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Editorial on the Research Topic

Editorial: Neural circuits and neuroendocrine mechanisms of major

depressive disorder and premenstrual dysphoric disorder: Toward

precise targets for translational medicine and drug development

With the intensified social competition and increased psychological pressure in

modern society, the impact of emotions on people’ health has attracted increasing

attention from around the world. Major depressive disorder (MDD) and premenstrual

dysphoric disorder (PMDD) are the two common types of depressive disorders described

in The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (1). Depressive

disorder, represented by PMDDandMDD, is themost commonmental illness inmodern

society, and has a chronic and recurrent course (2). With the development of social

economy and the influence of factors such as unemployment as well as changes in life

rhythm, depressive disorder has become one of the most serious diseases threatening

human health. According to a survey conducted by the World Psychiatric Association,

the incidence rate of depressive disorder worldwide is currently 4.2%, while that in

China is 6.9%, with an annual growth rate of 113%. According to data from the Global

Burden of Disease Organization, mental/neurological diseases occupy the number-one

spot in terms of the burden of disease, of which depressive disorder is first among

mental/neurological diseases (3).
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Although the pathogenesis of depressive disorder has not yet

been fully elucidated, there are several clues that neural circuits

and neuroendocrine pathways are involved in pathogenesis and

drug interventionmechanisms (4–7). Substantial evidence exists

for significant alterations in the interactions of relevant brain

regions and their neural circuits in MDD (6, 7). Functional

Magnetic Resonance Imaging (fMRI) methods have been widely

used in clinical research on the mechanism of MDD neural

circuits, most of which focus on related brain regions involved

in emotion regulation and cognitive function, such as the

amygdala, cingulate cortex, prefrontal cortex, striatum, and

insular cortex (8, 9). In terms of animal experiments, the

synaptic plasticity (such as synaptic density and synaptic protein

density) in the prefrontal cortex, nucleus accumbens, amygdala,

and hippocampus of MDD model animals was significantly

altered (10, 11), while the incidence of PMDD is more closely

related to neuroendocrine factors. The premenstrual period

is a period of rapid fluctuations in the levels of female

reproductive hormones. During the premenstrual phase, the

concentration of estrogens, such as estradiol and progesterone,

in the body increases significantly, reaching its highest level

in the middle and late luteal phase. Get used to it gradually.

After menstruation, estrogens show a rapid “withdrawal”

phenomenon, returning to the normal range. Some researchers

have proposed that this “withdrawal” phenomenon is the most

critical reason for premenstrual dysphoric disorder, an idea

that has been summarized as the “ovarian-steroid-withdrawal

hypothesis” (12, 13). Animal experiments have shown that rapid

withdrawal of progesterone can induce PMDD-like behavior

in animals, an effect that can also be mimicked by blocking

progesteronemetabolism (reducing allopregnanolonein [ALLO]

levels) (14, 15). As a positive allosteric regulator of γ-

aminobutyric acid receptors (GABARs), the sudden drop in

ALLO after menstruation leads to abnormal regulation of the

function of GABARs, which plays an important role in the

pathogenesis of PMDD (16, 17). In clinical terms, the risk of

PMDD can be reduced by supplementing ALLO levels, which

can be achieved via certain antidepressant treatments (18, 19).

The regulation of emotions by the brain is specific to

certain brain regions and cells and involves complex changes

in neural circuits and neuroendocrine levels. However, the

lack of clarity regarding the drug target and mechanism

greatly limit translational medicine and drug development. The

current treatment drugs are mainly selective serotonin reuptake

inhibitors (SSRIs). Overall, 30–40% of patients with MDD

or PMDD are insensitive to drug treatment and experience

substantial psychiatric side effects and slow onset of action.

This can also produce drug resistance, with obvious time lag

and inefficiency (20). Therefore, further research into the neural

circuits and neural endocrine mechanisms of MDD and PMDD

as well as treatment moving toward translational medicine and

drug development are keys to solving the above problems.

Meta-analysis and animal experimental evidence have shown

the high potential of complementary and alternative therapies

in the treatment of PMDD and MDD (21, 22). Unlike single-

target chemical drugs, Chinese medicine therapy can regulate

specific neural circuits and neuroendocrine functions with

multiple targets and pathways to treat these diseases, avoiding

the side effects of chemotherapy and representing a promising

therapeutic direction.

In consideration of the aforementioned realization, we

organized this special issue to advance our understanding of the

pathogenesis of MDD and PMDD, particularly regarding neural

circuits and neuroendocrine mechanisms. This information will

provide a basis and possible clues for clinical treatments and

drug development. For this Research Topic, we invited recent

studies that focus on the neural circuits and neuroendocrine

mechanisms of PMDD and MDD and received 11 submissions.

After a half year of critical peer review, nine papers have

been accepted.

In the experimental report titled “Decreased Plasma

Hydrogen Sulfide Level Is Associated With the Severity of

Depression in Patients With Depressive Disorder,” Yang et al.

recruited 47 depressed patients and 51 healthy individuals and

found that decreased H2S is involved in the pathophysiology

of depression as well as that plasma H2S may be a potential

indicator for depression severity.

In the paper titled “Antidepressant Treatment-Induced State-

Dependent Reconfiguration of Emotion Regulation Networks

in Major Depressive Disorder,” Zhao et al. collected data

from 70 MDD patients and 43 sex- and age-matched healthy

controls and found that four dFC states were identified in the

emotion networks. Their alterations of state-related occurrence

proportion were found in MDD and subsequently normalized

following 12-week antidepressant treatment. Baseline strong

dFC predicted the reduction rate of Hamilton Depression Rating

Scale (HAMD) scores.

In Yu et al.’s paper, titled “Serum Lipid Concentrations Are

Associated With Negative Mental Health Outcomes in Healthy

Women Aged 35-49 Years,” the authors recruited 319 healthy

participants and found that there was a significant association

between K10 scores and metabolic parameters, including Body

Mass Index (BMI), total and LDL cholesterol, and triglycerides.

In the paper titled “Sleep Disturbances and Depression Are

Co-morbid Conditions: Insights From Animal Models, Especially

Non-human Primate Model,” Li et al. evaluated the prevalence,

clinical features, phenotypic analysis, and pathophysiological

brain mechanisms of depression-related sleep disturbances and

emphasized the current situation, significance, and insights from

animal models of depression.

In Chang et al.’s paper “Depression Assessment Method: An

EEG Emotion Recognition Framework Based on Spatiotemporal

Neural Network,” the authors proposed a novel EEG emotion

recognition framework for depression detection, which provides

a robust algorithm for real-time clinical depression detection

based on EEG.
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In the paper titled “Brain Activation during Processing of

Depression Emotion in College Students with Premenstrual

Syndrome in China: Preliminary Findings,” Gao et al.

investigated 13 PMS patients and 15 healthy controls and

found that abnormal functional regulation of brain regions

such as the occipital lobe and cerebellum leads to abnormal

changes in emotional regulation, cognitive ability, and

attention distribution in PMS patients, implying significant

central pathogenesis.

In the paper “An End-to-End Depression RecognitionMethod

Based on EEGNet,” Liu et al. proposed an end-to-end deep

learning framework for MDD diagnosis based on EEG signals

and found that the method is highly accurate for the diagnosis

of MDD and can be used to develop an automatic plug-and-play

EEG-based system for diagnosing depression.

In another study titled “Does Childhood Adversity Lead to

Drug Addiction in Adulthood? A Study of Serial Mediators Based

on Resilience and Depression,” He et al. conducted a thorough

investigation of the mental status from 937 participants and

found that depression led to drug addiction, while resilience

weakened the effect of adverse childhood experiences on

depression and drug addiction.

In Gu et al.’s paper, “The Relationship Between 5-

Hydroxytryptamine and Its Metabolite Changes With Post-stroke

Depression,” the authors reviewed the relationship of post-stroke

depression with three monoamines and emotions. Moreover,

they summarized the advantages of psychological therapy in

recent years and posted some suggestions for the pharmacology

and psychotherapy of post-stroke depression.

Collectively, these studies have thoroughly investigated the

neural circuits and neuroendocrine mechanisms of MDD and

PMDD as well as some diagnostics and interventions for these

emotional diseases. Because neural circuits and neuroendocrine

mechanisms are heavily involved in the pathogenesis of MDD

and PMDD and the mechanism of drug intervention, multi-

faceted exploration in this field will further reveal the underlying

neurobiological mechanisms, thereby promoting translational

medicine and drug development.
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Background: Although the relevant underlying biological mechanisms are still lacking,

mental disorders have been closely associated with several metabolic abnormalities

including high rates of obesity and metabolic syndrome especially in vulnerable

populations. Therefore, the current study aims to examine how metabolic parameters

increase the risk for developing mood disorders in individuals stratified by gender

and age.

Methods: In a routine physical examination, 319 healthy participants were recruited

and assigned to six different groups according to age (young adults: 25–34 Y, middle

age: 35–49 Y, and older age: 50–65 Y) in both males and females. A linear regression

and bivariate correlation analysis were used to analyze the relationship between mood

health outcomes measured by the Kessler 10 Psychological Distress Scale (K10) and the

metabolic function.

Results: The results demonstrated that there was a significant association between

K10 scores and metabolic parameters, including Body Mass Index (BMI), total-,

LDL-cholesterol, and triglyceride. Furthermore, poor mental health (higher K10 scores)

was observed in individuals with increased BMI, total-, LDL-cholesterol, and triglyceride

levels particularly in middle-aged women relative to other groups.

Limitations: This is a cross-sectional study with a small sample size and lacks

longitudinal follow-up evidence and preventive interventions and therefore could not

provide the causal inference of metabolic pathophysiology on the increased sensitivity

to mental disorders.

Conclusions: The potential association suggests that targeting of the metabolic

parameters might give us a better understanding of the underlying mechanisms of

psychiatric diseases and provide preventive strategies and potential treatment for those

with metabolic disturbances especially in middle-aged females.

Keywords: mood disorders, psychosocial stress, obesity, body mass index—BMI, total-cholesterol,

LDL-cholesterol, triglyceride, middle-aged women
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INTRODUCTION

A growing body of evidence have demonstrated that metabolic
syndrome including obesity, changes in cholesterol, triglycerides,
lipoproteins, and blood glucose increase the risk of developing
mental disorders such as major depressive disorder and anxiety,
although the relevant underlying biological mechanisms are
still lacking. Psychosocial stress leads to the development and
maintenance of both metabolic dysfunctions and psychiatric
disorders. There are several biomarkers to illustrate the stressful
status such as hair cortisol concentrations are increased in
chronically stressed populations due to the dysregulation of
the hypothalamic-pituitary-adrenal (HPA) axis (1). Psychological
stress also induces chronic neuroendocrine dysregulation leading
to metabolic changes that define the metabolic syndrome.
Furthermore, chronic stress altered plasma lipids parameters
levels including total cholesterol, high-density lipoprotein (HDL)
cholesterol, low-density lipoprotein (LDL) cholesterol and
triglycerides, and reduced the number of peripheral lymphocytes
and subsequently induced immune dysfunction, which is
involved in emotional disorders (2). However, evidence showed
that not all people with psychiatric disorders display metabolic
impairments due to age and gender are the most significant
factors influencing the relationship between metabolism and
mental disorder. For instance, metabolic conditions (abdominal
obesity, high triglyceride, and glucose levels) are associated with
an increased risk of a future depressive episode in middle-
aged adults (3). Moreover, therapeutic targeting of metabolic
parameters might provide new insights into the beneficial effects
in depressed patients with high Body Mass Index (BMI) (4).
Accordingly, the present study aimed at demonstrating the
association between mental health and metabolic measures (i.e.,
total-, LDL-, and HDL-cholesterol, triglycerides, glucose, and
lymphocytes) among heathy young, middle-aged and older
individuals and to offer personalized interventions early in
the course of the disorder. We hypothesized that abnormal
metabolic functions may predict increased mood disorders in
vulnerable populations.

METHODS

Data for the current study were collected by a routine
physical examination conducted in 319 individuals aged from
25 to 65 years old between January and December 2019.
The enrolled subjects were from different job types, such
as university staff, doctors in hospital, electrical engineers,
office workers, estate agents, and skilled workers. Participants
completed a demographic questionnaire including age, gender,
relationship status, education, BMI, smoking history, and alcohol
consumption. The mental health was assessed by the Chinese
version of the Kessler 10 Psychological Distress Scale (K10),
which is a 10-item questionnaire developed by Kessler et al.
in 2002 and is administered to evaluate distress symptoms in
community samples. This scale has brevity, reliability, good
precision and strong psychometric properties covering major
sociodemographic cases, making it being widely administered
in clinical studies as well as in general-purpose health surveys
including the annual government health surveys and WHO

World Mental Health Surveys (5). The Chinese K10 was
administered with a minor modification from the original
English version, in which each of the 10 questions relates to
an emotional state, and each response has a five-level scale, “1”
being “none of the time,” “2” “a little of the time” “3,” “some
of the time,” “4” “most of the time,” and “5” “all of the time.”
Total scores are ranging from 10 to 50. Hence, a higher score
suggests a greater level of psychological distress especially during
the past 4 weeks. Considering the sensitivity to determine the risk
of samples developing psychiatric disorders, the involvement of
K10 assessment in the routine physical examination would fill the
gap between community and clinical epidemiology of emotional
disorders. Height and weight were measured to calculate BMI
[=weight (kg)/height (m)2]. The fasting venous blood samples
were collected in the morning from all subjects after starved for
at least 12 h. Metabolic measures, including total-, HDL-, LDL-
cholesterol (mmol/L), triglyceride (mmol/L), fasting glucose
(mmol/L), and lymphocytes were measured from the plasma
samples of participants using routine standardized laboratorial
methods. Considering the various prevalence of stress-related
mood disorders in different age populations, we divided the
subjects into six groups according to the age and gender: young
adults (25–34 Y), middle age (35–49 Y), old age (50–65 Y) in
both males and females. The participants with chronic diseases
such as diabetes, hypertension, cardiovascular diseases, and other
somatic disorders that would affect the metabolism as well as
severe nicotine and alcohol abusers were excluded from the
data analysis. In addition, the mental health of the subjects was
evaluated by an experienced psychiatrist, anyone with psychiatric
concern was not included in the data collection. A linear
regression model and correlation analysis by Pearson were used
to evaluate the possible link between K10 scores and BMI and the
lipid concentrationsmeasured. The level of statistical significance
was set at p < 0.05. Ethical approval was received from the Ethics
Committee of Tianjin Union Medical Center (No. 2021B15).

RESULTS

In the whole cohort, the average of K10 scores is 11.69 ± 3.13,
suggesting they are in a health psychosocial state. Results of the
sociodemographic data, BMI, metabolic characteristics and K10
scores of the sample are summarized in Table 1. The differences
in sociodemographic data, physiological and psychological
characteristics were assessed by the one-way analysis of variance
(ANOVA) and the chi-square test. Bivariate correlation analysis
demonstrated that there was a significant association between
K10 scores and BMI, total-, LDL-cholesterol, and triglyceride
particularly in middle-aged women. We observed that BMI in
middle-aged women was positively correlated with psychological
distress (r2: 0.116; 95% CI, 0.075–0.561, p = 0.013), followed
by an increase of total-cholesterol (r2: 0.0796; 95% CI, 0.009–
0.515, p = 0.043), a high level of triglyceride (r2: 0.1002; 95%
CI, 0.048–0.543, p = 0.022), and having a high LDL-cholesterol
level (r2: 0.0828; 95% CI, 0.016–0.519, p = 0.039) (Figure 1).
In female young adults, psychological distress was negatively
associated with fasting glucose (r2: −0.1037; 95% CI,−0.549–
0.051 p= 0.021). While we did not observe a correlation between
fasting glucose andmental health outcome in femalemiddle-aged
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TABLE 1 | Sociodemographic data, BMI, metabolic characteristics, and K10 scores of the sample.

Characteristics Total (N) Young adults Middle age Old age P

Male Female Male Female Male Female

Overall 319 51 51 50 52 51 64

Age (years) 43.97 ± 12.48 30.78 ± 2.35 29.50 ± 3.06 41.58 ± 4.66 39.75 ± 4.81 58.16 ± 3.89 58.88 ± 4.15 <0.0001

Education (years, Mean

± SD)

16.73 ± 6.01 17.94 ± 4.89 17.87 ± 5.40 17.67 ± 8.05 16.5 ± 7.02 14.42 ± 4.51 11.52 ± 4.31 <0.0001

Marital status

Married 273 (85.6%) 33 (64.7%) 31 (60.8%) 48 (96%) 49 (94.2%) 51 (100%) 61 (95.3%) <0.0001

Widowed 3 (0.9%) 0 0 1 (2%) 0 0 2 (3.1%)

Single 43 (13.5%) 18 (35.3%) 20 (39.2%) 1 (2%) 3 (5.8%) 0 1 (1.6%)

Working status

Employed 272 (85.3%) 51 (100%) 51 (100%) 50 (100%) 51 (98.1%) 40 (78.4%) 29 (45.3%) <0.0001

Unemployed 0 0 0 0 0 0 0

Retired 47 (14.7%) 0 0 0 1 (1.9%) 11 (21.6%) 35 (54.7%)

Smoking 47 (14.7%) 10 (19.6%) 0 12 (24%) 0 (0%) 23 (45.1%) 2 (3.1%) <0.0001

Drinking 67 (21%) 17 (33.3%) 0 22 (44%) 3 (5.8%) 23 (45.1%) 2 (3.1%) <0.0001

BMI

(Mean ± SD)

24.14 ± 3.33 25.38 ± 3.01 21.01 ± 2.92 25.02 ± 3.18 23.97 ± 3.06 26.46 ± 2.89 23.93 ± 2.23 <0.0001

Total cholesterol

(SEM ± SD)

5.15 ± 1.02 4.87 ± 0.73 4.52 ± 0.74 5.08 ± 0.86 4.68 ± 0.93 5.24 ± 0.93 5.90 ± 1.19 <0.0001

Triglyceride

(Mean ± SD)

1.46 ± 0.84 1.62 ± 0.82 0.84 ± 0.34 1.94 ± 1.03 1.32 ± 0.66 1.54 ± 0.75 1.61 ± 0.83 <0.0001

HDL-cholesterol

(Mean ± SD)

1.44 ± 0.26 1.32 ± 0.25 1.55 ± 0.23 1.32 ± 0.20 1.52 ± 0.24 1.31 ± 0.23 1.54 ± 0.27 <0.0001

LDL-cholesterol

(Mean ± SD)

2.74 ± 0.63 2.57 ± 0.45 2.34 ± 0.46 2.73 ± 0.59 2.41 ± 0.61 2.82 ± 0.57 3.18 ± 0.71 <0.0001

Fasting glucose

(Mean ± SD)

5.54 ± 1.45 5.19 ± 0.44 4.96 ± 0.29 5.52 ± 1.02 5.16 ± 1.62 6.44 ± 2.54 5.79 ± 1.06 <0.0001

Lymphocytes

(Mean ± SD)

0.35 ± 0.077 0.36 ± 0.075 0.36 ± 0.076 0.36 ± 0.070 0.37 ± 0.083 0.33 ± 0.063 0.36 ± 0.080 0.1648

K10 scores

(Mean ± SD)

11.71 ± 3.13 12.29 ± 2.99 12.20 ± 3.60 11.42 ± 2.29 14.75 ± 2.78 10.31 ± 0.84 11.52 ± 4.31 0.0033

adults, which is consistent with recent meta-analytic evidence
that glucose metabolism was not altered in depressed patients
(6). In male older group, the higher scores in K10 and increased
total-cholesterol (r2: 0.1018; 95% CI, 0.0481–0.547, p = 0.022),
and LDL-cholesterol levels were noted (r2: 0.0924; 95%CI, 0.031–
0.535, p = 0.030), showing a significant relationship between
total- and LDL-cholesterol and psychological distress. For further
information, see Table 2.

DISCUSSION

In current study, we investigated the impact of metabolic
functions on the associations of mental health outcomes by
assessment of psychosocial stress in healthy subjects. To our
knowledge, our study is the first one to explore the potential
relationship between metabolic measures and mental state
in health subjects stratified by age and gender. Our results
demonstrated that poor mental health was significant associated
with increased BMI, total-, LDL-cholesterol, and triglyceride
levels in healthy middle-aged women but not in young or older
adults. These findings support the notion that women are more

vulnerable to mental health disorders than men, and specifically,
middle-aged women are likely to have an increased risk of
obesity and poor mental health due to reaching the menopause,
changing marital or socioeconomic status, and unhealthy life-
style habits (7). The negative and reciprocal impact of metabolic
syndrome (i.e., triglycerides, fasting glucose, and obesity) in
middle-aged females on the physical, psychological, emotional,
and behavioral responses toward a stressful event has been
evidenced (8), emphasizing the notion that susceptibility to stress
exposure and metabolic dysregulations and their consequences
are responsible for the elevated risk of psychiatric disorders.
Particularly, female participants experiencing high stress showed
higher low-density lipoprotein levels compared to the low stress
group (9), suggesting that a higher level of blood lipids and
lipoprotein is correlated with psychological stress associated with
high prevalence of emotional disorders.

The bidirectional associations between mental health and
metabolic disturbances have been intensively evidenced although
it still remains unclear whether the risk factors are cause or
consequence. Nevertheless, the association between higher BMI
and greater serum cholesterols levels and increased risk of
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FIGURE 1 | Relationship between K10 scores and metabolic parameters in middle-aged females by Pearson correlation analysis. (A) A positive relationship between

K10 scores and BMI. r2 = 0.116, P = 0.0135. (B) A positive relationship between K10 scores and total cholesterol. r2 = 0.0796, P = 0.0427. (C) A positive

relationship between K10 scores and triglyceride. r2 = 0.1002, P = 0.0222. (D) A positive relationship between K10 scores and LDL-cholesterol. r2 = 0.0828, P =

0.0385. n = 52 individuals for this group.

mental disorders, e.g., being overweight is positively associated
with increased risk to depression has been confirmed by
several community-based cross-sectional studies particularly
in women but not in men (10, 11). Since the detailed
insight into the biological mechanisms linking depression and
metabolic impairment is not fully clarified, the longitudinal
studies are indispensable in producing more evidence on the
bidirectional association.

Given the numerous studies reporting increased lipid
metabolism levels involved in psychiatric disease, the association
between low levels of serum cholesterol and mental illnesses,
such as depression and other stress-related mental illnesses,
could not be dismissed. For example, it has been proposed that
cholesterol levels were reduced in patients with major depressive
disorder possibly via disruption the availability of serotonergic
receptors, which are major targets implicated in depression
pathophysiology and in the mechanism of antidepressant action
(12, 13). Further evidence supporting the complex relationship
between lipid metabolism and mood disorders and the exact
regulation is required.

Our data did not show an association between the immune
marker lymphocytes and the mental health among different
age groups, indicating that peripheral immune system is not

a central process to induce the development of mood and
metabolic alterations in the current cohort. Notably, neutrophil
to lymphocyte ratio, but not absolute lymphocytes counts, was
used to explore the biological mechanisms underlying psychiatric
disorders (14, 15). The specific relationship between blood
immune markers and mental status needs further examination.
According to the current data, the metabolic parameters (total
and LDL-cholesterol) also correlated with the K10 scores in male
older participants. There may be multiple factors rather than
metabolic signal contributing to this association in this subgroup.
It is worth noting that the psychosocial stress from retirement
and subsequent alterations in social connection, economic status,
and environmental opportunities may increase the negative
consequences of mental health in male old adults (16). However,
women also exhibit better psychological resilience than men
following retirement (17). So we did not observe this association
between retirement and the mental health in older female group.

Given the evidence of altered lipid metabolism in vulnerable
populations, lifestyle factors such as diet, exercise, and physical
complications influencing metabolic process have also been
ascertained in the development, progression and treatment of
mental health disorders. For example, depressive symptoms are
also positively associated with the high consumption of fast food
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TABLE 2 | Multivariate general linear regression, stratified by age and sex.

Mood outcome Biological Whole cohort Yong adults Middle age Old age

measures (N = 319) (25–34 Y) (35–49 Y) (50–65 Y)

M (N = 51) F (N = 51) M (N = 50) F (N = 52) M (N = 51) F (N = 64)

K10 scores BMI (0.175)

[−0.184, 0.034]

(0.573)

[−0.369, 0.207]

(0.105)

[−0.413, 0.040]

(0.927)

[−0.420, 0.384]

(0.013)

[0.075, 0.561]

(0.366)

[−1.43, 0.537]

(0.955)

[−0.135, 0.127]

Total cholesterol (0.115)

[−0.064, 0.007]

(0.378)

[−0.100, 0.039]

(0.436)

[−0.082, 0.036]

(0.214)

[−0.174, 0.040]

(0.043)

[0.003 to 0.185]

(0.022)

[0.053, 0.656]

(0.219)

[−0.112, 0.026]

Triglyceride (0.505)

[−0.039, 0.019]

(0.566)

[−0.056, 0.101]

(0.439)

[−0.037, 0.016]

(0.276)

[−0.199, 0.058]

(0.022)

[0.011, 0.139]

(0.069)

[−0.019, 0.476]

(0.579)

[−0.062, 0.035]

HDL-cholesterol (0.712)

[−0.008, 0.011]

(0.379)

[−0.034, 0.013]

(0.794)

[−0.021, 0.016]

(0.841)

[−0.028, 0.023]

(0.99)

[−0.025, 0.025]

(0.452)

[−0.048, 0.106]

(0.749)

[−0.018, 0.013]

LDL-cholesterol (0.141)

[−0.039,

0.0056]

(0.505)

[−0.057, 0.028]

(0.505)

[−0.048, 0.024]

(0.261)

[−0.116, 0.032]

(0.039)

[0.016, 0.519]

(0.030)

[0.021, 0.391]

(0.197)

[−0.068, 0.014]

Fasting glucose (0.259)

[−0.080, 0.022]

(0.422)

[−0.059, 0.025]

(0.021)

[−0.048,

−0.004]

(0.912)

[−0.122, 0.136]

(0.287)

[−0.077, 0.253]

(0.845)

[−0.956, 0.786]

(0.932)

[−0.059, 0.065]

Lymphocytes (0.537)

[−0.002, 0.004]

(0.367)

[−0.004, 0.010]

(0.681)

[−0.007, 0.005]

(0.171)

[−0.003, 0.015]

(0.964)

[−0.009, 0.008]

(0.137)

[−0.005, 0.037]

(0.779)

[−0.006, 0.004]

Marital status (0.018)

[−0.027,

−0.0026]

(0.720)

[−0.038, 0.055]

(0.870)

[−0.036, 0.043]

(0.568)

[−0.032,

0.0178]

(0.580)

[−0.0307,

0.0174]

(0.729)

[−0.015, 0.010]

Education (0.246)

[−0.127, 0.033]

(0.922)

[−0.059, 0.054]

(0.589)

[−0.047, 0.082]

(0.167)

[−0.073, 0.412]

(0.738)

[−0.117, 0.164]

(0.799)

[−1.202, 0.930]

(0.421)

[−0.076, 0.179]

Smoking (0.829)

[−0.061, 0.049]

(0.320)

[−0.522, 0.174]

(0.195)

[−0.089,

0.0186]

(0.943)

[−0.179, 0.166]

(0.618)

[−0.013, 0.008]

Drinking (0.490)

[−0.020, 0.009]

(0.104)

[−0.009, 0.096]

(0.341)

[−0.033, 0.093]

(0.474)

[−0.015, 0.033]

(0.877)

[−0.159, 0.186]

(0.618)

[−0.013, 0.008]

The multivariate general linear model in lipid concentrations and mood outcomes; stratified by age groups (25–34, 35–49, 50–65 years old) and sex. Expressed by p-values are in

parentheses and 95% confidence intervals are in square brackets. The bold values mean significant results. M, male; F, female; K10, Kessler 10 Psychological Distress Scale.

