition and food security in times of climate change. Therefore, a study was conducted to explore the genomic determinants of cold tolerance and mineral elements content in near-isogenic lines (NILs) of japonica rice subjected to chilling stress at flowering stage. Detailed morphological analysis followed by quantitative analysis of 17 mineral elements revealed that the content of phosphorus (P, 3,253 mg/kg) and potassium (K, 2,485 mg/kg) were highest while strontium (Sr, 0.26 mg/kg) and boron (B, 0.34 mg/kg) were lowest among the mineral elements. The correlation analysis revealed extremely positive correlation of phosphorus (P) and copper (Cu) with most of the cold tolerance traits. Among all the effective ear and the second leaf length correlation was significant with half of the mineral elements. As a result of comparative analysis, some QTLs (qBRCC-1, qBRCIC-2, qBRZC-6, qBRCHC-6, qBRMC-6, qBRCIC-6a, qBRCIC-6b, qBRCHC-6, and qBRMC-6) identified for calcium (Ca), zinc (Zn), chromium (Cr) and magnesium (Mg) on chromosome number 1, 2, and 6 while, a novel QTL (qBCPC-1) was identified on chromosome number 1 for P element only. These findings provided bases for the identification of candidate genes involved in mineral accumulation and cold tolerance in rice at booting stage.
Keywords: chilling stress, minerals, QTLs, booting stage, tolerance
INTRODUCTION
Oryza sativa (an Asian cultivated rice), one of the most valuable food crops universally, is more vulnerable to freezing stress than other cereal crops such as barley (Hordeum vulgare) and wheat (Triticum aestivum), may be due to originated from subtropical or tropical zones (Sasaki and Burr, 2000; Zhang et al., 2014; Li et al., 2021). The O. sativa comprises of two subspecies indica and japonica, cultivated from two wild (O. nivara and O. rufipogon) rice (Sang and Ge, 2013, 2007), and are contradictory in many physiological and morphological attributes (Lv et al., 2016). Among all abiotic factors temperature is a critical environmental component influencing plant growth and development therefore japonica cultivars are mostly freezing tolerant, as compared to the indica subspecies, letting japonica to lead in the moderate zones. Under the pace of climate change, severe freezing climate incidents are becoming more common and low temperature reduces rice production and distribution worldwide (Jacobs and Pearson, 1994; Pan et al., 2015). Therefore, it is estimated that the losses in the production of rice in China alone are accounted for 3–5 million tons per annum (Liu and Deng, 2009) while ≥1.5 million hectares of rice producing fields are threatened due to cold stress damages. Chilling damage in rice happens at all phenological stages, together with the vegetative (germination and seedling) and reproductive (booting and flowering) phases. Chilling stress at booting stage may cause floret deterioration and sterility by limiting the food supply chain and the accumulation of essential mineral elements consequently reduction in rice yield and grain quality attributes is significant (Cruz et al., 2013). Although growth stage specific various quantitative trait loci (QTLs) have been linked with cold tolerance in rice (Zhou et al., 2010; Shinada et al., 2014; Endo et al., 2016; Li et al., 2018), only some genes have been functionally depicted, including CTB4a, Ctb1, qPSR10, qLTG3-1, HAN1, bZIP73, and COLD1 (Fujino et al., 2008; Saito et al., 2010; Ma et al., 2015; Zhang et al., 2017; Liu et al., 2018, 2019; Xiao et al., 2018; Mao et al., 2019). Because cold stress tolerance is a complicated characteristic influenced by many genes and proteins. Among all, only CTB4a and Ctb1 grant chilling tolerance at the booting stage (Saito et al., 2010; Zhang et al., 2017). Taking into account the significance of chilling tolerance in rice production, investigating more alleles/genes that can be employed to produce new cold-tolerant rice cultivars at the booting stage is highly imperative.
Essential mineral elements are more important to cope with malnutrition or hidden hanger particularly in developing countries where access to nutritious food is limited. Because food containing essential mineral elements have indirect and direct influence on the physiological and cellular metabolism of humans and plants. Therefore, the Chinese Nutrition Society recommends daily intake of some mineral elements in Chinese adults because the intake of these elements is not enough and recommended to improve the food chain to meet the requirements (Wang et al., 2017). Moreover, the poor intake of many important minerals or lack of nutritious food may cause disturbance in the function of many organs of human body which can lead to severe diseases (Sautter et al., 2006; Sun et al., 2011). Among all the nutrients, the deficiency of iron (Fe) and zinc (Zn) are the most important elements, and it affected ≥2 billion people all over the world (Kennedy et al., 2003; Hambidge and Krebs., 2007). Therefore, developmental delay and stunted growth are more common in Zn deficient patients while Fe deficient diets leads to develop anemia (Umeta et al., 2000). For example, the appropriate level of selenium level (0.3–0.5 μg·g−1) in rice or in its products are considered a successful way of supplying selenium for prevention of cancers (Finley et al., 2001; Sautter et al., 2006), because various epidemiological research manifested intake of selenium inversely correlates with mortality rate of cancer. Intake of approximately 400 g of se-enriched rice products per day can provide 100–200 μg of Se. Similarly, Ca is also the most essential nutrients lacking in many peoples including the Chinese people. The national per capita intake of calcium is 405 mg per day, accounting only 49.2% of Recommended Dietary Allowance (RDA) requirements (800 mg/day) therefore about 1.2 billion people are calcium deficient (Ma et al., 2005). According to World Health Organization (WHO), 50% women are iron deficient anemia in Africa and Asia. Economic loss of iron deficiency anemia (IDA) disease in China is equivalent to 3.6% of gross national product (GDP) and it is expected that the economic loss led by iron deficiency anemia in adults will reach 70 billion yuan in the next 10 years. According to another report, the total loss caused by anemia will reach 2,178.7 billion yuan (Guo et al., 2016). Likewise, Zinc is also one of the 16 essential trace elements important to human health and life. According to an estimate Zn deficiency affects the health of about two billion people around the world. Because Zn plays a catalytic or constructive role for a variety of metalloenzymes, transcription factors and proteins essential for human health (Prasad 2003; Noulas et al., 2018).
Although rice is most important staple food, but it is not a good source of minerals therefore can’t fulfill the requirements of essential microelements particularly in rural areas where people can’t afford healthy foods and they only rely on rice for their energy intake. However, there are many possible ways to developed micronutrient rich rice varieties including biofortification method to cope with malnutrition or hidden hanger (Zimmermann and Hurrell, 2002; Bouis and Welch, 2010; Bashir et al., 2013). Numerous reports on genotypic dissimilar rice accessions for accumulation of mineral elements in rice revealed indicating that the variation in the uptake and accumulation of minerals elements are species specific. Therefore, the increment of essential micronutrients in rice grain though modern breeding techniques is a vital task and the best way to cope with malnutrition (Chen et al., 2002). Currently significant attempt has been made to the enhancement of the nutritional caliber of rice grain through genetic engineering and other breeding techniques (Bao, 2014). Using mapping population of doubled haploid, many QTLs were fine mapped for Fe, Mn, P, Cu, and Zn contents (Stangoulis et al., 2007). Some other reports showed 41 QTLs for 17 mineral elements content (Norton et al., 2010). Similarly, the concentration of Ca, Fe, Mn, Cu and Zn were supposed to regulated by ten QTLs and twenty-eight interactions of digenic QTLs (Lu et al., 2008). Likewise, another report on analysis of introgression lines derived from the cross between the Oryza ruf ipogon (wild rice) and Teqing an indica elite variety manifested 31 putative QTLs for K, Mg, P, Zn, Ca, Mn, Fe, and Cu contents and among them many QTLs for these attributes were contributed by the wild rice types (Garcia-Oliveira et al., 2009). In addition, QTLs for various minerals were discovered the same position; these congregate QTLs also contribute valuable knowledge for concurrent upgrade of content of various minerals in rice kernel through molecular breeding (Ishikawa et al., 2010). For example, Zhang and his coworkers mapped about 134 trait loci (QTLs) associated with 16 minerals using two mapping populations of rice which were distributed into 39 genomic parts (Zhang et al., 2014). In another report, 14 QTLs were identified for Zn and Fe content of rice seed. While the genes (OsNAS1, OsARD2, OsNAS2, OsIRT1, and OsMTP1, and OsYSL1) were reported as high priority candidate genes for Zn and Fe accumulation (Anuradha et al., 2012). Elucidating the molecular markers and its expression and regulation systems for production and accumulation of essential mineral elements is obligatory for improvement of mineral elements in rice through biofortification techniques (Masuda et al., 2013). But despite the several reports, the total QTLs responsible for accumulation and distribution of mineral elements in rice grains are still need some insight particularly when plant itself are under stress condition.
Based on the importance of nutritious rice, this paper analyzes the correlation between the content of 17 mineral elements and the cold-tolerance traits of rice and aims to clarify the relationship between cold tolerance and mineral element content at the booting stage and provide a biochemical basis for the study of cold tolerance mechanism. To understand the variation and mutual relationship of mineral elements in near-isogenic lines and to provide theoretical support for improving the content of beneficial elements in brown rice. To enhance the content of mineral elements in rice grain through biofortification and influence of environmental fluctuations in this process need additional work to identify and validate new QTLs. In this study, we explored some new QTLs governing the concentration of minerals and at the same time some cold tolerance attributes using populations of NILs and the objectives were 1) to explore the genotypic variation in the content of 17 mineral elements and their correlation with phenotypic markers, 2) to identify the association of mineral elements with each other, and 3) to determine new QTLs responsible for mineral content and to elucidate the QTL combine for micronutrient elements and cold tolerance. This study should furnish the understanding of production and control of mineral elements content in rice under cold stress and may boost improvement of rice cultivars in times of climate change.
MATERIALS AND METHODS
Plant Material
This study was carried out at two locations, namely experimental farm of Yunnan Academy of Agricultural Sciences, Kunming, China, and the second in a mountainous village of Aziying located 40 km away from Kunming, China, having 1,916 and 2,150 m altitude, respectively. Some details of the experimental condition including geographical locations, temperature, planting period, and the cold stress treatment are summarized in supporting Table 1 (Supplementary Table S1). The mapping population (261 lines including two parents) of nearly isogeneic lines (NILs) were developed as described previously by Li et al. (2018). The cold tolerant NILs progenies was obtained and selected in each backcross generation after successful crossing of cold tolerant rice cultivar (Lijing2) with cold sensitive rice cultivar (Towada). All the 261 NILs were planted in end of May and harvested in first week of October for three consecutive years (Supplementary Table S1). Standard protocols were adopted for nutrient and pest management along with conventional practices for field management and soil analysis (Supplementary Table S2) in production of rice in this area. After harvesting the rice seeds were air dried followed by dehusking on a Rice Machine (Satake Co., Tokyo, Japan).
TABLE 1 | The mean, SD, coefficient of variation and ratio between maximum and minimum content of 17 mineral elements in the parent (Towada and Lijiang2) and in the population of near-isogenic lines (NILs) of Towada brown rice subjected to cold stress at booting stage.
[image: Table 1]Analysis of Cold Tolerance Based on Growth and Yield Attributes
Rice adaptation under cold stress, particularly at the booting stage was assessed through number of plant growth attributes specific to booting. Therefore, rice growth attributes including anther length (AL), anther width (AW), plant height (PHt), effective tillering (ET), panicle length (PaL), flag leaf length (FLL), flag leaf width (FLW), uppermost leaf length (ULL), reciprocal first leaf length (RFLL), reciprocal first leaf width (RFLW), reciprocal secondary leaf length (RSLL), reciprocal secondary leaf width (RSLW), internode length below spike (ILBS), uppermost internode length (UIL), second internode length (SIL), first and second internode length (1-2IL), spike length (SL), full grains (FG), blighted grains (BG), and number of grain per panicle (NOGP) recorded during this study. Three individual plants per line in every repetition were noted and the mean of the two repetition (including six individual plants) as corresponding morphological traits. Full grains (FG), blighted grains (BG), number of grains per-panicle (NOGP), anther length (AL), and anther width (AW) were obtained in lab. Number of grains per panicle and rate of seed setting were determine using the following given formula.
Number of grains per panicle (NOGP) = FG + BG
Rate of seed setting (RSS) = (FG/NOGP × 100%).
Three inflorescences of individual plants per line in every repetition were measured by the Universal Projection meter and the mean of two repetitions (including 18 inflorescence), as the corresponding anther was evaluated. The correlations between RSS with 19 other morphological traits were determined by using statistical software SPSS 20.0 (SPSS Inc., Chicago, IL, United States).
Quantitative Analysis of Mineral Elements
For further analysis of mineral elements, samples of rice seeds were smashed to powder form while the preparation of sample and quantification of mineral elements were carried out according to Jiang et al. (2007). Approximately 0.5 g of powdered rice weighed out and carbonized on an electro thermal plate at 250°C, placing it into a crucible until the sample changed into black. The samples plus crucibles were dry-ashed at 550°C for 10–12 h in a muffle furnace. A white remainder was acquired, after incineration of the sample, followed by careful shift into a volumetric flask (50 ml). Approximately 5 ml of HCl (6 M) were added in the flask to dissolve the residue and 50 ml with water were used to dilute it. The solutions (diluted) then used to determine mineral element content by inductively coupled plasma mass spectroscopy (ICP-MS) (Agilent 7500A; Agilent Technologies, CA).
QTL Analysis
Total DNA was extracted by CTAB method using the fresh leaves of rice (Rogers and Bendich, 1989). For the design and synthesis primers, molecular markers of simple sequence repeat (SSR) were selected from the database of Gramene (http://www.gramene.org). To perform the amplification of DNA through PCR, the reaction mixtures (10 µl) was prepared with 10 µmol of forward and reverse primers, PCR buffer (10X), Taq DNA polymerase, dNTPs (10 mM), and 30 ng of template DNA. The condition of PCR reaction was set at: Initial denaturation at 95°C for 5 min (one cycle), followed by 35 cycles of denature at 95°C for 30 s, annealing at 55°C for 30 s and extension at 72°C for 30 s, and after these 35 cycles, reaction was set at 72°C for 10 min for final extension. To make the DNA single stranded the PCR products were subjected to 95°C for 5 min followed by electrophoresis in denaturing polyacrylamide (6%) gels followed by silver staining (Panaud et al., 1996).
According to International Rice Genome Sequencing Project (IRGSP, 2005) rice entire genome constitutes 1,526.8 cM and with mean interval cM are 2.5, and we used 647 SSR markers evenly distributed over all 12 chromosomes to assess polymorphisms between two parents. The DNA amplification followed by polyacrylamide gel electrophoresis revealed approximately 183 differential bands of SSR markers showing polymorphisms between parents and later these SSR makers used to genotype the NILs population. After performing the bulked segregation analysis (BSA), the DNA of five highest calcium containing lines were mixed and pooled as one group and the DNA content of the five lowest calcium containing lines were mixed and pooled as one group. Approximately, 125 pairs of SSR primers were used to determine the polymorphism between parents and NILs pool to identify QTLs for calcium content in brown rice seeds. There is a common banding pattern in the amplification bands of the two pools of Lijing2 and high calcium gene pools, but not in the Towada and low calcium gene pools. The selected primers are expanded to apply for the amplification of DNA of the entire population. The result of the amplification and the calcium content of brown rice was significant (One-way ANOVA). Similarly, SSR primers associated with iron and zinc were screened as described above. Analysis of QTL was carried out using QTL IciMapping 3.2 software and interval method was analyzed according to Wang et al. (2012).
Statistical Tools for Correlation Analysis
General linear model (GLM) procedure was used to perform ANOVA test with the help of SAS program (SAS Institute, Cary, NC). To determine significant variation among NILs, a new multiple-range Duncan’s test was accomplished while PROC CORR procedure used to analysis of correlation.
RESULTS
Phenotypic Traits and Correlation Analysis
Quantitative analysis of mineral elements was significantly variable between the parents and among the population. The average value, SD, coefficient of variation and minimum/maximum value of 17 mineral elements of NILs of Towada brown rice and their parents has been compiled in Table 1. Among the 17 mineral elements, phosphorus showed the highest (3,253.23 mg/kg, Lijiang2 japonica) amount followed by potassium (2,485.05 mg/kg, Lijiang2), while the Sr (0.26 mg/kg, Towada) and B (0.34 mg/kg, Lijiang2) had lowest in both parents and NILs. However, the content of three mineral elements (Ca, Fe, and Zn), was significantly higher in the donor (Lijiang2) parent than that of the recurrent (Towada) parent. While in the population, the coefficient of variation of Na was the largest (95.93%), followed by Ni (77.65%) and K had smallest variation (11.20%), followed by S (11.58%). Therefore, coefficient of variation of 17 elements has been found as, Na > Ni > Cr > Cu > Mo > Sn > Al > B > Fe > Zn > Sr > Mn > P > Ca > Mg > S > K. The SD showed that the distribution of P elements in the population has the largest average dispersion of the average (557.68), while the average dispersion degree of Sr element is the smallest (0.13). Therefore, the SD of the 17 elements found as: P > K > Mg > S > Ca > Na > Zn > Cu > Al > -Mn > Fe > Sn > Ni > Mo > B > Cr > Sr. Comparing the content of other elements with the content of the trace element revealed the coefficient of variation of various elements is smaller than that of trace elements while the SD is greater than that of trace elements. Comparing the differences of the 17 elements in the parents and the population, it was found that the content of the other elements except the iron element appeared in the descendant group above and below the parent, Cu, B, Mo, Al, Cr, Na. The Ni, Sn and Sr elements have undetected lines in the progeny population.
The statistical values of the kurtosis and skewness of the 17 mineral elements content in brown rice are presented in Table 2 while the normal distribution of only six minerals is presented in figures (Figure 2). Among the 17 mineral elements, ten elements (P, K, Ca, Mg, Fe, Mn, Zn, Al, Cr, and Sn) are normally distributed (KS-p >0.05), and the proportion of normal distribution of large elements (80%) is larger than that of trace elements (25%). Moreover, the maximum peak value was exhibited by B (11.86) and Na (10.24) while Zn and K showed minimum (0.01 and 0.17) peak value, respectively. Compared with kurtosis, the variation of skewness of 17 mineral elements is quite different. The five elements (K, Mg, S, Mo, and Sr) are left-biased, and the other twelve are right-biased, indicating that most of the 17 mineral elements have high content (relative and average) of the elements accounted for a large proportion. Combining the distribution of elements from parental line, in the normal distribution map, it is preliminarily concluded that the population satisfies the characteristics of the distribution of Ca, Fe, and Zn in the near isogenic lines.
TABLE 2 | The statistical analysis (Skewness and Kurtosis) for normal distribution test of mineral elements and their results in Near-isogenic lines (NILs) of Towada brown rice.
[image: Table 2]Similarly, the correlation among 17 mineral elements quantified in brown rice of the Towada near isogenic lines are presented in supporting information (Supplementary Table S3). It is observed that among the 17 mineral elements, Fe is most closely related to the other 16 elements and showed highly positive significant with all other elements except S. The B element is the second which showed significant positive correlation with 15 elements while the P and Sr elements are significantly correlated with the 14 elements. Cu showed significant positive correlation with only seven elements, with the least of the 17 elements, followed by Zn, which is significantly correlated with the eight elements, indicating that the other elements with higher copper and zinc content are relatively less. Further analysis of the correlation between the elements found that except for the significant negative correlation between Ca and Sn elements, the others were positively correlated with each other. The supporting information (Supplementary Table S3) showed that there is a correlation between most of the elements however considering the antagonistic or promoting effect of the element on absorption and accumulation, the partial correlations (Table 3) of the three elements of calcium, iron and zinc with the remaining 17 elements was calculated to eliminate the effect. Among the three elements, calcium showed extremely significant partial correlation with ten elements (P, Mg, S, Fe, Mn, Cu, Mo, Al, Cr, and Sr), in which P, Mo, Al, and Cr were negatively correlated with Ca while rest were positively correlated. Iron showed very high significant positive correlation with all elements except three (P, Ca, and Cr) elements, which showed relatively low significance level. The zinc and the six elements (Mg, S, Mo, Al, Cr, and Ni) manifested significant correlation, in which Mo and Cr were negatively correlated and the rest were positively correlated. The elements that have reached a very high significant partial correlation with iron had a very significant in simple correlation, with the difference that the coefficient of partial correlation with the three elements is reduced. The simple correlation analysis showed that the iron element and the other 16 elements have reached a high significant level and comparing the two correlations it can be concluded that iron is greatly affected by its elements. Compared with iron, the partial correlation between calcium and zinc elements and other elements is complicated. Among the ten elements that are extremely significantly related to calcium, there is no significant correlation between Cu, Mo, Al and Cr, and Ca, so the correlation coefficients of these four elements decreased. A simple comparison of the simple correlations and partial correlations of the three elements Ca, Fe, and Zn reveals that the correlation coefficient that reaches the significant or extremely significant correlation level has only a change in size, and there is no change in the relevant trend (positive and negative).
TABLE 3 | The correlation (partial) result of calcium, iron and zinc with all 17 mineral elements content of brown rice of Towada NILs.
[image: Table 3]Correlation analysis between mineral content and morphological traits is conducive to the selection of high (or low) elemental lines of brown rice and it supports the improvement (or reduction) of brown rice element content through cultivation measures. Correlation between the content of mineral elements in 17 brown rice varieties and other morphological traits in the Towada near-isogenic lines has been presented in the supporting file (Supplementary Table S4). Comprehensive analysis of the correlation between mineral element (17) and morphological traits (20) manifested that each element had significant correlation with only three traits (average). Among the 20 morphological traits, the effective ear and the second leaf length were most closely related to mineral elements and were significantly correlated to the seven mineral elements while the length of the ear and the length of the second internode showed correlation with six elements. However, five kinds of mineral elements had extremely significant correlation for the plant height, leaf down, while four mineral elements showed extremely significant correlation with the length and unfilled grains. While the length of the stem, the length of the flag leaf, the width of the flag leaf, the width of the inverted leaf, and the length of the 1–2 section are the least correlated with the mineral elements. No mineral element is significantly correlated to the length of the anther and the width of the inverted leaf however the number of solid grains and the seed setting rate showed significantly correlated to a mineral element. Further analysis revealed that the correlation between most mineral elements and rice anther length showed maximum correlation as compared to the width of rice grain. Similarly, anther length, one leaf length, 2 s leaf length and two internode lengths are extremely significant with P element and but with the anther width, the width of the inverted leaf and the width of the inverted two leaves, had no significant correlation. S element had significant correlation with the length of the inverted leaf, the length of the two internodes and the length of the ear. Among the 16 elements the negative correlations were more than the positive correlations and the positive/negative ratio compiled in one table (Table 4). Collectively, the correlation analysis data (Table 4 and Supplementary Table S4 of supporting file) showed that Cu is most affected by morphological traits and is significantly related to ten morphological traits, ranking first among 17 mineral elements. Secondly, P element is extremely significant and correlated significantly with eight morphological traits. Ni and Cr elements correlated significantly with six morphological traits; K element is least affected by morphological traits, and there is no form. However, the ten elements P, Mg, Fe, Mn, Cu, B, Mo, Cr, Ni, and Sn in the 17 mineral elements had significant correlation with one cold tolerance traits (Tables 4, 5). Further analysis of the above-mentioned ten elements was positively correlated with the cold-related morphological traits at the booting stage and found that except for the positive correlation with the number of glutinous grains, the others were negatively correlated, indicating that the relationship between the ten elements and the cold-tolerant traits at the booting stage was complicated. The correlation between the above elements and morphological traits was compared. The correlation coefficient between Cu and the inverted two leaves was −0.24, followed by the correlation coefficient between Fe and inverted two leaves had −0.21. In the cold-tolerant traits, the length of the second leaf was most closely related to the mineral element content and showed a very high significant correlation with the seven elements. The results of the Tables 1–5 showed that only ten of the 17 mineral elements (P, Mg, Fe, Mn, Cu, B, Mo, Cr, Ni, and Sn) are related to the cold tolerance at the booting stage. The frequency distribution of some cold tolerance (Figure 1) attributes and some minerals (Figure 2) elements are presented in the form figures. Based on this, we constructed a near-isogenic pool of brown rice calcium, iron and zinc to find its content QTL, aiming to evaluate its relationship with cold tolerance at booting stage at the molecular level and to improve the content of these beneficial mineral elements in rice.
TABLE 4 | Relationship between the total content of 17 mineral elements and cold stress tolerance attributes of Towada brown rice NILs at booting stage.
[image: Table 4]TABLE 5 | The total number of phenotypic traits linked with mineral elements content significance level of p 0.05 and p 0.01.
[image: Table 5][image: Figure 1]FIGURE 1 | Frequency distribution of cold stress tolerance traits based on growth (UIL, 1-2 IL, RSLL) and yield (BG, FG, RSS) related attributes of NILs of Towada brown rice.
[image: Figure 2]FIGURE 2 | Frequency distribution of some mineral (Fe, P, Mg, Ca, S, and Zn) elements quantified in NILs of Towada brown rice subjected to chilling stress at booting stage.
Identification of QTLs
Screening of high calcium, iron and zinc lines were performed using SSR primers followed by synthesis of new primers for polymerase chain reaction. PCR amplification results of near-isogenic pools of Lijian2 found that primers including RM8268, RM5536, RM5644, RM5529, RM5480, RM3894, RM6364, and RM-4608, showed high band amplification in DNA samples of Lijian2 (higher mineral elements in gene pool) while there was no amplification in the DNA samples of Towada (low mineral elements in the gene pool). It is preliminarily judged that these eight primers are linked with the markers controlling to the content of calcium, iron, and zinc in Lijiang2. These eight primer pairs were used to amplify the DNA of NILs populations, and the amplification results marked as “1” common with Towada parent and “2” common with Lijing2 while both categories were marked as “3” and the missing ones marked as “0.” The amplification results then tested by one-way variance significance test with the population of calcium, iron and zinc. According to the requirement of LSD (Least-Significant Difference), the one-way variance significance test was associated with the probability value p at 0.05. The test results revealed only three primers (“RM5536,” “RM5529,” and “RM4608”) had significant (p < 0.05) variation. The amplification results of RM5536 and the one-way variance significance test of calcium, iron and zinc content showed association at p of 0.02, 0.05, and 0.05, respectively. The amplification results of primer RM5529 are accompanied by one-way variance significance test of calcium and iron content showed the probability values of p was 0.03 and 0.01, respectively. The amplification results of the primer RM4608 and the one-way variance significance test of the iron and zinc content were accompanied by probability values p of 0.05 and 0.05 (Table 6).
TABLE 6 | The location of polymorphic SSR markers on chromosome and the core sequence and number of repeats with flanking regions of the polymorphic SSR markers (RM5536, RM5529, RM4608) used for primer synthesis.
[image: Table 6]Genome database search (http://www.gramene.org/) of these three SSR markers revealed that the primer “RM5536” is located on chromosome number 1 and the core sequence is 14 repeats of adenine and cytosine (AC). The specific sequence is CAC​GTA​CCA​GCC​TTG​ATG​AAT​CC (pre), TGG​GCT​ATA​CT-AAT​CCC​GTC​ATC​C (post) while the primer “RM5529” is located on chromosome 2, and the core sequence is AC with 13 repeats. The specific sequence is: GTA​CTA​CAT​CGG​TTG​TGT​AGT​TGG (pre), CAT​ACG​TTA​ATG​GCT-CAT​CTC​G (post). The primer “RM4608” was found located on chromosome 6 amplifying the 23 repeats of core sequence of AT (AT23), with the specific sequence: ACC​CAA​TAT​GGT-GCA​ATA​GAG​ACC (former), CAC​CTC​CAC​CAA​CTT​TGA​CAG​G (post). The content of the elements is related so these three primers can be preliminarily determined to be with calcium, iron, iron and zinc (or two of them). According to the positions of these three primers on the genetic map of rice, 10 pairs of SSR primers with similar distance were synthesized. Among them, like the primer “RM5536” the ten primers are RM5794, RM5362, RM5410, RM12171, RM12172, RM5310, RM12176, RM12177, RM12178, and RM12179. Similarly, the ten primers were synthesized as RM12406, RM12409, RM12431, RM12438, RM12440, RM12448, RM123RM12455, RM12457, and RM12466 were designed like the primer “RM5529.” While the 10 primers designed according to the primer “RM4608” were RM585, RM6536, RM1163, RM6917, RM115, RM6119, RM2434, RM7-561, RM6773, and RM2126. The newly synthesized thirty pairs of primers were subjected to PCR amplification of the near isogenic line population, and the amplification results were labeled in the same manner as above. The linkage group was constructed and confirmed using MAPMAKER 4.0 software at LOD score 3.0. 10 SSR primers synthesized and used according to RM5536 (Total 11 markers) and results showed four primers group: RM5536, RM5794, RM5362, and RM12178. Similar protocol was adopted for synthesis of new SSR markers for “RM5529” and “RM4608” also. Out of 11 primers for each the amplification results revealed five primers group including RM5529, RM12409, RM3495, RM12406, and RM12477 for former one (RM5529) and same group (five membered) including RM4608, RM19491, RM19489, RM6119, and RM19487, observed for later (RM4508) marker. A linkage group was constructed for these three groups of primers, and a linkage map was drawn using MapDraw2.1 software. Three linkage groups were analyzed and found that the primer four primers of RM5536 linkage group are biased in favor of Lijing2 and Towada and the contribution rate of the groups were 0.62 and 0.38, respectively. The five primer amplification results of the primer RM5529 linkage group, one primer (RM3495) was biased towards Lijing2, and the others were biased towards Towada. The contribution rates of Lijing2 and Towada were 0.48 and 0.52, respectively.
The results of the amplification of the five primers of the primer RM4608 linkage group were all biased towards Towada, and the average contribution rate of the population of Lijing2 and Towada was 0.43 and 0.56, respectively. QTL site detection and analysis were performed on the three linkage groups established by QTLMapper1.6 software (Table 7). The table shows a QTL site for calcium located on chromosome 1 between the primers RM12178-RM5362, with −0.63 additive effect, from Lijing2 and the contribution rate was 3.95%, which could not find after querying and hence preliminarily concluded a new site and temporarily named qBRCC-1, according to McCouch (1997). The site controlling the zinc content was located on chromosome six in between the markers RM4608 and RM6119, and its additive effect was −1.77, from Lijing2, which explained 5.10% of the phenotypic variation. The report related to the site was found to be temporarily named qBRZC-6. The site controlling the Cr content of brown rice was located on chromosome 6 between RM19489-RM19491, and its additive effect was −0.26. The additive effect came from Lijing2 with a contribution rate of 8.54%. Another QTL identified responsible for the content of magnesium, and it was located between RM4608 and RM6119 on chromosome number 6, and the additive effect (−28.22) came from Lijian2, which explained 3.98% of the phenotypic variation. The two sites (Cr and Mg) temporarily named qBRCHC-6 and qBRMC-6, respectively. Three QTLs found for iron content, one was located on chromosome number 2, between marker RM12406 and RM12477 and two were located on chromosome number 6, between RM1948 and RM19489 and in between RM4608 and RM6119, with −0.63, −0.79, and −0.92 additive effects Lijing2 and the contribution rates were 3.95, 5.98, and 8.24%, respectively while the cumulative contribution rate was 18.17%. After the inquiry, no relevant sites were reported, and they were initially judged to be new sites and named qBCIC-2, qBCIC-6-a, and qBCIC-6-b, respectively. Furthermore, another QTL was also found located on chromosome one between RM12406A-RM12477 for P content with −0.12 additive effect from Lijing2, and approximately 6.85% explain the phenotypic variation and named qBCPC-1. The location of identified QTLs and their intervals are also presented in graphical view of chromosome (Figure 3). While the complete information about other SSR markers between the interval markers, the type of motif, number of repeats, SSR number, forward and reverse primer, product size and start and end position are summarized in the supporting Table 5 (Supplementary Table S5).
TABLE 7 | This tables shows the number of QTLs identified for the content of iron (Fe), phosphorous (P), calcium (Ca), strontium (Sr), chromium (Cr), zinc (Zn) and magnesium (Mg) in the brown rice of Towada NILs. It also shows the location on chromosome, intervals of markers, marker position in terms of centi-morgen (cM), the log of odd ratio (LOD) and percentage of phenotypic difference.
[image: Table 7][image: Figure 3]FIGURE 3 | The location and congregation of QTL affecting mineral elements content in NILs of Towada brown rice. QTL for Fe ([image: FX 1]), P ([image: FX 2]), Ca ([image: FX 3]), Zn ([image: FX 4]), Cr ([image: FX 5]), Mg ([image: FX 6]), and Sr ([image: FX 7]) are graphically highlighted for chromosome number 1 (from left), 2 and 6.
DISCUSSION
High quality seed is not only essential for human health but also ensures the maximum yield by establishing seedlings with deep roots. Therefore, the level of mineral element’s content in rice seeds is an essential element to develop high yielding yet healthy rice. Because there is a reasonable association between the quality of rice seedling and the content of mineral elements. Although some mineral elements became restrictive in natural conditions, but the 13 essential mineral elements are detrimental for growth and development of plant. Because seeds supply adequate metabolic resources to let the productive seedling establishment in the field condition. Moreover, the freshly developed seedlings moved in autotrophs condition from being heterotrophs are much depended on the reserves of mineral elements of their parent seeds (Bewley and Black, 2013). But significant variation is reported in the content of mineral element within the different genotypes of O. sativa. But an insight into the identification and validation of major genetic determinants for mineral elements accumulation in rice subjected to chilling stress is highly imperative. Because plants confront several abiotic stresses throughout their lifetime and extreme temperature (low/high) is a major issue. Particularly, chilling stress caused 10% reduction in rice yield per year (Wu and Garg, 2003). Because rice is more vulnerable to chilling stress than other cereal crops owing to its beginning in the hot and semitropical areas (Zhao et al., 2017). Therefore, chilling stress triggers main stress for rice growing in twenty-five states (Cruz et al., 2013) and ≥15 million ha of rice produced worldwide (Bai et al., 2016). Like other attributes, chilling stress tolerance of rice is most likely regulated by various genes depending on phenological stages (Cruz et al., 2013; Zhang et al., 2017) as well as the rice landraces. Recently He et al. (2021), reported about genetic diversity of rice landraces triggering a high degree of non-degradation adaptability to the local environment of China. According to the report, the diversity of natural and farmer choice in the course of agricultural events advances to very balanced agronomic characteristics within the population of landrace, (Pusadee et al., 2009; Song et al., 2019). Although low temperature stress tolerance related several QTLs have been mapped on all 12 chromosomes (Zeng Y. et al., 2009; Jiang et al., 2011; Kuroki et al., 2007), however only few genes (COLD1, qLTG3-1, and LTG1) conferring tolerance to low temperature at the vegetative growth stage have been isolated (Fujino et al., 2008; Ma et al., 2015). While only one gene Ctb1 (Saito et al., 2010) has been identified and cloned to confer chilling stress tolerance at the booting stage, and knowledge about the fundamental molecular mechanisms of chilling stress tolerance at the booting stage are still enigmatic. Therefore, it has been a big task to map loci linked with abiotic stress tolerance markers owing to the polygenic disposition of the loci (Shakiba et al., 2017). Kunming and Yanji (China), a high-latitude area are naturally low temperature areas, ideal for screening low temperature stress tolerance in rice (Dai et al., 2004; Blum and Tuberosa, 2018). Therefore, a study was conducted to explore the accumulation of mineral elements in brown rice at booting stage because it is a very important phenological stage. This stage enables seed production that needs epigenetic and genetic reprogramming and reassign of biochemical and metabolic resources which are highly vulnerable to chilling stress (Zhenghai et al., 2019; Jagadish et al., 2010).
Analysis of mineral elements content in the seeds of rice subjected to chilling stress revealed that phosphorus (P, 3,253 mg/kg) and potassium (K, 2,485 mg/kg) content were highest while strontium (Sr, 0.26 mg/kg) and boron (B, 0.34 mg/kg) were lowest among the 17 mineral elements. Similarly, the correlation analysis revealed extremely positive correlation of copper (Cu) and phosphorus (P) with most of the morphological traits. Similar results were reported by Bolland and Baker (1988) in which it is concluded that amount of P in the seed was positively related to the yields of annual pasture legumes. Similarly, a high content of P favored the early development of wheat seedlings as compared to plants grown at low concentration of P (Liao et al., 2008). Among the physical attributes, the effective ear and the second leaf length showed strong correlation with half of the mineral elements content. Therefore, it is preliminary concluded from the cultivation process of near isogenic lines and the distribution of calcium, iron, and zinc in the near isogenic line population, that the test population meets the requirements of brown rice high calcium, high iron, and high zinc content therefore further processed for QTL analysis. The distribution of calcium, iron and zinc in the population indicated that these elements were higher in offspring than the parental line. Moreover, all other elements showed positive correlation except Ca and Sn as reported earlier (Garcia-Oliveira et al., 2009). Approximately, 54% of the population of the brown rice showed more zinc content than Lijing2 while 37% of the brown rice had more iron and calcium content than Lijing2 indicating that the three elements are controlled by multiple genes in brown rice and there is an additive effect, which is consistent with the previous work (Pfeiffer and McClafferty, 2007; White and Brown, 2010).
Increasing the cold tolerance at the booting stage of rice can increase the yield of rice, but whether this will reduce the content of beneficial elements in rice has not been reported and only mineral elements were analyzed in the core collection of Yunnan (Zeng et al., 2010). However, correlation between morphological trait and found some elements revealed that elemental content and morphological traits were mostly negatively (Xihong et al., 2008) and the same results were obtained in this study. It is speculated that this may be related to the mechanism of elemental absorption. The agronomic traits become taller, and the anther length, ear length and leaf length are larger or wider, which means that the accumulation of elements in these organs increases, while the accumulation concentration in the grain is relatively reduced, and thus the content is relatively low. Understanding the correlation between mineral elements in brown rice has an auxiliary effect on the selection of high-mineral rice varieties of brown rice. The analysis showed high significant correlation up to 16 elements, while the least is only seven as reporter before (Zeng Y. W. et al., 2009; Huang et al., 2015; Yao et al., 2020). The antagonism or promotion of mineral elements in absorption has been confirmed in rice, such as Fe inhibits Cu and Mn absorption while it promotes Zn absorption, and Zn inhibits Cr absorption (Sasaki et al., 2016). Therefore, when performing correlation analysis between mineral elements, simple correlation and partial correlation should be analyzed simultaneously. By analyzing the simple correlation and partial correlation between the three elements of calcium, iron and zinc in brown rice and other elements manifested that the change of iron elements is relatively simple, however changes in accumulation of calcium and zinc elements are more complicated (Shao et al., 2007; Stangoulis et al., 2007).
According to the previous scientific literature, first to second node length, anther volume, number of filled grains per panicle, peduncle length, number of unfilled grains per panicle, length of the node under panicle, anther length and level of seed setting rate are phenotypic attributes strongly correlated with low temperature stress tolerance at the reproductive stage of rice (Xu et al., 2008; Shirasawa et al., 2012). Like other agronomic traits, low temperature stress tolerance is also a composite trait governed by various genes and gene products, under the influence of gene and environment. Identification and cloning of cold tolerance related QTLs have been carried out based on various morphological attributes. For example, cloning of qLTG9 for germination of rice under cold stress, qPSR2-1 and qLOP2 for rice cold stress tolerance, Hd1 controlling date of heading in rice, TGA1 main differences in ear development between maize and teosinte, were carried out using NILs population (Cui et al., 2013; Ma et al., 2015; Jing et al., 2018). In this study, we found that Towada, are differed from its cold-sensitive recurrent parent Lijiang2 only in mean spikelet fertility after being exposed to cold stress and same were reported by Zhang et al. (2013). We performed combined analysis QTLs associated with cold tolerance and mineral elements in cold tolerant brown rice. It is observed that QTL markers interval for mineral elements (Zn, Ca, and Fe) content and QTL markers for cold tolerance interval are not on the same chromosome. QTL associated with mineral element content was reported on the chromosome number 6 while the QTL of cold tolerance was found on chromosome number 7 at booting stage in Lijian2 and Lijiang1, however there is no evidence that they have a linkage relationship. There is no correlation between calcium and zinc content in brown rice and cold tolerance at booting stage based on apparent correlation and different QTL loci. Therefore, it is preliminarily believed that there is no linkage between zinc content gene and cold tolerance gene of brown rice at booting stage. So, any improvement of mineral contents and cold tolerance in rice at booting stage may require co-localization of QTLs.
Co-localization of QTLs for various element content in seeds has formerly been stated in rice (Prasad, 2003; Stangoulis et al., 2007; Norton et al., 2010; Masuda et al., 2013; Bao, 2014). For example, co-location of QTL for Zn and Fe content was reported previously on chromosome 12 (Prasad, 2003). Previously adjacent QTLs for Zn and Fe minerals accumulations have been reported on chromosome 7 and 12 in rice, where all of Zn QTLs were co-located with the Fe QTLs except qZn7.3, suggesting possibility of selection of high Zn lines with high Fe lines using molecular (DNA) markers as selection criteria in these two regions (Masuda et al., 2013; Bao, 2014). Garcia-Oliveira et al. (2009), found 17 colocations of eight distinct minerals (K, P, Mg, Ca, Fe, Zn, Cu, and Mn), using several (85) introgression lines developed from a cross between the wild rice (Oryza ruf ipogon) and an elite indica cultivar Teqing. The phenomenon “pleiotropy” of the genes associated with the physiological processes and metabolism of several elements genetically found colocalization positions on chromosomes (Stangoulis et al., 2007; Norton et al., 2010). Second prospect is the occurrence of grouped genes that are strongly linked collectively and accountable for the accumulation of various elements in rice grain (Du et al., 2013). For example, the high-affinity iron regulated transporter 1 (IRT1) as a broad substrate range metal ion transporter can transport not only iron but also other divalent metals such as zinc and manganese (Du et al., 2013; Yan et al., 2015).
CONCLUSION
Cold tolerance of rice and brown rice are the key to food security and human health. Brown rice is a wholegrain cereal and, as such, is known to have valuable impacts on human health. Because the brown rice is comprised of endosperm (about 90%), embryo (2–3%), and bran layers (6–7%). In addition of mineral elements, bran layer also contains bioactive molecules, such as gamma aminobutyric acid (GABA), γ-oryzanol, and ferulic acid. The nutritional value of brown rice decline under cold stress therefore it is very imperative to explore the cold tolerance and the accumulation of mineral elements in times of climate change. This study was conducted to explore the genomic determinants of cold tolerance and mineral elements content in near-isogenic lines of japonica rice subjected to chilling stress at booting stage. This paper not only revealed correlation between 17 mineral elements of brown rice, but also localized nine QTLs for four elements, especially a novel QTL (qBCPC-1) was identified on chromosome 1 for P element only. These findings provided bases for the genomic selection and identification of candidate genes involved in mineral accumulation and cold tolerance in rice which can be exploited to develop stress resilient yet healthy rice through genome editing technologies.
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The two-component signal transduction system (TCS) acts in a variety of physiological processes in lower organisms and has emerged as a key signaling system in both prokaryotes and eukaryotes, including plants. TCS genes assist plants in processes such as stress resistance, cell division, nutrition signaling, leaf senescence, and chloroplast division. In plants, this system is composed of three types of proteins: response regulators (RRs), histidine kinases (HKs), and histidine phosphotransfer proteins (HPs). We aimed to study the Sorghum bicolor genome and identified 37 SbTCS genes consisting of 13 HKs, 5 HPs, and 19 RRs (3 type-A RRs, 7 type-B RRs, 2 type-C RRs, and 7 pseudo-RRs). The structural and phylogenetic comparison of the SbTCS members with their counterparts in Arabidopsis thaliana, Oryza sativa, Cicer arietinum, and Glycine max showed group-specific conservations and variations. Expansion of the gene family members is mostly a result of gene duplication, of both the tandem and segmental types. HKs and RRs were observed to be originated from segmental duplication, while some HPs originated from tandem duplication. The nuclear genome of S. bicolor contain 10 chromosomes and these SbTCS genes are randomly distributed on all the chromosomes. The promoter sequences of the SbTCS genes contain several abiotic stress-related cis-elements. RNA-seq and qRT-PCR-based expression analysis demonstrated most of the TCS genes were responsive to drought and salt stresses in leaves, which suggest their role in leaf development. This study lays a foundation for further functional study of TCS genes for stress tolerance and developmental improvement in S. bicolor.
Keywords: signaling, TCS, HKS, Rrs, qRT-PCR
1 INTRODUCTION
The two-component system (TCS) was first recognized in bacteria, and it has since been studied for signal transduction pathways in fungi, slime molds, and plants (Stock et al., 2000). As the name suggests, this system involves two primary components in bacteria: a sensor histidine kinase (HK) and a response regulator (RR) (Capra and Laub 2012). The sensor HK contains two domains: the input domain and the transmitter domain. The input domain perceives signals and, as a result, the HK activity of the transmitter domain is modified after autophosphorylation (kinase self-activation) of a conserved histidine (H) residue. In the receiver domain of the RR (Rec), the phosphate group is then transferred to a conserved Asp residue (Aspartic acid). Another domain, known as the output domain, is also found in many RRs; its activity is regulated by the phosphorylation state of the Rec domain whereas, Rec domain is a response regulator receiver domain. The output domain commonly behaves as a transcription factor (Sun et al., 2014). Over time, an additional protein family, whose members are histidine phosphotransfer proteins (HPs), has been found to be involved in developing a multi-step phosphorylation mechanism in eukaryotes. In the corresponding signaling cascade, a phosphate group is transferred among the HP family members, and may involve as a linker between HKs and RRs proteins (Wurgler-murphy 1997; West et al., 2001). In plants such as Arabidopsis thaliana, there are three distinct subfamilies of HKs: ethylene receptor, phytochrome receptor, and cytokinin receptors (Hwang et al., 2002). Three additional A. thaliana HKs (hybrid HKs; AHK1, ACKl1, and CKl2/AHK5) belong to no known group. The overall structure of an HK involves an input domain, a Rec domain, several transmembrane domains (at the N-terminus), and a conserved H residue containing a transmitter domain (the autophosphorylation site). However, due to a lack of conserved residues and motifs, three ethylene receptors (AETR2, ERS2, and AEIN4) and phytochromes cannot perform HK activity; therefore, they are referred to as divergent HKs (Ahmad et al., 2020). The ethylene receptor family has an ethylene binding transmembrane domain at the N-terminal, a His protein kinase domain, and a GAF protein-protein interaction domain (Chen et al., 2020). ERS1 and ETR1 are two further subdivisions of the ethylene receptor family based on the similarity of their amino acid sequences. In A. thaliana, the ethylene receptor family consists of five members (ETR1, ETR2, EIN4, ERS1, and ERS2), which contain an ethylene (C2H4) binding domain (Dhar et al., 2019). Phytochromes/photoreceptors are involved in the regulation of plant growth and development in response to light stimuli (Paik and Huq 2019). PHYA, PHYB, PHYC, PHYD, and PHYE are the five phytochrome receptors present in A. thaliana; they contain two main structural domains: the amino-terminal domain and the carboxyl terminus. A linear tetrapyrrole chromophore is covalently attached to the amino-terminal domain for light absorption and photoreversibility. For signal transduction, the carboxyl terminus contains two PAS domains and a His protein kinase-related domain. Moreover, AHK2, AHK3, and AHK4 are considered cytokinin receptors, which are recognized on the basis of containing the cyclase/HK-associated sensing extracellular (CHASE) domain (Hutchison and Kieber, 2002).
The HP family contains a domain called the phosphotransfer (Hpt) domain which is essential for transferring a phosphate group from the Rec domain of HKs to the Rec domain of RRs, enabled due to the presence of a highly conserved motif (XHQXKGSSXS) (Gupta et al., 2020; He et al., 2020; Tiwari et al., 2021). The AHP1–AHP5 are the five A. thaliana genes that encode the intermediate proteins with an Hpt domain. However, AHP6 lacks an H residue of that motif; as a consequence, it is called pseudo-His phosphotransfer protein (pseudo-Hp). Furthermore, AHP6 cannot behave as a phosphotransfer protein; thus, it is considered a cytokinin signaling negative regulator. Based on the domains, signal nature, and conserved sequences, the RR family is divided into three subgroups: type-A, type-B, and type-C RRs. Type-A RRs are cytokinin response proteins that have a Rec domain and a C-terminal extension. Type-B RRs consist of an N-terminal Rec and a C-terminal output domain. Type-C RRs have domain structures similar to those of type-A RRs, but are induced by cytokinin. Type-C RRs have still not been reported to have a role in cytokinin signaling. There is another distinct class of RRs, known as pseudo-RRs (PRRs), which lack a highly conserved phosphor-accepting aspartate (D) residue that is needed for phosphorylation. The CCT (Co, Col, and Toc1) motif in the C-terminal extension of PRRs is necessary for regulating circadian rhythms. Although PRRs are not involved in the transduction of phosphorelay signals, they play key roles in the circadian clock, which is implicated in a variety of distinct signal transduction processes (light-stimulated) in plants (Ishida et al., 2009; Tsai et al., 2012). The TCS is studied in various prokaryotes and eukaryotes, including plants for signal transduction pathways (Mizuno 2005; Tiwari et al., 2017). The TCS genes play a significant role in various abiotic stress responses, including to different temperature, water, and salinity conditions (He et al., 2016a). Signal transduction in plants is mediated by the TCS, which is also involved in osmosensing and essential cellular processes such as responses to ethylene, cytokinin, and red light. Studies on TCS in an A. thaliana model plant have been carried out and have led to unprecedented advances in our understanding of the circadian clock and the mechanisms of plant hormonal responses (i.e., ethylene and cytokinin responses). the TCS is involved in processes such as nutrient sensing, stress response, chemotaxis, endosperm formation, and nodulation during plant development, growth, and adaptation (Ishida et al., 2009; Zwack and Rashotte 2015). Several A. thaliana TCS genes work together with ABA to adapt to low temperature, drought, and salt stresses. AHP1, AHP2, and AHP3 are highly expressed in heat stress conditions (Miyata et al., 1998). In O. sativa, drought and salt stresses affect OsAHP1/2 knockdown seedlings in various ways. Similarly, ABA-induced antioxidant defense occurs via OsHK3 (Sun et al., 2014). In G. max, dehydration affects the expression level of most TCS genes (Le et al., 2011). Some TCS genes of tomatoes are active in stress response. Pollen from the tomato Never-ripe (Nr) HK mutant is highly susceptible to heat stress. Some phytochromes act as HKs, helping plants respond to drought stress (Firon et al., 2012).
Sorghum is a C4 grass that ranks fifth in terms of acreage after wheat, Z. mays, O. sativa, and barley, with a world annual production of approximately 65.5 million tons derived from 45 million ha (Dicko et al., 2006). It is a self-pollinating and extensively grown cereal crop that adapts to various purposes, resulting in phenotypic variations between varieties. The genetic and phenotypic diversity of S. bicolor has increased due to its widespread distribution across Asia, India, the Middle East, and Africa, which has resulted in divergent botanical types mainly characterized by their seed characteristics and floral architecture. This crop is grown in both subsistence and commercial agriculture systems worldwide for fuel, fiber, food (syrup and grain), and animal feed. Since the rise in temperature and salinity are two major constraints having multidimensional impact on plant growth and development. So the crop improvement must be accelerated to meet the expected global food demand over the next few decades (Morris et al., 2013; Cooper et al., 2019). The objective of our current study was to identify the drought and salt stress responsive TCS genes that are potentially useful for S. bicolor breeding. Since the TCS genes are involved in several biological processes, it is essential to thoroughly investigate these genes in S. bicolor.
2 MATERIALS AND METHODS
2.1 Identification of Two-Component System Gene Family in Sorghum bicolor
Firstly, the A. thaliana full-length protein sequences of TCS were retrieved from Ensemble plants database (http://plants.ensembl.org/index.html). These sequences were used as query sequence to execute a BLASTp program search to identify the TCS gene family members in S. bicolor. All putative sequences were further evaluated to check the presence of a specific domain using different domain databases including, CDD (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (Marchler-Bauer et al., 2011), SMART (http://smart.embl-heidelberg.de/) (Letunic et al., 2012) and Pfam (https://pfam.xfam.org/) (Punta et al., 2012). This step was taken to eliminate the sequences that lacked specific conserved domains required for TCS protein function. The sequences were manually sorted to remove the redundancy, and the remaining proteins were considered as identified TCS proteins. Molecular weight (MW), theoretical isoelectric point (pI), aliphatic index, instability index and the grand average of hydrophobicity (GRAVY) values were calculated by using the online tool ProtParam from ExPASY server (https://web.expasy.org/protparam/) (Gasteiger et al., 2003). In addition, the subcellular localization of SbTCS genes was determined by using online CELLO v.2.5 (http://cello.life.nctu.edu.tw/) (Yu et al., 2006).
2.2 Phylogenetic Analysis, Genetic Structure and Conserved Motif
To comprehend the SbTCS genes’ evolutionary relationship, multiple sequence alignment of the identified TCS proteins of S. bicolor, and already reported sequences of A. thaliana, C. arietinum O. sativa, and G. max was performed using ClustalW tool, and the neighbor-joining (NJ) tree was created using MEGA7 (https://www.megasoftware.net/) (Kumar et al., 2016) with a bootstrap value of 1,000. The exon and intron structures were visualized using the online software Gene Structure Display Server (GSDS) (http://gsds.gao-lab.org/) through matching the genomic sequences and coding sequences (CDS) of identified TCS genes, which were retrieved from NCBI (Hu B. et al., 2015). Furthermore, the MEME (Multiple EM for Motif Elicitation) tool (https://meme-suite.org/meme/tools/meme) was used to predict the specific conserved motifs of each TCS protein sequence (Bailey et al., 2015). The maximum number of motifs was set to 20, and other parameters were at the default setting.
2.2.1 Cis-Regulatory Elements and Gene Ontology Analysis
The upstream 1,000 bp genomic DNA sequences from the transcription start site of SbTCS genes were extracted from NCBI. Then they were submitted to an online plantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to predict the putative cis-regulatory elements (Rombauts et al., 1999). Entrez gene id of TCS genes was used for gene ontology enrichment analysis using the open-access DAVID Bioinformatics Resources 6.7.
2.3 Chromosomal Localization, Gene Duplication Events and Syntenic Analysis
By using TBtool advance Circos, a genetic relation map of chromosomes was constructed. Moreover, NCBI-gene database was used to predict the position of each TCS gene on the chromosomes of S. bicolor (Yu et al., 2006; Brown et al., 2015). The syntenic analysis was conducted using TBtool (Chen et al., 2018). DnaSP v.6 tool was utilized to analyze the gene duplication events. Synonymous and non-synonymous substitution rates were calculated to determine the selective pressure on the duplicated genes (Rozas et al., 2017). Divergence time was also calculated to perceive the evolutionary events. The following formula calculated the duplication time: T = Ks/2x (x = 6.56 × 10–9) (He et al., 2016b).
2.4 Expression Patterns of Two-Component System Genes in Sorghum bicolor
To understand the expression pattern of these identified SbTCSs under saline/alkali and drought stress, RNA-seq data (BioProject: PRJNA319738 for drought stress tolerance and BioProject: PRJNA591555 for saline/alkali stress) was downloaded from NCBI Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra). The genome annotation in .fna and .gtf extension were downloaded from (https://www.ncbi.nlm.nih.gov/assembly/GCF_000003195.3/). Indexes of S. bicolor genome sequence were built using bowtie2, and paired-end clean reads with high quality were mapped to the S. bicolor genome. The expression level of the annotated genes in the reference genome was then calculated by the cufflinks program. The normalized FPKM (fragment per kilobase of transcript per million fragments mapped reads) values of each SbTCS were calculated, and differentially expressed genes were identified. The heatmap was generated to envision the expression through TBtool (Chen et al., 2018).
2.5 Plant Growth and Treatments
Plants (S. bicolor, JS2002) were grown for 28 days in a growth chamber under controlled conditions: 25–27°C day-night temperature with 12-h light and 65% humidity. Plants were exposed to drought stress (well-watered and limited water supply), 10 mM or moderate saline-alkali soil stress (6 and 24 h), and 50 mM or severe saline-alkali soil stress (6 and 24 h). The Saline-alkali solution was used to apply saline-alkali soil stress; this solution was made of Na2CO3 and NaHCO3 (1:9, v/v) with half-strength Hoagland’s nutrient solution including Na+ at 150 mM and pH 9.5 (Hu G. et al., 2015). 3% salt content were used for moderate and 5% salt content were used for severe condition. For RNA extraction purposes, leaf samples were collected from all the pots (Control, Drought, moderate saline-alkali, and severe saline-alkali) with three biological replicates and then speedily frozen in liquid nitrogen and kept at −80°C until further use.
2.6 Validation of Quantitative Real Time PCR
In the presence of liquid nitrogen, leaf samples were grounded into fine powder by using sterile pestles and mortar. By using the Fastlane cell cDNA kit the complementary DNA (cDNA) was synthesized (Qiagen, Switzerland). A Nanodrop spectrophotometer (NanoDrop 2000 spectrophotometer, Thermo Fisher Scientific) was used to quantify RNA. The qPCR reactions were executed in Applied Biosystem Real-Time PCR Detection System using SYBR Green Master kit (Applied Biosystems, United Kingdom). Gene-specific primers were designed through the online tool “Oligo Calculator” (http://mcb.berkeley.edu/labs/krantz/tools/oligocalc.html), and specificity of these primers was then confirmed by NCBI Primer-BLAST program (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Supplemental Table S1). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene has been used as the reference gene to normalize gene expression (Sudhakar Reddy et al., 2016).
3 RESULTS
3.1 Comprehensive Identification of Two-Component System Genes in Sorghum bicolor
A BLASTp search was performed to identify the putative members of the TCS gene family in S. bicolor by employing 47 A. thaliana TCS query protein sequences. A total of 37 TCS genes were identified in the genome of S. bicolor, which were further divided into 13 HKs, 5 HPs, and 19 RRs.
3.2 Histidine Kinase Protein Family in Sorghum bicolor
The genome of S. bicolor contains 13 HKs (SbHKs/SbHKLs). This number is comparatively more significant than those present in Oryza sativa L. (5), Zea mays (11), Triticum aestivum (7), and Populus trichocarpa (12). However, other legumes such as A. thaliana (17), Lotus japonicas (14), Cucumis melo L. (17), and Physcomitrella patens (18) have a similar number of HKs, which reveals their significance among plants (Table 1). We identified six genes encoding members of the cytokinin receptor family in S. bicolor, i.e., SbHK1, SbHK2, SbHK3, SbHK4, SbHK5, and SbCKl1. The conserved residues required for HK activity were present in all members. Domain analysis of these HKs confirmed that five members (except for SbCKl1) contained a conserved HisKa domain, having a conserved His phosphorylation site. Moreover, all six members had a conserved RR (Rec) domain in which a highly conserved Asp, which acts as the photoreceptor, is present (Figure 1; Supplementary Table S2, ). Genetic and molecular analyses of A. thaliana have shown that five ethylene receptors are involved in ethylene response. These receptors have a GAF protein-protein interactive domain, a HisKa domain, and a HATPase_c domain. Similarly, four genes encoding ethylene receptors were predicted in S. bicolor (SbERS1, SbETR1, SbEIN4.1, and SbEIN4.2). Of these, SbERS1 and SbETR1 encoded almost the same domains as those of A.thaliana. SbEIN4.1 was found to contain GAF, HisKa, and a conserved Rec domain, whereas SbEIN4.2 contained a GAF and a conserved Rec domain (Figure 1; Supplementary Table S2).
TABLE 1 | Summary of the identified TCS gene members from different plants.
[image: Table 1][image: Figure 1]FIGURE 1 | Symbolic domain structure of S. bicolor two component signaling elements, different shapes and color represents different domains.
Members of the phytochrome family/photoreceptors allow plants to regulate their growth and developmental process and respond to light stimuli. PHYA, PHYB, PHYC, PHYD, and PHYE are the members of this family that have been reported in A. thaliana. Phytochromes contain a PHY domain at the N-terminal (involved in the absorption of light), a GAF domain, one HisKa, and two PAS domains involved in the transduction of signals. Sensor H proteins have a similar structure to that of phytochromes, which are soluble proteins. They have a signal transduction HisKa domain at the C-terminus and a sensor domain at the N-terminus. Since the phytochrome family lacks all five conserved motifs, they are referred to as divergent HKs. Instead of having HK activity, they have another Ser/Thr kinase activity (Ahmad et al., 2020). Three members of the phytochrome family were found in S. bicolor (SbPHYA, SbPHYB, and SbPHYC). All the domains (PAS, PHY, GAF, and HisKa domains) necessary for the regulation of light and signal transduction were present in their protein products, making them actual photoreceptors.
3.3 Histidine Phosphotransfer Proteins Family
Five out of six members of the A. thaliana HP (AHP1–AHP6) family are true HPs; one member, AHP6, is considered a pseudo-HP due to the absence of a conserved residue (H) required to obtain phosphate from the donor proteins (Bleecker 1999). Except for AHP6/APHP1, all the other members encode a conserved phosphorylation motif (XHQXKGSSXS). In AHP6/APHP1, the N residue has replaced the H residue of the phosphorylation motif. In S. bicolor, five members of the HP family were discovered to have a conserved domain, “Hpt” (Figure 1; Supplementary Table S2). Three of these five members (SbHP1, SbHP2, and SbHP5) were classified as true HPs since they have the phosphorylation motif, while the other two members (SbHP3 and SbHP4) were considered pseudo-HPs because the H residue is missing from their phosphorylation motif.
3.4 The Response Regulators
RRs modulate the final responses to different environmental stimuli. In this study, 19 RR family members were identified in S. bicolor, including both standard and pseudo-RRs. Previous studies have reported that A. thaliana has 32 members of the RR family (Mochida et al., 2010) and that O. sativa has 22 (Du et al., 2007). RRs act as terminal components in the TCS signaling pathway, acting as phosphorylation-activated switches. This RR functioning catalyzes the transport of phosphoryl groups to the Asp residue of its conserved domain. A significant feature of RRs is that they contain conserved K (lysine) and D (aspartic acid) residues, which are found in the Rec domain of A. thaliana RR family members. On the basis of the domains that are conserved, RR family members are further classified into three subfamilies: type-A RRs, type-B RRs, and type-C RRs. Type-A RRs have a Rec domain with a conserved D residue and a C-terminal extension. The Rec and DNA binding domains (Myb) are present in type-B RRs. Type-C RRs have a similar structure to that of type-A RRs but do not have a C-terminal extension. Another type of RR is known as the pseudo-response regulator (PRR). These RRs have a conserved Rec domain with an E residue (in place of the D residue) and a C-terminal CCT motif (Ahmad et al., 2020). Among the 19 S. bicolor RR family members, 2, 3, 7, and 7 are type-C RRs, type-A RRs, PRRs, and type-B RRs, respectively.
Three members of the type-A RR family in S. bicolor were identified, namely SbRR4, SbRR9, and SbRR10. These putative members of the type-A RR family were similar to their A. thaliana counterparts, with all three possessing a conserved Rec domain. Nuclear proteins are the most common members of the type-B RR family. These are different from the members of the type-A RR family since they contain a Myb-DNA binding domain. It has been reported that type-B RRs act as transcription factors (Ahmad et al., 2020). Seven members of this family were identified in S. bicolor (SbRR16, SbRR17, SbRR18, SbRR19, SbRR20, SbRR24.1, and SbRR24.2). This number is higher than that in T. aestivum (2) and lower than that in many other plant members, including A. thaliana and O. sativa. All seven members were found to have conserved Rec and Myb domains, except for SbRR24.1 and SbRR24.2, from which the Myb domain is missing. In A. thaliana, there are two members of the type-C RR family (ARR22 and ARR24). Like type-A RRs, they also have a conserved Rec domain, but possess a very small C-terminal. They are not very closely related to type-A RRs, according to phylogenetic analysis. It has also been shown that they are not expressed during cytokinin response. S. bicolor was found to contain two members of the type-C RR family (SbRR13 and SbRR14). These members exhibited significant homologous relationships with their A. thaliana counterparts and possessed a conserved Rec domain.
Divergent RRs, also known as PRRs, are another type of RRs found in a variety of plant species. In A. thaliana, there are nine divergent RR family members (ARR1–9). They have the entire Rec domain but lack a conserved DDK motif. Seven PRRs were found in the S. bicolor genome: SbPRR1, SbPRR2.1, SbPRR2.2, SbPRR3.1, SbPRR3.2, SbPRR5, and SbPRR9. PRRs have been further divided into two groups based on the C-terminal extension: type-B PRRs and clock-associated PRRs. In type-B PRRs (SbPRR2.1 and SbPRR2.2), instead of the CCT motif, a Myb domain is present. While clock-associated PRRs (SbPRR1, SbPRR3.2, SbPRR5, and SbPRR9) have the conserved amino acids arginine and lysine in the CCT motif, in SbPRR3.1, only a pseudo-rec domain is present.
3.5 Features of the SbTCS Proteins
The detailed physio-chemical characteristics of 37 SbTCS proteins are shown in Table 2 and Supplementary Table S4. The SbTCSs are present in 10 chromosomes (Chr), Chr 1–10. The exon numbers ranged from 2 to 14. The protein length ranged from 132 (SbRR13) to 1,178 (SbPHYB) amino acids (aa). ExPASy analysis revealed that the SbTCS proteins exhibited very different isoelectric point (pI) values (ranging from 4.55 to 9.69), molecular weight values (ranging from 14,169.76 to 122,065.35), aliphatic index values (ranging from 57.62 to 106.71), and grand average of hydropathicity index (GRAVY) values (ranging from −0.827 to 0.224). SbTCS proteins were shown to be located in the cytoplasmic, mitochondrial, and nuclear membranes.
TABLE 2 | Features of cytokinin two component signaling system genes in S. bicolor.
[image: Table 2]3.6 Phylogenetic Analysis
This study aimed to look at the evolutionary pattern and phylogenetic relationship of TCS proteins in S. bicolor; a neighbor-joining tree was constructed using the full-length protein sequence alignment of the identified TCS proteins from S. bicolor, A. thaliana, G. max, O. sativa, and C. aritenum (Figure 2). These proteins were divided into three groups: RRs, phosphotransfer proteins (HPs), and HKs. HKs were divided into five subgroups (CKl2, HK1 and CKl1, ethylene receptor, cytokinin receptor, and phytochrome families) according to the phylogenetic tree. Three cytokinin receptors were present in A. thaliana (AHK2, AHK3, and AHK4), as well as in S. bicolor (SbHK2, SbHK3, and SbHK4). Phylogenetic analysis revealed that SbHK3 and SbHK4 were orthologues of AHKs. Cytokinin receptors in A. thaliana have been functionally characterized and shown to control a variety of cytokinin-regulated processes, such as leaf senescence, stress responses, seed size, vascular differentiation, and cell division. Based on phylogenetic analysis, it can be suggested that the predicted cytokinin receptors of S. bicolor have similar functions as their A. thaliana counterparts.
[image: Figure 2]FIGURE 2 | Phylogenetic analysis of (A) HK, (B) HPs (C) of RR and PRRs proteins in S. bicolor, O. sativa, A. thaliana, G. max and C. arietinum. The bracket indicates the relative divergence of examined sequences. Neighbour-joining method with bootstrap analysis (1,000 replicates) was used to drive tree from the alignment of protein sequences. Evolutionary analysis was conducted in MEGA7 (Kumar et al., 2016).
AHK1 is a transmembrane protein which plays a role in osmosensing. It is largely expressed in the roots of A. thaliana in salt stress conditions. In S. bicolor, SbHK1 and SbCKl1 are the two orthologues of AHK1. In the CKl2 group, phylogenetic analysis indicated that SbHK5 is an orthologue of AHK5/ACKl2. The ethylene receptors SbETR1 and SbERS1 are present as direct homologs of ERS1 and ETR1. Similarly, SbEIN4.1 and SbEIN4.2 proteins are present on another clade, making a direct orthologue relationship with A. thaliana ETR2 and ERS2.
Phytochromes or photoreceptors are found to be involved in growth and development in light stress conditions. A. thaliana contains five photoreceptors. These contain a C-terminal, a GAF domain, an N-terminal PHY domain, one HisKa, and two PAS domains, which are involved in signal transduction pathways. Three photoreceptors (SbPHYA, SbPHYA, and SbPHYC) were identified in S. bicolor, with the same domains as those present in A. thaliana. Five HPs were found in S. bicolor, showing close phylogenetic relationships to the true HPs of A. thaliana and O. sativa. These HPs were grouped according to their phylogenetic relationships with their A. thaliana counterparts. SbHP1 and SbHP2 were grouped as being AHP1-like. SbHP3, SbHP4, and SbHP5 were grouped as being AHP4-like HPs.
Protein sequences of S. bicolor, O. sativa, A. thaliana, G. max, and C. Arietinum were used for the phylogenetic analysis of RRs. RRs are classified as PRRs (divergent RRs), type-A RRs, type-B RRs, or type-C RRs. This third family of TCS genes regulates the final responses to environmental stresses. PRRs are not considered to be true RRs due to the absence of a DDK conserved motif. It was confirmed that SbRRs are true RRs, since they have close phylogenetic relationships with their A. thaliana and O. Sativa counterparts. The evolution pattern of this family in S. bicolor revealed that this is segmentally duplicated. The same results have been found in O. sativa and A. thaliana in which it is also segmentally duplicated. Because type-A RRs are not found in unicellular algae and are observed only in land plants, they are considered relatively new members of the RR family and have been suggested to perform some novel functions in those organisms. Their structure contains a Rec domain and a conserved DDK motif that is important for receiving the phosphate group. Mainly, cytokinin activates type-A RRs, and this cytokinin induction partially depends on type-B RRs.
3.7 Gene Structure and Conserved Motif Analysis
A crucial evolutionary feature of a gene is its exon-intron structure and it provides information about its functional diversity. Therefore, the exon-intron organization of the AtTCS and SbTCS genes was further analyzed (Figure 3). The results showed that the members of the cytokinin receptor (HK) family had exon numbers ranging from 5 in SbHK1 to 14 in SbHK5 with introns 4–13. The A. thaliana HK family has exons 11–14 and introns 10–13. SbCKl1 was found to have 8 exons and 7 introns, whereas AtCKl1 contains 9 exons and 9 introns. Ethylene receptor family members SbEIN4.1 and SbEIN4.2 were shown to contain 3 exons and 2 introns, whereas SbERS1 and SbETR1 contained 6 exons and 5 introns. A. thaliana ERS1 contains 6 exons and 5 introns, ETR1 contains 7 exons and 6 introns, and AtEIN4, ETR2, and ERS2 have 2–3 exons and 1–2 introns. In the phytochrome family members, SbPHYA was found to have 6 exons and 5 introns. SbPHYB and SbPHYC were both shown to have 4 exons. The HP family members have 5–7 exons and 4–6 introns. A. thaliana HP family members have 3–5 exons and 2–4 introns.
[image: Figure 3]FIGURE 3 | Gene structure and conserved motifs of all HK(L), HP and RR family genes in S. bicolor. In gene structure, the exons, introns, and untranslated regions are indicated by yellow boxes, black lines and blue boxes, respectively. In conserved motifs, different color represents different motifs.
The S. bicolor RR family genes had a number of exons varying from 2 to 12 and an intron number varying from 1 to 11. The maximum number of exons and introns in SbPRR3.2 was found to be 12 and 11, respectively. The same number of exons and introns were found in AtRRs. These results showed that the groups and members with closer phylogenetic relationships contain a similar exon-intron structure. Subsequently, we used the MEME software to predict the conserved motifs of these TCS genes (Figure 5). The overall number of identified motifs was 20. Motifs 2, 8, 15, 16, 17, and 18 were conserved in the whole cytokinin receptor family of S. bicolor and A. thaliana . The same motifs were present in SbCKl1 and CKl1. The members of the ethylene receptor sub-family also contain similar motifs to those of the cytokinin receptor family but with the additional conserved motif 13; SbERS1 and SbETR1 lacked motifs 2 and 18. The S. bicolor and A. thaliana phytochrome family members contain an average of 10 conserved motifs (1, 4, 9, 11, 12, 14, 19, 15, 16, and 17). Only motif 20 is conserved in the members of the HP family.
Motifs 1, 2, 3, and 5 were conserved in all members of the type-A RR family. Type-B RRs contain the same motifs as type-A RRs and contain two more conserved motifs: motifs 6 and 7. The same motifs were present in two type-C RR members (SbRR24.1 and SbRR24.2). SbRR13 and SbRR14 encoded only two conserved motifs (motifs 2 and 5). The members of the PRRs family contain the same set of motifs as type-A RRs, except for two members, which contain only two motifs (motifs 6 and 7). The members of the same gene families share the same motifs, indicating that there is no significant functional and sequence divergence between them. Collectively evolutionary analysis revealed that TCS is conserved.
3.8 Genomic Distribution, Gene Duplication, and Synteny Analysis of the Sorghum bicolor Two-Component System Members
To examine the genomic distribution of the SbTCS genes, their chromosome gene location and duplication events were identified using syntenic analysis. All the identified S. bicolor TCS family members were found to be distributed on 10 chromosomes (Figure 4). These genes are unevenly distributed, since chr1 contains 9 (maximum number) genes, while chromosome 7 contains only one gene. The HK(L)s are randomly distributed on all S. bicolor chromosomes, except for chr2, chr5, chr7, and chr8. The members of the HP family are located on chr2, chr3, chr7, and chr9. RR family members are distributed on all chromosomes, except for chr7 and chr9.
[image: Figure 4]FIGURE 4 | Syntenic analysis of TCS family genes in S. bicolor. The genes on different circular bar-blocks indicate the chromosomal position of genes. Green, blue and red color lines represent the duplicated pairs.
The duplication events were analyzed for the SbTCS gene family. Since gene duplication provides raw material for development, the evolution of new genes in the genome was also analyzed. The number of tandem and segmental duplication events was observed to increase in a number of plant genes. When identifying the potential genomic duplication events, five pairs of TCS syntenic paralogs were found in the S. bicolor genome. This indicated that the SbTCSs have a high gene family expansion (Figure 6). In this study, the duplicated pairs resulting from segmental duplication include SbPRR3.1/SbPRR3.2, SbPRR5/SbPRR9, SbEIN4.1/SbEIN4.2, SbRR18/SbRR20, and SbRR9/SbRR10. In S. bicolor, multiple pairs exhibited segmental duplication, implying that the expansion of SbTCS genes is mainly due to segmental duplication. A similar expansion pattern exists in other plants, such as in G. max (Mochida et al., 2010), A. thaliana (Hutchison and Kieber, 2002), and Chinese cabbage (Liu et al., 2014). The synonymous rate (Ks), non-synonymous rate (Ka), and the Ka/Ks ratio of these duplications were calculated, and the Ks values were used to speculate on the duplication time (Table 3). The Ks of five segment duplicates ranged from 0.143 to 0.632. Therefore, the divergent time ranged from 10.89939024 to 48.17073171 Mya.
TABLE 3 | Ks, Ka and Ka/Ks calculation and divergence time of the duplicated SbTCS gene pairs.
[image: Table 3]3.9 Promoter Analysis of the SbTCS Genes
For a better understanding of the transcriptional regulation and functional role of the SbTCS genes, their promoter sequences were investigated to predict the cis-regulatory elements. Several hormone-related and abiotic stress-related cis-regulatory elements were identified, of which TATA- and CAAT-box were present in almost all of the 37 SbTCSs (Figure 5A; Supplementary Table S3). Among them, the methyl jasmonate (meJa)-responsiveness elements were found in 27 SbTCSs. The ABA-responsive element (ABRE) involved in the abscisic acid response was present in 23 SbTCSs. A large number of cis-regulatory elements were associated with light signaling, including the GATA motif, ACE, box 4, G-box, and the TCCC and TCT motifs. Gibberellin-responsive elements (GARE motif, TATC-box, and P-box) were present in almost 10 SbTCSs. Auxin-responsive elements, such as AuxRR-core and TGA-element, and salicylic acid-responsive elements (TCA element and SARE) were also found. In addition, low temperature-responsiveness (LTR) elements were present in 11 SbTCSs, and drought-inducibility element (MBS) was found in 14 SbTCSs. These results demonstrate that the TCS genes are potentially involved in growth and developmental processes related to hormone metabolism and signal transduction networks. The presence of LTRs, TC-rich repeats (defense-responsive element), and MBS (MYB binding site), which are associated with drought-inducibility, suggest that TCS plays a vital role in the development of plant and multiple abiotic stress responses.
[image: Figure 5]FIGURE 5 | (A) Graphical representation of cis-regulatory elements presents in putative TCS promoter’s region. Different colors are representing different cis-elements and numbers in bars represent number of elements. (B) Gene ontology enrichment statistics graph, red color bar represents biological processes, green color bar represents cellular component, and blue color bar represent molecular function.
3.10 Gene Ontology Enrichment Analysis of SbTCS Genes
Gene ontology enrichment analysis of all the SbTCS genes was performed. For this purpose, a well-known open-source DAVID bioinformatics resource 6.7 was used. All the identified genes were subjected to DAVID gene ontology analysis by using the entrez_gene_id. The results revealed the identified genes were classified into three main functional biological categories annotated by GO, that including molecular function, cellular component and biological process (Figure 5B). In the category of biological processes 23 out of 37 genes were found to be involved and the highest proportion (14 out of 23) was found in the phosphorelay signal transduction system. Moreover 9 out of 23 genes were found to be involved in transcription, DNA-templated. In the category of molecular function 21 out of 37 genes were found to be involved in different functions, including phosphorelay sensor kinase activity (10), protein histidine kinase binding (4), histidine phosphotransfer kinase activity (4), photoreceptor activity (3), transcription factor activity; sequence-specific DNA binding (6), and DNA binding (7). Lastly in the category of cellular component, 25 out of 37 genes were found to be involved in two components including intracellular and nuclear.
3.11 Expression Analysis of the SbTCS Genes
To examine the expression level of the 37 SbTCS genes under different abiotic stress conditions, the publicly available RNA-seq data of S. bicolor was obtained from the SRA-NCBI database. The results showed that SbHK3, SbPHYA, SbHP3, and SbHP5 were upregulated under drought stress in leaves. Most members of the RR family were upregulated under drought stress, whereas the expression levels of SbETR1, SbRR4, SbRR10, SbRR9, SbRR3.1, SbPRR5, SbPRR1, and SbPRR9 were decreased (Figure 6A).
[image: Figure 6]FIGURE 6 | Heat map representing the response patterns of SbTCS genes under drought (A) and salt (B) stresses. Red color represents up-regulation, green color represents down-regulation and black color represent there is no change in expression.
In the salt treatment, many HK family members were showed to be upregulated, including SbPHYA, SbEIN4.1, and SbEIN4.1. Almost all members of the HP family were upregulated during salt stress conditions. The RR family members, including SbRR20, SbRR16, SbRR18, SbRR19, and SbPRR1, were also upregulated. There were no expression changes observed in SbHP3, SbPRR2.2, SbRR10, SbRR9, and SbPRR3.2 (Figure 6B). These results indicate that the S. bicolor TCS genes potentially play a crucial role in diverse abiotic responses.
3.12 Expression Validation of the SbTCS Genes Through qRT-PCR
To further endorse the expression of SbTCS genes, 15 differentially expressed SbTCS genes based on RNA-seq analysis (belonging to different groups) were selected. The findings revealed that the overall expression trend of these genes obtained through qRT-PCR analysis was highly consistent with the RNA-seq data (Figure 7). Furthermore, compared with the control, the results revealed that drought stress treatment enhanced the expression of the SbHK3, SbPHYA, SbHP1, SbHP2, SbHP3, SbPR2.2, SbRR16, and SbRR18 genes up to several folds higher. Meanwhile, compared with the control, drought stress decreased the expression of the SbHK4, SbPRR1, SbPRR3.1, SbRR9, and SbRR10 genes. Drought stress seems to not have affected the expression of SbPRR2.1 and SbPRR3.2.
[image: Figure 7]FIGURE 7 | Expression profiling of TCS genes in response to drought (Yellow), mild salinity (Blue) and severe salinity (Red) stresses. Data represent means (SD) of three biological replicates. Vertical bars indicate standard deviations.
Additionally, SbHK3, SbHP2, SbPRR1, SbRR16, and SbRR18 were shown to be significantly highly expressed and SbHP3, SbPRR2.2, SbPRR3.1, SbRR9, and SbRR10 were shown to not be significantly expressed in both mild and severe salt stress conditions. No expression changes were observed for SbPRR2.1 and SbPRR3.2 under salt stress conditions. SbPHYA and SbPRR1 were found to be significantly overexpressed, by up to three-fold, under salt stress conditions. All of these findings show the potential functional importance of TCS genes in the growth and development of S. bicolor under different abiotic stresses.
4 DISCUSSION
Plants are subjected to a variety of environmental factors that can inhibit their growth, development, and yield. Plants cannot avoid these conditions since they are sessile; thus, they have developed multiple signaling cascades to survive. The TCS gene family has a vital role in the signal transduction pathway and, thus, in plant growth and development. As a result, the identification and functional validation of TCS in signal transduction and metabolic pathways may aid in developing crops with improved traits, such as stress tolerance, to meet global climate change challenges. These investigations have been carried out in a variety of model and non-model plant species. In tomato, ethylene receptors have a role in pollen thermotolerance (Firon et al., 2012). Elements from A. thaliana TCS can play a role in phosphorelay interaction in physiologically irrelevant fungal systems (Lohrmann and Harter 2002). In G. max, these genes are expressed under dehydration stress (Le et al., 2011). However, little is known about this gene family’s diversity in S. bicolor. In this research, a genome-wide investigation of the TCS gene family was carried out in S. bicolor, including the gene structure, conserved motifs, sequence phylogeny, and chromosomal localization. RNA-seq and qRT-PCR expression analyses of the SbTCS members was examined in silico under drought and salt stress.
The TCS gene family has been identified in various species of plants, including A. thaliana (Hwang 2002), C. arietinum (Ahmad et al., 2020), banana (Dhar et al., 2019), melon (Liu et al., 2020), cucumber, watermelon (He et al., 2016b), Chinese cabbage (Liu et al., 2014), O. sativa (Du et al., 2007), tomato (He et al., 2016a), and G. max (Mochida et al., 2010). In the S. bicolor genome, 37 TCS genes were identified in the present study. This number is the same as the number of members present in O. sativa L. (37) and is lower than that of A. thaliana (47), L. japonicus (40), G. max (98), S. lycopersicum (tomato) (65), T. aestivum (62), Zizania latifolia (69), and P. trichocarpa (49) (Table 1). SbTCSs are segmentally distributed on chromosomes. Four pairs of duplicated genes were found. Both tandem and segmental duplication were observed in the genome of several plants, such as melon, Z. latifolia, A. thaliana, and Chinese cabbage. The Chinese cabbage genome underwent whole genome duplication after diverging from A. thaliana; and its TCS genes originated mainly from segmental duplication (Liu et al., 2014). Similarly, nineteen duplicated genes were observed in Z. latifolia (He et al., 2020). In cucumber, one event of tandem duplication has been found. In watermelon, one tandem and two segmentally duplicated gene pairs have been identified. This indicates that genome duplication plays an important role in the duplication of this gene family.
In S. bicolor, five pairs of segment duplicates, including SbEIN4.1/SbEIN4.2, SbRR9/SbRR10, SbRR18/SbRR20, SbPRR3.1/SbPRR3.2, and SbPRR5/SbPRR9, were found, which expanded the TCS gene family in S. bicolor. Similarly, in A. thaliana, C. arietinum, and Chinese cabbage, the main TCS gene duplication mechanism was segmental duplication. In 35.71% of all A. thaliana species, 10 pairs of TCS genes were found to be segmentally duplicated. In C. arietinum, 55.55% of the genes were involved segmentally duplicated. In Chinese cabbage, 61 of the 85 identified TCS genes were found to be duplicated as a result of segmental duplication. Meanwhile, in tomato, both segmental and tandem duplication events were identified (He et al., 2016a; Ahmad et al., 2020). In this study, the Ks for segmental duplication ranged from 0.143 to 0.632, which corresponds to a divergence time from 10.9 to 48.17 Mya. In tomato, the Ks for segmental duplication ranged from 0.6 to 0.79 with the divergence time ranging from 46 to 60 Mya and tandem the duplication time ranging from 5.96 to 26.55 Mya. In C. arietinum, the time of divergence for the first duplication event was 256.7 Mya and the latest duplication, which resulted in the production of a new gene, was a tandem duplication, and took place at about 38.90 Mya. This suggests that compared with segmental duplication, tandem duplication in plants occurred more recently since these replicates were more likely to regulate stress responses (Firon et al., 2012).
Phylogenetic analysis revealed the division of SbTCS genes into the same subfamilies as reported in previous studies of A. thaliana (Hutchison and Kieber, 2002), S. lycopersicum (Firon et al., 2012), and Z. mays (Chu et al., 2011). All these plants contain members from the three subfamilies: HK, HP, and RRs. The subfamilies in S. bicolor, as well as those in A. thaliana, were classified based on the conserved functional domains. In A. thaliana, CKl1 was referred to as hybrid HK(L) due to its involvement in cytokinin signaling (Ishida et al., 2009). SbHK5 is a true HK and has been kept in the CKl2 group. The domains specifying the type RR family members in A. thaliana were the Rec/Response_reg domains. The clades of the RR family in S. bicolor had the same domains. In banana, MaERS1.A lacks the domain required for ethylene binding and signaling; therefore, it may not play a significant role in ethylene sensing (Dhar et al., 2019). In melon, no members of the type-C RR family have been found (Liu et al., 2020). In chickpea, the cytokinin receptors’ clade was clearly separated via phylogenetic analysis due to the presence of the CHASE domain. Conversely, various clades were revealed based on the phylogeny of RRs. Some members from one species clustered on same clade, while members of other plants clustered on another clade, such as the O. sativa clade (Type-B RRs), A. thaliana clade (Type-B3 RRs), and legume-specific clade (Type-B RRs) (Tiwari et al., 2021).
In the promoter of SbTCS genes, the analysis of the cis-elements helps to find the switches that are involved in regulating the transcription of downstream genes. Our result revealed the presence of several light-responsive, drought-responsive, and hormone-responsive elements relevant to stress and wounding responses. These elements have previously been found in the promoters of genes belonging to the TCS family in other plants. In banana, hormone- and light-responsive elements were abundant in the HK family. Hormone-responsive elements included TCA elements, ethylene- and gibberellin-responsive elements (ERE and GARE motif), and ABRE. Biotic and abiotic stress-responsive elements were also found in the RR family (Dhar et al., 2019). In cucumber and watermelon, a large number of similar stress responsive elements have been found, including ABRE, MBS, ABA-responsive, as well as drought-responsive ones (He et al., 2016b). In Chinese cabbage, apart from these stress-responsive elements, GARP binding sites are also present in type-A RRs. These promoters may act as a binding site to type-B ARRs, resulting in transcription stimulation. It has been shown that the induction of cytokinin-dependent type-A RRs is partly reliant on type-B RR transcriptional regulation (Liu et al., 2014). This suggests that the TCS genes are activated not only by hormonal stimuli, but also by other genes responding to stress or ripening conditions.
Abiotic factors such as drought, salt, and cold may have an impact on plant growth and development. TCSs play a role in controlling the plants’ response to abiotic stresses; thus, their expression patterns were examined to learn more about their involvement in coping with environmental changes. In A. thaliana AHK1 is a positive regulator of drought and salt stress responses (Tran et al., 2007). EIN2 of ethylene signaling and histidine kinase 5 may also be involved in regulating salt stress response (Lei et al., 2011; Pham et al., 2012). In current study, the SbTCS gene family was shown to have a tissue-specific expression. In leaves, SbHK3, SbPHYA, SbHP3, and SbHP5 were upregulated under drought stress. SbPHYA, SbEIN4.1, and SbEIN4.1, HP family members, and RRs were also upregulated during high salinity conditions. Under drought stress, in Cultivar-I, a number of TCS genes were overexpressed. Almost similar results were observed in Cultivar-II. In moderate drought stress, RRs showed higher expression levels. Under severe drought stress, RRs were downregulated. In C. arietinum, CarHK2, CarHK3, CarHKL3, and CarHK4 were expressed in all tissues, and CarHK5 and CarHK1 were expressed in pods and shoots. Members of the CarRR family were mostly expressed in flower buds (Ahmad et al., 2020). Similarly, O. sativa HK family members were expressed in the roots and leaves, HPs were expressed in leaves, and RRs were expressed in roots, leaves, stems, and spikelets (Du et al., 2007). Melon had the highest expression levels of RRs, indicating that these genes are important for root cytokinin signaling. Similar results were also observed in Chinese cabbage.
Among the abiotic stresses, drought stress (Azeem et al., 2019) and salt stress (Rasul et al., 2017) are the main threats to modern agriculture. TCS genes are involved in diverse abiotic stresses, according to mounting evidence. In this investigation, 37 SbTCS genes were identified, and various drought and salt stresses were shown to regulate these genes, some of which were downregulated, while most were upregulated in response. However, drought treatment induced the expression of 21 out of 37 genes. In A. thaliana, drought stress caused the downregulation of these genes, whereas in tomato, these stresses caused the upregulation of SlHPs and SlRRs. In S. bicolor, these genes were upregulated under drought stress. For example, SbRR16, SbRR18, SbRR20, and SbPRR1 were upregulated and a few RRs showed negative expression but their A. thaliana counterparts, ARR12 and ARR1, were downregulated in response to drought stress. In C. arietinum, Drought and salt stresses resulted in variable expression of these genes like CarRR12 had lower expression in salt stress whereas, it given a higher expression in drought stress. Similarly, CarRR2 also shown expression in drought stress. CarRR17 had a higher expression in response to heat stress. A few genes including CarRR5 and CarRR12 were downregulated. In salt stress, CarRR17, CarHK1, CarPHYA, CarHP1 and CarERS1 had shown higher expression (Ahmad et al., 2020). In banana, ethylene treatment shown that MaERS1.A, MaERS1.B and MaERS1.C had higher expression (Dhar et al., 2019). Very few SbTCS genes showed a null expression. Similarly, in tomatoes, drought stress responses were confirmed to be modulated by SlPHYA, SlPHB1, and SlPHB2. These expression studies of TCS elements have crucial implications for how these genes function under abiotic stresses.
5 CONCLUSION
In this study, we identified a total of 37 putative members of the TCS protein family, which include 13 HK(L), 5 HPs, and 19 RRs. Protein classifications, phylogenetic relationships, gene structures, domains, chromosomal gene distribution, and gene duplication events were investigated in detail. These TCSs showed significant conservation of their sequence and domains. SbTCS proteins showed a closer phylogenetic relationship with the TCSs of other plants. Members of the SbRR family experienced significant gene duplication events, and segmental duplication resulted in the expansion of the genes. These findings provide important functional and regulatory information regarding the TCS genes of S. bicolor, which will help better understand the signal transduction pathways and improve the stress tolerance of this plant.
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The last decade witnessed an unprecedented increase in the adoption of genomic selection (GS) and phenomics tools in plant breeding programs, especially in major cereal crops. GS has demonstrated the potential for selecting superior genotypes with high precision and accelerating the breeding cycle. Phenomics is a rapidly advancing domain to alleviate phenotyping bottlenecks and explores new large-scale phenotyping and data acquisition methods. In this review, we discuss the lesson learned from GS and phenomics in six self-pollinated crops, primarily focusing on rice, wheat, soybean, common bean, chickpea, and groundnut, and their implementation schemes are discussed after assessing their impact in the breeding programs. Here, the status of the adoption of genomics and phenomics is provided for those crops, with a complete GS overview. GS’s progress until 2020 is discussed in detail, and relevant information and links to the source codes are provided for implementing this technology into plant breeding programs, with most of the examples from wheat breeding programs. Detailed information about various phenotyping tools is provided to strengthen the field of phenomics for a plant breeder in the coming years. Finally, we highlight the benefits of merging genomic selection, phenomics, and machine and deep learning that have resulted in extraordinary results during recent years in wheat, rice, and soybean. Hence, there is a potential for adopting these technologies into crops like the common bean, chickpea, and groundnut. The adoption of phenomics and GS into different breeding programs will accelerate genetic gain that would create an impact on food security, realizing the need to feed an ever-growing population.
Keywords: genetic gain, genomics, high throughput phenotyping, machine and deep learning, plant breeding, root phenomics
INTRODUCTION
Classical plant breeding has evolved considerably during the last century. This can be attributed to the combined action of molecular markers, improved experimental designs, statistical methods, understanding of the concepts of population and quantitative genetics, and integration of other disciplines such as entomology, pathology, soil science, engineering, agronomy, and physiology (Lopes et al., 2012; Ray et al., 2012). The evolution and adoption of all these techniques and tools has pushed the annual genetic gain of grain yield approximately 1% for major cereals like maize (Zea mays L.), rice (Oryzae sativa L.), and wheat (Triticum aestivum L.) (Lopes et al., 2012; Masuka et al., 2017a; Cobb et al., 2019). However, the rate of genetic gain in these crops is insufficient to cope with a 2% annual increase in the human population, which is expected to reach 9.8 billion by 2050 (Ray et al., 2012, 2013). Plant breeders and scientists are under pressure to develop new varieties and crops having higher yield, higher nutritional value, climate resilience, and disease and insect resistance. The solution requires the merging of new techniques like next-generation sequencing, genome-wide association studies, genomic selection, high throughput phenotyping, speed breeding, and CRISPR mediating gene editing with previously used tools and breeder’s skills (Varshney et al., 2021).
Since the 1980s, various molecular marker systems such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), randomly amplified fragment polymorphic DNA (RAPD), simple sequence repeats (SSR), and single nucleotide polymorphism (SNP) have been developed and led to the identification of several quantitative trait loci (QTL) by linkage mapping in most crops (Zhu et al., 2008; Buerstmayr et al., 2009). This was further supported by the development of high throughput genotyping tools like diversity array technology (DArT), genotyping by sequencing (GBS), SNP array platform (for instance in wheat, several high-density SNP arrays are available including the Illumina Wheat 9K iSelect, Wheat 15K SNP array, 35K Axiom array developed from an 820K array, 55K SNP array developed from 660 arrays, Illumina 90K iSelect SNP array, and the Axiom wheat 660K SNP array), and next-generation sequencing, all of which provide tremendous amounts of marker information for utilization in mapping studies (Poland and Rife, 2012; Wang et al., 2014; Cui et al., 2017). Linkage mapping started with great hype for deciphering each trait’s genetic architecture and improving traits. This hype was later unrealized and attributed to low mapping resolution, QTL by genotype interaction, QTL by environment interaction, and QTL specific to a particular segregating population. However, there are some success stories utilizing linkage mapping for cultivar development, such as identification of Sub1 QTL for submergence tolerance in rice, Fhb1 QTL for providing tolerance to fusarium head blight in wheat, and QTL for providing resistance to cyst nematodes in soybean (Glycine max L.) (Concibido et al., 2004; Anderson et al., 2007; Septiningsih et al., 2009).
As the excitement about linkage mapping began to fade in the early 2000s, association mapping emerged as a new technique for studying marker-trait associations (Lander and Botstein, 1989; Breseghello and Sorrells, 2006; Yu et al., 2006). Association mapping has two main advantages over linkage mapping. Firstly, it saves the time, cost, and effort required to create a mapping population, as it uses a collection of germplasm, which can be easily assembled. Secondly, QTL can be mapped with higher resolution due to multiple historical recombination in the germplasm (Korte and Ashley, 2013). Several statistical models were developed, which varied from single locus to multi-locus models and multivariate models, including genotype by environment interaction, dominance, and epistasis components depending upon the associated crop’s nature (Huang et al., 2018; Tibbs Cortes et al., 2021). It was later realized that association mapping suffers from several limitations and has not shown the same potential as linkage mapping. The main reason for its low success was that it detects variants common in the mapping panel and thus has low power for detecting the rare variant. These rare variants could be identified by linkage mapping with segregation of alleles in the mapping population, which will provide higher power to detect rare QTL. Furthermore, several nested association mapping (NAM) and multi-parent advanced generation intercross (MAGIC) populations have been developed in most of the crop species discussed in this review for marker trait associations (MTAs) with high power and resolution during mapping studies (Yu et al., 2008; Diaz et al., 2021; Sandhu et al., 2021d).
By the late 2000s, plant breeders realized that they needed a technique that can not only identify associated QTL, but provides enough information to improve complex quantitative traits, for which previous mapping techniques had failed. Bernardo (Bernardo, 1994) achieved the earliest success for predicting breeding values by replacing pedigree based matrix with a marker based kinship using RFLP markers in maize. The term genomic selection (GS) was first coined in 2001 and uses whole genome-wide markers for predicting genomic-estimated breeding values (GEBVs) of individuals (Meuwissen et al., 2001; Bassi et al., 2015). GS is a technique that is not a design approach to create a cultivar with a specific QTL combination but uses a predictive approach to identify the line with the best breeding values using whole genome wide markers. It uses hundreds to thousands of genome-wide markers and previous years phenotypic data to build the GS model and predict the performance of new lines for quantitative traits (Isidro et al., 2015). If a marker is in linkage disequilibrium (LD) with the associated QTL, it will capture a large proportion of the genetic variance for predicting that trait’s performance. The interest of GS in plant breeding started after it was reported in maize in 2007 (Bernardo and Yu, 2007), and subsequently, several studies followed up utilizing this technique in different crop species (Crossa et al., 2014; Sun et al., 2017b). Plant breeders are rapidly adopting GS for selecting the parents of new crosses, removing poorly performing lines, predicting the performance of lines in untested environments, predicting quantitative traits early in the breeding pipeline (which was previously difficult due to less seed availability), and predicting the performance of traits that were not expressed in a particular environment owing to weather conditions (such as disease incidence) (Mohammadi et al., 2015; Millet et al., 2019; Cui et al., 2020; Krause et al., 2020).
Techniques like linkage and association mapping, marker-assisted selection (MAS), and GS need accurate phenotyping information for obtaining the desired results. GS requires phenotypic information for building models, and MAS requires phenotypic information for validating that a particular marker is associated with a trait (Kaur et al., 2021). In a large-scale breeding program, especially institutes such as the international maize and wheat improvement center (CIMMYT), international crops research institute for the semi-arid tropics (ICRISAT), international center for tropical agriculture (CIAT), and many breeding programs, approximately one hundred thousand breeding lines are screened every year at multiple locations, and the ability to accurately collect phenotyping data from this many lines and locations is challenging (Araus and Cairns, 2014; Araus et al., 2018; Zhang et al., 2020b; Juliana et al., 2020). Until now, advancements in phenotyping have not able to keep pace with developments in the field of genomics. However, the period from 2010 to 2019 witnessed the development and adoption of various phenomics tools in plant breeding under controlled and field conditions. Phenomics has unlocked the potential for phenotyping in plants for various traits like biotic (disease, insects, pests, viruses, and weeds) and abiotic stresses (drought, salinity, nutrient deficiency, flood, and other environmental factors), physiological (water use efficiency, photosynthesis mechanisms and different pigments), and agronomic traits (plant height, ear count and yield estimation) (Sankaran et al., 2015a; Zaman-Allah et al., 2015; Araus et al., 2018; Zhang et al., 2019). Merging phenomics with current genomics methods have improved progress in increasing the rate of genetic gain in many plant breeding programs (Masuka et al., 2017a, 2017b; Araus et al., 2018).
Several ground-based and aerial sensing platforms are being used with multiple sensors for measuring various traits in plants at different growth stages accurately, rapidly, and precisely (Sandhu et al., 2021e). The advancements in imaging sensors in plants varied from remote sensing to advanced autonomous vehicles equipped with RGB (red, green, and blue), near and far infrared, hyperspectral, light detection and ranging (LIDAR), 3D laser scanning, fluorescence, thermal, and spectro-radiometry imaging (Mewes et al., 2011; Atieno et al., 2017; Duan et al., 2018; Jimenez-Berni et al., 2018). Advanced autonomous platforms include ground robots, unmanned aerial vehicles (UAVs), and moving carts, which can take real-time data from several plots multiple times in a day to cover the whole season, generating enormous data for the plant breeders (Sankaran et al., 2019; Pattanashetti et al., 2020). Data generated from these sensors are longitudinally distributed in time and space, thus requiring skills from mathematics, statistics, data science, and machine learning for obtaining useful results, which could be merged with the genomic datasets and field breeding notes to make the best selections (Sun et al., 2017b; Sun et al., 2019).
The main objectives of this review are to 1) provide current status and overview about the advancements in genomics and phenomics for rice, wheat, soybean, common bean (Phaseolus vulgaris L.), chickpea (Cicer arietinum L.), and groundnut (Arachis hypogaea L). These six crops are chosen after considering the different rate of development during the last decade and importance in the human diet and crops were chosen separately from each cereal, legume and oilseed category; 2) offer an overview of GS and its implementation in cereal, legume, and oilseed breeding programs; 3) present developments in phenotyping platforms and imaging sensors for collecting phenotypic data; 4) discuss the status of below ground phenotyping techniques in plant breeding; and 5) discuss the merging of GS, machine learning, and phenomics information for increasing the genetic gain of breeding programs. This review is unique as it combines GS and phenomics in several important crops and will assist upcoming plant breeders understand the progress of this technology.
OVERVIEW OF SIX CROPS USED IN THIS STUDY
This review focuses on six important crops: rice, wheat, soybean, common bean, chickpea, and groundnut, as described above. Average productivity and area harvested from these crops are provided in Figure 1 from 1961 to 2019 (FAO 2019) (https://www.fao.org/statistics/en/). The average productivity increased from 1.9 to 4.7 ton/ha in rice, 1.1–3.5 ton/ha in wheat, 1.1–2.8 ton/ha in soybean, 0.5–0.9 ton/ha in common bean, 0.6–1.0 ton/ha in chickpea, and 0.8–1.6 ton/ha in groundnut from 1961 to 2019 (Figure 1A). There was an approximately three-fold increase in rice, wheat, and soybean productivity due to breeding and agronomic efforts. However, in common bean, chickpea, and groundnut, similar gains have not been observed (Figure 1A). Total area harvested for rice, wheat, and soybean constantly increased from 1961 to 2019 compared to common bean, chickpea, and groundnut (Figure 1B). Organizations like CIMMYT, ICRISAT, and CIAT are working on collaborative projects to increase the crop’s yield and awareness among farmers to use better agronomic practices in these crops (Pandey et al., 2020b; Thudi et al., 2020). Figure 2 shows the productivity of these six crops across continents from 1961 to 2019. The green revolution has resulted in the highest increase in productivity of rice and wheat in Asia, but since the last 2 decades, the rate of increase is linear, which won’t be sufficient for the current increasing population, thus, demanding additional scientific and technological breakthroughs (Ray et al., 2013).
[image: Figure 1]FIGURE 1 | The trend for yield and area harvested for the six crops, namely, rice, wheat, soybean, common bean, chickpea, and groundnut, staring from 1961 to 2019. (A) shows the yield trend and (B) shows the total area harvested for each crop since 1961. Source FAO, 2019 dated 02/20/2021.
[image: Figure 2]FIGURE 2 | The average productivity of the six crops, namely, rice (A), wheat (B), soybean (C), common bean (D), chickpea (E), and groundnut (F), across the continents starting from 1961 to 2019. These trends show huge potential for improving the crops using genomics and high throughput phenomics approaches in the coming years. Source FAO, 2019 dated 02/20/2021.
Rice is a major staple food consumed by more than one third of the world’s populations and meets up to 80% of the daily calorie intake for a vast majority of the Asian population (Kearney, 2010). Rice is a diploid species and has the smallest genome among the crops of economic importance, which assisted in its genome sequence in early 2002 (Sun et al., 2017a). Currently, several landraces, cultivar’s and wild relatives of rice have been sequenced, providing novel insights into the genome evolution of the crop and enhancing knowledge of new genes for rice breeding programs (Sun et al., 2017a). Due to its ease of transformation, abundant genetic and genomic resources (including mutants, cultivated landraces, and wild species), compact genome, and collinearity with other cereal crops, rice has become a model plant for crop genetic studies (Chen et al., 2014; Sun et al., 2017a). Rice was one of the crops which benefited from next generation sequencing due to its relatively modest level of repetitive sequences, making it easy to accurately align small reads to its reference genome (Abe et al., 2012; Takagi et al., 2013). Great success has been seen in rice for releasing cultivars having disease resistance, stress tolerance, improved nutritional value, and higher yield using CRISPR and other genome editing tools compared to the other five crops studied in this review (Mishra et al., 2018). The individual timeline for the genomics breakthrough in rice are depicted in Figure 3A.
[image: Figure 3]FIGURE 3 | Timeline for advancement of genomics in rice (A), wheat (B), soybean (C), common bean (D), chickpea (E), and groundnut (F).
Wheat is one of the three most consumed cereal crops globally, providing one-fifth of the total caloric input. It is grown on approximately 200 M ha globally and has widespread adaptation from 45 S in Argentina to 67 N in Scandinavia, including some high-altitude regions in the tropics and subtropics. Wheat went through two green revolution events, one in the late 1960s and another during the 1980s. During these green revolutions, the amount of gain for grain yield was approximately 3% in Asia, but has now declined to <0.9% annually, causing concern for breeders (Pingali, 2012). In spite of its hexaploid nature (2n = 6x = 42), wheat is one of the most widely studied crops at the genetic and cytogenetic level (Chhabra et al., 2021). The hexaploid nature of wheat has allowed the creation of major numerical and structural changes in chromosome constitution, that was made possible due to the efforts of Ernie Sears Sears et al, (1993). Sears et al. Sears et al, (1993) created aneuploid stocks of wheat, which were later used for several mapping and genome sequence studies. The last 3 decades witnessed a profound improvement in understanding wheat genomics and genetics due to the rapid adoption of DNA-based molecular markers such as RFLP, SSR, AFLP, DArT and SNPs from the early 1990s (Saini et al., 2022). These molecular markers have aided in conducting several QTL mapping studies using interval mapping, single-marker analysis, and GWAS (Muhu-Din Ahmed et al., 2020). Several development events in wheat, such as the first QTL mapping study, map-based cloning, first consensus map, adoption of high throughput genotyping arrays, translational genomics, gene editing, GS, and pangenome sequence are listed in Figure 3B to compare the development of genomics among the six crops (Poland et al., 2012; Rutkoski et al., 2016; Montenegro et al., 2017). Recently, the wheat pangenome sequence was released, with an average of 128,656 genes in each cultivar used, providing insights into genomic assisted crop improvement (Montenegro et al., 2017; Khan et al., 2020).
Soybean is a unique legume and oilseed crop consumed by humans, livestock, and poultry worldwide, as it is a rich source of protein, oil, essential amino acids, and metabolizable energy. The total protein and oil content is important for soybean, as 60% of its value comes from its meal and the remaining 40% from its oil (Warrington et al., 2015). A minimum of 47.5% protein content is required in soybean meal to develop livestock and poultry properly (Hurburgh et al., 1990). Although the domestication of soybean started in Asia, it found a welcomed home in the United States and Brazil. Brazil led production in 2019 (37%), closely followed by the United States (28%), Argentina (16%) and China (5%) (http://soystats.com/). Advancement of genomics started after 2010 in soybean with the genome sequence of cultivated soybean variety Williams 82 (Wm82) in the United States (Schmutz et al., 2010). In addition to the genome sequence of Wm82, several other accessions/lines were sequenced by China and Japan. The genome sequence was the base point for developing millions of SNP markers and thousands of SSR markers (Deshmukh et al., 2014). The development of next-generation sequencing and complexity reduction methods, namely GBS, restriction site-associated DNA (RAD) sequencing, and reduced representation libraries (RRL), are being routinely used. Technology advances have resulted in the development of several SNP arrays such as Illumina Infinium BeadChip (50K), Affymetrix Axiom (355K), Illumina Infinium BeadChip (8K), and Affymetrix Axiom (180), with many more routinely used for genotyping soybean plant introduction lines (Xu et al., 2013; Deshmukh et al., 2014). Recently, whole-genome assemblies released from 26 different soybean varieties and lead to the structuring of the soybean pangenome and the sequences of previously cultivated lines in the United States, China, and Japan (Liu et al., 2020). QTLs have been mapped for many quality, biotic and abiotic stress, and agronomic traits in soybean using QTL mapping and GWAS (Merry et al., 2019; Qin et al., 2019; Ravelombola et al., 2020; Shook et al., 2021). The complete details about the adoption of various genomic tools is presented as a timeline in Figure 3C.
Common bean is an important cultivated legume crop consumed worldwide, especially in developing countries in the tropics. It’s seed is rich in protein and other micronutrients like zinc and iron and provides a cheap energy source to millions of people in Africa, South Asia, and Latin America, where per capita consumption can reach up to 65 kg annually (Keller et al., 2020). Until now, the main hindrance in reaching the maximum threshold in bean is challenging environmental conditions. The important biotic and abiotic stresses affecting their performance include drought, low phosphorus, and diseases. Drought and low phosphorus have resulted in up to 70 and 50% yield loss and are the main focus for the common bean breeding programs worldwide (Beebe et al., 2008). Another important breeding objective is to reduce cooking time, as it retains the minerals and proteins which usually get lost with long cooking time. Less cooking time also saves energy and time for other tasks (Diaz et al., 2021). Mesoamerican and Andean have been described as two gene pools in common bean, with greater diversity present in the Mesoamerican pool. More progress for improving yield, disease resistance, and quality traits is reported in the Mesoamerican pool, but moving of genes/QTLs from this pool to the Andean pool has been challenging, especially due to linkage drag and incompatibility (Schmutz et al., 2014). Furthermore, with the sequencing of 100 landraces and 60 wild relatives, it is confirmed that there were two independent domestication events for common bean (Schmutz et al., 2014). MTAs have been performed for different disease traits, quality attributes, and yield traits for both pools in different studies (Giovannoni et al., 1991; Berry et al., 2020; Diaz et al., 2021). The timeline for the adoption of several genomic tools in common bean is provided in Figure 3D.
Chickpea is an important food legume crop grown on 13.72 M ha in 55 countries globally, producing 14.25 M tons (FAO 2019). Chickpea can produce 3.0–4.0 tons/ha, but currently it is restricted to ∼1 ton/ha due to limited work on biotic and abiotic stresses (Roorkiwal et al., 2018b). Total production of chickpea increased from 1961 at a slow pace due to the use and reuse of limited germplasm/donor parents (Varshney et al., 2013). Important abiotic stresses include drought and heat, while biotic stresses include ascochyta blight (Ascochyta rabiei), collar rot (Sclerotium rolfsii), dry root rot (Rhizoctonia bataticola), botrytis grey mold (Botrytis cinerea), and fusarium wilt (Fusarium oxysporum) that reduce crop yield. Chickpea is a rich source of dietary protein, minerals, carbohydrates, and essential nutrients, thus has the potential for improving malnutrition problems in south Asia and sub-Saharan Africa, where it is mostly grown (Varshney et al., 2013; Pandey et al., 2016; Roorkiwal et al., 2018b). The last couple of years have witnessed the adoption of several whole-genome sequencing and resequencing projects for sequencing several cultivars and landraces to explore genetic diversity (Verma et al., 2015; Varshney et al., 2019). The adoption of these next-generation sequencing methods in this decade has witnessed a shift from maker-based genotyping to sequenced based genotyping of diversified germplasm and breeding lines (Jaganathan et al., 2015; Li et al., 2018b). The development of chickpea varieties is further strengthened by the adoption of GS and speed breeding methods. The timeline for adopting several genomic tools in chickpea is provided in Figure 3E for comparison with other crops.
Groundnut or peanut is a nutritious oilseed and legume crop grown on 29.5 M ha in more than 100 countries globally, with a total productivity of 48.8 tons during 2019. Africa (55%) and Asia (40.3%) together have more than 95% of the groundnut cultivation area, account for 31.5 and 59.6% of the total production, respectively (FAO 2019). All parts of groundnut are a nutrition source for humans and animals. Groundnut plays an important role in fighting malnutrition as 80% of its seed consists of nutritious fats and proteins; furthermore, the crop can improve soil fertility and break the disease cycle when grown under rotation with cereal crops (Pandey et al., 2020b). Previously, groundnut was used as an edible crop in western countries, while in Asia and Africa, it was mainly used for oil production. The development of high oleic acid groundnut lines and awareness about its nutritional value has resulted in the rapid adoption of this crop as a primary food source across the globe. Genomic studies in groundnut gained momentum after the first SSR based genetic map was developed in 2009 (Varshney et al., 2009). Several MAGIC and NAM populations were developed for deciphering the genetic architecture of complex traits like aflatoxin contamination, oleic acid content, drought, and disease tolerance (Pandey et al., 2016; Chu et al., 2018). The last decade was the golden era for developing genomics in groundnut and several resources, such as a reference genome for cultivated tetraploid and progenitors, high density genotyping, genome-wide genetic markers, gene expression atlases, and MAGIC and NAM populations, were developed, with a timeline shown in Figure 3F (Akohoue et al., 2020; Pandey et al., 2020b, 2020a). Still, this crop has many other priorities for coming years like reference genome sequence for wild diploids, functional genomics, and high throughput genotyping assays, which might improve breeding for groundnut.
GENOMIC SELECTION AND ITS IMPLEMENTATION IN THE BREEDING PROGRAM
As mentioned in the introduction, GS is a technique for predicting GEBVs using training and testing populations (Bhandari et al., 2019; Crossa et al., 2019). GS has been efficiently applied in wheat, rice, and soybean; however, in crops like chickpea, common bean, and groundnut, its progress is slow. Figure 4 summarizes the trends for GS studies conducted from 2011–20, and it is clear that GS was rapidly adopted in wheat, and other crops are following the trend at a slower pace. The slow rate of adoption in chickpea, common bean, and groundnut is due to the recent advancement of genomics tools, genome sequences, assembly of the core collection, pangenome, and whole-genome resequencing (Verma et al., 2015; Roorkiwal et al., 2018a; Pandey et al., 2020b). Thus, the coming years will see efforts in the adoption of GS and other new genomics tools to improve the genetic gain for these globally important crops.
[image: Figure 4]FIGURE 4 | Trends in publications mentioning/discussing the six crops and genomic selection since last decade (2011–2020). Search was made using associated crop and genomic selection keywork in the abstract. Source PubMed dated 02/25/2021.
Several factors affect the performance of GS models. They have been explored in multiple studies during the last decade, ranging from training population size, relatedness between training and testing population, cross-validation strategy, marker density, heritability of the trait, population structure, and prediction model (Yabe et al., 2018; Frouin et al., 2019; Huang et al., 2019). It is observed that a certain population size is required for model training to avoid model overfitting (Liu et al., 2018). A large training population size results in higher prediction accuracy; however, a smaller than desirable size is often used due to the costs associated with their phenotyping and genotyping (Heffner et al., 2011). In wheat, it was observed that prediction accuracy constantly increased when training population size was increased from 24 to 96 (Heffner et al., 2011). Similarly, another study in wheat showed the same trend when population size was increased from 250 to 2000 (Heslot et al., 2012). Relatedness between genotypes in the training and testing sets significantly affects prediction accuracy (Lozada et al., 2019). More related lines share common ancestors in a small number of prior generations, have fewer recombination events, and conserve marker and QTL linkage phases (Heslot et al., 2012). The effect of training population size is not observed on prediction accuracy when individuals are closely related in the training and testing set (Mujibi et al., 2011).
Since GS uses genome-wide markers, proper genotyping is required. To date, several genotyping platforms like RFLP, AFLP, SSR, DArT, and SNP chips have been explored for GS; however, since 2012, with the emergence of the GBS platform, it has dominated all previous platforms due to the low cost, genome-wide coverage, and reduced sampling bias compared to SNP chips (Poland and Rife, 2012; Poland, 2015). It has been seen that large marker density results in model overfitting, causing lower independent prediction accuracies (Werner et al., 2018). However, larger marker density is favored as it increases the probability of LD between the QTL and marker. Lower LD combined with a larger training population and higher marker density largely improves prediction accuracy (Crossa et al., 2014; Norman et al., 2018). Heritability and population size plays an important role in prediction, as they determine the amount of genetic variation that the associated prediction model could capture (Guo et al., 2014). A strong correlation is observed between the GS model’s prediction accuracy and the trait’s heritability in the training population (Edwards et al., 2019). Various parametric and non-parametric machine and deep learning models have been explored for GS in all the mentioned crops (Table 1). Until now, none of the models have significantly demonstrated superiority for all traits in all crops (Liu et al., 2019; Ravelombola et al., 2020; Sandhu et al., 2021b). Breeders should explore various models in their programs for different traits and use the best performing model final predictions after considering accuracy, error and computational burden (Wang et al., 2018). Table 1 provides information about models explored for GS, with their associated characteristics and links to the source codes, for breeders, if they want to explore them in their crop of interest.
TABLE 1 | The detailed information about various models explored for genomic selection in different crops, with associated model type, characteristics, and links to the source codes that could be easily implemented in various breeding programs.
[image: Table 1]GS is being applied with two approaches in the plant breeding program. Firstly, it is applied at the early generation (F1) or (F2:3) for a rapid generation cycle with a short interval. This selection is used to predict the breeding values and helps the researchers select parents for new crosses or remove inferior performing lines earlier in the pipeline (Bassi et al., 2015; Gaynor et al., 2017). Therefore, linear additive models are sufficient for predicting at this stage. The second approach involves predicting the plant’s total genetic value by considering additive, dominance, epistasis, and environmental effects (Monteverde et al., 2019; Francki et al., 2020; Guo et al., 2020b). Genetic values are predicted for most environments using different combinations of environment, genotype by environment, and weather parameters in the GS models (Monteverde et al., 2019; Francki et al., 2020). Rapid progress is happening in the second approach for predicting traits in an untested environment with better prediction accuracy (Jarquín et al., 2017; Gill et al., 2021) (Table 2). We provided an outline of the implementation of GS in a plant breeding program for self-pollinated crops, where GS could be either applied within the cycle selection, across cycles, with multi-location selection and the inclusion of genotype by environment interactions, and utilization of phenomics datasets for improving prediction accuracies for complex traits (Figure 5). In this outline, it is assumed that a single generation is possible in a year until speed breeding is used to reach homozygosity (Watson et al., 2018).
TABLE 2 | Genomic selection studies covering important breeding traits conducted in 2019 and 2020 for rice, wheat, soybean, chickpea, common bean, and groundnut throughout the world. Complete detail about the population size, validation strategy, marker density, model type, the accuracy obtained and country where the study was conducted is provided.
[image: Table 2][image: Figure 5]FIGURE 5 | The standard breeding scheme outline for self-pollinating crops with the implementation of genomic selection and phenomics information for predicting various traits earlier in the pipeline in different selection cycles. Three columns show the three separate breeding cycles starting from the cross initiation to the variety release. The yellow arrows represent how genomic selection can be used on datasets from previous years to predict phenotype in F2-F4 stage and early-stage testing stages. The red arrows show the stages where selection is imposed for low and high heritable traits in traditional breeding; however, with genomic selection, decisions can be performed for low heritable traits earlier in the pipeline. Here it is assumed that a single generation is planted in a year. The DH represents the double haploid, PYT is preliminary yield trial, AYT is advanced yield trial, and EYT is elite yield trial.
Figure 5 provides the outline for a breeding cycle for wheat and few modifications can be made in this scheme in order to adjust for other crops. In the first year two different parents are crossed with subsequent chromosome doubling in the second year using double haploid (DH) or any other technique for reaching 100% homozygosity (i.e., speed breeding, single seed descent, rapid generation advance, shuttle breeding or tissue culture). These early stage testing lines are evaluated in the third year, and selection is made for high heritable traits, like pod type in groundnut and soybean cyst nematode resistance (Akohoue et al., 2020; Ravelombola et al., 2020). Each set of early-stage testing progenies has a specific set of genes, and the breeder aims to identify the best combination for advancing to the next generation and seed multiplication trial. The measurement of several agronomic traits, such as grain yield and aflatoxin content in groundnut, quality attributes in rice, common bean and wheat, for which a large amount of seed is required, is not possible at this stage (Battenfield et al., 2016; Pandey et al., 2020a). Seeds from the selected lines are multiplied at a single location known as a preliminary yield trial (PYT), and spectral information could be collected using phenomics tools like unmanned aerial vehicles (UAVs), remote sensing, handheld scanners, or tractor-mounted instruments (Rutkoski et al., 2016; Sandhu et al., 2021c). The information generated with these phenomics tools provides a secondary source of trait information for selecting complex traits by understanding G by E interaction, field variation, and explanation of various physiological processes occurring in the plants. Furthermore, these phenomics tools have been used to measure several agronomic traits and disease severity more efficiently and effectively. The lines selected from the PYT are later planted for 1 year at various locations with different replications depending upon the seed generated in the PYT and constitutes the advanced yield trials (AYT). Spectral information can be collected in a similar way as done during PYT to increase selection efficiency. After AYT, breeders keep reducing the population’s size, owing to limited resources and space, and selected lines are continually planted at multiple locations for measuring more quantitative traits. This step is repeated for two-three years depending upon the trait and constitutes elite yield trials (EYT) (Bassi et al., 2015; Gaynor et al., 2017).
Across cycles, predictions are possible at early stages, when seed is limited, to measure quantitative traits like grain yield, end-use quality traits in rice and wheat, and protein content in chickpea and common bean (Jernigan et al., 2018; Diaz et al., 2021). Figure 5 shows that GS and phenomics data sets collected at PYT and AYT from the previous cycle could be used to predict quantitative traits for the F2-F4 population and early-stage testing lines in a new selection cycle. Similarly, in the subsequent years, data from previous cycles and the same cycle can predict AYT performance at multiple locations (Montesinos-López et al., 2017; Crain et al., 2018). Phenomics information provides a significant advantage for within cycle and across cycle prediction in multi-trait GS models. Spectral reflectance indices (SRI) derived from these phenomics measurements have increased prediction accuracy in various GS studies in wheat (Rutkoski et al., 2016; Crain et al., 2018; Sandhu et al., 2021c). Higher prediction accuracies are obtained for grain yield due to lower heritability and higher genetic correlation with SRI. Utilization of these SRI in multi-trait GS models, and as a covariate in the GS models, increases the capture of total variation for a particular trait and helps explain various physiological phenomena that are difficult to observe under field conditions (Rutkoski et al., 2016; Lozada and Carter, 2019). We were not able to find any GS study which used phenomics information in GS models in chickpea, common bean, and groundnut. Table 3 provides the studies that have used GS and phenomics information for predictions in wheat, and the improvement in the model’s performances are provided. There is a significant advantage of including phenomics datasets in GS models due to observed increase in prediction accuracy, suggesting that merging these two techniques can assist in increasing the yield of these crops in the coming decade.
TABLE 3 | Genomic selection studies that have used phenomics information in wheat is summarized. The traits or spectral information derived from the phenomics data sets and the physiological parameters which they explain is provided with information about their effect on the final prediction accuracies when included in the genomic selection model is added to show their potential.
[image: Table 3]DEVELOPMENT IN PHENOTYPING PLATFORMS AND IMAGING SENSORS
The last three-decades witnessed an unprecedented increase in the adoption and development of genomics in plant breeding programs, leading to a rise in genetic advances in the major cereal crops (Thudi et al., 2020). However, genetic gain has stagnated in major cereal crops globally, which requires the need to raise the efficiency of breeding programs. It is perceived that limitations in the progress and development of phenotyping tools and platforms contribute to lower efficiency in breeding (Rincent et al., 2018). With this in mind, several phenomic initiatives and facilities have been launched at regional, national, and international levels; still, breeders are skeptical about the application of these tools (Atieno et al., 2017; Duan et al., 2018). Breeders are concerned that results obtained from phenotyping platforms under controlled conditions are not indicative of field performance for complex traits, especially under large environmental variability (Atieno et al., 2017; Duan et al., 2018). Moreover, the high throughput platform’s extensive phenotyping is onerous and not cost-efficient compared to the benefits achieved so far. Lastly, data generated from these tools results in data management and big data problems, causing an issue for making a legitimate conclusion for decision-making without understanding data science and machine learning models (Singh et al., 2016). In spite of these challenges, several phenomics platforms, tools, and sensors have been developed, and their improvement and adoption rate is fairly high with the hope of breaking this stagnated genetic advance (Ashourloo et al., 2014; Dobbels and Lorenz, 2019). The next one or 2 decades have considerable potential for phenomics to reach the stage where genomics is today, allowing collection of a large amount of data, gaining understanding from previously unknown traits, and making valid conclusions based on those.
Imagers and sensors have allowed collection of multidimensional and high-resolution datasets from plants to quantify crop growth, yield, biotic or abiotic stress, and other physiological processes under both fields and controlled conditions (Cai et al., 2016; Sankaran et al., 2019). These sensors can measure spectral reflectance ranging from radio waves to gamma waves of the electromagnetic spectrum and create an abundance of information to select from. The resulting imaging sensors varies from LIDAR, X-ray computed tomography (CT), time-of-flight based systems, positron emission tomography, thermal, visible to near-infrared, multispectral, hyperspectral, fluorescence, and stereovision (Kobayashi et al., 2001; Zhang et al., 2018). The field-based platforms range from Internet-of-Things (IoT) based sensor systems, field mounted system (e.g., tower), tractor/sprayer modified systems (manually operated), small autonomous systems, scanning platforms, UAVs, aircraft, and more recently, low orbiting satellite systems (Sangjan et al., 2021). In general, most of the phenotyping systems in controlled environment are commercial systems developed by the private industry. Recently, there has been interest in the development of IoT based systems for customized operation in controlled environment (Sangjan et al., 2021). The commonly used sensors in the phenotyping platforms used in plant breeding are RGB, multispectral, hyperspectral, thermal, and fluorescence sensors employed on ground-based or aerial platforms. These can cover large numbers of plots at a time by measuring absorption, reflection, and refraction information from the plant canopy. RGB sensors are most often used owing to their cost and simplicity (Ashourloo et al., 2014). All these remote sensing tools provide information about several physiological parameters related to crop yield by considering the plant’s nutrient, water, radiation, pigment contents, resource allocation, and biomass partition (Duan et al., 2018; Dobbels and Lorenz, 2019). Most imagers and sensors are equipped on ground-based platforms, mainly stationary in the field or on phenomobiles at experimental facilities to develop new applications and require specialized training and considerations for their use (Cai et al., 2016; Jimenez-Berni et al., 2018). The increase in resolution and miniaturization has lowered their cost and could be easily purchased by small scale labs. The main success in plant phenotyping has come with higher resolution and miniaturization of the sensors coupled with UAVs for covering a large number of plots in a limited time frame and is preferred over the ground-based platforms in many programs (Sankaran et al., 2015b; Gracia-Romero et al., 2019).
Figure 6 provides the studies using high throughput phenotyping (HTP) in these six crops for the last decade (2011–2020). An observed 3–4 fold increase in the number of studies that are using HTP for rice and wheat can be found, but for chickpea, common bean, groundnut, and soybean, there is no improvement observed in this regard (Zhang et al., 2020a; Zhang et al., 2021). Fewer number of studies using HTP in chickpea, common bean, and groundnut might be attributed to the recent adoption of genomics technology (Pandey et al., 2020b). These crops can still benefit from the use of HTP technology to better evaluate various agronomic, biotic, and abiotic stress-related traits. Table 4 shows recent studies conducted for these six crops where different phenotyping platforms and imaging sensors were used for various agronomic, biotic, and abiotic stress studies. In general, most of the studies used RGB or multispectral imaging due to their lower cost, easy management of data, and avoidance of problems related to big data. Furthermore, UAVs have relatively high adoption rates over ground-based platforms by utilizing the same imaging sensors with better resolution and throughput in collecting data from large plots.
[image: Figure 6]FIGURE 6 | Trends in publications mentioning/discussing the six crops and high throughput phenotyping since last decade (2011–2020). Search was conducted using associated crop and high throughput phenotyping keywords in the abstract. Source PubMed dated 02/20/2021.
TABLE 4 | Important studies conducted using phenomic tools in the last decade for the six crops explored in this study. Information about the trait, phenotyping platform, sensor and study description is provided.
