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INTRODUCTION

In recent years, more and more cognitive scientists have incorporated personalized and adaptive
elements into the design of cognitive training games. From the perspective of personalization,
some researchers allow game players to choose roles, scenes or personalized cognitive training tasks
according to their own preferences to achieve personalized game design (Reategui et al., 2006; Wei,
2009; Hollingdale and Greitemeyer, 2013; Lin et al., 2013; Li et al., 2016; Nagle et al., 2016; Orji
et al., 2017; Orji and Moffatt, 2018; Soares et al., 2018; Waltemate et al., 2018; Zibrek et al., 2018;
González et al., 2019; Knutas et al., 2019; Troussas et al., 2019). There are also some researchers
from the adaptive point of view, by dynamically changing the parameters in the game, automatically
adapting to the player’s game difficulty, dynamically generating new content and other methods to
achieve the adaptive design of the game (Carro et al., 2002; Hunicke, 2005; Togelius et al., 2010;
Johnson et al., 2014; Li et al., 2014; Yannakakis and Togelius, 2015; Shaker et al., 2016; Schadenberg
et al., 2017; Soler-Dominguez et al., 2017; Ashish et al., 2018; Lopes et al., 2018; Shi and Chen, 2018;
Souza et al., 2018; Denisova and Cairns, 2019; Dey et al., 2019; Hendrix et al., 2019; Liang et al.,
2019; Pan et al., 2019; Papadimitriou et al., 2019; Peng et al., 2019; Plass et al., 2019; Sepulveda et al.,
2019). Relevant research showed that adding personalized design to electronic science games for
improving cognitive abilities could enhance the cognitive training experience of gamers, stimulate
their interest in cognitive training, and better enhance the training experience and cognition ability
of gamers (Reategui et al., 2006; Wei, 2009; Hollingdale and Greitemeyer, 2013; Lin et al., 2013; Li
et al., 2016; Nagle et al., 2016; Orji et al., 2017; Orji andMoffatt, 2018; Soares et al., 2018; Waltemate
et al., 2018; Zibrek et al., 2018; González et al., 2019; Knutas et al., 2019; Troussas et al., 2019);
adding adaptive design to electronic science games used to improve cognitive ability, which can
match the player’s level with the difficulty of the game, so that gamers can obtain the best training
effect (Carro et al., 2002; Hunicke, 2005; Togelius et al., 2010; Johnson et al., 2014; Li et al., 2014;
Yannakakis and Togelius, 2015; Shaker et al., 2016; Schadenberg et al., 2017; Soler-Dominguez et al.,
2017; Ashish et al., 2018; Lopes et al., 2018; Shi and Chen, 2018; Souza et al., 2018; Denisova and
Cairns, 2019; Dey et al., 2019; Hendrix et al., 2019; Liang et al., 2019; Pan et al., 2019; Papadimitriou
et al., 2019; Peng et al., 2019; Plass et al., 2019; Sepulveda et al., 2019). From the perspective of
personalization and adaptability, this article systematically discusses the research status and design
methods of electronic science games to enhance cognitive ability, as well as the advantages and
challenges of personalized and adaptive design in electronic science games.
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THE STUDY VALUE OF ELECTRONIC
SCIENCE GAMES WITH
PERSONALIZATION AND ADAPTATION

In recent years, a series of studies based on brain science
methods have shown that electronic science games have the
effect of promoting cognitive enhancement and that individual
differences in game players will make them obtain different
effects in cognitive training (Shang and Zhang, 2017). Therefore,
in order to allow gamers to obtain the best training results,
more and more researchers are beginning to design games
from the perspective of personalization and adaptation, and
prove the advantages of personalized and adaptive games
through experiments.

In 2019, Ahmed Tlili et al. divided 51 learners into a
control group and an experimental group, and they learned
through the non-personalized version and the personalized
version of the game, respectively (Tlili et al., 2019). The
experimental results showed that personalized educational
games not only reduced the cognitive burden of learners,
but also allowed learners to show higher perceived usefulness
and willingness to use. In the same year, Troussas et al.
conducted research on personalized games and showed
that integrating personalization and collaboration into
mobile game learning could further help higher education
students to improve their knowledge and cognition level
(Troussas et al., 2019).

In 2013, Sampayo-Vargas et al. began to explore adaptive
design. They compared adaptive difficulty adjustment games and
non-adaptive difficulty adjustment games. The results showed
that players who played adaptive games had achieved better
results (Sampayo-Vargas et al., 2013).

In 2014, Montani developed a new adaptive game, and
the results showed that adaptive games can improve the
cognitive ability of game players (Montani et al., 2014). Recently,
Daghestani et al. developed a gamification learning system that
combines gamification, classification and adaptive technologies.
The results showed that the adaptive gamification learning
system had a positive impact on students’ learning participation
and academic performance (Daghestani et al., 2020).

In summary, electronic science games incorporating
personalized and adaptive elements have a significant positive
effect on increasing player participation, reducing the burden on
players in the game, and achieving game training goals.

PERSONALIZATION AND ADAPTATION
DESIGN OF ELECTRONIC SCIENCE
GAMES

With the continuous development of cognitive science and the
video game industry, electronic science games for cognitive
enhancement have been sought after. However, how to design
such games is the core issue of this research. The following will
introduce how such games are designed from the perspective of
personalization and adaptation.

Personalized Design in Games
Personalized game design refers to games tailored for gamers
based on their personality characteristics, game abilities, game
styles, preferences, etc. (Sedleniece and Cakula, 2012; Aljabali and
Ahmad, 2018). The personalized design of the game is mainly
divided into four aspects.

1) Personalized virtual characters. Many researchers use
different methods to personalize the design of virtual
characters in the game, which can significantly increase
the immersion and real experience of game players, and
stimulate their own cognitive abilities (Reategui et al., 2006;
Hollingdale and Greitemeyer, 2013; Zibrek et al., 2018; Peng
et al., 2019).

2) Personalized game mode. The first personalization mode is
to divide players into different types, and different types
of players play different games (Nagle et al., 2016; Orji
et al., 2017). The second type of personalization involves
recommending different games according to the game
players’ gaming preferences without having to divide them
into different types of players (González et al., 2019).

3) Personalized scene effects and sound effects. We can use
visual effects and sound effects to design the personalize
features of game. Separate design from the sequence of game
scenes and the background music of the game to make the
game more attractive and retention rate (Lin et al., 2013; Li
et al., 2016).

4) Personalized game content. Personalized game content
means that the game content is tailor-made for gamers,
is “personalized” and adjusted according to the needs and
preferences of specific gamers. Kucirkova et al. personalize
the game content in different ways, so that gamers have an
excellent gaming experience (Kucirkova and Flewitt, 2020).

Adaptive Design in Games
Most of the research on adaptive design is mainly reflected
in the difficulty adaptation of the game (Mishra et al., 2016).
The adaptively designed game will provide game players with
continuous and appropriate level challenges, thereby enhancing
the player’s participation experience in the game (Orvis et al.,
2008; Belanich et al., 2013; Csikszentmihalyi, 2014). The adaptive
design of the game is mainly divided into three aspects.

1) Change the parameters in the game in real time. Real-time
change the number of static objects in the scene, the speed
of the character, the attack value of the character, and so
on. Studies have shown that the difficulty of the game is
balanced with the player’s ability, which can stimulate the
enthusiasm of the player, effectively master various skills in
the game, and enable the player to successfully complete
the challenge (Denisova and Cairns, 2019; Peng et al., 2019;
Plass et al., 2019).

2) Automatically adjust the game difficulty level for game
players. Before the game starts, each game has a
corresponding difficulty level. In the game, according to
the data generated by the player during the game, the player
is automatically matched with a game of suitable difficulty.
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FIGURE 1 | Flow chart of adaptive and personalized game design. “Pre-game design” includes personalized design and adaptive design of the game. After the

completion of the pre-game design, we can start “data collection and analysis in the game,” and then adjust the difficulty of the game in real time according to the

analysis results. Among them, “data acquisition and analysis in the game” and “real-time adjustment of difficulty in the game” feedback each other.

3) Dynamically generate new game content. The new content
of the game is not generated manually, but automatically
generated by the computer through the monitoring of the
game data during the game. The game contains help, hints,
storyline, etc. Different from personalized game content,
adaptively and dynamically generated game content does not
completely depend on the player’s needs and interests, but is
adjusted according to the player’s real-time performance in
the game.

Suggestions in Games Design
Combining the above-mentioned personalization and adaptive
design of current electronic science games, we put forward
the following suggestions for integrating personalization and
adaptive design into electronic science games.

1) Early stage of game design. According to personalized design
methods, many different types of games can be designed. The
game can provide a variety of virtual character models, or
design different content for the game (such as game tasks,
help content, etc.). According to the adaptive design method,
scenes with multiple difficulty levels can be designed for the
same game.

2) Data collection and analysis in the game. Collect behavioral
data of game players. When necessary, collect physiological
signals such as EEG and ECG of game players, and perform
real-time pre-processing, feature extraction and classification

operations after acquiring the data. The game state is
dynamically adjusted according to the data information of the
game player.

3) Real-time difficulty adjustment design in the game. According
to the previously suggested analysis results, determine
whether the current game difficulty matches the player’s
ability, and then combine the adaptive design method to
change the game difficulty so that the game player can get the
best gaming experience.

After completing the pre-design of the game, we can play
the game, collect and analyze the physiological signals of
the subjects in real time, and then adjust the difficulty of
the game in real time according to the analysis results.
Among them, the data collection and analysis in the game
and the real-time adjustment of the difficulty in the game
feedback each other. The specific design process is shown
in Figure 1.

DISCUSSION

In short, electronic science games that integrate personalization
and adaptive design to improve cognitive ability can not only
stimulate the interest of gamers, but also give gamers a stronger
sense of substitution, and can also cultivate their concentration
and execution. In terms of cognition, it has higher practicality
(Guangxin and Fei, 2006).
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However, there are still some problems to be solved in the
personalized and adaptive design of electronic science games at
this stage.

1) The ability of personalized recommendation needs to be
improved. According to existing research, the personalized
design concept of games is reflected in the fact that gamers
can choose their favorite virtual avatars, game modes, scene
effects, and game content, but most of the time gamers cannot
distinguish which is their favorite, the result of the choice will
cause the training results may not be the most effective.

2) The performance of data analysis algorithms needs to be
improved. In the game, when the difficulty of the game is
dynamically adjusted according to the player’s state, it is
necessary to collect player behavior data, and dynamically
change the difficulty of the game according to the results of
data analysis. In order to obtain the best adaptation effect,
better data analysis algorithms are needed.

3) The player’s immersive experience needs to be improved.
Although the personalized and adaptive design of the game
has been achieved at this stage, some players still have
problems such as inattention, so next you can consider
integrating the game into virtual reality to enhance their
immersive experience.

Therefore, with the continuous development of electronic
science games, we need to overcome the above-mentioned
challenges and contribute to their further application in cognitive
enhancement. In addition, considering that Alzheimer’s Disease
patients have obvious cognitive decline, it is a good choice to
improve their cognitive ability to use the electronic science games
that embody personalization and adaptability in the future.
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Given the limited power of neuropsychological tests, there is a need for a simple,
reliable means, such as gait, to identify mild dementia and its subtypes. However, gait
characteristics of patients with post-stroke dementia (PSD) and Alzheimer’s disease (AD)
are unclear. We sought to describe their gait signatures and to explore gait parameters
distinguishing PSD from post-stroke non-dementia (PSND) and patients with AD. We
divided 3-month post-stroke patients into PSND and PSD groups based on the Mini-
Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and the
activity of daily living (ADL). Thirty-one patients with AD and thirty-two healthy controls
(HCs) were also recruited. Ten gait parameters in one single and two dual-task gait
tests (counting-backward or naming-animals while walking) were compared among the
groups, with adjustment for baseline demographic covariates and the MMSE score.
The area under the receiver operating characteristic curve (AUC) was used to identify
parameters discriminating PSD from individuals with PSND and AD. Patients with PSD
and patients with AD showed impaired stride length, velocity, stride time, and cadence
while patients with PSD had altered stance and swing phase proportions (all p ≤ 0.01,
post hoc). Patients with AD had smaller toe-off (ToA) and heel-to-ground angles (HtA)
(p ≤ 0.01) than HCs in dual-task gait tests. Individuals with PSD had a shorter stride
length, slower velocity, and altered stance and swing phase percentages in all tests
(p ≤ 0.01), but a higher coefficient of variation of stride length (CoVSL) and time (CoVST)
only in the naming animals-task gait test (p ≤ 0.001) than individuals with PSND.
ToA and HtA in the naming animals-task gait test were smaller in individuals with AD
than those with PSD (p ≤ 0.01). Statistical significance persisted after adjusting for
demographic covariates, but not for MMSE. The pace and the percentage of stance
or swing phase in all tests, CoVST in the dual-task paradigm, and CoVSL only in the
naming animals-task gait test (moderate accuracy, AUC > 0.700, p ≤ 0.01) could
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distinguish PSD from PSND. Furthermore, the ToA and HtA in the naming animals-task
gait paradigm discriminated AD from PSD (moderate accuracy, AUC > 0.700, p≤ 0.01).
Thus, specific gait characteristics could allow early identification of PSD and may allow
non-invasive discrimination between PSD and AD, or even other subtypes of dementia.

Keywords: gait, cognition, post-stroke dementia, Alzheimer’s disease, dual-task gait

INTRODUCTION

Approximately, 50 million people suffer from dementia (WHO,
2018). It is one of the major causes of disability and
mortality among aging adults (WHO, 2018). The two most
common types of dementia are Alzheimer’s disease (AD)
and vascular dementia (VaD) caused by stroke (WHO,
2018; Emrani et al., 2020). Dementia is characterized by
amnesia, impaired executive function, visuospatial capacity,
and attention. Currently, diagnosis depends on the temporal
relationship of the disease symptoms with imaging examination
findings and neuropsychological tests (Emrani et al., 2020;
Ismail et al., 2020). However, early diagnosis of post-stroke
dementia (PSD) and mild AD is difficult because of the
limited sensitivity of the cognitive function scales, particularly
under repetitive interview conditions. Additionally, educational
attainment, cultural background, and even hearing or speaking
abilities may reduce the specificity of the neuropsychological
tests. Overlapping symptoms and imaging manifestations,
multifactorial causes, and homogeneity of the histopathology
limit the accuracy of distinguishing among dementia subtypes.
Pathological biopsy of brain tissue is the gold standard for
dementia classification, but this is not generally applicable due
to its invasive nature (Schott et al., 2010). There is no specific
biomarker that can robustly identify vulnerable patients with PSD
from patients with post-ischemic stroke or non-PSD dementia
subtypes. Thus, there is a need to identify safe, reliable, and
effective clinical markers to enhance diagnostic accuracy.

The human gait is remarkably complex. Gait in older people
is divided into five primary modal domains: pace, rhythm,
variability, asymmetry, and postural control (Lord et al., 2013).
An integrated gait reflects the health of individuals, particularly
in compensating for changes in postural balance and preventing
falls. This is controlled by well-balanced neural circuits and
specific brain structures involving the frontal and limbic regions,
basal ganglia, cerebellum, and optical, vestibular, sensory, and
motor systems (Takakusaki, 2013; Tian et al., 2017; Allali et al.,
2019). Memory, attention, executive function, and visual-spatial
capacity share some overlapping brain regions related to gait
(Morris et al., 2016). Therefore, gait is no longer regarded
as a purely autonomic movement. A healthy integrated gait

Abbreviations: PSD, post-stroke dementia, PSND, post-stroke non-dementia,
AD, Alzheimer’s disease, HCs, healthy control subjects, CoV, coefficient of
variation, ToA, toe-off angle, HtA, heel-to-ground angle, MMSE, Mini-Mental
State Examination, MoCA, Montreal Cognitive Assessment, HAMD, 17-item
Hamilton Depression Rating Scale, HAMA, Hamilton Anxiety Rating Scale, ADL,
activity of daily living, ROC, receiver operating characteristic, AUC, area under the
ROC curve, NIHSS, National Institution Health of Stroke Scale, mRS, Modified
Rankin Scale, VaD, vascular dementia, MCI, mild cognitive impairment, PD,
Parkinson’s disease.

requires attention, executive function, and visual and auditory
capacities. Spatiotemporal gait characteristics in the single-gait
test of cerebrovascular disease and neurodegenerative diseases
have been described, particularly for cases with mild cognitive
impairment (MCI), AD, and Parkinson’s disease (PD) (Mc Ardle
et al., 2019; Sanders et al., 2020). In recent years, studies have
increasingly implemented the dual-task gait paradigm, which
requires subjects to walk while accomplishing an additional
cognitive task, to reflect the cognitive challenges at the cognitive-
motor interface, increasing the sensitivity for discovering occult
cognitive deterioration (Bayot et al., 2018).

Gait stride length and velocity, belonging to the pace domain
of gait, have been assessed most commonly in this field, because
of the ease of acquisition. The decreased pace and increased
instability have been detected in the general older population
(Cohen et al., 2016; Noce Kirkwood et al., 2018; Rasmussen et al.,
2019). It is controversial whether individuals with MCI show gait
dysfunction as compared to matched healthy aging adults. In
addition, MCI sufferers who walk slower and who demonstrate
higher dual-task costs have been shown to be at risk of
progression to dementia (Montero-Odasso et al., 2017). Recently,
numerous cohort studies have shown weaker gaits in patients
with AD, manifested as decreased pace, greater variability, and
worse rhythm in the normal gait test, and pathological gait
parameters would be more sensitive measured during dual-task
gait measurements (Mc Ardle et al., 2017, 2019). Moreover,
evidence suggests that the asymmetry increases with cognitive
decline (Ghoraani et al., 2021). There were rarely differences
found in postural control during walking between patients with
AD and age-matched healthy adults or those with other cognitive
impairments (Gillain et al., 2009; Maquet et al., 2010).

In terms of discrete gait characteristic comparisons among
dementia subtypes, reports have outlined distinctive patterns
of gait damage under a few dual-task gait measurements.
Differences in gait damage in individuals with AD and those with
non-AD dementia had frequently been reported, mostly in the
late stage of AD. Patients with AD showed less impairment in
pace, rhythm, and variability than those with non-AD dementia,
such as fronto-temporal dementia and Lewy body dementia
(Beauchet et al., 2016). People with VaD showed a poorer pace
than patients with AD (Allan et al., 2005). However, there are
few studies available on domains of gait other than pace for
distinguishing between VaD and AD. There have been rare
descriptions of differences in gait between individuals with PSD, a
subtype of VaD, and those with AD, and there is no specific gait-
based predictor that can identify early dementia in post-stroke
patients. Early recognition of PSD in patients with ischemic
stroke, at 3 months from stroke initiation, is crucial for the
follow-up treatment strategy and predicting prognosis, because of
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the probable remission and even reversion of PSD (van der Flier
et al., 2018). On the other hand, specific subtypes of dementia
require targeted therapy to control disease progression. Thus,
the early and definite typology of dementia is of great clinical
significance. In recent years, studies of machine learning, based
on using data from wearable devices to detect spatiotemporal
gait parameters, have increased and have been confirmed as an
effective method for measuring the relationship between gait
parameters and neurological functions (Cheng et al., 2020). The
inconsistent cognitive condition of post-stroke patients would
place varying degrees of cognitive load on gait performance. We
hypothesized that this might be differences in spatiotemporal gait
parameters between states of dementia (PSD) and non-dementia
post-stroke (PSND). On the other hand, discrete pathologies and
cognition formation may result in unique gait patterns between
individuals with PSD and those with AD.

The goal of this study was to elucidate a motion marker that
could identify PSD in ischemic stroke patients, and to outline
the typical gait features in individuals with PSD and those with
AD, providing a low-cost, feasible, and effective means for earlier
detection of PSD or non-PSD subtypes of dementia in order to
implement interventions for cognitive impairment as early as
possible. Thus, in the present study, we compared spatiotemporal
gait patterns and neuropsychiatric parameters among healthy
older individuals (HCs) and age-matched individuals with PSD,
PSND, or AD. To this end, we introduced parameters, i.e., the
toe-off angle (ToA) and heel-to-ground angle (HtA), respectively,
measured at the moment of initiation or end of the swing phase,
which has not been reported in previous studies of PSD and AD,
to the best of our knowledge. Respective comparisons of PSD
with PSND or AD were performed to clarify gait differences that
allowed the distinction of these conditions.

PARTICIPANTS AND METHODS

Study Design and Participants
This clinical study is a monocentric cross-sectional study. Sixty-
six outpatients at 3-month post ischemic stroke and 31 patients
with mild to moderate AD were recruited from the Clinic of the
neurology department, Sir Run Run Shaw Hospital of Zhejiang
University in China, and 32 matched healthy control subjects
(HCs) were recruited from the Clinic or physical examination
center. The stroke patients were first-episode with definitive acute
ischemic based on MRI, and in normal cognition before the
stroke. They were then categorized into the group of PSD or
PSND depending on the cognitive and activity of daily living
assessments, and related clinical presentations. The stroke related
scales of recruited samples were defined as follows: the National
Institution Health of Stroke Scale (NIHSS) ≤4, the Modified
Rankin Scale (mRS) ≤2, and the muscle strength ≥ 4+ grade.

All participants had to be aged over 55 years old and can
walk at least 10 m without any assistant. We will exclude adults
who: can’t speak fluently; with Parkinsonism symptoms or other
neurological diseases influencing cognition or gait (such as PD
dementia with Lewy bodies, frontal–temporal dementia, and
dystonia); with osteoarticular diseases which might influence

on walking; and/or with severe mental illness, such as major
depression (total score > 7 on the 17-item Hamilton Depression
Rating Scale), anxiety (total score > 7 on Hamilton Anxiety
Rating Scale), bipolar disorder, and schizophrenia, or any
psychotropic drugs taken.

Clinical and Cognitive Assessment
At all follow-up visits, participants had an interview with the
same neurology doctor to complete the demography baseline
information collection including age, gender, education level,
height, weight, comorbidities, and habits of smoking and
drinking. The interviewers combined the results of medical
history and imaging reports, with neurological examination to
confirm whether the subject enrolled. The depression condition
was evaluated using the 17-item Hamilton Depression Rating
Scale (HAMD), and the anxiety condition was measured by
Hamilton Anxiety Rating Scale (HAMA). The Activity of Daily
Living Scale (ADL) was used to assess the self-care ability of
patients in daily life. The baseline and 3 months post stroke
of NIHSS and mRS of ischemic stroke patients were assessed,
with the muscle strength and lesion side reported by MRI
were also collected.

Post-stroke dementia was diagnosed by the two same
neurology doctors according to the 2019 Chinese Vascular
Cognitive Impairment Guideline, which defined PSD as a status
with cognitive impairment and impaired activity of daily living
lasting for 3 months after stroke onset (Cognitive Impairment
Committee Nb, Chinese Medical Doctor Association, 2019). We,
therefore, determined the enrolled stroke patients in 3 months
post stroke, which is also consistent with the international
consensus (within 6 months) (Skrobot et al., 2018). All patients
with AD met the 2011 revised criteria for AD diagnosis of
National Institute on Aging-Alzheimer’s Association diagnostic
guidelines (Khachaturian, 2011). The clinical and MRI data of all
patients are available.

The cognitive assessments included the Mini-Mental State
Examination (MMSE), Montreal Cognitive Assessment (MoCA),
and Mini-Cog. On the basis of Chinese national conditions
and education levels of the general elderly adults, we defined
the cognitive impairment assessed by MMSE to illiteracy ≤19,
primary school ≤22, middle school and above ≤26 (Li et al.,
2016), MoCA to illiteracy ≤13, primary school ≤19, middle
school and above ≤24 (Lu et al., 2011), and Mini-Cog ≤3
(McCarten et al., 2011).

Gait Testing Procedure
All gait assessments were performed in a spacious hallway outside
the clinic room using wearable motion sensors (JiBuEnR gait
analysis system, version 2.3). Patients walked at least 10 m at
their comfortable pace with or without a cognitive task. Five
steps of each start and end of the pathway were deleted to ensure
the acceleration and deceleration phases were not recorded. All
participants were asked to accomplish three gait trials. First,
participants were asked to walk at their normal, everyday walking
speed. The next two dual-task gait tests comprised walking
while counting backward, or naming animals, which have
been validated in previous clinical trials that robustly increase
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cognitive demand of adults (Montero-Odasso et al., 2017).
Only participants who completed all three trials were included
in the analysis. Spatiotemporal gait parameters representing
pace (stride length and velocity), rhythm (stride time, cadence,
percentages of stance and swing phase), variability [coefficient
of variation (CoV) of stride length (CoVSL) and stride time
(CoVST)], and postural control involving ToA and HtA were
collected. The CoV was calculated as follows:

CoV(%) = SD of parameter/Mean of parameter × 100%

Toe-off angle was defined as the angle of toe-off the ground
measured at the moment of initiation of the swing phase. HtA was
defined as the angle of initial heel stride to the ground measured
at the moment of initiation of the stance phase (Figure 1).

Covariates
Analyses were adjusted for covariates that included
demographics (age, gender, education levels, and height),
numbers of comorbidity, and baseline cognition (MMSE). In
a comparison of PSD and PSND, muscle strength was added
to the covariates.

Statistical Analysis
The baseline demography and clinical information, cognitive
assessments, and gait parameters of four groups were displayed
through descriptive analysis. We evaluated the data distribution
of all quantitative variables in each group using the one-sample
Kolmogorov–Smirnov test and histograms. Variables that had
normal distribution will be described using means and SD, while
variables with non-normal distribution were presented using
median and inter-quartile range (IQR). Categorical variables
were described by frequencies and percentages.

Physical information, cognitive scores, and gait parameters
comparisons among four groups were analyzed using a one-
way ANOVA test when quantitative variables were in normal
distribution and homoscedasticity, otherwise, they were analyzed
using the Kruskal–Wallis H test. The chi-square test was used to
determine the categorical data. The LSD analysis was used for
post hoc analysis, of which, significance was defined as p ≤ 0.01.
Student t-test was assessed to compare the gait parameters of
PSD with PSND or AD group, respectively, yet the pairwise
analysis was using Mann–Whitney U test if data in non-normal
distribution or non-homoscedasticity. General linear regression
was used to control for primary demography covariates of age,
gender, education levels, height, and numbers of comorbidity
with or without MMSE when data in normal distribution and
homoscedasticity. Otherwise, generalized linear regression was
used. The parameter under p < 0.05 was determined as the
potential predictor of PSD from AD. To more precisely identify
the PSD from patients with stroke, the significance was shrinking
to a more conservative threshold of P ≤ 0.01. Moreover,
stepwise logistic regression was used to verify the superiority
of the above gait predictor for identifying PSD. The receiver
operating characteristic curve analysis (ROC) and area under
the curve (AUC) determined the overall accuracy of possible

distinguisher for PSD from individuals with ischemic stroke
or AD.

RESULTS

Baseline Information
A total of 127 subjects (32 HCs, 32 PSND, 32 PSD, and 31
AD participants) were included in this longitudinal study. The
baseline characteristics of participants, including medical and
cognitive conditions, are summarized in Table 1. The numbers of
comorbidities (χ2 = 27.22, p ≤ 0.001) and ratios of hypertension
(χ2 = 26.8, p ≤ 0.001) were significant among the four
groups. The age, female proportion, education level, height, and
proportion of those with diabetes, smoking and drinking habits,
and depression and anxiety conditions were not significantly
different (p > 0.05). The activities of daily living of PSD and
AD were significantly different from HCs and PSND, respectively
(p≤ 0.001, post hoc, Table 1). The NIHSS, mRS, muscle strength,
and infarcted lesion side were not significantly different between
PSD and PSND patients (p > 0.05, Supplementary Table 1).

The MMSE, MoCA, and Mini-Cog scores were significantly
different among the four groups after controlling for education
level (MMSE: Wald χ2 = 180.686, p ≤ 0.001; MoCA: Wald
χ2 = 365.823, p≤ 0.001; Mini-Cog: Wald χ2 = 220.423, p≤ 0.001,
Table 1). PSD and AD groups showed lower MMSE, MoCA,
and Mini-Cog scores than the HCs and PSND groups (p ≤ 0.01,
post hoc, Table 1), and the AD group had lower Mini-Cog scores
than the PSD group (p ≤ 0.01, post hoc, Table 1). The gait
characteristics of the four gait domains among the four groups
are presented in Table 2.

Gait Impairment in the Dementia
Subtypes (Alzheimer’s Disease and
Post-stroke Dementia) Compared With
Healthy Controls
Compared to HCs, patients with PSD and AD had a shorter stride
length, slower gait velocity, decreased cadence, and longer stride
time in single or dual-task gait tests (p ≤ 0.01, post hoc, Table 2).
In the PSD group, the percentage of time spent in the stance phase
was longer and that spent in the swing phase was shorter in all
gait tests, while disturbed CoVST and HtA were observed only in
the naming animals-task gait test (p ≤ 0.01, post hoc, Table 2).
We observed greater CoVSL and smaller ToA and HtA in the AD
than in the HCs group in all gait paradigms.

Gait Impairment in Post-stroke Dementia
Compared to Post-stroke Non-dementia
Individuals
Patients with ischemic stroke showed no difference in NIHSS
score, mRS score, muscle strength, or lesion side when they
returned to the clinic at the third month post-stroke (p > 0.05,
Supplementary Table 1). The spatiotemporal gait parameters of
individuals in the PSND group were not different from those of
HCs (p> 0.05, post hoc, Table 2). However, a worsening pace and
disturbed gait phase of individuals with PSD were noted in the
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FIGURE 1 | The toe-off angle (ToA) and heel-to-ground angle (HtA) in the gait cycle.

TABLE 1 | Baseline characteristics of participants stratified by included samples.

HCs PSND PSD AD F/χ2 P

Characteristics n = 32 n = 32 n = 32 n = 31

Age, mean (SD) 67.7 (5.13) 67.8 (6.53) 68.4 (8.44) 71.8 (8.23) 2.08 0.106

Female, no. (%) 19 (59.4) 11 (34.4) 12 (37.5) 18 (58.1) 6.69 0.082

Education level, no. (%) 10.46 0.106

Illiterate 2 (6.3) 8 (25.0) 10 (31.3) 5 (16.1)

Primary school 7 (21.9) 8 (25.0) 9 (28.1) 5 (16.1)

Middle school and above 23 (71.9) 16 (50.0) 13 (40.6) 21 (67.7)

Height, mean (SD) 161.6 (5.65) 166.0 (7.27) 164.3 (6.71) 161.5 (5.88) 2.60 0.056

No. of comorbidities, median (IQR) 1.0 (2.0) 2.0 (1.0) 2.0 (2.0) 1.5 (2.0) 27.22 <0.001

Comorbidities, no. (%)

Hypertension 11 (34.4) 25 (78.1) 29 (90.6) 16 (51.6) 26.80 <0.001

Diabetes 6 (18.8) 10 (31.3) 9 (28.1) 6 (19.4) 2.04 0.565

Smoking, no. (%) 10 (31.3) 15 (46.9) 14 (43.8) 8 (25.8) 4.08 0.253

Drinking, no. (%) 4 (12.5) 8 (25.0) 10 (31.3) 6 (19.4) 3.57 0.312

HAMD, median (IQR) 3.0 (3.0) 2.0 (4.0) 3.0 (5.0) 4.0 (3.0) 1.66 0.645

HAMA, median (IQR) 2.0 (4.0) 3.0 (4.0) 3.0 (5.0) 3.0 (5.0) 5.78 0.123

ADL, median (IQR) 14.0 (0)S,A 14.19 (0) 20.5 (7.0)N 20.3 (12.0) 103.03 <0.001

Cognition assessment P Adj. P

MMSE, median (IQR) 27.0 (2.0)S,A 27.0 (4.0) 22.5 (10.0)N 17.0 (11.0) <0.001 <0.001

MoCA, median (IQR) 25.0 (3.0)S,A 25.0 (4.0) 16.5 (7.0)N 13.0 (10.0) <0.001 <0.001

Mini-Cog, median (IQR) 5.0 (1.0)S,A 5.0 (1.0) 2.0 (2.0)N,A 1.0 (2.0) <0.001 <0.001

Data of continuous variables described as means (SD) were assessed using One-way ANOVA analysis, whereas data displayed as median (IQR) were used Kruskal–Wallis
H tests. Data of categorical variables were described by frequencies and percentages using the chi-square test. Bold values highlight the significant difference. Adj. P,
P-value when adjusting for education level; S, different to PSD; A, different to AD; N, different to PSND; HCs, healthy controls; PSND, post-stroke non-dementia; PSD,
post-stroke dementia; AD, Alzheimer’s disease; BMI, body mass index; HAMD, 17-item Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale; ADL,
Activity of Daily Living Scale; MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment.

single and dual-task gait tests (p ≤ 0.01, Table 3 and Figure 2).
Individuals with PSD showed increased CoVST, stride time, and
decreased cadence during dual-tasks, while increased CoVSL was
only observed in this group during the naming animals-task gait
test (p ≤ 0.01, Table 3 and Figure 2). The differences remained
robust after controlling for primary baseline covariates (age,
gender, education levels, height, and numbers of comorbidity,
modal 1 of Table 3), except for the CoVST and stride time during
the counting backward-task, and cadence in the two dual-task
gait paradigms (p ≤ 0.01, Table 3). The differences were no
longer significant after additional adjustment for MMSE scores
and other primary baseline (age, gender, education levels, height,

and numbers of comorbidity, modal 2 of Table 3) (p > 0.01,
Table 3).

Moreover, stepwise logistic regression validated the
importance of the above parameters to distinguish patients
with PSD from that of PSND (p < 0.05, Table 4), and the AUCs
showed that stride length, velocity, and the percentage of time
spent in the stance or swing phase in the counting-task gait test
showed moderate accuracy for distinguishing PSD from PSND
individuals (AUCs ≥ 0.725, Figure 3). The CoVST in the naming
animals-gait test might be optimal for recognizing subjects with
PSD from individuals with PSND [AUC = 0.800 (0.685–0.915),
p ≤ 0.001, Figure 3].
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TABLE 2 | Comparison of gait characteristics among controls, non-dementia post-stroke, and dementia subtypes.

HCs PSND PSD AD P Adj. P

Pace

Stride length (m)

Single-task 1.18 (0.15)S,A 1.20 (0.16) 1.05 (0.31)N 1.06 (0.24) 0.001 <0.001

Counting 1.16 (0.13)S,A 1.24 (0.10) 1.05 (0.26)N 1.08 (0.32) <0.001 <0.001

Naming animals 1.12 (0.19)S,A 1.18 (0.19) 1.00 (0.29)N 1.00 (0.35) <0.001 <0.001

Velocity (m/s)

Single-task 1.10 (0.18)S,A 1.05 (0.20) 0.96 (0.28)N 0.91 (0.27) <0.001 <0.001

Counting 1.08 (0.18)S,A 1.07 (0.18) 0.92 (0.36)N 0.88 (0.33) <0.001 <0.001

Naming animals 0.98 (0.12)S,A 0.92 (0.24) 0.72 (0.23)N 0.70 (0.53) <0.001 <0.001

Variability

CoVSL (%)

Single-task 3.99 ± 1.35S,A 4.37 ± 1.18 5.26 ± 1.74 5.96 ± 2.00 <0.001 <0.001

Counting 4.41 (1.81)A 5.35 (1.59) 5.76 (2.61) 5.20 (3.91) 0.066 0.031

Naming animals 5.32 (3.96)S,A 5.07 (1.56) 7.16 (4.74)N 8.64 (4.69) <0.001 <0.001

CoVST (%)

Single-task 2.34 ± 1.06 2.35 ± 0.84 3.10 ± 1.67 3.13 ± 1.19 0.010 0.103

Counting 2.22 (2.89) 1.95 (1.15) 3.24 (1.49)N 2.75 (1.80) 0.005 0.246

Naming animals 5.00 (5.10) 3.84 (2.19) 6.13 (4.00)N 6.67 (6.73) <0.001 <0.001

Rhythm

Stride time (s)

Single-task 1.06 (0.07)S,A 1.11 (0.09) 1.16 (0.13) 1.15 (0.21) <0.001 <0.001

Counting 1.08 (0.13)S,A 1.23 (0.05) 1.19 (0.18) 1.17 (0.25) <0.001 <0.001

Naming animals 1.12 (0.15)S,A 1.22 (0.20) 1.39 (0.35) 1.34 (0.24) <0.001 <0.001

Cadence (steps/min)

Single-task 113.74 (7.56)S,A 108.11 (8.88) 103.00 (12.75) 104.35 (18.09) <0.001 0.001

Counting 110.09 (13.25)S,A 106.67 (4.90) 100.84 (16.02) 102.56 (18.56) 0.001 0.014

Naming animals 101.93 (9.90)S,A 96.00 (16.26) 85.41 (20.83) 86.96 (13.55) <0.001 <0.001

Stance phase (%)

Single-task 62.07 ± 1.70S 62.15 ± 1.77 63.95 ± 2.62N 63.09 ± 2.43 0.002 0.014

Counting 62.64 ± 2.03S 62.49 ± 1.33 64.50 ± 2.79N 63.56 ± 1.98 0.001 0.009

Naming animals 64.90 ± 2.49S 64.89 ± 2.34 67.56 ± 4.06N 66.84 ± 3.10 0.001 0.009

Swing phase (%)

Single-task 37.93 ± 1.70S 37.86 ± 1.77 36.04 ± 2.62N 36.91 ± 2.44 0.002 0.013

Counting 37.36 ± 2.03S 37.51 ± 1.33 35.52 ± 2.80N 36.45 ± 1.98 0.001 0.010

Naming animals 35.12 ± 2.51S 35.12 ± 2.35 32.45 ± 4.06N 33.17 ± 3.11 0.001 0.009

Postural control

Toe-off angle (◦)

Single-task 46.05 (5.76)A 43.69 (20.76) 39.10 (25.74) 36.41 (30.27) 0.002 0.009

Counting 46.05 (7.97)A 43.64 (27.64) 39.35 (26.20) 35.65 (31.38) 0.007 0.106

Naming animals 43.98 (7.27)S,A 39.69 (22.91) 35.06 (24.65) 16.30 (25.38) <0.001 <0.001

Heel-to-ground angle (◦)

Single-task 34.17 (4.81) 33.90 (23.19) 26.43 (18.36) 29.85 (23.88) 0.008 0.051

Counting 33.03 (6.06) 31.08 (25.90) 28.35 (20.41) 30.55 (23.50) 0.176 0.666

Naming animals 30.43 (6.47)A 28.40 (22.01) 25.18 (16.92) 14.17 (8.60) <0.001 <0.001

Data of continuous variables described as means ± SD were assessed using One-way ANOVA analysis if normal distributed and homogeneity, whereas displayed as
median (IQR) and were used Kruskal–Wallis H test. The post hoc is to compare each group with every other group, respectively. The significant difference assessed by
post hoc defined p ≤ 0.01 and was marked in the top right corner of the parameter result. Bold values highlight the significant difference among the four groups. The
adjusted modal is controlling for age, gender, education levels, height, and numbers of comorbidity. S, different to PSD; A, different to AD; N, different to PSND; HCs,
healthy controls; PSND, post-stroke non-dementia; PSD, post-stroke dementia; AD, Alzheimer’s disease; CoV, coefficient of variation.

Differences in Gait Parameters Between
Post-stroke Dementia and Alzheimer’s
Disease Individuals
In the naming animals-task gait test, participants in the AD
group demonstrated significantly smaller ToA and HtA than
individuals with PSD (p ≤ 0.01, Supplementary Table 2 and
Figure 4), except for the single or counting-task gait tests. These

two parameters of the postural control domain were robust,
showing significant differences after controlling for age, gender,
education level, height, and numbers of comorbidities, with or
without MMSE scores (Adjusted modal 1 and Adjusted modal 2
of Supplementary Table 2) (p ≤ 0.01, Supplementary Table 2).
However, no other significant differences in gait parameters were
found in the single or dual-task gait tests between individuals
with PSD and AD.
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TABLE 3 | Comparison of gait characteristics of individuals with post-stroke dementia (PSD) and individuals with post-stroke non-dementia (PSND).

Unadjusted model Adjusted model 1 Adjusted model 2

t/U P F/χ2 P F/χ2 P

Pace

Stride length (m)

Single-task 256.5 0.001 14.060 <0.001 1.675 0.196

Counting 4.967 <0.001 23.278 <0.001 6.231 0.013

Naming animals 263.0 0.004 7.548 0.006 4.595 0.032

Velocity (m/s)

Single-task 3.769 <0.001 10.832 0.002 1.939 0.170

Cunting 4.051 <0.001 11.016 0.002 4.027 0.045

Naming animals 3.875 <0.001 12.968 0.001 6.032 0.018

Variability

CoVSL (%)

Single-task −2.265 0.027 4.943 0.031 3.234 0.079

Forward counting −0.914 0.364 0.267 0.608 0.139 0.711

Naming animals −4.213 <0.001 13.161 <0.001 1.588 0.208

CoVST (%)

Single-task −2.204 0.033 3.330 0.074 2.668 0.109

Counting 623.0 0.001 6.235 0.013 3.867 0.049

Naming animals −4.369 <0.001 16.292 <0.001 11.409 0.001

Rhythm

Stride time (s)

Single-task 541.0 0.266 1.158 0.282 1.228 0.268

Counting −2.974 0.005 5.575 0.018 2.112 0.146

Naming animals 639.0 0.005 7.824 0.005 3.713 0.054

Cadence (steps/min)

Single-task 1.699 0.094 2.086 0.155 1.163 0.286

Counting 2.957 0.005 5.195 0.023 1.960 0.161

Naming animals 2.752 0.009 5.831 0.016 0.957 0.328

Stance phase (%)

Single-task −3.163 0.003 7.285 0.009 3.569 0.065

Counting −3.649 0.001 10.191 0.001 4.370 0.037

Naming animals −3.216 0.002 7.455 0.006 0.685 0.408

Swing phase (%)

Single-task 3.198 0.002 7.402 0.009 3.626 0.063

Counting 3.604 0.001 9.912 0.002 4.211 0.040

Naming animals 3.212 0.002 7.431 0.006 0.668 0.414

Postural control

Toe-off angle (◦)

Single-task 409.0 0.167 0.486 0.486 1.079 0.299

Counting 408.5 0.165 0.077 0.781 0.253 0.615

Naming animals 387.5 0.136 1.315 0.251 1.600 0.206

Heel-to-ground angle (◦)

Single-task 362.5 0.045 2.302 0.129 4.346 0.037

Counting 434.0 0.295 0.157 0.694 0.179 0.674

Naming animals 1.256 0.214 1.135 0.021 1.159 0.287

Normally distributed data used Student’s t-test, and control for primary covariates by general linear models, otherwise used Mann–Whitney U test, and control for primary
covariates by generalized linear models. The significant difference is confined by p ≤ 0.01. Bold values highlight the significant differences between the two groups.
Adjusted model 1: Controlling for age, gender, education levels, height, muscle strength, and numbers of comorbidity. Adjusted model 2: Controlling for age, gender,
education levels, height, muscle strength, numbers of comorbidity, and MMSE.

Furthermore, we modeled the above parameters using
stepwise logistic regression (Supplementary Table 3). The
AUCs showed that ToA and HtA had moderate accuracy for
distinguishing AD from patients with PSD (AUC > 0.700,
p ≤ 0.01, Figure 5).

DISCUSSION

In the present study, we focused on exploring unique gait markers
with high accuracy to distinguish individuals with PSD from
those without dementia who had suffered an ischemic stroke
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FIGURE 2 | The comparisons of spatiotemporal gait characteristics between individuals with post-stroke non-dementia (PSND) and individuals with post-stroke
dementia (PSD) in three gait paradigms. (A,B) The pace domain of stride length and velocity. (C,D) The variability domain of coefficient of variation (CoV) of stride
length (CoVSL) and stride time (CoVST). (E–H) The rhythm domain of stride time, cadence, and percentages of the stance and swing phases. (I,J) The ToA and HtA
of PSD and PSND individuals. **p ≤ 0.01, ***p ≤ 0.001.

3 months earlier and compared the gait characteristics of patients
with PSD with those of patients with AD to understand the
unique signatures of gait that reflect the different pathogeneses
and pathologies. First, both individuals with PSD and AD
showed an impaired pace domain as compared to HCs, while
the PSND group did not differ from HCs. Moreover, patients
with PSD walked with an impaired rhythm, while patients with
AD demonstrated worse postural control during walking than
HCs. One main finding of our study is that individuals with
PSD had significantly shorter stride length, slower walking speed,
and spent a longer percentage of time in the stance phase
than individuals with PSND during the single and dual-task
gait tests. Increased CoVSL and CoVST with longer stride time
and worse cadence were found only in individuals with PSD
during the naming animals-task gait paradigm. On the other
hand, significant differences in ToA and HtA during the naming
animals-task gait test might allow distinction of individuals
with PSD and AD.

Human gait is typically divided into five domains (Lord
et al., 2013), four of which were included in our study.
Mobility decline with slowing gait is a continuum that co-
exists with or even precedes the decline in cognition, which is
pervasive and under-recognized in the majority of cognition-
motor studies. A mildly reduced pace in individuals with MCI
was detected when using dual-task gait paradigms, even though
this finding was controversial in a single task-gait paradigm
(Cullen et al., 2019; Latorre Román et al., 2020), indicating
that mild cognitive decline might influence gait constitution,

particularly in condition of more severe cognitive complaints. In
addition, several studies have shown that gait slowing occurred
in the early stage of cognitive decline and might be a predictor
of the risk of progressing to dementia (Montero-Odasso et al.,
2017), demonstrating that gait abnormality occurred before a
diagnosis of moderate cognitive impairment. Reduced stride
length and walking speed have been reported in subjects
with AD, particularly those with moderate to severe AD as
compared to aged-matched HCs (Mc Ardle et al., 2017). Gait
rhythm was generally impaired, as outlined by a few cross-
sectional studies, while findings of increasing variability were
inconsistent (Boripuntakul et al., 2014; Mc Ardle et al., 2017;
Valkanova and Ebmeier, 2017; Pieruccini-Faria et al., 2021). Our
results indicated a longer stride time, with higher CoVST and
CoVSL, and disturbed pace in individuals with AD performing
single or dual-task gait tests, as compared to subjects in the
HCs group, which supported the previous findings. The ToA
and HtA were smaller in patients with AD than in HCs.
PSD, which involves a definite stroke event and subsequent
cognitive impairment, is a subtype of VaD but is not equal
to VaD. Previously, treatments have focused on the recovery
of motor, sensory, visual, or articulatory functions. However,
about half of patients with stroke suffer from amnesia and
decreased executive capacity, which has not received much
attention previously. Cognitive degeneration always indicates a
poor prognosis, and it predicts the risk of relapse of stroke
(van der Flier et al., 2018). However, if this goes undetected,
the best period for therapy may be missed. The cognitive
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TABLE 4 | Logistic regression of primary gait parameters to identify individuals with PSD from individuals with PSCN.

Unadjusted model Adjusted model 1 Adjusted model 2

OR 95% CI P OR 95% CI P OR 95% CI P

Single-task

Stride lengths 0.001 0.0–0.08 0.002 0.0 0.0–0.06 0.003 0.031 0.0–17.81 0.283

Velocity 0.003 0.0–0.12 0.002 0.001 0.0–0.07 0.002 0.003 0.0–1.77 0.074

Stance phase 1.46 1.11–1.92 0.006 1.95 1.28–2.96 0.002 2.33 1.11–4.90 0.026

Swing phase 0.683 0.52–0.90 0.006 0.512 0.34–0.80 0.002 0.430 0.21–0.90 0.026

Counting

Stride lengths 0.0 0.0–0.02 0.001 0.0 0.0–0.003 0.001 0.0 0.0–1.76 0.064

Velocity 0.003 0.0–0.11 0.001 0.0 0.0–0.03 0.001 0.0 0.0–0.70 0.040

CoVST 1.62 1.06–2.48 0.027 1.87 1.10–3.19 0.022 3.40 1.12–10.30 0.031

Stride time 1.01 1.00–1.01 0.017 1.01 1.00–1.02 0.021 1.02 0.999–1.04 0.069

Cadence 0.92 0.86–0.99 0.018 0.900 0.83–0.97 0.009 0.810 0.66–1.00 0.051

Stance phase 1.57 1.15–2.13 0.004 1.91 1.28–2.85 0.002 2.44 0.88–6.71 0.085

Swing phase 0.643 0.47–0.87 0.005 0.530 0.36–0.79 0.002 0.429 0.16–1.14 0.429

Naming animals

Stride lengths 0.006 0.0–0.30 0.011 0.004 0.0–0.36 0.016 0.003 0.0–10.32 0.164

Velocity 0.003 0.0–0.13 0.002 0.002 0.0–0.10 0.002 0.0 0.0–0.44 0.032

CoVSL 1.62 1.18–2.21 0.003 1.67 1.20–2.34 0.003 1.60 0.97–2.64 0.068

CoVST 1.73 1.24–2.41 0.001 1.94 1.27–2.95 0.002 4.62 1.34–15.98 0.016

Stride time 1.00 1.001–1.008 0.007 1.01 1.001–1.008 0.008 1.01 1.001–1.02 0.031

Cadence 0.948 0.91–0.99 0.016 0.947 0.91–0.99 0.019 0.89 0.80–0.99 0.030

Stance phase 1.28 1.07–1.54 0.008 1.30 1.07–1.58 0.010 1.53 0.99–2.36 0.057

Swing phase 0.781 0.65–0.93 0.008 0.771 0.63–0.94 0.010 0.662 0.43–1.02 0.058

0.0 means the data is greater than but infinitely close to 0. Bold values highlight the significant differences between the two groups. Adjusted model 1: Controlling for age,
gender, education levels, height, muscle strength, and numbers of comorbidity. Adjusted model 2: Controlling for age, gender, education levels, height, muscle strength,
numbers of comorbidity, and MMSE.

FIGURE 3 | Receiver operating characteristic curve analysis (ROC) plots for gait characteristics identifying the individuals with post-stroke dementia (PSD) from
individuals with post-stroke non-dementia (PSND). (A) Stride length, velocity, and percentages of the stance phase for identifying patients with PSD in the single-task
gait test. (B) Stride length, velocity, CoVST, and percentages of the stance phase for distinguishing patients with PSD in the counting backward-task gait test.
(C) Stride length, velocity, CoVSL, CoVST, and percentages of the stance phase for distinguishing patients with PSD in the naming animals-task gait test. AUC, area
under the curve; CI, confidence interval; cut-off, cut-off point; CoV, coefficient of variation.

symptoms of PSD, based on one or more infarction lesions in
specific brain regions, could sometimes be reversible if diagnosed
timely and well-targeted treatment is started early. Thus, the

timely distinction of PSD is of great significance. Due to the
limited power and accuracy of PSD diagnosis at present, the
gait signature, which combines evaluation of cognitive decline
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FIGURE 4 | Gait characteristics comparisons of patients with PSD and patients with AD showed in the naming animals-task gait test. (A,B) The pace domain of
stride length and walking speed. (C,D) The variability domain of CoVSL and CoVST. (E–H) The rhythm domain of stride time, cadences, percentages of stance, and
swing phases. (I,J) The ToA and HtA of patients with PSD and patients with AD showed in the naming animals-task gait test. **p ≤ 0.01. PSD, post-stroke
dementia, AD, Alzheimer’s disease, CoV, coefficient of variance.

FIGURE 5 | ROC plot for ToA and HtA distinguish PSD and AD of dementia subtypes in the naming animals-task gait test. AUC, area under the curve; CI,
confidence interval.

and cognition-motor interaction, may facilitate the distinction
of PSD from PSND.

Recently, studies have reported that cognitive decrease
influences the movement of the post-stroke population. Two
cross-sectional studies have shown that disturbed gait and
balance were associated with impaired cognition, particularly
executive function deficits (Einstad et al., 2021) in post-stroke
patients, while a lesion in the right hemisphere might lead to gait
complaints (Ursin et al., 2019). Another prospective study found

that gait performance was related to executive function when
recall over 1 year after mild or moderate acute supratentorial
ischemic stroke (Sagnier et al., 2017). A study by Assayag et al.
suggested that gait and balance were predictors of cognitive status
within 2 years post-stroke (Ben Assayag et al., 2015). However,
little had been reported on the gait characteristics of PSD as
compared to PSND or individuals with non-stroke cognitive
damage, even though the gait characteristics of patients with
stroke with severe motor system damage have been reported
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(Dai et al., 2021). To the best of our knowledge, the gait-based
discrimination between individuals with PSD and PSND has
not been reported previously. Subjects with stroke enrolled in
our study included those with left, right, or bilateral cerebral
infarctions, and there were no differences in the lesion side
distribution, muscle strength, NIHSS, or mRS scores between
the PSD and PSND groups. The subjects in the PSD group
demonstrated worse gait, with impaired cognition than those in
the PSND group when controlling for baseline demographics.
However, after adjusting for MMSE scores, the differences were
not significant, suggesting that global cognition plays a crucial
role in the gait performance of patients with PSD. Additionally,
some gait parameters could identify patients with PSD, as
evidenced by the moderate AUCs. Previous studies have revealed
that patients with VaD walked with a slower velocity and shorter
stride length than patients with AD (Tanaka et al., 1995; Sverdrup
et al., 2021). However, we did not find a difference in the pace
domain between the PSD and AD groups, even though PSD
is a subtype of VaD. Additionally, we found that the smaller
ToA or HtA might sensitively identify individuals with AD from
individuals with PSD during the naming animals-task gait test.
This has not been reported to date, to our knowledge. Whether
these two parameters can define other phenotypes of dementia
requires further study.