(18), low levels of physical activity (especially in women and those
aged 40 years and older) (19), and reduced sleep quality (20)
through regulation of several physiological pathways involved in
mood disorders. Therefore, future mental health interventions
targeting these lifestyle factors would enhance the outcome of
interventions associated with psychosocial stress symptoms and
metabolic dysfunction.

Concerning the limitations, the current study shows the
potential correlation based on observational data from routine
physical examination and inevitably results in an underestimate
or overestimate of the causal inference due to confounding,
selection and measurement biases. Applications of statistical
and design-based methods are required to minimize potential
bias and establish an improved estimation of the causal
inference. In addition, this is a cross-sectional study with a
small sample size and lacks longitudinal follow-up evidence
and preventive interventions and therefore could not provide
the causal inference of metabolic pathophysiology on the
increased sensitivity to mental disorders. Future studies aiming
at determining the relationship between metabolic indicators
and mood outcomes in a large sample size with intervention
and follow-up design are needed to provide an early prediction
and treatment in vulnerable individuals such as middle-aged
women. Moreover, the fact that the high education level of the

recruited participants (average is more than 16 years) lack of
the representative of all respondents with psychological distress
makes it difficult to extend the current findings to general
population and reduces the generalizability of our results.

In conclusion, we found that metabolic risk factors affect
psychosocial stress in middle-aged female adults and reciprocally
changing the coping style to psychological distress may reduce
the development of the metabolic syndrome in women. Our
findings reveal that metabolic conditions may play an important
role in predicting outcomes for middle-age female patients
with high risk for mood disorders, raising the possibility that
metabolic functions should be seriously taken into consideration
not only for improving psychosocial stress response such as
health lifestyle, diminished stress, physical activity, and weight-
loss interventions in an early stage but also for providing
precise interventions for mood disorders in vulnerable middle-
aged women.
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Accumulating evidence has suggested a dysfunction of synaptic plasticity in the

pathophysiology of depression. Hydrogen sulfide (H2S), an endogenous gasotransmitter

that regulates synaptic plasticity, has been demonstrated to contribute to depressive-like

behaviors in rodents. The current study investigated the relationship between

plasma H2S levels and the depressive symptoms in patients with depression.

Forty-seven depressed patients and 51 healthy individuals were recruited in this study.

The 17-item Hamilton Depression Rating Scale (HAMD-17) was used to evaluate

depressive symptoms for all subjects and the reversed-phase high-performance liquid

chromatography (RP-HPLC) was used to measure plasmaH2S levels. We found that

plasma H2S levels were significantly lower in patients with depression relative to healthy

individuals (P< 0.001). Comparedwith healthy controls (1.02± 0.34µmol/L), the plasma

H2S level significantly decreased in patients with mild depression (0.84 ± 0.28 µmol/L),

with moderate depression (0.62± 0.21µmol/L), and with severe depression (0.38± 0.18

µmol/L). Correlation analysis revealed that plasma H2S levels were significantly negatively

correlated with the HAMD-17 scores in patients (r = −0.484, P = 0.001). Multivariate

linear regression analysis showed that plasma H2S was an independent contributor to

the HAMD-17 score in patients (B = −0.360, t = −2.550, P = 0.015). Collectively, these

results suggest that decreased H2S is involved in the pathophysiology of depression,

and plasma H2S might be a potential indicator for depression severity.

Keywords: depression, hydrogen sulfide (H2S), plasma, severity, correlation

INTRODUCTION

Depression is a common illness with more than 264 million people affected in the worldwide
(1). Person with depressive disorder experiences depressed mood, loss of interest and enjoyment,
and reduced energy leading to diminished activity for at least 2 weeks. Depression results from a
complex interaction of social, psychological and biological factors (2). Although the neurobiological
mechanisms underlying depression have not been recognized completely, emerging evidence
suggests a dysfunction of synaptic plasticity in the pathophysiology of depression (3–5). For
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example, exposure to chronic stress was shown to induce
dendritic atrophy and spine loss in the hippocampus and
prefrontal cortex (6–8). Impaired long-term potentiation (LTP)
was observed in the hippocampus of the chronic stress mice
model of depression (9). Restoration of stress-induced changes
in synaptic plasticity within the corticoaccumbal glutamate
circuit prevented the behavioral vulnerability of mice to chronic
stress (10).

Synaptic plasticity is an experience-dependent change in
synaptic strength at preexisting synapses, in which one type of
ionotropic glutamate receptors, N-methyl-D-aspartate receptor
(NMDAR), plays a key role (11). Numerous studies have
reported that there are abnormal gene expression and function
in NMDARs in the hippocampus of depressed patients (12–
14). Chronic stress could reduce the expression of NMDARs
in the hippocampus in rodents (15–17). Preclinical studies
indicate that both acute and chronic stress can perturb the
normal balance between synaptic potentiation and depression
in hippocampal pyramidal neurons (18–20). Furthermore, a
number of experimental and clinical studies have demonstrated
that improving actions of antidepressants are associated with
restoration of maladaptive brain plasticity (21–23).

Hydrogen sulfide (H2S) is a member of the gasotransmitter
family that is associated with the maintenance of neuronal
plasticity, excitability, and homeostatic functions (24). It is
mainly produced by the enzyme cystathionine-β-synthase (CBS)
in the brain and the enzyme cystathionine-γ-lyase (CSE) in
the peripheral tissues (25). Abe and Kimura first demonstrated
the influences of H2S on synaptic plasticity. They showed that
physiological concentrations of H2S facilitated the induction
of hippocampal LTP by increasing the activity of NMDARs
(26). Inhibition of H2S generation would lead to a reduction in
NMDAR-mediated synaptic response and cause an impairment
of LTP in the amygdala (27). Gas can freely diffuse across
cell membranes and blood-brain barrier. Previous studies have
demonstrated that intraperitoneal injection of NaHS (an H2S
donor) or inhalation of H2S can increase brain H2S content and
promote amygdalar LTP and emotional memory in rats (28),
and systemic administration of NaHS could elevate hippocampal
H2S level and dramatically reversed the cognitive and synaptic
plasticity deficits in APP/PS1 transgenic mice (29).

Since H2S has an important regulatory role in synaptic
plasticity, some studies have explored its role in depression.
Chen et al. reported that chronic intraperitoneal treatment with
NaHS produced a specific antidepressant-like effect in non-
stressed mice and rats (30). Administration of NaHS significantly
alleviated the depressive-like behaviors in streptozotocin-
induced diabetic rats (31). Moreover, a recent study showed
that decreased level of endogenous H2S in the hippocampus
was responsible for the abnormal behaviors induced by chronic
unpredictable mild stress, and the depressive-like behavior of
rats could be alleviated within a few hours by increasing H2S
level in the hippocampus through giving H2S donor or inhaling
H2S (32). However, whether plasma H2S levels are changed in
patients with depression and its association with the severity of
depression remains unknown. In this study, we further explored
the role of H2S signaling in the pathophysiology of depression by

investigating whether (1) plasma H2S level was altered in patients
with depression and (2) there were any relationships between
H2S levels and depressive symptoms in these patients.

METHOD

Subjects
Forty-seven inpatients with acute depressive episode
(male/female = 20/27) were recruited from Jiangxi Mental
Hospital. Two psychiatrists have confirmed the diagnosis of
depression based on the Structured Clinical Interview for
DSM-IV Axis I Disorders (SCID). The exclusion criteria
included any other axis I or axis II DSM-IV diagnoses, including
schizophrenia, bipolar disorder, substance abuse, anxiety
disorder and so on. Fifty-one healthy controls (male/female
= 28/23), matched with the patients by gender, age, education
years, and body mass index (BMI), were recruited from the
local community. Subject with a personal or family history of
mental illness was excluded from control group. The exclusion
criteria for all participants also included current pregnancy,
autoimmune, allergic and neoplastic diseases, as well as other
physical diseases that had occurred in the past 3 months,
including hypertension, diabetes, heart or brain infarction.

The 17-item Hamilton Depression Rating Scale (HAMD-
17) was used to evaluate depressive symptoms for all subjects
(Supplementary Table 1) (33). The severity of depression was
ranked on a HAMD-17 score: mild depression (8–17), moderate
depression (18–24), and severe depression (>24) (34). To
investigate whether antidepressants affected plasmaH2S level, the
depressed patients were divided into an antidepressant-treatment
subgroup (n = 31) and an antidepressant-naive subgroup (n =

16). Subjects who were free of any antidepressant treatment for
at least 1 month were defined as antidepressant-naive patients.

The research was approved by the Institutional Review Board
at Jiangxi Mental Hospital and carried out in accordance with
the Declaration of Helsinki. A written informed consent was
provided from each subject, or his or her parents/guardians.

Measurement of Plasma H2S
Whole blood from subjects who fasted overnight was collected
into tubes with EDTA. After collection, samples were centrifuged
at 3,000 rpm for 5min at the temperature of 4◦C and then
the plasma was separated, aliquoted, and stored at−80◦C
until analysis.

The concentration of H2S in plasma was measured using a
monobromobimane method coupled with reversed-phase high-
performance liquid chromatography (RP-HPLC) (35). Free H2S
in the plasma was analyzed by RP-HPLC after derivatization
with excess monobromobimane (MBB) to form stable sulfide
dibimane derivative. 30 µL of sample was pipetted and mixed
with 70 µL of 100mM Tris-HCl buffer (pH 9.5, 0.1mM DTPA),
followed by addition of 50 µL of 10mM MBB. The reaction was
terminated by adding 50 µL of 200mM 5-sulfosalicylic acid at 30
mins later. After centrifugation, the supernatant was determined
using an Agilent 1,220 HPLC system (Agilent Technologies,
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TABLE 1 | Comparison of demographic and clinical variables in controls and patients.

Variables Control group Depressive group Statistic value P value Effect size

(n = 51) (n = 47)

Gender (M/F) 28/23 21/26 Chi-squared test, x2 = 1.022 0.312 –

Age (years) 38.02 ± 10.77 35.02 ± 13.98 t-test, t = 1.195 0.235 Cohen’s d = 0.240

Education 11.01 ± 2.96 11.57 ± 3.57 U test, Z = −0.544 0.586 r = −0.085

Illness duration (years) – 5.13 ± 3.66

BMI (kg/m2 ) 21.30 ± 1.92 21.59 ± 1.96 t-test, t = −0.760 0.449 Cohen’s d = −0.154

HAMD-17 score 3.22 ± 2.24 22.15 ± 8.45 t-test, t = −15.423 <0.001 Cohen’s d = −3.059

H2S level (µmol/L) 1.02 ± 0.34 0.59 ± 0.29 t-test, t = 6.697 <0.001 Cohen’s d = 1.359

Santa Clara, CA, USA) and an Agilent ZORBAX Eclipse XDB-
C18 column. The content of plasma H2S was calculated based on
sulfidedibimane standard curves.

Statistical Analysis
Data were presented as mean ± standard deviation (SD) and
analyzed with the Statistical Product and Service Solutions
(SPSS) 18.0 software.We compared categorical variables between
patients and healthy controls using a chi-squared test. The
continuous variables that were distributed normally were
compared by Student’s t-test and the independent variables that
did not fit the normal distribution were analyzed by Kolmogorov-
Smirnov and Mann-Whitney U tests. The relationships between
plasma H2S and other variables were determined by Pearson
correlation analysis and the independent relationships were
analyzed by multivariate linear regression analysis. The level of
significance was set at P < 0.05.

RESULTS

Forty-seven inpatients with depression (21 male, 26 female) and
51 healthy controls (28 male, 23 female) was enrolled in this
study. Table 1 shows the demographic variables and the clinical
values of control group and depressive group. There was no
significant difference between two groups in terms of gender, age
and BMI. The mean HAMD-17 score in depressive patients was
statistically higher than that in the control group (22.15± 8.45 in
depressive group vs. 3.22± 2.24 in control group, P < 0.001).

The plasma level of H2S in the depressive patients was
significantly lower than that in healthy controls (patients: 0.59
± 0.29 µmol/L, controls: 1.02 ± 0.34 µmol/L; t = 6.697, P
< 0.001) (Table 1). No significant difference was observed in
plasmaH2S level betweenmale and female in both groups (both P
> 0.05). For depressive patients, the level of plasma H2S was not
different between antidepressant-treatment and antidepressant-
naïve subgroup (t = 0.218, P = 0.828). A two-way ANOVA
for H2S level in depressive patients showed that there was no
significant main effect of gender (F(1,43) = 2.384, P = 0.130),
no significant main effect of antidepressant treatment (F(1,43) =
0.036, P = 0.851) and no main effect of gender × antidepressant
treatment (F(1,43) = 0.731, P = 0.397).

Among 47 depressive patients, 15 patients (31.9%) had mild
depression, 12 patients (25.5%) had moderate depression, and

FIGURE 1 | Plasma H2S levels (mean ± SD) in the controls and the mild,

moderate and severe depression group.

20 patients (42.6%) had severe depression. The level of plasma
H2S in mild, moderate and severe depressive patients was 0.84±
0.28, 0.62± 0.21 and 0.38± 0.18 µmol/L, respectively. One-way
ANOVA revealed that there were significant differences among
healthy controls, mild depressive, moderate depressive and severe
depressive patients (F(3,97) = 24.984, P < 0.001). Bonferroni post
hocmultiple tests for depressive subgroups showed that there was
a significant decreased trend of the plasma H2S level among mild
depressive patients compared to moderate depressive patients (P
= 0.047), and moderate depressive patients compared to severe
depressive patients (P = 0.015) (Figure 1).

Within the healthy control subjects, there no significant
correlation between plasma H2S level and any demographic
variable including gender, age, and BMI. However, Pearson
correlation analysis revealed that the plasma H2S level was
significantly correlated with age (r = −0.296, P = 0.043;
Supplementary Figure 1) and HAMD-17 score (r = −0.484, P
= 0.001; Figure 2) in patients with depression. Partial correlation
analysis showed that the correlation between H2S levels and
theHAMD-17 scores was still significant when controlling for
gender, age, education years, BMI, and duration of illness
(r = −0.374, P = 0.015). Finally, we conducted multivariate
regression analysis to elucidate independent determinants of
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FIGURE 2 | The correlation between plasma H2S levels and HAMD-17 scores

in patients with depression.

TABLE 2 | Correlations between plasma H2S levels, demographic characteristics

and clinical variables in patients with depression.

Variables HAMD-17 score

B (95% CI) t P value

Gender (M/F) −0.135 (−0.399, 0.128) −1.039 0.305

Age (years) 0.210 (−0.091, 0.512) 1.410 0.166

Education −0.038 (−0.324, 0.247) −0.271 0.788

Duration of illness (years) −0.271 (−0.569, 0.027) −1.841 0.073

BMI (kg/m2 ) 0.096 (−0.190, 0.383) 0.680 0.501

Plasma H2S −0.360 (−0.646, −0.075) −2.550 0.015

HAMD-17 scores (R2 = 0.586) and found that plasmaH2S was an
independent contributor to the HAMD-17 scores (B = −0.360,
t =−2.550, P = 0.015) (Table 2).

DISCUSSION

Previous studies have demonstrated that H2S is implicated in the
pathophysiology of depression in rodents (30–32). In this study,
the plasma levels of H2S were determined in Chinese patients
with depression. We found a significant decrease in plasma H2S
level in depressive patients compared to healthy controls, and
decreased plasma H2S level was significantly correlated with the
severity of depression.

H2S is an endogenous gasotransmitter with numerous
homeostatic functions, such as neurotransmission and
neuromodulation (24). A large number of studies have
demonstrated that a dysfunction of H2S signaling takes a part
in the pathophysiology of many neuropsychiatric disorders.
The H2S level was decreased in the hippocampus of Alzheimer’s
disease (AD) mice and treating AD mice with NaHS reversed
the impaired hippocampal synaptic plasticity and cognitive
function (29, 36). Plasma H2S level is significantly decreased
in both schizophrenia and AD patients, and has a correlation

with the severity of cognitive impairments in these patients
(35, 37). Hou et al. reported that endogenous H2S was decreased
in the hippocampus of depressive model rats and responsible
for the depressive-like behaviors of rats (32). In consistent
with these results, we here showed that plasma H2S levels
were significantly decreased in depressed patients and were
correlated with the severity of depressive symptoms of patients,
providing evidence for the contribution of H2S signaling to the
pathogenesis of depression. It should be noted that change of
plasma H2S in patients might also result from the treatment
of antidepressants. However, we enrolled inpatients with acute
depressive episode who had HAMD scores >8 in this study.
Although some of the patients were taking antidepressants at
the time of inclusion, the HAMD score showed that they were
still depressed, suggesting that current antidepressants they used
were not effective in improving their depressive symptoms.
Indeed, meta-analyses of clinical trials have reported that more
than 60% of patients fail to obtain significant or sustained
remission with any single traditional antidepressant drug, with
approximately one third of all depressed individuals failing
two or more first-line antidepressant courses of treatment,
consistent with the diagnosis of treatment-resistant depression
(TRD) (38, 39). Our present study found that the level of
plasma H2S was not different between antidepressant-treatment
and antidepressant-naive subgroups in depressive patients,
indicating that antidepressants alone do not affect plasma H2S
levels in those patients whose depressive symptoms have not
improved significantly. Therefore, in combination with the
finding that endogenous H2S was decreased in the hippocampus
of depressive rats (32), we postulate that change of plasma
H2S level in patients is related to the illness per se, rather
than secondary to antidepressant treatment. However, the
mechanisms underlying the reduction of H2S in depression are
still needed further investigations.

The HAMD is the most widely used scale for patient
selection and follow-up in depression treatment studies (40,
41). We used HAMD-17 to evaluate the severity of depressive
symptoms in the present study. Correlation analysis showed
that there was a significantly negative correlation between
plasma H2S levels and the HAMD-17 scores in depressive
patients. Partial correlation analysis demonstrated that the
correlation between H2S levels and the HAMD-17 scores was
still significant when controlling for gender, age, education years,
BMI, and duration of illness. Multivariate linear regression
analysis revealed that plasma H2S level was negatively associated
with HAMD-17 score. These results suggest that patients with
lower H2S levels would be more likely to have severer depressive
symptoms. Furthermore, the level of plasma H2S was decreased
gradually from mild depression to moderate depression, and
from moderate depression to severe depression, also indicating
that plasma H2S is associated with the severity of depression.
Therefore, the plasma H2S level may be served as a biomarker
to evaluate the severity of depression.

There are some limitations in this study. First, the sample
size was relatively small and all subjects were recruited from a
single hospital. Replication in larger and multicenter samples
is required to validate this conclusion. Second, H2S levels were

Frontiers in Psychiatry | www.frontiersin.org 4 November 2021 | Volume 12 | Article 76566417

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Yang et al. Hydrogen Sulfide in Depression

measured in plasma, but not in the brain. Whether H2S level in
the brain changes parallel with the level in plasma in patients is
still unclear. Third, this was across-sectional study. Future studies
are needed to elucidate the role of plasma H2S in the progression
of depression. Additionally, although an association of decreased
plasma H2S and the severity of depressive symptoms in patients
with depression was found in this study, the mechanisms
through which H2S affects depressive behaviors are needed to
be investigated.

CONCLUSION

Our present study shows that patients with depression have lower
plasma H2S levels than healthy controls, and decreased H2S was
associated with the severity of depressive symptoms inpatients.
These results demonstrate an important role of H2S signaling in
the pathophysiology of depression, suggesting that plasma H2S
level may be a potential biomarker for the severity of depression.
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Deficits in emotion regulation are the main clinical features, common risk factors, and

treatment-related targets for major depressive disorder (MDD). The neural bases of

emotion regulation are moving beyond specific functions and emphasizing instead

the integrative functions of spatially distributed brain areas that work together as

large-scale brain networks, but it is still unclear whether the dynamic interactions

among these emotion networks would be the target of clinical intervention for MDD.

Data were collected from 70 MDD patients and 43 sex- and age-matched healthy

controls. The dynamic functional connectivity (dFC) between emotion regions was

estimated via a sliding-window method based on resting-state functional magnetic

resonance imaging (R-fMRI). A k-means clustering method was applied to classify all

time windows across all participants into several dFC states reflecting recurring functional

interaction patterns among emotion regions over time. The results showed that four

dFC states were identified in the emotion networks. Their alterations of state-related

occurrence proportion were found in MDD and subsequently normalized following 12-

week antidepressant treatment. Baseline strong dFC could predict the reduction rate of

Hamilton Depression Rating Scale (HAMD) scores. These findings highlighted the state-

dependent reconfiguration of emotion regulation networks in MDD patients owing to

antidepressant treatment.

Keywords: major depressive disorder, recurring functional interaction patterns, emotion regulation,

antidepressants, dynamic functional connectivity

INTRODUCTION

Major depressive disorder (MDD) is characterized by persistent low mood and loss of interest
(1). As a disorder that involves extensive affective aberrations, MDD must be elucidated by
its brain mechanisms of emotion dysregulation (2). Human health and well-being benefit from
appropriate emotion regulation that allows one to adaptively control the intensities, durations, and
types of emotional experiences and behavioral responses evoked by external or internal stimuli
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(3, 4). Therefore, emotion regulation in healthy individuals and
dysregulation in MDD have very important research significance
(5). Previous studies have been trying to uncover how the
brain generates and manages emotion, especially which depends
largely on the knowledge about its large-scale organization (6).
Functional magnetic resonance imaging (fMRI) has become a
dominant tool for understanding emotion regulation and some
specific brain loci that engage in the generation and regulation
of emotion have been revealed (7). The fact that individual
brain regions usually contribute to more than one specific
emotion and that one emotional task can activate multiple brain
regions simultaneously point out the promise of network-level
representation for emotion (8). The characterization of large-
scale brain networks (LBNs) and their functional interactions
is becoming an increasingly common gateway to uncover how
emotions are organized in the brain (9). Applying a meta-
analytic k-means clustering approach on 385 experiments from
107 published papers, a recent study identified four LBNs
based on convergent brain activation patterns during emotion
regulation (10). Each LBN represents an activation pattern
that occurs in multiple emotion regulation experiments. These
four data-driven LBNs underwent also functional decoding
to validate their differences in functional characterization.
Especially, the first network mainly consisted of the lateral dorsal
prefrontal cortex, which was associated with working memory,
explicit memory, reasoning, and inhibition. The second network
exhibited convergent activation in a lateralized ventral prefrontal
network, which was primarily linked to language processes. The
third network was based on convergent activation in the insula,
precuneus, and posterior cingulate cortex, which was associated
with the action, perception, and interoception domain. The last
network consisted of subcortical regions such as the bilateral
amygdala, left parahippocampus, and bilateral fusiform gyrus.
This network indicated a focus on the emotion and memory
domains. This progress provided relatively complete emotion
regulation networks to enable further research on emotion
dysfunction in MDD based on the functional interactions among
hierarchical neural systems.

Despite the amount of effort to develop antidepressant
treatments, treatment effectiveness has not been increased
sufficiently in recent decades (11). This is partly because of the
obscure knowledge with respect to the neural bases of MDD
and its effective treatment (12). Emotion regulation is a key
predictor for the course of MDD (13), and the strategy required
to regulate the emotion ofMDDpatients varies with their severity
of depressive symptoms (14). Adaptive emotion regulation could
enhance the therapeutic effect on MDD and hence enable itself
to be a promising target in clinical intervention for MDD (15,
16). Furthermore, numerous previous studies using resting-state
functional magnetic resonance imaging (R-fMRI) have supplied
clues about the association between the therapeutic outcomes
of antidepressants and areas known to be involved in emotion
generation or regulation. For example, effective antidepressant
treatment for MDD patients was relevant with lower functional
connectivity (FC) between the subcallosal cingulate cortex and
ventromedial prefrontal cortex (17). Hyperconnectivity of the
amygdala in MDD patients was reduced following 8-week

antidepressant treatment (18). The FC between the medial
prefrontal cortex and posterior cingulate cortex at baseline was
predictive of the remission status of antidepressant treatment
(19). However, most of these studies relied on the assumption
of temporal stationarity during the entire R-fMRI scan. Time-
averaged or static functional connectivity (sFC) may limit the
detection of time-varying functional interaction patterns.

Emotion regulation itself conveys the adaptive nature of
emotion from one aspect that demands one to reorganize his/her
mind or behavior to deal with the changing environment for
the purpose of achieving and maintaining well-being (20, 21),
which obviously needs to be instantiated by different functional
interaction patterns among LBNs. Emotion dysfunction usually
occurs when one’s emotion regulation dynamics fail to achieve
short- or long-term goals (4). Therefore, investigating the mental
illness labeled emotion dysfunction from the view of emotion
regulation dynamics will deepen our comprehension of MDD
pathology. Characterizing the dynamic functional interactions
among LBNs that represent emotion regulation may help to
elucidate how emotions are controlled or become out of control
in the course of the emotion process. A dynamic functional
connectivity (dFC) analysis approach has been proposed to
capture the course of dynamic interactions among LBNs (22).
After characterizing several recurring functional interaction
patterns over R-fMRI scan time, high-level summaries would
be obtained based on the temporal configurations of them
(23), which were thought to load important physiological
significance (24, 25). The human brain organizes and integrates
various neural systems across multiple spatiotemporal scales
constantly to achieve personal adaptability to internal or external
environments (26). It makes this method significant when
examining the neural mechanisms underlying kinds of disorders
including schizophrenia (27), MDD (28), chronic pain (29),
and attention deficit hyperactivity disorder (30). However, it
is still unclear whether this method could be utilized to
delineate the dynamic interactions among the LBNs serving for
emotion regulation, andmore importantly, whether the temporal
configuration of the recurring functional interaction patterns
would be a target of clinical intervention for MDD.

In the present study, we explored the recurring functional
interaction patterns among four LBNs enrolled in emotion
regulation. We hypothesized that there would be several
recurring functional interaction patterns over time during
the R-fMRI scans and that MDD would be associated
with the abnormalities in such patterns. Furthermore, the
abnormal characteristics of these patterns would be reconfigured
in MDD patients by the administration of antidepressants.
Additionally, we constructed multivariate linear regression
models to investigate which patterns had the potential to predict
the outcome of antidepressant treatment in MDD.

MATERIALS AND METHODS

Participants
Seventy patients with MDD (49 females/21 males) were
enrolled from the Department of Psychiatry of Hangzhou
Seventh People’s Hospital and the Department of Psychiatry
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at the Affiliated Hospital of Hangzhou Normal University.
The course of interview and diagnosis for all MDD patients
were accomplished by certified psychiatrists using the Mini-
Neuropsychiatric International Interview (MINI) based on the
Diagnostic and Statistical Manual of Mental Disorders (Fourth
Edition) (DSM-IV) criteria. Forty-three healthy controls (HC,
27 women/16 men) matched in age and sex were enrolled
from the local community. The 24-item Hamilton Depression
Rating Scale (HAMD) was used to evaluate the depression
severity of all participants. Individuals who had a neurological or
medical illness, were pregnant or breastfeeding, showed severe
suicidal tendencies, or displayed substance dependence were
not included in the present study. Those who had excessive
head motion were also excluded. All study procedures were
performed in accordance with the Declaration of Helsinki on
Ethical Principles and approved by the local Institutional Review
Boards (IRB No.20150729) of Hangzhou Normal University. All
subjects provided written informed IRB-approved consent before
participating in study procedures.