[image: Table 4]RGB and multispectral imaging have shown a tremendous adoption rate during the last decade for studying biotic and abiotic stresses in crops. Rice sheath blight (Rhizoctonia solani) and blast (Magnaporthe oryzae) are devastating diseases of rice observed worldwide, and accurate detection and management are the focus of several breeding programs. RGB and multispectral imaging sensors on UAVs are an affordable and user-friendly option for disease detection and rating (Kobayashi et al., 2001; Zhang et al., 2018). Color space transformation and color feature extraction have been used to select the diseased varieties or qualitatively detect the infected portions; however, estimation of disease quantitatively was less effective. Vegetation indices extracted from multispectral images showed high accuracy for quantitatively predicting these diseases (Kobayashi et al., 2001; Zhang et al., 2018). Hyperspectral imaging covers a broader region of the electromagnetic spectrum (400–2,500 nm) with a narrow bandwidth, non-destructively explaining various biochemical and physiological changes occurring in the plant due to environmental conditions. For example, in wheat, hyperspectral imaging has been used to detect powdery mildew severity and infection using feature selection algorithms (Mewes et al., 2011). As hyperspectral imaging provides information about various spectral bands, most of which are unnecessary, feature selection is required. This became possible due to the adoption of machine learning models by plant breeders. Here, Mewes et al. (2011) used support vector machine and spectral angle mapper classification methods for feature selection to identify the most important spectral band. Later, those selected bands showed higher prediction accuracy for powdery mildew.
Phenomics aids in the collection of high-quality data earlier in the breeding pipeline from thousands of breeding plots with high temporal and spatial resolution (Krause et al., 2020). Data collected at earlier stages in the growth cycle has shown an advantage in soybean breeding, where canopy coverage during vegetative growth stages have high heritability and genetic correlation with seed yield (Moreira et al., 2019). UAVs are commonly used for collecting canopy coverage with RGB cameras, which is later used for predicting seed yield from multiple plots (Moreira et al., 2019). In a recent study, Yoosefzadeh-Najafabadi et al. (2021) used hyperspectral imaging collected at vegetative stages in soybean and feature selection with machine learning models and demonstrated 93% prediction accuracy for seed yield prediction. There are various other examples where phenomics is used in soybean for studying biotic stresses (powdery mildew, phomopsis seed decay, and target spot), abiotic stresses (nutrient deficiency, drought, and waterlogging), and agronomic traits (seed yield, pod number and biomass estimation) (Mo et al., 2015; Moreira et al., 2019; Yoosefzadeh-Najafabadi et al., 2021). Multiple vegetation indices [normalized difference vegetation index (NDVI), normalized water index (NWI), photochemical reflectance index (PRI)] derived from multispectral imaging were used to find the best time point for predicting the above ground mass and seed yield using correlation and regression analysis (Sankaran et al., 2019). Furthermore, thermal sensors were used to obtain the mean plot temperature and showed a high correlation with plant biomass (Sankaran et al., 2019). A couple of studies have shown the potential of multispectral imaging using UAVs for common bean to predict the seed yield and biomass, but the total number studies are limited when compared to wheat, rice, and soybean (Figure 6) (Burridge et al., 2016; Sankaran et al., 2019).
Ascochyta blight is a devastating disease in chickpea, and remote sensing has shown opportunities for its monitoring in the field (Zhang et al., 2019). Multispectral and thermal sensors deployed on UAVs were used to extract canopy area, percentage of cover, and vegetation indices for predicting disease severity and seed yield in chickpea. The study showed the potential for timely management of the disease by monitoring the crop with remote sensing techniques (Zhang et al., 2019). In a different study, two hundred forty-five chickpea accessions were evaluated using image-based phenotyping to study genetic variation for salt tolerance (Atieno et al., 2017). Pod abortion and pod filling inhibition are the main effects of salinity, and imaging sensors were used to identify the accessions with salt tolerance by phenotyping pod number and seed density (Atieno et al., 2017). In groundnut, iron deficiency occurs when plants are grown on neutral and alkaline soils, reducing the availability of Fe2+ in plants. Infrared sensors were used in groundnut for measuring chlorophyll and iron deficiency chlorosis systems (Pattanashetti et al., 2020). The adoption of phenomics for groundnut in high production countries like India and Ethiopia offers an advantage for reducing yield gaps by understanding various physiological and biochemical process, along with genomic technologies, to improve yield performance.
GOING UNDERGROUND, A CHALLENGE FOR A BREEDER
Although genomics and phenomics tools have helped plant breeders study above-ground traits in great detail, limited work has been done on belowground root systems, which play a vital part in a plants affecting overall grain yield potential. Figure 7 shows the trend for publications using HTP and root phenomics, and it can be concluded that root phenotyping studies are lagging behind other phenomics studies. Roots play an essential role by directly influencing plant growth by regulating water and nutrient uptake, regulating drought stress, resisting soil-borne diseases, and maintaining the crop’s yield and quality (Seck et al., 2020; Wu et al., 2021). The study of root system architecture (RSA) is challenging in situ compared to above-ground phenotyping. Several 2D transparent growth mediums are available that allow sequential capturing of RGB imaging to study growth dynamics and root hair development, such as PlaRoM, Rhizoslides, RootPainter, SNAP, Rhizovision, Rhizoponics, RADIX, and RhizoTubes (Le Marié et al., 2014; Mathieu et al., 2015; Falk et al., 2020; Smith et al., 2020). Various open-source image analysis tools like SmartRoot, RootNav, RootTrace, and EZ-Root-VIS are available to study RSA (French et al., 2009; Pound et al., 2013). To study 3D RSA, a gel-based cylinder can be used to study up to 16 roots traits (Iyer-Pascuzzi et al., 2010). Other 3D image reconstruction and image analysis tools are RootReader3D and GiaRoots (Iyer-Pascuzzi et al., 2010). All these platforms work under lab conditions.
[image: Figure 7]FIGURE 7 | Trends in publications mentioning/discussing root phenomics and high throughput phenotyping since last decade (2011–2020). Search was conducted using root phenomics and high throughput phenotyping keywords in the abstract. Source PubMed dated 02/20/2021.
The above-mentioned transparent media does not entirely mimic field conditions. GROWSCREEN-Rhizo, an intelligent mechanized root phenotyping platform, was developed to phenotype roots and shoots simultaneously in transparent soil-filled rhizotrons (Bodner et al., 2018). In a separate study, these Rhizotrons were equipped with thermal and hyperspectral cameras for measuring the temperature and root chemical components like lignin change, water content, and mineral observation capacity (Pound et al., 2013; Le Marié et al., 2014). The difference in the X-ray attenuation capacity of roots and soils is utilized to visualize the inner 3D structure in the X-ray CT. Open-source tools like RootViz3D and RooTrak are used for analyzing different X-ray attenuation capacity to reconstruct the 3D RSA (Mairhofer et al., 2015). However, X-ray CT suffers from some limitations, which vary from the impact of soil type, compaction, and homogeneity of soil particles on X-ray attenuation values. Furthermore, high doses of X-ray affect plant and microbial growth in the soil, and lastly, scanning resolution and volume increase the time of data collection for large pots, limiting the frequency of data acquisition (Metzner et al., 2015).
Other root phenotyping approaches include positron emission tomography (PET), magnetic resonance imaging (MRI), thermal neutron tomography, and neutron radiography. MRI uses the absorption and re-emission of electromagnetic radiation from the nuclei to determine its root architecture and functional attributes (Courtois et al., 2013; Beyer et al., 2019). But MRI is highly sensitive to moisture content and is only applicable if the root diameter is more than 1 mm. Similarly, PET uses the radiotracer distribution for non-invasively studying root attributes. PET has been used to scan the roots up to 85 mm deep non-invasively, and used to monitor carbohydrate transportation assimilates over a more extended period (Garbout et al., 2012). X-ray CT, MRI, and PET have been used differently and have their own strengths and limitations, and hence used interchangeably. For instance, 1) PET has lower signal deterioration by water content and soil structure compared to CT and MRI; furthermore, high water content affects the performance of CT more than MRI (Garbout et al., 2012); 2) CT is more effective for providing high-resolution information from small pots; however, when pot size is large, MRI provides more information about root structure than CT (Pflugfelder et al., 2017); 3) MRI and CT provide higher spatial resolution than PET, but PET provides better contrast between roots and soil owing to gamma radiation; and 4) PET and MRI scanning requires a large amount of time compared to CT, and is problematic for genetic studies where a large number of samples need to be screened (Metzner et al., 2015). In regard to the in-situ root phenotyping in field conditions, there has been great interest in utilizing ground penetrating radar (GPR) (Atkinson et al., 2019). But similar to other techniques, there are limitations associated with influence of soil type and condition on data quality. Table 5 provides information about various other root phenotyping techniques. Advancements in root phenotyping in recent years shows the potential for improving below ground traits in all the crop species by understanding traits better. Further reading about the below-ground phenotyping can be found in other review articles (Paez-Garcia et al., 2015; Wasaya et al., 2018).
TABLE 5 | Description of the important root phenotyping techniques and associated growth media’s for studying the root system architecture.
[image: Table 5]Developing crop varieties which remain productive on marginal soils and under water deficit is the main aim of several breeding programs, especially in Asia and Africa, owing to climate change (Pattanashetti et al., 2020). Breeding programs maintain yield by selecting combinations of traits like increased harvest index, increased shoot biomass, resistance against insects and pests, and altering the duration of the growing season (Mathieu et al., 2015; Atieno et al., 2017). However, these traits might be linked to root traits, but are not explored to such an extent. This could be achieved using several root phenotyping techniques under field, greenhouse, and laboratory conditions (Iyer-Pascuzzi et al., 2010). Various QTLs were identified controlling RSA for assistance in genomic assisted breeding (Li et al., 2017; Zhao et al., 2019; Seck et al., 2020). QTLs were identified controlling root branching, root length, root hair, and other root traits in certain crops. Identification of QTLs or genes controlling these traits requires accurate and reproducible phenotyping information (Li et al., 2017; Seck et al., 2020). Although several QTLs have been identified for these RSA traits, information is still lacking, such as their mechanism, effect under different genetic backgrounds, and role under different environments and soil types. Most of the roots traits identified so far are polygenic and demonstrate a tremendous potential for utilization of GS for predicting RSA by building reliable training sets for the crops (Li et al., 2017; Seck et al., 2020).
In a recent study, two hundred wheat lines were screened for root dry matter, root diameter, seminal axis root length, root dry matter, and branching pattern in seedling growth over the hydroponic system for performing MTAs (Beyer et al., 2019). From this study, 63 QTLs were identified to control these RSA traits and have a minor effect on phenotypes, suggesting the polygenic nature of these five traits in wheat (Beyer et al., 2019). A root phenotyping study was conducted on 529 rice accessions under controlled and drought conditions to identify MTAs for 21 traits. Researchers identified 264 QTLs controlling all 21 traits, and most of them were already reported in previous studies in rice, further validating the genetic architecture of root traits (Courtois et al., 2013; Li et al., 2017). Similarly, in soybean, GWAS has been performed in various studies to explore RSA trait’s genetic architecture. A recent study using 137 soybean lines grown under rhizoboxes and phenotyped with two-dimensional imaging identified 10 QTLs controlling 15–20% variation for primary root diameter and total root length (Seck et al., 2020). As common bean is mainly grown under drought conditions, 196 QTLs were identified in 438 accessions for various root traits such as root length/weight, lateral root length, taproot length, root volume, root surface area, average root diameter, and lateral root number under drought conditions (Wu et al., 2021). This study provided the genetic basis for roots traits under drought conditions, which will ultimately improve common bean (Wu et al., 2021). There was no major finding related to the study of genetic architecture for RSA traits for chickpea and groundnut, providing opportunities for adoption of root phenotyping in the coming years. We were also not able to find any study using GS for predicting root traits. This will be an emerging research area in coming decades due to rapid progress in root phenotyping that will help understand the genetic architecture of root traits, creating datasets for training GS models, and ultimately helping the breeder select multiple traits simultaneously.
MERGING OF GENOMIC SELECTION, PHENOMICS AND MACHINE LEARNING IN BREEDING
As discussed previously, GS aids in predicting GEBVs and in increasing genetic gain by reducing variety development time and cost per cycle and increasing selection accuracy. Phenomics allows generation of high-quality quantitative data and effectively characterizes large breeding populations (Araus et al., 2018). It has been seen that there is potential for combining GS and phenomics for increasing efficiency and precision while minimizing labor and lowering costs. This will aid in increasing the selection intensity and accuracy within breeding programs and subsequently the selection response (Sun et al., 2017b; Sandhu et al., 2021c). Until now, data from phenomics tools have been used as secondary traits for evaluating disease and pest resistance, abiotic stresses, end-use quality traits, and ultimately grain yield. Furthermore, phenomics datasets are collected in a longitudinal framework that helps select individuals with a specific spectral trajectory during a particular growing stage and helps predict temporal breeding values for specific periods (Moreira et al., 2020). Table 3 provides most of the studies that have used phenomics datasets in multi-trait GS models to predict grain yield in wheat and observed the improvement in the prediction accuracy, either by using single indices or multiple indices in the models.
Most of the GS studies conducted so far use a single trait (univariate) statistical model to predict one trait at a time and do not benefit from the genetic correlation among two or more traits (Jia and Jannink, 2012; Galán et al., 2020). However, multi-trait (multivariate) GS has demonstrated increased prediction accuracy, reduced selection trait bias, high statistical power, and increased parameter estimation accuracy (Sandhu et al., 2021a). Multi-trait GS models have more advantages for traits with low heritability values, like grain yield and end-use quality traits, where secondary traits correlated with high heritability values aid in increasing prediction accuracy (Crain et al., 2018; Lozada and Carter, 2019; Sandhu et al., 2021c). Recently, several studies from CIMMYT have demonstrated an increase in prediction accuracy for grain yield in wheat when secondary longitudinal data collected from phenomics is included as a covariate or in multi-trait GS models (Sun et al., 2019; Lozada et al., 2020a). Furthermore, secondary traits extracted from phenomics aid in selecting earlier in plant growth stages for quantitative traits, allowing earlier program resource allocation to the best individuals. In addition to increasing prediction accuracy, selection response, and intensity, longitudinal phenomics data can explain the various biological process underlying plant growth, not limited to water status, biomass accumulation, chlorophyll content, and photosynthetic efficiency. Primarily SRI are extracted from these longitudinal phenomics data which indirectly explain important physiological processes and stresses in the plants and are mainly used in multi-trait GS models.
Rutkoski et al. (2016) used SRI extracted from phenomics datasets and included them into pedigree and GS models for predicting grain yield in wheat. Doing this in earlier stages of the breeding pipeline is advantageous to remove poorly performing lines, but GS is sometimes not possible at this stage owing to genotyping cost. They showed that pedigree information could also be used with SRI for predicting grain yield earlier to enhance genetic gain. Pedigree information removed the cost and effort of genotyping a large number of plants, and their use also satisfies Mendelian sampling. Rutkoski et al. (2016) observed a 56 and 70% improvement in prediction accuracy for grain yield for within environment predictions using pedigree and genomic relationship matrices when including SRI in the models. The indices used in the study were canopy temperature and green normalized difference vegetation index (GNDVI), which provided information about canopy temperature and biomass and were phenotypically and genetically correlated to grain yield (Rutkoski et al., 2016). In another study, Sun et al. (2017a) used NDVI and canopy temperature in a multi-trait, random regression, and repeatability model for predicting grain yield in wheat and observed a 70% increase in prediction accuracy compared to the single trait GS model. Furthermore, the multi-trait model’s average improvement in predictability was highest, followed by random regression and repeatability model. Various other studies obtained similar results by the inclusion of secondary traits in wheat (Sun et al., 2017b; Crain et al., 2018).
Campbell et al. (2018) used longitudinal phenomics data for fitting random regression models to predict shoot growth trajectories in rice using pedigree and genomic relationships by fitting a second-order Legendre polynomial. A random regression model with longitudinal phenomics data demonstrated improvement in prediction compared to a single data point in traditional mixed linear models. They also showed the future growth predictions could be performed with high accuracy by using a genomic random regression model by having a subset of early phenomics measurements (Campbell et al., 2018). Similarly, another study in rice used random regression models by fitting B-spline and second-order Legendre polynomials to predict the projected shoot area under water-limited and controlled conditions and demonstrated that random regression models performed better than the baseline multi-trait models (Campbell et al., 2019). Furthermore, B-spline models fit a better curve compared to Legendre polynomials (Campbell et al., 2019). Therefore, we have seen that predominantly random regression models are used in rice for fitting or predicting growth curves. In contrast, in the case of wheat, multi-trait GS models have shown the advantage to predict quantitative traits using longitudinal phenomics datasets, which results in significant improvements compared to traditional models. Additional studies suggest canopy cover plays an important role in predicting the seed yield for soybean. Jarquin et al. (2018) modeled the genetic covariance between canopy cover collected by phenomics tools and seed yield using various cross-validation schemes and molecular markers to predict the seed yield. The prediction ability was highest when both canopy cover and molecular markers were included in the prediction models compared to only molecular marker and canopy information (Jarquin et al., 2018).
Owing to the ability of phenomics to collect a large amount of data due to its high spatial and temporal variation, it sometimes creates the big data problem, where feature selection needs to be performed, and complex machine and deep learning models are needed to build the relationship between features and predictors. Several machine and deep learning models, such as random forests, ensemble-based methods, support vector machine, multilayer perceptron, convolutional neural network, and recurrent neural network, are often employed for analyzing phenomics data and predicting traits with GS models. The main interests for these models in plant breeding are useful due to their powerful ability to learn the complex/hidden non-linear relationship in the data to predict complex traits and usually result in higher prediction accuracy than a mixed linear GS model. Ma et al. (2018) and Sandhu et al. (2021e) have shown the potential of deep learning models for predicting grain yield in wheat and observed higher prediction accuracies than the previous BLUP based models and open up a new class of models that could be explored. Table 1 provides the various machine and deep learning models, and their source code links, which have been explored for GS so far. In the coming years, an active area of research is merging machine and deep learning models with phenomics datasets and molecular markers to predict the breeding program’s complex traits.
CONCLUDING REMARKS
We explored six important self-pollinated crops consumed by 90% of the world population. Most of the advancements in genomics and phenomics over the last decade have been observed in wheat and rice. The genome sequencing of other crops and the adoption of high throughput genotyping tools have paved the way for understanding various underlying genetic mechanisms. These crops can utilize phenomics in coming years after seeing the progress and benefits achieved in wheat and rice. Several GS models varying from traditional BLUP based model to machine/deep learning models have been explored for prediction. Furthermore, the inclusion of genotype by environment interaction in these models has delivered good prediction accuracy for predicting untested lines in new environments. All the GS models discussed in this study, including genotype and environment interaction, will assist the plant breeder in making improved selection decisions. Multi-trait GS models also indicate their success for predicting low heritable traits and will be explored in future years for prediction under multi-environment scenarios, with the inclusion of phenomics datasets, for understanding genotype by environment interactions.
The yield trends of crops across different continents is very diverse, and it is evident that in Asia and Africa, use of advanced genomic and phenomic technologies can improve/enhance grain yield. Furthermore, public breeding programs play a predominant role in these crops. To translate the advantage of GS and phenomics in their programs, low-cost genotyping and phenotyping needs to be developed and used. In this context, easy to handle, reliable, and affordable low throughput platforms pave the way, and among such tools, RGB cameras make good candidates. Below ground phenotyping is tedious for a plant breeder and is being ignored by most programs. However, several field and lab-based root phenotyping tools were launched in the last decade and their potential is being realized. Further refinement and throughput will pave a new way to better understand root traits in field crops. This is extremely important for continuously increasing drought, salinity, aluminium, and heavy metal sensitivity to plants. As the total number of studies for phenotyping the roots traits increase, this will ultimately aid in predicting new genotypes using GS once enough data are collected for each crop under the different breeding programs.
This review highlights the advantages of combining genomics and phenomics, especially in wheat and rice. There is a need to merge and adopt these two disciplines at a fast pace in other crops to increase their genetic gain. GS has been shown to increase genetic gain by increasing selection accuracy and intensity with reduction of cycle time, which can be further enhanced by using phenomics, and machine/deep learning models in the breeding programs due to big data sets. These tools could aid in screening large number of lines with less phenotyping cost and efforts, allowing better exploration of the genetic diversity of particular crops for various traits. Phenomics is assisting plant breeders in integrating physiological breeding in addition to using molecular and genetic tools for selection. Thus, future studies in breeding will focus on merging all these tools and domains to reach the required rate of genetic gain for grain yield.
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Identification of the right parental combinations to maximize heterosis is the major goal of hybrid breeding, which could be achieved through identification of heterotic groups. The main objective of this study was to identify promising heterotic groups for future rice breeding programs. A collection of 359 rice genotypes of diverse origins of China and abroad, composed of inbreds, maintainers, restorers, and temperature-sensitive genic male sterile (TGMS) lines were genotyped using 10K SNP chips. The SNP data set was subjected to genomic analyses for estimation of genetic divergence and diversity. Significant variations were observed in the germplasm with the identification of six different genetic groups. These lines were assigned to the genetic groups independent of their origin. Taking an account of commercially used heterotic groups present in each cluster, three cytoplasmic male sterile (CMS) lines and 14 inbred and restorer lines with moderate to high genetic distances selected from five heterotic patterns were crossed and obtained 42 F1 hybrids. A total of 14 hybrids were found with significant maximum mid- and better-parent heterosis, namely, TaifengA × Guang122, TaifengA × Wushansimiao, and TaifengA × Minghui63 for earliness; Guang8A × Huazhan for dwarf stature; and Guang8A × Huanghuzhan-1, TaifengA × Yuexiangzhan, Guang8A × Minhui3301, TianfengA × Guang122, Guang8A × Yahui2115, TianfengA × Huanghuazhan, TianfengA × Minghui63, TianfengA × Minhui3301, TaifengA × Gui99, and Guang8A × Yuenongsimiao for yield and yield-related traits. Mid-parent and better-parent heterotic F1 hybrids were in positive correlation with the genetic distances as that manifested by commercially used heterotic groups, encouraging the use of genotypic data for identification of heterotic groups. Our study provides an informative strategy for the development of early maturing, lodging resistant and high-yielding commercial hybrids and cultivars in future heterosis breeding programs.
Keywords: heterotic groups, heterotic patterns, hybrid rice, SNP, accession, genetic distance
1 INTRODUCTION
Rice (Oryza sativa L.) is a staple food for over half of the world’s population. The continuous increase in rice consumption due to population increase (Khush, 2013) necessitates for higher rice production, which could be potentially achieved through rice genetic improvement. The development of hybrid varieties with high yield potential and resistance against disease and responsiveness to climatic changes could fulfill the future rice demands. In hybrid breeding, the most crucial element is identification of high-yielding heterotic patterns to achieve the maximum heterosis (Zhao et al., 2015). Genomic analyses could play a vital role in this regard. A heterotic group is a set of genetically related genotypes that show similar hybrid performance when crossed with individuals from another genetically distinct germplasm group (Melchinger and Gumber, 1984). Genetic relationship between genotypes of various accessions serves as one of the basic criteria for the outyielding potential of these heterotic groups (Thomson et al., 2008). The identification of heterotic groups in different germplasm pools is important for hybrid breeding (Xie et al., 2013; Wang et al., 2014). In general, the more divergent the heterotic groups are, the higher heterosis the offsprings have (Reif et al., 2005). Some studies, however, have reported the otherwise, which necessitates to include the phenotypic evaluation along with molecular marker data to explore both phenotypic and molecular diversity.
High genetic variations were detected in the Asian rice germplasm (Huang et al., 2012), which were divided into three indica subpopulations (South China origin, Southeast Asia origin, and IRRI inbred lines) and two japonica subpopulations (tropical and temperate; Wang et al., 2018a). The works on other groups like the aromatic rice have elucidated further diversity in the rice germplasm in different parts of the world (Civan et al., 2019). Identification of the heterotic groups among these various genetic stocks could be of immense importance for future hybrid breeding.
In hybrid rice crops, heterotic groups can be determined through marker-based genotyping (He et al., 2012). Molecular characterization of genetic diversity, population structure, and genetic relationships among breeding materials within a given set of genotypes will help to understand the use of the collected germplasm for further improvements, such as selecting parental lines and assigning to heterotic groups (Wu et al., 2016). So far, different kinds of molecular markers were used for diversity and divergence analyses in different species (Huang et al., 2012; Ali et al., 2016; Bueno-Sancho et al., 2017). Single-nucleotide polymorphism (SNP) is the most abundant and robust DNA sequence variation present in plant genomes, feasible for automated high-throughput genotyping and available for multiple assay options using different technology platforms to meet the demand for genetic studies and molecular breeding in crop plants (Steemers and Gunderson, 2007; Bernardo et al., 2009; Singh et al., 2015). Only superior parents do not necessarily produce superior heterotic combinations; rather, parents from different heterotic groups with high divergence (Reif et al., 2005) would give elite heterotic combinations (Zeng et al., 2007).
China is considered as the center of origin of indica rice and serves as a leading and major contributor of the world’s hybrid rice breeding (Cheng et al., 2007). Substantial diversity present in the region could be used to identify potential heterotic groups (Huang et al., 2012). Nowadays, the maintainer (sterile) lines and restorer lines have been derived from two major heterotic groups, widely used in the three-line indica hybrid rice breeding programs of China (Wang et al., 2006; Wang and Lu, 2006). The three-line system was first developed by Long Ping Yuan in the 1970s, which consists of a sterile restorer and a maintainer line (Yuan, 1986).
Presently, there has been little rigorous effort considering the genetic diversity and divergence for identification of the heterotic groups exploitable for hybrid rice development. Therefore, the present investigation was made to identify the heterotic groups based on genotypic characteristics of rice accessions of the South China origin, along with reference out group accessions from the United States, Philippines, Pakistan, Iran, and Thailand.
2 MATERIALS AND METHODS
2.1 Plant Materials and DNA Extraction
A set of 352 Indica and seven Japonica genotypes were selected from different regions of China (Guangdong, Fujian, Guangxi, Hainan, Heilongjiang, Hubei, Hunan, Jiangsu, Jiangxi, Jilin, Sichuan, Yunnan, Taibei, Anhui, Chongqing, and Zhejiang), Philippines, United States, Pakistan, Iran, and Thailand. The set of these 359 lines was composed of 183 inbred lines, 53 maintainers, 120 restorers, one temperature-sensitive genic male sterile (TGMS) line, and two unidentified lines (Supplementary Table S1). These materials were used for genotyping through 10k SNP chips. The genomic DNA was extracted by cetyl trimethyl ammonium bromide (CTAB) method (Saghai-Maroof et al., 1984), and the quality and concentration of DNA were examined by agarose gel electrophoresis and Nano-Drop.
2.2 SNP Genotyping and In Silico Analysis of Sequence Data
We performed SNP genotyping via genotyping by target sequencing (GBTS) protocol GenoBaits, which is based on sequence capture in solution (also called a liquid chip). A 10K liquid rice chip developed by Mol Breeding Biotechnology Co., Ltd, Shijiazhuang, China was deployed. The protocol includes the steps of DNA library construction and probe hybridization, which was described in detail previously (Guo et al., 2019).
Sequence data generated by probe-in-solution target sequencing were subjected to in silico analysis as follows: the sequencing data were first checked for quality control; two-terminal reads were merged using FLASH, and sequencing data were then compared with the reference Nipponbare MSU 7.0 genome using BBMap. The alignment results were saved in the SAM/BAM (binary alignment map) format. SNP variants were detected from the BAM files using FreeBayes. The final variant calling was generated through GATK (2.4) (using Haplotype Caller in the gVCF mode) and joint genotyping (using Genotype GVCFs). The VCF file developed was filtered using criteria of MAF (minor allele frequency) > 0.05 and missing data > 80% at both the genotype and SNP marker levels. Only bi-allelic SNP markers with genotype quality > 20 and read depth > 5 were retained after using Vcftools v.0.1.12b (Danecek et al., 2011) and PLINK v1.07 (Purcell et al., 2007) for filtering.
2.3 Genomic Data Analyses
The final set of SNP data was subjected to genomic analyses for estimation of divergence and diversity. The genetic clusters were identified through discriminant analyses of principal component (DAPC) using the ADEGENET package implemented in R-software (Jombart et al., 2010). DAPC represents the non-parametric analyses which attempt to identify the genetic clusters without considering the origin of lines or their status as breeding lines (maintainer, restorer, etc.). Various numbers of clusters could be considered, and the lines were assigned to these clusters based on their genetic makeup. Thus, the DAPC analyses were run considering the possible clusters ranging from K = 2 to K = 10, where the most probable number of clusters was identified through the Bayesian Information Criteria (BIC) values (Jombart et al., 2010). The phylogenetic tree was constructed using the neighbor-joining method implemented in R-software based on their genetic distances, while the distribution of lines from the two ecotypes, various locations, and types of breeding lines was constructed in MEGA software. Information regarding diversity was estimated with POPPR applied on the GenLight object for populations defined based on ecotypes, locations of origin, and types of breeding lines (Kamvar et al., 2014). Genetic distances between heterotic groups were estimated through the Identity by Stat Distance Matrix method using TASSEL 5 software (Bradbury et al., 2007).
2.4 Plant Materials, Crossing, Field Experimentation, and Collection of Phenotypic Data
A total of 17 genotypes, composed of three maintainers, five inbreds, and nine restorer lines, were selected from five deduced heterotic groups (G-I, G-II, G-IV, G-V, and G-VI) on the basis of early maturity and high yielding performance with genetic distances ranging from 19.3 to 35.9% (Supplementary Table S6). In the late season of 2020, the three female lines, that is, TianfengA (C2330), TaifengA (C2230), and Guang8A (C2228), were crossed with the 14 male lines and obtained 42 new F1 hybrids. All the F1 hybrids and their parents were evaluated in Randomized Complete Block Design (RCBD) with three replications at Baiyun experimental base Guangzhou during early season of 2021. Observations were recorded on six earliness and yield-related traits, that is, days to 50% heading, plant height, panicles per plant, number of grains per panicle, 1,000-grain weight, and grain yield per plant.
2.5 Phenotypic Data Analyses
Analysis of variance was performed using Statistix 8.1. The mid parent and better parent (heterobeltiosis) were worked out as suggested by Dan et al. (2014) in Microsoft excel 2013. The correlation graphs of heterosis and genetic distances were also constructed in Microsoft excel 2013
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3 RESULTS
3.1 Summary Statistics on the SNPs
The 10,268 sites were evenly distributed on the short arm, centromere, and long arm of all the 12 chromosomes, as assessed for 359 rice genotypes. The number of SNPs on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 were 1,345, 1,097, 1,261, 914, 814, 899, 789, 672, 552, 573, 677, and 675, respectively. The average physical distance between SNPs is about 34.08 Kb based on a genome size of 350 Mb. The average minor allele frequency and the number of missing sites were 0.21989 and 0, respectively, whereas the proportion of heterozygous sites was 1.52% (Supplementary Table S2).
3.2 Diversity of the Breeding Population
Divergent groups were identified using discriminate analysis of principal components (DAPC) to represent potential diversity in the rice germplasm tested in this study. Grouping was made considering different K levels (K2-K10) of the DAPC analyses (Figure 1A). While considering the BIC values and principal component analysis grouping, six different genetic groups were considered the optimum within the rice germplasm (Figures 1B,C). In terms of the distribution of these genetic groups, G1 was dominant in the overall Indica germplasm, while the entire Japonica genotypes were grouped within a single group, that is, G5, with limited divergence among Japonica lines.
[image: Figure 1]FIGURE 1 | DAPC of rice accessions collected from different provinces in South China, Philippines, Thailand, Iran, Pakistan, and United States. Possible DAPC clusters ranging from K2 to K10 (A). The cluster of 359 rice genotypes of diverse origins into different genetic groups set a siding geographical origin for the optimal K-value (K = 6) in DAPC (B). Bayesian information criteria (BIC) supported six distinct genetic groups (C). The Eigen values of the analysis suggest that the first two components explained the maximum genetic structure of the data set. Scatter plot of the 359 accessions divided into six genetic groups (D).
Considering the geographical origin, the most prevalent genetic group, that is, G1, contained most of the genotypes from the Guangdong origins, with a few genotypes from Guangxi, Hainan, Hubei, Hunan, Jiangxi, Sichuan, and Philippines present (≤3). Genetic group G2 was represented mainly by the lines from Zhejiang (all genotypes placed in this group), and group 3 contained all genotypes of the Yunnan origin along with few genotypes from diverse origins. Group G5 had all the genotypes of Heilongjiang, Jilin, Pakistan, and United States. A few of Guangdong and Jiangsu genotypes also belonged to this genetic group. Some of the Guangdong and Guangxi genotypes were assigned to group G6 (Figure 1B).
The distribution of the four types of breeding lines (inbred lines, maintainers, restorers, and the TGMS line) was also assessed to various genetic groups. DAPC results showed that the inbred lines, maintainers, and restorers were distributed across different genetic groups, and no genetic group was specific to any type of breeding lines. G1 was predominantly composed of the inbred lines, along with some maintainer and restorer lines. G6 was mainly represented by maintainer lines and very few restorers but no inbred lines. G3 was represented by all types of breeding lines, while G4 was represented by the restorers and a few maintainer lines (Figure 1B and Supplementary Table S3). This was in line with the cluster analysis-based grouping where all types were dispatched across different groups. Thus, all the genetic groups had substantial variability for these lines to be utilized for breeding purposes (Figure 1B and Supplementary Table S3).
3.3 Diversity Across Ecotypes and Breeding Lines
Low genetic diversity was recorded between groups (ranging from 0.144 to 0.303; Table 1). G’st values between groups (ranging from 0.324 to 0.427) indicated high divergence between heterotic groups suitable for future breeding programs. For all types of grouping patterns, the global heterozygosity value was 0.304. At the subspecies level, the highest value of 0.291 of diversity index was calculated for Indica subspecies containing 704 alleles, whereas a low diversity index of 0.107 was manifested by Japonica subspecies with 14 alleles only. The divergence calculated at subspecies level grouping was the maximum (0.548), as expected (Table 1). The number of alleles and diversity index in breeding lines ranged from 2 to 366 and from 0.003 to 0.304, respectively. Inbred lines showed the maximum value (0.304) of diversity index, followed by restorers (0.282), whereas the divergence value was the maximum (0.093) between breeding lines (Table 1). The genetic groups also revealed a high value of divergence (G’st = 0.427). Moreover, allelic frequencies of genetic groups ranged between 12 and 322, whereas the minimum value (12) was manifested by the group with unassigned lines and the maximum by group 1 (K1); however, the diversity index ranged between 0.182 and 0.303. Group 2 (K2) revealed the second highest value (0.244) of diversity index, followed by the group with unassigned lines (UN) with 0.243. K2 and K3 contained accessions from eight and 11 different locations, respectively, and thus had high diversity indices (Table 1).
TABLE 1 | Amount of diversity index, heterozygosity, divergence, and number of alleles in ecotypes, breeding lines, locations, and genetic groups.
[image: Table 1]3.4 Identification of Heterotic Groups
Genetic grouping was further confirmed via cluster analysis. The maximum number of accessions was recorded in cluster V (32.31%), followed by cluster II with (25.07%; Supplementary Table S4; Figure 2B). Similarly, cluster I contained 18.66% accessions in total, which was further divided into two subgroups, GI (12.3%) and GII (6.4%). Cluster II was further divided into four subgroups, GI (1.7%), GII (8.1%), GIII (4.2%), and GIV (11.1%). Cluster III was the smallest group that shared 1.39% of the accessions, whereas clusters IV and VI contained 10.6 and 11.14% of the total accessions, respectively (Supplementary Table S4).
[image: Figure 2]FIGURE 2 | Distribution of breeding lines (inbreds, maintainers, restorers, TGMS, and unknown) into different clusters (A). Phylogenetic tree, showing the overall distribution of 359 rice accessions into six different clusters (B).
Indica lines were clustered into six groups, while those of Japonica were located only in cluster II with high divergence from the rest accessions of the cluster (Figure 2B). The grouping of “Indica”-type rice lines in this group could be due to potential mismatches or erroneous labeling of these lines. Based on genetic information, inbred lines were dominant in clusters I, V, and VI; restorer lines were dominant in cluster II; and maintainer lines were dominant in clusters I and IV (Figure 2A and Supplementary Table S6). In cluster I, inbred lines (42), restorers (11), and maintainers (14) from 11 locations, and all the accessions from Zhejiang and Yunnan were present. The early developed and widely used maintainers, such as Zhenshan 97B (C288), BoB (C296), II-32B (C299), and the maintainer LongtefuB (C290) used in the development of high-yielding hybrids in South China, were also clustered into this group. Maintainer lines Gang46B (C368) and XiandangB (C293) were found very close to the commercial maintainer LongtefuB (C290) in cluster I (Figure 2B). Similarly, cluster II consisted of 19 inbreds, 69 restorers, and two maintainers from 14 locations. The most famous commercially used restorer lines Minghui63 (C281, C375), Guanghui998 (C203), and Gui99 (C536) were present in this group. Moreover, restorer lines R122 (C298), R308 (C251), R368 (C257), and R428 (C245), recently used for commercial hybrids, were also grouped in cluster II. The positions of restorer lines R998-3 (C533), R108 (C502), R122-3 (C537), Guang122 (C373), R721 (C303), R308-2 (C534), R390-1(C247), R290 (C299), R498 (C309), and R889 (C308) were close to the commercially used restorers. Cluster III was the smallest cluster with only two inbred (C377, C511) and three maintainer lines, which include the widely used maintainer 9311B (C235). Cluster IV was dominated by maintainers (32 out of 38 lines), including the widely used maintainers TianfengB (C330), WufengB (C272), RongfengB (C219), TaifengB (C230), HengfengA (C227), and Guang8B (C228). The maintainers in cluster IV are known as modern maintainer lines in China. Some other maintainer lines, such as JifengB (C217), WFB-TFB-derived (C418), and ZaofengB (C216), were closely related (Figure 2B) to the commercially used lines. Cluster V was composed of inbred lines (84) and restorers (32) but no maintainers. Although accessions from five different origins contributed to the cluster, the predominant location and breeding lines were Guangdong and inbred lines, respectively. Among the restorers in this cluster, Yuehesimiao (C190), R308 (C251), and Huazhan (C250) were widely used restorers. Using these commercially used lines as a close reference, we found three inbred lines, Yuehesimiao2 (C267), Guanghong3-3 (C538), and Yuexianzhan8 (C199), and two restorer lines, R721 (C303) and R308-2 (C534), which may also serve as heterotic group in the development of high-yielding hybrids. Moreover, cluster VI consisted of 40 inbreds and three maintainers from four locations. Similar to cluster V, Cluster VI also showed the greater contribution of inbred lines from Guangdong. The widely used maintainer YexiangB (C231) and the most famous aromatic Guangdong Simiao and the inbred varieties, Meixiangzhan 2 (C487), Xiangyaxiangzhan (C344), and Xiangzhuxiangsimiao (C428), were all placed in this cluster (Figure 2B). The presence of commercially used heterotic groups in all the six clusters indicated that we have six herterotic groups’ clusters in our germplasm.
3.5 Identification of Heterotic Patterns Between Groups
All the rice accessions have been divided into six clusters (heterotic groups), and the heterotic patterns could be deduced based on the accessions which served already as the parental lines of the heterotic hybrid combinations that existed, widely used for commercial production in China. It was as follows:
3.5.1 Heterotic Pattern I (Cluster I × Cluster II)
Many famous maintainer lines, such as Zhenshan97B (C288), BoB (C296), LongtefuB (C290), and II-32B (C299), were located in Cluster I, while the famous restorer line Minghui63 (C281), R2156 (C263), R998 (C203), and Gui 99 (C201), were placed in Cluster II (Table 2 and Figure 2B). Many heterotic hybrids widely used for commercial production in China, such as Shanyou 63 (Zhenshan 97A/Minghui 63), Boyou 998 (BoA/R998), and ShanyouGui99 (Zhenshan 97A/Gui99), confirmed this pattern. It indicated that the hybrids derived from accessions of Cluster I and Cluster II had better heterosis; therefore, Cluster I and Cluster II could be a heterotic pattern. All the early-maturing inbred lines from Zhejiang Province and four accessions from Yunnan were located in Cluster I, which could be used for breeding new maintainer lines.
TABLE 2 | Heterotic groups used for commercial hybrid production, genetic distance, and their deduced heterotic patterns.
[image: Table 2]3.5.2 Heterotic Pattern II (Cluster IV × Cluster II)
A number of super hybrid rice varieties were derived from this crossing pattern, including Tianyou998 from TianfengB (C330) and R998 (C203), Wuyou998 from WufengB (C272) and R998 (C203), Taifengyou 208 from TaifengB (C230) and R208 (C248), and Jifengyou 1,002 from JifengB (C217) and R1002 (C242). All the female parents of these hybrids were taken from cluster IV, and male parents were taken from cluster II (Table 2).
3.5.3 Heterotic Pattern III (Cluster IV × Cluster V)
The super rice hybrid “Tianyouhuazhan” was derived from TianfengB (C330) and Huazhan (C250), “Wuyou308” from Wufeng B (C272) and R308 (C251), Wuyouhuazhan from WufengB (C272) and Huazhan (C250), Wuyou1179 from WufengB (C272) and Hanghui1179 (C239), and Taiyou305 from TaifengB (C230) and R305 (C381), all supporting this heterotic group pattern.
3.5.4 Heterotic Pattern IV (Cluster III × Cluster V)
The famous hybrid Quanyousimiao was derived from 9311B (C235) and Wushansimiao (C320), and Quanyouhuazhan was derived from 9311B (C235) and Huazhan (C250), supporting this heterotic pattern.
3.5.5 Heterotic Pattern V (Cluster IV × Cluster I)
The widely planted early-maturing hybrid Taiyou398 derived from TaifengB(C230) and R398 (C243) and Jiyou 1,100 derived from Jifeng B (C217) and V1100 (C300) supported this pattern.
3.5.6 Heterotic Pattern VI (Cluster I × Cluster V)
The high-yielding hybrid rice hybrid Teyou 721 derived from LongtefuB (C290) and R721 (C303) supported this pattern.
3.5.7 Heterotic Pattern VII (Cluster VI × Cluster II)
The fine-quality hybrid Yexiangyou 676 supported this pattern as it was derived from YexiangB (C231) and Fuhui676 (C319).
All the six Clusters I–VI had already been involved in the seven heterotic patterns mentioned above, so these clusters could be considered as heterotic groups.
3.6 Heterotic Group and Genetic Distance
The diversity analyses of DAPC-based groups revealed significant diversity for all the heterotic groups, that is, K1 (0.202), K2 (0.244), K3 (0.303), K4 (0.191), K5 (0.144), K6 (0.182), and UN (0.283; Table 1). Similarly, the G’st value (0.427) also summarized the overall mean diversity (distances) between the heterotic groups, which were at the optimum level (Table 1). Genetic distances between the heterotic groups, the deduced heterotic groups of commercially used hybrids, and their nearby heterotic groups spotted on the Neighbor Joining tree (Figure 2B) were estimated through the Identity by state (IBS) matrix ranging between 0.01 and 0.391 with a mean value of 0.276 (Supplementary Table S5). The maximum genetic distance (0.391) was observed for the heterotic group Gang46B (C368) × R498 (C309), followed by Gang46B (C368) × Minghui63 (C281) (0.389), whereas the minimum genetic distance (0.010) was noted for R301-1 (C251) × R308-2 (C534), followed by (0.013) R998-3 (C533) × R998-1 (C203). However, the majority groups were found very close to the average (0.28) genetic distances (Supplementary Table S5). Among commercially used heterotic groups, the maximum genetic distance (0.379) was observed for Zhenshan 97B (C288) × Minghui63 (C281) of the deduced heterotic pattern (GI ×GII), followed by Bo B (C296) × R998 (C203) and Zhenshan 97A (288) × Gui 99 (536) with genetic distances of 0.369 and 0.368, respectively, from heterotic patterns (GI × GII) (Table 2). Majority of the commercially used heterotic groups showed greater genetic distances than the overall mean genetic distance of 0.276, which reflected that the genetic distances between heterotic groups have a positive effect on heterosis.
3.7 Variability for Earliness and Yield-Related Phenotypic Traits in F1 Hybrids and Their Parents
Analysis of variance revealed highly significant (p < 0.01) differences among genotypes for days to 50% heading, plant height, panicles per plant, number of grains per panicle, 1,000-grain weight, and grain weight per plant (Table 3; Supplementary Table S7). Days to 50% heading ranged from 76.33 to 101.67 days, with a net difference of 25.34 days (Supplementary Table S8). The plant heights varied from 88.00 to 131.00 cm, with a net difference of 43 cm and a majority of the F1 hybrids close to the mean (110.60 cm). The mean values of 4.33 to 11.00 panicles per plant were observed among genotypes. Almost all F1 hybrids revealed above-average performance for panicles per plant. For grains per panicle, the genotypes ranged from 30.41 to 173.61, showing a wide range of variability. A majority of hybrids showed above-average performance, and none of the hybrids was observed at par to the minimum. The mean values for 1,000-grain weight varied from 20.893 to 32.013 g. For grain yield per plant, the mean values of the genotypes ranged between 9.48 and 40.35 g, among which the maximum grain yield was produced by the three hybrids Guang8A × Yuenongsimiao (40.350 g), TaifengA × Gui99 (36.480 g), and TaifengA × Guang122 (35.250 g), followed by two other F1 hybrids, TaifengA × Minghui63 (31.537 g) and TaifengA × Huanghuazhan (30.823 g).
TABLE 3 | Analysis of variance for earliness, plant height, yield, and yield-related traits.
[image: Table 3]3.8 Heterosis Estimates on the Basis of Phenotypic Performance
Heterosis over the mid parent and the best parent (heterobeltiosis) was studied in 38 F1 hybrids for various traits. For heading date, significant negative heterosis over mid and better parents was exhibited by nine and two F1 hybrids, respectively. Negative heterosis over the mid parent ranged from −0.36% (Guang8A × Huanghuazhan-1) to −9.49% (TaifengA × Guang122), whereas ranging from 0.55% (Guang8A × Wushansimiao) to 10.02% (TianfengA × Huanghuazhan), 18 F1 hybrids manifested mid parent-positive heterosis (Table 4). The better-parent heterotic performance ranged from −1.47% (Guang8A×Huazhan) to −2.97% (TaifengA × Guang122). Better-parent significantly positive heterosis ranged between 1.83% (Guang8A × Huanghuazhan-1) and 27.57% (TianfengA × Minhui3301). For heading date, negative heterosis is favored because it leads to earliness. A total of 19 F1 hybrids showed mid-parent heterosis and three F1 hybrids showed better-parent heterosis with negative values, in which nine mid parents and two better parents reached a significance level. Plant height revealed low to moderate levels of positive mid- and better-parent heterosis for a majority of F1 hybrids. One F1 hybrid (Guang8A × Huazhan) showed negative mid-parent and better-parent heterosis (−4.04%). A total of 10 F1 hybrids revealed positive mid-parent heterosis for panicles per plant, and maximum heterotic values were exhibited by the F1 hybrid Guang8A × Huanghuazhan-1 (31.30%). Only one F1 hybrid (Guang8A × Huanghuazhan-1) showed positive heterobeltiosis (14.24%) for panicles per plant. However, the remaining F1 hybrids manifested negative heterosis over the better parent (Table 4).
TABLE 4 | Mid-parent and better-parent heterosis estimates for days to 50% heading, plant height, panicles per plant, and genetic distances between their corresponding parents.
[image: Table 4]More than half of the F1 hybrids depicted significant positive mid-parent heterosis for grains per panicle (Table 5). Heterotic effects varied from 17.49% (Guang8A × Huanghuazhan) to 74.39% (Guang8A × Minghui63) over their mid parents. Significantly positive better-parent heterosis was recorded on 14 F1 hybrids, ranging from 16.73% (TianfengA × Minhui3301) to 45.01 (Guang8A × Yahui2115). A majority of the F1 hybrids showed significant positive mid- and better-parent heterosis for 1,000-grain weight (Table 5). The F1 hybrids TaifengA × Minghui63 and TaifengA × Minhui3301 revealed the highest values of 20.37 and 17.98% over their mid- and better-parental inbred lines, respectively. Regarding mid-parent heterosis for grain yield per plant, 18 and 15 F1 hybrids manifested significant positive mid- and better-parent heterosis, respectively (Table 5). Mid-parent significantly positive heterosis ranged from 20.73% (TianfengA × Minhui3301) to 94.99% (TaifengA × Gui99). The latter promising F1 hybrid was followed by four other high-yielding hybrids, Guang8A × Yuenongsimiao (77.00%), TaifengA × Huanghuazhan-1 (71.19%), TaifengA × Guang122 (60.08%), and TaifengA × Minghui63 (59.01%). For better-parent heterosis, the F1 hybrid TaifengA × Gui99 (71.03%) exhibited the most significant positive heterotic effects.
TABLE 5 | Mid-parent and better-parent heterosis estimates for grains per panicle, 1,000-grain weight, grain weight per panicle, and genetic distances between their corresponding parents.
[image: Table 5]3.9 Genetic Distance Effects on Heterosis
Genetic distances between the parents of 38 F1 hybrids were estimated through IBS in TASSEL 5, which ranged between 19.00 and 36.00% (Table 5). For days to 50% heading, F1 hybrids of significant mid-parent-negative and mid-parent-positive heterosis manifested slightly negative correlation with genetic distances, whereas better-parent heterosis showed positive correlation with the genetic distances (Figure 3B). Similarly, heterosis over mid and better parents for plant height, panicles per plant, number of grains per panicles, and 1000-grain weight also showed positive association with the genetic distances. A majority of the F1 hybrids with highly significant heterosis were present at the maximum end of genetic distances (Figures 3A,B). Mid-parent heterosis for grain yield per plant in F1 hybrids was found in positive correlation with the genetic distances in their corresponding parents, whereas better-parent heterosis was observed in slightly negative correlation with genetic distances (Figures 3A,B).
[image: Figure 3]FIGURE 3 | Representation of mid-parent (A) and better-parent (B) heterosis association of F1 hybrids with the genetic distances between their corresponding parents.
4 DISCUSSION
Despite the success of hybrid rice since 1970s (Lin et al., 2020), the understanding of the heterosis group and heterotic pattern in rice is very limited (Wang et al., 2014). The maximum benefit out of the heterotic vigor could be achieved through the assessment of diversity and divergence in the rice germplasm for identification of the potential heterotic groups, for which high-throughput genotyping is of great help (Zhao et al., 2011; Wang et al., 2014; Wang et al., 2018b). In this study, heterotic groups were identified using a 10K SNP chip, in different Indicia and Japonica genotypes selected from different origins of China and abroad, including 183 inbred lines, 53 maintainers, 120 restorers, one TGMS line, and two unknowns.
Divergence analyses revealed the existence of six subgroups among subspecies, breeding lines, origins, and genetic groups. Up to K6, DAPC-based grouping was stable and was supported by both PCA and BIC analyses. Along with the overall variability in the tested germplasm, substantial variability was observed in each genetic group, geographically collected lines, and breeding lines. Geographical distribution of lines could also contribute to the existence of subgroups (Zhang et al., 2011). However, in this study, a no-population subdivision was observed due to geography/locations, except that lines from two regions, that is, Zhejiang and Yunnan, were grouped only in a single group (G2 and G3, respectively). Effective evaluation of diversity provides a considerable scope of choice of parents before hybridization (Pandey et al., 2011). Phylogenetic analysis showed that genotypes obtained from different origins had significant variation and were assigned into different groups. Huang et al. (2012) also find out a large-scale genetic variation in the Asian cultivated rice germplasm. Moreover, cluster analysis also confirmed that there are six different clusters, and the maintainers were distributed in three independent clusters. Almost similar principal components were identified in previous studies (Rathnathunga and Geekiyanage, 2015, 2016, 2017; Rathnathunga et al., 2016), which recommended variable levels of diversity in various rice germplasms.
Estimation of phenotypic and genotypic diversity provides useful information for the establishment of heterotic patterns (Agre et al., 2019). As all the six clusters contained the commercially used high-yielding parents, each cluster was considered as the basis for heterotic groups. From all commercially used hybrids and new combinations, seven heterotic patterns were identified. The higher genetic distance among the commercially used lines reflected positive association with heterosis; thus, new heterotic groups with higher genetic distances could be predicted. As suggested previously, significant differences among the rice genotypes were expected to provide better hybrid vigor (Prasanna et al., 2010; Mvuyekure et al., 2018).
Following the heterotic pattern of cluster IV × cluster II, the best modern maintainer lines in cluster IV could be used with the best restorers of cluster II in the development of high-yielding hybrids. Elite inbred lines from cluster V can be used as male parents of two lines and three lines of hybrid rice. Moreover, Cluster V was predominated by inbred cultivars of the Guangdong origin, which usually have good grain quality and better resistance to rice blast and bacterial blight, and is suitable to be deployed in breeding new restorer lines.
Considering the aforementioned findings, 14 inbred and restorer lines from groups I, II, V, and VI were crossed with three CMS lines from group IV. The mean performance for various parameters revealed a substantial variability. The F1 hybrids obtained from the partial diallel crosses and their parents revealed significant variations for all the studied traits, which can provide an ample scope for further improvement. A majority of the F1 hybrids showed higher mean performance than their parents. In agreement with our study, significant variation for yield and yield-related traits among rice genotypes was observed previously (Singh et al., 2006; Prasad et al., 2013; Ganapati et al., 2014; Asem et al., 2019).
Heterosis is critical for the estimation and development of new plant population (Cheng et al., 2019; Venkatesan et al., 2019; Rasheed et al., 2021). Although the overall heterosis for heading date and plant height was at low and moderate levels, some TaifengA progenies and Guang8A × Huazhan for plant height manifested significant negative heterosis over the mid and best parents, similar to other studies (Selvaraj et al., 2011; Kumar et al., 2012). Four F1 hybrids of TaifengA showed significant earliness and can be used for developing early maturing and lodging-resistant dwarf stature hybrids. The number of panicles per plant also showed moderate levels of significant positive heterosis, where the F1 hybrids such as TaifengA × Minhui3301 exhibited maximum heterosis. Corroborating results of similar nature heterosis were reported (Gnanamalar and Vivekanandan, 2013; Rukmini et al., 2014; Lingaiah et al., 2019). Quantitative traits, that is, grain weight, grain number per panicle, and number of panicles, positively contribute to the yield (Rasheed et al., 2021). High levels of mid- and better-parent heterosis were found for the number of grains per panicle, and all the three maternal lines showed significant heterotic effects with different inbred and restorer lines in our study, which is in accordance with the previous findings (Priyanka et al., 2014; Lingaiah et al., 2019). Similarly, for 1,000-grain weight, which is one of the key components of yield, F1 hybrids TaifengA × Minghui63 and TianfengA × Minhui3301 were found with moderately significant positive heterosis over the mid and better parents, and TaifengA × Minhui3301, TianfengA × Guang122, and TaifengA × Huazhan showed mid-parent heterosis and TianfengA × Minghui63 manifested heterobeltiosis only. Mostly significant positive mid- and better-parent heterotic performances were recorded for 1,000-grain weight (Lingaiah et al., 2019). In the case of grain yield per plant, a majority of F1 hybrids were found with above-average positive heterosis. High levels of significant positive heterosis over mid and better parents were manifested by F1 progenies such as TaifengA × Gui99, which can be used as potential sources for the development of high-yielding hybrids in future breeding. Advocating results of high heterosis over mid parents and better parents were reported previously (Zhang et al., 1994; Alzona and Arraudeau, 1995).
In the present study, a majority of mid-parent and best-parent heteroses were with positive association with genetic distances. Except mid-parent heterosis for days to 50% heading and better-parent heterosis for grain yield per plant, which were found in slightly negative correlation with genetic distances, all the studied traits exhibited positive correlation with the genetic distances. Considering the genetic variation as a source for heterotic gain, several studies were conducted to unveil the relationship between genetic distances and heterosis for predicting the heterosis effect and found that to some extent, heterosis is positively associated with genetic distances (Lee et al., 1989; Smith et al., 1997; Zhao et al., 2009). Although greater achievement of hybrid breeding depends on the identification of complementary heterotic groups (Reif et al., 2007; Zhao et al., 2015), the heterotic groups in rice are still not clearly defined (Xie et al., 2012). Corroborating results were obtained by maximizing the genetic distances for separation of maize lines into groups, showing the advantage of a significant yield over within-group crosses. Thus, the groups estimated by increasing the genetic distances could be a meaningful source for heterotic group development (Suwarno et al., 2014). Wang et al. (2014) estimated the magnitude of yield heterosis among selected heterotic groups with greater genetic distances and observed that hybrids had more yield than their parents, with an average of 24.1% mid-parent heterosis, which is in line with our findings. Similarly, the molecular marker approach was used to estimate the genetic distances between breeding lines for dividing the germplasm into heterotic groups (Prasanna et al., 2010). Singh et al. (2015) also estimated the genetic diversity and phylogenetic relationship among 128 diverse rice germplasms using 50K rice SNP chips. Haplotype analysis separated the 128 genotypes into four major heterotic groups, revealing that the genotypes are grouped on the basis of their genetic makeup (genetic distances).
5 CONCLUSION
In conclusion, considering the mid-parent and better-parent significant heterosis and promising mean performance, our results have identified 14 heterotic combinations, that is, TaifengA × Guang122, TaifengA × Wushansimiao, and TaifengA × Minghui63 for earliness; Guang8A × Huazhan for dwarf stature; and Guang8A × Huanghuzhan-1, TaifengA × Yuexiangzhan, Guang8A × Minhui3301, TianfengA × Guang122, Guang8A × Yahui2115, TianfengA × Huanghuazhan, TianfengA × Minghui63, TianfengA × Minhui3301, TaifengA × Gui99, and Guang8A × Yuenongsimiao for yield and yield-related traits. F1 hybrid heterosis over the mid and better parents was in positive correlation with the genetic distances. These F1 Hybrids should be used in the development of early-maturing, lodging-resistant, and high-yielding commercial hybrids and cultivars in future heterosis breeding programs after multilocation and multiyear testing. The use of genetic distance must complement with phenotypic characterization for identification of heterotic groups and generation of promising hybrids.
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Soft white wheat is a wheat class used in foreign and domestic markets to make various end products requiring specific quality attributes. Due to associated cost, time, and amount of seed needed, phenotyping for the end-use quality trait is delayed until later generations. Previously, we explored the potential of using genomic selection (GS) for selecting superior genotypes earlier in the breeding program. Breeders typically measure multiple traits across various locations, and it opens up the avenue for exploring multi-trait–based GS models. This study’s main objective was to explore the potential of using multi-trait GS models for predicting seven different end-use quality traits using cross-validation, independent prediction, and across-location predictions in a wheat breeding program. The population used consisted of 666 soft white wheat genotypes planted for 5 years at two locations in Washington, United States. We optimized and compared the performances of four uni-trait– and multi-trait–based GS models, namely, Bayes B, genomic best linear unbiased prediction (GBLUP), multilayer perceptron (MLP), and random forests. The prediction accuracies for multi-trait GS models were 5.5 and 7.9% superior to uni-trait models for the within-environment and across-location predictions. Multi-trait machine and deep learning models performed superior to GBLUP and Bayes B for across-location predictions, but their advantages diminished when the genotype by environment component was included in the model. The highest improvement in prediction accuracy, that is, 35% was obtained for flour protein content with the multi-trait MLP model. This study showed the potential of using multi-trait–based GS models to enhance prediction accuracy by using information from previously phenotyped traits. It would assist in speeding up the breeding cycle time in a cost-friendly manner.
Keywords: end-use quality, genomic prediction, heritability, machine learning, multi-trait, secondary traits, wheat
INTRODUCTION
Wheat (Triticum aestivum L.) is one of the most important staple crops worldwide, providing 18% of the caloric intake (Awika, 2011; Saini et al., 2022). Hexaploid wheat is categorized into soft and hard wheat classes based on protein strength, kernel texture, water absorption, and milling quality (Kiszonas et al., 2013). In the United States, six major classes of wheat, namely, hard white wheat, hard red spring wheat, hard red winter wheat, soft white wheat, soft red winter wheat, and durum, are grown in different regions. Soft white wheat (SWW) is a predominant class in eastern Washington and the inland Pacific Northwest (Kiszonas and Morris, 2018). SWW is one of the wheat classes with high demands from overseas markets in countries like the Philippines, Korea, Japan, and Indonesia, due to its high end-use quality. Soft wheat is mainly used for making cakes, cookies, pastries, Asian-style noodles, crackers, and pretzels (Morris et al., 2008). In addition to having high grain yield, disease and insect resistance, wide adaptability, and cold tolerance, the released wheat cultivar needs to maintain high end-use quality attributes required by millers, bakers, and grain markets (Morris et al., 2009; Carter et al., 2012; Guzman et al., 2016; Sandhu et al., 2021d).
Phenotyping for end-use quality traits is usually delayed until advanced generations in wheat breeding owing to the associated cost, labor, and amount of seed required (Battenfield et al., 2016). Delayed phenotyping usually results in hindrance of releasing promising cultivars due to lack of end-use quality data to make decisions. Important end-use quality traits in wheat include cookie diameter, flour sedimentation value, flour yield, grain protein content, and milling score (Campbell et al., 2007; Kiszonas et al., 2015). Linkage and association mapping have been used to identify the genomic loci controlling end-use quality traits, and most of the major effect genes are now fixed into the breeding programs for different market classes (Jernigan et al., 2018; Yang et al., 2020). Marker-assisted selection has been used to screen for some major effect end-use quality genes in wheat classes based on granule-based starch synthase 1, low and high molecular weight glutenins, and kernel texture (Aoun et al., 2021b). These major effect loci only assist in differentiating between different classes but do not provide the complete profile (Kumar et al., 2019). Association mapping studies in wheat have shown that more than 300 small effect QTLs control these end-use quality traits and suggest the quantitative nature of these traits, requiring appropriate strategies to be adopted in breeding programs for selection (Breseghello and Sorrells, 2006; Bhave and Morris, 2008; Jernigan et al., 2018; Yang et al., 2020).
The ultimate interest of a plant breeding program is to enhance the long-term genetic gain, and in modern terms, genetic gain is defined as [image: image], where [image: image] is the rate of the gain/response to selection, [image: image] is the square root of the standard additive genetic variance, [image: image] is the selection intensity, [image: image] is the correlation between genotypic and true breeding values, and [image: image] is the length of the breeding cycle (Bernardo, 2016; Cobb et al., 2019a; Cobb et al., 2019b). Genomic selection (GS) is the approach adopted by most plant breeding programs, which enhances the rate of genetic gain by estimating breeding values using whole genome-wide markers without phenotyping (Meuwissen et al., 2001). First, the GS model is trained using previous year phenotypic and genotypic data to estimate marker effect and the model’s performance is assessed using various cross-validation approaches. The trained GS model predicts the genomic estimated breeding values of the selection/breeding population (Lorenz et al., 2011; Lorenz, 2013). Since the last decade, increasing the prediction accuracies for GS has been the main focus of research (Kaur et al., 2021). GS performance is affected by the relationship between testing and training set, trait heritability and architecture, population structure, population size, and the statistical model (Herter et al., 2019; Monteverde et al., 2019).
Most genomic selection studies use the uni-trait model, where a single trait is predicted (Qin et al., 2019; Pérez-Rodríguez et al., 2020; Sandhu et al., 2022). However, plant breeders have shifted to multi-trait (MT) GS models that simultaneously predict two or more traits and demonstrate improved accuracy (Calus and Veerkamp, 2011; Sandhu et al., 2021a). MT models use the shared genetic information between the traits using the same set of predictors with the assumption of some structure in the captured output. MT models leverage the correlation between different traits and show a considerable advantage in other domains, such as ecological modeling, weather forecasting, forest management, and data mining (Voyant et al., 2017). MT models using shared genetic information are important for hard/expensive to phenotype traits having low heritability (Juliana et al., 2019). Several studies have demonstrated the improvement of prediction accuracy for a primary trait with the inclusion of a secondary trait into the MT models in wheat. Sandhu et al. (2021a) showed an improvement of 20 and 12% prediction accuracies for grain yield and grain protein content in wheat, respectively, by including correlated spectral reflectance indices into the model as secondary traits in the MT approach. Similarly, Hayes et al. (2017), Lado et al. (2018), and Bhatta et al. (2020) observed the improvement of prediction abilities with MT models over the uni-trait models for end-use quality traits in cereals.
A previous study from our group showed that GS accuracies varied from 0.27 to 0.81 for 14 end-use quality traits using nine different uni-trait models (Sandhu et al., 2021c). Statistical models used for training the uni- or multi-trait GS models play an important role in evaluating performance (Jia and Jannink, 2012). Ridge regression best linear unbiased prediction (rrBLUP) is one of the most frequently used models for quantitative traits assuming normal distribution of marker effects with constant variances (Endelman, 2011). Bayes Cpi uses variable selection, scaled-t distribution to estimate marker effects and assumes different variances for adjusting to the different genetic architecture of the trait (Pérez and De Los Campos, 2014; Montesinos-López et al., 2019a). rrBLUP and Bayes Cpi are known as parametric models as they assume a prior relationship between features and predictors, and this opens up the avenue for the nonparametric machine and deep learning algorithms. Machine learning models such as random forest, ensemble learning, and support vector machines use algorithms that progressively learn the pattern from sample data to make final predictions (Hastie et al., 2009). Deep learning is one of the branches of machine learning focusing on the artificial neural network for model training and predictions. Deep learning models such as generative neural networks, convolutional neural networks, and recurrent neural networks use different combinations of layers and nonlinear activation functions to transform the data at each layer to obtain a better fit for each trait by considering genetic architecture (Lecun et al., 2015).
In previous studies, we have shown the advantages of multi-trait GS models (Sandhu et al., 2021e) and machine and deep learning models for predicting complex traits in wheat (Sandhu et al., 2021b; Sandhu et al., 2021c). Building upon the findings of previous studies, this study’s objectives were to 1) optimize the uni- and multi-trait GS models for seven end-use quality traits, 2) compare the performances of four uni- and multi-trait GS models using cross-validation and independent predictions, and 3) assess the potential of across-location prediction using multi-trait models and with the inclusion of genotype by environment interaction component.
MATERIALS AND METHODS
Plant material: A total of 666 SWW genotypes from the Washington State University winter wheat breeding program were screened at two locations, namely, Lind and Pullman, WA, United States, from 2015 to 2019. These genotypes consist of preliminary and advanced yield lines, doubled haploid lines, and F3:5 lines screened as part of the breeding program. Genotypes in the advanced and preliminary yield trials were screened for yield, and superior lines were later evaluated for end-use quality traits. Double haploid lines and F3:5 derived lines were screened for disease resistance and agronomic traits, and the selected genotypes were screened for quality traits and not for yield traits. As the dataset was from a breeding program, some lines were continuously removed each year with new genotypes in the subsequent year, resulting in an unbalanced dataset. More information about the dataset is referred to Aoun et al., 2021a and Sandhu et al., 2021b. End-use quality data were collected separately at both locations for all the genotypes.
Phenotyping for the end-use quality traits: These genotypes were tested for seven end-use quality traits, namely, cookie diameter (CODI), grain protein content (GPC), flour yield (FYELD), flour SDS sedimentation (FSDS), flour ash (FASH), flour protein (FPROT), and milling score (MSCOR). Complete information about all these traits and their summary is provided in Table 1. To evaluate grain characteristics, GPC was measured following AACC Approved Method 39–10.01 using an NIR analyzer (Perten Elmer, Sweden). Flour parameters, namely, FASH, FPROT, and FSD were measured using the extracted flour. FASH and FPROT were measured using Approved methods 08–01.01 and 39–11.01. The milling traits, that is, FYELD and MSCOR were measured using the sample obtained from the modified Quadrumat Senior Experimental Milling System. FYELD was estimated as a ratio of total flour by weight (reduction rolls and break). MSCOR was obtained using FYELD and FASH. CODI is one of the baking parameters and is estimated by following the AACC Approved Method 10–52.02. More information about the phenotyping is referred to Aoun et al., 2021a and Sandhu et al., 2021b.
TABLE 1 | Summary statistics of seven end-use quality traits evaluated from the SWW population.
[image: Table 1]Genotyping: Genotyping by sequencing (GBS) was used for genotyping the complete population using the facilities from Genomics Sciences Laboratory, Raleigh, NC (Poland et al., 2012). The complete details about the genotyping and SNP calling was reported in Aoun et al. (2021a) and Sandhu et al. (2021a). Initial SNP data consisted of 216,392 markers anchored to the T. aestivum RefSeq v1.0 reference genome. Markers were removed based on the minor allele frequency less than 5%, heterozygosity more than 15%, and markers missing more than 20% of data, and the whole pipeline was implemented in R (R Development Core Team, 2020). At the end of the filtering, we were left with 40,518 SNPs used for further analysis.
Phenotypic data analysis: To account for the unbalanced dataset in this study, adjusted means were extracted using residuals obtained from the unreplicated genotypes in individual environments using the augmented complete block design model implemented in the R statistical program. Adjusted means were obtained according to the method implemented in Sandhu et al. (2021b), and the model equation is given as follows:
[image: image]
where Yij is the raw phenotype, Blocki corresponds to the fixed block effect, Checkj is the replicated check cultivar effect; Blocki is the fixed block effect, and eij is the residuals.
Adjusted means across the environments were obtained using the models and are given as follows:
[image: image]
where Yijk is the raw phenotype value; Checkj, Blocki, and Envk are the fixed effect of the ith check, jth block, and kth environment, respectively; and eijk is the residuals.
Heritability of each trait was calculated using the model as follows:
[image: image]
where [image: image] is the Cullis heritability, [image: image] is the mean–variance of BLUPs, and [image: image] is genotypic variance.
Genetic correlation among traits was obtained using the multivariate models as follows:
[image: image]
where yA and yB are the BLUPs of the two traits, X and Z denote the design matrix, g is the random genetic effects, and e is the residual for each trait. Variance components were calculated assuming [image: image]∼ N(0, H⊗G), where H is the genetic variance–covariance matrix, G is the genomic relationship matrix, and [image: image]∼ N(0, I⊗R), where I is the identity matrix and R is the residual variance–covariance matrix. The genetic correlation is calculated as follows:
[image: image]
where cov(A, B) is the covariance between two traits, Var(A) and Var(B) represent variances of two traits individually, and the analysis was performed using JMP genomics (SAS Institute Inc, 2011).
Genomic selection models: We evaluated the performances of four uni-trait and multi-trait GS models for predicting seven end-use quality traits, and prediction accuracy was compared under different validation scenarios to mimic the breeding program. These four models were GBLUP, Bayes B, RF, and MLP and were tried under both uni-trait and multi-trait scenarios. Complete information about the model structure and optimization is provided below:
Genomic best linear unbiased predictor: The uni-trait GBLUP model was used to train each trait individually, and the model is represented as follows:
[image: image]
where y is the vector of end-use quality phenotype for each genotype, [image: image] is the overall mean, u is a vector of normally distributed marker predictor effects as [image: image]∼ N (0, I [image: image]u), Z is a design matrix assigning markers to genotypes, and e is the residual error with e ∼ N (0, I [image: image]e). The multi-trait model is represented as follows:
[image: image]
where n is the number of traits, [image: image]1 to n represents the vector of phenotypes of the end-use quality traits, X and Z are design matrix, and [image: image] represents the random marker effects, distributed as ∼ N (0, G⊗H), where G is the genomic relationship matrix, H is the variance–covariance matrix, and [image: image] represents the standard normal error, distributed as ∼ N (0, I⊗R), where R is the residual variance–covariance matrix and I is identify matrix.
Bayesian B: The uni-trait Bayes B model was used to train each trait individually, and the model is represented as follows:
[image: image]
where [image: image] is the vector of end-use quality phenotype for each line, [image: image] is the identity of the SNP, [image: image] represents the marker effect, [image: image] is the overall mean, and [image: image] is residual error. MTM and BGLR packages were used for the analysis with 5,000 burn-in and 15,000 test iterations (de los Campos and Grüneberg, 2016). Prior distribution used for model training is as follows:
[image: image]
which is a mixture of distribution with mass at zero and same prior for all remaining markers, that is, χ−2 (dfβ, Sβ) where Sβ is a scaling parameter and dfβ is the degree of freedom (Pérez and De Los Campos, 2014).
The MT Bayes B model is represented as follows:
[image: image]
where y represents the vector of phenotypes of the end-use quality traits, [image: image] is the overall mean, [image: image] is the genotypic value distributed as [image: image]∼ N(0, H⊗G), and [image: image] is residuals.
Bayesian multi-trait multi-environment model (BMTME): Montesinos-López et al., 2016, Montesinos-López et al., 2019b provided a BMTME model for predictions which is represented as follows:
[image: image]
where [image: image] is the matrix of order t x l, with t is the number of traits and l = e x g, where g is the number of genotypes and e is the number of environments; X, Z1, and Z2 are design matrixes for environmental effect, genotypic effect, and genotype by environmental interaction, respectively; [image: image] is beta coefficient matrix of order e x t; [image: image] is the random genotypic effect distributed as [image: image]∼ MN(0, G, Ʃt), where G is additive relationship matrix and Ʃt is the unstructured covariance matrix of order t x t; [image: image] is the random genotypic x trait x environment effect matrix distributed as [image: image]∼ MN(0, Ʃe G, Ʃt), where Ʃe is the unstructured covariance matrix of order e x e. BMTME package was used for the analysis with 5,000 burn-in and 15,000 test iterations (Montesinos-López et al., 2019b).
Random forests: RF is a tree-based machine learning model where output is predicted from the collection of identically distributed trees. Input features are split at each node of the tree to create a new branch, and splitting is performed by lowering the loss function. Bootstrap sampling was performed over the training set to select the best set of features for tree building (Ramzan et al., 2020). The model equation is given as follows:
[image: image]
where [image: image] is the predicted value of the end-use quality trait with genotype [image: image], T represents the number of trees, and B is the number of bootstrap samples. The outline of model optimization is as follows.
1) Bootstrap sampling was performed to select the plants from the training set with replacement and was repeated for b = (1,…, B) times.
2) Max feature (max_feature) function from the random forest regressor library was used to identify the best set of features (SNP) by lowering the loss function while building new trees.
3) Splitting at each node of the tree was performed using genotypic data to lower the mean square error
4) The aforementioned three steps were repeated until a minimum node or maximum depth was reached. The set of these trees were used to predict the output of a genotype [image: image] by averaging the performance over the forest.
The hyperparameter space was explored using the grid search cross-validation (CV) function to optimize the hyperparameters for each trait by lowering the mean squared error. The important hyperparameters used for RF training were number and depth of trees, feature importance, and number of features sampled for each iteration. Hyperparameters tried were number of trees (200, 300, 500, and 1,000), max features (auto and sqrt), and max depth (40, 60, 80, and 100) using random forest regression and Scikit learn libraries.
Multilayer perceptron (MLP): MLP is a special type of neural network where information flows in one direction, starting from input layer through different hidden (processing) layers to the output layer. The output from the last hidden layer is used to predict output and is represented as follows:
[image: image]
where Yj is the output from the jth hidden layer, [image: image](j-1) is the activation function, Wj is the neuron’s weight, and b(j-1) is the bias associated with each layer. The number of vectors in the output layer define the uni- and multi-trait models.
The hyperparameter space was explored using the Keras inner grid search cross-validation (CV) function to optimize the hyperparameters for each trait by lowering the mean squared error. For hyperparameter optimization, 80% of the training data were used, where 80% of this dataset was used for exploring the hyperparameter space and the remaining 20% for validation. Scikit learn and Keras libraries were used to optimize the model in Python (Gulli and Pal 2017). A full-factor design was implemented using grid search CV to explore parameters, that is, solvers, dropout, learning rate, number of filters, activation function, number of hidden layers and neurons, and regularizations. Overfitting in the model was controlled using early stopping, regularization, and dropout (Srivastava et al., 2014). More information about the MLP models, hyperparameter optimization, and overfitting control is used in Sandhu et al., 2021c, Sandhu et al., 2021a.
Assessing the model’s prediction abilities: The genomic selection model performance was evaluated as prediction accuracy, which is the correlation between GEBVs and the observed phenotype. The correlate function from the “corrr” R package was used to assess prediction accuracy (Max et al., 2020). Cross-validation approach, that is, a five-fold CV was used to evaluate the prediction accuracies where each fold was used separately as a testing fold, and this process was repeated two hundred times. For each location, that is, Pullman and Lind, performances of both uni- and multi-trait models were evaluated separately using five-fold CV, and the results were reported separately for each trait and model.
Across-location prediction scenarios were also tested where the dataset from one location was used to predict the performances of genotypes at another location and environment. In our case, the complete data set from one location, that is, Lind was used to train the model, and predictions were made for 2019 Pullman environment and vice versa. Genotype by environment components was also included during across-location predictions.
RESULTS
Trait summary, heritability, and correlation: Table 1 provides the summary and broad-sense heritability of seven end-use quality traits evaluated from the SWW population planted at two locations in this study. Most of the traits had moderate to high heritability, except grain protein content and flour protein. Heritability of FSDS and FYELD was 0.92 and 0.91, respectively, highest among all the traits. Phenotypic and genetic correlation results provided evidence that few traits were correlated (Figures 1, 2). The highest phenotypic and genetic correlations were observed between GPC and FPROT, which was 0.93 and 0.91, respectively (Figures 1, 2). Some traits were negatively correlated with each other. Principal component analysis showed the absence of structure in the population, where first and second PCs only explained the 5.8 and 4.2% variation, respectively (Figure 3), and this was expected as the population was from the same breeding program. Frequency distribution for all the traits at both locations is shown in Supplementary Figure S1. Furthermore, ANOVA results showed that all the traits, except CODI, have significant GXE interaction (Supplementary Table S1).
[image: Figure 1]FIGURE 1 | Phenotypic correlation among the seven end-use quality traits evaluated from the SWW population.
[image: Figure 2]FIGURE 2 | Genetic correlation among the seven end-use quality traits evaluated from the SWW population.
[image: Figure 3]FIGURE 3 | Principal component analysis for the 666 SWW genotypes obtained using 40,518 SNP markers.
Hyperparameter optimization for the MLP model: Two hundred iterations were performed for the MLP model using Keras inner grid search CV function to optimize the hyperparameters for each trait by lowering the mean squared error. The hyperparameters optimized for each trait were later used for predicting traits in the testing set. Tables 2, 3 provide the set of hyperparameters optimized for each trait under the uni- and multi-trait MLP model. Regularization and dropout were used in the model to control the overfitting following Srivastava et al. (2014). The number of hidden layers and neurons played a critical role during model optimization compared to other hyperparameters. For the uni-trait MLP model, some traits required different activation functions other than relu, while for multi-trait MLP, all the traits gave the lowest MSE with a relu activation function. Information about the hyperparameters is provided separately for each trait, demonstrating that different genetic architecture required specific combinations of hyperparameters for best performance (Tables 2, 3).
TABLE 2 | Hyperparameters optimized for seven end-use quality traits using the uni-trait MLP model.
[image: Table 2]TABLE 3 | Hyperparameters optimized for seven end-use quality traits using the multi-trait MLP model.
[image: Table 3]Prediction accuracies within the location using cross-validation: We compared the performance of four uni- and multi-trait models using a five-fold CV approach to predict seven quality traits. Average results for each trait in the multi-trait GS were used to compare its performance with uni-trait GS models. Figures 4, 5 show the uni- and multi-trait prediction accuracies for the two locations, namely, Pullman and Lind, respectively. Multi-trait prediction accuracies were higher for all the traits, except CODI, for both locations (Table 4). Prediction accuracies varied from 0.44 to 0.76 and from 0.40 to 0.79 for uni- and multi-trait models, respectively, for seven traits evaluated in this study (Figures 4, 5). The Bayes B uni-trait model obtained the lowest prediction accuracies, while the MLP multi-trait model obtained the highest prediction accuracies. On average, multi-trait GS models gave 5.5% higher prediction accuracies than uni-trait GS models (Table 4). There was no difference in the uni- and multi-trait Bayes B model’s performance for most traits. In summary, multi-trait GBLUP, Bayes B, RF, and MLP performed 6.9, 1.8, 6.6, and 6.5% superior to their uni-trait counterparts, respectively (Table 4).
[image: Figure 4]FIGURE 4 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the Pullman location.
[image: Figure 5]FIGURE 5 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the Lind location.
TABLE 4 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the two locations across the years, namely, Pullman and Lind using the cross-validation approach.
[image: Table 4]The highest prediction accuracies were obtained using a multi-trait MLP model for five of the seven traits evaluated in this study, closely followed by the multi-trait–based RF and GBLUP model. FPROT showed the greatest improvement in prediction accuracy, that is, 36%, with the multi-trait model compared to uni-trait GS models, while CODI showed the lowest improvement in prediction accuracy, that is, -2.9%. Prediction accuracies for the Pullman and Lind locations varied from 0.52 to 0.79 and from 0.40 to 0.70, respectively, with higher accuracy for all the traits at the Pullman location. Improvement in prediction accuracies for GPC, FASH, MSCOR, FYELD, and FSDS with multi-trait models was -0.1–31.6%, 5.4–15.4%, 9.6–31.6%, 1.5–2.3%, and 7.6–16.7%, respectively (Figures 4, 5).
Prediction accuracies across the environments: Across-location predictions were performed where data from the Pullman environment was used for model training and predictions were made for the Lind environment, and vice versa. Across-location prediction accuracies were lower than prediction accuracies within the environment using cross-validation (Tables 4, 5). Figure 6 and Table 5 show the prediction accuracies for 2019_Pullman when the model was trained on Lind data, and predictions were made for seven end-use quality traits with four different uni- and multi-trait GS and one multi-trait multi-environment model. Similarly, Figure 7 and Table 5 show the prediction accuracies for 2019_Lind when the model was trained using the Pullman dataset. Across-location prediction accuracies varied from 0.25–0.50, 0.28–0.48, to 0.31–0.56 for uni-trait, multi-trait, and multi-trait multi-environment models, respectively, for seven traits evaluated in this study. Similar to cross-validation results, Bayes B models performed inferior compared to all other models.
TABLE 5 | Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic prediction models for the across-location predictions. 2019_Pullman_Lind represents the scenario where predictions were made on 2019_Pullman by training models on the Lind dataset.
[image: Table 5][image: Figure 6]FIGURE 6 | Prediction accuracies across environment Pullman with training on the Lind dataset for seven end-use quality traits using four different uni- and multi-trait and one Bayesian multi-trait multi-environment genomic prediction models.
[image: Figure 7]FIGURE 7 | Prediction accuracies across environment Lind with training on the Pullman dataset for seven end-use quality traits using four different uni- and multi-trait and one Bayesian multi-trait multi-environment genomic prediction models.
We observed that multi-trait GS models performed 7.9% superior compared to uni-trait GS models, and it further strengthens the results obtained for within the environment scenario that multi-trait GS models are better for predicting end-use quality traits. Multi-trait GBLUP, Bayes B, RF, and MLP performed 8.1, 5.7, 5.0, and 10.0% superior to their uni-trait counterparts, respectively (Table 5). Improvement in prediction accuracies for GPC, FPROT, FASH, MSCOR, FYELD, CODI, and FSDS with multi-trait models was 21.7–43.4%, -14.7–29.4%, 5.0–12.5%, -17.4–65.2%, 2.4–24.4%, 10.0–32.5%, and 13.3–60.0%, respectively, over the uni-trait models (Figures 4, 5). There was no difference in the performance of multi-trait machine and deep learning models from the multi-trait multi-environment model which consisted of genotype by environmental interaction in the model (Table 5).
DISCUSSION
Plant breeders routinely collect data for multiple traits from multiple environments before making final selections. Genomic selection is becoming popular to predict GEBVs due to robust next-generation sequencing technologies and its cost-effectiveness. However, few studies have utilized the multi-trait and multi-environment prediction models due to the model’s complexity, huge computational burden, and lack of good quality phenotyping data (Cuevas et al., 2017). Multi-environment prediction represents a perfect scenario to reduce the number of locations or plots needed in subsequent selection trials (Tolhurst et al., 2019; de Oliveira et al., 2020). Multi-trait GS models showed improved prediction accuracy in previous studies when traits are correlated and have low heritability; these models provide an opportunity to predict traits simultaneously by borrowing information from each other (Gill et al., 2021; Larkin et al., 2021). This study explored the potential of using multi-trait–based GS models to predict seven end-use quality traits in soft white wheat population planted at two locations in Washington, United States, from 2015 to 2019. Prediction accuracies for individual traits varied from 0.23 to 0.79 using different models, with multi-trait models performing superior to uni-trait models for the majority of the traits and validation scenarios.
Seven out of the 14 end-use quality traits from our previous study were selected for multi-trait and multi-environment predictions, which showed lower prediction accuracies and higher genotype by environment interactions (Aoun et al., 2021a; Sandhu et al., 2021c). These higher values of the genotype by environment interactions demonstrated the potential of using multi-trait multi-location models in the breeding programs. We observed a change in genotypes ranking across the multiple environments for these seven traits due to high genotype by environment interactions and negative correlation among the environments. Multi-trait models performed 5.5 and 7.9% superior to uni-trait GS models for within-environment and across-location predictions, while multi-trait multi-environment models performed 10.5% superior to uni-trait GS models. Across-location prediction accuracies for the seven traits varied from 0.23 to 0.53, which were higher than those of previous studies for across-location predictions for end-use quality traits (Lado et al., 2013; Hayes et al., 2017). This was attributed to the reference population, which included the progeny of different lines from the same breeding program. Likewise, Heffner et al. (2011) showed higher across-location prediction for end-use quality by using the same set of biparental populations across the locations. The high prediction accuracy in their study was reflected from a biparental population where training and testing sets must have a relationship and with little variation (Heffner et al., 2011). Furthermore, we observed that genotype by environment interaction components could improve across-location prediction accuracies in the models. Similar work was shown by Ward et al. (2019) and Monteverde et al. (2019) that describe the advantage of including genotype by environment and marker by environment interaction components into the models when correlation among environments is lower.
Predicting breeding values of un-phenotyped individuals is always a daunting task, but different strategies have been employed in recent years for predictions under different circumstances. Inclusion of correlated traits into multi-trait models has been effective to increase predictions for primary traits with low heritability when the secondary trait is highly correlated with high heritability. However, some studies have shown no improvement of prediction accuracies when secondary correlated traits were included into the models for predicting traits in rice (Oryza sativa L.) (Schulthess et al., 2016), avocado (He et al., 2016), and mice (Jiang et al., 2015), which could be attributed to some environmental changes or interactions not captured by the associated models. Similarly, Jia and Jannink (2012) showed no advantage of using multi-trait GS models even when traits have high heritability differences. However, in our study, we observed that even though traits have moderate to high heritability, they still showed an increase in prediction accuracies using multi-trait models when the traits have moderate to high correlation. Highest improvement was observed for traits like GPC, FPROT, and FSDS due to their high correlation, whereas CODI showed lowest improvement due to low correlation with other traits. Correlated traits help predict correlated responses when traits of interest are not phenotyped; this will also help predict expensive to phenotype traits. Previous works have shown that prediction accuracies increase when traits have high correlation, but not with low to intermediate correlation among traits (Rutkoski et al., 2012; Jiang et al., 2015).
Our study showed that uni-trait– and multi-trait–based machine and deep learning models performed superior to traditional GS models. We observed that machine and deep learning models performed 5–11% superior to Bayes B and GBLUP under cross-validation and across-location predictions. Liu et al. (2019), Sandhu et al. (2021a) and Zingaretti et al. (2020) also demonstrated the advantage of using deep learning models in soybean (Glycine max L.), wheat, and strawberries (Fragaris ananassa) over the traditional mixed model–based approaches and supported our findings. Similarly, Montesinos-López et al. (2018) demonstrated the multi-trait–based deep learning model’s superiority over the multi-trait Bayesian models for predicting four different traits in wheat and maize (Zea mays L.). These machine learning models are highly flexible for understanding complex interactions present in these datasets, thus inferring the current trends in the datasets compared to parametric models like GBLUP and Bayes B. Furthermore, multi-trait machine learning models are more suitable as they could further explore relationships between traits and sets of predictors with the removal of redundant information from the models with explicit programming. Due to these characteristics of machine and deep learning models, we observed their better performances under uni- and multi-trait scenarios than under Bayes B and GBLUP.
As discussed, multi-trait machine and deep learning models performed better than multi-trait Bayes B and GBLUP models; however, the advantage of machine and deep learning models diminishes when the genotype by environment interaction component was included in the BMTME model. The inclusion of genotype by environment components perfectly models the environmental effects and correlation among the traits for different environments, resulting in improvement of prediction accuracy. Similarly, Guo et al. (2020) and Ibba et al. (2020) showed an increase in prediction accuracies for yield-related traits in U.S. soft wheat and end-use quality traits using multi-trait multi-environment models over the uni-trait models. The comparable performance of multi-trait machine learning models and BMTME models could be attributed to the capacity of BMTME models to provide separate penalization for the genotypes, environment, and genotype by environmental interaction, while working of the machine and deep learning models follow the black-box nature, creating problem for biological understanding of the process.
CONCLUSION
We explored the potential of using multi-trait–based genomic selection models for predicting seven end-use quality traits in soft white wheat population. Uni-trait– and multi-trait–based genomic selection models were optimized separately for each trait, and optimized hyperparameters were used for testing. Different cross-validation, independent, and across-location prediction scenarios were applied to compare the model’s performance. Multi-trait genomic selection models performed superior to uni-trait models when traits were correlated with each other. The inclusion of genotype by environment interaction components further improves the across-location prediction accuracies, a typical advantage shown by machine and deep learning models. Prediction accuracies obtained in this study using multi-trait models for within-environment and across-location predictions open up the avenue to explore the use of genomic selection to select for end-use quality traits in wheat. The prediction accuracies obtained in this study further provide evidence of the usefulness of genomic selection in wheat breeding and will enhance the confidence of the breeder to utilize this tool when making selections.
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Multi-ovary wheat (three pistil) is a unique germplasm for the seed production of hybrid wheat. The purpose of the present study was to transfer the multi-ovary trait to semi-dwarf plants to increase the production of grains in wheat crops. Therefore, tall, semi-dwarf, and dwarf plants were crossed with plants with the three-pistil trait. A three-pistil tall plant was used as the female parent, while tall (Synthetic hexaploid), semi-dwarf, and dwarf plants were used as male parents. F1 and F2 progenies with parents were planted in 2015-16 using RCBD. The outcome of the crosses showed that multi-ovary tall plants gave significant difference for all five traits (days to maturity, plant height, number of seeds per spike, grain weight per spike, and grain yield per unit area) in both generations. The greatest number of grains per spike and grain yield per unit area were obtained from the cross of three-pistil tall and dwarf parent (P1/P6) in the F1 and F2 generations. The cross also resulted in a significant reduction in height (96 cm). Further heterosis studies conducted with crosses between three-pistil tall and dwarf parent (P1/P6) showed the greatest heterosis and heterobeltiosis for the number of grains per spike (60.0 and 26.19%, respectively) and grain yield per m2 (27.68 and 2.85%, respectively). In the case of grain weight per spike, the heterosis value was also positive and significant (17.7). Meanwhile, for other traits, their values were negative for heterosis and heterobeltiosis. High numbers of grains and grain weight were found to be associated with positive heterobeltiosis and in turn the grain yield per m2, but plant height and maturity had negative affirmation with heterobeltiosis. Heterosis studies also indicated the dominant gene action for the three-pistil trait. Thus, the study clearly signified that grain yield can be increased by using the multi-ovary genotype with the semi-dwarf height. This new germplasm will be helpful for breeders to increase the production of wheat crops in the southern climate of Pakistan.
Keywords: three pistil, heterosis, semi dwarf, synthetic hexaploid, breeding
INTRODUCTION
Wheat (Tritium aestivum L.) is consumed as a major staple food in almost all regions of the world and is grown on millions of hectares of land. Several products of wheat are also consumed by humans in different parts of the globe. One important product is Chapatti which is used as a staple food in Asian countries (Shitsukawa et al., 2009; Irshad et al., 2021). It accounts for approximately 30% of global grain production, while it provides 20% of the calories and essential amino acids to the human population (Howel et al., 2014). As the population of the world is increasing, the demand for wheat (as a food) is also on the rise. During the green revolution only one trait, i.e., plant height was improved. Similarly, for the next green revolution, it will be necessary to continue to increase production by improving the yield-related traits of wheat to meet the future demands of food security. To improve the yield potential of wheat, it is necessary to increase the grain number per spike and unit area (Frederick and Bauer, 1999). For this purpose, a wide range of genetic variations are required in the morphological structure of wheat to achieve high grain numbers per spike (Yang et al., 2015).
The female reproductive part is comprised of a multilocular ovary containing ovules, two filamentous styles, and a feathery stigma, while for the male reproductive part, a filament and an anther constitute a stamen where the pollen grains are present in the anther (Zhu et al., 2019). The three-pistil (TP) trait in wheat is a very important trait, in which 2–3 ovaries (well developed) in a floret are observed. The potential of yield in wheat can be improved by increasing the number of seeds in a spike. Therefore, wheat breeders have focused on morphological and genetic variability for yield-related traits (Irshad et al., 2021). The TP trait was first reported by Chen et al. (1983), which was an excellent line to increase wheat yield. The previous genetic studies revealed that the TP trait is controlled by a single dominant locus pis1 (Peng et al., 2004) and located at chromosome 2D. Yang et al. (2011) identified seven differentially expressed genes in TP mutants using molecular technologies. The overexpression of the gene is attributed to the development of TP. Thus, it is imperative to use three-pistil germplasm in hybridization, which can give encouraging results.
Breeding programs as an essential approach to enhance crop yield and other quality parameters (Fu et al., 2014). A hybrid offspring which is the outcome of two genetically diverse individuals is superior to that of the mean of the parents (heterosis) or the better parent (heterobeltiosis). This phenomenon has been successfully utilized in fiber, cereals, and oilseed crops (Ahmad et al., 2014). . Intriguingly, in a self-pollinated crop like wheat, heterobeltiosis is much more desired than heterosis in any breeding program (Zaazaa et al., 2012). Although the hybridization of wheat has achieved significant progress (Boeven et al., 2016), there is a lack of large-scale effective utilization of wheat hybrids. The low propagation coefficient of hybrids in wheat leads to a higher cost of seed production. This proves to be a bottleneck for the efficient utilization of hybrid wheat.
In the present study, a TP tall mutant was crossed with normal tall, semi-dwarf, and dwarf genotypes. The foremost objective of hybridization was to transfer the TP trait into wheat germplasm cultivated in Pakistan and increase the grain number per spike for semi-dwarf and dwarf height plants, to help increase wheat production.
The other objective was to develop baseline parental material to be used as a genetic resource and in hybridization programs to create genetic diversity. The multi-ovary trait can be exploited for hybrid wheat development as the parents exhibit significant heterotic effects or may be used to develop conventional wheat varieties by repeated cycles of selection in advance filial generations, which is also evident from the results. The overall scheme of the work is given in Figure 1.
[image: Figure 1]FIGURE 1 | Schematic diagram for selection of desired semi-dwarf three-pistil plant.
MATERIAL AND METHODS
Plant Material and Construction of Research Population
This experiment was conducted at the Regional Agricultural Research Institute Bahawalpur, Pakistan. The goal was to develop new plants carrying the multi-ovary trait with desirable maturity (medium duration), number of seeds per spike, and height. The multi-ovary genotype (tall) was collected from the Wheat Wide Crosses Laboratory, National Agriculture Research Centre, Islamabad, and it was crossed with tall (normal ovary), semi-dwarf (normal), and dwarf (normal).
Tall 3-pistil parent was used as the female parent in all the crossing schemes, which are as follows:
1) Three-pistil × tall 1 (normal)
2) Three-pistil × tall 2 (normal)
3) Three-pistil × semi-dwarf 1 (normal)
4) Three-pistil × semi-dwarf 2 (normal)
5) Three-pistil × dwarf 1 (normal)
6) Three-pistil × dwarf 2 (normal)
 | 
[image: ]The parents were sown in 2014–2015 and the crossing was done in February 2015 to get the F1 seeds. F1 and F2 were planted during 2015–2016. The F2 seeds were produced by the planting of F1 at Kaghan (off-season site) during 2016, and F3 was planted during 2016–2017. The sowing of F1 and F2 was done in triplicate RCBD with 5 m of single row length. The plant to plant distance was 15 cm. The parents were also sown along with F1 and F2.
Morphological Analysis
A total of 30 plants from the F1 population from each cross and 75 plants from the F2 population of each cross were selected randomly for data recording and analysis. Days to maturity, plant height, number of grains per spike, grain weight per spike, and grain yield per m2 were recorded. The mean values were used to characterize the corresponding traits. Photographs of the parents and selected plants were taken using Nikon D600 digital camera (Nikon, Tokyo, Japan), whereas those of the pistils were taken using a Nikon E995 digital camera (Nikon, Tokyo, Japan).
Analysis of the Genetic Basis of the Multi-Ovary Trait
The multi-ovary trait was measured during the flowering season and maturation stage, and the trait of each individual of the F1 and F2 populations was measured. The numbers of ovaries and seeds in the florets of each spike were counted. Each plant with a floret carrying more than one ovary during the flowering period and setting more than one seed at the maturation stage was recorded as a multi-ovary plant, while plants with florets producing one ovary and setting one seed were recorded as mono-ovary plants, a classification that followed that of Peng et al. (2004) and Ma et al. (2006).
For the F1 generation, all 30 plants were measured. For each of the F2 populations, 75 plants were randomly selected for measuring. The numbers of multi-ovary and mono-ovary plants were counted. For each population of the F3 generations, all plants were measured to determine whether the multi-ovary trait segregated in each population. The number of different segregations of the multi-ovary trait in each population was counted.
Statistical Analysis
The recorded data were analyzed statistically by using the technique as given by Steel et al. (1997). In F3, the selected genotypes were compared with local checks, i.e.; Fareed-06 for all four traits.
Also, heterosis, heterobeltiosis, and inbreeding depression were computed following Matzinger et al. (1962) and Fonsecca and Patterson, (1968). The following formulae were used for heterosis and heterobeltiosis in each environment for all the characters studied:
Heterosis over mid parent (H %) = ((F1-MP)/MPX100)
SE (F1-MP) = (3Me/2r) 1/2
Heterosis over better parent (HB %) = ((F1-BP)/BPX100)
SE (F1-BP) = 2Me/r)1/2
Inbreeding depression (ID %) = ((F1-F2)/F1X100)
SE (F1-F2) = 2Me/r) ½
Where Me = mean squared error; MP = mean mid parent value; BP = mean better parent value; R = number of replications. Standard error values were used to elucidate the significance of heterosis and inbreeding depression for each character expression under different environments.
RESULTS
Morphological Analysis
Different parents were used which were significantly different in plant height in the crosses (Figure 2). On the basis of these crosses, the best cross was selected with semi-dwarf height and the TP trait (Figure 2). Statistical analysis of the data indicated significant differences for all traits in the F1 and F2 generations (Figures 3, 4; Table 1). The trait means of the parents, and of F1 with their parents are given in Figures 3, 4, while the mean square of F2 is given in Table 1.
[image: Figure 2]FIGURE 2 | Phenotypic characterization of mono ovary and multi ovary plants. (A) Parents used in crosses. (B) Selected semi-dwarf three-pistil plant in F3 generation. (C) Spikes of three-pistil plants. (D) Three-pistil in semi-dwarf plant. (E) Mature grains of the three-pistil semi-dwarf plant.
[image: Figure 3]FIGURE 3 | Mean performance of parents and F1 hybrid for plant height and day to maturity traits. * = indicates significant from one parent at 0.01 probability level; ** = indicates significant from both parent at 0.01 probability level.
[image: Figure 4]FIGURE 4 | Mean values of F1 with their parents in different crosses for number of grains per spike and grain weight per spike. * = indicates 5% probability level; ** = indicates 1% probability level.
TABLE 1 | Mean squares of different traits in F2. * = indicates 5% probability level; ** = indicates 1% probability level.
[image: Table 1]Firstly, all the yield-related traits had been studied in the parent lines. The results are given in Figures 3, 4. Theheight of the TP plants was 150 cm while the semi-dwarf and dwarf were 97 and 72, respectively. Similarly, there was a significant difference in grain number, in which the TP plants had 71 grains per spike, but the dwarf and semi-dwarf plants had 41–45 grains per spike.
Days to Maturity
The cross between TP tall and normal tall plants matured in 144.3 days in F1 and 143 days in F2 (Figure 3) which indicated little reduction of duration. A similar trend was also observed in cross P1/P3. When TP tall was crossed with semi-dwarf 1, the F1 and F2 generations matured in 142.3 and 140 days, respectively. There was no significant change in maturity. Likewise, the results of the P1/P5 cross (TP and dwarf 1) for F1 and F2 showed 137.6 and 136 days to mature, respectively. The same situation was noticed in F1 and F2 for the cross between TP and dwarf 2. It showed that there was a reduction in maturity duration in both the F1 and F2 generations.
Plant Height
The results for the P1/P6 cross (TP and dwarf 1) in F1 and F2 resulted in plants having 93.3 and 90 cm height, respectively. Similar findings were noticed in F1 and F2 for the cross between TP and dwarf 2. These results show that there was a reduction in plant height in both generations; F1 and F2 (Figure 3). The plants selected in F1 and F2 from the cross of three-pistil and dwarf gave plants with desirable height (semi-dwarf).
Number of Grains per Spike
In F1 and F2 generations of the cross between TP tall and normal tall 1, the grain numbers recorded per spike were 63.6 and 60, respectively, while in the case of the cross between three-pistil and normal tall 2, the grain numbers were 66.3 and 62 in F1 and F2, respectively (Figure 4). For both of these crosses, grains per spike was increased but the plants did not show a desirable height, as shown in Figure 3. Thus, the crosses further continued and a TP tall was pollinated with semi-dwarf male parents (Mairaj-o8 and V-6309), where F1 and F2 yielded 52–48 and 49–46 grains per spike, respectively. Similarly, more grains were obtained from a cross between the three-pistil tall line with a dwarf parent where the grain numbers increased to 89.6 in F1 and 78.2 in F2 (Figure 4).
Grain Weight
The grain weights per spike were 2.06 and 2.00 in F1 and F2, respectively, in the cross between TP tall and normal tall 1. The cross between TP tall and normal tall 2 had grain weights of 2.30 and 2.10 g in F1 and F2, respectively (Figure 4). The crosses between TP tall and semi-dwarfs 1 and 2 (Mairaj-08 and V-6309) yielded grain weights per spike of 2.46 and 2.51 g in F1 and F2, respectively, for the former, and 2.33 and 2.41 g in F1 and F2, respectively, for the latter. The most desirable cross appeared from a TP tall plant pollinated with dwarf parents. This cross resulted in 4.04 and 4.00 g in F1and F2, respectively, which is the greatest grain weight obtained (Figure 4).
Grain Yield per m2
The cross between TP tall and dwarf gave a yield of 1.01 kg/m2 in F1 and 0.8 kg/m2 in F2 (Figure 5). There was a significant change in grain yield per unit area. Whereas the results of a cross P1/P2 (TP and tall) showed 0.432 and 0.38 kg/m2 in F1 and F2, respectively.
[image: Figure 5]FIGURE 5 | Mean performance of parents and F1 hybrid for grain yield (kg/m2). * = indicates significant from one parent at 0.01 probability level; ** = indicates significant from both parent at 0.01 probability level.
Heterosis and Heterobeltiosis
Five traits (days to maturity, plant height, number of grains per spike, grain weight per spike, and grain yield per m2) were studied for heterosis and heterobeltiosis. For days to maturity, crosss P1/P3, P1/P4, and P1/P6 gave highly significant superiority of F1, while cross P1/P2 showed negative heterosis in F1. The feasibility of exploitation of heterosis is useful to determine the superiority of hybrids that are particularly better than parents. Heterobeltiosis was negative and significant for days to maturity in all crosses, which indicated that maturity remains stable. In F2, the greatest value of inbreeding depression was 1.61 for the cross P1/P5, and the least value was .88 for the cross P1/P2. With regard to plant height, the greatest heterosis was 3.7 for P1/P5 and the least was −6.2 for P1/P7, which indicates a significant change in plant height in the case of cross P1/P7. In heterobeltiosis all the values were negative, indicating a reduction in height in F1 (Table 2). Regarding inbreeding depression for plant height, all the crosses showed positive effects. No change in plant height was observed in F2. For grain weight per spike, the greatest heterosis was observed in cross P1/P6 (17.7) and the least was −39.7 in cross P1/P2 (Table 2). For the number of grains per spike, all the crosses were positive and significant. While considering inbreeding depression, there was no superiority in F2. Heterosis and heterobeltiosis for grain yield per m2 were significant but negative for all crosses except for the cross P1/P6 (27.68 and 2.85% in F1 and F2, respectively). So we can say the cross P1/P6 was the best cross with semi-dwarf height, high grains per spike, and high grain yield per m2.
TABLE 2 | Heterosis (H, %), Heterobeltiosis (HB, %) and Inbreeding depression (ID%) for five traits.
[image: Table 2]Confirmation of Yield Traits in the F3 Generation
The selected cross from P1/P6 was given the name/MOB-13/1/2016 and was compared with check variety Fareed-06 in the F3 generation to validate the results. The line MOB-13/1/2016 was TP with desirable plant height (90 cm), a greater number of grains per spike, and significantly increased grain weight per spike and grain yield per m2 (Figure 6).
[image: Figure 6]FIGURE 6 | Comparison of selected crosses in F3 generation with commercial variety and parents. * = indicates significant from one parent at 0.01 probability level; ** = indicates significant from both parent at 0.01 probability level. *** = indicates significant from check at 0.01% probability level.
Genetic Analysis of the Multi-Ovary Trait
The multi-ovary trait was segregated in the F2 and F3 population derived from the reciprocal crosses between multi-ovary tall and mono-ovary semi-dwarf and dwarf plants. As shown in Table 3, the F2 population was segregated into multi-ovary and mono-ovary plants. The Chi-squared test indicated that the segregation ratio of multi-ovary to mono-ovary plants was 3:1, which is the typical segregation ratio according to Mendel’s law in all crosses. This indicated that the multi-ovary trait is controlled by a single dominant gene.
TABLE 3 | Genetic analysis of multi-ovary trait in F2 generation.
[image: Table 3]DISCUSSION
Maturity is an important trait for successful cropping. Some genotypes are of long duration, while some have a short duration. In spring wheat, up to 120 days to maturity is considered early maturity while more than 135 days to maturity is considered long duration in Pakistan (Masood et al., 2005). However, 135–150 days maturity is considered a desirable period. Long-duration genotypes are often exposed to high temperatures in the reproductive stage and lose grain weight which results in low production (Ain et al., 2015). The overall situation indicated that maturity showed a significant difference in the cross between TP and dwarf (P1/P6) but for all other crosses maturity was not influenced.
Plant height plays an important role in production, particularly when fertilizers are applied. Long maturity along with greater height causes low production due to lodging (Gulnaz et al., 2011). Generally, landraces are tall (115–120 cm), lower yield, and less disease tolerant and so cannot be applied for wheat breeding (Hasnain et al., 2006). Therefore, several outstanding modern cultivars with high yield and disease tolerant characteristics from Europe and America were widely adopted in breeding programs, such as Nanda 2,419 (i.e., Mentana, Italy), Ardito (Italy), Lovrin 10 and Lovrin 13 (Romania), Songhuajiang 2 (i.e., Minn 2,761, United States), Funo (Italy), Abbondanza (Italy), Orofen (Chile), and Gansu 96 (i.e., CI12203, United States) (Ain et al., 2015). Wheat breeding program in Pakistan started in the early 1930s and was accelerated after the Green Revolution. Earlier, the breeding program was focused on the selection of landraces with higher yield and disease tolerance (Khan et al., 2000). Later, it was extended to some other characteristics of wheat grain. The semi-dwarf group is characterized by a height range of 80–110 cm, while the dwarf group has a height range of 40–70 cm. In dry and low humidity areas, a height range of 85–100 cm is desirable. For selection, height is given more importance by breeders. Usually, shorter height is associated with better tillering, and taller height with low tillering. Thus, a three-pistil plant with reduced height is desired (Liu et al., 2020).
Grains per spike that is caryopsis contributes towards the high yield in wheat thus as such more grain number signifies more production (Mohsin et al., 2009). The number of grain is dependent on the number of spikelets present in a spike, and tillering capacity determines the later trait. It is an established fact that increasing the number of grains per spike reduces the number of spikes per plant due to negative correlation. The reduced spikes per plant can be compensated agronomically by increasing the number of spikes per unit area through adjusting seed rate. This aspect is also under consideration, and efforts are being made to incorporate high tillering capacity through hybridization. Wheat breeders tend to select plants with high numbers of grains per plant (Saleem et al., 2015). In multi-ovary plants, one floret carries three pistils that result in three grains, as compared to a normal floret which carries only one pistil. While utilizing the multi-ovary trait, the number of grains can be increased (Ayoub et al., 2019). So the plants/families in the cross between three-pistil tall and normal dwarf 1 (P1/P6) that had the three-pistil trait and medium height were selected and promoted to F3. Peng et al. (2004) used three-pistil plants to increase grain number. Dobrovolskaya et al. (2009) also suggested the use of TP plants for increasing grain numbers.
Besides grain number, another yield attribute/trait that holds significant importance for wheat production is grain weight. Though the multi-ovary trait gives rise to greater grain numbers, grain weight is affected by a large number of factors such as genotypes, soil moisture, planting methods. and floret size (Allah et al., 2010). Floret size in multi-ovary plants is also helpful for healthy grains. The cross of three-pistil tall pollinated with dwarf parents produced the following desirable traits in the progeny: fewer days to maturity, appropriate plant height, greater number of grains per spike, and greater grain weight (Anjum et al., 2017).
The genetic basis for the expression of heterosis superior to the parents has been described by Rasheed et al. (2016). In this study the number of grains per spike was the focus due to the three-pistil germplasm. The data regarding the number of grains per spike showed superiority over the best parent. The situation showed the dominance type of gene action for the three-pistil trait. Peng et al. (2004) and Tiwari et al. (2011) also reported dominance gene action for TP trait. The cross P1/P6 showed a high number of grains per spike that was significantly different from the parents (Table 3), which indicates that the TP trait was due to positive and non-significant heterobeltiosis of grain weight per spike and negative heterobeltiosis for plant height.
Based on this study it can be concluded that the TP germplasm should be used as the female parent while transferring the trait. Moreover, the development of TP semi-dwarf germplasm will be helpful for breeders to increase production. This study clearly suggests that heterosis studies showed the dominance type of gene action for the TP trait, and thus TP germplasm with medium height should be used as the female parent with a dwarf plant as the male parent in future breeding programs.
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Climate change is an undeniable threat to sustainable wheat production in the future as an increased temperature will significantly increase grain loss due to the increased number of generations per season of multivoltine species that are detrimental to plants. Among insects, orange wheat blossom midge (OWBM), yellow wheat blossom midge (YWBM), saddle gall midge (SGM), thrips, and frit fly (FF) are important wheat pests in the European environments, which can be managed by the development of resistant cultivars. This involves the identification, confirmation, and incorporation of insect resistance sources into new high-yielding cultivars. We used two diverse and unrelated wheat [winter wheat (WW) and spring wheat (SW)] panels to associate single-nucleotide polymorphism (SNP) markers with the mentioned pests using the tools of association mapping. All in all, a total of 645 and 123 significant associations were detected in WW and SW, respectively, which were confined to 246 quantitative trait loci. Many candidate genes were identified using the BLAST analysis of the sequences of associated SNPs. Some of them are involved in controlling the physical structures of plants such as stomatal immunity and closure, cuticular wax in leaf blade, whereas others are involved in the production of certain enzymes in response to biotic and abiotic stresses. To our knowledge, this is the first detailed investigation that deals with YWBM, SGM, thrips, and FF resistance genetics using the natural variation in wheat. The reported germplasm is also readily available to breeders across the world that can make rational decisions to breed for the pest resilience of their interest by including the resistant genotypes being reported.
Keywords: wheat, OWBM, YWBM, SGM, candidate genes, SGM, frit fly, thrips
INTRODUCTION
Wheat (Triticum aestivum L.) productivity and global food security have become synonymous with each other as wheat is the most important food crop in major parts of the world (Shiferaw et al., 2013; Curtis and Halford, 2014). During the last decade, global wheat production increased from 655 million metric tons (MT) (in 2011–2012) to 772 million MT (in 2020–2021) (https://www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990/), making a 10.76% increase in 10 years (1% per annum) (Table 1). Because there will be 9 billion people to be fed by 2050, the current wheat yield should be doubled by 2050 (Ray et al., 2013). This is only possible, however, if the yield is increased at the rate of 1.66% instead of 1% per annum. This prompts the demand to use, adopt, and utilize all the available tools and resources to sustain and increase the current wheat production (Hasan et al., 2020) to ensure food security for next generations.
TABLE 1 | The global increase in wheat yield per year in the last decade.
[image: Table 1]Recent reports (Deutsch et al., 2018) have shown that an increased temperature will significantly increase the grain loss in many parts of the world in wheat, maize, and rice. Likewise, another impact of climate change would be an increased number of generations per season of multivoltine species and their accelerated development causing potentially more damage to crops (Crespo-Herrera et al., 2019). Therefore, climate change will likely threaten sustainable wheat production in the future (Crespo-Herrera et al., 2019). In addition, wheat production has been threatened by unexpected abiotic and biotic stresses due to abrupt environmental changes or the movement of pathogens (Bakala et al., 2021).
The agents responsible for biotic stresses include fungi, viruses, insects, nematodes, arachnids, and weeds, directly affecting plant growth and development by depriving them of nutrition resulting into reduced plant vigor coupled with low yield (Bakala et al., 2021). Among insects, orange wheat blossom midge (OWMB), Sitodoplosis mosellana (Géhin), is recognized as one of economically important insects (Zhang et al., 2020). Losses due to this pest can go up to 30% in yield responsible for an economic loss of 30 million dollars (Kamran et al., 2013). The 1950s’ and 1980s’ outbreaks of OWBM in China witnessed 50% yield reduction in wheat production (Duan et al., 2013). The emergence of adult OWBM is synchronized with wheat heading where they lay eggs on the spikelets possibly due to certain wheat odor components (Birkett et al., 2004). On the other hand, young kernels are eaten by larvae; the result being reduced yield and quality (Olfert et al., 1985; Lamb et al., 2000). After harvest, these larvae overwinter in the soil, migrate to the soil surface in the spring, re-enter the soil to pupate, and then emerge from the soil as adults to infect the next crop cycle (Blake et al., 2011).
Another insect is the yellow wheat blossom midge (YWBM), Contrinia tritici (Kirby) (El-Wakeil et al., 2013), that is a univoltine species stayed overwinter in the soil, which pupate while arriving at the soil surface under ambient conditions culminating into adults in spring and starting mating. The mated females find young spikes to lay eggs. Like OWBM, YWBM larvae also feed on young kernels. In early July, larvae slip from spikes/stems at the advent of rain and burrow into the soil, where they enter diapause (Barnes, 1956).
An important biotic impediment in wheat productivity in Europe, in addition to OWBM and YWBM, is the saddle gall midge (SGM), Haplodiplosis marginata (von Roser, 1840). Contrary to OWBM and YWBM, the larvae of SGM feed on stems (Harris et al., 2001). SGM is the least studied of the three midges and has caused severe damage in cereals in recent years in Western Europe (Censier et al., 2012; Dewar, 2012). Its life cycle is also like the OWBM and YWBM. Its emergence is favored by warm and humid weather (Golightly, 1979). After emergence, females mate and lay eggs on both sides of young leaves (Golightly, 1979), which mature into larvae under conducive circumstances. These larvae crawl under the leaves and feed on the stem (Barnes, 1956). Each larva makes a small longitudinal depression giving rise to galls. The stem tissue at end of the gall forms two bulges (Balachowsky and Mesnil, 1935). Nutrient flow in a plant stem is intercepted as a result (Golightly, 1979).
In addition to midges, wheat is also attacked by thrips. The main species include Limothrips denticornis, L. cerealium, Haplothrips tritici, and H. aculeatus (El-Wakeil et al., 2010). Both winter wheat (WW) and spring wheat (SW) are affected (Andjus, 1996; Moritz, 2006). The first generation is completed in winter cereals followed by a second generation on SW (Köppä, 1970). Distortion, degeneration, and grain abortion is the result after thrips feeding on juvenile ears. Major effects include partial or complete discoloration of the ears (white ear effect), drying of the flag leaf, partial ear fertilization, and incomplete grain filling (15%–31% grain weight loss) (Larsson, 2005).
Frit fly (FF) (Oscinella frit) is another neglected biotic stress insect as it is not identified in Western European research. Hence, the losses due to FF are seen in the Czech Republic, Germany, Hungary, Romania, and Sweden (Ricroch, 2017). FF is a stem borer capable of causing considerable loss to spring cereals (El-Wakeil and Volkmar, 2011) and to winter cereals when sown early. The larva of FF overwinters within the stems of cereal plants (Lindblad, 1999) and pupates in spring. Females lay eggs on SW seedlings behind the coleoptile (Jonasson, 1977). Main shoot destruction is witnessed when the larva penetrates the plant causing yield losses (Lindblad and Sigvald, 1999).
It is evident from the above introduction that these pests are to be managed to improve farmers’ income and profitability. They are, however, hard to manage due to their small sizes, ability to use alternate hosts, and diapausing in the soil for prolonged periods (Barnes, 1956; Capinera, 2008; Censier et al., 2015). The main control strategies are based on insecticide treatments (Chavalle et al., 2015; Censier et al., 2016; Chavalle et al., 2018). However, because their occurrence is extremely environment-dependent, it is difficult to time insecticide applications and monitor populations to stop the outbreaks (Chavalle et al., 2015). Other strategies are using biopesticides such as insect pathogens (El-Wakeil et al., 2013; Shrestha and Reddy, 2019).
An alternate strategy to cope with the abovementioned insects is the development of resistant cultivars, which involves the identification, confirmation, and incorporation of insect resistance sources into new high-yielding cultivars. Limited success, however, has been achieved in the case of only OWBM (DePauw et al., 2009; Vera et al., 2013; https://ahdb.org.uk/) after the identification of the first antibiosis gene Sm1 mapped on chromosome 2BS from American wheat variety “Augusta” (McKenzie et al., 2002; Berzonsky et al., 2003). This gene has been incorporated in 30 bread and durum SW varieties in Europe and North America (Lamb et al., 2001; Gaafar et al., 2011; Blake et al., 2014). Two routes are available to determine the number and location of candidate genes underlying natural variation in any quantitatively inherited trait: via biparental linkage mapping and via phenotype–genotype association analysis (Zhu et al., 2008; Arif et al., 2017).
In this investigation, we aimed to get an insight into the genetic architecture of OWBM, YWBM, SGM, thrips, and FF in two different sets of wheat (WW and SW) panels using the latter. The primary aim was to assess the natural phenotypic variation against naturally existing populations of the abovementioned insects in various parts of central Germany. Another objective is to associate molecular markers with the differential phenotypic response to map loci underlying the resistance to these pests. Here, we reported that many promising novel quantitative trait loci (QTL) control the resistance of multi-insects, which can be implemented in wheat breeding for grain yield improvement. Finally, using the sequences of the associated markers, the genes located at the site of detected QTLs were sought.
MATERIALS AND METHODS
Plant Materials
The plant materials used to achieve the objectives mentioned in introduction part consisted of two wheat panels known as WW and SW panels. Both panels were grown in plots (2 × 1.5 m) in one replication but on different experimental sites [Gatersleben at Institute for Plant Genetics and Crop Plant Research (IPK-Gatersleben) and Quedlinburg at Julius Kühn Institute (JKI, Quedlinburg), state Saxony Anhalt; Rosenthal, state Lower Saxony; Oberpleichfeld state Bavaria)] and in different years between 2011 and 2016. Details are given in Supplementary Table S8.
The WW panel was composed of 96 WW accessions assembled at the Institute of Field and Vegetable Crops, Novi Sad, Serbia; accessions were selected on the basis of their phenotypic diversity with respect to a group of key agronomic traits, and their provenance is spread over 21 countries (Alqudah et al., 2020a). Initially, the panel was genotyped with 525 mapped and 315 unmapped DArT markers (Arif et al., 2012a), which resulted in the pioneer studies related to seed longevity (Arif et al., 2012a), dormancy, and pre-harvest sprouting (PHS) (Arif et al., 2012b). With the arrival of single-nucleotide polymorphisms (SNPs), this panel was genotyped with 15K Infinium SNP array, resulting in 11,139 SNPs that were mapped to all 21 linkage groups of bread wheat (Alqudah et al., 2020a). Recently, a re-analysis of the data of Rehman-Arif et al. (Arif et al., 2012a) with the new SNP data in this panel has revealed interesting loci of seed longevity in wheat (Arif and Börner, 2020).
The SW panel was composed of 111 accessions assembled from a very large collection of wheat resources at the IPK-Gatersleben on the basis of the differential behavior of seed survival. Initially, a set of 183 hexaploid wheat (129 spring type and 54 winter type) accessions (Arif et al., 2017) was selected from the collection maintained at the IPK Genebank and last multiplied in 1974, constituting the oldest seed lots available in the storage. In the beginning, it was mapped with the 2,134 polymorphic DArT markers covering a genetic distance of 2,875 cM (Arif et al., 2017). Later on, the panel was reduced to 111 on the basis of on-field behavior, provenance, and growth habit. To attain better marker coverage, these accessions were re-genotyped with a 15K Infinium SNP array. The result was the mapping of 9,804 high-quality SNPs covering a distance of 3,624.71 cM (2.70 SNPs/cM) on all the linkage groups of bread wheat (Arif and Börner, 2020). This 15K SNP Infinium SNP array is an upgraded, refined, and narrowed version of the 90K iSELECT SNPchip (Wang et al., 2014). The panel has been successfully used to elucidate the loci linked with anther extrusion (Muqaddasi et al., 2017) and more recently with seed longevity (Arif and Börner, 2020).
Phenotyping
The germplasm was screened for resistance to natural population of the following five insects, viz., Sitodiplosis mosellana (OWBM), Contarinia tritici (YWBM), Haplodiplosis marginata (SGM), thrips, and Oscinella frit (FF).
For OWBM and YWBM, the numbers of larvae in spikes (LS) and adults and larvae in white traps/shells (AWS and LWS, correspondingly) were counted as a measure of resistance. White water traps/shells were used to sample migrating (from ears to soil) midges (adults and larvae). The traps consisted of white plastic dishes: 12.5 cm diameter and 6.5 cm deep. One trap was placed in each plot on the ground among wheat plants from early June until the end of July. Traps were partly filled with water plus few drops of detergent. Caught adults and larvae were counted once per week using a magnifying glass (Gaafar et al., 2011).
On the other hand, the numbers of larvae per ear were assessed by collecting five to eight ears randomly per plot at approximately Zadoks stage 73 (Zadoks et al., 1974). Samples were put into a bag that was tightly sealed and stored at −20°C. After finishing the growing season, the ears were dissected under a binocular (SMZ645, Nikon), and the numbers of larvae were counted (Gaafar et al., 2011).
This methodology has been successfully adopted to identify wheat varieties most resistant to wheat ear insect pests in Central Germany by Gaafar et al. (2011). They used two methods to evaluate the degree of insect infestations in ears of different wheat varieties. One was inspection of wheat ears to count the number of spikelets and infested kernels and to identify the insect pests present. The second was the use of white water traps/shells to collect mature larvae of midges under consideration as an indicator of potential crop risk.
For SGM, ∼20 tillers per plot were randomly selected at approximately Zadoks stage 55 (Zadoks et al., 1974). Within 14 days after cutting, the number of saddles per tiller and the total number of saddles caused by the insects were counted.
The numbers of larvae and adult individuals per ear in case of thrips were assessed by collecting five to eight ears per plot. The time of collection and the handling of the ears was the same as described for OWBM and YWBM. Finally, the infestation with Oscinella frit was examined in autumn (WW panel) and/or in spring (WW and SW panels). The number of damaged seedlings in two middle rows of the plots and on a length of 2 m was counted.
Statistical and Genetic Analyses
All the basic phenotypic analyses including ANOVA and broad sense heritability (h2) were conducted in RStudio version 1.3.1093. Histograms were constructed using “ggplot2” package and pairwise comparisons were carried out using “ggpubr” package. Pearson’s correlation coefficient among the phenotypic traits were caclulated at p ≤ 0.05 for correlation networks that were visualized using “qgraph” package (Epskamp et al., 2012) for the significant correlations.
Details about genetic analyses and GWAS are provided in (Arif and Börner, 2020; Alqudah et al., 2020b). Briefly, genotypic data of both WW and SW were subjected to population structure analysis prior to association mapping using STRUCTURE v.2.3.4 (Pritchard et al., 2000) applying the admixture model, a burn-in of 100,000 iterations and 100,000 MCMC duration to test for a K-value in the range 1–15. The results were subjected to Structure Harvester (Earl and VonHoldt, 2012) for better visualization, which is available elsewhere (Arif and Börner, 2020). According to Arif et al. (Arif and Börner, 2020), there were three and four subgroups in WW and SW panels, correspondingly. We carried out the association analyses harnessing the program TASSEL 5.2.43 (Bradbury et al., 2007), employing mixed linear model (Yu et al., 2006) considering the population structure (calculated from STRUCTURE v.2.3.4) and kinship (calculated from TASSEL 5.2.43). Because the information about genetic analyses on insect resistance is very scarce, we considered all the SNPs significant that gave a p-value of 0.001 (−log10 value of 3) for any trait. Highly significant p-values were calculated by taking the reciprocal of the number of markers for each set. Therefore, p-values of 8.97 × 10−5 and 1.019 × 10−-4 were considered for highly significant association in WW and SW, respectively. Results from TASSEL were visualized using the “CM plot” package in R. For QTLs visualization, the “circlize” package (Gu et al., 2014) was utilized. QTLs were named following the rules set out in the Catalog of Gene Symbols (McIntosh et al., 2008) and according to our previous reports (Arif and Börner, 2019; Arif et al., 2021). The markers were mapped on the basis of their physical position in IWGSC RefSeq v1.1 (http://www.wheatgenome.org/, IWGSC RefSeq v1.1). The highly significant associated SNPs were used to identify the high-confidence putative candidate genes on the basis of their physical positions.
The sequences of flanking SNPs within the linkage disequilibrium (LD) of associated SNP with all the insects (i.e., multi-insect traits SNP) were obtained from the Wheat 15 and 90K SNP array database (Wang et al., 2014). These sequences were used as a query in NCBI BLASTX (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) research tool database for functional gene annotations. The topmost hits with the smallest E-value and high percentage of query coverage were reported as potential candidate genes.
RESULTS
Descriptive Natural Phenotypic Variation
Orange Wheat Blossom Midge