The dual-task gait test is the most popular method to
investigate gait in individuals challenged by cognitive complaints
and it sensitively detects gait perturbation, because it increases
the gap between dementia patients and healthy populations
(Al-Yahya et al., 2011; Amboni et al., 2013; Matsuura et al.,
2019). Walking while performing a cognitive task will divert
more attention, executive function, memory, or even visual and
aural resources to complete cognitive tasks as a priority. Thus,
during dual-task gait tests, people consciously walk using a more
cautious gait, to prevent accidents. Under the naming animals-
task condition, participants must distribute their visual capacity
and attentional and executive functions simultaneously to the
extra task along with walking while the counting-backward task
is performed without accessory visual-spatial skills but requires
memory. In line with previous evidence, overall gait performance
in our study is worse as evidenced by increased CoVSL, CoVST,
and stride time but decreased cadence of patients with PSD
than those of individuals with PSND only in the dual-task gait
tests. In addition, the naming animals-task gait test might be a
feasible paradigm for exploring the different gait characteristics
of individuals with AD and PSD as patients with AD usually have
worse visual-spatial capacity. Even so, more rational dual-task
gait tests should be attempted, and uniform standard dual-task
paradigms should be defined to enhance detection of occult
cognitive impairment by testing cognition–motor interaction.

The mechanisms underlying discrete movement weakening in
our study could not be simply explained by aging or motor system
damage. A well-balanced dynamic gait is a complex achievement
achieved not only by the motor system, such as muscle strength,
but also by the cognition of individuals, controlled by widespread
brain regions that process sensory, attention, executive, visual,
and even memory information (Mc Ardle et al., 2017; Allali
et al., 2019). An increasing number of studies have suggested that

cognition shares some neural structures and pathology with those
by which gait is controlled (Mc Ardle et al., 2017). Thus, higher-
order region deterioration leading to cognitive decrease might
also result in subtle changes in discrete gait characteristics.

To provide insight into the structural imaging-gait
correlations, the relationships between functional structure
changes and gait performance have been well-studied. Gait
velocity provides an overall view of brain function and
connection. Impaired pace, including low speed and short
stride length, has been associated with decreased gray matter
volume in the cortex (Callisaya et al., 2013), basal ganglia,
and caudate nucleus (Dumurgier et al., 2012). White matter
hyperintensity is also strongly associated with poor attention and
executive processing, and these negative changes in the brain also
negatively affect gait pace and variability (Wilson et al., 2019),
but no association was found between the reduction in white
matter volume and pace disturbance (Ezzati et al., 2015).

Different types of dementia show damage in overlapping
brain regions and thus these individuals show roughly similar
gait pace impairment as compared to age-matched healthy
older individuals. The lower velocity and shorter stride length
of subjects with AD and PSD in our study support this
view. Individuals with VaD mostly show deficits in basal
forebrain cholinergic signaling, i.e., a damaged higher-order
region conventionally associated with vasculopathy and amyloid
deposition in patients with AD (Kalaria, 2002). On the other
hand, different subtypes of dementia may have their own typical
pathology in specific brain regions, which can result in unique
gait characteristics. Frontal and entorhinal cortex atrophy are
typical forms of AD. These areas are deemed to process attention,
executive function, and control pace (Wilson et al., 2019). On
the other hand, posterior cortical atrophy correlates with the
initiation of visual-spatial dysfunction (Spasov et al., 2019). This
region mainly processes pace, postural control, and cadence
in the rhythm domain (Wilson et al., 2019). Hippocampal
atrophy, which induces memory decline, may influence rhythm,
variability, and postural control (Zimmerman et al., 2009;
Beauchet et al., 2019). However, the infarction lesions of patients
with stroke in our study were primarily located from the basal
ganglia to the periventricular regions, thalamus, pons, and frontal
and parietal lobes. The prefrontal cortex-basal ganglia circuit is
responsible for gait velocity and step width, along with executive
function, while the limbic regions and thalamus may process
stride length, width, and cadence, as indicated in previous studies
(Callisaya et al., 2013; Takakusaki, 2013; Wilson et al., 2019).

Compared to HCs, we found that the AD and PSD groups
showed some unique parameters, providing evidence that
differences in deficits in the respective brain regions could
induce diverging cognitive symptoms and disease-related gait
performance. Based on the comparison of the AD with the
PSD group, no difference in the familiar gait parameters was
observed, even with dual-task gait tests, except for the ToA and
HtA under the naming animals-task condition. Studies on ToA
or HtA measured at the moment of initiation or end of the
swing phase of dementia patients are scarce, even though largely
reported in the patients with PD. We consider that these two
parameters belong to the postural control domain because they
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reflect ankle-related muscle strength, lower limb joint excursion,
and foot clearance, which are related to postural instability in
patients with PD (Killeen et al., 2017). The ToA and HtA were
smaller in the AD group than in the PSD group, indicating
that walking while conducting a naming animals-task placed
a greater attention demand for joint flexion and limb muscle
strength on patients with AD. Muscle strength, flexion, and
extension involve walking automaticity produced by the spinal
cord, brain stem, cerebellum, and the afferent pathway from the
cerebral motor cortex to the brain stem and spinal cord (Clark,
2015). During the naming animals-task, higher central region
processing of visual afferent information competes for attentional
resources on locomotion, resulting in degraded feedback of
automated motion (Clark, 2015). The visual capacity deficit,
induced by occipital lobe atrophy, and local neural degeneration
exerts a cognitive load on patients with AD during the naming
animals-task gait test, while severe impairment of the prefrontal
cortex leads to worse executive function. Participants might
consciously adjust their stride angle to control postural stability
once they become aware that the locomotor system was being
challenged. After controlling for demographic covariates and
the MMSE score, the statistically significant differences in the
ToA and HtA between patients with PSD and patients with
AD persisted. The differentiated circuit modulating locomotor
and automated motion, or specific cognitive domains, other
than global cognition, or peripheral function should be further
analyzed to explain this phenomenon. These results suggest that
ToA and HtA might be key motion parameters for distinguishing
AD from PSD using a standard animals naming-task gait test,
with modest accuracy (an intermediate AUC). The stride angle
has not been routinely examined in dementia subtypes, and
research focusing on the relationship between brain structure
and stride angle is sparse. Thus, further studies are needed to
investigate these issues.

Amyloid deposition and tau hyperphosphorylation are
classical theories for the etiology and pathogenesis of AD (Raz
et al., 2016). Abnormal production of amyloid and tau causes
toxicity to neurons, negatively changes neuronal activity and
synaptic plasticity, activates glial cells and neuroinflammation,
induces neuronal death, damages neural circuits, and causes
cerebrovascular dysfunction (Raz et al., 2016; Charidimou et al.,
2017). In individuals with PSD, a specific brain region suffered
ischemia, subsequent neuron death, and inflammation around
the lesion. Some studies have indicated that deposition of
amyloid and tau also occurred in patients with PSD, and
the two subtypes of dementia in older individuals always
involve some cerebrovascular malfunction, even though VaD
per se includes a wider range of vesicular pathological changes
(Kalaria, 2002; Emrani et al., 2020). Hence, there is clearly
a neuropathological overlap of AD and PSD, which could
result in difficulty in identifying subtle differences in some
common gait parameters. Additionally, pathological changes
in the central nervous system affect the cholinergic system,
which plays a critical role in motion and cognition. The
basal ganglia afferents to the cerebral cortex are mostly
cholinergic neurons, which also modulate hippocampal activity
and the frontoparietal networks (Tisch et al., 2004). It has

been suggested that AD and PSD both involve acetylcholine
signaling disruption and that the cholinergic deficits in AD
are related to motor disturbances (Emrani et al., 2020).
Previous research has shed light on the fact that acetylcholine
esterase inhibitors could decrease the variability and fall
incidence of people with mild AD (Montero-Odasso et al.,
2009). Whether the cholinergic circuit disturbance might
affect the ToA or HtA has not been reported. Further
studies should focus on the role of the cholinergic system
in stride angles.

On the basis of the lack of differences in gait parameters
between individuals with PSND and HCs, we compared the
gait characteristics of individuals with PSD and individuals with
PSND. We found that individuals with PSD showed deficits
in the pace domain, demonstrated as markedly shorter stride
length and slower velocity, with a disturbed stance/swing phase
ratio, despite a lack of difference in the baseline NIHSS, mRS,
muscle strength, and infarction side between the PSD and
PSND groups. The difference was robust after controlling for
major demographic covariates, numbers of comorbidity, and
muscle strength, but did not persist after further adjusting
for the MMSE score. This indicated that global cognition was
the overriding factor accounting for the gait disturbance in
individuals with PSD, whose muscle strength did not differ
from that of PSND individuals. The counting-task gait test
involves people walking while performing serial subtraction
of 1, which requires relatively high numeracy, memory, and
attention capacity. The stride length and velocity in the
counting-task gait better distinguished individuals with PSD
from individuals with PSND, as the AUC increased from 0.738
to 0.806 and from 0.738 to 0.761, respectively, for the single-
task gait test. Because velocity reflects global brain function,
and stride length and velocity are both highly related to
attention and executive function, counting backward might
be a means for sensitively detecting attention and memory-
associated gait disturbances. As the degree of cognitive loading
increased, the variability of gait could discriminate individuals
with PSD in the naming animals-task, as demonstrated by an
AUC of 0.760 for CoVSL and an AUC of 0.800 for CoVST.
The cognitive challenge of the naming animals-task is increased
by the additional requirement for visual-spatial skill. However,
due to the heterogeneity of the ischemic lesion in the stroke
patients in our study, the regional association between specific
brain structures and gait characteristics is difficult to depict.
Further studies are needed to classify the subtypes of stroke
by lesion location and to research the respective gait signature
and the interaction of the central structure or function with
gait parameters.

Some limitations of our study need to be addressed. First,
due to the limited recruitment of patients with AD and patients
with PSD, we did not further stratify the patients by the severity
of cognitive impairment. Thus, in our study, this population
comprised those with mild to moderate dementia. Further studies
should focus on more details of gait characteristics in individuals
with different levels of cognitive impairment. In addition, the
pathological heterogeneity of patients with PSD and patients with
AD requires a more rigorous stratification of the underlying
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central pathology to study the relationship between specific
histomorphology and gait domains further.

CONCLUSION

In this study, we observed gait impairment in patients with
PSD and patients with AD, as compared with matched normal
aging controls. Some gait parameters, particularly, the stride
length in the counting backward-task and the CoVST in the
naming animals-task gait paradigm could allow the distinction of
individuals with PSD from 3-month post-stroke patients without
dementia. A smaller ToA and HtA might be characteristic gait
features distinguishing subjects with AD from subjects with PSD.
Overall, our findings suggest that particular gait characteristics
could be non-invasive biomarkers facilitating early diagnosis of
individuals with PSD, and could support the use of gait for
identification of dementia subtypes, to promote appropriate and
early intervention.
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Background: There are no obvious clinical signs and symptoms in the early stages
of Alzheimer’s disease (AD), and most patients usually have mild cognitive impairment
(MCI) before diagnosis. Therefore, early diagnosis of AD is very critical. This paper mainly
discusses the blood biomarkers of AD patients and uses machine learning methods to
study the changes of blood transcriptome during the development of AD and to search
for potential blood biomarkers for AD.

Methods: Individualized blood mRNA expression data of 711 patients were
downloaded from the GEO database, including the control group (CON) (238 patients),
MCI (189 patients), and AD (284 patients). Firstly, we analyzed the subcellular
localization, protein types and enrichment pathways of the differentially expressed
mRNAs in each group, and established an artificial intelligence individualized diagnostic
model. Furthermore, the XCell tool was used to analyze the blood mRNA expression
data and obtain blood cell composition and quantitative data. Ratio characteristics
were established for mRNA and XCell data. Feature engineering operations such as
collinearity and importance analysis were performed on all features to obtain the best
feature solicitation. Finally, four machine learning algorithms, including linear support
vector machine (SVM), Adaboost, random forest and artificial neural network, were used
to model the optimal feature combinations and evaluate their classification performance
in the test set.

Results: Through feature engineering screening, the best feature collection was
obtained. Moreover, the artificial intelligence individualized diagnosis model established
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based on this method achieved a classification accuracy of 91.59% in the test
set. The area under curve (AUC) of CON, MCI, and AD were 0.9746, 0.9536, and
0.9807, respectively.

Conclusion: The results of cell homeostasis analysis suggested that the homeostasis
of Natural killer T cell (NKT) might be related to AD, and the homeostasis of Granulocyte
macrophage progenitor (GMP) might be one of the reasons for AD.

Keywords: Alzheimer’s disease, mild cognitive impairment, artificial intelligence, predictive diagnostics, blood
biomarkers

INTRODUCTION

Alzheimer’s disease (AD) is the most common chronic
neurodegenerative disease (Burns and Iliffe, 2009). According
to the World Health Organization, dementia affects 5–8 percent
of people over 60 years. As of September 2020, there were
about 50 million people with dementia, with 10 million new
cases per year worldwide (Word Health Organization, 2020).
Through establishing an individualized diagnosis model for
patients with AD in its early onset, it is expected to realize
early intervention for patients. At present, some studies have
reported artificial intelligence models for AD diagnosis (Lunnon
et al., 2013; Li et al., 2018; Way et al., 2018; Ludwig et al.,
2019; Stamate et al., 2019). For example, in a European cohort
study, a machine-learning approach identified 347 plasma
metabolites associated with early diagnosis in AD with an area
under curve (AUC) of about 0.85 (Stamate et al., 2019). In a
study of circulating non-coding RNA in patients with AD, 21
disease-related features were identified using RT-qPCR, and
18 strongly correlated features were extracted using statistical
learning methods to establish a machine learning model, with
an AUC of about 0.86 (Herrero-Labrador et al., 2020). In an AD
classifier based on texture features, the researchers modeled the
high-level semantic features of MRI with an accuracy of about
85% (So et al., 2019).

However, these studies are based on the dichotomous task,
ignoring the correlation degree of occurrence and development
of the control (CON), mild cognitive impairment (MCI), and
AD themselves, and the accuracy is not high. In this study,
we incorporated blood mRNA expression data to establish two
highly accurate artificial intelligence individualized diagnostic
models for CON, MCI, and AD classification problems.
Although a few studies analyze and/or predict these three
disease states simultaneously, most of these studies are based
on medical image data (Rogers et al., 2012). Furthermore,
we analyzed the blood cells composition corresponding to
blood mRNA profiles. We revealed some of the underlying
mechanisms during the early pathogenesis of AD by analyzing
the imbalance of five major groups of cells, including Epithelial,
Hematopoietic stem cells (HSC), Lymphoid, Myeloid and
Stroma. The overall landscape of blood cell imbalance lays

Abbreviations: PD, Parkinson’s disease; AD, Alzhaimer’s disease; MCI, mild
cognitive impairment; GEO, Gene Expression Omnibus; AUC, area under curve;
IPA, ingenuity pathway analysis; DEGs, differentially expressed genes.

a solid foundation for further mechanism research and
individualized therapy.

MATERIALS AND METHODS

Data Source and Preprocessing
We downloaded two sets of peripheral whole blood mRNA
expression profiles from the GEO database1, including GSE63060
and GSE63061 (Sood et al., 2015). These two sets of data were
detected by the platforms Illumina HumanHT-12 V3.0 and
Illumina HumanHT-12 V4.0, respectively. After deleting fuzzy
samples and finally keep 329 samples and 382 samples, a total
of 711 samples (Table 1). We have carried out standardized
processing in the quantity of the data set. The method is as
follows: We mark the sample as x, and the expression value
of the j_th gene in the sample as. First, calculate the sum
of the expression values of all genes in the i_th sample, and
then calculate the j_th gene in the i_th sample Divide by the

sum in turn
(
xij
/∑n

j=1 xij

)
, and finally multiply the obtained

value by 106. The specific calculation formula is as follows:

x
′

ij =

(
xij
/∑n

j=1 xij

)
∗ 106.

Identification of Differentially Expressed
Genes
The differential expression genes (DEGs) were recognized with
the limma Bioconductor package (limma package v.3.24.15)

1https://www.ncbi.nlm.nih.gov/geo/

TABLE 1 | Data distribution diagram.

Datasets Disease
type

Sample
numbers

Age [Median
(Range)]

Sex (%
male)

GSE63061 CON 104 73 (52−87) 40.38

MCI 80 74 (63−90) 51.25

AD 145 76 (58−88) 31.72

GSE63060 CON 134 74 (63−91) 39.55

MCI 109 79 (57−100) 40.37

AD 139 79 (59−95) 38.85
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in R (Smyth, 2005). The limma package use T-statistic as a
discriminant that can eliminate the irrelevant genes. Limma
package was use to findmarker by each two groups such as AD vs.
CON, MCI vs. CON, and AD vs. MCI. We used the FDR-method
correction for multiple testing.

Feature Importance Selection
We use recursive feature elimination cross-validation to
eliminate low importance. First, we choose a linear model to
calculate all feature coefficients. Then we make a loop to eliminate
low coefficient features until the number of features meets our
requirements. This method is provided in the RFECV function,
which is in the scikit-learn module in Python (Pedregosa et al.,
2011; Buitinck et al., 2013). We use the default parameters of
the RFECV function in the sklearn.feature_selection module,
dependent variables are all genes, and independent variables are
the results of the numerical transformation of CON, MCI, and
AD set to 0, 1, and 2, respectively.

Machine Learning Model
The machine learning models we use include linear models and
non-linear models. Among them, the linear model uses a linear
support vector machine (SVM) (Cortes and Vapnik, 1995), and
the non-linear model includes AdaBoost (Freund and Schapire,
1997), random forest (Liaw and Wiener, 2002), and Artificial
neural networks. Among them, linear SVM, random forest,
AdaBoost use the function of the scikit-learn module of Python,
Artificial neural networks use PyTorch module of Python. In
the above four models, we use default parameters for the first
three models; for Artificial neural networks, we use a feedforward
neural network composed of three hidden layers and one output
layer. The number of neurons in each hidden layer is 64, 32, and
16, respectively. The number of neurons in the output layer is
3, and the neurons in the output layer represent the probability
values of various samples.

XCell Analysis
XCell is a web analysis tool developed by the University of
California, enriched based on gene expression data2 to obtain the
Cell-Type score data (Aran et al., 2017). This method is based on
gene signature, which is used to infer 64 types of immune cells
and stromal cells.

Disease Ontology Semantic and
Enrichment Analysis
R (version 4.0.2) package DOSE (Yu et al., 2015) to analyze which
diseases are related to the final features that we found. There are
five functions in the DOSE package which we use is enriched
function. Using cumulative hypergeometric model to identify
which disease ontology that genes are mainly enriched in, where
k is the number of genes related to the disease ontology; r is the
number of all genes which are involved in all diseases that are
collected in the DOSE package, and s is the number of genes

2https://xcell.ucsf.edu/

which we have identified, the formula is as follows:

P = 1−
s−1∑
i=0

(
k
i

)(
r − k
k− i

)
(
k
r

)
Ingenuity Pathway Analysis
Ingenuity Pathway Analysis (IPA) is a bioinformatics analysis
method. We use IPA method to locate features and annotate
functions. P-value < 0.05 was considered a statistically significant
threshold. Z-value greater than 0 is defined as active, and less than
0 is defined as suppressed. The activation z-score of a hypothesis
is calculated from the regulation directions and gene expression
changes of the genes in the overlap of data set and hypothesis-
regulated genes. It assesses whether there is a significant pattern
match between predicted and observed up- and down-regulation,
and also predicts the activation state of the regulator (z > 0:
activating, z < 0: inhibiting). The activation z-score is given by:

Zscore =
(N+ + N−)
√
N

with N+(N−) being the number of genes where the product of
net-effect and observed direction of gene regulation is greater
(less) than zero, and N = N++N− (Krämer et al., 2014).

RESULTS

Establishment and Analysis Process of
Individualized Diagnosis Model for
Overall Alzheimer’s Disease Patients
Based on blood mRNA expression profiles, we analyzed, screened
and obtained two sets of potential blood biomarkers for early
AD diagnosis and developed two different model frameworks
(Figure 1). Individualized blood mRNA expression data of 711
patients were downloaded from the GEO database, including
238 CONs, 189 MCIs, and 284 AD patients. Firstly, we analyzed
the subcellular localization, protein types and enrichment
pathways of the differentially expressed mRNAs in each
group, and established an artificial intelligence individualized
diagnostic model. Furthermore, the XCell tool was used to
analyze the blood mRNA expression data to obtain blood
cell composition and quantitative data. New ratio features
were established for mRNA and XCell data. Co-linearity and
importance analysis of all features were carried out to obtain
the optimal feature solicitation. Finally, four machine learning
algorithms, including linear SVM, Adaboost, random forest
and artificial neural network, were used to established models
for the optimal feature set and evaluate their classification
performance in test sets.

Next, we analyzed the effects of different mRNAs on
the levels of different disease groups (MCI and AD) in
terms of subcellular localization, coding protein type and
enrichment function. First, we normalized the data and then
identified 5,625 differentially expressed genes (DEGs) between
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FIGURE 1 | Diagram of the workflow in this study. A total of 711 individual peripheral blood mRNA data were included for modeling and analysis, including 238
control (CON), 189 MCI and 284 AD samples. For Model 1, we performed feature engineering, training and testing. For Model 2, XCell cell composition was first
decomposed from blood mRNA data, then feature ratios were calculated using XCell and mRNA features, respectively. We combined mRNA, XCell, mRNA-ratio,
and XCell-ratio to perform feature engineering. Four different algorithms were used for AI modeling. The models were evaluated on test data using AUC-ROC and
confusion matrix. The red arrows represent Model 1, and the green arrows represent the processes for Model 2.

the two groups (Supplementary Figure 1). Meanwhile, we
performed cross-evaluation in different datasets. In addition,
the results of the IPA show that DEGs in CON and MCI
and DEGs in CON and AD differ not only in gene type
but also in gene location. In the early stage of AD, the
abundance of proteins located in the plasma membrane by
DEGs is significantly up-regulated. In contrast, the expression
of proteins located in other regions is inhibited. Specifically,
the expression levels of Transmembrane receptor, G-protein
coupled receptor, Phosphatase, and Kinase in the MCI group
are increased. In addition, we also analyzed the same differential
genes with disease-related enrichment and enriched and
analyzed the up-regulated and down-regulated genes in the
disease group (MCI and AD)/normal group, respectively. The
upregulated genes are mainly enriched and associated with
senile diseases. The down-regulated genes can significantly
affect “Parkinson’s disease,” “Huntington’s disease,” “AD,” and
“Oxidative phosphorylation.” NDUFA4, NDUFB6, ATP5F1C,
CALM2, COX5B, COX4I1, and CYCS are also involved in the
three major neurodegenerative diseases, including Parkinson’s
disease, Huntington’s disease, and AD (Stelzer et al., 2016;
Adav et al., 2019).

Individualized Diagnostic AI Model
Based on Blood mRNA Expression Data
We used standard deviation distribution, Co-linearity analysis
(Figure 2A) and importance analysis (Figure 2B) to perform
feature engineering screening on the total mRNA features for
screening and to obtain the optimal feature set. In general,
starting from 5,625 features, we screened out the features with
a standard deviation less than 3 (retaining more than 75% of
the features), and then the remaining 4,219 features. After the
analysis of Co-linearity (Pearson correlation coefficient between
various features is calculated), the features with a correlation
greater than 0.9 are filtered out, leaving 1,598 remaining features.
Importance analysis results showed that the TOP 5 with the
highest contribution to tri-classification modeling are STAT6,
KLF6, FCER2, HLA-A, PPBP, etc. (Figure 2B). We quantified
the three states based on disease progression and assessed the
correlation between the selected features and the disease state.
Our results showed that SNRPB2, LPP, C7ORF43, HCG27, and
RGS14 (Top-5) were positively correlated with the development
of CON, MCI, and AD. Negative correlation features included
BUD31, GTF2H5, RPS23, MRPS17, and MRPL51 (Top-5)
(Figure 2C). After importance and correlation analysis (using an
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FIGURE 2 | The mRNA data-based feature engineering and AI-modeling of CON, MCI and AD. (A) Correlation of each feature, correlation threshold 0.9. (B) Filter
lower importance features, the y-axis represents the standard deviation, dashed line is the cutting threshold, the x-axis represents the features in order of importance
(ascending). (C) Correlation between features and labels, show top five features. (D–F) Confusion matrix of two independent test sets. (G–I) ROC curve of the model
developed by optimal feature in two independent test sets. (J) Compare the prediction accuracy on test set between different models and features.

iterative method, removing 1% of the features in each iteration),
optimal feature set was obtained for 355 mRNA features. We
used the SVM algorithm to model the optimal feature set and
then tested the model in two independent test sets, with the

final test accuracy of 91.84 and 91.38%, respectively, and the
average accuracy of 91.59% (Figures 2D–F). AUC values for
CON, MCI and AD groups were 0.9746, 0.9536, and 0.9807,
respectively (Figures 2G–I). Compared with the accuracy of
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optimal feature set (91.59%), the accuracy of SVM model
established by all features (1,920 mRNAs) and random features
(355 mRNAs) under SVM algorithm was 53.27 and 58.83%,
respectively (Figure 2J). In addition to SVM, we also evaluate
the classification performance of the models based on other
algorithms. The accuracy rates of Adaboost, Random Forest and
Artificial Neural Network test sets were 66.36, 62.62, and 80.56%,
respectively, lower than the optimal model obtained by the SVM
algorithm (Figure 2J).

During the Progression of Alzheimer’s
Disease, Both Blood mRNA and Blood
Cells Showed Significant Expression
Imbalance
To optimize the classification efficiency of the artificial
intelligence diagnostic model, we tried to include more
biological information of different mRNAs. With the progression
of AD, the composition of the various immune cells in the
blood gradually changes. XCell is a method for inferring
the quantitative abundance of 64 cell types based on mRNA
expression data. We used XCell to analyze the quantitative
level and composition of various cells in the blood and their
changing trend with the progression of AD. Our results
showed that the original blood mRNA expression profiles were
mainly composed of five cell categories (41 cell subtypes),
including HSC, Lymphoid, Myeloid, Epithelial, and Stroma.
With the progression of AD, the proportions of HSC, Lymphoid
and Myeloid in blood cells gradually decrease, while the
proportions of Epithelial and Stroma gradually increase
(Figure 3A). Figure 3B shows the absolute abundances of
some representative cells (from all 41 cell types) and their
relative abundances between the CON, MCI, and AD groups.
To study the imbalance of cell proportion, we further analyzed
the ratio of cell abundance. The top 10 cell ratios in CON,
MCI, and AD groups were mainly related to immunity (58.8%).
This result further suggest that AD disease is associated
with immune dysregulation and can be recognized from the
blood (Figure 3C; Ikeda et al., 2010). With the progression
of the disease, we identified a total of 33 pairs of cells that
showed a gradual change in the ratio. Most of them (27 pairs)
gradually rise, including melanoma/GMP, melanoma/B-cells and
melanoma/pro B-cells (Figure 3C, Red, Figure 3D, Up). The
ratio of six pairs of cells decreased gradually, including CD8+
naive T-cells/Plasma cells and CD8+ naive T-cells/Th1 cells, etc.
(Figure 3D, Down).

Cell-Related Imbalance Can Be Included
in the Feature Set to Participate in the
Model Optimization
We fused four types of features, including mRNA, mRNA ratio,
XCell, and XCell ratio for feature engineering to obtain the
optimal feature set and subsequent AI modeling to diagnose
CON, MCI, and AD (Figure 4A). Similar to the feature screening
method in the first modeling, we recalculated the Co-linearity
of each feature in the data, filtered out the remaining 956
features after the Co-linearity was greater than 0.9, and then

eliminated the insignificant features by iterative method (each
iteration removed 1% of the features), leaving 319. Finally, we
selected the features with a cumulative weight greater than 75%
to form a new optimal feature set. The optimal feature set
contained 119 mRNAs, 56 mRNA-ratio pairs, and 6 XCell-ratio
pairs. The mRNA ratio feature accounted for 60% of the top 20
importance rankings of the optimal feature set. Among them,
the CFLAR/FCXER2 ratio with high importance was gradually
increased in CON, MCI, and AD groups (Figure 4B). A previous
study reported that the CFLAR is a vital gene encoding apoptosis
regulator, and the FCXER2 is an important gene related to
immunity (Stelzer et al., 2016).

The inclusion of XCell-ratio features reveals the importance
of the imbalance of the proportion between different blood
cells in the modeling of CON, MCI, and AD. The most
essential XCell-ratio features for modeling included MV
colorectal cells/Osteoblast, CD8+ naive T-cells/Mesangial
cells and GMP/Osteoblast (Figure 4C). The optimal features
are closely related to the progression of AD, where SNTB2,
ATP6AP1/TRAPPC2L and CFLAR/FCER2 are positively
correlated with the progression of AD. In contrast, MRPS17,
AIF1 and GTF2H5 are negatively correlated with the progression
of AD (Figure 4D).

The Introduction of the Concept of
Proportion Imbalance Is Beneficial to the
Establishment of Artificial Intelligence
Individualized Diagnosis Model
The imbalance of mRNA ratio and cell ratio was observed
during the progression of AD. To evaluate the impact of the
imbalance on AD diagnosis, we incorporated four algorithms,
including linear SVM (linear model), Adaboost (non-linear
model), random forest (non-linear model) and Artificial neural
networks (non-linear model), to established artificial intelligence
models. The results show that the accuracy of SVM algorithm is
the highest. The accuracy of SVM, Adaboost, Random Forest and
artificial neural networks for the test set were 91.59, 66.36, 62.62,
and 80.56%, respectively. Compared with the optimal feature set,
the accuracy of the model based on the total features and 181
random features was lower, indicating that our method of feature
establishment, evaluation and screening is reasonable, effective,
and reliable (Figure 4E).

At present, the accuracy of the best model obtained by the
model in two independent test sets was 93.88 and 89.66%,
respectively, with an average accuracy of 91.59% (Figures 4F–H).
Notably, the average recall rate for AD patients in this set was
93.02%. Further analysis showed that the AUC values of the
CON, MCI and AD groups were 0.9524 (CON and other groups),
0.9651 (MCI and other groups) and 0.9807 (AD and other
groups), respectively (Figures 4I–K).

We also obtained a better tri-classification diagnosis model by
including cell ratio and mRNA ratio data. Compared with the
previously reported dichotomies, our model is more accurate and
stable. Since we have comprehensively considered the changes
in the occurrence and development of Con-MCI-AD, the model
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FIGURE 3 | XCell and XCell-Ratio analysis. (A) Stacked five cell types in the CON, MCI, and AD groups. (B) Representative cells from five cell types. The number is
original XCell score. (C) The union set of top-10 XCell-ratios in the con, MCI, and AD groups. All values are normalized by row. Red items,
non-Hematopoietic/Hematopoietic items show a gradual trend with AD progression. (D) Cell ratios show a gradual trend with AD progression.

obtained in this study covers a wider area and applies to more
potentially susceptible populations.

Cell Ratio Analysis Showed That There
Were Three Aspects of Immune
Disorders During the Progression of
Alzheimer’s Disease
To comprehensively analyze the imbalance of blood cell
proportion in the body, we matched the variation trend of

each cell with the progression of AD with the differentiation
process of pluripotent stem cells. Our results showed three
types of imbalances in the blood cells of patients with AD
progression (Figure 5).

First, the proportion of hematopoietic and non-hematopoietic
cells decreased gradually (Abnormal 1). The number of non-
hematopoietic cell types in the disease group (MCI and AD)
increased significantly compared with CON. MSC cells with
multi-organ differentiation potential showed a more substantial
increase in MCI patients than the CON. Its downstream, such as
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FIGURE 4 | The mRNA and XCell ratio data-based feature engineering and AI-modeling of CON, MCI, and AD. (A) Feature type correlation heat map, an overview of
the correlations between features after feature engineering. (B) Top 20 features importance (from optimal 181 features set). (C) XCell-Ratio of the top 20 in
importance. The numbers represent the abundance of different cells in CON, MCI and AD. (D) The 181 features relevance between features and labels. (E) Compare
the prediction accuracy on test set between different models and different features. (F–H) Confusion matrix of test set. (I–K) ROC curve of the SVM model
developed by optimal features.
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FIGURE 5 | Summary of this study: dysregulation of cell homeostasis during the development of AD. Based on blood mRNA expression profiles, we screened two
sets of deep learning models with AUC values greater than 0.95. There was a tripartite imbalance (orange color) in the relative abundance of blood cells in the
patients, including a gradual decrease in the ratio of hematopoietic to non-hematopoietic cells, a block in the conversion from CMP to GMP, and a gradual decrease
in the ratio of neuroprotective to neuroinflammatory cells. The values in the heat map represent the relative abundance of the XCell median for the disease. Our
findings have important implications for both early diagnosis and intervention in MCI and AD.

Endothelial cells and Mesangial cells, also showed similar trends.
However, hematopoietic cell-related items were significantly
downregulated in the disease group (MCI and AD). It has
been reported that hematopoietic microglia can ameliorate the
progression of AD by eliminating amyloid deposition through
cell-specific phagocytic mechanisms (Lampron et al., 2011).
Furthermore, hematopoietic cells and their associated factors
have potential therapeutic value in AD, and the downregulation
of the relative number of hematopoietic cells may be one of the
critical theories (Sanchez-Ramos et al., 2008; Lim et al., 2020).

Secondly, the differentiation of CMP to GMP was resisted
(Abnormal 2): in the hematopoietic cells, both Lymphoid

and Myeloid cells showed a trend of gradual decrease. The
Myeloid is the primary source of cells in the blood system.
The common myeloid precursor cell index was significantly
higher in the disease group (MCI and AD) compared with
CON. As the downstream of its differentiation, the proportion
of progenitor cells of granular macrophages decreased gradually.
We speculated that blocking the differentiation of CMP to GMP
might be closely related to the occurrence of MCI and AD.

Thirdly, the proportion of neuroprotective and
neuroinflammatory cells was gradually reduced (Abnormal
3). Next, we analyzed the immune system differentiated by
Lymphoid and Blood system differentiated by Myeloid. Our
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results showed that with the gradual development of AD,
the immune system and circulatory system both changed
from increasing to decreasing cell types. There is no apparent
difference between the two systems. However, most of the
progressively elevated cells are neuroinflammatory, including
Th1, NTK, and ADC. The neuroprotective cells declined
gradually, including Th2.

Compared with the CON group, the ratio of Th1 cells to
Th2 cells in the disease group (MCI and AD) was significantly
unbalanced. This conclusion is consistent with the results of
previous animal immunotherapy experiments, which showed
that Th1 cells decreased and Th2 cells increased in AD mice after
immunotherapy (Town et al., 2002; Cao et al., 2009; Marciani,
2016). Notably, various indicators of NKT cells were similar
to those of Th1 cells, suggesting that NKT cells also play an
important regulatory role in the onset and progression of AD.
However, no studies have confirmed that these cells play an
important role in the onset and progression of AD. Therefore,
NKT cells may be an important feature related to AD that has
been recently discovered. In conclusion, we believe that the
imbalance of homeostasis in GMP may be one of the important
causes of AD, and the imbalance of homeostasis in NKT cells
may be closely related to the occurrence and development of
AD (Figure 5).

DISCUSSION

In this study, we established a complete feature engineering
framework and an excellent machine learning model. We
identified a set of features with stable classification efficiency
based on the multidimensional data of mRNA expression profiles.

We found many mRNA features at the mRNA level that
were significantly up- or down-regulated during AD progression.
For example, the ATP5F1c gene is significantly down-regulated
in the disease group (MCI and AD) compared to the CON
group. The ATP5F1c was reported to play an important
role in mitochondrial oxidative phosphorylation (Stelzer et al.,
2016). The expressed level of mitochondrial electron transport
chain complex IV (COX) was significantly reduced in AD
patients. A previous study showed that genetic defects in the
Cox family might be associated with the genetic risk of AD.
In addition to the mRNA features, the mRNA ratio feature
accounted for 60% of the top 20 importance rankings of the
optimal feature set. Among them, CFLAR is an important gene
encoding apoptosis regulator. FCXER2 is an important gene
related to immunity (Stelzer et al., 2016). The importance of
CFLAR/FCXER2 was higher, and its ratio gradually increased in
CON, MCI and AD groups. We speculate that the occurrence
and development of AD may be due to neuronal death caused
by immune system abnormalities, and this process can be
found in the blood.

At the cellular level, we also identified some particularly
important features. For example, CD4+ and CD8+ (including
CD8+ naive T cells, CD8+ T cells, and CD8+ TCM) cells
were significantly lower in AD and patients with mild cognitive
impairment. CD4+ T cells are effective mediators of well-known

autoimmune diseases in the nervous system, such as multiple
sclerosis and narcolepsy, which are involved in developing
microglia (Pasciuto et al., 2020). Furthermore, we found a
significant increase in the expression of myeloid cells represented
by activated dendritic cells (ADC) in the disease group (MCI
and AD). In contrast, the expression of lymphocytes represented
by B cells was significantly reduced (Figure 3C). We found that
many cells associated with the immune system showed a gradual
increase during the occurrence and development of the disease
(Figure 3D). Among the cell proportion features with noticeable
progressive changes in expression, we found that almost all the
proportion features were related to myeloid cells or lymphocytes
(88.24%); among them, 58.8% were related to lymphocytes and
38.24% were related to myeloid cells.

We found that mitochondrial dysfunction in the brain tissue
of AD patients can be simultaneously detected in the peripheral
system (Johri and Beal, 2012), suggesting that AD may be caused
by abnormal gene expression or brain damage, as observed in
peripheral blood (Johri and Beal, 2012; Leuner et al., 2012;
Trushina et al., 2013; Pérez et al., 2017). DEGs in peripheral blood
may be one of the important causes of AD. Machine learning is
an important branch of artificial intelligence. The main difference
between this method and the traditional statistical learning
method is that the machine learning method usually does not
need a statistical hypothesis, which dramatically improves the
accuracy of training results and the adaptability of the model,
and is widely used in the study of the pathogenesis of AD (Farran
et al., 2013; Goecks et al., 2020).

Compared with traditional feature engineering, this paper not
only pays attention to feature selection but also pays attention to
the development of new dimension features. In the cell type score
obtained based on mRNA expression profile data, we found that
Th and NKT cells were different between the disease group (MCI
and AD) and the control group, with significantly fewer Th2
cells and significantly more Th1 cells and NKT (Figure 5). It is
suggested that the occurrence and development of AD are closely
related to immune system diseases, consistent with a previous
report (Cui and Wan, 2019), we should pay high attention to the
homeostatic dysregulation of NKT cells in AD. The features used
in our model are highly interpretable.

CONCLUSION

We find 5625 DEGs in CON, MCI, and AD, which are related
to the disease. The optimal feature set was obtained through
feature engineering screening, and the artificial intelligence
individualized diagnosis model established based on this method
achieved a classification accuracy of 91.59% in the test set.
The AUC of CON, MCI, and AD were 0.9746, 0.9536, and
0.9807, respectively. The relative abundance of five types of
cells, including Epithelial, HSC, Lymphoid, Myeloid and Stroma
in the blood of CON, MCI and AD patients was obtained by
mRNA expression profile analysis. We also included mRNA,
cell abundance and ratio information to establish an artificial
intelligence model. The diagnostic accuracy of the optimal
model in the tri-classification test set was 91.59%, and the
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diagnostic AUC of CON, MCI and AD were 0.9524, 0.9651,
and 0.9807, respectively. Based on the mRNA profiles, we
analyzed the ratio of different cells using XCell. As patients
progressively deteriorated from CON, MCI to AD, blood cells
displayed three aspects of imbalance, including a progressive
decrease in the proportion of hematopoietic cells, a block in the
differentiation of CMP to GMP, and a progressive decrease in
the proportion of neuroprotective/neuroinflammatory cells. Our
findings have important implications for both early diagnosis and
intervention in MCI and AD.

In this study, the composition of various cells in the blood of a
single patient was analyzed based on the blood mRNA expression
profile. Based on this, the balance between different mRNAs and
cells in blood was analyzed. For the imbalance of disease and cell
proportion in CON, MCI, and AD patients and their contribution
to the artificial intelligence model, this study provides new ideas
and results for the onset and progression of AD from both basic
and application perspectives. The 181 features are composed
of four dimensions, which can accurately classify CON, MCI,
and AD groups, suggesting that machine learning methods can
capture changes in blood biomarkers in AD patients. The results
of cell homeostasis analysis suggested that the homeostasis of
NKT cells might be related to AD, and the homeostasis of GMP
might be one of the possible reasons for AD.
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Supplementary Figure 1 | The blood mRNA expression of CON, MCI and AD
patients showed a different trend. (A) Heatmap of GSE63060 and GSE63061,
rows represent genes, and columns represent samples. (B) DEGs of three groups
between each other, bar-plot show the number of all up-down DEGs in different
groups, the Venn-plot show that the intersection DEGs, the upset-plot show that
all kind of intersections DEGs. The bar graph on the left represents the intersection
of up-regulated differential genes between each group. In the middle of the scatter
plot, the single point represents the unique gene in the data set, and the
point-line-connection represents the intersection of the data and other data. (C)
IPA localization and types score of DEGs, base-line (gray-line) CON/CON, red
represent cell membrane localization. (D) Pathway enrichment results, the
absolute value of x-axis is log10(P-value), the positive and negative signs
represent up and down-regulation.
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Backgrounds: Nowadays, risks of Cognitive Impairment (CI) [highly suspected

Alzheimer’s disease (AD) in this study] threaten the quality of life for more older

adults as the population ages. The emergence of Transcranial Magnetic Stimulation-

Electroencephalogram (TMS-EEG) enables noninvasive neurophysiological investi-gation

of the human cortex, which might be potentially used for CI detection.

Objectives: The aim of this study is to explore whether the spatiotemporal features of

TMS Evoked Potentials (TEPs) could classify CI from healthy controls (HC).

Methods: Twenty-one patients with CI and 22 HC underwent a single-pulse TMS-

EEG stimulus in which the pulses were delivered to the left dorsolateral prefrontal cortex

(left DLPFC). After preprocessing, seven regions of interest (ROIs) and two most reliable

TEPs’ components: N100 and P200 were selected. Next, seven simple and interpretable

linear features of TEPs were extracted for each region, three common machine learning

algorithms including Support Vector Machine (SVM), Random Forest (RF), and K-Nearest

Neighbor (KNN) were used to detect CI. Meanwhile, data augmentation and voting

strategy were used for a more robust model. Finally, the performance differences of

features in classifiers and their contributions were investigated.

Results: 1. In the time domain, the features of N100 had the best performance

in the SVM classifier, with an accuracy of 88.37%. 2. In the aspect of spatiality, the

features of the right frontal region and left parietal region had the best performance

in the SVM classifier, with an accuracy of 83.72%. 3. The Local Mean Field Power

(LMFP), Average Value (AVG), Latency and Amplitude contributed most in classification.
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Conclusions: The TEPs induced by TMS over the left DLPFC has significant

differences spatially and temporally between CI and HC. Machine learning based on

the spatiotemporal features of TEPs have the ability to separate the CI and HC which

suggest that TEPs has potential as non-invasive biomarkers for CI diagnosis.

Keywords: spatiotemporal features, machine learning, cognitive impairment, TEP, TMS-EEG

1. INTRODUCTION

Cognitive impairment (CI) refers to a cognitive function decline
beyond typical aging, which is increasingly prevalent in the
elderly and loom as a public health issue (Montine et al., 2021).

Clinically,Montreal Cognitive Assessment (MoCA) andMini-
Mental State Examination (MMSE) are commonly used for
routine cognitive screening. MoCA is more sensitive thanMMSE
in detecting mild cognitive impairment (MCI) (Ciesielska et al.,
2016). For Alzheimer’s disease (AD) diagnosis, there are two
main types of biomarkers: biophysiological biomarkers such
as β amyloid in cerebrospinal fluid (CSF)/plasma/serum and
brain imaging markers (Frisoni et al., 2017; Ng et al., 2019;
Cullen et al., 2021). For example, Aβ42/Aβ40 ratio in CSF and
blood (Buchhave et al., 2012; Hansson et al., 2018), Positron
Emission Tomography (PET) of beta-amyloid and tau proteins
(Leuzy et al., 2019; Rabinovici et al., 2019). However, the
invasiveness of the collection of body fluids and high cost of
PET limit their large-scale use. In recent years, some articles
have reported that combining different neuroimaging modalities
together can effectively detect CI. For example, combining
functional MRI (fMRI) and Diffusion Tracking Imaging (DTI)
can reflect functional connectivity changes in neuronal networks
between CI and Healthy Controls (HC) (Ye and Bai, 2018).
Multimodal fusion combines the advantages of each modality,
but it is undeniable that complex data fusion algorithms impose
huge challenges for clinical application.

Due to the above problems, some researchers have turned
their attention to find a quick, noninvasive, and inexpensive
method to detect CI, especially for mild and moderate patients
without obvious behavioral symptoms. As a non-invasive, high
time resolution method, the electroencephalogram (EEG) has
been widely used in clinical examinations. In recent decades,
the abnormalities in the resting state EEG of patients with CI
have been discovered, such as a shift of the power spectrum to
lower frequencies, a decrease in the coherence of fast rhythms, a
decreased complexity of EEG patterns (Jeong, 2004).

With the development of non-invasive neuromodulation
technology, the combination of Transcranial Magnetic
Stimulation and Electroencephalogram (TMS-EEG) allows
external input to specific cortical areas of subjects in a controlled
and quantitative way for direct functional assessment (Hallett,
2007; Kimiskidis, 2016; Cao et al., 2021). When TMS pulses
are applied to the cortex, trans-synaptic activation of local and
distal cortical networks is obtained (Tremblay et al., 2019). The
sum of synaptic potentials can be recorded simultaneously by
high time resolution, multichannel scalp EEG. There are a series
of positive and negative deflections after TMS, known as TMS

Evoked Potentials (TEPs). The TEPs last 300 ms or more and
can be recorded by either local or distal electrodes (Komssi
et al., 2002), reflecting the spread of activation over cortical
regions that are functionally connected and indicating the state
of the brain further (Nikulin et al., 2003). Compared with
resting-state EEG, TMS-EEG provides controlled stimulation
without the involvement of the participation, which is more
stable and objective.

At present, some researchers have used TMS-EEG to assess
patients with CI. For example, the prefrontal TMS-evoked
activity was able to track disease progression in Alzheimer’s
Disease (AD) and the P30 amplitude was predictive of the MMSE
score in patients with AD (Bagattini et al., 2019). The Motor-
Evoked Potentials (MEPs) produced by paired pulses on the
primary cortex can be used as indicators in the classification of
different subtypes of MCI (Benussi et al., 2021).

In this study, we hypothesized that TEPs resulting from
stimulation of the left DLPFC may be associated with the
cognitive status, thus, the features of TEPs could further
differentiate CI and HC. On the premise of preserving time
and space features simultaneously, we extracted some concise,
interpretable linear features of TEPs in seven regions of interest
(ROIs). We aimed to classify CI and HC automatically through
machine learning based on the spatiotemporal features of TEPs
and find potential biomarkers for clinical diagnosis.

2. MATERIALS AND METHODS

The framework is shown in Figure 1. We removed artifacts
of TMS-EEG at first. Then, we divided all the trials of each
participant into three segments to the augment dataset. In order
to preserve the features of time and space simultaneously, we
focused on the TEP’s N100 and P200 components in seven ROIs.
Next, we explored some concise, interpretable linear features
of these two components including Local Mean Field Power
(LMFP), Latency, Amplitude, Standard Deviation, Average Value
(AVG), Area Under the Curve (AUC), and Range. Finally, we
used three common machine learning algorithms: K-Nearest
Neighbor (KNN), Support Vector Machine (SVM), and Random
Forest (RF) to obtain the label of each segment, and voted to
get participant’s final prediction result (Cover and Hart, 1967;
Vapnik, 1999; Liaw and Wiener, 2002).

2.1. TMS-EEG Data Acquisition
2.1.1. Study Participants
All participants in this study were recruited from the Department
of Neurology in Shenzhen People’s Hospital (The First Affiliated
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FIGURE 1 | The framework of CI detection based on TEPs. First, the N100 and P200 components of TEPs were selected after removing artifacts. Then, all trials were

divided into three segments. Subsequently, seven features were extracted from different segments and regions of interest (ROIs) respectively. Finally, machine learning

was used to classify features, and voted on each segment to get the predicted result.

Hospital, Southern University of Science and Technology).This
study was approved by the Institutional Review Board of
Shenzhen People’s Hospital. All participants provided written
informed consent.

A total of 43 subjects participated in this study, including
21 patients with CI and 22 HC. The inclusion criteria of
CI group were: (a) Clinicians highly suspect the subject has
AD based on the clinical diagnostic criteria (National Institute
of Neurological and Communicative Disorders and stroke
and the AD and Related Disorders Association (NINCDS-
ADRDA), the Diagnostic and Statistical Manual of Mental
Disorders-V (DSM-V) criteria); (b) Mild and moderate CI
diagnosed (10<MoCA<26) (Nasreddine et al., 2005); (c) aged
50–75 years old. The exclusion criteria were: (a) blood
vessels and other types of dementia; (b) severe CI (MoCA
<10); (c) a history of other psychiatric or other neurological
disorders, such as schizophrenia, Parkinson’s disease, and
multiple sclerosis; (d) any contraindication for TMS, such
as a metallic implanted device in or near the head and
aneurysms.

All of the subjects in the control group met the following
criteria: (a) aged 50–75 years old; (b) never complained of
cognition or memory problems; (c) no history of any psychiatric
or neurological disorders, brain injury, cranial neurosurgery,
alcohol or drug abuse, or any severe chronic systemic illness; (d)
no contraindication for TMS.

There was no significant difference in age between the two
groups (p = 0.406). Demographic information was summarized
in Table 1.

2.1.2. TMS-EEG Recordings
The dorsolateral prefrontal cortex (DLPFC) is a key node of
various cognitive functions such as memory, attention, and
execution (Carlén, 2017). As we aimed to research cognition
related function, the left DLPFC is also a recommended target

TABLE 1 | Demographic subjects.

CI HC

Subject(s) 21 22

Age (mean ± SD) 61.86 ± 4.77 60.77 ± 3.65

Sex (male/female) 9:12 10:12

MoCA (mean ± SD) 20.33 ± 4.44 /

for TMS treatment (Ahmed et al., 2012). Therefore, we chose left
DLPFC to be the target of stimulation in this study.

All of the subjects in this study underwent a TMS-EEG
protocol. A total of 100 single-pulse TMS pulses were delivered
using the MagPro X100 with MagOption(MagVenture,
Copenhagen, Denmark). The coil (figure-8 coil, Coil
B65; external wing diameter, 90 mm) was placed over F3
(International 10/20 EEG system) to target the left DLPFC. The
Inter-Stimulus Interval (ISI) was 3s jittered, and the stimulation
intensity was 120% Resting Motor Threshold (RMT). The RMT
is determined as the minimum stimulus intensity that produces
a MEP exceeding 50 µV in a minimum of five out of ten trials in
the relaxed right abductor pollicis brevis.

While receiving TMS, EEG signals of subjects were collected
by BrainAmp DC amplifier (Brain Products, Munich, Germany)
with a 64-channel EEG system. Participants were asked to remain
still and relaxed during the EEG recording. The sampling rate was
maintained at 5 kHz, and electrode impedances were maintained
below 5 k� by applying the conductive gel. FCz was used
as the reference while AFz was the ground during the EEG
recording. All recordings took place in a temperature-controlled
and electrically shielded room. Participants were asked to listen
to white noise through earphones in order to mask the loud click
accompanied by TMS coil discharge. A foam layer was placed
under the coil to inhibit bone conduction and scalp sensation
caused by the vibration of the coil (Rogasch et al., 2014).
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2.2. TMS-EEG Data Preprocessing
2.2.1. Remove Artifacts
The TMS-EEG data in this study were preprocessed offline with
TMS-EEG Signal Analyser (TESA) toolbox (Rogasch et al., 2017).
TESA is an open source extension for EEGLAB (Delorme and
Makeig, 2004), which is used for cleaning and analyzing TMS-
EEG data. Both EEGLAB and TESA ran in Matlab (R2020b).

The data were divided into two-second epochs (−1,000 to
1,000 ms, the time of stimulation was marked as 0 s) and then
baseline corrected (−500 to −50 ms). In order to remove the
huge electromagnetic artifacts associated with TMS, the large
amplitude TMS pulse artifact was removed between −5 and 15
ms and cubic interpolation was used to replace the removed
data. For more efficient computing, the sampling rate of data
was reduced from 5 to 1 kHz. Epochs and channels contaminated
seriously were removed during visual inspection.

The first round of Independent Component Analysis (ICA)
was performed to remove large value artifacts including TMS-
evoked muscle artifacts and decay artifacts. Subsequently, the
data were band-pass (1–80 Hz) and band-stop (48–52 Hz)
filtered. It was followed by the second round of ICA to remove
other relatively small value artifacts including auditory artifacts,
blinks, eye movement, persistent scalp muscle activity, and
electrode noise. Finally, the missing channels removed in the
preprocessing were interpolated using spherical interpolation
and all channels were re-referenced to the common average
(Rogasch et al., 2014).

2.2.2. Time-Locked Averaging and GMFP
After data preprocessing, we got clean TMS-EEG trials (1s
before stimulation, 1s after stimulation). TEPs were computed
by averaging selected artifact-free single trial. The grand average
TEPs of the two groups were shown in Figures 2A,B.