Treatment Outcomes
After medical and psychiatric assessments, participants who
met the inclusion criteria completed both magnetic resonance
imaging (MRI) scans at baseline. MDD patients then began
to receive antidepressant treatment with typical selective
serotonin reuptake inhibitors (SSRIs). The medication doses
were prescribed and adjusted by the treating clinicians according
to routine clinical practice and followed the recommended
dose ranges. During 12-week antidepressant treatment, 19
patients were administered with atypical antipsychotics and
benzodiazepines to improve quality of life. After 12 weeks
of antidepressant treatment, 37 MDD patients underwent a
repeated MRI scan and clinical assessment. These MDD patients
were divided into responsive depression group (RDG) and non-
responsive depression group (N-RDG) according to whether the
reduction rate of the HAMD scores at the end of 12 weeks was
>50% or not. HC did not undergo a repeated MRI scan after
3 months.

Image Acquisition and Preprocessing
All MRI data were collected using a 3.0T GE scanner (General
Electric, Waukesha, WI, USA) at the Center for Cognition
and Brain Disorders of Hangzhou Normal University. The
participants were asked to stay relaxed with their eyes closed, and
not to fall asleep in particular, and their heads were fixed using a
tight cushion. Functional images were obtained in an interleaved
order using a T2∗-weighted gradient-echo echo-planar-imaging
(EPI) sequence (TR/TE = 2,000/22, flip angle = 77◦, field of
view = 240 × 240 mm2, matrix = 96 × 96, 2.5mm isotropic
spatial resolution with 42 slices and 240 volumes). A high-
resolution T1-weighted anatomical image in sagittal orientation
using Fast Spoiled Gradient echo sequence (3D FSPGR, TR/TE
= 9/3.66, flip angle = 13◦, field of view = 240 × 240 mm2,
matrix = 300 × 300, 0.8mm isotropic voxels, 176 slices without
interslice gap) was obtained for visualization and localization of
the functional data.

TABLE 1 | The MNI coordinates of the ROIs within four large-scale brain networks

enrolled in emotion regulation.

ID Regions of interest X Y Z

LBN 1

1 Superior Frontal Gyrus (L) 0 24 50

2 Middle Frontal Gyrus (R) 40 24 42

3 Inferior Parietal Lobule (R) 58 −52 38

4 Inferior Parietal Lobule (L) −58 −50 44

5 Middle Frontal Gyrus (L) −36 52 −2

6 Middle Frontal Gyrus (L) −42 14 48

7 Middle Frontal Gyrus (R) 42 46 −8

8 Insula (R) 36 16 6

9 Cingulate Gyrus (R) 2 −22 30

10 Precuneus (R) 10 −64 36

LBN 2

11 Inferior Frontal Gyrus (L) −46 24 −8

12 Superior Frontal Gyrus (L) −4 10 62

13 Inferior Frontal Gyrus (R) 50 28 −8

14 Superior Temporal Gyrus (L) −46 −52 28

15 Middle Temporal Gyrus (L) −54 −34 −2

16 Middle Frontal Gyrus (L) −44 6 50

17 Superior Frontal Gyrus (L) −30 48 26

18 Caudate (L) −16 10 12

19 Tuber (R) 36 −60 −30

LBN 3

20 Amygdala (L) −22 −4 −16

21 Amygdala (R) 24 −4 −18

22 Fusiform Gyrus (R) 40 −46 −18

23 Thalamus (R) 6 −26 0

24 Fusiform Gyrus (L) −38 −54 −14

25 Parahippocampal Gyrus (L) −22 −28 −4

26 Medial Frontal Gyrus (B) 0 54 −10

27 Inferior Occipital Gyrus (L) −42 −76 −6

LBN 4

28 Postcentral Gyrus (L) −58 −22 32

29 Insula (L) −44 −4 10

30 Superior Parietal Lobule (L) −28 −52 56

31 Postcentral Gyrus (R) 62 −22 30

32 Cuneus (L) −10 −76 22

33 Middle Occipital Gyrus (L) −48 −74 2

34 Thalamus (R) 10 −26 −4

35 Precuneus (R) 28 −60 38

36 Posterior Cingulate (R) 16 −56 16

B, bilateral; L, left; R, right; LBN, large-scale brain network.

The MRI data were processed using the DPARSF toolbox
(http://www.rfmri.org/), SPM (http://www.fil.ion.ucl.ac.uk/
spm/), and custom code written in MATLAB. The first
10 functional volumes were discarded to allow for signal
equilibration and environmental adaptation. The remaining
images were corrected for the time shifts among different
acquisitions within each volume by sink interpolating volume
slices. The participants who had a maximum displacement of
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higher than 2.5mm in the x-, y-, or z-axes and an angular motion
of higher than 2.5◦ during the entire scan were excluded from
the study (31, 32). The mean framewise displacement (FD) for
each participant was recorded and participants with mean FD
exceeding 0.5mm were excluded (33). The corrected images
were then spatially normalized into the standard stereotactic
space of the Montreal Neurological Institute (MNI) with a
resampled voxel size of 3 × 3 × 3 mm3. Nuisance covariates
including the white matter and cerebrospinal fluid (CSF) signal
and Friston-24 motion parameters were regressed out from the
time course of each voxel. Then, the images were smoothed with
a 6-mm full-width at a half-maximum Gaussian kernel. The
linear trends were removed by detrending the signals of each
voxel. Temporal bandpass filtering was performed at a frequency
range of 0.01–0.10Hz. Finally, scrubbing was performed to
reduce the noise derived from head motion (33). The signal at
the “bad” time points was interpolated using a cubic spline with
an FD threshold of 0.5 mm (34).

Sliding-Window dFC Analysis
We performed dFC analysis for four brain networks or LBNs
enrolled in emotion regulation that was revealed by a previous
study (10). The four LBNs included 36 brain areas with distinct
spatial distributions and functional profiles. As shown in Table 1,
their spherical regions of interest (ROIs) with a 5mm radius were
obtained based on the MNI coordinates of the peak voxels in the
corresponding areas and used for the following analysis.

As shown in Figure 1, the dFC was measured via the sliding-
window approach. The window size was set to 22 TRs (44 s) and
data in each window were convolved with a Gaussian (σ= 3 TRs)
(35). For each subject, 209 consecutive windows were obtained
by setting the shift step as 1 TR (2 s). The covariance matrix was
estimated using the graphical LASSO (Least absolute shrinkage
and selection operator) method on the windowed data (36). For
each subject, the L1-regularization penalty was set using five-fold
cross-validation with 50 repetitions. Finally, FC matrices were
Fisher z-transformed to improve statistical normality.

To capture the recurring functional interaction patterns
characterized as connectivity matrix over time, we applied a
k-means clustering method based on dFC values to classify
all windows across all participants into several distinct states.
The correlation distance function was used to measure the
distances between each window and cluster centroids. The
optimal number of states was determined by using the elbow
criterion ranging from 2 to 9. To avoid locally optimal solutions,
the clustering procedure was repeated 100 times. At baseline, the
between-regional interaction pattern at each state was obtained
by averaging connectivity matrices of all windows within that
state. In an iterative process, one individual’s connectivity matrix
was selected from all time windows at the post-treatment and
compared against the connectivity matrix of each state at baseline
to find the matrix that was maximally similar, and then the
window at the post-treatment was assigned to the state with their
maximum correlation coefficients.

Dynamic indices were assessed for each participant, including
(1) occurrence proportion, measured as the proportion of time
window number in a particular state to the total number of time

windows during the scan (209 windows in the present study);
(2) state-dependent alterations in FC; and (3) state-dependent
alterations in graph-theory measure. We calculated the FC in
each state separately and named it dFC strength. For each
subject, the dFC strength in a state was acquired by averaging
all the windows assigned to that state. Mean local efficiency was
investigated to demonstrate the efficiency of information transfer
in each functional interaction pattern. The local efficiency of
each node was calculated using the GRETNA software (http://
www.nitrc.org/projects/gretna) with the non-negative value of
the weighted FCmatrix as input (37). The sFCwas also calculated
to test whether state-dependent alterations could be detected in
static functional interaction patterns.

Predicting the Reduction Rate of HAMD
Scores
In the present study, we constructed multivariate linear
regression models to determine whether and which recurring
functional interaction pattern could predict the reduction rate
(RR) of HAMD scores. According to previous studies (31, 38),
we employed a leave-one-out cross-validation (LOOCV) strategy
to evaluate the performance of the regression models. For each
iteration of LOOCV, the state-dependent FC of an MDD patient
at baseline was applied to predict his/her RR of HAMD scores
based on the regression model trained by remaining patients.
Finally, Pearson’s correlation coefficient between the observed
and predicted RR of HAMD scores was calculated to evaluate the
performance of the predictive model. An additional multivariate
linear regression model was also constructed to examine the
predictive ability of static functional interaction patterns for the
treatment effect of antidepressants.

Statistical Analysis
Statistical comparisons between MDD and HC at baseline were
performed on dynamic measures via the general linear model
(GLM), with age, sex, and mean FD as covariates. The paired-
sample t-test was utilized to evaluate the longitudinal alterations
of depression severity and abnormal dynamic measures in RDG
and N-RDG following antidepressant treatment. The threshold
of statistical significance was set at 0.05. The correction for
multiple comparisons was performed using the false discovery
rate (p< 0.05, FDR corrected). The one-sample t-test was utilized
to examine the main FC of each state in the MDD and HC
groups, respectively. The one-sample t-test results of the two
groups were combined as a conjunction mask for subsequent
between-group comparisons.

The statistical significance of the prediction results was
assessed using permutation tests (39). Firstly, the observed RR
of HAMD scores were randomly permuted beforehand across
participants. Then, the aforementioned prediction processes
were performed on the permuted dataset. This procedure was
repeated 10,000 times. The performance of a regression model
was assumed to be reliable if the result obtained by the
regression model trained on the true dataset was higher than
the 95% confidence interval of the regression model trained on
a randomly permuted dataset.
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FIGURE 1 | The schematic diagram of dFC analysis. dFC, dynamic functional connectivity; FC, functional connectivity; HAMD, Hamilton Depression Rating Scale;

ROI, region of interest; RR, reduction rate.

RESULTS

Demographic and Clinical Data
The demographic and clinical characteristics of the participants
were summarized in Table 2. MDD patients were matched with
HC on gender (t = 0.629, p = 0.428), age (t = −1.217, p
= 0.226), and mean FD (t = −1.041, p = 0.300). Following
12-week antidepressant treatment, a total of 37 of 70 MDD
patients completed a repeated MRI scan and HAMD assessment.
A significant reduction on depression severity was found (paired
t-tests, t = −9.479, p <0.001). Twenty-three (62.16%) MDD
patients achieved the responsive criteria and were then grouped
into RDG. The remaining 14 sMDD (37.84%) patients were
placed into N-RDG.

Between-Group and Follow-Up
Comparisons of Dynamic Measures
To identify the recurring inter-regional functional interaction
patterns over R-fMRI scan time, all window slices were
automatically divided into four distinct states by a k-means
clustering method in the baseline phase. Figure 2A displays the
recurring functional interaction patterns among four LBNs. State
1 exhibited strong FC between LBN 1 and LBN 2. In state 2, LBN

2, LBN 3, and LBN 4 were interconnected strongly. There was
relatively sparse FC in state 3. Similar to state 1, state 4 had a
strong FC between LBN 1 and LBN 2. Furthermore, stronger FC
of LBN 4 with LBN 1 and LBN 2 was found in state 4 relative

to state 1. Compared with state 1 and state 3, state 2 and state 4
exhibited significantly higher average local efficiency (p < 0.05,

Figure 3).
The between-group differences of the time to occurrence

proportion of each state and average local network efficiency
at baseline were shown in Figure 2. Compared with HC, MDD

patients had a significantly more occurrence proportion in

state 1 (t = 2.177, p = 0.032) and state 3 (t = 2.123, p

= 0.036), but less occurrence proportion in state 2 (t =

−2.627, p = 0.010). We observed that MDD patients showed

significantly lower average local efficiency than HC in state 1

(t = −2.689, p = 0.008), state 3 (t = −2.969, p = 0.004) and

state 4 (t = −2.313, p = 0.023). In state 2, MDD patients

at baseline had significantly decreased dFC strength between
the left amygdala and left cuneus (t = −4.070, p < 0.001)

compared with HC (Figure 4). In sFC analysis, MDD patients

at baseline did not show any significant alteration compared

to HC (p > 0.05).
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TABLE 2 | Demographic and clinical data.

Characteristics MDD HC p-value t/χ2 value

Sex (male/female) 70 (21/49) 43 (16/27) 0.428a 0.629

Age (years) 26.93 ± 9.14 29.42 ± 12.55 0.226b −1.217

Mean FD 0.11 ± 0.05 0.12 ± 0.06 0.300b −1.041

HAMD 28.06 ± 6.67 1.35 ± 1.38 <0.001b 25.647

Duration of illness (months) 7.37 ± 12.60

Episodes

First 43

Recurrence 27

Medication history 29

The data were presented as the mean ± standard deviation. HC, healthy controls; MDD, major depressive disorder; HAMD, Hamilton Depression Rating Scale; FD, framewise-

displacement.
aThe p-value was obtained by a chi-square test.
bThe p-value was obtained by a two-tailed two-sample t-test.

After 12 weeks of antidepressant treatment, MDD patients
in RDG exhibited significant alterations in dynamic measures
compared to those at baseline (Figure 2B). Specifically, patients
in RDG showed increased occurrence proportion in state 2 (t =
2.505, p = 0.020) but decreased occurrence proportion in state
1 (t = −2.463, p = 0.022) and state 3 (t = −2.214, p = 0.037).
No significant alteration was found in dFC strength and average
local efficiency in each state (p > 0.05). Patients in N-RDG did
not show significant alteration after treatment (p > 0.05).

The Predicted RR of HAMD Scores
As shown in Figure 5, the baseline dFC strength in state 2 of
MDD patients significantly predicted their RR of HAMD scores
following treatment (r = 0.440, p = 0.008). In the prediction
model, the medial frontal gyrus (MFG) exhibited the highest
prediction weight among all ROIs. In addition, the sFC did not
predict the RR of HAMD scores significantly (r = −0.057, p =

0.585, Figure 5).

DISCUSSION

The present study investigated the recurring functional
interaction patterns among four LBNs enrolled in emotion
regulation. Four recurring functional interaction patterns over
time were identified. Patients with MDD exhibited abnormal
dynamic measures at baseline, including state occurrence
proportion, state-dependent FC, and state-dependent average
local efficiency. Administrated with antidepressants, the
abnormal state occurrence proportion of patients in RDG was
reconfigured toward a direction of healthy controls. The FC in
state 2 at baseline predicted the RR of HAMD scores significantly
wherein the connectivity of the MFG contributed the most
to prediction.

Recurring Functional Interaction Patterns
In the present study, four states represented distinct functional
interaction patterns among four LBNs implicated in emotion
regulation. State 1, which accounted for more than 30% of
time windows, exhibited a strong interaction between LBN 1

and LBN 2. LBN 1, consisting mainly of the frontoparietal
network including the dorsolateral prefrontal cortex (dlPFC), is
implicated in working memory and response inhibition (10, 40).
LBN 2 covers mainly the lateral ventral prefrontal network and
is functionally associated with the cognition domain, especially
language-related cognitive processing (10, 41). Approximately
90% of the experiments contributing to LBN 1 and LBN 2
were involved in the regulation phase of the emotion process
(10). Most of these experiments implemented reappraisal as a
regulation strategy. Though exerting strong interactions with
each other, these two networks showed sparse connectivity with
LBN 3 and LBN 4. Sparser connectivity could be found in
state 3, of which relatively strong connectivity was concentrated
between LBN 3 and LBN 4. The functional interaction patterns
represented by state 1 and state 3 presented functional separation
between the prefrontal cortex and subcortical regions.

State 2 had strong functional couplings between LBN 2,
LBN 3, and LBN 4. As a network implicated in the cognitive
regulation of emotion, LBN 1 did not show strong coordination
with other LBNs. This could be interpreted by functional
differences between the two regulatory networks along a
dorsal (LBN 1)—ventral gradient (LBN 2) (42, 43). Previous
studies have suggested that dorsal prefrontal regions play an
important role in maintaining the goals of reappraisal in
working memory during emotion regulation (42, 44) but are no
longer required to maintain the monitoring of representations
in working memory after finally selecting one from multiple
representations of stimulus-appropriate reinterpretations which
is mainly supported by ventral prefrontal regions (43, 45). Strong
connectivity between the ventral and dorsal prefrontal regions is
more likely to be found in the selection phase of goal-appropriate
reappraisals where multiple reappraisals need to be represented
in working memory (43). Therefore, the functional interaction
pattern represented by state 2 might be related to the execution of
cognitive reappraisals of emotion. LBN 3 consists of subcortical
regions including the amygdala and is primarily involved in
reactivity and generation of emotion. LBN 4 is composed of the
areas relevant to emotion perception and interoception such as
the insula, precuneus, and posterior cingulate cortex. It serves as
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FIGURE 2 | Intra- and between-group comparisons in dynamic measures. (A) Functional interaction patterns are represented by four states. The mean occurrence

proportion of each state across all subjects was listed above each matrix. (B) The differences of occurrence proportion between MDD and HC, and between

post-treatment and paired baseline responsive depression group. (C) The differences of occurrence proportion between MDD and HC, and between post-treatment

and paired baseline non-responsive depression group. (D) The differences of average local efficiency between MDD and HC. LBN, large-scale brain network; win,

window; HC, healthy controls; Mpre, major depressive disorder patients at baseline; Rpre, responsive depression group at baseline; Rpost, responsive depression

group after treatment. Npre, non-responsive depression group at baseline; Npost, non-responsive depression group after treatment. *p < 0.05 after FDR corrected.

a hub that plays an intermediary role in integrating information
from the prefrontal cortex (LBN 1 and LBN 2) and subcortical
regions (LBN 3). Functional synchronization between LBN 2 and
LBN 3might be associated with the reinterpretations for emotion
reactivity, and LBN 4 maintained and coordinated information
communication courses between them (46).

Reconfiguration for Abnormal Dynamic
Measures
MDD patients exhibited a lower occurrence proportion in state
2 but a higher occurrence proportion in state 1 and state 3.

A lower occurrence proportion in state 2 seemly signified the
difficulty of MDD patients to enter the functional interaction
pattern in which the meaning of their emotional reactivity

could be reinterpreted. By contrast, the functional separation
between prefrontal and subcortical regions which appeared

more frequently in temporal co-evolution of LBNs might be

associated with less tendency or greater difficulties for MDD

patients to regulate their emotions by using cognitive reappraisal.

Cognitive reappraisal is an infrequently used adaptive emotion

regulation strategy in MDD (2). Conversely, patients with
MDD preferentially performed maladaptive emotion regulation
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FIGURE 3 | Average local efficiency of dFC states across all subjects. *p <

0.05 after FDR corrected.

strategies, for instance, rumination (47). Most of the regions in
LBN 3 and LBN 4 are implicated in self-referential processing
and have been reported to engage in rumination (48, 49).
Superfluous immersions in relatively strong connectivity between
these regions might be the neural basis for excessive rumination
in MDD.

Decreased FC between the amygdala and cuneus was only
found in state 2. The amygdala, a core region of the limbic
system known to control emotion processing, plays a major role
in the generation and regulation of emotion (50). Convergent
evidence suggests that the amygdala is responsible for crucial
functions related to depression including the processing of visual
information elicited by emotional stimuli (51). The cuneus
is located in the occipital lobe and is mainly involved in
the processing of visual information (52). We speculated that
decreased FC between the amygdala and cuneus in state 2 might
reflect bias evaluation to emotion stimuli of MDD patients when
performing cognitive reappraisal. We observed that four states
had significantly different network efficiency. The functional
interaction patterns represented by state 1 and state 3 presented
lower efficiency of information transfer than state 2 and state 4.
In addition, MDD patients had lower efficiency of information
transfer in low-efficiency states (i.e., state 1 and state 3). Taken
together, these state-dependent alterations indicated that the
disruption of functional interaction patterns was not constant
but intermittent.

After 12 weeks of antidepressant treatment, normalization
for abnormal occurrence proportion was observed in MDD
patients who responded to treatment. However, state-dependent
alterations in FC and graph-theory measures were not modified
by antidepressant treatment. This indicated that antidepressants
might promote remission of MDD by modulating the dynamic
interaction process between LBNs related to emotion regulation.
Specifically, the prefrontal cortex displayed more frequent
functional communication with subcortical networks compared
to baseline in RDG. Such an effect was potentially relevant to
more frequent employment of adaptive emotion regulation
strategies (e.g., reappraisal) in MDD patients after antidepressant
medication (53). However, reconfiguration for abnormal

occurrence proportion was not found in those who did not
respond to treatment. Similar to previous studies (54), our
results, from the dynamic interaction process among LBNs,
supported the view that adaptive emotion regulation is a key
therapeutic target for effective treatment for MDD (55, 56).

The Dynamic Interaction Pattern With
Predictive Power
The static functional interaction pattern at baseline failed to
predict the RR of HAMD scores after 12 weeks of treatment.
Interestingly, the functional interaction pattern of state 2 at
baseline significantly predicted the RR of HAMD scores in
MDD patients. Although previous studies have underlined the
classifying and predictive ability of dFC (57, 58), most of them
focused on its temporal variation instead of recurring functional
interaction patterns. Our findings highlighted the potential of
state-based dFC analysis in developing biomarkers for clinical
applications. In addition, the FC of the MFG contributed the
most to the prediction. The MFG, a midline frontal region, is
typically implicated in emotion regulation (42). It was thought
to facilitate the generation of purposeful and adaptive behavior
(59). Functional impairments in this area were reported and
related to negatively biased attention in MDD patients (60).
More importantly, a previous study demonstrated that structural
alteration of the MFG was correlated with the improvement
of depressive symptoms following cognitive-behavioral therapy
(61). Our results provide further evidence that the MFG plays an
important role in the effective treatment of depression.

Limitations
Several limitations need to be considered in the present study.
First, the sample size of MDD patients administrated with
antidepressants was relatively small, which might reduce the
generalizability of the work. Future studies with a larger sample
size are imperative to assess the reproducibility of our findings.
Second, the acquisition time of R-fMRI was 8min. More time
points might help to discover more subtle functional interaction
patterns with a low occurrence proportion. Third, some patients
withdrew from the study after baseline and did not undergo
a repeated MRI scan, which may weaken the statistical power
of a longitudinal study. More samples are warranted to offset
this effect in future studies. Finally, our efforts were mainly
concentrated on dFC. It is worth mentioning that emerging
evidence demonstrates the co-evolutionary relationship between
FC and local brain activity (23). Future studies could further
explore co-evolutionary patterns between FC and local brain
activity of LBNs enrolled in emotion regulation.

CONCLUSIONS

Given the adaptive nature and network-level representation
in the brain of emotion, exploring time-varying functional
interactions is important to characterize emotion dysregulation
in MDD. The present study identified several recurring
functional interaction patterns among LBNs enrolled in emotion
regulation and further investigated their abnormal temporal
configuration as well as reconfiguration following antidepressant
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FIGURE 4 | The between-group difference of dFC strength in state 2. L, left; R, right.

FIGURE 5 | The results of dFC strength and sFC as features to predict the RR of HAMD scores. dFC, dynamic functional connectivity; HAMD, Hamilton Depression

Rating Scale; RR, reduction rate; sFC, static functional connectivity.

treatment in MDD. Furthermore, we found that predictive
biomarkers of effective antidepressant treatment were embedded
in the dynamic interactions among LBNs. These findings

demonstrate that the dynamic interactions among LBNs serving
for emotion regulation have the potential to be the target of
clinical intervention for MDD.
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Sleep Disturbances and Depression
Are Co-morbid Conditions: Insights
From Animal Models, Especially
Non-human Primate Model
Meng Li †, Jieqiong Cui †, Bonan Xu, Yuanyuan Wei, Chenyang Fu, Xiaoman Lv*, Lei Xiong*

and Dongdong Qin*

School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China

The incidence rates of depression are increasing year by year. As one of the main

clinical manifestations of depression, sleep disorder is often the first complication.

This complication may increase the severity of depression and lead to poor prognosis

in patients. In the past decades, there have been many methods used to evaluate

sleep disorders, such as polysomnography and electroencephalogram, actigraphy,

and videography. A large number of rodents and non-human primate models have

reproduced the symptoms of depression, which also show sleep disorders. The

purpose of this review is to examine and discuss the relationship between sleep

disorders and depression. To this end, we evaluated the prevalence, clinical features,

phenotypic analysis, and pathophysiological brain mechanisms of depression-related

sleep disturbances. We also emphasized the current situation, significance, and insights

from animal models of depression, which would provide a better understanding for the

pathophysiological mechanisms between sleep disturbance and depression.

Keywords: depression, sleep, non-human primate, brain development, animal model

INTRODUCTION

Sleep is an essential physiological requirement for human and most animals. A mechanistic link is
evident between sleep and depression at the molecular and neurophysiological level. The periodic
regulation of awake and sleep requires the participation of many neurotransmitters, including
excitatory neurotransmitters (such as acetylcholine) and inhibitory neurotransmitters (such as
gamma aminobutyric acid, GABA). Abnormalities of these neurotransmitter systems not only lead
to sleep-wake rhythm disorders, but also can contribute to developing depression. Depression and
sleep disturbances are common co-morbid conditions (1, 2). More than 90% percent of patients
with major depressive disorder will suffer from sleep disorders, which changed the patients’ sleep
structure. A further demonstration of the link between depression and sleep is that sleep can
be improved by most clinically effective antidepressant drugs. Compared with lower mammals,
the sleep of non-human primates (NHPs) is better comparable with that of humans. Recently,
significant progress has been made in the study of using NHPs to establish depression models.
Monitoring the sleep status of animals during modeling will help us further understand the role of
sleep in the development of depression, and provide an objective biomarker for the early diagnosis,
treatment, and efficacy evaluation.
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SLEEP STRUCTURE AND RELATED
NEUROTRANSMITTERS

Sleep is vital for human beings and most animals, and
control mechanisms are embodied in all levels of biological
organizations, from genes and intracellular mechanisms to
cell population networks, and then to all central nervous
systems, including systems that control movement, arousal,
autonomic function, behavior, and cognition. Mammalian sleep
is characterized by the periodic alternation of rapid eye
movement sleep (REMs) and non-rapid eye movement sleep
(NREMs). NREMs includes two stages: slow-wave sleep (SWS)
and light sleep. In humans, SWS and REMs, which are the specific
modes of potential electric field oscillations and neuromodulator
activities, dominate the first half of the night and the latter half of
the night, respectively (3).

The mutual transformation between sleep and wakefulness is
caused by the excitation or inhibition of many neurotransmitters
in the brain, which are released by sleep-promoting neurons
in the anterior hypothalamus or sleep-inhibiting neurons in
the lateral and posterior hypothalamus activity. These neurons
release excitatory or inhibitory neurotransmitters to promote the
brainstem to control the mutual transformation of wakefulness
and sleep (2, 4).