Among all insects, OWMB was the most intensively investigated because of its frequent natural occurrence as compared to other pests. All in all, it was scored in at least seven [for larvae in white shells (WSL)] to 10 environments [for larvae on spikes/ears (SL) and adults in the white shell (WSA)] in WW. The mean of SL, among all 10 environments, was highest in G13 (13.30 ± 1.25) followed by Q13 (4.50 ± 0.29) (Supplementary Figure S1, Table 2). Likewise, mean SL was comparable between G11 (1.73 ± 0.16) and Q16 (1.79 ± 0.33) and between G12 (0.94 ± 0.14) and R12 (0.82 ± 0.10). Mean SL in R13 was 1.47 ± 0.13, whereas it was 0.55 ± 0.12 in Q15. Finally, the lowest SL score was observed in G15 (0.12 ± 0.02) followed by Q12 (0.39 ± 0.10). From 44 pairwise comparisons, non-significant differences were detected in only six pairs (G11 and R13, G12 and R12, G15 and Q15, G15 and R13, Q12 and Q16, Q12 and R13, and Q15 and R13) (Supplementary Figure S2A). WSL was highest in G14 (35.76 ± 3.20) followed by Q13 (25.37 ± 1.57) followed by G11 (23.96 ± 2.15) and lowest in Q12 and G15 (0.20 ± 0.05). WSL in G12 and Q15 was 3.61 ± 0.36 and 7.88 ± 0.78, respectively. Moreover, significant differences were also prevalent among all combinations except between G11 and G15, G14 and Q13, and G15 and Q12 (Supplementary Figure S2B). As per WSA was concerned, it was highest in Q13 (46.03 ± 1.75), followed by R12 (35.76 ± 3.20). The scores of WSA were comparable between G13 (11.69 ± 1.17) and Q15 (13.69 ± 0.60) and between G11 (7.73 ± 0.61) and G15 (8.67 ± 0.39). Likewise, it was also comparable between Q12 (0.63 ± 0.08) and G14 (0.82 ± 0.10). Finally, the mean WSA was 4.87 ± 0.29 and 3.18 ± 0.20 in G12 and R13, correspondingly. In addition, all 44 combinations of 10 environments were significantly different except between G11 and R13, G12 and R13, and G13 and G15 (Supplementary Figure S2C).
TABLE 2 | Descriptive statistics of various traits of investigated insects in winter wheat (WW) panel. For details, see materials and methods.
[image: Table 2]In SW, scores were available from five environments (G12, G13, G14, G15, and Q15). The SL score was highest in G12 (63.83 ± 4.00), followed by G13 (12.59 ± 0.68) in SW (Supplementary Figure S3, Table 3). On the other hand, G15 exhibited the lowest SL score (1.69 ± 0.15), whereas Q15 exhibited a score of 3.06 ± 0.23. To add to it, all scores were significantly different from each other (Supplementary Figure S4A). WSL was scored only in G13 and Q14 with corresponding values of 8.69 ± 1.02 and 11.37 ± 0.97. They were also significantly different from each other (Supplementary Figure S4B). On the other hand, WSA was scored in all five environments where the highest value was observed in G12 (13.63 ± 0.52), followed by G13 (12.72 ± 0.55). WSL in Q14 and Q15 was comparable (2.26 ± 0.19 and 1.91 ± 0.17, respectively), whereas it was 4.72 ± 0.129 in G15. Furthermore, significant differences prevailed among all comparisons except between G12 and G13 and between Q14 and Q15 (Supplementary Figure S4C). ANOVA results also indicated significant differences in all traits of OWBM in both WW (Supplementary Table S1) and SW panels (Supplementary Table S2).
TABLE 3 | Descriptive statistics of various traits of investigated insects in spring wheat (SW) panel. For details, see materials and methods.
[image: Table 3]Yellow Wheat Blossom Midge
In the WW panel, among the five environments in which the SL (G11, G12, G13, Q12, Q13, and Q16) was measured, the highest incidence was observed in G13 with a mean value (± standard error) of 6.36 ± 0.75, whereas the lowest incidence was observed in Q12 with a mean value of 0.17 ± 0.07 (Supplementary Figure S5, Table 2). Mean SL in G11 and G12 was similar (1.03 ± 0.19), whereas mean SL in Q13 and Q16 was 0.47 ± 0.09 and 1.60 ± 0.25, respectively. Pairwise comparisons indicated that differences for SL between G11 and G12, G11 and Q13, G11 and Q16, G12 and Q13, and G12 and Q16 were non-significant. All other combinations were significantly different from each other (Supplementary Figure S6A). For WSL, among the eight environments, the highest and lowest scores were observed in G11 (10.55 ± 1.05) and Q15 (0.29 ± 0.05), respectively, whereas, in G12, Q13, and G14, scores were quite similar (7.87 ± 0.73, 7.04 ± 0.89, and 7.36 ± 1.12, respectively). Mean WSL in G13, Q12, and G15 were 1.48 ± 0.16, 4.54 ± 0.50, and 8.44 ± 0.98, correspondingly. Moreover, WSL was significantly different among all pairs except between G11 and Q13, G14 and Q13, and G15 and Q13 (Supplementary Figure S6B). WSA was highest in Q13 (60.75 ± 5.78) followed by Q12 (28.96 ± 1.17) followed by Q13 (4.69 ± 0.25). Mean WSA in G12 was 3.89 ± 0.54. On the other hand, the lowest WSA was observed in Q15 (0.29 ± 0.05) followed by G15 (0.54 ± 0.07) followed by G11 (0.64 ± 0.12) and mean WSA was 3.89 ± 0.54 in G12. WSA was also significantly different among all environments (Supplementary Figure S6C) except between G11 and Q13 and between G11 and Q15.
In SW, traits were scored in five environments (G12, G13, G14, G15, and Q15). For SL, the highest incidence was in G12 where the mean SL was 74.60 ± 4.54 and the lowest incidence was in Q15 with a mean value of 0.43 ± 0.14 (Supplementary Figure S7, Table 3). Mean SL was 9.15 ± 0.62, 3.02 ± 0.33, and 1.41 ± 0.31 in G13, G14, and G15, respectively. In addition, all SL scores were significantly different from each other (Supplementary Figure S8A). WSA was highest in G14 (1.65 ± 0.17) and lowest in Q15 (0.82 ± 0.10), whereas 1.60 ± 0.12 and 1.11 ± 0.14 were the scores in G13 and G15, correspondingly. In pairwise comparisons, except G13, G14, G15, and Q15, all pairs were significantly different (Supplementary Figure S8B). Between G13 and G14, WSL was higher in G14 (31.36 ± 3.32) and lower in G13 (13.51 ± 1.50), which were also significantly different from each other (Supplementary Figure S8C). Significant differences were prevalent across the years in all traits of YWBM in both WW (Supplementary Table S1) and SW panels (Supplementary Table S2).
Saddle Gall Midge
SGM was recorded in only WW in three environments at Rosenthal and Oberpleichfeld. The highest incidence of SGM was observed in O13 (39.6 ± 4.48) followed by O12 (34.57 ± 4.48) (Supplementary Figure S9), although there was no significant difference between the two (Supplementary Figure S10A). The incidence in R13 was quite low (1.34 ± 0.33), which was also significantly lower than the other two.
Thrips
Because only one parameter (number of thrips) was measured related to thrips across nine environments, the data were grouped according to the location in both WW and SW. In WW, in Gatersleben, the thrips mean values were 8.88 ± 0.51, 10.10 ± 0.57, and 13.13 ± 0.68 in G11, G12, and G13, correspondingly (Supplementary Figure S11, Table 2). Among the four environments at Quedlinburg, the highest score was observed in Q15 (86.72 ± 7.19) and Q16 (81.90 ± 4.46). On the other hand, mean scores in Q11 and Q12 were 1.87 ± 0.18 and 3.15 ± 0.26, respectively. At Rosenthal, the mean score was higher in R12 (5.30 ± 0.47) than in R13 (4.42 ± 0.18). Thrips scores were significantly different between each other except between G11 and G12, Q15 and Q16, and R12 and R13 (Supplementary Figure S10B).
Among the three environments in SW, the highest score for thrips that was recorded in Q15 was 461.48 ± 19.57 (Supplementary Figure S12A, Table 2). On the other hand, G13 and G15 scores were quite comparable (10.95 ± 0.55 and 9.49 ± 0.48, respectively) with no significant difference between them (Supplementary Figure S13A). The other comparisons were significantly different.
Frit Fly
FF was scored in two different seasons (S and A) in WW. Among the three environments in the autumn season, the damage was highest in Q13_A (3.98 ± 0.08) and lowest in G14_A (1.43 ± 0.08), whereas the damage was 0.90 ± 0.09 in G13_A (Supplementary Figures S14A,B). Meanwhile, all scores were significantly different from each other (Supplementary Figure S15A). In the spring season, between Q14_S and G15_S, the damage was higher in the former (28.99 ± 1.47) than the latter (1.98 ± 0.10) with a significant difference between the two (Supplementary Figure S15B).
FF damage in SW was also significantly different among the three environments (Supplementary Figure S12B) where the highest damage was observed in G14 (24.90 ± 0.16) and lowest in G15 (10.02 ± 0.44). The damage in G13 was 13.04 ± 0.76 (Supplementary Figure S13B). Thrips and FF scores were also significantly different according to ANOVA results in both WW and SW (Supplementary Tables S1, S2).
Correlations
No definite template existed between various traits with respect to correlation in WW. Some traits of the same insect were, however, in moderate positive correlation (r2 > 0.3) (Figure 1, Supplementary Table S3). For example, in the case of OWBM, the correlation of OSL_G12 with OSL_G11, OSL_G13, OSL_G15, and OWSL_G11 as well as OSL_G15 with OSL_G13, OWSA_G13, and OWSA_G13 was >0.3. The maximum r2 within OWBM was 0.94 observed between OSL_Q13 and OWSL_Q13. The correlation of YSL_G13 with YWSL_G11, YWSA_G13, YWSL_G15, and YWSL_Q13 as well as YWSA_G13 with YWSL_G11, YWSL_G12, YWSL_G14, YWSL_G15, and YWSA_G15 was >0.3. In the case of thrips, T_G12 and T_G13 were associated with each other at r2 = 0.34. The correlation of T_G13 with T_R12 and T_Q16 was 0.35 and 0.33, respectively. Likewise, r2 of T_G12 with T_R11 and T_Q15 was 0.3 and 0.32, respectively. T_G11 and T_Q15 were also in moderate positive correlation with r2 = 0.38. In the case of FF, the only notable correlation was between F_GS15 and G_GA_14 (r2 = 0.59). For SGM, there was a correlation of 0.26 between O12 and O13.
[image: Figure 1]FIGURE 1 | Correlation network among yellow wheat blossom midge (yellow), orange wheat blossom midge (orange), thrip (skyblue), frit fly (green) and seed gall midge (dark gray) in winter wheat (WW) panel. Only correlations > 0.1 R2 and significant at at least 0.05 p-values are shown. Blue and orange lines indicate positive and negative correlations, respectively where the thickness of the line is proportional to the strength of the correlation. For details, see Supplementary Table S1.
Across years, the correlation between OSL_G11 and YSL_G11, OWSA_G11 and YWSA_G11, OWSL_G11 and OSL_G11, as well as OSL_G11 and T_G11 was >0.3 (Supplementary Table S3). The correlation of YSL_G13 with YWSA_G13, YWSL_Q13, and OSL_G13 was >0.3. Likewise, the correlation of OSL_Q13 with OWSA_G13 was 0.3, and the correlation of OWSA_G13 with OWSL_Q13 and T_G13 was >0.3. There was no notable correlation among traits recorded in 2014. In 2015, YWSL_Q15 and YWSL_G15 were correlated at r2 = 0.34. Similarly, OSL_G15 was correlated with OSL_G15 and T_Q15 at 0.32 and 0.49 r2, respectively. In 2016, YSL_Q16 and OSL_Q16 were correlated at r2 = 0.31.
The correlation pattern did not reveal any specificity among various traits in SW panel as well. The only correlation >0.3 in OWBM traits was between WSL_Q14 and WSA_G12 (r2 = 0.33) (Figure 2, Supplementary Table S4). Moreover, among the YWBM traits, the highest r2 was 0.53 observed between WSL_G13 and SL_G14. The r2 between WSL_G14 and SL_G12 and between WSL_G14 and SL_G13 was 0.35 and 0.39, respectively. All other correlations within YWBM were below 0.3. Likewise, in thrips, the r2 between G13 and G15 was 0.28. On the other hand, in the case of FF, the correlation between F_G14 and F_G15 was 0.24.
[image: Figure 2]FIGURE 2 | Correlation network among yellow wheat blossom midge (yellow), orange wheat blossom midge (orange), thrip (skyblue) and frit fly (green) in spring wheat (SW) panel. Only correlations > 0.1 R2 and significant at at least 0.05 p-values are shown. Blue and orange lines indicate positive and negative correlations, respectively where the thickness of the line is proportional to the strength of the correlation. For details, see Supplementary Table S2.
Association Analyses
In WW, association analysis of 66 traits examined across a total of 13 environments in Gatersleben (G11, G12, G13, G14, and G15), Quedlinburg (Q12, Q13, Q14, Q15, and Q16), Rosenthal (R12 and R13), and Oberpleichfeld (O13) with 11,139 SNPs (66 × 11,139 = 735,174 data points) provided a total of 645 significant associations (p-value < 0.001) where 61 associations were highly significant (p-value < 8.98 × 10−5) (Supplementary Table S5) (Supplementary Figures S16–S24). Thus, a total of 9.77 SNPs [645 marker-trait associations (MTAs)/66 traits] were associated with one single trait. The distribution of these associations on chromosomes was not uniform. For example, the highest MTAs on one single chromosome was 85 (chromosome 2B) and the lowest was one (chromosome 4D). Among groups, the highest MTAs have detected on group 2 chromosomes (176 MTAs), followed by group 3 chromosomes (138 MTAs) and group 5 chromosomes (101). On the other hand, the lowest number of MTAs has detected on group 4 chromosomes (29 MTAs), followed by group 6 chromosomes (60 MTAs) and group 1 chromosomes (63 MTAs). A total of 78 MTAs were revealed on group 7 chromosomes. Among the genome, the B genome carried the most MTAs (269 MTAs), whereas the D genome carried the least MTAs (123 MTAs). A genome carried 253 MTAs.
From a pest perspective, the highest numbers of MTAs were detected for OWBM (279 MTAs) (Supplementary Figures S16–S18A) followed by YBWM (203 MTAs) (Supplementary Figures S19–S21A). For thrips, we detected 114 MTAs (Supplementary Figure S23A). On the other hand, 20 MTAs (Supplementary Figure S24A) were detected for FF, whereas a total of 29 MTAs were uncovered for SGM (Supplementary Figure S22).
Through the association analysis in SW of 28 traits studied in a total of six environments in Gatersleben (G12, G13, G14, and G15) and Quedlinburg (Q14 and Q15) with 9,804 SNPs (28 × 9,804 = 274, 512 data points), we detected a total of 123 significant MTAs (p-value < 0.001) with 11 highly significant associations (p-value < 1.019 × 10−4) (Supplementary Table S6). The average number of MTAs per trait was 4.39 (123 MTAs/28 traits). Like WW, MTA distribution across the chromosomes was not uniform in SW. For example, there were no MTAs detected on chromosomes 1D, 3D, 4D, 5D, and 6D. The highest numbers of MTAs were detected on group 2 and group 7 chromosomes (26 MTAs each), followed by group 1 chromosomes (25 MTAs) and group 6 chromosomes (16 MTAs). The lowest numbers of MTAs were detected on group 4 chromosomes (seven MTAs), followed by group 5 chromosomes (10 MTAs) and group 3 chromosomes (13 MTAs). B genome carried the most number of MTAs (76 MTAs) followed by A genome (40 MTAs) among the three genomes. D genome carried the least number of seven MTAs.
From insects’ perspective, the highest numbers of MTAs were detected for YWBM (63 MTAs) (Supplementary Figures S19–S21B) followed by OBWM (34 MTAs) (Supplementary Figures S16–S18B). The number of MTAs detected for thrips and FF was 18 (Supplementary Figure S23B) and eight (Supplementary Figure S24B), respectively.
DISCUSSION
The wheat yield should be increased at the rate of 1.66% against the current rate of 1% per annum to feed the nine billion people by the mid of 21st century. On the other hand, by that time, growing season temperatures will likely exceed those recorded during the 20th century and may substantially reduce crop yields (Deutsch et al., 2018). Crop production losses to pests will increase globally with rising temperatures in all climate models and across all biological parameters. A careful estimate suggests that a 2°C rise in the average global surface temperature will increase the median increase in yield losses due to pest pressure by 46%, causing total estimated losses of up to 59 metric megatons per year. The primary reason for this loss is that warming will increase pest population growth and overwinter survival rates, leading to large population increases in the growing season (Deutsch et al., 2018). It, thus, becomes imperative to develop modern wheat varieties carrying resistant genes against these pests.
Phenotypic Variation
According to pairwise comparisons, various pests in WW and SW (Supplementary Figures S2, S4, S6, S8, S10, S12, S14) differed mostly in various environments. For example scores of YWBM were higher in G13 and G15 in WW and G12 and G14 in WW and SW, respectively. In OWBM, again, G12 exhibited higher pest attack in SW, whereas the same response in WW was highly variable. Thrips attack was highest in Q15 in both WW and SW, whereas FF attack was comparable in both WW and SW. Weather data (rainfall, number of rainy days, and mean temperature) indicate that the month of May in 2013 was the wettest with 156.6-mm rain in 21 rainy days (Supplementary Table S7) that proved decisive in the considerably higher infection rates of YWBM and OWBM in WW. Before, no such reports exist where a comparison between WW and SW populations was made for any of the mentioned pests. Therefore, comparison in this regard is not possible. Nevertheless, we conclude that both OWBM and YWBM attack differently on WW or SW, which indicates the extraordinary influence of the prevalent environmental conditions before the pest attack. On the other hand, the thrips and FF attack did not differentiate between SW and WW.
Genetic Analyses
Because both WW and SW were genotyped with the same SNP chip, we will discuss both the SW and WW simultaneously. On the other hand, for the purpose of discussion, we confined the 645 and 123 MTAs detected in WW and SW, correspondingly, to a total of 246 QTLs (Figure 3, Supplementary Table S8) on the basis of LD among the markers involved in associations (data not shown), following the approach adopted by Dababat et al. (2021). The average span of the QTLs was ∼1.68 cM, whereas the minimum span and maximum span were 1 and 2.76 cM, respectively (on chromosome 5D), that were also variables for the three wheat genomes (1.71, 1.57, and 1.86 cM for A, B, and D genomes, correspondingly). Meanwhile, the average LD decay in WW has been shown to by roughly 5 Mbp, which corresponds to ∼1.2–1.3 cM. The same results were observed in SW population. Real-time LD calculation of the SNPs within the QTLs also indicated that >90% of markers were in absolute LD to each other. The odd one to two SNPs from the cluster of SNPs confined to the QTL were also linked to one of the traits of the main clustered SNPs. We adopted this approach to discuss the genomic regions in association with the traits for a relatively simplified discussion to cater to wide variety of scientists (entomologists and ecologists) who might have relatively less information about the technical details of LD decay and related matters.
[image: Figure 3]FIGURE 3 | Distribution of 246 QTLs [yellow (yellow wheat blossom midge), orange (orange wheat blossom midge), green (yellow/orange wheat blossom midge), black (saddle gall midge), blue (thrip), pink (frit fly) and maroon (mixed pests)] in the inner circles. Light brown lines in the outer track indicate the SNP positions on each chromosome; pink bars in the second circle indicate the maximum R2 provided by any SNP confided to that QTL. The corresponding lines under the track circle indicate the span of QTLs for respective traits with small vertical lines point to the peak position of QTL.
Of them, 176 QTLs carried MTAs exclusively detected in WW, 38 QTLs carried MTAs detected exclusively in SW, whereas the 32 QTLs carried MTAs detected both in SW and WW (Table 4), albeit with different insects. From an insect perspective, the numbers of QTLs carrying exclusive QTLs of YWBM, OWBM, thrip, FF, and SGM were 62, 58, 24, 8, and 4, respectively. Another 49 QTLs were related to both YWBM and OWBM (YWBM/OWBM) only. The rest of the 41 QTLs carried at least two or more of the abovementioned pests.
TABLE 4 | QTL distribution of insect resistance in either winter (WW) or spring (SW) wheat panel or both (WW/SW).
[image: Table 4]A total of 58 QTLs of OWBM alone were detected on all the chromosomes except chromosomes 2D, 3B, 4B, 4D, and 7D where the highest numbers of QTLs were located on chromosomes 1A (seven QTLs) and 5A and 5B (six QTLs each) (Supplementary Table S9). The major genes include laccase-19 [which plays role in the pathogen-induced lignification of secondary cell walls in the rachis (Soni et al., 2020)], DIBOA-glucoside dioxygenase BX6-like [wheat BX6 plays role in the formation of benzoxazinoids in planta and contributes to plant resistance against insect herbivores (Shavit et al., 2021)], CLIP-associated protein-like isoform X2 [CLIP-associated protein 2 (spot 45) is known to be involved in microtubule orientation and stabilization in the plant cell cortex, but the disease/stress responsiveness of this protein is elusive (Ambrose et al., 2007)], ubiquitin-protein ligase PRT6 and TOM1-like protein 2 [transporter of mugineic acid (TOM) are important in the maintenance of micronutrient homeostasis (Sharma et al., 2019)], and leucine-rich repeat–containing protein.
A very well-known gene for OWBM resistance, Sm1, is known to be located at ∼10- to 13-cM region on the distal portion of chromosome 2BS (Kassa et al., 2016). It was first identified in a collection of WWs from the United States (Thomas et al., 2005). We, however, could not detect sm1 in our germplasm, probably due to the nature of the germplasm. Although our WW panel includes 20 genotypes that originated from the United States, there was not much difference between the two groups (the United States originated and non-US originated) (data not shown) with regard to OWBM scores. Nevertheless, our germplasm still carried 25 QTLs for insect resistance on chromosome 2B, which is the highest among all chromosomes.
The 62 exclusive QTLs of YBWM were located on all the wheat chromosomes except chromosomes 6D and 7D with the highest number of QTLs on chromosomes 2B and 7A (seven QTLs each). Several candidate genes were identified to be probably involved in YWBM resistance. The major ones include pentatricopeptide repeat–containing protein [members of the pentatricopeptide repeat (PPR) protein family are sequence specific RNA binding proteins that play crucial roles in organelle RNA metabolism (Yan et al., 2019)], tRNA ligase 1 isoform X1, chloroplastic glycerophosphodiester phosphodiesterase GDPD1 [GDPDs hydrolyze glycerophosphodiesters into alcohols and glycerol-3-phosphate (G-3-P) suggesting their importance in multiple physiological processes in plants (Nakamura, 2013)], chlorplastic short-chain dehydrogenase TIC32 [reduces the damage to photosynthetic system upon infection (Hao et al., 2018)], AP-1 complex subunit sigma-1, cytoplasmic iso-leucine-tRNA ligase, and transmembrane emp24 domain-containing protein [transmembrane emp24 domain-containing protein 6-like is recently reported to be an important component of pea aphid saliva-proteome (Caragea et al.)], and many others.
The 49 OWBM/YWBM QTLs were exhibited on chromosomes 1B, 1D, 2B, 2D, 4B, and 6A and all the chromosomes of groups 3, 5, and 7. The major genes located in those regions include NF-1 related protein kinase regulatory subunit gamma-1–like [kinases regulate cell growth and proliferation as well as triggering and regulation of immune responses (Theivendren et al., 2021)], serpin-Z2A-like [expressed as a fusion protein with the maltose-binding protein (le Roux et al., 2021)], gamma-secretase subunit APH1-like [gamma-secretases are localized in the endomembrane of protoplasts in Arabidopsis, and potential role is still unclear (Thomelin, 2018)], polyubiquitin and WPP domain-interacting protein 2 [located on chromosome 5A, this gene is key for nuclear assembly and transport (Gardiner et al., 2019)], disease resistance protein RGA5-like and ankyrin repeat domain-containing protein 2A [ankyrin repeats are 33-amino-acid sequence motif that are part of protein–protein interaction (Sedgwick and Smerdon, 1999)], DNA binding protein HEXBP and 7-deoxyloganetin glucosyltransferase [∼266 homologous genes belong to 7-deoxyloganetin glucosyltransferase-like gene family (Jiao et al., 2018) which play their role in healing process (Yang et al., 2017) after damage], protein FAR-RED ELONGATED HYPOCOTYL 3-like (FHY3) [FHY3 and FAR1, two homologous transcription factors are essential for phytochrome A-mediated light signaling (Xie et al., 2020)], and malate dehydrogenase [malate dehydrogenases play an important role in central metabolism in plants whose exact role, however, remains unclear (Schreier et al., 2018)].
The use of population independent method (association mapping tool) and different mapping panels allowed us to explore WBM resistance loci in wheat on a very large scale. Our reported QTLs/genes (Supplementary Table S7) have not been reported for insect resistance in wheat before. We, therefore, conclude that these resistance loci can be a potential starting point to impart environment friendly and climate smart WBM resistance in wheat. In addition, arrival of many new technologies such as MACE (Massive Analysis of cDNA 3′ ends) and RNA -sequencing (Duarte-Delgado et al., 2020) may help to understand the mechanisms behind the resistance loci being reported.
Chromosomes 3D, 6B, and 7B carried the four exclusive QTLs for SGM where the most important gene located was nucleolar GTP-binding protein 1, which has been reported to act as a positive regulator of stomatal closure in response to both abiotic and biotic stresses (Lee et al., 2017). This result indicates that the candidate gene is involved in the SGM tolerance pathway through its involvement in the stress tolerance defense system. Further molecular genetic investigations are required to understand the mechanism of the candidate gene and if it influences the resistance to other biotic and abiotic stresses.
For thrips exclusively, our germplasm revealed 24 QTLs located on chromosomes 1A, 2A, 2B (three QTLs), 2D (four QTLs), 3A (two QTLs), 3B (two QTLs), 4A, 6B (two QTLs), 6D, 7A, 7B (two QTLs), and 7D (three QTLs). The major genes located in those QTLs include IAA–amino acid hydrolase ILR1-like 8 [ILR1-like 1 plays its role in metabolic processes resulting in cell growth by releasing IAA through hydrolysis (Du et al., 2017)], brefeldin A–inhibited guanine nucleotide-exchange protein 1 (BIG1) [BIG regulates stomatal immunity and jasmonate production in Arabidopsis (Zhang et al., 2019)], and putative receptor-like kinase, serine/threonine-protein kinase, and ethylene response factor 1 extended form L [known to play defense role in various stresses (Arif et al., 2012a)]. Therefore, these QTLs are very useful to be involved in breeding programs for improving thrips resistance in wheat that, in turn, increase grain yield and its quality.
The eight exclusive QTLs of FF are located on chromosomes 1B, 2A (two QTLs), 3A, 3B, 4B, 6B, and 7A. The major genes in those QTLs include nicotinamide/nicotinic acid mononucleotide adenylyltransferase–like [master enzyme in NAD biosynthesis in living organisms (Zhai et al., 2009)] and transcriptional corepressor LEUNIG among the others. The transcriptional corepressor LEUNIG has been reported to be a product of an SNP Ex_c17379_1431 on chromosome 6B (Suliman et al., 2021). In our case, the SNPs involved were wsnp_Ex_c17379_26073344 and RAC875_c17347_312 on chromosome 6B. The SNP marker Ex_c17379_1431 on chromosome 6B coding for the transcription corepressor LEUNIG had a significant effect on grain protein content, gluten content, and alveograph strength (Suliman et al., 2021). LEUNIG has putative role in the gene regulations in a number of different physiological processes in Arabidopsis including disease resistance, DNA damage response, and cell signaling (Gonzalez et al., 2007).
The rest of the 41 QTLs carried MTAs associated with multiple pests. Fatty acyl-CoA reductase 1 [involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Wang et al., 2015)], pentatricopeptide repeat–containing protein (PRP) [PRP proteins are a large family of modular RNA-binding proteins that mediate several aspects of gene expression primarily in organelles but also in the nucleus (Manna, 2015)], bidirectional sugar transporter SWEET15 [a hormone signaling gene (Gauley and Boden, 2019)], DNA repair protein rhp54 and dentin sialophosphoprotein-like [shell formation protein (Volk et al., 2014)], villin-4–like [villin gene family members are associated with multiple stress responses (Lv et al., 2021)], pyruvate dehydrogenase [involved in various physiological processes including dormancy, PHS, and seed longevity (Arif et al., 2012a; Arif et al., 2012b)], and transcriptional corepressor LEUNIG_HOMOLOG [LEUNIG plays putative role in disease resistance (Gonzalez et al., 2007)].
Our investigation was carried out under natural infection that was under serious environmental influence. Depending on the number of environments in which the pests were scored, we singled out QTLs expressed in multiple environments (for OWBM and YWBM that carried MTAs in three or four different environments and for FF, thrips, and SGM that carried MTAs in two environments).
There were three (on chromosomes 1B, 2B, and 7B) and two QTLs (on chromosomes 3B and 5A) for OWBM that carried MTAs detected in three and four environments, correspondingly. Likewise, there were eight QTLs [on chromosomes 1B, 2A (two QTLs), 2B (three QTLs), 7A, and 7B] that carried multi-environment MTAs discovered in case of YWBM. On the other hand, chromosome 2A and 2B carried QTL with MTAs of FF and SGM from two environments, correspondingly. Furthermore, there were eight chromosomes [chromosomes 2A, 2B (four QTLs), 5B, 6A, and 7B (two QTLs) that carried the multi-environmental MTAs for thrips (Table 5)].
TABLE 5 | QTLs with SNPs in association with various pests in multiple environments.
[image: Table 5]The use of population independent method (association mapping tool) and different mapping panels allowed us to explore WBM, FF, SGM, and thrips resistance loci in wheat on a very large scale. Our reported QTLs/genes (Supplementary Table S7) have not been reported for insect resistance in wheat before. We, therefore, conclude that these resistance loci can be a potential starting point to impart environment friendly and climate smart insect resistance in wheat. In addition, arrival of many new technologies such as MACE and RNA sequencing (Duarte-Delgado et al., 2020) may help to understand the mechanisms behind the resistance loci being reported.
CONCLUSION
All in all, we comprehensively dissected two different wheat germplasm sets for five different wheat pests over a period of 6 years at multiple locations in central Germany. This is the very first report where natural variation in wheat is exploited to map loci linked to YWBM, SGM, FF, and thrips resistance. Moreover, multitude candidate genes are reported of which many are potentially involved in controlling physical structures of plant such as stomatal immunity [brefeldin A–inhibited guanine nucleotide-exchange protein 1 (BIG1)] and closure (nucleolar GTP-binding protein 1) and cuticular wax (Fatty acyl-CoA reductase 1) of leaf blade to provide physical barriers of insect entry in plants. Others are involved in the production of certain enzymes in response to stress (DIBOA-glucoside dioxygenase BX6 like and villin-4–like) or play key roles in other physiological processes (NF-1 related protein kinase regulatory subunit gamma-1–like and nicotinamide/nicotinic acid mononucleotide adenylyltransferase-like). Because this is the first comprehensive report to gauge insect resistance exploiting the natural variation in wheat, the reported SNPs need to be validated. The validation can be achieved by converting reported SNPs into molecular markers applicable felicitous to molecular plant breeding (Cheon et al., 2018) such as KASP (Kompetitive Allele Specific PCR) markers that have successfully been achieved in wheat (Rasheed et al., 2016) for a number of key economic traits. Future research should, therefore, focus on testing this germplasm in other hotspots alongside the development of KASP markers of the reported SNPs for wheat improvement.
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Salinity tolerance is a multifaceted trait attributed to various mechanisms. Wild barley is highly specialized to grow under severe environmental conditions of Tibet and is well-known for its diverse germplasm with high tolerance to abiotic stresses. The present study focused on determining the profile of the expression of isoforms of the HvNHX gene in 36 wild and two cultivated barley under salt stress. Our findings revealed that in leaves and roots, expression of HvNHX1 and HvNHX3 in XZ16 and CM72 was upregulated at all times as compared with sensitive ones. The HvNHX2 and HvNHX4 isoforms were also induced by salt stress, although not to the same extent as HvNHX1 and HvNHX3. Gene expression analysis revealed that HvNHX1 and HvNHX3 are the candidate genes that could have the function of regulators of ions by sequestration of Na+ in the vacuole. HvNHX1 and HvNHX3 showed a wide range of sequence variations in an amplicon, identified via single-nucleotide polymorphisms (SNPs). Evaluation of the sequencing data of 38 barley genotypes, including Tibetan wild and cultivated varieties, showed polymorphisms, including SNPs, and small insertion and deletion (INDEL) sites in the targeted genes HvNHX1 and HvNHX3. Comprehensive analysis of the results revealed that Tibetan wild barley has distinctive alleles of HvNHX1 and HvNHX3 which confer tolerance to salinity. Furthermore, less sodium accumulation was observed in the root of XZ16 than the other genotypes as visualized by CoroNa-Green, a sodium-specific fluorophore. XZ16 is the tolerant genotype, showing least reduction of root and leaf dry weight under moderate (150 mM) and severe (300 mM) NaCl stress. Evaluation of genetic variation and identification of salt tolerance mechanism in wild barley could be promoting approaches to unravel the novel alleles involved in salinity tolerance.
Keywords: salinity stress, wild barley, gene expression, polymorphism, SNP, vacuole
INTRODUCTION
Na+/H+, counter-transporters (NHXs) not only serve as essential membrane transporters but also help catalyze the neutral exchange of K+ or Na+ for H+ and have been found to play a significant role in pH and ion homeostasis, cell expansion, and salt tolerance. To develop crops with enhanced tolerance to abiotic stresses, the establishment of a better understanding of the underlying mechanisms is essential. With growing advances made within the last decade, researchers have revealed various mechanisms of adaptation and molecular details of responses triggered by salt stress. Although barley is tolerant to high salt stress compared to other cereals, its production is still hampered by salinity (Qui et al., 2011). Salinity is one of the most detrimental stress factors among the abiotic stresses (Stepien and Klobus, 2005) which affected nearly 800 and 32 million hectares of land around the world (Wani et al., 2020). Soil salinization causes severe reduction in barley production all around the world (Rengasamy et al., 2003; Mishra and Tanna 2017). In such a scenario, to go for soil amendments is near to impossible. To cope with soil salinity, the development of salt-tolerant cultivars could be the best possible solution. Hence, understanding salt-tolerant mechanisms is essential for the genetic improvement of crops. Having unique features among cereal crops, barley is widely used in physiological and genetic studies to unravel the mechanisms of salt tolerance (Munns and Mark, 2008). However, the process of domestication of the present cultivated barley (H. vulgare L.) resulted in loss of vital allelic variations (Russell et al., 2004), leading to limited genetic diversity in its gene pools in comparison to their wild ancestors. Therefore, a narrow genetic base could be a great obstacle in the development of cultivars more adapted to the environment (Ellis et al., 2000; Feuillet et al., 2008; Shavrukov et al., 2010). A wider range of genetic variations has been reported in barley populations under various stressful environments (Nevo et al., 1997). Moreover, Tibetan wild barley (H. spontaneum L.), which habited the Qinghai–Tibet Plateau of China years ago, is one of the ancestors of cultivated barley (Dai et al., 2012).
The involvement of both osmotic and ionic components has been elaborated in plant growth inhibition under salt stress (Munns et al., 2006), for example, Na+ specifies not only damage to leaf tissues but also causes many metabolic problems in plants due to its high accumulation in shoots (Munns et al., 2006). Low cytoplasmic Na+/K+ ratio is maintained by multiple mechanisms that include morphological and biochemical adaptations (Munns and Mark, 2008). Vacuolar Na+/H+ antiporters belonging to the NHX gene family, that is, AtNHX1, which serve to detoxify the cytoplasm by compartmentalization of Na+ into the vacuole, have emerged as a vital group of transporters that helped in Na+ tissue tolerance mechanisms (Pardo et al., 2006). According to previous studies, overexpression of the NHX gene and its homologs from other plant species could result in salt tolerance (Zhang and Blumwald 2001; He et al., 2005).
Based on subcellular localization and physiological roles, previous studies classified Na+ (K+)/H+ antiporters in plants into two families, namely, plasma membrane transporter (SOS) and intracellular transporter (NHX) (Brett et al., 2005). (Brett et al., 2005). The NHX family can be further divided into two distinct groups, class-I and class-II (Pardo et al., 2006). Class-I includes NHX isoforms of A. thaliana (AtNHX1-4) with strong vacuolar localization (Pardo et al., 2006; Barragan et al., 2012). However, NHX proteins belonging to class-II, namely, AtNHX5-6 exhibit endosomal localization in cells (Pardo et al., 2006; Rodríguez-Rosales et al., 2008). Cytosol is the main site of action for salts, affecting plant growth and development by disturbing important physiological and biochemical processes. Ion homeostasis, specific for each cellular compartment, is necessary for plant cells to ensure the availability of optimal conditions for gene expression, various enzymatic processes, and protein structure and function (Paroutis et al., 2004). Moreover, a range of physiological processes that include cell expansion, osmotic adjustment, ion regulation, pH homeostasis, and cellular stress responses are essential for plant cell homeostasis and are regulated by NHX-type (cation/H+) antiporters (Pardo et al., 2006; Bassil et al., 2012). These counter-transporters emerged in the early evolution of plants and have been found in entire sequences of plant genomes (Bassil et al., 2012; Chanroj et al., 2012).
The NHX family found in barley consists of four isoforms, mainly localized in the vacuole, called Na+/H+ antiporter genes (HvNHX1 (AB089197.1), HvNHX2 (AY247791), HvNHX3 (DQ372061.1), and HvNHX4 (DQ314285) (Francisco et al., 2012). Expression of genes responsive to salt stress could be species-dependent, and it starts from significantly lower salt levels, for example, 50–100 mM NaCl, which is sufficient for most of the plant species. However, depending on the degree of salt sensitivity, even lower concentrations could be considered for higher salt-sensitive plants. On the contrary, halophyte species could sustain their growth at higher salt levels (Shavrukov., 2013). Plants have developed various mechanisms to get rid of higher concentrations of Na+ ions, which include its transport from the cytosol into the vacuole or out of the cell with the help of Na+/H+ exchanger machinery found in the vacuolar and plasma membranes, respectively (Apse and Blumwald 2007). Thus, enhanced efficiency of the vacuole to compartmentalize more Na+ is a promising strategy to overcome both Na+ toxicity and osmotic effect caused by high salinity (Vera-Estrella et al., 2005).
However, this mechanism could not be the sole remedy of the problem as vacuoles have a limitation for accommodating Na+. Therefore, a combination of more mechanisms needs to work as a unit of the salt tolerance strategy. For instance, limiting Na+ entry and increasing Na+ extrusion could effectively reduce Na+ accumulation in the cytosol. As salt tolerance, barely, is a complex trait controlled by many factors (Zhu, 2001), only one trait is not likely to result in any significant improvement. The salinity problem can only be solved successfully if several important traits are combined in a complementary manner.
Tibet provides a rich gene pool of wild barley with wider variation in adaptation to abiotic stresses, including drought and salinity (Wu et al., 2011; Dai et al., 2012). For the discovery of novel alleles that are potentially related to salt tolerance in wild barley, evaluation of the genetic diversity and identification of salt tolerance mechanisms has been elaborated as important approaches (Wu et al., 2011). Moreover, among various available DNA molecular markers, SNPs are the most abundant type and have been proven to be useful in genetic studies. Barley seeds have been used in genotyping studies since long and also act as important resources for the characterization of genetic variation, which could ultimately pave the way for developing cultivated varieties with enhanced tolerance to abiotic stresses and other production challenges (Nevo and Chen, 2010). SNP markers were initially developed for cultivated barley; however, its usage could also be expanded to wild resources (Rostoks et al., 2005). In the present research, we aim to 1) highlight the salt tolerance mechanism of four isoforms, (HvNHX1 to HvNHX4), located in the vacuole and differing in their level of K+ and Na+ accumulation and 2) determine allelic diversity of HvNHX isoforms in wild and cultivated barleys.
MATERIALS AND METHODS
This experiment was conducted in two parts. First, seeds of two cultivated barleys, CM72 (tolerant) Gairdner (sensitive), and two wild barleys, XZ16 (tolerant) and XZ169 (sensitive), were used to evaluate the salinity tolerance. Second, 36 wild barley accessions were used from eight sub-populations of Tibetan wild barley accessions to investigate the allelic variation on the basis of single-nucleotide polymorphism (SNP). The seeds were surface-sterilized with 3% H2O2 for 15 min and washed five times with double distilled water. The seeds were transferred to germination boxes and incubated (22/18°C, day/night) for 10 days. Uniform seedlings at the two-leaf stage were transplanted onto 35 L rectangular pots. Nutrient solution was prepared according to the method given by Zahra et al., (2014). The pH of the hydroponic solution was maintained at 5.5–6. After 2 weeks post transplantation, barley plants were grown in three different levels of salt stress, (1) 0 (control); (2) 150 mM NaCl; and (3) 300 mM NaCl. For gene expression analysis, root and leaf tissues were collected at four different time points between 0 and 24 h under 150 and 300 mM salt stress from four genotypes. A complete randomized design with three replications was used in this experiment.
Determination of Sodium and Potassium Concentration in Plant Tissue
The plants were harvested after 3 weeks of salt treatment. Samples of roots and leaves were collected from plants of each treatment separately, and fresh weight was recorded. Similarly, dry weight was recorded by drying the plant samples at 70°C for 74 h respectively. For measurements of root and leaf sample Na+ and K+ concentrations, 0.1 g of dry root and leaf samples was dried to ash and then dissolved in 10 ml HNO3: H2O (1:1). An atomic absorption spectroscope (Shimadzu, Japan) was used for ion content measurements.
RNA to cDNA Synthesis for RT- PCR
RNA from roots and leaves of four genotypes was extracted using a kit method (Tiangen Technology Co., Ltd.DP432), according to the manufacturer’s protocol. Full-length strand cDNA was synthesized from 2 μg of RNA using the Takara Bio Inc., (RR037A). BIO-RAD Master Mix kit was used to carry out RT-PCR reactions according to the manufacturer’s protocol. Measurements were taken for two biological and three technical repeats. The relative gene expression levels were calculated by subtracting the threshold cycle (Ct) values for Gapdh from those of the target gene (to give ΔCt) and then calculating 2−△△Ct (Livak and Schmittgen, 2001). The primers used for RT-PCR were designed using Primer-BLAST (Supplementary Table S1).
Isolation and Sequence Analysis of HvNHX1 and HvNHX3 cDNA
After confirmation of the gene expression analysis, out of four isoforms, two (HvNHX1 and HvNHX3) were selected to further investigate allelic variation based on SNPs and small INDEL detection approach. To detect SNPs in the cDNA pool from 38 barley genotypes, four primer pairs on to HvNHX1 (Supplementary Figure S1; Supplementary Table S2) and three pairs of primers to the HvNHX3 gene were designed to amplify whole coding sequence (CDS) regions for sequencing (Supplementary Figure S2; Supplementary Table S2). PCR primers were designed using Primer-BLAST. Each 50 μL PCR was carried out using 25 μl (2x Easy Taq® PCR Super Mix), 2 μl (cDNA template), 1/1 μl (Primer forward/reverse 10 μM), and 21 μl (ddH2O). To confirm the primer amplification specificity, samples were tested for gel electrophoresis, and the required bandwidth obtained was then matched with a wide range of DNA markers. The samples were then sent to Shanghai Majorbio Co. Ltd., Shanghai, P.R. China for sequencing. Gene-specific primers were used for SNP identification. The sequences obtained from the company were aligned using ClustalX software to observe SNPs.
Visualization of Na+ Ions Through Fluorescence Dye
To observe tissue-specific Na ion accumulation, the roots were stained with 25 mM specific fluorescent probe (Coro Na-Green AM) and 0.02% pluronic acid (Invitrogen) for 3 h as described by in our previous study by Zahra et al., (2014). The roots were incubated in the dark for 3 h and then root tips were carefully washed with deionized water and observed using a confocal microscope (LSM 710 NLO Jena, Germany) at wavelengths of 492 and 516 nm.
Statistical Analysis
SPSS (17.0) software was used for data analyses. The sequences were assembled using DNAStar. TASSEL was used to identify single-nucleotide polymorphisms (SNPs) within the sequence of the HvNXH1 and HvNXH3 genes.
RESULTS
The Difference in Tissue Dry Weight and Ion Content Among Four Genotypes Under Moderate and Severe Salt Stress
After 3 weeks of salt treatment, the treated plants showed a significant reduction in root and leaf dry weight; however, the level of reduction varied among the four genotypes (Table 1). XZ16 and CM72 are more tolerant genotypes, showing a minimal reduction of root and leaf dry weight under moderate (150 mM) and severe (300 mM) NaCl stress, whereas the two salt-sensitive genotypes, Gairdner and XZ169, exhibited a significanty reduction in root and leaf dry weight reduced relative to the control. However, the extent of reduction in dry weight of roots and leaves at both salinity levels was in order of XZ16 < CM72 < XZ169 < Gairdner (Table 1).
TABLE 1 | Comparison of root and leaf dry weight, Na+ and K+ content, and the Na+/K+ ratios among four barley genotypes under salt stress.
[image: Table 1]Na+ concentrations in both roots and leaves of four genotypes were noticeably enhanced under salt stress, while K+ concentrations in roots and leaves of the four genotypes showed a remarkable reduction with increasing NaCl levels. Hence, more increase of Na+ concentration and reduction of K+ concentration was observed in Gairdner and XZ169 than that in XZ16 and CM72. Therefore, Gairdner and XZ169 had a considerably higher Na+/K+ ratios than XZ16 and CM72 in both roots and leaves under moderate and severe salt stress (Table 1).
Correlation Between Relative dry Weight and Ionic Contents
Na+ concentrations in leaves and roots were significantly negatively correlated with relative root and leaf dry weight (Figures 1C,D). Moreover, K+ concentration in both the tissues had a positive correlation with relative leaf and root dry weight (Figures 1A,B). However, a significantly negative correlation was observed between shoot and root Na+/K+ ratio and relative leaf and root dry weight (Figures 1E,F).
[image: Figure 1]FIGURE 1 | Correlation between K+ and Na+ contents and Na+/K+ ratios and relative leaf (A,C,E) and root (B,D,F) dry weight is based in of four genotypes.
Expression of Na+/H+-Antiporters (HvNHX) Isoform in Response to Moderate and Severe Salt Stress in Roots
We studied the influence of salt stress on HvNHX1, HvNHX2, HvNHX3, and HvNHX4 gene expression in roots and leaves of four barley genotypes after 0, 6, 12, and 24 h of exposure to moderate and severe salt stress. Our results revealed that in the case of XZ16, the HvNHX1 gene showed a higher expression level in the root tissue at all time points under moderate and severe salt stress than the control. The expression level of the HvNHX1 gene in CM72 was also upregulated at all time points under moderate and severe salt stress; however, the expression level of HvNHX1 in XZ16 was markedly enhanced as compared with CM72 (Figures 2A,B), whereas in salt-sensitive genotypes XZ169 and Gairdner, downregulation was observed in the expression level of the HvNHX1 gene at all time points in XZ169, except at 6 h, whereas in Gairdner at both the salinity levels, downregulation was observed as compared with the control (Figures 2A,B).
[image: Figure 2]FIGURE 2 | Relative gene expression of HvNHX isoforms in leaves of four genotypes after moderate and severe salt stress. Data are expressed asmeans ± SD of at least three repeats.
The expression level of HvNHX2 was significantly upregulated in XZ16 at both salinity levels as compared with the control, but a higher expression level was observed at 6 and 24 h (Figures 2C,D) However, the expression level of the HvNHX2 gene in CM72 under moderate salt stress was slightly expressed as compared with the control, but at 12 and 24 h exposure of severe stress, the expression level in CM72 was more than that of XZ16 under 300 mM salt stress. In contrast, the expression level of HvNHX2 in Gairdner was downregulated under both salinity levels, while the expression level in XZ169 was not affected at the initial hour but then declined under moderate salt stress, while the reverse was true for severe salt stress (Figures 2C,D).
It was also found that the expression of the HvNHX3 gene in XZ16 was highly upregulated at both salinity levels as compared with other three genotypes, whereas the expression level in CM72 was upregulated in moderate salt stress, while at severe salt stress, slight increase was observed as compared with the control (Figures 2E,F). Moreover, the expression level in XZ169 and Gairdner was downregulated at moderate salt stress, and no change was observed in HvNHX3 gene expression in response to 300 mM NaCl (Figures 2E,F).
The expression level of HvNHX4 was upregulated in XZ16 and CM72 under both levels of salt stress, but the expression level was higher in XZ16 than CM72 under moderate salt stress, whereas the reverse was true for CM72 under severe salt stress. In the roots of XZ169 and Gairdner, the expression of HvNHX4 was downregulated at moderate salt stress, whereas it was slightly upregulated under severe salt stress (Figures 2G,H).
Expression of Na+/H+-Antiporter (HvNHX) Isoform in Response to Moderate and Severe Salt Stress in Leaves
The expression level of HvNHX1 in leaves of XZ16 and CM72 was upregulated at all time points, but markedly increased in XZ16 compared with CM72 under moderate and severe salt stress (Figures 3A,B). In contrast, the expression level of HvNHX1 in Gairdner was downregulated at 24 h of moderate salt stress, while no change was observed at severe salt stress compared with the control. However, the expression level in XZ169 was slightly upregulated under both salinity levels (Figures 3A,B Figures 3A,B). Moreover, the expression level of HvNHX2 was significantly upregulated in XZ16 and CM72 at both salinity levels. However, this gene was more highly expressed in CM72 than XZ16 under both salinity levels, except at 24 h of severe salt stress (Figures 3C,D). In contrast, HvNHX2 in Gairdner was downregulated under both salinity levels, whereas the expression level in XZ169 was slightly increased at 24 h of moderate salt stress as compared with the control (Figures 3C,D). As shown in Figures 3E,F, the expression of the HvNHX3 gene in XZ16 was highly upregulated at both salinity levels as compared with the other three genotypes, except at 24 h of severe salt stress, where expression of HvNHX3 was slightly downregulated as compared with CM72. In contrast, the expression of HvNHX3 in Gairdner was downregulated under both salinity levels. Moreover, the expression level in XZ169 remained unchanged under moderate salt stress but slightly induced at 6 and 12 h and then declined at 24 h of severe salt stress as compared with the control (Figures 3E,F).
[image: Figure 3]FIGURE 3 | Relative gene expression of HvNHX isoforms in roots of four genotypes after moderate and severe salt stress. Data are expressed as means ± SD of at least three repeats.
The expression of HvNHX4 was upregulated in XZ16 and CM72 under moderate and severe salt stress as compared with the control. The expression was more pronounced in CM72 than XZ16, except at 24 h of severe salt stress in ZX16. In leaves, the overall expression level of HvNHX4 in XZ169 remained unchanged but slightly induced at 6 h under moderate salt stress, whereas under severe salt stress, the expression of HvNHX4 in XZ169 was slightly upregulated at all time points (Figures 3G,H).
In general, both moderate and severe salt treatment caused fluctuations in the expression of all HvNHX isoforms in roots and leaves of both the salt-tolerant genotypes as compared with sensitive ones. The strongest expression level in XZ16 roots and leaves was ranked as HvNHX1>HvNHX3>HvNHX4>HvNHX2 and in CM72 as HvNHX2>HvNHX4> HvNHX1>HvNHX3. HvNHX isoforms were also induced in XZ169, the salt-sensitive genotype, but to a lesser extent. However, all the HvNHX isoforms were down regulated in Gairdner.
It was also observed that less Na+ was accumulated in the roots of XZ16 than the other genotypes visualized by CoroNa-Green, a sodium-specific fluorophore (Figure 4). Bright images showed that more Na+ content was accumulated in plant roots.
[image: Figure 4]FIGURE 4 | Fluorescence detection of Na+ accumulation in roots of four genotypes after moderate and severe salt stress. Scale bar10 µm.
SNP Detection and Validation
In the present study, 36 wild barley accessions (from eight sub-population of Tibetan wild barley accession) and two cultivated barley genotypes were used to investigate the allelic variation in HvNHX1 and HvNHX3 based on SNPs. The sequence of genes HvNHX1 (AB089197.1) and HvNHX3 (DQ372061.1) was downloaded from NCBI. Complete coding regions of mRNA of HvNHX1 (2564 bp) and HvNHX3 (1794 bp) were cloned. Four primer pairs to HvNHX1 and three pairs of primers to the HvNHX3 gene were designed to amplify the complete CDS regions of candidate genes for sequencing. In order to confirm the primer amplification specificity, few of the representative samples were tested for gel electrophoresis, and the required bandwidth obtained was then matched with a wide range of DNA markers (Figures 5, 6). SNPs were detected using the sequencing and alignment method. We successfully amplified and sequenced HvNHX1 and HvNHX3 genes. Details of the nucleotide variations among the barley accessions and/or genotypes for HvNHX1 genes are presented in Table 2 and HvNHX3 genes are presented in Table 3.
[image: Figure 5]FIGURE 5 | Pre-sequencing sample amplification trial to verify the gene and amplicon size for the selected primer pairs of HvNHX1 primer 1 (A), primer 2 (B), primer 3(C), and primer 4(D). M = wide range DNA marker (100–2000 bp).
[image: Figure 6]FIGURE 6 | Pre-sequencing sample amplification trial to verify the gene and amplicon size for the selected primer pairs of HvNHX3 primer 1 (A), primer 2 (B), and primer 3(C). M = wide range DNA marker (100–2000 bp).
TABLE 2 | Sequencing results showing single-nucleotide polymorphisms (SNPs) and insertion–deletions (INDEL) pattern in the HvNHX1 gene locus having Na+/H+ activity in barley; del: deletion. Dots indicate the same nucleotide with the reference sequence; the letters in each sample represent nucleotide substitution sites. SPS = SNP per sample. The letters in each sample represent nucleotide substitution sites.
[image: Table 2]TABLE 3 | Sequencing results showing single-nucleotide polymorphisms (SNPs) and insertion–deletion (INDEL) pattern in the HvNHX3 gene locus having Na+/H+ activity in barley. H: haplotype; del: deletion. Dots indicate the same nucleotide with the reference sequence; the letters in each sample represent nucleotide substitution sites. SPS = SNP per sample. The letters in each sample represent nucleotide substitution sites.
[image: Table 3]Overall, evaluation of the sequencing data of 38 barley genotypes showed mutation, including SNPs and small insertion–deletion (INDEL) sites, for targeted gene HvNHX1. Thirty-nine SNPs were observed in total 38 barley genotypes/accessions as shown in Table 2. Moreover, the range of polymorphic sites was 1–3, with an average of one SNP site per barley genotype (Table 2). The HvNHX3 gene was amplified by three primers. The range of polymorphic sites was 1–5, with an average of two SNP sites per barley genotype. Eighty-four SNPs were detected for the HvNHX3 gene in 38 barley genotypes/accessions as shown in Table 3.
Moreover, SNP analysis revealed that in CM72 (salt-tolerant genotype), A is deleted at 300bp and replaced by G at 1978bp while in XZ16 (salt-tolerant genotype), C was replaced by T at 1843bp. For salt-sensitive Gairdner genotype, G, A, and C were deleted at 267, 1,069, and 1,816 bp, respectively. In wild XZ169 salt-sensitive genotype, C was deleted at 1,816 bp and G was replaced by A at 1,820 bp as compared with the reference HvNHX1 gene. Moreover, in the HvNHX3 gene in CM72, A and T was replaced by T and G at 373 and 1221bp, respectively, while in XZ16, G was deleted at 11bp and replaced by T at 45bp while A, T, and G were replaced by T, G, and A at 373, 1,221, and 1,661 bp, respectively (Table 3). For salt-sensitive Gairdner genotype, A was replaced by T at 373bp. In XZ169, G was replaced by T at 11 bp while A was replaced by T at 373 bp and at 1190 bp. T was deleted as compared with the reference HvNHX3 gene. It may be concluded that variations of SNP in salt-tolerant wild barley might offer elite alleles for the development of salt-tolerant barley.
DISCUSSION
Salinity tolerance in plants is a complex multigenic trait, including physiological and molecular aspects (Flowers, 2004). In salt stress conditions, Na+ first enters the cytosol of a plant and disturbs important physiological, biochemical, and molecular processes; consequently, it restricts plant growth, disruption of ion homeostasis (Mane et al., 2010; Basu et al., 2020), and development, therefore posing a serious threat to crop production (Zhu, 2007). One of the key mechanisms in plants to cope with salinity stress is their ability to reduce sodium ion (Na+) transport at both the tissue and cellular level, either by emitting Na+ into tissues (Tester and Davenport 2003), or by maintaining ion homeostasis within the cell, including Na+ compartmentalization in the vacuole (Tester and Davenport 2003; Flowers and Colmer 2008). Barley is a well-known salt-tolerant crop (Steppuhn et al., 2005; Jabeen et al., 2021); however, in cultivated barley, the increase in sensitivity to salinity stress is observed due to the increasingly narrow genetic diversity (Zhu, 2001). However, the Tibet plateau provides a rich pool of wild barleys with a high degree of contrast in salt tolerance that could be attributed to high genetic diversity compared with cultivated barley (Shavrukov et al., 2010).
In this study, the salt tolerance mechanism of four isoforms (HvNHX1 to HvNHX4) and their allelic diversity in wild and cultivated barleys was evaluated after application of 150 and 300 mM salt stress in hydroponic conditions. Salt stress causes several physiological, morphological, and biochemical changes in plants (Uçarlı and Gürel 2020). The current results indicate that XZ16 and CM72 are more tolerant genotypes with minimal reduction of root and leaf dry weight under moderate (150 mM) and severe (300 mM) NaCl stress. However, within tolerant genotypes, wild barley XZ16 showed comparatively less reduction than cultivated barley CM72. This suggested the involvement of a rather different mechanism of salt tolerance in XZ16 compared with CM72. The result was consistent with the findings observed in our previous study (Wu et al., 2011; Zahra et al., 2014). A high expression level of Na+/H+ antiporters in tolerant plants could lead to enhanced Na+ compartmentalization into vacuoles and ultimately improve plant growth by defending the cytoplasm from harmful effects of Na+ (Blumwald et al., 2000; Galvez et al., 2012). Moreover, in the present study, the increase in Na+ and decrease in K+ concentrations in Gairdner and XZ169 was distinctly higher than those in XZ16 and CM72. A similar trend was observed in the studies conducted by Qui et al., 2011; Wu et al., 2011, describing that the reduction in growth was caused by enhanced Na+ and reduced K+ tissue content, which caused ion toxicity and damaged plant metabolism and growth (Table 1).The tissue-specific Na ion accumulation was also confirmed through fluorescence dye, which was directly proportional to the Na+ ion accumulation in roots (Figure 4). Genotypes with the lowest Na+ tissue accumulation produced more biomass and vice versa (Munns and Mark, 2008). In the present study, the expression level of HvNHX isoforms follows a complex pattern, but the gene expression was more induced in salt tolerant genotypes, indicating the important role of these genes in the salt tolerance mechanism. In leaves and roots, the expression of HvNHX1 and HvNHX4 in XZ16 and CM72 was upregulated at all time points as compared with sensitive ones, NHX1 (Quintero et al., 2009; Fukuda et al., 2004; Saqib et al., 2005; Brini et al., 2007) and NHX4 (Gálvez et al., 2012) in wheat and Arabidopsis, and a high expression pattern of NHX1 (Quintero et al., 2009; Fukuda et al., 2004; Saqib et al., 2005; Brini et al., 2007) and NHX4 genes in tomato (Galvez et al., 2012) was reported to be involved it in better plant growth because NHX1 and NHX4 are the key molecular players in maintaining plant cell homeostasis by regulating several physiological processes, such as cell expansion, osmotic adjustment, cell volume, pH, and ion regulation (Pardo et al., 2006).
Na+/H+ antiporter protein has different membrane positions in the cell, and its function may be affected by ion accumulation. Previously, the topological studies elucidated that the position of N-terminal of AtNHX1 is facing toward the cytosol, and its C-terminal, hydrophilic region, residing in the vacuolar lumen could protect the cytoplasm from deleterious effects of Na+ (Yamaguchi and Blumwald, 2005, Flowers and Colmer, 2008. The function of Na+/H+ antiporters may not only be related to the regulation of gene expression but could also be involved in transcriptional modification of the proteins. The activity of antiporters could be regulated by phosphorylation through the interaction of various kinases with other cellular proteins. So, the differential response of these binding factors in a species-dependent manner could alter the activity of the Na+/H+ antiporters. For instance, the binding of AtCaM15, a calmodulin-like protein 15 (localized in plant vacuolar compartment), to the C-terminal domain of AtNHX1 (a tonoplast transporter) changed the Na+/K+ selectivity of the antiporter in Arabidopsis (Yamaguchi and Blumwald, 2005; Munns and Mark, 2008). Moreover, similar to the overexpression of HvNHX1 in tolerant genotypes, HvNHX3 was also expressed in wild barley XZ16 and CM72. These results suggest that HvNHX1 and HvNHX3 may encode a putative vacuolar NHX that could play an important role in salt tolerance by mediating K+/H+ exchange in plants (Liu et al., 2010).
In plants, H+V-PPase and H+-ATPase are the two different vacuolar pumps that help the Na+/H+ antiporter in the vacuolar lumen to transport Na+ from the cytoplasm to vacuoles by generating the electrochemical gradient force. Generally, under salinity stress, salt-tolerant plants maintain higher K+/Na+ or lower Na+/K+ ratios in the cytoplasm and regulate the osmotic balance of the cells by sequestering Na+ in the vacuoles (Maeshima, 2000). Our results are consistent with those of a previous study that a lower Na+/K+ ratio was observed in tolerant genotypes (Table 1) (Wu et al., 2011; Zahra et al., 2014). The HvNHX2 and HvNHX4 isoforms were also induced by salt stress, although not to the same extent as HvNHX1 and HvNHX3. Expression of HvNHX2 and HvNHX4 in roots under moderate salt stress was more upregulated in XZ16 than in CM72, whereas high expression levels of HvNHX2 and HvNHX4 under severe salt stress in both roots and leaves were observed in CM72. The results from previous studies showed that HvNHX2 and HvNHX4 play an important role in the maintenance of K+ concentration in plant tissues (Venema et al., 2003; Rodriguez Rosales et al., 2008).
To study the polymorphism in terms of SNP detection in the genes of interest is a powerful technique to investigate the gene(s) function and get desirable mutations for crop breeding. In our previous studies, more allelic variation in Tibetan wild barley accessions was observed for HvCBF3, HvCBF4, and HvHKT genes responsible for salt tolerance (Qui et al., 2011; Wu et al., 2011). These findings are further confirmed by the present study that Tibetan wild barley could provide rich source of allelic variation for the salt-responsive gene(s) as compared with salt-tolerant cultivated barley CM72. So, evaluation of genetic variation and identification of salt tolerance mechanism in wild barley are important steps to unravel the novel alleles involved in salinity tolerance. In conclusion, physiological and gene expression analysis revealed that HvNHX1 and HvNHX3 are the candidate genes that function as regulating ions by sequestration of Na+ in the vacuole. Moreover, Tibetan wild barley could be used as a rich source of genetic variation to explore the dynamics of abiotic stress tolerance in barley and other cereal crops.
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Most genomic prediction models are linear regression models that assume continuous and normally distributed phenotypes, but responses to diseases such as stripe rust (caused by Puccinia striiformis f. sp. tritici) are commonly recorded in ordinal scales and percentages. Disease severity (SEV) and infection type (IT) data in germplasm screening nurseries generally do not follow these assumptions. On this regard, researchers may ignore the lack of normality, transform the phenotypes, use generalized linear models, or use supervised learning algorithms and classification models with no restriction on the distribution of response variables, which are less sensitive when modeling ordinal scores. The goal of this research was to compare classification and regression genomic selection models for skewed phenotypes using stripe rust SEV and IT in winter wheat. We extensively compared both regression and classification prediction models using two training populations composed of breeding lines phenotyped in 4 years (2016–2018 and 2020) and a diversity panel phenotyped in 4 years (2013–2016). The prediction models used 19,861 genotyping-by-sequencing single-nucleotide polymorphism markers. Overall, square root transformed phenotypes using ridge regression best linear unbiased prediction and support vector machine regression models displayed the highest combination of accuracy and relative efficiency across the regression and classification models. Furthermore, a classification system based on support vector machine and ordinal Bayesian models with a 2-Class scale for SEV reached the highest class accuracy of 0.99. This study showed that breeders can use linear and non-parametric regression models within their own breeding lines over combined years to accurately predict skewed phenotypes.
Keywords: generalized linear model, non-parametric, ordinal regression, rrBLUP, stripe rust, support vector machines, transformations
1 INTRODUCTION
Genomic selection (GS) is posed to increase genetic gain and reduce cycle time for complex agronomic traits that are difficult to phenotype and analyze (Meuwissen et al., 2001). With the advent of high-throughput genotyping, it is now feasible to develop and implement GS models for categorical/ordinal phenotypes that are common in most breeding programs and often difficult to analyze. The difficulty in phenotyping and analysis can be due to the traits’ genetic complexity, environmental dependency to display variation, and the inability of statistical models to model phenotypes adequately. Most GS models are linear regression models that assume continuous and normally distributed phenotypes (Montesinos-López et al., 2015c).
When faced with data that do not follow the assumption of a linear model, researchers have several options. They may either ignore the lack of normality, transform the phenotypes, use generalized linear models (GLMs), or use machine learning (ML) algorithms and classification models. Machine learning models have no restriction on the distribution of response variables, which are less sensitive when modeling ordinal scores (Montesinos-López et al., 2015a; González-Camacho et al., 2018). Most GS models treat disease resistance as continuous values and utilize regression models and transformations for prediction whereas only a few studies have used classification methods (Ornella et al., 2012; Ornella et al., 2014; Rutkoski et al., 2014; Muleta et al., 2017).
When the number of categories is large and the data follow more of a normal distribution, the ordinality of data can be ignored (Montesinos-López et al., 2015b). However, ignoring the lack of normality and using linear regression models imposes various problems. Linear regression models are limited to modeling additive effects only, whereas machine learning models account for both non-additive and epistatic genetic effects (Riedelsheimer et al., 2012). Modeling only additive effects on quantitative resistance to stripe rust is not a major issue, nonetheless, due to previous studies showing mainly additive effects of high-temperature adult-plant (HTAP) resistance to stripe rust (Chen et al., 1995a; Chen et al., 1995b). Ultimately, linear regression models assume continuous and normally distributed phenotypes, whereas machine learning models are not restricted to a certain distribution of response variable and this causes an issue on the analysis of traits (González-Camacho et al., 2018).
Data transformation is another approach used to deal with skewed and ordinal trait information. Logarithmic or square root transformations are commonly implemented to transform data for small sample sizes (Montesinos-López et al., 2015c), where they are considered standard procedures to stabilize variance, but fail to normalize inflated count data (O’Hara and Kotze, 2010; Montesinos-López et al., 2015b). Moreover, transforming data results in a loss of accuracy and power in models, especially in a small sample size (Montesinos-López et al., 2015a). When transformations are used on count data with a high number of zeros causing overdispersion, transformations may not be able to create a normal distribution (Montesinos-López et al., 2016). Another issue with using transformations is the resulting negative predicted values which are not plausible for disease resistance scores.
Another approach is to use GLMs, which accommodate non-normal data with heterogenous variance and correlated observations (Montesinos-López et al., 2015a; Montesinos-López et al., 2015b). GLMs provide more sensible results and have greater power to identify model effects as statistically significant (Montesinos-López et al., 2015b). Poisson and negative binomial regression models are the most common GLMs used for count and ordinal data (Montesinos-López et al., 2015c). GLMs model a function of the response mean as a linear function of the coefficients rather than modeling y as a linear function. These models have advantages over linear models due to their ability to model a skewed non-negative discrete distribution towards lower numbers as seen in disease resistance phenotypes (Montesinos-López et al., 2016). Several studies have shown the feasibility of integrating GLM parametric approaches into GS models such as Bayesian logistic ordinal regression (BLOR), threshold genomic best linear unbiased predictor (TGBLUP), and Bayesian mixed-negative binomial (BMNB) genomic regression (Montesinos-López et al., 2015a; Montesinos-López et al., 2015b; Montesinos-López et al., 2015c, Montesinos-López et al., 2016) and observed that the ordinal models present a viable alternative for predicting ordinal traits.
The last approach is to use machine learning algorithms, and classification models with no restriction on the distribution of response variables are less sensitive when modeling ordinal scores while also accounting for epistatic effects (Ornella et al., 2014; González-Camacho et al., 2018). Support vector machines (SVMs) previously displayed higher performance for relative efficiency and Cohen’s kappa coefficient than traditional regression models such as Bayesian LASSO, Ridge Regression, and Reproducing Hilbert spaces (Ornella et al., 2014; González-Camacho et al., 2018). For the classification models, Ornella et al. (2014) further showed the superiority of SVM as the best-performing model compared to random forest (RF). Additionally, classification models displayed an advantage in selecting the top performing lines.
Resistance to diseases, such as stripe rust (caused by Puccinia striiformis Westend. f. sp. tritici Erikss.) in wheat (Triticum aestivum L.) is commonly recorded in ordinal scales and percentages that do not follow the assumptions of linear regression models (Montesinos-López et al., 2015a; González-Camacho et al., 2018). The unbalanced, skewed distribution of resistant phenotypes is another issue for disease resistance traits in breeding programs. For example, in most wheat breeding programs, disease resistance is selected early (i.e., headrow selection before yield trials) in the breeding process. Consequently, this early selection and screening process skews the lines in disease nurseries and yield trials towards mostly resistant lines. Therefore, not only are disease-resistant traits commonly expressed in ordinal and categorical scales, but they can also be very skewed towards resistance and no longer follow a normal distribution.
Stripe rust is one of the most devastating diseases of wheat worldwide (Chen, 2020) and is especially destructive in the western United States (Chen et al., 1995b; Rutkoski et al., 2014; González-Camacho et al., 2018; Liu et al., 2019) causing more than 90% yield losses in fields planted with susceptible cultivars (Liu et al., 2020). The use of resistant varieties and fungicide applications are the primary methods to control stripe rust (Chen et al., 1995b; Liu et al., 2020). Quantitative stripe rust resistance, also known as adult-plant resistance (APR) or HTAP resistance, is usually a non-race specific resistance associated with durable resistance with some genes being effective for more than 60 years (Klarquist et al., 2016). APR is conferred by different numbers of loci with varying effects and often displays partial resistance, which makes it difficult to incorporate into new cultivars (Liu et al., 2019). Therefore, APR must be improved over multiple cycles of selection and can be approached similarly to other agronomic traits (Rutkoski et al., 2014; Poland and Rutkoski, 2016; González-Camacho et al., 2018). GS approaches would be able to capture the additive effects of APR and are therefore relevant for accumulating favorable alleles for rust resistance (Rutkoski et al., 2014; Michel et al., 2017).
However, most GS studies treat disease resistance as continuous values and utilize regression models and transformations for prediction whereas only a few studies have used classification methods (Ornella et al., 2012; Ornella et al., 2014; Rutkoski et al., 2014; Muleta et al., 2017). Therefore, this study presents empirical research to 1) evaluate GS methods using all transformations, GLMs, and non-parametric models for handling ordinal categorical phenotypes; and 2) implement these methods into selected and unselected training populations for predicting stripe rust resistance. This study identified the most accurate methods for dealing with complex phenotypes in the context of disease resistance in winter wheat.
2 MATERIALS AND METHODS
2.1 Phenotypic Data
The Washington State University (WSU) Winter Wheat Breeding Program takes stripe rust notes every year to select for stripe rust-resistant lines. Two training populations were used to compare the different methods. The first training population consists of F3:5 breeding lines (BL) and doubled-haploid (DH) unreplicated trials in Pullman and Lind, WA planted in 2016–2018 and 2020 growing seasons evaluated for stripe rust responses (Table 1). Due to the unreplicated nature of the single plots, each trial in the BL consisted of unique lines, which resulted in a total of 2,634 lines (1,009 in Lind and 1,625 in Pullman) over all years and locations. The BL population was subjected to stripe rust resistance screening and culling in headrows the previous year in unreplicated trials and therefore represents our prior selected population. The second training population consisted of a diverse association mapping panel (DP) with 475 lines evaluated in unreplicated trials in Central Ferry and Pullman, WA from 2013 to 2016. The DP consisted of varieties from various breeding programs in the Pacific Northwest region of the US and represented our unselected population.
TABLE 1 | Study populations for stripe rust infection type and disease severity for the diversity panel (DP) and breeding line (BL) training populations phenotyped from 2013 to 2016 and 2016–2020, respectively.
[image: Table 1]The disease traits measured were stripe rust infection type (IT) and stripe rust disease severity (SEV). The IT was based on a 0–9 scale (resistant: 0–3; intermediate: 4–6; susceptible: 7–9) (Line and Qayoum, 1992), whereas SEV was measured as the percentage of the total area of the leaf infected using a modified Cobb Scale (Peterson et al., 1948). Stripe rust data were dependent on natural infection and incidence at the time of observation. Some trials had three observations and were identified with sequential numbers. The trials with only one observation were recorded right after anthesis to measure stripe rust responses at the adult-plant stage. The reason there was only one observation was that stripe rust was not present in the field at earlier growth stages. If there were three observations, stripe rust was present in the field at earlier growth stages where the first, second, and third scores were taken soon after flag leaf emergence, after anthesis, and at early milk stage, respectively. Entries with a high infection type in the first observation, but a low infection type in the following observations may indicate that they have a HTAP resistance (Chen, 2013). However, due to the nature of APR being effective in the adult stage and that not all trials had multiple recordings, only the last observation for each trial was used to measure the stripe rust response.
2.2 Phenotypic Adjustments
In order to compare the regression and classification strategies, we used multiple methods of phenotypic adjustments. For the regression models, standard adjusted means were calculated considering the field design used. The ability of ridge regression best linear unbiased prediction (rrBLUP), GLM, and SVM regression (SVMR) to predict the standard and transformed [square root (SQRT), LOG, and boxcox (BC) transformed] adjusted means was then compared (Table 2). For the classification models, Bayesian and SVM classification (SVM) models were used to predict the full-scale categories for IT and SEV with the standard adjustments for field design as our control values (Table 2). We then reduced both traits using multiple number of classes to determine the scenario resulting in the highest accuracy for breeding program implementation.
TABLE 2 | Regression and classification genomic selection models for stripe rust infection type (IT) and disease severity (SEV) in winter wheat.
[image: Table 2]For the field design adjustment for controls for both the regression and classification phenotypic adjustments, a two-step adjusted means method was used, in which a linear model was implemented to adjust both IT and SEV means within and across environments. Then, a GS model was used to calculate genomic estimated breeding values (GEBVs; Ward et al., 2019). Adjusted means from the stripe rust data collected in the unreplicated trials were adjusted using residuals calculated for the unreplicated genotypes in individual environments and across environments using the modified augmented complete block design model (ACBD; Federer 1956; Goldman 2019). The adjustments were made following the method implemented in Merrick and Carter (2021), as follows:
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where [image: image] is the phenotypic value for the trait of interest of the ith block and jth replicated check cultivar (i = 1, … ,I,j = 1, … ,J); [image: image] is the mean effect; [image: image] is the fixed effect of the ith block; [image: image] is the fixed effect of the jth replicated check cultivar; and [image: image] are the residual errors with a random normal distribution of [image: image]. For adjusted means across environments, the model is as follows:
[image: image]
where [image: image] is the phenotypic value for the trait of interest of the ith block and jth replicated check cultivar in the kth environment (i = 1, … ,I, j = 1, … ,J, k = 1, … , K); [image: image] is the mean effect; [image: image] is the fixed effect of the ith block; [image: image] is the fixed effect of the jth replicated check cultivar; [image: image] is the fixed effect of the kth environment; and [image: image] are the residual errors with a random normal distribution of [image: image].
The BLUPs for heritability were calculated for each trial and across trials using a mixed linear model for the full augmented randomized complete block design in a single environment and is as follows:
[image: image]
where [image: image] is the phenotypic value for the trait of interest of the lth unreplicated genotype nested in the jth replicated check cultivar of the ith block (i = 1, … ,I, j = 1, … ,J, k = 1, … ,K); [image: image] is the mean effect; [image: image] is the random effect of the ith block with the distribution [image: image]; [image: image] is the fixed effect of the jth replicated check cultivar; [image: image] is the unreplicated genotype l in the jth check with the distribution [image: image]; and [image: image] are the residual errors with a random normal distribution of [image: image]. The full model across environments is as follows:
[image: image]
where [image: image] is the phenotypic value for the trait of interest of the lth unreplicated genotype nested in the jth replicated check cultivar of the ith block and in the kth environment (i = 1, … ,I, j = 1, … ,J,k = 1, … ,K, l = 1, … ,L); [image: image] is the mean effect; [image: image] is the random effect of the ith block with the distribution [image: image]; [image: image] is the fixed effect of the jth replicated check cultivar; [image: image] is the random effect of the genotype l in the jth replicated check cultivar with the distribution [image: image]; [image: image] is the random effect of the kth environment with the distribution [image: image]; and [image: image] are the residual errors with a random normal distribution of [image: image]. After adjustments were made, values outside of the 0–9 (IT) and 0–100 (SEV) scales were rounded back to 0–9 and 0–100, respectively, to avoid negative values for log transformations or Poisson distributions and to have the standard adjusted means for all comparisons.
Broad-sense heritability on a genotype-difference basis was calculated using the variance components from the models (3) and (4) implemented by Merrick and Carter (2021) and using BLUP for both individual environments and across environments (Cullis et al., 2006):
[image: image]
where [image: image] and [image: image] BLUP are the genotype variance and mean variance of a difference between two BLUPs for the genotypic effect BLUPs, respectively (Schmidt et al., 2019). Trial evaluations were compared using general summary statistics, coefficient of variations (CV), skewness, kurtosis, and the non-parametric Kruskal–Wallis test using the R package “ggpubr” (R Core Team, 2018; Kassambara and Kassambara, 2020).
2.3 Genotypic Data
Wheat lines were genotyped using genotyping-by-sequencing (GBS; Elshire et al., 2011) through the North Carolina State University (NCSU) Genomics Sciences Laboratory in Raleigh, North Carolina (https://research.ncsu.edu/gsl/) using a two-enzyme (PstI/MspI) digestion protocol (Poland and Rife, 2012). Genomic DNA was isolated from individual seedlings at the one- to three-leaf stage using Qiagen BioSprint 96 Plant kits and the Qiagen BioSprint 96 workstation (Qiagen, MD, United States). Genotyping by sequencing was conducted using Illumina HiSeq® 2,500 and NovaSeq 6,000. Sequences were aligned to the Chinese Spring International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.0 (Appels et al., 2018) using the Burrows-Wheeler Aligner (BWA) 0.7.17 (Li and Durbin, 2009). GBS-derived single-nucleotide polymorphism (SNP) markers were called using TASSEL-GBS v2 SNP calling pipeline in TASSEL v5.2.35 (Bradbury et al., 2007; Glaubitz et al., 2014). Markers with >20% missing data, minor allele frequency (MAF) <5%, and those that were monomorphic were removed. Imputation of missing genotypes was conducted using Beagle 5.0 (Browning et al., 2018) and markers with <5% MAF were further excluded. The remaining markers were binned together based on a linkage disequilibrium threshold value of 0.80 (Ward et al., 2019). The reduced genotype matrix was computed using JMP genomics version 9 (SAS Institute, Inc, 2011). Principal components analysis (PCA) using the SNP data was performed using “prcomp” and a biplot with k-mean clusters was created using the “autoplot” packages in R. Cluster number for k-means were calculated according to the elbow method using a scree plot with the optimal number of clusters identified when the total intra-cluster variation was minimized.
2.4 Regression Models
2.4.1 Transformations
Transformations using SQRT, LOG, and BC approaches were compared to determine the optimal method for phenotypic adjustment for skewed phenotypes (Table 2). The BC transformations were conducted using the “forecast” package (Hyndman and Khandakar, 2008) that identifies optimal lambda values using the “BoxCox.lambda” function in R.
2.4.2 rrBLUP Model
rrBLUP was used as the standard GS model for comparing the predictive ability of the adjusted means and transformed data. The rrBLUP was selected due to its high predictive performance for stripe rust resistance (Table 2; Rutkoski et al., 2014; Arruda et al., 2016; Poland and Rutkoski 2016; Muleta et al., 2017; Merrick et al., 2021). The model follows the basic mixed linear model that treats the effects of markers as random effects as described by Endelman (2011):
[image: image]
where [image: image] is a vector of marker effects; [image: image] is a vector of phenotypes; G is the genotype matrix; and W is the design matrix for y. The marker effects are then calculated using [image: image] with the ridge parameter of [image: image], which is the ratio of the residual and marker variances.
2.4.3 Generalized Linear Model
The GLM was implemented using “Glmnet” with a Poisson distribution (Table 2; Hastie et al., 2016). Glmnet fits a GLM via penalized maximum likelihood with the elastic net penalty computed at grid values on the log scale for the regularization parameter lambda. Glmnet solves the equation:
[image: image]
over a grid of values of [image: image]; [image: image] is the negative log-likelihood of i. The elastic net penalty is controlled by [image: image] and bridges the game between lasso regression ([image: image]) and ridge regression ([image: image], with [image: image] controlling the penalty. [image: image] is a vector of phenotypes; [image: image] is the genotype matrix; [image: image] is the design matrix for y. Poisson regression is used to model count data under the assumption of Poisson error, or otherwise non-negative data where the mean and variance are proportional. Like the Gaussian and binomial models, the Poisson distribution is a member of the exponential family of distributions. We model its positive mean on the log scale: [image: image].
2.5 Classification Models
2.5.1 Factor Adjustments
We used a Bayesian ordinal model and an SVM to compare factor adjustments (Table 2). The adjusted means were used as control for categorical factors but rounded to discrete values, so they follow the initial ordinal scales for both IT and SEV. These scales are 0–9 for IT and 0–100 for SEV. The original 0–9 IT scale and 0–100 SEV scale were reduced to a three-class 0–2 scale (resistant/intermediate/susceptible), and a binary keep/discard scale of 0–1 in order to be more applicable to breeding programs and reduce the effect of unbalanced classes.
2.5.2 Bayesian Ordinal Regression Model
The Bayesian Ordinal Regression (BOR) model implemented in the BGLR package according to Pérez and de los Campos (2014) follows:
[image: image]
where [image: image] is a vector of phenotypes; [image: image] is the genotype of the kth marker and ith individual, p is the total number of markers, [image: image] is the estimated random marker effect of the kth marker[image: image] and [image: image] is a vector of residuals with a random normal distribution of [image: image]. Each version of the BOR model has its own conditional prior distribution and a scaled-inverse chi-squared density described in Pérez and de los Campos (2014) whose hyper-parameters are set internally by the software. The BOR model uses the probit link function in which the probability of each of the categories is linked to the linear predictor according to the link function outlined in Pérez and de los Campos (2014):
[image: image]
where [image: image] is the standard normal cumulative distribution function, [image: image] is the linear predictor, and [image: image] are threshold parameters, with [image: image], [image: image]. The BOR model was implemented in the “BGLR” package in R with a burn-in rate of 10,000 and 80,000 iterations based on convergence of the models using trace plots (Pérez and de los Campos (2014); Merrick and Carter, 2021).
2.5.3 Support Vector Machine
The SVM is a non-parametric model that can be used for both classification and regression (SVMR) with no specific phenotypic distribution requirement. The SVM performs well in a variety of settings due its use of a maximal margin classifier. The maximal margin classifier uses a hyperplane to classify and separate observations by computing the maximum distance of an observation to the hyperplane and then determining the class of the observation based on which side of the hyperplane it falls on (Gareth et al., 2013). Additionally, SVMs can enlarge the feature space of the data using kernels to accommodate non-linear boundaries between classes and simplify the inner product, which overcomes the dimensionality of the data. For classification, the radial basis function (RBF) was used due to its wide adaption and ability to be applied to any distribution of observations (Wang et al., 2018). Both SVM and SVMR were implemented using the “caret” package in R, with the RBF model using the “kernlab” function in R (Kuhn, 2008; Karatzoglou et al., 2019; Meyer et al., 2019). Furthermore, model tuning was completed using five replications of tenfold CV with resampling within the training set of the training fold of the cross-validation or validation sets. Additionally, for classification, the SVM model was tuned using up-sampling, which randomly samples the minority class to be the same size of the majority class in order to deal with class imbalances that can have significant negative impact on model fitting (Kuhn, 2008).
2.6 Prediction Accuracy and Scheme
Prediction accuracy for the regression models was reported using Pearson correlation coefficients (r) and prediction bias was reported using root mean square error (RMSE) between GEBVs and their respective adjusted means using the function “cor” in R. However, due to the unbalanced class type, the classification models were evaluated using overall class accuracy (R2) using the “confusionMatrix” function in the “caret” package and reported as R2 (Kuhn, 2008). Cohen’s kappa coefficient (kappa) was used to evaluate classification model bias because it takes into account unbalanced classes (Ornella et al., 2014; González-Camacho et al., 2018).
In order to compare regression and classification models, relative efficiency (RE) was used. RE is based on expected genetic gain when individuals are selected by GS compared to the individuals selected by phenotypic selection. The model for RE according to Ornella et al. (2014) is:
[image: image]
where [image: image] and [image: image] are the 15% of individuals selected by the ranking of observed or predicted values, respectively. [image: image] is the number of individuals selected; [image: image] is the observed phenotypic value of the ith individual; and [image: image] is the mean of the test population. The denominator is the selection differential of the individuals selected by phenotypic selection and the numerator is the selection differential of the individuals selected by GS. The 15% selection intensity was chosen due to its performance of RE when replacing phenotypic selection with GS (Ornella et al., 2014; González-Camacho et al., 2018).
The prediction accuracy was assessed using a fivefold cross-validation scheme and independent validation sets for IT and SEV in the DP and BL training populations (Merrick et al., 2021). The two populations were used to compare the effects of a selected and unselected population with varying degrees of resistance. Models for GS were conducted with fivefold cross-validation by including 80% of the samples in the training population and predicting the GEBVs of the remaining 20% (Merrick and Carter, 2021; Merrick et al., 2021). One replicate consisted of five model iterations, where the population was split into five different groups.
Independent validation sets were then performed according to Merrick and Carter (2021) on a yearly basis by combining the two locations for each training population and predicting the following year, which results in three continuous training scenarios for each population. For example, the combination of Pullman and Central Ferry trials for the DP in 2013 was used as a training population to predict the combination of Pullman and Central Ferry trials in the DP in 2014. Final validation set was completed by combining all years and locations within a training population and then predicting the combination of years and locations for the other training population. All trials in the BL in both Pullman and Lind combined across 2016 to 2020 were used to predict all trials in the DP in both Central Ferry and Pullman across 2013 to 2016. This allows the evaluation of models in a realistic breeding situation in which we combine all available data to build a training population. All cross-validations and independent validations were replicated 10 times. All GS and MAS models and scenarios were analyzed using WSU’s Kamiak high-performance computing cluster (Kamiak, 2021). Model, scenario, and training population comparisons were evaluated by using a Tukey’s honestly significant difference (HSD) test implemented in the “agricolae” package in R (de Mendiburu and de Mendiburu, 2019). The comparison of models was then plotted for visual comparison using “ggplot2” in R (Wickham, 2011).
3 RESULTS
3.1 Phenotypic Data
The stripe rust phenotypes for both IT and SEV demonstrated variability for each scale (Table 3). For the DP, the IT and SEV values ranged the entire scale of each trait for the majority of the trials. Additionally, the means of the DP were higher than the BL trials, with lower coefficients of variation (CV). Furthermore, the BL trials ranged the entire scale for IT, but had lower means. The SEV in the BL trials did not reach the maximum value of SEV. Overall, the BL displayed a higher proportion of resistance than the DP trials. Every trial and trait displayed a positively skewed distribution, with the exception of SEV in the DP in Pullman in 2015. SEV for the majority of trials was extremely skewed for the BL, with Lind in 2018 displaying the highest skew of any trial and trait. Skewness decreased for combined analysis across environments. Positive values above three display long skinny tails as in the case for SEV for the BL population in Lind in 2018 at 19.77. The majority of distributions are skinny tailed, demonstrating the large amount of similar disease resistance around 0 and the large amount of resistance in the BL and DP populations.
TABLE 3 | Stripe rust infection type (IT) and disease severity (SEV) heritability (H2) and trial statistics for unadjusted phenotypes in the diversity panel (DP) and breeding line (BL) training population phenotypes from 2013 to 2016 and 2016 to 2020 growing seasons.
[image: Table 3]The skewness and kurtosis of the distributions were further visualized (Figure 1). The DP is less skewed than the BL. For both IT and SEV, the DP displayed more variation than the BL, except for SEV in Central Ferry. Furthermore, there were significant differences between most years for each population and location (Figure 1). Heritability of the BL trials was moderately high for both IT and SEV, with values ranging from 0.76 to 0.97 and 0.52–0.63, respectively. For the DP, heritability ranged from 0.65 to 1.00 for IT and 0.71–1.00 for SEV (Table 1).
[image: Figure 1]FIGURE 1 | Comparison of unadjusted phenotypes for infection type (IT) and disease severity (SEV) over years and locations in the diversity panel and breeding line training populations using Kruskal–Wallis test. Significant differences were based on p-values “*” < 0.05, “**” < 0.01, and “***” < 0.001.
3.2 Analysis of Principal Components
After filtering and imputation, a total of 19,861 SNP markers for the 475 unique DP lines and the 2,630 BL lines were obtained from GBS. Principal component analysis using SNP markers for the DP and BL populations resulted in four clusters with Cluster 2 (green) overlapping with the other clusters (Figure 2). PC1 explained 5.8% of the variation whereas PC2 explained 3.4% of the variation. The biplot displayed four main clusters over the combined populations using k-means clustering. Cluster 1 consisted of lines common in both the BL and DP. Majority of lines in both the DP and BL were included in Cluster 3, which is composed of BL in Lind and Pullman and lines from the DP. Cluster 4 consisted mainly of lines from the BL in Lind, whereas majority of lines from the BL in Pullman comprised Cluster 2.
[image: Figure 2]FIGURE 2 | Principal component (PC) biplot and k-means clustering of SNP GBS markers from the diversity panel (DP) and breeding line (BL) training populations.
3.3 Cross-Validations for Regression Models
Multiple comparisons using HSD for RMSE and Pearson correlations for accuracy were conducted for the regression models in individual populations and years for IT and SEV. The SVMR model resulted in the highest accuracy (r = 0.73) in the 2018 Pullman BL trial for IT (Figure 3). Accuracy for the GLM model in 2018 Pullman BL was 0.72. The GLM displayed consistent high accuracies in the more skewed BL population than the less skewed DP but displayed the lowest accuracy for the most skewed trial in the BL in Lind in 2018 (0.23). Overall, there were no significant differences for the BL, whereas the LOG rrBLUP and the GLM model showed significant differences (HSD test, p < 0.05) in the DP. Additionally, the BL trials had higher mean accuracies than the DP trials with an increase in accuracy with the combination of years. Altogether, the rrBLUP had the highest accuracy over the transformed phenotypes (0.53). The rrBLUP model had similar RMSE than the SVMR and GLM models with 2.15, 2.18, and 2.28, respectively (Supplementary Figure S1). The SQRT rrBLUP model had the lowest RMSE (0.51), and the BC and LOG rrBLUP models had the highest RMSE (5.67 and 5.93, respectively). Using SQRT transformation on the phenotypes reduced the error of the predictions compared to the other transformations.
[image: Figure 3]FIGURE 3 | Pairwise comparisons of genomic selection regression model accuracy (r) using cross-validations for stripe rust infection type. Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
Similar to IT, the highest accuracies for SEV were obtained in the 2018 Pullman BL trial, with the GLM reaching the highest accuracy (0.76), followed by the SQRT rrBLUP (0.74) and SVMR (0.73) models (Supplementary Figure S2). The lowest accuracies were also achieved with the GLM model in the 2018 Lind BL trial (0.18). The 2018 Lind BL trial had the lowest accuracies for the majority of models. Similar to IT, there were no statistical differences between models overall in the BL, and the SQRT rrBLUP, rrBLUP, and SVMR reached the highest accuracies in the DP. The SVMR and SQRT rrBLUP reached the highest accuracies of 0.60 (Supplementary Figure S2). For SEV, the RMSE for the transformed rrBLUP models displayed much lower RMSE values than the rrBLUP, GLM, and SVMR models (Supplementary Figure S3). However, this discrepancy is presumably due to the phenotypic range of the transformations compared to the untransformed range for SEV, which is 0–100. The BC rrBLUP model displayed an extremely large RMSE in the DP in Central Ferry in 2015 (57.11). Overall, the rrBLUP models displayed statistically similar RMSE values with the transformed rrBLUP models.
3.4 Cross-Validations for Classification Models
Due to the difference between regression and classification models, multiple comparisons using HSD for the kappa coefficient and overall class accuracy were conducted for the classification models in individual populations and years for IT and SEV. In contrast to the regression models where the 2018 Lind BL trial had the lowest regression accuracies, the classification models displayed the highest R2 values with the 2-Class and 3-Class BOR models reaching an overall class accuracy of 0.88 for IT (Figure 4). Additionally, the SVM models displayed much higher accuracies than the BOR models overall. The full scale BOR model had very low accuracy for the majority of trials with the BL in 2018 in Pullman. The reduced class sizes, 2 and 3, displayed higher accuracy than the full IT scales. Overall, the selected BL displayed higher accuracies than the unselected DP. The 2-Class SVM reached the highest overall class accuracy with 0.76 in the BL and 0.69 in the DP. The 2-Class SVM reached the highest overall class accuracy of 0.72 in the overall comparison. The high-class accuracies in the BL in Lind in 2018 can be explained by the kappa values of 0 (Supplementary Figure S4), displaying the highly skewed data and the inability for the models to account for phenotypes of mostly zeros. The SVM displayed lower kappa values in the DP than in the BL, but the BOR models had the opposite trend. The BOR models displayed higher kappa values than the SVM models, but the SVM models showed higher accuracy.
[image: Figure 4]FIGURE 4 | Pairwise comparisons of genomic selection classification model overall class accuracy (R2) using cross-validations for stripe rust infection type. Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
The classification models for SEV had very similar results to IT, with the BOR and SVM 2-Class models reaching an accuracy of 0.99 and 0.98, respectively (Supplementary Figure S5). This was due to the very skewed and high levels of zeros in the data in the BL in Lind in 2018. Additionally, in the DP that had less skewed phenotypes, the BOR models showed very poor overall class accuracy with the majority of trials having R2 values of 0.20, with moderate accuracies for the 2-Class BOR. The 2-Class SVM displayed the highest statistically significant class accuracy in scenarios with R2 values of 0.86, 0.78, and 0.81 within the BL, DP, and overall comparisons, respectively. The kappa values were higher in the DP trials due to less skewed phenotypes and displayed low values in the high accuracy trial of the BL in 2018 Lind. Overall, the 2-Class SVM had the highest kappa value for SEV with 0.46 (Supplementary Figure S6).
3.5 Cross-Validation Relative Efficiency
RE was used to compare the selection differential between the GS models and phenotypic selection for the phenotypes. Overall, the highest relative efficiencies for IT were the regression models with the majority of models having statistically similar relative efficiencies. The regression models had very high RE values with the rrBLUP models reaching a maximum value of 0.94 in the 2018 Pullman BL trial (Figure 5). The SVMR model had statistically similar RE values to the rrrBLUP models in the overall comparisons. In contrast, the classification models had relatively low RE in the majority of trials with the three-class BOR model (−0.38) in the combined 2017 to 2018 Lind BL trials. This confirmed the bias seen in the kappa results with the majority of lines being predicted as zeros. Interestingly, the two- and three-class BOR and SVM displayed lower RE values overall than the full-scale models. Overall, the rrBLUP and SQRT rrBLUP reached RE values of 0.62.
[image: Figure 5]FIGURE 5 | Pairwise comparisons of genomic selection regression and classification model relative efficiency (RE) using cross-validations for stripe rust infection type. Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
Similar to IT, the regression models had very high RE for SEV, with the classification models reaching low to moderate values ranging between −0.58 and 0.89 (Supplementary Figure S7). The rrBLUP models had very high RE (0.98; BL Pullman 2018) compared to phenotypic selection. The rrBLUP models showed consistently higher REs than the GLM and SVMR models. The GLM displayed similar RE values in the BL, but lower in the DP. The SQRT rrBLUP model had the highest RE overall (0.81). The classification models had very low RE except the BL trials in 2018 Pullman and 2017 Lind, which showed very high RE compared to the other years and populations. Additionally, the combined trials for both the BL and DP displayed higher RE than some of the individual years indicating an advantage of combining trials.
3.6 Validation Sets for Regression Models
The training populations were evaluated for validation sets on a yearly basis and over combined years and trials. We used the earliest trial to predict the following year and then a new model with the addition of each subsequent trial to evaluate genotype-by-environment interaction of a prediction model. We then compared the combination of all trials for one population to predict the combination of all trials in the other population. The highest accuracy for IT was in the continuous training scenario of the DP combined 2013–2015 to predict the DP 2016 with SQRT rrBLUP reaching 0.65 (Figure 6). There were only a few significant differences, with none in the overall BL or DP. Overall, the SQRT rrBLUP displayed the highest accuracy (0.46). Furthermore, there was an increase in accuracy as the years were combined within the same population. However, the accuracy was much lower when predicting into the combined trials of the other population. Similar RMSE values to the cross-validations were displayed with SQRT rrBLUP having the lowest RMSE (1.31; Supplementary Figure S8).
[image: Figure 6]FIGURE 6 | Pairwise comparisons of genomic selection regression model accuracy (r) using validation sets for stripe rust infection type and disease severity. Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
The validation accuracy for SEV displayed similar trends to IT, with the highest accuracy of 0.72 for the SQRT rrBLUP and rrBLUP (Figure 6). Interestingly, the combined BL trials predicting into the combined DP displayed the highest accuracy in the BL prediction scenarios with BC rrBLUP reaching 0.53. This trend was in contrast to IT. However, the opposite was seen in the DP. The validation set accuracy for the DP was higher than the validation sets for BL. In the overall comparison, there were no statistical differences between the models. The BC and Log rrBLUP displayed the highest accuracies in some scenarios, which was not seen in cross-validations and was only observed in the BL. The RMSE values were much higher for SEV with the SQRT rrBLUP displaying similar RMSE to IT (Supplementary Figure S9).
3.7 Validation Sets for Classification Models
The classification models had contrasting results for the validation sets compared to the regression models. The validation set class accuracy for the classification models were all relatively low except for the two- and three-class SVM model. Furthermore, there was no trend in increasing overall class accuracy by combining trials. The BL trials displayed the highest overall class accuracy with R2 values reaching 0.78 for the two class SVM model (Figure 7). The low accuracies were presumably due to the increase in resistance and the models predicting zeros in the IT scale. Similar to the cross-validation scenarios, the reduced two class models reached a much higher accuracy across the majority of trials. Furthermore, the prediction accuracy can be accounted for by the low kappa values in the majority of models except the 2-Class SVM model reaching 0.40 (Supplementary Figure S10).
[image: Figure 7]FIGURE 7 | Pairwise comparisons of genomic selection classification model accuracy (R2) using validation sets for stripe rust infection type and disease severity. Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BP_L), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
SEV displayed similar results with IT, but the BOR model had zero r for all scenarios. However, the accuracies increased in the BOR with the reduced class scales (Figure 7). The two- and three-class SVM models displayed very high accuracy with two-Class SVM reaching an overall class accuracy of 0.83 and maintained the high accuracy predicting the other population for both the BL and DP validation scenarios. Combining years did not result in improved accuracy. Furthermore, the kappa values were very low except for the two- and three-Class SVM models reaching kappa values of 0.63 in the DP (Supplementary Figure S11).
3.8 Validation Set Relative Efficiency
The RE of the regression models were high in the validation scenarios reaching RE values of 0.85 using the SQRT rrBLUP model (Figure 8). The BOR and SVM models displayed relatively low RE values compared to the regression models. This was presumably due to the BOR not being able to predict the phenotypic values of the majority of the lines; however, the RE was higher for the classification models than the cross-validations with only one scenario having a negative value (−0.20). For overall comparisons, there were significant differences compared to the cross-validation scenarios. The SQRT rrBLUP reached the highest overall RE with 0.60. Furthermore, the RE values were higher in the DP than the BL. Combining years was related to an increased RE for the regression models.
[image: Figure 8]FIGURE 8 | Pairwise comparisons of genomic selection regression and classification model relative efficiency (RE) using validation sets for stripe rust infection type. Pacific Northwest winter wheat diversity panel (DP) lines phenotyped from 2013 to 2016 in Central Ferry (DP_CF) and Pullman (DP_P), WA. Washington State University breeding lines phenotyped from 2016 to 2020 in Lind (BL_L) and Pullman (BL_P), WA. Model comparison across the DP (Overall.DP), BL (Overall.BL), and Overall scenarios. Models labeled with the same letter are not significantly different using Tukey’s honestly significant difference. Bars indicate standard errors.
Consistent trends for SEV were observed with the transformed rrBLUP model RE values of 0.97, displaying very high RE compared to phenotypic selection (Supplementary Figure S12). The RE for SEV was relatively high for the rrBLUP and SVMR models predicting into the other population using the DP as the training population ranging from 0.58 to 0.86, further displaying the ability for the regression models to accurately predict across years and populations while dealing with skewed phenotypes.
4 DISCUSSION
GS has many advantages over traditional phenotypic selection and marker-assisted selection. Increased genetic gain and improved trait selection can be achieved by using GS (Heffner et al., 2010; Rutkoski et al., 2015; Michel et al., 2017). Furthermore, GS can aid in selection for traits dependent on the environment to display variation especially in years with little to no phenotypic variation for phenotypic selection. Plant breeding programs continually select and improve disease resistance due to the evolving race and pathogen changes along with the breakdown of resistance genes. Due to the high levels of resistance targeted within most plant breeding programs, positively skewed phenotypes generally result when selecting for disease resistance. Furthermore, disease resistance is commonly phenotyped in ordinal scales and percentages. The skewed and ordinal phenotypes pose challenges to utilizing regression models for GS (Montesinos-López et al., 2015a). However, most GS studies treat disease resistance as continuous values and utilize regression models and transformations for prediction, while only a few studies have used classification methods (Ornella et al., 2012, 2014; Rutkoski et al., 2014; Arruda et al., 2016; Muleta et al., 2017; González-Camacho et al., 2018; Merrick et al., 2021). In the current study, we compared several regression and classification methods for genomic prediction for skewed phenotypes in the context of stripe rust resistance in winter wheat and identified the best approaches to use for predicting traits with skewed distributions.
When utilizing GS for resistance to diseases such as stripe rust, GS approaches can capture the additive effects of APR and are therefore relevant for accumulating favorable alleles for rust resistance. GS can reach high levels of accuracy for stripe rust and other rust diseases (Ornella et al., 2012; Rutkoski et al., 2014, 2015; Muleta et al., 2017; Merrick et al., 2021). Because of the high levels of resistance and high heritability of disease resistance in most breeding programs, phenotypic selection and marker-assisted selection have been shown to be successful (Lande and Thompson, 1990). Even so, GS has been shown to be superior to marker-assisted selection in selecting for APR in the presence of major resistance genes (Merrick et al., 2021).
4.1 Accuracy of Regression Models
Regression models assume continuous and normally distributed phenotypes (Montesinos-López et al., 2015c). In the current study, the BL and DP populations displayed skewed distributions for both IT and SEV with inflations of zero due to the high levels of disease resistance. Among the primary approaches used for phenotypes that do not follow a normal distribution are disregarding the lack of normality or transforming the phenotypes to a normal distribution (Montesinos-López et al., 2015b). In the current study, we observed that even with the skewed distributions, the rrBLUP model without transformed phenotypes still displayed high accuracies and performed similarly to the highest-performing SQRT rrBLUP model in many scenarios. For example, there were no significant differences between SQRT rrBLUP and rrBLUP in the overall comparisons in the cross-validation (Figure 3) or validation set scenarios (Figures 6, 7). These results support previous studies that utilized rrBLUP models for disease resistance (Rutkoski et al., 2014; Rutkoski et al., 2015; Juliana et al., 2017; Muleta et al., 2017; Merrick et al., 2021). The performance of the untransformed rrBLUP model may be due to the central limit theorem, which argues that given a sufficient number of observations, the sampling distribution of the means can be assumed to be approximately normal (Stroup, 2015).
Transformations were introduced to stabilize variance and fulfill the homogenous variance assumption of linear regression models (Bartlett, 1947). However, transformations have shown to produce a loss of accuracy and power in small sample size (Stroup, 2015). Furthermore, in our study, the log and BC transformations displayed lower accuracy than the SQRT transformation. One of the problems with log transformations is the large number of zeros due to the presence of highly resistant lines in both the BL and DP populations. This occurrence constrains the transformation to stabilize variance and transform the phenotypes to follow a normal distribution (O’Hara and Kotze, 2010). Furthermore, log transformations yield downwardly biased estimates, whereas SQRT does not (Stroup, 2015). The BC transformations is a powerful transformation that raise numbers to an exponent; nonetheless, BC requires lambda estimation and can theoretically be the same as the SQRT transformation at λ = 0.50 (Osborne, 2010). Therefore, if the optimal λ is not chosen correctly, the BC may not appropriately stabilize the variance of the data.
The SQRT transformation proved to perform very well for both accuracy and RE across populations, cross-validations, and validation scenarios in the current study. The SQRT transformations showed the ability to have higher accuracy and reduced RMSE compared with the untransformed data for the rrBLUP model. In Poisson distributions similar to the skewed phenotypes of our study, the variance is equal to the mean, and the SQRT is recommended to stabilize variance in those scenarios (Bartlett 1947); this could have resulted in increased performance for the SQRT transformation. Overall, the appropriate method must be chosen carefully when implementing data transformation on breeding programs.
Using the GLM model, high accuracy (0.66 and 0.76) in both the DP and BL training populations were observed. The performance of GLM was noted to be dependent on the distribution of the phenotypes. The GLM performed similarly to the rrBLUP model in the highly skewed selected BL population, but displayed statistically significant lower accuracies in the less skewed unselected DP population. Poisson GLMs, which were implemented in the present work, have been shown to display superior accuracy while correctly fitting the data (O’Hara and Kotze, 2010; Montesinos-López et al., 2015b; Montesinos-López et al., 2016; Montesinos-López et al., 2020; Stroup, 2015). The Poisson GLM accurately models count and ordinal data and is therefore suited for skewed phenotypes such as disease resistance (Ornella et al., 2014; Montesinos-López et al., 2015a; Montesinos-López et al., 2016). Furthermore, the GLM models outperformed deep learning models in a previous study (Montesinos-López et al., 2020). The utilization of GLMs should be implemented in scenarios with the appropriate distribution of phenotypes.
Non-parametric models such as SVMR, which has no underlying assumption on the distribution of the phenotypes, performed better than the LOG and BC transformations, and similar to the GLM model in the current study. Previously, the SVMR model has been shown to have superior prediction and RE values over parametric and semi-parametric models for predicting disease resistance due to the skewed phenotypes (González-Camacho et al., 2018). This demonstrates that the SVMR can accurately predict skewed phenotypes without the need to transform the data. SVM regression maps samples from a predictor space to a high-dimensional feature space using a non-linear kernel function and then completes linear regression in the feature space (Jannink et al., 2010). Consequently, this creates the ability for the SVMR to predict skewed phenotypes and allows the model to learn the complexity of the training population without imposing structure on the data (González-Camacho et al., 2018).
The SQRT rrBLUP models performed better than the SVMR model in overall prediction accuracy across many scenarios. The lack of advantage in regression scenarios was also observed by Ornella et al. (2014), where reproducing kernel Hilbert Space models were observed to be statistically significant for all yield datasets over SVM and random forest models. In the current study, the subordinate performance of the SVMR models is presumably due to the mostly additive effect of stripe rust resistance. Once the skewed phenotypes are properly modeled, the advantage of non-parametric models that also model non-additive effects disappears (Ornella et al., 2014; Poland and Rutkoski, 2016).
4.2 Accuracy of Classification Models
In the present study, BOR models displayed the lowest accuracies and RE across all the classification and regression models, particularly in the DP population. Conversely, the BOR models using reduced classes reached the highest overall class accuracy over all models with r = 0.99 for the BL. In contrast, when the accuracy was high in the BL, the kappa values were low. The opposite was shown in the DP with low overall class accuracies and moderate kappa values indicating that the high overall class accuracy and low kappa values were a result of the BOR model consistently predicting zeros and the inability to predict the other classes. Furthermore, in the validation sets, the BOR performed very poorly, and resulted in near-zero overall class accuracy and kappa values for both IT and SEV. The BOR model uses ordinal regression that is suitable for count and censored data; nevertheless, the BOR model uses the probit link function that does not explicitly model non-normal distribution such as the Poisson distribution model by the GLM model in our study (Montesinos-López et al., 2015a). Altogether, our results showed that the BOR model is not appropriate for the highly skewed phenotypes in our study.
We also used SVMs as the non-parametric machine learning model for both regression and classification. The advantage in classification and regression using SVM models for disease resistance has been previously demonstrated (Ornella et al., 2014; González-Camacho et al., 2018). Contrary to the BOR results, the SVMs consistently displayed high accuracies throughout the locations and years for both DP and BL training populations. However, the SVM showed lower kappa values than the BOR in many scenarios. This was not the trend in the validation sets, where the full-scale BOR and SVM displayed poor accuracy and kappa values. The consistent accuracy of SVM over BOR may be due to the non-parametric nature of the SVM models. The SVM model is implemented similar to the SVMR model and uses soft classifiers to calculate the probability of the class rather than hard classifiers that directly target the decision boundary and allow the model to be flexible (Ornella et al., 2014). Based on the results for BOR and SVM, classification models need to be compared by both overall class accuracy as well as a metric such as kappa that accounts for individual class accuracy.
The precision of the classification models depends on the number of individuals in a given class. In our study, we implemented up-sampling (i.e., random sampling with replacement) to increase the minority class to the same size of the majority class and reduce the effect of class imbalance (Kuhn, 2008). However, our results showed that with imbalanced class frequency due to skewed phenotypes, even resampling techniques such as up-sampling failed to accurately predict disease resistance. Another approach to deal with class frequency is to reduce the number of overall classes. We then binned classes to create 2- and 3-Class prediction scenarios. Reducing the class scale to two creates a binary classification model that has been shown to outperform other regression and classification models (Ornella et al., 2014). By reducing the number of classes, we also decreased the effect of class imbalances. Accuracy as well as kappa increased specifically for the SVM by reducing the class scales. This observation was seen even in the validation sets, which resulted in the SVM 2-Class models achieving both high accuracy and kappa values, consistent with previous studies on the effects of reduced classes (Ornella et al., 2014; González-Camacho et al., 2016). Therefore, by reducing the class scale, classification models such as SVM can accurately predict skewed phenotypes such as disease resistance.
4.3 Relative Efficiency
RE compares the expected genetic gain when selecting based on GEBVs compared to phenotypic selection. The RE can be used as an indicator of the performance of a model when used for truncation selection and expected genetic gain (Ornella et al., 2014; González-Camacho et al., 2018). Since classification and regression do not use the same metrics for performance, simply comparing accuracies is not possible; hence, we used RE for comparisons. A selection intensity of 15% was used based on a previous study (Ornella et al., 2014). In the current work, the rrBLUP models and SMVR displayed high RE values across both cross-validation and validation sets for IT and SEV with values above 0.90. SVMR models have been shown to have superior RE values for classification in disease resistance (Ornella et al., 2014). The high RE values indicated that accuracy is linear in the regression models, but this was not the case for the classification models. The classification models displayed relatively low RE values and, in some cases, negative values. Both the SVM and BOR models displayed the inability to select the top 15% performers for stripe rust resistance. The large amounts of zeros (i.e., disease resistant phenotypes) skew the prediction accuracy for the classification models to the very high, with low kappa and RE values. The classification models failed to overcome the skewed phenotypes even with up-sampling and reduction of classes. Therefore, similar to our results for prediction accuracy, regression models outperformed classification models and displayed their ability to predict and select skewed phenotypes.
4.4 Training Population Comparison
We compared the performance of GS models in different training populations, environments, and phenotypic distributions. The effect of environment was less apparent than the effect of distribution. The differences in distribution of phenotypes for disease resistance is readily apparent between populations. The two populations were used to compare the effects of a selected and unselected population with varying degrees and sources of resistance. The BL population, consisting of WSU breeding lines that were selected for disease resistance prior to field trials, is extremely skewed for both IT and SEV. Therefore, there is already a selection pressure for high levels of resistance to stripe rust in the current study. In contrast, the DP appears less skewed with more variation for disease resistance, a consequence of the population consisting of diverse varieties from multiple breeding programs in the Pacific Northwest region of the US. The DP included lines from the WSU breeding program, but the other varieties were not bred and selected specifically for resistance to the stripe rust races present in our study. Additionally, the sources of stripe rust resistance genes vary more in the DP compared to the BL. The frequency and type of stripe rust races along with major genes for stripe rust resistance for these two populations were compared in depth in Merrick et al. (2021).
The differences in skewness between the populations affected the performance of the GS models in each population. The GLM models accurately predicted the extremely skewed BL trials similar to the other regression models because the skewed phenotypes follow the Poisson distribution rather than the normal distribution. However, the GLM model displayed lower accuracies in the less skewed DP. In addition to the distribution that is modeled, the skewness affects the frequency of classes used in classification models. In the extremely skewed BL, the classification models have high accuracy and low kappa, displaying the prediction of mainly zeros. However, as mentioned previously, the reduction of classes helps decrease the effect of class imbalance and increased accuracy.
The differences in accuracies between populations can also be attributed to the genetic relatedness of the populations (Asoro et al., 2011). The effect of the population on accuracy is due to both population structure and genetic relatedness (Habier et al., 2007; Asoro et al., 2011; Mirdita et al., 2015). We used the elbow method to determine the number of clusters when examining PCs for our populations and resulted in four distinct clusters. Consequently, the prediction accuracy for the BL cross-validations was higher than the DP. When independently predicting other populations as seen in the validations sets, we generally observe a decrease in accuracy (Merrick and Carter, 2021; Merrick et al., 2021). Interestingly, though, there was an increase in accuracy when using the BL to predict the DP in the validation sets. However, a decrease in prediction accuracy was observed when the DP predicted the BL. However, this was only seen in the regression models for predicting SEV in the validation sets. Furthermore, this trend is not seen in the classification models that display consistent accuracy across validation scenarios. This may be due to the effect of predicting a less skewed population in which regression models generally have better performance compared to predicting more skewed distributions (Montesinos-López et al., 2015a).
The increase in prediction accuracy with the increased combination of years in both our cross-validation and validation sets can be attributed to the increase of phenotypic data points and decrease in skewness and accounting for the genotype-by-environment interaction (GEI). The trials in our study were dependent on the natural occurrence and pressure of stripe rust. Therefore, the skewness of the populations, individual years, and locations may be due to not only the levels of resistance within the populations, but also the general disease pressure for stripe rust. By combining environments, we can account for the GEI in our phenotypic adjustments and increase our prediction accuracy (Crossa et al., 2014; Jarquín et al., 2014; Haile et al., 2020; Merrick and Carter 2021; Merrick et al., 2021). The increased accuracy by accounting for GEI can be seen in the validation sets. The DP displayed higher accuracies in the validation sets as the DP consisted of the same lines each year, whereas the BL consists of different lines in both years and locations. By screening the same lines each year, the environmental effect can be effectively accounted for. However, the trend for increasing accuracy and RE values by combining years was not seen in the classification models. This was due to the continued large class imbalances even when combining years. Therefore, there is a need to develop training populations carefully to balance class frequencies for the classification models. Even so, the reduced class SVM models displayed the ability to overcome the class frequencies regardless of year combinations. Overall, the rrBLUP and reduced class classification models displayed the ability to accurately predict populations and environments with skewed phenotypes.
4.5 Applications in Breeding
GS is becoming more cost-effective due to the decreasing costs of high-throughput genotyping. With the increased use of GS comes its utilization for the prediction of complex traits (e.g., disease resistance), which do not always follow the assumptions of the commonly used models (Montesinos-López et al., 2015a). Instead of applying the same approach to every trait, breeders will need to customize their GS models to achieve accurate GEBVs for selection. With the integration of data science and plant breeding, the availability of different prediction models has resulted in an increased efficiency of implementing GS for a wide range of traits. This study showed that with the appropriate choice of model and transformation, even the commonly used GS regression model, rrBLUP, can be utilized for predicting complex traits, such as stripe rust resistance, that do not follow a normal distribution. Furthermore, this study demonstrated the ability to integrate selection decisions and GS by utilizing classification models. Reducing classes resulted in higher predictions due to decreasing the number of outcomes the models need to account for, especially for classes with only a few observations. Moreover, by reducing the number of classes, we not only predict resistance more accurately, but also couple in selection decisions. By reducing the number of classes for IT from ten to two, we can either keep or discard lines. Ultimately, by using various GS schemes with regression and classification models, breeders can reduce the number of selection decisions made for disease resistance and focus on selecting other important traits such as grain yield.
5 CONCLUSION
This study compared GS regression and classification models’ ability to accurately predict populations with different levels of disease resistance and distributions. The varying results for the classification and transformation methods displayed the need to choose the prediction model carefully based on the phenotype distribution. For trials that display a Poisson distribution that is skewed to lower ordinal values, a GLM or reduced class binomial classification model can be implemented. However, the SQRT and SVMR models displayed the flexibility across varying distributions, and consistently predicted stripe rust with high accuracies. Moreover, combining years increased the prediction accuracies for regression models, but failed to increase the overall class accuracy for classification models due to imbalance class frequencies. Additionally, regression models displayed high RE, indicating their ability to select accurately like phenotypic selection. Overall, SQRT transformation using rrBLUP and SVM regression models displayed the highest combination of accuracy and RE across the regression and classification models. Furthermore, a classification system based on SVM with a 2-Class scale can be implemented not only to predict resistance more accurately, but also to couple in selection decisions. This study showed that breeders can use linear and non-parametric regression models using their own breeding lines over combined years to accurately predict skewed phenotypes.
DATA AVAILABILITY STATEMENT
The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found at: https://github.com/lfmerrick21/Regression-vs-Classification.
AUTHOR CONTRIBUTIONS
LM: conceptualized the idea, analyzed data, and drafted the manuscript; DL: reviewed and edited the manuscript; XC: reviewed and edited the manuscript; AC: supervised the study, conducted field trials, edited the manuscript, and obtained the funding for the project.
FUNDING
This research was partially funded by the National Institute of Food and Agriculture (NIFA) of the U.S. Department of Agriculture (Award Number 2016-68004-24770), Hatch project 1014919, and the O.A. Vogel Research Foundation at Washington State University.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
ACKNOWLEDGMENTS
The authors would like to acknowledge the Washington State University Winter Wheat Breeding Program personnel Gary Shelton and Kyall Hagemeyer for plot maintenance and data collection under field conditions. We would also like to thank Adrienne Burke, Gina Brown-Guedira, Jared Smith, Brian Ward, and staff at the Eastern Regional Small Grains Genotyping Laboratory for their assistance with DNA library prep and GBS sequencing and analysis.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.835781/full#supplementary-material
REFERENCES
 Appels, R., Eversole, K., Appels, R., Eversole, K., Feuillet, C., Keller, B., et al. (2018). Shifting the Limits in Wheat Research and Breeding Using a Fully Annotated Reference Genome. Science 361, eaar7191. doi:10.1126/science.aar7191
 Arruda, M. P., Lipka, A. E., Brown, P. J., Krill, A. M., Thurber, C., Brown-Guedira, G., et al. (2016). Comparing Genomic Selection and Marker-Assisted Selection for Fusarium Head Blight Resistance in Wheat (Triticum aestivum L.). Mol. Breed. 36, 84. doi:10.1007/s11032-016-0508-5
 Asoro, F. G., Newell, M. A., Beavis, W. D., Scott, M. P., and Jannink, J. L. (2011). Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats. Plant Genome 4, 132. doi:10.3835/plantgenome2011.02.0007
 Bartlett, M. S. (1947). The Use of Transformations. Biometrics 3, 39–52. doi:10.2307/3001536
 Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., and Buckler, E. S. (2007). TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 23, 2633–2635. doi:10.1093/bioinformatics/btm308
 Browning, B. L., Zhou, Y., and Browning, S. R. (2018). A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 103, 338–348. doi:10.1016/j.ajhg.2018.07.015
 Chen, X. (2013). High-temperature Adult-Plant Resistance, Key for Sustainable Control of Stripe Rust. Am. J. Plant Sci. 04 (03), 608–627. doi:10.4236/ajps.2013.43080
 Chen, X. (2020). Pathogens Which Threaten Food Security: Puccinia Striiformis, the Wheat Stripe Rust Pathogen. Food Sec 12, 239–251. doi:10.1007/s12571-020-01016-z
 Chen, X., Washington, S. U., and Line, R. F. (1995a). Gene Action in Wheat Cultivars for Durable, High-Temperature, Adult-Plant Resistance and Interaction with Race-specific , Seedling Resistance to Puccinia Striiformis. Phytopathol. USA 85 (5), 567. doi:10.1094/phyto-85-567
 Chen, X., Washington, S. U., and Line, R. F. (1995b). Gene Number and Heritability of Wheat Cultivars with Durable, High-Temperature, Adult-Plant (HTAP) Resistance and Interaction of HTAP and Race-specific Seedling Resistance to Puccinia Striiformis. Phytopathol. USA 85 (5), 573. doi:10.1094/phyto-85-573
 Crossa, J., Pérez, P., Hickey, J., Burgueño, J., Ornella, L., Cerón-Rojas, J., et al. (2014). Genomic Prediction in CIMMYT maize and Wheat Breeding Programs. Heredity 112, 48–60. doi:10.1038/hdy.2013.16
 Cullis, B. R., Smith, A. B., and Coombes, N. E. (2006). On the Design of Early Generation Variety Trials with Correlated Data. Jabes 11, 381–393. doi:10.1198/108571106X154443
 de Mendiburu, F., and de Mendiburu, M. F. (2019). Package ‘agricolae.’ R Package Version, 2–8. 
 Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., et al. (2011). A Robust, Simple Genotyping-By-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 6, e19379. doi:10.1371/journal.pone.0019379
 Endelman, J. B. (2011). Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP. The Plant Genome 4, 250–255. doi:10.3835/plantgenome2011.08.0024
 Federer, W. F. (1956). Experimental Design, Theory and Application. New York: Macmillan. 
 Gareth, J., Daniela, W., Trevor, H., and Robert, T. (2013). An Introduction to Statistical Learning: With Applications in R. New York: Springer. 
 Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., et al. (2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLOS ONE 9, e90346. doi:10.1371/journal.pone.0090346
 Goldman, I. (2019). Plant Breeding Reviews. Chichester, UK: John Wiley & Sons. 
 González‐Camacho, J. M., Ornella, L., Pérez‐Rodríguez, P., Gianola, D., Dreisigacker, S., and Crossa, J. (2018). Applications of Machine Learning Methods to Genomic Selection in Breeding Wheat for Rust Resistance. Plant Genome 11, 170104. doi:10.3835/plantgenome2017.11.0104
 González-Camacho, J. M., Crossa, J., Pérez-Rodríguez, P., Ornella, L., and Gianola, D. (2016). Genome-enabled Prediction Using Probabilistic Neural Network Classifiers. BMC Genomics 17, 1–16.
 Habier, D., Fernando, R. L., and Dekkers, J. C. M. (2007). The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values. Genetics 177, 2389–2397. doi:10.1534/genetics.107.081190
 Haile, T. A., Walkowiak, S., N’Diaye, A., Clarke, J. M., Hucl, P. J., Cuthbert, R. D., et al. (2020). Genomic Prediction of Agronomic Traits in Wheat Using Different Models and Cross-Validation Designs. Theor. Appl. Genet. 134, 381–398. doi:10.1007/s00122-020-03703-z
 Hastie, T., Qian, J., and Tay, K. (2016). An Introduction to Glmnet. 
 Heffner, E. L., Lorenz, A. J., Jannink, J. L., and Sorrells, M. E. (2010). Plant Breeding with Genomic Selection: Gain Per Unit Time and Cost. Crop Sci. 50, 1681–1690. doi:10.2135/cropsci2009.11.0662
 Hyndman, R. J., and Khandakar, Y. (2008). Automatic Time Series Forecasting: the Forecast Package for R. J. Stat. Softw. 27, 1–22. doi:10.18637/jss.v027.i03
 Jannink, J.-L., Lorenz, A. J., and Iwata, H. (2010). Genomic Selection in Plant Breeding: from Theory to Practice. Brief. Funct. Genomics 9, 166–177. doi:10.1093/bfgp/elq001
 Jarquín, D., Crossa, J., Lacaze, X., Du Cheyron, P., Daucourt, J., Lorgeou, J., et al. (2014). A Reaction Norm Model for Genomic Selection Using High-Dimensional Genomic and Environmental Data. Theor. Appl. Genet. 127, 595–607. doi:10.1007/s00122-013-2243-1
 Juliana, P., Singh, R. P., Singh, P. K., Crossa, J., Huerta-Espino, J., Lan, C., et al. (2017). Genomic and Pedigree-Based Prediction for Leaf, Stem, and Stripe Rust Resistance in Wheat. Theor. Appl. Genet. 130, 1415–1430. doi:10.1007/s00122-017-2897-1
 Kamiak, (2021). High Performance Computing. Pullman, WA: Washington State University. Available at: https://hpc.wsu.edu/ [Accessed January 21, 2021]. 
 Karatzoglou, A., Smola, A., Hornik, K., and Karatzoglou, M. A. (2019). Package ‘kernlab. ’ CRAN R Proj. 
 Kassambara, A., and Kassambara, M. A. (2020). Package ‘ggpubr. 
 Klarquist, E., Chen, X., and Carter, A. (2016). Novel QTL for Stripe Rust Resistance on Chromosomes 4A and 6B in Soft White Winter Wheat Cultivars. Agronomy 6, 4. doi:10.3390/agronomy6010004
 Kuhn, M. (2008). Building Predictive Models inRUsing thecaretPackage. J. Stat. Soft. 28, 1–26. doi:10.18637/jss.v028.i05
 Lande, R., and Thompson, R. (1990). Efficiency of Marker-Assisted Selection in the Improvement of Quantitative Traits. GENETICS 124, 743–756. doi:10.1093/genetics/124.3.743
 Li, H., and Durbin, R. (2009). Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. bioinformatics 25, 1754–1760. doi:10.1093/bioinformatics/btp324
 Line, R. F., and Qayoum, A. (1992). Virulence, Aggressiveness, Evolution and Distribution of Races of Puccinia Striiformis (The Cause of Stripe Rust of Wheat) in North America, 1968-87. Tech. Bull. USA 1788. https://handle.nal.usda.gov/10113/CAT92983836
 Liu, L., Yuan, C. Y., Wang, M. N., See, D. R., Zemetra, R. S., and Chen, X. M. (2019). QTL Analysis of Durable Stripe Rust Resistance in the North American winter Wheat Cultivar Skiles. Theor. Appl. Genet. 132, 1677–1691. doi:10.1007/s00122-019-03307-2
 Liu, Y., Qie, Y., Wang, M., and Chen, X. (2020). Genome-Wide Mapping of Quantitative Trait Loci Conferring All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Landrace PI 181410. Ijms 21, 478. doi:10.3390/ijms21020478
 Merrick, L. F., Burke, A. B., Chen, X., and Carter, A. H. (2021). Breeding with Major and Minor Genes: Genomic Selection for Quantitative Disease Resistance. Front. Plant Sci. 12, 1599. doi:10.3389/fpls.2021.713667
 Merrick, L. F., and Carter, A. H. (2021). Comparison of Genomic Selection Models for Exploring Predictive Ability of Complex Traits in Breeding Programs. Plant Genome 14, e20158. doi:10.1002/tpg2.20158
 Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of Total Genetic Value Using Genome-wide Dense Marker Maps. Genetics 157, 1819–1829. doi:10.1093/genetics/157.4.1819
 Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C., et al. (2019). Package ‘e1071. R. J.
 Michel, S., Ametz, C., Gungor, H., Akgöl, B., Epure, D., Grausgruber, H., et al. (2017). Genomic Assisted Selection for Enhancing Line Breeding: Merging Genomic and Phenotypic Selection in winter Wheat Breeding Programs with Preliminary Yield Trials. Theor. Appl. Genet. 130, 363–376. doi:10.1007/s00122-016-2818-8
 Mirdita, V., He, S., Zhao, Y., Korzun, V., Bothe, R., Ebmeyer, E., et al. (2015). Potential and Limits of Whole Genome Prediction of Resistance to Fusarium Head Blight and Septoria Tritici Blotch in a Vast Central European Elite winter Wheat Population. Theor. Appl. Genet. 128, 2471–2481. doi:10.1007/s00122-015-2602-1
 Montesinos-López, A., Montesinos-López, O. A., Crossa, J., Burgueño, J., Eskridge, K. M., Falconi-Castillo, E., et al. (2016). Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction. G3amp58 GenesGenomesGenetics 6, 1165–1177. doi:10.1534/g3.116.028118
 Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Burgueño, J., and Eskridge, K. (2015a). Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression. G3amp58 GenesGenomesGenetics 5, 2113–2126. doi:10.1534/g3.115.021154
 Montesinos-López, O. A., Montesinos-López, A., Pérez-Rodríguez, P., de los Campos, G., Eskridge, K., and Crossa, J. (2015b). Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding. G3amp58 GenesGenomesGenetics 5, 291–300. doi:10.1534/g3.114.016188
 Montesinos-López, O. A., Montesinos-López, A., Pérez-Rodríguez, P., Eskridge, K., He, X., Juliana, P., et al. (2015c). Genomic Prediction Models for Count Data. Jabes 20, 533–554. doi:10.1007/s13253-015-0223-4
 Montesinos-López, O. A., Montesinos-López, J. C., Singh, P., Lozano-Ramirez, N., Barrón-López, A., Montesinos-López, A., et al. (2020). A Multivariate Poisson Deep Learning Model for Genomic Prediction of Count Data. G3 Genes Genomes Genet. 10, 4177–4190. doi:10.1534/g3.120.401631
 Muleta, K. T., Bulli, P., Zhang, Z., Chen, X., and Pumphrey, M. (2017). Unlocking Diversity in Germplasm Collections via Genomic Selection: A Case Study Based on Quantitative Adult Plant Resistance to Stripe Rust in Spring Wheat. Plant Genome 10, 0. doi:10.3835/plantgenome2016.12.0124
 O’Hara, R. B., and Kotze, D. J. (2010). Do Not Log-Transform Count Data. Methods Ecol. Evol. 1, 118–122. doi:10.1111/j.2041-210X.2010.00021.x
 Ornella, L., Pérez, P., Tapia, E., González-Camacho, J. M., Burgueño, J., Zhang, X., et al. (2014). Genomic-enabled Prediction with Classification Algorithms. Heredity 112, 616–626. doi:10.1038/hdy.2013.144
 Ornella, L., Singh, S., Perez, P., Burgueño, J., Singh, R., Tapia, E., et al. (2012). Genomic Prediction of Genetic Values for Resistance to Wheat Rusts. Plant Genome 5, 136–148. doi:10.3835/plantgenome2012.07.0017
 Osborne, J. (2010). Improving Your Data Transformations: Applying the Box-Cox Transformation. Pract. Assess. Res. Eval. 15. doi:10.7275/qbpc-gk17
 Pérez, P., and de los Campos, G. (2014). Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics 198, 483–495. doi:10.1534/genetics.114.164442
 Peterson, R. F., Campbell, A. B., and Hannah, A. E. (1948). A DIAGRAMMATIC SCALE FOR ESTIMATING RUST INTENSITY ON LEAVES AND STEMS OF CEREALS. Can. J. Res. 26c, 496–500. doi:10.1139/cjr48c-033
 Poland, J. A., and Rife, T. W. (2012). Genotyping‐by‐Sequencing for Plant Breeding and Genetics. Plant Genome 5, 92. doi:10.3835/plantgenome2012.05.0005
 Poland, J., and Rutkoski, J. (2016). Advances and Challenges in Genomic Selection for Disease Resistance. Annu. Rev. Phytopathol. 54, 79–98. doi:10.1146/annurev-phyto-080615-100056
 R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/ (Accessed January 18, 2022). 
 Riedelsheimer, C., Technow, F., and Melchinger, A. E. (2012). Comparison of Whole-Genome Prediction Models for Traits with Contrasting Genetic Architecture in a Diversity Panel of maize Inbred Lines. BMC Genomics 13, 452. doi:10.1186/1471-2164-13-452
 Rutkoski, J. E., Poland, J. A., Singh, R. P., Huerta‐Espino, J., Bhavani, S., Barbier, H., et al. (2014). Genomic Selection for Quantitative Adult Plant Stem Rust Resistance in Wheat. Plant Genome 7, 0. doi:10.3835/plantgenome2014.02.0006
 Rutkoski, J., Singh, R. P., Huerta‐Espino, J., Bhavani, S., Poland, J., Jannink, J. L., et al. (2015). Efficient Use of Historical Data for Genomic Selection: A Case Study of Stem Rust Resistance in Wheat. Plant Genome 8, 0. doi:10.3835/plantgenome2014.09.0046
 SAS Institute, Inc (2011). SAS® 9.3 System Options: Reference. NC: SAS Institute Inc Cary. 
 Schmidt, P., Hartung, J., Bennewitz, J., and Piepho, H.-P. (2019). Heritability in Plant Breeding on a Genotype-Difference Basis. Genetics 212, 991–1008. doi:10.1534/genetics.119.302134
 Stroup, W. W. (2015). Rethinking the Analysis of Non‐Normal Data in Plant and Soil Science. Agron.j. 107, 811–827. doi:10.2134/agronj2013.0342
 Wang, X., Xu, Y., Hu, Z., and Xu, C. (2018). Genomic Selection Methods for Crop Improvement: Current Status and Prospects. Crop J. 6, 330–340. doi:10.1016/j.cj.2018.03.001
 Ward, B. P., Brown-Guedira, G., Tyagi, P., Kolb, F. L., Van Sanford, D. A., Sneller, C. H., et al. (2019). Multienvironment and Multitrait Genomic Selection Models in Unbalanced Early-Generation Wheat Yield Trials. Crop Sci. 59, 491–507. doi:10.2135/cropsci2018.03.0189
 Wickham, H. (2011). ggplot2. Wires Comp. Stat. 3, 180–185. doi:10.1002/wics.147
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2022 Merrick, Lozada, Chen and Carter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		ORIGINAL RESEARCH
published: 23 February 2022
doi: 10.3389/fgene.2022.822516