TMS Evoked Potentials can be recorded from the local
electrode to the stimulation site, also from the electrode located in
the distant cortical region. TheGlobalMean Field Power (GMFP)
is usually calculated as a measure of global cortical excitability if
ROIs are not specified. GMFP is the standard deviation (SD) of
all channels at a given sampling point (Esser et al., 2006). The
calculation formula was shown in Equation (1). The GMFP curve
was shown in Figure 2C, which also indicated that the two groups
may have differences in the two time windows of N100 and P200
(gray areas).

GMFP(i) =

√

∑K
j=1

(

Vj(i)− Vmean

)2

K
(1)

where K is the number of all channels (K = 62 in this study), Vj(i)
is defined as the voltage measured with channel j at sampling
point i, and Vmean represents the average of the voltages across
all channels.

2.2.3. Data Augmentation and Gaussian Smoothing
In order to improve the stability of subsequent machine learning,
data augmentation technique was applied. We divided all the
trials (the trials remaining after artifacts removing) of each
subject into three segments (1–30, 31–60, and 61-end), and then

averaged the trials in each segment, which meant that each
subject had three segments available for training.

The TEPs obtained by a smaller number of trials are not as
smooth as all the trials. In order to make the subsequent feature
extraction more reliable, especially the Latency and Amplitude,
we used Gaussian window method (the length of Gaussian
window is set to 20) to smooth the data after averaging (Gwosdek
et al., 2011).

2.2.4. TEPs’ Time Windows and ROIs Selection
We found four typical characteristic peaks in Figures 2A,Bwhich
were consistent with previous research (N40, P60, N100, and
P200) (Rosanova et al., 2012; Rogasch et al., 2015). In these
typical peaks, N100 and P200 are widely regarded as the twomost
reliable and reproducible peaks (Kerwin et al., 2018). Considering
individual variation led to the advancement or delay of the
latency of characteristic peaks, we chose two relatively wide time
windows (100–160 ms, 180–280 ms) to include peaks in the
window to the full extent.

For the spatial features of TEPs, we selected 7 ROIs
according to previous research (Kerwin et al., 2018). The
seven ROIs are left Frontal (Fl, F1/F3/FC3/FC5), right Frontal
(Fr, F2/F4/FC4/FC6), Central (C, Cz/C1/C2), Centroparietal
(Cp, CPz/CP1/CP2/Pz/P1/P2), left Parietal (Pl, CP3/CP5
/P3/P5), right Parietal (Pr, CP4/CP6/P4/P6), and Occipital (O,
Oz/O1/O2), as shown in Figure 2D.

2.3. Temporal-Spatial Features Extract
The average TEPs recorded by all channels in each ROI was
calculated as the TEP of this ROI, as shown in Equation (2).

X(i) =
1

k

k
∑

j=1

Vj(i) (2)

where X(i) is TEP in the selected ROI, k is the number of channels
in this ROI, Vj(i) is defined as the voltage measured with channel
j at the sampling point i.

In order to describe the details of the two peaks (N100 and
P200) as much as possible, we calculated a series of linear features
in the selected time windows and regions. The features we
extracted were introduced below:

• Latency and Amplitude. The Latency and Amplitude are the
most common approaches for quantifying TEP (Tremblay
et al., 2019). That is, the time and amplitude of the largest peak
(negative or positive).

• Local Mean Field Power. The LMFP refers to SD across
specific channels in the selected ROI (i.e., electrodes of interest,
EOI). We calculated at every sampling point in the given
time window and then averaged them. The LMFP reflects the
dispersion degree of the signals recorded by the electrodes
in this region indicating local excitability changes (Pellicciari
et al., 2013), as shown in Equation (3).

fLMFP =
1

N

N
∑

i=1

√

6k
j=1

(

Vj(i)− Vmean

)2

k
(3)
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FIGURE 2 | TMS Evoked Potentials (TEPs) components and ROIs selection. The grand average butterfly plot of all channels’ TEPs of (A) HC group and (B) CI group.

The electorde (F3) under the TMS coil is indicated in red. (C) The GMFP of two groups, the gray areas indicate two time windows of N100 (100–160 ms) and P200

(180–280 ms). (D) Schematic diagram of seven ROIs.

where N is the number of all sampling points in the time
window.

• Standard Deviation (STD). The STD is the standard deviation
of the signal value in the selected time window, reflecting the
degree of dispersion of the signal, as shown in Equation (4).
This is an important time domain feature in EEG also called
activity. The activity is quantified by means of the amplitude
variance (Hjorth, 1970).

fSTD =

√

√

√

√

√

1

N

N
∑

i=1

(

X(i)−
1

N

N
∑

i=1

X(i)

)2

(4)

• Area Under Curve (AUC). The AUC is the area of the envelope
between the signal and the time axis. The upper part of
the time axis is positive and the lower part is negative. We
used numerical integration to calculate the area, as shown
in Equation (5). AUC was also called cortical-evoked activity

(CEA) in previous research (Rajji et al., 2013).

fAUC =
1

2f

N−1
∑

i=1

(

X(i)+ X(i+ 1)
)

(5)

where f is the sampling rate.
• Average Value. The AVG is the average signal value in the

selected time window.
• Range. The Range is the difference between the maximum

value and the minimum value of the signal in the selected time
window, reflecting the fluctuation degree of the signal.

2.4. Machine Learning
In each ROI, we extracted 7 features of N100 and P200
respectively. Finally, 98 (2 time windows∗7 ROIs∗7 features)
features were obtained in each segment of each subject.

Due to the possible correlation of different features, the t-
Distributed Stochastic Neighbor Embedding (t-SNE) (van der
Maaten and Hinton, 2008) was used to reduce the dimension.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 December 2021 | Volume 13 | Article 80438441

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Classify Cognitive Impairment Using TEPs

After features’ dimension reduction, the feature array was
normalized to [−1, 1].

In this study, three machine learning algorithms were used.
SVM was implemented in the LIBSVM toolbox (Chang and Lin,
2011) with default parameters (linear kernal). Other classifiers
[RF(ntree = 7) and KNN(k = 5)] were also implemented in
Matlab.

Since the features were divided into three segments, three
labels that had the sameweight were obtained for each participant
after the classifier’s prediction. We used the voting strategy to
fusion three labels. Themost pointed category was considered the
final label of the subject.

In order to evaluate the performance of the classifiers and to
simulate the reality of real CI recognition as much as possible,
we adopted a leave-one-out cross-validation (LOOCV) strategy,
keeping the minimum subject subset containing all the segment
of a subject as the test set and employing all the others for
training.

It is necessary to evaluate the classification effect of the
model using appropriate indicators. For the binary classification
problem, the test set can be divided into: True Positive (TP), False
Positive (FP), False Negative (FN), and True Negative (TN). In
this study, the subjects with CI were defined as positive samples,
HC were defined as negative samples. The several evaluation
indicators we used in this section are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

F1-score =
2TP

2TP + FP + FN
(9)

2.5. Statistics
2.5.1. Cluster-Based Permutation Test
Electroencephalogram data has both time and space structure
(sampled in multiple channels and multiple time points).
Therefore, the difference between CI and HC was the evaluation
of a very large number of channel-time pairs, which was a
multiple comparisons problem (MCP). For TEPs, we used
cluster-based permutation statistics at the whole scalp level
to take into account any combination of space and time,
while controlling the MCP (Maris and Oostenveld, 2007).
We performed an independent t-test for the two groups in
the selected time windows (100–160 ms, 180–280 ms). If the
test statistic value observed in at least two adjacent channels
was lower than the threshold value of 0.05, then this value
was considered in the cluster arrangement. We performed
5,000 iterations of trial randomization to generate permutation
distributions and controlled multiple comparisons across spaces
(P <0.025, two-tailed test).

TABLE 2 | Classification results by all classifiers in different components.

Component Classifier Accuracy Sensitivity Specificity F1-score

N100

KNN 0.8140 0.7619 0.8636 0.8000

SVM 0.8837 0.8095 0.9545 0.8718

RF 0.7674 0.7619 0.7727 0.7619

P200

KNN 0.7442 0.7143 0.7727 0.7317

SVM 0.7907 0.7619 0.8182 0.7805

RF 0.7442 0.6667 0.8182 0.7179

All components

KNN 0.7907 0.7143 0.8636 0.7692

SVM 0.8372 0.7619 0.9091 0.8205

RF 0.7907 0.7619 0.8182 0.7805

The bold values indicate the optimal result under the same index, the same as follow.

3. RESULTS

3.1. Classification Results Based on
Different Time Windows
According to the section 2.2.4, we extracted features in different
components of TEPs (N100 and P200). Then, we explored the
performance of the classifiers by using different components’
features. To reduce the dimension of the features matrix, we used
t-SNE to reduce the dimension of data.

Table 2 showed the classification results. All components
mean merging the features of N100 and P200 components. The
best classification performance was achieved by using the features
of N100. The highest accuracy of 88.37% was achieved by SVM,
with a specificity of 95.45%, the sensitivity of 80.95%, and the
F1-score of 87.18%. The features of all components reached
slightly weaker but still reasonable classification performance.
The classification results of P200were not satisfactory, the highest
accuracy was 79.07%, and other classifiers had even worse results.
The sensitivity, specificity, and F1-score were also lower than the
N100 in different classifiers.

3.2. Classification Results Based on
Different ROIs
Regions of interest were divided according to the section 2.2.4
and we extracted features from each ROI to explore which ROIs
are more sensitive to CI. Since there were only 14 features (2
time windows∗7 features) in each ROI, the features were directly
put into the classifier after normalization without dimensionality
reduction.

Table 3 showed the classification results. It could be concluded
that different brain regions had great influence on the
classification results, and the Fr and Pl region showed the best
performance, which achieved 83.72% by SVM. Moreover, when
RF was used, the features of Fr were sensitive to the distinction
of positive samples, which meant that the patients with CI
could be well recognized and the probability of the patients
with CI being diagnosed as normal was reduced. The features
of the Fl region showed slightly weaker but still reasonable
classification performances. The features of the C region can
distinguish negative samples well, but it was not good enough
to distinguish patients with CI. The features of the Cp region, O

Frontiers in Aging Neuroscience | www.frontiersin.org 6 December 2021 | Volume 13 | Article 80438442

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Classify Cognitive Impairment Using TEPs

region, and Pr region were basically unable to complete the task
of distinguishing normal people from patients with CI.

3.3. Statistical Results
We first performed a cluster-based permutation test on the TEPs
of the two groups. The results of statistical analysis were shown
in Figure 3. The topographic map was generated with Yang’s
topoplot_bcl function based on EEGLAB’s topoplot function (Li
et al., 2018). The asterisk indicates that the p-value is less than
0.01. In the N100 time window (100–160 ms), right frontal
region, left parietal region, and occipital region were significantly

TABLE 3 | Classification results by all classifiers in different regions.

Region Classifier Accuracy Sensitivity Specificity F1-score

C

KNN 0.7209 0.5714 0.8636 0.6667

SVM 0.7209 0.6190 0.8182 0.6842

RF 0.7674 0.7143 0.8182 0.7500

Cp

KNN 0.6977 0.5714 0.8182 0.6486

SVM 0.5814 0.4762 0.6818 0.5263

RF 0.7674 0.7619 0.7727 0.7619

Fl

KNN 0.7674 0.6667 0.8636 0.7368

SVM 0.7674 0.6667 0.8636 0.7368

RF 0.8140 0.8095 0.8182 0.8095

Fr

KNN 0.8140 0.6667 0.9545 0.7778

SVM 0.8372 0.7143 0.9545 0.8108

RF 0.8140 0.8095 0.8182 0.8095

O

KNN 0.6744 0.6190 0.7273 0.6500

SVM 0.7209 0.6667 0.7727 0.7000

RF 0.7442 0.8095 0.6818 0.7556

Pl

KNN 0.8372 0.7143 0.9545 0.8108

SVM 0.8372 0.7143 0.9545 0.8108

RF 0.7674 0.7143 0.8182 0.7500

Pr

KNN 0.5814 0.3810 0.7727 0.4706

SVM 0.5349 0.3810 0.6818 0.4444

RF 0.7209 0.6667 0.7727 0.7000

The bold values indicate the optimal result under the same index, the same as follow.

different between the two groups (p < 0.01). In the P200 time
window (180–280 ms), bilateral frontal region, bilateral parietal
region, and occipital region were significantly different between
the two groups (p < 0.01).

Furthermore, we used the violin plot to describe the
distribution of 14 features of the right frontal region, as shown
in Figure 4. We also performed t-test on the features in Figure 4,
the results were shown in the Table 4. All the features of N100 in
the right frontal region were significantly different between the
two groups (p <0.01). There was no difference in the latency of
P200 in the right frontal region between the two groups. Thismay
explain why the features of N100 performed better than P200 on
classification, and even better than using them simultaneously.

Then, we used the t-SNE to reduce the dimension of the
best performing N100 features to 3, and then draw them in
three-dimensional space. The result was shown in Figure 5A, red
represented CI, and blue represented HC. It revealed that the
points in CI were more dispersed than normal.

Finally, for the 7 features of N100 in the right frontal region,
we used XGBoost to evaluate the importance of features (Chen
and Guestrin, 2016). The feature importance ranking was listed
in Figure 5B. The LMFP, AVG, Latency, and Amplitude were
the most important, which exactly were consistent with the
most widely used features to measure TEPs in previous studies
(Tremblay et al., 2019). Our results verified the conclusions of the
predecessors and also instructed doctors to pay more attention to
these features in future clinical practice.

4. DISCUSSION

The study showed that machine learning can effectively identify
CI. In the time domain, the features of N100 had the best
performance. In the aspect of spatiality, the features of the right
frontal region and left parietal region had the best performance.
Then, we discussed our results from these two dimensions, and
particularly emphasized the influence of sensory contamination
within the TEP. Finally, we discussed the limitations of our study.

Previous studies have used TMS to stimulate the motor cortex
and have demonstrated that patients with AD have increased

FIGURE 3 | Comparison of TEPs using cluster-based permutation tests. Red means TEP of cognitive impairment (CI) is higher than HC, blue means TEP of CI is

lower than healthy controls (HC). The asterisk indicates that p < 0.01. (A) N100: CI vs. HC. (B) P200: CI vs. HC.
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FIGURE 4 | Distribution of spatial features in right frontal region. (A) N100: LMFP, (B) N100: STD, (C) N100: Latency, (D) N100: Amplitude, (E) N100: AVG, (F) N100:

AUC, (G) N100: Range, (H) P200: LMFP, (I) P200: STD, (J) P200: Latency, (K) P200: Amplitude, (L) P200: AVG, (M) P200: AUC, and (N) P200: Range.

TABLE 4 | Local features in right frontal region.

N100 P200

CI HC P-value CI HC P-value

LMFP 0.67 ± 0.40 0.37 ± 0.22 p < 0.001* 0.70 ± 0.38 0.33 ± 0.19 p < 0.001*

STD 1.23 ± 0.98 0.64 ± 0.38 p < 0.001* 1.05 ± 0.76 0.54 ± 0.27 p < 0.001*

Latency 0.12 ± 0.013 0.11 ± 0.014 0.001* 0.22 ± 0.031 0.22 ± 0.036 0.961

Amplitude –2.77 ± 1.68 –1.10 ± 0.72 p < 0.001* 2.64 ± 1.92 1.11 ± 0.64 p < 0.001*

AVG –1.17 ± 1.10 –0.17 ± 0.39 p < 0.001* 0.98 ± 0.93 0.22 ± 0.48 p < 0.001*

AUC –0.071 ± 0.067 –0.011 ± 0.023 p < 0.001* 0.098 ± 0.094 0.022 ± 0.048 p < 0.001*

Range 3.87 ± 2.71 1.97 ± 1.02 p < 0.001* 3.38 ± 2.19 1.71 ± 0.81 p < 0.001*

* means a significant difference with p = 0.01.
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FIGURE 5 | Feature visualization and importance comparison. (A) The visualization features map based on t-Distributed Stochastic Neighbor Embedding (t-SNE)

dimension-reduction. (B) The feature importance based on XGBoost.

cortical excitability, which is manifested by a decrease in RMT
and an increase in MEP (Alagona et al., 2001; Di Lazzaro et al.,
2004). There is also evidence of high excitability in patients with
AD after TMS stimulating the left DLPFC, which is manifested as
an increase in CEA, and this increase is negatively correlated with
overall cognitive and executive functions (Joseph et al., 2021).
In our study, the CI group had higher GMFP, suggesting higher
cortical excitability which is consistent with previous studies.
This hyper-excitability may reflect the plastic reorganization of
the sensorimotor system and may be used as a compensatory
mechanism to offset the loss of cortical volume and protect the
motor function of the patient (Niskanen et al., 2011; Bagattini
et al., 2019).

It was found in a previous study that the reliability of
the potentials induced by TMS in the left DLPFC are highly
consistent and the measurement error is small. The most
reliable peaks are generally located at 100 and 200 ms (Kerwin
et al., 2018). High reproducibility is necessary as a potential
neurobiomarker. Although there was some prior knowledge that
CI may affect P30 (Bagattini et al., 2019), considering the first
peak may be affected by preprocessing (–5–15 ms removed and
cubic interpolation), we still focused on the N100 and P200 two
components to preserve the temporal features.

In the time domain, the features of N100 have the best
performance according to the four indicators in the classifier. In
the CI group, the change of N100 and P200 may be related to
the alterations of GABAergic activity. Gamma-aminobutyric acid
(GABA) is an inhibitory neurotransmitter. Its natural function
is binding to GABA-A receptors and GABA-B receptors on the
neurons to modulate and block impulses between nerve cells
(Gou et al., 2013). There is some evidence that the amplitude of
the TEPs component is related to GABAergic activity. GABA-
A receptors agonists (alprazolam and diazepam) and GABA-
B receptors agonists (baclofen) can modulate the amplitude of

N100 or P200 (Premoli et al., 2014; Murphy et al., 2016). There
are also some studies stated that the alterations of GABAergic
circuits may contribute to CI by disrupting the overall network
function (Li et al., 2016). This may be the neuropathological basis
for the difference of N100 and P200 between the two groups,
which was the precondition for classification.

In the aspect of spatiality, the features of the right frontal
region and left parietal region had the best performance in the
SVM classifier. From the statistical results, the right prefrontal
region and the left parietal region both had significant differences
in these two selected time windows, which may explain why
the features of these two ROIs perform better in the classifiers.
Interestingly, the significant difference between CI and HC is
reflected in the anterior and posterior regions, and the trend
is opposite over time. This seems to indicate the abnormal
changes in the connectivity of the brains of patients with
CI. Previous studies have shown that the damaged excitatory-
inhibitory balance between anterior and posterior regions might
represent a maladaptive pathogenic mechanism (Bagattini et al.,
2019).

In addition, we want to emphasize the issue of sensory
contamination within the TEP. There is no doubt that the
auditory complex can overlap with N100 and P200 (Conde et al.,
2019), but in fact we have used strict online and offline methods
to avoid the impact of auditory and somatosensory evoked
potential as much as possible. In the data collection process, we
played white noise by earphones for the subjects. In addition, a
foam layer was placed under the coil to inhibit bone conduction
and weaken the scalp sensation caused by the vibration of
the coil. During data preprocessing, we paid attention to the
removal of auditory artifacts in the second ICA run which were
characterized by a topography centering over Cz to Fz and a time
course with bipolar peaks at approximately 100–200ms (Rogasch
et al., 2014). From another perspective, all subjects received
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the same protocol and all the EEG were produced in the same
environment and preprocessed by the same method. Therefore,
even if the online and offline methods cannot completely remove
the auditory and somatosensory evoked potentials, the remaining
potentials have the same effect on both two groups, which does
not contribute to the difference between groups, let alone the
impact on classification. In summary, there is no reason to think
that the difference in the selected time windows is related to
sensory contamination.

In this study, we observed that all classification results
had high specificity but unsatisfied sensitivity, meaning that
CI subjects were not well distinguished from HC. It is due
to the heterogeneity of cognitive related disease, time of
illness, and disease progression may lead to more scattered
features. There was a limitation that all patients with CI
enrolled were highly suspected of AD with mild to moderate
symptoms based on clinical diagnosis and MoCA, excluded
vascular and other types of dementia, but not on biological
markers of CSF or PET. The definition of AD is controversial
throughout articles (Jellinger, 2020; Milà-Alomà et al., 2021).
The focus of this study was the extraction method of
TEPs’ features and machine learning rather than strict AD
diagnostic criteria. To be conservative and rigorous, although
all subjects in the CI group were highly suspected of AD, we
did not define them as AD but summarized it with CI in
this study.

A further limitation is that the sample size in this study was
small in the field of machine learning. Although we have used
data augmentation and voting strategy to obtain a more robust
model, more data will still be needed in subsequent studies to
meet the real and complex clinical needs.

5. CONCLUSION

We found that the TEPs induced by TMS over the left DLPFC
has significant differences between CI and HC. Machine learning
based on the spatiotemporal features of TEPs is effective for the
classification of CI and HC.

In the time domain, the features of N100 had the best
performance in the SVM classifier, with an accuracy of 88.37%. In
the aspect of spatiality, the features of the right frontal region and
left parietal region had the best performance in the SVM classifier,
with an accuracy of 83.72%. By using XGBoost to evaluate the
importance of features, the LMFP, AVG, Latency, and Amplitude
contributed the most in classification. It is suggested that
clinicians should pay close attention to the important features

above, which may be potential biomarkers for diagnosing CI.
In this study, the features selected were all simple and

linear, the classification algorithms used were popular and
sophisticated. Therefore, our research particularly emphasized
the interpretability and clinical usability. These findings prove
that machine learning based on spatiotemporal features of TEP
has the potential to automatically clinical auxiliary diagnosis
of CI.
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Nikulin, V. V., Kičić, D., Kähkönen, S., and Ilmoniemi, R. J. (2003). Modulation

of electroencephalographic responses to transcranial magnetic stimulation:

evidence for changes in cortical excitability related to movement. Eur. J.

Neurosci. 18, 1206–1212. doi: 10.1046/j.1460-9568.2003.02858.x

Niskanen, E., Könönen, M., Määttä, S., Hallikainen, M., Kivipelto, M.,

Casarotto, S., et al. (2011). New insights into alzheimer’s disease

progression: a combined tms and structural mri study. PLoS ONE 6:e26113.

doi: 10.1371/journal.pone.0026113

Pellicciari, M. C., Brignani, D., and Miniussi, C. (2013). Excitability

modulation of the motor system induced by transcranial direct

current stimulation: a multimodal approach. Neuroimage 83, 569–580.

doi: 10.1016/j.neuroimage.2013.06.076

Premoli, I., Castellanos, N., Rivolta, D., Belardinelli, P., Bajo, R., Zipser, C.,

et al. (2014). Tms-eeg signatures of gabaergic neurotransmission in the

human cortex. J. Neurosci. 34, 5603–5612. doi: 10.1523/JNEUROSCI.5089-13.

2014

Rabinovici, G. D., Gatsonis, C., Apgar, C., Chaudhary, K., Gareen, I., Hanna,

L., et al. (2019). Association of amyloid positron emission tomography with

subsequent change in clinical management among medicare beneficiaries

with mild cognitive impairment or dementia. JAMA 321, 1286–1294.

doi: 10.1001/jama.2019.2000

Frontiers in Aging Neuroscience | www.frontiersin.org 11 December 2021 | Volume 13 | Article 80438447

https://doi.org/10.1001/archgenpsychiatry.2011.155
https://doi.org/10.1016/j.neuropharm.2021.108574
https://doi.org/10.1126/science.aan8868
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.12740/PP/45368
https://doi.org/10.1016/j.neuroimage.2018.10.052
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1038/s43587-020-00003-5
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1136/jnnp.2003.018127
https://doi.org/10.1016/j.brainresbull.2005.11.003
https://doi.org/10.1016/S1474-4422(17)30159-X
https://doi.org/10.3724/SP.J.1141.2012.E05-06E75
https://doi.org/10.1016/j.neuron.2007.06.026
https://doi.org/10.1016/j.jalz.2018.01.010
https://doi.org/10.1016/0013-4694(70)90143-4
https://doi.org/10.23937/2378-3001/1410095
https://doi.org/10.1016/j.clinph.2004.01.001
https://doi.org/10.1016/j.ijpsycho.2021.08.008
https://doi.org/10.1016/j.brs.2017.12.010
https://doi.org/10.1016/j.neurol.2015.11.004
https://doi.org/10.1016/s1388-2457(01)00721-0
https://doi.org/10.1038/s41380-018-0342-8
https://doi.org/10.3389/fpsyg.2018.02403
https://doi.org/10.3389/fnagi.2016.00031
https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf
https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.14283/jpad.2020.51
https://doi.org/10.1124/pharmrev.120.000031
https://doi.org/10.7554/eLife.13598
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.3390/ijms20020257
https://doi.org/10.1046/j.1460-9568.2003.02858.x
https://doi.org/10.1371/journal.pone.0026113
https://doi.org/10.1016/j.neuroimage.2013.06.076
https://doi.org/10.1523/JNEUROSCI.5089-13.2014
https://doi.org/10.1001/jama.2019.2000
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhang et al. Classify Cognitive Impairment Using TEPs

Rajji, T. K., Sun, Y., Zomorrodi-Moghaddam, R., Farzan, F., Blumberger, D. M.,

Mulsant, B. H., et al. (2013). Pas-induced potentiation of cortical-evoked

activity in the dorsolateral prefrontal cortex. Neuropsychopharmacology 38,

2545–2552. doi: 10.1038/npp.2013.161

Rogasch, N. C., Daskalakis, Z. J., and Fitzgerald, P. B. (2015). Cortical inhibition

of distinct mechanisms in the dorsolateral prefrontal cortex is related

to working memory performance: A tms–eeg study. Cortex 64, 68–77.

doi: 10.1016/j.cortex.2014.10.003

Rogasch, N. C., Sullivan, C., Thomson, R. H., Rose, N. S., Bailey, N. W.,

Fitzgerald, P. B., et al. (2017). Analysing concurrent transcranial

magnetic stimulation and electroencephalographic data: a review and

introduction to the open-source tesa software. Neuroimage 147, 934–951.

doi: 10.1016/j.neuroimage.2016.10.031

Rogasch, N. C., Thomson, R. H., Farzan, F., Fitzgibbon, B. M., Bailey, N. W.,

Hernandez-Pavon, J. C., et al. (2014). Removing artefacts from tms-eeg

recordings using independent component analysis: importance for assessing

prefrontal and motor cortex network properties. Neuroimage 101, 425–39.

doi: 10.1016/j.neuroimage.2014.07.037

Rosanova, M., Casarotto, S., Pigorini, A., Canali, P., Casali, A., and

Massimini, M. (2012). Combining transcranial magnetic stimulation

with electroencephalography to study human cortical excitability and

effective connectivity. Neuromethods 67, 435–457. doi: 10.1007/765

7_2011_15

Tremblay, S., Rogasch, N. C., Premoli, I., Blumberger, D. M., Casarotto, S., Chen,

R., et al. (2019). Clinical utility and prospective of tms–eeg. Clin. Neurophysiol.

130, 802–844. doi: 10.1016/j.clinph.2019.01.001

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-sne. J. Mach.

Learn. Res. 9, 2579–2605.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Trans. Neural

Netw. 10, 988–999. doi: 10.1109/72.788640

Ye, Q., and Bai, F. (2018). Contribution of diffusion, perfusion and functional mri

to the disconnection hypothesis in subcortical vascular cognitive impairment.

Stroke Vascular Neurol. 3, 131–139. doi: 10.1136/svn-2017-000080

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Zhang, Lu, Zhu, Ren, Dang, Su, Lan, Jiang, Zhang, Feng, Shi,

Wang, Hu and Guo. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 12 December 2021 | Volume 13 | Article 80438448

https://doi.org/10.1038/npp.2013.161
https://doi.org/10.1016/j.cortex.2014.10.003
https://doi.org/10.1016/j.neuroimage.2016.10.031
https://doi.org/10.1016/j.neuroimage.2014.07.037
https://doi.org/10.1007/7657_2011_15
https://doi.org/10.1016/j.clinph.2019.01.001
https://doi.org/10.1109/72.788640
https://doi.org/10.1136/svn-2017-000080
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


OPINION
published: 11 January 2022

doi: 10.3389/fnagi.2021.827273

Frontiers in Aging Neuroscience | www.frontiersin.org 1 January 2022 | Volume 13 | Article 827273

Edited by:

Peng Xu,

University of Electronic Science and

Technology of China, China

Reviewed by:

Chao Chen,

Tianjin University of Technology, China

Yuliang Ma,

Hangzhou Dianzi University, China

*Correspondence:

Yanhong Zhou

yhzhou168@163.com

Haiqing Song

songhq@xwhosp.org

Specialty section:

This article was submitted to

Alzheimer’s Disease and Related

Dementias,

a section of the journal

Frontiers in Aging Neuroscience

Received: 01 December 2021

Accepted: 16 December 2021

Published: 11 January 2022

Citation:

Wen D, Xu J, Wu Z, Liu Y, Zhou Y, Li J,

Wang S, Dong X, Saripan MI and

Song H (2022) The Effective Cognitive

Assessment and Training Methods for

COVID-19 Patients With Cognitive

Impairment.

Front. Aging Neurosci. 13:827273.

doi: 10.3389/fnagi.2021.827273

The Effective Cognitive Assessment
and Training Methods for COVID-19
Patients With Cognitive Impairment

Dong Wen 1, Jian Xu 2, Zhonglin Wu 2, Yijun Liu 3, Yanhong Zhou 4*, Jingjing Li 2,

Shaochang Wang 2, Xianlin Dong 5, M. Iqbal Saripan 6 and Haiqing Song 7*

1 Brain Computer Intelligence and Intelligent Health Institution, Institute of Artificial Intelligence, University of Science and

Technology Beijing, Beijing, China, 2 The Key Laboratory for Computer Virtual Technology and System Integration of Hebei

Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao, China, 3Department of

Statistics, School of Science, Yanshan University, Qinhuangdao, China, 4Department of Computer Science and Technology,

School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology,

Qinhuangdao, China, 5Department of Biomedical Engineering, Chengde Medical University, Chengde, China, 6Department

of Computer and Communication Systems Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia,
7Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China

Keywords: cognitive assessment and training, COVID-19 patients, cognitive impairment, brain-computer

interface, virtual reality

INTRODUCTION

Since late 2019, COVID-19 has been raging worldwide. Related studies have reported that many
COVID-19 patients present cognitive sequelae (Ahmad and Rathore, 2020; Baschi et al., 2020;
Gunasekaran et al., 2020; Heneka et al., 2020; Kieron et al., 2020; Koralnik and Tyler, 2020;
Pinna et al., 2020; Vespignani et al., 2020; Woo et al., 2020; Taquet et al., 2021). However,
the implementation of isolation measures greatly limits the traditional cognitive impairment
assessment and treatment methods (Lara et al., 2020). Therefore, we need to explore better ways
to assess and train cognitive impairment in patients with COVID-19.

The rapid development of a brain-computer interface (BCI), virtual reality (VR), and artificial
intelligence has promoted the diagnosis and treatment of cognitive impairment in the direction
of intellectual development. Studies have shown that BCI-VR technology can compensate for the
limitations of BCI alone and provide new rehabilitation and assessment methods for patients with
cognitive impairment, which has attracted increasing attention (Wen et al., 2018, 2020; Bauer and
Andringa, 2020; Mancuso et al., 2020; Pinter et al., 2021).

This paper first discussed current cognitive impairment assessment and rehabilitation methods
for patients with cognitive impairment. On this basis, we proposed a new comprehensive strategy
for cognitive impairment assessment and rehabilitation based on BCI-VR. It will be a new approach
for cognitive rehabilitation that fully integrates the accurate detection of BCI technology and the
effective training of VR technology. Further, we discussed the advantages and challenges of BCI-
VR in cognitive impairment assessment and rehabilitation training for COVID-19 patients in this
current pandemic.

CURRENT COGNITIVE IMPAIRMENT OF COVID-19 PATIENTS

Since the start of the COVID-19 pandemic, a growing number of studies have reported neurological
impairment in COVID-19 patients (Ahmad and Rathore, 2020; Gunasekaran et al., 2020; Heneka
et al., 2020; Kieron et al., 2020; Koralnik and Tyler, 2020; Pinna et al., 2020; Vespignani et al.,
2020; Taquet et al., 2021). We found that stroke and cognitive impairment are the most common
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manifestations of neurological impairment in COVID-19
patients (Belani et al., 2020; Fara et al., 2020; Fatima et al.,
2020; Haji Akhoundi et al., 2020; Heneka et al., 2020; Jain
et al., 2020; Mahboob et al., 2020; Merkler et al., 2020; Rajdev
et al., 2020; Sezgin et al., 2020; Taquet et al., 2021). Studies
showed that the incidence of stroke in confirmed hospitalized
COVID-19 patients ranged from 2.8 to 5.4%, the incidence of
cognitive impairment was 26%, and patients with stroke often
cause concurrent manifestations of cognitive impairment (Haji
Akhoundi et al., 2020; Majidi et al., 2020; Oxley et al., 2020;
Sun et al., 2020; Taquet et al., 2021). Other studies showed that
patients with neurological impairment caused by COVID-19
tended to be younger (Ahmad and Rathore, 2020; Cavallieri
et al., 2020; Oxley et al., 2020; Woo et al., 2020; Harrison et al.,
2021).

In the current pandemic, both hospitals and patients are facing
huge and severe challenges in the assessment and rehabilitation
training of patients with cognitive impairment (Coetzer, 2020;
Richardson et al., 2020). Studies showed, as the COVID-19
pandemic intensified, patients with cognitive impairment were
limited in going out for rehabilitation training, which had
many negative effects on the mental state of patients and his
mental condition was deteriorating (Lara et al., 2020; Manca
et al., 2020; Devita et al., 2021). Therefore, we need to explore
better ways to assess and train cognitive impairment in patients
with COVID-19.

CURRENT EVALUATION METHODS OF
COGNITIVE IMPAIRMENT

Currently, common cognitive impairment methods include
cognitive scale, neuroimaging technology and new wearable
devices. In clinical practice, the most classic method of objective
evaluation is the cognitive scale. The cognitive scale test achieves
the evaluation effect by comparing the patient’s test results with
the scale indicators, include: Mini-Mental State Examination
(MMSE) (Pangman et al., 2000), Montreal Cognitive Assessment
(MoCA) (Nasreddine et al., 2019) and Activities of Daily Living
(ADL) (Lopez Mongil, 2017), Auditory Verbal Learning Test
(AVLT) (Stricker et al., 2021), Trail Marking Test (TMT)
(Lunardini et al., 2020), etc. Recently, Burns et al. proposed a
new hybrid scale—Free-COG, which could also be used to assess
subjects’ cognitive and executive functions (Burns et al., 2021).
However, subjective factors of the testers reduced the accuracy of
the results in the cognitive scale test.

The degree of cognitive impairment of patients is evaluated
by observing the changes of brain structure through imaging
(Knopman and Petersen, 2014). Among them, the commonly
used neuroimaging techniques include: structural neuroimaging
techniques (Zhang et al., 2019), functional neuroimaging
techniques, positron emission tomography (PET), molecular
imaging, and functional magnetic resonance imaging (fMRI)
(Zhang et al., 2019; Xu et al., 2020). However, neuroimaging
technology equipment is larger, and detection costs are higher,
which significantly limits its application (Narayanan andMurray,
2016).

Relevant studies have introduced wearable devices into the
assessment of cognitive impairment (Narayanan and Murray,
2016). Related study showed that wearable biosensor devices
might be a viable tool to assess physiological changes in
patients with AD, enabling remote and continuous monitoring
of neurocognitive function in patients (Saif et al., 2019;
Stavropoulos et al., 2020; Eggenberger et al., 2021). However, the
evaluation indicators of the new wearable devices are uncertain,
and there is no unified standard in use.

CURRENT REHABILITATION METHODS OF
COGNITIVE IMPAIRMENT

Currently, commonly used cognitive rehabilitation methods
include medication-assisted, cognitive rehabilitation training,
and home rehabilitation.

Medication-assisted therapy can inhibit the induction of
cognitive impairment or other diseases (Rejdak and Grieb, 2020;
Zhaojun and Miaser, 2020). The implementation of medication-
assisted therapy is costly, and it also only serves as an adjustment
role in the rehabilitation of cognitive impairment and may be
accompanied by other side effects (Jin-xuan et al., 2020).

General cognitive rehabilitation training usually refers to
systematic and targeted training depending on the patient’s
cognitive function under face-to-face guidance by the
rehabilitation therapist. Studies showed it can improve or
maintain patients’ cognitive abilities related to daily task
performance, so as to prevent or delay cognitive decline (Irazoki
et al., 2020). But it requires the participation of both the
therapist and the patient. And there are many limitations in the
rehabilitation plan, such as time, personnel, and cost.

During the COVID-19 pandemic, traditional rehabilitation
training is limited, researchers have suggested remote home
rehabilitation for patients with cognitive impairment (Chang
and Boudier-Revéret, 2020) and adopting some remote home
rehabilitation measures (Richardson et al., 2020). Through
literature analysis and comparison, it is found that home
rehabilitation provides great convenience for both the therapists
and patients, which can meet the needs of patients with cognitive
impairment (Natta et al., 2015; Gately et al., 2019). However,
long-term home rehabilitation reduces contact between patients
with cognitive impairment and the outside world and has a
certain impact on the patient’s psychological state.

BCI-VR STRATEGY FOR EVALUATING AND
REHABILITATING COVID-19 PATIENTS
WITH COGNITIVE IMPAIRMENT

It can be seen that there are many limitations in traditional
cognitive impairment assessment and cognitive rehabilitation
training during the COVID-19 pandemic. There is an urgent
need for a novel and comprehensive strategy to overcome
the shortcomings of traditional approaches. Thus, we propose
a comprehensive rehabilitation strategy of BCI-VR, which
combines the characteristics of accurate detection of BCI
technology with the characteristics of effective training of
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FIGURE 1 | Diagram of the rehabilitation strategy based on BCI-VR.

VR technology and provide one-stop service for cognitive
impairment assessment and cognitive rehabilitation training for
COVID-19 patients. This strategy is described in detail below.

In BCI technology, EEG signals can be used to objectively and
accurately detect the brain specificity of patients with cognitive
impairment, which could be performed in the community
or even at home (PoŽar et al., 2020; San-Juan et al., 2020;
Pinter et al., 2021). VR technology provides an immersive
environment for patients with cognitive impairment, improves
patient participation and training effect (Snider et al., 2013; Appel
et al., 2020; Bauer and Andringa, 2020; Mancuso et al., 2020;
Thielbar et al., 2020). This makes the new rehabilitation strategy
of BCI-VR proposed in this research more feasible.

The BCI-VR rehabilitation strategy proposed in this study
provides guarantee for cognitive impairment assessment
and cognitive rehabilitation training during the COVID-19
pandemic, which can meet the cognitive rehabilitation needs of
patients at home. Moreover, the application of VR technology
would greatly alleviate the negative psychological state and
mental state of patients with cognitive impairment caused by
blocking (Gao et al., 2020). In the implementation process
(as shown in Figure 1), BCI-VR requires computers, EEG
acquisition instruments and VR wearable devices, which are

relatively light and common compared with medical devices
in hospitals.

The BCI-VR strategy is specifically divided into a behavioral
data analysis module and an EEG analysis module. During
cognitive rehabilitation training in a VR environment, the EEG
signals of patients with cognitive impairment are collected
synchronously for offline or real-time online analysis (Taquet
et al., 2021). Rehabilitation training data of patients with
cognitive impairment in the VR environment will be recorded
in the behavioral data analysis module. With the advancement of
the rehabilitation training process, behavior data analysis can be
intuitive to see its effect. For example, after a month of spatial
navigation ability training, the first day of the spatial navigation
ability will compare the 30 days of spatial navigation ability to test
the result of rehabilitation training (Vespignani et al., 2020).

The EEG signals of cognitive impairment patients during
rehabilitation training will be recorded and processed in the
EEG analysis module. Continuous rehabilitation training will
gradually show the characteristics of brain regions that constantly
change. In patients, these changes can play an evaluation role.

Compared with traditional methods, BCI-VR has the
following advantages: It reduces the need for patients with
cognitive impairment to go out, and they can receive effective
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cognitive impairment assessment and rehabilitation at home;
long-term home rehabilitation can relieve the mental state of
patients with cognitive impairment, such as impatience and
depression; it provides a low-cost cognitive rehabilitation strategy
that uses relatively light and common equipment, which can be
used in a wide range of applications.

DISCUSSION

More and more studies have been reported on the symptoms
of cognitive impairment in COVID-19 patients (Baschi et al.,
2020; Haji Akhoundi et al., 2020; Heneka et al., 2020; Jain
et al., 2020). These patients need to undergo necessary cognitive
impairment assessment and rehabilitation training after they
are cured from COVID-19. Traditional cognitive impairment
assessment and rehabilitation training have been greatly limited
during the pandemic. BCI-VR provides a feasible method for
patients in this situation. Recent studies have shown that the EEG
signals of COVID-19 patients have certain characteristics (Sethi,
2020; Kubota et al., 2021). More and more researchers suggested
that more attention should be paid to the EEG signals of patients
during the epidemic (Haines et al., 2020). Perhaps BCI-VR
may also monitor whether SARS-COV-2 virus reactivation occur
while conducting cognitive rehabilitation training for COVID-19
patients after they are cured.

The application scenarios and implementation forms of
the BCI-VR strategy are relatively flexible. It can be applied
in rehabilitating various cognitive functions, such as memory,
spatial cognition, or language perception, and multi-person
interactive rehabilitation training, cross-scene interactive
rehabilitation training, or cross-age rehabilitation training.
Moreover, studies have shown that cognitive rehabilitation
training with multi-person interaction in a VR environment has
a better effect (Thielbar et al., 2020). Therefore, BCI-VR is better
developed and applied in cognitive impairment rehabilitation.

BCI-VR in the assessment and rehabilitation of cognitive
impairment is still in its early stages. In future research, BCI-VR
will make great progress in integrating medical and industrial
intelligence, which is not limited to cognitive impairment
rehabilitation. However, the current optimized data fusion

algorithm and feature extraction of high-dimensional data are
still a bottleneck for BCI-VR development. In the following work,
we will continue to solve the key BCI and VR technologies in
monitoring, evaluating, and rehabilitating cognitive impairment.

CONCLUSION

Through literature analysis and summary, we will find that
more and more patients, including young people with COVID-
19, exhibit signs of cognitive impairment. We analyze some
popular traditional cognitive impairment assessment and
rehabilitation methods and summarize their limitations
during the current pandemic. Moreover, the proposed new
comprehensive rehabilitation BCI-VR strategy and the cognitive
impairment assessment and rehabilitation process of BCI-
VR are expounded. The advantages of BCI-VR in cognitive
impairment assessment and rehabilitation are discussed, and the
development trend of this technology in the future is evaluated.
However, the optimized data fusion algorithm and feature
extraction of high-dimensional data are still the bottlenecks of
BCI-VR development. Nevertheless, we expect that BCI-VR will
soon play an important role in many fields, such as medical
rehabilitation, providing more service support for humans.
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Early detection of Alzheimer’s disease (AD), such as predicting development from
mild cognitive impairment (MCI) to AD, is critical for slowing disease progression and
increasing quality of life. Although deep learning is a promising technique for structural
MRI-based diagnosis, the paucity of training samples limits its power, especially for
three-dimensional (3D) models. To this end, we propose a two-stage model combining
both transfer learning and contrastive learning that can achieve high accuracy of MRI-
based early AD diagnosis even when the sample numbers are restricted. Specifically,
a 3D CNN model was pretrained using publicly available medical image data to learn
common medical features, and contrastive learning was further utilized to learn more
specific features of MCI images. The two-stage model outperformed each benchmark
method. Compared with the previous studies, we show that our model achieves
superior performance in progressive MCI patients with an accuracy of 0.82 and AUC
of 0.84. We further enhance the interpretability of the model by using 3D Grad-CAM,
which highlights brain regions with high-predictive weights. Brain regions, including the
hippocampus, temporal, and precuneus, are associated with the classification of MCI,
which is supported by the various types of literature. Our model provides a novel model
to avoid overfitting because of a lack of medical data and enable the early detection of
AD.

Keywords: mild cognitive impairment, Alzheiemer’s disease, contrastive learning, transfer leaning, MRI, deep
learning

INTRODUCTION

Alzheimer’s disease (AD), a severe neurodegenerative disease, is the most common type of dementia
(Heun et al., 1997; Association, 2019). Nowadays, at least 50 million people worldwide suffer from
AD or other types of dementia, and it is expected that this number will reach 131 million in 2050
(Livingston et al., 2017). This further increases the burden of the medical care system in aging
societies. Mild cognitive impairment (MCI) is a stage between normal and AD, with 10–12% of
people developing AD each year (Petersen, 2000). Based on the progression toward AD, it can be
classified into two categories: progressive MCI (pMCI) and stable MCI (sMCI). Although there is
no effective treatment for AD at present, its progression can be slowed by medication, memory
training, exercise, and diet, which necessitates the early detection of potential patients (Roberson
and Mucke, 2006). Neuroimaging techniques, which can detect disease-related neuropathological
changes, are valuable tools for assessing and diagnosing AD (Johnson et al., 2012). MRI is one of
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the most widely studied neuroimaging techniques because
it is non-invasive, generally available, affordable, and
capable of distinguishing between different soft tissues
(Klöppel et al., 2008).

With the rapid development, deep learning has achieved
remarkable progress in a variety of fields, especially in computer
vision and medical imaging, where it outperforms traditional
machine learning methods (Shen et al., 2017; Bernal et al., 2019;
Abrol et al., 2021). Deep learning approaches perform feature
selection during model training and loss function optimization
without the need for domain experts’ prior knowledge. As a
result, individuals with no medical expertise can use them for
research and applications, especially in the field of medical
image analysis (Shen et al., 2017). Notably, Convolutional Neural
Network (CNN) has achieved outstanding performance in the
classification tasks of AD and normal control (NC) (Liu et al.,
2019) and pMCI/sMCI (Choi and Jin, 2018; Spasov et al., 2019).
In general, deep neural networks require large samples for
model fitting, especially 3D deep neural network models with
more parameters. However, as compared with existing million-
sample natural image datasets, neuroimaging datasets have a
relatively small sample size (Russakovsky et al., 2015), which can
possibly be explained by the following factors. At first, collecting
large training sets and labeling image data are costly and time
consuming (Shen et al., 2017; Irvin et al., 2019). Furthermore,
technical and privacy issues also constraints obstruct medical
data collection (Irvin et al., 2019). Therefore, preventing model
overfitting due to the scarcity of medical samples has become one
of the hottest topics in deep learning of neuroimaging.

Transfer learning is a popular method for dealing with a
small number of samples. It utilizes a pretrained model with
supervised learning on a large labeled dataset (source domain,
e.g., ImageNet) and then fine tunes it on the task of interest
(target domain). Studies have shown that knowledge transferred
from large-scale annotated natural images (ImageNet) to medical
images can significantly improve the effectiveness of assisted
diagnosis (Tajbakhsh et al., 2016; Raghu et al., 2019). However,
standard medical images, such as MRI, CT, and positron
emission tomography (PET), are in three dimensional (3D),
preventing ImageNet-based pretrained models from being
directly transferred to MRI. Converting 3D data into two-
dimensional (2D) slices is a typical method, however, this ignores
the rich 3D spatial anatomical information and inevitably affects
the performance. To address this issue, several studies (Yang et al.,
2017; Zeng and Zheng, 2018) have used pretrained 3D models
based on natural video datasets (Tran et al., 2014; Carreira and
Zisserman, 2017) to transfer to medical imaging tasks, but have
not yet achieved the expected results because of the vast difference
between these two domains.

Recently, contrastive learning, a self-supervised learning
method, has recently been demonstrated to perform superiorly
in various vision tasks (Wu et al., 2018; Zhuang C. et al.,
2019; Chen X. et al., 2020). Momentum Contrast (MoCo) (He
et al., 2020) is a state-of-the-art method in contrastive learning,
which minimizes positive pairs variability while maximizing
negative pairs variability. Based on existing research concerns,
we proposed a two-stage model based on MoCo (He et al., 2020)

to classify sMCI and pMCI. The main contributions of our
study are as follows.

1) Systematic evaluation of 3D ResNet models with different
structures and selection of the best model for sMCI
and pMCI classification. Provides a reference for
related studies.

2) A two-stage model is proposed to solve the problem of
domain transfer between the source and target domains,
which solves the problem of overfitting caused by small
samples in sMCI and pMCI classification and improves the
classification performance in AD diagnosis. To the best of
our knowledge, we first introduce the MoCo in pMCI and
sMCI classification.

3) Three-dimensional Gradient-weighted Class Activation
Mapping (Grad-CAM), which is widely used for model
interpretability, was introduced to get the heatmap that
highlights the brain regions our model focuses on and
increases the interpretability of the model.

MATERIALS AND METHODS

As indicated in Figure 1, our two-stage transfer learning model
was divided into three main parts. In our framework, we did not
directly transfer trained model on natural image sets or other
medical image sets to our research such as previous studies,
mainly for the following reasons: at first, the adoption of 3D CNN
in this study to preserve more spatial information limits direct
transfer learning from 2D natural images; second, the different
components of medical image sets may harm the performance.
For instance, the Med3D is composed of MRI and CT of brains,
lungs, chests, and other organs (Chen et al., 2019), while our MCI
data set only includes brain MRI data. The details of each step
were described next.

Dataset and Data Preprocessing
Data used in our study were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, which is the
largest open-access AD database with wide popularity in AD-
related research. It was launched in 2003 by the several public
and private organizations to measure the progression of MCI
and early AD by medical image (such as MRI, PET), genomics,
biological markers, and neuropsychological assessments (Jack
et al., 2008). More information can be found at http://adni.loni.
usc.edu/.

As defined in this study, participants with MCI at baseline who
developed or did not develop AD within 3 years were referred to
as pMCI and sMCI, respectively. To prevent data leakage, only
participants’ baseline data were selected in this study. Finally,
data from 577 MCI subjects (Means ± std age = 73.08 ± 7.25
years) were included in our study, and 297 of the MCI was
classified as sMCI (51.5%) and the rest 280 were pMCI (48.5%).
The demographics and the mini-mental state examination scores
(MMSEs) information of subjects is summarized in Table 1.
Differences in the median age and gender between groups
were tested using ANOVA and Fisher’s exact test, respectively.
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FIGURE 1 | The two-stage model. In step 1, we used the Med3D (Chen et al., 2019) pre-trained model to initialize network weights and learn the common medical
image features. In step 2, we performed contrastive learning on unlabeled sMCI and pMCI samples using the improved MoCo to update the network weights, further
increasing the correlation between the target and source domains and learning the specific medical features of the sMCI/pMCI classification task. Finally, the network
was fine-tuned using labeled sMCI/pMCI samples to achieve sMCI and pMCI classification. MoCo, Momentum Contrast; pMCI, progressive mild cognitive
impairment; sMCI, stable mild cognitive, impairment.

TABLE 1 | A summary of the demographic and clinical information of participants.

Number Age (years old) Sex(M/F) MMSE

sMCI 297 72.2 ± 7.4[55.0,88.4] 174/123 28.0 ± 1.7[23,30]

pMCI 280 73.9 ± 6.9[55.2,88.3] 172/108 26.8 ± 1.8[21,30]

Values are presented as Means ± Standard Deviation [Range]; M, Male; F, Female;
MMSE, Mini-Mental State Examination.

These two interactions yielded no statistically significant results
(p > 0.05).

All 1.5T and 3T structural MRI of the participant were
downloaded. The detailed information of MRI, such as scanner
protocols, can be found at http://adni.loni.usc.edu/methods/
documents/mri-protocols/. Data are preprocessed using FSL1

with three main steps: bias field correction using the N4
algorithm (Tustison et al., 2010); affine linear alignment of
scans onto the MIN152 atlas; skull stripping of each image for
129× 145× 129 voxels. Figure 2 shows the difference before and
after preprocessing of the MRI from the same sample.

Network Weight Initialization Using
Med3D
Many studies have demonstrated that using transfer learning
parameter initialization can significantly improve the

1https://fsl.fmrib.ox.ac.uk/

performance of models compared to training from scratch
(Afzal et al., 2019; Mousavian et al., 2019; Naz et al., 2021). This
study selected the Med3D network and its pretrained weights on
eight segmented datasets (Chen et al., 2019).

The authors of Med3D integrated data from eight medical
segmentation datasets to create the 3DSeg-8 dataset, which
contains multiple modalities (MRI and CT), target organs (brain,
heart, pancreas), and pathological conditions (CodaLab, 2021
Competition; Menze et al., 2015; Tobon-Gomez et al., 2015;
Medical Segmentation Decathlon, 2021). Med3D uses a standard
encode–decode partition structure, where the encoder uses the
ResNet family. The main idea of ResNet is to introduce the
residual block in the network, as illustrated in Figure 3, where
F(x) is the residual mapping and X is the identity mapping, also
called “shortcut.” This helps train a deeper network to achieve
higher accuracy without vanishing or explosion of the gradient.
Notably, Med3D uses a parallel format for model training,
which means the same encoder is used for eight datasets, and
the decoder is composed of 8 branches accordingly in parallel.
This allows the decoder to adapt to different organizational
segmentation targets, while the encoder can learn universal
features. Figure 1, Step1 depicts the Med3D structure. Med3D
pretrained models can be used for classification, detection, and
segmentation. We used the parameters of the models pretrained
by the 3DSeg-8 dataset for the initialization of our network.
Transfer learning strategy effects were evaluated in various
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FIGURE 2 | Comparison of MRI data before and after preprocessing. (A,B) Show the differences before and after preprocessing from the sagittal, axial, and coronal
view of the brain, respectively.