The ascend arousal system mainly comes from a group of
explicit cells with definite neurotransmitters. The arousal system
actually consists of two channels (5). The ascending pathway to
the thalamus is the first branch, which activates the thalamus
and is essential to relay neurons for transmitting information
to the cerebral cortex. The main sources of input from the
upper brainstem to the thalamic-relay nucleus, the thalamic
reticular nucleus, the pedunculopontine, and laterodorsally
tegmental nucleus (PPT/LDT) are a couple of acetylcholine
producing cell populations. The neurons in PPT/LDT discharge
fastest during awake and REMs, and are often accompanied
by cortical activation, loss of body muscle tone and active
dreams. During NREMs, the activity of these cells is much
lower. They are important for the input of reticular nucleus,
because they are located between thalamic relay nucleus and
cerebral cortex. It is very important for arousal that they can
block the transmission between thalamic and cerebral cortex,
thus acting as a gating mechanism. From the reticular structure
and PPT/LDT, monoamine nervous system and parabrachial
nucleus in the upper part of the brain stem, have more extensive
input to the midline of thalamus and tabular nucleus. The
laminar nucleus and midline nucleus are also considered to
play a role in cortical arousal (5). Bypassing the thalamus and
activating the neuronal pathway of the lateral hypothalamic
area, basal forebrain (BF), and the whole cerebral cortex is
the second branch of the ascending arousal system. This
pathway, which covers noradrenergic locus coeruleus, serotonin
dorsal nucleus, and median raphe nucleus, dopaminergic
midbrain periaqueductal gray matter ventral and histaminergic
nodule papillary neurons, is derived from monoamine neurons
in the upper brainstem and caudal hypothalamus. Cortical
input is increased by hypothalamic lateral peptidergic neurons
(containing melanin concentrating hormone or orexin/retinol)

and BF neurons (containing acetylcholine or GABA) (5). Lesions
along this path, especially in the left hemisphere and the rostral
midbrain, produce the most profound and lasting drowsiness
and even coma. The neurons in each monoaminergic nucleus
involved in this pathway discharge fastest during waking, slow
down during NREMs and completely stop during REMs. It
should be noted that all these ascending pathways pass through
the regions at the junction of forebrain and brainstem.While, the
descending pathways responsible for synchronizing phenomena
still remain largely unknown at the brain-stem level.

The pathogenesis of sleep disorder is closely related to
sleep-wake homeostasis, but the specific mechanism remains
still unclear. During NREMs and REMs, different kinds of
neurotransmitters are released in the brain. The interaction
between aminergic neurons and cholinergic neurons at the meso-
pontine junction leads each other to bring about the Ultradian
rhythms alternation of REMs and NREMs. During NREMs,
aminergic inhibition is decreased and cholinergic excitation
is increased. At the onset of REMs, aminergic inhibition is
turned off, cholinergic excitability reaches a peak, and other
outputs are inhibited (2). When awake, the pontine aminergic
system is tensely activated and the pontine cholinergic system
is inhibited. In addition to aminergic and cholinergic neurons,
other neurotransmitter systems are also involved in modulating
REMs/NREMs alternation and may interact with aminergic
and cholinergic systems (2, 6, 7). Extrinsically augmented
dopaminergic neurotransmission can influence both REMs
and NREMs cycles. Moreover, gamma-amino butyric acid and
glutamate also affect the REMs/NREMs cycle (2).

In short, the growth and decline of these neurotransmitters
promote the mutual transformation between sleep and wake.
If these related neurotransmitters are released abnormally,
it will cause sleep problems, such as difficulties in falling
asleep and maintaining sleep state, changes of REMs latency,
abnormal REMs behavior, and disturbed alternating pattern
of REMs/NREMs.

CLINICAL CHARACTERISTICS AND
RELATED NEUROTRANSMITTERS OF
SLEEP DISORDERS IN DEPRESSION

Depression is the main cause of the burden of mental health-
related diseases in the world, and about 300 million people
around the world are affected by depression (8). One aspect
of efforts to understand depression focuses on its relationship
with sleep. In many cases, the onset of depression is announced
through sleep disorders, and sleep deterioration occurs before
depression and manic episodes (9). There are many forms of
sleep disorders reported in patients with depression. It may
be only exhibited by the shortening of sleep time, but it also
indicates a reduction in sleep efficiency. The latter is defined
as the ratio of total sleep time to total time spent in bed
over the night. Lack of sleep increases the risk of depressive
episodes and depression relapses. Likewise, depression increases
the risk of sleep disorders. However, the self-assessment of sleep
quality in patients with depression is unreliable. Similarly, there
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are differences in the subjective and objective assessment of
daytime alertness (10). This leads to bias in the evaluation of
sleep efficiency.

Epidemiological investigations confirm that there is a closer
relationship between insomnia and the onset of depression. It is
reported that most patients often have insomnia and depressive
episodes at the same time (11). Approximately 90% of major
depressive disorder (MDD) patients have been found to suffer
from sleep disorders, including initial insomnia, difficulty in
sleep maintenance, non-restorative sleep, and early morning
awakenings (12, 13). In reality, the most common subjective
sleep complaints reported by depressed patients are insomnia
(up to 88%) and hypersomnia (27%) (14). The insomnia and
emotional symptoms are bidirectional correlated that poor sleep
may precede the onset of depression, and depressive mood
may also disrupt sleep patterns. In addition, patients with
MDD are three times more likely to suffer from insomnia
than those without (15, 16). Furthermore, fatigue, hypersomnia,
and sleepiness are closely related to depressive symptoms (14).
Many depressed patients complain about non-recovery sleep and
excessive daytime sleepiness (16), and about 15% of patients
report symptoms of daytime sedation and hypersomnia (17).
However, these findings are inconsistent (16). Depression and
hypersomnia are two conditions linked in a complex and
bidirectional manner. In addition, many patients with depression
call their complaints a combination of daytime sleepiness and
nighttime anxiety.

Since the 1960s, polysomnography (PSG) sleep studies
have repeatedly shown that depression is also associated
with disrupted sleep architecture. These abnormalities include
increase in RA (REMs activity) and RD (REMs density), as well
as a decrease in REMs latency and SWS (18). During REMs,
patients with depression often show short latency, prolonged
cycle, and increased density (19). Disorders of REMs usually
persist throughout the clinical episode, and it is considered
to increase the possibility of recurrence, and may reduce the
therapeutic effect (19–21). After antidepressant treatment, the
number of REMs is decreased and the latency of REMs is
increased. Most antidepressants inhibit REMs in patients and
healthy volunteers (22).

The increase of serotonin content may be the main reason
affecting REMs (23). Antidepressants that increased the contents
of serotonin (5-HT) in synapses are effective inhibitors of
REMs. 5HT1A agonists can be used as antidepressants and can
significantly inhibit REMs (24). However, tryptophan depletion
leads to a decrease in serotonin, which has been shown to reverse
REMs inhibition caused by antidepressants (25). In addition,
trazodone and nefazodone are also used as antidepressants
because they have a strong antagonistic effect on serotonergic 5-
HT2 receptors, which often promotes sleep and improves sleep
continuity (26). The percentage of REMs was most significantly
decreased in the early stage of treatment. Additionally, a
subsequent study evaluated the changes in sleep structure of 20
patients with unipolar MDD after administration of sustained-
release bupropion, and the results showed that 8 weeks of
bupropion treatment significantly prolonged REMs latency,

increased REMs activity and density in the first REMs period,
which led to increased total REM density (27).

Glutamatergic and GABAergic neurons also play a role
in the generation of REMs (28). Ketamine is a rapid-
acting antidepressant (29), and AMPA-mediated increased
neurotransmission is the basis of the antidepressant-like
behavioral effects of ketamine (30, 31). The enhancement of
AMPA receptor signal is participated in the pathophysiology
and the mediation of ketamine-induced rapid antidepressant
treatment (32, 33). Importantly, increased levels of ionic AMPA
receptor could promote net synaptic strength and induce
prolonged waking time in rodents and humans (34).

The REMs density of patients with depression continues to
increase, which is regarded as an endophenotype. The reduction
of the initial latency and the delta sleep ratio (DSR, the
ratio of SWS between the first two NREMs episodes) of the
rapid eye movement can be explained by cholinergic-aminergic
imbalance (35). The monoaminergic inhibition of PPT/LDT
cholinergic cells in patients with depression is weakened and/or
the cholinergic-driven effect in pontine reticular formation
is enhanced, resulting in an increase in REMs tendency
and intensity.

The initiation and maintenance of NREMs also seem to
be dependent on the role of monoamine neurotransmitters
(26). Sedative antidepressants enhance SWS and prolong sleep
duration. For instance, selective serotonin reuptake inhibitors
(SSRIs) and non-sedating tricyclic antidepressants (TCA) can
result in lighter sleep. In patients with depression, SWS and
DSR tends to be low (36, 37). Compared with REMs latency,
the measurement of SWS and DSR distribution may be a more
reliable predictor of clinical response of antidepressant treatment
and recurrence of depressive symptoms. Higher DSR may be
more conducive to the treatment of depression (38). Some lines
of evidence suggest that ketamine administration significantly
increased the intensity of both SWS and DSR in humans and
rats (39–41).

In addition, other types of antidepressants can also improve
sleep. For example, antidepressants with anti-histaminergic
action, such as mirtazapine and ipsapirone, act on their own
receptors to support homeostatic maintenance of monoamine
levels, block specifically monoamine receptors to enhance
serotoninergic neurotransmission. Some patients’ sleep can
become better even after the first treatment of mirtazapine (42).
However, increased levels of noradrenergic and dopaminergic
neurotransmission, and raised activation of serotonergic 5-HT2
receptors can worsen the quality of sleep, which are also
adverse effects of several antidepressants, such as serotonin and
norepinephrine reuptake inhibitors, norepinephrine reuptake
inhibitors, monoamine oxidase inhibitors (MAOI), SSRIs, and
activated TCA (43). During REMs, monoaminergic neurons
reduced significantly their discharge rate or stop their activity,
but cholinergic neurons become highly active (44). However,
MAOI increases the amounts of monoamine by preventing
enzyme degradation and tends to cause the absence of REMs.
One possible explanation is the antagonism of three receptors,
namely H1 histamine or cholinergic receptor and postsynaptic
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TABLE 1 | Comparison of different animal models used to study sleep disturbances and depression.

Animal

models

Main application fields Pros Cons References

Zebrafish Molecular mechanisms of sleep/wake rhythm Low cost; high gene-editing efficiency and

relatively well-defined behavioral

phenotypes

Not yet evaluated for depression-related

sleep disturbances

(47–57)

Cat Neuroendocrine mechanisms of sleep and

sleep deprivation

Quantitative research of neurotransmitters Not yet evaluated for depression and

depression-related sleep disturbances

(58–60)

Dog Sleep-wake cycle; narcolepsy; geriatric

insomnia; obstructive sleep apnoea;

sleep-associated epilepsy; and REMs

disorder

Shared risks of many sleep disturbances

with humans

More variable and fragmented sleep

pattern; not yet evaluated for

depression; and depression-related

sleep disturbances

(61–67)

Rodents Depression and sleep homeostasis; sleep

structure; sleep-wake cycle; neurotransmitter

receptor sensitivity and neuroendocrine

stress response; as well as the effects of

antidepressants on sleep

Low cost; easy to manipulate and

gene-editing

Nocturnal animals; shorter durations of

REMs and NREMs cycles

(68–82)

Non-human

primates

Sleep-related neurobiology; neuroendocrine;

and behavioral pharmacological studies

Highly similar to humans in brain structure,

behavior, metabolism, sleep

characteristics, and circadian rhythms

Difficult to directly measure mood or

thoughts; limited behavioral screening

tools; and lack of the effects of

antidepressants on sleep

(83–97)

5HT2C receptor (26, 45). Therefore, most antidepressants
alleviate depressed symptoms by improving sleep quality.

ANIMAL MODELS USED IN THE STUDY OF
SLEEP DISTURBANCES AND
DEPRESSION

It is necessary to obtain the best animal model for studying
disease in biomedical research. Validity of animal models
depends on the extent to which how they can mimic human
diseases. Researchers have made exogenous and endogenous
animal models to simulate the symptoms of depressed patients
and elucidate the mechanisms of antidepressant action, involving
acute and chronic stress model, secondary depression model,
and genetic model (46). Translation validity of animal models
is the key to sleep disorders research. As shown in Table 1,
zebrafish, mice, rats, cats, dogs, and monkeys are generally useful
to develop animal models to study sleep disorders (49, 62, 98–
101). Among them, the most used laboratory animals are mice
and rats. However, they are quite different from humans as
they are nocturnal and adopt a monophasic sleep schedule.
While, humans follow a polyphasic sleep pattern and are very
flexible in choosing the sleep time (80, 102). Similar to humans,
more fragmented and polyphasic sleep patterns are observed in
monkeys, and they are generally active during the day and sleep
at night (84). In view of this, compared with other animals, the
sleep pattern of monkeys is closer to that of humans.

RODENT MODELS

Rodents are more usual choice of preclinical models to develop
new pharmacological and non-pharmacological strategies. In the
study of sleep deprivation, rodents (i.e., rats, mice) and humans
have many similarities in sleep electroencephalogram (EEG) and

sleep structure (103). External stressors or risk factors of diseases
can affect the number or pattern of REMs (22, 104, 105). In
humans, REMs latency is negatively correlated with the severity
of depression (37). In rodents, changes in the REMs can precede
those of other sleep/wake stages. For example, mice that were
applied to water immersion for 2 h and restraint stress exhibited
an immediate reduction in REMs (106).

As for the effect of stress on rodents’ total sleep time, the
primary stressors are immobilization and mild electrical shock.
Immobilization increased the time spent in SWS and REMs,
while electrical shock resulted in a decrease in total sleep time and
total REMs time (107). Similarly, fear conditioning paradigms
can also induce a decrease in REMs during both the shock
training and cue exposure (104). Chronic unpredictable mild
stress can lead to changes in the amplitude of both physiological
(i.e., locomotion, temperature) and molecular circadian rhythm,
which may cause depressive-like behaviors (108).

Continuous light exposure (LL) increases depressive-like
behavior in mice, and light exposure at night (LAN) can lead to
depressive-like behavior in diurnal rodents, such as grass rats and
hamsters (109–111). This may be because LL brings about the
interrupted rhythm of locomotion, temperature, and hormonal
release, causing the disruption of circadian rhythm, and increases
of NREMs during the rest period and REMs in the active period
(112, 113).

For social species such as rats and mice, repeated fighting
and/or defeat may be a more natural source of stress. Often,
the consequences of chronic social defeat stress (CSDS) can
persist until the termination of the stressors, which makes it a
particularly attractive method to model stress-related psychiatric
illnesses (114). Previous studies have found that CSDS has a
direct effect on subsequent sleeping. Specifically, it can increase
both the total time of REMs and NREMs, as well as the density
of NREMs. However, the number of REMs is significantly
decreased in the first few hours after conflict (114, 115). Another
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experiment also reported a brief increase in REMs time following
10 days of social conflict, but no changes in SWS were detected
(115, 116). Interestingly, there was no difference in NREMs and
slow-wave activity between winner and loser, suggesting it is a
consequence induced by the conflict process.

NON-HUMAN PRIMATE MODELS

NHPs bridge the gap between rodents and humans (117). Like
humans, NHPs have stable sleep at night and some nap during the
day. Many kinds of non-human primates, such as baboon, Kenya
baboon, South African ape, macaque, cynomolgus monkey, Pada
monkey, lemur, and chimpanzee, can be used to study sleep.
By comparing the sleep of non-human primates, researchers
generally believe that chimpanzee, olive baboon, and rhesus
monkey are better model animals. In monkeys, four sleep EEG
patterns can be easily identified. Due to its stable and perfect
sleep architecture, macaque has become the best model to study
the biological characteristics of human sleep (118–121). During
the whole night, macaques experienced the alternation of awake,
NREMs and REMs, and the total sleep time of rhesus monkey is
about 10.5 h per day. It has been found that REMs time accounts
for 23%, each of which lasts about 6min and occurs every 51min.
In the early stage, it is mainly deep sleep, such as SWS.While, it is
mainly REMs in the late stage of sleep. These sleep characteristics
are very similar to humans that the interval of this cycle is
about 90min. Nevertheless, in rats, the interval is only 13min.
Like humans, obvious theta waves cannot be recorded in the
hippocampus during macaques’ sleep (122, 123).

EEG is a common method in sleep research, which can
provide objective functional indexes for sleep (124). Although
EEG can be performed in constrained animals under laboratory
conditions, this technique is invasive. Even if it is minimally
invasive, it also needs to drill holes in the skull and implant
electrodes directly on the brain. PSG plays a cornerstone role in
long-term recording of sleep, and has become the gold standard
to evaluate sleep disorders. The recorded parameters include
the brain activity (EEG), electrooculogram (EOG), expanded
EEG montages, and transcutaneous or end-tidal capnography
waveform, which are used to comprehensively monitor the
normal and abnormal physiological indicators during sleep (125).
However, an important limitation of PSG is that it requires
electrodes and sensors (126). In addition, expensive and long-
term recording intervals may be another limitation. Obviously,
these are difficult and impossible to use in freely moving
monkeys. A recent study compared videography and actigraphy
methods in 10 cynomolgus monkeys during seven nights. It
is verified that in the sleep study of NHPs, actigraphy can be
regarded as a supplementary technique for routine EEG and/or
video analysis to measure the sleep (127).

Researchers have used NHPs to make great efforts in the
research of depression. It has been demonstrated for the first time
that long-term intracerebroventricular administration of IFN-
α (5 days/week for 6 weeks) can induce the monkeys showing
considerable depressive-like symptoms with changes in the
concentration of monoamine metabolites (128). The relationship

between early adversity, chronic stress and depression was
also investigated in adolescent monkeys. Eight male rhesus
monkeys went through unpredictable chronic stress for 2
months and exhibited significant depression-like behaviors
(88). The mechanisms underlying stress-induced depression
were also explored in monkeys, and it was found that
cortisol hypersecretion interacted with stress to accelerate the
development of depressive behaviors (129).

In addition, researchers have employed NHPs animal model
to make many beneficial explorations on the association between
light deprivation and depression. The results showed that
monkeys could develop the main symptoms of seasonal affective
disorder under short lighting conditions (130). Analogous to
depression in humans, sleep disorders have been also reported
in spontaneous depressed monkeys (86). Notably, only the
hypersomnia subgroup of spontaneously depressed monkeys
shows a specific response to acute ketamine administration,
characterized as extended wakefulness and shortening of
nocturnal sleep. As a matter of fact, these changes are similar
to sleep deprivation in depressed patients, suggesting alternation
of nocturnal sleep pattern might help improve depressed mood
(86, 119, 131).

CONCLUSION AND PERSPECTIVES

There is increasing evidence that sleep plays a causal role
in emotional processing and regulation (132). Depression
and sleep disturbances are common co-morbid conditions,
and almost all depressed patients show some types of sleep
disturbances (133, 134). Most antidepressants can change
sleep, and the effects appear to be most significant and
consistent on REMs (135). Selective REMs deprivation (such
as forced awakenings) can produce an antidepressant effect,
illustrating the closer association between REMs regulation
and mechanisms involved in the development of depression
(136). Some neurotransmitter reuptake inhibitors can alleviate
depression by suppressing REMs through inhibition of serotonin
and norepinephrine reuptake (26). However, many questions
remain to be answered in future studies. Firstly, in previous
studies, it was found that the effects of antidepressants on
sleep initiation and maintenance were inconsistent. Secondly,
the mechanism of different effects of antidepressants on sleep
continuity is unclear. In rodent experiments, many paradigms
of chronic stress have been used to simulate the pathogenesis
of human depression, but it is hard to provide a unified
description about the impact of chronic stress on sleep patterns.
In fact, in addition to the types of stress, the number and
persistent time are also important factors for stress responses,
which must be carefully considered. NHPs are suitable animal
models for experiments related to sleep, however, the study of
depression and sleep disorders is far from enough. Although
researchers have made continuous efforts and good progress
in relevant animal models, it must be recognized that there
are deficiencies.

In any way whatever, the research on animal models
of sleep disorders provides a good clue and basis for
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clinical diagnosis and treatment of depression. NHPs
are considered as a further valuable and translational
animal model, which is necessary for sleep and related
diseases (137, 138). It is also an important entry
point for increased efforts dedicated to collaborative
translational endeavors.
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Major depressive disorder (MDD) is a common and highly debilitating condition that

threatens the health of millions of people. However, current diagnosis of depression

relies on questionnaires that are highly correlated with physician experience and hence

not completely objective. Electroencephalography (EEG) signals combined with deep

learning techniques may be an objective approach to effective diagnosis of MDD. This

study proposes an end-to-end deep learning framework for MDD diagnosis based

on EEG signals. We used EEG signals from 29 healthy subjects and 24 patients

with severe depression to calculate Accuracy, Precision, Recall, F1-Score, and Kappa

coefficient, which were 90.98%, 91.27%, 90.59%, and 81.68%, respectively. In addition,

we found that these values were highest when happy-neutral face pairs were used as

stimuli for detecting depression. Compared with exiting methods for EEG-based MDD

classification, ours can maintain stable model performance without re-calibration. The

present results suggest that the method is highly accurate for diagnosis of MDD and

can be used to develop an automatic plug-and-play EEG-based system for diagnosing

depression.

Keywords: depression recognition, electroencephalogram (EEG), convolutional neural network (CNN), end-to-end,

EEGNet

1. INTRODUCTION

Depression is one of the most prevalent mental disorders. Patients with depression experience
a severely impaired quality of life and are at increased risk of suicide (1–3). Patients infected
with COVID-19 experience sleep disorders and are at increased risk of anxiety or depression, all
of which are psychological complications (4–7). Yet depression is frequently undiagnosed and
untreated because of a lack of effective therapies and inadequate mental-health resources (8). The
onset of depression is usually gradual, but can be abrupt, and its progression throughout life
varies considerably. Symptoms of depression often occur along with emotional, neurovegetative,
and cognitive symptoms, and since they are commonly present in other psychiatric disorders and
medical conditions, detection of depressive syndrome is problematic.

Identification of effective biomarkers for major depression is of great importance for improving
the diagnosis and effective treatment of this common and debilitating neuropsychiatric disorder.
Several different treatments are currently available, including a wide variety of antidepressant drugs
(9–11), electroconvulsive therapy (ECT) (12), repetitive transcranial magnetic stimulation (rTMS)
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(13), and deep brain stimulation (DBS) (14). However, half of
patients with depressive disorder do not respond to current
treatments. Therefore, it is necessary to discover new brain
activity mechanisms and specific biomarkers for patients
who respond to treatment in order to predict the onset
and course of the disease, increase the therapeutic response,
and enable detection of those patients who are resistant to
individual therapies.

In recent years, use of non-invasive sensor-based methods,
such as electroencephalography (EEG), has been widely reported
in the literature (15, 16). One of the most remarkable research
efforts has been in the area of efficient neural network-
based approaches to analysis of EEG signals for automatic
assessment of mental disorders such as major depressive disorder
(MDD) and bipolar disorder (BD). Indeed, EEG is a non-
invasive, effective, and powerful tool for recording the brain’s
electrical activity and diagnosing various mental disorders such
as MDD, BD, anxiety (17), schizophrenia (18), and sleep
disorders (19). In the case of depression, the body releases
signals into the brain that affect neuronal production and
communication, which slows or otherwise changes some regions
of the brain. Variations in voltage resulting from changes in ionic
current within the brain’s neurons contribute to EEG signals

FIGURE 1 | An EEG End-to-End Depression Recognition Framework.

and might help to diagnose mental disorders like depression.
Development of robust approaches to analysis of brain signals is
challenging because of their complexity and significant variability
related to age and mental state. Moreover, EEG signals are
frequently affected by different types of noise due to eye
blinking and body motion (20). It is needed a deep learning
technique that can effectively learn brain activity patterns from
EEG signals.

To achieve the above requirements, we present a novel end-to-
end architecture, supervised EEG-based event-related potential
(ERP) classification. The EEG database used here is small and
does not require complex EEG pre-processing. This method not
only successfully extracts information across different subjects for
ERP decoding, but also accomplishes three tasks simultaneously.

The remainder of this article is structured as follows:We firstly
provide background and introduce the database, thenwe describe
the structure of the proposed method, finally, experimental
results are presented and discussed.

2. MATERIALS AND METHODS

This section introduces the EEG depression database, signal pre-
processing, evaluation metrics, and details of EEGNet and how it
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can be used to recognize depression. The end-to-end depression
recognition framework is shown in Figure 1.

2.1. Depression Database
For depression recognition, we chose the multi-modal open
dataset for mental-disorder analysis, i.e., the MODMA dataset.
The dataset included 128-channel ERP recordings in Figure 2,
from 24 subjects with MDD and 29 healthy controls (HCs) in
the age range of 16–52 years (21–23). The sampling frequency
was 250 Hz. The ERP experiment was a dot-probe task, and
its cue stimuli included three kinds of emotional-neutral face
pairs, namely happy-neutral (Hcue), sad-neutral (Scue), and fear-
neutral (Fcue). In the formal experiment, subjects sat 60 cm in
front of a monitor and were asked to focus on the emotion-
neutral face pairs randomly presented as targets at the left and
right positions. When these face dots appeared, the subjects
were asked to press buttons on the reaction box as quickly and
accurately as possible; they rested after completing each module.
The task consisted of three parts (Hcue, Fcue, and Scue), each
with 160 trials. At the beginning of each trial, a fixed white cross
appeared on the center of the screen, starting at 300 ms and
continuing throughout the experiment. Emotional-neutral pairs
of face stimuli were presented on the screen as 500 ms cues,
and the faces were arranged in a pseudo-random order. After a
short interval (about 100–300 ms), the point probes randomly
appeared at the left and right positions of the fixed cross for 150
ms. At the same time, participants were asked to identify the
location of the points and to record their responses by pressing
a button on the reaction box with their index finger. If the
system did not receive responses within 2 s, participants would
be directed to a subsequent trial and a black screen was then
displayed for 600 ms. This process proceeded gradually until a

FIGURE 2 | Topological structure map of 128-electrode channels mapped to

a two-dimensional picture. The circle represents the electrode, and the label

inside is the serial number and name of the electrode.

block was completed. Each block was repeated until the entire
task was complete. The entire experimental task was finished
in 25min.

2.2. Pre-processing Engineering
We used EEGLAB toolbox in MATLAB to preprocess the raw
data as follows Brunner et al. (24): (1) an EEG dataset was
converted to an average for reference; (2) the data were filtered

TABLE 1 | EEGNet model structure and parameters.

Layer (type) Size Output Shape Param #

input_1 (InputLayer) (None, 128, 125, 1) 0

conv2d (Conv2D) 8#(1,100) (None, 128, 125, 8) 800

batch_normalization

(BatchNormalization)

(None, 128, 125, 8) 32

depthwise_conv2d

(DepthwiseConv2D)

(128,1) (None, 1, 125, 16) 2048

batch_normalization_1

(BatchNormalization)

(None, 1, 125, 16) 64

activation (Activation) elu (None, 1, 125, 16) 0

average_pooling2d

(AveragePooling2D)

(1,4) (None, 1, 31, 16) 0

dropout (Dropout) 0.5 (None, 1, 31, 16) 0

separable_conv2d

(SeparableConv2D)

16#(1,16) (None, 1, 31, 16) 512

batch_normalization_2

(BatchNormalization)

(None, 1, 31, 16) 64

activation_1 (Activation) elu (None, 1, 31, 16) 0

average_pooling2d_1

(AveragePooling2D)

(1,8) (None, 1, 3, 16) 0

dropout_1 (Dropout) 0.5 (None, 1, 3, 16) 0

flatten (Flatten) (None, 48) 0

dense (Dense) 2 (None, 2) 98

softmax (Activation) (None, 2) 0

Total params: 3,618

Trainable params: 3,538

Non-trainable params: 80

FIGURE 3 | Leave-One-Subject-Out Cross-Validation.
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using a Hamming-windowed sinc FIR filter (0.3–100 Hz) to
remove the 50 Hz power interference; (3) the continuous EEG
dataset was converted to epoched data by extracting data epochs
that were time-locked [-100 500]to specified event types (Hcue,
Fcue and Scue); (4) channel baseline [-100 0] means were
removed from the epoched EEG dataset; (5) an independent
component analysis decomposition of the EEG dataset was run
and specified components were removed; and (6) their activities
were subtracted from the EEG dataset using the Adjust algorithm,
as shown in Figure 1. The format of the preprocessed data is
[trials, channels, samples, kernels], where trials = 480, channels =
128, samples = 125, kernels = 1.