[image: image2]
Identification of Candidate Genes for Salinity and Anaerobic Tolerance at the Germination Stage in Rice by Genome-Wide Association Analyses
Mohammad Rafiqul Islam1†, Shahzad Amir Naveed1†, Yue Zhang1†, Zhikang Li1,2,3, Xiuqin Zhao1, Sajid Fiaz4, Fan Zhang1,2, Zhichao Wu1, Zhiqing Hu1, Binying Fu1, Yingyao Shi2, Shahid Masood Shah5, Jianlong Xu1,3* and Wensheng Wang1,2,6*
1Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
2College of Agronomy, Anhui Agricultural University, Hefei, China
3Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
4Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
5Department of Biotechnology, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
6National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
Edited by:
Muhammad Abdul Rehman Rashid, Government College University Faisalabad, Pakistan
Reviewed by:
Dawei Xue, Hangzhou Normal University, China
Joong Hyoun Chin, Sejong University, South Korea
KOTB Attia, King Saud University, Saudi Arabia
* Correspondence: Jianlong Xu, xujianlong@caas.cn; Wensheng Wang, wangwensheng02@caas.cn
†These authors have contributed equally to this work
Specialty section: This article was submitted to Evolutionary and Population Genetics, a section of the journal Frontiers in Genetics
Received: 25 November 2021
Accepted: 03 January 2022
Published: 23 February 2022
Citation: Islam MR, Naveed SA, Zhang Y, Li Z, Zhao X, Fiaz S, Zhang F, Wu Z, Hu Z, Fu B, Shi Y, Shah SM, Xu J and Wang W (2022) Identification of Candidate Genes for Salinity and Anaerobic Tolerance at the Germination Stage in Rice by Genome-Wide Association Analyses. Front. Genet. 13:822516. doi: 10.3389/fgene.2022.822516