ResNet networks in Med3D, including, ResNet-18, ResNet-34,
ResNet-50, ResNet-101, ResNet-152 (He et al., 2016).

Transfer Learning Using Contrastive
Learning
We extracted general 3D medical image features by Med3D
(Chen et al., 2019). However, while Med3D includes MRI and
CT of brains, lungs, chests, and other organs, whereas our MCI
data set only include brain MRI data, there are still domain
transfer concerns between the dataset of Med3D and MRI of
sMCI and pMCI (Chen et al., 2019), while our MCI data set is
only composed of brain MRI data. Contrastive learning, a special
unsupervised learning method with a supervisory function, was
introduced in this study to further increase the correlation
between the target and source domains. The labels of contrastive
learning are generated by the data itself rather than by manual
labeling (Liu et al., 2020). It uses unlabeled data to train models
and learn embeddings of the data by maximizing the consistency
between different augmented views of the same sample and
minimizing the consistency between different samples through a
contrast loss function (Tian et al., 2020).

Currently, there are various representative contrastive
learning methods, such as MoCo (He et al., 2020), SimCLR
(Chen T. et al., 2020), and PIRL (Misra and van der Maaten,
2020). Because of the sample size and computational resources
constraints, we chose MoCo as our pretraining model in our
study. Unlike the end-to-end gradient update of SimCLR, MoCo
introduces a dynamic queueing dictionary, which is updated by
adding new training batches to the queue while removing the
oldest ones from the queue according to the first-in-first-out
principle and keeping the length of the queueing dictionary

unchanged. This approach allows MoCo to obtain good training
results with small batch size.

Given and preprocessed sample x, contrastive learning
obtains two augmented samples xq and xk by data augmentation
of sample x. xq and xk are referred to as query data and key data,
respectively. q and k are the latent representation of xq and xk
using a query encoder q=fq( xq;θq) and key encoder k=fk(xk;θk) with
weight θq and θk , respectively. If the query and the key belong
to the same sample, it is marked as a positive pair k+ . Otherwise,
it is a negative sample pair k− . The auxiliary task in contrastive
learning is: given a pair ( xq , xk ), determining whether it is a

FIGURE 3 | Residual block. The ResNet’s Core Modules.
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positive or negative sample pair and making the positive samples
closer together and the negative samples further apart.

Give a query q. MoCo applies a queue storing a set of keys
k from different samples, including one k+ and several k− . The
contrastive loss can be defined as:

Lq,k+,{k−} = −log
exp

(
q · k+/τ

)
exp

(
q · k+/τ

)
+
∑

k− exp
(
q · k−/τ

) (1)

Here, τ is the temperature parameter. The model updates the
encoder weights by minimizing the contrastive loss.

In MoCo, the key encoder is neither updated by back-
propagation nor copied from the query encoder. Still, a running
average of the key encoder is used, which is known as a
momentum encoder. The updating of θq and θk can be formulated
as:

θq← θq − α ∂L
∂θq

θk← mθk + (1−m)θq
(2)

Here, m ∈ [0, 1) is the momentum coefficient. As in Eq. (2),
θk is updated more smoothly than θq which is updated by back-
propagation.

It was shown that data augmentation methods such as
Gaussian blur and color distortion for natural images might not
be applicable in the medical image. For example, Gaussian blur
on MRI can potentially change the label of the data. Therefore,
we improved the data augmentation method in MoCo by using
random rotation (± 10◦), horizontal flip, and random scaling
(± 10%) on 3D MRI. In detail, we rotated images at any angle
between –10◦ and +10◦ along the three axes. Random scaling
was also applied to randomly scale the image by ± 10%. If the
image size is larger than the size of the original image, the same
volume of the original image is extracted by cropping the center
region of the image. If the volume is less than its original size, it is
filled with 0 in the reduced region. Figure 4 shows the schematic
diagram of the three data augmentation methods.

We performed MoCo on the full unlabeled MRI data using
the Med3D pretrained ResNet as the encoder. In addition, as it
is shown that adding a projection head helps to learn feature
representation better (Chen T. et al., 2020; Chen X. et al., 2020),
we added a projection head, as shown in Figure 1. We used two
MLP with 128-D hidden layers and a ReLU activation function as
the projection head as:

zq = g(q) =W2σ
(
W1q

)
zk = g(k) =W2σ

(
W1k

) (3)

where W1 and W2 represent the hidden and output layer weights,
and σ is the ReLU activation function.

Classification
The last step of our model is classification, where the labeled data
were divided into training, validation, and test sets to fine-tune
the pretrained encoders. We added a linear classifier to the frozen
backbone model to complete the classification of sMCI and pMCI
as proposed by Chen X. et al. (2020).

Model Evaluation
We first used different ResNet, including ResNet-10, ResNet-
34, ResNet-50, ResNet-101 as our two-stage model backbone
network, and selected the ResNet with the best performance
(ResNet-50, see in results) as our backbone in the following
comparative experiment.

Evaluation of Transferring Learning Strategies
We first conducted the following comparative experiments with
different transfer learning strategies. All the models in different
transfer learning strategies used the best ResNet selected by the
first experiment.

λ Med3D, pretrained ResNet using Med3D and fine-tuned the
model to complete the classification of sMCI and pMCI.

λ MoCo, random initialization of weights, followed with the
modified MoCo in the method to train the ResNet without using
sMCI/pMCI labels. Then fine-tune the model using labeled data
and do the classification.

λ Only ResNet, random initialization of weights, and training
ResNet from scratch.

λ Med3D+MoCo, our two-stage model.

Comparison With Previous Studies
To comprehensively understand the performance of our method,
we reviewed the state-of-the-art literature, which utilized deep
learning to predict the conversion from MCI to Alzheimer’s
using MRI. We selected studies that achieved criteria for a fair
comparison, including (1) only used MRI. (2) published in the
last 3 years. (3) the data were from ADNI.

We selected five evaluation metrics to evaluate our model
accurately. (1) Accuracy (Acc) is used to measure the proportion
of correctly classified samples. (2) Sensitivity (Sens), also known
as the true positive rate, is the proportion of predicted positive
results that are true positives. (3) Specificity (Spec) is the
proportion of correctly identified negatives. (4) F1-score (F1)
is the reconciled average of sensitivity and retrieval. (5) Area
Under ROC Curve (AUC) represents how the false-positive rate
increases with the true-positive rate and increases the area under
the characteristic curve. The aforementioned evaluation metrics
were calculated based on True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative (TN), and these four
indicators form a confusion matrix.

In our study, sMCI and pMCI were referred to as positive
and negative examples, respectively. We can calculate accuracy,
sensitivity, specificity, and F1 as follows:

Acc =
TP + TN

TP + TN + FN + FP
(4)

SPE =
TN

TN + FP
(5)

SEN =
TP

TP + FN
(6)

F1 = 2 ×
TP

(2 × TP+ FP+ FN)
(7)
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FIGURE 4 | Data augmentation schematic. Three data augmentation were used to augment the data size: random rotation, horizontal flip, and random scaling.

Finally, we used the non-parametric bootstrap to construct
each evaluation metrics’ CIs. A total of 10,000 bootstrap replicates
were extracted from the test set, and the performance metrics
of the model on each bootstrap replicate were calculated.
This generated a distribution for each estimate and reported
95% bootstrap percentile intervals (2.5 and 97.5 percentile)
(Efron and Tibshirani, 1993).

Experimental Settings
The model was implemented in PyTorch. We used Stochastic
Gradient Descent (SGD) with a weight decay of 0.0001 and
momentum of 0.99 as our optimizer. A minibatch size of 16
and a cosine annealing learning rate with an initialized value
of 0.01 were used in training. Other hyperparameters are the
same as default values in MoCo (He et al., 2020). All unlabeled
data were used to train MoCo. We trained the classifier with
optimized cross-entropy loss and a learning rate of 0.001 in 100
epochs. The dataset was randomly split into training and testing
data with a ratio of 8:2. Optimal hyperparameters were selected
using fivefold cross-validation on the training set, and the optimal
model was chosen for model evaluation on the test set (Figure 5).
All experiments were run on NVIDIA GTX 2080.

RESULTS

Results of Different ResNet Models
Using a Two-Stage Model
In this part, we investigated the classification performance of
different Med3D pretrained CNN backbones on the test set,
including ResNet-18, ResNet-34, ResNet-50, and ResNet-101.
As highlighted in Table 2 and shown in Figure 6A, ResNet-
50 achieved the best performance with an accuracy of 0.819
and an AUC of 0.835, indicating complex models with more
parameters may not always work best. ResNet-50, the model with
the best performance, was used in our following experiments. The
confusion maps of different ResNet are shown in Figure 6B.

Results of Different Transfer Learning
Strategies Using ResNet-50
Table 3 and Figure 7 show the results of the comparison
of accuracy, sensitivity, specificity, F1, and ROC for different

transfer learning strategies (based on ResNet-50) mentioned in
section “Experimental Settings,” where the optimal results are
highlighted. As Table 3 and Figure 7A indicate, our method
achieves better results compared to other methods in terms of
accuracy (0.819), sensitivity (0.786), specificity (0.850), and F1
score (0.807). Similarly, Figure 7A shows ROC curves of different
transfer learning strategies, where our method has the best AUC
of 0.835 compared with other methods. The confusion maps of
different transfer learning strategies are shown in Figure 7B.

Results of the Relevant Brain Region
In this study, the 3D Grad-CAM method was used to identify
brain regions associated with sMCI or pMCI and improve the
interpretability of the model. After weight back-propagation of
trained models, we obtained average relevance heatmaps of each
class in the test dataset. For comparison, we highlighted temporal
superior, temporal middle, hippocampus, thalamus, precuneus,
cingulate in the automated anatomical labeling (AAL2)2 in
Figure 8 first row. Figure 8 second and third rows show each
class’s last convolutional layer’s attention heatmap. As shown in
Figure 8, the hippocampus, temporal superior, temporal middle,
thalamus, and cingulate are relevant for both sMCI and pMCI.
But precuneus is recognized as a unique feature of pMCI.

Comparisons With Previous Studies
We further used four evaluation metrics to compare our results
to previous state-of-the-art deep learning studies on sMCI/pMCI
classification published in the last 3 years, including accuracy,
sensitivity, specificity, and AUC. Table 4 summarizes the results
in relation to the literature, and the best results are indicated
by the bold text. In the classification tasks of sMCI and pMCI
using deep learning, our method achieves better or comparable
classification results in terms of accuracy, specificity, and AUC.

DISCUSSION

This study proposed a two-stage method that combined
contrastive learning and transfer learning for predicting
conversion from MCI to AD based on MRI. Pretrained models
from sizeable medical image datasets were used to initialize the

2http://www.gin.cnrs.fr/en/tools/aal-aal2/
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FIGURE 5 | Data spilt strategies.

TABLE 2 | Performance of different ResNet using two-stage model.

Encoder Acc (95% CI) Sens (95% CI) Spec (95% CI) F1 (95% CI)

ResNet-18 0.707 (0.674, 0.735) 0.679 (0.637, 0.720) 0.733 (0.698, 0.772) 0.691 (0.651, 0.723)

ResNet-34 0.716 (0.690, 0.741) 0.679 (0.644, 0.715) 0.750 (0.716, 0.790) 0.697 (0.670, 0.726)

ResNet-50 0.819 (0.798, 0.841) 0.786 (0.754, 0.821) 0.850 (0.815, 0.877) 0.807 (0.783, 0.834)

ResNet-101 0.759 (0.730, 0.783) 0.767 (0.731, 0.808) 0.750 (0.716, 0.785) 0.754 (0.724, 0.779)

The bold numbers denote the maximum value of each column.
Acc, Accuracy; CI, Confidence Interval; F1, F1-score; Sens, Sensitivity; Spec, Specificity.

FIGURE 6 | The ROC curve and confusion matrix of different ResNet using our two-stage model. (A) The ROC curve. (B) The confusion matrix. pMCI, progressive
mild cognitive impairment; sMCI, stable mild cognitive impairment.

model parameters and obtain general imaging features. Training
on unlabeled target datasets using contrastive learning was used
to get target imaging features. At last, the network was fine-tuned
using the labeled target dataset to complete the classification.

In addition, 3D Grad-CAM was used to highlight brain regions
potentially associated with pMCI/sMCI classification. We
demonstrated the validity of our model through multiple
evaluation experiments. The experiments showed that our model
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TABLE 3 | Performance of different transfer learning strategies using ResNet-50.

Acc (95% CI) Sens (95% CI) Spec (95% CI) F1 (95% CI)

Med3D 0.655 (0.630,0.682) 0.661 (0.623,0.702) 0.650 (0.609,0.685) 0.649 (0.619, 0.6768)

MoCo 0.733 (0.704, 0.756) 0.786 (0.747, 0.820) 0.683 (0.651, 0.725) 0.740 (0.712, 0.762)

Only ResNet-50 0.716 (0.694, 0.744) 0.750 (0.712, 0.789) 0.683 (0.656, 0.722) 0.718 (0.694, 0.744)

Med3D+MoCo 0.819 (0.798, 0.841) 0.786 (0.754, 0.821) 0.850 (0.815, 0.877) 0.807 (0.783, 0.834)

The bold numbers denote the maximum value of each column.
Acc, Accuracy; CI, Confidence Interval; F1, F1-score; MoCo, Momentum Contrast; Sens,Sensitivity; Spec, Specificity.

FIGURE 7 | The ROC curve and confusion matrix of different transfer learning strategies using ResNet-50. (A) The ROC curve. (B) The confusion matrix, respectively.
All the models in this figure use ResNet-50. Med3D, pre-trained ResNet-50 using Med3D and fine-tune the model to complete the classification of sMCI and pMCI;
MoCo, random initialization of weights, followed with the modified MoCo in the method to train the ResNet50 without using sMCI/pMCI labels. Then fine-tune the
model using labeled data and complete the classification; Only ResNet, random initialization of weights and training ResNet from scratch; Med3D+MoCo, our
two-stage transfer learning model; MoCo, Momentum Contrast; pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment.

outperformed both transfer learning and contrastive learning
individually and achieved better or comparable results than
previous state-of-the-art studies.

Several factors improve the performance of our classification
model. The first contribution is the proposal of a two-stage
model. Table 3 shows that the classification accuracy of ResNet-
50 trained from scratch on sMCI and pMCI is 6.03% higher than
that of ResNet-50 pre-trained in Med3D, implying that direct
transfer learning for two data sets that are not highly correlated
does not always achieve good results, and may even result in a
negative transfer. The performance of transfer learning is affected
by the various factors such as the size of pretrained samples,
the relevance of the source and target domains. Thus, not all
the transfer learning can improve the model’s performance (Huh
et al., 2016; Zhuang X. et al., 2019; Alzubaidi et al., 2020, 2021;
Mustafa et al., 2021). For example, Alzubaidi et al. (2021) found
that the model trained from scratch performed better than those
pretrained by ImageNet using three different medical imaging
datasets. This observation inspired us to develop a two-stage
model. Our two-stage model is sample efficient when compared
with existing transfer learning-based models for sMCI and pMCI
classification (Oh et al., 2019; Gao et al., 2020; Bae et al., 2021).

In each of these studies, additional AD and NC samples were
collected for training. But our model does not require additional
data collection, makes full use of each sample, and produces
better or equivalent results. For example, Bae et al. (2021)
developed a transfer learning model based on 3D ResNet29. In
the source task, the model is pretrained using MRI scans of 2,084
normal samples and 1,406 AD samples. Then they used pMCI
and sMCI samples to fine-tune the model to accomplish the target
task of classifying pMCI and sMCI. In comparison to our results,
they got the same accuracy but lower AUC.

To the best of our knowledge, we are the first to use the MoCo
pretrained model for sMCI and pMCI classification. Compared
with the models, only pretrained by Med3D and ResNet-50
trained from scratch, our method improved accuracy by 16.4
and 10.3%, respectively, further demonstrating the importance
and efficiency of including contrastive learning into our method.
Pretraining by contrastive learning allows the model to have
a feature representation with better generalization at the same
domain of the target task (Sun et al., 2019). Recent studies have
shown that fine-tuning on a well-trained contrastive learning
model can achieve comparable or even better results than fully
supervised learning (Wu et al., 2018; Zhuang C. et al., 2019),
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FIGURE 8 | The heatmap of related brain region our model focuses on. The first row is a golden standard of temporal superior, temporal middle, hippocampus,
thalamus, precuneus, cingulate in automated anatomical labeling (AAL2, http://www.gin.cnrs.fr/en/tools/aal-aal2/). The second and third rows show brain regions
that our model focuses on more on sMCI and pMCI, respectively. pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment.

TABLE 4 | A summarized comparison of state-of-the-art research on MRI using deep learning in sMCI and pMCI classification.

Research Conversion time sMCI/pMCI number Network Acc Sens Spec AUC

Liu M. et al. (2018) 36 Months 100/164 Landmark detection and 3D CNN 0.77 0.42 0.82 0.78

Liu J. et al. (2018) 18 Months 160/120 Whole brain hierarchical network 0.72 0.75 0.71 0.72

Lin et al. (2018) 36 Months 139/169 2D CNN 0.79 0.86 0.68 0.83

Shmulev and Belyaev (2018) 60 Months 532/327 3DResNet/VoxCNN 0.62 0.75 0.54 0.70

Shi et al. (2018) 18 Months 56/43 2D Deep polynomial network 0.79 0.68 0.87 0.80

Basaia et al. (2019) 36 months 253/510 3D CNN 0.75 0.75 0.75 NA

Li et al. (2019) 36 months 95/126 Self-weighting grading biomarker 0.69 0.82 0.51 0.70

Oh et al. (2019) 36 months 101/106 3D CNN + Transfer learning from CN/AD 0.73 0.77 0.71 0.79

Spasov et al. (2019) 36 months 228/181 3D CNN 0.72 0.63 0.81 0.79

Abrol et al. (2020) 24 Months 409/217 2D Multiscale Deep Neural Network 0.75 0.73 0.76 0.71

Gao et al. (2020) 36 Months 129/168 3D CNN + Transfer learning for AD age prediction 0.81 0.76 0.77 0.76

Pan et al. (2020) 18 Months 173/105 CNN and ensemble learning 0.62 NA NA 0.59

Wen et al. (2020a) 36 Months 298/295 3D CNN 0.74 0.80 0.68 NA

Bae et al. (2021) 36 Months 222/228 3D ResNet29 + Transfer learning from CN /AD 0.82 0.72 NA 0.83

Guan et al. (2021) 36 Months 401/197 3D CNN 0.79 0.55 0.84 0.78

Zhang J. et al. (2021) 18 Months 251/162 3D DenseNet + Attention 0.79 0.75 0.82 0.86

Our 36 months 297/280 3D ResNet and transfer learning from self 0.82 0.79 0.85 0.84

The bold numbers denote the maximum value of each column.
Acc, Accuracy; AD, Alzheimer’s disease; AUC, Area Under Curve; F1, F1-score; NC, Normal control; pMCI, progressive mild cognitive impairment; Sens, Sensitivity;
Spec, Specificity; sMCI, stable mild cognitive impairment.

which is consistent with our findings. In addition, one of the
critical factors limiting the performance of contrastive learning
is the slow convergence rate (Chen T. et al., 2020; Chen X.
et al., 2020; Tian et al., 2020). As shown in Table 3, compared
with MoCo trained from scratch, our method improved accuracy
by 6.89%, which indicates that transfer learning can accelerate

the convergence of the MoCo model and improve the model
performance. MoCo and transfer learning can reinforce and
complement one other.

In addition, our model uses complete 3D MRI as model input.
Unlike models using 2D slices, the 3D model makes full use of the
spatial information of the brain to improve the accuracy of the
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model (Wen et al., 2020b). Furthermore, some previous studies
used feature engineering or cherry-picked regions of interest as
input features (Gerardin et al., 2009; Ahmed et al., 2014; Basaia
et al., 2019), which ignored the contributions of other features
in the model, resulting in information loss in some cases. For
example, Basaia et al. (2019) chose brain gray matter to train the
model, neglecting the role of cerebrospinal fluid or white matter
in early diagnosis of AD (Jack et al., 2010; Weiler et al., 2015).
Our model differs from the previous studies by using an end-to-
end model to learn from all possible features in medical images,
which improves model performance.

In Figure 8, the hippocampus, temporal, and thalamus
are highlighted in both sMCI and pMCI. Hippocampus and
amygdala in the middle temporal lobe have been considered as
crucial brain regions for the diagnosis of early AD (Visser et al.,
2002; Braak and van Braak, 2004b; Burton et al., 2009; Costafreda
et al., 2011). The hippocampus is essential for memory formation,
and the recent studies have found that the hippocampus atrophy
of pMCI is more pronounced than sMCI (Devanand et al.,
2007; Risacher et al., 2009; Costafreda et al., 2011). Similarly,
the amygdala, which is primarily responsible for emotion and
expression, is intimately linked to emotional changes of AD, such
as anxiety and irritability (Unger et al., 1991; Poulin et al., 2011).
Thalamic damage is associated with decreased body movement
and coordination, attention, and awareness in AD (Braak and van
Braak, 2004a; de Jong et al., 2008; Cho et al., 2014; Aggleton et al.,
2016). In addition to the hippocampus and temporal, which have
been widely studied in AD, our heatmap also reveals that pMCI
is also closely related to the precuneus with high-level memory
and cognitive functions, which is in line with the previous studies
(Whitwell et al., 2008; Bailly et al., 2015; Perez et al., 2015;
Colangeli et al., 2016; Kato et al., 2016; Zhang H. et al., 2021). The
results, as mentioned earlier, further indicate that some structural
brain region abnormalities play an important role in predicting
early AD. In summary, our discovery of important brain regions
is supported by abundant literature, which helps construct a more
comprehensive brain biomarker atlas to predict MCI progression.

CONCLUSION

In conclusion, our two-stage model increases both the accuracy
of early AD detection as well as the transparency of the model.
Notably, a comprehensive comparison of different 3D ResNet
networks provides references for related research. Furthermore,
the combination of transfer learning and contrastive learning
solves the negative transfer problem and alleviates the model
overfitting problem due to a lack of medical data. Notably, it
also substantially improves the diagnostic performance of this
tricky classification problem in neuroscience. Our model only
uses low-invasive, low-cost, and widely available MRI data, which
significantly expands the application scenarios of the model.

However, this study also has some limitations that merit
additional exploration. First of all, we will explore more

options for the model’s various modules, such as different
data augmentation methods and pretrained models on model
effectiveness. When a larger dataset becomes available, we will
also continue to validate our model. At final, it is worth noting
that a direct comparison of different methods using the same
evaluation metrics is straightforward but may not be the optimal
solution. Factors such as sample size, dataset split strategy,
sMCI, and pMCI definitions, and test data selection can have
an impact on model outcomes. A more statistically robust
comparison should be proposed in our future studies. Despite
these limitations, our model provides a new solution to avoid
overfitting because of the insufficient medical data and allows
early identification of AD.
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Mild Cognitive Impairment (MCI) is an early stage of dementia, which may lead
to Alzheimer’s disease (AD) in older adults. Therefore, early detection of MCI and
implementation of treatment and intervention can effectively slow down or even inhibit
the progression of the disease, thus minimizing the risk of AD. Currently, we know that
published work relies on an analysis of awake EEG recordings. However, recent studies
have suggested that changes in the structure of sleep may lead to cognitive decline.
In this work, we propose a sleep EEG-based method for MCI detection, extracting
specific features of sleep to characterize neuroregulatory deficit emergent with MCI. This
study analyzed the EEGs of 40 subjects (20 MCI, 20 HC) with the developed algorithm.
We extracted sleep slow waves and spindles features, combined with spectral and
complexity features from sleep EEG, and used the SVM classifier and GRU network
to identify MCI. In addition, the classification results of different feature sets (including
with sleep features from sleep EEG and without sleep features from awake EEG) and
different classification methods were evaluated. Finally, the MCI classification accuracy
of the GRU network based on features extracted from sleep EEG was the highest,
reaching 93.46%. Experimental results show that compared with the awake EEG, sleep
EEG can provide more useful information to distinguish between MCI and HC. This
method can not only improve the classification performance but also facilitate the early
intervention of AD.

Keywords: mild cognitive impairment, sleep EEG, sleep slow waves, sleep spindles, machine learning

INTRODUCTION

As the aging of the population becomes increasingly serious, Alzheimer’s disease has become
a major challenge to human health and a serious social problem. Alzheimer’s disease (AD) is
the most common type of dementia, accounting for roughly 70% of all dementias worldwide.
It is an irreversible neurodegenerative disease marked by cognitive, behavioral, and intellectual
impairments (Prince, 2015). Mild cognitive impairment (MCI) is a pre-dementia condition in
which daily functioning is usually maintained despite objectively measured cognitive impairment
in one or more cognitive domains. As MCI is the primary stage of cognitive impairment, about
10–15% of MCI patients will progress to AD every year on average, and about 2/3 of AD patients
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are developed from MCI (Tsai et al., 2016). As a result,
early detection of MCI is critical for early intervention in the
preclinical stage of AD and has attracted much attention from
researchers in recent decades (Jiang et al., 2020).

According to recent studies, patients with MCI may return
to normal over time, therefore early detection and diagnosis of
MCI are critical (Amezquita-Sanchez et al., 2019). Early detection
of cognitive decline can lead to appropriate interventions before
further cognitive impairment occurs, thus delaying or even
preventing the progression of dementia as much as possible.
It is estimated that the average annual cost per patient for
mild dementia is $15,889, for moderate dementia is $26,859,
and for severe dementia is $36,180. Prevention of the disease
is therefore important for better health care, as well as for
national financial interests, and for controlling the progression
of cognitive impairment.

Finding biomarkers with low cost, high specificity, and
sensitivity has been the focus of MCI research. Magnetic
resonance imaging, such as functional magnetic resonance
imaging (fMRI) (Ni et al., 2017), magnetic resonance spectral
imaging (MRS) (Gao and Barker, 2014), diffusion-weighted
imaging (DWI) (Ge, 2017), diffusion tensor imaging (DTI)
(Ahmed et al., 2017), positron emission tomography, such as
fluorodeoxyglucose positron emission tomography (FDG-PET)
(Karow et al., 2010), etc., cerebrospinal fluid markers (Handels
et al., 2017), such as Aβ40, Aβ42, total tau protein (t-tau), etc., are
currently the main methods for early diagnosis of MCI. However,
these methods are expensive, and the equipment is large, with
high expertise requirements. As a result, researchers are looking
for non-invasive, quick, low-cost, and dependable approaches for
disease detection (Alberdi et al., 2016).

Biomarkers based on EEG have emerged as a viable tool in
the research of AD. In terms of EEG acquisition methods, most
of the published work relies on the analysis of closed resting
state EEG (rsEEG) recordings. Waninger et al. (2016) used fast
Fourier transform to calculate Power Spectral Density (PSD)
to study the difference between MCI and HC and found that
there were significant differences in theta and alpha frequency
bands, which were classified by linear discriminant analysis. The
final classification result was 85.11%. Rodrigues et al. (2021)
conducted statistical analysis of lacstral distances between EEG
subbands and found a metric that could identify AD at all
stages and characterize AD activity in each electrode, achieving a
classification accuracy of 98.06% with an artificial neural network.
Cassani and Falk (2020) proposed a new feature characterized
by a two-dimensional modulation spectrum domain based
on rsEEG signals, collected EEG signals of 20 channels, and
obtained classification accuracy of 88.1% by SVM classification
of MCI and HC. Other papers extract evoked potentials by
giving specific stimuli to the nervous system to detect and
classify MCI and other disorders that affect cognitive states.
For instance, Khatun et al. (2019) proposed an MCI detection
method based on single-channel EEG, which stimulated auditory
speech signals, extracted features from event-related potential
(ERP), and obtained an accuracy of 87.9% by SVM classification.
Although the literature has reported levels of accuracy above 80%,
it has been difficult to evaluate studies and determine the most

advanced approaches due to variances in experimental settings,
data collection methods, and database sizes.

Changes in sleep electrophysiology may be linked to the
cognitive condition of AD and MCI patients, according to recent
research (Gorgoni et al., 2020). Local sleep EEG oscillations have
a critical function in learning and plasticity mechanisms, it’s
worth highlighting. Several electrophysiological aspects of NREM
(such as slow waves, sleep spindles, and hippocampal ripples) and
REM sleep (such as θ activity) are particularly active in memory
consolidation (Klinzing et al., 2019). Sleep EEG can identify the
sleep changes associated with AD and MCI pathology, and is low-
cost and portable, so it can be utilized to make quick and precise
diagnoses (D’Atri et al., 2021). This is the main motivation of this
study. Various studies have employed multi-channel EEG data to
characterize MCI or AD using EEG signals. Although there are
several EEG-based studies in the literature, no one has attempted
to detect and classify MCI using two-channel sleep EEG signals,
as far as we are aware. Compared with the multi-channel, the
number of two-channel leads is less, and the measurement
method is simple. Moreover, compared with the EEG signal
during waking, the EEG signal collected during sleep is stable
and easy to be disturbed, which is more conducive to the study
of neurodegenerative diseases.

This study proposes a new method to distinguish the EEG
signals of MCI and health control (HC). We use from the
C3 and C4 (central electrode) dual channel sleep EEG data
with labels, based on the sleep slow waves, spindles, power
spectral density and complexity, the use of machine learning and
deep learning methods classifying MCI, and the classification
results were compared with the awake EEG classification results
without sleep features. The paper is organized as follows: section
“Materials” describes the data set used for this work, and the
section “Methodology” introduces the signal processing methods,
including the detection of sleep slow waves and spindles, as well
as the method of feature extraction and classification. Section
“Result and Discussion” is the experimental results and the
discussion of the paper. Finally, the conclusions are contained in
section “Conclusion.”

MATERIALS

Data and Materials
All data were obtained from NSRR (Zhang et al., 2018). To
balance the data, 40 subjects (20 patients with MCI and 20 healthy
subjects as controls, all women) with polysomnography (PSG)
signals were randomly selected in the SOF study (Spira et al.,
2008). All data were approved by the local institutional review
board of the institution, and each participant provided written,
informed consent before participation. The data included
functional tests, cognitive exams, use of medication, health
habits, and much more. All subjects underwent the Mini-mental
State Examination (MMSE) to determine the severity of their
impairment or dementia. According to the classification method
of dementia severity, the MMSE score between 21 and 26 was
considered MCI, and the MMSE score greater than 26 was
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normal. The comprehensive demographic information of the
subjects in this study is shown in Table 1.

MCI exclusion criteria are as follows:
(i) a history of depression (mild to moderate or major

depression) or a history of adolescent paroxysmal mental illness;
(ii) a history of major stroke or neurological symptoms; (iii)
Other mental disorders, frontotemporal dementia, Lewy body
dementia, vascular dementia, epilepsy, alcohol dependence;
(iv) The use of psychoactive drugs, which modulate EEG
markers; And (v) current or previously uncontrolled or complex
systemic diseases (including diabetes), or traumatic brain injury
(Moretti et al., 2013).

SOF data includes EDF and annotation files that include
manually graded sleep stages in 30-s epochs, as well as
manual annotations for arousal, limb movement, and signal
artifacts. All experiments employed the American Academy of
Sleep Medicine (AASM) staging, with NREM3 and NREM4
compressed to the N3 stage, and electrode labels were taken from
the International 10-20 system.

EEG Data and Preprocessing
EEG channels are selected from the multi-channel PSG signals,
and the signals are down-sampled to 100 Hz to speed up the
calculation time. A text file of the sleep stage vector (also known
as hypnogram) is then loaded at a sampling frequency of 1/30
and sampled upward to match the sampling frequency and length
of the EEG signal.

Sleep changes are a core component of MCI and AD patients.
The decrease in slow-wave activity (SWA) during NREM is
due in part to amyloid disease and leads to cognitive decline
in older adults (Rosinvil et al., 2020). Furthermore, studies
have revealed that patients with MCI often have a substantial
decrease in spindles, which is associated with cognitive decline
in dementia patients (Gorgoni et al., 2016). Because sleep quality
degradation is one of the primary symptoms of MCI, a variation
in EEG activity during NREM sleep could be a possible biomarker
(Romanella et al., 2021). Spindles are particularly noticeable
during N2 sleep and are a distinguishing feature of this stage,
while sleep slow waves are present during both N2 and N3.
Therefore, for the main analysis, a hypnogram was used to extract
the EEG signals of the N2 and N3 stages and the EEG signals of
the waking stage for comparison, so as to verify the importance
of sleep features.

First, the EEG signals were bandpass filtered between 0.1
and 30 Hz, and the artifact signals were eliminated using
independent component analysis (ICA). The signals of each
channel are divided into 5-min non-overlapping segments, and
the abnormal segment is removed using the standard deviation-
based rejection method. This method is speedier and is based

TABLE 1 | Corresponding statistical information of subjects.

Subjects Age (year) MMSE

HC 20 (female) 82.95 ± 2.71 29.6 ± 0.73

MCI 20 (female) 84.05 ± 3.51 24.4 ± 0.97

solely on the standard deviation distribution of each segment.
First, the standard deviation of each segment and channel is
determined, and the resulting array of standard deviations is
log-transformed and z-scored. Any epochs that have one or
more channels that surpass the threshold will be labeled as an
artifact. Because this method is more sensitive to the effects of
noise, any segment with overlapping wake, motion, or signal
artifact annotations have been removed before using this method.
Accordingly, the segment of each subject was evaluated which
accounts for a total of 2063 segments for NREM sleep and a total
of 768 segments for wakefulness are analyzed.

METHODOLOGY

Figure 1 describes a proposed algorithm for classifying EEG
segments from MCI and HC. As shown in the figure, the
algorithm consists of three steps. The first step is to calculate
the power spectral density of each frequency band. For the sleep
EEG signals, we mainly focus on sleep slow waves and spindles
during NREM sleep, and use the YASA algorithm to detect sleep
slow waves and spindles. Secondly, extract the features of sleep
slow waves and spindles and calculate the spectral and complexity
features. Thirdly, train the classifier with the extracted features
and evaluate the test results. In addition, to confirm the validity
of the sleep features reported in this work in MCI classification,
we extracted the spectral and complexity features from the awake
EEG for comparison. Two classification methods were used to
verify the classification effect of EEG signals during wakefulness
and sleep, and the test results were evaluated and compared.

Power Spectral Density
PSD is a frequency-dependent measure of the mean power
distribution. Because EEG slowing is the main linear indicator
of cognitive decline, spectral analysis is a critical parameter for
measuring neurocognitive impairment (Sharma et al., 2016).
Welch’s periodogram is the most generally used method for
calculating the estimated value of PSD (Welch, 1967), It involves
averaging sequential Fourier transforms of small windows of the
signal, with or without overlapping.

The PSD was calculated every 5 min by the Welch method,
using 5 s of hamming windows, with 50% overlap, and median-
averaging to limit the influence of artifacts. A commonly used
method of determining the window width is to adopt a window
long enough to contain at least two full minimum frequency
periods of interest. The lowest frequency of interest here is 0.5 Hz,
so we can choose a window that is greater than or equal to 4 s.
Here we chose a 5 s-long window. The following is the formula
for calculating power spectral density using the Welch method:

P(ω) =
1

MUL

L∑
i = 1

∣∣∣∣∣
M−1∑
n = 0

xi(n)d2(n)e−jωn

∣∣∣∣∣
2

Where M is the window length, U =
1
M
∑M−1

n = 0 d2
2(n),

L = N−M/2
M/2 , the xi(n) is the signal for each window, and the

d2(n) is the function of Hamming window.
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FIGURE 1 | Schematic diagram of proposed algorithm.

Spindle
Sleep spindles are a characteristic of N2 sleep, consisting of a
succession of separate waves with frequencies ranging from 11
to 16 Hz (most typically 12–14 Hz), duration 0.5 s, usually using
the maximum amplitude of the center deviation (Peyrache and
Seibt, 2020). YASA (Yet Another Spindle Algorithm) is an open-
source Python package for sleep analysis (Vallat, 2019). Spindles
are detected using the YASA algorithm. The main idea of the
algorithm is to calculate different thresholds from broadband
filtering signals (1–30 Hz, EEGbf ) and sigma filtering signals (11–
16 Hz, EEGσ). Figure 2A shows sleep spindles as detected by a
30-s EEG segment. The algorithm consists of three steps.

Step I: The FIR filter was used to bandpass the EEG segments
at 1–30 and 12–15 Hz.

Step II: Three thresholds are calculated.
Threshold 1: the relative power of the sigma band is the

power of the sigma band relative to the total power of broadband
(1–30 Hz). Calculated using the short-time Fourier transform
(STFT), the continuous period is 2 s and the overlap is 200 ms.
The first threshold is exceeded whenever the segment’s relative
power is greater than or equal to 0.2.

Threshold 2: movement correlation. Pearson correlation
coefficient was obtained by moving the sliding window of 300 ms

and the step of 100 ms. The correlation value r ≥ 0.65 will
exceed the second threshold.

Threshold 3: The moving root mean square is defined by
calculating the moving root mean square (RMS) of EEGσ. The
window width is 300 ms and the step of 100 ms. The third
threshold is exceeded whenever the RMS value of the segment
RMS ≥ RMSthresh. Where,

RMSthresh = RMSmean + 1.5∗RMSstd

Step III: Decision making. Each EEG segment detected above
three thresholds is considered a potential sleep spindle. The soft
threshold is calculated by smoothing the decision vector of the
100 ms window. The true start and end times of the spindles are
then found in the decision vector by finding the parameters that
two of the three critical values are exceeded. Finally, spindles that
are close to each other (less than 500 ms) are merged, and spindles
that are too short or too long are removed.

Sleep Slow Wave
Sleep slow waves, defined as those with slow frequencies (<2 Hz)
and high amplitudes (> 75 mV), have been linked to a drop in
steady-state sleep pressure and the protective impact of arousal
(Westerberg et al., 2012). Figure 2B shows slow sleep waves
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FIGURE 2 | EEG waveforms detected during 30-s NREM sleep (A) spindles and (B) slow sleep waves.

detected in 30-s EEG segments by the YASA algorithm. The
algorithm consists of four steps.

Step I: Bandpass filtering is carried out between 0.3 and 2 Hz
using an FIR filter with a transition band of 0.2 Hz.

Step II: Detection of all the negative peaks with amplitudes
between –40 and –300 µV and all the positive peaks with
amplitudes between 10 and 150 µV in the filtered signal.

Step III: For each negative peak (= slow-wave trough), find
the closest positive peak and calculate several metrics, including
peak-to-peak (PTP) amplitude, duration of the negative and
positive phases, slope, etc.

Step IV: Apply a set of logical thresholds to determine true
slow waves. PTP amplitudes need to be between 75 and 400 µV .
The positive and negative phase duration is calculated by the
zero-crossing value to ensure that the positive phase duration is
0.1–1 s and the negative phase duration is 0.3–1.5 s. The slope
between the trough and the midline is greater than 0.

Feature Extraction
We classify EEG data using four major types of features in
this paper: spectral, complexity, spindles, and sleep slow waves.
Table 2 shows the whole list of computed features.

For each EEG segment, absolute band power, total signal
power, and relative band power are calculated using PSD.
The term “relative band power” refers to the normalization of
each frequency band’s power in relation to the total power of
0.5–40 Hz (Kim and Kim, 2018). A total of 13 features are
spectral features. Nonlinear approaches using fractal dimension

or entropy methods may facilitate the identification of MCI.
We use entropy and fractal dimension methods to calculate the
features of EEG segments as complexity features (Ma Y. et al.,
2018). And the properties of spindles and sleep slow waves are
calculated after they are successfully detected.

Spectral, complexity, spindles, and sleep slow waves features
were extracted from sleep EEG. In order to test the validity of
sleep features, spectral and complexity features were extracted
from EEG signals during wakefulness as controls. All the
features were standardized. Then, these features are then utilized
to train the classifier to automatically identify between MCI
and HC EEG data.

Classification
The classifier receives the extracted features from the EEG data
as input. The classifier determines which category the new
observation belongs to. In this study, we use support vector
machine (SVM) and gated recurrent unit (GRU) to classify the
data separately.

We used two classifiers to predict the true category of subjects.
The predicted outcome variable is binary (0 for healthy controls,
1 for patients with MCI), and the predicted scores range from 0
to 1. The predicted scores of the subjects were utilized as MCI
scores. All data sets were randomly separated into two divisions,
80% of the data were used for training and 20% for testing. The
MCI classification model was fitted using the training data. We
fitted the MCI classification model on the whole training data
using the optimal hyperparameter configuration to determine the
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TABLE 2 | List of computed features for each 5-min segment.

Feature Group Features

Spectral(absolute power and relative power) Delta

Theta

Alpha

Sigma

Beta

Gamma

Total power

Complexity Permutation entropy

Singular value decomposition

Sample entropy

Detrended fluctuation analysis

Petrosian FD algorithms

Katz fractal dimension

Higuchi’s fractal dimension

Lempel-Ziv complexity

Spindle Density

Duration

Amplitude

RMS

Abspower

Relpower

Frequency

Oscillations

Sleep slow wave Density

Duration

ValNegPeak

ValPosPeak

PTP

Slope

Frequency

performance of the MCI classification model in the training data.
These optimal hyperparameters were determined using 10-fold
cross-validation. The generated model was directly applied to
the test data, and the MCI score was used to determine whether
the subject was HC or MCI. We use two classifiers to perform
MCI detection respectively, in order to analyze detection results
according to the structure of different types of classifiers.

Support Vector Machine
The SVM classifier is a supervised learning approach for
separating two classes by finding the best separation hyperplane
in the feature space (Safi and Safi, 2021). For N training samples{
(xi, yi), i = 1, · · · ,N

}
, where xi is the i th input vector and yi

is the known target, SVM training is the same as figuring out how
to solve the following optimization problem:

min
w,b,ξ

J (w, ξ) =
1
2

wTw + c
N∑

i = 1

ξi

subject to:

yi

[
wTϕ (xi) + b

]
≥ 1−ξi,ξi ≥ 0

Where ξi is slack variable, indicating the tolerance of
misclassification. C is a punishment parameter that is used to
penalize mistakes during training, b is a bias term, w is the
weight applied for input data xi. The kernel function ϕ (x) is a
nonlinear transformation function that maps the input vectors
into a high-dimensional feature space (Madusanka et al., 2019).

Gate Recurrent Unit
GRU is a variation structure of the Recurrent Neural Network
(RNN). RNN will remember past information and apply it to
the current output computation. Furthermore, RNN suffers from
the problem of vanishing and exploding gradients (Chung et al.,
2014), which causes the model to learn and train slowly. These
concerns are addressed by taking into account its versions, such
as GRU, which works on gated mechanisms. A GRU has two
gates, the update gate controls how much prior state information
is brought into the present state, while the reset gate controls
how much previous state information is ignored. The following
expressions show how a GRU calculates the result.

r = σ(wvrit + xrhst−1)

u = σ(wvuit + xrhst−1)

ht = tanh(wvit + x(r
⊙

hst−1, xt))

hst = [(1−u) hst−1] + uht

where, r is a reset gate and u is the update gate, σ is the
sigmoid function, ht for the hidden state, element multiplication
denoted by

⊙
.

Bidirectional GRU (Bi-GRU) can not only take advantage of
past information, but also capture subsequent information (Ma
C. et al., 2018).

ht =
(
−→
ht ||
←−
ht

)
where, ht for output states,

←−
ht a backward and

−→
ht forward states

in the opposite direction.

Performance Evaluation
To decide which classifier method is the most successful, the
sensitivity, specificity, F1 score, and accuracy of each one should
be calculated. The confusion matrix gives an exact idea of the
number of correctly classified and unclassified samples. The
parameters are calculated by the following equations:

Sensitivity =
TP

TP + FN
∗ 100%

Specificity =
TN

TP + FN
∗ 100%

Accuracy =
TP + TN

TP + FN + TN + FP
∗ 100%

F1 = 2 ∗
precision ∗ recall

precision + recall
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RESULTS AND DISCUSSION

According to the steps of this method, EEG segments of 40
different subjects with HC and MCI were analyzed. Then, in the
analysis step, the features of the signals during wakefulness and
NREM sleep are extracted, respectively. For the training of the
SVM classifier and the GRU network, all datasets were randomly
separated into two divisions of the training set and testing set
for evaluating the accuracy of the classifiers, with 80 percent of
the data treated as training data and 20% of the data considered
as testing data. The test accuracy, sensitivity, specificity, and F1
score were finally acquired with 10-fold cross-validation was used
to find the best hyperparameters values.

Results
To construct SVM classifiers, the “fitcsvm” module of MATLAB
is used. Bayesian hyperparameter optimization is used to find
the hyperparameter that minimizes the cross-validation loss to
optimize the classifier. In this study, the cubic polynomial kernel
function was selected, gamma = 2.15/C = 1 for the features
of NREM sleep and gamma = 13.2/C = 2 for the features of
wakefulness was used to obtain the best results. GRU classifier
construction, training, and testing were carried out with the
assistance of the PyTorch library. The default GRU sequential
class was updated to add different layers based on the models
provided. For two GRU networks, we used batch size 32, Adam
optimizer, and binary cross-entropy loss, and varied dropout, and
the number of hidden layers using random search (Yasir et al.,
2021). For the features of NREM sleep, the best results for GRU
were achieved with the dropout parameter value 0.5, the output
layer has 2 nodes, the input layer has 36 nodes, and finally three
hidden layers have 89 nodes. For the features of wakefulness, the
best results for GRU were achieved with the dropout parameter
value 0.5, the output layer has 2 nodes, the input layer has 21
nodes, and finally three hidden layers have 59 nodes. We trained
200 epochs for GRU and tested on the epoch that had the best
cross-validation accuracy.

The mean of each metric was used to objectively evaluate
classification performance, and the classification results
comparison between EEG during NREM sleep and wakefulness
are shown in Table 3.

As shown in Table 3, for different feature sets, the classification
accuracy of the sleep EEG feature set is higher than that of
the awake EEG feature set, and the sensitivity, specificity, and
F1 score are also higher than that of the awake EEG. The
results of the two classifiers showed that sleep EEG had better
performance in MCI and HC classification than awake EEG,
and the common features of sleep and awake EEG combined
with sleep features could significantly improve the classification
accuracy. For different classifiers, the accuracy of the GRU
network is 5 and 3% higher than that of the SVM classifier for
the same features, indicating that the classification performance
of GRU is better than that of the SVM classifier. These results
suggest that sleep features can reflect cognitive performance
in patients with MCI and emphasize that altered sleep is a
component of mild cognitive impairment.

The classification performance was also confirmed by ROC
curve analysis, especially by calculating the area under the ROC
curve (AUC). As shown in Figure 3, when awake and sleep EEG
features are used as inputs to the classifiers, ROC curves and
corresponding AUC values for MCI and HC classification are
calculated. The ROC curve of sleep EEG was closer to the upper
left corner, and the AUC value of GRU was higher than that of
awake EEG, indicating that the GRU network with sleep EEG
feature input achieved the best performance (AUC value was
as high as 0.981).

The results showed that the GRU classifier with the sleep
features had the best effect, with an accuracy of 93.46%, sensitivity
of 93.33%, specificity of 93.60%, F1 value of 93.56%, and AUC
value of 0.98. In conclusion, the spectral and complexity analysis
of sleep EEG, combined with the features of sleep slow waves and
spindles, and the classification of sleep EEG by GRU are effective
for the early detection of MCI.

Discussion
AD is an irreversible neurodegenerative disease, so early
screening and diagnosis of MCI is particularly important,
which is the key to effective early intervention of AD
and delay the progression of dementia. MCI is currently
diagnosed by specialists through extensive testing, including
neurophysiological assessment, blood analysis, cerebrospinal
fluid analysis, and imaging techniques. However, the evaluation
of these medical records is not only costly and complex
to implement, but also requires experienced physicians.
Therefore, the automated decision method which only needs one
physiological parameter can not only objectively evaluate the
patients, but also ensure high diagnostic accuracy. In addition,
it will be economical, portable, and more suitable for the
elderly population.

Several innovative research in recent years have only focused
on awake EEG to detect MCI, and they collected about 20
channels of EEG and extracted features for classification. The
DWT decomposition method was utilized to analyze 20 channels
of EEG signals, and the Hjorth parameter and KNN classifier
were incorporated to achieve 97.64% accuracy (Safi and Safi,
2021). Although this method has high classification accuracy, the
acquisition channels of the EEG signal are numerous, and the
measurement method is complex. Khatun et al. (2019) proposed
an MCI detection method based on single-channel EEG, which
stimulated auditory speech signals, extracted features from event-
related potential (ERP), and obtained an accuracy of 87.9% by
SVM classification. This method uses a single-channel signal,
but it requires the collection of evoked potentials, which is
complicated and difficult for patients to cooperate with. Cejnek
et al. (2021) proposed a new approach for detecting MCI based
on EEG recordings. The highest accuracy was 91.62 percent
among the results of cross-validation classification between HC
and MCI patients by each channel. All of the work above on EEG
acquisition methods relied on the analysis of EEG recordings
of waking states. It is worth noting that in this study, we
proposed using the features extracted from sleep EEG to detect
MCI and achieved an accuracy of 93.46%. Studies have shown
that changes in sleep electrophysiology may be linked to the
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TABLE 3 | Classification performance comparison between EEG during NREM sleep and wakefulness for distinguishing MCI from HC.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

W Cubic SVM 85.47 88.57 82.14 84.35

Bi-GRU 90.26 90.00 90.54 90.57

NREM Cubic SVM 90.51 92.02 88.89 89.87

Bi-GRU 93.46 93.33 93.60 93.56

FIGURE 3 | ROC curves and AUC values of NREM sleep EEG and awake EEG (A) SVM classifier (B) GRU network.

FIGURE 4 | Relative power of NREM sleep and awake EEG in MCI and HC subjects (∗p < 0.05; ∗∗p < 0.01).

cognitive condition of AD and MCI patients. We used spindles
and sleep slow waves, along with other common features, to
improve classification accuracy by the GRU network. Although
the accuracy is lower than that of multi-channel EEG signal
classification, it is superior to other single-channel results and
is not limited by the experimental site. Therefore, it is especially
suitable for head-mounted wearable devices.

In this study, we proposed a diagnostic method for patients
with MCI based on sleep EEG signals. We have shown that
incorporating features of sleep slow waves and spindles as
new features of the MCI detection significantly improves the
accuracy of the MCI detection over traditional features during

wakefulness. The proposed method is 5 and 3% better than
traditional features in the classification results of the SVM
classifiers and GRU network, respectively. In this study, the
detection of MCI using the GRU network with the features of
NREM sleep achieved the highest accuracy, reaching 93.46%.
The following three aspects are considered superior to other
methods. Firstly, the features of spindles and slow sleep waves
during NREM sleep are an effective supplement to traditional
features, and the data during sleep contains more information
than wakefulness. As shown in Figure 4, SPSS software was used
for statistical analysis. Non-normally distributed variables were
compared by the Mann-Whitney U test. P-values less than 0.05
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were considered statistically significant. During NREM sleep,
the MCI group showed significant differences in theta, alpha,
and gamma bands compared with the HC group. During
wakefulness, a similar phenomenon was observed, but only
the theta and alpha bands were significantly different (both
p < 0.05). This suggests that significant changes in power
spectral density can be detected during both NREM sleep
and awake sleep, and that sleep EEG does not reduce the
difference between MCI and HC. Therefore, related features
of sleep may be an important biomarker of MCI. Secondly,
this algorithm adopted two-channel EEG, which is simple
compared with the multi-channel acquisition, and does not
require additional nursing staff to take care of patients when
we collect the EEG signals during sleep. Finally, the GRU
network significantly improved the classification performance in
MCI recognition.

While the proposed approach is encouraging, there are some
limitations that should be addressed. In this study, only MCI and
HC were categorized, requiring further consideration of other
stages of cognitive impairment. In addition, we were only able to
analyze sleep EEG signals from 40 different subjects in this study,
so this research should be regarded as preliminary, and future
studies should include larger datasets to validate the suggested
method’s stability and generalizability.

CONCLUSION

EEG signals are non-stationary, nonlinear, and noisy, so
it is a challenging problem to distinguish between MCI
and HC based on EEG signals. In this study, MCI was
detected and classified using two-channel sleep EEG signals.
Based on traditional features, the features of sleep slow
waves and spindles were extracted. Unlike the existing
features, the proposed features are not restricted by the
use of traditional EEG bands. In particular, sleep features
combined with traditional features outperformed traditional
features on classification tasks, proved to be more accurate
in predicting MCI and performed better with sleep EEG
signals than with wakeful signals. Although studies have
shown that changes in EEG activity during NREM sleep
are associated with MCI, no studies have used it for
the recognition of MCI. The high classification accuracy
obtained in this paper once again proves that sleep slow
waves and spindles can be used as early biomarkers for the
development of AD (Romanella et al., 2020). Early diagnosis
would also provide patients access to available treatment,
while possibly initiating an earlier treatment. In addition,
this study is based on sleep EEG, which is non-invasive,
portable, and low-cost, and therefore has high value as a
diagnostic tool.
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Numerous artificial intelligence (AI) based approaches have been proposed for automatic

Alzheimer’s disease (AD) prediction with brain structural magnetic resonance imaging

(sMRI). Previous studies extract features from the whole brain or individual slices

separately, ignoring the properties of multi-view slices and feature complementarity.