2.3. EEGNet for Depression Recognition
EEGNet is a compact convolutional neural network (CNN)
architecture that can be trained with minimal data to extract

TABLE 2 | Confusion Matrix and Evaluation Index.

Confusion Matrix

Predicted Label

Normal Depression

T
ru
e
L
a
b
e
l

Normal True Positive (TP) False Negative (FN)

Depression False Positive (FP) True Negative (TN)

E
va
lu
a
tio

n
In
d
e
x

(1) Accuracy =
TP+ TN

TP+ TN+ FP+ FN
.

(2) Precision =
TP

TP+ FP
.

(3) Recall =
TP

TP+ FN
.

(4) F1-Score =
2× Precision× Recall

Precision+ Recall
.

(5) Kappa =
Pa − Pe

1− Pe
, Pa =

TP+ TN

TP+ TN + FP+ FN
,

Pe =
(TP+ FP)(TP+ FN)+ (FN + TN)(FP+ TN)

(TP+ TN + FP+ FN)2
.

neurophysiologically interpretable features. A visualization and
complete description of the EEGNetmodel are shown in Figure 1
and Table 1. It primarily included four blocks: convolution,
depthwise convolution, separable convolution, and classification.

In the convolution block, we fitted eight 2D convolutional
filters of size (1, 100), outputting eight feature maps containing
the EEG signal at different band-pass frequencies. Then we added
a layer for batch normalization tomake the training process more
stable and reduce overfitting (25).

As the convolutions in the depthwise convolution block

were not fully connected to all previous feature maps, we used
a depthwise convolution of size (128, 1) and depth = 2 to
learn a spatial filter, which reduced the number of trainable

parameters that required fitting. When this operation was used
for EEG depression recognition, it provided a direct way to

learn spatial filters for each temporal filter and enabled efficient
extraction of frequency-specific spatial features. We applied
batch normalization along the feature map dimension before

applying exponential linear unit (ELU) nonlinearity. Then, we
used a dropout layer of probability = 0.5 to help regularize and

an average pooling layer of size (1, 4) to reduce the sampling rate.
In the separable convolution block, we used a separable

convolution with a depthwise convolution of size (1, 16)
followed by a pointwise convolution. The main benefit of
separable convolutions is a reduction in the number of

parameters that require fitting and explicitly decoupling the
relationships within and between feature maps by first learning
a kernel that summarizes each feature map, which optimally
combines the outputs. When it was used for EEG-specific
applications, this operation guided the summarizing of individual
feature maps in time (depth convolution) and their optimal
combination (pointwise convolution). This operation was also
perfectly suited to EEG signals, since different feature maps
can represent informative data over different time scales. In
addition, average pooling layers of size (1, 8) were used for
dimensionality reduction.

FIGURE 4 | Recognition scores of end-to-end depression recognition.
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In the classification block, multi-dimensional features were
downsampled to one dimension and directly passed to a softmax
classification with 2 units to identify two categories, normal
and depression.

2.4. Evaluation Index and Experimental
Settings
We adopted the leave-one-subject-out cross-validation
(LOSOCV) method to separate the training set from the
validation set. Specifically, the training set was used to train

the model, and the validation set was used to evaluate its
generalization ability, as shown in Figure 3. The subject data was
divided into 53 folds, with each representing the complete dataset
of a subject. This protocol was suitable for small databases, could
be trained by almost all the data, and was tested using one
dataset. The experiment had no random factors, and the entire
process was repeatable.

After modeling, several indicators were needed to measure
the generalization ability of the model and further adjust the
parameters to gradually optimize themodel. As shown inTable 2,

FIGURE 5 | Scatter plot of four experimental results (Accuracy) for each subject.

FIGURE 6 | Confusion matrix for four experiments. (A) All trials, (B) Fcue trials, (C) Scue trials, and (D) Hcue trials.
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the first indicator was the confusion matrix. When the model
diagnosed a normal person as normal, it was a true positive (TP);
otherwise it was a false negative (FN). The model assigned a
true negative (TN) when it diagnosed a depressive patient with
depression; otherwise it was a false negative (FN). Five additional
indicators were used to evaluate model classification, including
(1) Accuracy: the proportion of correct to total samples, with each
category treated equally; (2) Precision: the correct proportion of
the positive samples predicted by the classifier; (3) Recall: the
proportion of correctly predicted positive samples to all positive
samples; (4) F1-Score: precision and recall affected each other, so
in order to balance the two indicators and take into account the
category imbalance, the weighted harmonic mean of precision
and recall was used; (5) Kappa coefficient: an index used to test
for consistency, usually to measure the effect of classification.
Consistency was a measure of whether the model’s predicted
result was consistent with the actual classification result. The
value range of all these indicators was [0, 1]. The larger the value,
the better the predictive ability of the model.

We fitted the Adam optimizer model, minimizing the
categorical cross-entropy loss function. We ran 50 training
iterations (epochs), performed validation stopping and saved the
model weights, which produced the lowest validation set loss.
During model training, the data was divided into training and
validation sets using the train_test_split() function in the Python
sklearn library, with the validation set assigned a proportion
of 0.3.

3. RESULTS AND DISCUSSION

Four types of experiment in which EEG signals were collected
were classified by the type of face-pair stimulus used.

Experiment 1 (All): Subjects were stimulated by all three types
of face pairs (480 trials for each subject);
Experiment 2 (Fcue): Subjects were only stimulated by fear-
neutral face pairs (160 trials for each subject);
Experiment 3 (Scue): Subjects were only stimulated by sad-
neutral face pairs (160 trials for each subject);
Experiment 4 (Hcue): Subjects were only stimulated by happy-
neutral face pairs (160 trials for each subject).

3.1. Recognition Scores for End-to-End
Recognition of Depression
Figure 4 lists the average values of the five metrics (accuracy,
F1 score, recall, precision, and kappa) for the four sets of
experiments. With the preprocessed signal used as input, the
highest average classification accuracy (90.98%) obtained by
LOSOCV was for Experiment 4. Similarly, the values of the
other four indicators (F1 score: 90.83%; recall: 91.27%; precision:
90.59%; kappa: 81.68%) were all highest in Experiment 4 (i.e.,
Hcue trials). The scores from the experiments using the fear-
neutral and sad-neutral face pairs were similar, with both being
significantly lower than for the Hcue trials. Therefore, happy-
neutral face pairs can be used as emotion-evoking materials
to effectively discriminate between MDD patients and HCs.
However, all the recognition scores in Experiment 1 were low,
indicating that brainwaves may depend on the type of stimulus,
misleading the network model and thus failing to distinguish
depression from normal.

3.2. Accuracy of Experimental Results for
Each Subject
In order to analyze the performance of the model, the accuracy
of the four types of experiment is shown for each subject

FIGURE 7 | Model optimization curve.
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in Figure 5. The first 24 subjects in the figure experienced
MDD, and subjects 25–53 were HCs. The scatter plot shows
the distribution of the four experimental results. Among the
MDD subjects, the correct rate for the first seven subjects
was relatively low and, except for one experiment, those
for subjects 8–24 were above 70%. The results show that
recognition was better for HCs than for MDD subjects, and that
Experiment 4 (Hcue) elicited results that were better than for the
other experiments.

3.3. Confusion Matrix
Figure 6 shows that the highest recognition rate for the confusion
matrix (95.37%) was that for HCs from Experiment 3. The
highest recognition rate for MDD patients was 86.48% from
Experiment 4. Differences in the number of MDD and HC
subjects in the database (depressed: 24; normal: 29) and
the small number of categories in this model may account
for poor learning in some experiments and slightly different
recognition rates.

3.4. Model Optimization
Themodel used the Adam optimizer, cross-entropy loss function,
and 30% of the training set as the validation set. The results of
50 iterations of training are shown in Figure 7. It can be seen
from the figure that the training loss dropped rapidly within 5
rounds, and nearly reached a minimum after 18 rounds. The
validation loss had the same downward trend as the training
loss, and it also quickly approached a minimum, indicating that
the model was optimizing quickly. The training and verification
accuracy rates rose to 100% in the tenth round, which shows that
the model had a strong learning ability. The model had a high
recognition rate when the epoch was very small, indicating that
it can learn the discriminative characteristics of depression very
well. This performance may have been related to the small size of
the database.

3.5. Comparison With Existing Methods
Due to differences in methodology, datasets, and data usage
strategies, it is difficult to fully assess the advantages and
disadvantages of various methods based entirely on classification
accuracy. However, by comparing indicators such as accuracy,
the advantages and disadvantages of various methods can at
least be partially evaluated. Table 3 compares the existing state-
of-the-art methods with our method in terms of the number
of subjects, type and number of channels, research method,
number of features, and classification accuracy. Compared to
other methods, our method has great advantages. Compared to
the other methods, ours has several advantages. First of all, it
should be recognized that feature-level fusion (26), multi-variate
pattern analysis (27), Case-Based Reasoning Model (29), KNN
(31) and our method all have class imbalances (i.e., the difference
in the number of subjects between MDD and HC is greater than
1), but nevertheless our method has the highest accuracy. Class
imbalances cause models to learn well for a large number of
categories but poorly for a small number of categories. Secondly,
since depression is classified according to the subject, LOSOCV is
more suitable than 10-fold cross-validation, and can ensure that
data from the same subject are clustered together. Ten-fold cross-
validation may cause data from the same subject to be part of
both the training and test sets, which will mislead the classifier to
identify the subject itself rather than depression. Therefore, based
on this analysis of data balance and test protocol, Brain function
networks (33) has the best recognition performance, but our
method is only 1.75% less accurate than multi-modal fusion (28).
Furthermore, our method need not extract handcrafted features
or ensure that the samples are balanced.

4. CONCLUSION

This article proposes an MDD deep learning diagnostic
framework for depression recognition. Based on the framework,
the EEG signals evoked by happy-neutral face pairs were

TABLE 3 | Comprehensive comparison of existing state-of-the-art methods with proposed method.

Method Subject Channel Feature Protocol Accuracy

(MDD,HC) (%)

Feature-level fusion (26) (86, 92) EEG (3)
60 linear and

Ten-fold CV 86.98
36 nonlinear features

Multivariate pattern analysis (27) (27, 28) EEG (128) 249 EEG features LOSOCV 92.73

Multimodal fusion (28) (81,89)
EEG (3) 6 EEG features

Nested CV 86.64
and voice(1) and 15 voice features

Case-Based Reasoning Model (29) (86, 92) EEG (3) 113 EEG features Ten-fold CV 91.25

SVM (30) (20, 19) EEG (64) 3 potential biomarker Ten-fold CV 89.7

KNN (31) (92, 121) EEG (3) 270 features Ten-fold CV 79.27

Independent component analysis (32) (13, 13) EEG (64) - - -

Brain Function Networks (33) (24, 24) EEG (64) LC-CC in theta band Ten-fold CV 93.31

Correlated Feature Selection (23) (17, 17) EEG (128) 10 EEG features LOSOCV 88.94

Ours (24, 29) EEG (128) - LOSOCV 90.98

CV, Cross-Validation; LOSOC, Leave-One-Subject-Out Cross-Validation;MDD, Major Depression Disorder; HC, Healthy Control.
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the most discriminative for accurate classification. The
method performs well in automatically diagnosing MDD
based on EEG signals. The proposed framework makes
it possible to directly feed EEG signals into EEGNet for
training to improve recognition of MDD in patients. In
addition, the method may be of value to the medical device
industry for developing diagnostic systems for MDD.
Future research will focus on EEG classification of different
degrees of depression, and development of a plug-and-play
deep learning network to automatic classify the severity
of depression.
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The main characteristic of depression is emotional dysfunction, manifested by increased

levels of negative emotions and decreased levels of positive emotions. Therefore,

accurate emotion recognition is an effective way to assess depression. Among the

various signals used for emotion recognition, electroencephalogram (EEG) signal

has attracted widespread attention due to its multiple advantages, such as rich

spatiotemporal information in multi-channel EEG signals. First, we use filtering and

Euclidean alignment for data preprocessing. In the feature extraction, we use short-time

Fourier transform and Hilbert–Huang transform to extract time-frequency features, and

convolutional neural networks to extract spatial features. Finally, bi-directional long

short-term memory explored the timing relationship. Before performing the convolution

operation, according to the unique topology of the EEG channel, the EEG features

are converted into 3D tensors. This study has achieved good results on two emotion

databases: SEED and Emotional BCI of 2020 WORLD ROBOT COMPETITION. We

applied this method to the recognition of depression based on EEG and achieved a

recognition rate of more than 70% under the five-fold cross-validation. In addition, the

subject-independent protocol on SEED data has achieved a state-of-the-art recognition

rate, which exceeds the existing research methods. We propose a novel EEG emotion

recognition framework for depression detection, which provides a robust algorithm for

real-time clinical depression detection based on EEG.

Keywords: depression, emotion recognition, electroencephalogram (EEG), convolutional neural network (CNN),

long-short term memory network (LSTM)

1. INTRODUCTION

The recognition of emotion is a major research direction of affective computing, which
had been widely used to detect depression (1, 2). Emotion is crucial to the quality
and scope of human daily experience (3). With the development of the brain–computer
interface (BCI) and the advancement of artificial intelligence, the recognition of emotions
based on EEG signals has become an active research topic of emotion recognition.
EEG signals contain a large amount of information related to emotions and have the
characteristics of high time resolution, and are not effortless to disguise (4–6), which

50

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2021.837149
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2021.837149&domain=pdf&date_stamp=2022-03-15
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wenming_zheng@seu.edu.cn
https://doi.org/10.3389/fpsyt.2021.837149
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.837149/full


Chang et al. Depression Assessment Method

shows tremendous advantages in the field of real-time emotion
recognition. Accurate and real-time judgment of human
emotional state through some technical means has great
application value in many areas, for example, driving fatigue
detection (7), depression monitoring (8), and real-time
monitoring of critically ill patients (9).

The relationship between EEG and emotion has been reported
in past studies. Brain regions implicated in emotional experience
include the orbitofrontal cortex, insular cortex, and anterior and
posterior cingulate cortices. The amygdala is involved in linking
perception with automatic emotional responses and memory (3).
The activation of the amygdala seemed to be more related to
negative emotions, and the relative activation of the right frontal
lobe correlated with negative emotions (such as fear or disgust)
(10). Precisely, fear corresponds to the amygdala (11), anger is
related to the orbitofrontal cortex and anterior cingulate cortex
(12), sadness occurs in the amygdala and right temporal pole
(13), and disgust is produced in the anterior insula and anterior
cingulate cortex (14). In addition, the power of the alpha band
and the asymmetry between the cerebral hemispheres relates to
emotions (15–17), the changes in the gamma band connects with
happiness and sadness, and the reduction of alpha waves on
different sides of the temporal lobe correlates with joy and sorrow
(left side is sad, happy on the right) (18, 19).

Extracting emotion-related features to make larger the
distance between classes and smaller the distance within classes is
helpful to solving cross-database problems. Emotion-related EEG
signal feature extraction methods include time domain [such
as Hjorth extraction activity, mobility and complexity of EEG
signals (20), higher-order crossover features used to describe the
oscillation mode of a time series (21) and magnitude squared
coherence estimate (22)], frequency domain [such as power
spectral density features (23, 24)], time-frequency domain [such
as time-frequency spectrum [TFS] features (25)], auto-regressive
(26), asymmetric spatial pattern (27), entropy [such as differential
entropy (7), sample entropy (28) and approximate entropy
(29)], maximum relevance minimum redundancy method (30),
common spatial patterns (31), filter bank common spatial pattern
(32), higuchi fractal dimension (33), and so on. Regarding EEG
feature types, all frequency bands or some frequency bands of
delta, theta, alpha, beta, and gamma are mainly utilized (34).
These features characterize the signal from different aspects, so
a variety of effective features extracted from the signal can be
better classified.

To train an excellent model, the user usually needs to collect
enough marker data for calibration. This calibration process is
typically time-consuming and laborious, which is a significant
problem of practical use in emotional brain computer interface.
Therefore, reducing or even eliminating the calibration process
and realizing Plug-and-Play is a critical challenge for the brain–
computer interface from the laboratory to real life. Transfer
learning is a crucial technology that can solve this problem by
using annotation data from other auxiliary users to help new
users build models (35). However, due to individual differences,
i.e., different users have different neural responses to the same
event, such that need first to perform data distribution adaptation
to alleviate the individual differences of EEG features. (36). To

this end, in this paper we propose an unsupervised distributed
adaptation method to align data between different users, that is,
Euclidean alignment (EA) (37).

To improve EEG emotion recognition performance,
performing deep neural networks to learn higher-level
features would be useful to achieve good results, such as
deep belief networks (7), recurrent neural networks (38), graph
convolutional neural networks (39), transfer learning (40), and
adversarial neural networks (41). Nevertheless, the recognition
performance is limited to subject-dependent and cross-subject
experiments under the same database, which is still far from
realizing a practical emotional brain–computer interface. For this
reason, we investigate an interesting and challenging problem
in EEG emotion recognition, where training samples and test
samples come from different emotional EEG databases. The
preliminary research on EEG emotion recognition across data
sets have demonstrated the significant drop of the recognition
performance because of the inconsistency of feature distribution
between the original training samples and test samples (42).
Consequently, in this paper we will take advantages of the
powerful high-level feature learning ability of deep learning
technique to deal with the cross-database EEG emotion
recognition problem.

The major contributions of this paper are summarized as
follows:

(1) This paper proposes a novel recognition framework on
the emotional EEG database, from raw data to recognition
results, including preprocessing, feature engineering,
classification recognition, and cross-database evaluation
protocol.

(2) In feature engineering, we designed a time-frequency-spatial
feature extraction method, combining forms of TFS, CNN,
and bidirectional long and short memory network (BiLSTM)
to extract multi-dimensional effectual features.

(3) Employing an unsupervised data alignment method to
project data from different databases into the same space.
While considering the inherent topological structure
of the EEG electrodes, the preliminary TFS features
are converted into three-dimensional tensors, which
takes into account the information relationship between
the electrodes.

This paper is organized as follows. Section 2 introduces emotion
database, data processing methods, and experimental settings.
Section 3 specifies the test results on the emotion database and
the test results applied to the recognition of depression. Section 4
discusses the methods and results of this research. We conclude
the paper in Section 5.

2. MATERIALS AND METHODS

As shown in Figure 1, this section mainly introduces emotion
database and the algorithms of preprocessing engineering and
feature engineering, including filtering, downsampling, EA,
short-time Fourier transform, Hilbert–Huang transform (HHT),
conversion of 1D sequence to 3D tensor, and the spatiotemporal
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FIGURE 1 | Cross-database emotion recognition framework based on electroencephalogram (EEG) signals. Emotional BCI Competition Database is the training set

of the Emotional BCI in 2020WORLDROBOT COMPETITION-BCI CONTROL BRAIN ROBOT CONTEST Emotional BCI in 2020 WORLD ROBOT COMPETITION-BCI

CONTROL BRAIN ROBOT CONTEST.

TABLE 1 | Details of the two experimental databases.

SEED Emotional BCI Competition Database

Category Positive, neutral, negative happy, sad, neutral

Channel 62 62

Subject 15 23

Session 3 2

Positive 49,680 49,110

Neutral 52,650 50,722

Negative 50,400 56,694

Sum 152,730 156,526

feature extraction model combined with convolutional neural
network (CNN) and BiLSTM.

2.1. Emotion Database
One of the databases used in this study is SEED (43). This
database includes 15 subjects, three sessions for each subject
and three emotion categories under video stimulation (i.e.,
positive, neutral and negative). The data were downsampled
to 200 Hz. A bandpass frequency filter from 0 to 75 Hz
was applied. The data are cut into one sample per second,
with a total of 152,730. The other database comes from the
training set of the Emotional BCI in 2020 WORLD ROBOT
COMPETITION—BCI CONTROL BRAIN ROBOT CONTEST
Emotional BCI in 2020 WORLD ROBOT COMPETITION—
BCI CONTROL BRAIN ROBOT CONTEST (Emotional BCI
Competition Database), which includes 23 subjects, two sessions
(from A and B, respectively), and three emotion categories under
video stimulation (i.e., happy, sad, and neutral). The data samples
rate of the Emotional BCI Competition Database is 100 Hz.
The EEG signals are segmented in seconds and hence results
in a total of 156,520 samples. Details of the two databases
are shown in Table 1. It can be seen from the table that the
two databases have differences in categories, subjects, sessions,
and the number of samples. In the subsequent processing, the
three categories of happy, sad, and neutral in the emotional
BCI database correspond to the positive, negative, and neutral
emotion, respectively.

2.2. Preprocessing Engineering
EEG recordings measured by the scalp often contain noise and
artifacts, such as blinking or movement, and cannot accurately
represent signals from the brain. Therefore, it is necessary to
preprocess the recorded EEG data. The preprocessing steps
include converting or organizing the recorded EEG data,
removing insufficient data, and segmenting the continuous
original signal without changing the clean data. Appropriate
band-pass filtering can effectively reduce the superimposed
artifacts of various sources embedded in the EEG recording.
Generally, the finite impulse response (FIR) filters are a good
choice because they do not distort wave phases (44). EA maps
each user’s EEG signal to a new space so that the difference
in the second-order statistics of the average covariance matrix
of the mapped users is minimized, thereby implicitly reducing
the difference in the original distribution. EA implements the
above mapping for each user (auxiliary user and new user). Since
different users have the same average covariance matrix after
mapping, they tend to be more consistent in data distribution,
meaning models trained on auxiliary users can be better applied
to new users.

2.3. Data Alignment
EA is easy to perform and completely unsupervised, in which the
basic idea of aligning EEG from different subjects (domains) is
as follows (35): for all subjects, EA first calculates the arithmetic
mean of all spatial covariance matrices.

R =
1

N

N∑

n=1

Xn(Xn)
T (1)

then performs the alignment by

X̃n = R
−

1
2Xn (2)

where Xn ∈ R
c×t is the nth EEG trial, in which c is the number of

EEG channels and t is the number of samples. The aligned EEG
trials are whitened, and the average spatial covariance matrix
of each subject is the identity matrix (45), so the EEG test
distribution of different subjects is more consistent, which is
meaningful for subsequent cross-database recognition.
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2.4. Time-Fequency Spectrum
The EEG signal is non-linear and non-stationary, so its
statistical properties (for example, spectral density) will change
greatly over time. Spectrum estimation cannot identify its time-
varying spectral components and cannot perform time-frequency
positioning simultaneously. Time-frequency analysis technology
is capable of revealing the time-varying frequency spectrum
of non-stationary EEG signals and can provide a joint time-
frequency distribution (TFD) of signal power (46). This paper
adopts two methods of short-time Fourier transform (STFT)
(47–49) and HHT (50, 51) for time-frequency spectrum (TFS)
analysis.The method of calculating TFS using STFT and HHT
comes from Song et al. (25).

STFT spectrum is calculated by

TFSSTFT(t, f ) =

∣∣∣∣
∫

+∞

−∞

w(τ − t)x(τ )e−j2π f τ dτ

∣∣∣∣
2

(3)

where x(t) is the time series and w(τ − t) is the short-time
analysis window.

The Hilbert–Huang spectrum is calculated based on HHT.
HHT processing non-stationary signals include three basic
processes. First, the empirical mode decomposition (EMD)
method is used to decompose a given signal into a number of
intrinsic mode functions (IMF),

x(t) =

K∑

i=1

IMFi(t)+ rK(t) (4)

where rK(t) represents the residual of a constant or monotonic
signal. These IMFs are components that meet certain conditions.
Then, perform Hilbert transform on each IMF to obtain
the corresponding Hilbert spectrum, that is, represent each
IMF in the joint time-frequency domain. An analytic signal
reconstructed by a conjugate pair (IMF and IMF∗

k
) can be

formulated as

Zk = IMFk(t)+ jIMF∗k = Ak(t)e
jθk(t) (5)

FIGURE 2 | Topological structure map of 64-electrode channels mapped to a two-dimensional picture. The circle represents the electrode, and the label inside is the

serial number and name of the electrode. The left and right mastoid electrodes (M1, M2) of the 64-lead electrodes are reference electrodes when collecting signals, so

they are not used as signal input for emotion recognition.
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where Ak(t) represents the instantaneous amplitude of Zk(t)
and θk(t) denotes the instantaneous phase of IMFk(t). Finally,
summarizing all Hilbert spectra of IMF will get the Hilbert
spectra of the original signal. The original time series x(t) can be
obtained by

x(t) =

K∑

i=1

Ak(t)e
j2π

∫
fk(t) dt (6)

and the instantaneous frequency can be evaluated by

fi(t) =
1

2π

dθi

dt
(7)

where the squared amplitude A2
k
(t) and instantaneous frequency

fk(t) form the time-frequency spectrum.

2.5. Convert 1D Feature Sequence to 3D
Tensor
Due to a large amount of noise in the EEG signal and
the difficulty in capturing the unobvious relationship between
the EEG signal and certain brain activities, the practical
interpretation of the EEG signal is still challenging. Most
of the existing studies only treat EEG as a chain sequence,
ignoring the complex dependence between adjacent signals or
the need to convert EEG, such as converting EEG waves into
images (52).

According to the inherent topological structure of the EEG
channel, as illustrated in Figure 2, the one-dimensional sequence

data St = [s1
f
, ..., sc

f
, ..., sC

f
] (where sc

f
is the TFS feature of

the cth electrode channel at frequency f ) after extracting the
TFS feature is mapped into a three-dimensional tensor Tn ∈

RH×W×F , where the first dimension H is height, the second
dimension W is width, and the third dimension F is channel
(i.e., the number of features extracted per channel) of the nth
EEG trial. The conversion function of 1D feature sequence to 3D
tensor Tn(H,W, f ) is,

Tn(H,W, f ) =




0 0 0 s1
f

s2
f

s3
f

0 0 0

0 0 s4
f

0 0 0 s5
f

0 0

s6
f

s7
f

s8
f

s9
f

s10
f

s11
f

s12
f

s13
f

s14
f

s15
f

s16
f

s17
f

s18
f

s19
f

s20
f

s21
f

s22
f

s23
f

s24
f

s25
f

s26
f

s27
f

s28
f

s29
f

s30
f

s31
f

s32
f

s33
f

s34
f

s35
f

s36
f

s37
f

s38
f

s39
f

s40
f

s41
f

s42
f

s43
f

s44
f

s45
f

s46
f

s47
f

s48
f

s49
f

s50
f

s51
f

s52
f

s53
f

0 s54
f

0 s55
f

s56
f

s57
f

0 0 s58
f

s59
f

s60
f

s61
f

s62
f

0 0




(8)

which is the fth channel features. Among them, the positions
without electrodes were filled with zeros. Each generated data
grid contains spatial information of brain activity.