Multiple stress tolerance at the seed germination stage is crucial for better crop establishment in the direct-seeded rice ecosystem. Therefore, identifying rice genes/quantitative trait loci (QTLs) associated with salinity and anaerobic tolerance at the germination stage is a prerequisite for adaptive breeding. Here, we studied 498 highly diverse rice accessions Xian (Indica) and Geng (Japonica), and six traits that are highly associated with salinity and anaerobic tolerance at germination stage were measured. A high-density 2.8M Single Nucleotide Polymorphisms (SNP) genotype map generated from the 3,000 Rice Genomes Project (3KRGP) was used for mapping through a genome-wide association study. In total, 99 loci harboring 117 QTLs were detected in different populations, 54, 21, and 42 of which were associated with anaerobic, salinity, and combined (anaerobic and salinity) stress tolerance. Nineteen QTLs were close to the reported loci for abiotic stress tolerance, whereas two regions on chromosome 4 (qSGr4a/qCL4c/qRI4d and qAGr4/qSGr4b) and one region on chromosome 10 (qRI10/qCL10/ qSGr10b/qBM10) were associated with anaerobic and salinity related traits. Further haplotype analysis detected 25 promising candidates genes significantly associated with the target traits. Two known genes (OsMT2B and OsTPP7) significantly associated with grain yield and its related traits under saline and anaerobic stress conditions were identified. In this study, we identified the genes involved in auxin efflux (Os09g0491740) and transportation (Os01g0976100), whereas we identified multistress responses gene OsMT2B (Os01g0974200) and a major gene OsTPP7 (Os09g0369400) involved in anaerobic germination and coleoptile elongation on chromosome 9. These promising candidates provide valuable resources for validating potential salt and anaerobic tolerance genes and will facilitate direct-seeded rice breeding for salt and anaerobic tolerance through marker-assisted selection or gene editing.
Keywords: direct seeding, QTL mapping, salinity, anaerobic, GWAS
1 INTRODUCTION
As the staple food for most Asian people, rice productivity has more than doubled since the “Green Revolution” in 1960s, when the global breeding efforts have been largely focused on improving yields under irrigated lands in Asia and rest of the world (Khush, 2001; Jena and Nissila, 2017). However, abiotic stresses (salinity, drought, cold, heat, etc.) are major obstacles to establishment and yield of rice crops, especially in rainfed areas (Khush, 2005). Rice is normally grown in the semiaquatic environments, and transplanting has been the predominant method in rice planting for decades. However, rice grown areas by direct seeding have been increasing rapidly in recent years because direct seeding offers many advantages such as earlier maturity, reduced water use, planting costs, operational simplicity, and so on, particularly in areas of double rice cropping (Kumar and Ladha, 2011). However, direct seeding of rice (DSR) tends to suffer more from anaerobic stress of flooding, heavy rain, or saline water irrigation at the time of sowing, particularly in fields of small-hold farmers of Asia (Flowers and Yeo, 1995; Hakim et al., 2010). Further, DSR can be exposed to combined stress of salinity in nonanoxic conditions during tidal in lowlands of coastal areas of many Asian countries (Ray et al., 2016; Naveed et al., 2018). Under this kind of scenario, flooding decelerates seed germination and delays seedling establishment (Ismail et al., 2008), whereas shoot growth of rice seedlings can be simultaneously arrested under salt stress due to osmotic stress and high accumulation of Na+ in shoot tissues (Munns and Tester, 2008), because rice plants could not maintain their normal energy level under hypoxia (low O2 concentration) (Kurniasih et al., 2013). Thus, developing rice varieties with superior ability to germinate under salinity and anaerobic stress is essential for success of DSR.
Rice anaerobic germination tolerance (AGT) is a complex trait and known to be associated with rapid coleoptile elongation at germination stage because elongated coleoptiles allow plants to obtain enough oxygen to meet the required metabolic activity under anaerobic stress. The faster coleoptiles elongate, the more likely rice seedlings can survive under anaerobic stress. Both AGT and salinity germination tolerance (SGT) of rice are complex phenomena controlled by multiple quantitative trait loci (QTLs)/genes, and rice germplasm accessions are known to vary considerably for their AGT and SGT (Ghosal et al., 2020). Identification of important QTLs/ genes and their functional haplotypes (alleles) is an important step to understand the genetic and molecular bases of complex traits (Judson et al., 2002; Niu, 2004). Recently, the genome-wide association studies (GWASs) have emerged as a powerful approach for direct identification of QTLs and candidate genes associated with complex traits in germplasm, particularly in discovering useful germplasm accessions and mining underutilized allele/haplotype combinations for crop improvements (Myles et al., 2009). Association mapping using GWAS has multiple gains over the traditional linkage mapping analysis using biparental populations, including (1) higher mapping resolution, (2) more and significant loci for associated phenotypes, and (3) shortened study time (Yu and Buckler, 2006). In rice, GWAS efforts have been greatly facilitated by the free availability of the seeds and genomic sequences of a core collection of 3,010 rice germplasm accessions (Wang W. et al., 2018). In the past 2 decades, several efforts have been taken to dissect rice AGT and SGT by identifying QTLs/alleles to facilitate functional genomic analyses of the traits and to provide target QTLs/genes for marker-assisted selection breeding (Kamoshita et al., 2002). After screening 8,000 rice accessions, Angaji et al. (2010) reported that a Xian (Indica) landrace, Khao-Hlan-On, has excellent AGT, which were largely controlled by five putative QTLs (qAG-1-2, qAG-3-1, qAG-7-2, qAG-9-1, and qAG-9-2). They further fine-mapped a major QTL, qAG-9-2, on the long arm of chromosome 9 and determined OsTPP7 as the most likely candidate gene for qAG-9-2 (Kretzschmar et al., 2015). Later, Zhang M. et al. (2017) reported several novel genetic loci for AGT in 432 Xian (Indica) accessions and demonstrated the Hap.2 of one candidate gene (LOC_Os06g03520) associated perfectly with flooding tolerance. Hsu and Tung (2015) reported a strong correlation between the subpopulation groups and five haplotypes of HXK6 gene; allelic variations of different haplotypes contributes to the phenotypic variation of coleoptile responses to anoxic conditions.
Mishra et al. (2016) reported the different haplotypes of HKT genes were associated with varied salt tolerance. Using a panel of 208 rice mini-core accessions, Naveed et al. (2018) identified six loci associated with rice salt tolerance on chromosomes 2, 3, 4, 6, 8, and 12. A similar GWAS by Chadchawan et al. (2017) identified 10 loci/genes on chromosomes 1, 2, 5, 10, 11, and 12 for leaf Na+ content in Thai rice. Shi et al. (2017) used 478 rice accessions and identified 11 loci associated with salt tolerance at seed germination stage. Two hundred thirty-two diverse rice accessions were used for photosynthesis measurement under salinity stress and identified two genomic regions on chromosome 5 highly associated with Photosystem II (PSII), and it was reported that chloroplast biogenesis in response to salt stress is important. However, the reported AGT and salt tolerance loci and alleles represent only a small portion of the expected loci/alleles involved in salinity and anaerobic tolerance at the germination stage and few of the identified QTLs were resolved into candidate genes for further validation and application in rice improvement.
Haplotypes can be defined as a linear arrangement of the genes/alleles (Judson et al., 2002) and can be determined through genotypic data (Niu, 2004). Identification of candidate genes and their functional haplotypes (alleles) for QTLs provides important information to determine causal genes and facilitate further validation and application of identified QTL in trait improvement. This has been greatly facilitated with the availability of large numbers of the 3,010 resequenced rice genomes (Wang W. et al., 2018). For example, Naveed et al. (2018) reported 22 candidate genes each with two to four haplotypes for salt tolerance at the germination and seedling stages in rice. Zhang J. et al. (2017) used 211 rice accessions and identified 22 candidate genes each with two to five haplotypes for ferrous iron and zinc toxicity tolerance at the seedling stage. This study reports our recent effort to identify 99 QTLs for AGT, SGT, and anaerobic plus salinity germination tolerance (ASGT), each of which was resolved into relatively few candidate genes’ strong evidence from comprehensive analyses of gene–Coding sequence (CDS) haplotypes (functional alleles). Our results should be helpful to enhance the current knowledge and information on the genetic and molecular bases of both AGT and SGT and to facilitate further validation their functionalities by gene editing and utilization in improving rice AGT and SGT in future marker-aided breeding programs.
2 MATERIALS AND METHODS
2.1 Plant Material
A set of 498 accessions of diverse germplasm accessions representing the major global rice-growing regions was selected from 3,000 Rice Genomes Project (3KRGP) as the materials. This pool of germplasm accessions consisted of five subpopulations, including 312 Xian (Indica), 131 Geng (Japonica), 14 Aus, 15 aromatic/basmati (Bas), and 26 admixture (Adm). Because the population structure may significantly impact our results in the following QTL identification by GWAS, we divided the 498 accessions into two populations based on the genomic relationships (Wang W. et al., 2018), the whole population with all 498 accessions included, population Xian (Indica) consisting of 312 Xian, 14 Aus and 26 Adm accessions, and population Geng (Japonica) consisting of 131 Geng and 15 aromatic/basmati (Bas) accessions.
2.2 Evaluation of the Rice Accessions for Anaerobic and Salinity Germination Tolerance
2.2.1 Evaluation of Anaerobic Germination Tolerance
Ten sterilized seeds of each of the 498 accession were placed in a capped glass tube of 2.5 × 8 cm (diameter × height) filled with distilled water up to 5 cm to submerge the seeds. Glass tubes were incubated in a growth chamber at 27°C ± 1°C, with a 12-h light (approximately 150 μmol m−2s−1)/12-h dark cycle and 60%–65% moisture without changing water for 7 days. For the control experiment, 10 sterilized seeds were placed on moist filter paper in glass tubes. After 7 days, coleoptile lengths (CLs) of seedlings were measured using a standard glass measuring scale, and the anaerobic response index (RI) was calculated as:
[image: image]
2.2.2. Evaluation of Salinity Germination Tolerance
Ten sterilized seeds of each accession were placed in two filter papers soaked with 10 ml of 115 mM of sodium chloride in a petri plate (9 cm) during the germination stage to screen salinity tolerance. In the controlled treatment, the same number of seeds per line was placed on a filter paper soaked in 10 ml of distilled water in a petri dish. All petri dishes were incubated under controlled conditions in the growth chamber at a temperature of 27 ± 1°C, with 12 h of light and dark (day/night) and 60%–65% moisture. This experiment was laid out under completely random design with three replications for each accession. The final germination rates (GRs in %) were measured for all germinating seeds 10 days after germination. Total biomass (BM) was taken as dry weight (g) of 5 plants; plants (root and shoot) were dried at 70°C for 3 days and was weighted on a digital high-accuracy balance.
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2.2.3 Evaluation of Anaerobic Plus Salinity Germination Tolerance
To identify promising accessions tolerant to the combined (salt plus anaerobic) stress, 200 accessions tolerant to either salt or anaerobic stress were selected from previous separate screening experiments based on higher germination under stress conditions. Ten sterilized seeds of each of the 200 accession were placed in a capped glass tube of 2.5 × 8 cm (diameter × height) filled with saline solution (65 mM) up to 5 cm to submerge the seeds. Glass tubes were incubated in a growth chamber at 27°C ± 1°C, with a 12-h light period and 60%–65% moisture without changing water for 7 days. For the control experiment, 10 sterilized seeds were placed on moist filter paper in glass tubes. After 7 days, CLs were measured using a standard glass measuring scale and the anaerobic salt RI (ASRI) was calculated as:
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2.3 Data Analyses
Phenotypic data distribution and correlations among measured traits and stress index were computed and plotted by using R statistical software, corrplot package (http://www.R-project.org). The 2.8M SNP genotypic data generated from the 3KRGP were used in this study (Zheng et al., 2015). SNPs with missing rates of more than 20% and minor allele frequency ≤0.05 were removed, leaving a total of 2,760,730 high-quality SNPs used data analyses for the whole population, 1,973,926 SNPs for the Xian (Indica) population, and 1,371,057 SNPs for the Geng (Japonica) population in the following GWAS.
2.4 Population Structure and Kinship
The 2.8M high-quality SNPs were used to calculate the population structure (Q) and kinship (K) of the 498 rice accessions based on Bayesian clustering and principal components using the software STRUCTURE 2.3.4. The program was run with the following parameters: k (1–5), with a variable number of groups; five runs at each k value, and for each run, 10,000 burn-in iterations followed by 10,000 MCMC (Markov Chain Monte Carlo) iterations. To calculate the appropriate K value, the default method, Centered_IBS, was applied using TASSEL 5.2.23 (Bradbury et al., 2007). The IBS was scaled (1 + F) for the mean diagonal element, where F is the inbreeding coefficient for the whole population of 498 accessions. These Q and K matrix were used for associations and analysis.
Linkage disequilibrium (LD) was measured using squared allele frequency correlations (r2) values between pairs of the SNP markers, calculated using the TASSEL 5.2.23 software (Bradbury et al., 2007). To find the relationship between the r2 value and physical distance of the identical marker pair, the R package ggplot2 was used to obtain the second-order polynomial curve of r2 fitting of the filtered data. The LD decay rate was measured by dropping r2 to a half along the chromosomal distance (Huang et al., 2010).
2.5 QTLs and Candidate Gene Identification by GWAS and Haplotype Analyses
The linear mixed-effects model was applied to determine the association between each SNP and the measured traits (Zhang et al., 2010) by using an efficient mixed-model analysis with the EMMA expedited (EMMAX) software (Kang et al., 2010) to determine genetic similarities among accessions. The effective number of independent markers (N) was calculated using the GEC software (Tumino et al., 2016). As mentioned previously, all rice accessions used in this study were divided into three panel populations, the whole (Xian + Geng + Adm, n = 498), Xian (Indica) (n = 326), and Geng (Japonica) (n = 146) populations. It is well-known that the smaller the population size is, the less the power is in detecting QTLs by GWAS. Based on population sizes, two thresholds of p = 1.0 × 10−5 and 1.0 × 10−6 were used to claim significant SNP-trait associations in the Geng (Japonica) population, Xian (Indica) and whole populations, respectively, determined by the total number of SNPs (0.05/N) in GWAS. Based on the LD estimates (r2) of 200, 170, and 220 kb of the whole, Xian (Indica), and Geng (Japonica) populations (Wang W. et al., 2018), any two or more significant SNPs in <200-kb distances were considered as a single QTLs. Genes inside the QTLs with p = 1.0 × 10−4 were used for GO (Gene Ontology) enrichment, and the group with false discovery rate ≤0.05 was regarded as significantly enriched. The Pearson correlation coefficient was calculated in R software version 3.5.0, and the network was visualized using Cytoscape version 3.6.1.
Identification of candidate genes for important QTLs was achieved by determining important QTLs for the measured traits and then by identifying candidate genes for important QTLs by bioinformatics and haplotype analyses. From those QTLs identified by GWAS, anyone that met at least two of the following three criteria was considered as important QTL: (1) having large phenotypic effects with >10% of the total trait variance and (2) the LOD peaks of significant SNPs mapped to the same location (∼1 Mb) of a fine mapped QTL/cloned gene of functional relevance, (3) QTL region–containing nonsynonymous SNPs in their CDS −log10 (p < 10−4). Then, three steps were used to identify candidate genes for important QTL regions by (1) searching all genes in the target region of important QTL-containing nonsynonymous SNPs in their CDS regions based on corresponding reference genomes (Minghui 63) used as the Xian (Indica) reference genome and Nipponbare as the Geng (Japonica) reference genome); (2) the presence of major gene CDS haplotypes (gcHaps) in more than 10 accessions that showed statistically significant differences between the major haplotypes of selected candidate genes for the associated trait; and (3) for each of the most likely candidate genes, a haplotype network in the 3KRGP was constructed using all nonsynonymous SNPs downloaded from the Rice SNP-Seek Database (Alexandrov et al., 2015) within its coding sequence regions using the RFGB v2.0 (Wang et al., 2020) and the pegas package in R. Haplotypes present in at least 150 rice accessions in 3KRGP were used for comparing. The mean trait value of each haplotype was compared using one-way analysis of variance (ANOVA) followed by Duncan new multiple range tests (p < 0.05) with the agricolae package in R. Then, each of the candidate genes was interpreted according to its population organization and evolutionary relationships of their major gcHaps in the 3KRGP (Supplementary Figure S1).
3 RESULTS
3.1 Phenotypic Variation and Trait Correlations
The 498 accessions showed huge variation for the measured AGT and SGT traits (Table 1). On average, the Geng (Japonica) population showed significantly higher values than the Xian (Indica) population for most the AGT and SGT traits. ANOVA showed that the genotypic differences among the accessions explained 97.2%, 32%, and 97.5% of the total phenotypic variances of GR under anaerobic condition (AGr), CL, and RI contributing to AGT (Supplementary Table S1), and 97.4%, 90.3%, and 97.1% of the total phenotypic variances of GR under salinity condition (SGr), and BM contributing to SGT, respectively (Supplementary Table S1). As expected, highly positive correlation was observed between the three AGT traits, with r = 0.82 between AGr and CL, 0.82 between AGr and RI, and 0.99 between CL and RI, indicating that CL was the primary determinant of AGT. For the SGT traits, moderately positive correlations were observed between SGr and BM (r = 0.31), (Supplementary Figure S2). Based on the screening result, we were able to identify 53 promising accessions, including 33 AGT accessions (21 Geng and 11 Xian accessions) from 14 countries, which had mean AGr >79%. There were 14 SGT accessions (5 Geng and 9 Xian lines) from 12 countries that had mean SGr >76% (Supplementary Table S2). There were 17 RIs under anaerobic and salinity condition (ASRI) accessions (16 Geng and 1 Xian) from eight countries that had mean ASRI >2.9 cm. Ten of these accessions were promising under more than one stress. Eight accessions showed excellent performance under AGT and ASRI, and one accession (IRIS_313-10710) showed excellent germination under AGT and SGT stresses. One accession (B068) showed excellent performance under three stresses: AGT, SGT, and ASRI (Supplementary Table S2). These accessions would be valuable sources of genetic variation for genetic/molecular dissection and improvement of rice AGT and SGT in the future.
TABLE 1 | Performances of salt tolerance related traits measured at germination under salinity and anaerobic stresses.
[image: Table 1]3.2 Population Structure
The population structure and kinship analyses using the 2,760,730 high-quality SNPs through STRUCTURE indicated that k = 2 was most informative to describe the population structure of the 498 accessions used in this study (Figure 1). The huge amounts of variation for all measured AGT and SGT traits (Table 1) were the foundation for our following GWAS analyses, with the whole population consisting of all 498 lines, the Geng (Japonica) population consisting of 146 accessions (Geng + Bas), the Xian (Indica) population consisting of 326 (Xian + Aus).
[image: Figure 1]FIGURE 1 | Population structure of germplasm showing NJ tree plot (A), PC (B), and Bayesian clustering (C) of germplasm.
3.3 Identification of QTLs for AGT and SGT Traits by GWAS
Based on a stringent threshold (p = 1.0 × 10−5 for Geng and 1.0 × 10−6 for Xian), we detected a total 99 QTLs associated with the six traits measured under the salinity and anaerobic germination stresses in different rice populations (Figure 2). For the 3 AGT traits, we identified 54 QTLs. Nine QTLs associated with AGr mapped to chromosomes 2, 4, 5, 8, 9, and 11, four of which (qAGr2, qAGr5, qAGr8a, and qAGr8b) were identified only in population Geng (Japonica), three QTLs (qAGr9, qAGr11a and qAGr11c) only in population Xian (Indica), and the remaining two (qAGr4 and qAGr11b) in both whole and Xian (Indica) populations. These QTLs had main effects ranging from 7.1 for qAGr11a to 19.5 for qAGr8b (Supplementary Table S3). Eighteen QTLs affecting CL were identified and mapped to chromosomes 1, 2, 3, 4, 6, 7, 8, 9, and 10. Eight of these QTLs were detected only in population Geng (Japonica), qCL4a and qCL9b were detectable only in population Xian (Indica), and seven QTLs were detectable only in the whole population, suggesting the allelic differences at these QTLs were primarily reflected between the two subspecies. qCL4b was detected in the whole and Geng (Japonica) populations. These QTLs had effects ranging from 3.3 for qCL3d to 10.6 for qCL9b. Twenty-seven QTLs affecting anaerobic RI were identified. Of these, 15 were detected only in population Geng (Japonica), and eight were detectable only in the whole population; qRI4b, qRI9b, and qRI11c only in population Xian (Indica); and qRI4c in both Geng (Japonica) and whole populations. These RI QTL had effects ranging from 2.3 for qRI11a to 16.3 for qRI12b. We noted that nine pairs of CL and RI QTLs were mapped to the identical locations with the same peak SNPs (Supplementary Table S3). Each of these cases should be considered the same QTL affecting both CL and RI because of the high positive correlation between CL and RI.
[image: Figure 2]FIGURE 2 | Manhattan plots of AGT and SGT QTLs in the whole genome. Significant SNPs for six traits in Xian (Indica), Geng (Japonica), or whole populations are displayed in different colors and shapes; each shape represents specific QTL identified in Xian (Indica), Geng (Japonica), or whole.
Twenty-one QTLs were identified for the SGT traits. Nine QTLs associated with BM were identified and mapped to chromosomes 1, 4, 6, 9, 10, and 12. These included qBM1b, qBM4, qBM6a, qBM9b, and qBM10 detectable only in population Geng (Japonica), qBM6b and qBM12 only in population Xian (Indica), and qBM1a in both whole and Xian (Indica) populations. These QTLs had effects ranging from 3.2 for qBM6b to 9.6 for qBM9a. Twelve QTLs affecting salt GR (SGr) were identified and mapped to chromosomes 3, 4, 5, 9, 10, 11, and 12. These included qSGr4b, qSGr5, qSGr10a, and qSGr12 in population Geng (Japonica); qSGr3, qSGr4a, qSGr9b, qSGr10c, and qSGr11 in population Xian (Indica); qSGr10b and qSGr10d in the whole population; and qSGr9a in the Xian (Indica) and whole populations. These QTLs had effects ranging from 4.7 for qSGr4a to 20.2 for qSGr4b (Supplementary Table S3).
In addition, we identified 42 QTLs associated with ASRI and mapped to all 12 rice chromosomes. Twenty of these QTLs were detected in the whole population; seven QTLs (qASRI1a, qASRI1d, qASRI2e, qASRI2g, qASRI3e, qASRI12a, and qASRI12b) in the Xian (Indica) and whole populations; qASRI4a and qASRI6d were in all three populations; seven QTLs (qASRI1c, qASRI1e, qASRI2b, qASRI3f, qASRI4c, qASRI4e, and qASRI12c) detected only in population Xian (Indica); qASRI2d, qASRI4b, and qASRI6a in population Geng (Japonica); and qASRI4d, qASRI11a, and qASRI11b in the Geng (Japonica) and whole populations. These QTLs had effects ranging from 2.1 ASRI for qASRI5b to 11.3 ASRI for qASRI3e (Figure 2; Supplementary Table S2).
3.4 GO Enrichment Analysis
In total, 317 genes with significant SNP were used for GO enrichment analysis, and significant GO terms for embryonic development, nitrogen compound metabolism, nucleic acid metabolism, carbohydrate metabolic process, response to stress, and response to stimulus were identified. Four GO terms (embryonic development, carbohydrate metabolic process, response to stress, and response to stimulus) highly associated with abiotic stress tolerance were targeted for further analysis, and 22 genes were found common for the target GO terms. The results explained that the genes with significant SNPs are associated with abiotic stress tolerance trait in rice (Supplementary Figures S4, S5).
3.5 Candidate Genes for Important QTLs
Based on the GWAS results, we were able to determine seven important QTLs: qRI1c, qRI1d, qSGr3, qAGr4, qBM9a, qSGr9a, and qAGr9 (qCL9b and qRI9b), based on their large phenotypic effects and LOD peaks of multiple highly significant SNPs mapped to a small region of ∼1 Mb or to a fine mapped QTL/cloned gene of functional relevance. Based on the criteria, four QTLs, qRI1c, qRI1d, qAGr4, and qAGr9 (qCL9b and qRI9b), with large effects on AGT, appeared to be more important, and candidate genes were identified in those regions. qAGr4 was mapped in a confidence interval of 230 kb (34.60–34.83 Mb) on chromosome 4 with 142 SNPs in the 32 genes, which resulted in identification of six candidate genes, Os04g0677700, Os04g0678300, Os04g0678700, Os04g0679050, Os04g0681600, and Os04g0682100 (Table 2). Os04g0679050 encoding an H0801D08.10 protein and has 3 major haplotypes consisted of nonsynonymous SNPs. Hap1 presented in only 3 Xian (Indica) and 11 Geng (Japonica) accessions and had a mean AGr of 45.4%, significantly higher than the predominant Hap2 (mean AGr = 31.3%) and Hap3 (mean AGr = 11.3%) (Supplementary Figure S3). Similarly, Os04g0682100 encodes a C2 calcium/lipid-binding protein and has only two major haplotypes in the whole population. Hap1 was predominant in population Geng (Japonica) and associated with a mean AGr of 57.3%, significantly higher than Hap2, which had a mean AGr of 21.8% and was predominant in population Xian (Indica) (Supplementary Figure S3). We observed four major haplotypes at Os04g0681600, which encodes a DUF580 family protein of unknown function. Hap1 and Hap2 were present in population Geng (Japonica) and had mean AGr of 54.4% and 44.2%, significantly higher than Hap3 and Hap4, which were present primarily in population Xian (Indica) (Supplementary Figure S3; Table 3). These results suggested Os04g0679050, Os04g0681600, and Os04g0682100 were most likely candidates for qAGr4. qAGr9 (qCL9b and qRI9b) mapped to an interval of 240 kb (12.20–12.44 Mb) on chromosome 9, which harbors a cloned QTL gene, OsTPP7 (LOC_Os09g20390), encoding the trehalose-6-phosphate phosphatase involved in trehalose-6-phosphate metabolism and enhancing rice AGT by driving growth kinetics of the germinating embryo and elongating coleoptile under anaerobic conditions (Kretzschmar et al., 2015). The haplotype analyses suggest seven candidate genes, Os09g0369050, Os09g0369250, Os09g0369400, Os09g0369500, Os09g0370500, Os09g0371000, and Os09g0372800. Of them, Os09g0369400 encodes a protein similar to trehalose-6-phosphate phosphatase 7 (TPP7) and has only three major haplotypes in population Xian (Indica) with Hap1 associated with significantly higher AGr and longer CL than Hap2 (Supplementary Figure S3; Table 3).
TABLE 2 | List of 25 candidate genes for seven important QTLs identified at under salinity and anaerobic stresses.
[image: Table 2]TABLE 3 | Haplotype analysis of the candidate genes for important QTL regions.
[image: Table 3]We discovered five major haplotypes (with frequency >150) constructed from SNPs within the CDS regions of this gene in the 3,010 rice accessions (Figure 3A). According to their frequencies in the five major rice populations, Hap1 and its derived one, Hap4, were the predominant alleles in population Geng (Japonica) and associated with high AGr in the tested populations, whereas Hap2 was the predominant allele in population Xian (Indica) and associated with lower AGr. However, two less frequent alleles, Hap3 and Hap5, which were present almost only in population Xian (Indica), were associated with greatly reduced AGr. Figure 3D explains that Os09g0306400 has four haplotypes in the 3,010 rice accessions, and according to the frequencies, haplotypes were the predominant alleles in population Xian (Indica), and this allele is associated with high SGr in the tested populations. On chromosome 1, three candidate genes, Os01g0772500, Os01g0974200, and Os01g0976100, were identified in two important QTLs (qRI1c and qRI1d). Os01g0772500 encodes glycosyl transferase, Os01g0974200 encodes RicMT (metallothionein-like protein), conserved hypothetical protein (MT2B), and Os01g0976100 encodes protein contains domain for ABC transporter.
[image: Figure 3]FIGURE 3 | (A) for OsTPP7 and (D) for OsbZIP71; Frequencies of (B), 5 haplotypes(Hap) of OsTPP7 and (E), 3 haplotypes(Hap) of OsbZIP71 in subgroups of 3RGP; The distribution of AG for the (C), 5 Haps of OsTPP7 and the distribution of SG the (F), 3 Haps of OsbZIP71. Different letters above each boxplot indicate significant differences among haplotypes according to Tukey’s honest’s significant difference test (p < 0.05).
Three SGT important QTLs, qSGr3, qBM9a, and qSGr9a, were analyzed for candidate gene identification. qSGr3 mapped to chromosome 3 in the confidence interval of 360 kb (6.83–7.19 Mb) where we detected 158 SNPs in the 41 genes with LOD peaks in genes Os03g0230300 (regulation of stomatal closure and abiotic stress response), Os03g0231700 (the squalene monooxygenase), Os03g0231800 (similar to squalene monooxygenase), and Os03g0233000 (a DUF607 family protein of unknown function) (Figure 3), indicating that they were the most likely candidate genes for qSGr3. Os03g0231800 is predicted to encode a squalene monooxygenase and has four major haplotypes in the mapping panel populations. Hap1 was associated with significantly higher SGr than the other three haplotypes based on ANOVA (Supplementary Figure S3). At the other three candidate genes, no significant differences were detected among their haplotypes, suggesting Os03g0231800 can be candidate gene for qSGr3.
qBM9a was mapped to a confidence interval of 260 kb (18.88–19.14) on chromosome 4–containing 118 SNPs with 3 LOD peaks in 21 genes, which led us to identify four most likely candidate genes, Os09g0490200 (similar to ethylene signal transcription factor), Os09g0490400 (β-glucosidase 29), Os09g0491740 (an auxin efflux carrier domain–containing protein), and Os09g0493700 (similar to CUC2). Os09g0490400 encodes the β-glucosidase 29 and has three major haplotypes in the whole population. Hap1 was associated with the highest BM, followed by Hap2 and Hap3 with the lowest BM (Table 3; Supplementary Figure S3). Predicted to be an ethylene signal transcription factor gene, Os09g0490200 has two major haplotypes, and Hap1 was associated with significantly higher BM (Supplementary Figure S3). Os09g0493700 is predicted to be a CUC2 gene with three major haplotypes, and Hap1 was associated with the highest BM, followed by Hap2, and Hap3 had the lowest BM (Supplementary Figure S3).
4 DISCUSSION
DSR has increased rapidly recently in different Asian countries because of its being labor-saving and cost-effective. However, developing high-yielding rice cultivars suitable for direct seeding must have good AGT and SGT in order to achieve high and sustainable yields under salinity and anaerobic stresses at the germination stage. In this study, we have shown that there is tremendous genetic variation for traits contributing to AGT and SGT in the primary gene pool of rice and identified large numbers of QTLs affecting the AGT and SGT traits in rice. While providing a clear picture regarding the overall level and pattern of this useful genetic diversity and materials, our results shed some light on the genetic basis of SGT and AGT in rice and suggest more efficient strategies how to exploit this valuable genetic variation in future development of new and high-yielding DSR varieties. In this study, huge amounts of phenotypic variation were observed among accessions for the measured AGT and SGT traits, primarily within the subspecific populations. On average, Geng (Japonica) accessions showed significantly higher AGT than Xian (Indica) accessions, which was also reflected by more Geng (Japonica) accessions showing high level of AGT. The subspecific differences in SGT traits were less pronounced. Thus, future improvement of both AGT and SGT should focus on exploitation of within-subspecies variation. In this respect, the identification of 33 AGT accessions and 14 SGT accessions of diverse origins (Table 2) provided excellent materials for future genetic/molecular dissection and improvement of AGT and SGT.
With the threshold of −log10 (p < 10−5) for two or more SNPs in 200 kb by GWAS, we were able to identify large numbers of QTLs significantly associated with the AGT and SGT traits and ASGT, indicating rice adaptation to AG, SG, and ASG stresses is genetically complex. Clearly, most of the identified QTLs had relatively small effects on the AG, SGT traits, and ASGT. We noted that most (87.1%) of the identified QTLs were detected in a single population, including 39 QTLs detectable only in population Geng (Japonica), 22 QTLs in population Xian (Indica), and 39 QTLs detected only in the whole population, whereas 5 (qCL4b, qRI7a, qASRI4d, qASRI11a, and qASRI11b) and 10 QTLs (qAGr11b, qBM1a, qSGr9a, qASRI1a, qASRI1d, qASRI2e, qASRI2g, qASRI3e, qASRI12a, and qASRI12b) were detected in whole in parallel with Geng (Japonica) and Xian (Indica) populations, respectively, and 2 QTLs (qASRI4a and qASRI6d) were detected in Geng, Xian (Indica) and whole populations. While providing strong evidence for the impact of population structure of the tested accessions on effectiveness of GWAS, this result has important implications for their potential application to improving rice AGT, SGT, and ASGT in future breeding programs, for example, for those QTLs identified in either population Xian (Indica) or Geng (Japonica).
Three QTL (qCL9b, qRI9b, and qAGr9) associated with AGT were identified in the same region on chromosome 9 (12.20–12.44 Mb); this region was previously cloned and reported as major anaerobic stress tolerance gene OsTPP7 (Kretzschmar et al., 2015). Two QTL qBM9a and qBM9b associated with salinity stress were identified in the same region on chromosome 9 (18.87–20.00 Mb); this region was previously cloned from Xian (Indica) rice variety 9,311 and reported as OsEATB, a major gene involved in the reduction of plant height that is a major factor to increase plant yield (Qi et al., 2011). One QTL (qRI1c) was identified on chromosome 1 (32.60–33.03 Mb); this region is adjacent to the previously cloned gene OsKAT1, which was reported as a rice shaker potassium channel that confers tolerance to salinity stress in rice (Obata et al., 2007). One QTL (qSGr9a) was identified on chromosome 9 (6.82–7.05 Mb); this region is adjacent to previously cloned gene OsbZIP71, another rice shaker potassium channel conferring salinity tolerance in rice (Liu et al., 2013). Two QTLs (qRI12b and qSGr12) were identified in the same region on chromosome 12 (19.68–19.84) associated with SGr and AGr length; this region is adjacent to previously cloned gene OsATG10b (Shin et al., 2009), which plays an important role in the survival of rice cells against oxidative stresses. One QTL (qRI1d) was identified on chromosome 1 associated with root length; this region was previously reported for salt tolerance as OrbHLH001, and overexpression of OrbHLH001 from Dongxiang wild rice (Oryza rufipogon) conferred salt tolerance in rice plants (Chen et al., 2013). One QTL (qSGr3) was identified on chromosome 3 associated with salinity germination; this region was reported for drought and salt tolerance as dsm3 (Du et al., 2011). One region of chromosome 10 (8.29–8.58 Mb) had three QTLs (qSGr10b and qBM10) associated with two traits measured under salinity stress; these traits have positive correlations with each other. Association of this region with three different traits predicts that this region can produce salinity tolerance. A major advantage in our study was the use of high-density genotypic data to identify QTL through GWAS, allowing us to narrow down the QTL region to <200 kb, which we further investigated to identify significant SNPs >−log (p) > 3 in the CDS to mark candidate genes. In total, 24 candidate genes were identified for 7 QTL short-listed as important. One candidate gene, Os01g0772500 for qRI1, encodes glycosyl transferase, and in rice, this protein has been characterized as leaf senescence protein and associated with photosynthetic rate, stomatal conductance, and transpiration rate (Wang M. et al., 2018).
Two candidate genes, Os01g0974200 and Os01g0976100, were identified for qRI1d. Os01g0974200 encodes protein RicMT (metallothionein-like protein), and metallothionein-producing genes are involved in multiple types of abiotic stress tolerance (Kumar et al., 2012). Identification of this locus in our study can be cloned to find genes for abiotic stress tolerance. While Os01g0976100 encodes a protein-containing ABC transporter-like domains, these proteins are involved in plant developmental processes and transporting various compounds/elements across cell membranes (Hwang et al., 2016). Four candidate genes, Os03g0230300, Os03g0231700, Os03g0231800, and Os03g0233000, were identified for qGS3. Os03g0230300 encodes a protein involved in the regulation of stomatal closure and the abiotic stress response (You and Chan, 2015). Os03g0231700 encodes squalene monooxygenase, and Manavalan et al. (2011) used RNAi-mediated disruption of squalene synthase and found drought tolerance and improvement in rice yield. Os03g0231800 expressed a putative protein, and Os03g0233000 encodes a protein of unknown function in the DUF607 family. DUF domain proteins are reported for drought tolerance in rice (Cui et al., 2016). Six candidate genes, Os04g0677700, Os04g0678300, Os04g0678700, Os04g0679050, Os04g0681600, and Os04g0682100, were identified for qAGr4. Os04g0677700 and Os04g0679050 expressed putative proteins similar to H0402C08.11 and H0801D08 protein. Os04g0678300 expressed a WD-40 family protein; these proteins are associated with plant tolerance to abiotic stresses (Kong et al., 2015). Os04g0678700 expressed protochlorophyllide reductase. Protochlorophyllide is a precursor of chlorophyll, which is the most important component of photosynthesis and anabolic processes (Dalal and Tripathy, 2012). Os04g0681600 expressed a DUF580 domain protein. Os04g0682100 expressed a CaLB domain protein, which is a novel repressor of abiotic stress responses (de Silva et al., 2011). Five candidate genes, Os09g0369050, Os09g0369250, Os09g0369400, Os09g0369500, and Os09g0370500, were identified for qCL9b, and six candidate genes, Os09g0369050, Os09g0369250, Os09g0369400, Os09g0369500, Os09g0371000, and Os09g0372800, for qAGr9. Four candidate genes (Os09g0369050, Os09g0369250, Os09g0369400, and Os09g0369500) were significant for both QTL qAGr9 and qCL9b. Os09g0369050 expressed a protein similar to DRE-binding factor 2 protein. DRE elements are present in the promoter regions of various gene involved in abiotic stress tolerance. Os09g0369250 expressed a putative protein of unknown function, and Os09g0369400 expressed a protein similar to trehalose-6-phosphate, phosphatase 7, as osTPP7, a cloned gene for anaerobic stress tolerance at germination in rice (Kretzschmar et al., 2015), and it participates in starch mobilization to promote embryo germination and coleoptile elongation (Hsu and Tung, 2015). Os09g0369500 expressed a conserved protein known as endosperm-specific gene (OsEnS). The endosperm is a critical factor for seed growth, and OsEnS gene was identified on chromosome 9 in rice (Nie et al., 2013). Os09g0370500 expressed a VQ domain protein; VQ domain proteins are involved in abiotic stress responses and developmental processes (Jing and Lin, 2015). Os09g0371000 expressed a major facilitator superfamily protein, and these proteins have multiple roles in auxin transport and drought stress tolerance in Arabidopsis (Remy et al., 2013). Os09g0372800 expressed a serine/threonine protein kinase domain–containing protein, and this protein causes resistance to rice stripe disease (Lee and Kim, 2015). Four candidate genes, Os09g0490200, Os09g0490400, Os09g0491740, and Os09g0493700, were identified for qBM9a. Os09g0490200 encodes ethylene signal transcription factor, and it is reported that ethylene signaling-related genes respond to dehydration stresses (Ren et al., 2017). Os09g0490400 expressed β-glucosidase; these proteins are involved in abiotic stresses through the accumulation of antioxidant flavanols (Baba et al., 2017). Os09g0491740 expressed auxin efflux carrier domain protein, and auxin has been reported as a key growth regulator that is involved in abiotic stress responses (Sharma et al., 2015). Os09g0493700 expressed a protein similar to CUC2; CUC is associated with drought and salt tolerance in rice.
Identification of the candidate gene based on its relevance in the mechanism to the trait of interest leads us to identify trait-controlling genes. Identification of new and previously reported QTL/candidate genes in this study demonstrated the advantages of GWAS using high genetic diversity and higher-resolution mapping to identify candidate genes. However, few confines were found for GWAS approach, as we had a limited ability to detect rare QTL/alleles because minor alleles were removed, and this method cannot detect epistasis. A further selection of nonsynonymous SNPs in the coding regions of the gene for haplotype analyses cannot cover the trait variation caused by SNP/mutation in the promoter or noncoding regions of the gene. Moreover, use of a single reference genome (presence or absence of gene) can cause errors in GWAS for the accuracy of QTL and candidate genes.
5 CONCLUSION
In GWAS, using high genetic diversity is a powerful tool for the identification of QTL candidate genes and haplotypes. In this study, a total of 54 and 21 QTLs were identified related to anaerobic and salt tolerance at the germination stage. Different genomic regions of Xian (Indica) and Geng (Japonica) are involved in AGT and SGT trait, which suggest specific QTL for the subgroup. In total, 25 candidate genes were identified, several of these in the genomic regions reported or cloned for anaerobic and salt tolerance. It was also found the Geng (Japonica) accession having more tolerance to anaerobic stress as compared to the Xian (Indica). The identified anaerobic and salt tolerant accessions that have high breeding values can be used in future rice breeding for anaerobic and salinity tolerance at germination stage. Identification of tolerant accessions and the QTLs/genes in this study supports that results are useful for the ongoing and future rice breeding programs.
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Maize flowering time is an important agronomic trait, which has been associated with variations in the genome size and heterochromatic knobs content. We integrated three steps to show this association. Firstly, we selected inbred lines varying for heterochromatic knob composition at specific sites in the homozygous state. Then, we produced homozygous and heterozygous hybrids for knobs. Second, we measured the genome size and flowering time for all materials. Knob composition did not affect the genome size and flowering time. Finally, we developed an association study and identified a knob marker on chromosome 9 showing the strongest association with flowering time. Indeed, modelling allele substitution and dominance effects could offer only one heterochromatic knob locus that could affect flowering time, making it earlier rather than the knob composition.
Keywords: maize, heterochromatic knobs, genome size, flowering time, DNA content, FISH
INTRODUCTION
The relationship between heterochromatic knobs, genome size, and flowering time (FT) in maize is a long debate. Knobs have intrigued geneticists for more than 100 years, and since their discovery, their functions remain under investigation. These maize genome regions are constitutive heterochromatin with late replication during the cell cycle (Pryor et al., 1980), extensively composed of two highly repetitive satellite DNA families, 180-kb, and TR-1 (Peacock et al., 1981; Ananiev et al., 1998). An eminent observation was their wide variability among landraces, inbred lines, and hybrids, following a biogeographic distribution (McClintock et al., 1981; Rayburn et al., 1985), suggesting a possible role affecting the expression of some phenotypic features as flowering time (Jian et al., 2017).
Moreover, other exciting aspects of the heterochromatic knobs in the maize genome have been elucidated by several studies. Knobs have been shown to affect local recombination (Ghaffari et al., 2013; Stack et al., 2017) and genes adjacent to these regions reduce their expression level (Haberer et al., 2020). The meiotic drive mechanism influences the number of knobs in different species of Zea (Rhoades and Dempsey, 1966; Buckler et al., 1999; Higgins et al., 2018). Such a system would favor knob transmissions preferentially during female meiosis by a knob neocentromere activity, which might have contributed to maize genome remodeling throughout its evolutionary history. Response to abiotic stress was observed in maize plants from the transcriptional activation of the knob repetitive sequences, being this activation selective, temporary, and accompanied by epigenetic changes (Hu et al., 2012). Lastly, associations between heterochromatic knobs and agronomic traits have also been reported (Blumenschein, 1964).
There is a growing interest in the role of variation of genomic content in creating phenotypic modifications within a species. These changes are due to copy number variation (CNV), which has been used to describe duplications, deletions, and insertions in individuals of a species, and presence/absence variation (PAV) that describes the presence or not of sequences on the genome of different individuals of the same species. Together, they form the pan-genome of species (Springer et al., 2009). Maize is also a model species for studies of pan-genome. Differences in chromosomal structure between maize landraces were firstly identified through cytogenetic studies. Barbara McClintock and colleagues analyzed the content and size of heterochromatic knobs to characterize this variation in the genome (McClintock et al., 1981). Currently, modern cytogenomic techniques have sampled the wide variation of the copy numbers resulting from repetitive sequences, which make up most of the maize genome (Kato et al., 2004; Albert et al., 2010; Mondin et al., 2014; Bilinski et al., 2018).
Moreover, quantification of DNA content through flow cytometry has documented significant variability in the maize genome size (GS) between landraces and inbred lines (Laurie and Bennett, 1985; Realini et al., 2015). New combinations of alleles arise from the variation of genomic content within species, contributing to phenotypic variation (Brohammer et al., 2018). Therefore, this can have an influence on several important characteristics, including flowering time (Bilinski et al., 2018). Flowering time is a quantitative trait of extreme relevance for cultivated plants since it controls plant adaptation to the environment. Breeding programs through this feature outline strategies to make earlier or later varieties, allowing their expansion to other regions and consequently increasing yield (Jung and Müller, 2009).
Recent studies on maize genome present the triangle formed between genome size, knob content, and flowering time in natural populations. These surveys have considered just the knob numbers or estimated the knob abundances by low coverage sequencing (Realini et al., 2015; Jian et al., 2017; Bilinski et al., 2018). However, few studies have evaluated the knob effect depending on its homozygous or heterozygous condition (Chughtai and Steffensen, 1987). These authors reported that heterozygotes for knobs had earlier flowering time in comparison with homozygotes. Different researchers have attributed variation in maize genome size to heterochromatin content differences, especially in knobs (Chughtai and Steffensen, 1987; Chughtai et al., 1997; Jian et al., 2017) However, knob content not corresponding with genome size was also reported (Realini et al., 2015). Moreover, it is proposed that there is a relationship between decreased genome sizes in high altitudes with reduced flowering time. Besides, the same association is observed for knob abundance occurring along altitudinal clines (Poggio et al., 1998; Bilinski et al., 2018). However, no experimental design has isolated the effects of homozygous or heterozygous knobs and test whether they are correlated with flowering time. In this case, the relationship between knobs and flowering time remains unclear.
Here, we derived a panel of sister inbred lines and their hybrids to verify the association between genome size, knob constitution, and flowering time for male (MF) and female (FF) inflorescences. Firstly, in chronological order, inbred lines with variable presence or absence of the knobs K3L, K5L, K7S, and K9S were derived until S9 generation from a segregating single seed of a Flint variety (Decico, 1991). Then, we created hybrids between inbred lines, and finally, we started to estimate the genome size and flowering time.
These near-isogenic inbred lines and their hybrids, varying for knob positions at K3L, K5L, K7S, and K9S were used to assay flowering time under controlled environmental conditions and their genome size was measured by flow cytometry. All data were used to analyze the genome association study. We expected that using sister inbred lines and their hybrids possessing a common genetic background, the influence of knobs on genome size and flowering time could be clearly detected (Carvalho et al., 2021).
MATERIALS AND METHODS
Plant Material
Origin of the Maize Inbred Lines and Knob Composition
For this research, the development process of inbred lines was idealized in the Department of Genetics at “Luiz de Queiroz” College of Agriculture – ESALQ, University of São Paulo – USP. The initial biological material was a commercial variety Jac-Duro (JD – composed of Cateto varieties, Flint type endosperm), donated by Agroceres Seeds, Brazil. Initially, the variety segregated for the knob positions K3L, K5L, K7S, K9S (where “K" refers to a knob, number corresponds to chromosome, L or S is for long and short arm, respectively), and it was homozygous for knob positions at K6L2, K6L3, K7L, and K8L1, K8L2. Thus, over the self-fertilization cycles, the inbred lines were analyzed by C-banding until they become homozygous for specific knob positions (Supplementary Table S1). The knobs K6L2 and K6L3, and K8L1 and K8L2 visualized at pachytene are seen as a unique band in somatic chromosomes using C-banding or FISH (Mondin et al., 2014). Analyses of the C-Band frequency in somatic chromosomes were performed on S2 (240–14–4) and S3 (240–14–1 and 240–14–2) until S9 progenies (Decico, 1991). The S3 240–14–1 progeny segregated for two knob positions: K3L and K9S, and progeny 240–14–2 for one locus: K9S. The S2 240–14–4 progeny segregated for the four loci: K3L, K5L, K7S, and K9S. All the inbred lines maintained the homozygous knobs for the positions K6L2, K6L3, K7L, and K8L1 and K8L2. S4 and S5 inbred lines were obtained from these progenies, derived from two self-fertilization cycles that became denominated in S5 = 14-1-3 and 14-2-1 and S4 = 14-4-1 and 14-4-4. This designation was abbreviated for JD 1-3, JD 2-1, JD 4-1, and JD 4-4 to characterize the four families of lines. The inbred lines used in this research were derived until S9 progenies (Supplementary Table S1) (Decico, 1991), and the hybrids were obtained from crosses between JD 1-3 and JD 4-4 inbred lines (Supplementary Table S2). Therefore, we have a broad panel of heterochromatic knob combinations, which can be homozygous for the presence or absence or even heterozygous in the hybrids. Figure 1 illustrates these conditions and Figure 2 shows a sample of the inbred lines and hybrids. Mondin et al. (2014) described the karyotype of these lines through the analysis of pachytene and somatic chromosomes using C-banding and FISH procedures.
[image: Figure 1]FIGURE 1 | Representation of the knob conditions for chromosome 9 (K9S). (A) Absence of knob (B) heterozygous knob and (C) homozygous knob.
[image: Figure 2]FIGURE 2 | A sampling of genotypes used in the experiments on flowering time and genome size. (A–G) Somatic karyotypes of JD lines; and (H–L) hybrids, labeled by FISH using a probe for the knob 180-bp repeat (green). Bar = 10 μm.
METHODS
Fluorescence In Situ Hybridization - FISH
The 180 bp repetitive DNA sequence probe present in the knobs (Peacock et al., 1981) was used to map the inbred lines and hybrids. The steps of pre-treatment and in situ hybridization were based on Mondin et al. (2014). Each chromosome preparation was conducted using 20 μL of a probe mixture containing the 180 bp probe. The probe mixture was denatured by heating at 96°C for 10 min, cooled on ice, and then dropped onto the slide preparations and covered with a coverslip. Preparations were denatured in a thermocycler at 93°C for 10 min. The hybridization was performed at 37°C for 16 h. Following the hybridization, slides were washed twice in 2x SSC at 37°C and 42°C for 5 min, twice in 20% formamide in 0.5 x SSC at 42°C (74% stringency) for 10 min and once in 0.5x SSC for 5 min at the same temperature. The probe of the 180 bp knob repeat was directly labeled by random priming with 6-Carboxyfluorescein (FAM). The slides were counterstained with 0.2 μg/ml 4,6-diamidino-2-phenylindole (DAPI) and mounted in 5 μL of Vectashield H-1000.
Genome Size Measurements
The genome size of the inbred lines and hybrids was estimated following Praça- Fontes et al. (2011). For these analyses, Z. mays ‘CE-777’ was used as an internal standard. Young leaves of the sample and standard were chopped into a Petri dish containing a solution of 0.5 ml of OTTO I nuclear extraction buffer (Otto, 1990). To this solution it was added 2.0 mM of dithiothreitol and 50 μg/ml of RNase. Later, it was added the same volume of buffer solution. This homogenate was filtered, centrifuged for 10 min and resuspended in OTTO I buffer. The samples were stained in 1.5 ml of OTTO-I:OTTO-II (1:2) staining buffer (Otto, 1990), supplemented with 50 mM dithiothreitol, 50 µL RNase, and 75 µM propidium iodide, for 20 min, to define the size of the nuclear genome (Dolezel et al., 2007). Five replicates were used for each sample.
Nuclear suspensions were analyzed in a Partec PAS® flow cytometer (Partec® Gmbh, Munster, Germany), equipped with a laser source (488 nm) and a UV lamp (388 nm). The histograms were used to measure the nuclear genome by comparing fluorescence peaks corresponding to the G0/G1 stages of the standard (CE 777) and samples (inbred lines and hybrids). The genome size measurements were performed at the Laboratório de Pesquisa em Citogenética e Citometria, at the Federal University of Viçosa.
Experimental Design to Analyze Flowering Time
Two experiments were conducted in a greenhouse under 28°C/25°C day/light and 12 h light/12 h dark in two subsequent years (2018/2019), for the analysis of flowering time. The first assay totaling 8 inbred lines (parents) and 35 hybrids. The experiment was carried out in a completely randomized design, with 3 replicates for parents (24 plants) and 5 replicates for hybrids (175 plants). The second assay was performed with 20 inbred lines with 5 replicates each one, totalizing 100 plants. Both experiments were conducted from February to June, and the maize plants were planted in 20 L pots with 50 cm spacing between them. Flowering time was calculated as the number of days from planting until the first day of flowering. Inbred lines and hybrids with different knob constitutions were evaluated individually for male flowering (MF) and female flowering (FF).
Association Study
A Mixed Linear Model (MLM) was run by the FarmCPU R package (Liu et al., 2016) to determine the knob-trait associations. The MLM equation used in the analysis was as follows:
[image: image]
where: y is the adjusted mean (BLUE) of the genotypes for the studied traits; α is the vector of fixed effects of the knobs; β is the vector of fixed effect of the population structure (first principal components used, depending on the trait); υ is the random effect of the relative kinship, where [image: image] is the error term, where ε [image: image] S, P, and K are incidence matrices that relate the independent vector effects from each matrix with the dependent y vector.
The additive and heterozygous (dis)advantage models were applied in adapted GWAS analyses using specifics encodings for the knob matrix (in this case, replacing SNPs). Heterochromatic knobs present a Mendelian inheritance pattern; therefore, individuals could be homozygous for knobs, homozygous for absence, or heterozygous for knobs (Aguiar-Perecin and Decico, 1988). This feature can be used analogously to the SNP marker, which is co-dominant bi-allelic, precisely as the knobs behavior. Concerning the additive knob effect with two alleles (A1 and A2), the knob matrix was coded by 0 (A1A1), 1(A1A2), and 2 (A2 A2), considering the A2 as the minor allele or knob absence. In this context, the additive GWAS model assumes a linear change in the phenotype regarding the minor allele number of copies. On the other hand, in the heterozygous (dis)advantage GWAS model, the homozygous genotypes (A1A1 or A2A2) were assumed to have the same effect. In contrast, the heterozygous genotypes have a different one, implying an increase or decrease in the trait effect. Therefore, the knob matrix was coded by 0 (A1A1), 1 (A1A2), and 0 (A2A2) (Tsepilov et al., 2015).
To determine the p-value threshold, we used a resampling method. Therefore, first, the phenotypic values are shuffled, breaking their association with markers, and then the random association between all markers to the phenotype is estimated, and the corresponding best marker score (minimum p-value obtained among all markers) is recorded. This procedure was repeated 50 times for each trait, and the 95% quantile from the 50 best scores was defined as the threshold to declare a significant association.
RESULTS
Knob Composition and Maize Genome Size
The genome size of the inbred lines and hybrids was measured to test whether knob composition contributes to the DNA content variation. Supplementary Table S2 shows the values of genome size and knob composition of the materials. Each inbred line and hybrid can have different knob configurations at the K3L, K5L, K7S, and K9S positions on the chromosomes. These combinations can be homozygous for presence or absence of knobs in the lines or heterozygous in the hybrids (Figures 1, 2). Note that there are hybrids homozygous and heterozygous for knobs.
The genome size was considered a quantitative trait, and its heritability was estimated at 26%. The hybrids presented a higher mean genome size than inbred lines, showing 5,477 Mbp (2C = 5.6 pg) and 5,281 Mbp (2C = 5.4 pg), respectively (Figure 3). However, no significant differences in genome sizes were found for either the inbred lines or the hybrids. Even when homozygotes were compared with heterozygotes, no differences were observed (Supplementary Figure S1).
[image: Figure 3]FIGURE 3 | Flowering time and Genome Size of the hybrid and inbred lines. Boxplots compare mean values between male and female flowering time and genome size for inbred lines and hybrids. The flowering time is showed in days to flowering and the genome size in picograms. The boxes indicate the first quartile (lower line), the second quartile or mean (central line), and the third quartile (upper line). Additionally, the whiskers represent the standard deviation with the dots as the outliers.
The results showed that knob dosages are not enough to explain the genome size increase or decrease in the inbred lines and hybrids. However, genome size varied broadly, despite the same knob composition. For instance, the hybrids presenting the highest (441311/2 × 441324/1, 2C = 6.31 pg) and the smallest genome size (442213/1 × 441311/2, 2C = 4.72 pg) share the same knob constitution (Supplementary Table S2). For inbred lines, the largest genome size (131311/1–04, 2C = 5.69 pg) has a lower number of knobs than the smallest genome (442213/1, 2C = 4.65 pg), which is homozygous for knob presence in the four positions described (Supplementary Table S2).
An adapted genome-wide association study (GWAS), with the heterochromatic knob full panel to identify associations with genome size and flowering time, was performed, where the knobs were used as genetic markers. Our hypotheses were that knobs on the K3L, K5L, K7S and K9S positions correlate with genome size and male and female flowering. To test our hypothesis, we used the inbred lines and hybrids panel, to which all knobs were mapped. The panel has a matrix-like structure with different knob combinations for presence (++ or 1) or absence (00 or −1) when homozygous and as heterozygous when just one of the homologous has a knob (+0 or 0). Firstly, only the allele substitution effect model was performed, and no significant association was found between knobs and genome size (Supplementary Figure S2). Moreover, this information was supported by a null correlation between genome size and knob dosage classes (Table 1).
TABLE 1 | Pearson’s correlation between traits and knobs.
[image: Table 1]The Knob On 9S (K9S) Association With Flowering Time
Days to MF and FF were evaluated individually (Supplementary Table S2) and heritability was estimated to be 51% for MF and 41% for FF. The mean values for days to MF and FF for hybrids were 63 and 64 days, respectively, while the FT for inbred lines was 70 days for MF and 72 days for FF (Figure 3). Heterochromatic knob configurations as heterozygotes exhibited shorter flowering times than those in homozygous states (Supplementary Figure S1). The flowering time data were also plotted showing its amplitude inside the inbred line families and hybrids (Figure 4). It was observed synchronicity for both traits (MF and FF) within each group analyzed, and hybrids had shorter flowering time than inbred line families.
[image: Figure 4]FIGURE 4 | Flowering time among inbred line families and hybrids. The violin plot shows the FT distribution in days for all analyzed materials. The violin shape represents the estimated value of the density of the trait within each group. Hybrid, n = 175; JD 1-3, n = 36; JD 2-1, n = 25; JD 4-4, n = 63.
Further, the flowering time amplitude of hybrids was much smaller than the other groups, ranging mainly between 60 and 70 days, in agreement with the observed mean values. A broader variation in flowering time was observed for inbred line families (58–114 days), with distribution densities mainly varying between 60 and 80 days. The JD 4-4 family had a smaller flowering time distribution for FF and FM among families.
Negative values for Pearson’s correlation were found comparing female and male flowering time with knob dosage classes (Table 1). The knob combinations were used to create dosage classes and test their effects on genome size and flowering time. The knob dosage classes were not correlated with the flowering time, i.e., an increase in knob numbers did not correlate with late flowering time. It was possible to observe that the mean values of MF and FF were very similar for each knob dosage class (Figure 5). It was also interesting to note that the inbred lines with only two knobs (dosage class = 2) flowered later than those with other dosage classes (dosage class = 3–8). Figure 5 also shows that the knob dosage classes did not alter the genome size.
[image: Figure 5]FIGURE 5 | Comparison between total knob number and male and female flowering time, and genome size. The flowering time is expressed in days to flowering and genome size in picograms (y axis). The numbers on the X axis refers to the sum of the total number of knobs (dosage class) from chromosomes 3, 5, 7 and 9.
Furthermore, two GWAS models to illustrate the interactions between flowering time and knob conditions were used. The first model took into account only the allele substitution effect of the markers (Figures 6A, B, and Supplementary Figure S3), and the second considered the dominance effect (Figures 6C,D, and Supplementary Figure S4). This analysis showed only one significant marker-trait association for both allele substitution and dominance effect models regarding flowering time. This significant association was observed just for the knob on the short arm of chromosome 9 (K9S) (Figure 6). Regardless of the GWAS model, the knob marker on chromosome 9 displayed the same performance concerning the flowering time, showing the p-value highly significant (Table 2), while for the knobs K3L, K5L and K7S the p-value was not significant for flowering time and genome size (Supplementary Table S3).
[image: Figure 6]FIGURE 6 | Manhattan plots of GWAS for male (mf) and female (ff) flowering time using the knob positions K3L, K5L, K7S, and K9S. (A,B) are plots showing the allele substitution effect model (C,D) the dominance effect model, both with p-values < 0.05. The green lines are the significance threshold, a Bonferroni-corrected significance threshold used to identify significant associations.
TABLE 2 | Significant marker-trait association for flowering time. Male flowering (MF), female flowering (FF), knob in the short arm of chromosome 9 (K9S), p-value Bonferroni test, minor allele frequency (MAF), allele substitution model (A), dominance model (D), and heritability (h2).
[image: Table 2]Regarding the allele substitution effect model, the presence of the K9S was negatively correlated with the MF and FF of the inbred lines and hybrids by -0.45 and −0.51 days, respectively. While on the dominance effect model, this effect was even more significant, negatively correlated with flowering time in one and a half days (MF = -1.40 and FF = - 1.53) (Figure 7). Only the knob on chromosome 9 significantly associated with a reduction in the flowering time in the inbred lines and hybrids. This correlation in flowering time was observed for the presence of the knob in the homozygous or heterozygous configuration. The heritability of the marker for both models varied from 0.02 to 0.15 (Table 2). Our analysis also showed slight effects of the knobs K3L, K5L and K7S on flowering time, albeit these were not significant (Supplementary Table S3). These results showed that the knob composition was not essential to model the genotype effects on the trait. The flowering time violin plot (Figure 4) also supported the GWAS analyses (Figure 6), since all hybrids are homozygous or heterozygous for the K9S, corroborating the specific contribution of this knob or factors closely linked to it or embedded within it.
[image: Figure 7]FIGURE 7 | Boxplots show male (MF) and female (FF) flowering time for each knob condition in the K3L, K5L, K7S, and K9S positions, considering both allele substitution and dominance effects. The x-axis shows the classification for each knob condition 00 = knob absence; +0 = heterozygous knob presence and ++ = homozygous knob presence. The y-axis shows the genetic effects of flowering time for female and males plants.
DISCUSSION
Knob Composition Did Not Correlate With Maize Genome Size
In our study no pattern was observed, which indicates that there is not a linear relationship between the number of knobs present in the lines and hybrids with the increase or decrease in the DNA content. Interestingly, the hybrids presenting the highest and the smallest genome size share the same knob constitution. For inbred lines, the largest genome size has a lower number of knobs than the smallest genome size, which is homozygous for knob presence in the four positions described.
There is a wide variability of genome size in natural maize populations. The maize genome size associated with knob numbers and with flowering time is reported in some studies. Most of these studies have shown positive correlations between genome size and knob content (Rayburn et al., 1985; Tito et al., 1991; Jian et al., 2017; Fourastié et al., 2018). However, in some studies, a positive correlation between genome size and knob composition was not found (Laurie and Bennett, 1985; Realini et al., 2015). A recent study provided evidence that natural selection plays a substantial role in reducing the maize genome size at high altitudes (Bilinski et al., 2018). The authors also showed that the abundance of transposable elements (TEs) and heterochromatic knobs are significantly correlated with altitude, and the knobs act as significant effect loci in the genome size. Unlike what they found, our data did not show this same relationship.
Our results corroborate the surveys showing no significant correlation between maize population genome size and heterochromatin percentage. One hypothesis is that as our materials differ in the composition of only four knob positions, measurements by flow cytometry would not detect slight differences in genome size due to knobs. Furthermore, we might infer that differences in the genome size among our inbred lines and hybrids may result from transposable element (TE) variability, once the loss of TE during selfing has been demonstrated (Roessler et al., 2019). Knobs are additional material in the chromosomes and alter the length of somatic chromosome arms (Aguiar-Perecin and Vosa, 1985), therefore they should increase the genome size, but this effect could be masked by TE variability.
Genome Size and Knob Composition Did Not Affect Maize Flowering Time
The genetic architecture of flowering time in maize has been widely studied, given that this trait reflects the plant adaptation to the environment. Since maize is distributed throughout America and is adapted to a wide range of environments, understanding how flowering time is regulated is of paramount importance and generates valuable information for breeding programs (Buckler et al., 2009). Besides this study, in the last 2 decades, the days to flowering time in maize was dissected using different approaches such as linkage and association mapping (Chardon et al., 2004; Ducrocq et al., 2009; Li et al., 2016; Romero Navarro et al., 2017), population genetics (Wang et al., 2017; Guo et al., 2018), archaeological DNA studies (Yang et al., 2019), genome-wide association studies (Hung et al., 2012; Yang et al., 2013; Jian et al., 2017; Liang et al., 2019), and gene analysis (Lazakis et al., 2011; Alter et al., 2016; Minow et al., 2018; Stephenson et al., 2019). In inbred maize lines, the genetic architecture of flowering time has been attributed to the cumulative effect of numerous quantitative trait loci (QTL), each with a small impact on this trait (Buckler et al., 2009).
Besides these reports on the genetic control of maize flowering, a positive relationship between genome size and flowering in maize have been reported (Rayburn et al., 1985; Rayburn et al., 1994; Tito et al., 1991). In addition, significant positive correlations between genome size, knob abundance, and flowering time were found in maize inbred lines (Jian et al., 2017). However, in this study, these correlations were lost when a kinship matrix was introduced in the analyses. The authors performed an association study where genome size was also correlated with flowering time. Three genomic regions associated with genome size were found, and mapped close to the knob region on chromosome 8 (Jian et al., 2017). In contrast, another study analyzing maize landraces in northern Argentina found no correlation between genome size and days to flowering time (Realini et al., 2015). Nevertheless, in this study a positive relationship between the days to flowering time and heterochromatin percentage was observed. Another report argued that repetitive sequences would have indirect effects on flowering time due to their impact on genome size and might depend on the environment (Bilinski et al., 2018). However, this effect was not found in our study since there was no relationship between genome size, knob composition and flowering time. It is interesting to note that the heterozygotes had an early flowering time in comparison with lines. This result is in agreement with the findings by Chughtai and Steffensen (1987) that also showed a positive correlation between knob content and flowering time.
In fact, the relationship between genome size and phenotype in plants has been reported (Greilhuber and Leitch, 2013). Especially, the genome size has been correlated with the duration of the cell cycle and this feature could affect the vegetative cycle. We could argue that as knobs have late replication in the mitotic cycle, they would replicate simultaneously, and then, differences in their number would not affect the duration of the cell cycle. However, if we compare populations differing in the size of knobs, we could suppose that the larger knobs would increase the duration of the mitotic cycle. As in our study we compared lines differing in few knobs approximately with the same size, differences in flowering time were not observed.
Another group of studies had already indicated that gene groups responsible for the plant morphological and physiological traits would be correlated with the presence of knobs (Blumenschein, 1964; Rhoades and Dempsey 1966). According to the authors, once close to these knobs, recombination in adjacent regions was suppressed, influencing such traits. More recently, through fluorescent in situ hybridization (FISH), it was demonstrated that knobs are located in areas dense in genes, where large knobs can reduce recombination locally (Ghaffari et al., 2013). Comparisons between European maize genomes and US Corn Belt revealed variation in their repetitive sequences and gene content. The germplasms were separated by the intensity and position of knob regions. However, additional sites with small arrangements of knobs conserved in flint and dent lines were observed. This study also showed that the knob sequences could affect genes surrounded by them, decreasing their expression level (Haberer et al., 2020).
In our study, the heterochromatic knob mapped on the short arm of chromosome 9 was strongly associated with early flowering time. Flowering time-related QTLs have been found across the maize genome (Salvi, et al., 2007; Chardon et al., 2004; Yang et al., 2019). In chromosome 9, flowering time-related QTLs were found, and some genes were identified (Hung et al., 2012; Huang et al., 2017). The main gene located in chromosome 9 was ZmCCT9 (photoperiod sensitive) and mapped on the long arm, opposite to the knob position. Other candidate genes were found along this chromosome, but the precise location was not defined yet (Miller et al., 2008; Li et al., 2016). Further studies should be carried out to map a gene influencing flowering time near the knob on the short arm of chromosome 9.
Hence, other knob regions are targets to find possible candidate genes linked to the heterochromatin due to the inhibition of crossing over on their neighborhood. That leads us to infer that heterochromatic knobs may also have a role in the maize genome, affecting certain phenotypic traits.
CONCLUDING REMARKS
Despite more than 100 years of studies on maize genetics, the role of knobs remains a current issue and has shown that these regions are a substantial fraction of the maize genome. Elimination dynamics of components of the maize genome over successive self-fertilizations were reported (Roessler et al., 2019). The authors comparing gene content, ribosomal DNA, B chromosomes, TEs, and knobs, showed TEs were the most significantly lost genome fraction. The results provide insights into the constitutive role played by knobs in the maize genome. Like TEs, knobs are repetitive sequences, which make up about 10% of the maize genome and, for unknown reasons, are not totally eliminated after generations of self-fertilization. That strengthens the hypothesis that heterochromatic knobs may have an important role within the maize genome, even composed almost exclusively by repetitive sequences. It is interesting to note that over nine cycles of self-fertilizations, the lines used in the present study did not lose all the knobs and even some lines of the JD-4 family conserved all of them.
Throughout the maize genome evolution, it was proposed that flowering time was a trait influenced by changes in the genome size. At high altitudes, maize flowering time was shorter than at low altitudes, followed by a smaller genome (Rayburn et al., 1985; Rayburn et al., 1994; Poggio et al., 1998; Realini et al., 2015). At the same time, most studies have also indicated a positive correlation between the genome size and the knob abundance (Rayburn et al., 1994; Jian et al., 2017).
We found no significant association between knobs and genome size from our data. The analyses of adapted GWAS carried out showed the contribution of a single locus for the early maize flowering time: the knob present in the short arm of chromosome 9 was associated with reduced flowering time when homozygous or heterozygous. Our results suggest a role of the knobs in the flowering time, different from those previously described. For the first time, maize inbred lines were selected with knobs in specific locations, and their hybrids were developed to carry heterozygous and homozygous knobs. Although the lines have a common origin, they differ in knob composition and in the response to culture in vitro (Fluminhan and Aguiar-Perecin, 1998).
The maize flowering time is a complex trait, and several studies have provided insights into its genetic architecture. To this complexity, we add our data suggesting that components linked or embedded in specific heterochromatic knobs, are capable of affecting the maize flowering time. Furthermore, as knobs suppress local recombination (Ghaffari et al., 2013), some genes would be associated with them.
As our results show, repetitive sequences might carry some linked or hidden components into their heterochromatic structure that affect some phenotypic traits. The search and study of such interactions require a great deal of work to cytologically score knob transmission into the pedigree, monitored by karyotype assembly over the time of the inbred lines derivation, and finally in the hybrids. Therefore, this collection of maize inbred lines represents an essential tool for further studies, shortening the time to address interactions between phenotypic traits and heterochromatic knobs. This kind of study is even more important for maize since its genome comprises more than 85% of repetitive sequences (Schnable et al., 2009).
We could infer that there would be an interaction between genes controlling flowering time, knob composition and genome size. In addition, transposable elements also contribute to genome size. So, if populations with high content of larger knobs are compared with populations with few smaller knobs, perhaps the effect of knobs on flowering time would be detected, if the effect of genes controlling flowering time were not higher.
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Supplementary Figure S1 | Flowering time and Genome Size versus knob condition. Boxplots show the comparison between male and female flowering time (days) and genome size (picograms) regarding heterozygous knobs or homozygous knobs. The boxes indicate the first quartile (lower line), the second quartile or mean (central line), and the third quartile (upper line). Additionally, the whiskers represent the standard deviation with the dots as the outliers.
Supplementary Figure S2 | QQ-plot and Manhattan plot of GWAS for Genome size. Plots characterize the allele substitution effect. Significant associations are not found. The x axis shows the knobs K3L, K5L, K7S and K9S. The y axis shows the logarithm of the value of significance.
Supplementary Figure S3 | QQ-plot of GWAS of flowering time. Plots characterize the allele substitution effect for (A) male flowering (mf) and (B) female flowering (ff) time. The dots represent the knobs K3L, K5L, K7S and K9S, respectively.
Supplementary Figure S4 | QQ-plot of GWAS of flowering time. Plots characterize the dominance effect for (A) male flowering (mf) and (B) female flowering (ff) time. The dots represent the knobs K3L, K5L, K7S and K9S respectively.
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Optimum soil water availability is vital for maximum yield production in rice which is challenged by increasing spells of drought. The reproductive stage drought is among the main limiting factors leading to the drastic reduction in grain yield. The objective of this study was to investigate the molecular and morphophysiological responses of pre-anthesis stage drought stress in green super rice. The study assessed the performance of 26 rice lines under irrigated and drought conditions. Irrigated treatment was allowed to grow normally, while drought stress was imposed for 30 days at the pre-anthesis stage. Three important physiological traits including pollen fertility percentage (PFP), cell membrane stability (CMS), and normalized difference vegetative index (NDVI) were recorded at anthesis stage during the last week of drought stress. Agronomic traits of economic importance including grain yield were recorded at maturity stage. The analysis of variance demonstrated significant variation among the genotypes for most of the studied traits. Correlation and principal component analyses demonstrated highly significant associations of particular agronomic traits with grain yield, and genetic diversity among genotypes, respectively. Our study demonstrated a higher drought tolerance potential of GSR lines compared with local cultivars, mainly by higher pollen viability, plant biomass, CMS, and harvest index under drought. In addition, the molecular basis of drought tolerance in GSR lines was related to upregulation of certain drought-responsive genes including OsSADRI, OsDSM1, OsDT11, but not the DREB genes. Our study identified novel drought-responsive genes (LOC_Os11g36190, LOC_Os12g04500, LOC_Os12g26290, and LOC_Os02g11960) that could be further characterized using reverse genetics to be utilized in molecular breeding for drought tolerance.
Keywords: drought, anthesis, pollen fertility, grain yield, correlation, drought-responsive genes
INTRODUCTION
Rice (Oryza sativa L.) is one of the primary staple food crops for nearly 50% of the world population (Zafar et al., 2018). The countries located in East Asia, South Asia, and Southeast Asia are dominant in production and consumption of rice across the globe. Historically, more than 90% of world rice production is contributed from these countries (Barker et al., 1999). Its production is needed to increase by 0.6%–0.9% per year until 2050 to feed the further 2 billion people (Desa, 2015). However, different abiotic and biotic stresses are major limiting factors for obtaining higher yield in rice (Zafar et al., 2017; Oliva et al., 2019; Ahmed et al., 2021). Being a water-loving plant, rice is highly sensitive to drought stress, which significantly affects its grain yield (Shuxing, 2014). Drought is becoming a serious yield constraint for various major crops due to global water scarcity (Wattoo et al., 2018; Hussain et al., 2019; Shokat et al., 2020a). A recent study using the yield and metrological data from 1980 to 2015 reported the yield decline up to 21% in wheat (Triticum aestivum L.) and 40% in maize (Zea mays L.) due to drought on a global scale (Daryanto et al., 2016). In rice, mild-drought stress reduced grain yield by 31%–64%, while severe stress reduced 65%–85% yield compared with normal conditions (Kumar et al., 2008). It affects the yield by altering different agronomic and physiological traits including plant height, number of tillers, leaf area, leaf rolling, transpiration rate, accumulation of osmoprotectants, root system, and stomatal closure (Nakashima et al., 2007; Islam et al., 2009; Tong et al., 2009). Anthesis stage drought stress can interrupt flowering, floret initiation (Bajji et al., 2002), pollen fertility (Zhou et al., 2011), and grain filling, resulting in poor paddy yield. Rice growth is affected by drought at different stages including booting (Shao et al., 2014), flowering (Liu et al., 2006), and grain filling stage (Zhang et al., 2018). However, drought stress at anthesis stage restricts the availability of photosynthates by disturbing the sink capacity (Do et al., 2010) and reduces the grain yield, plant biomass, and ultimately the harvest index (Blum, 2018). It also impairs anther dehiscence, pollen viability, and pollen germination in rice resulting in spikelet sterility and more sterile grains in the panicles (Prasad et al., 2017). Drought induced spikelet sterility is considered as one of the major causes of yield reduction.
To address the challenge, natural variation in rice germplasm for drought tolerance could be exploited to identify the drought-tolerant genotypes, the associated traits, and underlying genes (Panda et al., 2021). In addition, induced variation via hybridization and mutagenesis could serve as an important genetic resource for target breeding (Zafar et al., 2020c). For the purpose, scientists have started to put efforts to breed green super rice (GSR), an elite rice type that could withstand multiple stresses with high nutrient-use efficiency (Wing et al., 2018; Jewel et al., 2019). The idea was given by a famous rice geneticist Qifa Zhang in 2007 (Zhang, 2007), which was later implemented by a team of international scientists from China and the International Rice Research Institute (IRRI), Philippines (Yu et al., 2020). The present study was conducted to evaluate 22 selected GSR lines along with four local rice cultivars for drought tolerance in Pakistan, and identify agronomic and physiological traits associated with drought tolerance in GSR. In addition, the contrasting drought tolerant and sensitive lines were assessed for gene expression profile to identify underlying genes related to drought tolerance in GSR. This study identified high-yielding drought-tolerant GSR lines and provided us knowledge about drought tolerance-related traits, and novel drought-related genes.
MATERIALS AND METHODS
Experimental site
The field experiment was conducted at the National Institute for Genomics and Advanced Biotechnology, NARC, Pakistan (33.684°N and 73.048°E) during rice growing period (May–October, 2020). To minimize the water infiltration from control to drought plot, a 6- to 8-feet path was made between both plots, and furthermore, plastic film was applied under the soil surface with a depth of 60 cm.
Experimental design
The 22 diverse GSR lines were selected based on diverse phenotypic characteristics from the 552 GSR genotypes (Supplementary Table S1). Twenty-two GSR lines along with four checks were evaluated using split plot randomized complete block design with two treatments (well-watered and drought) each having three replications. Seeds were sown in nursery trays and 30-day-old seedlings were transplanted in the field. Each plot consisted of five rows of 10 plants with 30-cm row/row and plant/plant distance (Yugandhar et al., 2017). Both plots were irrigated normally (8–10 cm) until anthesis stage. Fertilizer, weedicide, and insecticide application was done according to recommended dosage. Crop cultivation was carried out according to normal cultural practices.
Drought was imposed for 30 days by withholding the applied water at the beginning of anthesis stage. Physiological traits were recorded during the last week of stress. After 30 days, the field was rewatered. At physiological maturity, five representative plants were selected for the measurement of agronomic traits from the three middle rows of each replication to avoid confounding border effects (Chaturvedi et al., 2017).
Physiological measurements
Cell membrane stability
Leaf samples were collected at the last week of drought stress to examine the cell membrane stability by recording the electrolyte conductivity using and electrical conductivity meter (HI 9811-5 Portable EC meter HANNA® Instruments, USA). Flag leaves from three plants per replicate (of each genotype) were collected from both control and drought stress fields in 20-ml glass vials. Further measurement was recorded as proposed by Tripathy et al. (2000). CMS was formulated as the reciprocal of cell membrane injury by using the following formula (Blum and Ebercon, 1981):
CMS% = {[1 − (T1 / T2)] / [1−(C1 / C2)]} × 100
where, T and C refer to stressed and controlled, respectively. C1 (initial control), T1 (initial stress), and after autoclave, C2 (final control), T2 (final stress) were the assumed conductance.
Normalized difference vegetation index
Normalized difference vegetation index (NDVI) is a spectral reflectance-based measure of the density of green vegetation on a land area. NDVI measurements were taken using GreenSeeker™ Handheld Optical Sensor Unit (NTech Industries, Inc., USA), keeping the sensor at 0.5–1 m above the central rows of all the genotypes individually in three replications of both control and stress field plots (Govaerts and Verhulst, 2010).
Pollen fertility test
About five to eight mature spikelets from five panicles (one from each plant) were collected in the morning before anthesis. Spikelets were fixed in FAA solution (formaldehyde:ethanol:acetic acid with a ratio of 1:18:1, respectively) until staining. Anthers were crushed with forceps on glass slide to release pollens, which were immersed in 1% potassium iodide (I2-KI) solution followed by observation under a light microscope (NIKON DIGITAL SIGHT DS-Fi2). Pollens that stained black and circular were considered fertile, while those stained red-orange and of irregular shape were considered sterile (Zafar et al., 2020b). Pollen fertility percentage (PFP) was calculated using the following formula:
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Measurement of agronomic traits
Agronomic traits, including plant height per plant (PH), tillers per plant (TPP), grain yield per plant (GY), straw yield per plant (SY), total biomass per plant (TBM), 1,000-grain weight (TGW), and grain length (GL) were recorded manually. Harvest index (HI) was calculated as the ratio of GY to TBM. Drought susceptibility index (DSI) was calculated as [(1−Y / YP) / D] as described earlier (Khanna-Chopra and Viswanathan, 1999; Zafar et al., 2020a). Here, Y is the grain yield under stress conditions, and YP is the grain yield under normal conditions, while D represents the stress intensity, which was calculated as D = (1 − X / XP), where X and XP are means of Y and YP, respectively. Measurements for these traits were carried out on five randomly selected plants of each genotype from each replication by following the method (IRRI, 2002).
RNA extraction and cDNA synthesis
Total RNA was extracted from the panicles of selected drought-tolerant and -sensitive genotypes from both well-watered (WW) and drought-stressed plants. Panicles were harvested from plants and immediately kept in liquid nitrogen followed by storage at −80°C to avoid the denaturation of RNA. The PureLink RNA Mini kit (Thermo Fisher Scientific) was used to extract the total RNA, in accordance with the manufacturer’s protocol. The quality of isolated RNA was observed on 1.5% RNase-free agarose gel and quantified using the BioSpec-nano spectrophotometer. One microgram of total RNA was used to reverse transcribe into cDNA using RevertAid Reverse Transcriptase kit (Thermo-Fisher Scientific) following the manufacturer’s instructions.
Differentially expressed gene selection and quantitative real-time PCR
Ten differentially expressed genes (DEGs) under drought stress were selected from a comparative transcriptome study in rice (Huang et al., 2014). To our knowledge, these genes have not been studied before specifically for drought response. In addition, we studied the expressions of three known drought tolerance-related genes: Oryza sativa Salt-, ABA- and Drought-Induced RING Finger Protein 1 (OsSADR1) (Park et al., 2018), Drought-Hypersensitive Mutant1 (DSM1) (Ning et al., 2009), Drought tolerance 11 (OsDT11) (Li et al., 2017), OsDREB1E, and OsDREB2B (Chen et al., 2008). Selected genes are listed in Supplementary Table S2. Coding sequences (CDS) of the selected DEGs were retrieved from the Rice Genome Annotation project (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/). A gene-specific pair of primers was designed using AmplifX version 1.7.0 software, and primer sequences are listed in Supplementary Table S3.
Quantitative real-time PCR (qRT-PCR) was carried out to determine the relative expression levels of 13 selected genes on StepOne™ Real-Time PCR System (Thermo Fisher Scientific) using Maxima SYBR Green. The delta cT method was used to calculate the relative expression level of each gene, and rice Actin1 gene was used to normalize the expression (Fang et al., 2021; Zafar et al., 2021).
Statistical analysis
Morphophysiological traits data were analyzed by analysis of variance using SPSS software according to split plot randomized complete block design. Principal component analysis (PCA) was done through the XL-STAT software (ver. 2018) to categorize various physiological and morphological traits (Mohammadi and Prasanna, 2003). Pearson’s correlation matrix analysis was done using the “cor” package in R studio. The p-values for the coefficient of correlation (r) were obtained by applying Student’s t-test with the “cor.test” function in R-studio. In the correlation matrix plot, only significant relationships were labeled with stars. Expression pattern significance was calculated using t-test.
RESULTS
Analysis of variance showed significant variation among green super rice accessions under drought stress
Analysis of variance (ANOVA) was performed to see the significant differences of variation among the genotypes and water treatments for physiological and yield-related traits. ANOVA showed significant variation (p < 0.01) among the tested genotypes for PH, GY, HI, TGW, GL, and NDVI (Table 1), while nonsignificant differences were observed for TPP, SY, and PFP. There was no significant effect on the studied traits among the replications, which strengthen the reliability of this experiment. Drought significantly affected PH, GY, SY, HI, GL, PFP, and NDVI, while traits, such as TPP, TBM, and TGW, were not affected by drought. The genotype × environment interaction was also significant for PH, TPP, SY, HI, TGW, PFP, and NDVI (Table 1) where pronounced reduction was recorded under drought conditions. Since PH, GY, HI, GL, and NDVI displayed significant differences for genotypes as well as drought treatment, these traits could be key selection markers for drought tolerance screening in rice.
TABLE 1 | Mean square values from the analysis of variance for the effect of genotype, environment, and their interaction on agronomic and physiological traits.
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Principal component analysis revealed genetic variation among green super rice accessions under drought
Separated PCA analyses were performed to develop a trait–genotype (T–G) biplot and to detect genetic variation among the studied genotypes for various morphophysiological traits under well-watered and drought-stressed conditions. Under WW environment, a biplot was drawn between PC1 and PC2 explaining 31.3% and 25.6%, of total variation, respectively (Figure 1A). Our results indicate that SY, GY, HI, and TBM were in the opposite direction of NDVI, TGW, and GL indicating their opposite relationship with each other. In addition, the GSR lines were mostly clustered near the origin and show less genetic variability, while checks Kashmir Basmati, Kissan Basmati, and IR-64 were widely distributed apart from the origin and showed remarkable genetic variability (Figure 1A). In case of drought treatment, the PC1 alone accounted for 51.10% of the total variability, while PC2 shared 15.20% (Figure 1B). Results of this experiment show GY were clustered closer to PFP, CMS, TBM, and HI, while it was in opposite direction of NDVI and DSI. In contrast with the WW treatment, many GSR lines, namely, NGSR-3, NGSR-15, NGSR-18, NGSR-13, NGSR-21, and NIAB-IR-9, fall near the apex of the biplot and show remarkable genetic variation under drought stress (Figure 1B). The check varieties Kissan Basmati, NIAB-IR-9, and Kashmir Basmati also showed considerable genetic variability and reputation of these accessions for further selection in breeding programs.
[image: Figure 1]FIGURE 1 | PCA showing biplot for genotypes and studied traits (A) under normal condition and (B) under drought stress condition.
Mean performance of green super rice accessions for studied traits
Drought stress showed a remarkable reduction in grain yield and yield-related traits in all studied genotypes except NGSR-15 and NGSR-18 (Figures 2 and 3). Among the 22 GSR lines, the minimum PH (86.6 cm) under drought condition was attained by NGSR-8 and the maximum (103.7 cm) was recorded by NGSR-14, whereas among the four checks, the maximum PH was recorded for Kashmir Basmati (113.6 cm), and the minimum was depicted by NIAB-IR-9 (52.3 cm). All GSR lines demonstrated higher PH than the drought-sensitive check NIAB-IR-9 (Figure 2A). These results suggested that the GSR lines were comparatively less affected by drought stress and maintained the normal plant growth.
[image: Figure 2]FIGURE 2 | Effect of drought stress on (A) plant height/plant, (B) tillers/plant, (C) grain yield/plant, and (D) straw yield/plant. Values are means ± SD.
[image: Figure 3]FIGURE 3 | Effect of drought stress on (A) harvest index/plant, (B) total biomass/plant, (C) 1,000-grain weight, and (D) grain length. Values are means ± SD.
Overall, TPP were not significantly affected under drought stress except for Kashmir Basmati, while a few of the GSR lines showed increased TPP under drought (Figure 2B). GY is the most important agronomic trait of economic importance, and drought stress affected the GY in most genotypes except NGSR-15 and NGSR-18 (Figure 2C). Under drought stress, maximum GY was reported by NGSR-15 (90.7 g) and the minimum by NGSR-3 (48.6 g). Among the checks, IR-64 showed the maximum GY−1 (53.1 g), whereas the minimum was shown by the drought-sensitive NIAB-IR-9 (16.8 g). All the GSR lines (except NGSR-3) demonstrated higher grain yield than the check varieties; even the drought-sensitive NGSR-3 accounted for higher grain yield than the sensitive check NIAB-IR-9 (Figure 2C). These results suggested that the grain yield of GSR lines was less affected by drought stress compared with local checks.
SY was generally increased in most GSR accessions along with two check varieties IR-64 and Kissan Basmati under drought stress (Figure 2D). The maximum increase in SY was observed in NGSR-15, NGSR-6, NGSR18, and NGSR-12. However, NGSR-3, Kashmir Basmati, and NIAB-IR-9 showed a decrease in SY under drought. It is noteworthy that SY was only decreased in the most drought-sensitive GSR line and checks, thus, it is considered an important trait for drought escape at the flowering stage. This is because plants tend to continue their vegetative stage bypassing the flowering stage until they got favorable conditions.
Generally, drought stress negatively impacted the HI in all genotypes, but the non-GSR lines showed a higher decrease compared with the GSR lines with the highest decrease observed in our drought-sensitive check NIAB-IR-9 (Figure 3A). These results suggest that GSR lines have the potential to maintain the HI under drought stress conditions (Figure 2A).
TBM was not significantly affected under drought stress except for Kashmir Basmati and NIAB-IR-9 (Figure 3B). Similarly, TGW was not significantly affected under drought stress in the tested genotypes (Figure 3C).
Drought stress had a significant effect on GL; however, differences for genotypes were nonsignificant (Figure 3D). Three genotypes, including NGSR-3, NGSR-1, and NGSR-15, showed longer GLs. The genotypes NGSR-3 and NGSR-21 showed the highest (11.1 mm) and the lowest (7.3 mm) GL, respectively. Among the experimental checks, the maximum (10.9 mm) and the minimum (8.03 mm) GLs were depicted by Kissan Basmati and Kashmir Basmati, respectively. Overall, GSR lines maintained the grain length under drought stress compared with sensitive checks (Figure 3D), except NGSR-21, which showed a reduced grain length (7.3 mm).
Drought susceptibility index
DSI is an important indicator of drought tolerance, and a lower value indicates better tolerance. Overall, the GSR lines showed lower DSI compared with local varieties, and the genotypes NGSR-18, NGSR-15, and NGSR-16 exhibited the lowest DSIs among 22 GSR lines, showing their potential toward drought tolerance (Figure 4). In contrast, the highest DSI was recorded for NIAB-IR-9 followed by Kashmir Basmati, indicating the least drought tolerance among the tested genotypes. Overall, these results demonstrated that GSR lines generally performed better than the checks.
[image: Figure 4]FIGURE 4 | Frequency distribution of drought susceptibility index for grain yield showing the degree of susceptibility to drought stress. Genotypes below the line are declared as most drought-tolerant genotypes.
Pollen fertility percentage
Pollen fertility is an important indicator of drought tolerance as it directly affects the seed setting and ultimately the grain yield. The microscopic analyses of potassium iodide (I2-KI)-stained anthers revealed significant differences in PFPs between tolerant and sensitive genotypes. Overall, the GSR lines maintained higher PFPs under drought stress compared with non-GSR checks (Figure 5). While most of the GSR lines showed completely fertile pollens under drought, a higher sterility up to 57.1% was recorded in NGSR-3 (Figures 5 and 6A). In contrast, check varieties except the Kissan Basmati showed lower PFP compared with GSR under drought where NIAB-IR-9 showed only a 3.6% PFP (Figure 6A). These findings suggest that PFP could be a good indicator for drought tolerance in rice.
[image: Figure 5]FIGURE 5 | Examination of pollen fertility of the 22 GSR lines and 4 checks with I2-KI solution staining of the mature pollen grains. The sterile pollen grains failed to be stained or stained weakly, indicating that they did not contain starch or contained irregularly distributed starch, whereas the viable pollen grains were stained deep brown. Scale bars are 100 µm.
[image: Figure 6]FIGURE 6 | Effect of drought stress on (A) pollen fertility percentage, (B) normalized difference vegetative index (NDVI), and (C) cell membrane stability (CMS). Values (except CMS) are means ± SD.
Normalized difference vegetative index
NDVI has recently emerged as an indicator of plant health. We observed a considerable decrease in the value of NDVI under drought stress for GSR and check varieties (Figure 6B). The genotypes NGSR-13, IR-64, and Kissan Basmati showed the highest NDVIs (>0.7) under drought. Among GSR lines, the maximum NDVI (0.7) was reported in NGSR-13, whereas the minimum (0.59) was reported in NGSR-1. Similarly, among the check varities, the highest NDVI was depicted by IR-64 (0.72), whereas it was minimum by Kashmir Basmati (0.6) (Figure 6B). Since drought often causes leaf yellowing in plants, the reduced NDVI values under drought could be associated with yellow leaves.
Cell membrane stability
CMS indicates the stress tolerance ability of plant cells. Again, GSR lines showed higher CMS% than non-GSR, where NGSR-15 showed the highest (81.1%) CMS followed by NGSR-18 (Figure 6C), while the lowest was measured in NIAB-IR-9 (29.5%).
Correlation of grain yield with other agronomic traits
Understanding the correlation of grain yield with other agronomic and physiological traits is of prime importance as it helps to identify certain prebreeding traits that could be best indicators of grain yield. Under WW environment, GY has shown a significant positive correlation with SY (r = 0.59**), TBM (r = 0.90**), and HI (r = 0.60**) (Figure 7). In addition, a significant negative correlation was found for TPP with HI (r = −0.57**), which suggests the importance of optimum number of tillers for better HI and GY.
[image: Figure 7]FIGURE 7 | The scatter matrix below the histogram and correlation coefficient value with p-value above the histogram calculated from the means of all the studied traits under well-watered (WW) environmental condition. The p-values of all correlations were 0.05* and 0.01**.
Under drought stress, GY has shown a significant positive correlation with HI (r = 0.89***), CMS (r = 0.88***), TBM (r = 0.85***), PFP (r = 0.80***), and SY (r = 0.79***), while a significant negative correlation was found with DSI (r = −0.72***) and GL (r = −0.43*) (Figure 8). In addition to GY, PFP has shown a significant positive correlation with HI (r = 0.82**), CMS (r = 0.77**), SY (r = 0.71**), and TBM (r = 0.68**), while a significant negative correlation of PFP was observed with DSI (r = −0.69**). Notably, DSI had significant negative correlations with GY (r = −0.72**), HI (r = −0.72**), CMS (r = −0.70**), SY (r = −0.69**), PFP (r = −0.69**), TBM (r = −0.63**), and PH (r = −0.50**), which suggest the importance of DSI being an important indicator of drought susceptibility in rice (Figure 7). These findings revealed important agronomic and physiological traits to be considered as reliable selection criteria for screening rice germplasm against drought tolerance.
[image: Figure 8]FIGURE 8 | The scatter matrix below the histogram and correlation coefficient value with p-value above the histogram calculated from the means of all the studied traits under drought stress condition. The p-values of all correlations were 0.05* and 0.01**.
Expression analysis of drought-related genes
To see the role of drought responsive genes in drought tolerance of GSR, we analyzed the expression pattern in selected drought-tolerant and drought-sensitive genotypes using quantitative real-time PCR (Figure 9). The genotype NGSR-15 was selected as drought tolerant, and NGSR-3 and NIAB-IR-9 were chosen as drought-susceptible genotypes (Figure 10). Ten differentially expressed genes (DEGs) were selected for qRT-PCR analysis from the comparative transcriptome dataset between drought-sensitive (HHZ) and -tolerant (H471) genotypes (Huang et al., 2014). These genes have not been studied previously for their role in drought tolerance, except the transcriptome analysis. In addition, we analyzed the expression of five previously characterized genes for drought tolerance in rice (OsSADRI, OsDSM1, OsDT11, OsDREB1E, and OsDREB2B).
[image: Figure 9]FIGURE 9 | (qRT)-PCR analysis of drought-responsive genes in NGSR-3, NGSR-15, and NIAB-IR-9 revealed the relative expression in terms of fold change (log2FC). Young panicle tissues (∼1.5 cm) of three selected genotypes were employed in this analysis. Rice actin gene (OsACT1) was the internal control gene. Values of three biological replicates (n = 3) were expressed as mean ± SD.
[image: Figure 10]FIGURE 10 | Phenotypic comparison of plants, grain length, and shape (husked and de-husked), pollen viability, and panicle fertility of NGSR-15, NGSR-3, and NIAB-IR-9 under well-watered (WW) and drought stress. Abbreviations: F, fertile spikelets; S, sterile spikelets. White arrow heads denote fertile spikelets and yellow arrow heads denote sterile spikelets. Spikelets with open tips represent sterile spikelets with no seed set. Scale bars are approximately 15 cm (A,G,M), 5 mm (B,C,H,I,N,O), 5 cm (F,L,R), and 50 µm (D,E,J,K,P,Q).
Our results indicated that four genes, namely, LOC_Os11g36190 (receptor kinase), LOC_Os12g04500 (response regulator receiver domain-containing protein), LOC_Os12g26290 (alpha-DOX2), and LOC_Os02g11960 (ABC transporter, ATP-binding protein), were upregulated in drought-tolerant genotypes (NGSR-15) and downregulated in drought-sensitive genotypes (NGSR-3 and NIAB-IR-9) (Figure 9). This suggest that these genes may positively regulate drought tolerance in rice. Three genes, namely, LOC_Os05g23880 (lipoxygenase), LOC_Os05g08480 (cytokinin-O-glucosyltransferase 1), and LOC_Os01g28030 (peroxidase precursor), were downregulated in NGSR-15, while they were upregulated in drought-sensitive genotypes (NGSR-3 and NIAB-IR-9), suggesting a negative regulation for drought tolerance (Figure 9). Two genes, LOC_Os07g43560 (protein kinase-like) and LOC_Os07g48450 (no apical meristem protein), were downregulated under drought stress in all genotypes and, thus, may not be related to drought tolerance (Figure 9). The gene LOC_Os12g43450 (thaumatin family domain-containing protein) was upregulated in NIAB-IR-9, while it was downregulated in both NGSR-3 and NGSR-15, suggesting that this gene might be related to nonGSR rice. These results revealed a differential expression pattern of genes among drought-tolerant and -sensitive genotypes and, thus, could be employed for molecular identification of drought-tolerant rice genotypes at large scale. Notably, we observed an increased expression of previously known drought tolerance-related genes (OsSADRI, OsDSM1, and OsDT11) in NGSR-15, while the opposite was observed for NGSR-3 and NIAB-IR-9, which clearly indicated the role of these genes in drought tolerance. In addition, OsDREB1E has shown a sharp increase in expression under drought stress in all the three genotypes, while OsDREB2B has shown a sharp decrease in expression under drought stress in NGSR-15 and NIAB-IR-9 (Figures 9N, O). This suggest that DREB genes are probably not directly involved in drought tolerance in these tested genotypes, and their expression is modulated by some unknown genetic factors.
DISCUSSION
Rice being a prime diet of 50% of the global population and the staple food of many countries is an important grain crop. However, growing rice requires high delta of water where limited water conditions affect its growth and grain yield. Water stress at anthesis directly affects seed setting and grain filling and, ultimately, the grain yield (Shokat et al., 2020a; Shokat et al., 2020b). Green super rice (GSR) was developed by combining the best global germplasm and has the potential to maintain the optimum grain yield under different stress conditions (Jewel et al., 2019). Moreover, this germplasm has never been evaluated for pre-anthesis drought stress. In the current experiment, 22 GSR genotypes and four local lines of Pakistan were used to understand the mechanism of yield reduction at pre-anthesis stages of drought stress. This germplasm was characterized for different agrophysiological traits, and then the most diverse genotypes were further evaluated by novel drought-responsive genes. Yield-related traits are important indications of final grain yield (Zafar et al., 2020a; Waqas et al., 2021). Studies reported that plant genotypes that maintained higher plant biomass under drought stress conditions often maintain higher grain number or weight and ultimately the grain yield (Shokat et al., 2021). In the current study, we identified NGSR-15 as a drought-tolerant line as it maintained higher CMS, PFP, TBM, and GY. In contrast, NGSR-3 and NIAB-IR-9 were ranked as drought-sensitive lines since they showed significant reductions in GY probably due to reduced CMS, PFP, and TBM. A phenotypic presentation of the performance of these genotypes under drought stress is shown in Figure 10. Higher biomass is usually linked with higher photosynthetic rate of the genotypes (Morinaka et al., 2006). Our results indicate that biomass partitioning toward grain filling was limited due to flowering stage drought stress, and there could be a possibility that GSR-15 has maintained a higher grain yield due to better seed setting under moisture stress conditions. To explain the possible mechanism of higher and lower grain yield for the genotype GSR-15 and NIAB-IR-9, respectively, we associated yield data with the few parameters of physiology to understand the physiological basis of yield reduction at flowering stage drought stress.
DSI indicates the extent of susceptibility by drought stress in terms of economically important traits particularly the grain yield. In this study, genotypes NGSR-15 and NGSR-18 showed the lowest susceptibility with values of −0.04 and −0.2, respectively, whereas NIAB-IR-9 (check) showed the highest DSI value of 3.6 (Figure 4). Under drought stress, permeability of membranes and leakage of ions occur from the weak or unstable membranes (Bajji et al., 2002). Likewise, seed setting is dependent on the viability of pollen, while limited water availability at the flowering stage can cause pollen abortion in sensitive genotypes (Mehri et al., 2020). In contrast, plant genotypes that show better cell membrane stability (CMS) or pollen fertility could perform better under flowering stage drought stress. In the current experiment, better cell membrane stability and pollen fertile percentage (PFP) was exhibited by the genotype NGSR-15, while the lowest values were recorded for NGSR-3 and NIAB-IR-9 indicating the physiological basis of drought tolerance and drought susceptibility of these genotypes respectively. A correlation and PCA was drawn to test the significance of these parameters in relation to yield and yield-related traits, and we found a strong significant and positive correlation of CMS and PFP with grain yield (Figure 1B). In contrast, association of grain yield was significant but negatively associated with DSI (Figure 1B) indicating that these traits could be selected as prebreeding traits for flowering stage drought stress in rice. To understand the molecular basis of drought tolerance, these three genotypes were further tested through gene expression.
Stress conditions change the expressions of the stress-induced regulatory or effector genes, which are usually involved in the regulation of normal processes of the plants (Ouyang et al., 2010). We investigated different categories of DEGs, controlling drought tolerance and sensitivity by up-/downregulation of DEGs. Furthermore, this analysis relied on two GSR genotypes and one locally developed genotype, NIAB-IR-9, in order to provide an accurate estimate of expression by comparing GSRs with traditional cultivars under flowering stage drought stress. In agreement with published literature, our expression results suggest the involvement of DEGs in drought tolerance or sensitivity (Chen et al., 2009; Narsai et al., 2013; Zhang et al., 2015b). Leucine-rich RLKs, play a key role in the regulation of plant growth under various abiotic stresses, and gene LOC_Os11g36190 (a leucine-rich receptor-like kinase) is predicted to be upregulated for bacterial leaf blight in rice (Zhang et al., 2015a; Ahsan et al., 2019). LOC_Os12g04500 and LOC_Os12g26290 are also reported as the core of the jasmonic acid (JA) signaling pathway, and in the current experiment, expression of these two genes was increased significantly under prolonged drought period. Moreover, JA signaling genes are also reported to be involved under critical phases of drought stress (Du et al., 2007). We found that four genes, i.e., LOC_Os11g36190, LOC_Os12g04500, LOC_Os12g26290, and LOC_Os02g119600, were upregulated in drought-tolerant genotypes (NGSR-15) and downregulated in drought-sensitive genotypes (NGSR-3 and NIAB-IR-9) indicating their positive relationship with drought tolerance. Likewise, an increased expression of previously known drought tolerance-related genes (OsSADRI, OsDSM1, and OsDT11) (Ning et al., 2009; Li et al., 2017; Park et al., 2018) was observed in NGSR-15, while an opposite trend was observed for NGSR-3 and NIAB-IR-9. This change in expression in the tested genes could be due to a sequence variation in their promoter region or mutation in a major upstream regulator, which is currently unknown to us. Apart from gene expression, these genotypes also showed a contrast for PFP, CMS, and DSI along with clear differences in grain yield suggesting their role in terminal-stage drought tolerance. Drought-responsive element-binding proteins (DREBs) are known to play important roles in abiotic stresses especially drought (Chen et al., 2008). Interestingly, in our study, expression of the DREB gene was either increased in both tolerant and sensitive genotypes, or decreased under drought stress (Figures 9M, O). This suggests that DREB genes are probably not directly involved in drought tolerance in these tested genotypes, and their expression is modulated by some unknown genetic factors.
CONCLUSION
Through this study, we identified molecular and physiological basis of higher grain yield at the flowering stage drought stress and the role of novel drought-responsive genes in drought tolerance. Importantly, various morphophysiological traits (PFP,CMS, DSI, and HI) had strong association with drought-responsive genes, and ultimately, the grain yield indicating these parameters could be used as prebreeding traits for drought tolerance. Our results also indicate that genotype NGSR-15 was the most drought tolerant, while NGSR-3 and NIAB-IR-9 were the most sensitive genotypes. These genotypes can further be used to improve rice yield under drought stress; however, in-depth mechanism is required to confirm our findings.
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The demand for rice is likely to increase approximately 1.5 times by the year 2050. In contrast, the rice production is stagnant since the past decade as the ongoing rice breeding program is unable to increase the production further, primarily because of the problem in grain filling. Investigations have revealed several reasons for poor filling of the grains in the inferior spikelets of the compact panicle, which are otherwise genetically competent to develop into well-filled grains. Among these, the important reasons are 1) poor activities of the starch biosynthesizing enzymes, 2) high ethylene production leading to inhibition in expressions of the starch biosynthesizing enzymes, 3) insufficient division of the endosperm cells and endoreduplication of their nuclei, 4) low accumulation of cytokinins and indole-3-acetic acid (IAA) that promote grain filling, and 5) altered expressions of the miRNAs unfavorable for grain filling. At the genetic level, several genes/QTLs linked to the yield traits have been identified, but the information so far has not been put into perspective toward increasing the rice production. Keeping in view the genetic competency of the inferior spikelets to develop into well-filled grains and based on the findings from the recent research studies, improving grain filling in these spikelets seems plausible through the following biotechnological interventions: 1) spikelet-specific knockdown of the genes involved in ethylene synthesis and overexpression of β-CAS (β-cyanoalanine) for enhanced scavenging of CN− formed as a byproduct of ethylene biosynthesis; 2) designing molecular means for increased accumulation of cytokinins, abscisic acid (ABA), and IAA in the caryopses; 3) manipulation of expression of the transcription factors like MYC and OsbZIP58 to drive the expression of the starch biosynthesizing enzymes; 4) spikelet-specific overexpression of the cyclins like CycB;1 and CycH;1 for promoting endosperm cell division; and 5) the targeted increase in accumulation of ABA in the straw during the grain filling stage for increased carbon resource remobilization to the grains. Identification of genes determining panicle compactness could also lead to an increase in rice yield through conversion of a compact-panicle into a lax/open one. These efforts have the ability to increase rice production by as much as 30%, which could be more than the set production target by the year 2050.
Keywords: Oryza sativa (L.), panicle morphology, ethylene signaling, inter-grain space, cell cycle
INTRODUCTION
Rice is a staple food crop satisfying the hunger of the majority of the world population. It contributes greatly in 56% of the world’s calories provided by the cereals in general besides contributing substantially as animal feed (https://www.fao.org/3/Y4683E/y4683e06.htm#TopOfPage). It is grown worldwide and forms the main food crop for more than 50% of the world’s population (Haque et al., 2015). The importance of the rice crop in human life is also reflected from its long process of evolution through domestication for the traits like grain size, grain number, panicle size, grain quality, spikelet fertility, and so forth (Shomura et al., 2008). These traits not only are linked to increasing the production figure but also relate to the quality of the grain produced. With the advancement of science, particularly in the field of genetics, the world rice production dramatically increased in the last half of the 20th century. The achievement was first through the increase in the harvest index by the introduction of the semi-dwarf gene that brought the “green revolution” and second by the production of hybrids in 1970s that exploits heterosis (Xing and Zhang, 2010). This led to doubling of the rice production in 1960s. However, the production must get doubled further by the year 2050 to feed the world’s ever-increasing population (Voesenek and Bailey-Serres, 2009), which would be approximately 9.6 billion during this period (FAO, 2009; Virk et al., 2004). Despite the requirement to scale up the production figure of the crop, it has been hovering at approximately 500 million metric ton (mmt) for the past decade (Shahbandeh, 2021) (Supplementary Figure S1), making achievement of the projected production target nearly impossible. It has also been emphasized that the world’s rice production must increase at least at the rate of 1% per annum to meet the growing demand for food as a result of the ever-growing human population (Rosegrant et al., 1995; Lafarge and Bueno, 2009). In contrast, the annual increase in the production in 2000s has been less than 1% (Normile, 2008), and it has been on a declining trend since the past few decades. The annual increase in the production was 2.7% in 1980s, which decreased to 1.1% in 1990s (Horie et al., 2005). The stagnation shown in the production figure (Shahbandeh, 2021) is a result of such a continuous decline in the annual increment production values over the decades.
Despite stagnancy in the production, rice contributes significantly in the production of cereals all over the world. Its annual production stands at 2679.2 million metric ton (mmt) and is only below maize and wheat in the production figure (OECD/FAO, 2020). However, its cost of production (US$ 428.7/t) is much higher compared to that of wheat (US$ 225.4/t) and maize (US$ 165.2/t) (OECD/FAO, 2020). The high cost of production, nevertheless, does not decrease its importance as a staple cereal as it contributes to 23% of the consumed calories compared to 17% and 10% contributed by wheat and maize, respectively. Thus, the focus of the world and pressure on the researchers is extremely high on pushing up its rate of increase in production substantially so as to meet the projected production target by the middle of this century. The approaches toward increasing the rice yield have been focused on several lines, including breeding, genetics, and biotechnology. The purpose of this review is to bring into lime light such approaches and to provide a direction in which the rice scientists could focus their efforts in enhancing the rice yield based on our current understanding on the subject.
IDEOTYPE BREEDING APPROACH FOR INCREASING RICE PRODUCTION
Since the domestication of the crop and the start of agricultural practices that started almost 10,000 years ago, the production of food grains reached to approximately 1 billion tons in 1960, and it took only 40 years to reach the production to approximately 2 billion tons (Khush, 2001). The huge leap in the production of the food grains in the latter half of the 20th century has been possible because of application of the knowledge gained during the period in the agricultural sciences, particularly that related to plant breeding and genetics, and rice as a crop is no exception to this benefit. Almost doubling of the world rice production, from 257 mmt in 1965 to 468 mmt in 1985 (Khush, 1987), has been primarily a result of a well-planned breeding program at the International Rice Research Institute (IRRI), Philipines, and in China. The success came with the development of the semi-dwarf Guang-chang-ai rice variety in 1959 by the transfer of the Sd-1 gene from Ai-zi-Zhan (Huang, 2001). However, the major success was achieved by the breeders at IRRI through making crosses in 1962 to introduce dwarfing genes from several Taiwanese varieties, including Dee-geo-woo-gen, Taichung Native 1, and I-geo-tse to the tropical tall land races (Peng et al., 2008). The resultant first semi-dwarf, high-yielding modern rice variety, IR8, was released for the tropical irrigated lowlands in 1966 (Khush et al., 2001). The short maturity duration, nearly 110 days, and photo-period insensitivity (Supplementary Figure S2) were the added advantages of the IR8 variety released. The yield potential of the irrigated rice crop was nearly doubled, from 6 t ha−1 to 10 t ha−1, in the tropics (Chandler, 1982).
In pursuit of increasing the rice yield further, the breeders at IRRI initiated a breeding program for a new plant type (NPT) taking the ideotype breeding approach. “Crop ideotype” is an idealized plant type having all good-to-have features, including efficient photosynthesis, growth, and grain production (Donald, 1968). It was argued that the results of the breeding program would be more fruitful if the desired characteristics are defined beforehand and then the breeding program is initiated to achieve these (Hamblin, 1993). Simulation models predicted that an increase of 25% yield could be possible by modifying certain traits of the current plant type. The modification could be as enhanced leaf growth during the early vegetative stage, reduced leaf growth during the reproductive stage, greater N partitioning to the upper leaf, increased carbohydrate storage capacity in stems, and most importantly a greater reproductive sink capacity (Dingkuhn et al., 1991). Moreover, the increase in sink capacity should accompany an extended period of grain filling (Dingkuhn et al., 1991). Based on the results of the simulation modeling, trait modifications to the high-yielding indica plant type were formulated, which were mostly morphological to make the breeding program relatively easy. The major trait to be introduced in the proposed NPT was to increase the number of grains per panicle up to 200–250 (Peng et al., 1994). Besides, the NPT should possess characters like low tillering capacity; few unproductive tillers; a 90–100 cm plant height; thick and sturdy stems; thick, dark-green, and erect leaves; a vigorous root system; a 100–130 d growth duration; and an increased harvest index (Peng et al., 1994). The NPT lines developed used the bulu varieties or the tropical japonicas and hence are referred to as NPT-TJ. The plant had the ideal features, particularly of the panicle size and spikelet numbers, but showed poor biomass and poor grain filling besides being susceptible to diseases and insects (Peng et al., 2008). The cause-and-effect relationship between low biomass and poor grain filling is yet to be established. However, it was hypothesized that the poor grain filling could be because of compact arrangement of spikelets on the panicle (Yamagishi et al., 1996). Limited success of the first-generation NPT lines led the breeders at IRRI to modify the program and included elite indica parents for crossing with the first-generation NPT lines, and the second-generation NPT lines derived were referred to as NPT-IJ lines (NPT Indica-Japonica). A few second-generation NPT lines had 45–75% greater number of the spikelets than the check variety IR72 and showed a significantly greater yield (Peng et al., 2004). However, if the yield performance of the second-generation NPT lines is compared with the newly developed indica inbred varieties, the yield advantage of the former becomes insignificant (Peng et al., 2004; Yang et al., 2007). Hence, the NPT program of IRRI has largely been of limited success.
The breeding for high-yielding rice varieties, including hybrids, has been a continuous process in China since 1959 (Yuan et al., 1994). In addition, the country formulated the “super rice” or “super hybrid rice” program in 1996 to increase the yield efficiency of the crop through the exploitation of heterosis of the inter-subspecies crosses (Cheng et al., 2007; Peng et al., 2008). Several “super” rice varieties have been released since then, and among them, Xieyou9308 and Liangyoupeijiu are popular because of their good grain quality in addition to the high yield (Peng et al., 2008). The high yield of Xieyou9308 was not only because of the large panicle size but also because of the high grain-filling percentage, 89.6% in the superior spikelets and 80.0% in the inferior spikelets (Wang et al., 2002; Peng et al., 2008).
Both NPT and the “super” rice endeavors although increased the yield of rice significantly; these have not been able to bring a second green revolution in terms of the rice production, unlike that brought by the introduction of the IR8 varieties. The reason for somewhat significant success, although a little, of both the programs was that these avoided the extremes of plant type traits (Belford and Sedgley, 1991) and thus kept the targeted spikelet numbers per panicle to not more than 250 initially and later on not more than 150 spikelets per panicle. The goal was to reduce the percentage of unfilled grains, although the modern generation indica inbred varieties like Upahar show grain filling percentages greater than 90% despite bearing approximately 250 spikelets per panicle (Panda et al., 2015; Sahu et al., 2021). Thus, the strategy adopted for the programs for improving the yield of rice needs a revisit, including the interventions of the modern molecular biology tools.
PANICLE MORPHOLOGY AND GRAIN FILLING
The main and individual tiller shoots in rice plants are destined to terminate as panicle-type inflorescence having rachis bearing primary, secondary, and even higher-order branches, each getting transformed into a spikelet that harbors a bisexual flower (Figure 1A). The length of the panicle primarily depends on how quickly the rachis gets transformed into a spikelet. The formation of the entire panicle, the juvenile panicle, including the number of spikelets happens inside the boot leaf. The formation of the panicle branches and the spikelets occurs in basipetal succession, that is, the spikelets at the basal region of the panicle are formed earlier than those in the apical region. Thus, the spikelet at the top that is formed by the transformation of the main rachis is the newest. In contrast, the development and maturation of the spikelets start in acropetal succession, that is, from top to bottom. Anthesis of the spikelets progresses slowly from the apical to the basal region and gets completed in approximately 7 days (Figure 2B). Accordingly, the fertilization starts from top to bottom. The well-known phenomenon of apical dominance is maintained in the development and maturation of the spikelets into well-filled grains. The order of dominance recedes from the top to the base. The grain filling also follows the process of apical dominance, with the apical spikelets getting filled first, followed by the filling of the basal spikelets. The apical first principle, however, has great repercussion on filling of the grain in the large-size panicle, such as that developed under the NPT program, where 10–15% of the spikelets, comprising mostly of the basal ones, remain unfilled (Peng et al., 2008). The scenario is even more precarious in the large-size panicles of the indica inbred line bearing 300 or more spikelets where more than 30% of the spikelets remain unfilled (Sekhar et al., 2015a; Panda et al., 2015; Sahu et al., 2021). Thus, the failure of the spikelets to develop into well-filled grains also leads to variation in yield of the rice varieties in addition to the variation created by the number of spikelets per panicle per se. Moreover, the rice varieties bearing larger panicles also show a greater variation in yield within a variety itself compared with the variety bearing small panicles (Yang et al., 2002; Kato, 2004). Although the development of the rice varieties bearing numerous spikelets on the panicle leads to an increase in the sink size, it does not lead to any benefit in terms of the effective yield. The increase in the number of spikelets on a panicle generally leads to a decrease in the inter-grain space, resulting in compactness of the panicle (Sekhar et al., 2015a; Panda et al., 2015; Panda et al., 2016a; Chandra et al., 2021; Sahu et al., 2021). Regression analysis of the relationship between the inter-grain space and grain filling percentage considering several compact- and lax-panicle cultivars has shown that an inter-grain space lesser than 0.55 cm is not favorable for grain filling (Sahu et al., 2021, Figure 2).
[image: Figure 1]FIGURE 1 | Spatial distribution and development of spikelets on the rachis of the rice panicle. (A) The spikelets are termed as terminal or lateral depending upon whether these are derived from the modification of the axis, termed as terminal spikelets, or the lateral branches, termed as lateral spikelets. The lateral branches may be primary, secondary, or tertiary in nature depending upon whether these are originated from the rachis, primary branches, or secondary branches, respectively. (B) Pictorial representation of progression of anthesis of the spikelets on the rice panicle, which is an acropetal event with spikelet groups I, II, III, IV, V, VI, and VII reaching anthesis progressively on the first, second, third, fourth, fifth, sixth, and seventh days (Mohapatra et al., 1993). Groups I to III represent the apical (superior) spikelets, while groups V to VII represent the basal (inferior) spikelets. Panel 2A is reproduced with the permission of the author (Xing and Zhang, 2010). Panel 2B is reproduced with the permission of the publisher (Mohapatra et al., 1993).
[image: Figure 2]FIGURE 2 | Polynomial regression analysis between the filled grain percentage and inter-grain space. The correlation is significantly positive, and the curve suggests that while the grain filling increases with an increase in the inter-grain space, an inter-grain space greater 0.55 cm is of not much benefit for grain filling.
Although the basal spikelets in compact panicles remain unfilled, the spikelet thinning treatment, in which some of the apical spikelets are removed, has shown that the basal spikelets are also competent to develop into well-filled grains (Kato, 2004; You et al., 2016). The results of the spikelet thinning treatment thus prove further that the apical spikelets play an inhibitory role in grain filling in the basal spikelets, displaying the phenomenon of apical dominance. Moreover, it is not that the sink becomes a limitation in poor filling of the grains in the compact panicle suggested by Okamura et al. (2018), as the carbon assimilates remain available to the basal spikelets, although these remain unutilized or underutilized (Yang et al., 2006; Yang and Zhang, 2010; Panda et al., 2015). The poor filling of the grains in the basal spikelets despite the availability of the carbohydrate assimilates further ascertains the role of apical dominance in grain development in compact panicles. However, information on the genes controlling the inter-grain space and apical dominance in the metabolism within the inflorescence is scant, knowledge on which would greatly improve the chances of enhancing grain filling in compact panicles. In addition, the plant hormones like auxin, cytokinins, and ethylene also greatly influence the process of grain filling, and hence, spikelet-specific regulation of their contents/presence could be of great benefit in improving grain filling in compact panicles.
GENETIC PERSPECTIVE OF PANICLE MORPHOLOGY
Several genes/QTLs have been reported to influence flower development and/or the panicle architecture in rice (Gupta et al., 2006). However, this review will restrict the discussion only to those related to panicle branching and grain traits that influence the rice yield significantly.
Grain Numbers and Panicle Branching
Two genes/QTLs, Gn1a (Grain number 1a) and LOG (Lonely guy), both located on chromosome 1, function through regulating the level of cytokinin (Ashikari et al., 2005; Kurakawa et al., 2007). Gn1a encodes cytochrome oxidase (OsCKX2) that degrades cytokinin (Ashikari et al., 2005), while LOG codes for the protein with phosphoribohydrolase activity that catalyzes conversion of cytokinin nucleotides like iPRMP (N6-(Δ2-isopentenyl) adenosine-5′-monophosphate) and tZRMP (trans-zeatin-riboside-5′-monophosphate) to their free bases, iP (N6-(Δ2-isopentenyl)adenine) and tZ (trnas-zeatin), respectively, the metabolically active species of cytokinin (Kurakawa et al., 2007). The loss of function mutation of Gn1a leads to an increase in the number of spikelets. The loss of function mutation of LOG on the other hand leads to several floral defects, including a decrease in panicle size and spikelet numbers. These mutations indicate the important role of cytokinins in differentiation of the shoot apical meristem (SAM) into inflorescence, including panicle branching and spikelet numbers. This is also reflected from the increase in spikelet numbers upon an increase in iPR (iP-riboside) and tZR (tZ-riboside) levels in the caryopses through aerial application of 6-benzylaminopurine (BAP) (Panda et al., 2018) (Supplementary Table S1, Figure 3). The mechanistic details of the hormone action in the regulation of SAM activity are, however, yet to be known. Besides by the mutation of Gn1a and LOG, the cellular level of cytokinin is also reportedly regulated by two genes that influence the expression of OsCKX2. These are LP (Larger panicle) and DST (Drought and salt tolerance), both identified through mutagenesis, with the former as lp-1 and lp-2 and the latter as reg1 (regulator of Gn1a). Both lp and reg1 mutants showed a significant increase in the number of both primary and secondary panicle branches and grain numbers (Li M. et al., 2011; Li S. et al., 2013). The LP gene was mapped on the short arm of chromosome 2 and identified to code for a kelch repeat-containing F-box protein that interacts with SKP1 (S-phase kinase-associated protein 1) of the SCF (Skp1-Culin-F-box) E3 ligase complex. The lp mutants showed a severe decrease in the expression of OsCKX2, indicating involvement of LP in modulation of cytokinin equilibrium through direct or indirect regulation of OsCKX2 expression (Li M. et al., 2011). In contrast to LP, REG1, mapped on chromosome 3, directly regulates the expression of OsCKX2 as it encodes a zinc finger protein transcription factor DST that binds to the cis element DBS (DST-binding sequence) present in the promoter region of OsCKX2 (Li S. et al., 2013).
[image: Figure 3]FIGURE 3 | Longitudinal sections of the caryopses sampled from the panicle of the control and that applied with 6-benzylaminopurine (BAP) and stained with the antibody against trans-zeatin riboside (tZR) and N6-(Δ2-isopentenyl)adenine (iP) riboside (iPR), the precursors of trans-zeatin and isopentenyladenine, respectively, the two cytokinins. The sections were observed under a fluorescence stereo-microscope for the detection of the fluorescence from these antibodies. The caryopses from the basal spikelets of the control plant emitted much lesser fluorescence compared with that sprayed with BAP during the heading. Reproduced with the permission of the author (Panda et al., 2018).
Unlike Gn1a, DEP1 (Dense erect panicle 1) is a gain of function mutation that leads to an increase in the number of primary and secondary branches on the panicle, resulting in dense and erect panicles with an increased number of spikelets compared with the wild type (Huang et al., 2009). The mutant (dep1) is the dominant allele at the DEP1 locus on chromosome 9 resulted in by replacement of a 637-bp stretch in exon 5 with a 12-bp sequence, causing a loss of 230 amino acid residues from the C-terminus (Huang et al., 2009). DEP1 codes for a phosphatidylethanolamine-binding protein (PEBP)-like domain protein, the role of which in panicle development is not known yet, and so also the role of the mutated protein. Similar to DEP1, mutation in another gene, FUWA, which encodes an NHL domain-containing protein, leads to its premature truncation, resulting in dense and erect panicles, although the number of secondary branches is reduced (Chen et al., 2015). The dense panicle morphology has been stated to be as a result of increased cell division, including in the hull, that is otherwise restricted by FUWA (Chen et al., 2015).
Mutation in three more genes/QTLs, EP2 (Erect panicle 2), EP3 (Erect panicle 3), and qPE9-1, leads to an erect morphology of the panicle. EP3 was identified through chemical mutagenesis and mapped to the short arm of chromosome 2 (Piao et al., 2009). The gene encodes an F-box protein, and the mutation, a single base pair change (G/C to A/T), leads to dense and erect panicles, but with a reduced number of spikelets (Piao et al., 2009). In contrast, the gene EP2, which encodes a novel protein of unknown functions, results in dense panicles with an increase in the number of spikelets (Zhu et al., 2010). Map-based cloning revealed EP2 to be located on the long arm of chromosome 7. The mutation of the candidate gene of a major QTL present on chromosome 9, qPE9-1, and which codes for a keratin-associated protein, on the other hand, converts a drooping panicle to an erect type without any significant change in the spikelet number (Zhou et al., 2008). The mutation was a result of one single-nucleotide polymorphism (SNP), cytosine-to-tyrosine, and one InDel in the coding region (Zhou et al., 2009). The mechanistic details of action of all these genes are yet to be known, although functionally characterized.
APO1 (Aberrant panicle organization 1) and SPIKE (Spikelet number) are two genes that influence the spikelet numbers without affecting the panicle compactness much, and unlike Gn1a, these are not known to be related to panicle development in any way. The APO1 locus has been mapped on chromosome 6. The gene encodes an F-box protein, and one nucleotide substitution mutation in it leads to immature transition of the branch and rachis meristem to the spikelet meristem that results in a decrease in the number of spikelets on the panicle (Ikeda et al., 2007). Although its role in inflorescence/panicle development is not known, its overexpression leads to an increase in inflorescence branches and spikelets (Ikeda et al., 2007). Similarly, the overexpression of SPIKE in IR64 leads to a significant increase in spikelet numbers, resulting in 13–36% increase in yield over the non-transformed IR64 together with other morphological changes in the plant architecture as pleotropic effects of the gene (Fujita et al., 2013). SPIKE was identified as QTL qTSN4 (total spikelet number per panicle) on the long arm of chromosome 4 of a tropical japonica rice landrace Daringan (Fujita et al., 2013) and was identical to Nal1 (Narrow leaf 1) identified earlier (Qi et al., 2012), suggesting SPIKE as an allele of Nal1 from tropical japonica. Nal1 is involved in polar auxin transport necessary of differentiation of vascular strands (Fukuda, 2004; Qi et al., 2012), indicating that auxin could influence the spikelet number on the panicle by strengthening the vasculature system. The possible role of SPIKE in vasculature development is also evident from its expression mostly in the vascular bundle at the panicle neck and culm and in young panicles (Fujita et al., 2013).
The time taken for the transition of the vegetative phase to the reproductive phase putatively determines the panicle size and panicle numbers in rice. It is well established that during the development of panicle inflorescence, the shoot apical meristems (SAMs) give rise to primary branches, the SAMs of the primary branches give rise to secondary branches, and so on. At the end, the SAMs of the primary, secondary, or tertiary branches get transformed into spikelets. In Arabidopsis, it is known that a delay in the individual transition steps allows a greater time to panicles for development, and this is regulated by terminal flower 1 (TFL1) and centtroradialis (CEN)-like genes that encode phosphatidyl-ethanolamine-binding proteins (PEBPs) (Bradley et al., 1997; Ohshima et al., 1997). RCN1 (Rice centroradialis 1) and RCN2 are the putative orthologs of TFL1/CEN in rice (Nakagawa et al., 2002). Their overexpression in rice produces a significantly greater number of secondary and tertiary branches and three times more spikelets, but with a reduced inter-grain space showing a compact-panicle architecture (Nakagawa et al., 2002).
Two genes, LAX1 (Lax panicle 1) mapped on chromosome 1 (Komatsu K. et al., 2003) and FZP2 (Frinzy panicle 2) mapped on chromosome 7 (Komatsu M. et al., 2003), work together toward the development of panicle branches and spikelets or the inflorescence per se. LAX1 and FZP2 code for the bHLH domain and ERF domain-containing protein, respectively, and thus, both are reportedly transcriptional regulators (Komatsu K. et al., 2003; Komatsu et al., 2003 M.). Analysis of their mutants revealed that lax1 lacked in the development of lateral spikelets, while fzp2 showed excessive ramification of the rachis branches at the point of initiation of the spikelet meristems without initiation of development of spikelets (Komatsu et al., 2001). The observations led Komatsu et al. (2001) to conclude that while LAX1 is required for the development of rachis-branch meristems and lateral meristems, FZP2 specifies them to take the terminal and lateral spikelet identities, respectively.
A recent genome-wide association study (GWAS) has revealed that the number of spikelets on a panicle bears highly significant correlation with the number of secondary branches on it but only to a lesser extent with the number of primary branches (Ta et al., 2018). The variation in the secondary branches explained 89–91% variation in the spikelet numbers, while the variation in the primary branches could explain only 37–42% variation in the spikelet numbers (Ta et al., 2018). The GWAS of Ta et al. (2018) thus supports that the genes like Gn1a, DEP1, APO1, RCN1, and RCN2 could be regulating the number of spikelets by increasing the number of secondary or both secondary and primary branches (Yagi et al., 2001; Nakagawa et al., 2002; Ikeda et al., 2007; Ikeda et al., 2007; Huang et al., 2009), although the mechanistic details of the relationship between the two traits are yet to be understood. However, the genes Gn1a, DEP1, APO1, RCN1, and RCN2 were not detected in the QTLs identified to be regulating the panicle morphology, indicating the involvement of a complex genetic network in the development of the traits determining spikelet numbers; the number of the primary, secondary, and higher-order branches; and the size of the panicle per se (Ta et al., 2018).
A QTL named WFP (Wealthy farmers’s panicle) was identified on chromosome 8 by a cross between two japonica rice varieties, Nipponbare and ST-12. The panicle of Nipponbare contained approximately 152 grains and 11 primary branches and that of ST-12 contained approximately 475 grains and 29 primary branches (Miura et al., 2010). The WFP QTL carried no gene, but carried OsSPL14 adjacent to it. The gene expressed much more in the shoot apices and the young panicles in ST-12 compared with Nipponbare (Miura et al., 2010) and hence was assumed to be the real gene regulating panicle branching and spikelet numbers (Miura et al., 2010). The gene OsSPL14 has also been found to be one among the 12 ORFs identified as the Ideal plant architecture 1 (IPA1) locus present in the QTL qTn8 mapped on the long arm of chromosome 8. IPAI explained 29.9% of variation in the tiller numbers identified through a cross between the indica TN1 or Hui7 and japonica SNJ varieties (Jiao et al., 2010). Cloning and sequencing of OsSPL14 from TN1 and SNJ revealed that the gene in the latter carried a point mutation that prevented the degradation of its product by the miRNA osa-miR156, which was not there in TN1 (Ta et al., 2018). Thus, OsSPL14 plays an important role in determining panicle branching and spikelet numbers, the mechanistic details of which are of course yet to be worked out.