For this reason, we present a novel AD diagnosis model based on the multiview-slice

attention and 3D convolution neural network (3D-CNN). Specifically, we begin by

extracting the local slice-level characteristic in various dimensions using multiple

sub-networks. Then we proposed a slice-level attention mechanism to emphasize

specific 2D-slices to exclude the redundancy features. After that, a 3D-CNN was

employed to capture the global subject-level structural changes. Finally, all these 2D and

3D features were fused to obtain more discriminative representations. We conduct the

experiments on 1,451 subjects from ADNI-1 and ADNI-2 datasets. Experimental results

showed the superiority of our model over the state-of-the-art approaches regarding

dementia classification. Specifically, our model achieves accuracy values of 91.1 and

80.1% on ADNI-1 for AD diagnosis and mild cognitive impairment (MCI) convention

prediction, respectively.

Keywords: Alzheimer’s disease (AD), disease prognosis, multi-view-slice attention, 3D convolution neural network,

brain sMRI image

1. INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia that causes progressive and
permanent memory loss and brain damage. It is critical to initiate treatment for slowing
down AD development in early AD. As a non-contact diagnostic method, structural magnetic
resonance imaging (sMRI) is regarded as a typical imaging biomarker in quantifying the
stage of neurodegeneration (Kincses et al., 2015; Bayram et al., 2018; Shi et al., 2018).
Based on the examination of the brain’s sMRI images, numerous artificial intelligence (AI)
technologies, including conventional voxel-based machine learning methods and deep-learning-
based approaches, have been performed for assisting the cognitive diagnosis (Martí-Juan et al.,
2020; Tanveer et al., 2020; Wu et al., 2021a,b).

In the early attempts, traditional statistical methods based on voxel-based morphology (VBM)
were introduced to measure the brain’s morphologic changes. VBM-based studies determine the
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intrinsic characteristics of specific biomarkers, such as the
hippocampus volumes (Fuse et al., 2018), cortex sickness
(Luk et al., 2018), subcortical volumes (Vu et al., 2018),
and frequency features with non-subsampled contourlets (Feng
et al., 2021), to calculate the regional, anatomical volume of
the brain. However, most VBM-based approaches relying on
domain knowledge and expert’s experience need a complex
handcrafted feature extraction procedure, which is independent
of the subsequent classifiers, resulting in potential diagnostic
performance degradation.

With the advancement of deep learning, especially the
successful applications of convolution neural networks (CNN), in
recent years, a growing body of research employed deep learning
to analyze the MR images by training an end-to-end model
without handcrafted features (Zhang et al., 2020; AbdulAzeem
et al., 2021; Qiao et al., 2021). Since the 3D volumetric nature of
sMRI, 3D-CNN could be directly applied to capture the structural
changes of the whole brain at the subject-level (Jin et al., 2019).
However, there is much useless information in the complete
MRI with millions of voxels. Furthermore, it is hard to fully
train the CNNs with only a few labeled MRI data available at
the subject level. Many deep-learning-based methods turn to
exact pre-determination of regions-of-interest (ROI) for training
the models with 3D-Patch or 2D-slice (Ebrahimighahnavieh
et al., 2020). Liu et al. (2020b) extract multi-scale image patches
based on the pre-determined anatomical landmarks from sMRI
for training an end-to-end CNN. Lian et al. (2020a,b) trained
multiple classifiers with multilevel discriminative sMRI features
from the whole sMRI with a hybrid network to capture local-to-
global structural information. Compared with the modeling in
the subject level, the patches or slices carry more local features
but lose some global information. In addition, some studies
try to exclude irrelevant regions by emphasizing specific brain
tissues with the help of segmentation technology. Cui and Liu
(2019) and Poloni and Ferrari (2022) focus on the specific
biomarker from specific regions, such as the hippocampus, to
capture the structural changes in 3D MR images for AD and

FIGURE 1 | The slice-level information in brain sMRI. (A) Slice-level features in axial plan. (B) Slice-level features captured in multiview, including the sagittal, coronal,

and axial planes.

mild cognitive impairment (MCI) classification. Chen and Xia
(2021) design a sparse regression module to identify the critical
cortical regions, such as the amygdala, posterior temporal lobe,
and propose a deep feature extraction module to integrate the
features landmarked regions for the diagnosis process. However,
such methods need extra tissue segmentation operations, which
inevitably increase the complexity of the diagnostic model.

Although the existing models have achieved outstanding
results so far, it is still a challenging work for AD diagnosis
due to a large number of volumes in 3D MR images and a
subtle difference between abnormalities and normality brains,
i.e., it is vital to extract subtle changes in disease progression
from MRI sequence data with a high denominational. Previous
studies focus on extracting features from the whole brain or
individual slices separately, ignoring the feature complementarity
from different views. As illustrated in Figure 1, each slice of the
brain sMRI in different views contains a certain amount of local
information that could also be valuable for dementia diagnosis.
Considering both global structure changes of whole brain and
fine-grained local distinctions of slices could be both crucial, this
study proposes a novel fusionmodel for AD classification, named
multiView-slice attention and 3D convolution neural network
(MSA3D), which organically integrates multiple slices features
and 3D structural information.

The main contributions of this study are three-fold:

(1) We proposed an MSA3D model to combine the 2D multi-

view-slice levels and global 3D subject-level features for fully

mining the subtle changes in different views and dimensions.
(2) We propose a slice-level attention module to help the CNN

focus on specific slices to obtainmore discriminative features

representations from abundant vowels.

(3) We perform two classification tasks, i.e., AD diagnosis and

MCI conversion prediction, on two ADNI datasets. Our

model achieves superior diagnostic results compared with

other tested models, demonstrating our model’s efficacy in

aiding dementia prediction.
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2. MATERIALS AND DATA
PREPROCESSING

2.1. Studied Subjects
Following the previous studies (Liu et al., 2019; Lian et al.,
2020b), we employed two public sMRI data sets, i.e., ADNI-1
and ADNI-2, for empirical study. Both of them can be found on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) website
(Jack et al., 2008). This study employed the ADNI data only for
model validation but did not involve any patient interaction or
data acquisition. More detailed data acquisition protocols are
available at http://adni.loni.usc.edu/. We collected a total of 1,451
subjects from the ADNI database with baseline T1 weighted
(T1W) brainMRI scans, which are divided into four categories:

• Cognitively Normal (CN): Subjects diagnosed with CN at
baseline and showed no cognitive decline.

• Stable MCI (sMCI): Subjects diagnosed with MCI remain
stable and have not converted to AD at all time-points (0–90
months).

• Progressive MCI (pMCI): Subjects are diagnosed with MCI
who would gradually progress to AD within 0–36 months.

• Alzheimer’s disease: Subjects diagnosed as AD at baseline and
whose conditions would not change during the follow-up
period.

To avoid data leakage problems mentioned in Wen et al. (2020),
we also remove the subjects exited in both ADNI-1 and ADNI-2.
More specifically, the ADNI-1 dataset is formed of 808 subjects
with 1.5 T T1W sMR brain images, including 183 AD, 229
CN, 167 pMCI, and 229 sMCI. The ADNI-2 dataset has 643
3T T1W sMR brain images, including 143 AD, 184 CN, 75
pMCI, and 241 sMCI. Table 1 summarizes the detailed clinical
information of the studied subjects, including age, sex, and the
scores of the mini-mental state examination (MMSE). In our
experiments, these two independent datasets will be employed as
the training dataset and testing dataset, repetitively, to perform
cross-validation. More specifically, we first trained the model
on the ADNI-1 and evaluated it on ADNI-2. Subsequently, we
reversed the experimentation and used the ADNI-2 for model
learning, and then the trained model was assessed on ADNI-
1. Note that we employed the ADNI data only for empirical
analysis but this study did not employ any patient interaction or
data acquisition.

2.2. Data Preprocessing
The standard preprocessing pipeline was performed on all the
T1W brain MRIs as follows: First, all MRIs were performed in an
axial orientation parallel to the line through anterior commissure
(AC)-posterior commissure (PC) correction. Then the invalid
volumes of the sMRI, i.e., the blank regions, were removed,
leaving only the brain tissues. Subsequently, the intensity of brain
images was corrected and normalized with the N3 algorithm
after the skull dissection (Wang et al., 2011). Finally, all the
aligned images are resized into the same spatial resolution for
facilitating the CNN training. The model’s inputs are fixed
to 91× 101× 91(i.e., 2mm× 2mm× 2mm cubic size) in our
experiment, following the previous study (Jin et al., 2020).

TABLE 1 | Detailed clinical information of the studied subjects in ADNI-1 and

ADNI-2 (± means the SD).

Dataset Label Total number Age (Years) Sex (M/F) MMSE

ADNI-1
NC 229 76.2 ± 5.1 119/110 29.2±1.0

sMCI 229 74.8 ± 7.6 153/76 27.2 ± 1.7

pMCI 167 74.9 ± 7.2 102/65 26.9 ± 1.7

AD 183 75.6 ± 7.6 96/87 23.1 ± 2.5

ADNI-2
NC 184 77.3 ± 6.7 87/97 28.8 ± 1.7

sMCI 241 71.3 ± 7.5 134/107 28.3 ± 1.5

pMCI 75 71.9 ± 7.2 40/35 27.0 ± 1.6

AD 143 75.6 ± 7.8 85/58 21.9 ± 3.8

3. METHODOLOGY

The overall architecture of our model is presented in Figure 2,
which is composed of five main parts: the MRI sequences input,
multi-view-slice sub-network (MVSSN), slices attention module
(SAM), subject-level 3D-CNN (S3D-CNN), and a softmax
classifier with full connection layer. The following sections
provide more details for each module.

3.1. Multi-View-Slice 2D Sub-Networks
In this subsection, we introduce the MVSSN module for
extracting multiview 2D-slice level features. As shown in
Figure 3, the inputs of MVSSN are consist of the MR slices in
three views, i.e., the sagittal, coronal, and axial imaging planes.
Since discriminative features may exist in different slices, we
employ a 2D-CNN to extract the multiview slice features from
each slice. Let’s denote the x, y, and z as theMRI planes of sagittal,

coronal, and axial, respectively, particularly, Sx = [s1x, s
2
x, ..., s

Mx
x ]

denotes the slice cluster in the x plane, where Mx is the total
slice number of the cluster Sx. After using the multiple 2D-
CNNs on each slice to generate the feature maps in different
views separately, the input I ∈ RD×H×W can be transformed as
the featuremaps Fx, Fy, Fz in three dimensions. For example, each
feature map Fix in sagittal view is calculated by Equation (1):

Fix = f ix(s
i
x,w

i
x) (1)

where f ix is a independent 2D-based CNN, wi
x is the weight of

CNN f ix, and i ∈ [1,Mx] means the ith slice in the x-direction.
Each f ix contains three CNN blocks, each with a conventional
layer, a barch normalize (BN) layer, a rectified linear unit (RELU)
operator, and a maxpooling layer. Detailed parameters of our
2D-based CNN are listed in Table 2.

After the Global-Avg-Pooling (GAP) operation, the feature
map Fix can be pooled as a vector denoted as Iix. In the end, all
the feature maps in x view can be cascaded as Ix = [Ix1 , I

x
2 , ..., I

x
Mx

].
The same conventional operation can be applied on y and z views
to generate the corresponding feature map clusters.

3.2. Slices Attention Module
Each vector in Ik can be regarded as a class-specific response
after extracting the multiple slices-level features using the
MVSSN. Considering that the volumetric MRI data contains
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FIGURE 2 | Illustration of the proposed multiview-slice attention and 3D convolution neural network (MSA3D) model.
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FIGURE 3 | 2D-CNN slice sub-network for multi-view slice features extraction.

different slices, many of them may not contain the most
representative information relevant to dementia (Lian et al.,
2021). To address this issue, we proposed a SAM to help the CNN
focus on the specific features by exploiting the interdependencies
among slices.

As shown in Figure 2, given a set of features embedding of the
jth direction, denoted as Ik ∈ Mk×C, where C = 8 is the feature
channels of each slice, and k ∈ {x, y, z} means the MR plane.
By employing an attention mechanism, we can obtain the slice

attention Ak ∈ Mk×Mk , which can build the dynamic correlations
between the target diagnosis label and slice-level features with the
following equation:

akij =
exp(Iki · I

k
j )

∑Mk
i=1 exp(I

k
i · I

k
j )

(2)
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TABLE 2 | Detailed parameters of our 2D-CNN slice sub-network.

Layer Kernel Stride Activation Output channels

Conv2D 3 × 3 2 BachNorm+Relu 8

MaxPooling2D 2 × 2 8

Conv2d 3 × 3 2 BachNorm+Relu 32

MaxPooling2D 2 × 2 32

Conv2D 3 × 3 2 BachNorm+Relu 64

MaxPooling2D 2 × 2 64

Global-Avg-Pooling2D 1 × 1 1 128

Full connected 128

Full connected 8

where akij ∈ Ak is the score that semantically represents the

impact of ith slice feature on the jth slice in the kth direction.
The final output of the weighted slice features˜Ik ∈ Mk×C can
be calculated by:

˜Ikj = β

Mk
∑

i=1

(akijI
k
i )+ Ikj (3)

where β is a learnable parameter that will gradually increase from
0, note that the final output feature maps are the sum of all the
weighted features of the slices in one direction so that the SAM
can adaptively emphasize the most relevant slices to produce a
better AD inference.

After the SAM module, we fuse all the slice features in three
directions using concatenation operation to form the final slice-
level features Fs = [˜Ix,˜Iy,˜Iz], where Fs represents the cascaded
weighted features which can capture the multiple views of local
changes of the brain in three directions in 2D MRI images.

3.3. Subject-Level 3D Neural Network
The brain MRI data can be regarded as 3D data with an input
size ofH ×W ×D, whereH andW denote the height and width
of the MRI, repetitively, and D is the image sequence. In order
to explore the global structure changes of the brain, all of the
convolution operations and pooling layers are reformed from 2D
to 3D. The 3D CNN operator is given in Equation (4):

ulj(x, y, z) =
∑

δx

∑

δy

∑

δz

Fl−1
i (x+ δx, y+ δy, z + δz)×W l

ij(δx, δy, δz)
(4)

where (x, y, z) refers to the 3D coordinates in sMRI data, Fl−1
i

is the ith feature map of the l− 1 layer. W l
ij(δx, δy, δz) is a 3D

convolution kernel slides in 3 dimensions, thus the new jth
feature map ulj(x, y, z) of the l layer can be generated after 3D

convolution across the Fl−1
i from the l− 1 layer. Similar to the

2D-CNN, our 3D-CNN includes four network blocks, and each
block has a 3D-CNN layer, 3D BN layer, ReLu activation, and 3D
max-pooling layer. Finally, the 3D convolutional feature maps
are pooled into one 1D vector using a 3D-GAP layer with a
kernel size of 1 × 1 × 1. The produced vector represents the

TABLE 3 | Detailed parameters of our 3D-CNN subject sub-network.

Layer name Kernel Stride Activation Output channels

Conv3D 3× 3× 3 1 BachNorm3d+Relu 32

MaxPooling3D 3× 3× 3 2 32

Conv3D 3× 3× 3 1 BachNorm3d+Relu 128

MaxPooling3D 3× 3× 3 2 128

Conv3D 3× 3× 3 1 BachNorm3d+Relu 256

MaxPooling3D 3× 3× 3 2 256

Conv3D 2× 2× 2 2 BachNorm3d+Relu 512

MaxPooling3D 5× 5× 5 2 512

Globel-Avg-Pooling3D 1× 1× 1 512

global subject-level features. Detailed parameters of our 3D-CNN
subject-level subnetwork are shown in Table 3.

3.4. Fully Connected Layer and Loss for
Classification
To exploit both the slice-level and subject-level features generated
by 2D and 3D-CNNs, a fully connected (FC) layer is employed
to concatenate all the 2D and 3D features maps, followed by
a final FC layer and a softmax classifier, which outputs the
prediction probability of the diagnostic labels. The cross-entropy
(CE) is widely adopted as the training loss function for image
classification (Liu et al., 2021), which is given as follows:

L=−
1

C

C
∑

c=1

1

N

∑

Xi∈X

I
{

Yc
i = c

}

log(P(Yc
i = c|Xi:W)) (5)

where I{ · } = 1 if { · } is true, otherwise I{ · } = 0. N is the total
number of test subjects and Xi means the ith sample with the
corresponding label Yi in the training datasets X, and i ∈ [1,N].
P(Yc

i = c|Xi:W) measures the probability of the input sample Xi

that is correctly classified as the Yc
i by the trained network with

weightsW.

3.5. Complexity Analysis
We further analyze our proposed model’s complexity by
reporting the two branches of subnetworks, respectively.
For the aspect of the global subject-level 3D-CNN
model, the computational complexity of 3D-CNN layer
is O(DxDyDzK

3
global

), where Kglobal is 3D-CNN kernel

size, while Dx,Dy,Dz is the feature map dimensions
of the layer. For the aspect of the slice-level 2D-CNN
model, since the 2D feature maps are fused in three
dimensions, the time complexity of the 2D-CNN layer is
O(MzDxDyK

2
slice

+MxDyDzK
2
slice

+MyDxDzK
2
slice

), where
Mx,My,Mz denotes the total number of slices in three MR
planes, receptively, and Kslice is the 2D-CNN kernel size.

4. EXPERIMENTAL RESULTS

4.1. Competing Methods
We first compare our proposed MSA3D method with multiple
deep-learning-based diagnosis approaches that we reproduced
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TABLE 4 | Classification results of AD vs. CN and MCI convention on ADNI-2.

Method
AD vs. CN pMCI vs. sMCI

ACC SEN SPE AUC F1 ACC SEN SPE AUC F1

Voxel+SVM 0.759 0.677 0.810 0.729 0.705 0.736 0.107 0.769 0.609 0.162

3D-CNN 0.872 0.874 0.839 0.933 0.856 0.769 0.427 0.831 0.721 0.467

Multi-Slice 0.838 0.755 0.826 0.894 0.813 0.728 0.267 0.792 0.620 0.317

Multi-Patch 0.841 0.790 0.844 0.924 0.803 0.722 0.373 0.821 0.698 0.438

MSA3D 0.911 0.888 0.914 0.950 0.898 0.801 0.520 0.856 0.789 0.553

All the models are trained on ADNI-1. The best results are highlighted in bold.

and evaluated on the same training and testing datasets including
(1) a statistical method based on VBM with SVM [denoted as
VBM+SVM, proposed by Ashburner and Friston (2000)], (2) a
method using 3D-CNN features [denoted as 3D-CNN, proposed
byWen et al. (2020)], (3) a method using multi-slice 2D features,
i.e., the features extracted from all the slices in three directions
(denoted as Multi-Slice), and (4) a method using 3D-CNN with
3D patch-level features (denoted as Multi-Patch).

(1) Voxel+SVM: As a conventional statistical-based model,
Voxel+SVM performed sMRI analyses at the voxel level
(Ashburner and Friston, 2000). Using a non-linear image
registration approach, we first normalized all MRIs with
the automated anatomical atlas (AAL) template. Then, we
segmented the gray matter (GM) from sMRI data. In the end,
we mapped the density of GM tissue into one vector and used
the support vector machine (SVM) as the classifier for AD
diagnosis.

(2) 3D convolution neural network: As an important part of
MSA3D, 3D-CNN can extract global subject-level changes of
sMRI for dementia diagnosis (Wen et al., 2020). Thus, it can
be regarded as the baseline model in our study. In this model,
we only give the 3D MRI data as the input for training the
3D-CNN.

(3) Multi-Slice: As another essential component of MSA3D, the
multi-slice model focus on the local slice-level features, which
consist of all the features extracted by using the 2D-CNN with
the 2D slices in sagittal, coronal, and axial MR planes.

(4) Multi-Patch: In this method, multiple 3D-patches are
partitioned from the whole brain according to the landmarks
defined in Zhang et al. (2016) and Liu et al. (2020b) to extract
region-scale features (ROI), and then we train a 3D-CNN as
the feature extractor for each patch. In the end, all the ROI-
based features were cascaded to obtain the final embedded
feature for the entire sMRI.

4.2. Experimental Setting
All the tested models are implemented with Python on Pytorch
using one NVIDIA GTX1080TI-11G GPU. During the training
stage, the batch size is set to the same value of 12 for all models
for a fair comparison. Stochastic gradient descent (SGD) with
an initial learning rate of 0.01 and a weighted delay of 0.02
is adopted as the optimization approach, along with an early
stopping mechanism for avoiding over-fitting. The following five
criteria are calculated to investigate the performance of the tested

models, including accuracy (ACC), specificity (SPE), sensitivity
(SEN), the area under the ROC curve (AUC), and F1-values (F1).

4.3. Results on ADNI-2
We first present the comparison results of two classification tasks
(i.e., AD vs. NC and pMCI vs. sMCI) on ADNI-2 in Table 4

and Figure 4, with the tested methods trained on the ADNI-
1. As we can inform from Table 4, Multi-Patch shows a better
performance than Multi-Slice on AD prediction, especially on
the challenging pMCI vs. sMCI. The results indicate that local
discriminative features are important for MCI prediction, and
only the 2D-slice level features may not be a good option for
CNNs. In addition, 3D-CNN achieved the second-best results
on both AD and MCI prediction tasks. We can also find
that all the deep-learning-based models perform better than
the conventional Voxel+svm method. The main reason is that
the deep-learning-based technique can achieve a better feature
extraction with an end-to-end framework. In general, our model
consistently yields better performance than the tested methods,
e.g., in the case of MSA3D vs. 3D-CNN baseline, our model
resulted in 7 and 5.6% improvements in terms of ACC and
AUC for classifying AD/NC, and 7.3% and 16.9% improvements
in terms of ACC and AUC for determining pMCI/sMCI. This
result shows that after fusion of the 2D and 3D information
through two branches of CNNs, our model can capture more
discriminative changes in both multiview 2D-slices and 3D
whole-brain volumes in the progress of AD andMCI conversion.
So that our model generates significant improvements in terms
of all the metrics compared to other methods in comparison.

4.4. Results on ADNI-1
In order to further investigate the effectiveness of the test models,
we also perform a cross-valuation on ADNI datasets, i.e., we
trained the models on ADNI-2 and tested them on ADNI-1. It
needs to be pointed out that because of the lack of sufficient
pMCI samples in ADNI-2 (75 in ADNI-2 vs. 167 in ADNI-1),
we only conduct the experiments of AD diagnosis on ADNI-1.
The comparison results are summarized in Table 5 and Figure 5,
from which we can observe similar results compared to the
models tested on the ADNI-2. Our model still produces the
best values in terms of all the metrics compared with the
other methods.

Meanwhile, we can find a significant performance drop for
all models when trained on ADNI-2, which leads to a relatively
small improvement of AUC achieved by our model compared
with the 3D-CNN. The main reason for this is that ADNI-1 and
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A B

FIGURE 4 | Comparisons results in terms of ROC curves. The models are trained on ADNI-1 and tested on ADNI-2. (A) AD vs. NC. (B) pMCI vs. sMCI.

ADNI-2 were collected using 1.5 and 3.0 Tesla MRI scanners,
respectively. The strength of a 3.0 T magnet is two times that of
a 1.5 T magnet, which could cause the overestimation of brain
parenchymal volume at 1.5 T (Chu et al., 2016). The variable
image quality between different scanners directly impacts the
models for diagnosis. However, our model still outperforms the
3D-CNN baseline by 5.3% of the F1 value in this scenario.
All of these findings suggest the proposed model’s efficacy
and reliability.

4.5. Comparison With Other Methods in
Literature
In this section, we give a brief description of our MSA3D
method with the previous study reported in the literature for
AD diagnosis using the ADNI database. The state-of-the-art
comparison studies contain:

(1) The conventional statistical-based methods include: SVM
trained with Voxel-based features (VBF; Salvatore et al., 2015);
landmark-based morphometric features extracted from a local
patch (LBM; Zhang et al., 2016); SVM trained with landmark-
based features (SVM-landmark; Zhang et al., 2017).

(2) The deep-learning-based methods include: 3D-CNN based on
the whole brain sMRI data (whole-3DCNN; Korolev et al.,
2017); Multi-layer perception + recurrent neural network
using the longitudinal sMRI features (MLP-RNN; Cui et al.,
2018); 3D-CNN based on the multiple-modality inputs
including sMRI, PET, and MD-DTI data (multi-3DCNN;
Khvostikov et al., 2018); 3D-DenseNet based on the 3D-
patches features extraction from the hippocampal areas (3D-
DenseNet; Liu et al., 2020a); hierarchical fully convolutional
network based on 3D-patch and regions features extracted
with prior landmarks (wH-FCN; Lian et al., 2020b).

TABLE 5 | Classification results of AD vs. CN on ADNI-1.

Methods ACC SEN SPE AUC F1

Voxel+SVM 0.754 0.728 0.781 0.774 0.741

3D-CNN 0.833 0.738 0.813 0.905 0.796

Multi-slice 0.774 0.776 0.812 0.832 0.753

Multi-patch 0.808 0.710 0.793 0.890 0.767

MSA3D 0.864 0.858 0.884 0.912 0.849

All the models are trained on ADNI-2. The best results are highlighted in bold.

As shown in Table 6, We can draw the following conclusions: (1)
deep-learning-based methods, especially the CNN-based models,
perform much better than most of the conventional statistical
methods in terms of ACC. The main reason is that CNN has
more feature representation power than handcrafted features.
(2) The local features, including ROI-based, landmark-based,
and hippocampal segmentation, are also essential to improve
the performance of dementia prediction, which indicates that
the local changes in whole-brain images provide some valuable
clues for AD diagnosis. However, most of these models need
predefined landmarks or segmentation regions, which could be
hard to obtain potentially informative ROIs due to the local
differences between subjects. (3) Different from existing deep-
learning-based models (Korolev et al., 2017; Khvostikov et al.,
2018; Lian et al., 2020b; Liu et al., 2020a), our proposed model
can extract more discriminative features from both local 2D-slice
level and 3D-subject level sMRI data using 2D-slice attention
network and 3D-CNN, it generates the best ACC, SEN values on
AD vs. CN task, and the best SPE and AUC values for predicting
pMCI vs. sMCI.

It is noteworthy that our model does not need any predefined
landmarks or extra location modules (e.g., hippocampus
segmentation), but it achieved better or at least comparative
diagnostic results than that of existing deep-learning-based AD
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FIGURE 5 | Comparisons of ROC curves. The models are trained on ADNI-2 and tested on ADNI-1.

TABLE 6 | The performance comparison of our model with other state-of-the-art studies report in the literature using the ADNI database for prediction of AD vs. CN and

pMCI vs. sMCI.

Method Test subjects
AD vs. CN pMCI vs. sMCI

ACC SEN SPE AUC ACC SEN SPE AUC

VBF
137AD+76sMCI+

134pMCI+162CN
0.760 – – – 0.660

SVM-Landmark
154 AD+346 MCI

+207 CN
0.822 0.774 0.861 0.881 – – – –

LBM 385AD+465sMCI+

205pMCI+429CN
0.822 0.774 0.861 0.881 0.686 0.395 0.732 0.636

MLP-RNN 198AD+229CN 0.897 0.868 0.925 0.921

Whole-3DCNN
50AD+77sMCI+

43pMCI+61CN
0.800 – – 0.870 0.520 – – 0.520

Multi-3DCNN 48AD+58CN 0.850 0.880 0.900 – – – – –

3D-DenseNet
97AD+233MCI

+119CN
0.889 0.866 0.808 0.925

wH-FCN
385AD+465sMCI

+205pMCI+429CN
0.903 0.824 0.965 0.951 0.809 0.526 0.854 0.781

Our model
326AD++470sMCI

+242pMCI+413CN
0.911 0.888 0.914 0.950 0.801 0.520 0.856 0.789

The best results are highlighted in bold.
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FIGURE 7 | Comparison between multi-view slice fusion without SAM (i.e., MS3D) and multi-view slice fusion with SAM (i.e., MSA3D). (A,B) Show the classification

results for AD vs. CN and pMCI vs. sMCI, respectively.
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diagnosis methods. For example, compared with the second-
best wH-FCN model, which extracts features from multiple
3D-patches with hierarchical landmarks proposals, MAS3D
generates better results in terms of ACC, SEN, and yields almost
the same AUC values on AD vs. CN task. For the aspect of the
pMCI vs. sMCI task, our model performs slightly worse than the
wH-FCN in terms of ACC and SEN. The possible reason is that
wH-FCN adopts more prior knowledge to improve the model’s
recognition capability, i.e., wH-FCN constrains the distances
between landmarks and initializes the network parameters of the
MCI prediction model from the task of AD classification.

5. DISCUSSION

5.1. Influence of Features in Different
Dimensions
In this section, we investigate the effects of models using multiple
slice-level features in different views for AD classification. As
shown in Figure 6, compared with the model combined with
features in the axial plane generates much better results than that
of the sagittal and the coronal planes in terms of ACC and SEN.
Moreover, after combining the features in three dimensions, our
proposed MAS3D outperforms all the tested models, especially
yielding significantly better SEN values than the tested methods.
This result demonstrates that our 2D- and 3D-features fusion

strategy can organically integrate the multi-view-slices features
in all directions.

5.2. Influence of Slice Attention Module
As introduced in Section 3.2, the SAM was employed in our
MSA3D model to assist the slice-level feature extraction by
exploiting the relationships among the slices, i.e., to filter out
uninformative slices efficiently. In this subsection, we conducted
an ablation experiment for comparison, in which the SAM is
removed from our MSA3D, defined as MS3D, to investigate the
effectiveness of the proposed SAM, and all the models are trained
using ADNI-1 and obtained the test results on ADNI-2.

The comparison results are illustrated in Figure 7, fromwhich
we can inform that: (1) the two variants of our methods (i.e.,
MS3D andMSA3D) consistently perform better than the baseline
model (i.e., 3D-CNN), which means the fusion of 2D -slice level
and 3D subject features provides richer feature representation
power for AD diagnosis. (2) the SAM further improved the
performance of slice level feature extraction, especially on the
challenging MCI prediction task, e.g., The proposed MSA3D
generally had better classification performances than MS3D (the
ACC and SEN is 0.772 vs. 0.801 and 0.440 vs. 0.520, respectively).
This indicates that the proposed SAM can help the neural
network focus on specific slices and learn more discriminative
2D-slice level features from abundant slices.

FIGURE 8 | Attention maps of our MAS3D method for predicting multiple subjects selected from the ADNI database with different stages of dementia (i.e., AD and

pMCI), respectively. Each subject’s attention map is displayed in three MR planes (i.e., sagittal, coronal, and horizontal), where red and blue colors denote high and

low discriminative features in sMRI, respectively.
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5.3. Visualization of Slices Features
This section visualizes the attention maps produced by
our MAS3D method using the Grad-cam (Selvaraju et al.,
2020) technology for predicting the subjects with AD and
pMCI. The first, second, and third columns of Figure 8

show the different 2D-slices of sMRI in different views,
including sagittal, coronal, and horizontal, respectively, where
the corresponding model is trained on ADNI-1, and three AD
and three pMCI subjects are randomly selected from ADNI-2
for testing.

From Figure 8, we can infer that our model can identify
discriminative atrophy areas for different subjects with
different stages of dementia, especially for the regions that
affect human memory and decision making in the brain.
For example, our model emphasizes the atrophy of the
frontoparietal cortex, ventricle regions, and hippocampus in
the brain. It needs to be pointed out that these highlighted
brain regions located by our model in AD diagnosis are
consistent with previous clinical research (Chan et al.,
2002; Zhang et al., 2021), which have reported the potential
sensitive markers for neurodegeneration. All of these results
suggest our proposed model can more precisely learn more
discriminative features from the brain sMRI for precise
dementia diagnosis.

5.4. Limitation and Future Study
While the experimental results suggested our proposed model
performed well in automatic dementia detection, its performance
and generalizationmight be potentially enhanced in the future by
addressing the limitations listed below.

First, we take advantage of both 2D-slice and 3D-subject
features in an integrated MSA3Dmodel. However, the numerous
2D slices observably increased the computational complexity.
Since not all the slices help determine the prediction, we could
reduce the complexity by using an online feature selection
module (Wu D. et al., 2021) to select the 2D slices dynamically.
Second, the difference distributions between ADNI-1 and ADNI-
2 were not taken into account, i.e., 1.5 T scanners and 3 T
scanners for ADNI-1 and ADNI-2, repetitively, which might
have a detrimental impact on the model’s performance, i.e., the
model trained on ADNI-2 and assessed on ADNI-1 performed
worse than that trained on ADNI-1 and evaluated on ADNI-2.
We could potentially introduce the domain adaption technique
into our model to reduce the domain gap between different
ADNI datasets. Finally, To further verify the generalization
capacity of the proposed model, we will investigate more deep-
learning-based methods and test our model on other AD
datasets for more AD-related prediction tasks, such as dementia
status estimation.

6. CONCLUSION

This study explores a 2D-slice-level and 3D subject-level fusion
model for AI-based AD diagnosis using brain sMRI. In addition,
a slice attention module is proposed to select the most
discriminative slice-level features adaptively from the brain sMRI
data. The effectiveness of our model is validated on ADNI-1 and
ADNI-2, repetitively, for dementia classification. Specifically, our
model achieves 91.1 and 80.1% ACC values on ADNI-1 in AD
diagnosis and MCI convention precondition, respectively.
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Hemiplegia is a common motor dysfunction caused by a stroke. However, the

dynamic network mechanism of brain processing information in post-stroke hemiplegic

patients has not been revealed when performing motor imagery (MI) tasks. We acquire

electroencephalography (EEG) data from healthy subjects and post-stroke hemiplegic

patients and use the Fugl-Meyer assessment (FMA) to assess the degree of motor

function damage in stroke patients. Time-varying MI networks are constructed using

the adaptive directed transfer function (ADTF) method to explore the dynamic network

mechanism of MI in post-stroke hemiplegic patients. Finally, correlation analysis has been

conducted to study potential relationships between global efficiency and FMA scores.

The performance of our proposed method has shown that the brain network pattern of

stroke patients does not significantly change from laterality to bilateral symmetry when

performing MI recognition. The main change is that the contralateral motor areas of the

brain damage and the effective connection between the frontal lobe and the non-motor

areas are enhanced, to compensate for motor dysfunction in stroke patients. We also

find that there is a correlation between FMA scores and global efficiency. These findings

help us better understand the dynamic brain network of patients with post-stroke when

processing MI information. The network properties may provide a reliable biomarker for

the objective evaluation of the functional rehabilitation diagnosis of stroke patients.

Keywords: stroke, motor imagery, time-varying network, graph theory, Fugl-Meyer assessment

INTRODUCTION

Stroke, also known as cerebrovascular accident, is a disease of the blood vessels supplying the
brain are damaged. It can lead to avascular necrosis or hemorrhage of our brain tissue. Stroke
has high morbidity, disability, and mortality rates, 40% of stroke survivors still suffer from various
disabilities, and the incidence of stroke increases disproportionately with age. Moreover, aging is a
stroke risk factor (Egorova et al., 2019).
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Two types of Motor Imagery (MI) can be divided: Kinesthetic
Motor Imagery (KMI) and Visual Motor Imagery (VMI). KMI
is defined as the thought process of imagining a given movement
without anymotor output. VMImainly relies on the visualization
of the execution of that movement (Rimbert et al., 2019).
MI is regarded as a mental process involving a variety of
advanced cognitive functions (Li et al., 2019). The MI-based
brain-computer interface (BCI) has been widely used in motor
function rehabilitation, motor skill learning, and other fields
(Long et al., 2011; Mane et al., 2020; Xu et al., 2021b). Patients
with motor cortex damage can get better functional recovery
by MI therapy (Xu et al., 2021a). Researchers aim to obtain
good performance from MI recognition (Xu et al., 2016, 2021c;
Wang et al., 2020). Electroencephalography (EEG), as a method
of recording brain activity using electrophysiological indicators,
has the characteristics of high time resolution, low cost, and easy
operation (Zhang et al., 2015; Xu et al., 2020a). EEG is the most
commonly used brain signal for BCI (Xu et al., 2021d). In recent
years, EEG-based BCI systems have developed rapidly, and the
number of commands that BCI can process has increased from
the initial 30 to more than 100 (Xu et al., 2020b). Recently,
the measurement precision of BCI first reached the level of the
sub-microvolt in amplitude (Xu et al., 2018), which significantly
broadened the category of BCI. EEG is also the commonly used
brain signal for clinical rehabilitation. Ding et al. (2022) have used
transcranial magnetic stimulation and electroencephalography
(TMS-EEG) to directlymeasure cortical responses in aging stroke
patients after intermittent theta-burst stimulation (iTBS) and
found that iTBS can normalize natural frequency in aging stroke
patients, which can be utilized in stroke rehabilitation.

The human brain is a complex network consisting of a
large number of interconnected cortical regions. Recently, the
brain network method has attracted much attention and has
been widely used in decoding related cognitive functions. The
main methods of brain networks are effective and functional
connectivity. Functional connectivity is an undirected network
that represents the coordination mechanism between different
neurons (Reid et al., 2019). Effective connectivity is a directed
network defined as the direct or indirect influence from one brain
function area to another brain function area (Park et al., 2018).

Based on EEG analysis, directed networks have directional
information compared to undirected networks. The directed
networks can more accurately assess the information flow
between brain nodes and better understand the brain’s
information processing mechanism when performing MI
recognition. Directed analysis methods such as granger causality
analysis (GCA), partial directed coherence (PDC), and directed
transfer function (DTF) have significant advantages in capturing
directional coupling between different brain regions (Jastreboff,
1990; Maudoux et al., 2012). Based on the DTF method, Vecchio
and Babiloni (2011) have found that the directionality of frontal-
parietal EEG synchronization in Alzheimer’s Disease (AD) and
Amnestic Mild Cognitive Impairment (MCI) is abnormal.

EEG has millisecond-level time resolution, which leads to
different network structures corresponding to different stages of
the brain processing information. Therefore, the study of time-
varying networks helps us to explore the dynamic process of

brain information processing in MI recognition and to capture
the time-varying connections of cognitive processes. Including
time-varying granger causality analysis (tv-GCA), time-varying
partial directed coherence (tv-PDC), and adaptive directed
transfer function (ADTF) can get different network connection
structures in different cognitive procedures (Li et al., 2015;
Manomaisaowapak et al., 2015). Li et al. (2016) have used an
adaptive directed transfer function to construct a time-varying
network of P300 and found that different stages of P300 induce
different brain network structures. Based on the ADTF method,
Si et al. (2019) have studied the role of the frontal cortex in the
decision-making stage and the different network structures in
different decision-making stages.

Fugl-Meyer assessment (FMA) is an authoritative method to
assess the motor function of stroke patients. It can provide a
visual representation of motor function after stroke, and can play
an important role in the baseline assessment, as well as monitor
and quantify longitudinal changes in motor function (Riahi et al.,
2020). FMA is a reliable and effective method for measuring
motor dysfunction, a higher score corresponds to better motor
function (Saes et al., 2019). All patients have been completed
the FMA to ensure the consistency of the FMA scores and the
EEG recording. Saes et al. (2021) have used the resting state EEG
parameters of stroke patients to predict FMA scores, and they
have proved that resting-state EEG parameters can be used as a
biomarker for predicting stroke recovery. A challenge associated
with this assessment is the availability of trained doctors to
conduct the evaluation. The study of biomarkers can estimate
that FMA may help to solve the problem.

The network mechanism of stroke patients based on the
ADTF method has been studied. The dynamic reorganization
and compensation of the brain network have been revealed. The
correlation between network properties and FMA scores has been
analyzed. Our proposed method provides a new neuroregulatory
index for diagnosis and treatment of post-stroke patients.

MATERIALS AND METHODS

Participants
After receiving a detailed explanation of the purpose and
potential risks of the experiment, all subjects have provided
written informed consent. The study protocols have been
approved by the medical ethics committee of Qilu Hospital,
Cheeloo College of Medicine, Shandong University. The
study is carried out in accordance with relevant guidelines
and regulations. Twenty-one right-handed subjects have been
recruited in our current study, consisting of seven male patients
with left hemiplegic stroke (marked as LS, age 49± 12 years); five
male patients with right hemiplegic stroke (marked as RS, age 54
± 8 years); nine male health control (marked as HC, age 45 ±

12 years). All subjects have normal hearing and vision, and no
psychiatric drugs are taken for healthy subjects.

Experimental Procedures
The experiment is conducted in a separate relatively shielded
room. The room is lighted with soft luminance. In addition,
during the acquisition of EEG signals, the indoor temperature
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FIGURE 1 | EEG experimental paradigm. One KMI trial includes a 4-s resting

state (represented by a blank screen), and a 6-s KMI task (represented by the

left or right arrow on the screen).

is maintained at ∼21◦C by the air conditioner, and the doors
and windows are tightly closed to avoid the influence of noise.
Throughout the experiment, all subjects are asked to stay relaxed
to avoid real hand movements affecting the validity of the data.
The experiment adopts the KMI paradigm. Each subject has
performed 70 independent experiments, including 30 MIs for
each of the left and right hands, 10 actual exercises, and EEG data
have been acquired from 64 electrodes. Each KMI trial has a total
of 10 s. The first 4 s are resting, and a blank screen appears to
remind the subjects to prepare, and the next 6 s are the task state.
When the KMI recognition starts, a left or right arrow appears
on the screen to remind the subjects to imagine the left-hand
or right-hand lifting action. The left-hand or right-hand KMI
trials are randomly presented to the subjects. The experimental
paradigm is shown in Figure 1.

Signal Recording
A BrainAmp 67-node amplifier from Brain Products (Australia)
has been used to record EEG. All 64 Ag/AgCl electrodes are
placed according to the 10–20 international system. The REF
electrode between the CZ electrode and the CPZ electrode is used
as a reference. In all experiments, the sampling rate is 1000 Hz.

Data Analysis
In this study, the preprocessing procedure and analysis procedure
are shown in Figure 2, the time-varying network analysis has
been performed and the correlation between the global efficiency
(GE) and the FMA score has been calculated.

Preprocessing
The purpose of preprocessing is to acquire clean EEG data
for subsequent analysis. The detailed procedures include
8–30Hz band-pass filtering, performing reference electrode
standardization technique (REST) processing on the filtering data
(Yao, 2001; Dong et al., 2017), segmenting data with a time
window of [−4 s, 6 s] (0 s corresponds to the stimulus onsets), and
removing bad trials [±70 µV as the threshold for ocular artifacts
(Li et al., 2019, 2021)]. Then, the data has been down-sampled

to 100Hz. To reduce the influence of the volume conduction
between network nodes, 21 electrodes (i.e., Fp1, Fpz, Fp2, F7, F3,
Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2, and
Oz) of the 64 electrodes have been selected to construct the brain
functional network.

Time-Varying Network Pattern Analysis
For each subject, the preprocessed EEG is used to further
construct time-varying KMI networks based on ADTF (Li et al.,
2016). Then, the left-hand and right-hand time-varying KMI
networks corresponding to each trial are averaged for each
subject. Therefore, a time-varying network of two-classes KMI
tasks is generated. The detailed description of ADTF in our study
is as follows:

Time-Varying Multivariable Adaptive Autoregressive Model
For the time series of each subject’s trial, the following
formula can be used to construct a corresponding time-varying
multivariable adaptive autoregressive (tv-MVAAR) model to
describe the dataset:

X (t) =
∑p

i=1
A (i, t)X (t − i) + E (t)

where X (t) is the data vector of each trial at time t, A (i, t)
denotes the model coefficient matrix estimated by the Kalman
filter algorithm (Arnold et al., 1998; Pagnotta and Plomp, 2018),
E (t) denotes the multivariate independent white noise, p is the
optimal model order automatically determined by the Akaike
information criterion (AIC) within the range of 2–20.

AIC
(

p
)

= ln
[

det (ε)
]

+ 2β2p/α

where β is the number of nodes, p is the order of the best model
of tv-MVAAR, α is the number of sampling points in the time of
[−4 s, 6 s] (0 s corresponds to the stimulus onsets), and ε is the
corresponding covariance matrix.

Adaptive Directed Transfer Function
The time-varying model coefficient matrix A (i, t) can be
transformed in the frequency domain to obtain the transfer
matrix H

(

f , t
)

of the time-varying model, which can be further
derived Hij

(

f , t
)

is the directional information flow from the
jth node to the ith node at time t. Then, the time-frequency
representations of X (t) and A(i, t) are described as follows:

A
(
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)

X
(
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)

= E
(
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)

X
(
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)

= A−1(f , t)E
(
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)
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(
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(
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)

where A
(

f , t
)

=
∑p

k=0
Ak (t) e−j2π f△tk with the A(t) denotes

the matrix of model coefficients, X
(

f , t
)

and E
(

f , t
)

are
the representations of X (t) and E (t) in the frequency
domain, respectively.

Under the premise of a given frequency f and corresponding
time point t, the ADTF value describes the directional causal
interaction from the jth node to the ith node is normalized and
defined as:

r2ij
(

f , t
)

=

∣

∣Hij

(

f , t
)∣

∣

2

∑n
m=1

∣

∣Him
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)∣

∣

2

Frontiers in Aging Neuroscience | www.frontiersin.org 3 May 2022 | Volume 14 | Article 91151393

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Xu et al. Time-Varying Network for Stroke

FIGURE 2 | The framework of EEG processing procedure. (A) Preprocessing. (B) Time-varying network pattern analysis. Between the two electrodes, the connecting

edge represents the coupling relationship and the arrow represents the flow direction.

Finally, the ADTF values on the frequency band of interest
containing MI-related rhythms at 8–30Hz are averaged to
evaluate the directional information flow of two different nodes
(Burianová et al., 2013; Zhang et al., 2018):

22
ij (t) =

∑f2
k=f1

r2ij
(

k, t
)

f2 − f1

For each subject, all trials connectivity networks are averaged
across all of these artifact-free trials and then induce the final
time-varying network model. When exploring the group-wise
networks’ differences, the time-varying networks of the LS, RS,
and HC have been binarily thresholded into the time-varying
binary networks with a connectivity cost of 5% to illustrate the
time-varying network architectures. The networks have been also
statistically compared by using the non-parametric Wilcoxon
rank-sum test. Some previous studies have shown that the
difference between 2ij and 2ji determines the direction of
information flow in time-varying networks (Babiloni et al., 2009;
Vecchio and Babiloni, 2011). As ADTF captures the dynamic
networks for each time point, and nearby time points have shown
highly similar network patterns. In our study, we describe the
KMI time-varying networks with a time interval of 1.5 s and
reveal the dynamic KMI network mechanism by evaluating the
time-varying networks corresponding to different KMI stages.

Time-Varying Network Properties
According to the obtained adjacency matrix, Brain Connectivity
Toolbox (BCT, http://www.nitrc.org/projects/bct/) has been

employed to calculate the GE of all subjects at each time point
(Zhang et al., 2020), the time-varying KMI networks are analyzed
through graph theory. The GE describes the ability of the brain
network to process information. The GE calculation formula is
as follows:

GE =
1

n

∑

i∈N

∑

j∈N,j6=i

(

d−→
ij

)−1

n− 1

Here, n represents the node number, d−→
ij
represents the shortest

characteristic path length, and N denotes the set of current
network nodes.

Correlation Analysis Between Time-Varying Network

and FMA
According to the FMA scores, 12 stroke patients have been
divided into three classes: severe (FMA: 0–20), moderate (FMA:
20–40), and mild (FMA: 40–60). The 12 patients are ranked
from lowest to highest score. The high scores correspond to
better motor function, and the low scores correspond to poor
motor function. Pearson correlation analysis has been used to
explore the potential relationship between each patient’s GE and
FMA scores to reveal whether the network properties can be
used as potential biomarkers to indicate the degree of motor
function rehabilitation.
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FIGURE 3 | The dynamic KMI network patterns of RS/LS/HC. (A) Time-varying network pattern in the right hand of the RS group; (B) time-varying network pattern of

the left hand in LS group; (C) time-varying network pattern of left/right hand in HC group. The connecting edge in the figure represents the coupling relationship

between the two electrodes, the red edge represents the two-way connection between the two nodes, the green edge represents the one-way connection between

the nodes, and the arrow represents the flow direction between them.

RESULTS

Dynamic KMI Network Patterns
To investigate the dynamic network difference between post-
stroke hemiplegic patients and healthy subjects when performing
KMI recognition, the ADTF function has been used to calculate
the time-varying network matrix of LS, RS, and HC groups in the
8–30Hz frequency band of interest, and take the sparsity of 5%
(i.e., the connection edge with the strongest weight remaining
5%) to display the transient topology. When performing the
right-hand KMI tasks, the crucial hubs for the RS subjects
(Figure 3A) are located at the contralateral P4 and ipsilateral
P3. The motor areas of the stroked hemisphere (i.e., right
hemisphere) for the LS subjects (Figure 3B) have been shown
the weaker connectivity when executing the left-hand KMI tasks,

but the contralateral F3 and C3 electrodes (i.e., at the left
hemisphere) extend to the occipital lobe have been shown the
stronger connectivity. However, the electrodes C3 or C4 for the
HC subjects (Figure 3C) have served as the important hub to
control the KMI recognition, and then have transferred to the
joint control from bilateral C3 and C4 electrodes.

Dynamic Network Differences
To further explore the differential dynamic network patterns
of the time-varying networks between post-stroke hemiplegic
patients and healthy subjects, Figure 4 shows the corresponding
statistical network topology diagrams at different time points.
Compared to HC subjects (Figure 4A), stronger information
flow in the LS group has transferred from the occipital lobe
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FIGURE 4 | Differential time-varying network topologies between the pairwise groups. (A) LS vs. HC groups and (B) RS vs. HC groups. Here, the red edge represents

the connection edge where LS/RS is stronger than HC, the blue edge denotes the connection edge where HC is stronger than LS/RS, and the arrow indicates the

information flow between nodes.

(e.g., O1, O2) to the left frontal lobe (e.g., F7); however, these
phenomena in the RS group (Figure 4B) have occurred from
occipital lobe (e.g., O1) and left frontal lobe (e.g., F7) to the right
frontal lobe (e.g., F8).

Dynamic of the Time-Varying GE
To further explore the connection pattern of the time-varying
network, the values of GE at each time point are averaged for
the subjects in the three groups of LS, RS, and HC. Figure 5A
shows the GE increase along with the progress of the KMI
recognition. When performing right-hand KMI tasks, the GE of
the HC group is greater than that of the RS group (p < 0.05), as
shown in Figure 5B.

Correlation of GE and FMA Scores
Clinically, the higher the FMA scores are responding to the
less severe the damage of motor function. Figure 6A shows the
average GE of 12 stroke patients, and the x-axis represents the
12 stroke patients who have been ranked in ascending order
of FMA scores. The scatter plot of GE and FMA of 12 stroke
patients and the positive correlation (r = 0.61, p = 0.035) are
shown in Figure 6B.

DISCUSSION

Stroke causes damage to the motor functional areas of the
brain, which in turn leads to motor dysfunction. Compared
with healthy subjects, the functional connections between
different brain regions of stroke patients are more complicated
in performing KMI. Moreover, the brain processes information
very efficiently, which leads to different network structures

corresponding to different cognitive stages. To evaluate
the network reorganization and compensation of brain
function after stroke, the ADTF has been employed to better
explore the dynamic network mechanism of post-stroke
hemiplegic patients and healthy subjects during the execution
of KMI.

Time-varying network topology diagrams under different
conditions are calculated to study the interaction patterns
between different brain regions of post-stroke hemiplegic
patients and healthy subjects. Figure 3 shows the dynamic
network patterns of the RS, LS, and HC groups when performing
KMI recognition. When the patients with left brain damage
perform right-hand KMI tasks, the connection between the
motor areas on the stroked left hemisphere and other functional
brain areas is enhanced, and the hub node has transferred from
node C3 to node C4, as shown in Figure 3A. The enhancement
of the bilateral occipital lobe (i.e., P3 and P4) connection is
enhanced during the later stage of KMI. These phenomena might
further indicate that the contralateral brain areas of the stroked
hemisphere have functional compensation, and the ipsilateral
non-motor areas that are responsible for the high-level cognition
also have functional compensation, such as motor planning and
attention (Li et al., 2021). When the patients with right brain
damage imagine the left-hand movement, stronger functional
connectivity has existed between the frontal and parietal-occipital
lobe, while seldom connectivity of the stroked right hemisphere
has been observed, as shown in Figure 3B. The phenomena
may account for the deficits in performing left-hand KMI tasks
and left-hand wrist extension of the LS patients. The frontal
and parietal lobe is responsible for the advanced regulation
of limb movement. Right brain damage causes human motor
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dysfunction, the left brain areas increase the response to provide
compensation for motor function (Li et al., 2020). Thereafter, the
bilateral motor areas C3 and C4 are more connected. Because
the brain of stroke patients is damaged, the response pattern
and functional connection of the brain are different from healthy

FIGURE 5 | The time-varying GE of left-hand and right-hand KMI recognition.

(A) Dynamics of the GE. (B) Statistics of the average GE. The asterisk

represents significant differences in GE between the two groups (p < 0.05).

subjects. The location and severity of brain damage affect the
degree of brain function network remodeling (Arun et al., 2020).
For healthy subjects, when performing left-hand and right-hand
KMI tasks, the brain function networks appear a network pattern
from the opposite side to the bilateral connection, as shown
in Figure 3C. When performing the left-hand KMI tasks, the
network connection of the right motor areas is enhanced, and
then the network connection gradually appears in the bilateral
motor areas. During the right-hand KMI procedure, the left
motor areas have presented significantly stronger connectivity,
which has switched to a bilateral connectivity architecture.
During KMI procedure, the brain functional areas involved in
healthy subjects include the main motor areas, medial frontal
gyrus, parietal lobe, and primarymotor cortex (Zhou et al., 2022).
The KMI procedure of health subjects mainly responds to the
contralateral brain areas (Sharma and Baron, 2013).