FIGURE 3 | Cascade 2dCNN+BiLSTM architecture.
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2.6. 2dCNN+BiLSTM
We designed a cascaded deep convolutional recurrent neural
network framework, as shown in Figure 3, to capture the
spatiotemporal features of EEG. The model’s input is the
converted 3D tensor Tn that a 3D data structure containing
space and time information. First, 2D CNN extracts the spatial
features of each data, BiLSTM extracts temporal features,
a fully connected layer receives the output of the last
step of BiLSTM, and then uses the softmax layer for final
emotion prediction.

This study constructed a 2dCNN+BiLSTM model to learn
a good spatiotemporal representation for multi-channel EEG.
The diagram for this deep spatiotemporal network is illustrated
in Figure 3. Since each EEG segment with the duration of 1 s
is treated as one sample, we conduct time-frequency spectrum
feature (STFT and HHT) extraction for each sample, which was

TABLE 2 | Recognition results on emotional database.

No. Protocol STFT HHS

Training set → Test set Acc(%) F1 Acc(%) F1

1 Emotional BCI Competition Database → SEED 83.56 0.84 83.60 0.84

2 SEED → Emotional BCI Competition Database 74.33 0.72 70.26 0.70

3 Leave-One-Subject-Out 81.58 0.80 79.29 0.77

fed into the deep network for deep feature extraction. Each 1-
s sample is denoted by Xi(i = 1, 2, . . . , n) and treated as a
spatial image with five channels. Five convolutional layers were
followed by ReLU to learn non-linear local spatial features, in
which a 3 x 3 convolutional kernel was used. Following the
convolutional layers, the fully connected layers were utilized to
learn global spatial features. Existing studies showed that spatial
features for a temporal signal are insufficient for discriminant
information representation. We also employed the BiLSTM to
learn temporal representation.

2.7. Experimental Settings
First, we utilize the FIR filter to perform 50-order 1–50 Hz band-
pass filtering on the EEG original signal, downsampling on the
Emotional BCI data to 200 Hz to be consistent with the SEED
data, and then perform EA. Then extract the relative energy of
the five frequency bands for each electrode channel [i.e. delta
(1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz),
and gamma (30–50 Hz)] using STFT and HHS, respectively. The
number of features extracted from each sample is 5 ∗ 62 =

310, then converted into a 3D tensor of 9 ∗ 9 ∗ 5. Then feed
the 3D tensor to spatiotemporal network for training, the batch
size is 32, the frame length is 12 (i.e., 12 s), the epoch set
to 100, the cross-entropy used as loss function, the optimizer
selects SGD, the learning rate initialized to 0.005. The update
calculation is lr = init_lr ∗ (0.95epoch//10), where init_lr is the
initial learning rate.

FIGURE 4 | Confusion matrix of protocol 1. The vertical axis is the true label and the horizontal axis is the predicted label. (1) and (2) are the recognition results of

STFT features; (3) and (4) are the recognition results of HHS features; (1) and (3) are with Euclidean alignment (EA) module, while (2) and (4) are the recognition result

without the EA module.
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3. RESULTS

3.1. Emotion Recognition Results
In order to test the performance of the emotion recognition
framework system built in various aspects, three protocols
are proposed. In the three protocols proposed in this study,
the training set and test set data are completely non-
overlapping, and the test set data and labels are not used
in the training process. The training set and test set of the
first two protocols are from different databases. The third
protocol is the leave-one-subject-out method. Considering
the imbalance of the category, in addition to calculating
the accuracy, the F1 score is also calculated. We applied
this model to depression recognition and performed five-fold
cross-validation.

For the first protocol, all data of Emotional BCI competition
database are used as the training set, and all data of SEED are used
as the test set. For two different manual features, the recognition
accuracy and weighted average F1-score are shown in Table 2. It
can be seen from the table that the manual feature recognition
effect extracted by the STFT method is better. In order to show
the true prediction of each category, the confusion matrix of the
classification accuracy is analyzed. we present a confusion matrix
exploiting the features of STFT andHHS shown in Figure 4, from
whichwe can see that neutral emotion has the highest recognition
rate among the three types of emotions, whether it is STFT or
HHS features. The recognition rate of the three types of emotions
under the STFT feature is higher than that of the HHS feature.

For the second protocol, all data of SEED are used as
the training set, and all data of Emotional BCI Competition
Database are used as the test set. For two different manual
features, the recognition accuracy and weighted average F1-
score are shown in Table 2. The recognition rate under
the STFT feature is 4.07% higher than that of the HHS
feature, but it is about 9% lower than the protocol 1.
Similarly, we present a confusion matrix using the features
of STFT and HHS shown in Figure 5. The recognition rate

TABLE 3 | EA ablation experiment results.

Training set → Test set TFS EA Acc(%) F1

Emotional BCI Competition STFT With EA 83.56 0.84

Database → SEED

Without EA 57.29 0.54

HHS With EA 83.60 0.84

Without EA 53.84 0.49

SEED → Emotional STFT With EA 74.33 0.72

BCI Competition Database

Without EA 52.40 0.48

HHS With EA 70.26 0.70

Without EA 53.46 0.53

Bold value indicate the same experimental conditions, the maximum index with or without

EA comparison.

FIGURE 5 | Confusion matrix of protocol two. The vertical axis is the true label and the horizontal axis is the predicted label. (1) and (2) are the recognition results of

STFT features; (3) and (4) are the recognition results of HHS features; (1) and (3) are with Euclidean alignment (EA) module, while (2) and (4) are the recognition result

without the EA module.
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of the three categories under the STFT feature is relatively
balanced, while the recognition rate of positive emotion

FIGURE 6 | The impact of time length selection on recognition rate. The

length of time is in seconds.

under the HHS feature is significantly higher than the other
two categories.

For the third protocol, the recognition results of two
databases are shown in Table 2 including the accuracy
and weighted average F1-score where the recognition
results are sorted according to the database (i.e., the
recognition results of the subjects in each database are
averaged) and the average recognition rate of all subjects
is calculated. It can be seen from the table that the
recognition result under the STFT feature is slightly higher
than HHS.

In order to explore the influence of EA on experiment, an
ablation experiment was performed on this module. As shown in
Figures 4, 5 and Table 3, the difference between the recognition
results of the EA module and the absence of the EA module
is very obvious, whether it is protocol 1 or 2. At the same
time, in order to explore the timing relationship between EEG
emotional frames, the frame length is selected from 8 to 32, and
the step size is 4 during training. Experiments were carried out on
protocols one and two, and the experimental results are shown in
Figure 6.

FIGURE 7 | Topological structure map of 128-electrode channels mapped to a two-dimensional picture. The circle represents the electrode, and the label inside is the

serial number and name of the electrode.
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3.2. Depression Recognition Results
We chose a multi-modal open dataset for depression recognition,
i.e., the MODMA dataset. The dataset includes 128-channel
event-related potential recordings, of which 24 major depressive
disorder subjects and 29 healthy controls, the age range is 16–
52 years old (53–55). Since the number of electrodes in the
database is 128 and the topology is shown in Figure 7, the
size of the three-dimensional matrix mapped to it is 21*19*5.
Note that 53 subjects, including 24 outpatients and 29 healthy

controls, were divided into fivefold. Due to uneven data, the first
three folds made up of 5 depressed and 6 normal subjects of
each one, and the last fold included 4 depressed and 5 normal
subjects. The recognition result of each fold is shown in Figure 8.
The ERP experiment is a dot-probe task, and its cue stimuli
include three kinds of emotional-neutral face pairs, namely
Happy-Neutral (“hcue”), Fear-Neutral (“fcue”), and Sad-Neutral
(“scue”). Therefore, we not only tested all the experiments
but also identified depressed patients and normal subjects on

FIGURE 8 | Recognition results of spatiotemporal neural network on depression database.

FIGURE 9 | The time-frequency spectrum (TFS) characteristic relative energy map (based on the short-time Fourier transform [STFT] algorithm) corresponds to the

electrode arrangement in Figure 2.
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different stimuli. Among them, the overall recognition rate on
“hcue” is the highest, reaching 71.14%.

4. DISCUSSION

This paper proposes a complete pipeline from preprocessing
to EEG-based emotion recognition, with a recognition rate of
over 80%. The preprocessing part follows with the unsupervised
EA method to map the data of different databases to the
same space, where STFT, CNN, and BiLSTM are combined
to extract multi-domain features in the time-frequency space.
Before the CNN operation, according to the spatial arrangement
of the EEG electrodes, the one-dimensional time series feature
is converted into a three-dimensional tensor, such that the
correlation between EEG electrodes can be fully considered.
Moreover, we use 2D CNN to extract spatial features, and
BiLSTM to capture the timing relationship of features.

It can be seen from the confusion matrix of protocol 1 that the
recognition rates of the three categories under the twomethods of
STFT and HHS are relatively balanced, and the positive emotion
recognition rate is the highest. The neutral emotion recognition
rate under the HHS method of protocol 2 is the highest, and the
negative emotion recognition rate is the lowest. There is a 9%
difference between the accuracy of protocols 1 and 2. Since the
three categories of data in the Emotional BCI database are more
diversified (the first 15 people and the bottom eight people in
the three categories of the Emotional BCI database in Table 1 are
different).

From the recognition results of all protocols, the accuracy and
F1 score of the TFS features extracted by STFT are higher than
those of the HHS method. Figure 9 shows the STFT method
and Figure 10 shows the HHS method. The three categories are
displayed in five frequency bands, and each spectrum is shown
per the electrode arrangement in Figure 2. The features extracted
by the two methods are pretty different in the high-frequency
range. The relative energy of the two frequency bands, beta
(14–30 Hz) and gamma (30–50 Hz), under the STFT method, is

relatively high, and the three categories have apparent differences.
In contrast, the HHS method has relatively high positive and
neutral relative energies in these two frequency bands. Negative
emotions have always been low energy in the entire frequency
band. Hence, the recognition rate of the HHS method is lower
than that of STFT, and it performs well in positive and negative
emotions.

To further validate the proposed method, we compared
our model with the start-of-the-art methods. Table 4 presents
a summary of the current subject-independent recognition
algorithms on the SEED database, including linear support
vector machine (SVM) (56), kernel principal component
analysis (KPCA) (57), transfer component analysis (TCA)
(58), transductive parameter transfer (TPT) (59), domain
adversarial neural network (DANN) (60), dynamical graph
convolutional neural network (DGCNN) (39), bi-hemispheres
domain adversarial neural network (BiDANN) (61), BiDANN-S
(41), hierarchical spatial-temporal neural network (R2G-STNN)
(62), and instance-adaptive graph (IAG) (63). It can be seen

TABLE 4 | The mean accuracies (Acc) and standard deviations (Std) on SEED

dataset for subject-independent EEG emotion recognition experiment.

Method Acc/Std(%)

SVM (56) 56.73/16.29

KPCA (57) 61.28/14.62

TCA (58) 63.64/14.88

TPT (59) 76.31/15.89

DANN (60) 75.08/11.18

DGCNN (39) 79.95/09.02

BiDANN (61) 83.28/09.60

BiDANN-S (41) 84.14/06.87

R2G-STNN (62) 84.16/07.63

IAG (63) 86.30/06.91

ours 86.42/05.26

FIGURE 10 | The time-frequency spectrum (TFS) characteristic relative energy map (based on the HHS algorithm) corresponds to the electrode arrangement in

Figure 2.
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from the table that our method has achieved the highest accuracy
and the smallest standard deviation. Unlike these methods, our
training set adds the Emotional BCI database. The training set’s
increasemakes the trainingmodel’s generalization better, proving
that the proposed method can effectively extract spatiotemporal
multi-view features and classify emotions well across databases or
subjects.

5. CONCLUSIONS

This study designed a complete pipeline from preprocessing to
the classification of emotion recognition based on EEG, which
achieved a correct rate of more than 80%. It is significant that we
apply this model to the recognition of depression based on EEG
signals. The preprocessing combined with the unsupervised EA
method maps the data of different databases to the same space.
The three methods of STFT, CNN, and BiLSTM are combined to
extract the time-frequency-space multi-domain features. Before
the CNN operation, the one-dimensional time series feature
was converted into a three-dimensional tensor according to the
spatial arrangement of the EEG electrodes. In the future, we will
study end-to-end real-time emotional brain–computer interfaces
for depression recognition.
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Drug addiction is a common problemworldwide. Research has shown adverse childhood

experiences (ACEs) to be an important factor related to drug addiction. However, there

are few studies on how ACEs lead to drug addiction and the role of resilience and

depression in this process. Thus, the main purposes of the study were to determine the

proportion of those with adverse childhood experiences who take drugs in adulthood

and how resilience and depression affect this relationship. The results showed that (1)

greater severity of ACEs made individuals more likely to take drugs; (2) ACEs were

positively correlated with depression, and resilience was negatively correlated with ACEs

and depression; and (3) ACEs not only affected drug addiction through resilience or

depression alone but also through the combined action of resilience and depression,

indicating that depression led to drug addiction while resilience weakened the effect of

ACEs on depression and drug addiction. Furthermore, in the serial mediation model,

abuse, neglect, and family dysfunction were significant predictors of drug addiction.

Our results are encouraging in that they provide guidance in understanding the complex

relationships among ACEs, resilience, depression, and drug addiction.

Keywords: adverse childhood experiences, drug addiction, resilience, depression, mediating effect

INTRODUCTION

Adverse childhood experiences (ACEs) are typically defined as stressful and/or traumatic
experiences that occur during childhood (1, 2). A study have shown that more than 60% of adults
report having at least one adverse childhood experience, and 17% report four or more adverse
childhood experiences (3). There is increasing evidence that adults with ACEs are at greater risk for
diseases (e.g., alcoholism, myocardial infarction, stroke, depression, diabetes, and coronary heart
disease) and disability due to health status (4–8). Moreover, ACEs are a major risk factor for drug
abuse. For instance, childhood abuse is closely related to marijuana use (9, 10). Individuals with
ACE scores ≥5 are seven to 10 times more likely to report illicit drug addiction compared to those
without ACEs (11), and are four to 12 times more likely to become drug abusers (6). In short, ACEs
not only affect physical and mental health but also increase the risk of drug abuse in adulthood.

Depression is one of the most common and main negative emotions induced by ACEs.
Compared with other negative emotions, the impact of depression on drug addiction has more
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important clinical significance. Many studies have identified
a relationship between ACEs and depression, as adults with
ACEs are more likely to suffer from depression compared to
adults without such experiences (12–15). Emotional, sexual, and
physical child abuse are the most important risks factors for
depression (12). A retrospective cohort study showed that the
risk of depressive disorders increased for decades after ACEs
(16). Compared with adults without ACEs or those who have
not experienced trauma in adulthood, individuals with ACEs
(including sexual and physical abuse) are more likely to suffer
from long-term PTSD and depression; simultaneously, they are
more likely to take drugs, use more types of drugs, and have more
serious drug dependence (17, 18). Thus, there is a noticeable
relationship between ACEs and depression. Further, multiple
studies have uncovered the comorbidity of depression and drug
addiction; that is, depression can lead to drug addiction, and drug
addiction can lead to or exacerbate depression (19–21). Drug-
addicted individuals tend to express themselves negatively, and
negative stimulation can aggravate their negative emotions and
exacerbate drug abuse (22, 23). Avoidance of negative affect is the
predominant motive for drug abuse (24).

Resilience is a dynamic process in which individuals can
adaptively overcome stress and/or traumatic events (25). It
is the ability to overcome life challenges with perseverance,
self-awareness, and one’s own internal coherence by activating
a personal growth project (26). ACEs may produce negative
outcomes, such as depression; however, some individuals with
ACEs will bounce back rather than suffer long-term negative
consequences, and they are considered to have better resilience
(27). It is beneficial to help individuals establish and improve
resilience and to promote mental health education interventions,
which facilitate recovery from trauma and stress and mitigate the
influence of ACEs on depression (28, 29).

In summary, there is a strong relationship between ACEs and
drug addiction. ACEs can produce and exacerbate depression,
and depression may be an important cause of drug abuse.
Additionally, resilience seems to impact the relationship between
ACEs, depression and drug addiction. However, how ACEs
affect drug addiction directly is much less studied, and the
roles of resilience and depression in drug addiction are still
unclear. Therefore, this study first examined the relationship
between ACEs and drug addiction and then examined resilience
and depression as potential contributors of this relationship.
In order to show the complicated relationship between ACEs,
drug addition, depression and resilience more clearly, a graphic
illustration is created in Figure 1.

METHODS

Participants
We used random sampling to recruit 937 participants including
459 individuals with drug addictions (252 males, 207 females)
and 478 individuals without them (138 males, 340 females).
Those with drug addictions were recruited from two drug
rehabilitation centers in Sichuan Province, China. Approximately
70% of this group were methamphetamine addicts and the rest

FIGURE 1 | The relationship between ACEs, drug addition, depression, and

resilience.

were heroin, Magu, and K powder addicts. Those without drug
addiction were also recruited from southwest China1.

All participants whom we recruited met the following
criteria: (1) age 18–50 years, (2) no serious mental illness,
and (3) educational background of elementary school or
above. Moreover, participants with drug addictions met the
DSM-V diagnostic criteria for psychoactive substance abuse
or dependence, completing physiological detoxification and
providing negative urine tests. All participants provided
informed consent before beginning the study.

MEASURES

Adverse Childhood Experiences
We used the ACEs questionnaire to collect information
on participants’ exposure to ACEs (prior to age 18). The
questionnaire consists of 28 items divided into three categories
and 10 subscales, which include childhood abuse (emotional,
physical, and sexual), childhood neglect (emotional and
physical), and growing family dysfunction (substance abuse,
mental illness, domestic violence, criminal household members,
and parental marital discord). One ACE was recorded for each
subscale that met the conditions of exposure to ACEs. We used
the ACE scores (10 ACEs subscales; 0-10 possible ACEs) to
evaluate the cumulative effect of multiple ACEs, with higher
ACE scores indicating more serious exposure to ACEs (31). ACE
scores can be divided into four levels according to the degree
of ACE exposure: no exposure = 0 ACEs; mild = 1-2 ACEs;
moderate = 3–4 ACEs; and severe ≥5 ACEs. In this study, the
Cronbach’s alpha value for the ACEs questionnaire was 0.629.

Connor-Davidson Resilience
We measured the resilience of participants over the past month
using the Connor-Davidson Resilience Scale (CD-RISC), which
consists of 25 items scored on 5-point Likert scales ranging
from 1 (not at all) to 5 (almost exactly). Connor and Davidson
proposed the five-factor scoring method to differentiate the
five dimensions of resilience (32): F1 (personal ability, high
standards, and tenacity), F2 (belief in instincts, tolerance of

1The sample size of this study was determined according to the research on

childhood adversity increases the risk of substance (30). According to G∗power,

we need at least 853 sample sizes to maintain power values above 0.9. Therefore,

we investigated a total of 937 samples, which was enough to infer the relationship

between ACEs and drug addiction, and the power values of post hoc test was 0.92.
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TABLE 1 | Characteristics of sample and ACE group comparisons for all variables.

Total

N = 937

ACE group (n) χ
2, F

(p)
No exposure

(203)

Mild exposure

(396)

Moderate exposure

(215)

Severe exposure

(123)

Age (M ± SD) 28.51 ± 11.10 29.43 ± 11.69 28.07 ± 11.14 28.83 ± 11.35 27.82 ± 9.34 F = 0.89

(p = 0.45)

Sex-Female (%) 547 (58.4) 142 (70.0) 235 (59.3) 113 (52.6) 57 (46.3) χ2
= 21.67

(p < 0.001)

Addiction (%) 459 (48.99) 71 (40.6) 172 (47.9) 131 (64.2) 84 (70.2) χ2
= 51.66

(p < 0.001)

CD-RISC (M ± SD) 83.75 ± 14.86 86.12 ± 14.84 85.31 ± 14.56 82.74 ± 14.98 79.65 ± 13.95 F = 6.59

(p < 0.001)

BDI (M ± SD) 12.62 ± 11.07 8.35 ± 8.91 10.95 ± 10.21 15.38 ± 10.81 20.20 ± 12.48 F = 41.49

(p < 0.001)

negative events, and resistance to stress), F3 (active acceptance
of change and secure relationships), F4 (control), and F5
(religious influence). Higher scores indicate better resilience, and
total scores range from 1 to 105. The scale’s Cronbach’s alpha
was 0.913.

Depressive Symptoms
The Beck Depression Inventory (BDI) is a self-report
questionnaire with 21 items, which we used to assess participants’
degree of depression. Each item is rated from 0 to 3, yielding
lowest and highest possible total scores of 0 and 63, respectively
(33). Higher total scores indicate higher degrees of depression.
The scale has demonstrated satisfactory test-retest reliability
and internal consistency. To improve the structural equation
model’s fit and control the multi-item measurement error of
latent variables, we used the factor balance method to package
the 21 single-dimensional items into three indicators (D1, D2,
D3), with each indicator containing seven items (34, 35). The
BDI’s Cronbach’s alpha value was 0.916.

Procedures
Before starting the survey, we informed all participants that all
data collected from them would remain confidential and be used
for scientific research purposes only. All who met the inclusion
criteria signed informed consent before voluntarily participating
in the survey. Participants completed the ACEs questionnaire,
CD-RISC, and BDI separately, which took them a total of 25–
30min. We collected and checked the completed questionnaires
on site and distributed small gifts as compensation.

Data Analysis
We performed data preprocessing, χ2-tests, analysis of variance
(ANOVA), and correlation analysis in SPSS 23.0 (χ2-tests for
categorical variables and ANOVA for continuous variables).
Additionally, we conducted structural equation modeling (SEM)
analyses in Mplus 8.3. We used the robust weighted least squares
estimation (WLSMV) extraction procedure to test the model fit
to the data. The WLSMV does not assume normally distributed
variables and provides the best option for modeling categorical or

ordinal data (36, 37). Further, we used bias-corrected bootstrap
analysis with 1,000 bootstrap samples to test the mediating effect.

We utilized an item parceling strategy to control the multi-
item inflation error of the latent variables (35). Specifically, we
divided the unidimensional BDI into three indicators using the
factor balance method. Drug addiction was treated as a dummy
variable in the mediation model. As recommended by Hu and
Bentler (38), a model is considered to fit the data well if the
standardized root mean square residual (SRMR) and the root
mean square error of approximation (RMSEA) values are below
0.08 and the comparative fit index (CFI) and Tucker-Lewis index
(TLI) values are above 0.90.

RESULTS

Sample Description
Table 1 shows the demographic characteristics of participants.
ACE exposure levels of participants were as follows: no exposure
(ACE score= 0; n= 203), mild exposure (ACE score= 1–2; n=

396), moderate exposure (ACE score= 3–4; n= 215), and severe
exposure (ACE score ≥ 5; n = 123). There were no significant
differences in the average age of participants across ACE exposure
levels (F = 0.89, p= 0.45). The number of participants with drug
addictions who were exposed to severe ACEs was higher than
those without exposure (84 vs. 71; p < 0.001). Additionally, CD-
RISC scores decreased with increased ACE exposure levels (86.12
vs. 85.31 vs. 82.74 vs. 79.65; p < 0.01); In contrast, higher ACE
exposure levels were associated with higher BDI scores (8.35 vs.
10.95 vs. 15.38 vs. 20.20; p < 0.001).

CORRELATIONAL RESULTS

Relationship Between ACE Exposure and
Drug Addiction
A bar chart (Figure 2) was used to show the proportion of drug
users reporting different ACE exposure levels. We designated
the degree of ACE exposure as the abscissa and the rates of
drug addiction and non-addiction as the ordinate, as shown in
Figure 2. With increased ACE exposure levels, the rate of drug
addiction also increased, which indicated that the more serious
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FIGURE 2 | Proportions of drug users with different ACE exposure levels. The

dotted line represented the proportion of participants with drug addiction in all.

TABLE 2 | Correlations among ACEs, resilience, and depression.

1 2 3 4 5 6

1. ACEs -

2. Childhood Abuse 0.74** -

3. Childhood Neglect 0.59** 0.27* -

4. Family Dysfunction 0.83** 0.35** 0.25** -

5. Resilience −0.15** −0.07* −0.21** −0.09** -

6. BDI 0.35** 0.28** 0.22** 0.27** −0.26* -

*p < 0.05, **p < 0.01.

ACEs participants suffered, the more likely they were to take
drugs. Similarly, higher ACE exposure levels were associated with
lower rates of non-addiction.

Correlational Analysis
There were significant correlations among all variables
(Table 2). ACEs (childhood abuse, childhood neglect, and family
dysfunction) and resilience were negatively correlated. ACEs
(childhood abuse, childhood neglect and family dysfunction) and
BDI scores were positively correlated. Additionally, resilience
was negatively correlated with BDI scores.

Confirmatory Factor Analysis
We used confirmatory factor analysis to test whether the
measurement model adequately fit the sample data. Two latent
variables were included in the full model (resilience and
depression) along with eight observed variables. Results showed
that the measurement model fit the data well (χ2 (19) = 64.181,
CFI = 0.989, TLI = 0.984, RMSEA = 0.050, SRMR = 0.024).
All factor loadings were significant (p < 0.001), indicating that
the structural equation model could be used in the next step of
the analysis.

Common Method Bias Test
The questionnaires used in our survey were self-report, so we also
conducted principal components analysis with all questionnaire
items (i.e., a common method bias test). Based on the Harman
single-factor method, we contend that common method bias

was negligible because the variance of the maximum factor
interpretation was 16.185, which is less than 40% (39).

Structural Equation Model
First, we found that the direct effect of the predictor (ACEs) on
the dependent variable (drug addiction) in the model without
mediators was significant (β = 0.288, p < 0.001, 95% CI = 0.207
to 0.366). Next, we built Model 1 and Model 2 with resilience
(M1) and depression (M2) as the respective mediators. The bias-
corrected bootstrap analyses (1,000 samples) showed that both
mediating effects were significant (Figure 3).

Based on the single-factor mediation model results, we
established a serial mediation model with resilience and
depression as the serial mediators (Figure 3C). This structural
equation model fit the data well, χ2(31) = 166.199, CFI =

0.938, TLI = 0.909, RMSEA = 0.068, SRMR = 0.039. In the
serial mediation model, ACEs were negatively associated with
resilience (β = −0.167, p < 0.001, 95% CI = −0.234 to −0.098)
and positively associated with BDI scores (β = 0.325, p < 0.001,
95% CI = 0.252 to 0.388) and drug addiction (β = 0.108, p
< 0.001, 95% CI = 0.018 to 0.193); resilience was negatively
associated with BDI scores (β = −0.248, p < 0.001, 95% CI =
0.367 to 0.527) and drug addiction (β = −0.102, p = 0.016); and
BDI was positively associated with drug addiction (β = 0.442, p
< 0.001). As presented in Table 3, the indirect effect of resilience
and depression as serial mediators in the relationship between
ACEs and drug addiction was significant (β =−0.010, p < 0.001,
95% CI = 0.005 to 0.016). Moreover, the mediating effects of
resilience (β = 0.009, p < 0.001, 95% CI = 0.002 to 0.019) and
depression (β = 0.078, p < 0.001, 95% CI = 0.057 to 0.100) were
also significant.

As ACEs included three subcategories (childhood abuse,
childhood neglect, and household dysfunction), we built
additional serial mediation models accordingly (Models 4–6).
Results showed acceptable fit for these three models (CFI= 0.916
to 0.922, TLI = 0.887 to 0.900, RMSEA = 0.056 to 0.068, SRMR
= 0.039 to 0.055). Further, the indirect effect of resilience and
depression as serial mediators in the relationship between the
subcategories of ACEs (childhood abuse, childhood neglect, and
family dysfunction) and drug addiction were all significant (β =

0.011 to 0.046, p < 0.001). Specifically, the mediating effect of
resilience was significant only when childhood neglect was the
predictor (p= 0.019). Figure 4 provides further information.