The panicle branches and spikelet numbers in rice inflorescence are also reportedly controlled by the SP1 (Short panicle 1) gene mapped on chromosome 11 (Li et al., 2009). The gene encodes a member of peptide transporter family proteins (Li et al., 2009). The inflorescence development in rice occurs in two stages. The first stage involves meristematic activities resulting in branch primordium initiation and spikelet differentiation that gets completed while the panicle is only 4 mm in length or so. The second stage involves elongation of the panicle and panicle branches that ends up with the heading (Li et al., 2009). Mutation in SP1 leading to 31-bp deletion in the exon causes reduction in the length of the panicle, together with the formation of a much lesser number of primary branches, and drastic reduction in the number of spikelets on the panicle (Li et al., 2009). The mutation causes a drastic decrease in the expression of the gene, the reason for which is yet to be known (Li et al., 2009). The importance of transition of meristematic activity in flower development has been shown in another study where the rice Supernumerary bract (SNB), identified through a T-DNA insertion mutation study, was found to play an important role in the transition of a spikelet meristem to a floral meristem leading to proper development of the florets (Lee et al., 2007). An AP2 family gene highly homologous to SNB was also identified, and since it was closely related to the maize Indeterminate spikelet 1 (IDS1), it was named OsIDS1 (Lee and An, 2012). A T-DNA insertion mutant line of the gene was also identified, which had a defective floret. Further studies on characterization of the two genes revealed that the snb osids1 double mutant developed a significantly reduced number of panicle branches and spikelet numbers with simultaneous delay in the transition of the spikelet meristem into the floral meristem, and thus, SNB and OsIDS1 are probably involved in preventing precocious determination of inflorescence and branch meristems (Lee and An, 2012).
Grain Traits
The yield of a rice cultivar is dependent not only on the numbers of grains produced per unit area but also on the size and weight of the individual grain. The overall size of the rice grain is largely regulated by four genes/QTLs, including SMG1 (Small grain 1), SMOS1 (Small organ size 1), GS3 (Grain size 3), and GS5 (Grain size 5). The SMG1 locus was found to harbor four open reading frames (ORFs). Out of these, only that encoding mitogen-activated protein kinase kinase 4 (OsMKK4) was found to have a C to T transition in the mutant smg1 that produced a much smaller size of the grain compared with the wild type, and thus, OsMKK4 was referred to as the candidate gene of the locus SMG1 (Duan et al., 2014). The decrease in cell proliferation in the lemma of smg1 was believed to be the most likely cause of the smaller grain size in it compared with the wild type as the cell length of both the inner and outer epidermal layers was indistinguishable between the mutant and the wild type. The observation was in accordance with the fact that OsMKK4 regulates the expression of the brassinosteroid (BR) pathway-related genes and so also affects BR responses that positively influence cell proliferation, essential for growth of an organ (Duan et al., 2014). In fact, grain size and shape have been reported to be largely determined by cell proliferation in the hull and endosperm (Orozco-Arroyo et al., 2015; Zhang D. et al., 2019). A decrease in endosperm cell division has also been reported to be one among the causes of poor-quality grain formation in indica rice varieties (Sahu et al., 2021). Unlike SMG1, the loss of function mutation in GS3 results in the formation of larger grains (Fan et al., 2006). The QTL GS3 was identified on chromosome 3 by analysis of the mapping population generated from a cross between the large grain Minghui 63 and the small grain Chuan 7. The GS3 locus was found to be represented by only one gene encoding a putative transmembrane protein of 232 amino acids. The loss of function was found to be a result of a non-sense mutation in the second exon of GS3 causing a 178-aa truncation in the C-terminus end (Fan et al., 2006). Mutation in GS5, which encodes a putative serine carboxypeptidase, is a result of polymorphism in the promoter region, which leads to a decrease in its expression concomitant with reduction in the grain size (Li Y. et al., 2011). Although the actual function of the gene in regulating the grain size is unknown, a higher expression of GS5 leads to an enhanced cell division (Li et al., 2009). Further research on GS5 functions has revealed that GS5 occupies the extracellular leucin reach domain of OsBAK1-7 [brassinosteroid-insentive1 (BRI1)-associated receptor kinase 1–7] and thus competitively inhibits its interaction with OsMSBP1 (membrane steroid-binding protein 1), preventing OsBAK1-7 from endocytosis (Xu et al., 2015). Since BAK1-7 together with BRI1 is involved in perception of BRs, the role of BR signaling in enhancement of cell division by GS5 may not be ruled out.
Unlike GS3, GL3.1 (Grain length 3) regulates the grain length. Two amino acid substitution causes an increase in its phosphatase activity, resulting in the formation of shorter grains in the mutant variety FAZI compared with the wild type WY3 (Qi et al., 2012). GL3.1 is involved in dephosphorylation of Cyclin-T1;3 and hence influences the cell proliferation; the higher the dephosphorylation, the lesser the cell proliferation and the shorter the grain (Qi et al., 2012). In contrast to GL3.1, mutation in LGS1 (Large grain size 1) (Chen et al., 2019) and GS2 (GRAIN SIZE 2) (Hu et al., 2015) results in the formation of larger and longer grains. Both encode growth-regulating factor 4 (GRF4), which regulates cell division and the hormonal response pathway, producing pleotropic effects on the panicle morphology, including panicle branching and grain length (Chen et al., 2019). The mutation is in the form of substitution of TC to AA in exon 3 that produces the target site for the miRNA osa-miR396, leading to a decrease in transcript abundance of the genes and so also a decrease in the grain length (Hu et al., 2015; Chen et al., 2019). GS2 differs from LGS1 in having other substitutions as well (Hu et al., 2015). Similar to LGS1, SLG7 (Slender grain on chromosome 7) and GW7 (Grain width 7) are associated with the formation slender grains (Wang S. et al., 2015; Zhou et al., 2015). The common among the two is that the grain length is positively related with their expression. SLG7 is homologous to Arabidopsis LONGIFOLIA1 and LONGIFOLIA2, which activate longitudinal organ expansion (Zhou et al., 2015). GW7 on the other hand encodes a homolog of the Arabidopsis thaliana TNNEAU1 (TON1) recruiting motif (TRM) protein, and its expression positively correlates with increased cell division in the longitudinal direction and decreased cell division in the transverse direction in the hull (Wang S. et al., 2015). Thus, both SLG7 and GW7 probably provide a slender grain shape by promoting longitudinal cell division in the hull. The promoter of both SLG7 and GW7 showed polymorphism in terms of several SNPs and indels between the parents involved in crossing for the generation of the mapping population. Nucleotide sequence analysis of the GW7 promoter revealed the presence of OsSPL16 binding motifs that were affected because of the indels leading to poor expression of the gene in the long grain variety TaifengA, indicating that OsSPL16 probably controls the grain shape via repression of GW7 (Wang S. et al., 2015).
Mutation, whether by deletion or by indel, resulting in changes in properties of the protein appears to be a very common cause of changes in the grain shape and size. A great benefit of it is noted in the development of Basmati rice. It is resulted in by a 10-bp indel in the promoter of GW8 (Grain weight 8) that encodes squamosa promoter-binding like protein 16 (OsSPL16). OsSPL16 is believed to influence the cell cycle machinery and contribute to organ size, and thus, a decrease in its expression causes development of slender grains, much is in demand, compared with the cultivar showing a high expression of the gene (Wang et al., 2012). A point mutation in TGW6 (Thousand grain weight 6) in Nipponbare on the other hand results in a significant increase in grain weight, measured as thousand grain weight (TGW), with respect to that in the Indian landrace Kasalath harboring the active TGW gene (Ishimaru et al., 2013). Moreover, it was found that TGW6 encodes indole-3-acetic acid (IAA)-glucose hydrolase that hydrolyses IAA-glucose to release IAA (Ishimaru et al., 2013), and thus, a greater thousand grain weight in Nipponbare than in Kasalath is linked to the regulation and management of IAA level.
The size of the grain in rice is also regulated by changes in the hull size, as revealed by a few mutation studies. One among them is mutation in GW2 (Grain width 2) that encodes E3 ubiquitin ligase (Song et al., 2007). The gene catalyzes ubiquitination of expansin-like 1 (EXPLA1), a cell wall-loosening protein (Choi et al., 2018). Mutation causes loss of its functions, resulting in an increased cell number in the hull and consequently leading to the formation of a wider hull that allows enhanced filling of the grain milk resulting in the development of heavier grains compared with the wild type (Song et al., 2007). Similarly, mutation in BG1 (Big grian 1), encoding a hypothetical protein, caused by T-DNA insertion in the promoter region of the gene results in a 10-fold increase in its expression that increases the size of the hull as well, leading to an increase in the grain size (Liu et al., 2015). Furthermore, map-based cloning revealed that Nipponbare carries 1212-bp deletion in the region of qGW5 (QTL for the seed width on chromosome 5) identified in Kasalath that shows a lesser grain width than Nipponbare (Shomura et al., 2008). Through the complementation test, it was found that the 1212-bp deleted region in Nipponbare was associated with its greater grain width than Kasalath (Shomura et al., 2008). It was also found that the greater grain width of Nipponbare was associated with a greater number of the cells in its outer glume compared with that of Kasalath (Shomura et al., 2008), suggesting the size of the hull to be a determinant of size of the rice grain.
The importance of hull size in determining the grain width is also reflected from the identification of two more QTLs, namely, GW6 (Grain width 6) on the short arm of chromosome 6 (Shi et al., 2020) and GLW7 (Grain length and weight on chromosome 7) (Si et al., 2016). The QTL GW6 harbored five genes, but the promoter of one of them carried four SNPs and one 3-bp (CCT) insertion in the 1-kb region. This mutation was found in the large-grain variety Nan-Yang-Zhan (NYZ) but not in the small-grain variety Hua-Jing-Xian 74 (HJX74), and thus, the concerned gene was called as the candidate gene and referred to as GW6 (Shi et al., 2020). The cross section of the hull showed a larger outer parenchymal cell size in NYZ than in HJX74 without any difference in the cell number. Several cell expansion-related genes also showed significantly higher expression in the panicle of NYZ compared with HJX74, indicating cell expansion to play an important role in increasing the hull size and so also the grain width (Shi et al., 2020). GLW7 was identified by GWAS involving 381 japonica varieties of varying grain weights and lengths (Si et al., 2016). GLW7 harbored 11 genes, but the expression of only one, identified as OsSPL13, differed significantly between the small grain and large grain varieties, with the latter showing greater expression than the former, and hence referred to as the candidate gene. The differential expression was a result of a tandem repeat polymorphism in the promoter region of the gene. Furthermore, it was found that the cell density per millimeter in the lemma was significantly higher in glw7 and the wild-type Dongjing plants (a small seed variety) compared with the Dongjing transgenic lines transformed with the 8-kb genomic sequence of OsSPL13 from the large grain variety. The opposite was the case for the cell size. These findings strongly suggested that the increase in the grain length and weight associated with GLW7 was a result of cell expansion rather than any increase in the cell numbers (Si et al., 2016). In addition, the mutation study also ascertains a significant influence of the hull cell length and width on the grain length and width, as was observed in the wtg1 (wide and thick grain 1) rice mutant obtained by gamma ray irradiation (Huang et al., 2017). The mutant produced a wide, thick, and short grain concomitant having shorter and wider cells in the outer epidermis and inner epidermis compared with the wild type (Huang et al., 2017). WTG1 was found to encode an otubain domain protein (OTUB1) with deubiquitination activity and could be targeting the cell expansion factors, such as SPL13 and GS2 (Huang et al., 2017).
GRAIN FILLING BIOCHEMISTRY
The grain filling in rice, or the cereals in general, is a process of systematic deposition of starch in the triploid endosperm cells forming the edible grains. Sucrose from the phloem entering into the endosperm cells is catabolized primarily to uridine diphosphate-glucose (UDP-G) by sucrose synthase (SUS) using its preferred nucleotide UDP (Figure 4). Adenosine diphosphate-glucose (ADP-G) may also be formed utilizing the less preferred substrate ADP. SUS is a very important enzyme of the starch synthesis pathway as the inhibition in expression of its gene by RNAi leads to reduction in starch accumulation to the extent of 40% (Chourey and Nelson, 1976). The overexpression of SUS on the other hand increases the accumulation of sucrose significantly (Li J. et al., 2013). UDP-G synthesized is converted first to glucose-1-phosphate (G1P) and then to ADP-G by the action of UDPG-pyrophosphorylase and ADPG-pyrophosphorylase, respectively. Thus, ADPG-pyrophosphorylase, encoded by GIEF2 (Grain incomplete filling 2), plays a crucial role in starch biosynthesis, leading to grain filling, as the further progress in the synthesis of starch depends on the cellular level of ADP-G (Wei et al., 2017). Adenosine triphosphate (ATP) required for driving the second reaction is met from the cytoplasm through the ATP/ADP translocator (Bahaji et al., 2014). ADP-G is joined together by the ∝-1, 4-glucosidic linkage step by step by granule-bound starch synthase (GBSS), leading to the formation of the linear chain of ∝-1,4-polyglucan. Starch-branching enzymes (SBEs) cleave the ∝-1,4-glucosidic linkage and reattach the cleaved fragment with the reducing end to C6 hydroxyl of the glucose moiety of another ∝-1,4-polyglucan chain, creating a branch chain structure, referred to as amylopectin. The elongation of the ∝-1,4-polyglucan in amylopectin is ensured by soluble starch synthase (SS) that adds up the glucose moiety in the ∝-1,4-polyglucan in a fashion similar to GBSS. GBSS elongates only the non-branched ∝-1,4-polyglucans, referred to as amylose. SS and SBEs act in concert to ensure the growth of amylopectin. The starch-debranching enzymes (DBEs), namely, pullalanase and isoamylase, cleave the growing amylopectin to reduce the branching and give a proper shape to the starch crystals being formed. The action of DBEs provides the required hydrophobicity and crystallinity to the starch getting deposited in terms of the edible quality, gelatinization temperature, and cooking time (Fitzgerald et al., 2008).
[image: Figure 4]FIGURE 4 | Schematic presentation of starch synthesis from sucrose, the end product of photosynthesis, in the rice grain. Sucrose unloaded from the phloem enters the endosperm cells via the plasmodesmata or through the apoplast with the help of the sucrose transporter. The reactions leading to the synthesis of starch are described in the text. Suc, sucrose; SUS, sucrose synthase; UDP-G, uridine diphosphate glucose; UGPase, UDPG-pyrophosphorylase; AGPase, ADPG-pyrophosphorylase; sol SS, soluble starch synthase; GBSS, granule-bound starch synthase.
REGULATION OF GRAIN FILLING AND PANICLE MORPHOLOGY
Grain filling is a post-fertilization phenomenon. In cereals, primarily it involves development of the triploid endosperm cell formed after the fusion of the central cell with the polar nucleus. The development of the endosperm and embryo goes hand in hand, and the entire ovary develops in caryopsis that matures into a grain. During the course of the development of caryopsis, the endosperm cell divides and redivides and gets filled primarily with starch, referred to as grain filling. The development of spikelets and the panicle as a whole, on the other hand, is a pre-fertilization phenomenon. Both grain filling and panicle development are regulated at the biochemical and molecular levels at several steps, each step being independent of others.
Endosperm Cell Division and Endoreduplication
The first level of control of grain filling occurs at the level of the endosperm cell division. In an ideal situation, the endosperm cell division rate is at peak from 6 to 9 days after fertilization (DAF) and generally ceases after 18 DAF (Panda et al., 2009; Sahu et al., 2021) (Figure 5). It has been reported that the greater and quicker the cell division, the higher is the grain filling in rice (Sahu et al., 2021). The cell division is largely regulated by the cell cycle regulators, and in this context, it has been reported that a slow rate of cell division is linked to a poor expression of CycB;1 and CycH;1 (Sahu et al., 2021). Besides, a high expression of KRP;1 and KRP;4 also suppresses the cell division in the endosperm (Sahu et al., 2021). The inhibitory effect of KRP on endosperm cell division is also evident from the fact that overexpression of KRP decreases cell division (De Veylder et al., 2001; Jasinski et al., 2002; Mizutani et al., 2010).
[image: Figure 5]FIGURE 5 | Spatio-temporal depiction of the rate of endosperm cell division in two lax-panicle rice cultivars, Upahar and Lalat, and two compact-panicle rice cultivars, Mahalaxmi and OR-1918. The peak of the endosperm cell division rate in the apical spikelets reaches earlier in the lax-panicle cultivars compared with compact-panicle cultivars, and in the basal spikelets, the arrival of the peak is delayed greatly in the compact-panicle cultivars compared with the lax-panicle cultivars. The cessation of the endosperm cell division in the basal spikelets of the compact-panicle cultivars is also delayed greatly, almost 3 days, when compared with that of the lax-panicle cultivars, leading to poor grain filling in the former. Reproduced with the permission of the author (Sahu et al., 2021).
Post cellularization of the endosperm and completion of the endosperm cell division, the grain filling is also affected by the level of endoreduplication of the endosperm nuclei. Endoreduplication is a result of sequential and alternate completion of the G- and S-phases of the endosperm cells, but without entering into G2/M transition and karyokinesis, which results in the repeated synthesis of chromatids without their segregation. Endoreduplication thus increases the ploidy status of the endosperm cells, providing a platform for enhanced expression of the genes required for the purpose of grain filling. Studies have shown a positive relationship between endoreduplication and grain filling in rice (Panda et al., 2016a; Sahu et al., 2021) (Figure 6).
[image: Figure 6]FIGURE 6 | Ploidy status of the endosperm nuclei in the developing caryopses of the apical and basal spikelets during the mid-grain filling stages (12 and 15 days after fertilization, DAF) in a lax-panicle cultivar, Upahar, and a compact-panicle cultivar, Mahalaxmi. The gates P2 and P3 represent the ploidy statuses 3C and >3C, respectively. The ploidy statuses of both apical and basal spikelets in Upahar are more or less similar, whereas they differ greatly in Mahalaxmi with the basal spikelet showing a much lesser number of the endosperm nuclei having the ploidy status of >3C compared with that of the apical spikelets. Reproduced with the permission of the author (Sahu et al., 2021).
Transcriptional Regulation
The next level of regulation of grain filling occurs through the regulation of expression of the starch-biosynthesizing enzymes by transcription factors. The earliest report in this regard is the regulation of expression of the Wx gene (GBSS1) by two transcription factors, MYC protein (OsBP-5) and an ethylene-responsive element binding protein (EREBP), OsEBP89. Both bind at the 31-bp sequence ranging from -840 to -810 bases (Yao et al., 1996; Zhu et al., 2003). Within the 31-bp sequence, OsBP-5 binds to the sequence CAACGTG and OsEBP89 binds to the adjacent sequence GCCAAC, and their interaction drives the expression of the gene (Zhu et al., 2003). The expression of the Wx gene is also influenced by an NAC transcription factor as Wx co-expresses with NAC26 (Wang et al., 2019). A moderate soil drying condition increases the expression of both the genes significantly with a concomitant increase in the individual grain weight of the inferior spikelets (Wang et al., 2019). Moreover, NAC26 has been shown to interact directly with the promoter of the Wx gene (Wang et al., 2019), suggesting direct involvement of the transcription factor in the grain filling process in rice. In addition, NAC has also been indicated to play a key role in activating the expressions of the starch-synthesizing genes in general under moderate soil drying conditions (Wang et al., 2020a), although the details of the mechanism involved are not known. Unlike NAC, the transcription factor OsbZIP58 (basic leucin zipper 58) is known to directly regulate the expression of as many as six starch synthesis pathway genes, including Wx, OsSSIIa, SBEI, OsBEIIb, OsAGPL3, and ISA2 by binding with the ACGT element in their promoter (Wang et al., 2013). Since the promoter of the Wx gene contains as many as 16 ACGT elements, its expression is most affected by OsbZIP58 (Wang et al., 2013).
Furthermore, co-expression analysis has revealed that the protein rice starch regulator1 (RSR1), an APETALA2/EREBP family transcription factor, negatively regulates the expression of many type I starch-synthesizing genes, including that of OsSS (starch synthase), OsBE (starch-branching enzyme), OsGBSS (granule-bound starch synthase), OsISA (starch-debranching enzyme: isoamylase), OsAGPL (ADP-glucose pyrophosphorylase large subunit), OsAGPS (ADP-glucose pyrophosphorylase small subunit), and OsPHOL (starch phosphorylase L) (Fu and Xue, 2010). Besides, RSR1 has also been found to regulate the expression of GBSS1 in rice caryopses (Sekhar et al., 2015a). However, the mechanism underlying downregulation of expression of the starch-synthesizing genes by RSR1 is not yet understood.
Unlike RSR1, two important transcription factors, the rice prolamin-box binding factor (RPBF), which is a DOF (DNA binding with one finger) family transcription factor, and a basic leucine zipper transcription factor, RISBZ1, positively regulate the expression of the type I starch-biosynthesizing enzymes (Kawakatsu et al., 2009; Fu and Xue 2010; Schmidt et al., 2014). RPBF and RISBZ1 in fact act synergistically to modulate the expression of the starch-synthesizing genes, as is seen by their overexpression; the two transcription factors overexpressed together in a plant produced greater expression of starch-biosynthesizing enzymes compared with the sum total of the expression produced by their individual overexpression (Yamamoto et al., 2006).
Grain filling and seed development in rice are affected not only by the activities of the starch-biosynthesising enzymes but also by the factors that determine the size and shape of lemma and palea, the hull. It has been seen that the atypical basic helix-loop-helix (bHLH) gene (Os03g0171300) having no DNA binding domain expresses in a high amount in the hull (Heang and Sassa, 2012a). The overexpression of the atypical bHLH leads to an increase in length and weight of the rice grain, and hence, it is named Positve regulator of grain length 1 (PGL1) (Heang and Sassa, 2012a). Subsequently, another atypical bHLH (Os02g0747900) was functionally characterized and named PGL2 (Heang and Sassa, 2012b). It is known that atypical bHLH proteins act as inhibitors of typical bHLH proteins that function as transcription factors since these have a DNA-binding domain as well along with the helix-loop-helix region (Toledo-Ortiz et al., 2003). The inhibition occurs through heterodimer formation. The interacting partner of PGL1 and PGL2 was identified and named APG (antagonist of PGL1/2) (Heang and Sassa, 2012a; Heang and Sassa, 2012b). As the overexpression of PGL1/PGL2 led to an increase in length and width of the rice grains, APG was considered as a negative regulator of rice grain length and width. This was proved by generating knockdown of APG by RNAi that showed the formation of longer grains than the wild type (Heang and Sassa, 2012a; Heang and Sassa, 2012b). Furthermore, it was observed that the formation of the longer grain in the transgenic plants was associated with an increase in length of the inner epidermal layer cells, indicating the size of the hull as an important determinant of the size of grains. However, the information on the expression of the genes influenced by APG is scant.
Three plant-specific transcription factors, namely, OsSPL13, OsSPL14, and OsSPL16, have also been observed to play diverse roles in determining the panicle morphology, without influencing the grain filling biochemistry. OsSPL13 is encoded by GW7, and it promotes cell expansion in the grain hull and positively regulates the grain length and yield. OsSPL16 encoded by GW8 on the other hand functions as a repressor of expression of GW7 that encodes OsSPL13. Thus, the control of grain length is linked to expression of both OsSPL13 and OsSPL16. The function of OsSPL14 that encodes OsSPL14 is, however, not linked to the grain trait. Rather, it controls the panicle branching and the number of grains per panicle, the mechanistic details of which are yet to be known. The involvement of OsSPL14 in determining panicle morphology is also indicated from the overexpression of miR164b-resistant NAC2, which leads to a better plant architecture with longer panicles and more grains compared with the non-transformed plant concomitant with upregulation of IPA1 (Jiang et al., 2018). Overexpression of NAC2 also leads to upregulation of DEP1, which also plays an important role in determining the panicle morphology in rice (Jiang et al., 2018).
Another plant-specific transcription factor is OsGRF4 (Growth-Regulating Factor 4), encoded by LGS1 and GS2, which unlike OsSPL13 and OsSPL14 regulates both grain length and width (Hu et al., 2015; Chen et al., 2019). OsGRF4 interacts with the transcriptional co-activator OsGIF1 (GRF-interacting factor 1) (Li et al., 2016). As GIF1 has been reported to participate in the control of cell proliferation during leaf development (Kim and Kende, 2004), the interaction of OsGRF4 and GIF1 seems to be an important aspect of regulation of grain length and width in rice. The view is strengthened from the fact that the transgenic rice overexpressing OsGIF1 produced larger and heavier grains than the wild type (Li et al., 2016).
Post-Translational Regulation
Regulation of grain filling at the post-translational level has been reported first through the 14-3-3 protein interaction. The first line of evidence to this is the presence of 14-3-3 protein associated with the starch granules (Sehnke et al., 2000; Sehnke et al., 2001). Besides, SSIII family proteins have been found to carry the consensus motif for 14-3-3 binding. Furthermore, pull-down experiments considering His-tagged SS, SUS2, and AGPS show clear interactions with the GST-GF14f recombinant protein (Zhang Z. et al., 2019). A comparative study considering superior and inferior spikelets showing good and poor grain filling, respectively, shows that poor grain filling is associated with a greater expression of the 14-3-3 protein (You et al., 2017; Zhang Z. et al., 2019). The evidence for a negative role of the 14-3-3 protein in grain filling also stems from an RNAi study in which GF14f-RNAi plants showing reduction in expression of the 14-3-3 protein also showed a significant increase in grain weight and length (Zhang Z. et al., 2019). As opposed to the interaction of the 14-3-3 protein with the starch-biosynthesizing enzymes limiting grain filling, a major QTL, GFR1 (Grain filling rate 1), has been mapped on the long arm of chromosome 10 that influences the grain filling by regulating the grain filling rate (Liu E et al., 2019). The candidate gene for GFR1 was identified to encode the DUF461 domain protein of unknown functions that interacts with the Rubisco small subunit, leading to an increase in the grain filling rate, the mechanism of which is not yet clear (Liu M et al., 2019). However, it is known that Rubisco is an important enzyme determining the rate of carbon assimilation during photosynthesis, and thus, the interaction of the GFR1 product with the enzyme might be increasing its carbon assimilation efficiency and the grain filling rate per se.
Post-Transcriptional Regulation
Evidence From Differential Expression Studies
Post-transcriptional regulation of grain filling occurs through the action of miRNAs, which is reflected from several direct and circumstantial pieces of evidence. The circumstantial pieces of evidence of the regulatory role of miRNAs were initially reflected from their differential expressions in the caryopses during different stages of the grain development. Such differential expressions influenced the transcript abundance of MYB, MADS-box, GRF, ARF, and the Brassinosteroid insensitive 1-associated receptor kinase 1 precursor (BAK1), regulating various aspects of grain filling and development (Zhu et al., 2008; Xue et al., 2009; Peng et al., 2013; Yi et al., 2013). Later on, the differential expressions of miRNAs in the spikelets based on their spatial locations have also been studied in order to throw light on the possible influence of miRNAs in differential grain filling in the superior and inferior spikelets of compact and heavy panicles (Peng et al., 2011; Peng et al., 2014; Chandra et al., 2021; Panigrahi et al., 2021; Teng et al., 2021). These studies revealed that several miRNAs, including miR164/miR167, miR159, miR1861, and miR396h targeting auxin-responsive factor ARF8, MYB, beta-amylase, and auxin efflux carrier protein, respectively, were expressed higher in the poorly filled inferior spikelets compared with the well-filled superior spikelets, indicating negative regulatory role of these miRNAs in grain filling. It has also been shown that the miRNAs may regulate the grain filling positively as well. For example, miR819a in rice spikelets correlates positively with grain filling (Peng et al., 2011), and the loss of function of its target, an E3 ubiquitin ligase, accelerates the grain filling (Song et al., 2007), although the nature of the role of the protein in grain filling is yet to be known. Similarly, miR812f/miR812j also seems to have a positive regulatory role in grain filling, expressing more in the spikelets that are filled well and less in those filled poorly (Song et al., 2007). The target prediction revealed that the miRNA cleaves 1-aminocyclopropane-1-carboxylate oxidase (ACO), the enzyme that catalyzes the final step of ethylene biosynthesis. The finding fits well with the observation that the poorly filled spikelets produce more ethylene than the well-filled spikelets (Panda et al., 2015; Sekhar et al., 2015a; 2015b).
Chandra et al. (2021) reported six miRNAs, including osa-miR444e, osa-miR156c, osa-miR2118o, osa-miR12477, osa-miR1861, and osa-miR1436, that expressed significantly more in the poorly filled spikelets than that in the well-filled spikelets and emphasized that the poor filling of the grains could be linked to the cleavage of 1) the MADS-box transcription factor (the target of osa-miR444e) that plays an important role in seed development (Liu E et al., 2019), 2) SPL19 (the target of osa-miR156c), an isoform of which (SPL16) controls grain size (Wang et al., 2012), 3) pullalanase (the target of osa-miR2118o), a starch-debranching enzyme responsible for the proper crystalline structure of the starch molecules, 4) SS1 (the target of osa-miR12477 and osa-miR1436), which is involved in the extension of the ∝-1,4-polyglucan chain of the amylopectin, and 5) ARF8 (the target of osa-miR164 and -miR167), which is possibly involved in rice grain filling by maintaining the cellular IAA level (Peng et al., 2014). The important regulatory role of miRNAs in grain filling is also reflected from differential miRNA expression in the Nipponbare rice variety in which moderate soil drying conditions (MD) improve grain filling in the otherwise poorly filled inferior spikelets (Teng et al., 2021). The improvement in grain filling in the inferior spikelets under MD accompanied significant upregulation of miR1861 and miR397, leading to a decrease in the transcript abundance of OsSBDCP1 (encoding repressor of starch synthase IIIa) and OsLAC (Laccase), the negative regulators of SSIIIa expression and BR signaling, respectively, essential for grain filling (Teng et al., 2021). In contrast, the expression of miR1432 was downregulated in the inferior spikelets, resulting in upregulation of OsACOT (acyl-CoA thioesterase), consequently elevating the level of abscisic acid (ABA) and IAA, both playing a positive role in grain filling (Teng et al., 2021). The negative regulatory role of miR1432 in grain filling is also indicated from its higher expression in the poorly filled inferior spikelets compared with the well-filled superior spikelets of the compact panicle Mahalaxmi (Chandra et al., 2021).
Evidence From Developing Genetically Modified Plants
In somewhat direct evidence of miRNAs in grain filling, it has been found that the overexpression of osa-miR397 leads to an increase in seed size as a result of an increase in brassinosteroid signaling caused by downregulation of the LAC (Laccase) gene, the target of the miRNA (Zhang et al., 2013). The transgenic rice overexpressing OsLAC produced smaller grains than the wild type (Zhang et al., 2013), suggesting that OsLAC negatively influences grain size, in confirmation with the positive regulatory role of miR397 (Teng et al., 2021). However, the molecular mechanism as to how LAC regulates brassinosteroid signaling is yet to be known. In contrast to the LAC gene, enhanced expression of the Growth-Regulating Factor 4 (OsGRF4) leads to an increase in the grain size, both length and width, and the locus is kept under suppressed conditions by the action of osa-miR396c (Hu et al., 2015; Li et al., 2016). Another miRNA that negatively regulates grain size is osa-miR1432 that targets OsACOT. Transgenic experiments have also revealed that the downregulation of expression of osa-miR1432 increases the seed size significantly, while its overexpression decreases the seed size and the seed development (Zhao et al., 2019). The increase in the grain size was found to be because of an increase in the grain filling rate, probably because of an increase in the IAA and ABA levels as the miR1432-defective mutant and the OXmACOT plant whose miR1432 target site was mutated showed increased accumulation of both the hormones (Zhao et al., 2019). OsACOT encodes thioesterase protein, which is an enzyme that hydrolyses Acyl-CoA liberating free fatty acid. It was postulated that the downregulation of osa-miR1432 might be increasing the cellular free fatty acid, leading to an increase in the fluidity of the membrane favoring transport of auxins into the endosperm cells that might be promoting the grain filling (Liu et al., 2016; Zhao et al., 2019). In a similar but somewhat indirect relationship between miRNA expression and grain quality, it has been observed that the overexpression of miR1848 reduces the grain length compared with the wild type (Xia et al., 2015). Further study revealed that miR1848 targets OsCYP51G3 encoding obtosifoliol 1,4-α-demethylase, which could be governing the transcript levels of GS3 and GS5 through brassinosteroid homeostasis (Xia et al., 2015), discussed above.
MiRNAs not only influence the grains trait but also the panicle morphology, including panicle branching and grain numbers. This is evident from the fact that the transgenic rice overexpressing osa-miR156b and -miR156h, which target several OsSPL genes, shows significant reduction in panicle size concomitant with delay in flowering (Xie et al., 2006). Subsequently, it was found that the WFP (Wealthy farmer’s panicle) locus in rice encoding OsSPL14 carries a point mutation that abolishes the binding site to osa-miR156a, and the mutation is associated with increased panicle branching and grain yield in rice (Jiao et al., 2010; Miura et al., 2010). Besides, miR156, miR529, and miR535 also target OsOSPL14 but at slightly shifted binding sites (Peng et al., 2019). The evidence of cleavage of OsSPL14 by the two miRNAs comes from the plants overexpressing miR529a and miR535. These transgenic plants show smaller panicles with lesser grain numbers compared with the non-transformed plants (Wang L. et al., 2015; Sun et al., 2019). Furthermore, through the generation of miR529a overexpressing (miR529a-OE) and miR529a target mimicry (miR529a-MIMIC) transgenic plants, it has been seen that the miRNA negatively regulates panicle branching and grain numbers by altering the expression of five OsSPL genes, namely, OsSPL2, OsSPL7, OsSPL14, OsSPL16, OsSPL17, and OsSPL18 (Yan et al., 2021). The presence of the miR164b target site on NAC2 also keeps the expression of NAC2 suppressed, which in turn keeps the expression of OsSPL14 in control, finally leading to no ideal plant architecture (Jiang et al., 2018).
OsGRF6 is another important gene that greatly influences panicle branches and the number of spikelets, as revealed from its overexpression (Gao et al., 2015). The loci are kept under suppressed conditions by the action of osa-miR396b, and the transgenic plants with reduced expression of miR396b show a significant increase in yield (Gao et al., 2015). OsGRF6 acts by directly binding with the promoter of OsARF2 and OsARF7 and the auxin-biosynthesis related genes like OsYUCCA (Gao et al., 2015). With regard to GRF, it has further been discovered that OsGRF4, OsGRF6, and OsGRF8 are targeted by miR396e and miR396f, and the mir396ef mutants, generated by knockout of MIR396ef (MIR396e and MIR396f), showed an increase in grain size and increased panicle branching, suggesting the negative regulatory role of these miRNAs in grain development and panicle morphology (Zhang et al., 2020). Unlike that of OsGRF, OsUCL8, an uclacyanin (UCL) of the plastocyanin family, is a negative regulator of panicle branching and grain number, and in accordance, the overexpression miR408 that targets the gene results in increased panicle branching and grain numbers in the transgenic plant compared with the wild type (Zhang et al., 2017). It has been seen that UCL8 affects copper homeostasis negatively, leading to a decrease in plastocyanin abundance required for photosynthesis (Zhang et al., 2017). However, any relationship between expression of the gene and panicle morphology is yet to be delineated.
Sometimes, a single miRNA may be involved in regulating the expression of two genes combined in determining a phenotype as that of SNB and OsIDS1 determining the inflorescence structure and panicle morphology (Lee and An, 2012). Both the genes are targeted by miR172, and overexpression of the miRNA results in severe defects in the phenotype concomitant with significant reduced expression of SNB and OsIDS1 (Lee and An, 2012).
Hormonal Control of Grain Filling
Plant hormones play important roles in all aspects of the plant development, including grain filling, some details for which are available for auxins, gibberellins, cytokinins, ABA, brassinosteroids, and ethylene. A large transient increase in the concentrations of cytokinins (CKs), gibberellins (GAs), IAA, and ABA observed in the endosperm liquid during grain development is indicative of their important role in grain filling (Yang et al., 2000; Eeuwens et al., 1975; Lur and Setter, 1993; Kato et al., 1993). Several other studies also elaborate important roles of the plant hormones in grain filling: 1) the levels of CKs and IAA reach to their maximum values just before the grain filling rate becomes the maximum and the endosperm cell division rate is at its peak (Yang et al., 2001), 2) the level of ABA in the endosperm cells reaches to the maximum level at the mid- and late-mid-grain filling stage and positively correlates with 14C partitioning, suggesting that the hormone mobilizes carbon assimilates into the grain during the grain filling (Yang et al., 2001), 3) application of CKs at the early stage of grain development increases the endosperm cell numbers and cell area, much required for efficient grain filling (Yang et al., 2003; Panda et al., 2018), 4) the rice spikelets that show good grain filling contain a higher level of CKs (Figure 3), IAA, and ABA compared to that showing poor grain filling (Zhang et al., 2009; Panda et al., 2018), and 5) CK increases the ploidy level of the endosperm cells and improves grain filling in the otherwise poorly filled basal spikelets in rice (Panda et al., 2018) (Figure 7).
[image: Figure 7]FIGURE 7 | Ploidy status (DNA class) of the endosperm nuclei of the apical and basal spikelets of a compact-panicle rice cultivar, OR-1918, sampled on the 9 days after fertilization from the control plant and that sprayed with 6-benzylaminopurine (BAP) during the heading. (A) The endosperm nuclei ploidy status is much lesser in the caryopses of the basal spikelet compared with that in the apical spikelets. (B) Upon the BAP application, the ploidy status of the endosperm nuclei in the basal spikelets increased significantly. Reproduced with the permission of the author (Panda et al., 2018).
The maintenance of the level of at least two of the plant hormones, namely, ABA and cytokinin, in the caryopses by decreasing their degradation rather than by promoting their synthesis has also been shown to play important roles in grain and panicle development. The best known among these is the prevention of breakdown of cytokinin through the downregulation of expression of cytokinin oxidase (OsCKX2) mediated by the loss of function mutation of Gn1a (Ashikari et al., 2005) and LP (Li M. et al., 2011). It has also been observed that under moderate soil drying conditions, the individual grain weight of the inferior spikelets is increased significantly compared with the well-watered control concomitant with nearly 50% increase in the level of ABA in the caryopses, and the increase in the level of ABA accompanied nearly a 5-fold decrease in the expression of ABA8OX2, an ABA oxidase (Wang et al., 2019).
Several recent studies have given more emphasis to the role of the plant hormones in carbon resource remobilization from the straw to the grains rather on the development of the grain per se in enhancing the rice yield. It has been stressed upon that remobilization of the carbon reserves from the straw to the grains is very important in grain filling in rice, and a higher ABA level in the straw favors this remobilization (Wang et al., 2020a, 2020b; Wang and Zhang, 2020). Although the mechanistic details of role of ABA in the carbon resource remobilization are not known, the level of ABA increased in the straw as much as by 10 times under moderate soil drying conditions that favored grain filling compared with that under the well-watered control (Wang et al., 2020b). The increase in the level of ABA accompanied a significant decrease in the expression of ABA8OX1 and ABA8OX2, both involved in degradation of the hormone (Wang et al., 2020a; 2020b). Furthermore, the level of ABA in the straw has also been related to the grain filling in the inferior spikelets as the conventional rice in which the grain filling is proper in the inferior spikelets contains a higher level of ABA in the straw compared with the super rice that shows poor filling of grains in the inferior spikelets (Wang et al., 2017).
Similar to ABA, brassinosteroid (BR), which is comparatively a recent addition in the plant hormones influencing panicle morphology, also appears to significantly influence grain filling through remobilization of the carbon resources from the straw to the grains (Wang et al., 2020b). This is reflected from a significant increase in the expression of the gene of brassinosteroid receptor kinase-interacting protein 135 as well as of the protein itself in the straw during the grain filling stage under the moderate soil drying conditions that improve grain filling in the inferior spikelets (Wang et al., 2017; Wang et al., 2020b). However, the functional significance of expression of this protein in regulation of the carbon resource remobilization is not yet clear.
Unlike the other plant hormones, ethylene is gaseous in nature and plays an inhibitory role in grain filling in rice (Sekhar et al., 2015a, 2015b; Panda et al., 2015; Das et al., 2016; Sahu et al., 2021). The hormone rapidly produces its effect as it diffuses in and out of the cells freely. The ethylene signal is perceived by plants through the endoplasmic membrane-bound receptors, including ERS1, ERS2, ETR2, ETR3, and ETR4, that contain the histidine kinase domain, CTR1 (Constitutive Triplet Response1), at the cytoplasmic side. The presence of ethylene inhibits the kinase activity of CTR1, leading to detachment of the C-terminal end (CEND) of the membrane-bound protein EIN2 that is phosphorylated otherwise. The EIN2 C-terminus (CEND) moves to the nucleus where it regulates the expression of EIN3 and EIL1 (EIN3-like). EIN3 activates the transcription of an ethylene-responsive element binding protein (EREBP) transcription factor, ERF1 (ethylene responsive factor1), and other EREBPs, the products of which in turn interact with the GCC-box present in the promoter of other ethylene-responsive genes and regulate their expression (Figure 8).
[image: Figure 8]FIGURE 8 | Cartoon showing the molecular mechanism of ethylene action. The histidine kinase domain of CTR1 (constitutive triplet response1) of the ethylene receptors (ERS1, ERS2, ETR2, ETR3, ETR4) keeps on phosphorylating the CEND (C-terminal end) of the membrane bond protein EIN2 (ethylene insensitive2). This follows its recognition by the F-box proteins ETP1/2 (EIN2 targeting protein1/2) for ubiquitination by the SCF (Skp1-Culin-F-box) E3 ligase complex that additionally contains RBX, a RING box protein, and the E2 ubiquitin-conjugating enzyme and degradation of the ubiquitinated protein by the 26S proteosome system. Upon binding of ethylene to the receptors, the CTR1 kinase activity is inhibited, and the CEND gets detached and moves to the nucleus where it blocks the ubiquitination of EIN3 (ethylene insensitive3)/EIL1 (ethylene insensitive3 like1), preventing its 26S proteosomal degradation. Accumulation of EIN3 promotes it to bind to the EBS (Ein3/EIL1-binding site) in the promoter of the ethylene responsive factor1 (ERF1) and other ethylene-responsive element binding proteins (EREBPs) to drive their expression. ERF1/EREBPs in turns bind to the GCC-box in the promoter of the ethylene-responsive genes, leading to ethylene response. In the absence of EIN2 in the nucleus, EIN3 is recognized by the F-Box proteins EBF1/2 (EIN3-binding F-Box Protein1/2) for ubiquitination through the SCF (Skp1-Culin-F-box) E3 ligase complex, followed by its degradation by the 26S proteosome. Adapted from Ji and Guo (2013).
Although hypothesized, the inhibitory role of ethylene in grain filling is not understood well and is only reflected from the circumstantial pieces of evidence, such as the following: 1) the inferior spikelets of the compact panicle of rice showing poor grain filling produce more ethylene than the superior spikelets producing well-filled grains (Panda et al., 2015; Sekhar et al., 2015a; 2015b; Das et al., 2016); 2) application of ethylene synthesis inhibitors like cobalt nitrate on the panicle at the initiation of heading significantly increases the grain filling in the inferior spikelets of the compact panicle (Mohapatra et al., 2000); 3) application of CEPA (2-chloroethylphosphonic acid), an ethylene-releasing compound, on the panicle at heading reduces the grain filling in the spikelets (Naik and Mohapatra, 2000); 4) application of 1-MCP, a blocker of ethylene receptors, on the panicle during heading leads to a significant increase in grain filling in the inferior spikelets producing a significantly higher amount of ethylene compared with the superior spikelets (Panda et al., 2016a; Zhang et al., 2015); 5) the spikelets of the compact-panicle cultivars, particularly the inferior ones showing poor grain filling, show higher expression of the ethylene receptors than that of the open-panicle cultivars, indicating that the response to ethylene is greater in the former than in the latter and hence the poor grain filling (Sekhar et al., 2015a); and 6) overexpression of ETR2 results in reduced seed setting and a decrease in the thousand grain weight, whereas knockdown of the receptor by RNAi results in an increase in the thousand grain weight (Wuriyanghan et al., 2009). In addition, it has been seen that the compact panicle showing poor grain filling shows a greater expression of the downstream ethylene signaling components, such as ERF2, ERF3, and EREBP5, compared with the lax panicle showing good grain filling (Sekhar et al., 2015a). Moreover, in the compact panicle, the expression of RSR1 (rice starch regulator1), an APETALA2/EREBP family transcription factor that shows a negative relationship with the expression of GBSS1, is higher in the inferior spikelets showing poor grain filling compared with the superior spikelets showing good grain filling (Sekhar et al., 2015a; Panda et al., 2016b). Overall, the inhibitory role of ethylene in grain filling in rice is well documented (Figure 9). In addition, the inhibitory role of the ethylene in grain filling can be perceived from the fact that CN− is formed as a byproduct during ethylene biosynthesis (Machingura et al., 2016), and it is well known that cyanide is a potent inhibitor of mitochondrial electron transport (Solomonson, 1981). The inhibitory role of ethylene on the mitochondrial electron transport is reflected from a comparative analysis of the JC-1 fluorescence signal from caryopsis of the inferior and superior spikelets of a compact panicle, with the former showing lesser JC-1 staining than the latter (Sekhar et al., 2015b). A lower JC-1 staining is suggestive of inhibition of the mitochondrial electron transport, and thus a poor generation of ATP, in the inferior spikelets compared with the superior ones showing intense JC-1 staining (Sekhar et al., 2015b). Since starch synthesis is an ATP-consuming process, its synthesis is likely to be inhibited in the inferior spikelets in which the mitochondrial electron transport is inhibited (Sekhar et al., 2015b).
[image: Figure 9]FIGURE 9 | Pictorial presentation of ethylene biosynthesis and ethylene action. Ethylene is synthesized from methionine by the action of ACC synthase that forms ACC (1-aminocyclopropane-1-carbooxylic acid), which is catalyzed by ACC oxidase (ACO) to yield ethylene and HCN as the byproduct. Methionine is regenerated via the Yang cycle. Ethylene action leads to the synthesis of Rice Starch Regulator1 (RSR1), which reportedly inhibits the expression of the type I starch-biosynthesizing enzymes, leading to inhibition of starch biosynthesis and poor grain filling. Inhibition of ethylene synthesis by AVG (2-aminoethoxyvinyl glycine), AOA (2-aminoooxyacetic acid), AIB (aminoisobutyric acid), Co2+, and the miRNAs miR812f/j and blocking of the ethylene action by the use of ethylene receptor blockers like 1-MCP (1-methylcyclopropene), Ag+, and NBD (2,5-norbornadiene) lead to no ethylene action resulting in proper filling of the grain. MTA, methylthioadenine; Ado-Met, adinosyl-methionine; ERS, ETR, ethylene receptors; AC, apical caryopses; BC, basal caryopses.
CONCLUSION AND PERSPECTIVES
It is well recognized that rice is a staple crop and its production must increase with the increase in the population of the world. The undergoing research studies the world over focusing on increasing the rice yield have also raised concern, which the scientific community has on near stagnation of the rice production during the past decade (https://www.statista.com/statistics/271972/world-husked-rice-production-volume-since-2008/). So far, the green revolution in rice production the world has experienced is only through breeding and advanced agricultural practices. The two modern pillars of applied research, molecular biology and biotechnology, have so far contributed little in increasing the rice yield, despite our current in-depth understanding on the biochemistry, molecular biology, and genetics of the yield characteristics in rice. An important phenomenon related to grain filling that has been discovered is the positive correlation between grain filling and the inter-spikelet distance, that is, the grain filling is poor, particularly in the basal spikelets, when the panicle is compact bearing numerous spikelets (Sahu et al., 2021). Although the spikelet thinning treatment of heavy panicles confirms that all the spikelets, including the poorly filled inferior ones, are genetically competent to develop into well-filled grains (Kato, 2004; You et al., 2016), it does not provide any information on if the poor grain filling was related to a low inter-spikelet distance. The discovery that the panicle branching is greatly regulated by the genes like Gn1a, APO1, LOG, DEP1, RNC1, RNC2, and so forth, nevertheless, does indicate genetic control on the inter-spikelet distance. Hence, it is perceivable that the inter-spikelet distance is genetically controlled. If so, the identification of such gene(s) would provide the researchers a chance to manipulate the inter-spikelet distance through biotechnological interventions, and hence, it might be possible to convert a compact panicle into an open architecture without altering the number of spikelets borne on them. Considering the fact that an inter-spikelet distance greater than 0.5 cm favors grain filling, converting a compact panicle into an open architecture should certainly lead to improvement in grain filling. In such a case, it is highly possible that the production of rice could be increased by as much as 30% as in a compact panicle, more than 30% of the spikelets remain unfilled. Thus, it would be possible to achieve the production target set for the year 2050. Working on the hypothesis, breeding is in progress in our lab for identification of the QTLs for panicle compactness. It is also possible to increase the production of the crop by taking a targeted molecular biology approach to increase the grain size and weight as currently, our knowledge on the genes regulating these traits is also sufficiently enough for such an attempt. However, although such an approach may lead to an increase in rice production, it would be of limited implication as the demand of rice is greatly dependent on its quality, which might be compromised. On the other hand, if rice production is increased by increasing grain filling in the heavy and compact-panicle cultivars producing grains of desired quality, it would be possible to achieve both the quality and the production target. In this regard, the discovery of a positive relationship between the levels of ABA and BRs in the straw and the carbon resource remobilization from the straw to the grains leading to improvement of grain filling in the inferior spikelets (Wang et al., 2020a; 2020b) is of immense significance. On this basis, genetic manipulation leading to an increase in the synthesis of the hormones in the straw, particularly during the grain filling stage, could increase the rice yield significantly. To achieve this, the enzymes acting as the rate-limiting step in the synthesis of these hormones may be identified and their genes may be overexpressed using the promoters that become active in the straw during the grain filling period.
The modern biotechnological intervention techniques can also be utilized in many other ways for increasing the rice production. First, as the expressions of the starch-biosynthesizing enzymes have been noted to be significantly less in the poorly filled inferior spikelets (Panda et al., 2015), their overexpression, particularly of SUS, using a seed-specific promoter could be of much help in increasing the grain filling of these spikelets and the rice production per se. Second, increasing scavenging of the CN− formed during ethylene biosynthesis by seed-specific overexpression of β-CAS, the scavenger of CN−, may improve the grain filling significantly as CN− is a potent inhibitor of enzyme activity. Work on this line is also in progress in our lab. Third, and most importantly, since ethylene biosynthesis is supposedly the root cause of inhibition of grain filling, genetic manipulation may be considered in reducing the ethylene biosynthesis itself for improvement in grain filling. One way of approaching a solution to the problem would be the spikelet/seed-specific RNAi-mediated silencing of ACO catalyzing the final and crucial step of ethylene biosynthesis. Besides, the synthesis of ethylene can also be reduced by spikelet/seed-specific overexpression of miR812f,j that targets the product of ACO. The spikelet/seed-specific inhibition of ethylene biosynthesis would not only lead to a decrease in accumulation of the toxic CN− but also lessen the level of ethylene signaling components, such as RSR1, believed to inhibit the expression of the type I starch-biosynthesizing enzyme. Keeping in view the stagnation of rice production since the past decade and inability of the breeders to improve the rice yield further substantially, biotechnological intervention is probably the only way left out in increasing the rice yield further to achieve the production target by the year 2050.
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Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. is a major bread wheat disease worldwide with yield losses of up to 100% under severe disease pressure. The deployment of resistant cultivars with adult plant resistance to the disease provides a long-term solution to stripe rust of wheat. An advanced line from the International Winter Wheat Improvement Program (IWWIP) 130675 (Avd/Vee#1//1-27-6275/Cf 1770/3/MV171-C-17466) showed a high level of adult plant resistance to stripe rust in the field. To identify the adult plant resistance genes in this elite line, a mapping population of 190 doubled haploid (DH) lines was developed from a cross between line 130675 and the universal stripe rust-susceptible variety Avocet S. The DH population was evaluated at precision wheat stripe rust phenotyping platform, in Izmir during 2019, 2020, and 2021 cropping seasons under artificial inoculations. Composite interval mapping (CIM) identified two stable QTLs QYr.rcrrc-3B.1, and QYr.rcrrc-3B.2, which were detected in multiple years. In addition to these two QTLs, five more QTLs, QYr.rcrrc-1B, QYr.rcrrc-2A, QYr.rcrrc-3A, QYr.rcrrc-5A, and QYr.rcrrc-7D, were identified, which were specific to the cropping year (environment). All QTLs were derived from the resistant parent, except QYr.rcrrc-3A. The significant QTLs explained 3.4–20.6% of the phenotypic variance. SNP markers flanking the QTL regions can be amenable to marker-assisted selection. The best DH lines with high yield, end-use quality, and stripe rust resistance can be used for further selection for improved germplasm. SNP markers flanking the QTL regions can aid in identifying such lines.
Keywords: QTL mapping, yellow rust, adult plant resistance, doubled haploid (DH), wheat
INTRODUCTION
Wheat stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is one of the most important and devastating diseases of common wheat (Triticum aestivum L.) around the world (Hovmøller et al., 2011). It remains a significant threat to wheat yield loss, and under severe disease pressure, yield losses of up to 100% are observed (Ali et al., 2014). Stripe rust was historically considered a disease of wheat-growing areas with cool temperatures; however, with the emergence of adapted races to high temperatures and more aggressive races, the disease is now spreading to areas where it was previously considered unfavorable (de Vallavieille-Pope et al., 2012; Muleta et al., 2017; Godoy et al., 2018). Today, the new pathotypes of stripe rust are prevalent from Europe to Australia, Asia, and America and as a result threatens the wheat production on a global scale (Ali et al., 2014).
The continuous occurrence of new stripe rust races requires the identification of new sources of resistance and the deployment of resistant varieties in a timely manner. The conventional approaches for controlling stripe rust include cultural practices like early sowing and crop rotation to avoid infection during the disease infestation period (Boyd 2005). Additionally, fungicide application is also an effective way of controlling stripe rust; however, it is not the most economical and recommended method (Brar et al., 2018). The most effective strategy to control stripe rust outbreaks is the exploitation of genetic resistance and pyramiding of multiple minor and major stripe rust resistance genes conferring seedling and adult plant resistance (APR) (Chen et al., 2014; Tadesse et al., 2014; Muleta et al., 2017; Cobo et al., 2018). Most breeding programs in the world rely on two types of genetic resistance based on major and minor genes (Chen et al., 2014). Genetic resistance due to major genes is termed as a seedling and/or all-stage resistance and is often race-specific and based on the gene for gene hypothesis and is effective throughout a plant’s life (Burdon et al., 2014; Tehseen et al., 2021). However, such resistance in commercial wheat cultivars is often short-lived and is overcome by new races of stripe rust pathogens virulent on the major resistance gene (Boyd 2005; Ellis et al., 2014; Hulbert and Pumphrey 2014), whereas the minor gene resistance is often not expressed until in the later stages of plant life and is commonly referred to as horizontal or adult plant stage resistance (Steele et al., 2001; Boyd 2005). Therefore, many wheat breeding programs consider pyramiding of both seedling and APR genes for enhancing the durability of resistance to multiple prevalent races of stripe rust, hence minimizing yield losses. Due to new emerging races of the stripe rust pathogen virulent to numerous seedling or race-specific genes, the best strategy would be to stack multiple non-race-specific or APR genes in combinations for durable stripe rust resistance (Rajaram 2015). Therefore, although the characterization of seedling resistance genes from highly resistant lines is crucial, the elite breeding lines with multiple adult plant QTLs having high to moderate resistance levels should be considered more important. Elite breeding lines having higher agronomical, biotic, and abiotic stress resistance and end-use quality traits tend to be the ideal candidates for gene mapping as they can be readily used in the ongoing breeding programs.
The bread wheat has a very large genome size; additionally, the allopolyploidy further hampers the progress of mapping new quantitative trait loci (QTLs) and as a result slows down the breeding process (Liu et al., 2021). The whole genome of the common wheat cultivar Chinese Spring was completed 14 years later than some of the other gramineous crops such as rice; thus, it made genetic association comparisons at the whole genome level more complex than other crops (Yu et al., 2002; Wang et al., 2018). Recently, with advances in wheat genome sequencing, multiple versions of the annotated wheat genome have been published consequently accelerating forward genetic research (Clavijo et al., 2017; Zimin et al., 2017; Appels et al., 2018). Today, due to high-throughput sequencing platforms, the development of a large number of high-quality markers is possible, thus facilitating more efficient mapping techniques to analyze a large number of traits across different treatments and environments and opening new opportunities in wheat breeding for biotic and abiotic studies (Rimbert et al., 2018). The International Centre for Agricultural Research in Dry Areas (ICARDA) and the International Maize and Wheat Improvement Centre (CIMMYT) have both played pivotal roles in the development of high-yielding, abiotic stress-tolerant, disease-resistant, higher end-use quality, and widely adaptive global wheat germplasm (Wu et al., 2021).
An improved wheat line 130675 from the International Winter Wheat Breeding Program (IWWIP) (Avd/Vee#1//1-27-6275/Cf 1770/3/MV171-C-17466) selected from the Facultative and Winter Wheat Observation Nursery (FAWWON 2013-2014) possesses several desirable traits, including yield and early maturity, and showed APR to stripe rust in multiple field trials in Turkey. However, it was susceptible to PstS2 and Warrior races at the seedling stage, indicating typical APR for both races. The resistance to stripe rust of the wheat line 130675 has not been characterized. Therefore, the current study aimed to map and characterize adult plant stripe rust resistance loci in the doubled haploid (DH) population derived from a cross between wheat line 130675 and universal stripe rust-susceptible variety Avocet S.
MATERIAL AND METHODS
Plant Material and Pathogen
The panel of 190 DH lines from the cross of an improved IWWIP line 130675 (Avd/Vee#1//1-27-6275/Cf 1770/3/MV171-C-17466) and Avocet S (AvS) were evaluated for adult plant stripe rust resistance. The DH lines derived from the F1 generation (F1DH) were developed using the wheat maize hybridization protocol (Sadasivaiah et al., 1999). The parents were selected due their diverse genetic backgrounds and different levels of stripe rust resistance. The stripe rust isolates PstS2 and Warrior (PstS7) were used in artificial field inoculations, and both belonged to PstS2v27 and PstS7vWarrior lineages, and the virulence/avirulence formula of the two races are given in Table 1.
TABLE 1 | Virulence/avirulence formula for the PstS2 and Warrior pathotypes of Pst.
[image: Table 1]Field Adult Plant Resistance Assessment
The field experiments were carried out at the precision wheat stripe rust phenotyping platform, Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey, during the cropping seasons 2019, 2020, and 2021. The experiment was laid out as an augmented design with un-replicated test entries and repeated check rows in 12 blocks. Each block contained 16 test entries and seven checks. Thirty seeds from each accession were planted in a 1-m row with 30-cm spacing between the rows. To ensure sufficient inoculum production for disease infection, a mixture of the universally susceptible varieties “Morocco,” “Seri 82,” and “Avocet S” along with the locally susceptible varieties “Bolani,” “Basribey” (also derived from the CIMMYT cross “Kauz”), and “Cumhuriyet 75,” “Kunduru,” “Kasifbey,” and “Gonen” were planted as spreader after every 20 rows, as well as spreader rows bordering the nurseries. The experiments were managed as per the standard local agronomic practices during the crop season.
PstS2 and Warrior (PstS7) pathotypes of stripe rust preserved at RCRRC were multiplied using susceptible variety AvS, and the freshly collected urediniospores were used for field inoculations. The DH panel along with the spreader rows bordering the experiment was artificially sprayed with a mixture of the two races in talcum powder using a backpack sprayer at the seedling, tillering, and booting stages. The field was irrigated through a mist irrigation system.
Field scoring started when disease severity reached 100% on the susceptible checks, “Morocco” and AvS. Adult plant responses were recorded three times at 10-day intervals for the major infection types resistant (R), moderate resistant (MR), moderate (M), moderate susceptible (MS), and susceptible (S) (Roelfs et al., 1992), and the disease severities (0-100%) following the modified Cobb’s scale (Peterson et al., 1948). All the three recordings were averaged, and the coefficients of infection (CI) were calculated. The CIs were calculated by multiplying the constant values of the infection types and disease severity. The constant values of infection types were used as R = 0.2, MR = 0.4, M = 0.6, MS = 0.8, and S = 1 (Saari and Wilcoxson 1974; Stubbs et al., 1986).
DNA Extraction and Genotyping
Genomic DNA was extracted from fresh leaves collected from three individual 10-day-old seedlings using a modified cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle 1987). The seedling leaves were collected in labeled Eppendorf tubes and stored in an Ultra freezer at −80°C for subsequent DNA extraction. The leaf samples were grounded using a mortar in liquid nitrogen until a fine powder was obtained, and 0.1 g of the powdered leaf samples were used for DNA extraction using the CTAB method (Doyle and Doyle 1987). The extracted DNA was dissolved in 100 µl Tris–EDTA (TE) buffer. The samples were analyzed on 1% agarose gel for the purity test and quantified with a biophotometer (BioPhotometer, Eppendorf). The DNA samples were then kept at −80°C. The extracted DNA samples of the DH panel and two parental lines were sent to Diversity Arrays Technology Pty Ltd. (Canberra, Australia, http://www.DiversityArrays.com/) for genotyping. The genotypic data obtained for 172 DH lines including parents were filtered, and markers with > 10% missing data and < 0.1% minor allele frequency were eliminated and not used in the subsequent analysis.
Statistical Analysis
Descriptive statistics and analysis of variance (ANOVA) were performed using the R package “AugmentedRCBD”. Broad-sense heritability was estimated as the ratio of genetic variance (σ2g) to phenotypic variance (σ2g + σ2ε), where σ2ε represents error variance and is represented as follows:
[image: image]
Linkage Map Construction and QTL Mapping
The marker genetic data were used to construct the linkage map using the software QTL Ici-Mapping software V4.2. The Kosambi function was used to calculate the genetic distances between the markers (Kosambi 1944). The stripe rust resistance QTLs were estimated in the DH population based on the CI of the 3 years. The composite interval mapping (CIM) method was used for the detection of QTL using QTL Ici-Mapping software V4.2. The threshold value for the logarithm of odds (LOD) score was calculated after running a permutation test of 1,000 runs and was 2.1, 2.0, and 2.4 for 2019, 2020, and 2021 experiments, respectively, with a walking step of 1 cM (Van Ooijen 1999). The QTLs were also reported significant at a threshold of 2.0 if found in multiple years. The effects of QTLs were calculated as the proportion of phenotypic variance explained by the QTL. The genomic locations of the significant QTL were indicated using the software Map Chart V2.3.
Gene Annotation
The candidate genes with their putative proteins/enzymes were predicted within the interval of 500 kb upstream and downstream from the closest significant markers using Ensembl, a plant database available at http://plants.ensembl.org/Triticum_aestivum/Info/Index, and the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.1 annotations (Appels et al., 2018) available at https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations. The nearby genes in the linkage regions of significant markers with putative functions that could be related to the trait were selected as candidates.
RESULTS
Field Assessment of Resistance
In adult plant assessment, the estimates of genetic variance identified significant differences among the DH lines (Table 2). A small variation was observed in the disease severity scores of the tested accessions during the 3 years as in 2021, and the data were more skewed toward the resistance side (Figure 1). Overall, during the 3 years 34.9, 36.9, and 47.92% of the DH lines showed resistance response. The mean values of CI for 2019 and 2020 were 34.5 and 37, respectively, whereas in 2021, the mean value dropped to 21.6. The mean values for the parents ranged from 0.2 to 20 for the resistant parent, while 79 to 90 for the susceptible parent. The broad-sense heritability was 87.04, 91.14, and 77.18 for 2019, 2020, and 2021, respectively. Significant positive correlations were found between the 3 years of field data. The highest correlation (0.69) was found between the CIs from 2019 and 2020, whereas the lowest CI correlation (0.38) was observed between 2019 and 2021 (Figure 1).
TABLE 2 | Basic statistics of adult plant response of bread wheat DH lines against PstS2 and Warrior pathotypes of stripe rust, estimates of variance components, and broad-sense heritability.
[image: Table 2][image: Figure 1]FIGURE 1 | Scatter plot (lower triangle) with the distribution of phenotypic data during 2019, 2020, and 2021 field years from left to right anticlockwise, respectively; density plot (diagonal line) and Pearson correlation analysis (upper triangle) between the 3 years of DH population in field condition. The X-axis and Y-axis represent the stripe rust coefficient of infection (CI).
Linkage Map and Identification of QTLs for Adult Plant Resistance to Stripe Rust in the DH Population
After filtering for quality parameters such as missing data and segregation distortion, a set of 590 skeleton SNP markers were used to construct a linkage map for the 130675 × AvS DH population. The markers covered the whole genome and were divided into 28 linkage groups, marker order in the linkage group was generally in agreement with the published consensus map (Li et al., 2015). Genomes A, B, and D had 244 (41.33%), 237 (40.17%), and 109 (18.47%) markers, respectively, and the total map length was 2,232 cm. Composite interval mapping identified 10 QTLs in 3 years on seven genomic regions across the genome for resistance to yellow rust (Yr) at the adult plant growth stage; the QTLs’ were named QYr.rcrrc.1B, QYr.rcrrc.2A, QYr.rcrrc.3A, QYr.rcrrc.3B.1, QYr.rcrrc.3B.2, QYr.rcrrc.5A, and QYr.rcrrc.7D. Out of these 10 QTLs, three were detected in the 2019 and 2021 field years, while four were detected in 2020. The QTLs were detected on seven genomic regions in chromosomes 1B, 2A, 3A, 3B, 5A, and 7D (Figure 2).
[image: Figure 2]FIGURE 2 | Segments of genetic linkage maps of QTL conferring adult plant stripe rust resistance. Single-nucleotide polymorphism (SNP) markers are shown on the left and their genetic positions (cM) are on the right of chromosomes. The region containing the QTL is indicated by a vertical bar on the right and followed by the name of the QTL. The markers in red are associated with the QTL.
The phenotypic variance explained by an individual QTL ranged from 3.4 to 20.6%. Two stable QTLs on chromosome 3B, that is, QYr.rcrrc.3B.1 and QYr.rcrrc.3B.2 were detected in multiple years and contributed 5.2–19.8% toward phenotypic variation. The QTL that explained a phenotypic variance of more than 10% was considered as a major QTL. All QTLs were contributed by the resistant parent 130675 except one on chromosome 3A, which was contributed by the susceptible parent AvS (Table 3).
TABLE 3 | Quantitative trait loci (QTLs) associated with adult plant stripe rust resistance in DH population in different environments.
[image: Table 3]QTL Region Physical Positions and Candidate Gene Prediction
The alignment of significant QTL markers with reference genome confirmed their physical positions according to chromosome assignments (Table 4). The largest physical distance of 53.7 Mb spanned between the flanking markers of QYr.rcrrc-5A. The QYr.rcrrc-5A also spanned a large interval on the genetic map compared with other QTLs (Figure 2). The physical distances between QYr.rcrrc-2A, QYr.rcrrc-3B.1, and QYr.rcrrc-7D were 1.1, 4.7, and 0.6 Mb, respectively. The expressed genes between the flanking markers of the QTL were identified using the BLASTn searches from the flanking markers sequences (Table 5). The high confidence genes which were previously reported to be associated with disease resistance were selected as candidate genes.
TABLE 4 | Physical position of the SNP markers that flank the quantitative trait loci (QTLs).
[image: Table 4]TABLE 5 | List of candidate genes for each QTL with putative proteins/enzymes.
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Stripe rust is a devastating disease of wheat and could result in 100% yield loss under high disease pressure (Manickavelu et al., 2016). Historically, it was considered a disease in wet and cool climates but with the emergence of new races adapted to high temperatures the disease has sporadically spread to areas that were once considered unsuitable for its growth and disease development (Hovmøller et al., 2016; Ali et al., 2017). The most effective strategy to manage the continuous appearance of new stripe rust races is genetic resistance and the development of lines harboring both minor and major genes (Chen et al., 2014). The plant breeders tend to stack multiple different traits in elite backgrounds; therefore, breeding for one trait is not always simple and even in the presence of highly resistant germplasm breeders do not necessarily always utilize it due to the undesirable linkage drag associated with resistance locus. Hence, to circumvent the potential linkage drag, the breeders focus on identifying and mapping resistance genes from elite breeding lines with accumulated favorable morphological and agronomic traits. The current study used an advanced breeding line with a distinct resistance response to stripe rust from the IWWIP breeding program.
Overall, 10 QTLs in seven genomic regions across the three environments (years) were detected in the current study. The phenotypic variance explained by the QTL ranged from 3.4 to 20.6% confirming their significant effects in reducing stripe rust severity. The significant QTLs detected in the study were compared with the previously published stripe rust known genes and QTL based on their chromosome location, physical position, pedigree, linked markers, and rust resistance.
The QYr.rcrrc-1B detected in the current study on chromosome 1B overlapped the several previously reported Yr QTL and an APR gene Yr29 (William et al., 2003; Bansal et al., 2014; Maccaferri et al., 2015). The pleiotropic locus Yr29/Lr46/Sr58 on chromosome 1B has been widely used in breeding programs around the world, including CIMMYT wheat germplasm (Gebrewahid et al., 2020). The Yr29/Lr46/Sr58 locus is associated with a wide-spectrum resistance level explaining 2.9–74.5% of the phenotypic variation in different bi-parental mapping populations and under different environmental trials (Zhang et al., 2019). The stripe rust Yr29 is a slow rusting adult plant resistance gene and its effect decreases with the increase in the inoculum load. This could be the plausible reason why QYr.rcrrc-1B was detected only in the 2019 crop year. QYr.rcrrc-1B is most likely the Yr29/Lr46/Sr58 complex.
The QYr.rcrrc-2A detected in the current study does not correspond to any of the previously identified Yr QTL and/or genes. A seedling resistant gene Yr1 is also located on the long arm of chromosome 2A; however, according to the physical position of Yr1, the gene and the QYr.rcrrc-2A are 15.4 Mb apart at the distal end. QYr.wpg-2A.6 (IWA966) a minor effect APR QTL was also reported on chromosome 2A and is the closest QTL to QYr.rcrrc-2A and the two are 6.79 Mb apart (Naruoka et al., 2015). Since QYr.rcrrc-2A is a major QTL and does not overlap with any of the previously reported Yr QTL/gene; furthermore, the closest gene to QYr.rcrrc-2A is Yr1 which is a seedling resistant gene and is ineffective against the Warrior (PstS7) race used in the study. Therefore, based on the physical locations of the close-by QTL and resistance pattern of the nearby genes, the QTL QYr.rcrrc-2A is considered novel.
QYr.rcrrc-3A was found significant to the stripe rust resistance in the field. The locus overlapped a previously reported Yr QTL QYr.cim-3A_Avocet (Rosewarne et al., 2008). The QYr.cim-3A_Avocet was found in a RIL population derived from a cross between AvS and Pastor, the two QTLs expressed similar total phenotypic variation and the source of resistance in both the populations was cultivar AvS. Therefore, based on the physical overlapping positions, a similar effect of QTL, and sources of resistance in both studies, it was concluded that both QYr.rcrrc-3A and QYr.cim-3A_Avocet represent the same genomic region.
Two stable QTLs such as QYr.rcrrc-3B.1 and QYr.rcrrc-3B.2 were detected on the short and long arms of chromosome 3B, respectively. QYr.rcrrc-3B.1 lies in the same genomic region as the several Yr QTLs and genes reported earlier on the short arm of chromosome 3B (Singh et al., 2000; Suenaga et al., 2003; Basnet et al., 2014; McIntosh et al., 2014). The seedling resistance gene Yr4 is avirulent on one of the pathotypes that is PstS7 used in the study for artificial inoculation. Based on the physical position and virulence/avirulence pattern it is likely that QYr.rcrrc-3B.1 represent is linked to Yr4; however, further studies are required to confirm the relationship as some studies have reported a different APR locus in the absence of Yr4 (Buerstmayr et al., 2014). QYr.rcrrc-3B.2, the second stable QTL detected in all three field experiments was found on the long arm of chromosome 3B and overlapped the previously reported QYr.cim-3B_Pastor, QRYr3B.2, and SNP1863248 (Rosewarne et al., 2012; Jighly et al., 2015; Tehseen et al., 2021). The three previously reported QTLs conferred APR; therefore, it is likely that QYr.rcrrc-3B.2 is linked to these QTLs.
A minor effect of QTL QYr.rcrrc-5A was detected on the long arm of chromosome 5A and overlapped the same genomic region previously reported to be linked with several APR and high-temperature adult plant (HTAP) Yr QTL (Boukhatem et al., 2002; Rosewarne et al., 2012; Hou et al., 2015). An APR gene with a moderate level of resistance is also located in the same genomic location (Chen et al., 2021). Since QYr.rcrrc-5A is a minor effect on QTL and Yr34 also shows moderate resistance it is likely that QYr.rcrrc-5A is linked with Yr34; however, further genetic analysis is required to confirm the relationship as no source of resistance with Yr34 was used in the differential set for race typing of the pathotypes used in the current study.
Two Yr resistant genes and a seedling resistance marker are previously reported on chromosome 7D (Maccaferri et al., 2015; Bulli et al., 2016; Tehseen et al., 2021). However, the locus QYr.rcrrc-7D detected in the current study is outside the genomic regions of the two genes and the QTL. The approximate distance between QYr.rcrrc-7D and the gene Yr33 and the seedling resistant locus QYr.7D_seedling is 33Mb and 17 Mb, respectively. Thus, based on the physical distances QYr.rcrrc-7D is a novel QTL region.
Regarding the predicted proteins in the current study, the candidate genes include NB-ARC domain proteins, which are involved in pathogen recognition and subsequent activation of plants’ defense mechanisms (Van Ooijen 1999; Van Ooijen et al., 2008; Steele et al., 2019); protein kinase domain proteins, which modify other proteins and are vital in several signaling and regulatory pathways in addition to apoptosis and cell division (Brueggeman et al., 2008); and leucine-rich repeats (LRR), which play a vital role in plants’ defense mechanism and are typically annotated to resistance genes (Jones and Jones 1997; Yuan et al., 2018), F-box domain proteins; they are involved in plant vegetative and reproductive growth and development. These proteins are reported to regulate cell death and defense when the pathogen is recognized in the tobacco and tomato plant (van den Burg et al., 2008), and NAC domain proteins which are involved in several processes, including the formation of secondary walls, senescence, and abiotic and biotic stresses (Puranik et al., 2012; Ng et al., 2018; Yuan et al., 2019). All candidate genes have been previously reported to play role in the plant’s defense mechanism; therefore, it is highly likely that they could be one of the candidate genes for stripe rust resistance. However, these putative candidate proteins should be used with caution as they are not the only proteins found within the confidence intervals of the linked markers but are the ones that have been reported to be involved in plant defense and disease and/or stress resistance mechanisms.
Marker-assisted breeding (MAB) is a valuable tool and is being utilized in many breeding programs around the world for different kinds of crops. MAB allows successful introgression of biotic and abiotic stress-resistant genes in high-yielding susceptible backgrounds (Ren et al., 2012). Therefore, detection of significant and tightly linked markers is desirable, which can be converted into breeder-friendly markers to be utilized in the breeding programs through MAB. In this study, we identified seven QTLs associated with APR to stripe rust across environments including QYr.rcrrc-1B, QYr.rcrrc-2A, QYr.rcrrc-3A, QYr.rcrrc-3B.1, QYr.rcrrc-3B.2, QYr.rcrrc-5A, and QYr.rcrrc-7D, and they were closely linked to SNP markers 3953714, 1091012, 2253031, 5971264, 5370854, 1141822, and 1276810, respectively. With new extensive research and cloning of APR genes, the overall function of the APR genes is better understood. However, the durability of any APR gene or the combination of APR genes is still a mystery and is based on prediction and time (Lowe et al., 2011). Nevertheless, the QTL reported in the current study particularly QYr.rcrrc-2A and QYr.rcrrc-7D were new QTL for APR to stripe rust. They should enhance the genetic basis of resistance to stripe rust, and their closely linked markers can be converted into breeder-friendly markers and utilized in MAB and stacking of multiple APR genes in common wheat backgrounds for durable resistance to stripe rust.
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Landraces are considered a valuable source of potential genetic diversity that could be used in the selection process in any plant breeding program. Here, we assembled a population of 600 bread wheat landraces collected from eight different countries, conserved at the ICARDA's genebank, and evaluated the genetic diversity and the population structure of the landraces using single nucleotide polymorphism (SNP) markers. A total of 11,830 high-quality SNPs distributed across the genomes A (40.5%), B (45.9%), and D (13.6%) were used for the final analysis. The population structure analysis was evaluated using the model-based method (STRUCTURE) and distance-based methods [discriminant analysis of principal components (DAPC) and principal component analysis (PCA)]. The STRUCTURE method grouped the landraces into two major clusters, with the landraces from Syria and Turkey forming two clusters with high proportions of admixture, whereas the DAPC and PCA analysis grouped the population into three subpopulations mostly according to the geographical information of the landraces, i.e., Syria, Iran, and Turkey with admixture. The analysis of molecular variance revealed that the majority of the variation was due to genetic differences within the populations as compared with between subpopulations, and it was the same for both the cluster-based and distance-based methods. Genetic distance analysis was also studied to estimate the differences between the landraces from different countries, and it was observed that the maximum genetic distance (0.389) was between the landraces from Spain and Palestine, whereas the minimum genetic distance (0.013) was observed between the landraces from Syria and Turkey. It was concluded from the study that the model-based methods (DAPC and PCA) could dissect the population structure more precisely when compared with the STRUCTURE method. The population structure and genetic diversity analysis of the bread wheat landraces presented here highlight the complex genetic architecture of the landraces native to the Fertile Crescent region. The results of this study provide useful information for the genetic improvement of hexaploid wheat and facilitate the use of landraces in wheat breeding programs.
Keywords: wheat landraces, genetic diversity, population structure, SNP markers, analysis of molecular variance (AMOVA)
INTRODUCTION
Wheat crop is grown and cultivated on more land area than other commercial crops and provides basic human nutrition. Wheat as food is a source of energy and protein for about two billion people and plays an indispensable role in food security as it provides 20% of world caloric consumption (Lawlor and Mitchell, 2000; Bhatta et al., 2017). With the growing population, climate constraints, changes in lifestyles, globalization of taste, urbanization, and development, there is a need for genetic improvement in wheat for yield and quality. It has been estimated that there should be a 50% increase in wheat production by 2050 (Grassini et al., 2013; Ray et al., 2013; Marcussen et al., 2014; Yang et al., 2020). As the environment plays an important role in wheat performance, it is difficult to find an area free from (biotic/abiotic) stress (Fan et al., 2012). Therefore, it is essential to measure each potential line performance across many years and under wide geographical regions to get higher yield potential.
Hexaploid wheat is comprised of three genomes (A, B, and D) as a result of natural hybridization and thus does not share any direct wild ancestor with the same genomic constitution (Terasawa et al., 2009). Triticum urartu, Aegilops speltoides, and Aegilops tauschii are the parental sources of genomes A, B, and D, respectively (Kunert et al., 2007; van Ginkel and Ogbonnaya, 2007; Charmet, 2011; Nielsen et al., 2014). Hence, it is essential to protect and sustain the existing genetic variability among hexaploid wheat accessions.
The success of breeding programs relies on the presence of significant genetic variability in a source population. High genetic variability boosts the chances to select superior genotypes from a population (Khan et al., 2015). On the other hand, a narrow genetic base is one of the major constraints, as it makes the plants more vulnerable to stress (biotic/abiotic) conditions (Novoselović et al., 2016; El-Esawi et al., 2018; Tehseen et al., 2021b). Continuous breeding practices such as artificial selection for the quality and yield traits have narrowed the genetic diversity in bread wheat over the past years (Novoselović et al., 2016; El-Esawi et al., 2018). Collection and evaluation of a large number of landraces from different regions to dissect the genetic diversity and variability would be the first step to broadening the genetic base of the wheat crop. Landraces are locally adapted distinct species and produce relatively higher yields under natural conditions with low or no agricultural input and show maximum resistance to the stress environments (Zeven 1998). They are supposed to be the best source for transferring their economically important traits to elite cultivars of different crops such as maize, legumes, rice, and wheat (Hargrove and Cabanilla, 1979; Feldman and Sears, 1981; Isemura et al., 2001; Malvar et al., 2004; Reif et al., 2005; Zhang et al., 2009). Therefore, the characterization of the genetic diversity of landraces can provide precious information that can be utilized to broaden the narrow genetic base in crops (El-Esawi et al., 2018).
Morphological traits are not the best indicators to evaluate genetic diversity as largely influenced by environmental conditions (Yang et al., 2020). Hence, DNA molecular markers can now be used to tag and locate numerous interacting genes that regulate complex traits. Combining the marker-assisted selection (MAS) with conventional methods of plant breeding schemes can enhance the overall selection gain and therefore increase the efficiency of breeding programs. Various molecular markers have been used to find the genetic diversity among different wheat genotypes such as amplified length fragment polymorphism (AFLP) (Lage et al., 2003; Das et al., 2016; Bhatta et al., 2017), randomly amplified polymorphic DNA (RAPD) (Khan et al., 2015), inter-simple sequence repeats (ISSRs) (Khan et al., 2015), simple sequence repeat (SSR) (Belete et al., 2020), and single nucleotide polymorphisms (SNPs) (Bhatta et al., 2017; Joukhadar et al., 2017; Mourad et al., 2020). SNPs are one of the most common marker systems for evaluating genetic diversity which provide numerous polymorphisms in single plant genomes (Yang et al., 2020). This study was initiated and fulfilled to address subsequent objectives: 1) to decipher the population structure and unlock the genetic diversity among the bread wheat landraces from eight different countries, 2) to provide useful information about the genetic diversity and population structure of these landraces for future breeding programs, and 3) to evaluate the different approaches used for determining the population structure. The outcomes of this study will help in the utilization of these landraces effectively to broaden the genetic base of hexaploid wheat and facilitate the discovery of new genomic regions providing resistance to economically important biotic and/or abiotic stresses.
MATERIAL AND METHODS
Plant Material
A wheat diversity panel containing 600 landraces from the International Centre for Agricultural Research in the Dry Areas (ICARDA) was used in this study. The landraces in the panel were obtained from 8 countries, which were Syria (376), Turkey (157), Iran (47), Greece (7), Iraq (7), Spain (3), Jordan (2), and Palestine (1).
DNA Isolation and Genotyping
Fresh leaves were collected from 10-day-old seedlings in labeled Eppendorf Tubes and sunk immediately into liquid nitrogen; then, they were transferred to the lab and stored at −80°C. Leaf samples were grounded using a tissue lyser (TissueLyser II from QIAGEN). Genomic DNA was extracted from 0.1 g powdered leaf samples by using the cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1991). Extracted DNA was dissolved in 100 μl tris-EDTA (TE) buffer. The DNA samples were run on 1% agarose gel for purity test, and a spectrophotometer (NanoDrop ND-1000) was used to quantify the DNA. The samples were then stored at −80°C.
A high-throughput genotyping by sequencing (GBS) method using Diversity Arrays Technology (DArT) (Sansaloni et al., 2011) was used for all samples at the Genetic Analysis Service for Agriculture (SAGA) at the International Maize and Wheat Improvement Center (CIMMYT) in Mexico and supported by the CGIAR Research Program (Sansaloni et al., 2011).
Population Structure Analysis
To reveal the population structure of the wheat diversity panel, a model-based Bayesian cluster analysis was performed with STRUCTURE software (v. 2.3.4) (Pritchard et al., 2000). The program was run for ten replicates for each putative subpopulation ranging from k = 1 to k = 10 under the admixture model of population structure and was assessed with a burn-in period of 50,000 followed by 50,000 Markov Chain Monte Carlo (MCMC) replications. The best K value was used to identify the optimum number of clusters/subpopulations. The best K value was estimated as Delta K (ΔK) from Structure Harvester (Evanno et al., 2005) using the log probability of the successive structure iterations. For the optimal K value, to generate both individual and population Q-matrices by using the membership coefficient matrices of three replicates from the STRUCTURE, the CLUMPP (Jakobsson and Rosenberg, 2007) was used. Afterward, the DISTRUCT program was used to generate the bar plot from the integrated geographical information (Jakobsson and Rosenberg, 2007).
The discriminant analysis of the principal components (DAPC) was used as a second approach to analyze the population structure. DAPC uses the K-means clustering of principal components to identify the group of each individual. The numbers and nature of the clusters are assessed using the Bayesian Information Criterion (BIC). The DAPC analysis was conducted by using the R package “adegenet” (Jombart et al., 2010) in R studio (R Development Core Team 3.0.1., 2013).
Genetic Diversity and Analysis of Molecular Variance
Various diversity parameters like the number of different alleles (Na), number of effective alleles (Ne), Shannon’s index (I), diversity index (He), unbiased diversity index (uHe), and percentage of polymorphic loci (PPL) were measured using GenAIEx v. 6.503 (Peakall and Smouse, 2006) to analyze the genetic variation among the 600 bread wheat landrace from 8 countries. The subpopulations obtained from STRUCTURE and DAPC were used for analysis of molecular variance (AMOVA), the calculations of Nei’s genetic identity, and genetic distance among populations. R package “adegenet” was used to perform the principal component analysis (PCA), while “poppr” (Kamvar et al., 2014) was used to construct the minimum spanning network (MSN) and neighbor-joining phylogenetic tree based on simple matching dissimilarity coefficient without the assumption of an evolutionary hierarchy.
RESULTS
Single Nucleotide Polymorphism Markers Distribution
A total of 600 landraces collected from 8 countries were genotyped using the GBS method. A set of 25,169 SNPs were discovered. The SNPs were filtered for quality control (QC) based on >20% missing data and minor allele frequency (MAF) <5%. After QC and SNP filtering, the set of the 11,830 SNPs on the 21 chromosomes was selected for analysis. The highest number of markers was mapped on the B genome (5,430) followed by the A genome (4,796) and D genome (1,604) (Figure 1). The highest number of markers was found on chromosome 2B (948) followed by 5B (917) and 7A (901), while the lowest number of markers was mapped on 4D (136) followed by 6D (182) and 7D (241) (Figure 1).
[image: Figure 1]FIGURE 1 | Distribution of 11,830 SNPs across 21 chromosomes of bread wheat landraces from 8 countries.
Population Stratification and Genetic Relationships
Two different approaches, STRUCTURE and DAPC were used to identify the underlying stratification in the whole population panel. For the STRUCTURE program as the first approach, the optimum number of subpopulations was determined by the change of likelihood (ΔK). The results suggested that the optimum population structure was at K = 2. To find the optimal subpopulation number, the plot of K against ΔK (Figure 2C) was used. The plot showed that the optimal K value was 2, which was the peak of the graph. Among the two subpopulations, 362 landraces were grouped in subpopulation 1, while 238 landraces were grouped in subpopulation 2 (Table 1). It can be seen from STRUCTURE results that the landraces were not grouped based on their geographic origin (Figure 2A). For example, the landraces from Syria and Turkey were grouped in both subpopulation 1 and subpopulation 2. The values of fixation index (Fst) as the indicator of the genetic variation among the landraces in each cluster were 0.23 and 0.21 for subpopulation 1 and subpopulation 2, respectively.
[image: Figure 2]FIGURE 2 | (A) Population structure of 600 bread wheat landraces for k = 2, 3, and 4. Different colors represent the subpopulations, and each bar represents the estimated membership of a single genotype. The horizontal line under the figure indicates the geographic origins of the landraces. (B) The scree plot of ΔK against the proportion of explained variance states the optimal subpopulation number in DAPC analysis. (C) The plot of K against ΔK to determine the optimum K value for STRUCTURE analysis. (D) The PCA of 600 bread wheat landraces.
TABLE 1 | The STRUCTURE results of 600 bread wheat landraces for the fixation index (Fst), average distances (expected heterozygosity/He), gene flow (Nm), and the number of genotypes assigned to each subpopulation.
[image: Table 1]The results of the PCA revealed that the landraces were grouped into three groups. The first, second, and third PCs explained 15, 18, and 22% of the total variation, respectively.
The DAPC was used as the second approach, and the scree plot of ΔK against the proportion of explained variance showed that the landraces were divided into at least three subpopulations (Figure 2B). The three subpopulations comprised 181, 193, and 226 landraces, respectively. According to the DAPC analysis, the landraces from Syria, Turkey, and Iran were in distinct groups with mild admixture. The landraces from Greece were genetically more similar to Turkish landraces, whereas the Iraqi landraces were found to have similarities with both Iranian and Syrian landraces (Figure 3).
[image: Figure 3]FIGURE 3 | Inference of the subpopulations by DAPC analysis grouping landraces from different countries together.
The results from both STRUCTURE and DAPC analyses showed that there was an admixture between the different geographic regions which can be seen from the results of the minimum spanning network (MSN) and neighbor-joining based clustering analyses (Figures 4, 5).
[image: Figure 4]FIGURE 4 | Minimum spanning network (MSN) of 600 bread wheat landraces.
[image: Figure 5]FIGURE 5 | Neighbor-joining clustering of 600 bread wheat landraces.
Genetic Differentiation Among Subpopulations
Three AMOVAs were generated based on the results of STRUCTURE and DAPC, as well as on the geographic origin of the landraces (Table 2.). The STRUCTURE-based AMOVA showed that a small amount of genetic variation (2.5%) was observed between the two subpopulations and a big portion of genetic variation (97.5%) was observed within the subpopulations. The genetic variance between two subpopulations was 4.2% in DAPC-based AMOVA, which implies 95.8% genetic variance within three subpopulations. The highest genetic variance among the subpopulations (5.9%) was obtained from origin-based AMOVA (Table 2).
TABLE 2 | Analysis of molecular variance (AMOVA) revealing genetic diversity in bread wheat landraces.
[image: Table 2]The low genetic variability among the subpopulations implies a high amount of gene flow between the landraces evaluated in this study. Besides, the higher values of genetic variability within the populations for STRUCTURE (97.5%), DAPC (95.8%), and origin-based AMOVA (95.5%) suggest that the landraces from eight countries shared common ancestries and were highly admixed (Table 2).
The genetic distances were calculated to decipher the levels of diversity between the subpopulations (Table 3). The genetic distance between the two subpopulations formed by STRUCTURE was 0.013, which implies a high admixture level. In terms of DAPC, the maximum genetic distance (0.032) was calculated between subpopulations 1 and 3, while the minimum genetic distance (0.015) was found between subpopulations 2 and 3 (Table 3). The clustering in terms of geographic origins yielded the maximum genetic distance of 0.289 between the landraces from Palestine and Spain followed by a genetic distance of 0.246 between landraces from Palestine and Jordan. On the other hand, the lowest genetic distance was observed between Syria and Turkey (0.013) (Table 3).
TABLE 3 | Nei’s genetic identity (above diagonal) and genetic distance (below diagonal).
[image: Table 3]Genetic Diversity Across Subpopulations
The mean values for the number of different alleles (Na) and number of effective alleles (Ne) of two subpopulations determined by STRUCTURE were 1.993 and 1.476, respectively (Table 4). The averages of the Shannon index (I), diversity index (He), and unbiased diversity index (uHe) of the two subpopulations were 0.443, 0.288, and 0.288, respectively. STRUCTURE-based analysis showed that subpopulation 2 (I = 0.445, He = 0.289, uHe = 0.290) had a slightly higher genetic diversity than subpopulation 1 (I = 0.441, He = 0.286, uHe = 0.286).
TABLE 4 | Mean of different genetic parameters: number of different alleles (Na), number of effective alleles (Ne), Shannon’s index (I), diversity index (He), unbiased diversity index (uHe), and percentage of polymorphic loci (PPL) in each of the two subpopulations.
[image: Table 4]For the DAPC approach, the mean Na value of the three subpopulations was 1.983 and the mean Ne was 1.464. The averages of I, He, and uHe were 0.433, 0.281, and 0.282, respectively (Table 4). According to the DAPC results, subpopulation 2 showed a higher diversity (I = 0.449, He = 0.292, uHe = 0.293) than subpopulations 1 and 3.
The mean values of the genetic indices obtained by geographic origin-based grouping for seven countries (Palestine was not taken into consideration since it has one landrace) were Na = 1.887, Ne = 1.447, I = 0.416, He = 0.270, and uHe = 0.273. The landraces originating from Syria showed the highest diversity with the diversity parameters of I = 0.442, He = 0.287, and uHe = 0.287, and the lowest genetic diversity was observed within Jordan landraces (I = 0.117, He = 0.080, and uHe = 0.107).
Clustering via Geographic Origin
The membership coefficients of 600 landraces were presented as bar plots in Figure 6. The graph had two major groups and one minor group which suggested that almost all landraces had a similar ancestry to the genotypes from Syria or Turkey. Some of the landraces from Iran had genetic similarities with Turkey and Syria. For example, almost all genotypes from Iran were somewhat genetically similar to the landraces from Syria. However, a relatively low admixture level was observed for the landraces originating from Turkey. Also, it can be seen from Figure 6 that the majority of genotypes from Spain admixed with the landraces from Iran and Syria.
[image: Figure 6]FIGURE 6 | Estimated population membership probability of 600 bread wheat landraces from eight countries where each bar represents a landrace.
DISCUSSION
Global wheat production is facing new challenges in terms of climate change and biotic stress resistance; thus, the studies of genetic diversity could prove to be helpful for the effective conservation and improvement of the existing germplasm (Rao and Hodgkin, 2002). In breeding programs, the breeder’s emphasis is on mainly increasing and sustaining wheat production, and the enhanced breeding and conversation strategies can be used to broaden the genetic base of the wheat crop by the information derived from genetic diversity, population structure, and their relationships (El-Esawi et al., 2018). Wheat landraces are used in several wheat breeding programs, as they provide unique potential and diversity of key genes controlling both biotic and abiotic stresses (Manickavelu et al., 2016).
The current study was conducted on a total of 600 bread wheat landraces from 8 different countries preserved at ICARDA's genebank to evaluate the genetic diversity and population structure through GBS-derived SNPs. It could be beneficial to open up the genetic constituents to identify novel genes and loci to improve plant resistance and further breeding programs. A total of 11,830 SNP markers distributed across the hexaploid wheat genomes A, B, and D were used to evaluate the population structure of the wheat landraces. Greater sequence diversity was found in genome B (5,430 SNPs), followed by genome A (4,796 SNPs), and D (1,604 SNPs), and these findings are in agreement with previous studies (Poland et al., 2012; Alipour et al., 2017). The results showed that the D genome is the least polymorphic probably due to the low frequency of recombination rates (Chao et al., 2009; Alipour et al., 2017). The low polymorphism of markers on the D genome is unique to wheat than to its ancestor Aegilops tauschii (Akhunov et al., 2010). The numbers of SNPs in genomes B and A were more than three times higher than in genome D, which is similar to many previous reports (Iehisa et al., 2014; Eltaher et al., 2018; Bhatta et al., 2019). Similar to the previous study, the current study also reported the least number of SNPs on homologous chromosome 4 in all three genomes (Rimbert et al., 2018). After QC, the minimum number of SNPs was found on chromosome 4D, which is similar to previously reported studies (Alipour et al., 2017; Rimbert et al., 2018).
The understanding of the population structure is crucial for further downstream analysis, for example, genome-wide association studies (GWAS). The evaluation of genetic diversity also provides vital information which can help in the preservation strategies and broadening of the genetic base of crops (Eltaher et al., 2018; Tehseen et al., 2021a). The presence of subpopulations in the panel can be attributed to the selection of desirable traits and genetic drift (Kumar et al., 2020). In the current study, the population stratification estimated by STRUCTURE identified two potential subpopulations in the landraces panel. The two subpopulations were broadly divided into Syrian and Turkish landraces. Although a large number of landraces (n = 533) were collected from these two countries and two subpopulations seemed like an acceptable clustering, nevertheless, the two populations were highly admixed with no clear differentiation, therefore further analyses were conducted in order to find the genetic diversity and population clustering of these 600 landraces. Furthermore, it has been reported that the value of k = 2 in STRUCTURE sometimes means that the STRUCTURE could not correctly identify the genetic structure of the population (Janes et al., 2017). We used DAPC and PCA to further dissect the true structure of the landrace population. The PCA and DAPC results identified three potential subpopulations. Although there was admixture within the populations, the clusters were primarily based on landraces from Syria, Turkey, and Iran, which was initially expected from the population as well because the landraces were mainly collected from these three geographical regions, and the landrace native to these lands were supposed to show some overlapping and genetic differentiation as previously reported by Yang et al. (2020). Therefore, it was concluded that the results of DAPC and PCA were more precise in comparison with STRUCTURE. A previous study of 804 bread wheat accessions from 30 different countries identified that the European accessions were separated from the majority of Asian and Middle Eastern accessions and the latter showed overlapping (Winfield et al., 2018). Similarly, Balfourier et al. (2007) used 3,942 wheat genotypes originating from 73 countries, characterized them with a set of 38 SSR markers, and observed a close relationship between the accessions from Turkey, Iran, and Iraq. Another study of 78 wheat landraces from 22 countries reported that the landraces were primarily divided into Asian and European clusters; furthermore, the landraces from Turkey and Iran were placed in the same subgroup thus further confirming the results of the current study showing admixture within Iranian and Turkish landraces (Strelchenko et al., 2005). Chen et al. (2019) reported that the landraces from Western Asia (Turkey, Syria, Iran, and Iraq) were clustered together and also showed a degree of admixture within the two major clusters identified which separated the landraces from this region from the rest of the landraces and cultivars of other regions. A study of 1,068 wheat landraces from East Asia and West Asia divided the panel into three main subpopulations, interestingly Syrian and Turkish landraces were clustered together, whereas the Iranian landraces showed more genetic similarity with the Afghan landraces than the Syrian and Turkish ones (Lee et al., 2018). The Fertile Crescent which includes modern-day Turkey and Syria is considered the center of origin of the wheat crop, which explains the complex background and admixture present among the landraces collected from these countries (Karagöz, 2014; Baloch et al., 2017). The genetic structure of the current population divided the panel into three major clusters based mainly on their geographic origins with admixture revealing high genetic differentiation between the geographic origin, and the results were similar to previous studies (Morgounov et al., 2016; Baloch et al., 2017; Wang et al., 2017; Rufo et al., 2019). The presence of admixture may be attributed to the historical seed exchange among the regions due to close geographical proximity (Lopes et al., 2015; Morgounov et al., 2016; Alemu et al., 2020).
The fixation index (Fst) is used to measure the genetic differentiation among the populations (Tehseen et al., 2021a). An Fst value of 0.15 and more predicts the presence of a significant genetic differentiation in the subpopulations (Frankham et al., 2002). As a result of high genetic differentiation between the subpopulations, lower levels of gene flow between the subpopulations were expected. The low levels of gene flow could be due to the cultivation of newly developed cultivars in all the countries and less use of traditional bread wheat landraces in the breeding programs. Rufo et al. (2019) also reported low levels of gene flow among the wheat landrace population of Mediterranean origin. Significant differentiation in the two subpopulations was further validated with the analysis of molecular variance (AMOVA), where the majority of the variation (97.4%) was from within the subpopulations. A similar trend was observed when the population stratification was estimated by the DAPC, and when the geographic origin of the landraces was used as a proxy for clustering the populations, most of the genetic variation was observed within the three (95.8%) and eight subpopulations (95.5%), respectively. Whether the genetic variation within the subpopulations is due to the variation that occurred during different domestication events or as a result of introduction from other regions by farmers and traders is still unknown. Many previous studies have reported similar results where most of the variation was accounted for within the subpopulations when compared with between the populations in different hexaploid wheat populations (Zhang et al., 2011; Arora et al., 2014; Joukhadar et al., 2017; Eltaher et al., 2018; Bhatta et al., 2019; Bhattacharjee et al., 2020). Therefore, the selection of parental genotypes from within the subpopulation could be more useful compared with a selection from between the subpopulations. However, this can be changed depending on the breeding objectives. The DAPC analysis divided the landraces into three subpopulations in which most of the landraces of Syrian, Turkish, and Iranian origin were grouped in their respective clusters, and this grouping was in accordance with the geographic proximities of the landraces. The landraces from Iraq and Jordan were genetically closer to the Syrian group, whereas the landraces from Spain, Greece, and Palestine were grouped with Turkish landraces. The countries from these regions have previously been reported to show similar clustering (Kilian et al., 2010; Baloch et al., 2017; Rufo et al., 2019).
Based on the genetic diversity indices when the population stratification was estimated by the STRUCTURE program, subpopulation 2 showed higher genetic diversity than subpopulation 1. Subpopulation 2 consisted of 238 landraces and was mainly composed of landraces from Syria and Turkey, in addition to some landraces from Iran, Greece, and Iraq, whereas subpopulation 1 contained 362 landraces. The presence of higher genetic diversity in subpopulation 2 indicated the potential of this group to be used in breeding programs. In the case of three subpopulations, as estimated by DAPC and PCA, subpopulation 2 was the most diverse as it showed the highest values for genetic diversity indices and was composed of landraces from Syria and Iran. The higher genetic diversity in the Syrian and Iranian landraces has also been previously reported (Zhang et al., 2011; Alipour et al., 2017; Zarei Abbasabad et al., 2017). It is to be noted that there was substantial overlapping of Turkish landraces in both the subpopulations showing their importance which can be utilized for potential economical traits in bread wheat. Several previous reports have reported higher genetic diversity in different panels of Turkish landraces, and it was also reported that in the case of larger population panels, Turkish and Syrian accessions have tended to be genetically closer to each other (Baloch et al., 2017; Yang et al., 2020). When the landraces were divided into different clusters with geographic origin as a proxy, then the highest genetic diversity was observed in Syrian landraces followed by Turkish and Iranian. The results were as expected because 97% of the total landraces belonged to these three geographical regions. There was no significant difference in genetic diversity between the landraces from these three countries, however, it is to be noted that only 8% of the total landraces were from Iran when compared with 62 and 26% from Syria and Turkey, respectively, identifying high genetic diversity in Iranian landraces and their potential use for the exploitation of economically essential traits in breeding programs. The importance of the landraces from these geographic regions has been previously reported as well, which supports the results of the current study (Alipour et al., 2017). Previously, various studies have also reported the genetic diversity among the wheat cultivars from the Mediterranean regions (Nazco et al., 2012; Amallah et al., 2015; Soriano et al., 2016; Rufo et al., 2019). It was observed that almost in all cases, the genetic diversity among the landraces was higher in the landraces than in the cultivars in the region. This could be due to the presence of high genetic variability and their documented durability against biotic and abiotic stresses (Pecetti et al., 1994). The population stratification between the landraces and cultivars has also grouped them both separately because of selected cycles of breeding and allele accumulation in the cultivars (Soriano et al., 2016). The local landraces with high genetic diversity are potential sources of new alleles for the improvement of biotic and abiotic stress resistance when introgressive in the modern cultivars (Nazco et al., 2012).
From these results, we can report that the 600 bread wheat landraces used in the current study, in particular, subpopulation 2, estimated via STRUCTURE and DAPC methods, potentially provide broad and important genetic diversity. This diversity could be used in current and future wheat genetic enhancement and breeding research programs around the world. High genetic diversity is an important factor in conducting association mapping studies (GWAS) and marker-assisted selection for the mapping and identification of economically important traits in wheat. In addition, these landraces were collected from eight different countries with diverse agroclimatic conditions, therefore these landraces should also be a useful source of genes to be used in breeding programs addressing the challenges of changing global climate.
CONCLUSION
The study provided a detailed population structure and genetic diversity analysis of 600 bread wheat landraces collected from eight countries preserved at the ICARDA genebank. Clustering analysis showed distinct population structures in the landraces. The landraces were mainly divided into Turkish, Syrian, and Iranian groups with significant overlapping. This admixture is a result of historical seed exchange between these countries through farmers and traders due to their close geographical proximity to each other. The genetic diversity indices represented high genetic diversity in these wheat landraces. These landraces were collected from a wide range of agroclimatic zones, as a result possess high diversity and capacity to tolerate and resist various abiotic and biotic constraints, and could hence be used as a potential source of new genes/alleles for the genetic enhancement of hexaploid wheat. Therefore, sustainable conservation and use of these landraces preserved in the genebank is important for future breeding strategies of wheat breeding programs worldwide.
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The NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) gene family plays a critical role in plant development. However, our understanding of the mechanisms of how NB-ARC genes regulate plant development in the plant panicle is still limited. Here, we subjected 258 NB-ARC genes in rice to genome-wide analysis to characterize their structure, function, and expression patterns. The NB-ARC genes were classified into three major groups, and group II included nine subgroups. Evolutionary analysis of NB-ARC genes in a dicotyledon plant (Arabidopsis thaliana) and two monocotyledonous plants (Oryza sativa L. and Triticum aestivum) indicated that homologous genome segments were conserved in monocotyledons and subjected to weak positive selective pressure during evolution. Dispersed and proximal replication events were detected. Expression analysis showed expression of most NB-ARC genes in roots, panicles, and leaves, and regulation at the panicle development stage in rice Ce253. The GNP12 gene encodes RGH1A protein, which regulates rice yield according to panicle length, grain number of panicle, and grain length, with eight major haplotypes. Most members of NB-ARC protein family are predicted to contain P-loop conserved domains and localize on the membrane. The results of this study will provide insight into the characteristics and evolution of NB-ARC family and suggest that GNP12 positively regulates panicle development.
Keywords: NB-ARC family, evolution, expression, panicle development, rice
INTRODUCTION
NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) proteins are critical regulators of signaling pathways and play important roles in effector recognition and signal transduction in healthy plant growth and development (Jacquemin et al., 2014; Wen et al., 2017; Chen et al., 2018). NB-ARC proteins contain an NB-ARC domain that is proposed to act as a molecular switch, with a nucleotide-binding (NB) subdomain including a P-loop, a C-terminal extension that forms a four-helix bundle (ARC1), and a winged-helix fold (van der Biezen and Jones, 1998; Albrecht and Takken, 2006). The NB subdomain can bind and hydrolyze ATP in vitro (Tameling et al., 2002). NB-ARC belongs to the STAND (signal transduction ATPases with numerous domains) family of NTPases, and is proposed to work as an NTP-hydrolyzing switch by binding and hydrolyzing NTP and regulating signal transduction by conformational changes (Leipe et al., 2004). Recent studies revealed NB-ARC proteins with similar central nucleotide-binding-ARC domain architectures act in metazoan innate immunity and programmed cell death pathways (Slootweg et al., 2009). For example, NB-ARC genes share homology with human APAF-1 and C. elegans CED-4, proteins that regulate cell death (Yildirim-Ersoy et al., 2011). RPP1A belongs to the NB-ARC gene family and reduces plant growth with broad-spectrum resistance to virulent strains of H. parasitica in Arabidopsis (Michael Weaver et al., 2006). Constitutive expression of TIR-NB-ARC-LRR gene VpTNL1 in Arabidopsis resulted in either a wild-type or dwarf phenotype (Wen et al., 2017). NB-ARC genes might contribute to R. glutinosa consecutive monoculture problems (Chen et al., 2018). Domains can work together as a platform to mediate downstream signal transduction events (Lukasik and Takken, 2009). In wheat, many NB-ARC gene clusters include highly similar genes likely formed by tandem duplications (Andersen et al., 2020). Some NB genes have been reported to be regulated in response to morphological development (Igari et al., 2008). AhRAF4 was observed to correlate with morphological changes in development in maize (Dolezal et al., 2014). NB-ARC-containing sequences in wheat exhibit maximum homology with proteins from indica and Brachypodium distachyon, and distributions of NB-ARC sequences are balanced among the three wheat sub-genomes (Chandra et al., 2017). In indica, Oryza glaberrima (Slootweg et al., 2009), and Oryza brachyantha (FF), conserved NB-ARC genes were subjected to strong purifying selection but selection was more relaxed for expanded homologous genes (Jacquemin et al., 2014). NB-ARC protein function has been studied in wheat, rice, and Arabidopsis, but the mechanism of NB-ARC protein function in rice panicle development remains poorly understood.
Rice is one of the most important cereal crops in the world and feeds half population of the world (Zhao et al., 2015). In recent years, many important genes controlling rice grain yield have been isolated and functionally characterized. LP1 encodes a Remorin_C-containing protein of unknown function and the LP1 allele of Xiushui79 leads to reduced panicle length (Liu et al., 2016). Grain Number per Panicle1 (GNP1), Rice GA20ox1 encoding a cytokinin (Tameling et al., 2002), and the biosynthesis gene for gibberellins upregulate cytokinin activity to increase grain number and grain yield in rice (Wu et al., 2016). GW8 encodes an SBP-domain transcription factor that regulates grain width by binding directly to the GW7 promoter to repress its expression (Wang et al., 2015). OsMKK3 encodes a MAP kinase that controls rice grain size and chalkiness (Pan et al., 2021). Although few studies have focused on NB-ARC proteins in rice, these important plant proteins likely have multiple regulatory roles. For example, the gain-of-function mutation of NB-ARC protein RLS1 (Rapid Leaf Senescence1) causes high-light-dependent HR-like cell death in rice (Wang et al., 2020). Overall, a greater understanding of mechanisms underlying grain yield will strengthen our understanding of regulatory mechanisms for these traits and facilitate the breeding of crop varieties with high-yield potential.
In this study, members of the NB-ARC gene family were identified from analysis of the rice genome. The motif composition and gene structures of these genes were systematically analyzed, and tandem duplication and gene replication events were identified. Collinear relationships between rice, wheat, and Arabidopsis were compared. The expression levels of 11 subgroups of NB-ARC genes in different tissues and panicle development of rice Ce253 were analyzed by RNA-Seq and the expression levels of 18 genes were measured via qPCR. Functional analysis was performed of a selected NB-ARC gene, GNP12. This gene serves as a positive regulator in panicle development and panicle length. The results of this research provide expand our understanding of the function of the NB-ARC gene family and provide guidance for future efforts to improve rice breeding.
MATERIALS AND METHODS
Rice Materials
The rice variety Ce253, widely planted in Guangxi Province, China, was selected for this study and was obtained from the Rice Research Institute, Guangxi Academy of Agricultural Sciences. Rice was planted under natural field conditions at the Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, China in 2020. The distance between plants within rows was 16 cm, and the distance between plants in separate rows was 20 cm. Field management, including irrigation, fertilizer application, and pest control, were performed according to normal agricultural practices. Fully filled grains were subjected to grain width, length, and weight measurement with a Wanshen SC-G automatic seed test system. All trait measurements were repeated at least three times.
Identification of Gene Family Members
Genome-wide identification of NB-ARC genes from three species of monocotyledonous and dicotyledonous plants was performed. Hidden Markov Model (HMM) (Punta et al., 2012) (version 3.0) analysis was used for the search. HMM profiles of NB-ARC genes (PF00931.2) were obtained from the Pfam database (http://pfam.xfam.org/) with an e-value≤1e-3. The results of the HMMER sequence alignment were screened to remove protein sequences that were at least 45% longer than the length of the HMM model domain, while retaining the longest protein sequence in the variable shear. Simple Modular Architecture Research Tool (SMART) (version 8.0) (http://smart.embl-heidelberg.de) was used for further analysis with all non-redundant protein sequences (Schultz et al., 1998). Finally, 258 NB-ARC genes models were identified in the rice genome for further analysis. The basic information of the identified NB-ARC proteins was obtained using the tools at the ExPasy website (http://web.expasy.org/protparam/). CDS coordinate information is listed in Supplementary Table S1. Gene family data were analyzed by Gene Denovo Biotechnology Co., Ltd. (Guangzhou, China). A BLASTP search of the NCBI nonredundant protein database was used to assign the NB-ARC domains. Multiple alignments of NB-ARC domains with 11 different plant NB-ARC domains of 11 subgroups were performed using MEME. The submotifs were analyzed through http://weblogo.berkeley.edu/logo.cgi. The 3D model of the NB-ARC genes was predicted by Jpred and SWISS-MODEL. We used the intersection results of Pfam (pfoo31, - e 1e-20) + smart (- e 0.1 -- dome 0.01) and blast (- e 1e-14 and identity >28%) as the identified homologous genes.
Gene Structure Analysis, Chromosomal Distribution, and Gene Duplication
The exon-intron structural information for the collected rice NB-ARC genes was acquired from reference genome annotation files (Os-Nipponbare-Reference-IRGSP-1.0 pseudomolecules) to compare genomic and coding sequences (http://rice.uga.edu/). The cDNAs were aligned with their corresponding genomic DNA sequences. To map all NB-ARC genes, the chromosome distribution and conserved regions were confirmed by analysis of reference genome annotation files. A chromosome distribution diagram was drawn using the SVG package in Perl. Gene duplication in rice was identified using the replicate gene classifier program of MCScanX software (Wang et al., 2012). All protein-coding sequences were aligned using blastp, and the alignment results were used as input files for MCScanX software to predict gene replication. A gene was identified as a replication gene according to e-value<1e-5 or e-value<1e-10. Five replication events were identified: segmental, tandem, proximal, and decentralized (dispersed).
Motifs, Phylogenetic, Combination Diagram, and Closely Related Species Analysis
Conserved motifs in the gene family sequences were identified using the MEME program (http://alternate.meme-suite.org/tools/meme) with statistical significance (Bailey et al., 2015). The MEME program was run with default settings, maximum motif search value of 15, and an optimum motif width of 10–100 amino acid residues. A phylogenetic tree was constructed with the neighbor-joining algorithm in MEGA (version 7.0) with bootstrap test of 1,000 times and drawn with iTOL (https://itol.embl.de/) (Kumar et al., 2016). ML (maximum likelihood method) evolutionary tree was showed in Supplementary Figure S1. Genome annotations and corresponding protein sequences were downloaded from EnsemblPlants (Brassica_rapa. IVFCAAS v1.36, Brassica_oleracea.v2.1.36, Arabidopsis_thaliana.TAIR10) and GenoScope (Brassica_napus.annotation_v5). The gene structure and motifs were analyzed by systematic evolutionary relationships. Synteny detection was performed by McScanX and drawn with Circos software.
Ka/Ks Analysis
We compared the Ka/Ks ratios as a proxy of the selective pressures acting on gene pairs for reciprocal best match gene pairs from Arabidopsis, rice, and wheat. Ka/Ks was calculated as the ratio of the number of nonsynonymous substitutions per non-synonymous site (Ka) in a period to the number of synonymous substitutions per synonymous site (Ks) in the same period. Ka, Ks, and Ka/Ks values are based on coding sequence alignment and calculated using the KaKs_calculator software package based on the Nei and Gojobori model (Nei and Gojobori, 1986). Positively or negatively selected sites were identified based on Ka/Ks ratios with a confidence interval for each ratio given by a p value and an adjusted p value (Adj.Pval) from multiple comparisons (Massingham and Goldman, 2005). Homologous genes with a Ka/Ks ratio above 1 were under strong positive selection, between 0.5 and 1 were considered to be under weak positive selection, and below 0.1 were considered to be under negative selection (purifying selection).
Vector Construction and Rice Transformation and Subcellular Localization
To assess subcellular localization, sgRNA-Cas9 plant expression vectors were constructed as described previously (Mao et al., 2013). The targeting sequence (5′- TAG​TCG​ACG​ACA​ATG​CTG​CCA​GG-3′), corresponded to +400 to +422 within the third exon encoding the C-terminal end of GNP12 (starting at amino acid residue 134). To construct the GFP plasmids, the cDNAs of LOC_Os101g458510 were amplified from Nipponbare and the cDNA for LOC_Os12g36720 was amplified from Ce253. The cDNAs were cloned into the pBWA(V)HS-ccdb-GLos-GFP vector to generate the insertion. Plasmids CaMV35S:GFP, CaMV35S:LOC_Os101g458510-GFP and CaMV35S:GNP12-GFP were transformed into rice leaf protoplasts for subcellular localization. GFP was excited with a 488 nm laser and imaging was performed.
DNA Extraction, RNA Extraction, Expression Analysis, and RNA-Seq
Panicles of Ce253 of different lengths (3, 5, 10, 15, 20, and 25 cm) at the booting stage were flash-frozen in liquid nitrogen. Total RNA was extracted from these tissues using a EasyPure® Plant RNA Kit (Trans, Catalog no. ER301-01). RNA purity was determined by assaying 1 µl of total RNA extract on a NanoDrop 1,000. We measured the optical density (OD) ratio between 260 and 280 nm from samples, where pure RNA eluted in H20 (pH 7.0–8.5) or TE (pH 8.0) is expected to exhibit a ratio of 2.0–2.1. Total RNA (2.0 μg) was used for cDNA synthesis with a PrimeScript™ RT Reagent Kit with gDNA Eraser (TransScript® II One-Step RT-PCR SuperMix, Tran, Catalog no. AH411-02). The resulting cDNA samples were diluted five-fold and used as templates for qRT-PCR using a TransStart® Green qPCR SuperMix and a CFX96 RealTime system (Bio-RAD, Hercules, CA, United States) following the manufacturer’s instructions. The qRT-PCR reactions were performed as 10 µl mixtures containing 5 µl of 2× Green qPCR MasterMix, 1 µl of cDNA, 0.25 µl of each primer (10 µM), and 3.5 µl of ddH2O. Amplification steps were 95°C for 30 s, 40 cycles of 95°C for 5 s, and 60°C for 30 s, followed by 65°C for 5 s, 95°C for 15 s, 60°C for 30 s, and 95°C for 15 s. Each experiment was repeated at least three times. The qRT-PCR analysis was performed using the ΔΔCt method. Details on gene-specific primers used for real-time PCR are provided in Supplementary Table S1. The ubiquitin gene (LOC_Os03g13170) (Chen et al., 2019) was used as a control (*p < 0.05; **p < 0.01; Student’s t-test). RNA samples used for RNA-seq analysis were prepared from different panicles of Ce253 grown under normal field conditions with three biological replicates. RNA library sequencing was performed on an Illumina Hiseq™ 2,500/4,000 platform by Majorbio. Sequence analysis was performed using the method provided by Majorbio (http://www.majorbio.com/). RNA-Seq data for NB-ARC genes in different tissues were obtained from http://expression.ic4r.org/.
Haplotype and Evolutionary Analysis
The single-nucleotide polymorphisms (SNPs) of 827 accessions used for haplotype analysis were acquired from the 3K rice genomes (3K-RG) dataset. The grain length data for 827 accessions were downloaded from the Rice SNP-Seek Database. One-way ANOVA followed by Duncan’s new multiple-range test were performed using SPSS 21.0 software. The genomic sequences of 1,400 cultivated and 58 wild accessions were obtained from the 3K rice genomes (3K-RG) dataset and OryzaGenome (http://viewer.shigen.info/oryzagenome/), respectively, and were used to construct a minimum spanning tree for RGH1A. Arlequin version 3.5 software was used to calculate a haplotype network and the distance matrix output was used in Hapstar-0.6 to draw a minimum spanning tree. The average nucleotide diversity (π) and Tajima’s D for each subpopulation in RGH1A and 40-kb flanking regions were calculated using DnaSP 5.10 software (Librado and Rozas, 2009). The nucleotide diversity curves were generated using 60 bp window and 15 bp step length.
RESULTS
NB-ARC Genes in Rice Were Analyzed and Subgroup IIf Was Identified as a Representative Subgroup
A total of 258 rice NB-ARC genes were identified in the Nipponbare genome (Supplementary Table S2). The lengths of the CDS for these genes range from 624 (LOC_Os02g27680) to 7,773 (LOC_Os06g41690) bp. Analysis revealed that 49.22% of these NB-ARC genes contain 2–6 introns and 86.04% NB-ARC genes contain 1–4 exons (Supplementary Table S2). Most of the NB-ARC genes have a long CDS and show a highly conserved structure (Figure 1). To explore the expansion of NB-ARC family members in rice, these sequences were used to generate an unrooted phylogenetic tree. The NB-ARC family members were divided into three major groups. Group I contained 29 genes, Group II contained 226 genes, and group III contained only three genes. The NB-ARC genes in group II were further classified into nine subgroups (groups IIa, IIb, IIc, IId, IIe, IIf, IIg, IIh, and IIi). Of these, the two groups with the most members were IIf with 35 genes and IIi with 37 genes. Group IIc contained the fewest number of genes, 13. A total of 15 motifs were identified by MEME, and two of these, M2 and M6, were present in 98.83 and 97.28%, respectively, of the NB-ARC genes. Genes on a single branch contained similar numbers of introns and similar distribution and number of motifs. In a given subtribe of genes, the positions of motifs were highly conserved. In group IIf, the genes contained 1-4 introns and 2–12 exons. Most genes in this group share 10 similar motifs (motifs 1, 2, 3, 4, 6, 8, 9, 10, 11, and 12) (Figure 1). Group IIf was representative in motifs and numbers of NB-ARC genes. Overall, NB-ARC genes were unevenly distributed across all 12 chromosomes, with 29 (11.24%), 61 (23.64%), and 34 (13.18%) genes located on Chr 8, 11, and 12, respectively. (Figure 2A). Gene analysis revealed duplication events including segmental, tandem, proximal, and dispersed, but not singleton duplications. Dispersed (110) and proximal replication 82) most frequently occurred in NB-ARC genes across all chromosomes (Figure 2B). Segmental replication was detected only on Chr2, Chr4, Chr7, and Chr11 (Figure 2B). Pairwise replication of genes was also detected in NB-ARC genes (Figure 2C). The genes in Group IIf, mapped to eight chromosomes, with dispersed, tandem, and proximal replication. In general, genes in subgroup IIf of group II showed typical structure with main motif and contain more genes, and analysis suggested that replication events were the main driving force of NB-ARC evolution.
[image: Figure 1]FIGURE 1 | Phylogenetic tree representing the relationships among 258 genes of rice. Phylogenetic tree (A), exon/intron structure. Number is bootstrap values. (B), and motif composition (C) of NB-ARC genes in rice. Neighbor-Joining (NJ)-Phylogenetic trees shown in a and b were prepared using the same methods. The widths of Gy bars at the bottom indicate relative lengths of genes and proteins. Yellow boxes and blue lines in b represent exons and introns, respectively. Different boxes in c represent different motifs. Different background colors represent different groups and subgroups.
[image: Figure 2]FIGURE 2 | Chromosomal distribution of NB-ARC gene duplication events. (A) Distribution of NB-ARC genes with indicated duplication types. (B) Numbers of duplicated genes for different duplication types. (C) Collinearity of replicative genes in the protein family.
Conservation of NB-ARC Homologous Genome Segments in Monocotyledons With Weak Positive Selective Pressure During Evolution
To study the relationships between the NB-ARC genes of rice and other model plant species, including gramineous plants, we performed cluster analysis (Figure 3A). The NB-ARC genes of a dicotyledon plant, Arabidopsis, and two monocotyledonous plants, rice and wheat, were compared. Pfam was used to compare 1,052 and 50 NB-ARC genes in wheat and Arabidopsis, respectively. Next, based on the highly conserved NB-ARC domains of rice, wheat, and Arabidopsis, a phylogenetic tree was built. The 50 genes of Arabidopsis belonged to a single subgroup, and every subgroup contained rice and wheat genes (Figure 3A). Within each subgroup, genes from the homologous chromosome group generally clustered into a clade (Figure 3A); for example, LocOs12g36690, LocOs12g36720, and LocOs12g33160 were clustered in a subgroup. To further study the relationships between the NB-ARC genes of rice and other plants, we next performed whole genome synteny analysis (Figure 3B). A total of 65 homologous genome segments were distributed on 12 chromosomes in wheat (Supplementary Table S3). The highest number of homologous genome segments, 19, mapped to the syntenic locus in chromosome 4 and wheat chromosomes 2A, 2B, 2D. Two homologous genome segments mapped to chromosome 5 in Arabidopsis (Figure 3B) For further evolutionary analysis, the Ka, Ks, and Ka/Ks values of homologous gene pairs were calculated based on the comparative synteny map (Figure 3C). Ka/Ks ratios of 2,571 gene pairs were evaluated in rice and wheat in protein coding genes. Fifty-two gene pairs had Ka/Ks > 1, 2,412 gene pairs had 0.5 < Ka/Ks < 1, and no gene pairs had <0.1. Ka/Ks ratios were similarly evaluated for 70 gene pairs in rice and Arabidopsis thaliana to examine in protein coding genes. Five gene pairs had Ka/Ks > 1, 59 gene pairs had 0.5 < Ka/Ks < 1, no gene pairs had <0.1, and the remaining had no data so could not be calculated. In rice, 15 gene pairs had Ka/Ks > 1, 431 gene pairs had 0.5 < Ka/Ks < 1, no gene pairs had <0.1, and five gene pairs had 0.1 < Ka/Ks < 0.5 (Supplementary Table S4). Because the majority of homologous NB-ARC gene pairs had 0.5 < Ka/Ks < 1, this suggests that the NB-ARC gene family in these three plant species experienced weak positive selective pressure during evolution. Evolution of the few NB-ARC genes in rice was governed by strong constraints that may have contributed to their structural and functional stability (Figure 2C and Supplementary Table S5). Interestingly, some homologous genome segments mapped between rice and wheat were not observed between rice and Arabidopsis, which may indicate that these homologous pairs formed after the divergence of dicotyledonous and monocotyledonous plants. Overall, the analysis shows that the NB-ARC gene family is highly conserved in monocotyledons and homologous genome segments suggest that segmental duplications may be the main cause of the extension of this gene family. Multiple copies of genes have arisen during the evolution of dicotyledons and monocotyledons.
[image: Figure 3]FIGURE 3 | Phylogenetic, Ka/Ks, and synteny analysis of NB-ARC genes from rice, Arabidopsis, and Triticum aestivum. (A) Group I, Group II, Group III, IIa, IIb, IIc, IId, IIe, IIf, IIg, IIh, and IIi were identified in the rice genome; 1,052 and 50 NB-ARC genes were identified in Triticum aestivum and Arabidopsis thaliana. Genes from rice, Arabidopsis, Triticum aestivum are indicated with the prefixes Os, At, and Tran, respectively. (B) Synteny analysis of Oryza sativa, Arabidopsis, and Triticum aestivum. Gray lines in the background indicate collinear blocks of plant genomes. Different color bars represent the chromosomes of different species. The chromosome number is labeled at the top or bottom of each chromosome. (C) Ka/Ks analysis of NB-ARC genes from rice, Arabidopsis and Triticum aestivum.
Most NB-ARC Genes Regulate Panicle Development
To study the spatial and temporal expression patterns of NB-ARC genes, transcriptomic profiling was profiled across eight different tissues (anther, callus, leaf, panicle, pistil, root, seed, and shoot) to analyze the role of these genes in rice organ development according to the Rice Expression Database (Supplementary Table S6 and Figure 4A). In our findings, 23 genes exhibited no expression in any tissues, five genes showed expression in eight tissues, and the remaining 88 genes showed FPKM values higher than 1 in more than three tissues. LOC_Os02g25900 and LOC_Os12g36720 exhibited FPKM values higher than 1 in anther, callus, leaf, panicle, pistil, root, seed, and shoot. Expression of these genes varied for different tissues, with expression of 141 genes in root, 94 genes in panicle, and only nine genes in anther.
[image: Figure 4]FIGURE 4 | Expression profiles of NB-ARC genes. (A) Expression patterns of rice NB-ARC genes. The expression data are RNA-Seq data from the Rice Expression Database. The white box indicates no expression (zero fragments per kb of exon per million mapped reads (FPKM)) in this tissue. The transcript abundances in different tissues in the heat map were estimated by Log2 (FPKM) values. (B) Expression patterns of rice NB-ARC genes in Ce253 at 5, 10, 15, 20, and 25 cm panicle lengths. (C) Expression of rice NB-ARC genes in root, anther, shoot, bud, leaf, and panicle of Ce253. (D) Expression of key genes that control panicle development in 5, 10, 15, 20, and 25 cm panicle lengths in Ce253. Data are given as mean ± s. e.m. (n = 3). UBQ (ubiquitin) was used as a control. Error bar indicates 95% confidence interval.
For the IIf subgroup, one gene was most expressed in callus and 14 genes were most expressed in panicle. Six genes of IIf were most expressed in pistil and 23 genes of IIf were most expressed in root. IIf, a typical subgroup in the NB-ARC gene family, includes genes such as LOC_Os12g36720 that was expressed in eight different tissues (Figure 4A). To confirm the expression patterns, expression levels of 11 genes of different subgroups were detected by qRT-PCR. The results showed that six of these genes exhibited similar expression patterns to the transcriptomic data (Figure 4B). Most of these genes showed high expression in root. LOC_Os12g36720 in IIf was most highly expressed in anther and panicle.
Few studies have explored the roles of NB-ARC genes in normal plant growth and development. To investigate a possible function of these genes to regulate plant panicle development, the expression of selected NB-ARC genes was analyzed at the panicle development stage of cultivated rice (Figure 4B, c). In rice Ce253, 40, 34,32, 46, and 64 genes exhibited FPKM values higher than 1 at 5, 10, 15, 20, and 25 cm panicle length stages, respectively, and 215, 221, 223, 209, and 191 genes had FPKM values lower than 1 in 5, 10, 15, 20, and 25 cm panicle length stages, respectively. Most genes of the first subgroup of IIf had FPKM values lower than 1 at the early stage of young panicle differentiation (5, 10 cm), 12 and 11 genes exhibited FPKM values higher than 1 at 20 and 25 cm panicle length stages, respectively, and two, four, and four genes at 5, 10, and 15 cm panicle length stages, respectively (Figure 4B). The observed expressional activation in panicle development for LOC_Os12g36690, LOC_Os11g45970, and LOC_Os12g36720 suggests these genes play a crucial role in panicle development of rice.
GNP12 Regulates Rice Yield With Effects on Panicle Length, Panicle Grain Number, and Grain Length
To test the ability of NB-ARC genes to regulate plant panicle development, LOC_Os12g36720 was selected as a representative IIf gene. Expression of this gene was detected in anther, callus, leaf, panicle, pistil, root, seed, and shoot, and exhibited a remarkably high level of expression in Ce253 during panicle development. Interestingly, LOC_Os12g36720 encodes GNP12, a Resistance Gene Homologs (RGH1A) gene (Supplementary Table S7). Therefore, LOC_Os12g36720, GNP12, was selected for further characterization (Supplementary Table S6). To further characterize the function of this gene, we used a CRISPR-Cas9 system for targeted gene mutation of GNP12 in Ce253 (Cr line) (Figure 5A). The resulting deletions lead to frameshifting mutations that result in incomplete peptides of GNP12 that exhibit a loss of NB-ARC domain function. Compared to Ce253, the three Cr lines Cr-1, Cr-2, and Cr-3, were reduced 13.68, 3.71, and 9.39%, respectively, in panicle length (Figure 5B); 23.80, 8.50, and 24%, respectively, in panicle grain number; 2.76, 0.7, and 2.51%, respectively, in grain length; and 26.58, 8.79, and 10.98% in setting percentage, respectively. The three Cr lines showed significant reductions in panicle length, grain number of panicle, grain length, and setting percentage (Figure 5A, b, e, f, h, j). To investigate the tissue structures affected by GNP12, microstructures of grain chaff were observed by scanning electron microscopy (Figure 5D). The chaff of Cr was shorter than that of Ce253 (Figure 5D), but the Cr lines did not differ in length-width grain ratio or grain width (Figure 5C, i, k).