The functional compensation and plasticity of the brain after
stroke are related to the functional connection difference between
stroke and healthy subjects, and are related to the response
between different brain regions (Bundy and Nudo, 2019). The
study further explores the abnormal networks connection status
of stroke patients. Under the premise of the LS group and HC
group, the connecting edge of LS is significantly stronger than
HC from the occipital lobe to the left frontal lobe, as shown in
Figure 4A. At the beginning of the KMI recognition, when the
subjects see the prompt instruction, the LS is relative to the HC,
the connection of the occipital lobe is stronger at this time. The
occipital lobe is the center of the visual cortex (Chu et al., 2021).
The damage to the brain motor function areas of stroke patients
leads to payingmore attention to prompt instructions. Therefore,
the patients’ attention to action prompt instructions is also a
good compensation effect for the motor dysfunction (Rowe et al.,
2002). In addition, the stronger connectivity of the occipital lobe
plays an important role in improving the performance of SSVEP-
based BCI systems (Gao et al., 2018; Sun et al., 2020). During
KMI recognition, the functional connections of the LS brain are
enhanced from the left frontal lobe (i.e., F7 node) to the bilateral

FIGURE 6 | Correlation analysis. (A) The average GE of 12 stroke patients. (B) Correlation between FMA scores and GE of 12 stroke patients.
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parieto-occipital lobes. The connection of the frontal and parietal
brain areas plays an important role in motor planning, decision-
making, etc. (Bowling et al., 2020). The frontal lobe is related
to the movement of the limbs. Right brain stroked in LS leads
to increased connections between the left frontal lobe and other
brain regions. The phenomena show that the left brain areas
participate in motor planning and regulation as compensation
when performing KMI recognition. As shown in Figure 4B, the
significantly stronger connection edges of RS have transferred
from the occipital lobe and the left frontal lobe to the right frontal
lobe compared to HC. Stroke results in the dysfunction of the
patients’ motor network, more non-injured brain areas and non-
motor areas of the damaged brain areas can participate in the
completion of KMI recognition (Li et al., 2020). The connection
of the brain network of the frontal lobe and the occipital lobe
is abnormal, the functional compensation of the brain to the
damaged motor network is indicated.

Based on the time-varying networks of the three groups of
subjects, the time series of the dynamic GE of the different
groups in the KMI stage are shown in Figure 5. The GE is the
average efficiency of related brain networks and is usually used
to estimate the potential of information transfer among brain
regions. As illustrated in Figure 5A, the time-varying network
efficiency of the HC, LS, and RS groups has increased along
with the execution. When subjects are asked to perform KMI
recognition, more advanced cognitive functions in the brain are
gradually recruited, so network efficiency gradually increases
(Zhang et al., 2016). Throughout the KMI recognition stage,
the gradual increase in network efficiency can guarantee the
completion of KMI recognition. Sabaté et al. (2004) have found
that after left hemisphere stroke, a person’s limb movement
speed is significantly slowed down, and after right hemisphere
stroke, the brain activity during KMI is stronger than that
in the left hemisphere stroke. The information transfer rate
between brain regions in the RS group is lower than the LS
group when performing KMI recognition. LS has stronger brain
compensatory and remodeling capabilities. After a stroke, plastic
changes occur between different brain areas, the interaction
between brain areas is enhanced to compensate for the damaged
brain areas. The patients need to activate other brain areas as
compensation to complete the KMI recognition. And indeed,
when performing the right-hand KMI tasks, the average GE of
the HC group is significantly larger than that of the RS group, as
shown in Figure 5B.

To further investigate whether the GE is correlated with
the FMA scores, we have performed one correlation analysis.
As shown in Figure 6B, there is a positive correlation between
GE and FMA. The higher the FMA scores, the higher the
corresponding global efficiency. It proves that the GE can reflect
the severity of clinical motor function damage. We can conclude
that GE may be used as a potential biomarker to reflect the
severity of motor function damage and objectively evaluate the
efficacy of neuromodulation therapy. And it can also be used as
a feedback indicator to guide the development of more effective
KMI rehabilitation therapies in the future.

Our current study also has some limitations. The number
of patients is scarce, and the subjects between males and

females are unbalanced. To promote clinical treatment and
effective intervention for stroke, more subjects will be recruited,
meanwhile, the balanced male and female subjects will be
considered for analysis.

CONCLUSIONS

In our study, we have constructed the time-varying KMI
networks between post-stroke hemiplegic patients and healthy
subjects based on the ADTF method. In post-stroke hemiplegic
patients, the connection between the damaged brain areas and
other motor areas is weaker when performing KMI recognition.
The effective connection between the non-damaged brain areas
and other motor areas is stronger. The connection between
the frontal-parietal lobe and the occipital lobe is enhanced
to provide compensation for motor dysfunction in stroke
patients, and FMA scores are closely correlated with GE.
These findings allow us to better understand the mechanism
of movement disorders in patients with post-stroke hemiplegic.
It also shows that the brain network may provide a more
reliable quantitative analysis method for the clinical diagnosis
and treatment of stroke.
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Alzheimer’s disease (AD) is the most common form of dementia, causing progressive
cognitive decline. Radiomic features obtained from structural magnetic resonance
imaging (sMRI) have shown a great potential in predicting this disease. However,
radiomic features based on the whole brain segmented regions have not been explored
yet. In our study, we collected sMRI data that include 80 patients with AD and 80 healthy
controls (HCs). For each patient, the T1 weighted image (T1WI) images were segmented
into 106 subregions, and radiomic features were extracted from each subregion.
Then, we analyzed the radiomic features of specific brain subregions that were most
related to AD. Based on the selective radiomic features from specific brain subregions,
we built an integrated model using the best machine learning algorithms, and the
diagnostic accuracy was evaluated. The subregions most relevant to AD included the
hippocampus, the inferior parietal lobe, the precuneus, and the lateral occipital gyrus.
These subregions exhibited several important radiomic features that include shape, gray
level size zone matrix (GLSZM), and gray level dependence matrix (GLDM), among
others. Based on the comparison among different algorithms, we constructed the
best model using the Logistic regression (LR) algorithm, which reached an accuracy
of 0.962. Conclusively, we constructed an excellent model based on radiomic features
from several specific AD-related subregions, which could give a potential biomarker for
predicting AD.

Keywords: Alzheimer’s disease, magnetic resonance imaging, radiomics, machine learning, structural MRI (sMRI)

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia, characterized by episodic memory
decline. Its incidence is rising as the population ages and there are approximately 50 million people
suffering from AD worldwide at present, which imposes a heavy burden on the society (Nichols
et al., 2019; Breijyeh and Karaman, 2020). Due to the lack of sensitive diagnoses and effective
treatments, it is of great theoretical significance and of potential clinical value to establish reliable
radiologic biomarkers for early detection of AD by using new technologies, which can improve the
prognosis of the disease.

Neuroimaging studies in AD have revealed the relationship between AD and structural atrophy
in the temporal lobe, the entorhinal cortex, the hippocampus, and the limbic system, which reflects
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the different stages of the disease and predicts the progress of
AD (Sørensen et al., 2016; Wolk et al., 2017; Li et al., 2018).
Previous studies used the analysis based on manually labeled
regions of interest (ROI) to explore the subtle structural atrophy
leading to AD (Last et al., 2020). In recent years, machine
learning provides an automated and objective classification
framework that includes feature extraction, algorithm selection,
predictive model building, model validation, and so on. In the
AD classification field, machine learning has attracted increasing
attention by using the multimodal quantify patterns of atrophy
together with different algorithms in recent years (Tang et al.,
2015). For the radiomic feature extraction, brain atrophy was
most often quantified via volume, texture, and geometric shape
measures from structural magnetic resonance imaging (sMRI),
which has achieved promising results.

For instance, one study combined hippocampal volume
information and machine learning, suggesting that the
volumetric reduction in the hippocampus was an important
indicator of early AD (Uysal and Ozturk, 2020). Texture analysis
had been successfully employed to search for imaging biomarkers
for AD (De Oliveira et al., 2011; Anandh et al., 2015; Chincarini
et al., 2016). Several studies had confirmed hippocampal texture
abnormalities in AD and early stages of AD, indicating that
texture might predict early cognitive impairment (Sørensen
et al., 2016). Recently, Feng et al. employed the radiomic features
of hippocampal subregions using a support vector machine
(SVM) model to distinguish AD from healthy control (HC)
and showed good performance (Feng et al., 2018). Besides the
hippocampus, one study analyzed the texture features of the
corpus callosum and the thalamus, suggesting that these regions
could be used for the early diagnosis of AD (De Oliveira et al.,
2011). Another study used the random forest (RF) classifier to
identify the subcortical regions and found that the radiomic
features from the hippocampus and amygdala regions have the
greatest discriminative ability, which could differentiate AD
from HC with the best performance (Chaddad et al., 2018). For
geometric shape measures, a recent study used the geometric
shape of the corpus callosum and multilayer perceptron (MLP)
classifier to differentiate AD from HC, in which the classifier
showed a high accuracy value (Dadsena et al., 2019).

As listed above, the research of AD prediction based on
structural radiologic features and machine learning has made
promising progress. However, most studies have explored a single
structure or local features. Few studies have focused on the
analysis of the whole brain subregions, which might be restricted
by the manual annotation method. However, it is extremely
important to analyze the whole brain radiomic features using a
machine learning method, because it can facilitate an objective
and comprehensive evaluation of brain atrophy patterns, which
may provide more effective and sensitive markers for the early
diagnosis of AD.

Since different brain subregions can be affected by AD in a
distinct manner, it is very essential to investigate the radiomic
features of whole brain structures. In this study, by using a
machine learning method, we first explored radiomic features of
whole brain in different subregions between AD and HC and
identified key subregions, which showed significant differences

between the two groups. Second, we constructed classification
models based on the radiomic features of selected subregions
and different algorithms. Finally, by calculating the classification
accuracy and evaluating the model performances, we identified
the best model to predict AD. Based on the pathology of AD
and previous studies, we hypothesized that this classification was
driven by a distributed atrophy pattern of several subregions
and mainly includes the hippocampus and other limbic systems,
which might be affected early in the disease course. We expected
that the model based on radiomic features of specific subregions
can be applied as a valuable radiologic biomarker for the early
diagnosis of AD.

MATERIALS AND METHODS

Patient Information
In total, 160 right-handed subjects had participated in the study,
i.e., 80 patients with AD and 80 healthy controls (HCs). This
study was carried out in accordance with the recommendations
of the Medical Research Ethics Committee of Aerospace
Center Hospital. All subjects gave written informed consent
in accordance with the Declaration of Helsinki. The protocol
was approved by the Medical Research Ethics Committee of
Aerospace Center Hospital. The AD subjects were recruited
randomly from patients who had consulted the memory clinic
at Aerospace Center Hospital for memory complaints. The
HCs were recruited from the local community by recruitment
advertisements. All the participants were required to complete
the regular form, which includes age, gender, education, clinical
history, family genetic history, previous examination results, and
other clinical information.

All participants underwent a complete physical examination,
neurological examination, and neuropsychological assessment.
The neuropsychological examinations included the Mini-Mental
State Examination (MMSE), the Clinical Dementia Rating (CDR)
score, and other examinations. The patients with AD fulfilled the
new research criteria for possible or probable AD (Dubois et al.,
2007, 2010).

The HC fulfilled the following criteria: (a) no abnormal
findings in routine brain Magnetic Resonance Imaging (MRI);
(b) no findings of stroke, depression, or epilepsy, and other
neurological or psychiatric disorders; (c) no visual loss or hearing
loss and other neurological deficiencies; (d) no complaints about
cognitive and memory; and (e) CDR score of 0.

The excluded criteria were as follows: participants with
contraindications for MRI were excluded. For example, the
subjects who have a cardiac defibrillator, a pacemaker, vascular
clips, or a mechanical heart valve cannot take part in
the examination; in addition, subjects with neurological or
psychiatric diseases or with a history of cerebrovascular attacks
or other degenerative disorders were excluded.

Structural Magnetic Resonance Imaging
Data Acquisition
Magnetic Resonance Imaging examinations were performed at
the department of radiology using a 3.0T Siemens Skyra MR
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FIGURE 1 | A research map. This study is mainly divided into four parts. The first part is data collection and preprocessing, the second part is whole-brain structure
segmentation, the third part is radiomic analysis, and the fourth part is model construction and evaluation.

FIGURE 2 | The construction and evaluation of the machine learning model in this study. Because this study adopts a variety of normalization methods and machine
learning models, their combination is shown in this figure.

System (Siemens, Germany) with a 20-channel head coil. Sagittal
T1-weighted structural images were acquired for each subject
using a magnetization-prepared rapid gradient echo (MPRAGE)

sequence. Three-dimensional (3D) MPRAGE sagittal images
were obtained with following parameters: Time of Repetition
(TR)/Time of Echo (TE)/Time of Inversion (TI)/Flip Angle
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(FA) = 1900 ms/2.2 ms/900 ms/9◦, image matrix = 256 × 256,
slice number = 176, and thickness = 1 mm. The obtained 3D
images had a resolution of 1 mm × 1 mm × 1 mm.

Segmentation and Evaluation of
Subregions
The whole brain subregions of each patient were extracted
automatically by the given deep learning model first. The
model was trained by the United Imaging platform.1 The
training process and the reference method of the model
were similar to the previously published research (Desikan
et al., 2006). The results of automatic segmentation included
22 temporal lobe structures, 20 frontal lobe structures, 12
parietal lobe structures, 8 occipital lobe structures, 8 cingulate
gyrus structures, 2 insular structures, 12 subcortical gray
matter structures, cerebral white matter structures, ventricles,
the cerebellum, and other structures, with a total of 106
subregions. In particular, left and right structures were identified
as different individuals. Once the automatic segmentation
was done by the deep learning model, the result would be
evaluated by two senior radiologists with more than 5 years of
experience in radiologic diagnosis. In the segmentation results
of 106 subregions of 160 patients in this study, two senior
radiologists had no different opinions on the accuracy of the
segmentation results.

Radiomics Feature Extraction and Model
Construction
All preprocessing steps were performed using The United
Imaging platform. Briefly, the radiomic features were extracted
at first. Second, the features that were most consistent across
different radiomics were selected to ensure robustness. Then,
the dimension of extracted features was reduced using the
Select K Best (K-Best) algorithm and traditional least absolute
shrinkage and the selection operator (LASSO) algorithm, in
which the two algorithms were used in series. Finally, the relevant
parameters of these selected features would be used to build
a machine learning model in order to successfully predict AD
and HCs. These selected radiomic features of the most relevant
subregions would be used in training sets and test sets in the
form of 10-fold cross verification. The overall process is shown
in Figure 1.

Model Validation
Before these data were used for model training, we used a variety
of data normalization methods, such as Box-Cox transformer, L1
normalization, L2 normalization, max Absolute value scaler, min-
max scaler, quantile transformer, YeoJohnson transformer, and Z
score scaler. In this way, we tried to ensure the accuracy of the
results. Then, we used a variety of common algorithms to predict
AD and HCs, such as Adaptive Boosting (AdaBoost), Bagging
Decision Tree (BDT), Gaussian Process (GP), Gradient Boosting
Decision Tree (GBDT), K-Nearest Neighbor (KNN) algorithm,

1http://urp.united-imaging.com:8080/

Logistic regression (LR), Partial Least Squares Discriminant
Analysis (PLSDA), Quadratic Discriminant Analysis (QDA),
RF, Stochastic Gradient Descent (SGD), SVM, and Extreme
Gradient Boosting (XGBoost). The specific arrangement and
combination ways are shown in Figure 2. The area under
the curve (AUC) value, F1 score, recall rate, precision,
sensitivity, specificity, and accuracy of each combination were
evaluated separately.

Statistical Analysis
Statistical analyses were performed using SPSS software 22.0
(IBM, Armonk, NY, United States). For numerical data in AD and
HC groups, a Wilcoxon test was used to evaluate the differences
between AD and HC groups. For categorical data, such as gender,
a Fisher’s exact test was used to evaluate differences between
AD and HC groups. Statistical significance was considered as
p < 0.05.

RESULTS

Basic Characteristics of the Patients
In total, 80 patients with AD and 80 HCs with high-resolution
sMRI data were collected retrospectively, adjusted for age, sex,
MMSE, and CDR, among others. The detail is shown in Table 1.
There were no significant differences in age and sex between
AD and HCs. There were significant differences in MMSE
between the two groups.

Automatic Segmentation Results of
Whole Brain Subregions
As the result, concrete 106 subregions included temporal lobe
structures (the hippocampus, the para hippocampal gyrus, the
amygdala, the entorhinal gyrus, the fusiform, the temporal
pole, the superior temporal gyrus, the middle temporal gyrus,
the inferior temporal gyrus, and the transverse temporal
gyrus), frontal lobe structures (the precentral cortex, the
superior frontal gyrus, the frontal middle rostral, the frontal
middle caudal, the frontal pole, the lateral orbitofrontal lobe,
the medial orbitofrontal lobe, the pars opercularis, the pars
orbitalis, and the pars triangularis), the parietal lobe structures
(the postcentral cortex, the paracentral cortex, the superior
parietal lobule, vinferior parietal lobule, the precuneus, and
the supramarginal gyrus), the occipital lobe structures (the
cuneus gyrus, the lingual gyrus, the pericalcarine gyrus, and
the lateral occipital gyrus), the cingulate gyrus (the anterior
cingulate gyrus, the middle cingulate gyrus, the posterior
cingulate gyrus, and the cingulate gyrus of isthmus), the
insular lobe structures, the subcortical gray matter structures
(the caudate, the putamen, the pallidum, the thalamus, the
nucleus accumbens, and the claustrum), the cerebral white
matter, ventricles (lateral ventricle, 3rd ventricle, 4th ventricle,
and cerebrospinal fluid), the cerebellum (the cerebellum cortex
and the cerebellum white matter), and other structures (the
choroid plexus, the inferior horn of lateral ventricle, the
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TABLE 1 | Clinical characteristics of AD patients and HC.

AD(N = 80) HC(N = 80) p-value

Age, median(min–max) 65(46–88) 64.5(48–83) *9.54 × 10−1

Sex, male/female 42/38 40/40 **9.87 × 10−1

MMSE, median(min-max) 15(0–25) 28(12–30) *7.26 × 10−5

CDR 0.5–3 0 /

*Wilcoxon rank test; **Fisher exact test.
AD, Alzheimer’s disease; CDR, Clinical Dementia Rating; HC, healthy control;
MMSE, Mini-Mental State Examination.

brainstem, the optic chiasm, and the corpus callosum). The
specific segmentation results of 106 brain areas are shown in
Figure 3.

Identification of Subregions Related to
Alzheimer’s Disease
Each subregion was extracted from 104 radiomic features and for
a person, there would be, in total, 11,024 features with all 106
brain areas, which would be discussed in detail in the next section.
We used two methods of dimensionality reduction in series, the
Select K Best and LASSO. In the first step, we applied Select K
Best to the 11,024 different features of subregions and screened
the 3,660 specific features of subregions that may be related to AD
(shown in Figure 4, only the top 10 features). Then, we applied
LASSO to further screen the remained 3,660 specific radiomic

features of subregions. After this, only 5 different radiomic
features of 4 specific regions remained (shown in Figure 4). In
the whole process of radiomic feature analysis, the rad scores of
the training set and test set are shown in Figure 5.

As the above figures showed, there were several subregions
related to AD. The most related subregions were the
hippocampus, the inferior parietal lobule, the precuneus,
and the lateral occipital gyrus.

Identification of Important Radiomic
Features
As mentioned above, some specific subregions played an
important role in the prediction of AD. At the same time,
different radiomic features of specific subregions also played
different roles in the prediction of AD. In the dimension
reduction process of Select K Best, we selected the relevant
features of top 100 for further analysis. The low-order radiomic
features we used include the following categories: first order
statistics, shape-based features, gray level co-occurrence matrix
(GLCM), gray level run length matrix (GLRLM), GLSZM,
neighboring gray tone difference matrix (NGTDM), and GLDM.
The result is shown in Figure 6. Furthermore, after LASSO
screening analysis, we noticed that only 5 remained were the
most important features in predicting AD and NCs, such as first
order statistics, GLSZM (i.e., two different subtypes), shape, and
GLDM, which are mentioned in Figure 5.

FIGURE 3 | The label of main brain regions in structural MRI (sMRI) after automatic segmentation. Specially, the symmetrical structure is divided into left and right
and has different labels. Only the structure on the left is marked above.
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FIGURE 4 | The combination of statistically significant brain regions and radiomic features in the two-step dimensionality reduction process. In the first step, Select K
Best, more than 10 radiomic features, are screened out; only the top 10 are listed in this figure.

The Evaluation and Comparison of
Different Algorithms
We compared the performances of different algorithms for
predicting AD. Table 2 summarizes the AUC, F1 score,
recall rate, precision, sensitivity, specificity, and accuracy of
the train set and test set using different algorithms. Each
normalization method was listed at the model’s best performance.
Especially, since we used the method of K-fold cross-validation,
we got the above indicators for each training set and
test set. Here, we use k-mean to reflect the average level
of these models.

As listed above, the best of all is an LR model with the Box-
Cox transformer, which has an accuracy of 0.962 in the test
set, followed by KNN of 0.950 and SVM of 0.950. The receiver
operator curves (ROCs) of each model are listed in Figure 7.

DISCUSSION

For classifying AD and HC subjects, clinical evaluation (i.e.,
CDR and MMSE score) or imaging volume features were

commonly used, which were not very accurate (Hu et al., 2016;
Deters et al., 2017). Nomograms based on gene expression
signatures, cerebral spinal fluid (CSF), and pathological features
are not yet ready to be used in daily practice. Radiomic features
extracted from MR scans provide a noninvasive means to predict
AD (Wen et al., 2020; Yun et al., 2020; Feng et al., 2021).

In this study, we segmented the whole brain subregions of
the enrolled cases and extracted the radiomic features of each
segmented subregion. Then, we comprehensively analyzed all the
radiomic features of the whole brain subregions and identified
the subregions and radiomic features most related to AD. Using
the relevant areas and radiomic parameters obtained, we built
a variety of machine learning models, such as LR, SVM, and
RF. Then, we evaluated the diagnostic efficiency of each model.
Finally, we found the best model for predicting AD. In this study,
the subregions most relevant to AD included the hippocampus,
the inferior parietal lobe, the precuneus, and the lateral occipital
gyrus. The radiomic features extracted from these subregions had
the greatest differences between subjects with AD and HCs.

Among the four most relevant subregions found in our
study, the relationship between the hippocampus and AD had
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FIGURE 5 | The rad score in radiomics feature selection.

FIGURE 6 | The different proportions of radiomic characteristics in the process of predicting ad with radiomic characteristics in the low-order dimension.

been confirmed by many studies. The reduction of hippocampal
volume had been well studied in individuals with AD (Stricker
et al., 2012). Hippocampal atrophy was one of the core markers
of AD in the revised national Alzheimer’s association diagnostic
criteria (Albert et al., 2011; Catani et al., 2013). In addition
to volume reduction, abnormal metabolic levels, interruption
of brain activity, and microstructure characteristics in the
hippocampus had also been well reported (Catani et al., 2013).
The discriminative ability of radiomic features from hippocampal
regions, found by our analysis, was consistent with recent studies
(Sørensen et al., 2016, 2017). For example, the hippocampal
texture was shown to be a strong biomarker for differentiating
HCs from patients with AD or mild cognitive impairment (MCI)
(Feng et al., 2018). Pathologically, a previous study has confirmed
that hippocampal shape alterations were associated with regional
Aβ load in normal elderly individuals (Schroeder et al., 2017).
We could speculate that the radiomic feature changes of the
hippocampus might result from AD pathological changes, such

as Aβ deposition, which might be taken as a potential biomarker
to differentiate between patients with AD and HCs.

The inferior parietal lobule had begun to show promise as
an important locus in AD in recent years (Greene et al., 2010).
For example, several studies had shown AD-related alterations
of the inferior parietal lobule, such as gray matter atrophy
(Desikan et al., 2009; Jacobs et al., 2011), metabolic dysfunction
(Walhovd et al., 2010), disrupted spontaneous brain functional
activity and connectivity (Wang et al., 2015), and pathological
changes (Nelson et al., 2009). These findings had important
implications for the underlying neurobiology of AD. Compared
to previous studies, our analysis investigated the link between AD
and radiomic features of inferior parietal lobule regions, which
added a piece of new evidence for the mechanism of AD. In
addition, our study might contribute to the early detection of
AD to some extent.

As for the precuneus, its atrophy played a special role in
early-onset AD (Karas et al., 2007). Many neuroimaging studies
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FIGURE 7 | The performance of different machine learning models used in this study in the form of receiver operator curve (ROC).

had demonstrated the structural and functional abnormalities of
precuneus regions in AD, such as cortical thinning (Dickerson
and Sperling, 2009), amyloid deposition (Buckner et al., 2009),
decreased intrinsic brain activity (He et al., 2007; Wang et al.,
2011), and disrupted functional connectivity of the region
(Greicius et al., 2004). A previous fMRI study demonstrated
reduced precuneus deactivation during object naming in patients
with mild cognitive impairment, AD, and frontotemporal lobar
degeneration (Frings et al., 2010). At the molecular level,
precuneus amyloid burden was also associated with reduced
cholinergic activity in AD (Ikonomovic et al., 2011), which might
contribute to the cognitive decline. Our result on the link between
AD and radiomic features in precuneus regions was consistent
with the previous study, indicating the crucial role of precuneus
in the early diagnosis of AD.

Finally, our study found that there is a specific relationship
between the lateral occipital gyrus and AD. The machine learning
model, which contained the lateral occipital gyrus, had higher
diagnostic efficiency than the one without the lateral occipital
gyrus constructed by radiomic features. The occipital gyrus is
located in the primary visual cortex and plays a critical role
in visual cognition. By using the fMRI method (Sala-Llonch
et al., 2015), it was reported that the occipital gyrus presented
higher activity during the task of visuo-perceptual working

memory. Using diffusion tensor imaging (DTI) and tractography,
a previous study demonstrated that the structural disconnection
in the ventral occipital temporal cortex contributed to the
deficit in facial recognition (Thomas et al., 2009). Visual
cognition deficits were consistently reported to accompany the
development of AD (Cronin-Golomb, 1995; Bokde et al., 2006).
In our study, the potential relationship between the lateral
occipital gyrus and AD put forward a possible new direction
for the study of AD. The model constructed by integrating
the most relevant structural areas provides a new idea for the
prediction of AD.

However, there are still several issues that need further
consideration in our study. First, in the current study, we
mainly focused on structural analysis. Further studies that
simultaneously combine the sMRI and other data, such as fMRI
and clinical laboratory examination, might obtain a powerful
and high-quality biomarker for clinical application. We plan to
analyze the relationship between the radiomic features and the
cognitive performances in the future to achieve early diagnosis
and monitor the progress of the disease. Second, recent studies
had paid more attention to individuals at high risk for AD, such as
amnestic mild cognitive impairments, and ApoE-4 allele carriers.
Exploring these populations would provide valuable biomarkers
for the early diagnosis of AD. Finally, a longitudinal study with
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a large multicenter sample size is needed to confirm the stability
and reliability of the model.

CONCLUSION

In conclusion, our study specifically focused on the potential
relationship between AD and the whole brain subregions based
on sMRI. The machine learning model constructed with the
radiomic features of the hippocampus, the inferior parietal
lobe, the precuneus, and the lateral occipital gyrus could be
used as a potential sMRI marker for predicting AD and had
outstanding performance.
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The P300-based brain–computer interfaces (BCIs) enable participants to communicate
by decoding the electroencephalography (EEG) signal. Different regions of the brain
correspond to various mental activities. Therefore, removing weak task-relevant and
noisy channels through channel selection is necessary when decoding a specific type
of activity from EEG. It can improve the recognition accuracy and reduce the training
time of the subsequent models. This study proposes a novel block sparse Bayesian-
based channel selection method for the P300 speller. In this method, we introduce block
sparse Bayesian learning (BSBL) into the channel selection of P300 BCI for the first time
and propose a regional smoothing BSBL (RSBSBL) by combining the spatial distribution
properties of EEG. The RSBSBL can determine the number of channels adaptively. To
ensure practicality, we design an automatic selection iteration strategy model to reduce
the time cost caused by the inverse operation of the large-size matrix. We verified the
proposed method on two public P300 datasets and on our collected datasets. The
experimental results show that the proposed method can remove the inferior channels
and work with the classifier to obtain high-classification accuracy. Hence, RSBSBL has
tremendous potential for channel selection in P300 tasks.

Keywords: channel selection, sparse bayesian learning, temporal correlation, brain-computer interface,
EEG, P300

INTRODUCTION

Brain–computer interface (BCI) is a direct interactive pathway designed to establish a non-muscle
connection between the human brain and the computer (Wolpaw et al., 2002; Jin et al., 2015). It
provides a new way to communicate with the outside, for example, daily communication (Sorbello
et al., 2017; He et al., 2019) and wheelchair control (Kim et al., 2016; Deng et al., 2019). In addition,
BCIs can also be used to aid in the diagnosis of disorders of consciousness (Maestú et al., 2019; Ando
et al., 2021). BCIs can be divided into invasive and non-invasive ones. Electroencephalography
(EEG) is a non-invasive technique that records brain signals through electrodes placed on the scalp.
Generally, users’ brain signals are recorded, amplified, and pre-processed with an EEG recorder, and
then the signals are converted to commands via classifiers (Bashashati et al., 2007). Currently, BCIs
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based on the Event-Related Potential (ERP) (Hoffmann et al.,
2008a; Lopez-Calderon and Luck, 2014), Steady-State Visual
Evoked Potential (SSVEP) (Nakanishi et al., 2017), and Motor
Imagery (MI) (Padfield et al., 2019) are the three main research
directions. The oddball paradigm is a typical paradigm of P300,
where standard and deviant stimuli are included. These two kinds
of stimuli appear randomly with large and small probabilities,
and deviant stimuli are the targets in small probability events
that correspond to the spelling character (Donchin et al., 2000).
The spelling paradigms and algorithms based on P300 have
been widely developed in recent years (Cecotti and Graser, 2010;
Townsend et al., 2010; Hammer et al., 2018; Arvaneh et al., 2019;
Jin et al., 2019; Huang et al., 2022). This study is focused on the
P300 BCI system.

To provide a complete coverage of regions related to EEG
activity, a large number of electrodes are used for EEG
acquisition. An electrode is regarded as a channel. However, a
realistic EEG system typically uses the data of a small number of
channels during computation to minimize the preparation time
and cost (Cecotti et al., 2011). Channel selection helps to exclude
the weak task-relevant and noisy channels, thus improving the
classification accuracy and reducing the classifier training time.
Inter-participant differences and equipment differences can make
the best subset of channels in the same paradigm different.
The flexibility of selecting a subset of empirical channels in the
complex BCI data is insufficient, and the data-based channel
selection method is more conducive to giving the optimal channel
selection. Therefore, the method of automatically determining
a subset of channels has better application prospects than
selecting a fixed subset.

Different evaluation approaches, such as filter, wrapper,
embedded, hybrid, and human-based techniques have been
widely used to select features and the subset of channels in
the P300 speller (Alotaiby et al., 2015). Filters like Fisher Score
(Lal et al., 2004) are usually independent of the classifier and
select channels based on the relevance. A CCA spatial filter
also proved to be effective in event-related signal processing
(Reichert et al., 2017). On the other hand, wrappers select the
channel set according to the algorithm effect and search for
channels through continuous heuristic methods. Support Vector
Machine based recursive channel elimination (SVM-RCE) can
be considered a typical example of a wrapper (Rakotomamonjy
and Guigue, 2008). The hybrid approach is a combination of
filter and wrapper and uses the wrapper to obtain a subset
of the available channels after handling the filter (Liu and
Yu, 2005). The human-based approaches are the methods in
which the experienced experts select channels by analyzing
certain technical indicators (Tekgul et al., 2005). In addition,
some channel selection algorithms are based on evolutionary
algorithms, such as Particle Swarm Optimization (PSO), which
also belong to wrappers (Martinez-Cagigal and Hornero, 2017;
Arican and Polat, 2019). For embedded methods, the selection
is usually implicit and integrated with the learner training
process. By giving sparse weight to features or channels, sparse
methods can obtain a classifier that needs fewer selected features
or channels. The Least Absolute Shrinkage and Selectionator
operator (LASSO), a linear regressor with L1 regularization,

can be regarded as an embedded method (Tibshirani, 1996).
In EEG research, LASSO has also become a commonly used
feature selection algorithm and extended to channel selection
(Tomioka and Müller, 2010). Yuan extended the LASSO method
to groups in 2006, giving birth to the group LASSO (GLASSO),
which allows us to group all variables and then penalize the L2
parametrization of each group in the objective function, thus
achieving the effect of eliminating a whole group of coefficients
to zero at the same time (Yuan and Lin, 2006). The Bayesian
framework-based feature selection and classification methods
are widely used in EEG. Studies have shown the outstanding
performance of Bayesian linear discriminant analysis (BLDA)
in EEG decoding (Hoffmann et al., 2008a; Lei et al., 2009;
Manyakov et al., 2011). Tipping et al. proposed a sparse Bayesian
learning (SBL) method under the Bayesian framework to solve
the regression problem (Tipping, 2001). SBL can complete the
feature selection of P300 through sparsity (Hoffmann et al.,
2008b) and has been used for channel selection (Wu et al.,
2014; Zhang et al., 2017; Dey et al., 2020). EEG is a common
response of regional neurons (Hassan and Wendling, 2018).
However, the channel optimization approach described above
does not consider the spatial structure between the channels
of EEG signals. In addition, a few existing algorithms consider
the temporal correlation in a single channel, which means the
amplitude correlation between time points within each channel.

This paper proposes a regional smoothing SBL (RSBSBL)
method for channel selection of the P300 signal. Block sparse
Bayesian learning (BSBL) was first proposed for sparse signal
recovery (Zhang and Rao, 2011). It is the first time that the
BSBL is applied to EEG channel selection. The P300 features are
usually filtered and down-sampled in the temporal series, and
features from the same channel are correlated. In this method,
we combine BSBL with the spatial distribution properties of EEG
to propose an RSBSBL. To ensure practicality, we design an
automatic selection iteration strategy model to reduce the time
cost caused by the inverse operation of large-size matrices.

For verification, RSBSBL was compared with some other
methods with similar principles on the three BCI datasets.
We used BLDA as a unified classifier for a fair comparison.
The effectiveness of the proposed method was verified
by the effectiveness of channel subsets and the character
recognition performance.

We organize the rest of the paper as follows. Section
“Materials and Methods” describes the principle and calculation
process of the proposed algorithm. Section “Materials and
Experiments” describes the dataset used and the data processing
framework. Section “Results” shows the experimental results.
Section “Discussion” further discusses the effectiveness of the
selected channel subsets, character recognition performance,
effectiveness of regional smoothing, time cost, and future work.
Finally, section “Conclusion” gives the conclusion.

METHODS

Here, we show the principle and solution process of RSBSBL
and give its flow of selecting channels. The input features of
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one channel are regarded as a block. Based on the BSBL,
we considered the spatial distribution of EEG and divided
different regions according to the location of the electrodes. The
automatic selection mode of the iterative strategy is used to
ensure practicality.

Regional Smoothing Sparse Bayesian
Learning
The EEG signals collected by the device are generally
two-dimensional data after pre-processing. Nc is denoted
as the number of channels and Nt as temporal points.
Input data X contains N samples x1,x2,x3 . . . . . . xN ∈ RD,
where D = NtNc represents the number of features in
each sample. Then, X = [x1,x2,x3, . . . xN]T

∈ RN × D and
y =

[
y1,y2,y3, . . . , yN

]T
∈ RN represent the corresponding

labels, where yi ∈ {1,−1} is the class label. Its mathematical
model can be expressed linearly as follows:

y = Xw + ε (1)

where w = [w1,w2,w3 . . . . . .wD]T is a learnable weight vector,
ε is noise, and X can be replaced by 8(X) expressed in
the form of a kernel function. Assume ε ∼ N

(
0, σ 2IN

)
, then

y ∼ N
(
Xw, σ 2IN

)
and its probabilistic framework is.

p
(
y|w, σ 2)

= (2πσ 2)−
N
2 exp

(
−

1
2σ 2 ||y−Xw||22

)
(2)

The RSBSBL adds the symmetric positive definite matrix in
the variance term of the distribution that w obeys. The input data
of one channel are regarded as a block. So, for the mathematical
model (1), assume that wb

(
∀b
)

is mutually independent and
Gaussian distributed.

p
(
wb|γb,Bb,∀b

)
∼ N (0, γbBb) , b ∈ 1, . . . ,Nb (3)

where wb containing several wi is bth block of w, γb is a non-
negative scalar that controls the variance of wb, Bb is a positive
definite matrix reflecting the intra-block correlation, and Nb is the
number of blocks. Since the features of a channel are considered
to be a block, Nb = Nc.

In our case of EEG signal, b is the index of channels. In
a channel of EEG signal with corresponding weight wb, it is
assumed that all its feature weights share the same γb to control
the variance of their distribution, and Bb controls the intra-
block correlation.

In this case, we express the prior of w as p (w|γ,B) ∼
N (0,60) , where60 is

60 =

γ1B1
. . .

γNbBNb

 (4)

the posterior probability has been calculated by the Bayesian rule,

p
(
w|y, σ 2, γ,B

)
=

p(y|w,σ 2)p(w|γ,B)
p(y|σ 2,γ,B)

(5)

and the corresponding variance and mean of the posterior
probability density p

(
w|y, σ 2, γ,B

)
∼ N (µw, 6w) can

be described as

6w =
(
σ−2XTX + 6−1

0
)−1 (6)

µw = σ−26wXTy (7)

When N ≥ D, the Eqs (6) and (7) are suitable because the
maximum size of the inverse matrix is D in this case. Now, we
give the iterative ways when N < D. According to the matrix
inversion formula and the matrix identity.

(E + FGH)−1
= E−1

−E−1FG
(
I + HE−1FG

)−1HE−1 (8)

(I + EF)−1E = E(I + FE)−1 (9)

we replace the Eqs (6) and (7) with the following equations:

6w = 60−60XT(σ 2I + X60XT)−1X60 (10)

µw = 60XT(σ 2I + X60XT)−1y (11)

To find the iterative equation of the parameters
2 =

{
γ,B, σ 2}, the expectation–maximization (EM) is

used to maximize log p
(
y|2

)
. The Q function is.

Q (2) = Ew|y,2old

[
log p

(
y,w|2

)]
= Ew|y,2old

[
log p

(
y|w, σ 2)]

+ Ew|y,2old

[
log p (w|γ,B)

]
(12)

The first term of the Q function is related to σ 2 and the second
term is related to γ and B. Then, we can get the parameters
iteratively by maximizing the Q function.

σ 2
=
||y−Xµw||

2
2 + σ

2
old

[
D−Tr

(
6w6

−1
0

)]
N

(13)

γb =
Tr
[

B−1
b

(
6b

w + µb
w

(
µb

w

)T
)]

db
,∀b (14)

Bre =
1

gre

∑
b∈Gre

6b
w + µb

w

(
µb

w

)T

γb
,∀re (15)

where ∗old represents the hyperparameter in the previous
iteration, and the superscript b of µb

w and 6b
w indicates the bth

block in µw and 6w with the size of db × 1 and db × db (db is
the number of elements in wb).

The potential similarity exists in the adjacent electrode signals
considering the volume conduction effects in the brain (Hassan
and Wendling, 2018). We assign the same Bre for channels
with close locations for regional smoothing, and the region Gre
contains gre channels. As shown in Figure 1, all the channels are
divided into 13 regions by position, and each region contains
at least three channels. Bre is the average of blocks in region
re (re ∈ [1, 13]).

We use a first-order Auto-Regressive (AR) process to model
the intra-block correlation. Many applications have used the AR
process to express it (Zhang and Rao, 2011; Zhang et al., 2013; Yin
et al., 2020). Thus, to find a symmetric positive definite matrix to
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FIGURE 1 | Region division. Channels belonging to a region are circled with the dotted line. The left subfigure shows the division for DS1 and DS2, while the right
subfigure shows the division for DS3.

approximate B, it can be constrained to the following form of the
Toeplitz matrix.

Bre , Toeplitz
([

1, r, . . . , rdb−1
])
=


1 · · · rdb−1

...
. . .

...

rdb−1
· · · 1

 (16)

Empirically calculate r = m1
m0

, where m0 is the average of the
main diagonal of Bre and m1 is the average of the main sub-
diagonal.

Channel Selection Based on Regional
Smoothing BSBL
Regarding the feature extracted from the same channel as
a block, we perform RSBSBL to get the weight vector of
features and design a channel selection based on the weight
vector as Algorithm 1.

As shown in Algorithm 1, the parameters are initialized,
and the shear threshold τ is set. Then, from Line 3 to Line 12,
the algorithm iteratively solves BSBL and prunes the γ. Line 4
to Line 8 decide the calculation of 6w, µw, so that the large
time cost caused by finding the inverse matrix of a large-size
matrix can be alleviated. The parameters are updated on Line
9 and Line 10. Figure 2 illustrates the relationship between
the parameters in a single iteration, where the parameters
calculated simultaneously have the same color. The solid line
indicates the passing relationship between the parameters of this
iteration, and the dashed line indicates the passing relationship
between the parameters of this iteration and the next iteration.
After the parameters are calculated, in order to achieve the
sparse block effect, make γb to 0 when γb is less than the
threshold τ. Then, it comes into the next iteration until the

convergence criterion is satisfied. Line 13 automatically selects
the channels with γb greater than the shear threshold τ.
Finally, the algorithm returns the selected channel and the
corresponding weight vector.

The off-diagonal matrix B makes the weights w in the same
block relevant in distribution. It means that the correlation
of the features from the same channel can be reflected
during the process. Moreover, the components of the temporal
correlation of different channels in close locations are the same
because the Bre of channels in the same region are shared.
The sparsity of weights will form the units of channels. The

Algorithm 1: Regional Smoothing Sparse Bayesian Learning (RSBSBL).

Input: features XN × (NcNt) and labels YN × 1, where N denotes the number of
samples, Nc represents the number of channels, and Nt is the number of
features (sampling points) in one channel.

Output: sparse weights w and selected channels Cs.

1: Choose an initial setting for σ 2, γ , B. The block size is Nt.

2: Set a shear threshold τ to obtain the sparsity weights.

3: While the convergence criterion is not satisfied, do

4: If N ≥ Nc × Nt, then

5: Calculate 6w, µw, according to (6)(7).

6: Else

7: Calculate 6w, µw, according to (10)(11).

8: End if

9: Update σ 2, γ , B according to (13)(14)(15)and (16).

10: If γb < τ, then γb = 0, γb ∈ γ.

11: σ 2
old = σ 2, Bold = B, γold = γ.

12: End while

13: Cs = {b|γb > τ, b ∈ 1,2, . . . , Nc, γb ∈ γ}.

14: Return w = {µb
w|b ∈ Cs} and Cs.
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FIGURE 2 | Parameter relationship graphical model in a single iteration.
Parameters of the same color can be iterated simultaneously.

TABLE 1 | The stimulus numbers for each participant of DS1, DS2, and DS3.

Dataset Stimulus category Training dataset size Test dataset size

DS1
P1.1

Target 1260 930
Non-target 6300 4650

DS2
P2.1/P2.2

Target 2550 3000
Non-target 12750 15000

DS3
P3.1-P3.12

Target 144 144
Non-target 720 720

Pi.j represents the jth participant in the ith dataset.

features from one channel share the same weight distribution
whose variance is controlled by γ. For practicality, up to five
channels are removed in a single iteration when making a
channel selection.

MATERIALS AND EXPERIMENTS

Data Descriptions
Three datasets were used in this study to validate the proposed
method. DS1 is BCI Competition II dataset IIb (one participant)
(Blankertz et al., 2004) and DS2 is BCI Competition III dataset II
(two participants) (Blankertz et al., 2006). DS3 is the EEG signal
collected in our lab (12 participants). The stimulus numbers for
each participant of the above three datasets are shown in Table 1.

DS1 and DS2 provided by the BCI Competition are public
datasets and follow the same experimental paradigm of Farwell
and Donchin, as shown in Figure 3. In a six-by-six character
matrix containing 26 characters and 10 numbers, participants
were asked to focus on a specified character in each trial (a trial
is a set of stimuli that can support the output of a recognized
character). They could do this by mentally counting the target
stimuli’ number of flashes (intensifications). The paradigm
continuously intensified and randomly scanned all rows and
columns of the matrix at a rate of 5.7 Hz. Each row and column in

the matrix was randomly intensified for 100 ms and was left blank
for 75 ms. DS1 contained 42 training characters and 31 testing
characters. The training set of DS2 contained 85 characters, and
the testing set contained 100 characters. A trial for each character
had 15 epochs to apply reliable spelling, and each epoch was
comprised of 12 intensifications. Both datasets were collected
using a 64-channel cap, filtered by 0.1–60 Hz, and digitized at
a sampling rate of 240 Hz. DS1 and DS2 can be downloaded
from the websites: http://www.bbci.de/competition/ii/ and http:
//www.bbci.de/competition/iii/.

DS3 was collected in our lab. Its paradigm was similar to the
BCI Competition. It contained 26 characters and 10 numbers.
DS3 consisted of 12 participants who were graduate students
between the ages of 20 and 26 years, with normal or corrected-
to-normal vision. The experiments used a 64-channel wireless
EEG acquisition system (Neuracle, NeuSen W series, 59 EEG,
4EOG, 1ECG) to acquire data at the sampling rate of 1,000 Hz. In
the paradigm, each row and column in the six-by-six matrix was
randomly intensified for 80 ms and kept extinguished for 80 ms.
A trial for each target character included four epochs, and each
epoch had 12 intensifications. Participants were required to spell
36 characters. We randomly selected 18 characters as the training
dataset and the rest as the test dataset.

The Framework of Data Processing
Considering that some channels contain less task-relevant
information but more noise, it is vital to use a reasonable method
to select the most effective channels. This study compares the
proposed RSBSBL with two empirical channel sets (Set 1 and
Set 2) (Krusienski et al., 2008), LASSO, GLASSO, and SBL in
the case of using the same pre-processing process and classifier.
Set 1 includes Fz, Cz, Pz, Oz, PO7, and PO8. Set 2 includes Fz,
FCz, Cz, C3, C4, CPz, Pz, P3, P4, P7, P8, POz, PO3, PO4, PO7,
PO8, Oz, O1, and O2.

Figure 3 shows the diagram of the data processing framework,
which includes three main parts: (1) pre-processing, (2) channel
selection, and (3) classification. DS1 and DS2 shared the same
pre-processing: bandpass filtering of data from 0.5 to 20 Hz and
downsampling by a factor of 5. Then, the sampling rate of the
data was 48 Hz. We intercepted 0–667 ms after each stimulus
as the primary analysis objective was to obtain 32 sampling
points for each stimulus. For the DS3, the 59-channel dataset that
went through 0.5–20 Hz bandpass filtering was down-sampled to
50 Hz and the data segment from 0 to 600 ms was taken after
stimulation to obtain 30 sampling points for each stimulus. Thus,
denoting the number of channels as Nc and number of signal
sampling points as Nt , a 1 × D feature matrix was obtained
for each stimulus, where D = NtNc. A feature matrix was
labeled “1” only if the corresponding stimulus belongs to the
row or column of the target characters. Otherwise, the label was
assigned to “0.”

The typical classification methods of P300 include traditional
machine learning methods and neural network-based methods.
Traditional machine learning can achieve outstanding
performance with less complexity. This study regarded BLDA as
a unified classifier for different channel selection algorithms.
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FIGURE 3 | Diagram of the data processing framework, including pre-processing, channel selection, and classification. Using the block sparsity property of
RSBSBL, we do pruning on the eligible channels by fitting the training data and labels.

Parameter Setting
The optimal combination of parameters was determined by a
10-fold cross-validation. There were two modes of the selected
channel number in the experiment for the channel selections:
automatic and fixed. When the channel number was determined
automatically, we used a threshold to determine the channel
number. For LASSO and SBL, the absolute values of the feature
weights in one channel were summed up to represent the
importance of the channel. The threshold equaled the mean
minus 0.5 times the standard deviation of the channel importance
values, and the channels with importance values higher than the
threshold were selected. As for GLASSO and RSBSBL, automatic
channel selection had been enabled in the methods. When the
number of selected channels is fixed (M channels were selected),
we used the same way to evaluate each channel. For all the four
methods, the absolute values of the feature weights w of each
channel were summed, and the top M channels were selected in
descending order.

Evaluation
We used character recognition accuracy to evaluate the
performance of a classification. The character recognition
accuracy is defined as follows:

Acc = Ctest_correct
Ctest_total

(17)

where Ctest_total represents the total number of characters in
the test dataset, and Ctest_correct is the sum of all the correctly
predicted characters. Besides, to evaluate the significance
of performance difference, we introduced a non-parametric
statistical hypothesis test, the Wilcoxon signed-rank test. The

Wilcoxon signed-rank test can be used as an alternative to the
paired t-test for matched pairs when the population cannot
be assumed to be normally distributed. The significance of
the pairs can be confirmed when the corresponding p-value
is less than 0.05.

RESULTS

We evaluated the performance of the proposed method on the
three datasets. The results covered the experiments of automatic
channel selection and the experiments of selecting M channels.
For further analysis, we also evaluated the sensitivity of the
parameters of the proposed method.

Results of Automatic Channel Selection
Channel selection is supposed to reserve channels with more
helpful information and exclude the channels with more noise.
According to the data processing, we chose a unified classifier
to verify the performance of different methods for a fair
comparison. In Table 2, we compared the character recognition
accuracy of each method on the three datasets, and the number
of selected channels was automatically determined as described
in section “Parameter Setting.” Set 1 and Set 2 are empirical
subsets of channels (Set 1 contains 6 channels and Set 2 contains
19 channels). The best results were marked in bold, and the
number of channels selected for each participant is presented in
the corresponding parentheses.

For DS1, RSBSBL selected the minimum number of channels
when the classification accuracy of all the methods was 100%. For
DS2, RSBSBL had the highest average accuracy, 97.50%, which
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TABLE 2 | Character recognition accuracy (%) (number of channels) and Wilcoxon signed-rank test comparisons for DS1, DS2, and DS3 when each compared method
was used for channel selection.

Participant Methods

Set 1 Set 2 LASSO GLASSO SBL RSBSBL

P1.1 100.00 100.00 100.00 (43) 100.00 (54) 100.00 (36) 100.00 (29)

P2.1 80.00 92.00 96.00 (43) 98.00 (64) 97.00 (44) 99.00 (44)

P2.2 90.00 92.00 93.00 (41) 95.00 (56) 93.00 (39) 96.00 (45)

Average 85.00 92.00 94.50 (42.00) 96.50 (60.00) 95.00 (41.50) 97.50 (44.50)

P3.1 55.56 61.11 83.33 (39) 88.89 (22) 83.33 (40) 88.89 (15)

P3.2 50.00 61.11 77.78 (39) 72.22 (37) 66.67 (42) 94.44 (14)

P3.3 72.22 72.22 72.22 (42) 72.22 (38) 72.22 (39) 94.44 (13)

P3.4 72.22 77.78 77.78 (35) 83.33 (24) 77.78 (39) 77.78 (18)

P3.5 55.56 61.11 83.33 (42) 88.89 (23) 77.78 (40) 88.89 (14)

P3.6 44.44 44.44 72.22 (39) 72.22 (24) 83.33 (40) 88.89 (40)

P3.7 66.67 77.78 83.33 (41) 83.33 (31) 72.22 (38) 83.33 (15)

P3.8 72.22 77.78 72.22 (40) 77.78 (16) 77.78 (40) 88.89 (13)

P3.9 61.11 66.67 77.78 (42) 83.33 (23) 77.78 (38) 88.89 (15)

P3.10 72.22 94.44 88.89 (42) 88.89 (32) 88.89 (41) 94.44 (15)

P3.11 61.11 66.67 50.00 (36) 72.22 (20) 50.00 (40) 77.78 (19)

P3.12 38.89 83.33 83.33 (40) 83.33 (24) 88.89 (39) 94.44 (13)

Average 60.19 70.37 76.85 (39.75) 80.55 (26.17) 76.39 (39.67) 88.43 (17.00)

p-value 0.002 0.005 0.005 0.013 0.003 –

Pi.j represents the jth participant in the ith dataset. The number of selected channels is in parentheses. The highest classification accuracy of each participant of different
methods is indicated in bold. p-value is the results of Wilcoxon signed-rank test. Set 1 includes Fz , Cz, Pz, Oz, PO7, and PO8. Set 2 includes Fz, FCz, Cz, C3, C4, CPz,
Pz, P3, P4, P7, P8, POz, PO3, PO4, PO7, PO8, Oz, O1, and O2.

was 1.00% higher than the second-ranked GLASSO. Although
SBL selected fewer channels than others, the average recognition
accuracy was 95.00%.

For DS3, RSBSBL as a channel selection method could bring
higher accuracy with BLDA in 11 participants among 12 and
got 88.43% average accuracy by eliminating insufficient data than
using all channels. It outperformed the second-ranked GSBL on
an average by 7.88% and selected the fewest channels as 17.
We evaluated the significance of the classification performance
of DS3 via the Wilcoxon signed-rank test and found that the
proposed method performed significantly better than others
(RSBSBL vs. LASSO: p = 0.005 < 0.05; RSBSBL vs. GLASSO:
p = 0.013< 0.05; RSBSBL vs. SBL: p = 0.003< 0.05).