DISCUSSION

Many previous studies have demonstrated the close relationship
between ACEs and drug addiction (6, 9–11) and the significant
comorbidity of depression and drug addiction (19–21). Our
research results also support this. However, how ACEs affect
drug addiction and the relationships among ACEs, depression,
and drug addiction remain unclear. Therefore, we established
a serial mediation model including ACEs, depression, and
drug addiction to clarify their relationships (Figure 3). Our
research showed that ACEs may not lead directly to drug
use but may lead to depression, which in turn leads to drug
addiction. Additionally, we showed that resilience played a
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FIGURE 3 | Single-factor mediation models (Models 1 and 2) were established with resilience (A) or depression (B) as the mediator, respectively. Model 3 was

established with resilience and depression as serial mediators (C). Path coefficients are standardized. *p < 0.05, **p < 0.01, ***p < 0.001.

mediating role between ACEs, depression, and drug addiction
(Figure 3C). It showed that improving the resilience levels of
people can not only directly mitigate drug use, but also weaken

the effect of depression on drug addiction, which provided a
guidance for the clinical treatment of drug addicts patients to
some extent.
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TABLE 3 | Indirect effects with bootstrap 95% CIs.

Model Pathway Estimate Bootstrap 95% CI p

Model 1 ACEs → Resilience → Drug Addiction 0.019 (0.006) 0.009, 0.032 <0.001

Model 2 ACEs → BDI → Drug Addiction 0.093 (0.012) 0.072, 0.115 <0.001

Model 3 ACEs → Resilience → Drug Addiction 0.009 (0.004) 0.002, 0.019 0.036

ACEs → BDI → Drug Addiction 0.078 (0.011) 0.057, 0.100 <0.001

ACEs → Resilience → BDI → Drug Addiction 0.010 (0.003) 0.005, 0.016 0.003

Model 4 Abuse → Resilience → Drug Addiction 0.011 (0.007) 0.002, 0.029 0.101

Abuse → BDI → Drug Addiction 0.156 (0.024) 0.112, 0.203 <0.001

Abuse → Resilience → BDI → Drug Addiction 0.014 (0.006) 0.003, 0.027 0.022

Model 5 Neglect → Resilience → Drug Addiction 0.040 (0.017) 0.010, 0.076 0.019

Neglect → BDI → Drug Addiction 0.137 (0.030) 0.083, 0.197 <0.001

Neglect → Resilience → BDI → Drug Addiction 0.046 (0.011) 0.028, 0.071 <0.001

Model 6 Family dysfunction → Resilience → Drug Addiction 0.010 (0.005) 0.002, 0.023 0.061

Family dysfunction→ BDI → Drug Addiction 0.098 (0.016) 0.068, 0.131 <0.001

Family dysfunction → Resilience → BDI → Drug Addiction 0.011 (0.004) 0.003, 0.019 <0.001

Drug Addiction Often Associated With
More Severe ACE Exposure
As shown in Figure 2, more serious exposure to ACEs yielded
higher rates of drug addiction. This is consistent with previous
research results (11). In other words, as exposure to ACEs
increased, rates for non-addiction decreased significantly, which
may explain why some people use drugs to alleviate the negative
effects of childhood trauma to some extent. Namely, those
who have suffered from severe ACEs might not have been
able to address their negative consequences until adulthood (6),
choosing to use drugs to reduce the stress or trauma (24).

The Negative Role of Depression in the
Choice on Whether to Use Drugs
The results indicated that the direct effect of ACEs on
drug addiction was not significant. However, we found a
significant indirect effect in the relationship between ACEs and
drug addiction in this study (Figure 3C). ACEs significantly
affected depression, which increased the likelihood of drug use.
This also supports Farrugia’s results showing that individuals
with ACEs were more likely to suffer from depression and
to use drugs (18). Additionally, the results showed that
childhood abuse, childhood neglect, and family dysfunction
all significantly affected depression, in turn affecting drug use
(Figure 4). Notably, among the three subcategories of ACEs,
family dysfunction not only directly affected drug addiction
but also indirectly affected drug addiction through depression
(Figure 4C), illustrating that the substance abuse, mental illness,
domestic violence, criminal household members, and parental
marital discord experienced in childhood were more likely to
lead to depression in adulthood. For example, parents’ drug abuse
increases their children’s risk for major depression later in life
(40). Children aremore likely to have ACEs and increased risk for
depression if they have alcohol-abusing parents (41). Domestic
violence is strongly associated with depression, and it is an
indicator of increased exposure to other forms of adversity (14).

Resilience Mitigates Drug Use
Our study found that resilience played a significant mediating
role with respect to ACEs, depression, and drug addiction
(Figure 3C). Resilience weakened the effect of ACEs on drug
addiction. On the other hand, more serious exposure to ACEs
led to lower resilience. Meanwhile, resilience was negatively
correlated with depression. Resilience weakened the impact of
ACEs on depression and then weakened the effect of depression
on drug addiction. The protective role of resilience against
depression has been reported previously. For instance, whether
in childhood or adulthood, emotional regulation can effectively
reduce the negative effects of ACEs and promote physical and
mental health (42, 43). Resilience interventions can reduce the
impact of ACEs (28). Further, early recognition of ACEs, teaching
resilience, and health education can reduce the trauma, stress,
and other behavioral and emotional consequences of ACEs (44).

Limitations and Future Directions
The results of the current study must be interpreted in light
of several limitations. First, there are many factors affecting
whether an individual takes drugs, and experiencing ACEs may
be only one of them. Second, the potential for recall bias is
inevitable when participants recall childhood experiences, which
may have affected the accuracy of the results. Additionally,
self-reports of ACEs are likely to lead to inconsistencies due
to underreporting (45). Third, depression may be only one of
many negative emotions caused by ACEs, which could make
us ignore the impact of other negative outcomes of ACEs on
drug addiction. Therefore, future research should explore the
impact of multiple factors on drug addiction, the psychosocial
mechanism of resilience and how to improve it to combat
negative emotions optimally.

CONCLUSIONS

Exposure to ACEs was significantly associated with drug
addiction in our study. The more serious ACE exposure
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FIGURE 4 | (A–C) Serial mediation models (Models 4–6) were established with different subcategories of ACEs (childhood abuse, childhood neglect, family

dysfunction) as their respective predictors. Path coefficients are standardized. *p < 0.05, **p < 0.01, ***p < 0.001.

was, the more likely it was to lead to drug addiction.
ACEs affected drug addiction through depression, and there
was a significant correlation between depression and drug

addiction. As a protective factor, resilience reduced the effect
of ACEs on drug addiction and the effect of depression
on drug addiction by reducing the effect of ACEs on
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depression. Therefore, we should pay more attention to
the possible negative effects of ACEs, especially depression.
Simultaneously, we should aim to prevent ACEs from the
outset. Moreover, we should support ACE sufferers’ mental
health. Practitioners should provide resilience skills training
for those with ACEs to improve their resilience levels and
mitigate drug abuse and other negative consequences as much
as possible.
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Post-stroke depression (PSD) is the most common and serious sequelae of stroke.

Approximately 33% of stroke survivors were affected by PSD. However, many issues

(e.g., incidence, diagnostic marker, and risk factor) related to PSD remained unclear.

The “monoamine hypothesis” is a significant hypothesis for depression, which suggests

that three monoamines play a key role in depression. Therefore, most current

antidepressants are developed to modulate the monoamines on PSD treatment, and

these antidepressants have good effects on patients with PSD. However, the potential

mechanisms of threemonoamines in PSD are still unclear. Previously, we proposed “three

primary emotions,” which suggested a new model of basic emotions based on the three

monoamines. It may provide a new way for PSD treatment. In addition, recent studies

have found that monoamine-related emotional intervention also showed potential effects

in the treatment and prevention of PSD. This study discusses these issues and attempts

to provide a prospect for future research on PSD.

Keywords: post-stroke depression, 5-Hydroxytryptamine, monoamine hypothesis, three primary emotions,

emotional intervention

INTRODUCTION

Post-stroke depression (PSD) is a common and serious complication after stroke, which is often
regarded as the inevitable reaction toward stroke-related disability (1). A recent meta-analysis
reported that the incidence of PSD within the first 5 years after stroke ranged from 25 to 33% (2).
PSD adversely affects recovery and the life quality in patients with stroke. Evidence suggests that
PSD is related to a large number of adverse health outcomes, such as increasedmorbidity, disability,
and mortality (3–5). However, as the mechanisms of PSD diagnosis are unclear, the specific critical
periods for most interventions are still uncertain and most antidepressants used for PSD have been
reported to have serious side effects, until present some of the patients remain untreated or not be
adequately treated (6).

At present, the main therapeutic approach to PSD is essentially pharmacological (7), and the
most commonly used pharmacotherapeutic agents for treating PSD are antidepressants (1). Three
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monoamines, namely, dopamine (DA), 5-hydroxytryptamine (5-
HT), and norepinephrine (NE), play key roles in the etiology
and treatment for major depressive disorders (MDD) (8). The
monoamine hypothesis assumes that depression is associated
with low levels of monoamines, especially DA, 5-HT, and/or NE
(8, 9). So the major antidepressants for MDD are designed to
increase monoamine transmission either by inhibiting neuronal
reuptake or by inhibiting degradation (8, 10).

In addition, these three monoamines might be the primary
substrate for emotions (11). Previously, we have proposed the
“three primary color model” of basic emotions based on the three
monoamines Wang et al. (2020). In the hypothesis, we suggested
that all emotions are composed of some basic emotions, such
as happiness, sadness, and anger and fear, which are subsided,
respectively, by the three neurotransmitters: DA (happiness), 5-
HT (disgust), and NE (fear and anger) (12). Depression and other
affective disorders (such as PSD and anxiety) are related to the
dysfunctions of the monoamine system (13, 14).

It might be easy to suggest that the etiology of PSD may be
the ischemic lesions caused by stroke interrupting the projections
ascending from the midbrain and brainstem, leading to a
decreased bioavailability of the biogenic amines, including DA,
5-HT, and NE (4, 7). Even though traditional antidepressants are
the first-line treatment used for PSD, the mechanisms of PSD
are still unclear (4). Therefore, this study aims to review the
relationship of PSD with three monoamines and emotions. First,
we briefly introduced the incidence, risk factors, and diagnosis
of PSD. Then, we reviewed the application of three monoamines
in the treatment of PSD drugs and the “three primary
color model” of basic emotions. Finally, we summarized the
advantages of psychological therapy in recent years and posted
some suggestions for the pharmacology and psychotherapy
of PSD.

POST-STROKE DEPRESSION

Stroke and depression are two leading causes of disability
worldwide (6, 15). They not only negatively affect patients’ life
quality but also lead to socioeconomic burden (15, 16). PSD is the
most frequent and important neuropsychiatric consequence of
stroke (17). According to a report by World Health Organization
(WHO), approximately one-third of the 15 million patients
with stroke (2) suffer from PSD every year globally (18).
Despite the similarities between PSD and MMD, there are
some significant differences between them (4, 15). First, PSD
is a complication of stroke, which is closely linked to vascular
injury (19), while MMD is majorly due to monoaminergic
systems. Second, PSD and MMD are different in symptoms
in that PSD tends to have more severe cognitive impairment
than MMD but less anhedonia and disturbances in sleep and
cyclic functions than MMD (20, 21). Third, patients with PSD
have a higher prevalence of physical disability, which may be
related to stroke (22). Therefore, the clinical characteristics of
PSD are not identical to those of MMD, and PSD needs to be
specifically discussed.

INCIDENCE OF PSD

As a common stroke complication, PSD has been investigated
by many scientists in many countries around the world (23).
In addition, many meta-analysis studies have investigated the
incidence and etiology of PSD (2, 24, 25). In his pioneering
studies of PSD, Hackett et al. (26) conducted a systemic review
and meta-analysis, which included 17,934 patients from 20
studies and revealed a pooled frequency estimation of PSD of
33%. Hackett et al. (2) updated the systematic review with ameta-
analysis about the frequency of PSD in the next 10 years. They
revealed that the pooled frequency was estimated to be 31%,
which was consistent with the results found in a 10-year earlier
review. Recently, a new study reported the incidence of PSD
within the first 5 years following stroke to be 39–52%, which is
far higher than the incidence of MDD (about 4.4% of the world’s
population) (27).

Similar to Hackett et al., Ayerbe and his colleagues revealed
a similar pooled frequency of PSD of 29% and a cumulative
incidence of 39–52% within 5 years of the stroke (24). The
interesting finding of this research is that the frequency of PSD
remained quite consistent for the first year but then started to
decline. However, another study has provided an opposite result
as to the time course of PSD. Werheid et al. (28) reported a
two-phase pathogenetic model of PSD based on 10 prospective
longitudinal studies, which revealed a rise in the incidence
of PSD within the first 6 months, a slight drop at about 1
year, and a new increase within the second year following
a stroke.

In a recent study, Eman et al. (29) used DSM-IV TR as
diagnosis criteria of depressive disorders, they found that the
frequency of PSD was 36.9%, and 21.4% of which had MDDs,
meanwhile 15.5% had minor depressive disorders. Even though
these studies have provided the frequency and severity of
PSD, still there exist one limitation in these studies because
there were no standard diagnostic criteria for specific mood
disorders in most studies (16). In other words, these meta-
analyses did not distinguish major depression from other forms
of depressive disorders occurring after stroke (23). In addition,
an obvious finding was that there were differences in the results
of different PSD incidence studies due to the differences in
sample size, geographical location, the selection of patients,
etc. (30).

DIAGNOSIS OF PSD

A longstanding problem was that a vast majority of patients
with stroke are not screened for PSD (15) because PSD was
confused with many mood disorders in symptoms, such as post-
stroke apathy (PSA) (31) and catastrophic reaction (32). PSA
is generally defined as a disorder of diminished motivation
caused by a stroke (31). The symptoms of PSA are loss of
interest, diminished emotional response, and loss of initiative
(33), which are quite similar to those of PSD. In addition,
based on physiology, both PSD and PSA are related to fronto-
striatal circuit dysfunction and small vessel ischemia (34, 35).
A catastrophic reaction is also a common emotional reaction
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TABLE 1 | Main tools to screen and diagnose the PSD.

Scales Full name Authors Diagnostic criteria Sensitivity (95%

CI)

Specificity (95%

CI)

DSM-IV Diagnostic and

statistical manual of

mental disorders

American Psychiatric

Association

• presence of depressed mood or

anhedonia

• symptoms are pathophysiologically

related to the stroke

• symptoms are not better explained

by other psychiatric disorders

• disturbance does not occur

exclusively in the presence of

delirium

• symptoms cause significant distress

or impairment

PHQ-9 9-item Patient Health

Questionnaire

Spitzer RL Self-rating scale; all items are graded

from 0 to 3; score greater than 4 is

diagnosed as having depressive

symptoms

0.86 (0.70 to 0.94) 0.79 (0.60 to 0.90)

HAMD Hamilton Depression

Rating Scale

Hamilton Two trained assessors conduct joint

inspections on the assesses; score

greater than 7 is diagnosed as having

depressive symptoms

0.82 (0.69 to 0.90) 0.75 (0.62 to 0.84)

CES-D Center of

Epidemiological

Studies-Depression

Scale

Sirodff 20 items; self-rating scale; according

to the frequency of the corresponding

condition or feeling in the past 1 week;

it focuses more on the emotional

experience of the individual; score

greater than 15 is diagnosed as having

depressive symptoms

0.64 (0.48 to 0.78) 0.85 (0.52 to 0.97)

BDI Beck Depression

Inventory

Beck AT 13 items; all items are graded from 0

to 3; score greater than 4 is diagnosed

as having depressive symptoms

0.90 (0.62 to 0.98) 0.55 (0.19 to 0.86)

HADS Hospital Anxiety and

Depression Scale

Zigmond AS and RP

Snaith

Divide into anxiety subscale and

depression subscale with 7 items

each; score greater than 10 is

diagnosed as having depressive

symptoms

0.87 (0.46 to 0.98) 0.73 (0.65 to 0.79)

MADRS Montgomery-Asberg

Depression Rating

Scale

Montgomery SA,

Asberg M

10 items; all items are graded from 0 to

6; score greater than 12 is diagnosed

as having depressive symptoms

0.85 (0.78 to 0.90) 0.79 (0.70 to 0.86)

GDS Geriatric Depression

Scale

Brank 30 items; self-rating scale; suitable for

the elderly; score >20 is diagnosed as

having depressive symptoms

0.81 (0.65 to 0.91) 0.77 (0.62 to 0.82)

after stroke. The definition of catastrophic reaction is an
intense emotional reaction to the inability to perform tasks
after neurological damage (36), which is characterized by severe
frustration, sadness, anger, or aggression (15). Although these
symptoms are similar to those of post-stroke diseases, the
treatments are quite different. For example, substantial evidence
shows that PSA is better treated by psychotherapy interventions
instead of antidepressants (37), but antidepressants in fact have
shown good therapeutic effects in PSD treatment (7). Therefore,
the diagnosis and treatment of PSD are particularly important.
The diagnosis and screening of PSD mainly use the traditional
depression scales (38), such as Hamilton Depression Rating
Scale (HAM-D), Beck Depression Inventory (BDI), and Hospital
Anxiety and Depression Scale (HADS) (39). We summarized the
main PSD diagnosis instruments in Table 1 according to recent
reports; however, Nick et al. (40) conducted a meta-analysis on

these diagnostic methods for PSD. They found that all the tools
used in the clinics were not so correct for case findings. In all

these scales, the Center of Epidemiological Studies-Depression

Scale (CESD), HAM-D, and the Patient Health Questionnaire
(PHQ-9) showed the best results. PHQ-9 is the shortest of these

options, with only nine questions based on the DSM-IV criteria

for MDD (41). As a result, the PHQ-9 is one of the fastest and

most practical tools that can be administered in the screening and

diagnosis of PSD (15) (Table 1).

RISK FACTORS OF PSD

Depression is a common symptom following a stroke; however,
the risk factors and predictors are yet to be delineated (1). The
benefit of understanding PSD risk factors is beneficial to the
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FIGURE 1 | A neural mechanism model of PSD. IL-6, interleukin-6; IL-1β, interleukin-1β; CRP, C-reactive protein; CRH, corticotropin-releasing hormone; ACTH,

adrenocorticotropic hormone; 5-HT, 5-hydroxytryptamine; BDNF, brain-derived neurotrophic factor.

prevention and treatment of this disease. Many studies during
the past decades have reportedmany causing factors for PSD. The
main factors are summarized in the following sections.

Stroke-Related Factors
A series of studies have found that the type, severity, and lesion
location of stroke were related to the PSD (30). Jørgensen et
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al. (42) conducted a large sample study by collecting data from
157,243 patients with stroke between January 2001 andDecember
2011. They reported that patients with ischemic stroke had a
higher incidence of PSD than patients with hemorrhagic stroke.
In another study, Vataja et al. (43) also found that patients with
PSD had more sites and a larger volume of infarcts. However,
another study did not find different rates of PSD based on the
type of stroke (44).

A lot of studies have provided evidence for the relationship
between stroke severity and PSD incidence (24, 45, 46). One
meta-analysis study of PSD by Hackett et al. (26) found that
there was a positive correlation between stroke severity and PSD.
Recently, a multiple regression analysis from Taiwan also found
a correlation between the severity of stroke and the incidence of
PSD (46). Another study by Jørgensen et al. (42) also found that
a higher depression score was significantly associated with PSD,
regardless of gender.

In addition, the lesion location of the brain was strongly
associated with PSD. In a series of studies (23, 47, 48), Robinson
and his colleagues revealed that patients with stroke in the left
hemisphere had a higher incidence of PSD and the severity
correlated significantly with the proximity of the lesion to the
frontal pole. Meanwhile, Starkstein et al. (49) found that the
location of subcortical lesions had a greater influence than
cortical lesions on PSD. Similarly, in patients with subcortical
damage, the closer the lesion to the frontal lobe, the more
severe the PSD. Therefore, the frontal pole may play a key
role in the severity of PSD. In other ways, Jorge et al. (50)
found that focal brain stimulation using repetitive transcranial
magnetic stimulation is only effective when it is applied to
the left dorsolateral prefrontal cortex in patients with vascular
depression. Robinson (23) also considered that PSD is associated
with left frontal or left basal ganglia lesions within 2 months of
a first clinical stroke. Therefore, left frontal or left basal ganglia
lesions may be used as the screen basis of PSD.

Demographic Factors
Similar toMDD, many demographic factors, such as sex, age, and
history of psychiatric illness, are related to the PSD. During the
past decades, there was no agreement on sex as a risk factor for
PSD. Some studies identify female sex as a risk factor for PSD.
In a meta-analysis study of the risk factors for PSD, Shi et al. (17)
found that sex (female) was significantly associated with PSD [OR
= 1.77, 95% CI = 1.26–2.49]. This result was also reported in
other studies (46, 51, 52). However, a systematic review by Ryck
(44) found that gender was not a significant risk factor for PSD in
13 out of all 21 studies.

Age was another factor that yielded the most controversial
results. In a study of 216 patients with ischemic stroke, Li et al.
(53) revealed a difference in age between patients with PSD and
patients without PSD. Carota et al. (54) also found the association
between PSD and age. However, Ryck et al. (44) revealed that
age was not associated with PSD in 16 studies. Therefore, the
relationship between age and PSD is still unclear.

Finally, the history of psychiatric disorders was also associated
with PSD, particularly MDD and anxiety disorders. A meta-
analysis study by Ried and his colleagues found the rate of PSD

was found to be 5–6 times higher among those with pre-stroke
depression (55). A recent study has also revealed depression
before stroke notably increased odds of PSD (56). Anxiety
disorder is also a risk factor for PSD. De Ryck reported that a
personal history of anxiety was a significant risk factor in some
studies (44).

Social Support
Apart from the above risk factors, social support is also associated
with the PSD. But, the available studies concerning PSD and
social support are contradictory (23). A systematic review of the
relationship between social support and PSD reported that some
factors (such as family life, friends, acquaintances, and social
participation) of social support were associated with PSD, and
lack of social support may causemore severe PSD symptoms (57).
Other studies have reached similar results (18, 58). Even though
a lot of evidence indicated that social support was related to
PSD, Jessica et al. (59) reported that living conditions and marital
status have not been consistently associated with PSD.

MONOAMINE TRANSMITTERS IN THE
TREATMENT OF PSD

In their study performed 2,500 years ago, Hippocrates and
Galen suggested that individual differences are due to fluid
components in the body, and that a balanced mixture of
these vital chemicals can induce at least four kinds of
temperaments: choleric (aggressive), melancholic (depressive),
phlegmatic (fear and social detached), and sanguine (cheerful)
(60). The further that research in the neurochemistry of
emotionality advances, the more that neurochemical systems are
linked to emotional regulation (61). In fact, dysregulation in
practically all neurochemical families, especially monoamines,
hormones, neuropeptides, opioid receptors, and transcription
factors, appears to contribute to PSD (62). There are two
main theoretical views about the determinants of PSD. One
of them focuses on brain locations such as the amygdala and
hippocampus, prefrontal cortex, and hypothalamus. Another one
emphasizes neurochemicals such as disruption of biogenic amine
neurotransmission and release of proinflammatory cytokines
(63). The monoamine hypothesis assumed that PSD was related
to abrupt damage of cortical circuits involved in mood regulation
and monoamine production (64). Dopamine (DA), 5-HT (5-
HT) and norepinephrine (NE) are the three main monoamine
transmitters in emotion regulation (11), which play a key role
in antidepressant drugs for PSD treatment. In the following
section, the roles of 5-HT, DA, and NE in the treatment of PSD
are discussed.

Monoamine Hypothesis
The “monoamine hypothesis” of depression originated from
early clinical observations (8), which posited that depression was
caused by an alteration in one or more of the monoamines (65).
Robinson (48) assumed that ischemic lesions may interrupt the
biogenic amine-containing axons ascending from the brainstem
to the cerebral cortex and lead to a decreased availability of
monoamines (5-HT, DA, and NE) in limbic structures of frontal,
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temporal lobes, and basal ganglia. Monoaminergic neurons
in the midbrain dynamically alter their firing patterns, which
were associated with motivation-related behavior in animal
studies (66). Motivation-related behavior included salience,
reward and punishment learning, incentive processing, decision-
making, goal-directed behavior, and anxiety (67). Recent studies
have revealed three different monoaminergic dynamics that
regulate diverse aspects of motivation-related behavior (68–
71). Therefore, it appeared that specific aspects of motivation-
related behavior were regulated by distinct synaptic and cellular
mechanisms in specific brain regions that underlie the transient
and sustained effects of the monoamine signaling (66). The
different neural systems of three monoamines may involve
different symptoms of depression (mood, cognition, and pain).
Serotonergic (5-HT) neurons originate from the median raphe
nucleus and innervate the limbic system, prefrontal cortex,
and other related structures involved in the regulation of
mood (4). In addition, 5-HT projected to the basal ganglia
has been confirmed to be associated with motor control (72).
Dopaminergic projections originated from the ventral tegmental
area (VTA) and substantia nigra (SN), reaching different
regions of nucleus accumbens (Nac), had been proven to be
related to reward and aversion (73). Norepinephrinergic neurons
originated from the locus coeruleus (LC) project to the limbic
system to participate in the regulation of emotional arousal
(74). Furthermore, the monoaminergic descending pathways
projecting through the dorsolateral spinal column played an
important role in the regulation of pain.

Since the 1950s, reserpine has been found to inhibit vesicular
monoamine transporters and deplete brain monoamines, which
provided evidence for the role of monoamines in the treatment
of depression. In 1959, the Food and Drug Administration
(FDA) approved imipramine for the treatment of MDD, which
established the class of drugs called tricyclic antidepressants
(TCA) as the first class of drugs to target monoamines. Later,
selective 5-HT reuptake inhibitors (SSRIs) and 5-HT and
norepinephrine reuptake inhibitors (SNRIs), which are based on
the “monoamine hypothesis,” were approved for depression in
1987 and 1993, respectively. In recent years, some drugs targeting
the glutamate system (such as ketamine) showed good effects
(75). In all, the introduction of TCAs and monoamine oxidase
inhibitors based on the monoamine hypothesis revolutionized
the treatment of depression. Since then, most of antidepressants
have been developed by primarily acting through modulation
of monoaminergic neurotransmission (76). Even though the
monoamine hypothesis alone was no more generally accepted
(16), the current main treatment of PSD drugs is still based on
the monoamine hypothesis (77).

Serotonin (5-HT)
5-Hydroxytryptamine is a significant neuromodulator with
unique neuroplastic capabilities (78). The main gathering area
for 5-HT neurons is the dorsal raphe nucleus (DRN). The 5-
Htergic neurons of the DRN send projection to the entire brain
and throughout the neuraxis and receive major inputs from
the hypothalamus, amygdala, midbrain, and anterior neocortex
(66). There are 14 types of serotonergic receptors, which can be

divided into seven main families according to differently coupled
G-proteins (79). Each group of receptors may have different
functions. For example, 5-HT1A and 5-HT1B receptors are
associated with anxiety (80) and reward behaviors (81); 5-HT2A

receptors are correlated to appetite control, thermoregulation,
and sustained attention (82); 5-HT3 receptors are related to
aggression behaviors (83); and 5-HT4 receptors affect memory,
depression, and feeding (84).