[image: Figure 5]FIGURE 5 | The effect of GNP12 on cell proliferation length of panicle, grain number of panicle and grain size. (A) Length of panicle of Ce253 and Cr-lines. Scale bars, 5 cm. (B) Length of grains from Ce253 and Cr-line. (C) Width of grains from Ce253 and Cr-line. Scale bars, 1 cm. (D) Scanning electron microscopic images of chalkiness in transgenic plants and Ce253. Bar, 50 μm. e-l Panicle length (cm) (E), grain number of panicle (F), primary branch number (G), setting percentage (%) (H), grain of length-width ratio (I), grain length (mm) (J), grain width (mm) (K), CTK content in Ce253 and Cr-line (l). Data are given as mean ± s. e.m. (n = 12). Error bar indicates 95% confidence interval. Student’s t tests were used to generate p values. Haplotype and evolutionary analysis of GNP12 in rice (M) Major haplotypes of GNP12 using 32 single-nucleotide polymorphisms (SNPs) in the coding sequence region in 827 accessions (N) Phenotypic evaluation of haplotype grain length in different subgroups (O) Haplotype network analysis of GNP12 (P) Nucleotide diversity of GNP12.
Cytokinin (CTK) is a primary determinant of plant architecture (Tameling et al., 2002). To investigate whether GNP12 influences CTK levels, we compared the CTK content in wild-type and Cr lines. The CTK content in Cr lines was reduced to 30.28% of that in the wild-type (Figure 5l). The results suggest that GNP12 may affect panicle development and grain production in rice through changes in CTK content.
To investigate natural variation in GNP12, we analyzed the polymorphism of GNP12 in the 3K rice genomes (3K-RG) dataset (Wang et al., 2018). We identified eight major haplotypes of GNP12 with 32 single-nucleotide polymorphisms (SNPs) in the coding sequence region in 827 accessions of the 3K-RG dataset (Figure 5m and Table 1). Except for Hap2, the frequencies of the major haplotypes differed significantly among different subgroups. Hap1, Hap5, Hap6, and Hap7 were specifically found in indica rice cultivars, with Hap1 being the most prevalent. Hap2 was mainly identified in indica, temperate japonica, tropical japonica, and Bas rice cultivars. Hap3 was mainly present in tropical japonica and indica rice cultivars. Hap4 and Hap8 were mainly found in Aus rice cultivars (Figure 5n). Phenotypic evaluation showed that Hap1, Hap3, Hap5, and Hap6 in the indica subgroup and Hap3 in the japonica subgroup showed longer grain length than other haplotypes. Haplotype network analysis showed that favorable haplotypes of GNP12 may have different origins. Favorable indica haplotypes Hap3 and Hap6 may have come directly from O. rufipogon I and favorable indica haplotypes Hap1 and Hap5 may have come from novel favorable mutations during indica domestication. Favorable haplotype Hap3 in japonica may have arisen during the differentiation of temperate and tropical japonica (Figure 5o).
TABLE 1 | Haplotype analysis of GNP12.
[image: Table 1]To determine whether selection acted on GNP12, we analyzed the nucleotide diversity of GNP12 among different rice subgroups. On average, the nucleotide diversities of GNP12 in tropical japonica and indica subgroups were respectively much lower and higher than those in other haplotypes. To assess whether the DNA sequence evolved randomly or under a non-random process, Tajima’s D values were calculated for GNP12 in tropical japonica and indica and were negative and positive, respectively. Both values deviated significantly from zero, implying potential positive selection and balancing selection acting on GNP12 in tropical japonica and indica, respectively (Figure 5p). To further test whether the observed reduction in nucleotide diversity in tropical japonica was due to positive selection or a bottleneck effect, we calculated the nucleotide diversity of 40-kb flanking regions of GNP12. We found that the average nucleotide diversity of the GNP12 flanking regions in tropical japonica was significantly lower than that in other regions, suggesting that the decrease of nucleotide diversity of GNP12 in tropical japonica may be largely caused by positive selection (Table 2).
TABLE 2 | Pi and Tajima’s D of GNP12.
[image: Table 2]NB-ARC Proteins Contain Conserved P-Loop Domains
To further investigate the subdomains and functions of NB-ARC genes, 11 predicted proteins from group I, group II, and group III were selected for further analysis. Strong conservation was identified for several subdomains: αC, αM, αS, β3, β2-β5, and P-loop (Figure 6A, b). The most conserved residues in the putative NB-ARC domains were found in the P-loop (G193 and S223) and αS (L468) subdomains (Figure 6A). Analysis of the gene structure and conserved motifs revealed high conservation of rice NB ARC genes with no obvious variation in the amino acid residues of the P-loop region among homologous genes (Figure 6C). We observed few variants of the 11 amino acids in the P-loop core, with substantial variation in genic frequency of these variants in rice. These results indicate the significant conservation of the P-loop in most rice NB-ARC proteins. The predicted 3D structures of the identified rice NB-ARC proteins were conserved, which was consistent with the phylogenetic, gene structure, and conserved domain analysis. LOC_Os02g02670, LOC_Os06g41670, LOC_Os06g22460, LOC_Os012g36720, LOC_Os12g17490.1, and LOC_Os10g10360 were predicted to share similar structures (Figure 6C). Predicted models were constructed to heuristically maximize alignment coverage, identity percentage, and confidence score for the tested sequences. For the 11 predicted NB-ARC proteins, α-helix was most highly predicted as secondary structure (37.41–63.56%), followed by random coil (20.03–35.64%), extended strands (7.3–20.84%) and β-strands (0–5.29%) (Figure 6C and Supplementary Table S8). The 3D modeling results revealed similarity of predicted tertiary structures, implying that NB-ARC proteins may have evolved from a shared ancestor and/or under purification selection force for stabilization during long-term acclimation after initial divergence.
[image: Figure 6]FIGURE 6 | Predicted structures and subcellular localization of putative NB-ARC protein domains based on 11 proteins from each 11 subgroups. (A) Conservation of key motifs, residues, and secondary structure between putative NB-ARC domains. Dashed lines indicate positions within secondary structure elements. The histograms above the motifs represent the degree of conservation (% of identical to conserved residuals) for putative NB-ARC domains (blue columns) among 11 proteins from 11 subgroups. (B) Sequence logos representing the conservation of key motifs and neighboring sequences. The size of the letters corresponds to information content. (C) 3D model of 11 proteins from 11 subgroups in NB-ARC family. (D) Subcellular localization of three proteins from groups I, IIf, and IIi.
To further characterize the function of the NB-ARC genes, subcellular localization studies were performed. We randomly selected two NB-ARC genes, LOC_Os12g36720 (IIf), LOC_Os101g458510 (IIi), for subcellular localization in rice protoplast cells. LOC_Os12g36720-GFP and LOC_Os101g458510-GFP expression vectors were constructed and transformed into rice protoplasts for transient expression. Control GFP expression was observed throughout the membrane, cytoplasm and nucleus, and the GNP12 and LOC_Os101g458510 proteins were mainly expressed in the nucleus and membrane, respectively. This result indicated that these proteins are widely present in various organelles.
DISCUSSION
Conserved Domains and Polymorphisms of NB-ARC Genes Maintained a Dynamic Balance During Evolution
NB-ARC proteins play central roles in recognizing pathogens, initiating defense cascades, and maintaining cell development. The NB-ARC conserved domain maintains stable similar structures in different species, likely due to convergent evolution, suggesting these proteins may perform similar recognition and activation mechanisms (Slootweg et al., 2009). In the Fabaceae family, eight conserved motifs of NB-ARC domains have been identified (Pal et al., 2007). Plant NOD-like receptor (NLR) proteins contain NB-ARC domains with structural similarities to their mammalian homologues (Steele et al., 2019). However, there is high polymorphism in some NB-ARC genes in some species. The combination of conserved motifs and the evolution of rich polymorphisms may allow response to environmental signal stimulation to achieve coevolution by replication events. In Arabidopsis, analysis of the NLR family revealed that positive selection and recombination occurred frequently in the leucine-rich repeat (LRR) domain but there was negative selection in the nucleotide-binding (NB-ARC) domain (Mondragón-Palomino et al., 2017). In peanut, AhRAF4 of NB-ARC proteins evolved by recombination with duplications and point mutations from Arachis duranensis (Deng et al., 2018). Among O. sativa (Slootweg et al., 2009), O. glaberrima (Slootweg et al., 2009), and O. brachyantha (FF), a high number of paralogs suggests that the NB-ARC family experienced highly dynamic evolution, with a large number of tandem arrays and duplicated genes observed in the O. sativa subspecies (Jacquemin et al., 2014). NB-ARC genes diversified through duplication to encode receptors adapted to external signals (Andersen et al., 2020). IPm21 encodes a coiled-coil, nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR) protein, and evolutionary analysis of 38 non-redundant Pm21 alleles indicated that the nucleotide diversity of the LRR domain was significantly higher than those of the CC and NB-ARC domains (He et al., 2020). NB-ARC genes can form genomic clusters adjacent to LRR-RLK-XIIs by mechanisms other than genomic clustering (Ngou et al., 2022). Overall, the evolution of NB-ARC genes allows these genes to maintain key function through conservation of the NB-ARC domain while the C-terminal regions of these proteins exhibit polymorphisms to allow these genes to co-evolve with the environment through replication events.
GNP12 May Regulate Rice Yield by Influencing Hormone Activity
Panicle grain number and length of panicle are important agronomic characteristics, but the genetic determinants of these traits remain unclear. Many genes regulate grain number per panicle, length of panicle, and grain length by influencing hormone activity. ERECTA1 (OsER1) is a cytokinin oxidase/dehydrogenase that negatively regulates grain number per panicle (Ashikari et al., 2005). ERECTA1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade, and the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway is required to maintain cytokinin homeostasis (Guo et al., 2020). OsASP1 encodes a TOPLESS-related transcriptional co-repressor, is closely associated with auxin action, and regulates spikelet development (Yoshida et al., 2012). TGW6 encodes a protein with indole-3-acetic acid (IAA)-glucose hydrolase activity that can control IAA supply at the transition from the syncytial to the cellular phase to limit cell number and grain length (Ishimaru et al., 2013). GW6 encodes a GA-regulated GAST family protein and positively regulates grain width and weight (Shi et al., 2020).
NB-ARC genes regulate plant development by catalyzing ADP through ARC structure. NB-ARC proteins carry a central nucleotide-binding-ARC domain that binds ADP/ATP rather than GDP/GTP (Chattopadhyaya and Pal, 2008). The NB-ARC domain may be a molecular switch between ADP (repressed) and ATP (active) binding forms (Steele et al., 2019). A tomato (Lycopersicon esculentum) R protein I-2 with NB-ARC domain is impaired in ATP hydrolysis, but not in ATP binding, suggesting a molecular switch whose state (on/off) depends on nucleotide binding (ATP/ADP) (Tameling et al., 2006). NRTP1 encodes a CC-NB-LRR type protein, and semi-dominant mutant nrtp1-D contains an amino acid substitution in the NB-ARC domain that causes constitutive auto-activation of the NRTP1 protein for a short-root phenotype in rice (Yu et al., 2018). ATP/ADP opentenyltransferases are likely responsible for most isopentenyladenine- and tZ-type cytokinin synthesis (Miyawaki et al., 2006) and catalyze prenylation of adenosine diphosphate (ADP) or triphosphate (ATP) biosynthesis (Kieber and Schaller, 2014). The hydrolysis of adenosine triphosphate (ATP) is directly coupled to the primary active transport of CTK (Nedvěd et al., 2021). In peach, ATP/ADP PpIPT genes are key genes for cytokinin biosynthesis in nodal stems (Li et al., 2018).
The NB-ARC domain of GNP12 protein may act in panicle development by influencing hormone activity to control grain number of panicle, length of panicle, and grain length. Future work is required to test this hypothesis and investigate the regulation of these important genes to better develop molecular tools for improved genetic breeding.
CONCLUSION
In summary, we successfully analyzed the NB-ARC family of genes with conserved P-loop domains and identified conservation of NB-ARC homologous genome segments in monocotyledons. Most NB-ARC genes regulate panicle development in Ce253. We identified GNP12 as an important regulator of panicle length, panicle grain number, and grain length.
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Multi-trait (MT) genomic prediction models enable breeders to save phenotyping resources and increase the prediction accuracy of unobserved target traits by exploiting available information from non-target or auxiliary traits. Our study evaluated different MT models using 250 rice accessions from Asian countries genotyped and phenotyped for grain content of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), and cadmium (Cd). The predictive performance of MT models compared to a traditional single trait (ST) model was assessed by 1) applying different cross-validation strategies (CV1, CV2, and CV3) inferring varied phenotyping patterns and budgets; 2) accounting for local epistatic effects along with the main additive effect in MT models; and 3) using a selective marker panel composed of trait-associated SNPs in MT models. MT models were not statistically significantly (p < 0.05) superior to ST model under CV1, where no phenotypic information was available for the accessions in the test set. After including phenotypes from auxiliary traits in both training and test sets (MT-CV2) or simply in the test set (MT-CV3), MT models significantly (p < 0.05) outperformed ST model for all the traits. The highest increases in the predictive ability of MT models relative to ST models were 11.1% (Mn), 11.5 (Cd), 33.3% (Fe), 95.2% (Cu) and 126% (Zn). Accounting for the local epistatic effects using a haplotype-based model further improved the predictive ability of MT models by 4.6% (Cu), 3.8% (Zn), and 3.5% (Cd) relative to MT models with only additive effects. The predictive ability of the haplotype-based model was not improved after optimizing the marker panel by only considering the markers associated with the traits. This study first assessed the local epistatic effects and marker optimization strategies in the MT genomic prediction framework and then illustrated the power of the MT model in predicting trace element traits in rice for the effective use of genetic resources to improve the nutritional quality of rice grain.
Keywords: rice, trace elements, multi-trait genomic prediction, local epistatic effect, seletive marker panel
INTRODUCTION
Over half of the world’s population relies on rice as a staple crop (Bandumula, 2018). Growing and consuming rice has relative merits, as rice is the major dietary source for both toxic and essential trace elements (Yang et al., 2018). For instance, Cd is a potent environmental and human health toxicant (Arao and Ae, 2003; Uraguchi and Fujiwara, 2012; Lien et al., 2021) transported into rice grain via the same channels with other trace elements Zn, Fe, Cu, and Mn (Sasaki et al., 2012; Hao et al., 2018; Han et al., 2021) of essential nutritional and physiological functions to plants, animal and humans species (Miller, 1970; Olivares and Uauy, 1996; White and Broadley, 2009; Aschner and Erikson, 2017; Gao and Xiong, 2018).
Recent advancements in genomic research and the increasing number of germplasm resources in gene banks offer a great opportunity to develop safe and nutritious rice varieties cost-effectively. The trait’s heritability indicates the potential that a given trait can be genetically improved. Previously, broad sense heritability of grain Zn, Fe, Cu, Mn, and Cd was found to be low (0–0.3), moderate (0.4–0.6) to high (0.6 or higher) (Norton et al., 2010; Pinson et al., 2015; Naik et al., 2020), indicating the practical possibility to improve these traits via selective breeding methods. Furthermore, many molecular genetic studies have identified numerous quantitative trait loci (QTLs) responsible for trace element uptake, transport, and accumulation into different rice tissues through genome-wide association studies (GWAS) or QTL mapping (Lu et al., 2008; Garcia-Oliveira et al., 2009; Ueno et al., 2010; Du et al., 2013; Huang et al., 2016; Meng et al., 2017; Swamy et al., 2018; Yang et al., 2018; Descalsota-Empleo et al., 2019; Frouin et al., 2019; Liu J. et al., 2021). As a genomics-enabled breeding approach, marker-assisted selection (MAS) is useful to improve trace element traits when genes/QTLs with large additive genetic effects exist (Wu et al., 2020). However, prominent non-additive gene action has also been reported for trace element traits, making MAS-based strategies ineffective (Sharma V. et al., 2021). In addition, MAS-based breeding methods are practically ineffective at simultaneously exploiting information from multiple genes (Spindel et al., 2016) or traits (Van Der Straeten et al., 2020).
In contrast, genomic selection (GS) approaches make use of total genome-wide markers with either large additive effects or minor effects to derive the genomic estimated genetic values of genotypes (Meuwissen et al., 2001), which overcomes the constraints of MAS-based methods (de los Campos et al., 2009). Also, GS models can be modified to a multi-trait (MT) form to exploit available information from multiple traits simultaneously. The MT models used in GS heavily rely on genetic correlation between traits (Henderson and Quaas, 1976). This correlation possibly results from the pleiotropic effect (multiple traits controlled by the same QTL) or linkage disequilibrium (LD) between genes (Falconer, 1996). Exploiting multi-trait information in GS has been awarded with an increase in prediction accuracy ranging from 24% to 105% relative to single trait (ST) models (Rutkoski et al., 2016; Sun et al., 2017; Arojju et al., 2020). Besides gains in prediction accuracy, integrating MT models with appropriate cross-validation (CV) schemes compensated for the negative effect of small population size without affecting the prediction accuracy, enabling breeders to minimize phenotyping budgets (Lado et al., 2018; Arojju et al., 2020). The benefits of MT models under various CV schemes are yet to be studied in diverse rice collections. Nevertheless, MT models have shown their potential in predicting complex traits in rice, such as grain arsenic content (Ahmadi et al., 2021), grain yield (Wang et al., 2017), and root index architecture (Sharma S. et al., 2021).
Most of the MT genomic prediction studies discussed above only modeled the additive genetic effects. Non-additive effects are also essential components of the genetic effect and can benefit the predictive ability of MT models if accommodated (dos Santos et al., 2016; Lyra et al., 2017). However, non-additive effects such as dominance or global epistatic effects may not be conserved during breeding due to chromosomal recombination events (Falconer, 1996; Breseghello and Sorrells, 2006; He et al., 2017). In contrast, the local epistasis that spans short segments of chromosomes can be preserved over generations (Akdemir and Jannink, 2015), as adjacent loci normally hold a strong LD (Ardlie et al., 2002). Earlier GS studies with ST models illustrated that accounting for local epistatic effects along with the main additive model increased the prediction accuracy of agronomic traits in wheat accessions (Akdemir and Jannink, 2015; Akdemir et al., 2017; He et al., 2017; Jiang et al., 2018; He et al., 2019). However, the benefits of modeling local epistasis effects in MT models remain unknown in crop or animal species.
Genomic prediction models can be extended to incorporate markers associated with causal QTLs, such as trait-associated SNPs (TA-SNPs), bridging the gap between biology and mechanistic GS models using uninformative genome-wide markers. Also, genomic prediction with markers derived from functional QTL is less reliant on LD patterns shared by training and target populations, possibly allowing robust prediction, especially across unrelated populations where LD decays more rapidly (Snelling et al., 2013). Simulation and empirical studies have shown that accounting for known QTLs improves the performance of genomic prediction models compared to models using uninformative genome-wide markers (Bernardo, 2014; Owens et al., 2014). Alemu et al. (2021); Zhou et al. (2021) reported a two- to four-fold gain in prediction accuracy using GS + de novo GWAS (Spindel et al., 2016), in which the most significant TA-SNPs from a GWAS conducted on the training population are fitted as fixed effects in the model along with the polygenic background. Other groups (Bhandari et al., 2019; Ahmadi et al., 2021) also reported gains in prediction accuracy ranging from 16% to 32% by exploiting GWAS-derived TA-SNPs using trait-specific genomic relationship matrices (Zhang et al., 2014) in which markers with stronger association signals are assigned higher weights than markers with weaker associations. However, the application of the above methods has not always been beneficial (Veerkamp et al., 2016; Rice and Lipka, 2019) and has been shown to depend on the genetic architecture of the traits of interest, trait heritability, the number of underlying causal mutations, and their effect sizes (Huang and Mackay, 2016). In addition, the use of TA-SNPs in genomic prediction has been scarcely investigated in models accounting for the non-additive effects. The potential of GWAS-derived TA-SNPs on the predictive ability of MT models accounting for the local epistatic effects in diverse rice populations is yet to be demonstrated and worth inspecting.
There is a great scope for applying MT models to evaluate trace elements in large germplasm collections such as those archived in gene banks. Earlier studies using ST models showed that GS is a robust and cost-efficient tool to predict the genetic merit of individuals in large germplasm collections for various agronomic traits, such as grain yield in rice (Tanaka et al., 2021), biomass yield in sorghum (Yu et al., 2016), oil, protein, and yield in soybean (Jarquin et al., 2016), total root length in maize (Pace et al., 2015), and days to head and days to maturity in wheat (Crossa et al., 2017). However, the application of MT or even ST models to predict the concentrations of trace elements in food crops is still limited to a few studies involving arsenic (Frouin et al., 2019; Ahmadi et al., 2021), Mn (Leplat et al., 2016), and Zn (Guo et al., 2020) in rice, barley, and maize grain, respectively. Therefore, the overall goal of the present study is to compare the robustness of ST and MT models in predicting concentrations of four essential trace elements, Fe, Zn, Cu, and Mn, and one toxic metal, Cd, in rice grain. Different CV schemes, implying varied phenotyping patterns and costs, were examined in our study to seek the most efficient phenotyping strategy when multiple traits are planned to be measured. In addition, we investigated whether incorporating local epistatic effects and using a selective marker panel of TA-SNPs derived from GWAS into MT models could further enhance the predictive ability of MT models.
MATERIALS AND METHODS
Rice Materials
Our study used 250 rice accessions, including indica and japonica ecotype accessions from Asian countries (Supplementary Table S1). Accessions from China are mainly landrace indica varieties mostly cultivated on Cd-polluted soils in Guangdong province, China (Long et al., 2014).
Plant Cultivation and Quantification of Trace Elements in Rice Grain
The procedures followed for growing the 250 accessions and determining concentrations of trace elements in rice grain were as previously described by Liu S. et al. (2021). Briefly, seeds from the 250 accessions were first cultivated in pots filled with soil collected from the experimental station of the Agricultural Genomics Institute at Shenzhen, China. Next, germinated seeds were selected and cultivated in seedling trays for 4 weeks. Healthy seedlings were then transferred into pots containing soil amended with an initial concentration of Cd of 0.5 mg kg−1. Finally, all the seedlings were planted in an augmented randomized complete block design with two replicates of 25 accessions from 20 July 2019 to 2 October 2019. Our study was limited to a single environment. Multi-environment data would be essential for understanding the environmental correlations and their stability and genotype effects by environment interactions (GxE). To determine grain concentrations of Zn, Fe, Cu, Mn, and Cd, grain samples were first peeled and dried at 65°C for 3 days. The dried samples were then crushed, wet-digested in concentrated nitric acid (HNO3) at 120°C for 30 min, and further digested with perchloric acid (HClO4) at 180°C until the samples became transparent. The samples were then diluted with ultrapure water. Finally, the grain concentration of each trace element was determined using the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) machine (Houk et al., 1980).
Genotyping
The 250 accessions were genotyped following the re-sequencing and variants-calling procedures of the rice 3K project as reported by Wang et al. (2018). The following steps were implemented for all the genotypes to merge the variants-calling: First, raw reads were aligned to the R498 reference genome (Du et al., 2017) using the program bwa-mem alignment software (Li, 2013). Next, the PCR duplicates were identified with Picard software, version 2.9.0 (http://broadinstitute.github.io/picard/), and discarded. Following that, the GATK HaplotypeCaller engine (McKenna et al., 2010), with the option “-ERCGVCF,” was used to call genotypes at each site. The resulting genomic variants called format (gVCF) for each genotype were combined using the GATK Genotype GVCFs engine. Next, the GATK hard filter pipeline was used to individually call SNP and INDEL variants from the population variant file. All the variants within 5 bp of an INDEL were discarded. A variant was confirmed if at least one genotype supported it with a QUAL parameter greater than 30. After that, VCF tools indicated (Danecek et al., 2011) sites for which genotypes were not called in at least 20% of the used genotypes. The above procedures yielded 30,089,814 bi-allelic SNPs for the 250 genotypes. SNP quality control steps were implemented using PLINK software (Chang et al., 2015) with standards that remove SNPs with 1) minor allele frequency lower than 0.5, 2) call rate less than 0.9, and 3) pairwise LD (r2) greater than 0.01. Finally, 36,171 SNPs were available for the 250 accessions.
Estimation of Genomic Heritability and Traits Genomic Correlation
The mixed linear model was used to estimate genomic heritability as follows:
[image: image]
Where [image: image] is the vector of concentration of trace element under consideration, [image: image] is the vector of ones, n is the number of genotyped cultivars, [image: image] is the intercept, [image: image] is the vector of the genetic effects of accessions, [image: image] is the residual vector. [image: image] and [image: image] are assumed as random effects, respectively, following [image: image] and [image: image] where [image: image] is genomic relationship matrix estimated following (Yang et al., 2010) and [image: image] is identity matrix. The genomic heritability was estimated as
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Where [image: image] is the additive genetic variance component and [image: image] is the residual variance component. GCTA software (Yang et al., 2011) was used to compute the genomic relationship matrix and genomic heritability.
The genomic correlation between traits was estimated using the formula: [image: image] where [image: image] is the genetic covariance between ith trait and jth trait, [image: image] and [image: image] are the square root of the genetic variance of ith trait and jth trait. The genetic covariances and variances were estimated using the R package MTM (De los Campos and Grüneberg, 2016).
Genetic Diversity
A hierarchical cluster analysis based on the Euclidean’s distance matrix computed with the SNP genomic profiles was performed to inspect the genetic diversity among the 250 genotypes. In addition, a heat plot based on the cluster analysis was drawn to visualize the genetic dissimilarities.
Genomic Prediction Approaches
The genomic prediction models used were the ST and MT models. The ST model only captured additive genetic effects, while the MT models accommodated both additive and local epistatic effects. ST model was the commonly used genomic best linear unbiased prediction (GBLUP) model and same as the mixed model estimating genomic heritability: [image: image], where [image: image], [image: image], [image: image] and [image: image] were exactly as afore denoted, [image: image] is the vector of additive genetic effect in genotype-based model or additive plus local epistatic effects in the haplotype-based model. In the genotype-based model, we assumed [image: image], where [image: image] is an n × n-dimensional additive genomic relationship matrix, and [image: image] is the additive genetic variance component. In the haplotype-based model, we assumed [image: image] , where [image: image] is an n × n-dimensional haplotypic relationship matrix derived from the haplotypic profile matrix with values 0, 1, and 2 indicating the number of copies for a specific haplotypic allele (Jiang et al., 2018; He et al., 2019). To obtain the haplotypic profile matrix, the genotypic data of SNPs were phased using software SHAPEIT (Delaneau et al., 2012) with default augment settings. The phased genotypic data was recoded to haplotypic profiles using a fixed-length haplotype of 2, 3, 4, or 5 SNPs. [image: image] and [image: image] were established using software GCTA (Yang et al., 2010; Yang et al., 2011) based on the genotypic and haplotypic data, respectively.
For MT models, we used two approaches considering no correlation between traits; the Bayesian multi-output regressor stacking (BMORS) proposed by Montesinos-López et al. (2019); the MT-GBLUP; and two methods accommodating correlation between traits; the factorial analytic (FA) model and the unstructured (UN) model. For genotype-based approaches, the MT-GBLUP model was formulated as [image: image], where [image: image], [image: image], [image: image], [image: image], m is the number of traits included in the model. We assumed [image: image], [image: image] where [image: image] [image: image], [image: image] and [image: image] are respectively the genetic and residual variance of jth trait, and [image: image] denotes Kronecker product of matrices.
BMORS was a two-stage process. The first stage is the same as the MT-GBLUP, but instead of directly using the GBLUP predicted values as the final output, BMORS implemented a second stage that integrated the GBLUP predicted values of each trait in the first stage and fitted a ridge regression model. In this way, the prediction of a single trait could be corrected by the predictions of other traits in the first stage using the second stage model (Spyromitros-Xioufis et al., 2012; Spyromitros-Xioufis et al., 2016; Montesinos-López et al., 2019). The FA model was also based on the formula of the MT-GBLUP model but assuming a covariance structure between traits, that is [image: image] where k is the number of latent factors, [image: image] is a j × k dimensional matrix containing trait loadings, [image: image] is a j × j diagonal matrix (Burgueño et al., 2012). Theoretically, the FA model requires at least three traits to be simultaneously included in the model. The UN model (Burgueño et al., 2012; Cuevas et al., 2017) tried to estimate all variances and covariances in [image: image], i.e., [image: image] and [image: image], [image: image], which may cause convergence problems when a large number of traits are considered. The haplotype-based approach was only implemented in the MT-UN model by replacing the relationship matrix [image: image] by [image: image].
The ST-GBLUP model was implemented in R (R Core Team, 2016) using the BGLR package (De los Campos and Pérez-Rodríguez, 2015). The MT-GBLUP, FA, and UN approaches were realized using the R package MTM (De los Campos and Grüneberg 2016). BMORS was fitted using the R package BMTME (Montesinos-López et al., 2019). The number of iterations of all models was set to 20,000, and the first 12,000 were discarded as burn-in.
Cross-Validation Schemes and Evaluation of Genomic Prediction Accuracy
Four different CV schemes, referring to those reported by Lado et al. (2018) and Arojju et al. (2020) were used in our study (Table 1). CV1 was applied to both ST-GBLUP and MT models, referring to a scenario where the target trait was predicted without the support of auxiliary traits (ST-CV1) or with auxiliary traits only available in the training set (MT-CV1). CV2 and CV3 were only assessed for MT models. Under CV2 scheme, genotypes in both training and test sets had phenotypic data for all the auxiliary traits. Under CV3, phenotypes of the auxiliary traits were only available in the test set.
TABLE 1 | Investigated single trait (ST) and multi-trait (MT) cross-validation (CV) schemes.
[image: Table 1]To assess the genomic prediction accuracy across the above CV schemes, the entire population of 250 genotypes was randomly divided into five equal-sized folds. Four folds collectively constituted the training set, and the remaining fold was the test set. Stochastic partitioning of training and test sets was repeated 20 times, yielding one hundred times (5 folds × 20 replicates) calibrations and predictions. The genomic prediction accuracy of the target trait was estimated using the Pearson correlation coefficient between the genomic predicted genetic values and the observed phenotypic values of 250 accessions when incorporated in the five test sets of each repeat of CV. The Student t-test was used to test the statistical difference in genomic prediction accuracies among the prediction models.
Selective SNP Marker Panel
To investigate whether the predictive ability of MT genomic prediction on rice grain trace elements concentration could be boosted by optimizing the SNP marker panel, we applied a (GWAS) to identify the trait-associated SNPs (TA-SNPs) and establish the selective marker panel. The CV scenarios in which the MT-UN haplotype-based models disregarding the length of haplotypes (two to five SNPs) constantly showed statistically significantly (p < 0.05, t-test) higher prediction accuracies than their genotype-based counterparts and the ST-GBLUP model were used to validate the efficacy of using the TA-SNPs to train the genomic prediction models. In more detail, GWAS using the total SNP marker panel was performed in the training set of the designated CV scenarios. First, the TA-SNPs with p values less than 0.01 were recorded. Then each chromosome was divided into bins spanning 300 kb (the bin size is decided by the LD decay, with the physical distance between pairs of SNPs based on the total population). Finally, the most trait-associated SNPs with the lowest p-value in each bin was picked together with the TA-SNPs (p < 0.01) and recorded to constitute the selective SNP marker panel of each repeat of CV. The MT-UN genotype-based model was implemented using the genotypic data of the selective SNPs. Contrastingly, the adjacent selective SNPs located within 300 kb (highly possible as the position of the selective SNP from each bin is unfixed) were combined to compile the haplotypes using the phased genotypic data as the LD decay implied a non-negligible LD among them. The remaining SNPs without close neighbors within 300 kb were maintained, and their genotypic profiles were used. Therefore, the MT-UN haplotype-based model took advantage of both haplotypes and genotypes. The GWAS was implemented using GCTA software (Yang et al., 2011; Yang et al., 2014). The additive genomic relationship matrix was exclusively used in the GWAS model to account for the relatedness between accessions.
RESULTS
Linkage Disequilibrium Decay, Kinship, and Population Structure
The LD decay distance between all SNP markers for the 250 accessions was ∼250–300 kb when the cut-off value (r2) was set at 0.1, assuming non-negligible SNP pairwise correlation (r = 0.3) (Figure 1A). The kinship between accessions was determined based on pairwise Euclidean distances. Pairwise distances among accessions ranging from 0 to 0.2 accounted for less than 5% of all the pairwise distances. Pairwise distances from 0.6 to 0.8 were the most frequent and accounted for 12%–23% of all the pairwise distances (Figure 1B). Further, no genetically structured sub-populations were observed among the 250 varieties used in this study. However, several families were detected (Supplementary Figure S1).
[image: Figure 1]FIGURE 1 | Linkage disequilibrium (LD, r2) decay and Euclidean distance for the 250 diverse rice accessions used in this study. (A) LD decay for the studied accessions. The X-axis represents the physical distance between SNP pairs in kilobases (kb). (B) Pairwise Euclidean distance for the studied accessions.
Distribution of Phenotypes, Genomic Heritability, and Genetic Correlation
The distributions of phenotypes (adjusted phenotypic means) based on the 250 accessions varied among the five traits studied. The distribution of Zn was almost symmetrical. The skewness was high and negative for Cu, and moderate and negative for Fe, Cd, and Mn (Supplementary Figure S2). The genomic heritability for all studied traits ranged from low (Zn: 0.14 and Cu: 0.21) to medium (Mn: 0.35) and high (Fe: 0.5 and Cd: 0.62) (Table 2). The genetic correlation estimated with the MTM model was highest between Fe and Cd (0.95) and Cu and Zn (0.95) and lowest between Mn and Cd (0.39) and Mn and Fe (0.44). Zn had the highest genetic correlations with all the other studied traits, ranging from 0.67 to 0.95 (Table 2).
TABLE 2 | Genomic heritabilities (diagonal and bold) and genetic correlations (upper triangle) of the trace elements traits studied.
[image: Table 2]Prediction Accuracy of Single-Trait Model Versus Multi-Trait Model Using Whole-Genome Markers
The average prediction accuracy with the traditional ST-GBLUP model under the CV1 scheme was the highest for Cd (0.52), followed by Fe (0.39), Mn (0.36), Zn (0.23), and Cu (0.21) (Figure 2). Also, under the CV1 scheme, prediction accuracies of MT models were not statistically significantly (p < 0.05) superior to those of ST-GBLUP irrespective of the models and traits studied (Supplementary Tables S2–S6).
[image: Figure 2]FIGURE 2 | Genomic prediction accuracies of the studied traits were assessed using a single trait GBLUP (ST-GBLUP) model.
As compared, when phenotypes of the auxiliary traits were made available in both training and test sets (MT-CV2) or merely in the test set (MT-CV3), the MT models, namely FA or UN, significantly (p < 0.05) outperformed the ST-GBLUP model (Figures 3, 4). For most of the studied traits, the highest performance of MT models was observed under the MT-CV2 scheme (Figures 3, 4). However, MT-GBLUP and BMORS MT models were not significantly (p < 0.05) superior to the ST-GBLUP model for all the CV schemes studied (Supplementary Tables S7–S11).
[image: Figure 3]FIGURE 3 | Genomic prediction accuracies of the genotype-based single trait (ST) model (ST-GBLUP) and multi-trait (MT) models (MT-FA and MT-UN) under different cross-validation (CV) schemes (ST-CV1, MT-CV2, and MT-CV3). The target traits are (A) Zn, (B) Cu, and (C) Fe. The first box-whisker in each portrayal indicates the accuracies of the ST-GBLUP model in the ST-CV1 scheme. Other box-whiskers refer to the accuracies achieved by MT models with different trait combinations. Asterisks above box-whiskers indicate that the prediction accuracies of the MT model for the specific trait combination were statistically significantly (p < 0.05, t-test) higher than those of the ST-GBLUP model.
[image: Figure 4]FIGURE 4 | Genomic prediction accuracies of the genotype-based single trait (ST) model (ST-GBLUP) and multi-trait (MT) models (MT-FA and MT-UN) under different cross-validation (CV) schemes (ST-CV1, MT-CV2, and MT-CV3). The target traits are (A) Cd and (B) Mn. The first box-whisker in each portrayal indicates the accuracies of the ST-GBLUP model in the ST-CV1 scheme. Other box-whiskers refer to the accuracies achieved by MT models with different trait combinations. Asterisks above box-whiskers indicate that the prediction accuracies of the MT model for the specific trait combination were statistically significantly (p < 0.05, t-test) higher than those of the ST-GBLUP model.
We further compared scenarios where the prediction of the target traits was assisted with a single auxiliary trait or a combination of multiple auxiliary traits in MT models. Supporting the prediction of Zn with one of its correlated traits (Cu, Fe, Mn, or Cd) was sufficient to significantly (p < 0.05) increase the prediction accuracy MT-UN model relative to ST-GBLUP model in MT-CV2 (Figure 3A). Cu was the best single auxiliary trait for predicting Zn. Incorporating observations from Cu in MT-UN model (under MT-CV2) significantly (p < 0.05) increased the prediction accuracy of Zn by 82.6% (0.23–0.42) relative to the ST-GBLUP model. However, the highest increase in prediction accuracy (126% or 0.23–0.52) of MT models was observed when observations from Mn, Fe, and Cu were combined as supporting traits for Zn under the MT-CV2 scheme (Figure 3A). Under MT-CV3, the MT-UN model outperformed the ST-GBLUP model only after multiple auxiliary traits were used to support the prediction of Zn (Figure 3A).
Similarly, compared to ST-GBLUP, the prediction accuracy of Cu by the MT-UN model significantly (p < 0.05) increased by 95.2% (0.21–0.41) and 38% (0.21–0.29) in MT-CV2 and MT-CV3, respectively, when Zn was used as a single supporting trait (Figure 3B). Yet, after including other traits in MT-CV2 (Mn and Zn) and MT-CV3 (Zn and Cd), the prediction accuracy improved by 109.5% (0.21–0.44) and 57.1% (0.21–0.33) relative to ST-GBLUP, respectively.
Similarly, when Fe was the target trait, MT-UN model accounting information from Cd significantly (p < 0.05) outperformed ST-GBLUP by 23% (0.39–0.48) and 12.8% (0.39–0.44) under MT-CV2 and MT-CV3 schemes, respectively (Figure 3C). Nevertheless, considering phenotypes from more auxiliary traits in MT-CV2 (Zn and Cd) and MT-CV3 (Zn and Cd) provided 33.3% (0.39–0.52) and 23% (0.39–0.48) gains in the prediction accuracy of Fe with the MT-UN model, respectively (Figure 3C).
Furthermore, the prediction accuracy of Cd (the most heritable trait) with the MT-UN model was significantly (p < 0.05) improved by 3.8% (0.52–0.54) when Fe, its strongly correlated trait, was used as a single auxiliary trait under the MT-CV2 scheme (Figure 4A). As observed for the other traits, 7.6% (0.52–0.56) and 11.5% (0.52–0.58) gains in prediction accuracy were attained after using combined information from multiple auxiliary traits (Mn, Fe, and Cu) in MT-UN and MT-FA models under MT-CV2, respectively (Figure 4A). Similarly, under MT-CV3, MT models did not significantly outperform ST-GBLUP models in scenarios where a single auxiliary trait was used. However, when information from Fe and Zn or Fe and Cu was considered, an improvement of 5.7% (0.52–0.55) in the prediction accuracy of the MT-FA model over the ST-GBLUP model was observed (Figure 4A).
Finally, when Mn was the target trait, MT-UN with a single auxiliary trait failed to improve its prediction accuracy under both MT-CV2 and MT-CV3 schemes (Figure 4B). However, considering information from additional traits (Cu, Zn, and Cd), using the MT-FA model significantly (p < 0.05) improved the prediction accuracy of Mn up to 11.1% (0.36–0.40) over ST-GBLUP under MT-CV2 (Figure 4B). On the other hand, under the MT-CV3 scheme, MT-UN or MT-FA did not significantly outperform ST-BLUP even after using multiple auxiliary traits.
Prediction Accuracy of Haplotype-Based Model Versus Genotype-Based Models
We further investigated the benefits of accommodating local epistatic effects on the prediction accuracy of MT models by using haplotypes instead of genotypes in the UN model. Comparing to the genotype-based UN model, the observed largest and significant (p < 0.05) increment of prediction accuracies using haplotype-based models was 3.8% for Zn (0.52–0.54), 4.6% for Cu (0.43–0.45), and 3.5% (0.56–0.58) for Cd under MT-CV2. For Zn, the above improvement in prediction accuracy was achieved with a haplotype length of 3 SNPs, and when Mn, Fe, Cu, and Cd were collectively used as auxiliary traits (Figure 5A). For Cu, the observed gains were realized with a haplotype length of 4 SNPs and when auxiliary traits Mn and Zn were used together (Figure 5B). For Cd, the gains were from the MT-UN model with a haplotype length of 2 SNPs, and when Mn, Fe, Cu, and Zn were combined as the auxiliary traits (Figure 5C). Under MT-CV3, the haplotype-based UN model was significantly (p < 0.05) superior to the genotype-based UN model by 12.5% (0.32–0.36) for Zn (Figure 5A) and 6% (0.33–0.35) for Cu (Figure 5B).
[image: Figure 5]FIGURE 5 | Genomic prediction accuracies of the genotype-based single trait (ST) model (ST-GBLUP) and haplotype-based multi-trait (MT) model (MT-UN) under different cross-validation (CV) schemes (ST-CV1, MT-CV2, and MT-CV3). The target traits are (A) Zn, (B) Cu, and (C) Cd. The number of SNPs contained in haplotype blocks ranged from three to five. The first box-whisker in each portrayal indicates the accuracies of the ST-GBLUP model in the ST-CV1 scheme. Other box-whiskers refer to the accuracies achieved by MT models with different trait combinations. Asterisks above box-whiskers indicate that the prediction accuracies of the haplotype-based MT-UN model for the specific trait combination were statistically significantly (p < 0.05, t-test) higher than those of the ST-GBLUP approach. Pounds above box-whiskers indicate that the prediction accuracies of the haplotype-based MT-UN model were statistically significantly (p < 0.05, t-test) higher than those of its corresponding genotype-based counterparts. Only the scenarios where the haplotype-based MT-UN model were statistically significantly outperformed (p < 0.05, t-test) the genotype-based MT-UN model are presented.
Compared to the ST-GBLUP model, the haplotype-based UN models were significantly (p < 0.05) superior with an increment of prediction accuracy of 134.7% (0.23–0.54), 114.2% (0.21–0.45), 23% (0.39–0.48), and 11.5% (0.52–0.58) for Zn (Figure 5A), Cu (Figure 5B), Fe (Supplementary Figure S3), and Cd (Figure 5C), respectively.
Prediction Accuracy of a Haplotype-Based Model Capitalizing on Trait-Associated SNPs
With this study, we sought to investigate whether the prediction accuracy of Zn, Cu, and Cd with the haplotype-based model can be improved by using the selective marker panel made by TA-SNPs derived from GWAS (Supplementary Table S12). We purposely selected Zn and Cu because for both traits the haplotype-based MT model performed superiorly for several scenarios irrespective of the lengths of haplotypes (2–5 SNPs) (Figure 5). We also investigated Cd in addition to Zn and Cu since successive significant (p < 0.2) TA-SNPs were observed in GWAS based on the total population (Supplementary Figures 4A–C). The non-negligible LD (r2≥0.1) observed between the TA-SNPs, especially in Cu and Cd, underpinned the necessity of modelling local epistatic effects among TA-SNPs (Figures 6A–C). The haplotype-based UN model accounting for TA-SNPs significantly (p < 0.05) outperformed their genotype-based counterparts; however, it was significantly (p < 0.05) inferior to the model using all genome-wide markers for all the traits and scenarios evaluated (Figures 7A–C).
[image: Figure 6]FIGURE 6 | Linkage disequilibrium (LD, r2) heatmaps for the trait-associated SNPs (TA-SNPs, p < 0.01) identified from a genome-wide association study (GWAS) using the total population for (A) Zn, (B) Cu, and (C) Cd. The physical distance indicates the distance between the first and last TA-SNPs found on each chromosome.
[image: Figure 7]FIGURE 7 | Genomic prediction accuracies of the haplotype-based multi-trait model (MT-UN) with uninformative genomic markers (all SNPs haplotype-based) and haplotype- or genotype-based multi-trait model (MT-UN) with trait-associated SNPs (TA-SNPs) under MT-CV2 and MT-CV3. The target traits were (A) Zn, (B) Cu, and (C) Cd. The size of the haplotype blocks containing the TA-SNPs is maximally 300 kb. Different letters above box whiskers indicate statistically significant (p < 0.05, t-test) differences among compared groups. The average number and the coefficient of variation (CV) of the used TA-SNPs for the observed predictions are shown for each trait.
DISCUSSION
Quantifying trace element content in food crops is labor- and time-intensive. As a result, trace element traits have been the subject of few genomic prediction studies (Owens et al., 2014; Leplat et al., 2016; Frouin et al., 2019; Guo et al., 2020; Ahmadi et al., 2021) compared to agronomic or physiological traits. This study demonstrates how MT models with appropriate CV strategies can be useful in saving phenotyping resources for trace element traits in diverse rice collections without compromising the prediction accuracy. It also provides the first proof of concept in diverse rice for incorporating local epistatic effects and trait-associated SNPs into MT genomic prediction models.
Multi-Trait Models Improved the Prediction Accuracy of Trace Elements in Rice Grain
In this study, MT models did not significantly outperform ST-GBLUP under the CV1 scheme for all the scenarios evaluated (Supplementary Tables S2–S6). Earlier studies also reported insignificant differences in the prediction accuracies of MT-CV1 and ST-CV1 (Calus and Veerkamp, 2011; dos Santos et al., 2016; Bhatta et al., 2020), implying that MT models are not always robust over ST models, especially when information on auxiliary traits is only available in the training set and the unobserved accessions are predicted only based on genotypic data. In contrast, when phenotypes of the auxiliary traits were present in the training and test set (MT-CV2) or merely in the test set (MT-CV3), the prediction accuracy of MT models (MT-UN and MT-FA) for the unobserved target traits (Zn, Cu, Fe, and Cd) was significantly improved relative to ST-GBLUP (Figures 3, 4). Previous studies attributed the predictive performance of MT models to both higher heritability of the auxiliary trait and strong genetic correlation between the target and auxiliary traits (Sun et al., 2017; Fernandes et al., 2018).
Accounting for the Information From Multiple Auxiliary Traits Boosted the Predictive Ability of Multi-Trait Models
Using a single auxiliary trait in the MT-UN model significantly (p < 0.05) improved the prediction accuracy of target traits Zn, Cu, Fe, and Cd relative to the ST-GBLUP model (Figures 3, 4). When a strong genetic correlation exists between target and auxiliary trait, the prediction accuracy of MT models could still be improved under MT-CV2 or MT-CV3 regardless of trait heritability. For instance, supporting the prediction of Cu with Zn, its strongly correlated trait (cor Zn, Cu = 0.95) but with lower heritability (h2Zn = 0.14; h2Cu = 0.21) significantly improved the prediction accuracy of Cu with the MT-UN model (Figure 3B). Also, supporting Cd with Fe, its strongly correlated trait (cor Cd, Fe = 0.95) but with lower heritability (h2Cd = 0.62; h2Fe = 0.50), improved the prediction accuracy of Cd with the MT-UN model (Figure 4A). Arojju et al. (2020) also indicated that the genetic correlation was the main cause of the observed gain in prediction accuracy of MT models. The same study further showed that when a trait in strong genetic correlation with the target trait is used in the MT model, the predictive performance of the MT model was still superior to the ST model even after reducing the training population size by 50%.
Collectively accounting for phenotypes of multiple auxiliary traits further improved the predictive ability of the MT models compared to the MT models with a single auxiliary trait. For example, the highest increase in the prediction of Zn was 82.6% when a single auxiliary trait was used in MT-UN models. Yet, using multiple traits collectively in the same model improved the prediction of Zn by 126% compared to the ST-GBLUP model (Figure 3A). Also, MT models with one auxiliary trait showed no benefit over the ST-GBLUP model when predicting Mn, with relative medium heritability and no strong genetic correlation with any other studied trait. However, when auxiliary traits were collectively used in the MT-FA model, significant improvements in the prediction accuracy over the ST-GBLUP model were observed (Figure 4B). Multiple auxiliary traits would optimize MT models, though the assisting trait per se is neither strongly genetically correlated with the target trait nor highly heritable. Therefore, when no single auxiliary trait meets the criterion of heritability or genetic correlation, combining multiple auxiliary traits in the MT model could be an effective approach to enhance the predictive ability of MT models. These findings are concurrent with previous findings by Wang et al. (2017), indicating that the prediction accuracy of MT models was highest when eight different traits were used as auxiliary traits to predict grain yield in rice.
Modeling Local Epistatic Effects is Beneficial in Multi-Trait Models Irrespective of Using Total or Selective Marker Panel
Previous studies demonstrated that accounting for local epistatic effects besides the additive effect in genomic prediction could improve the prediction accuracy of ST models (Akdemir and Jannink, 2015; Akdemir et al., 2017; Jiang et al., 2018; He et al., 2019). Here, we are the first to attempt to model the local epistatic effects in the context of MT genomic prediction. Accounting for the local epistatic effects in haplotype-based MT models significantly improved the prediction accuracy of Zn, Cu, and Cd relative to genotype-based MT models, only capturing additive effects (Figures 5A–C). Relative to ST-GLUP, the highest increase in prediction accuracy, 134.7% for Zn, was observed after incorporating the local epistatic effects into the MT-UN model (Figure 5A). These findings imply that the potential of MT models can be maximized by accounting for local epistatic effects besides additive effects in the model.
Using a selective marker panel based on approaches exploiting the trait biological and genetic background knowledge such as GWAS has been proven effective to improve the predictive ability of GS models (Owens et al., 2014; Wang et al., 2019). Our study did not show any improvements of prediction accuracy by using the TA-SNPs instead of all genome-wide SNPs for Cu, Zn, and Cd (Figures 7A–C). These findings could be attributed to the complex genetic architectures of the trace elements we studied (Supplementary Figures S4A–C). Our approach was slightly similar to previous methods using GWAS-derived TA-SNPs to construct the trait-associated matrix (Zhang et al., 2014; Ahmadi et al., 2021), except that we did not assign weights to haplotype- or genotype-based genomic relationship matrices. Though numerous studies reported improved gains from using the above strategy (Bhandari et al., 2019; Ahmadi et al., 2021), Veerkamp et al. (2016) showed that the proportion of total variance explained by the TA-SNPs combined in a GRM was considerably smaller than that explained by all variants in Holstein-Friesian cattle population. A potentially more promising way to use TA-SNPs would be to fit them as fixed effects in the GP model along with all other SNPs as random effects (Spindel et al., 2016). However, the latter approach is best suited for features with a few large-effect QTLs in a polygenic context (Poland and Rutkoski, 2016; Bian and Holland, 2017; Rice and Lipka, 2019). Therefore, the genetic architecture of the target traits must be studied before applying this strategy to a breeding program. The marked advantage of the haplotype-based UN model over their genotype-based counterparts using the TA-SNPs (Figures 7A–C) substantiates the existence of local epistasis in trace element traits (Sharma V. et al., 2021) and the merit of modelling local epistatic effects in MT-GP program.
Factors Affecting the Observed Prediction Accuracies: Trait Heritability, Genetic Correlation, and Population Relatedness
Various factors affect the predictive ability of GP models used in GS (Crossa et al., 2017; Xu et al., 2021). In this study, the genomic heritabilities spanned a wide range from 0.14 to 0.62 (Table 2), which enabled the evaluation of the performance of MT models under contrasting levels of genomic heritability. The genomic heritability of Zn was the lowest (h2 = 0.14, Table 2), which contradicts several previous studies that reported moderate to high heritability of Zn (Norton et al., 2010; Pinson et al., 2015; Naik et al., 2020). The poor heritability estimate of Zn in this study could be due to potential environmental effects. Unfortunately, our study does not include multi-environment trials and therefore does not provide insight into environmental factors and GxE interactions on genomic prediction of trace element traits.
Strong genetic correlations (Cor > 0.75) were observed between pairs of the studied trace element traits (Table 2). This was expected due to their overlapping genetic and physiological mechanisms (Sasaki et al., 2012; Cu et al., 2020). For example, transporter gene families like zinc-iron permease (ZIP), natural resistance-associated macrophage proteins (NRAMPs), and heavy metal transporting, ATPases (HMAs) have been associated with uptake and translocation of several trace elements in plants (Fernández-Paz et al., 2021; Vanderschueren et al., 2021; Zhang et al., 2022). As a result, borrowing information from correlated traits overall improved the prediction accuracy of the MT models.
The success of GS is also highly dependent on the LD between markers and unknown causal variants. The genetically distant training and test sets would have different LD decay patterns and consequently impede the prediction (Snelling et al., 2013; Desta and Ortiz, 2014; Thistlethwaite et al., 2020). Such a problem is typically prominent in germplasm accessions, limiting the power of GP (Crossa et al., 2017). This is also the case for the diverse rice population used in this study, as most accession pairs were distantly unrelated (Figure 1B). As a result, the predictive ability for ST-GBLUP was poor (Figure 2), particularly for traits with the lowest estimated heritabilities, namely Zn and Cu (Table 2). Adding related materials to the training population has been suggested to overcome the problem of low relatedness between training and test populations and improve the accuracy of genomic prediction (Arenas et al., 2021). Nevertheless, increasing relatedness will damage genetic gain in the long term because genetic variation will be limited or exhausted if related populations are overused (Jannink et al., 2010; Moeinizade et al., 2019). We show that MT models are powerful tools for predicting trace element traits in populations with diverse backgrounds. However, further studies with larger datasets are needed to elucidate the utility of different populations and marker optimization strategies in the context of MT genomic prediction.
The Prospect of Multi-Trait Models for the Evaluation of Genetic Resources in Gene Banks
Expediting genomic selection in gene banks to predict the genetic merit of the unobserved accessions would enable accurate identification of promising donor accessions without a comprehensive phenotypic test of all the accessions in the field (Pace et al., 2015; Yu et al., 2016; Crossa et al., 2017; Tanaka et al., 2021; He et al., 2022). In fact, as the traits of breeders’ interest are extensive, the genetic resources archived in gene banks would be evaluated for several traits. MT genomic prediction is an effective method to realize this comprehensive evaluation. Our study tested several MT models under three different CV schemes, implying different phenotyping layouts and costs. We found that high prediction accuracy of MT models can be achieved under prediction schemes MT-CV2 and MT-CV3. The MT-CV2 scheme requires more budget for phenotyping auxiliary traits in both training and test sets. Therefore, breeders may kindly MT-CV2 if phenotypes for the auxiliary traits can be inexpensively obtained. Otherwise, MT-CV3 is more cost-effective as phenotypes for the auxiliary traits are only required for the test set (i.e., 20% of the entire population). Since using multiple auxiliary traits collectively in the MT model can improve prediction even if the individual auxiliary traits do not fully meet the heritability and genetic correlation conditions, an ideal situation would be to phenotype less expensive and more manageable traits (e.g., root system architecture, 100-grain weight, data to heading, etc.) to support the prediction of expensive target traits with the MT models. Besides, accounting for local epistatic effects in MT models would help to improve the predictive ability. The different scenarios studied here and their respective potentials in terms of prediction accuracy and phenotyping cost are illustrated in Figures 8A,B.
[image: Figure 8]FIGURE 8 | General recommendations for using cross-validation (CV) schemes and multi-trait (MT) models. (A) An illustration of the different CV partitions and trait combination scenarios evaluated. (B) Expected prediction accuracy and phenotyping cost for different CV schemes and MT models. Green dots represent models which account only for additive effects. Black dots represent models considering both additive and local epistatic effects. The GBLUP model under ST-CV1 is economically advantageous because the main effort is just devoted to phenotyping one target trait in the training set. However, in terms of prediction accuracy, it is less robust than the UN and FA MT models under MT-CV2 or MT-CV3. Compared to ST-GBLUP, using MT models under MT-CV1 has no advantage in phenotypic resource-saving or prediction accuracy. In contrast, MT models implemented under MT-CV2 and MT-CV3 can improve prediction accuracy. However, high phenotyping efforts can be expected with MT-CV2, mainly when multiple auxiliary traits need to be phenotyped. MT-CV3 saves resources by only phenotyping the test set population (20% of the total population in our case). Accounting for local epistatic effects may further improve the predictive ability of MT models under MT-CV2 or MT-CV3.
To breed safe and nutritious crop varieties, further studies using the genomic selection index (Habyarimana et al., 2020), for example, are desired to provide a comprehensive understanding of the strategies to optimize essential nutrients and toxic metals such as Cd in food crops.
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High cadmium (Cd) accumulation in rice is a serious threat to human health. The genetic mechanism of Cd accumulation in rice is highly complicated. To identify the low Cd accumulation in rice germplasm, investigate the genetic mechanism underlying Cd accumulation, and mine the elite genes of significant importance for rice breeding of low Cd accumulation varieties, we performed a genome-wide association study (GWAS) for rice Cd concentration in the shoot. The rice accessions were 315 diverse indica rice accessions selected from the 1568 rice accessions with 700,000 SNPs. Within the high rate of linkage disequilibrium (LD) decay, eight QTLs related to rice Cd accumulation were identified. Transcriptomic analysis showed there were 799 differentially expressed genes (DEGs) in the root and 857 DEGs in the shoot, which are probably considered to be the cause of the significant difference in Cd accumulation between high and low Cd accumulation varieties. In qCd11-1, we detected a crucial candidate gene, LOC_Os11g11050, which encodes an initiation factor, expressed differently in the root between the high and low Cd accumulation varieties. Furthermore, under Cd treatment, the expression levels of LOC_Os11g11050 significantly decreased in both the high and low Cd accumulation varieties. Sequence comparison and qRT-PCR revealed that there were indel sequences and base substitutions in the promoter region of LOC_Os11g11050 correlated with the LOC_Os11g11050 expression level, as well as the phenotype of Cd concentration differences in shoot between the high and low Cd accumulation accessions. LOC_Os11g11050 might play important roles in Cd accumulation. The results of our study provide valuable resources for low Cd accumulation in indica varieties and the candidate functional gene, as well as molecular mechanisms for Cd accumulation in indica rice. The genetic architecture underlying Cd accumulation in indica can be used for further applying the low Cd gene existing in indica for decreasing Cd accumulation in rice.
Keywords: rice, cadmium absorption, candidate gene, genome-wide association study, transcriptomic analysis
INTRODUCTION
Cadmium (Cd) is one of the most dangerous heavy metals. Excessive intake of Cd may lead to severe health problems, including cancers of the lung, gallbladder, prostate, and urinary bladder (Nawrot et al., 2006). Rice tends to take up and accumulate a higher amount of Cd than other crops. As a staple food feeding almost half of the world population, efficient uptake of Cd by rice and transfer into the food chain pose a severe problem to human health and food safety (Clemens and Ma, 2016). In the past 3 decades, the rapid industrial development and lack of sufficient environmental protection have already resulted in widespread heavy metal pollution, and Cd contamination of rice has been reported in many major rice production countries, including China, India, Thailand, and Indonesia (Hu et al., 2016; Sui et al., 2018; Shi et al., 2020).
Treatments of soil, such as removal and replacement, chemical washing, or phytoremediation, can repair contaminated soil and reduce the Cd concentration of rice, but these methods may suffer from some disadvantages, such as high cost or time-consuming (Tang et al., 2017). Reducing the Cd concentration in rice by breeding low Cd accumulation varieties is a promising and cost-effective method to reduce the risks of Cd to human health without additional cost to farmers (Zhou et al., 2019).
Genetic variations contributing to lower Cd accumulation in rice are fundamental for breeding low Cd accumulation varieties. Fortunately, it had been reported Cd accumulation is genetically controlled in rice, and rice germplasm carries plenty of genetic variations related to low Cd accumulation (Rasheed et al., 2020). With the help of functional genetic tools (Gu et al., 2022; Sun et al., 2022), many genetic variations conferring low Cd accumulation in rice have been identified and functionally characterized, including OsHMA3 (Ueno et al., 2010), OsNRAMP5 (Sasaki et al., 2012; Tang et al., 2017), OsNRAMP1 (Chang et al., 2020), OsIRT1 (Lee and An, 2009), OsIRT2 (Nakanishi et al., 2006), OsCd1 (Yan et al., 2019), OsHMA2 (Takahashi et al., 2012; Yamaji et al., 2013), OsZIP7 (Tan et al., 2019), OsCCX2 (Hao et al., 2018), OsCAL1 (Luo et al., 2018), OsLCT1 (Uraguchi et al., 2011), and OsLCT2 (Tang et al., 2021). These have provided insights into the Cd accumulation mechanisms in rice and valuable genetic basics for breeding low Cd varieties.
However, most of the functional alleles or genetic variations related to low Cd accumulation were characterized by map-based cloning from japonica varieties, since japonica cultivars accumulated much lower concentrations of Cd than cultivars of other subpopulations (Li et al., 2017). Natural genetic variations contributing to low Cd accumulation in indica have not been reported, which greatly hampers the progress of breeding low Cd indica varieties, while the Cd contamination problem is much more severe in indica than japonica. So identifying low Cd accumulation accessions from indica germplasms and then characterizing genetic variations leading to low Cd accumulation, as well as dissecting molecular mechanisms underlying the high Cd accumulation in indica, offer a more practical and acceptable alternative way for breeding low Cd indica varieties.
In the previous study, we have successfully identified a few indica accessions with low Cd accumulation in grain from an international rice panel. Further GWAS analysis characterized a functional gene leading to a low Cd accumulation phenotype in indica (Zhao et al., 2018). These results indicated that highly diverse international germplasms are valuable resources in identifying low Cd accumulation indica accessions and then facilitate characterizing functional low Cd accumulation genes.
In the present study, we used the international rice panel to further identify indica accessions with low Cd accumulation in the shoot of the seedling stage. GWAS and whole-genome transcriptomic analysis were then conducted to characterize genes and mechanisms related to Cd accumulation in the shoot of the seedling stage. In the present study, we focused on Cd accumulation in the shoot of seedling, which is a combined indicator for Cd absorption by root and the following translocation from the root to the shoot. Generally, four key processes contribute to Cd accumulation in rice grains: 1) uptake and transport in roots, 2) translocation from the root to the shoot, 3) redistribution at nodes, and 4) remobilization to grains via the phloem (Hart et al., 2006; Uraguchi and Fujiwara, 2013; Huang et al., 2019). It has been reported that the reason for higher Cd concentration in indica than in japonica may be owing to the more efficient long-distance transport of Cd from the xylem to the shoot (Uraguchi and Fujiwara, 2013). Therefore, Cd translocation from the root to the shoot may be vital in determining Cd content differences between indica and japonica. The present study aimed to identify indica accessions with low Cd translocation and the functional genes conferring this phenotype in indica.
In order to address the aforementioned questions, in the present study, we focused on the shoot’s Cd content in the seedling stage under hydroponic culture using an international indica panel (McCouch et al., 2016), which include 315 diverse indica accessions from 45 countries. A genome-wide association study (GWAS) was then conducted for shoot Cd concentration with 700,000 single-nucleotide polymorphisms (SNPs) as the genotype. A total of 27 indica rice varieties with low Cd accumulation (< 20 mg/kg) in the shoot and eight QTLs related to low Cd accumulation were identified. One candidate gene LOC_Os11g11050 for a significant QTL (qCd11-1) was predicted by combining results from GWAS, gene annotations, and transcriptomic analysis. This study provided valuable resources and a candidate functional gene for low Cd accumulation in indica, which are the basis for breeding of low Cd accumulation indica varieties. This study also dissected the molecular mechanisms underlying Cd accumulation in the shoot of the rice seedling stage, which provides novel insights into Cd accumulation in indica rice varieties.
RESULTS
Phenotypic variations of the shoot’s cadmium concentration in 315 indica rice accessions
A total of 315 diverse indica rice accessions from 45 countries were selected from an international panel with 1568 rice accessions (McCouch et al., 2016). Phenotypic analysis of the Cd concentration in the shoot of a seedling revealed a wide range of phenotypic variations among these accessions and approximately emerged on the normal distribution (Figure 1A). The Cd concentration for individual accession ranged from 4.07 to 92.14 mg/kg, with an average of 32.58 mg/kg. The indica cultivar “Cheriviruppu” from India had the lowest Cd concentration in the shoot, while the indica cultivar “P 660” from Pakistan had the highest Cd accumulation. In total, 27 rice accessions had Cd concentrations lower than 20.0 mg/kg (Table 1).
[image: Figure 1]FIGURE 1 | (A) Frequency distribution of the Cd concentration in 315 rice accessions. Blue line: trendline, red line: normal distribution line, black line: mean of the Cd concentration, and mean = 32.58. (B) Principal component analysis on 399,200 SNPs of 315 rice accessions. PC1, PC2, and PC3 represent the three principal components of the population. The color from red to blue represents the PC2 value. (C) Genome-wide average LD decay estimated in 315 rice accessions. (D) QQ plot for the GWAS of the Cd concentration in the shoot. y-axis: observed -log10(p) and x-axis: expected -log10(p) under the assumption that p follows a uniform[0,1] distribution. The red lines and gray region show the 95% confidence interval for the QQ plot under the null hypothesis of no association between the SNP and the trait. (E) Manhattan plots of the GWAS of shoot Cd accumulation in 12 chromosomes. The red arrow represents the loci close to previous genes. The gray dash line represents the significant threshold (p = 1.00 × 10–4).
TABLE 1 | Rice accessions with the Cd concentration lower than 20 mg/kg in the shoot.
[image: Table 1]QTL mapping for cadmium accumulation in the shoot by a genome-wide association study
According to the criteria of minor allele frequency (MAF) being larger than 5% in the natural population, 399,200 SNPs were selected for GWAS from the 700,000 SNP dataset (McCouch et al., 2016). Principal component analysis (PCA) was performed with SNPs to estimate the population structure of these 315 rice accessions. Three distinct clusters were observed in the score plot of principal components (Figure 1B, Supplementary Figure S1). To enable visualization of the evolutionary history or relationship in the population, a phylogenetic analysis was performed. It showed that 315 rice accessions could be divided into three major clades (Supplementary Figure S2). In order to determine the rough region a QTL may span, we analyzed linkage disequilibrium (LD) decay on each chromosome in our GWAS population. LD analysis revealed that significant LD decays were observed at about 150–200 kb on all 12 chromosomes (Figure 1C). To control false positives by the population structure, a GWAS was conducted using a mixed linear model (MLM) model in GAPIT (Tang et al., 2016). The mixed linear model (MLM) is one of the most effective models which simultaneously incorporate both population structure and cryptic relationship (Yu et al., 2006). The quantile–quantile (QQ) plot was a useful tool for assessing how well the model used in the GWAS accounts for the population structure and familial relatedness. In the QQ plot (Figure 1D), the majority of the points lie on the diagonal line, which means most of the SNPs tested were probably not associated with the trait. The QQ plot results indicated that the false positive was well controlled in our GWAS analysis. It is expected that the SNPs on the upper right section of the graph deviate from the diagonal, which are most likely associated with the trait under study.
In summary, all the results from the abovementioned analysis demonstrated the reliability of our GWAS analysis. According to the LD decay results mentioned previously, a region was considered as one QTL where it had more than two SNPs with log10(P) >= 4 (FDR = 0.3) within a 200-kb window. The results of GWAS were shown using the Manhattan plot, which showed that eight QTLs with 27 SNPs were significantly associated with shoot Cd accumulation in the 315 indica rice accessions (Figure 1E). The SNPs with the highest significant signal on each chromosome are shown in Table 2. These QTLs (designated as qCd hereafter) are distributed on chromosomes 3, 7, 8, 11, and 12, which explained 4.36%–8.98% of the phenotypic variations. The MAF of the eight QTLs ranged from 0.07 to 0.38. The differences in the mean of shoots’ Cd concentration between the minor alleles and major alleles in the eight QTLs ranged from 2.57 to 13.26 mg (Figure 2).
TABLE 2 | QTLs associated with Cd accumulation identified by the GWAS.
[image: Table 2][image: Figure 2]FIGURE 2 | Boxplot of the phenotype analysis between the peak SNPs in the QTLs and phenotypic difference between minor alleles and major alleles. Δm, the difference of the mean of shoots’ Cd concentration between the minor alleles and major alleles at the seedling stage with three replications. Statistical comparison was performed by a one-sided t-test.
Whole-genome gene expression profile analysis between high- and low-cadmium accumulation accessions
In order to identify functional genes underlying QTLs, as well as dissect molecular mechanisms underlying Cd accumulation in the shoot of seedlings in indica, a whole genome expression profile was conducted by RNA-seq using roots and shoots from two high Cd accumulation accessions and two low Cd accumulation accessions. To detect whether the two high Cd content accessions have different gene expression patterns, we conducted a correlation analysis of the gene expression between the two high Cd accumulation accessions. The two high Cd accumulation accessions showed strong correlations of gene expression in the shoot (r > 0.95) and root (r > 0.85). The two low Cd accumulation accessions also showed strong correlations of gene expression in the shoot (r > 0.90) and root (r > 0.75) (Supplementary Figure S3). These results indicated the two high and two low Cd accumulation accessions have similar gene expression patterns.
Without Cd treatment (0 h), we identified 2,716 (1971 up- and 745 downregulated) differentially expressed genes (DEGs) in the root and 2047 (1430 up and 617 down-regulated) DEGs in the shoot between high and low Cd accumulation accessions (HR_LR_0 h for root samples; HS_LS_0 h for shoot samples). A total of 1423 (989 up- and 434 downregulated) DEGs in the root and 1424 (1013 up- and 411 downregulated) DEGs in the shoot were identified between the high and low Cd accumulation varieties under Cd treatment for 12 h (HR_LR_12h; HS_LS_12 h). Under Cd treatment for 48 h, 1327 (968 up and 359 down-regulated) DEGs in the root and 899 (604 up- and 295 downregulated) DEGs in the shoot were identified between the high and low Cd accumulation varieties (HR_LR_48h; HS_LS_48 h). The distribution patterns of DEGs were shown by the scatter plot (Supplementary Figure S4).
In order to investigate the differential gene expression patterns between the high and low Cd accumulation accessions and the possible molecular pathways that responded to Cd treatment, Venn’s analysis was performed on six gene sets to obtain the subset of genes related to Cd accumulation differences between high and low Cd accessions (Figure 3). The results revealed that 799 DEGs in the root and 857 DEGs (region within red digital, in Figure 3) in the shoot responded to Cd treatment but were not included in DEGs of Cd non-treatment samples. These genes may be the functional genes related to Cd content differences.
[image: Figure 3]FIGURE 3 | Analysis of differentially expressed genes (DEGs). (A) Venn diagram representing the number of DEGs between high and low Cd accumulation varieties in 0 h, 12, and 48 h after Cd treatment in the root. H and L represent two rice accessions with high Cd accumulation and two rice accessions with low Cd accumulation, respectively. R and S represent RNA extracted from the root and shoot, respectively. (B) Number of DEGs in the shoot. (C) GO enrichment of 20 important terms. The size of the circles represents gene numbers enriched in the GO terms.
To determine those genes which respond to Cd treatment, we compared the DEGs at 0 h with those at 12 h (or 48 h) with Cd treatment in the high Cd accumulation varieties and the low Cd accumulation varieties. Venn’s analysis (Supplementary Figure S5) was performed to reduce the influence on gene expression caused by different genetic backgrounds. We found 3,656 and 8,931 upregulated genes in the root and shoot, respectively, between control (no Cd treatment) and Cd treatment for 12h, containing 171 genes only in the root of the low Cd accumulation varieties (LR_0-12 h) and 450 genes only in the shoot of the low Cd accumulation varieties (LS_0-12 h). Meanwhile, 423 and 293 upregulated genes were found in LR_0-48 h and LS_0-48 h, respectively. Then, 113, 286, 383, and 341 downregulated genes were found in LR_0-12h, LS_0-12h, LR_0-48 h, and LS_0-48 h, respectively. The DEGs (the yellow region with red digital, in Supplementary Figure S5) which only exist in the low Cd accumulation varieties between control and Cd treatment are identified as genes probably related to lower Cd accumulation in the rice.
All the DEGs (red digital in Figure 3 and Supplementary Figure S5) were subjected to gene ontology analysis by agriGO v2.0 (Tian et al., 2017). The 10,853 DEGs were enriched in 105 GO terms, of which 64 were biological processes (BPs), three were cellular components (CCs) and 38 were molecular functions (MFs). The most significant enriched GO terms in BP were GO: 0006950 (response to stress), GO: 0044281 (the small molecule metabolic process), GO: 0050896 (response to stimulus), GO: 0006979 (response to oxidative stress), and GO: 0043436 (the oxoacid metabolic process). Interestingly, the “transport” (GO: 0006810) (Figure 3C) was among the most significant GO terms.
Candidate gene identification in qCd11-1
Among the eight QTLs, qCd3-2 had the most significant SNP at 28,476,700 in the region of 28.38-28.58 Mb on chromosome 3. Transcriptomic analysis results indicated only one gene (LOC_Os03g50160) showed a different expression pattern between roots from high and low Cd accumulation accessions (Supplementary Table S2). Furthermore, sequence difference analysis surrounding LOC_Os03g50160 between high and low Cd accumulation accessions was conducted. However, no significant correlation was discovered between the sequence differences and Cd accumulation.
Interestingly, the qCd3-1 identified from our GWAS results co-localized with a previously characterized gene (OsCCX2) that functioned in promoting upward transport of Cd in the xylem. Therefore, OsCCX2 may be the candidate functional gene underlying qCd3-1. However, no expression differences were found between high and low Cd accumulation accessions in our transcriptomic results. Sequence comparison was also conducted in accessions of our GWAS population, but no SNPs or small indels were found in the coding region of OsCCX2. Further investigations are needed to characterize the functional variations of OsCCX2 related to Cd accumulation in the natural population.
The second significant QTL in our GWAS result is qCd11-1, which has a large phenotype contribution (6.02%, Table 2) and a proper MAF (0.38), and may be one of the major QTLs controlling Cd accumulation in the indica panel. Candidate functional genes in qCd11-1 were further analyzed in the present study. Then, results from transcriptomic analysis, gene annotation, and genome sequences analysis were combined to infer the candidate genes. The LD decay analysis in the qCd11-1 interval delimited qCd11-1 into an approximately 200-kb region (from 6.0 to 6.2 Mb on chromosome 11) (Figure 4). There were 31 genes annotated in the 200-kb region based on release 7 of the MSU Rice Genome Annotation Project (http://rice.uga.edu/). Transcriptomic analysis demonstrated that five genes were differentially expressed in the root or shoot between the high and low Cd accumulation accessions (Supplementary Table S2). Based on the expression pattern, LOC_Os11g11050, which encodes an initiation factor, was predicted to be the possible candidate gene of qCd11-1 (Figure 5).
[image: Figure 4]FIGURE 4 | Candidate region estimation of qCd11-1 on chromosome 11. (A) Local Manhattan plot of the GWAS for the Cd concentration in the shoot. (B) LD heatmap around the most significant SNP.
[image: Figure 5]FIGURE 5 | Expression changes of the candidate gene LOC_Os11g11050 in the root and shoot after Cd treatment between high and low Cd accumulation varieties. (A) Detecting LOC_Os11g11050 expression by transcriptomic analysis. (B) Detecting LOC_Os11g11050 expression in the root with qRT-PCR. (C) Sequence comparisons of the LOC_Os11g11050 promoter. HCd, high Cd accumulation varieties. LCd, low Cd accumulation varieties. (D) Boxplots for the Cd concentration based on haplotypes (Hap1 and Hap2; Hap1 had the deletions in the promoter, Hap2 did not have the deletions) of the LOC_OS11g11050 promoter. # The deletion position is based on the initiator codon ATG of LOC_OS11g11050. Statistical comparison was performed by a one-sided t-test.
LOC_Os11g11050 showed a relatively higher level of expression in the root than in shoot (Figure 5A). In the root, LOC_Os11g11050 had a relatively higher level of expression in the high Cd accumulation accessions than the low Cd accumulation varieties. Under Cd treatment, the expression levels of LOC_Os11g11050 significantly decreased in both the high and low Cd accumulation accessions. The results were further confirmed by qRT-PCR assays with six rice accessions with high Cd accumulation and eight rice accessions with low Cd accumulation (Figure 5B; Table 3).
TABLE 3 | High and low Cd accumulation varieties for qRT-PCR and sequence analysis.
[image: Table 3]Sequence comparisons between the aforementioned accessions with contract Cd accumulation phenotypes and LOC_Os11g11050 expression patterns were further investigated by sequencing of PCR production to identify whether there are sequential differences leading to the differences between Cd accumulation and the expression of LOC_Os11g11050. The results revealed that there were a few indels and base substitutions in the promoter region of LOC_Os11g11050 between the high and low Cd accumulation accessions (Figure 5C), which constitute two haplotypes. The haplotypes showed a strong correlation with the expression level of LOC_Os11g11050 and the Cd concentrations in the shoot (Figures 5B,C). The correlation between the haplotypes and Cd concentration was further investigated in the whole GWAS panel. The results showed accessions with Hap1 (with a deletion in the promoter) had more Cd concentration in the shoot than the accessions with Hap2 (without deletion in promoter) (Figure 5D). It seemed that the transformation of the LOC_Os11g11050 promoter sequence resulted in a change in the gene expression and further altered the phenotype of Cd concentration in the shoot. LOC_Os11g11050 might be a possible candidate gene for qCd11-1.
DISCUSSION
Cd accumulation in rice poses a severe risk to human health. Indica varieties generally accumulate higher Cd than japonica. So for most of the Cd-related QTLs or functional genes, the favorable alleles for reducing Cd accumulation were mainly derived from japonica rice varieties, which limited their breeding application in indica rice varieties. Since indica varieties are mainly planted in South China and Southeast Asia, where the Cd pollution problem is relatively more severe, it is of urgent need to identify low Cd accumulation accessions, as well as functional genes controlling Cd accumulation derived from indica germplasm.
In the previous study, we successfully identified indica accessions with low Cd accumulation in grains using an international diverse panel (Zhao et al., 2018). These results not only implied natural genetic variations controlling low Cd accumulation may exist in indica germplasm but also highlight the importance of utilizing highly diverse germplasm in screening and identifying these variances from indica. This is extremely important for Cd accumulation investigation and breeding in indica.
In the present study, we focused on the Cd accumulation in the aerial part of rice seedlings, which is determined by both Cd uptake by the root and the following transfer from the root to the aerial part. Previous studies had indicated these two factors are the key factors determining the Cd accumulation phenotype variations between indica and japonica (Chen et al., 2019; Liu et al., 2020). Therefore, we used a diverse rice collection consisting of 315 international indica rice accessions as materials, which represents an excellent resource for genetic diversity covering a wide geographical variation, and then facilitated natural genetic variation characterization. Furthermore, in the present study, the Cd content in the aerial part was assayed in seedlings treated under hydroponic culture conditions. Hydroponic culture can provide a uniform condition for Cd accumulation assays. All three replicates of 315 accessions were treated in a water pool by regular stirring, which provide a constant and uniform Cd concentration for all seedling samples. The phenotype results in the present study clearly demonstrated a wide range of Cd content in the aerial part of seedlings among 315 Indica rice accessions, which ranged from 4.07 mg/kg to 92.14 mg/kg, which further proved our previous assumption that many natural genetic variations controlling low Cd accumulation exist in indica germplasm. From the results, a few low Cd indica accessions were successfully identified from our diverse panel, which may be valuable for future breeding of low Cd indica varieties.
GWAS was then conducted using the Cd accumulation as the phenotype and the 700-K SNP dataset as the genotype. A total of eight QTLs related to Cd accumulation in the shoot of seedlings were identified by the GWAS. Chromosomal position comparisons revealed that qCd3-1 co-localized with OsCCX2, a gene encoding a putative transporter, which had been identified to participate in root-to-shoot translocation of Cd in rice (Figure 1E). It has been reported that OsCCX2 can promote an upward transport of Cd in the xylem. Knockout of the OsCCX2 gene can reduce the transfer rate of Cd from roots to the aerial organs (Hao et al., 2018). Therefore, OsCCX2 may be the candidate gene underlying qCd3-1. These results indicated the reliability of the GWAS results of this study. However, no expression pattern differences and small variations were found in OsCCX2 in our GWAS panel. Further investigations are needed to further identify if there are structural variations in OsCCX2 in the natural population, which may be related to Cd accumulation in rice.
Interestingly, we also found one QTL (qCd8) identified in the present study co-localized with another QTL (qCd8-2) controlling grain Cd accumulation in our previous study (Zhao et al., 2018). These results demonstrated this QTL may function both in Cd accumulation of the shoot and grain.
We found that most of the QTLs in the present study are novel QTLs related to Cd accumulation. There were three unique characteristics of GWAS in the present study for contributing to the discovery of novel QTLs. First, all 315 accessions in the GWAS population were indica, which were highly diverse international germplasm. The phenotypic distribution showed the indica population has a large range of Cd accumulation. Most of the previous studies were focused on populations containing both indica and japonica rice accessions, which may readily characterize QTLs controlling Cd accumulation differences between indica and japonica. Here, while using all indica varieties as the GWAS population, the specific genetic variations controlling low Cd accumulation with indica are possibly identified. Second, all accessions grew in a uniform hydroponic culture condition. The environmental variance in hydroponic culture conditions was less than that in the paddy field environment. Also, it would facilitate more accurate phenotyping. Third, we focused on the Cd concentration of the shoot at the seedling stage and used it as a phenotype for the GWAS, which was less investigated in previous studies. The phenotype ensured identification of QTL controlling both Cd absorbed by the root and Cd translocation from the root to shoot as well. It has been reported that the more efficient long-distance transport of Cd from the xylem to the shoot may be essential for higher Cd concentration in indica than in japonica (Uraguchi and Fujiwara, 2013).
In the present study, we were able to identify a candidate functional gene, LOC_Os11g11050, for qCd11-1 by combining the GWAS and whole genome expression profile. The most significant SNP of qCd11-1 locates 632 bp downstream from the candidate gene LOC_Os11g11050. Transcriptomic analysis demonstrated LOC_Os11g11050 was expressed differently in the root between the high and low Cd accumulation varieties. Moreover, LOC_Os11g11050 expression showed a significant response to Cd treatment. The qRT-PCR assays with six high Cd accumulation varieties and eight low Cd accumulation varieties further confirmed LOC_Os11g11050 had a relatively higher level of expression in the high Cd accumulation varieties than in the low Cd accumulation varieties. Under Cd treatment, the expression levels of LOC_Os11g11050 significantly decreased in both the high and low Cd accumulation varieties. LOC_Os11g11050 encoded an initiation factor 2 subunit family domain-containing protein. It may initiate other Cd translocation genes’ expression in the root for the transport of Cd from the root to shoot. The sequence comparison of LOC_Os11g11050 between high and low Cd accumulation varieties indicated that there were a few indels and base substitutions in the promoter region of LOC_Os11g11050 between the high and low Cd accumulation varieties and constitute two haplotypes (Hap1 and Hap2). The haplotypes strongly correlated with the expression level of LOC_Os11g11050 and the phenotype of the Cd concentration in the shoot. The indica accessions harboring Hap2 in the LOC_Os11g11050 promoter had a lower Cd concentration than the indica accessions with Hap1. We thus regarded Hap2 in the LOC_Os11g11050 promoter as a favor haplotype contributing to lower Cd accumulation in the shoot in indica rice. Applying the haplotype for marker-assisted breeding may have a potential application value in low Cd indica cultivars.
In conclusion, the present study provided a genetic analysis of Cd accumulation in the shoot within indica germplasm. Our results highlight the importance of diverse germplasm in studying Cd accumulation in rice, especially for indica. Using the international diverse indica panel and state-of-the-art functional genomic methods, we were able to identify novel QTLs and the underlying candidate gene for low Cd accumulation in the shoot of the seedling stage. These results provided novel resources, QTL, candidate genes, and molecular markers, which are essential for breeding low Cd indica varieties. The present study also provided novel insights into Cd transfer and accumulation in the aerial part of rice seedlings, which may be valuable for future studies on molecular mechanisms underlying Cd accumulation in rice.
MATERIALS AND METHODS
Rice accessions
A total of 315 rice Indica accessions (Supplementary Table S1) from 45 countries were selected according to the 1568 diverse rice accessions based on their 700,000 SNP genotypes and their origins (McCouch et al., 2016). Seeds of all 315 lines were provided by the International Rice Research Institute (IRRI).
Sampling and cadmium detection
All 315 accessions were germinated and planted in a cultivation pot treated with 1.8 mg/kg Cd at the greenhouse for a month. Each line had three replicates. To determine the shoot Cd concentrations of the 315 rice accessions, the shoots of 10 seedlings in each replicate were pooled and dried in an oven at 70°C for 24 h. Then, the dried shoot was ground into powder and digested with an acid mixture of HNO3–HClO4. The Cd concentration was determined by inductively coupled plasma optical emission spectrometry (ICP-OES, iCAP6000, Thermo Scientific, United States).
Genotyping, population structure, and genome-wide association study
GAPIT version 2 was used for GWAS analysis (Tang et al., 2016). The raw SNPs were exactly the same as the 700 K assay of a previous study (McCouch et al., 2016). The SNPs were selected for GWAS analysis by the criteria of having less than 15% missing data and minor allele frequency (MAF) > 0.05. The GWAS was conducted using the mix linear model (MLM) with the kinship matrix, and PC was set to three in GAPIT. We set the parameter “model. selection = Ture,” so GAPIT can find the optimal number of PC from 0 to 3. Considering the high complexity of the Cd accumulation mechanism and the specification of materials and tissue in the present study, we adopted a threshold p = 10–4 (false discovery rate = 0.3) at the genome-wide level. Manhattan and QQ plots were produced using the R package CMplot.
The rice genome sequence version of MSU V7.0 was used as a reference for analysis (Kawahara et al., 2013). We follow the criteria of having one associated locus between any two significant SNPs within a 200-kb interval. After determining the QTLs of GWAS analysis, the candidate genes were searched from 200 kb upstream and downstream of the most significant SNP in each QTL. All the genes located in the QTL region were predicted by the Rice Genome Annotation Project (MSU-RGAP, Nipponbare version 6.1).
Transcriptomic analysis
We defined the varieties with shoot Cd concentrations less than 20 mg/kg as low Cd accumulation varieties (top 10% of the varieties with extreme low Cd phenotypes) and the varieties with shoot Cd concentrations of more than 45 mg/kg as high Cd accumulation varieties (top 10% of the varieties with extreme high Cd phenotypes). We chose two varieties (Supplementary Table S1, SEQ: 1294 and 517) from the high Cd accumulation variety group and two varieties (Supplementary Table S1, SEQ: 1154 and 808) from the low Cd accumulation variety group by random for transcriptome analysis. All samples were germinated and planted in a cultivation pot without Cd at the greenhouse. Three weeks later, the samples were treated with CdCl2. Two biological RNA replicates of the shoot and root under 1 μmol/L CdCl2 for 0, 12, and 48 h were extracted with the RNeasy Kit (AiDeLai, China). The RNA samples were evaluated on agarose gels, quantified in a spectrophotometer, and stored at −80°C. The RNA samples were then sequenced using a HiSeq-2500 instrument, and 10 Gb of raw sequencing data were obtained. The raw RNA-seq reads were initially processed to remove the adapter sequences and low-quality bases with Trimmomatic version 0.33 (Bolger et al., 2014) in the paired-end mode with recommended parameters. The virus-like and rRNA-like RNA-seq reads were further removed with fastq_clean (Zhang et al., 2014). Finally, the clean RNA-seq reads were mapped to the reference genomes using STAR (Dobin and Gingeras, 2015) version 2.5.0b. To improve spliced alignment, STAR was provided with exon junction coordinates from the reference annotations. The parameters ‘–runMode alignReads –twopassMode Basic –outSAMstrandField intronMotif –outFilterMultimapNmax 1 –genomeDir GenomeIndex –sjdbGTFfile Msu70.gft –alignIntronMax 30,000 –sjdbOverhang 100 –outSAMattributes All –outSAMattrIHstart 0 –outSAMtype BAM SortedByCoordinate –quantMode GeneCounts’ were used, and the outSAMattrIHstart parameter was changed to 0 for compatibility with downstream software Cufflinks. Strong correlations (r > 0.95) of gene expression were detected in the biologically replicated samples. Gene expression was measured using Cufflinks and cuffdiff2 (Trapnell et al., 2013) with the parameters‘–library-norm-method classic–fpkm –emit-count-tables –L label1,label2 Msu70.gtf sample1.rep1.cxb, sample1.rep2.cxb sample2.rep1.cxb, and sample2.rep2.cxb’. Fragments per kilo-base of exon per million fragments mapped (FPKM) were obtained. Genes with low expression values (FPKM < 1) were filtered for downstream analysis. The rice genome sequence version of MSU V7.0 was used as a reference. Genes that were differentially expressed between the two high Cd accumulation varieties and the two low Cd accumulation varieties were identified based on their corrected p-values. Gene ontology (GO) analysis was performed through agriGO2 (http://systemsbiology.cau.edu.cn/agriGOv2/).
Differential expression analysis of genes by qRT-PCR
RNA reverse transcription reactions were performed using the PrimeScript TM RT reagent kit (TaKaRa, Japan). The primers for qRT-PCR were designed by Primer Premier 3.0. The ubiquitin was used as endogenous normalized genes for mRNA. Real-time PCR was carried out using the SYBR Premix ExTaq TM kit (TaKaRa, Japan) on a Bio-Rad CFX 96 Real-Time System. All reactions were run in triplicate. Primers used to amplify the selected genes are listed in Supplementary Table S3.
Haplotype analysis
The leaves of rice seedlings were collected and subjected to DNA extraction by the CTAB method. The primers for gene LOC_Os11g11050 PCR amplification are listed in Supplementary Table S3. The productions of PCR were sequenced, and the sequences were assembled by the software codon code at (https://www.codoncode.com/aligner/).
Data analysis
The phylogenetic tree was constructed by MEGA 7.0 using the SNP abovementioned data. A t-test was conducted using Excel to detect the significant differences in gene expressions of high and low Cd accumulation varieties.
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With the rapid generation and preservation of both genomic and phenotypic information for many genotypes within crops and across locations, emerging breeding programs have a valuable opportunity to leverage these resources to 1) establish the most appropriate genetic foundation at program inception and 2) implement robust genomic prediction platforms that can effectively select future breeding lines. Integrating genomics-enabled1 breeding into cultivar development can save costs and allow resources to be reallocated towards advanced (i.e., later) stages of field evaluation, which can facilitate an increased number of testing locations and replicates within locations. In this context, a reestablished winter wheat breeding program was used as a case study to understand best practices to leverage and tailor existing genomic and phenotypic resources to determine optimal genetics for a specific target population of environments. First, historical multi-environment phenotype data, representing 1,285 advanced breeding lines, were compiled from multi-institutional testing as part of the SunGrains cooperative and used to produce GGE biplots and PCA for yield. Locations were clustered based on highly correlated line performance among the target population of environments into 22 subsets. For each of the subsets generated, EMMs and BLUPs were calculated using linear models with the ‘lme4’ R package. Second, for each subset, TPs representative of the new SC breeding lines were determined based on genetic relatedness using the ‘STPGA’ R package. Third, for each TP, phenotypic values and SNP data were incorporated into the ‘rrBLUP’ mixed models for generation of GEBVs of YLD, TW, HD and PH. Using a five-fold cross-validation strategy, an average accuracy of r = 0.42 was obtained for yield between all TPs. The validation performed with 58 SC elite breeding lines resulted in an accuracy of r = 0.62 when the TP included complete historical data. Lastly, QTL-by-environment interaction for 18 major effect genes across three geographic regions was examined. Lines harboring major QTL in the absence of disease could potentially underperform (e.g., Fhb1 R-gene), whereas it is advantageous to express a major QTL under biotic pressure (e.g., stripe rust R-gene). This study highlights the importance of genomics-enabled breeding and multi-institutional partnerships to accelerate cultivar development.
Keywords: breeding, winter wheat (Triticum aestivum L.), historical data, training populations, genomic selection, prediction accuracy, yield
1 INTRODUCTION
Wheat (Triticum aestivum L.) is a major cereal crop worldwide as its production ranks third in the US (49.7 million tonnes) and globally (895.2 million tonnes) behind maize and soybean. Wheat has a high production value of US$8.7 billion in the United States and $188.1 billion globally (FAOSTAT 2022). The effects of climate change, including warming temperatures, variable precipitation and more frequent extreme weather events (Simpson and Burpee 2014), as well as diseases (Singh et al., 2016), are challenging wheat yield potential and causing increased yield instability across years (Hatfield and Dold 2018). Development of resilient, high-yielding wheat cultivars with stable grain production across target population of environments is essential (Braun et al., 1992; Langridge and Reynolds 2021). Multi-environment trials in major production areas facilitate yield potential and stability assessment of advanced breeding lines and provide information to identify and understand complex genotype-by-environment interactions (GE) (Dwivedi et al., 2020). However, collecting data in multiple locations and years for many early-stage breeding lines has high labor and economic costs, which imposes a need to integrate genomics-enabled breeding (e.g., genomic selection) and data-driven methods to accelerate the breeding process (Rincent et al., 2017; Juliana et al., 2020). Establishing an alliance of breeding programs that share target environments is crucial for data sharing, germplasm exchange, and for conducting advanced regional trials of candidates for release (Chenu 2015; Spindel and McCouch 2016; Sarinelli et al., 2019).
Genomic selection (GS) is becoming a valuable technology for modern crop breeding programs, and its implementation for cultivar development has been shown to accelerate the rate of genetic gain by shortening the breeding cycle and/or increasing selection accuracy (Crossa et al., 2017; Voss-Fels et al., 2019). Genomic selection uses established genotype and phenotype data of a training population (TP) to calibrate a prediction model, which is then used to estimate trait genomics breeding values (GEBVs) of untested new genotypes. Based on GEBVs, superior breeding lines are selected at preliminary stages prior to phenotyping (Voss-Fels et al., 2019). Earlier selection allows breeders increase breeding efficiency and save costs (Crossa et al., 2017) by reducing the number of promising breeding lines that need to be evaluated in advanced multi-environment and replicated field trials (Wartha and Lorenz 2021).
There is increased interest in incorporating historical datasets into genomic prediction models (Dawson et al., 2013). Here, historical data refers to preexisting data collected by breeding programs over time that were not generated specifically for genomic selection modeling. Using historical datasets could be beneficial for GS if the target population of environments have been accurately evaluated within advanced trials over time, the dataset is large, and the focal trait possesses high heritability (Rutkoski et al., 2015). Several studies have incorporated historical data into genomic prediction models to predict economically important traits including grain yield (YLD) in wheat, with reports of moderate-to-high accuracies in local breeding programs of r = 0.50 in France (Storlie and Charmet 2013) and r = 0.64 in the US (Sarinelli et al., 2019), as well as accuracies of r = 0.85 in an international cultivar development program (Dawson et al., 2013). GS has been used to enhance the primary target trait YLD, but it is also useful to predict and select other important traits such as disease resistance, including stem rust resistance (Rutkoski et al., 2015) and Fusarium head blight resistance (FHB) (Rutkoski et al., 2012), agronomic traits such as test weight (TW), heading date (HD) and plant height (PH) (Gill et al., 2021) and quality-related traits including protein content, starch content, and flour yield (Tsai et al., 2020; Sandhu et al., 2022). Lastly, GS can be applied for selection of low-heritable complex traits that are expensive or difficult to measure, or by including high-heritable correlated secondary traits into models (Rutkoski et al., 2016; Sapkota et al., 2020).
This study was conducted to understand how new or reestablished breeding programs should leverage existing historical genomic, and multi-environment and multi-trait phenotype data of elite breeding lines. The Clemson University winter wheat breeding program was reestablished in 2017 and used as a case study to understand the foundational genetics and requirements to maximize predictive ability of genomic models to successfully develop cultivars adapted to a target population of environments. To accomplish this, historical genotypic and phenotypic information for advanced soft red winter (SRW) wheat breeding lines, evaluated as part of the Southeastern University small grains (SunGrains) breeding alliance, was used to predict YLD, TW, HD and PH using optimized TPs for a set of untested SC-derived breeding lines. Two validation strategies were completed to assess and compare fitted models’ prediction accuracy. Finally, QTL-by-environment (QE) interaction analysis was completed using 18 major effect QTL to identify whether there was a favorable effect on yield across three major testing regions. The use of comprehensive datasets and genomic models have great value to securing the needed increases in genetic gain and enhance the efficiency of cultivar development.
2 MATERIALS AND METHODS
2.1 Plant materials
Annually, advanced SRW wheat lines entered into the Gulf Atlantic wheat nursery (GAWN) and advanced wheat nursery (SunWheat) are evaluated across the greater southeastern US, which is coordinated by SunGrains and partnering public wheat breeding programs. The SunGrains cooperative includes seven land-grant university breeding programs (Clemson University, NC State University, Louisiana State University, Texas A&M University, University of Arkansas, University of Florida, and the University of Georgia) having very strong collaborations for field evaluation and unfettered distribution of adapted germplasm and data exchange. As part of this historical cooperative, a total of 1,285 lines were tested in 19 locations (Figure 1 and Supplementary Table S1) from 2008 to 2021. On average, 108 breeding lines (ranging from 56 in 2011 and 161 in 2021) along with several commercial checks were evaluated annually in field trials. The MapCustomizer2 web plotting tool was used to generate a map with trial locations. Data from 2008 to 2020 was used for GS analysis, and data from 2008 to 2021 was used for QE analysis.
[image: Figure 1]FIGURE 1 | Map indicating the three major target population of environments (regions) (Boyles et al., 2019). In red indicating the Atlantic coastal plain correlated trial locations (region 1), in blue Georgia and Florida locations (region 2) and in green the gulf coast locations (region 3). Pinpointed are the 19 locations in eight states of the Southeastern US region were SunGrains breeding lines are evaluated annually.
2.2 Historical phenotype data
Historical phenotypic data consisted of a multi-location, multi-year and multi-trait dataset generated and maintained by SunGrains. A total of 1,285 elite SRW wheat breeding lines were tested in two regional nurseries (GAWN and SunWheat) in 19 trial locations in the southeastern US (Figure 1 and Supplementary Table S1). The number of observations for YLD (kg ha−1), TW (kg hl−1), HD (Julian days) and PH (cm) was 17,645, 14,942, 11,092 and 8,678, respectively. The number of replications ranged from one to three, depending on location-year combination.
Two analyses were performed to determine appropriate subsets of location-year combinations to include in the phenotypic dataset for optimizing the GS model for the target population of environments. First, the historical phenotypic dataset was used to display principal component (PCA) plots from Pearson’s correlation matrix using the ‘princomp’, ‘cor’ and ‘corrplot’ packages in R; second, biplots showing the relationship among environments (Yan et al., 2000) were obtained using a genotype plus genotype-by-environment (GGE) model using the ‘gge’ (Wright and Laffont 2018) and ‘GGEBiplots’ (Dumble et al., 2017) packages in R. This analysis was repeated for the GAWN, SunWheat, and combined (GAWN + SunWheat) phenotypic datasets to select eight, four and ten subgroups of trial locations, respectively (Supplementary Table S1).
For each of the subsets of locations (except for one group that had low number of datapoints for estimation of genetic values), the following linear model (Yao et al., 2018) was fitted using the function ‘lmer’ of the ‘lme4’ package in R (Bates et al., 2015) to estimate genetic values for YLD, TW, HD, and PH:
[image: image]
Where Yijk represents the phenotypic observation of genotype i in environment j and replication k, µ is the overall mean; Gi is the effect of genotype i, Ej is the effect of environment (location-year combination) j; Rk(j) the effect of replication k nested in environment j; GEij the G × E interaction between genotype i and environment j; and eijk the residual effect associated with genotype i in environment j and replication k. All terms except genotype were set as random effects. Genotype was defined as fixed effect (Lado et al., 2017) to estimate marginal means (EMMs) using the ‘emmeans’ package in R, and as random effect (Yao et al., 2018) to calculate best linear unbiased predictors (BLUPs) using the ‘coef’ and ‘ranef’ functions of the ‘lme4’ package in R. Pearson’s correlations between EMMs and BLUPs were analyzed with the ‘corrplot’ packages in R (Wei and Simko 2017). Variance components of the linear models fitted with the ‘lme4’ package were used to estimate broad-sense heritability (H2) with the ‘H2cal’ function of the ‘inti’ R package (Lozano-Isla 2022). The Cullis method (Cullis et al., 2006), recommended for unbalanced, multi-environment datasets (Covarrubias-Pazaran 2019), was used according to the following equation where genotype was a random effect:
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where [image: image] is the mean variance of genotypic BLUPs and [image: image] represents the genetic variance ([image: image], genetic gain).
2.3 Genotype data
Genotyping was performed similarly to methods previously described (Sarinelli et al., 2019; Winn et al., 2022). DNA was extracted using sbeadex plant maxi kits (LGC Genomics, Middlesex, United Kingdom) according to the manufacturer’s instructions. Genotyping-by-sequencing (GBS) was performed as previously described (Poland JA. et al., 2012) and libraries were sequenced on an Illumina HiSeq 2500 or NovaSeq 6000 at the USDA-ARS Eastern Regional Small Grains Genotyping laboratory (Raleigh, NC). Reads were mapped to the wheat genome assembly (RefSeq 1.0) (Appels et al., 2018) using the Burrows-Wheeler aligner (BWA) (v.0.7.12) (Li and Durbin 2009) and single nucleotide polymorphism (SNP) discovery was completed with Tassel-5GBSv2 (v.5.2.35) (Glaubitz et al., 2014). Data was filtered by removing taxa with >85% missing data, while retaining SNPs with ≥5% minor allele frequency (MAF), ≤10% of heterozygous proportion and missing data of ≤20%. Finally, missing data was imputed with Beagle v5.1 (Browning and Browning 2007; Browning et al., 2018). Exported VCF file containing 1,149 elite lines tested in advanced trials from 2008 to 2020 and the 1,133 breeding lines from SC sequenced in 2020 and 2021 was filtered. SNPs with MAF of less than 5% were discarded and a maximum heterozygous proportion of 10% was allowed (Juliana et al., 2020). A total of 15,077 SNPs for 9,137 genotypes were exported as a HapMap file and converted into a numerical matrix (0,1,2) using GAPIT (v.3.1.0) with default parameters in R (Lipka et al., 2012).
2.4 Training population selection
Training population optimization was performed to target strategic production environments within the southeastern US. A total of 998 (361 from 2020 to 637 from 2021) new SC breeding lines were used to identify the best TP using each of the subsets of trial locations (Supplementary Table S1). The best TPs of 400 individuals were selected from the 1,149 SunGrains breeding lines based on the genetic relatedness (Norman et al., 2018) to the 998 lines in the prediction set. The R ‘STPGA’ package (Akdemir et al., 2015; Akdemir 2017) was utilized using the historical high-density genotype dataset with the following parameters: the genetic algorithm was GenAlgForSubsetSelection’, the optimality criteria was ‘PEVmean’, ‘nelite’ was set to 10, population size was set to 400 (Isidro et al., 2015; Michel et al., 2017; Sarinelli et al., 2019), and other parameters were set with default values (Sarinelli et al., 2019). The first 100 principal components calculated from the genotype data were chosen for prediction of error variance. Optimal TPs were selected after 300 iterations and 10 replications.
The frequency and percentage (%) of breeding lines by breeding program selected by STPGA was calculated for each TP and normalized by number of lines by program. A stacked barplot was displayed with ‘ggplot’ package in R (Wickham 2016). A heatmap was obtained with ‘pheatmap’ package (Kolde 2012), and PCAs using genotypic data were calculated with ‘prcomp’ package and plotted with ‘ggplot’.
2.5 Genomic selection and cross-validation
Genomic best linear unbiased prediction (GBLUP) mixed models were fitted to estimate GEBVs for YLD, TW, TW and PH with the following equation:
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Where y represents the vector of BLUEs for each genotype; X and Z represent the design matrices for fixed and random effects, respectively; β is the vector of fixed effects; μ is the vector for random genotypic effects; and e is a vector of residuals (Sarinelli et al., 2019). EMMs and BLUPs of each of the 22 TPs selected by STPGA (Supplementary Table S2) and the SNP dataset were entered into the ‘mixed.solve’ function of the R ‘rrBLUP’ package (Endelman 2011) for marker-based predictions. The restricted maximum-likelihood method (REML) was used, and other parameters were set as default.
Two types of validation were implemented to assess and compare each model’s prediction ability using each TP for each trait. First, five-fold cross-validation (CV) is a procedure that randomly divides the TP into five groups of approximately equal size (20%). One random group is masked and GEBVs are calculated for the masked set using the remaining four folds (80% of lines) (Lozada and Carter 2019). After completing this step for all five folds, the correlations between observed values (EMMs/BLUPs) and the predicted values (GEBVs) were used to assess the accuracy of prediction by averaging the five correlations. Second, a validation was performed using data from 58 advanced breeding lines that were selected and developed in SC for regional testing in 2021; six lines tested in GAWN, 14 in SunWheat, 19 in SunGrains preliminary early (SPE) nursery and 19 in SunGrains preliminary late (SPL) nursery. For GAWN and SunWheat nurseries, YLD was measured in nine locations (Warsaw, VA; Kinston, NC; Clemson, SC; Florence, SC; Plains, GA; Citra, FL; Marianna, AR; McGregor, TX, Winnsboro, LA.). SPE and SPL included phenotypic data from seven locations (Marianna, AR; Plains, GA; Gainesville, FL; Winnsboro, LA; Kinston, NC; Florence, SC; and McGregor, TX.). EMMs and BLUPs were calculated for data collected in all locations, as well as data collected exclusively in Florence, SC and its most similar trial location Kinston, NC (Boyles et al., 2019). These two datasets were used for comparison with GEBVs calculated with the 22 TPs selected by STPGA. Four-quadrant plots showing the correlation between observed and predicted values were displayed with the ‘ggplot’ package in R. Means of observed and predicted values were calculated to divide the plot into four quadrants: A (upper-right) and B (lower-left) for correctly classified lines, and C (lower-right) and D (upper-left) for wrongly categorized genotypes.
Furthermore, GBLUP mixed models were fitted to estimate GEBVs for the 998 breeding lines developed by the Clemson University breeding program. Using the EMMs and BLUPs of the TP with highest prediction accuracy, predictions of YLD, TW, HD and PH were performed with the ‘mixed.solve’ function of the R ‘rrBLUP’ package as previously described. With the aim to select a subset of lines as the foundation for the breeding program as well as first year advanced field testing, one hundred and five superior lines were identified based on GEBVs for YLD, and 20 low-ranked lines were identified for comparison. Advanced field evaluation for these lines is in progress (data not shown).
2.6 QTL-by-environment
SunGrains’ elite breeding lines have been evaluated every year with Kompetitive allele-specific PCR assays (KASP, LGC Biosearch Technologies, Hoddesdon, United Kingdom) to generate composite calls for major effect genes at the Eastern Regional Genotyping Small Grains Laboratory (Raleigh, NC). Over the course of 14 years (2008–2021), 4,426 breeding lines were tested for 75 molecular markers associated with disease/pest resistance, photoperiod, vernalization, dwarfing, grain texture and kernel color (Díaz et al., 2012; Guedira et al., 2016; Mason et al., 2018; Sarinelli et al., 2019). For this study, 18 of the 75 major genes were selected due to a given association with one or more of the following: FHB (Fusarium graminearum) resistance, leaf rust (Puccinia triticina) resistance, stem rust (P. graminis) resistance, stripe rust (P. striiformis) resistance, Hessian fly (Mayetiola destructor) resistance, powdery mildew (Blumeria graminis) resistance, septoria nodorum blotch (Parastagonospora nodorum) susceptibility, or photoperiod sensitivity (Supplementary Table S3). In addition to their association with important traits, these genes were also selected because of their high frequency among regional, SRW wheat lines and their perceived value to resiliency and productivity.
Historical phenotype data from 1,285 breeding lines was used to assess the effect on agronomic traits when the expression of a major effect QTL differs under different environmental pressure (e.g., low or high pest/disease pressure) across production locations (Lowry et al., 2019). The historical dataset was compartmentalized into two different ways: 1) target population of environments (Boyles et al., 2019), which was a set of three mega-environments herein referred to as regions based on testing location; and 2) breeding line origin which considered potential genetic background bias. Region 1 included all data collected in states located in the Atlantic Coastal Plain (NC, SC, VA), Region 2 comprised data from GA and FL locations, and Region 3 represented data from Gulf Coast states (TX, AR, LA) (Figure 1 and Supplementary Table S4). Breeding line origin was categorized using the same three groups. A total of 1,172 lines shared between this historical phenotypic dataset and the Eastern Regional Marker Report were selected for QE analysis.
For each of the 18 major genes, only absent/present calls were considered for analysis by discarding heterozygous, null, and failed calls. The following linear mixed model was calculated to test the significance of QTL-by-environment (region/origin) interactions for YLD, TW and HD using the function ‘lmer’ of ‘lme4’ package in R:
[image: image]
Where Yijk represents the phenotypic observation of genotype i in environment j and replication k, µ the overall mean; Gi is the effect of genotype i, Ej is the effect of environment (location-year combination) j; Rk(j) the effect of replication k nested in environment j; GEij the G x E interaction between genotype i and environment j; QE the QTL-by-environment interaction effect; and eijk the residual effect associated with genotype i in environment j and replication k. QE effect was considered fixed and all the remaining effects were considered random.
Using the mixed model, EMMs were calculated using the ‘emmeans’ function in R for the fixed effect of the interaction between major gene (absent/present) and region (1, 2 and 3). To estimate the significant difference at 0.05, p-values were calculated using pairwise comparisons between groups with the option ‘pairwise’ and adjusted with the Tukey correction method. Plots for EMMs and p-values were displayed with ‘ggplot’ in R. The same analysis was performed for YLD using the classification of locations by origin to assess for genetic background bias.
3 RESULTS
3.1 Summary of historical phenotype data
The historical phenotypic dataset was used to calculate biplots and PC plots showing the relationship among environments (Supplementary Figure S1). These plots allowed for the classification of locations by similarity of line performance into 22 subsets as follows: eight groups using data collected in GAWN nursery, four groups using data from SunWheat nursery and ten groups using the whole dataset. For 22 subgroups, EMMs and BLUPs were estimated in R (Supplementary Table S1). Histogram plots for the four traits using the full dataset revealed a normal distribution of EMMs and BLUPs (Supplementary Figure S2). Correlation plots exhibited strong positive relationships between predictors for each trait (Supplementary Figure S3). Because there was complete correlation (r = 1) between BLUPs calculated with ‘coef’ and ‘ranef’ R functions, hereinafter only results using BLUPs estimated with ‘coef’ function are presented.
Broad-sense heritability (H2) using the Cullis method was moderate to high for YLD (r2 = 0.56), TW (r2 = 0.74), HD (r2 = 0.85) and PH (r2 = 0.83).
3.2 Training population selection
A genotypic dataset of 15,077 SNPs and 9,137 genotypes, which included 998 SC lines and 1,149 SunGrains advanced breeding lines, was used to establish optimal TPs. Subsetting was based on genetic relatedness calculated using the ‘STPGA’ R package. TPs containing 400 SunGrains advanced breeding lines that most represented the SC prediction population were selected, with the exception of three TPs (Set11_TP and Set13_TP with 350 and Set15_TP with 300 lines) where fewer lines were selected due to a lower number of available entries. The normalized frequency of lines selected by breeding program showed that overall representation of breeding programs within TPs was LA (µ = 13.9%), NC (µ = 13.8%), AR (µ = 13.3%), GA (µ = 13.2%), TX (µ = 12.9%), FL (µ = 12.5%), VA (µ = 11.7%), and SC (8.8%). After normalizing the number of lines included from each program by the total lines available from each program (n included/t available * 100 = normalized %), it was apparent that STPGA included approximately one-third of individuals from every program, with a mean over all 22 sets ranging from a high of 36.3% (LA) to a low of 24% (SC) (Supplementary Figure S4 and Supplementary Table S2). The heatmap showed the lines selected by STPGA across TPs (within nursery clustering), and that 12 lines were selected in at least 20 TPs (Supplementary Figure S5). The SunGrains’ elite breeding lines and SC lines were genetically compared using PCA plots (Figure 2). STPGA selected SunGrains’ lines (Figure 2, in green) that best captured the genetics present in the new SC lines (Figure 2, in blue). The PC1 that explained 10.3% of the variation divides the genotypes into two distinct subpopulations associated with the presence/absence of the t2BS:2GS·2GL:2BL translocation derived from T. timopheevii (Sarinelli et al., 2019).
[image: Figure 2]FIGURE 2 | PCA plot of first two principal components is showing the genetic relationship between SunGrains’ elite lines (gray, green and red dots), the SC new breeding lines (light blue) and SC lines used for validation (dark blue). Lines selected in the combined TP (SetAll_TP) are indicated in green and lines present in at least 20 TPs (Supplementary Figure S5) are highlighted in red. Percentage represent the proportion of variance explained by each principal component.
3.3 Genomic selection and cross-validation
GBLUP mixed models were fitted to predict GEBVs for YLD, TW, HD and PH using the selected 22 TPs. Using five-fold CV, a mean accuracy of r = 0.42 was observed across the 22 TPs when using EMMs as the observed data for YLD. When using BLUPs, the average prediction accuracy was reduced to r = 0.31. For TW, mean prediction accuracies ranged from r = 0.26 to 0.32 when using BLUPs and EMMs, respectively. Prediction accuracies oscillated from r = 0.42 to 0.45 for HD and PH (Table 1).
TABLE 1 | Five-fold CV using estimated values (EMMs and BLUPs) of 22 TPs (Supplementary Table S2) and the prediction accuracy to predict GEBVs for YLD, TW, HD and PH.
[image: Table 1]A smaller set of 58 new breeding lines, developed by the reestablished Clemson breeding program and evaluated for YLD in several locations in the 2020–2021 growing season, were used for additional validation. Observed and predicted values were compared to assess the predictive ability of each TP (Supplementary Table S5). Overall, YLD predictions generated from EMMs of the combined TP (historical phenotypic data-SetAll_TP) had the greatest correlation with observed data (Table 2). A prediction accuracy as high as r = 0.62 was obtained when comparing predicted GEBVs (predicted with the EMMs of the combined TP) and EMMs of observed YLD data. The four-quadrant plot for this comparison, where 69% (40 of 58) of breeding lines were accurately categorized into the proper quadrant (A and B) and 31% of the breeding lines were categorized in quadrants C and D (Figure 3A). A prediction accuracy of r = 0.59 was obtained by comparing the GEBVs (predicted with the BLUPs of the combined TP), versus the EMMs of YLD. In this case, 74.1% of the breeding lines with high or low observed YLD were categorized in quadrants A and B, whereas 25.9% of the breeding lines fell into quadrants C and D (Figure 3B). Finally, GEBVs demonstrated low correlations with observed data collected only in Florence, SC and its nearest trial in Kinston, NC (Table 2).
TABLE 2 | Validation using estimated values (EMMs and BLUPs) of 22 TPs (Supplementary Table S2) and the prediction accuracy to predict GEBVs for YLD of 58 lines developed in Florence, SC.
[image: Table 2][image: Figure 3]FIGURE 3 | Four-quadrant plots showing the correlation between predicted (GEBVs, x-axis) and observed yield (EMMs, y-axis) for 58 SC advanced breeding lines using the combined TP data (SetAll_TP). Correlation between observed and predicted values for YLD using TP EMMs (A) and TP BLUPs (B). Mean of observed and predicted values is dividing the plot into 4 quadrants, A (upper-right section in red), B (lower-left section yellow), C (lower-right section in green) and D (upper-left section in blue). Percentage (%) of total lines classified in each quadrant is displayed.
The TP that was optimized with historical data and possessed the highest prediction accuracy (r = 0.62) (Figure 3 and Table 2) was used for calculating GEBVs of YLD, TW, HD and PH for 998 breeding lines developed in SC (Supplementary Table S6). Based on YLD, the 105 most promising breeding lines predicted to have a superior performance (4691–5036 kg ha−1) were selected for field testing. This set of lines had predicted values of 73.8–74.6 kg hl−1, 100–104 Julian days and 82.9–88.9 cm for TW, HD and PH, respectively (Supplementary Table S6, in green). Additionally, 20 lines with low predicted yield (3899–4056 kg ha−1) were included for comparison. These lines had predicted values for TW, HD and PH of 72.6–73.5 kg hl−1, 103–105 Julian days and 84.9–86.8 cm, respectively (Supplementary Table S6, in red).
3.4 QTL-by-environment
The historical phenotypic dataset containing YLD, TW, HD and PH measurements from many location-years (19 locations and 14 years, 2008–2021) (Figure 1 and Supplementary Table S4), along with information for presence/absence of 18 major effect QTL (Supplementary Table S3) for 1,172 for elite breeding lines, was used to study whether or not it was advantageous to harbor QTL under variable abiotic and biotic pressures across geographic space (Lowry et al., 2019). Using a linear mixed model, EMMs were calculated for six pairwise combinations of QTL (absent/present) and regions (1, 2 and 3) (Supplementary Table S7), and p-values (Supplementary Table S8) for nine pairwise comparisons across combinations. To consider genetic background bias, EMMs for YLD and p-values (p < 0.05) were also calculated based on origin of the breeding lines (Supplementary Tables S7, S8).
For each of the studied QTL (Supplementary Table S7), lines tested in region 1 had the highest EMMs of observed YLD followed by region 2, with region 3 demonstrating the lowest YLD potential. For each QTL, significant differences in YLD between regions 1 and 3 were most frequent. In most QTL-by-environment combinations, there were no significant differences in EMMs of YLD within regions when carrying or not carrying the major QTL (Supplementary Table S8). For test weight, region 2 showed the lowest EMM values (Supplementary Table S7); however, there were no significant differences with regions 1 and 3, nor within regions when comparing major effect QTL presence/absence (Supplementary Table S8). According to EMMs, heading date was later in region 1 (Supplementary Table S7) as expected, which was significantly different from regions 2 and 3 (Supplementary Table S8). Refer to Supplementary Tables S7, S8 for detailed information for each comparison of all 18 QTL and three testing mega-environments.
Five genes that are relevant for target population of environments across the southeastern US were more rigorously assessed individually for YLD trends within testing regions and by breeding program (e.g., region 1 observed data only included breeding lines developed and selected from a program located within region 1):
• Fhb1
The FHB resistance gene Fhb1 (Yao et al., 1997), which first originated from ‘Sumai 3’, is located on chromosome 3BS had an overall frequency of 7.3% among 1,147 breeding lines. We found that wheat breeding lines harboring this gene had lower grain yield in all testing environments; however, this difference was only significant in the Gulf Coast (region 3) (Figure 4A).
[image: Figure 4]FIGURE 4 | QTL-by-environment plots for YLD when five major genes are present or absent within three major testing regions (target population of environments or mega-environments). Fusarium head blight (FHB) (F. graminearum) resistance genes, Fhb1 (A), Fhb_1B derived from ‘Jamestown’ cultivar (B), Fhb_1A derived from ‘Neuse’ cultivar (C), stripe rust (P. striiformis) resistance gene Yr17_Lr37_Sr38 (D) and hessian fly (M. destructor) resistance gene H13 (E). Three regions in x-axis and EMMs calculated for YLD in y-axis. p-values are indicated for each pairwise comparison.
• Fhb_1BJ
Fhb_1B (Wright 2014), an additional FHB resistance QTL derived from the cultivar ‘Jamestown’ (Griffey et al., 2010), had an overall frequency of 23.8% among 689 breeding lines. Lines carrying the resistance allele exhibited significantly lower YLD in region 2. Yields were similar for Fhb_1B carrying or non-carrying lines in regions 1 and 3 (Figure 4B).
• Fhb_1AN
This third FHB resistance QTL under study (Petersen et al., 2016) was derived from the cultivar ‘NC-Neuse’ (Murphy et al., 2004) and is located on chromosome 1A. The resistance allele at Fhb_1A exhibited a relatively high frequency of 34.3% among 664 breeding lines. Comparisons between lines with or without Fhb_1A mirrored Fhb_1B, where only region 2 exhibited a significantly lower YLD for lines possessing the resistance allele (Figure 4C).
• Yr17_Lr37_Sr38
The multi-functional rust resistance QTL is located in the 2NVS:2A translocation segment derived from Aegilops ventricosa (Gao et al., 2021). This QTL showed a consistently high introgression frequency of 53.9%, based on data from 1,072 breeding lines. The favorable allele for rust resistance had a consistent, positive effect on YLD (Figure 4D), especially in regions 2 and 3 where rust often threatens wheat production (Aboukhaddour et al., 2020).
• H13
This effective Hessian fly resistance gene was introgressed from Aegilops tauschii and is located on 6DS (Liu et al., 2005). H13 displayed an overall frequency of 11.0% among 1,104 breeding lines. Assessing its impact on productivity across the regions, the resistance allele at H13 had a significantly positive effect on YLD (Figure 4E).
When narrowing phenotypic data by only including breeding lines that originated within region, similar trends between presence/absence of these five major effect QTL and YLD were observed (Supplementary Figure S5). In other words, YLD trends largely held true to suggest genetic background was not impacting this analysis. A notable exception was lines that originated in region 1 and carried the Yr17_Lr37_Sr38 introgression segment yielded significantly greater than lines not harboring this QTL for rust resistance (Supplementary Figure S6).
4 DISCUSSION
4.1 Application and benefits of genomic prediction in cultivar development programs
Integration of GS and molecular breeding technologies into the cultivar development pipeline has enabled established programs to accelerate the rate of genetic gain for complex traits and speed up the breeding process (Voss-Fels et al., 2019), while helping to minimize costs (Crossa et al., 2017). Implementation of GS into existing breeding programs that once fully relied on phenotypic selection comes with the challenge of restructuring the breeding pipeline to efficiently deploy genomics-enabled breeding (Merrick et al., 2022). Merrick et al. (2022) reviewed the specific aspects to consider that affect a given model’s predictive ability in GS including: 1) establishment of optimum TPs where size, structure and composition, and genetic relatedness to the target population impact accuracy (Isidro y Sánchez and Akdemir 2021); 2) genotyping and incorporation of major genes into the GS models; 3) speed breeding to reduce generation time and double haploids for accelerated fixation of traits; 4) leveraging phenotypic data by conducting multi-environment (multiple locations and years) trials and accounting for genotype-by-environment interaction of complex traits (e.g., yield); 5) incorporating multiple, high-heritable correlated traits to improve prediction accuracy for low heritable complex traits (Merrick et al., 2022); 6) incorporating new technologies to aid GS models, such us high-throughput phenotyping of secondary traits to select complex traits (Rutkoski et al., 2016); and 7) utilizing machine (Montesinos-López et al., 2018) or deep learning (Montesinos-López et al., 2021) for model building to increase statistical power.
The Clemson University winter wheat cultivar development program was recently reestablished in 2017 and served as a case study. New or reestablished breeding programs often have limited resources and must make difficult decisions on how to best adopt genomics-enabled breeding. Though challenging, these programs have a unique flexibility in deploying technology to inform critical decisions such as sourcing initial germplasm to establish the genetic foundation, determining crossing combinations for greatest population variance, and capturing genotype-by-environment interaction for a specific target population of environments. Existing historical genomic and phenotypic resources for many lines tested across locations and years could significantly benefit emerging or re-emerging breeding programs. These comprehensive datasets, previously shown to enhance prediction accuracy (Tomar et al., 2021; Zhao et al., 2021), were leveraged through the SunGrains multi-institutional collaborative program, which continues to successfully develop and release commercial cultivars for the southeastern US. This study utilized historical data generated and compiled by SunGrains to identify best practices for leveraging available genomic and phenotypic data to determine optimal genetic foundation for a specific target population of environments, and to incorporate robust GS models with high prediction accuracy. Here, grain yield data was used to cluster locations by correlated line performance (Boyles et al., 2019) into 22 groups, and optimization of TPs was implemented for each set with STPGA. Selecting TPs genetically related to new lines being evaluated should lead to an increase in prediction accuracy (Norman et al., 2018). In addition, it has been shown that accuracy in wheat increases with the increase of TP size, with 300 individuals (Isidro et al., 2015; Michel et al., 2017) or even greater (Sarinelli et al., 2019) being reported as the optimal number. As such, 400 individuals were selected for each TP in this winter wheat case study (based on unpublished tests).
When correlating GEBVs with observed phenotypic data, validation using 58 SC breeding lines demonstrated that using the combined TP (complete data from all regional trials and years) produced the highest prediction accuracy for grain yield (as high as r = 0.62), and outperformed predictions made with TPs with reduced data. The complete dataset not only included more high-quality data for predictions, but also TPs selected from a historical pool of lines tested in multiple years and geographic regions aids in capturing a broader range of environmental conditions when compared to newly generated, population-specific TPs. In this case study, it was apparent that the historical phenotypic dataset using all data (combined GAWN + SunWheat over 14 years) effectively captured environments that were representative of the collection of locations in 2021 where the 58 SC breeding lines were tested. Specifically, grain yield GEBVs for 40 of the 58 lines (69%) used for validation correctly grouped with observed data (Figure 3A). This result reinforces the utility and value of preserving and using historical data for building genomic selection models for new programs, as well as the importance of having strong regional alliances to share data across breeding programs. These collaborative networks enable genomics-enabled breeding to reach its theoretical potential for enhancing genetic gain (Spindel and McCouch 2016; Xu et al., 2020). A separate GS validation study leveraging historical winter wheat data reported a similar prediction accuracy of r = 0.64, which consisted of 483 lines grown over a 9-year period (Sarinelli et al., 2019). Meanwhile, lower accuracies (r = 0.28–0.50) were observed when using training data of 318 lines collected over 11 years at six locations in France (Storlie and Charmet 2013) and data from 254 lines tested in Mexico during 2010 (Poland J. et al., 2012). Although quality of phenotype data was high, and GS has the potential to improve grain yield, these results also imply that the complex nature of this trait with a moderate broad-sense heritability (r2 = 0.56) is highly affected by genotype-by-environment interactions (Crossa et al., 2017).
4.2 Assessment of the presence/absence of major effect QTL on regional productivity
Grain yield remains the primary target trait for winter wheat improvement, but there are other agronomic, quality (Tsai et al., 2020; Sandhu et al., 2022) and resiliency traits that undergo intensive selection (Singh et al., 2016; Laidig et al., 2021; Langridge and Reynolds 2021). In this study, trends between grain yield and allele presence at major effect QTL were examined using existing PCR-based markers (Díaz et al., 2012; Guedira et al., 2016; Mason et al., 2018) and historical multiyear, multi-location phenotypic data. For this specific case study in southern SRW wheat, selection for broad adaptation is of interest as seed companies desire covering large market regions with fewer products. Thus, determining the best combination of major effect QTL would be a valuable selection tool to guide future breeding decisions. Broad adaptation for winter wheat in the southeastern US is elusive because there are myriad diseases and pests that threaten yield but often to various levels across the entire region. This study sought to provide evidence for the most appropriate combination of resistance QTL with high yield potential in absence of any biotic stress.
Several major effect QTL conferring resistance to FHB were examined because the primary threat from F. graminearum infection is reduced grain quality and deoxynivalenol (DON) toxin contamination, with FHB not known to severely hinder yield unless present at epidemic levels (Rod et al., 2020). Thus, there was interest in determining whether yield drag was observed from introgression of exotic (e.g., Fhb1) or native (‘Jamestown’ Fhb_1B and ‘Neuse’ Fhb_1A) resistance QTL and assessing how environment influenced the yield/QTL relationship. Although Fhb1 is widely used in many breeding programs, it was present at very low frequency (∼7%) within the SunGrains’ wheat lines, and genotypes harboring this gene exhibited lower yield regardless of testing region. Fhb1 is derived from an unadapted cultivar (Yao et al., 1997), and progenies using this source of resistance could inherit undesired agronomic traits due to linkage drag. Therefore, breeding lines harboring this QTL might be discarded by breeders in the field when looking and selecting for outstanding performance and adaptation. Marker-assisted backcrossing using adapted recurrent parents is a strategy to break the linkage and develop lines that combine the Fhb1 resistance gene with desired agronomic traits (Jin et al., 2013). Otherwise, use of native FHB resistance genes, present at higher frequency (Fhb_1B with ∼24% and Fhb_1A ∼34%) and without yield penalty, is highly recommended. For instance, one of the most productive and adapted SRW wheat lines in the southern US, ‘Hilliard’, harbors FHB resistance derived from ‘Jamestown’ (Griffey et al., 2020). Further opportunities to improve and provide durable FHB resistance is the pyramiding of native resistance genes with complimentary (or novel) QTL (Castro Aviles et al., 2020).
The recent study by Gao et al. (2021) found a positive yield effect of Yr17_Lr37_Sr38 in the US Great Plains and across an international performance trial led by the International Maize and Wheat Improvement Centre (CIMMYT). Indeed, this same trend was observed in SRW wheat adapted to the southeastern US, irrespective of region, where lines that possessed the introgression segment from A. ventricosa exhibited significantly higher mean yields than lines not carrying this introgression. As such, it was not surprising to observe that approximately 50% of breeding lines in the study carried Yr17_Lr37_Sr38. Fixing this QTL in a breeding program would be suggested, given its multi-purpose rust resistance benefit and purported linkage to favorable yield gene(s). For H13, the QTL that confers strong resistance to the local biotype L Hessian fly, was present at much lower frequency (11%). Because of the tendency of Hessian fly biotype L to be more frequent and impactful along the Atlantic Coastal Plain (regions 1 and 2, Figure 1), it was not surprising to see that lines harboring the resistance allele at H13 had higher yield than non-H13 lines in these regions, especially given that Hessian fly is a yield-threatening pest. In region 3, where Hessian fly biotype L is less common, there were no yield differences between lines with or without H13 (Ratcliffe et al., 1994; Ratcliffe et al., 2000; Onstad and Knolhoff 2014).
CONCLUSION
For most major food crops, there are extensive resources available, including in the public domain, that can be leveraged to rapidly scale new or reestablished breeding programs that do not have direct access to valuable germplasm, data, or selection tools at program inception. This study examined the reestablished soft red winter wheat breeding program at Clemson University to establish processes for integrating available resources to accelerate the time from program inception to cultivar release. These steps included 1) utilizing a combination of historical phenotype data and genome-wide SNP markers to build a reliable GS model for predicting best lines for a target population of environments, and 2) identifying major effect QTL using existing PCR-based marker reports that were favorable, within the context of region and biotic pressure. This study highlights the importance of cooperative efforts between breeding programs that share a target population of environments to not only perform extensive multi-environment field trials but also to compile genotypic and phenotypic datasets that are key to enhancing genetic gain through robust genomic prediction models.
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Wufeng BIC272)
Tianfeng B (C330)
Tianfeng B (C330)
Jiteng B (G217)
Te B (C290)
YexiangB (C231)