Results of Selecting M Channels
To further compare the effectiveness of the four methods, we
compared the recognition results of the algorithms when M
channels were selected (M = [4, 8, 12, 16]). Top M channels
were selected by ranking the corresponding channels according
to the sum of the absolute values of the feature weights. The
classifiers were retrained with the data with the selected channel.
It was supposed that the number of channels M′ automatically
selected by the method was less than the value of M. In that case,
the latest deleted M-M′ channels are added according to the order
in which they were deleted during the iteration of the method.

Figure 4 shows the accuracy of each method on DS1, DS2,
and DS3, with the horizontal coordinates of the bars indicating
the selection of the top M channels. For DS1, the accuracy of all
the methods was the same except that the accuracy of SBL was

96.77% when eight channels were selected, and it was lower than
others. For DS2, SBL and RSBSBL obtained better performance
with 80% average recognition accuracy when four channels were
selected. When 8, 12, and 16 channels were selected, GLASSO
obtained an average recognition accuracy of 78.5, 84.5, 91, and
92%, respectively, and RSBSBL obtained a better performance
of 80, 85.5, 91.5, and 93.5%, respectively. For DS3, GLASSO
obtained average recognition accuracy of 73.61, 75.93, 75.46,
and 79.63% when 4, 8, 12, and 16 channels were selected,
respectively. Moreover, RSBSBL obtained the best performance
of 74.07, 82.87, 80.09, and 80.56%, respectively. The average
recognition accuracies of LASSO, GLASSO, and RSBSBL on DS3
with M = 16 were 77.31, 79.63, and 80.56%, respectively. The
results of experiments with the fixed number of selected channels
revealed that the feature weights generated by RSBSBL could
provide more reasonable guidelines for the channel selection.

We counted the selected channels at the same location and
used it to describe the number of times a channel has been
selected in the dataset. If 6 of the 12 participants’ selected
channels contain Pz, then the contribution value of the channel
corresponding to the Pz electrode is 6. Figure 5 indicates the
scalp distributions of the contribution value of channels on DS1,
DS2, and DS3. The color changes from red to blue, indicating
that the channel was selected less often. As shown in Figure 5,
when the number of selected channels was small (M = 4, 8),
RSBSBL selected the occipital and parietal electrodes more often.
It shows that, in addition to the P300 potential, the early visual
components also contribute to a classification in the paradigm
(Blankertz et al., 2011).
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FIGURE 4 | The average recognition accuracy of the four methods on DS1, DS2, and DS3 when M channels are selected, where M = [4, 8, 12, 16]. The error
bars are the standard deviations for DS2 and DS3.

FIGURE 5 | The scalp distribution of the four methods on DS1, DS2, and DS3 when M channels are selected. The contribution value of each channel is equal to the
sum of the selected numbers among all participants in the dataset. The color changes from red to blue, indicating that the channel is selected less often.

Parameter Sensitivity
In RSBSBL, γb smaller than the threshold τ was set to zero,
indicating that τ determines the pruning strength. We
analyzed the change in the number of channels selected
and the recognition results when τ is assigned different
values in the range 10−8 to 10−1. The recognition accuracy
of each participant varying with τ was normalized to
highlight the location of the optimal threshold. Figure 6
illustrates the effect of the threshold on the proposed method.
The x-axis indicates the number of selected channels, the
y-axis indicates the value of τ , and the z-axis indicates
the participant ID. The color changes from red to blue,
indicating that the point corresponds to a higher to lower
normalized accuracy.

As shown in Figure 6, the number of channels selected by each
participant increased as the threshold value decreased. When
the threshold was less than or equal to 10−6, the number of

selected channels was the original number in the dataset, and the
algorithm loses the ability to select the channels automatically.
Therefore, 10-fold cross-validation can be used to select the
optimal parameter values in the range of 10−6 to 10−1. From
the curves corresponding to P3.2, P3.3, P3.7, and P3.12, using
selected channels can obtain better recognition accuracy than
using all the channels, which proves that channel selection can
remove weak task-relevant and noisy channels to improve the
classification accuracy.

DISCUSSION

The experimental results on the three datasets illustrated that
the proposed RSBSBL as a channel selection algorithm could
automatically screen out effective channels and get the best
overall performance among all the compared methods.
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FIGURE 6 | The effect of shear threshold τ in RSBSBL on the number of selected channels and accuracy. The x-axis indicates the number of selected channels, the
y-axis indicates the value of τ, and the z-axis indicates the participant ID. The color of the sphere represents the normalized recognition accuracy for each participant
with different thresholds.

Effectiveness of Channel Subsets
Fabiani et al. (1987) confirmed that the visual P300 paradigm
should at least include Fz, Cz, Pz electrodes signed as the 10–
20 international electrode system. Krusienski et al. (2008) and
McCann et al. (2015) made sure that Fz, Cz, Pz, Oz, PO7, and PO8
corresponded to the parietal and occipital regions of the brain
that take a significant part in the recognition of P300 signals. In
Table 2, Set 1 and Set 2 represent two empirical channel subsets.
Set 1 includes Fz, Cz, Pz, Oz, PO7, and PO8. Set 2 includes Fz,
FCz, Cz, C3, C4, CPz, Pz, P3, P4, P7, P8, POz, PO3, PO4, PO7,
PO8, Oz, O1, and O2. It can be seen that for many participants
(P2.1, P2.2, P3.1, P3.2, P3.5, P3.6), the character recognition
accuracy was lower when the empirical channel subsets were
used. The empirical selection may not include some channels that
contribute to the classification. The channels assumed to reflect
visual components and also some frontal channels contribute
to the classification for some participants. It also indicates the
lower robustness of the empirical channel subset. In Figure 5,
the scalp mapped according to channel selection of RSBSBL
could be observed with high values in Pz, P3, P4, O1, O2, Oz,
PO7, PO8, and POz regions. These electrodes are very similar
to the abovementioned electrodes, which are closely related to
the visually induced ERPs. The P1, N1, and N2 components
are mainly concentrated in the parietal and occipital regions.

And the central distribution of P2 and P3 is elongated along the
midline electrodes (Blankertz et al., 2011). It can be assumed
that a multitude of ERP components is affected by attention
to the target and utilized by classifiers rather than just the
P300 (Treder and Blankertz, 2010). In addition, it can be found
from Figures 5, 6 that many participants in DS3 had poorer
classification using full-channel data compared to DS1 and DS2,
and their topographic maps select more frontal channels when
M = 8, 12,16. This phenomenon may be due to the effect of eye
artifacts and noise during the experiment.

Character Recognition Performance
Table 2 and Figure 3 show the superiority of RSBSBL in
channel selection. When the number of channels was determined
automatically, the proposed method achieved the highest average
recognition accuracy of 100, 97.5, and 88.43% for DS1, DS2,
and DS3, with the lowest average number of channels on DS1
and DS3. The RSBSBL achieved better performance than the
compared methods when selecting the channels with the fixed
number, and the average accuracies of 90.21, 80, and 74.07% were
obtained with the top four selected channels on the three datasets.

To verify the performance of RSBSBL, we compared the
proposed method with the state-of-the-art developments in
recent years on DS2, as shown in Table 3. Most of them are
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TABLE 3 | Character recognition accuracy (%) of comparison with
state-of-the-art results (DS2).

Author Channel selection
method

Classification
method

Accuracy

Kee et al., 2015 NSGA-II BLDA 94.9%

Khairullah et al., 2020 BPSO Ensemble LDA 97.0%

Tang et al., 2020 RF-GA CNN 96.9%

Martinez-Cagigal et al., 2022 BMOPSO LDA 92.5%

PEAIL LDA 94.0%

Our method RSBSBL BLDA 97.5%

NSGA-II, Non-dominated sorting genetic algorithm II; BPSO, binary particle
swarm optimization; GA, genetic algorithm; BMOPSO, binary multi-objective
particle swarm optimization; PEAIL, Pareto Evolutionary Algorithm based on
Incremental Learning.

TABLE 4 | The average character recognition accuracy (%) (number of channels)
comparisons on three datasets.

Method DS1 DS2 DS3

Case 1 100.00 (30) 94.50 (35.50) 82.41 (17.75)*

Case 2 100.00 (27) 96.00 (36.50) 82.41 (18.67)*

Case 3 100.00 (27) 96.50 (47.50) 85.65 (16.33)

Our method 100.00 (29) 97.50 (44.50) 88.43 (17.00)

Case 1: B is the unitary matrix. Case 2: All blocks have the same B. Case 3: The
B of each block is different. “*” represents a significant difference with our method
after Wilcoxon signed-rank test (p < 0.05).

based on evolutionary computational algorithms (Kee et al., 2015;
Khairullah et al., 2020; Tang et al., 2020; Martinez-Cagigal et al.,
2022). The channel selection methods and classifiers used in each
study are shown in the table.

The shear threshold τ significantly impacted the final
results, so cross-validation was required to determine the
optimal parameters. According to the analysis of parameter
sensitivity, as shown in Figure 6, the recommended threshold
selection range was [10−6, 10−1

]. Besides, Figure 6 reflects
the variation of character recognition accuracy with the shear
threshold for each participant. Compared with others, P3.2,
P3.3, P3.9, P3.10, and P3.12 cannot achieve the best recognition
accuracies with the full channels, which implies that the EEG
signals of these participants have more channels with noise,
and these channels are not conducive to signal classification.
As shown in Table 2, when determining the number of
channels automatically, RSBSBL can achieve the best recognition
accuracies of them with the corresponding number of selected
channels of 14, 13, 15, 15, and 13, respectively. It confirms
that RSBSBL can remove unfavorable channels and improve the
recognition accuracies.

Effectiveness of Regional Smoothing
To verify the effectiveness of regional smoothing, we conducted
further controlled experiments on the three datasets, and
the results are shown in Table 4. Case 1 represents that
B is a unit matrix, implying that no temporal correlation
is considered. Case 2 has the same B for all blocks,
indicating that all channels share the same B. Case 3 has

a different B matrix for each block, showing that regional
smoothing is no longer done. The comparison between Case
3 and Case 1 in Table 4 illustrates the improvement of
the model due to temporal correlation. The comparison
between our algorithm and Cases 3 and 1 indicates the
improvement brought by region smoothing. The“∗” in Table 4
represents a significant difference in our method after Wilcoxon
signed-rank test (RSBSBL vs. Case 1: p = 0.015 < 0.05;
RSBSBL vs. Case 2: p = 0.031 < 0.05; RSBSBL vs. Case 3:
p = 0.124).

Time Costs and Limitations
As described in sections “Data Descriptions” and “The
Framework of Data Processing,” for DS1 and DS2, Nt = 32
andNc = 64 after pre-processing, then we can get a 1 × D
(D = NtNc = 2048) vector for each stimulus. As shown
in Table 1, in the training datasets of DS1 and DS2, the total
number of stimuli was 7,560 and 15,300, which is larger than the
number of features D. For DS3, Nt = 30 and Nc = 59 after pre-
processing, then the feature is a 1 × D (D = NtNc = 1770)
vector. In Table 1, in the training datasets of DS3, the total
number of stimuli was 864, which is smaller than the number
of its features.

In a preliminary study, we found that inappropriate
iterations can make the algorithm to have a large time
cost [e.g., using equations (10) and (11) on DS1 and
DS2]. Therefore, a strategy of automatic selection of
the iteration method is used to avoid this problem.
In Figure 7, we analyze the variation of the matrix

FIGURE 7 | Changes in the run-time (s) of matrix inversion when the size of
the matrix increases. In the left part, the horizontal axis represents the size of
the square array. The vertical axis is the value after taking the logarithm of the
time. The bar chart represents the average time cost of the proposed method
on the three datasets.
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inversion run-time when the size of the matrix increases (the
matrix is a square matrix). In the left part, the horizontal axis
represents the size of the square matrix. The vertical axis is the
value after taking the logarithm of the time, and the actual time
(s) is also indicated in the figure. It can be noticed that the time
spent on matrix inversion is more than 1 s when the matrix size
is larger than 3,000 × 3,000. Therefore, we consider that the
method may not be suitable for data with numbers of features and
samples larger than 3,000. Of course, this problem can be solved
by reducing the number of features and optimizing the iteration
steps. The right bar in Figure 7 indicates the average time cost of
the proposed method on the three data sets, which is acceptable.

Future Work
The sparse Bayesian algorithm can make the sparsity of
the algorithm change by changing the prior distribution of
w (Tipping, 2001). Zhang et al. (2015) used the Laplace
distribution instead of the traditional Gaussian distribution for
the classification of P300 signals using SBL. Therefore, RSBSBL
can change the prior of the weights to make the sparsity
stronger in the future, such as the Gamma distribution. The
proposed method used the EM algorithm for iteration, and there
is still room for improvement in the computational speed. In
the future, we will also explore the suitability of the proposed
method for other ERPs.

CONCLUSION

This study proposed a novel channel selection method, namely
RSBSBL, which improved the original BSBL and obtained
the assigned sparse weights. While considering the temporal
correlation of sampling points of the same channel, it exploits
the spatial distribution characteristics of the electrodes so that
channels in adjacent regions share a positive definite matrix
to get regional smoothing. Also, we discussed the efficiency
of RSBSBL in the channel selection and design an automatic
selection iteration strategy model to reduce the time cost
caused by the inverse operation of the large-size matrix. The
experimental results on three datasets indicate that RSBSBL can
select appropriate channels, leading to high recognition accuracy.
We will conduct future studies to improve the robustness
of this algorithm.
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Background: Detection of mild cognitive impairment (MCI) is essential to screen
high risk of Alzheimer’s disease (AD). However, subtle changes during MCI make it
challenging to classify in machine learning. The previous pathological analysis pointed
out that the hippocampus is the critical hub for the white matter (WM) network of MCI.
Damage to the white matter pathways around the hippocampus is the main cause of
memory decline in MCI. Therefore, it is vital to biologically extract features from the WM
network driven by hippocampus-related regions to improve classification performance.

Methods: Our study proposes a method for feature extraction of the whole-brain WM
network. First, 42 MCI and 54 normal control (NC) subjects were recruited using diffusion
tensor imaging (DTI), resting-state functional magnetic resonance imaging (rs-fMRI), and
T1-weighted (T1w) imaging. Second, mean diffusivity (MD) and fractional anisotropy (FA)
were calculated from DTI, and the whole-brain WM networks were obtained. Third,
regions of interest (ROIs) with significant functional connectivity to the hippocampus
were selected for feature extraction, and the hippocampus (HIP)-related WM networks
were obtained. Furthermore, the rank sum test with Bonferroni correction was used
to retain significantly different connectivity between MCI and NC, and significant HIP-
related WM networks were obtained. Finally, the classification performances of these
three WM networks were compared to select the optimal feature and classifier.

Results: (1) For the features, the whole-brain WM network, HIP-related WM network,
and significant HIP-related WM network are significantly improved in turn. Also, the
accuracy of MD networks as features is better than FA. (2) For the classification
algorithm, the support vector machine (SVM) classifier with radial basis function, taking
the significant HIP-related WM network in MD as a feature, has the optimal classification
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performance (accuracy = 89.4%, AUC = 0.954). (3) For the pathologic mechanism, the
hippocampus and thalamus are crucial hubs of the WM network for MCI.

Conclusion: Feature extraction from the WM network driven by hippocampus-related
regions provides an effective method for the early diagnosis of AD.

Keywords: mild cognitive impairment, white matter connectivity, Alzheimer’s disease, early diagnosis, feature
extraction, machine learning

INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disease
with irreversible progression (Sperling et al., 2011; Hyman et al.,
2012). Mild cognitive impairment (MCI) is the prodromal stage
of AD (Petersen et al., 1999; Gauthier et al., 2006). The primary
clinical manifestation of MCI is memory loss (Petersen et al.,
2001). Since the progression of AD is irreversible and the
treatment of AD has little effect, the detection of MCI is expected
to find out the high risk of AD and further prevent its occurrence
(Jacobs et al., 2013; Wang et al., 2013). However, the subtle
changes of brain microstructure in MCI make it challenging to
distinguish the disease from conventional radiography (Pellegrini
et al., 2018). Therefore, establishing reliable biomarkers to
diagnose MCI in the early stages remains challenging.

According to the biomarker modeling of AD, white matter
demyelination has been proved to appear earlier during AD
progression than abnormal changes of gray matter and functional
connectivity (Zhuang et al., 2012; Lee et al., 2015). Recent studies
have shown that genes and protein molecules ultimately cause
microstructure changes in specific white matter fibers (Yu et al.,
2021; Zhao et al., 2021). Thus, white matter degeneration is a valid
biomarker for MCI. Diffusion tensor imaging (DTI) could detect
subtle structural changes in white matter fibers, facilitating large-
scale non-invasive screening (Tournier, 2019). The DTI index,
mean diffusivity (MD), and fractional anisotropy (FA) describe
fiber tracts’ state.

Machine learning offers a systematic approach to developing
advanced, automatic, and objective classification frameworks for
MCI diagnosis. The classification framework mainly includes
feature extraction and classification algorithms (Rathore et al.,
2017). Although there are plenty of studies on AD classification,
there is insufficient research on MCI (Shatte et al., 2019). The
classification accuracies for AD were all around 80%, while the
accuracies for MCI were only about 60% (Wee et al., 2011; Dyrba
et al., 2013, 2015a; Nir et al., 2015; Prasad et al., 2015; Dou et al.,
2020). The main reason is that whole-brain changes in AD are
so significant that can be classified with high accuracy by the
features of white matter, gray matter, and functional connectivity.
In contrast, changes in MCI are not obvious for the whole brain.
However, the progression of AD is irreversible. Early diagnosis of
MCI fascinates high-risk screening of AD in time.

Previous studies focused on the classification algorithm
to improve classification performance. Existing researchers
found that k-nearest neighbor (KNN) (Ebadi et al., 2017),
random forest (RF) (Maggipinto et al., 2017; Wang et al.,
2018), and support vector machine (SVM) (Cui et al., 2012;
Demirhan et al., 2015; Dyrba et al., 2015a; Nir et al., 2015;

Xie et al., 2015; Ahmed et al., 2017) have achieved better
classification performance for MCI when taking the white
matter as a feature. KNN is based on Euclid’s theorem and is
classified by measuring the distance between different features.
RF integrates many decision trees into a forest and combines
them for predicting. SVM is based on statistical theory to solve
two classification problems, mainly introducing kernel function
to solve the problem of linear inseparability. However, previous
studies only attached importance to algorithms while neglecting
the features. In fact, selecting the appropriate modality in the
data and extracting suitable features are usually more important
than the underlying algorithm (Zhang et al., 2021).

The white matter feature extraction methods for MCI
classification mainly include specific fiber tracking and the
whole-brain white matter network (WM network). The specific
fiber tracking method takes features using the fiber tracts that
converge between localized brain regions and calculates the DTI
index of voxels on a single fiber tract. However, this method
focused on a specific fiber tract and had low classification
accuracy (Nir et al., 2015; Dou et al., 2020). In the whole-
brain white matter connectivity network approach, DTI images
were segmented into several anatomical regions and features
based on the metrics calculated from the fibers within these
regions (Wee et al., 2011; Prasad et al., 2015). Recent studies
had started to use multimodality for feature extraction. DTI,
T1-weighted (T1w), and resting-state functional MRI (rs-fMRI)
images from different modes were used to capture information
from different perspectives (Hinrichs et al., 2011; Liu et al.,
2014). However, most studies had concatenated the features
from different modalities. The disadvantage is that all features
are treated equally, and it provides no way to account for the
diverse nature of features extracted from different modalities
(Zhang et al., 2011, 2012; Dyrba et al., 2015b). Therefore,
the urgent problem for MCI classification is to combine with
different modalities before training and develop a dedicated
feature fusion strategy.

To address this issue, the brain network theory was
introduced. First, the brain can be seen as a network of spatially
dispersed brain areas that share information continuously in
functional connectivity (Sporns and Betzel, 2016). The different
brain regions are connected and have synchronization within the
same activation pattern. Different brain regions are temporally
synchronized under the same activation pattern by the white
matter pathway (Gu et al., 2015). Second, the primary clinical
manifestation of MCI is memory loss (Rugg and Vilberg, 2013).
The hippocampus is the crucial area for memory processing.
Therefore, investigating the abnormal white matter network
related to the hippocampus could promote the detection of
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MCI in time (Benoit and Schacter, 2015). Furthermore, previous
studies have also demonstrated that white matter degeneration
leads to abnormalities in the functional connectivity of the
corresponding brain regions (Kleinschmidt and Vuilleumier,
2013). In the default mode network, damage to the white matter
fibers such as fornix and cingulum could weaken the functional
connectivity of the medial temporal lobe and precuneus to
the hippocampus (Buckner and DiNicola, 2019). Therefore,
we hypothesized that white matter connectivity between brain
regions associated with the hippocampus could be an important
biomarker for MCI recognition. Features extraction of white
matter network through hippocampus-related regions would
help to improve the MCI classification performance.

This study aimed to extract the effective features of white
matter connectivity networks driven by regions related to the
hippocampus and improve classification performance. In our
study, the elderly people were divided into MCI group and
normal control (NC) group. First, the DTI data were obtained,
and the orientation distribution function (ODF) was calculated
by constrained spherical deconvolution (CSD). Based on the
ODF, the fiber tracts of the whole brain were constructed.
Second, the DTI index of whole-brain white matter connectivity
between each brain region under the automated anatomical
labeling (AAL) was calculated to construct the MD and FA brain
structure networks as features. Furthermore, the hippocampus
was used as the seed point to define the regions of interest
(ROIs). Brain regions with high correlation to the hippocampus
in functional connectivity were obtained as ROIs compared with
the AAL template. Finally, whole-brain white matter connectivity
networks were screened by ROIs related to the hippocampus.
Different classifiers (e.g., SVM, KNN, and RF) were used to
validate the classification performance of the extracted features.
The recursive feature elimination (RFE) ranked these features’
contribution to analyze the pathological mechanisms of MCI.
Our study proposed a method of feature extraction to improve
the MCI classification performance. The study also revealed the
pathological mechanisms of MCI by the ranked contribution of
features. It would provide effective early aid to MCI diagnosis.

MATERIALS AND METHODS

Participants
After excluding the left-handed and other brain injury history, a
total of 96 subjects met the criteria for inclusion (48 male and
48 female; age: 80.6 ± 5.4 years, mean ± std). All participants
were provided written informed consent based on the Helsinki
Declaration. The experimental protocol was approved by the
Institutional Review Board of Tianjin University and the Ethics
Committee of Chang Gung University.

Neuropsychological Behavior Testing
All subjects were tested on the clinical dementia rating (CDR)
and the mini-mental status examination (MMSE) scale. The
entry criteria for MCI diagnosis were as follows: (i) CDR = 0.5;
(ii) 24 ≤ MMSE < 30 for well-educated subjects (education
years ≥ 6) or 19 ≤ MMSE < 24 for less-educated subjects

(education years < 6). The MCI group was 81.3 ± 3.6
(mean ± std) years with education duration of 5.9 ± 5.4 years
(mean ± std). There was no difference between groups in age and
education duration (Table 1).

Magnetic Resonance Imaging Data
Acquisition
The DTI, T1w, and rs-fMRI images of each subject were
acquired without personal information. The DTI with 30
diffusion encoding directions was acquired using echo planar
imaging (EPI) sequence with parameters: b-value = 1,000 s/mm2,
TR/TE = 11,000/104 ms, field of view = 192 × 192 mm2,
matrix size = 128 × 128, slice thickness = 2 mm, voxel
size = 2 × 2 × 2 mm3, number of slices = 70, and
number of excitations = 1. The rs-fMRI was acquired using
gradient EPI sequence with parameters: TR/TE = 2,500/27 ms,
flip angle = 77◦, band width = 2,400 Hz/pixel, field of
view = 260 × 260 mm2, matrix size = 64 × 64, voxel
size = 3.4 × 3.4 × 3.4 mm3, number of slices = 43, scan
time = 360 s, and time points = 180. The T1w imaging was
acquired using a 3D magnetization prepared rapid gradient EPI
sequence with parameters: TR/TE = 2,530/3.5 ms; TI = 1,100 ms;
field of view = 260 × 260 mm2; matrix size = 256 × 256; slice
thickness = 1 mm; voxel size = 1 × 1 × 1 mm3; and number
of slices = 192.

White Matter Structure Network
Establishment and Feature Extraction
The feature extraction of the white matter structure network for
MCI classification consists of the following steps (Figure 1):

1. MRI data preprocessing.
2. Reconstruction for white matter fiber tracts by orientation

distribution function (ODF). Based on DTI, the ODF was
calculated by CSD.

3. Establishment for whole-brain structure network. DTI
indexes (MD and FA) of white matter connectivity between
the AAL 90 brain region were calculated to establish
the whole-brain structure network as the full feature for
MCI classification.

4. Feature selection driven by hippocampus-related ROIs.
Brain regions with significant functional connectivity to
the hippocampus in rs-fMRI were selected as ROIs. The

TABLE 1 | Demographic and neuropsychological information of the
MCI and NC groups.

NC (n = 54) MCI (n = 42) p-value

Gender (m/f) 27/27 21/21 1.0000a

Age (year) 80.0 ± 6.3b 81.3 ± 3.6b 0.6353c

Education (year) 6.5 ± 4.1b 5.9 ± 5.4b 0.1530c

CDR 0 0.5 <0.0001c

MMSE 28.0 ± 1.8b 24.9 ± 2.8b <0.0001c

aChi-square test. bMean ± std. cRank sum test.
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FIGURE 1 | Feature extraction in structural connectivity map driven by hippocampus related ROIs. Three kinds of features were extracted for MCI classification,
including: (A) The whole brain WM network was acquired from diffusion MRI with all 90 × 90 AAL regions. (B) The HIP related WM network was selected by 43 × 43
ROIs from the whole brain WM network. (C) The significant HIP related WM network was acquired (*p < 0.05, **p < 0.005, and ***p < 0.0005; ranksum test with
bonferroni correction).

ROIs are used to screen features for the white matter
structural network.

5. Machine learning for MCI recognition. Different classifiers
(e.g., SVM, KNN, and RF) were used to test the features for
MCI recognition.

6. Performance comparison for searching optimal features
and classifiers. Classification performances were validated
to prove that our feature extraction method was effective.
Pathological mechanisms were analyzed with feature sort.

Magnetic Resonance Imaging Data Preprocessing
The DWI data were denoised and corrected for Gibb’s ringing
using MRtrix31 and then motion-corrected, and the eddy current
distortion was corrected using the eddy tool in FSL (v5.0.11).2

Next, a brain mask was constructed using the Brain Extraction
Tool in FSL, and the diffusion tensor fitting was performed
at each voxel within the brain mask to generate DTI index
maps. The rs-fMRI data were temporal band-pass filtered (0.01–
0.10 Hz) and detrended (both linear and quadratic trends). 3D

1http://www.brain.org.au/software/mrtrix/
2https://fsl.fmrib.ox.ac.uk/fsl

geometrical displacement was used to correct for head motion.
Spatial smoothing was performed with a Gaussian filter kernel
(FWHM = 6 mm). The entire process was performed using
the Statistical Parametric Mapping (SPM) software package,3

in which the head motion parameters, global signals, white
matter signals, and cerebrospinal fluid signals were obtained and
combined into a complete covariate. Covariate from functional
signals was then removed using the Resting-State fMRI Data
Analysis Toolkit (REST).4

Reconstruction for White Matter Fiber Tracts
To reconstruct the whole-brain white matter fiber
tracts of each subject, fibers were tracked in DTI data
(Supplementary Figure 1). (1) The ODF necessary for the
fiber tracking algorithm can be obtained using the MRtrix
software (see text footnote 1). The CSD was used with maximum
spherical harmonic degree = 6 during this process. (2) The ODF
was integrated into DSI Studio5 to achieve a 3D reconstruction

3http://www.fil.ion.ucl.ac.uk/spm
4http://restfmri.net/forum/REST
5http://dsi-studio.labsolver.org/
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of the whole brain’s white matter fiber connectivity. The tracking
parameters were as follows: Number of tracts = 100,000,
Qa_threshold = 0.04, max angle = 60, length constraint = 20.0–
450.0 mm, step size = 1.00 mm, and smoothness = 0.5 mm. Seed
direction was set to random, and seed position was subvoxel.

Establishment for Whole-Brain Structure Network
Since the AAL is located in the MNI152 standard space, the
transfer matrixes between the standard space and native space
(Supplementary Figure 2) were required to obtain the AAL
brain region for each subject space. (1) The b0 image from
the DTI image served as the native space. The T1w image
after skull stripping in FSL served as the structure space. The
MNI152 template from FSL served as the standard space. (2)
With the high-resolution T1w image as the reference, FMRIB’s
Linear Image Registration Tool (FLIRT) was used to obtain the
transition matrix from native space to structural space (TNS)
and the transition matrix from standard space to structural
space (TMS). The transition matrix from native space to standard
space was TNM = TNS × TMS

−1. (3) The transition matrix from
standard space to native space was TMN = TMS × TNS

−1.
To establish the whole-brain WM network, a 90 × 90 matrix

for the whole brain divided by the AAL template was calculated
(Supplementary Figure 1). (1) The AAL 90 brain regions in the
MNI152 standard space were transformed to each subject’s space
separately by applying transfer matrix TMN. (2) For the 90 × 90
matrix, every element records the mean DTI index (MD or FA) of
fiber tracts between every two of the AAL 90 brain regions. Also,
the whole-brain WM networks were established, including the
MD connectivity 90 × 90 matrix and the FA connectivity 90 × 90
matrix. (3) Whole-brain WM networks of 54 NC and 42 MCI
were established separately as entire features for MCI recognition.

Feature Selection Driven by Hippocampus-Related
Regions of Interest
The primary clinical symptom of MCI is memory loss, and
the hippocampus is closely associated with memory. So,
the hippocampus was chosen as a seed point to calculate
the brain regions that had significant functional connectivity
(Supplementary Figure 3). The concrete steps were as follows:
(1) All participants’ rs-fMRI images were transferred from the
native space to the standard space. (2) The left hippocampus (30,
−16, −14) and right hippocampus (−30, −16, −14) with a radius
of 3 mm served as the seed points to create the FC map of each
participant in the MNI152 standard space. With the same time
series, brain regions that activated correlation with hippocampus
were calculated in software REST. The Fisher Z transformation
was applied so that the results of each participant followed normal
distributions. (3) After individual-level analysis, group analysis
for MCI and NC was conducted separately by the second-level
analysis in SPM. A one-sample T-test and a familywise error
correction were employed to revise the statistics of the group
analysis results. (4) Significant area (p < 0.05) with the threshold
(T-value > 10, size > 27) was selected to obtain the brain regions
associated with the functional connectivity of the hippocampus
at the group level.

To confirm the locations of the hippocampus-related ROIs,
the following steps were conducted: (1) The functional
connectivity maps of the MCI and NC groups were compared
with AAL templates. The percentage of overlapping voxels taken
in the AAL was calculated (Supplementary Figure 3). (2) To
select as many ROIs as possible in the AAL and prevent false
positives, a volume percentage threshold of 10% was set. If one
of the 90 regions in the AAL had a volume fraction greater than
the threshold value, the brain region in the AAL was selected as
an ROI (Supplementary Figure 4). The selected ROIs are listed in
Supplementary Table 1, including their abbreviations. (3) Totally
43 ROIs related to the hippocampus were used to extract features
of the whole-brain WM network (90 × 90 matrices), and the HIP-
related WM network (43 × 43 matrices) was established. The
rank sum test with Bonferroni correction of HIP-related WM
network between MCI and NC was used to extract significant
features. The significant HIP-related WM network was acquired
(300 vectors) (Figure 1).

Machine Learning for Mild Cognitive Impairment
Recognition
To train features of different WM networks for MCI
classification, the process of machine learning was as
follows (Figure 2): (1) The whole-brain WM network, the
hippocampus-related WM network (HIP-related WM network),
and the significant HIP-related WM network were separately
used as features for machine learning. The recursive feature
elimination (RFE) algorithm was used for both dimension
reduction and features ranking. (2) The machine learning

FIGURE 2 | The flowchart for machine learning. Recursive feature elimination
was used to search for the optimal feature subset. The classification algorithm
was respectively used KNN, RF, SVM (linear, poly, rbf, sigmoid). The hold-out
method was repeated 100 times randomly with 80% of the data for training
and 20% for testing.
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methods included SVM, KNN, and RF. For SVM, four different
kernel functions were tried, namely, linear kernel (linear),
polynomial kernel (polynomial), radial basis function kernel
(rbf), and sigmoid kernel (sigmoid). For KNN, neighbors of 1,
3, 5, and 7 were used. For RF, 50, 100, 150, and 200 decision
trees were used. (3) The hold-out method was used to evaluate
classification performance; 80% of the data set was selected
as the training set and the remaining 20% as the test set. This
process was repeated 100 times randomly to obtain the average
classification accuracy and the area under the curve (AUC). All
the above experiments were based on the Scikit-Learn library.6

Performance Comparison for Searching Optimal
Feature and Classifier
The following steps were conducted to search for optimal
features and classifiers. (1) To demonstrate the effectiveness
of the feature extraction method, the classification accuracies
(100 times hold-out method) were statistically analyzed in the
rank sum test between three features (i.e., whole-brain WM
network, HIP-related WM network, and significant HIP-related
WM network), and the AUC values were compared in the
identical coordinate system (Figure 3). (2) To obtain a better
classifier for MCI recognition, the classification accuracies (100
times hold-out method) were statistically analyzed in the rank
sum test between different classifiers, and the AUC values
were compared in the identical coordinate system (Figure 4).
(3) To compare which biomarker is more effective for MCI
recognition, the classification accuracies (100 times hold-out
method) were statistically analyzed in the rank sum test between
MD and FA features, and the AUC values were compared
in the identical coordinate system (Figure 5). (4) To rank
all features’ contribution to the classification, recursive feature
elimination (RFE) was performed. Feature ranking order of
the most contributing connectivity was selected based on their
classification performance (Figure 6A and Table 4). A schematic
illustration of degenerated white matter in MCI was made
according to the ranking features (Figure 6B).

RESULTS

Participant Characteristics
There were no significant differences in demographic
information between the MCI and NC. There were only
significant differences in the cognitive scales (CDR and
MMSE, Table 1). This indicates that irrelevant variables’
influence was eliminated between the MCI and NC, and the
results were credible.

Regions of Interest Related to
Hippocampus in Resting-State
Functional Magnetic Resonance Imaging
A total of 43 ROIs related to hippocampus in rs-fMRI were
obtained by comparing with AAL (Supplementary Figure 4).
Full names and abbreviations of the 43 ROIs were shown in

6https://scikit-learn.org/

Supplementary Table 1. Among them, 15 ROIs belong to the
limbic lobe, 16 ROIs belong to the frontal lobe, 5 ROIs belong
to the temporal lobe, 3 ROIs belong to the central region, 3
ROIs belong to the parietal lobe, and 1 ROI belongs to the
occipital lobe. Most ROIs are concentrated in the limbic, frontal,
and temporal lobes.

Classification Performance Promoted by
Screening Features in
Hippocampus-Related Regions of
Interest
For the WM network of MD in the same classifier, the
performances of progressively optimized features (whole-brain
WM network, HIP-related WM network, and significant HIP
related WM network) were significantly promoted (p < 0.05,
rank sum test with Bonferroni correction) (Figure 3 and Table 2).
It proved that our feature extraction method in this experiment
significantly improved the performance of the MCI classification.

Comparison of Mild Cognitive
Impairment Classification Performance
Under Different Algorithms
The three machine learning classifiers (of which SVM contains
four kernel functions) were compared separately (Figure 4).
The performance in order of average classification accuracy (100
times hold-out method) was as follows: SVM rbf (ACC = 89.4%,
AUC = 0.954), SVM sigmoid (ACC = 88.2%, AUC = 0.950),
KNN (ACC = 86.9%, AUC = 0.920), SVM linear (ACC = 86.2%,
AUC = 0.937), RF (ACC = 84.8%, AUC = 0.935), and SVM ploy
(ACC = 78.5%, AUC = 0.951). The performance of the SVM rbf
was significantly better than other classifiers. Therefore, training
with the significant HIP-related WM network as features using
SVM rbf can better recognize MCI.

Comparison of Classification
Performance Under Mean Diffusivity and
Fractional Anisotropy Features
For the same machine learning classifier, the performance of the
feature MD was significantly better than FA (p < 0.05, rank
sum test with Bonferroni correction) in the case of both using
optimal features for training (Figure 5 and Table 3). Therefore,
the biomarker MD is superior to FA for MCI diagnosing from a
machine learning perspective.

Ranking the Contribution of White Matter
Structural Connectivity to Mild Cognitive
Impairment Classification
According to the significant HIP-related WM network’s feature
ranking order through RFE (Figure 6A and Table 4), schematic
illustrations of degenerated white matter in MCI were made
(Figure 6B). The most common connections between MCI and
NC are HIP-temporal connectivity, limbic connectivity, and
THA-frontal connectivity.
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FIGURE 3 | Classification performance comparison between different mean diffusivity (MD) feature sets for different classifier. (A) KNN. (B) RF. (C) SVM linear. (D)
SVM poly. (E) SVM rbf. (F) SVM sigmoid. ‘red’: the significant HIP related WM network; ‘green’: HIP related WM network; ‘blue’: the whole brain WM network.
Classification performance including mean accuracy (mean ± std; *p < 0.05, **p < 0.005, and ***p < 0.0005; ranksum test with bonferroni correction) and AUC of
randomly 100 times hold out method.

FIGURE 4 | Classification performance comparison between different algorithm through optimal feature set. Classification performance including mean accuracy
(mean ± std; ∗p < 0.05, ∗∗p < 0.005, and ∗∗∗p < 0.0005; ranksum test with Bonferroni correction) and AUC of randomly 100 times hold-out method.
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FIGURE 5 | Optimal classification performance comparison between mean diffusivity (MD) and fractional anisotropy (FA) feature sets (the significant HIP related WM
network) for different classifier. (A) KNN. (B) RF. (C) SVM linear. (D) SVM poly. (E) SVM rbf. (F) SVM sigmoid. ‘red’: classification performance of mean diffusivity
feature sets; ‘gray’: classification performance of fractional anisotropy feature set. Classification performance including mean accuracy (mean ± std; *p < 0.05,
**p < 0.005, and ***p < 0.0005; rank sum test with Bonferroni correction) and AUC of randomly 100 times hold out method.

DISCUSSION

This study proposes a feature extraction method for whole-brain
white matter connectivity networks driven by ROIs related to the
hippocampus. The whole-brain WM network, HIP-related WM
network, and significant HIP-related WM network were obtained
in the process of feature extraction and optimization. Different
classification algorithms, such as KNN, RF, and SVM (linear, poly,
rbf, sigmoid), were used to test the classification performance.
The pathological mechanisms of MCI were also revealed by RFE.
Our study found that feature extraction of whole-brain white

matter connectivity by hippocampus-related brain regions can
significantly improve MCI classification performance. It can be
summarized in three points:

1. In the feature, compared with the whole-brain WM network,
the HIP-related WM network can significantly promote the
MCI classification performance in machine learning.

2. In the algorithm, the classification performance of the SVM
rbf is optimum when taking significant HIP-related WM
networks as features.
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FIGURE 6 | Feature ranking of MD feature (the significant HIP-related WM network) as the result of RFE in SVM rbf model. (A) Feature ranking order of the most
contributing connectivity (25 features). The bar represents connectivity in different groups. “black”: limbic connectivity (15 features). “gray”: Hip-temporal connectivity
(5 features). “white”: THA-frontal connectivity (5 features). (B) Schematic illustration of degenerated white matter in MCI. Nodes represented ROIs from AAL
templates. Edges represented connectivity; the value represents MD variation, MCI vs. NC.

3. In the pathology, the hippocampus- and thalamus-related
white matter connectivity greatly contributed to MCI
recognition. So, the method that combines MCI pathology

and uses a suitable classifier can significantly improve the
classification performance, while the ranking of features
contribution can reveal MCI pathology in turn.
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Mild Cognitive Impairment Classification
Performance Significantly Promoted by
Feature Extraction of
Hippocampus-Related Regions of
Interest
For the same classifier on features, the performance on MCI
classification was significantly higher for features screening
by HIP-related ROIs than the whole brain. First, in our
results, the whole-brain WM network, HIP-related WM network,
and significant HIP-related WM network had sequentially
significantly higher classification performance (Figure 3).
Second, in terms of AD pathogenesis, the degeneration of MCI

TABLE 2 | Classification performance based on mean diffusivity (MD) feature sets.

Classifier Feature ACC (mean ± sem) Sen Spe AUC

A. KNN Significant 86.90% ± 0.80% 0.938 0.778 0.920

HIP related 60.90% ± 1.20% 0.97 0.142 0.646

Whole brain 58.90% ± 1.10% 0.837 0.265 0.584

B. RF Significant 84.80% ± 0.90% 0.916 0.781 0.935

HIP related 61.60% ± 1.00% 0.958 0.144 0.654

Whole brain 57.10% ± 1.10% 0.935 0.117 0.573

C. SVM linear Significant 86.20% ± 0.80% 0.905 0.808 0.937

HIP related 67.30% ± 1.60% 0.886 0.419 0.637

Whole brain 60.90% ± 1.00% 0.791 0.406 0.549

D. SVM poly Significant 78.50% ± 1.20% 0.965 0.609 0.951

HIP related 67.10% ± 1.60% 0.886 0.414 0.632

Whole brain 56.70% ± 1.20% 0.972 0.029 0.550

E. SVM rbf Significant 89.40% ± 0.70% 0.938 0.849 0.954

HIP related 67.10% ± 1.60% 0.887 0.413 0.627

Whole brain 56.90% ± 1.10% 0.991 0.011 0.522

F. SVM sigmoid Significant 88.20% ± 0.60% 0.945 0.806 0.946

HIP related 67.20% ± 1.60% 0.888 0.414 0.633

Whole brain 60.80% ± 1.00% 0.708 0.501 0.550

ACC, accuracy; Sen, sensitivity; Spe, specificity; AUC, area under the curve; Ave,
average; Std, standard error; Sem, standard error mean.

TABLE 3 | Classification performance of MD and FA feature sets.

Classifier Feature ACC (mean ± sem) Sen Spe AUC

A.KNN MD 86.90% ± 0.80% 0.938 0.778 0.92

FA 75.70% ± 0.90% 0.905 0.571 0.853

B. RF MD 84.80% ± 0.90% 0.916 0.781 0.935

FA 81.40% ± 1.00% 0.878 0.743 0.902

C. SVM linear MD 86.20% ± 0.80% 0.905 0.808 0.937

FA 81.40% ± 0.80% 0.891 0.728 0.742

D. SVM poly MD 78.50% ± 1.20% 0.965 0.609 0.951

FA 77.50% ± 1.20% 0.877 0.672 0.8

E. SVM rbf MD 89.40% ± 0.70% 0.938 0.849 0.954

FA 79.00% ± 0.80% 0.841 0.738 0.901

F. SVM sigmoid MD 88.20% ± 0.60% 0.945 0.806 0.946

FA 67.30% ± 1.60% 0.886 0.418 0.635

ACC, accuracy; Sen, sensitivity; Spe, specificity; AUC, area under the curve; Ave,
average; Std, standard error; Sem, standard error mean.

first appears in specific fiber tracts and gradually spreads to the
whole brain when developing to the AD stage (Daianu et al.,
2015; Jones et al., 2015; Wang et al., 2016). Furthermore, in either
specific fiber tracking (Nir et al., 2015; Dou et al., 2020) or whole-
brain white matter connectivity network measures (Wee et al.,
2011; Prasad et al., 2015) in previous studies, the accuracies of
MCI classification were around 60%, while the accuracies of AD
can be about 80%. It also corroborates the pathogenesis of AD
from an engineering perspective. Finally, for MCI recognition,
a single use of whole-brain white matter would weaken the
features considering AD’s pathogenesis. Based on the pathology
of MCI, our study improves the MCI classification performance
effectively by feature extraction of HIP-related ROIs.

Mean Diffusivity Can Be a Valid
Biomarker for Mild Cognitive Impairment
Recognition
For MCI, the MD is more sensitive than FA values to reflect
white matter degeneration. First, our results showed that the
MD of WM networks as features outperformed FA in all the
machine learning classifiers (Figure 5). Second, research showed
the sensitivity of the MD index to MCI (Yu et al., 2017), while

TABLE 4 | Feature ranking order for WM connectivity.

Feature ranking order ROI pairs for connectivity

1 HIP-THA L Hippocampus Thalamus

2 HIP-AMYG R Hippocampus Amygdala

3 HIP-THA R Hippocampus Thalamus

4 HIP-PHIP L Hippocampus Parahippocampal gyrus

5 HIP-PCIN L Hippocampus Posterior cingulate

6 HIP-T1 L Hippocampus Superior temporal gyrus

7 HIP-T1 R Hippocampus Superior temporal gyrus

8 HIP-T1P R Hippocampus Temporal pole: superior temporal
gyrus

9 AMYG-F2O R Amygdala Middle frontal gyrus, orbital part

10 HIP-HES L Hippocampus Heschl gyrus

11 HIP-FUSI R Hippocampus Fusiform gyrus

12 THA-PUT L Thalamus Lenticular nucleus, putamen

13 THA-CAU L Thalamus Caudate nucleus

14 THA-PAL L Thalamus Lenticular nucleus, pallidum

15 PUT-PAL L Lenticular
nucleus,
putamen

Lenticular nucleus, pallidum

16 THA-CAU R Thalamus Caudate nucleus

17 THA-F1O L Thalamus Superior frontal gyrus, orbital part

18 THA-F1O R Thalamus Superior frontal gyrus, orbital part

19 THA-F2O R Thalamus Middle frontal gyrus, orbital part

20 THA-IN L Thalamus Insula

21 THA-ACIN R Thalamus Anterior cingulate and
paracingulate gyri

22 THA-IN R Thalamus Insula

23 THA-ACIN L Thalamus Anterior cingulate and
paracingulate gyri

24 THA-F1 L Thalamus Superior frontal gyrus, dorsolateral

25 THA-F1 R Thalamus Superior frontal gyrus, dorsolateral
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FA only begins to have statistical differences in multiple fiber
tracts during AD (Mito et al., 2018). Our experiment confirmed
that the MD index was more sensitive in the MCI stage from
classification performance. Furthermore, FA reflects the density
of white matter fibers and is influenced by the axon diameter of
fiber tracts. MD represents the integrity of the myelin outer the
fiber tracts. Demyelination can cause MD to increase (Tournier,
2019). It can be inferred that disintegrated myelin appeared more
obvious than axon loss during MCI. Therefore, the MD index can
be an effective biomarker for MCI compared with FA.

Comparison With Previous Studies
Compared with previous studies that used white matter as
the feature to recognize MCI, our method using HIP-related
ROIs to extract white matter features significantly improved
MCI classification performance (Table 5). By comparing the
classification performance between all of our classifiers, the SVM
classifier with rbf kernel significantly outperformed the other
classifiers (Figure 4). It can also be seen from previous studies
that the SVM classifier with rbf kernel for MCI recognition
performed well when taking the white matter as features
(Table 5). Therefore, training with the white matter as features
after HIP-related ROIs extraction can better recognize MCI when
using the SVM rbf classifier.

Important Hubs of the White Matter
Connectivity Network for Mild Cognitive
Impairment: Hippocampus and Thalamus
White matter connections related to hippocampal and thalamic
contribute most to MCI classification. First, previous studies have
shown that the white matter associated with the hippocampus
and thalamus degenerates during MCI. The white matter
microstructure between the hippocampus and medial temporal
lobe changes during MCI (Teipel et al., 2016; Zhuo et al., 2016;
Dumont et al., 2019). The fornix connects the hippocampus to the

thalamus, and its white matter degeneration leads to decreased
memory function (Christiansen et al., 2016). Degeneration of the
projection tracts connecting the thalamus to the prefrontal lobes
leads to a decrease in executive function (Gu and Zhang, 2019;
Liu et al., 2021).

Second, in our results, features connected with the
hippocampus or thalamus in the white matter connectivity
network ranked high in contributions for MCI classification, and
features connected with the hippocampus ranked more advanced
than the thalamus (Figure 6). This result also confirmed our
previous findings (Zhou et al., 2021). In our previous study, the
MD of all voxels in a single fiber tract was taken as features.
The fiber tract with high separability for MCI recognition
passed through the hippocampus or thalamus. So, whether
single fiber tract or whole-brain network had corroborated that
hippocampus and thalamus were important hubs of the white
matter connectivity network for MCI.

Furthermore, in our previous study, the highest average
accuracy for MCI classification reached 71.0% when taking MD
of all voxels in the left inferior longitudinal fasciculus. In this
study, the highest average accuracy reached 89.4% by taking
white matter networks related to the hippocampus. Compared
with the single fiber tract, white matter networks related to the
hippocampus as features can improve classification performance.
Finally, the contribution of every white matter connectivity can
be sorted by RFE. Thus, the hippocampus and thalamus are
important hubs for MCI. Features of combinational white matter
connectivity networks outperform single fiber tracts.

Limitations
This study mainly focused on feature extraction for MCI
recognition. However, the valuable contributions of this study
must be considered within the context of certain limitations.
First, a certain amount of new data will be added as the test set
alone. Data in this article will be used as the training set and

TABLE 5 | Summary of the studies using dMRI features for MCI classification.

Comparison with the previous studies Classifier Subjects Feature Database Performance

MCI/NC ACC AUC

Ebadi et al. (2017) KNN 15/15 Network Local 60.0% 0.560

Our study KNN 42/54 Network Local 86.9% 0.920

Maggipinto et al. (2017) RF 90/89 MD/FA voxel ADNI 54.0% 0.600

Wang et al. (2018) RF 169/379 Network ADNI/NACC 75.0% 0.850

Our study RF 42/54 Network Local 84.8% 0.935

Xie et al. (2015) SVM linear 64/64 MD/FA voxel Local 78.9% 0.856

Our study SVM linear 42/54 Network Local 86.2% 0.937

Cui et al. (2012) SVM rbf 79/204 FA voxel SMA 71.1% 0.700

Dyrba et al. (2015a) SVM rbf 35/42 MD/FA voxel EDSD 77.0% 0.680

Demirhan et al. (2015) SVM rbf 43/70 FA voxel ADNI 78.5% 0.758

Nir et al. (2015) SVM rbf 113/50 Network ADNI 79.0% -

Ahmed et al. (2017) SVM rbf 58/52 MD voxel ADNI 79.4% 0.788

Our study SVM rbf 42/54 Network Local 89.4% 0.954

local, collect by hospital; ADNI, Alzheimer’s Disease Neuroimaging Initiative; NACC, National Alzheimer’s Coordinating Center; SMA, Sydney Memory and Aging; EDSD,
European DTI Study on Dementia; -, not applicable.
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validation set. Second, cross-validation will be added to obtain
more accurate parameters for the classifier further to improve
performance in the future. Third, deep learning will be used based
on our existing findings, and generalization could be improved
in the future. More subjects and multiple datasets will be
acquired from different hospitals to test the generalization of the
classifier. Furthermore, future studies should recruit participants
with both MCI and AD. The NC, MCI, and AD should be
divided to investigate the pathological mechanisms underlying
AD development. Finally, the behavior scale would be added, and
the support vector regression (SVR) will be used to predict MCI
patients’ behavior.

CONCLUSION

Our study proposes a feature extraction method driven
by hippocampus-related ROIs for white matter connectivity
networks. In the feature extraction process, the whole-brain
WM network, the HIP-related network, and the significant HIP-
related network continuously optimize the performance of MCI
classification. By recursive feature elimination, the pathological
mechanism revealed that the hippocampus and thalamus are
important hubs in white matter networks for MCI. Our results
provide a valid basis for the early diagnosis of AD.
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It is difficult for stroke patients with flaccid paralysis to receive passive rehabilitation
training. Therefore, virtual rehabilitation technology that integrates the motor imagery
brain-computer interface and virtual reality technology has been applied to the field
of stroke rehabilitation and has evolved into a physical rehabilitation training method.
This virtual rehabilitation technology can enhance the initiative and adaptability of
patient rehabilitation. To maximize the deep activation of the subjects motor nerves and
accelerate the remodeling mechanism of motor nerve function, this study designed a
brain-computer interface rehabilitation training strategy using different virtual scenes,
including static scenes, dynamic scenes, and VR scenes. Including static scenes,
dynamic scenes, and VR scenes. We compared and analyzed the degree of neural
activation and the recognition rate of motor imagery in stroke patients after motor
imagery training using stimulation of different virtual scenes, The results show that under
the three scenarios, The order of degree of neural activation and the recognition rate
of motor imagery from high to low is: VR scenes, dynamic scenes, static scenes. This
paper provided the research basis for a virtual rehabilitation strategy that could integrate
the motor imagery brain-computer interface and virtual reality technology.

Keywords: brain-computer interface, motor imagery, virtual reality, neural activation, virtual rehabilitation

INTRODUCTION

The brain-computer interface (BCI) is a direct communication and control channel established
between the human brain and computer or other electronic devices (Wolpaw et al., 2002). Through
this channel, people can express ideas or manipulate equipment directly through the brain without
any language or action, which can effectively enhance the ability of patients with severe physical
disabilities to communicate with the outside world or to control the external environment to
improve the quality of life of patients (Ren et al., 2004). Virtual reality (VR) technology creates
a virtual world through the use of a new computer system, allowing the experiencer to integrate
into the virtual environment and achieve mutual interaction. In addition to being used in the
gaming industry, VR also can help stroke patients with flaccid paralysis perform purposeful
training in a virtual environment, thereby improving the effect of rehabilitation training. Motor
imagery (MI) is defined as the cognitive activity in which a subject imagines a movement without
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actually performing the movement (Vries and Mulder, 2007),
and it is a common application paradigm in the field of brain-
computer interface research (Mattia et al., 2012). This method
realizes communication and control with external devices by
imaging body movements (Xu et al., 2013).