Male parent
()

Yuehesimiao (C190)
Yuehesimiao (G190)
Yuehesimiao (C190)
Yuehesimiao (G190)
Yuehesimiao (C190)
R122 (C298)

R308 (C251)

R368 (C257)

R428 (C245)
Yuehesimiao (190)
Minghui63 (C281)
R998 (C203)

Gui 99 (C536)
Guanghui 998(C203)
R998 (C203)
Huazhan (C250)
R463 (C269)
Yuenongsimiao (C265)
Wushansimiao (C320)
R208(C248)

R1002 (C242)
Huazhan(G250)
R308(C251)
Huazhan(C250)
Hanhui1179(C239)
R305(C381)

R398 (C243)
V1100(G300)
R721(C303)

Fuhui 676 (C319)

Cluster

====<==<=<<<<<

=<2 <<<<<==<<-<

Commercial hybrid

Antianyouyuehesimiao
Guang8youyuehesimiao
Hengfengyouyuehesimiao
Taiyouyuehesimiao
Teyouyuehesimiao
Tianyou122
Tianyou308
Tianyou368
Tianyoud28
Wuyouyuehesimiao
Shan you 63
Boyou99s

shan you Gui99
Tianyou 998

Wuyou 998
Quanyouhuazhan
Rongyou 463
GuangByouyuenongsimiao
Quanyousimiao
Rongyou Taiyou 208
Jifng you 1,002

Tian you huazhan
Wuyou 308
Wuyouhuazhan
Wuyoul179

Taiyou 305

Taiyou 398

Jiyou 1,100

Teyou 721

Yexiangyou 676

Mean
Minimum
Maximum

Genetic distance

0351
0277
0.290
0.285
0.294
0.341
0314
0.309
0331
0.292
0.379
0.369
0.368
0.330
0.325
0.304
0317
0.289
0310
0.325
0.335
0.308
0.331
0.320
0314
0327
0.291
0317
0315
0315

0319
0277
0379

Heterotic patterns

VxV
VxV
VxV
VxV
IxV
Vxll
VxV
Vxll
Vxll
VxV
Ix
Ix Il
Ix
Vxll
Vx Il
WV
Vx|
VxV
< v
Vxll
Vx Il
VxV
VxV
VxV
VxV
VxV
IxIV
IxIV
kx¥
Vil
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Crop

Rice

Wheat

Soybean

Chickpea

Common
bean

Groundnut

Trait

Rice blast

Rice sheath
blight

Drought stress

Powdery
mildew

Leaf rust

Plant biomass
and height

Seed yield
Iron deficiency
Seed yield
Salinity
tolerance
Progression of
senescence
Seed yield and
biomass

Root

architecture
Iron deficiency

Platform

Hand-held, simulating aircraft
imagery

UAVs

Greenhouse automated system
at the Rice Automatic
Phenotyping (RAP) facilty in
Germany

German Aerospace Centre

Hand-held ground-based

sensing

Phenomobile portable buggy

UAVs

UAVs

UAVs

Plant accelerator installed at

University of Adelaide

Camera established on a stand

UAVs

Root excavation, ground-based

Chlorophyll meter SPAD, Hand-
held

Sensor/imager

Multispectral imaging

RBG and multispectral
imaging

RGB imaging

Hyperspectral imaging

RGB imaging and

multispectral

(spectroradiometer) sensors

3D imaging with LIDAR

RGB imaging

Multispectral imaging

Hyperspectral imaging

RGB imaging

RGB imaging

Multispectral imaging

RGB imaging and traits
estimation with DIRT
Infrared sensor

Discrimination

Reflectance values in the visible and
near-infrared regions were used to link
with a disease severity rating

Derived vegetation indices from
multispectral images and percentage of
infected leat areas with RGB were used
for disease detection

Stay green values were used to assess
the stress tolerance abilty of genotypes

Powdery mildew was detected, and the
best hyperspectral bands were
identified for detecting this fungal
disease for application in breeding
programs

Vegetation incices from multispectral
imaging and percentage of infected
leaves from RGB imaging were used for
the classification of leaf rust

Plant height, biomass, and canopy
cover was measured in a labor-
intensive way

Average canopy cover obtained at an
eariier stage was used as a covariate in
yield prediction models

Image processing and unsupervised
classification models were used for
classifying the iron-deficient plots
Feature selection approach was used
to identify best bands for predicting
seed yield with different ML models
The plant growth rate was monitored
throughout the growth stages to study
the effect of salinity

Golor distortion correction algorithms
were applied on time series data to
quantify the onset and progression of
senescence

Derived vegetation indices showed a
strong relationship with seed yield and
biomass

Genotypes were differentiated for their
root traits

Genetic loci associated with increasing
iron deficiency were identified
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Zhang et al. (2018)

Duan et al. (2018)
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Root phenotyping Growth media
technique
Shovelomics Soll (field based)
Digital imaging Liquid media (iab)
Digtal imaging Growth pouch system
Soil coring Soil (field based)
Minirhizotrons Soil (field-based)
Rhizolysimeters Soil (field-based)
Rhizoponics Liquid media (iab)
X-ray CT Soil (greenhouse
and lab)

Ground penetrating radar  Soil (field-based)

Positron emission Liquid media (iab)
tomography
Magnetic resonance Sol (greenhouse

imaging and lab)

Description

Involved excavation of root samples from the soils to visually score various attributes. The
pipeline involves digging of sample, soaking and rinsing, picture collection and finally scoring
the characteristics

Roots are scanned in a liquid mediia for length, diameter, topology, and branching patterns
Roots are scanned n agrowth pouch medium for length, diameter, topology, and branching
patterns

Ituses tractor mounted hydraulic soil corer for digging steel alloy sampling tubes into soiland
assist in phenotyping roots

Atransparent tube is permanently inserted into the ground and growth of shoot and root is
continuously monitored throughout the growth stages

It uses underground concrete pipes, sios and corridor to house soil containing cores for
constant observation of root traits

Itis combination of rhizotrons and hydroponics, where set up is immersed in tank filed with
media. Non-destructive 2D imaging of roots and shoots is performed

Xeray CT non-destructively measures the attenuating ionizing radiations for assessing the
oot structure and constructing the 3D image of RSA

Itis mostly sed for tree roots and uses electromagnetic pulse system for determining root
diameter, biomass, and other attributes

It uses the functional and molecular imaging for tracing the radio tracer distribution in the
plant non-invasively

“This study the magnetic moment of atomic particles using strong magnetic and radio
frequency

References

Garbout et al. (2012)
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Bodner et al. (2018)
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Crop

Rice

Wheat

Soybean

Groundnut

Chickpea

Common
bean

Trait

Arsenic content

Days to heading

Drought
tolerance

Grain weight
distribution
Grain yield and
qualty traits

Rice blast

Ten agronomic
traits

Anther extrusion

Days to heading

Days to heading
and plant height
End-use quality
traits
End-use quality
traits

End-use quality
traits

Fusarium head
blight and
Septoria tritii
blotch

Grain yield

Grain yield

Grain yield, days
to heading, and
plant height

Grain yield and
end-use quality
traits

Grain yield and
protein content

Leaf and stripe
rust
Powdery mildew

Septoria tritici
blotch
Snow mold

Winter hardiness
and frost
tolerance

Amino acids

Chlorophyl
content
tolerance
Soybean cyst
nematode

Yield, protein
content, ail and
height

Yield

Leaflet length,
100 seed
weight, days to
maturity and
total yield
Seed weight,
oleic acid
content, total
yield, and days
to maturity

Grain yield,
podding time,
emergence
score and seed
number

Seed weight,
biomass, harvest
index, and seed
yield

Cooking time,
and water
absorption
capacity

Grain yield and
days to maturity

Population
size

228
accessions
112 cultivars

280
accessions

128 cultivars.
327 & 320

breedinglines

161 and 162
accessions

1,495 hybrid
rice

603 lines

286
accessions

3,486 lines
401 lines

1912 lines
179 lines.
642 lines
1,325 lines
1716 lines
270 lines
282 lines
480 lines

1744 single
crosses
467 lines

175 lines

753 lines

504 lines

249 lines

172 lines

234 lines

5,000 lines

5,600 lines

281
accessions

340 lines

132 lines

320 breeding
lines

922 lines

481 breeding
lines

Validation
strategy

CVand IV

CVand IV

cv

cv

CVand IV

CVand IV

CVand IV

CVand IV

cv

cv

CVand IV

CVand IV

cv

CVand IV

CVand IV

CVand IV

CVand IV

CVand IV

cv

cv

cv

cv

CVand IV

CVand IV

cv

cv

cv

cv

cv

cv

CVand IV

cv

CVand IV

CVand IV

CVand IV

Marker
intensity

22,370
SNPs
408,372
SNPs

215,000
SNPs

42,508
SNPs
92,430
and
44,598
SNPs
66,109
and
29,030
SNPs
232,936
SNPs

7,649
SNPs
9,047
SNPs

2,083
SNPs
4,508
SNPs
21,210

16,383
SNPs
8,398
SNPs

9,290
SNPs

16,863
SNPs
14,163
SNPs

7,426
SNPs

7,300
SNPs

15K SNPs

34,095
SNPs
6,007
SNPs
12,681
SNPs

1,413
SNPs

23,279
SNPs
4,089
SNPs

3,782
SNPs

4,236
SNPs

4,600
SNPs

493 SNPs.

13,355
SNPs

144,777
SNPs

89,000
SNPs

5,738
SNPs

5,820
SNPs

Model

GBLUP, Bayes
A, RKHS
GBLUP

GBLUP and
RKHS

GBLUP

and PLS
GBLUP, PLS,
and reaction

norm mode

GBLUP, Bayes
A Bayes C
and MLP

GBLUP,
additive and
dominance
model

Reaction norm
model
RRBLUP, BA,
BB, BC, BL,
and BRR
MTDL

RRBLUP

GBLUP

RRBLUP

RRBLUP

GBLUP

RRBLUP

GBLUP
and DL

BL, RF, RKHS,
and RRBLUP

GBLUP

GBLUP
RRBLUP
RRBLUP

RRBLUP,
GBLUP and
RKHS
GBLUP

RRBLUP and
GBLUP
RRBLUP,
GBLUP, BL,
RF and SVM
RRBLUP,
GBLUP, BL,
RF and SVM
DuaCNN,
deepGS,
singleONN and
RRBLUP
GBLUP

RRBLUP

Reaction norm
model

BL and BRR

Reaction norm
models

RKHS, BA, BC
and BL

GBLUP, BL,
BA, BB, and
RKHS

Single
or multi-trait
analysis

Single trait

Single and
multi-trait
models
Single and
multi-
environment
models
Single trait
models
Single and
mult-
environment
models
Single and
mutti-trait
models

Single trait

Single trait
models
Single trait
models

Multi-trait
models
Single trait
models
Single and
mult-trait
models
Single trait
models
Single trait
models

Single and
multi-trait
models
Single trait

Single and
multi-
environment
models
Single trait

Single and
mult-trait
models
Single trait

Single trait
model
Single trait
model
Single trait

Single traits

Single trait
model
Single trait
model

Single trait
model

Single trait
model

Single trait
model

Single trait
model

Single and
multi-
environment
models

Single trait
model

Single and
multi-
environment
models

Single trait
model

Single and
mult-
environment
delale

Accuracy

0.43-0.48

0.93-0.98

0.22-0.80

0.28-0.53

0.11-0.82

0.15-0.72

0.64-0.92

-0.03-0.74

-0.04-0.45

0.39-0.62
0.38-0.63

0.28-0.69

0.10-0.48

-0.41-0.88

0.18-0.31

-0.06-0.20

0.02-0.91

0.07-0.68

-0.60-0.74

0.16-0.50
0.36-0.67
0.47-0.62

-0.09-0.92

-0.02-0.58

0.18-0.85

0.31-0.76

0.05-0.63

0.23-0.47

0.27-0.60

0.02-0.62

0.19-0.89

0.22-0.81

-0.01-0.94

0.22-0.55

0.6-0.8

Country

France

Japan

France

Japan

Uruguay

United States

China

CIMMYT

Iran

CIMMYT
Austria

France

Spain

Germany

Denmark

United States
of America
CIMMYT

United States
Austria
Germany
United States
of America
Sweden

United States

Austria

United States

United States

United States

United States

United States

South Africa

India

Australia

India

Colombia

Colombia
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Trait

Grain yield

Grain yield
Grain yield
Grain yield
Grain
protein
content
Grain yield

Grain yield

Grain yield
Grain yield

Grain yield

Population
size

1,002 lines

1,092 lines
3,282 lines
456 lines

650 lines

4,368 lines

242 lines

1716
771 lines

630 lines

Model

RRBLUP

GBLUP, EN, and
PLSR

RRBLUP
Recommender
system & GBLUP
RRBLUP

GBLUP

GBLUP

RRBLUP
GBLUP

Random regression
and GBLUP

Phenomics traits
used

GNDVI, RNDVI
and CT

CT and NDVI

CT and GNDVI

NDVI, NWI, and SR

NDVI, GNDVI, NWI,
W, ARI, and PRI

GNDVI

CT, SPAD, SGT,
NDVI

NDRE, NDVI,
and SR
Reflectance bands

CT and NDVI

Physiological trait explained

Canopy size, greenness,
chlorophyll content, and
temperature

Canopy temperature and
greenness

Canopy temperature and nitrogen
status

Biomass, greenness, and water
status

Biomass, chiorophyl, nitrogen,
water, anthocyanin, and
photochemical pigments status
Biomass and greenhouse

Canopy temperature, chiorophyl
content, stay green and
senesoence traits

Biomass, vegetation, and water
status

Whole spectrum from visible to
infra-red were used

Canopy temperature and biomass

Effect on
prediction
accuracy with
inclusion
of phenomic
information

70% increase in
prediction accuracy

7% increase in
prediction accuracy
46% increase in
prediction accuracy
19% increase in
prediction accuracy
20% increase in
prediction accuracy

11-23% increase in

prediction accuracy
63% increase in

prediction accuracy

13% increase in
prediction accuracy
10-16% increase in
prediction accuracy
70% increase in
prediction accuracy

Country/
institute

CIMMYT

United States
United States
United States

United States

CIMMYT

United States

United States
CIMMYT

United States
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S.No Traits GMS Ems F-ratioc  CV (%)

1 Days to 50% heading () 12063 113 10654 119
2 Plant height (cm) 19277 538 8582 2142
3 Panicles per plant () 642 044 1461 895
4 Grains per panicle (#) 222270 17578 12.64™ 10.93
5 1,000-grains weight (g) 5006 008  74382"*  1.09
6 Grains weight per plant (@)~ 10044 297  3385™ 7.5
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Cross code

C330 x C373
C330 x C205
C330 x C250
C330 x C375
C330 x C472
C330 x C447
C330 x C268
C330 x C493
C330 x C492
C330 x C201
C330 x C282
C330 x C386
C230 x C373
C230 x C205
C230 x C250
C230 x C375
C230 x C472
C230 x C447
C230 x C268
C230 x C493
C230 x C492
C230 x C201
C230 x C282
C230 x C386
C228 x C373
C228 x C205
C228 x C250
C228 x C375
C228 x C472
C228 x C319
C228 x C447
C228 x C268
C228 x C493
C228 x C492
C228 x C201
C228 x C307
C228 x C282
C228 x C386

F1 hybrid
name

TianfengA x Guang122
TianfengA x Huanghuazhan- 1
TianfengA x Huazhan (HZ)
TianfengA x Minghui63
TianfengA x Wushansimiao
TianfengA x Huanghuazhan
TianfengA x Minhui3301
TianfengA x Chenghui727
TianfengA x Yahui2115
TianfengA x Gui99
TianfengA x Yuexiangzhan
TianfengA x Yuenongsimiao
TaifengA x Guang122
TaifengA x Huanghuazhan-1
TaifengA x Huazhan (H2)
TaifengA x Minghui6d
TaifengA x Wushansimiao
TaifengA x Huanghuazhan
TaifengA x Minhui3301
TaifengA x Chenghui727
TaifengA x Yahui2115
TaifengA x Gui99

TaifengA x Yuexiangzhan
TaifengA x Yuenongsimiao
Guang8A x Guang122
Guang8A x Huanghuazhan-1
Guang8A x Huazhan (H2)
Guang8A x Minghui63
Guang8A x Wushansimiao
Guang8A x Fuhui676
Guang8A x Huanghuazhan
Guang8A x Minhui3301
Guang8A x Chenghti727
GuangBA x Yahui2115
Guang8A x Gui99
Guang8A x Ce64

GuangBA x Yuexiangzhan
Guang8A x Yuenongsimiao

Mean
Minimum
Maximum

Days to 50% heading Plant height Panicles per plant
MPH BPH MPH BPH MPH BPH
456" 18.22 16,99 2083~ -13.31 -202
261" 19.63" 653" 17.56™ -103 228"
595" 2056 12,81 23.99" -2250" 241"
250" 243" 16.00" 30.43" -4.99 -16.2"
4.56™ 17.76" 571 21.59" 1.24 0
10,02 257" 7.74" 16,92 -32.45" 355"
302" 2757 17.26" 3169 -0.01 253"
6.75" 257 10.65" 27.2 -17.30" 304"
2,02 274 9.40" 3447 -26.48" -36.7
472" 19.16" 8.18" 21.97 47 -128
379" 215" 13.75" 30.56" -10.24 279"
7.16" 2243 956" 2159 -0.03 A7

-9.49" 297 539" 7.82" -20.20" -31.9*
-0.96 932 430" 861" 557 ~126"

295" 466" 382" 7.7 ~11.66* 7.2

-7.58* 593" 6.09" 12.46" 14.07* =231

873" 254 036 872 357
-059 763 066 347 -82 ;

-5.07" 11.02° 11.55" 18.12" 2063 —126
-0.38 11.02 11.03* 20.27* 6.38 -13.8*
-1.34 89 392" 19.93" -13.80* 287
-1.38 636 058 691" -063 -10.3*

—2.10" 847" 12 9.4+ 28.89" 0

-2.54* 561" 157 6.34 -17.41" -34.5"
276" 22 833" 1.99 26,33 33
-0.36 1.83° 565" 565" 31.30" 14.24%
—1.47 -1.47 —4.04" -4.39" -39.86" -403"

1,73 403" 6.02" 7.85" -9.37 —18.2
055 1.49 -191 1.89 -24.06" 259"
554 .72 7.35" 19.88" 29,89 -39
073 14 a7 22 -1005 -13*

357 403" 664" 837" 24.13* 651
-0.89 22 -03 356" 228 13"
-1.43 073 308" 13.81" —19.41" 209"

0 0 226 429" -15.65" ~195"

236" 33" 10.48" 314 25,00 333"
-1.07 1.47 767 11.61* -16.21* -31.2%
256" 293" 312" 366" —17.21" 312+
067 296 6.40 13.47 -8.29 -20.10
-9.49 297 -4.04 -439 3086 -4030
10.02 2757 17.26 34.47 31.30 14.24

GD

0.34
0.3
0.31
0.35
0.29
0.24
0.35
0.34
0.36
0.34
0.31
0.27
0.33
0.31
0.29
0.33
0.31
0.24
0.32
031
0.33
0.32
0.32
0.29
0.27
0.23
0.22
0.31
0.19
0.29
0.22
0.29
0.29
0.33
0.28
0.28
0.24
0.21

0.29
0.19
0.36
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Cross code

C330 x C373
C330 x C205
C330 x C250
C330 x C375
C330 x C472
C330 x C447
C330 x C268
C330 x C493
C330 x C492
C330 x C201
C330 x C282
C330 x C386
C230 x C373
C230 x C205
C230 x C250
C230 x C375
C230 x C472
C230 x C447
C230 x C268
C230 x C493
C230 x C492
C230 x C201
C230 x C282
C230 x C386
C228 x C373
C228 x C205
C228 x C250
C228 x C375
C228 x C472
C228 x C319
C228 x C447
C228 x C268
C228 x C493
C228 x C492
C228 x C201
C228 x C307
C228 x C282
C228 x C386

F1 hybrid
name

TianfengA x Guang122
TianfengA x Huanghuazhan-1
TianfengA x Huazhan (HZ)
TianfengA x Minghui63
TianfengA x Wushansimiao
TianfengA x Huanghuazhan
TianfengA x Minhuid301
TianfengA x Chenghui727
TianfengA x Yahui2115
TianfengA x Gui99
TianfengA x Yuexiangzhan
TianfengA x Yuenongsimiao
TaifengA x Guang122
TaifengA x Huanghuazhan-1
TaifengA x Huazhan (H2)
TaifengA x Minghui63
TaifengA x Wushansimiao
TaifengA x Huanghuazhan
TaifengA x Minhui3301
TaifengA x Chenghui727
TaifengA x Yahui2115
TaifengA x Gui99

TaifengA x Yuexiangzhan
TaifengA x Yuenongsimiao
GuangBA x Guang122
GuangBA x Huanghuazhan-1
GuangBA x Huazhan (HZ)
Guang8A x Minghui63
Guang8A x Wushansimiao
GuangBA x Fuhui676
GuangBA x Huanghuazhan
GuangBA x Minhui3301
GuangBA x Chenghui727
GuangBA x Yahui2115
GuangBA x Gui99
GuangBA x Ceb4
GuangBA x Yuexiangzhan
GuangBA x Yuenongsimiao

Mean
Minimum
Maximum

Grains per panicle

1,000-grain weight

Grain weight per plant

MPH

60.06"
23.07"
13.00
62.23"
5.03
39.68™
50.48™
19.54*
20.26"
-3.41
18.26*
5.21
37.44%
18.10"
1354
73.99"
14.93
-11.34
60.62**
354
34.40™
11.12
10.73
21.65™
43.94™
-6.02
40.59™
74.39™
8.38
53.68™
17.49*
16.7
12.06
51.16"
20.31™
44.50"
13.29
21,98

26.89
-11.34
74.39

BPH

33.85™
17.79"
12.03
an
477
32,63
16.73"
1291
23.98*
-4.69
11.33
-12.6*
27.57
9.78"
213
16.57
2.82
-24.3"
36.71*
-25
24.65"
-1.96
-6.25
~7.58
20.37
-10.1
39.38"™
10.48
811
2347
11.64
-10.3
5.83
45.01**
18.72"
29.73*
6.65
0.81

11.28
-24.30
45.01

MPH

13.25™
-1.08"
7.16™
16.40"
8.70"
a.60™
18.63™
5.99"
6.46"
296
9.18*
176
7.86"
-8.06"
16.43"
20.37
7.66"
6.37
P19
12.30™
8.87"
4.61"
9.61™
5.63"
293"
-4.74"
-0.29
9.70"
6.20"
6.92"
-4.56"
5.58"
233
1.95
-1.90"
0.14
10.98™
-0.01

6.26
-8.05
20.37

BPH

8.58"
-9.73*
~28r
14.06"

1.19

-0.15
16.14™

-13

6.33"

1.09*

25"

-4.6"

7.28"
-18.9*

9.46"
1701

4.93"*

4.39"
17.96*

011

3.97

-1.12

by

373"
-1.86"

=
~220

2.42*

4.48"

1
-6.82"

-0.63
-15.9"

-6.5"
-10.9"

-3.3*

8.12"
-2.46"

0.854
-19.00
17.98

MPH

1.1
45.34"
—-47.86™
34.61"
52.45™
21.95*
20.73"
26.13"
4.04
-20.94*
9.25
49.39"
60.08"
71.19*
-11.76
59.01*
—-43.67"
2341
10.32
3.47
25.88"
94.99™
8.01
27.29"
-6.54
27.23"
-9.66
17.85
20.84
36.89™
FIREES
-7.18
41.43"
16.97
1.7
9.87
5.67
77.00"

21.16
-47.86
94.99

BPH

7.88"
2253
-432"
26"
20.2*
21,01
147
14.05
3.08
-30.8"
223
32.15"
56.22
4451
-209"
37.86™
-55.5"
22,64
467
-6.31
24,54
71.08"
0.92
1275
-14
1252
-228"
15.52
-052
24.58"
345"
-16.3"
34.77
9.72
-9.44
074
-6.08
60.33"

10.63
-55.50
71.03

GD

0.34
0.3
0.31
0.35
0.29
0.24
0.35
0.34
0.36
0.34
0.31
0.27
0.33
0.31
0.29
0.33
0.31
0.24
0.32
031
0.33
0.32
0.32
0.29
0.27
0.23
0.22
031
0.19
0.29
0.22
0.29
0.29
0.33
0.28
0.28
0.24
0.21

0.29
0.19
0.36
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Species

Cucumis melo L.
Arabidopsis thaliana
Citrulus lanatus
Cucumis sativus L.
Lotus japonicus
Glycine max

Cicer arigtinum
Populus trichocarpa
Brassica rapa
Solanum lycopersicum
Triticum aestivum
Physcomitrella patens
Zea mays

Oryza sativa L.

Zizania latifolia
Sorghum bicolor

°Only clock-associated.

Cotyledons

Eudicots
Dicot
Dicot
Dicot
Dicot
Dicot
Dicot
Dicot
Dicot
Dicot
Monocot
Monocot
Monocot
Monocot
Monocot
Monocot

bBoth clock associated and type-B PRRS.

HK

17
8
19
18
14
36
18
12
20
20
¥
18
11
5
2
13

HP (Pseudo-HP)

9
6(1)
62
7@
7
13

Type-ARR

Type-B RR

1
12
10
8
1
15

~N R

Type-C RR

NN OWNO - HRON®=0=NO

Pseudo RR

Total

51
a7
49
46
40
98
51
49
85
65
62
39
59
37
69
37
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Gene. Gene
name symbol

Histidine kinases (HKs)
SOHK1  LOCB059279
SoHK2  LOCBO75742
SOHKS  LOC110433965
SoHK4  LOCBOBOOO4
SOHKS  LOCB069360
SOCK1  LOCBO76204

SOERST  LOCB0B3415
SOETR1  LOCBO76011
SLEINA1  LOC8155512
SOEING2  LOCBOBBO19
SOPHYA  LOCB059991
SOPHYB  LOCBOBI072

SOPHYC  LOCB086232
Phosphotransfer Proteins (HPs)
SOHP1  LOCB062536

SoHP2  LOCB057993
SOHP3  LOCBO75559
SoHP4  LOCB068945
SOHPS  LOCB055697

Response Reguiators (RRS)
Type-A RRs

SORR  LOCB077366
SRR9  LOC110436576
SORR10  LOCB071408
Type-B RRs
SORR1G  LOCBOS6131
SORR17  LOCB079408
SORR18  LOCB084640
SORR19  LOCB0S6866
SORR20  LOCB076203
SORR24.1  LOCB058416
SORR242  LOCB084794
Type-C RRs
SORR1S  LOCB0B3419
SORR14  LOCB085961
Pseudo-ARs.
SOPRR1  LOCB072479
SOPRR2.1  LOCB078076
SOPRR22  LOCB057890
SOPRRB.1  LOCB070845
SOPRR32  LOCB084889
SOPRRS  LOC110432809
SOPRR9  LOCB0S8579

chr

Start
site

22266130
50266327
71489995
8870876
55655919
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9801882
5018113
67810845
3178416
8713754
68035215

6748085

10797502

60641495
62500906
55183674
8016183

73177403
2740067
1026753

70434838
5416832
66411416
72774008
5132133
55120219
9453701

3752870
7312249

56625637
302604
8684841
40805107
60433326
65784791
4190668

End site

22260754
50273161
71495445
8878374
55666166
5152208

9808982
5022906
67814687
3182064
8721151

68043712

6753340

19801117

60644235
62506524
55186538
8018505

73181260
2743306
1029205

70438749
5421301
66416077
7277953
5136115
55130513
9488726

753702
7313602

56628735
310420
8687455
40316802
69440358
65790044
4195535

cos

2451
4149
3709
3669
4985
3457

2470
2920
3633

3041
4750

4202

1132

824
962

1873
1,146
1,304

2085
2579
3155
2724
2344
2088
2163

501

2328
2682
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3195
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2582
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5
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1"
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14
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anv oc@oooon

cogs000
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4
9
10
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wanvaa

©
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Protein

Molecular

Isoelectric

length  weighttMW)  point(P)

743
o73

1,005
96
959

1,138

635
632

773
1131
1,178

1,135
145

144
151
154
151

245
202
279

579
631
675
686
672
695
551

132
201

524
305
466
291
765
630
697

8,0885.46
108,350
1123732
100,159
1082706
122,065.4

70,635.29
70,153.82
9973268
85,063.83
1250043
1200466

126,205
1622854

1617266
1725252
1768291
1780024

26,365.79
22,749.54
30,788.82

6470022
68,631.82
73,136.19
73679.76
72,886.35
76,4093
60,852.22

14,169.76.
21,5018

58,166
42,195.43
50,071.47
3197747
83,505.91

70207.3
75,487.93

596
591
842
551
534
563

707
684
828
7.04
577
575

572

455

563
758
614
842

524
613
656

504
612
596
626
601
556
566

774
969

591
606
501
508

62
732

Instability
index(l)

48.81-unst
3885
3835
46.05-unst
50.78-unst
42.59unst

a7.87
37.48
unst-50.1
3679
unst-49.69
unst-48.61

unst-51.31
0

2655
56.36-unst
56.83-unst
60.23-unst

51.26-unst
50.58-unst
69.03-unst

45.88-unst
3097
46.1-unst
49.94-unst
46.69-unst
43.44-unst
3622

185
54.67-unst

52.76-unst
56.94-unst
56.48-unst
55.20-unst
52.17-unst
52.28-unst
56.89-unst

Aliphatic
index

9133
87.58
9022
91.66

9131

106.71
106.19
100.46
102.41
%26
86.72

o7.24
o152

8868
s57.62
60.19
72.32

8363
7911
8355

813
774
8099
776
80.45
7446
8069

9674
8841

66.37
683

7034
5052
653

62.48

Grand
average

hydropathicity
(GRAVY)

0076
0179
0226

009
-0508
0055

0144
0144
0078
0088

-0.151

-0.167

0112
0079

0089
0645
-0678
0754

-041
0683
-0352

0424
0583
-0341
0428
0331
0459
-0536

0224
0106

-0623
0385
0438
0646
-088
0827
0716

Cell
location

Oytopasmic
Plasma membrane

Exracelular
Oytoplasmic

Nuckear

Pasa membrane,
cytoplasmic, mitochondial
Prasma membrane
Pasrma membrane
Prasrma membrane
Prasma membrane
Oytopastic

Oytopiasmic, plasma
membrane

Oytoplasmic

Nuclear, extracelluar,
cytoplasmic

Nuclear, extracellar
Nuclear

Noclear

Nuclear

Nuclear
Nuclear
Nuclear

Nuclear
Nuclear
Nuclear
Nuclear
Nuclear
Noclear
Nuclear

Oytoplasmic.
Chioroplast

Nuclear
Nuclear
Nuclear
Nuclear
Nuclear
Nuclear
Nuclear
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Model

Ridge regression best
inear unbiased prediction
(RRBLUP)

Genormic best linear
unbiased prediction
(GBLUP)
Bayes A

Bayes B

Bayes C

Bayes Cpi

Bayes D

Bayes Lasso (BL)

Elastic net (EN)

Bayesian threshold
GBLUP (TGBLUP)
Bayesian multi-trait and
muiti-environment mode!
(BMTME)

Reproducing kernel
Hilbert space (RKHS)

Reaction norm

Support vector
machine (SVM)

Random forests (RF)

Gradient boost
machine (GBM)

Functional B spiine

Partial least square
regression (PLSR)

Multiayer
perceptron (MLP)

Convolutional neural
network (CNN)

Dual CNN

Arc-cosine kerel (AK)

DeepGS

Recurrent neural
network (RNN)

Model type

Mixed model/
parametric model

Mixed model/
parametric mode!

Bayesian mode//
parametric model

Bayesian mode//
parametric mode!

Bayesian model/
parametric model
Bayesian model/
parametric model

Bayesian model/
parametric model

Bayesian model/
parametric model

Parametric model

Bayesian model/
parametric model
Bayesian mode//
parametric model

Bayesian kernel-
based/semi-
parametric mode!

Mixed model/
parametric mode!

Machine learing/
semi-parametric
model

Machine leaming/
non-parametric
model

Machine leaming/
non-parametric
model

Machine learning/
non-parametric
model

Machine learning/
non-parametric
model

Deep learning/non-
parametric model

Deep learning/non-
parametric model

Deep learning/non-
parametric model
Deep learning/non-
parametric model

Deep learning/non-

parametric model

Deep learning/non-
parametric model

Characteristics

Ridge regression is equivalent to traditional
BLUP, which assumes each marker has a
small effect with constant variance and
obtain this by using ridge regression
parameter

GBLUP uses the relationship between
genotypes for precicting their performance

Marker effects are obtained assuming a
scaled inverted chi-square distribution of
variance parameters, and all the markers are
assumed to have an effect

It losses the restrictions of Bayes A and
allows some markers to have zero effect

Bayes C uses the scaled-t mixture with a
point mass at zero with scaled-t distribution
Bayes Cpiis a special case of Bayes B but it
assumes a constant variance for markers
with non-zero effect

Bayes D uses the scaled-t distribution by
estimating scale parameter from the
datasets

BL assumes a fixed set of markers have zero
effect, and the remaining follow the double
exponential distribution for variance
components

EN is the intermediate between ridge
regression and Lasso using an average
weight penalty for marker effect estimation
TGBLUP is  threshold models for ordinal
and categorical data

BMTME is the mult-trait version of the
Bayesian models

RKHS uses the kernel functions on the set of
distances among markers to estimate the
relationship matrix between the individuals
and assumes the absence of linearity
assumption

Reaction norm model the interaction
between the markers and environmental
covariates using covariate functions

SVM is another semiparametric model that
uses keme! function, and its cost function is
sensitive to residuals coefficient

RF uses a network of the tree with varying
number of nodes, mtry, and depth for
building the final forest for predictions.
GBM is an ensemble learning model and is
similar to tree-based models used to reduce
the subset the SNPs using linkage
disequiibrium for obtaining higher prediction
accuracy

Functional B spiines use the piecewise
polynomial of degree n-1 in a variable x.
Different spine functions are tried at a given
degree for predicting the output

PLSR is a dimensional reduction approach
which uses latent variables derived from
predictors to link with the response variables
MLP uses the combination of input, multiple
hidden and output layers using a large
number of neurons for building the
relationship between the predictors and
output

NN employs convolutional, flattening,
pooiing, and dense layer for prediction using
filers and kemels to reduce the excess
predictors from the model

Dual CNN uses two parallel streams of CNN
and sums up layer is used for predictions.
AK estimates the stepwise covariance matix
by adding more hidden layer in model
training

DeepGS uses deep CNN consisting of one
input, one convolutional, one samping, two
fully connected and one output layer for
building a relationship

RNN is best for predictions under the
presence of longitudinal or time-series data,
as it uses the memory state to retains the
information from previous data and update
its prediction with new information

Codes

https://github.com/cran/rBLUP

https://github.com/gaic/BGLR-R/blob/
master/ins/md/GBLUP.md

https://github.com/gdic/BGLR-R/blob/
master/instmd/Valdation.md

https://github.com/ShiuLab/
GenomicSelection/blob/master/working/
predict BGLRR
https://github.com/cma2015/G2P/blob/
master/R/GSEnsemble.R
https://github.com/gdic/BGLR-R/blob/
master/inst/md/BayesianAlphabet.md

hitps://github.com/gdic/BGLR-R/blob/
master/insmd/BayesianAlphabet.md

https:/github.com/Sandhu-WSU/Genomic-
Selection-tutorial/blob/master/
GSworkshop_InProg.R

https://datadryad.org/stash/dataset/doi:10.
5061/dryad.7f138

htps://github.com/gdic/BGLR-R

hitps:/Awww.gjournal org/content/9/5/
1355#app-1

https://github.com/gdic/BGLR-R/blob/
master/inst/md/RKHS.md

https://github.com/gdic/BGLR-R/blob/
master/inst/md/BayesianAlphabet. md

https://github.com/afiliot/Kernel-Methods-
For-Genomics

hitps://github.com/xuanxu/nimbus

hittps://cran.r-project.orgAweb/packages/
gbmvindex.html

https://datadryad.org/stash/dataset/doi:10.
5061/dryad.7f138

https://github.com/saeedkhaki92/Yield-
Prediction-DNN

https://github.com/Sandhu-WSU/DL__
Wheat
https://github.com/kateyiu/DL_gwas

hittps://Awww.frontiersin.org/articles! 10.
3389/fgene.2019.01168/full#h7

https://github.com/cma2015/DeepGS

https://figshare.com/s/
5od5eSedeacef550721f7fle=24963563
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Duplicated gene
pairs

SDEIN4.1/SbEIN4.2
SbRRY/SbRR10
SbRR18/SbRR20
SbPRR3.1/SbPRR3.2
SbPRR5/SbPRRI

'YA: million years ago.

0.3299
0.143
0.1715
0.2885
0.632

0.4709
0.1004
0.2077
0.2357
0.8932

Ka/Ks

1.427402243
0.702097902
1.211078717
0.816984402
1.413291139

Time (MYA?)

25.14481707
10.89939024
13.07164634
21.98932927
4817073171

Duplication type

Segmental
Segmental
Segmental
Segmental
Segmental
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Method

Model based (STRUCTURE)

Distance based (Cluster, DAPC)

Based on origin

Pop

Popt
Pop2
Mean

Popt

Pop2
Pop3
Mean

SYRIA
TURKEY
IRAN
‘GREECE
IRAQ
JORDAN
PALESTINE
SPAIN
Mean

Na

1.988
1.997
1.993

1.970
1.987
1.992
1.983

1.988
1.987
1.762
1.242
1.021
0.614
0.207
0.738
1.887

1472
1.479
1476

1.434
1.483
1474
1.464

1.474
1.472
1.412
1.320
1.253
1137
1.000
1477
1.447

0.441
0.445
0443

0.410
0.449
0.440
0.433

0.442
0.440
0.381
0.282
0.222
0.117
0.000
0.154
0.416

He

0.286
0.289
0.288

0.264
0.292
0.286
0.281

0.287
0.285
0.248
0.188
0.148
0.080
0.000
0.104
0.270

uHe

0.286
0.290
0.288

0.266
0.293
0.287
0.282

0.287
0.287
0.254
0.209
0.166
0.107
0.000
0.129
0273

PPL (%)

99.38
99.84
99.61

98.35
99.32
99.49
99.05

99.40
99.22
856.63
54.02
4247
19.39
0.00
26.79
53.36
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Parents

P1 (Three-pistil and tal)
P2 (Normal and tall 1)

P3 (Normal and tall 2)

P4 (Normal and semi-dwarf 1)
P5 (Normal and semi-cwarf 2)
PG (Normal and dwarf 1)

P7 (Normal and dwarf 2)

Name of parents

Yr-Pastor-10
SH Bahawalpur

SH-220

Mairaj-08 (A commercial wheat variety)
V-6309 (Advance strain)

TOB™-1

TDB-2

*SH . synthetic hexaploid, **TDB . triple dwarf from bahawalpur.
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Multi-ovary: Mono ovary
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Theoretical ratio
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31
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p Value (df = 1)
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Sr.No Cross

1
2
3
4
5
6

P1/P2
P1/P3
P1/P4
P1/P5
P1/P6
P1/P7

Days to maturity Plant height No. of grain/spike Grain weight/spike Grain yield (kg/m?)

H HB ID H HB ID H HB D H HB D H HB D
36 -38 90 -25 -40 167 1350" -1040" 566" -39.7" -49.1" 44,40 -56.08"  12.03"
-18 -19 88 13 -29 107 1601" 660" 648" 276" 414" -38.96" -54.37" 13.28"
42 60 141 16 -85 113 108" -2670" 576" 247 _37.4" -2864"  -46.23"  16.15"
80 51 161 87 77 28 -201" -3230" 416" 287" 361" -35.39"  -48.87" 398"
-58 -82 116 -33 -253 353 600" 2619"  1204" 17.7% 28" 2768" 285"  20.79"
58 -80 115 -62 -259 172 3155 7.46"  1218" 81" 208" -16.88" -35.33"  7.566"

xonificance at p.05 and .07 levels, respectively. H, heterosis: HB, heterobeltiosis: 1D, inbreeding depression.
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Sr.No Traits F2 generation
Rep Genotype Error

1 Days to maturity 15 524.3" 55
2 Plant height (cm) 6 36" 30
3 No. of grains per spike 17 52" 25
4 Grain weight per spike (g) 3 70" 10
5 Grain yield (kg/m?) 9 2.3% 24
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Annotation

Glycosyl transferase
RicMT (metallothionein-like protein), conserved hypothetical protein (MT728)
ABC transporter-lie domain-containing protein

Regulation of stomatal ciosure, abiotic stress response

Squalene monooxygenase, putative, expressed

Simiar to squalene monooxygenase

Protein of unknown function DUF607 family protein

Similar to H0402C08.11 protein

'WD-40 repeat family protein, putative, expressed

Similar to protochiorophylide reductase

Simiar to H0801D08.10 protein

Protein of unknown function DUF580 family protein

€2 calciumipid-binding region, CaL.B domain-containing protein
Similar to DRE-binding factor 2

Expressed protein

Similar to trehalose-6-phosphate phosphatase 7 (TPP7)
Endosperm-speciic gene 127

VQ domain-containing protein

Major faciltator superfamily protein

Serinethreonine protein kinase domain-containing protein
Similar to ethylene signal transcription factor

p-Glucosidase 29

Auxin efflux carrier domain-containing protein

Similar to CUC2

bZIP transcription factor, drought and salt tolerance
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Traits

Salt germination rate (SGr, %)
Biomass (BM, g"100)

Anaerobic germination rate (AGr, %)
Coleoptie length (CL, cm)

Response index (R)

Anaerobic salt response index (ASR)

Geng (Japonica) Xian (indica)

Range Mean = SD oV (%) Range Mean = SD oV (%)
0.00-96.0 321£202 389 0.00-90.0 2545189 332
0.53-1.99 1.06 +0.30 227 025-2.20 1.10 £ 035 2.4
15.0-96.0 47.5 £ 20.0 41.0 0.00-86.0 261 £265 36.3
1.23-5.23 330076 198 0.93-4.00 2550033 227
0.33-4.47 269 +0.76 248 0.53-3.42 1.90 + 0.50 215
0.69-2.53 1.68 +0.79 402 0.12-201 1.02 £ 0.82 381
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Source
of variation

Genotype

Repiication

Treatment

Genotype x treatment

DF

25

25

Plant
height
(PH)

687.55"
42.40 ™

1,243.68"

57.59™

Tillers
per plant
(TPP)

47.97 ™
107.97 ™
027"
37.34"

Grain
yield
(@y)

956.25™
700.96 "
19,649.7*
236.93 ™

Straw
yield
sY)

599.24
875.40

5,543.01*

520.24"

Total
biomass
(TBM)
(ns)

2,136.97
3,633.82
2,969.06
1,029.61

Harvest
index
HY)

0.0081*
0.00056 ™
0.36*
0.0033*

1,000
grain
weight
(Taw)

42.40™
8.87 "™

106.91 ™
372

Grain
length
(GL)

402"
038"
631"
020"

Pollen
fertility
percentage
(PFP)

727.03"™
15.07 ™
5,434.18"
771.38"

Nomralized
difference
vegetative

index
(NDVI)

0.0042*
0.02™
0.14*
0.0013*
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Gene position (5 to 3)

1 45 373 736 992 1,121 1,147 1,150 1,190 1,221 1,455 1,661
REF-HVNHX3 G G A c G c A G T T c G
CM72 T G
G . T « .
XZ1 ¥ T i del del
Xz2 T T B
XZ4 " i T del
X26 T T i A
XZ9 x & T ® " %
XZ11 s C T del G A
XZ13 T C T * &
XZ16 del T T E G A
XZ18 del del T del e
X223 T C del .
XZ36 T T A
XZ38 5 = "
X741 T 1 del A
X742 T del
X750 . T &
XZ61 del T B del
X266 k T del del 9
XZ73 T del G A
XZ74 & del
XZ75 T T 3 é W B
X278 T & [} A C T del
X786 i del & C 3
XZ113 T del [} ¥ del
XZ115 T T % ;4
XZ120 T B C A
XZ126 T T
XZ146 E
XZ156 " T T del
Xz161 del T A [¢] T §
XZ165 T T del
X2166 v P T T . A
XZ167 . del T del A del X
XZ169 T T del
XZ174 T . T P
X2179 . del T del .
XZ188 T del del

SPS

AN NOONEANONVORNNON S ON - S OOWN - EDOENENNG= N
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Nursery Pred. GEBVs YLD (Obs. YLD (Obs. YLD (Obs. YLD (Obs.

calculated using EMMs) BLUPs) EMMs SC BLUPs SC
TP (predicted &NC & NC
values) only) only)
GAWN Set01_TP (EMMs) 0 @2 026 023
Set01_TP (BLUPS) 041 031 026 019
GAWN Set02_TP (EMMs) 031 026 026 02
Set02_TP (BLUPS) 0.09 001 07 o2
GAWN Set03_TP (EMMs) 026 024 010 010
Set03_TP (BLUPS) 009 005 001 -0.04
GAWN Set04_TP (EMMs) 023 018 002 002
Set04_TP (BLUPS) 008 003 008 012
GAWN Set05_TP (EMMs) 024 021 029 023
Set05_TP (BLUPS) 015 010 021 o
GAWN Set06_TP (EMMs) 02 017 02 015
Set06_TP (BLUPS) 012 006 008 001
GAWN Set07_TP (EMMs) 027 022 021 015
Set07_TP (BLUPS) 011 010 015 009
GAWN Set08_TP (EMMs) 019 35} 014 0.07
Set08_TP (BLUPS) 006 001 005 003
SunWheat Set09_TP (EMMs) 9 Ot 016 on
Set09_TP (BLUPs) e et 016 011
SunWheat Setl1_TP (EMMs) 023 018 001 001
Setl1_TP (BLUPS) 026 020 001 002
SunWheat Set12_TP (EMMs) 031 025 006 001
Set12_TP (BLUPS) 030 022 003 004
SunWheat Setl3_TP (EMMs) 026 023 004 0.09
Sett3_TP (BLUPS) 007 008 002 0.09
GAWN + SunWheat Setl4_TP (EMMs) 034 032 032 029
Set14_TP (BLUPs) 037 033 026 023
GAWN + SunWheat Set15_TP (EMMs) 037 039
Setl5_TP (BLUPS) 037 038
GAWN + SunWheat Setl6_TP (EMMs) 021 021 006 on
Set16_TP (BLUPS) 015 01 004 010
GAWN + SunWheat Set17_TP (EMMs) 041 035 009 005
Set17_TP (BLUPS) 045 041 017 016
GAWN + SunWheat Set18_TP (EMMs) o 039 010 010
Set18_TP (BLUPs) e 037 013 014
GAWN + SunWheat Set19_TP (EMMs) 05 L 015 013
Set19_TP (BLUPs) e 039 015 012
GAWN + SunWheat Set20_TP (EMMs) 0 b o014 012
Set20_TP (BLUPs) 0w 0 015 014
GAWN + SunWheat Set21_TP (EMMs) 047 041 019 016
Set21 TP (BLUPs) L) 039 02 017
GAWN + SunWheat Set22_TP (EMMs) 039 031 021 015
Set22_TP (BLUPS) 037 032 025 018
GAWN + SunWheat SetAILTP (EMMs) 034 029
SetAILTP (BLUPs) 038 030

Notes: In parenthesis the estimated values used for predictions. Accuracies between 0.4-0.5 highlighted in light green and accuracies higher that 0.5 in dark green. In bold the higher
prediction accuracies. Here presenting analysis was completed using BLUPs estimated with ‘coef function (BLUPs calculated with ‘coef’function and ‘ranef function resulted in the same
accuracies).
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Gene position (5 to 3)
267 300 340 695 825 1069 1816 1818 1820 1827 1588 1741 1828 1843 1936 1978 2010 SPS
REF-HWHX1 G A A C A A c c G A G G G c T A c

CM72 % del ¥ % % E . . - @ " G
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XZ9 5 1 # B pt del A & A - % - % G
Xz11 . . . . del

X213 del i o 1 C : o del

XZ16 3 i 5 = E %

XZ18 - 3 T 9 N - . e < A x
X223 A . . T B del del B G A
XZ36 del 1 45 5 % G & 3 A
XZ38 del

Xz41 . . . . .

X742 i del ¥ 9 G E 3 $ ¥ = 3
X750 del del ™ . » - . . . . " G
XZ61 B B . B B B . . B B

X266 del 9 E ] & E 3 2 T % del
XZ73 N 5 ¥ " * del del E G

Xz74 . . . .

XZ75 % 3 @ 1 G ¥ L g 5 % i §

X278 del 5 del E " « % # G
XZ87 2 1 . " 2 " B R * & " & G
XZ113 i § 3 E i A

XZ115 . : . N c . 3 s . 5 . s

XZ120 " " " = B . * T " G
XZ126 T del ¥ 1 - B G

XZ146 r 1 = g G

XZ156 - " « . " del . 5 N s "

Xz161 . ) 3 p 3 . 3 i del
XZ165 del 3 % 3 & % del E 9 A

X2166 . 5 . . . . .

XZ167 . . . B B . A

X2169 . : 5 E del A : = z

XZ174 . ‘ F . 5 P : . A

XZ179 B 1 . " B B del del % G

XZ188 del

-
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Nursery TP YLD YLD AW W HD HD

EMMs BLUPs EMMs BLUPs EMMs BLUPs EMMs BLUPs
GAWN Set01_TP - 042 034 033 046 045 _
GAWN Set02_TP 044 035 030 026 037 035 043 045
GAWN Set03_TP - 045 036 028 _ 043 037
GAWN Seto4_TP 047 037 030 0.24 045 043 046 045
GAWN Set05 TP 047 041 036 031 034 037 042 044
GAWN Set06_TP 046 036 037 033 033 033 038 039
GAWN Set07.TP 047 042 034 027 040 043 045 047
GAWN Set0s_TP 046 035 037 030 037 040 _
SunWheat Set09_TP 037 027 026 021 048 039 037 042
SunWheat Setl1_TP 029 013 017 0.17 037 032 038 040
SunWheat Set12 TP 047 028 022 0.17 049 045 039 042
SunWheat Set13 TP 0.29 020 023 017 041 030 048 047
GAWN + SunWheat ~ Set15_TP  0.16 015 003 0.05 045 045 034 035
GAWN + SunWheat ~ Setl6_TP 021 011 012 013 039 039 045 049
GAWN + SunWheat ~ Set17_TP 036 021 042 028 038 044 040 044
GAWN + SunWheat ~ Set1s TP 041 025 039 029 049 - 038 042
GAWN + SunWheat ~ Set19_TP 049 034 039 027 043 046 044 045
GAWN + SunWheat ~ Set20_TP 040 029 038 023 044 045 047 046

GAWN + SunWheat ~ Set21 TP - 038 040 0.30 045 046 043 043
GAWN + SunWheat  Set22 TP 042 031 041 033 043 044 _

GAWN + SunWheat ~ SetAll TP 045 035 037 033 045 046 048 049

Average 042 031 032 0.26 043 042 044 045

Notes: Accuracies between 0.4-0.5 highlighted in light green and accuracies higher that 0.5 in dark green. Here presenting analysis was completed using BLUPs estimated with ‘coef
T N
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Salinity Levels Genotypes DW (g) roots and leaves  K*(mg g”' DW) roots and Na* (mg g™ DW) roots and Na*/K" ratio roots and

(mM) leaves leaves leaves
0 XZ16 0.19 1.26 62.16 66.70 4140 5303 006 008
cM72 0.18 1.25 64.86 66.94 2.850 329 004 005
XZ169 0.18 1.23 64.99 68.90 354 483 005 007
Gairdner 017 1.25 7073 .07 338 4.00 005 006
150 Xz16 017(11%)  1.13(10%) 18.65 4573 2053 3595 1.10 08
CM72 0.16(11%) 1.12 (10%) 17.93 39.05 23.78 36.57 1.33 09
XZ169 013(28%)  0.77(38%) 14.74 2412 35.32 65.83 239 27
Gairdner  0.12(29%)  0.66(47%) 12.96 2198 4938 68.58 382 31
300 Xz16 0.13(24%)  0.71(37%) 943 3075 3575 52.42 379 17
cm72 0.12(25%)  0.68(39%) 204 20.88 43.87 62.20 485 21
XZ169 009(31%)  0.36(53%) 629 16.21 55.55 9138 882 55
)

Gairdner 0.06(50%) 0.32 (51%) 5.95 1427 62.53 96.48 10.50 6.7

plovel - - - - - - - -

Probabilty fevel foJ™ significant at p < 0.01.Bokd vabes indicate the genes position.
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SEQ Accession name Subpopulation Origin Cd concentrationin
shoot (mg/kg)
142 BADA DHAN indica Bangladesh 58.16
721 GEETA indica India 46.84
164 CCT 3-37-3-3-3-1 indica Philippines 45.93
18 Co 25 indica India 6144
595 MOTTA SAMBA indica Sri Lanka 59.61
14 CHITRAJ (DA 23) indica Bangladesh 78.79
542 JUMA 51 indica Dominican Republic 19.71
491 DJOGOLON DJOGOLON indica Burkina Faso 18.73
521 ICTA PAZOS indica Guatemala 13.49
194 EZ1124 indica China 15.62
1367 WAS 200-B-B-1-1-1 indica Senegal 1042
197 EPAGRI 109 indica Brazil 1126
541 JINLING 78-102 indica China 18.52
1128 CR 762022 indica United States of America 18.63
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QTL Chr SNP Allele Position MAF p-value FDR Phenotype
contribution
(%)
qCd3-1 3 SNP-3.25 GIA 25,581,506 023 8.79E-05 030 436
qCd3-2 3 SNP-3.28 T/C 28,476,700 0.07 2.68E-08 001 898
qCd7 7 SNP-7.06 AIG 6,211,855 025 3.94E-05 025 48
qCds 8 SNP-8.18 CIA 18,489,250 0.17 1.61E-05 0.18 53
qCd11-1 11 SNP- ar 6,106,271 038 4.43E-06 010 602
1106
qCd11-2 11 SNP- GIA 9,186,018 0.16 4.11E-05 025 477
1109
qCd12-1 12 SNP- arr 1,813,881 021 233E-05 021 509
1201
qCd12-2 12 SNP- ar 19,902,055 0.08 1.35E-05 017 539

1219
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Accession name Subpopulation Origin Cd concentration in
the shoot (mg/kg)

CHERIVIRUPPU indica India 407
WAS 200-B-B-1-1-1 indica Senegal 1042
EPAGRI 109 indica Brazil 1126
ICTA PAZOS indica Guatemala 13.49
ERH CHIANG TSAO 8 indica China 13.88
KHAO DAW TAI indica Thailand 1475
TSAKA indica Bhutan 1544
E ZI 124 indica China 15.62
UP 1537 indica Colombia 1565
RTS 5 indica Vietnam 1643
ARC 14500 indica India 17.12
POONAGARI PERUMAL indica Sri Lanka 17.35
WAS 194-B-3-2-5 indica Senegal 17.49
JARIYU indica India 17.71
EMBRAPA 6 CHUI indica Brazil 1781
CIMARRON indica Venezuela 17.86
IR 70758-17-2-1 Admixed-indica Philippines 17.93
JINLING 78-102 indica China 1852
CR 762022 indica United States of America 18.63
DJOGOLON DJOGOLON indica Burkina Faso 1873
WAS 207-B-B-3-1-1 indica Senegal 19.06
VARY MADINIKA 3494 indica Madagascar 19.65
JUMA 51 indica Dominican Republic 1971
ER MO ZHAN Admixed-indica China 19.8
IR 74371-3-1-1 indica Philippines 198
MEKEO WHITE indica Papua New Guinea 19.84
BOL ZO indica Republic of Korea 1997
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QTL name

QOWBM/Thrip/
SGM.iok/ki. 1BVWY)

QOWBM/YWBM/Thrip/
FF.ipk/ki. 1B(SW/VWY)

Qywsm/
OWBM ki, TBSWWVW)

QFF.ipk 2A(SW)

Q.YWBM/Thrip.ipk/jk/
105,24 4(SW/WW)

Q Thrip/YWBM/
OWBM.ipk/jki.2AWW)

Q.YWBM/OWBM/
Thrips.iok/ki.2AVWW)

Q. Thrip.jxi.28.10/W)

Q.Thrip.jki.2B.20A/W)

Q. Thrip.ipk.2B(SW/WW)

Q.YWBM.ipk/ki.2B(WW)

Q.YWBM/OWBM.iok/
k. 2B.2(SW/VW)

QOWBM/Thrip.iok/
ki 2B(SW)

Q YWBM/OWBM/Thrip/
FF.ipk/jKi. 2B(AW)

Q.YWBM/OWBM/
SGM.iokjki/
r08.3B(SWAWW)

Qywaw/
OWBM ik SAWW)

QYWBM/OWBM/
Thrip.ipk/jki. 5B(SW/WW)

Q.YWBM/Thrip.ipk/
jii. GA(WW)

QYWBM.ipk/
ki, ZASWAAY)

Q. Thrip.iok/ji. 7BAW)

Q.YWBM/OWBM.iok/
i 7BOAWY)

QYWBM/Thios.ipk/
k. 7BIAW)

Q.YWBM.ipk. 7BWW)

Chr

1B

1B

1B

2A

2A

2A

2A

2B

2B

2B

2B

28

2B

3B

5B

B6A

A

B

B

B

B

Environments

OWBM (), T (1),
SGM (1)

YWBM (3), OWBM
(2), (1), FF (1)

OWBM (1),
YWBM (4)

FF (2

YWBM (3), T (1)

OWBM (2), YWBM
@.T@

OWBM (2), YWBM
@), (1)

TE

TE

T@

YWBM (3)

OWBM (1),
YWBM (3)

OWBM (3), T (1)

OWBM (1), YWBM
(). T(2. 8GM (2

OWBM (4), YWBM
(2), SGM (1)

OWBM (4),
YWBM (1)

OWBM (1), YWBM
@.7@

YWBM (1), T (2)

YWBM (3)

T@

OWBM (3),
YWBM (1)

YWBM (1), T (2)

YWBM (3)

SNPs Interval

Ra_c69552_1419, Kukri_c29655_194, Ex_c64327_523,
PRAC875_c42715_856

42.71-43.71

Ku_c11813_215, Kukri_c2332_1093,
Kukii_rep_c101799_95, RACS75_rep_c72356_51,
Kukri_c147_1620, BS00090553_51,
Tdlurum_contig61425_242, IAAV1158, BS00067247_51

64.6-65.6

TA004947_0758, BobWhite_c1318_691, IACX5764,
RAC875_c16136_1597

66.82-67.82

wsnp_Ex_c2138_4015881, Ku_c59581_1412, 108.7-104.7

wsnp_Ex_rep_c66615_64916512

Tdurum_contig93508_295, RAC875_c25848_122,
IACX5800, Tdurum_contig49145_914, Ex_c10068_1509,
Tdurum_contig63071_67

141-142

wsnp_Ex_c10555_17236072,
Tdurum_contig14482_1073, Ex_c36309_435,
Excalibur_c7971_712, IAAV5232, IAAV6102, IAAV8933,
Kukri_c25632_86, RAC875_c22328_1356,
[RAC875_c22328_490, RAC875_c35688_178,
Tdurum_contigd2282_10323, Tdurum_contig52350_902,
Tdurum_contig56321_179,8500024643_51,
Excalibur_c16329_493, Excalibur_c62106_387,
Kukri_c26697_366, RAC875_c35200_230,
RAC875_c51459_311, tplb0025118_1788,
BS00098033_51

161.1-162.1

CAP8_c3129_381, Tdurum_contig10048_207,
BS00062869_51

164.6-166.5

Kukri_c98858_299, BobWhite_c7145_355 24.3-26
Excalibur_c841_609, Excalibur_c41459_96,
Excalibur_c4748_360, Kukri_c52200_878,
RAC875_c2300_1021

26.8-27.8

RAC875_¢17720_570, wsnp_Ra_c407_862316 71.1-735

Ra_c6728_590, Ra_c106376_879, Kukri_c7139_6288, 91.1-93.2

BS00065418_51

Excalibur_c23723_141, RAC875_c7827_218,
BS00041921_51, IACX3325, RAC875_c46661_184

94.5-96.5

RAC875_c36614_344, JG_c2092_196,
Excalibur_c5064_765,
Excalibur_rep_c67411_210,Kukri_c24669_51,
Kukri_c6552_4243, RAC875_c7540_366,
wsnp_Ex_c1758_3326792,
wsnp_Ex_rep_c68194_66973531,
wsnp_Ra_c28955_38371323, IAAV3303,
Tdurum_contig66317_77

106.8-107.8

Tdurum_contig54925_225, Kukri_rep_c68957_201,
Ra_c68109_376, BS00091068_51,
wsnp_Ex_c17845_26604587,
wsnp_Ex_c20182_29230528, Tdurum_contig18858_324,
BobWhite_c5543_492, Kukri_c49007_501,
Kukri_s115194_71, BS00077131_51

109.6-111.5

BS00060073_51, BSO0066467_51, BS00073011_51,
wsnp_Ex_c5547_9774195, Ku_c31046_525,
Ku_c25346_508, Kukri_c25794_863, tplb0024c09_1335,
BobWhite_c40455_116, BS00091643_51,
BS00062827_51, Excalibur_c15332_1194,
RAC875_rep_c115516_134, Tdurum_contig63110_433,
BS00097383_51

73.8-756.5

IAAV1375, IAAV3832 61.2-64.2

Tdurum_contig63926_455, Tdurum_contig11060_433,
Kukri_c95103_97, wsnp_Ra_c27733_37249132,
Excalibur_c17055_1451, TAO01786-1535,
BobWhite_c16987_106

69.6-72.1

BS00109913_51, Kukri_c90942_274,
Tdurum_contig29607_294

140.7-142.2

Excalibur_c53632_204, BS00082180_51,
CAP7_c10038_214

GENE_4826_641, BobWhite_c10448_80,
GENE_4337_558, Ku_c46689_1653,
BobWhite_c23074_304, BS00003726_51,
BS00091302_51

130.6-134

57.8-60

Ku_c9598_2119, Excalibur_rep_c116920_300,
Tdurum_contig76683_147, wsnp_Ku_c21752_31528824

72.3-74.8

RAC875_c68398_75, BS00022009_51,B8S00105558_51  76.25-79.5

[RAC875_c8752_1079, tplb0045c05_547 159-160.5

Candidate genes

Uncharacterized protein
LOC109742350 (Aegilops tauschii
subsp. strangulata),
phosphoinositide phosphatase
SACT-like (Triticum dicoccoides)

Putative clathrin assembly protein
At2901600 (Aegilops tauschi
subsp. strangulata), pre-mANA
splicing factor SR-like 1 isoform X1
(Brachypodium distachyon),
UPF0496 protein 4-like [Triticum
dicoccoides)
Serine/threonine-protein kinase
BSK1-2-like (Triticum dfcoccoides),
putative clathrin assembly protein
At2g01600 (Aegiops tauschii
subsp. strangulata)

Potassium transporter 1 (Triticum
wrartu), protein DETOXIFICATION
16-ike (Triticum dlcoccoides)

Cysteine-rich receptor-ike protein
kinase 5 (Triticum dicoccoides),
Putative cyclic nucleotide-gated ion
channel 8 (Triticum urartu),
uncharacterized protein
LOC119362705 (Trticurn
dicoccoides)

3-Oxoacyl-facyl-carrier-protein]
synthase 3 B, chloroplastic-like
(Tricum dicoccoides), hypothetical
protein CFC21_020085 (Triticum
aestivum), hypothetical protein
CFC21_026517, partial (Triticum
aestivum), pentatricopeptice
repeat-containing protein
At3g53700, chioroplastic-ike
(Tricun dicoccoides), PREDICTED:
HBS1-like protein (Brassica
oleracea var. oleracea), probable
leucine-rich repeat receptor-like
serine/threonine-protein kinase
At3g14840 isoform X3 (Trticum
dicoccoides), sacsin-like isoform X1
(Trticum dicoccoides),
dihydroorotate dehydrogenase
(quinone), mitochondrial-lie
(Trticum dicoccoides), HBS1-like
protein isoform X1 (Triticum
dicoccoides), Isocitrate and
isopropylmalate dehydrogenases
family (Viacleaya cordata), unnamed
protein product (Triticum turgidum
subsp. durum), plastid division
protein CDP1, chioroplastic-ike
(Trticum dicoccoides)

LOW QUALITY PROTEIN:
endonuclease MutS2-ike (Aegiops
tauschi subsp. strangulata)

Putative disease resistance RPP13-
like protein (Triticum turgiclum)
Actin-related protein 9-like (Triticum
dicoccoides), Hypothetical protein
CFG21_014569 (Triticum aestivum),
unnamed protein product (Trticum
turgidlum subsp. durum)

NAD-dependent deacetylase sirtuin-
6 (Triticum urartu)

Pentatricopeptide
repeat-containing protein
At4g20740-like (Triticum
dicoccoides), protein SSUH2
homolog (Triticum dicoccoides),
Transcription-associated protein 1
(Triticum urartu), tRNA ligase 1
isoform X1 (Aegilops tauschi subsp.
strangulata)

NF1-related protein kinase
reguiatory subunit gamma-1-like
(Aegilops tauschii subsp.
strangulata)

Serine racemase (Elaeis guineensis),
uncharacterized protein
LOC119365239 and 119365272
(Triticum dlicoccoides), 5-amino-6-
(6-phospho-D-ribitylamino)uracil
phosphatase, chloroplastic-iike
(Triticum dicoccoides), BEACH
domain-containing protein C2-like
isoform X3 (Triticum dicoccoides),
hypothetical protein
CFC21_031208 (Triticum aestivum)

CNL3 (Triticum monococcum),
hypothetical protein TRIUR3_01841
(Triticum urartu), Kinesin-like protein
KIN-7G, partial (Cucurbita
argyrosperma subsp. sororia), o
GTPase-activating protein 5-like
(Triticum dicoccoides), villin-4-like
(Trticum dicoccoides)

Transcription factor GAMYB-like
(Triticum dicoccoides), BAG family
molecular chaperone regulator 4
(Aegilops tauschii subsp.
strangulata), probable LRR
receptor-like serine/threonine-
protein kinase At2g28960 (Triticum
dicoccoides), uncharacterized
serine-rich protein C1E8.05
(Aegilops tauschil subsp.
strangulata), probable LRR
receptor-like serine/threonine-
protein kinase At2g28960 (Triticum
dicoccoides), dentin
sialophosphoprotein-like (Triticum
dicoccoides)

Probable UDP-arabinose 4-
epimerase 1 (Sorghum bicolor),
disease resistance protein RGAS-
like (Triticur dicoccoides)
Hypothetical protein
CFC21_078134 (Triticum aestivu),
cytochrome bS61, DM13 and
DOMON domain-containing protein
A5g54830-like (Triticum
dicoccoides), unnamed protein
product (Trticum turgidum Subsp.
durum), serpin-Z1C (Triicumn
dicoccoides)

Sucrose transport protein SUT4

isoform X2 (Aegilops tauschii Subsp.
stranguiata)

Ethylene response factor 1 extended
form L (Trticum turgidum subsp.
durum), unnamed protein product
(Triticum turgidum subsp. durum)

TBC domain-containing protein
©1952.17¢ isoform X3 (Aegiops
tauschi subsp. stranguiata), serine/
threonine/tyrosine protein kinase
(Thinopyrum intermedium)

Mitogen-activated protein kinase
12-ike (Triticum dicoccoides)

Uncharacterized protein
LOC109760071 isoform X2
(Aegiops tauschi subsp.
stranguiata), signal peptide
peptidase-like 5 (Aegiops tauschi
subsp. strangulata)
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Panel Trait Chromosomes Total
1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D

ww YWBM 13 1 1 5 2 2 2 3 2 2 1 1 4 1 3 2 4 2 42
OWBM 6 2 1 3 2 5 3 5 6 3 3 1 2 2 3 g
YWBMOWBM 1 1 1 3 2 5 4 2 1 3 2 2 2 2 1 2
Thrips 12 4 1 2 1 1 11 1 1 2 18
FF 1 1 1 3
SGM 2 1 1 4
Other QTLs 3 3 4 2 2 1 1 4 2 1 1 2 2 28

sW YWBM 1 3 2 2 1 1 2 3 2 17
OWBM 1 i 2 3 1 1 1 8
YWBM/OWBM 1 1 2
Thrips. 1 1 1 101 5
FF 1 1 101 1 5
Other QTLs 1 1

WW/SW  YWBM 1 1 3
OwBM 1 1 1 3
YWBMOWBM 1 1 1 3 11 2 2 1 13
Thrips. 1 1
Other QTLs i 2 11 2 1 1 12 12
Total 12 14 3 15 25 12 13 17 12 9 6 1 16 16 6 12 13 3 17 15 9 246

Bold indicates highly significant association p-value < 0.001 in that QTL on that chromosome.
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Trait

O_SL_G12
O_SL_G13
O_SL_G15
O_sL_Q15

O_WSL_G13
O_WSL_Q14

O_WSA_G12
O_WSA_G13
O_WSA_G15
O_WSA_Q14
O_WSA_Q15

Y_SL G12
Y_SL_G13
Y_SL G4
Y_SL_G15
Y_SL_Q15

Y_WSL_G13
Y_WSL_G14

Y_WSA_G13
Y_WSA_G14
Y_WSA_G15
Y_WSA_Q15

T_G13
T_G15
T_Q156

F_G13
F_G14
F_G15

7-265
0-38.6
0-17.37

0-21

0-10

0-100
0-223

0-6
0-10
0-8
0-5

2-35.25
0-26.2
108-1095

227-43.61
6.15-67.74
1.94-25.49

Mean + SE

63.83 + 4.00
12.59 + 0.68
1.69 £ 0.15
3.06 +0.23

869 + 1.02
11.37 £ 0.97

13.63 + 0.52
12.72 + 0.55
4.72 £ 0.29
226 +0.19
1.91+0.17

74.60 + 4.54
9.15 + 0.62
3.02 £0.33
1.41 +0.31
043 +0.14

1351 + 1.50
31.36 + 3.32

1,60 £0.12
165 +0.17
1112014
0.82 +0.10

10.96 + 0.55
9.49 + 0.48

461.48 + 19.57

13.04 + 0.76
24.90 £ 0.16
10.02 + 0.44

Var

1781.5

52.42
2.58
6.33

116.1
106.18

30.63
33.94
9.52
4.32
327

2290.15
42.58
12.36
10.75

2.19

250.41
1226.39

1.85
3.48
244
147

34.75
26.48
42621.27

66.21
151.23
21.86

Kurtosis

0.92
1.15
3.65

13

472
372

0.34
8.07
1.95
1.75
519

1.35

3.19

323
15.43
25.66

8.63
9.74

0.85
4.8
4.63
2.67

2.67
0.82
03

268
15
1.06

Skewness

1.01

0.89

1.64
11

2.03
1.59

0.62
2
1.07
1.23
1.89

094
1.32
173
3.65
177

25
2.F

0.88
1.86
2

1.56

1.37
0.93
071

15
111
0.98

Confidence level (95.0%)

7.93
1.36
03

0.47

2.02
1.93

1.04
1.09
0.58
0.39
0.34

9
1.23
0.66
0.61
0.27

297
6.58

0.25
0.35
0.29
0.2

1.1
0.96
38.78

151
2.31
0.87

Broad sense heritability
(combined)

03

0.42

0.25

0.22

021

0.48

0.18

0.14
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Trait

O_SL_G11
O_SL_G12
O_SL_G13
O_SL_G15
O_SL_R12
O_SL_R13
O_SL_Q12
O_sL_Q13
O_sL_ Q15
O_sL_Q16

O_WSL_G11
O_WSL_G12
O_WSL_G15
O_WSL_Q12
O_WsL_Q13
O_WsL_Q156
O_WsL_G14

O_WSA_G11
O_WSA_G12
O_WSA_G13
O_WSA_G14
O_WSA_G15
O_WSA_Q12
O_WSA_Q13
O_WSA_Q15
O_WSA_R12
O_WSA_R13

Y_SL_G11
Y_SL_G12
Y_SL_G13
Y_sL_Qi2
Y_SL_Q13
Y_sL_Q16

Y_WSL_G11
Y_WSL_G12
Y_WSL_G13
Y_WSL_G14
Y_WSL_G15
Y_WSL_Q12
Y_WSL_Q13
Y_WSL_Q15

Y_WSA_G12
Y_WSA_G13
Y_WSA_G14
Y_WSA_G15
Y_WSA_Q12
Y_WSA_Q13
Y_WSA_Q15
H_O12

H_O13

H_R13

TGN
T_G12
T_G13
T_Q12
T_.Q13
T_Q15
T_Q16
T_R12
T_R13

F_GA13
F_GA14
F_QA13
F_GS15
F QS14

Range

0-7.83
0-6.625
0-65.75

0-15
0-1.5
07
0-8.4
0-12

0-17

1113
0-21
0-4
0-3
0-64
0-34
0-192

0-27
0-14
0-70

2-27
0-4
10-91
1-35
0-22
0-9

0-12.83

0-31.12
0-3.85
052
0-10

0-46
0-33

0-63
0-51
0-29
0-42
0-11

0-35
0-284
0-6
0-4
Feb-66
0-13
02
0-178
0-149
0-15

0-27
225-28.62
1.87-36.12

0-9.83
0-14.125
10-405
8-249
0-22.625
0-8.89

0-3.53
0-4.78
0-10.60
0-5.31
277-87.67

Mean = SE

1.73+0.16
0.94 +0.14
13.30 £ 1.25
0.12 £ 0.02
0.16 + 0.02
147 £0.13
0.39 +0.10
4.50 + 0.29
0.56 +0.12
1.79 £ 0.33

23.96 + 2.15
3.61+0.36
0.20 + 0.06
0.20 £ 0.05
25.37 + 1.57
7.88 +0.78
35.76 + 3.20

7.73 £ 061
4.87 +0.29
11.69 £ 1.17
0.82 +0.10
8.67 + 0.39
0.63 £ 0.08
46,03 +1.75
13.69 + 0.60
6.08 + 0.50
3.18 £0.20

1.03 £0.19
1.03+0.18
6.36 + 0.75
0.17 £ 0.07
0.47 £ 0.09
1.60 £ 0.25

1055 + 1.05
7.87 +0.73
1.48 £ 0.16
7.36 £ 1.12
8.44 +0.98
4.54 £ 0.50
7.04 +0.89
133 £0.22

3.89 + 0.54
60.74 + 5.68
0.88 £0.11

0.54 + 0.07
28.96 + 1.17
469025
0.29 £ 0.05
34.57 + 4.48
39.6 + 4.41

1.34 £ 033

8.88 051
10.10 + 0.57
13.13 + 0.68
1.87 £ 0.18
3.15£0.26
86.72 £ 7.19
81.90 + 4.46
5.30 + 0.47
442 £0.18

0.90 £ 0.09
1.43 £ 0.08
3.98 +0.23
1.98 £ 0.10
28.99 + 1.47

Var

275
201
152.02
0.05
0.08
1.64
1.01
8.23
1.53
10.48

446.97
1221
0.35
0.29
231.32
59.89
987.8

36.08
7.98
131.32
1.09
15.08
(kg
285.01
34.76
23.88
4m

3.73
31
54.44
045
0.84
5.96

106.35
50.65
25
120.9
93.53
23.19
73.82

4.71

27.48
3072.4
123
0.54
125.98
6.03
031
1671.37
1854.43
11.04

25.79
32.27
45.26
2.98
6.88
4963.04
191543
21.71
322

0.874
0.75
5.47
1.01

2083

Kurtosis

218
54
287
12.49
6.97
266
45.44
-03
8.83
828

26
597
18.26
9.63
-0.27
1.02
541

0.68
-0.02
6.86
07
4.06
224
-0.41
117
18
-0.01

16.62
433
1.64

21.42
763

26

269
1.05
323
109.3
6.12
7.03
an
7.06

17.84
292
3.94
475

041
232
264
-03
7.99

131
07
1.16
5.18
3.01
5.06
115
31
-0.41

038
224
0.02

13
244

Skewness

1.46
233
15
3.19
247
1.22
6.01
0.46
291
269

1.45
1.82
3.84
3
0.46
1.28
1.79

0.96
0.52
213
12
1.34
145
0.42
0.74
141
0.47

3.38
21
1.48
4.62
252
1.83

171
1.16
1.63
3.09
227
223
1.73
239

3.68
1.67
1.67
177
0.62
0.53
18
1.75
0.94
289

1
0.98
111
1.94
15
1.96
0.86
1.62
0.26

1.04
111
06
0.78
1.11

Confidence level (95.0%)

033
0.28
249
0.04
0.05
0.26
02

0.59
0.25
0.65

4.28
071
0.12
0.11
3.13
1.66
6.36

i
057
233
021
0.78
0417
347
119
101
041

039
035
1.49
014
0.18
0.49

208
145
0.32
222
195
0.99
178
043

1.07
11.29
0.22
0.14
232

05
0.1
892
8.77
067

1.02
115
1.36
0.35
0.53
14.27
8.86
0.94
0.36

0.19
017
047
02

202

Broad sense heritability
(combined)

0.23

0.41

0.19

0.35

0.31

0.69

0.26

0.32

0.25

0.25
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Year

2011-2012
2012-2013
2013-2014
2014-2015
2015-2016
2016-2017
2017-2018
2018-2019
2019-2020
2020-2021

Decade

Global production

697
655
77
7283
735.9
756.5
762
7309
763.93
772

% Increase or decrease

-6.02
9.46
1.57
1.04

2799
0.72

-4.08
451
1.05

10.76%
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Trait Marker

MF

FF

K9S
K9S
K9S
K9s

Chr.

©cooo

Position

Short Arm
Short Am
Short Arm
Short Arm

p-value

1321072
4.21x107°
212 x 1072
3.75x107°

MAF

017
0.46
017
0.46

Effect (A or
D) ¥
-0.51(A) 005
-141(0) 0.5
-045(4) 005
-1.53(0) 002
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QTL

Q¥r.rerre. 18
Qvr.rerre.2A
QVr.rerre.3A
Qvr.rerre.38.1
Qvr.rerre.38.2
QVYr.rerme.5A
Qvr.rerre.7D

Gene

TraesCS1B01G447000
TraesCS2A01G547500
TraesCS3A01G411400
TraesCS3B01G012400
TraesCS3B01G368000
TraesCS5A01G500400
TraesCS7D01G192900LC

‘Chromosome

1B
2A
3A
3B
3B
5A
70

Protein/enzyme

NB-ARC domain

Protein kinase domain
Leucine-rich repeat domain
F-box domain

Leucine-rich repeat domain
NAC domain protein
Leucine-rich repeat domain
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QTL

QYr.rerre-18

QvYr.remre-2A

QYr.rere-3A

Qvr.rerre-3B.1

QVr.rerrc-38.2

QYr.rerre-5A

Qvr.rerre-7D

Flanking markers

3953714
1001398
1091012
4991129
2253031
3022046
5971264
1685999
5370854
4909542
1141822
1087201
1276810
985416

Physical position (Mb)?

667.138
b
755.80
756.91
655.66
701.93
5.58
10.35
580.06

612914
666.70
104.88
104.21

"Physical position was mapped by aligning the sequence against Chinese Spring
assembly from the Intemational Wheat Genome Sequencing Consortium (IWGSC)

RefSeq ver. 1.0.
o hit.
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Year

2019

2020

2021

QTL

QYr.rerre-
18

QvYr.rerre-
38.1

QYr.rerrc-
3B.2
QYr.rerrc-
3A
QYr.rerre-
38.1

QYr.rerre-
3B.2
QvYr.rerre-
7D
QYr.rerre-
2A
QYr.rerre-
3B.2
QvYr.rerre-
5A

Flanking
marker

3953714-1001398

5971264-1685999

5370854-4909542
2253031-3022046

5971264-1685999

5370854-4909542
1276810-985416
1091012-4991129
5370854-4909542

1141822-1087201

Chromosome

1B

3B

3B

3B

3B

70

2A

3B

LoD

249

3.7264

22211

2.3805

8.2825

26826

3.5807

11.6495

5.765

25222

PVE
(%)

342

520

1063
368

12.84

11.58
5.04
20.63
19.83

381

Resistance

source

130675

130675

130675

Avocet S

130675

130675

130675

130675

130675

130675

Previous
QTL/gene

VI29/Lr46; QYr.sun-
1B_Wollaroi; QYr.ucw-18
(WA3892)

Yrd; Yr57; QYr-3B_Opata85;
QVr-tam-3B_Quaiu

QYr.cim-3B_Pastor ; QRYr3B.2;
SNP1863248
QYr.cim-3A_Avocet

Yrd; Yr57; QYr-38_Opata85;
Qvr.tam-38_Quaiu

QVYr.cim-3B_Pastor ; QRY3B.2;
SNP1863248
Novel

Novel

QYr.cim-38_Pastor; QRYI3B.2;
SNP1863248

Y134; QYrdr.wgp-5AL
(WA2646); QYr-5A_Opata8s;
QYr.cim-5AL_Pastor

Reference

Wiliam et al. (2003); Bansal et al.
(2014); Maccaferri et al. (2015)

Singh et al. (2000); Suenaga et al.
(2003); Melntosh et al. (2014);
Basnet et al. (2014)

Rosewarne et al. (2012); Jighly

et al. (2015); Tehseen et al. (2021)
Rosewarne et al. (2008)

Singh et al. (2000); Suenaga et al.
(2003); Mclntosh et al. (2014);
Basnet et al. (2014)

Rosewarne et al. (2012); Jighly

et al. (2015); Tehseen et al. (2021)
Current study

Current study

Rosewarne et al. (2012); Jighly
et al. (2015); Tehseen et al. (2021)
Chen et al. (2021); Hou et al.
(2015); Boukhatem et al. (2002);
Rosewarne et al. (2012)
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Parameter

Minimum
Mean
Maximum
0%

ot

ob
Heritabiity

DH-2019

2
345
100
875.49"
130.25
1,005.74
87.04

jificance at 1% probabilty evel,

o = estimates of genotypic variance.
¢ = estimates of error variance.
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