Motor imagery brain-computer interface (MI-BCI) is a type
of BCI that recognizes the patient’s motor imagery intention
by guiding the patient to perform motor imagery based on
motor imagery therapy (Clark et al., 2019). It can be used to
effectively remodel the central nervous system in patients with
motor dysfunction (Guger et al., 2017). VR technology can
provide patients with a more immersive training environment
(Ren et al., 2020), help patients perform motor imagery more
accurately (Bayliss and Ballard, 2000), and generate more easily
identifiable electroencephalography (EEG) signals (Li et al.,
2018). Remsik et al. (2016) reviewed 17 independent MI-BCI
stroke rehabilitation studies, and they found that 16 produced
significant treatment effects. Studies have shown that both motor
imagery and actual movement can activate bilateral premotor
areas (Pfurtscheller and Neuper, 2001), parietal lobes, basal
ganglia, and cerebellum. Studies (Pfurtscheller and Neuper, 1997)
also have shown that stroke patients can perform motor imagery
to partially activate the damaged motor network (Fumanal-
Idocin et al., 2021). In addition, studies have found that
the rehabilitation treatment model combining BCI and VR
technology is suitable for people suffering from stroke (Varsehi
and Firoozabadi, 2021), depression, addiction and other diseases
(Takenaka et al., 2021). VR-guided action offers the advantages of
intuitive and specific actions and a strong sense of substitution
(Velasquez-Martinez et al., 2020). Well-designed scene feedback
can produce neural activation (Vourvopoulos et al., 2015).

Rehabilitation training strategies based on VR and MI-
BCI have the following limitations (Benitez-Andonegui et al.,
2020). First, the current rehabilitation strategy based on MI-BCI
improves accuracy primarily by improving the algorithm without
using a scene stimulation to improve the neural activation of the
subject (Xiao and Fang, 2021), and thereby improving the quality
of the EEG signals to improve accuracy (Bagarinao et al., 2020).
Second, the virtual rehabilitation scene is singular (Vidaurre et al.,
2020), the individual adaptability is poor, and few studies (Li et al.,
2021) have compared the neural region activation and enhanced
EEG signals feature mechanisms in different scenes (Barsotti
et al., 2015). Third, most of the existing virtual rehabilitation
training strategies are performed by observing virtual scenes
on a computer screen (Moctezuma and Molinas, 2020). This
training mode is not only less immersive, but also easily disturbed
by the external environment, which introduces difficulties to
the rehabilitation training (Gomez-Pilar et al., 2016). Finally,
visual feedback training is lacking during rehabilitation. At the
neural mechanism level, visual feedback training promotes brain
plasticity changes and functional reorganization through the
activation of the mirror neuron system, thereby promoting the
recovery of motor function (Birbaumer et al., 2006).

In this study, to examine ways to improve the deep activation
mechanism of motor nerves in stroke patients with flaccid
paralysis, we designed different virtual scenes and training tasks
to stimulate motor imagery from different angles. The virtual

scenes include the following: limb MI in static scenes, such
as text and pictures; limb MI in dynamic scenes of three-
dimensional (3D) life and virtual games; and limb MI in the VR
environment. This study compared and analyzed energy changes
in the motor areas of the brain and the recognition rate of motor
imagery before and after rehabilitation training using three-
scene stimulation. This study verified the positive activation
effect of rehabilitation training strategy on stroke patients and
explored the brain activation mechanism using stimulation with
different virtual scenes.

MATERIALS AND METHODS

Experimental Paradigm Under Virtual
Scenes Stimulation
Design of Virtual Scenes and Training Tasks
As shown in Figure 1, in this study, we designed a rehabilitation
training strategy based on MI-BCI and VR. Multiple-evoked MI
stimulation scenes (e.g., static scenes, dynamic scenes, and VR
scenes) induced subjects to perform limb motor imagery. The
EEG signals of the brain motor area were collected in real time
and then the signals were subjected to preprocessing, intention
feature extraction, and intention recognition. Finally, the results
were output to the scene for interactive control.

The virtual scenes were interesting and immersive, and the
patients had a strong awareness of active training. In this
study, we first built the scenes. Then, we added the image
of the virtual left and right hands into the scenes and set
the training tasks and audio-visual feedback. Finally, through
human-computer interaction control, the subjects could feel that
they were performing actual body movements. Then we guided
the subjects to perform active limb motor imagery.

In addition, we observed the brain electrical activity mapping
of the subject and analyzed the degree of neural activation
during the subject’s brain electrical activity mapping. We
observed the activation changes in the brain areas through brain
electrical activity mapping and analyzed the effect of training
on the subjects. According to the current neural activity in the
motor area of the brain, we adaptively adjusted the training
scenes to ensure that the subjects could continuously achieve
maximum activation of nerves and to accelerate the remodeling
of nerve functions.

Different research protocols can lead to different promotion
effects of the BCI rehabilitation training system on either the
unaffected or affected side of the cerebral hemisphere (Dodd
et al., 2017). Different subjects respond differently to different
scenes, and the activation areas and intensity of the cerebral
cortex and the EEG signal features also are different when
the same subject performs different tasks. Considering these
differences, this study used the Unity 3D platform to design
the training scenes (static and dynamic scenes) in the computer
screen as well as the training scenes in the VR environment.
We also designed some life-skills training in the scene to
feature rehabilitation tasks (e.g., holding goods, pouring water,
and picking food).
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FIGURE 1 | Virtual rehabilitation training strategy map.

As shown in Figure 2, this study designed four different static
and dynamic scenes without using VR. They included static text
scenes, static picture scenes, dynamic 3D life scenes, and dynamic
virtual game scenes.

As shown in Figure 3, we also designed scenes in the VR
environment to enhance the immersion and realism of the
subject’s training in this study. The control method of the training
tasks required the patient to perform motor imagery according to
the prompt. In other words, when the patient’s use of left (right)
motor imagery was recognized, the corresponding limb in the
scenes would perform the corresponding movement.

The following describes the scene in detail.
Static scene: Mainly contains text, pictures, etc., the

stimulation effect is poor, but the stimulation is more direct.
Directly prompt the subjects to perform motor imagery through
left, right, etc.

Dynamic scenes: Mainly include videos, games, etc., with
general stimulation effects and strong interactivity. Realize motor
imagery by playing videos or playing games.

VR scene: The main stimulation mode is the same as that
under the computer monitor, but after VR rendering, the sense
of immersion is strong, making the patient feel immersive, and
the stimulation effect is the best.

Experimental Design
Experimental Principle and Process
The purpose of this study was to verify the effect of the
rehabilitation training strategy to improve the subjects’ limb
control ability during motor imagery. At the same time, we
studied the differences in brain activation when subjects were
stimulated to perform motor imagery in different scenes. This
enabled us to analyze the effect of neural activation when

subjects performed motor imagery using stimulation with
different virtual scenes.

In this study, we designed a controlled experiment to compare
and analyze the changes in neural activity of the brain and
to determine the recognition rate of motor imagery using
stimulations with different virtual scenes to find the mechanism
of neural deep activation. Figure 4 shows a schematic diagram of
the experiment. We assessed the subjects’ motor imagery ability
before training and then subjects performed multiple motor
imagery training. After completing the training, participants
finished a post-training assessment.

We selected nine healthy college students in good mental
condition as subjects (all male; average age: 24 ± 2 years old).
All subjects are right handedness. The experiment required that
all the subjects had not completed similar experiments before
and had no history of neurological diseases. All the subjects were
informed of the research intention of the trial, the details of the
study, and the potential dangers associated with the experiment.
Additionally, all of the experiments were conducted within 3 h of
the subject having eaten at noon, and each subject had to close his
eyes and rest for 5 min before starting motor imagery. Doing so
could relieve tension and anxiety and ensured that subjects were
in a good mental state.

We grouped the nine subjects equally into three groups: static
scene control group, called S1–S3; dynamic scene experimental
group, called S4–S6; and VR scene experimental group, called
S7–S9. Except for the different virtual scenes for stimulating
motor imagery training, all of the other conditions were the same.
All the subjects performed a total of 17 days of experiments
(14 days of motor imagery task training experiments and
3 days of motor imagery assessment experiments). The specific
experimental process was as follows: Subjects completed three
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FIGURE 2 | Static and dynamic scenes without VR.

FIGURE 3 | Training scenes in VR enviroment. (A) One scene for computer. (B) One scence for dinner.

FIGURE 4 | Experimental schematics.

sets of enhanced motor imagery paradigm training per day,
and each group included 40 trials. In other words, subjects
had to complete a total of 120 limb motor imagery trials per

day. In the 14-day motor imagery training using virtual scene
stimulation, we obtained the correct rate of 1,680 limb motor
images for each subject.
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Subjects also performed three motor imagery assessment
experiments. Three experiments were conducted on the day
before the motor imagery training, the day after the training
was completed for 7 days, and the day after the training was
completed for 14 days. The subjects completed three sets of
motor imagery tasks according to the assessment paradigm, and
each group contained 30 motor imagery trials. We collected 19
channels of EEG data during the trials and obtained a total of 270
EEG data points for each subject in the motor imagery trials.

Experimental Paradigm
Figure 5 shows the experimental paradigm for the pre-
assessment and post-assessment in the enhanced motor imagery
training. A single trial contained three periods totaling 10 s. From
0 to 2 s, a red dot appeared in the center of the screen and then
shrunk to remind the subjects to concentrate to start the next
motor imagery. From 2 to 7 s, the subjects had to focus on the
direction of the left/right movement of the red dot on the screen
and performed left/right hand (or left/right limb) motor imagery.
From 7 to 10 s, a plus sign (+) appeared in the center of the
screen to remind the subjects that this trial had ended. During
this period, subjects would rest for 3 s and then they would enter
the next trial to repeat this experimental process.

The experimental paradigm of enhanced motor imagery
training in different scenes is shown in Figure 6. We divided

the training process into three groups: the enhanced static scenes
control group, the enhanced dynamic scenes experimental group,
and the VR scenes experimental group. The motor imagery
training process adopted an interactive mode of real-time motor
imagery feedback. A single trial contained three periods totaling
10 s. From 0 to 1 s, a red dot appeared in the center of the
screen to remind the subjects to concentrate on the start of the
motor imagery. At the end of 1 s, the red dot disappeared, which
reminded the subjects to start the limb motor imagery. From 1
to 5 s, subjects had to focus on the prompt information provided
on the screen and performed left/right hand (or left/right limb)
motor imagery. Different prompt information was given to
different groups. From 5 to 7 s, the results of the classification
model in the motor imagery appeared on the screen, and the
virtual characters and limbs in the scenes were controlled to move
accordingly. During this period, subjects took a short rest until
the end of 7 s. Then, the subjects would enter the next trial and
repeat this experimental process.

Electroencephalography Signals
Acquisition and Preprocessing
The electrode distribution of EEG data acquisition adopted the
international standard 10- to 20-electrode lead positioning. We
set the reference electrode in the central area at the top of the

FIGURE 5 | Assessment paradigm before and after enhanced MI training.

FIGURE 6 | Experimental paradigm of enhanced MI training in different scenes.
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head and set the sampling frequency to 1,000 Hz. The acquisition
channels included 19 channels in the motor nerve-related area,
namely, FC1, FC3, FC5, C1, C3, C5, CP1, CP3, CP5, Cz, FC2,
FC4, FC6, C2, C4, C6, CP2, CP4, and CP6.

Most of the EEG acquisition devices were non-invasive dry
electrodes. Although EEG acquisition was simpler and more
convenient, it was unavoidable that various noises would appear
in the acquisition process, such as EOG, ECG, and EMG.
This seriously interfered with the subsequent analysis of EEG
signals and affected the results of EEG signal analysis. Therefore,
it was necessary to preprocess the collected raw EEG signals
to remove noises.

The main noises included baseline drift caused by the device,
50 Hz power frequency interference, and EOG artifacts formed by
blinking. We used the moving average method to remove baseline
drift and used an adaptive 50 Hz filter to remove power frequency
interference. We used an independent component analysis to
remove EOG artifacts and used the sixth-order Butterworth filter
as the band-pass filter. Finally, we acquired 8–32 Hz EEG signals.

RESULTS

Analysis of Energy Changes in Brain
Motor Areas
Brain Electrical Activity Mapping
Studies have shown that when subjects perform motor imagery,
the energy features of EEG signals in the motor areas of the
brain must change. In this study, we used brain electrical activity
mapping to analyze the neural activation of multiple channels in
the motor area, and visual neurofeedback was provided.

Brain electrical activity mapping (BEAM) is a commonly
used method for multichannel EEG signal analysis. This method
collects EEG signals from multiple channels of the head, performs
fourth-order energy extraction, and then uses color bands and
digitization to represent different gray levels. Finally, a dynamic
BEAM can be drawn.

Brain Motor Area Energy Analysis Based on Brain
Electrical Activity Mapping
On the basis of these experiments, we obtained the EEG data of
nine subjects when they conducted motor imagery assessment on
the day before the motor imagery training and on the day after
the training had been completed for 14 days. We obtained and
normalized fourth-order cumulative energy value of each channel
for a single trial for each subject. Then, we used the energy value
of each channel for multiple trials of nine subjects, which then
was used as the input parameter for drawing the BEAM. We
obtained the spatial distribution map of the neural activation in
different lead positions of the left and right limb motor imagery,
as shown in Figure 7.

Figure 7 shows the spatial distribution of neural activation
in the brain regions of the subjects: S1, S4, and S8 before and
after 10 trials of enhanced motor imagery training. Figure 7A
shows that after the subjects were trained in the rehabilitation
strategy designed in this study, the activation range of motor
nerves in the brain region was significantly expanded (i.e., the

activation breadth of motor imagery nerves increased). Figure 7B
shows that after the subjects were trained in the rehabilitation
strategy, the color of the activation area was darker (i.e., the
ERD/ERS phenomenon was more obvious), which indicated that
the activation depth of the motor imagery nerves increased.
Figure 7C shows that compared with static scenes and dynamic
scenes, this strategy had a more obvious effect on the activation
breadth and depth of motor imagery nerves in VR scenes.

Electroencephalography Signals Feature
Extraction, the Modeling of
Electroencephalography Signals, and
Analysis of the Recognition Rate of
Motor Imagery
Electroencephalography Signal Feature Extraction
Feature extraction is the mathematical transformation or
mapping of the input signal to obtain eigenvalues that are
easier to observe and monitor. The widely used EEG signals
that feature the extraction methods used during motor imagery
mainly include the following: power spectrum estimation
method, wavelet transform, independent component analysis,
and common spatial pattern (Xin and Wang, 2017). In this study,
we selected three feature combinations of mean square error,
power spectral density, and common spatial pattern from the
time domain, frequency domain, and spatial domain of EEG
signal as the feature quantities for motor imagery intention
recognition (Yang et al., 2012).

Furthermore, we used the existing particle swarm
optimization (PSO)-support vector machine (SVM) as a
classifier to perform motion imagery intention recognition.

Analysis of the Recognition Rate of Motor Imagery
Studies have shown that there is a positive correlation between the
degree of active participation, the activity degree of motor nerves,
the performance of classification models, and the recognition
rate of motor imagery when subjects perform motor imagery.
The higher the recognition rate of motor imagery, the higher
the active participation of the subjects in motor imagery and
the stronger the control ability of motor nerves. The recognition
rate of motor imagery can be used as an indicator to stimulate
motor imagery ability in different scenes. In this study, the
analysis of the recognition rate of motor imagery intention
included the following two aspects: online MI training and
offline MI assessment.

Online Motor Imagery Training Recognition Rate Analysis
We counted the recognition rate of the nine subjects who
completed online MI training in virtual scenes within 14 days
(Table 1). The recognition rate was the online recognition
result obtained statistically using the experimental paradigm
designed in this study. The feature quantities used in the
classification model were mean square error, power spectral
density, and common spatial pattern features. The classification
model was PSO-SVM.

Each subject performed 120 motor imagery trials per day.
We counted the number of correct motor imagery classifications
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FIGURE 7 | Spatial distribution of the brain activation between the before and after enhanced MI training. (A) For control group. (B) For experimental group. (C) For
experimental group II.

per day and calculated each subject’s single-day recognition rate,
average recognition rate, and standard deviation within 14 days.
The data marked with an asterisk (∗) in the table indicate that the
subject had the highest recognition rate on this day.

According to Table 1, by completing the enhanced motor
imagery training task, the subjects’ motor imagery recognition
rates improved to varying degrees. After training, the average
recognition rate of motor imagery for three subjects (S1–S3) in
static scenes (control group) was between 64.5 and 67.5%, the
average recognition rate of motor imagery for three subjects (S4–
S6) in dynamic scenes (experimental group I) was between 67.5
and 70.5%, and the average recognition rate of motor imagery for
three subjects (S7–S9) in VR scenes (experimental group II) was
between 71.0 and 75.0%.

These data showed that the rehabilitation training strategy
designed in this study could improve subjects’ limb motor
imagery ability. The subjects’ motor imagination ability in these

three scenarios is from weak to strong: static scene, dynamic
scene, and VR scene.

Offline Motor Imagery Assessment Recognition Rate Analysis
By analyzing the improvement range of the subjects’ motor
imagery recognition rate under different training periods, we
used an assessment method to evaluate whether the rehabilitation
training strategy could improve the subjects’ motor imagery
ability. We collected the EEG data of nine subjects when they
conducted motor imagery assessments 1 day before the motor
imagery training, the day after the training was completed for
7 days, and the day after the training was completed for 14 days.
Each subject completed three sets of motor imagery tasks per day,
and each set consisted of 30 random left and right hand (limb)
motor imagery trials.

We subjected the collected data to offline recognition
rate analysis. To obtain accurate results, we used a

Frontiers in Aging Neuroscience | www.frontiersin.org 7 June 2022 | Volume 14 | Article 892178145

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-892178 June 25, 2022 Time: 15:36 # 8

Xie et al. Research on Virtual Rehabilitation Strategies

TABLE 1 | Statistical results of online recognition rate during MI training in different virtual scenes (%).

Group Static scenes (control group) Dynamic scenes (experimental group I) VR scenes (experimental group II)

Training day S1 S2 S3 S4 S5 S6 S7 S8 S9

Day_01 60.9% 55.9% 57.6% 61.8% 58.5% 62.6% 62.6% 59.4% 60.3%

Day_02 65.7% 57.4% 60.7% 60.7% 64.8% 59.1% 64.1% 63.1% 64.7%

Day_03 63.4% 61.6% 65.2% 65.1% 67.4% 67.4% 67.4% 64.8% 71.1%

Day_04 69.1% 59.3% 61.5% 69.1% 59.3% 65.9% 71.8% 71.0% 73.9%

Day_05 67.4% 62.7% 70.7% 72.4% 62.6% 70.7% 65.7% 67.3% 74.5%

Day_06 65.9% 66.5% 65.9% 76.8% 65.7% 72.6% 76.8% 73.5% 72.2%

Day_07 56.5% 65.2% 67.6% 70.7% 70.7% 70.7% 72.6% 74.0% 70.7%

Day_08 67.7% 69.8% 56.6% 69.3% 69.3% 65.1% 73.2% 72.7% 75.9%

Day_09 69.3% 67.3% 63.5% 78.2%* 74.3% 74.3% 79.3% 79.2%* 80.8%

Day_10 72.4% 72.7%* 65.6% 72.6% 77.4%* 67.4% 76.6% 76.7% 74.2%

Day_11 70.1% 62.1% 69.3% 67.6% 69.1% 70.0% 82.4%* 72.1% 79.5%

Day_12 74.9%* 69.3% 70.7% 76.6% 68.4% 67.5% 73.4% 70.4% 83.0%

Day_13 68.2% 67.1% 71.6%* 72.5% 70.0% 73.5% 78.3% 76.8% 75.3%

Day_14 70.9% 67.6% 67.6% 74.2% 71.7% 74.0%* 80.0% 78.2% 88.8%*

Average recognition rate 67.3% 64.6% 65.3% 70.5% 67.8% 68.6% 73.2% 71.4% 74.6%

Standard deviation 0.045 0.042 0.046 0.052 0.051 0.043 0.060 0.057 0.070

*denotes the highest MI recognition rate for each subject across the 14 days.

TABLE 2 | Offline evaluation of recognition rate on different virtual scenes before, during and after enhanced MI training (%).

Group Subjects Recognition rate
before the training

Recognition rate
after 7-day training

Increasing
range (%)

Recognition rate
after 14-day training

Increasing
range (%)

Static scenes S1 63.6% 69.7% 6.1 72.8% 3.1

S2 61.6% 66.1% 4.5 68.9% 2.8

S3 64.1% 68.4% 4.3 72.1% 3.7

Dynamic scenes S4 63.8% 69.6% 5.8 74.7% 5.1

S5 64.1% 71.4% 7.3 76.0% 4.6

S6 60.7% 66.4% 5.7 71.3% 4.9

VR scenes S7 64.6% 74.4% 9.8 81.6% 7.2

S8 59.6% 72.5% 12.9 79.3% 6.8

S9 62.7% 73.4% 10.7 80.5% 7.1

three-fold cross-validation method, as follows: First, we divided
the 90 motor imagery datasets into three groups on average. One
group was taken out each time as the test data, and the remaining
data were used as the training data to complete the PSO-SVM
model training. Then, we used the trained model to classify
the test data. Finally, we averaged the obtained three groups of
classification results as the final recognition rate. The statistical
results are given in Table 2.

Table 2 shows that after training, the motor imagery
recognition rate of the nine subjects was improved. In addition,
the overall increase in the recognition rate in the static scenes
(control group) and the dynamic scenes (experimental group I)
was roughly the same, and the overall increase of the recognition
rate in the VR scenes (experimental group II) was significantly
higher than that of the other two groups. This result indicated
that the rehabilitation training strategy designed in this study
could improve the subjects’ EEG signal identification and ability
to control EEG signals. Compared with static scenes and dynamic
scenes, VR scenes had a more significant effect on improving
subjects’ control of their motor nerves.

DISCUSSION

The experiments designed in this study compared the degree
of neural activation as well as the classification and recognition
rate of motor imagery when subjects performed motor imagery
using stimulation with different virtual scenes. The rehabilitation
training strategy designed in this paper greatly improved the
motor nerve activation of the subjects, accelerated the remodeling
of the subjects’ neural functions, and improved the motor
imagery ability of the subjects.

The experiments further investigated in which scene the
subjects’ motor nerve activation layers were wider and deeper.

The virtual scenes designed in this study included static scenes
(e.g., pictures, text), dynamic scenes (e.g., animation, games)
displayed on a computer screen, and VR scenes. After completing
the motor imagery training, we compared and analyzed the
energy changes in the brain motor areas and the motor imagery
recognition rate changes for the different subjects to explore the
neural activation and motor imagery ability changes of subjects
using stimulation of different virtual scenes.
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First, we analyzed the energy changes in the brain motor areas
of subjects under different scene simulation and analyzed the
BEAM of one subject randomly selected from each of the three
groups. By comparing the distribution of BEAM of each subject
before and after training, we found that the range of energy
distribution in the motor area after training expanded and the
color depth deepened. This proved that after training with the
rehabilitation strategy described in this paper, the neural activity
intensity and energy in the motor areas of subjects increased,
which could stimulate the remodeling of damaged motor nerves
to a certain extent.

We further analyzed motor imagery recognition rates. First,
the recognition rates of online training (Table 1) and offline
assessment (Table 2) of the nine subjects under different virtual
scene simulation remained at around 60%. The main reason that
the recognition rate of the latter was slightly higher than that
of the former was that the signal interference was less formed
in the offline state. Second, from the data in Table 1, we found
that with an increase in the number of training days, the motor
imagery recognition rate of the nine subjects followed an overall
upward trend. The fluctuation of the recognition rate in the short
period was affected mainly by the mental state of the subjects
during the experiment and the interference differences of the
EEG signals in each acquisition. Third, by calculating the average
recognition rate of 14 days, we found that the recognition rate
of subjects in the VR scenes was significantly higher than that
of the static scenes and dynamic scenes displayed on a computer
screen. This result showed that the subjects could mobilize more
nerve cells in the motor area to pursue regular physiological
activities in the VR scenes, thereby improving the recognition of
the subjects’ EEG signals. As shown in Table 2, to verify whether
the improved recognition rate could be formed by the transient
stimulation of the virtual scenes or by the change of the motor
nerve activity mechanism, we adopted the same experimental
paradigm of motor imagery for offline assessment. We found
that the improvement of the recognition rate in the VR scenes
was significantly better than that in the static and the dynamic
scenes, which was consistent with previous results, and further
indicated that the VR scenes had a better effect on improving the
recognition of subjects’ EEG signals.

CONCLUSION

Today, the virtual rehabilitation that integrates MI-BCI and VR
holds significant potential in the field of stroke rehabilitation,
and this technology can greatly improve the rehabilitation effect
for patients. To investigate how MI-BCI therapy can maximize
the deep activation of subjects’ motor nerves and accelerate the

remodeling mechanism of motor nerve function, we designed
the following rehabilitation training strategy: we enhanced motor
imagery training under different virtual scenes and compared
and analyzed the degree of neural activation and the recognition
rate of motor imagery in stroke patients after enhanced motor
imagery training using stimulation with different virtual scenes.
The experimental results showed that the motor imagery training
using virtual scene stimulation could improve the motor nerve
activation and motor imagery ability of the subjects. Compared
with the static and dynamic scenes displayed on a computer
screen, the VR scenes had a more significant effect in improving
neural activation intensity and recognition rate.
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Purpose: Amnestic mild cognitive impairment (aMCI) is a transitional state

between normal aging and Alzheimer’s disease (AD). However, not all aMCI

patients are observed to convert to AD dementia. Therefore, developing a

predictive algorithm for the conversion of aMCI to AD dementia is important.

Parametric methods, such as logistic regression, have been developed;

however, it is difficult to reflect complex patterns, such as non-linear

relationships and interactions between variables. Therefore, this study aimed

to improve the predictive power of aMCI patients’ conversion to dementia by

using an interpretable machine learning (IML) algorithm and to identify the

factors that increase the risk of individual conversion to dementia in each

patient.

Methods: We prospectively recruited 705 patients with aMCI who had been

followed-up for at least 3 years after undergoing baseline neuropsychological

tests at the Samsung Medical Center between 2007 and 2019. We used

neuropsychological tests and apolipoprotein E (APOE) genotype data to

develop a predictive algorithm. The model-building and validation datasets

were composed of data of 565 and 140 patients, respectively. For global

interpretation, four algorithms (logistic regression, random forest, support

vector machine, and extreme gradient boosting) were compared. For local

interpretation, individual conditional expectations (ICE) and SHapley Additive

exPlanations (SHAP) were used to analyze individual patients.

Results: Among the four algorithms, the extreme gradient boost model

showed the best performance, with an area under the receiver operating

characteristic curve of 0.852 and an accuracy of 0.807. Variables, such as age,
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education, the scores of visuospatial and memory domains, the sum of boxes

of the Clinical Dementia Rating scale, Mini-Mental State Examination, and

APOE genotype were important features for creating the algorithm. Through

ICE and SHAP analyses, it was also possible to interpret which variables acted

as strong factors for each patient.

Conclusion: We were able to propose a predictive algorithm for each aMCI

individual’s conversion to dementia using the IML technique. This algorithm

is expected to be useful in clinical practice and the research field, as it can

suggest conversion with high accuracy and identify the degree of influence of

risk factors for each patient.

KEYWORDS

Alzheimer’s disease, amnestic mild cognitive impairment, prediction algorithm,
interpretable machine learning, artificial intelligence, clinical decision-support
system, SHapley Additive exPlanations (SHAP)

Introduction

Amnestic mild cognitive impairment (aMCI) refers to a
transitional state between normal aging and dementia (Flicker
et al., 1991; Petersen et al., 2001; Sarazin et al., 2007). Previous
studies showed that within 3 years, approximately 50% of aMCI
patients converted to dementia (Fischer et al., 2007; Espinosa
et al., 2013), with an annual conversion rate of 5–25% (Larrieu
et al., 2002; Mitchell and Shiri-Feshki, 2009; Alegret et al.,
2014). However, some aMCI patients maintain a stable state of
cognitive function or reverted to normal cognition (Busse et al.,
2006; Mitchell and Shiri-Feshki, 2009). Several factors, including
age, sex, neuropsychological test results, and apolipoprotein E
(APOE) genotype were found to affect the rate of conversion
to dementia (Petersen et al., 1995; Daly et al., 2000; DeCarli
et al., 2004; Yaffe et al., 2006). Thus, as the clinical outcomes of
aMCI patients are heterogeneous, it is important to consider the
risk factors of each patient individually while predicting their
conversion to dementia.

Several studies have been conducted to create algorithms
that predict the conversion of aMCI to dementia (Ravaglia et al.,
2006; Tabert et al., 2006; De Simone et al., 2019). Specifically,
Jang et al. developed a dementia risk prediction algorithm
by using traditional statistical methods, such as multivariate
logistic regression (LR) and the nomogram (Jang et al., 2017).
However, when the LR is applied to complex multivariate non-
linear relationships, it may have low robustness because of the
multicollinearity between the variables (Tu, 1996).

Machine learning (ML) techniques, a form of artificial
intelligence that is increasingly used in the medical research
field, have also been considered in developing prediction
algorithms for conversion to dementia (Chen and Herskovits,
2010; Mattila et al., 2012; Hall et al., 2015; So et al., 2017;
Zhu et al., 2020; Lian et al., 2021; Qiao et al., 2021). These
prediction algorithms are based on computer algorithms that

help ML to learn complex relationships with empirical data
and to make more accurate decisions (Bishop, 2006; Waljee
et al., 2014). Compared to the traditional statistical methods,
ML has a lower possibility of overlooking unexpected predictors
and potential interactions between variables (Waljee et al.,
2014). However, unlike nomograms, ML techniques are not
able to show which factors play a major role in the conversion.
Thus, interpretable ML (IML) was developed to provide
understandable explanations for learning complex outputs
with predictive accuracy, descriptive accuracy, and relevancy
(Murdoch et al., 2019).

Therefore, in the present study, we aimed to develop an
IML algorithm with a higher predictive power than that of LR,
which predicts conversion to dementia in aMCI participants
in an accurate manner. We used clinical demographics, APOE
genotype, and neuropsychological results as features that are
easily accessible in clinical practice. We also attempted to
develop a graphic-based interpretable method to show which
risk factors influence conversion to dementia, and to what
extent, in individual aMCI participants.

Materials and methods

Participants

We conducted a cohort study among participants with
aMCI who visited the Samsung Medical Center (SMC) in
South Korea from June 2007 to December 2019 and were
followed-up for at least 3 years after baseline neuropsychological
tests. In total, 705 participants with aMCI were enrolled in
this study. All aMCI subjects met the following criteria for
aMCI (Albert et al., 2011): (1) subjective memory complaints
by participants or caregivers; (2) objective memory decline
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below –1.0, standard deviation (SD) on either verbal or visual
memory tests; (3) normal activities of daily living (ADL), as
judged clinically; and (4) not demented.

All the subjects underwent neurological examination,
laboratory tests, including APOE genotype, and
neuropsychological tests. We excluded participants with
secondary causes of cognitive impairment through laboratory
tests, such as vitamin B12/folate determination, syphilis
serology, and thyroid function tests. In addition, participants
with structural lesions, such as territorial infarction,
intracranial hemorrhage, brain tumor, traumatic brain injury,
hydrocephalus, or severe white matter hyperintensities on brain
magnetic resonance imaging (MRI), were excluded.

The study was approved by the Institutional Review
Board of SMC, and informed consent was obtained from all
participants and caregivers.

TABLE 1 Demographics of the study.

Feature Training set (N = 565) Validation set (N = 140)

Mean SD (%) Mean SD (%)

Conversion to
dementia

204 (36.1%) 50 (35.7%)

Age (years) 71.6 7.8 72.2 7.6

Sex – Women 348 (61.6%) 84 (60.0%)

Education
(years)

11.1 5.2 11.1 4.8

APOE ε4 carrier 214 (37.9%) 45 (32.1%)

APOE ε2 carrier 46 (8.1%) 9 (6.4%)

K-BNT 39.9 10.1 39.6 10.3

Ideomotor
praxis

4.2 1.2 4.2 1.2

Calculation total
score

10.9 2.0 10.6 2.1

RCFT copy score 29.7 6.3 29.7 5.7

RCFT copy time
(seconds)

258.5 124.3 273.5 139.4

SVLT delayed
recall

2.6 2.5 2.5 2.4

SVLT
recognition
score

18.3 2.8 18.4 2.4

RCFT delayed
recall

6.9 5.4 6.8 4.8

RCFT
recognition
score

18.2 2.3 18.3 2.3

Contrasting
program

19.1 2.8 19.0 2.9

Go/no-go 16.9 5.0 16.8 4.9

COWAT animal 12.5 4.2 12.6 4.3

K-MMSE 25.9 3.2 25.6 3.2

CDR-SOB 1.5 0.9 1.5 0.9

The numbers are mean and standard deviation (or percentage in parenthesis) of the
training and validation sets.
APOE, apolipoprotein E; K-BNT, Korean version of the Boston Naming Test; RCFT,
Rey–Osterrieth Complex Figure Test; SVLT, Seoul Verbal Learning Test; COWAT,
Controlled Oral Word Association; K-MMSE, Korean version of the Mini-Mental State
Examination; SD, standard deviation; CDR-SOB, clinical dementia rating-sum of boxes.

TABLE 2 Performance of classifiers on validation set.

Classifier Accuracy AUC

Logistic regression 0.743 0.813

Random forest 0.771 0.834

Support vector machine 0.800 0.830

Artificial neural network 0.757 0.841

Extreme gradient boost 0.807 0.852

Each classifier’s accuracy, area under the receiver operating characteristic curve, and
optimized hyperparameters as presented.
AUC, area under the receiver operating characteristic curve.

Neuropsychological assessments

All the participants underwent the Seoul
Neuropsychological Screening Battery (SNSB), a standardized
neuropsychological battery widely used in South Korea
(Kang and Na, 2003; Kang et al., 2016). Four major cognitive
domains were evaluated: memory, language, visuospatial, and
frontal/executive function. If the z-score of SNSB was below
−1.0 SD of age and education, it was considered impaired.

The scorable tests are comprised of the Korean version of
the Boston Naming Test (Kim and Na, 1999), Rey-Osterrieth
Complex Figure Test (RCFT) (Kang and Na, 2003), which
involves copying, immediate and 20-min delayed recall, and
recognition, the Seoul Verbal Learning Test (SVLT) (Kang and
Na, 2003), which includes three learning-free recall trials of
12 words, a 20-min delayed recall trial of these 12 items, and
a recognition test, the contrasting program (instructing the
patient to raise the second and third fingers when the examiner
raises the second finger, and to raise the second finger when
the examiner raises the second and third fingers), go/no-go test
(changing the initial rule as follows: instructing the patient to
make a fist in respond to examiner’s raising the second and
third fingers) (Dubois et al., 2000), and phonemic and semantic
Controlled Oral Word Association Tests (COWAT) (Kang et al.,
2000). In addition, the ideomotor praxis and the total calculation
score were evaluated. The Korean version of the Mini-Mental
State Examination (K-MMSE) and clinical dementia rating-sum
of boxes (CDR-SOB) of all the participants were investigated
(Kang et al., 2016).

Follow-up

All the participants underwent two or more SNSB during a
follow-up period of at least 3 years. Dementia was diagnosed on
the basis of the criteria of the fourth edition of the Diagnostic
and Statistical Manual of Mental Disorders and required
evidence of cognitive deficits (confirmed by neuropsychological
testing) and social and/or occupational dysfunction (confirmed
by ADL impairment). The criteria of the National Institute of
Neurological and Communicative Disorders and Stroke and
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the Alzheimer’s Disease and Related Disorders Association
were used for the diagnosis of probable AD (McKhann et al.,
2011). A consensus panel and an experienced neurologist
reviewed the interview records and neuropsychological results
of each aMCI patient and confirmed the conversion to dementia
in the SMC cohort.

The primary outcome was defined as conversion to
dementia within 3 years of the baseline neuropsychological test.
The predictive algorithm used variables, such as age, gender,
years of education, neuropsychological features, APOE ε2, and
APOE ε4 status as the potential predictors.

Feature selection

Three major steps were performed to select variables:
First, domain knowledge was used to remove the unnecessary
variables from the results of neuropsychological tests; second,
the remaining variables were used to confirm the significance
of the variables through LR analysis for a single variable
and remove the insignificant variables; and third, one of
the variables suspected of multicollinearity was removed or
integrated through the correlation coefficient. We specified
the primary outcome as 3-year dementia conversion and
included features, such as demographics, APOE genotypes, and
neuropsychological features (including K-MMSE and CDR-
SOB) selected using the above process. The selected features
were used as inputs for predictive model building, and as
potential predictors for model interpretation.

Algorithm constructions

Eighty percent of the total data was randomly selected by the
matching class imbalance and used it to develop the predictive

algorithm, and the remaining 20% was used for the algorithm
test. Stratified 5-fold cross-validation was repeated five times
by random dataset splitting, and Bayesian optimization was
used for hyperparameter tuning. Five types of ML models were
developed: multivariable LR, random forest (RF), support vector
machine (SVM), artificial neural network (ANN) and extreme
gradient boost (XGB).

Statistical analyses

The performance of the model was compared by using areas
under the receiver operating characteristic curve (AUCs) with
DeLong test (P-value < 0.05 indicated statistical significance)
(DeLong et al., 1988). Statistical analyses were performed using
the Daim (v1.1.0) package in R 4.1.2 (R Core Team, 2021).

Interpretation methods

The interpretation of the developed ML models was based
on both global and local perspectives. IML analysis was carried
out using R 4.1.2 (R Core Team, 2021), the caret (v6.0-
90), the iml (v0.10.1), the vip (v0.3.2), the pdp (v0.7.0), the
breakDown (v0.2.1), SHAPforxgboost (v0.1.1), the caret (v6.0-
90), the DALEX (v2.3.0), and the modelStudio (v3.0.0) packages.

Global interpretation
The global analysis method was used to evaluate the overall

performance of the developed model, which we evaluated
through the model performance, feature importance (Breiman,
2001; Fisher et al., 2019), and partial dependence (Friedman,
2001). The ML model performance of the four groups divided
by gender and age was measured by accuracy and AUC. The
feature importance is to observe a lowered performance change

FIGURE 1

Receiver operation characteristic (ROC) curves of the classifiers. (A) ROC curves of five developed classifiers; (B) ROC curves of the extreme
gradient boost classifier tested with validation set divided by age (threshold of 70 years old) and gender. LR, logistic regression; RF, random
forest; SVM, support vector machine; ANN, artificial neural network; XGB, extreme gradient boost.
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FIGURE 2

Feature importance of the extreme gradient boost model. The bars indicate the feature importance, while the interval bands indicate difference
due to random permutations. From the model, clinical neuropsychological features of RCFT delayed recall, clinical dementia rating-sum of
boxes, and age were noted as important factors to the global performance. XGB, extreme gradient boost; RCFT, Rey–Osterrieth Complex Figure
Test; CDR-SOB, clinical dementia rating-sum of boxes; K-MMSE, Korean version of the Mini-Mental State Examination; COWAT, Controlled Oral
Word Association; SVLT, Seoul Verbal Learning Test; APOE, apolipoprotein E; K-BNT, Korean version of the Boston Naming Test; AUC, area
under the receiver operating characteristic curve.

by randomly mixing a specific feature. The partial dependence
plot (PDP) is a global interpretation method in the ML model
that shows the marginal effect of one or two features on the
prediction result (Friedman, 2001).

Local interpretation
The local analysis method interpreted the prediction results

for individual participants. In this study, we implemented
Individual Conditional Expectations (ICE) (Goldstein et al.,
2015), Break-down (Robnik-Šikonja and Kononenko, 2008),
and SHapley Additive exPlanations (SHAP) (Lundberg and
Lee, 2017). First, ICE (or Ceteris-paribus) plots display one
line per individual that shows how the individual’s prediction
changes when a feature changes (Goldstein et al., 2015). Other
feature values are fixed with the individual’s data. Second, Break-
down plots show feature attributions; that is, the prediction
is decomposed into contributions that can be attributed to
different interpretive features (Robnik-Šikonja and Kononenko,
2008). A plot can be drawn by adding or subtracting each feature
contribution one by one on the basis of the average predicted
value for all datasets. Finally, SHAP explains individual

predictions by computing the contribution of each feature to
the prediction. This is based on the game theoretically optimal
Shapley values (Lundberg and Lee, 2017). Unlike break-down
plots, the order of adding features is calculated by numerous
trials; therefore, the mean and SD is estimated.

We plotted three local interpretations above with the XGB
model using six exemplary patients. Supplementary Table 1
shows demographic and dementia conversion information.
Also, we collected all IML results and developed dashboards
with a graphical view of each patient’s analysis results.

Results

Demographics and clinical
characteristics

Table 1 shows the patient demographics and clinical
characteristics. The model-building and validation datasets were
composed of 565 and 140 participants, respectively. Among the
aMCI participants of the development set, 36.1% (204/565) of
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FIGURE 3

Partial dependence plot of six features. The extreme gradient boost (blue) model and logistic regression (green) model are presented. LR,
logistic regression; XGB, extreme gradient boost; COWAT, Controlled Oral Word Association; K-MMSE, Korean version of the Mini-Mental State
Examination; RCFT, Rey–Osterrieth Complex Figure Test; CDR-SOB, clinical dementia rating-sum of boxes; SVLT, Seoul Verbal Learning Test.

the participants were observed to convert to dementia within
3 years. In the validation set, 50 out of 140 participants (35.7%)
converted to dementia, which is similar to the conversion rate
in the development set. Among participants who converted
to dementia, 90.2% (n = 229) progressed to clinical AD–type
dementia by meeting the core clinical criteria for probable
AD (McKhann et al., 2011), and 9.8% to other types of
dementia including subcortical vascular dementia (n = 12,
4.7%), frontotemporal dementia (n = 2, 0.8%), dementia with
Lewy bodies (n = 2, 0.8%), and others (n = 9, 3.5%).

The following 19 features were used for model building:
age, gender, education, APOE ε2, APOE ε4, K-BNT, ideomotor
apraxia, calculation total score, RCFT copy score, RCFT copy
time, SVLT delayed recall, SVLT recognition score, RCFT
delayed recall, RCFT recognition score, contrasting program,
go/no-go test, COWAT animal, K-MMSE, and CDR-SOB.

Global interpretation

The global interpretation results on the three methods are as
follows:

Algorithm performance
The performance of the developed classifiers on validation

set and the optimized hyperparameters is shown in Table 2.
The XGB model showed the highest performance (accuracy
0.807, AUC 0.852) compared to the other models. Figure 1A
shows the receiver operating characteristic curve of the
developed classifiers. Statistical tests showed that the AUCs
of the XGB and the LR models were significantly different
(P-value < 0.05). The hyperparameters of best performed
XGB model was as follows: booster = gbtree, eta = 0.1,
max_depth = 6, min_child_weight = 17, subsample = 0.81,
colsample_bytree = 0.66. The hyperparameters of other models
were as follows: mtry = 4 for RF, sigma = 0.020 and C = 0.849
for SVM, and size = 4 and decay = 0.32 for ANN. We
determined the XGB to be the best-performing classifer and
proceeded with the model interpretation. Also, we divided
test set into 4 groups by gender and age: (1) age < 70
and male (n = 20), (2) age < 70 and female (n = 29), (3)
age ≥ 70 and male (n = 36), (4) age ≥ 70 and female
(n = 55). The prediction result from XGB model of each
group was (1) 0.902, (2) 0.838, (3) 0.865, and (4) 0.828,
respectively (Figure 1B).
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FIGURE 4

Individual conditional expectation on eight features when predicted with the extreme gradient boost model. The results of a total of six patients
are plotted in different line colors. XGB, extreme gradient boost; COWAT, Controlled Oral Word Association; K-MMSE, Korean version of the
Mini-Mental State Examination; RCFT, Rey–Osterrieth Complex Figure Test; CDR-SOB, clinical dementia rating-sum of boxes; SVLT, Seoul
Verbal Learning Test.

FIGURE 5

Break-down plot on six patients when predicted with the extreme gradient boost model. XGB, extreme gradient boost; CDR-SOB, clinical
dementia rating-sum of boxes; RCFT, Rey–Osterrieth Complex Figure Test; K-MMSE, Korean version of the Mini-Mental State Examination;
COWAT, Controlled Oral Word Association; SVLT, Seoul Verbal Learning Test; APOE, apolipoprotein E.
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FIGURE 6

Shapley values plot of six patients when predicted with the extreme gradient boost model. XGB, extreme gradient boost; CDR-SOB, clinical
dementia rating-sum of boxes; RCFT, Rey–Osterrieth Complex Figure Test; K-MMSE, Korean version of the Mini-Mental State Examination;
COWAT, Controlled Oral Word Association; SVLT, Seoul Verbal Learning Test; APOE, apolipoprotein E.

Feature importance
Figure 2 shows feature importance of XGB, where the bars

indicate feature importance, and the interval bands indicate
difference due to random permutations. According to the result,
clinical neuropsychological features of RCFT, CDR-SOB, as well
as age were important factors to the global performance.

Partial independence
In Figure 3, the PDP of six features is shown with the XGB

and LR models. It can be explained that under the condition that
other features are fixed, the possibility of dementia conversion
increases with age, while it decreases when the RCFT delayed
recall score increases. The slope patterns of the XGB and
LR were similar.

Local interpretation

The local interpretation results on three
methods are as follows.

Individual conditional expectations
Figure 4 shows the ICE plot, which presents eight features

for six individuals. To explain the result on patient number 3
(green line), the probability of dementia conversion increases

between the ages of 70 and 75 years. The age of this patient
is 75 years as seen in a blue dot on the green line, the
interpretation plot shows the prediction value (y-axis), that
is, the conversion probability, indicating approximately 0.5
within 3 years. Likewise, regarding RCFT delayed recall, this
subject scored 5; therefore, the conversion possibility was
approximately 0.5. If the patient had performed the test
better and obtained a higher score, the conversion probability
would be reduced.

Break-down plots
Figure 5 shows the break-down plots in six individuals, with

the XGB model. In patient number 1, the most upper left plot,
the subject had a sum of box value of 3, which attributes as
much as 0.127 to the baseline mean prediction value of 0.36. In
the same way, the RCFT delayed recall value of 0 contributes as
much as 0.127 to the prediction.

SHapley Additive exPlanations
Figure 6 shows Shapley values plot of six individuals. In

patient number 1 (the most upper left plot), the feature that
contributed the most to predicting dementia conversion is the
CDR-SOB. In patient number 5 (lower middle plot), RCFT
delayed recall contributed most to the conversion.
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FIGURE 7

Dashboard for a patient’s interpretation for predicting dementia conversion. XGB, extreme gradient boost; CDR-SOB, clinical dementia
rating-sum of boxes; RCFT, Rey–Osterrieth Complex Figure Test; K-MMSE, Korean version of the Mini-Mental State Examination; SVLT, Seoul
Verbal Learning Test; APOE, apolipoprotein E; COWAT, Controlled Oral Word Association.

Graphic-based overall interpretation
on individuals

Figure 7 shows the dashboard displaying the global and the
local interpretation of patient 1. We collected all the IML results
above and developed a dashboard that provides a graphical view
of each patient’s analysis results by displaying them on a screen
(Figure 7). It not only provides the probability of aMCI to
dementia conversion, but also presents quantitative information
on the risk factors attributed to the conversion.

Discussion

In the present study, using the clinical and
neuropsychological features of carefully phenotyped aMCI
patients, we developed an algorithm to predict conversion to
dementia by applying the IML technique. Our major findings
are as follows. First, among the ML techniques, the XGB
model showed the best accuracy, which was superior to that
of LR. Second, variables, such as visual memory delayed recall,
CDR-SOB, age, K-MMSE score, frontal executive function,

education, verbal memory delayed recall, visuospatial function,
and APOE genotype were important features for creating the
algorithm. Finally, ICE and SHAP analyses allowed for the
interpretation of variables acted as important factors in the
conversion to dementia of each aMCI patient. Taken together,
our findings suggest that an algorithm using the IML technique
enables us to individually predict the conversion of patients
with aMCI to dementia within 3 years in clinical practice and
the research field. Using our newly developed IML algorithm,
we predict that, with the aid of visualized graphs, patients will be
able to more easily understand the neuropsychological factors
that are at risk, which would become a further step toward
precision medicine.

In the present study, when compared with other algorithms
including LR, the XGB model showed the best performance
with an AUC of 0.852 and an accuracy of 0.807. Thus, these
findings suggest that our newly developed algorithm with the
XGB model overcomes this limitation and results in better AUC
and accuracy than LR. If the predictive algorithm is applied to
the electronic medical record system, the conversion rate would
be readily calculated in clinical practice with more accuracy.

The second major finding was that RCFT delayed recall,
CDR-SOB, age, K-MMSE, COWAT-animal, education, SVLT
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delayed recall, RCFT copy time, and APOE genotype were the
important factors in the IML algorithm, which is consistent with
previous studies. Consistent with our findings, MMSE (Hou
et al., 2019), CDR-SOB (Daly et al., 2000; Dickerson et al., 2007;
Montano et al., 2013; Woolf et al., 2016), and frontal/executive
dysfunction, which can be examined by the COWAT-animal
test (Lezak et al., 2004), were found to be the predictors of
conversion to dementia in other studies (Tabert et al., 2006; Jung
et al., 2020). The APOE ε4 genotype was also found to play
an important role in conversion to dementia, which was again
consistent with previous studies (Petersen et al., 1995; Mosconi
et al., 2004; Elias-Sonnenschein et al., 2011).

In our previous studies (Ye et al., 2015; Jang et al., 2017),
the odds ratio of conversion to dementia was higher in Verbal-
aMCI patients than in Visual-aMCI patients. However, our
global interpretation results showed that the RCFT delayed
recall score (visual memory) had higher feature importance than
the SVLT delayed recall score (verbal memory), which is thought
to be due to differences in the classification of participants. The
previous studies defined Visual-aMCI as only visual memory
impairment, Verbal-aMCI as only verbal memory impairment,
and Both-aMCI as visual and verbal memory impairment,
and then analyzed the odds ratio compared to Visual-aMCI.
On the other hand, we analyzed the variables of the RCFT
delayed recall score and SVLT delayed recall score together
with other neuropsychological test scores of all participants
without classification.

There are also some debates on the educational effects in
participants with aMCI among studies. Specifically, a previous
study (Cooper et al., 2015) did not show that high educational
levels predict conversion to dementia in participants with aMCI.
However, another study from our group showed that highly
educated aMCI participants were at a higher risk of conversion
to AD dementia than less educated aMCI participants (Ye et al.,
2013). Furthermore, early stage aMCI participants with higher
levels of education showed a slower cognitive decline while late-
stage aMCI participants with higher levels of education showed
a more rapid cognitive decline. Thus, our present findings that
aMCI patients with higher education levels were more likely to
convert to dementia should be replicated in the future studies
with larger MCI participants.

Some studies have proposed an algorithm for differentiating
cognitive decline using ML methods, including the Disease State
Index, naïve Bayes, Bayesian network classifier with inverse
tree structure, decision tree, SVM, multiple-layer perceptrons,
Begging, RF, and rule-based classifier (Chen and Herskovits,
2010; Hall et al., 2015; So et al., 2017; Bansal et al., 2018;
Bhagyashree et al., 2018; Zhu et al., 2020). Beheshti et al.
also developed a predictive algorithm with feature ranking and
a genetic algorithm, which can predict the conversion rate
to dementia after 3 years (Beheshti et al., 2017). However,
compared to previous studies, the present study is meaningful
in that we predicted the conversion of aMCI to dementia with

IML, especially by presenting the attribution of each feature
to the prediction. Thus, the IML predictive algorithm used in
our study might be more useful in clinical practice because it is
composed of clinical data that are widely and commonly used
for evaluating cognition status.

Our final major finding was that our IML, which consisted
of the ICE and SHAP analyses, allowed for the interpretation
of variables that acted as important factors in the conversion
to dementia in each patient. Therefore, we suggest that our
IML is an improved predictive algorithm that has both the high
accuracy of ML and the advantage of the nomogram. Identifying
the specific factors that influence conversion to dementia for
each aMCI patient will be helpful for the development of
personalized intervention strategies in the future.

To our knowledge, our study is the first to develop an
IML algorithm to predict conversion to dementia within a
large sample size of well-phenotyped aMCI patients. Another
strength of this study is that the IML algorithm was based
on variables that are most commonly used in clinical practice,
specifically neuropsychological test results and APOE genotype.
However, this study has some limitations. First, MRI volumetry
and cortical thickness, which are highly correlated with
neurodegenerative dementia, were not used in this algorithm.
Future studies incorporating structural brain MRI information
are required to achieve higher predictive power. Second,
since we did not perform amyloid and tau positron emission
tomography in all participants, we could not determine the
biomarker guided diagnosis in our participants. Third, the
number of samples to train the model might not be large
enough because of the limited number of subjects of 3-year
followed-up. Finally, since this study was conducted only at
SMC, there is a limitation regarding the generalizability of
the outcomes. External validation in an independent cohort
should be conducted in the future. Nevertheless, our study is
noteworthy in demonstrating that the IML algorithm is able
to estimate the individual risk of conversion to dementia in
each aMCI patient.

Conclusion

This study was able to develop an IML algorithm to predict
conversion to dementia in aMCI patients. This IML algorithm is
expected to be useful in clinical practice and the research field
as it can identify the degree to which individual risk factors
influence each patient.
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