In addition, abundant evidence has justified the role of
5-HT in depression (85), as well as in patients with PSD
(86). Furthermore, 5-HT levels can be affected by three
neurobiologically related factors of PSD: increased inflammation
and trauma, decreased cerebral brain-derived neurotrophic
factor (BDNF), and dysregulation of the hypothalamus-pituitary-
adrenal (HPA) axis. Raison et al. (87) reported that the
metabolisms of 5-HT are affected by the central nervous system
(CNS) inflammatory response (88). A peripherally administered
cytokine could activate a CNS inflammatory response in humans
that interacted with 5-HTmetabolism, which was associated with
depression. The association of BDNF and 5-HT also showed
a special feature in depression (89). BDNF injected into the
midbrain increased the level of 5-HT and also enhanced the
expression of genes encoding 5-HT1A and 5-HT2A receptors.
These changes can only be observed in depression mice but
not in nondepression mice (90). In patients with PSD, 5-HT
and other monoamine (DA and NE) release might be affected
by abnormal HPA axis activity after stroke. Therefore, Guo
et al. (30) posted a model of the PSD mechanism based on
four main hypotheses of PSD: the monoamine hypothesis,
HPA hypothesis, neurotrophic hypothesis, and inflammation
hypothesis. The model considered that stroke could trigger a
robust inflammatory response and severe monoamine system
damage in the injured brain region (91). Then, this change would
increase the activity of HPA, which works through the following
processes. First, the inflammatory response and the 5-HT
decrease made the paraventricular nucleus of the hypothalamus
release more corticotropin-releasing hormone (CRH), which
stimulated the pituitary to release more adrenocorticotropic
hormone (ACTH). The increase in ACTH release causes an
increase in glucocorticoid synthesis and release in the adrenal
cortex (92). Glucocorticoid is also called cortisol in the human
body, which is the major component of the HPA axis. Many
studies have shown that the cortisol levels were higher in
depression patients (93, 94). An increase in cortisol, in turn,
could lead to a decrease in BDNF, which played a key role
in the emotion system. On the one hand, lacking cerebral
BDNF contributed to the development of negative mood states
(95). On the other hand, BDNF was closely associated with
5-HT, and the functional activity of the 5-HT system was
linked with depression and suicide (89). 5-HT decrease in
the limbic system and cerebral cortex might be an important
factor for depression in patients with stroke. Therefore, 5-
HT and its receptors can be used as a biomarker for PSD
(Figure 1).

Furthermore, the major antidepressant drugs mainly target 5-
HT and its receptors. Currently, there are three main types of
antidepressant drugs, including tricyclic antidepressants (TCAs),
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selective 5-HT reuptake inhibitors (SSRIs), and 5-HT and
norepinephrine reuptake inhibitors (SNRIs) (96). The first-
line therapeutic treatment for PSD is using antidepressants, as
can be seen in a recent meta-analysis, which confirmed that
antidepressant drugs had a significant effect in the treatment
of PSD vs. placebo (97). TCAs are a group of traditional
antidepressant drugs, and some drugs of this kind are still
used in PSD treatment, such as amitriptyline and nortriptyline,
which are 5-HT2 receptor antagonists. Xu et al. (97) found a
significant advantage of TCAs over placebo in a meta-analysis
study. However, both amitriptyline and nortriptyline have been
reported to have serious side effects. Some elderly patients
with stroke showed orthostatic hypotension, cardiac arrhythmia,
glaucoma, or prostate hyperplasia after using the two drugs
(98). SSRIs and SNRIs are two groups of new antidepressant
drugs, which is introduced after the 1980s (7). Nowadays, there
are at least 6 SSRI drugs (fluoxetine, paroxetine, fluvoxamine,
sertraline, citalopram, and escitalopram) and 3 SNRI drugs
(i.e., milnacipran, duloxetine, and duloxetine) available in PSD
treatment. Anyway, a series of studies have shown that the SSRI
drugs also had great effects on PSD treatment (99–105), such
as gastrointestinal symptoms, headache, sexual dysfunction, and
insomnia (7).

In addition, using SSRIs may increase mortality in patients
with stroke (24). However, these studies did not reach a
consensus result, even opposite results (106, 107). Compared
with SSRIs, SNRIs may be useful in improving painful physical
symptoms due to their noradrenergic action. Some studies have
also found that SNRIs show a great effect on PSD prevention
and treatment (103, 108, 109). In addition to these three types
of drugs, some new antidepressant drugs also target 5-HT
receptors and show great effects on patients with PSD. For
example, vortioxetine, a new antidepressant with multimodal
activity, shows great therapeutic effects on cognition. It can act
on multiple 5-HT receptors, including 5-HT1A, 5-HT1B, 5-HT1D,

5-HT3, 5-HT7, and 5-HT transporter (SERT) (110). In addition,
vortioxetine shows fewer side effects than current first-line
antidepressants. In all, these studies showed that antidepressant
drugs targeting 5-HT can play a role in the treatment of PSD
(Table 2).

Dopamine and NE
Dopamine and NE are two other monoamines and also play
a key role in the emotion system. The dopaminergic system
is a unique modulatory system in the brain as it has discrete
projections to specific brain regions, including motor behavior,
cognition, and emotion (110). Unlike 5-HT or NE, separate
groups of DA neurons project to different brain regions. Different
groups of DA neurons project to different brain regions to
moderate and regulate different behaviors and functions (129).
Dopaminergic neurons are mainly located in the VTA and SN
(130). Dopaminergic neurons in these two areas project to the
reward-related Nac and ventral striatum (VS), which is called
the mesolimbic DA system (22). In addition, the dopaminergic
neurons in the lateral SN primarily project to the dorsomedial
striatum and participate in the formation of motor learning and
habit behavior (131). The functions of DA are mainly mediated

TABLE 2 | Main 5-HT drugs and their receptors for PSD.

Drugs 5-HT

receptors

Clinical application References

Fluoxetine 5-HT2C (-) depression, premenstrual

dysphoric disorder,

hypochondriasis, bulimia

nervosa

(111)

Paroxetine 5-HT2C (-),

5-HT2A (-)

depression, PTSD, OCD,

generalized anxiety disorder,

premenstrual dysphoric

disorder

(112, 113)

Fluvoxamine 5-HT1A (-) anxiety disorders,

schizophrenia, delusional

depression

(114, 115)

Sertraline 5-HT2C (-) major depression, panic

disorder, OCD, PTSD

(116)

Citalopram 5-HT3 (-),

5-HT1A (-),

5-HT2C (-)

major depression, OCD (117, 118)

Escitalopram 5-HT1A (+) depression, anxiety disorder (119)

Amitriptyline 5-HT2 (-) schizophrenia, (120)

Nortriptyline 5-HT2 (-) depression (121)

Clomipramine 5-HT1A (+),

5-HT1B (-)

OCD, major depression (122)

Milnacipran 5-HT1A (-) major depression (123)

Duloxetine 5-HT (-) generalized anxiety disorder,

major depression

(124)

Mirtazapine 5-HT2A (-) depression, PTSD (125, 126)

Venlafaxine 5-HT1B (-) major depression, OCD (127)

Doxepin 5-HT2A (-),

5-HT2C (+)

insomnia (128)

by DA receptors, which are composed of five different but closely
related G protein-coupled receptors, D1-like (D1 and D5) and
D2-like (D2, D3, and D4) receptors (Beaulieu, Gainetdinov, &
Sibley, 2011). D1-like receptors can enhance the activity by
activating the Gαs/olf family, but the D2-like receptors activate
Gs/ol family and inhibit the activity (79, 132). More and more
studies have shown that dopaminergic system dysfunction is
linked to the pathology of depression (133–136). Anhedonia
and amotivation are two main symptoms seen in depression,
which are related to dysfunctions in the dopaminergic system
(137). Animal models of depression showed stress-induced
impairments of VTA dopaminergic neurons are related to the
increasing susceptibility of depression in rats (138), which is
due to stress increased activity of dopaminergic neurons in
the circuit of the hippocampus—VS-ventral pallidum. However,
increased activity in the ilPFC-amygdala-ventral pallidum circuit
caused a compensatory, long-duration downregulation of the
VTA. The downregulation of the VTA was maintained after
stress, which might be the reason for anhedonia and depression
(139). Therefore, we could speculate that stroke led to serious
monoaminergic system damage, which led to reduced release
of VTA dopamine to the reward-related Nac and VTA, and
thus anhedonia and depression. In addition, antidepressant drugs
targeting DA and its receptors also showed great benefits in
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PSD treatment. For example, fluoxetine and paroxetine, two
of the most commonly used drugs in PSD treatment, could
prevent the degeneration of nigrostriatal dopaminergic neurons
(140). A recent study has revealed that SNRIs achieve a fast
antidepressant effect by elevating the DA concentrations in the
mPFC and theNac (96). Furthermore, a new antidepressant drug,
bupropion, which primarily acts through the NE transporter and
DA transporter, shows a significant therapeutic effect (141).

Norepinephrine, a catecholamine neuromodulator, projects to
all the brain regions except some dopaminergic neuron regions,
such as the striatum, globus pallidus, NAc, and SN (142). NE is
mainly released from neurons originating from locus coeruleus
(LC), a small nucleus situated in the pons of the brainstem. The
LC-NE system has long been considered to be critical in arousal
(71). NE exerts its effects through binding to G-protein coupled
α-adrenergic receptor (α-AR) and β-adrenergic receptor (β-AR).
A-AR receptors can be divided into two families: α1 and α2.
Each of them has three subtypes: α1A, α1B, and α1D; α2A, α2B,
and α2C; while β-Ars has two groups: β1and β2 (143). NE has
the highest affinity for the α2 receptors and the lowest affinity
for β adrenergic receptors. In addition, α1 receptor stimulation
has been found to enhance excitatory processes in many brain
regions (144). Animal models offered the evidence that reduction
of the levels of presynaptic NE, such as 5-HT, or DA, plays a key
role in the pathophysiology of depression (145). In all, the LC-
NE system is also related to the low arousal state of depression
(74). A meta-study showed a significant correlation between
baseline 3-methoxy-4-hydroxyphenylglycol (sMHPG) levels and
Beck Depression Inventory (BDI) score, and sMHPG was the
major NE metabolite in the cerebrospinal fluid (146). Leonard
et al. (147) proposed a model about the relationship between
NE and depression. They proposed that chronic stress activated
the release of corticotropin-releasing factor (CRF), leading to the
increased release of pro-inflammatory cytokines, prostaglandins
of the E series, and nitric oxide, which influenced the central
neurotransmitter function. If these changes persisted, they may
contribute to the degenerative changes in noradrenergic neurons,
which would lead to depression. In patients with stroke, stroke
might change NE levels and thus PSD. In terms of depression
medications, SNRIs showed faster antidepressant effects than
SSRIs, and the underlying mechanisms of faster antidepressant
effects of SNRIs may be related to NE (96). In all, SNRIs showed
a great effect in improving painful physical symptoms due to their
noradrenergic action (7). A meta-study showed in recent clinical
studies that NEmay play an important role in aberrant regulation
of cognition, arousal, and valence systems that are associated with
depression (143).

Monoamine and Related Chemicals
Even though the monoaminergic systems are implicated
in the regulation of basic emotions, there is a functional
overlap of neurochemical systems related to PSD. The
neurochemicals involved in PSD can be divided into two
groups: neuromodulators and neuropeptides (Table 3). The
neuromodulators are small molecules, such as monoamines,
and have specific functions, such as joy, disgust, and fear,
like the three primary colors. While the peptides such as

TABLE 3 | Monoamine and chemicals for PSD.

Neuropeptide Emotional feelings References

Substance P Pain and anger (148, 149)

Angiotensin Thirst (150)

Oxytocin Orgasm, maternal feelings (151, 152)

ACTH Stress (153)

Insulin Energy (154)

Vasopressin Male sexual arousal, dominance (155, 156)

Bradykinin Pain (157)

CCK Satiety, disgust (158, 159)

Prolactin Maternal and love (160, 161)

TRH Playfulness (162)

LH-RH Female sexual arousal (163)

Bombesin Satiety-disgust (164)

Neurotensin Seeking (165)

Enkephalin Pain (166, 167)

Endorphin pleasure (168, 169)

DSIP Boring-disgust (170)

Dynorphin Hunger (171)

CRF Panic, anxiety (172, 173)

NPY Hunger (174)

oxytocin, orexin, and neuropeptides are more complex and
carry more flexible functions, which might be secondary to
the neuromodulators. Anyway, the monoamines and other
secondary neurochemicals can interact with each other to
produce different kinds of emotions (Figure 2). The difference
might be that the neuropeptides are involved in more specific
functions, such as thirst, hunger, and pain (Table 3).

THE THEORY OF THREE PRIMARY
EMOTIONS

Although the “monoamine hypothesis” proposed that the mood
symptoms of depression were mainly related to decreased
levels of monoamines, the relationship between monoamine
transmitters and emotion was never clarified. Nowadays, there
are two widely accepted theories in emotional studies: basic
emotion theory and dimensional theory (175). The basic
emotion theory suggests that all emotions are composed of
a limited number of emotions (11). Basic emotions have
evolutionarily preserved biological and social functions (175).
After many experimental studies, Ekman (176) suggested that
people have six basic emotions: joy, sadness, fear, anger,
disgust, and surprise. Robert Plutchik proposed eight primary
emotions in a color wheel: anger, fear, sadness, disgust, surprise,
anticipation, trust, and joy (175). In recent years, Jack et
al. (177) proposed four basic emotions: fear, anger, joy, and
sadness. The dimensional theory proposes that emotions could
be defined by some different dimensions, and all emotions could
be defined as a combination of these dimensions (178). The
dimensional theory was first proposed by Wundt, who suggested
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FIGURE 2 | A new model for basic emotions, which might be the neural mechanisms of PSD. The monoamine (NE, DA, and 5-HT) might be the substrate for basic

emotions, which include joy, sadness (disgust), and fear (anger). [A figure from our previous paper, (61)]. NE, norepinephrine; DA, dopamine; 5-HT,

5-hydroxytryptamine.

that emotion had three independent dimensions: pleasant-
unpleasant, tension-relaxation, and excitation-calm (179). The
most famous dimensional theory was proposed by Russell et
al., who invented the circumplex, which is composed of two
dimensions: hedonic (pleasure-displeasure) and arousal (rest-
activated). They proposed that all emotions could be arranged
in a circle, and the different locations of each emotion in
the circle reflected varying amounts of hedonic and arousal
properties (180). Even though both theories were supported
by more studies, no previous reports have connected emotion
with neurotransmitters. Wang et al. (61, 79, 178, 179) posted
a new theory of three primary emotions, which not only
compromised both basic emotion theory and dimensional
theory but also associated with neurotransmitters, especially
monoamines, with emotions.

Basic emotions are instinctive, primitive, and developed
throughout evolution (175), and each basic emotion should have
a specific neural basis. Therefore, Wang et al. (12, 61, 170)
proposed the theory of three primary emotions via a large
number of basic emotional studies. They proposed three basic
emotions: joy, disgust, and fear (anger), which were subsided,
respectively, by the three monoamine neurotransmitters: DA,
happiness; 5-HT, sadness; and NE, fear (anger). Fear and anger
are twin emotions that are like two sides of the same coin (61).
Fear and anger are associated with unanticipated ways things
happen: fear is associated with uncertainty about the situation;

and anger is related to trying to control the situation (181), which
can induce the individuals to generate the so-called fight or flight
response (182). Similarly, in the emotional dimension, DA and
5-HT represent two poles of the horizontal dimension, which
is the valence dimension, while the NE represents the vertical
dimension, which means arousal (11). This model might be the
first theory to connect monoamine neurotransmitters with basic
emotions and emotional dimensions.

EMOTION-BASED INTERVENTIONS IN
TREATING PSD

If patients are diagnosed with PSD, they are usually treated
with antidepressants (183). However, the effectiveness of
antidepressants in clinical practice is only approximately 50%
(184). Therefore, it is necessary to provide additional effective
and safe treatment for PSD. Emotional control for PSD showed
great potential in the treatment and prevention of PSD in recent
studies (7). The effects of several major psychotherapies in recent
studies are summarized in the following section.

Cognitive reappraisal is an effective and common intervention
therapy for the treatment of depression (185). In a recent meta-
study, cognitive behavioral therapy (CBT) interventions yielded
a larger short-term decrease in depression scores (126). CBT
was also widely used in clinical treatment for PSD (186). A
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single-blind randomized controlled trial of PSD revealed that
CBT was as effective as citalopram for late-onset post-ischemic
depression and was more effective than rehabilitation alone
(100). A recent meta-study also reported that both CBT alone
and CBT with antidepressants all showed significantly improved
depressive symptoms in PSD (18). However, most studies have
not considered the time of depression onset. Hou et al. (187)
found that antidepressants and psychological therapy may not
improve the symptoms of depression in patients during the first
3 months. Gao et al. (100) also reported that the most positive
results of CBT for treating post-ischemic stroke depression
occurred 3 months later. It may be associated with the biological
changes in the brain tissue caused by stroke. Therefore, CBT is
effective in treating PSD, but this effect usually occurs after the
biological changes in brain tissue stabilize. In addition, a recent
study has demonstrated the relevance of the MAOA gene for
the treatment outcome of CBT, while the MAOA gene plays a
key role in the degradation of monoamines, especially 5-HT and
NE (188).

In a recent study, mindfulness meditation showed potential
benefits for PSD (189). Mindfulness is defined as a process
of openly attending, with awareness, to one’s present moment
experience (190). Mindfulness meditation includes at least three
components: improved attention control, enhanced emotion
regulation, and altered self-awareness (191). In a recent
randomized controlled trial, Wang et al. (189) revealed that
mindfulness intervention had positive effects on depression,
social wellbeing, and emotional wellbeing of patients with PSD.

In addition, other treatments of implicit emotional control
were also recommended for patients with PSD, such as literature
therapy and art treatment (192–194). Literature therapy is
psychotherapeutic, which helps patients develop insight and
awareness of negative thoughts and emotions, provides answers
to problems, and supports them to practice these approaches
in their daily life (195). Art treatment is defined as the
therapeutic use of verbal treatment methods, using rhythms,
sensory stimulation, symbolic motions, and colors that could
facilitate the addressing of the patients’ psychological issues (196).
All of these treatments have been proved to work well for
depression by changing the unconscious minds, which can be

called implicit emotional control (194, 195, 197). Therefore, Eum
et al. (195) suggested that literature therapy and art treatment

could serve as a useful emotional control to help patients with
stroke in their rehabilitation process (195).

Even though many studies have reported that emotional
control has a great potential effect on PSD, there are still
more questions that remain unanswered, e.g., the best time for
emotional intervention in PSD. Most of the studies have not
considered time, e.g., Hou et al. (187) found that antidepressants
and psychological therapy only play a role after 3 months. In
addition, there is no standard process for emotional control for
PSD. Most researchers appealed to make a more individualized
plan for different patients (193, 198). Therefore, a series of studies
(18, 179) showed that the evidence for emotional control in PSD
is still inconclusive.

CONCLUSION AND PERSPECTIVES

In this study, we briefly introduced the incidence, risk factors,
and diagnosis of PSD. Then, we introduced the “monoamine
hypothesis,” the role of three monoamines in PSD, and the
antidepressant drugs primarily targeting these threemonoamines
and their receptors. Next, we elaborated on a new model of
emotion based on the “monoamine hypothesis.” We hope to
clarify the relationship between the three monoamines, emotion,
and PSD. Patients with PSD have some changes in their
microbiome and metabolism, and these potential biomarkers
and microorganisms may aid in the diagnosis and treatment
of the disease. Finally, since all drugs have side effects and the
effectiveness of antidepressants in clinical practice is less than
∼50%, we introduced some emotional controls for PSD.We hope
this study could help with the diagnosis and treatment of PSD.
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Background: This study aimed to investigate the neural substrates of processing

depression emotion in premenstrual syndrome (PMS) and healthy subjects of college

students using blood oxygenation level-dependent functional magnetic resonance

imaging (BOLD-fMRI).

Methods: During BOLD-fMRI scanning, 13 PMS patients and 15 healthy controls

(HC) performed a picture visual stimulation task during luteal and follicular phases,

in which participants and HC were asked to see pictures containing depression and

non-depression emotions. Simultaneously, self-rating depression scales (SDS) were

employed to evaluate the emotional status of participants.

Results: Compared to HC, right inferior occipital gyrus, right middle occipital gyrus,

right lingual gyrus, right fusiform gyrus, right inferior temporal gyrus, cerebelum_crus1_R,

cerebelum_6_R, culmen, the cerebellum anterior lobe, tuber, and cerebellar tonsil of PMS

patients showed enhanced activation. In contrast, sub-lobar, sub-gyral, extra-nuclear,

right orbit part of superior frontal gyrus, right middle temporal gyrus, right orbit part of

inferior frontal gyrus, limbic lobe, right insula, bilateral anterior and adjacent cingulate

gyrus, bilateral caudate, caudate head, bilateral putamen, and left globus pallidus

exhibited decreased activation.

Conclusion: The findings indicate that abnormal functional regulation of brain regions

such as occipital lobe and cerebellum leads to abnormal changes in emotional

regulation, cognitive ability, and attention distribution in PMS patients, implying significant

central pathogenesis.

Keywords: PMS, task state, BOLD-fMRI, depression emotion, college students
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BACKGROUND

Premenstrual syndrome (PMS) is a disorder that substantially
impairs normal life activities and interpersonal relationships
and is associated with a woman’s menstruation cycle (1,
2). Premenstrual dysphoric disorder (PMDD) is a severe
form of PMS (3). Established research indicated that PMS
prevalence was 35.3% among Sharjah university students (4),
62.7% among Puducherry college students (5), 64.9% among
female medical students in Saudi Arabia (6), and even higher
in some regions. PMS causes various symptoms in women,
commonly including affective symptoms, behavioral symptoms,
and difficulty concentrating, impairing their quality of normal life
(7, 8). Among them, womenwith PMS had difficulty in regulating
their emotions (9), such as prominent depression (10), making
them at higher risk of suicidality (11).

Although PMS pathogenesis remains unclear, the application
of brain imaging technology has facilitated its intrinsic neural
mechanism of neuropsychiatric disorders (12). Among them,
blood oxygenation level-dependent (BOLD) functional magnetic
resonance imaging (fMRI) has had a tremendous influence on
human neuroscience over the last two decades (13). Qing Liu
demonstrated decreased connectivity in the middle frontal gyrus
(MFG) and parahippocampal gyrus (PHG) in PMS patients,
as well as increased connectivity in the left medial/superior
temporal gyri (MTG/STG) and precentral gyrus within the
default mode network (DMN) using fMRI (14). Hai Liao revealed
elevated regional homogeneity (ReHo) mainly in the bilateral
precuneus, left inferior temporal cortex (ITC), right inferior
frontal cortex (IFC), and left middle frontal cortex (MFC), as
well as decreased ReHo in the right anterior cingulate cortex
(ACC) of PMS patients during the luteal phase (15). Besides,
structural MRI revealed increased gray matter (GM) volumes
in precuneus/posterior cingulate cortex (precuneus/PCC) and
thalamus, as well as decreased GM volumes in the insula
of PMS patients (16). Concurrently, Demao Deng’s research
indicated that PMS patients have greater bilateral amygdalae
volumes, increased FC between amygdala and certain regions
of frontal cortex, the right temporal pole, and the insula, as
well as decreased FC between bilateral amygdalae and right
orbitofrontal cortex and right hippocampus (17). In addition,
Peng Liu discovered decreased prefrontal-thalamic connectivity
and increased posterior parietal-thalamic connectivity in PMS
patients using resting-state fMRI (18).

Until now, few studies have been reported on the processing
mechanism of depression emotion in PMS (3). Accordingly, this

Abbreviations: PMS, premenstrual syndrome; HC, healthy control; BOLD-

fMRI, blood oxygenation level-dependent functional magnetic resonance imaging;

ACOG, American Society of Obstetrics and Gynecology; SDS, self-rating

depression scales; MFG, middle frontal gyrus; PHG, parahippocampal gyrus;

MTG/STG, left medial/superior temporal gyri; DMN, default mode network;

ReHo, regional homogeneity; ITC, inferior temporal cortex; IFC, inferior frontal

cortex; MFC, middle frontal cortex; ACC, anterior cingulate cortex; GM, gray

matter; PCC, posterior cingulate cortex; IAPS, International Affective Picture

System; EPI, echo-planar image; MNI, Montreal Neurological Institute; NEG,

negative emotion picture; NEU, neutral emotion pictures.

study aims to investigate the neural substrates of depression
emotion processing in PMS using BOLD-fMRI.

MATERIALS AND METHODS

Ethics Statement
The Medicine Ethics Committee of the First Affiliated Hospital
of Shandong University of Traditional Chinese Medicine,
Shandong, China, approved this study. All research procedures
were conducted following the Declaration of Helsinki. All
participants were apprised of the entire experimental procedure
and signed an informed consent form.

Participants
Thirteen right-handed PMS females were recruited to participate
in this study and matched with a control group of 15 comparison
subjects. In each group, subjects were matched according
to their age and educational level. In addition, all subjects
completed the Self-rating depression scale (SDS), which aims
to determine depression severity. All subjects provided written
informed consent.

Inclusion and Exclusion Criteria
Inclusion Criteria for PMS

It firstly meets the international diagnostic standards for PMS of
the American Society of Obstetrics and gynecology (ACOG). The
subjects were college students, 20–25 years old, right-handed,
and voluntarily participated in the study. Inclusion criteria
also included good mental state, sleep quality, and appetite.
Those who have clear consciousness, and independent judgment
ability, can understand the purpose of this study and cooperate
voluntarily. There are no major diseases such as heart, liver, and
kidney, no brain tumor or other brain diseases, and no history of
taking psychotropic drugs. Both eyes have a normal naked vision
or corrected vision.

Inclusion Criteria for HC

The participants were healthy and had no history of nervous
system diseases such as headache, dizziness, and seizures. And
they were college students, 20–25 years old, right-handed, and
voluntarily participated in the study. At present, the participants
are in a good mental state, have good sleep quality and appetite,
clear consciousness, independent judgment ability, able to
understand the purpose of this study, and voluntarily cooperate
with the experiment. The naked or corrected visual acuity of both
eyes is normal.

Exclusion Criteria

Participants will be excluded if they are mentally ill, have serious
physical diseases, have a history of drug abuse (including drugs
used to treat PMS within 3 months), have blood system diseases,
or have aphasia, disturbance of consciousness, dementia, and
other conditions that cannot cooperate with the examination,
have a chronic history of five visceral diseases such as heart
and liver and have clinical symptoms, or undergo unilateral
oophorectomy or abortion within 6 months, take contraceptives,
or the head translation monitored during motion correction
exceeds 3mm; or rotate more than 1 degree in any direction in
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FIGURE 1 | Timeline of experiments (fMRI). (A) Demonstrates the overall operating flow of emotional stimuli experiments during fMRI. (B) Illustrates depression degree

in PMS patients after depression picture stimulation during the luteal phase of the menstrual cycle. ***P < 0.00.

the three-dimensional direction. Those who put metal objects
in their bodies (including pacemakers, metal dental materials,
wearing braces, etc.) were excluded.

Stimuli Paradigm
The picture visual stimulation task consisted of depression and
neutral emotional pictures filtered by the international emotional
picture library. Stimuli were presented using the experimental
visual stimulus program (Electronic Technology inMedicine Co.,
Ltd., Shenzhen, China). Each stimulus onset (masked face or
crosshair) was triggered directly by a pulse from the scanner.
The images were projected onto a computer screen behind the
subject’s head within the imaging chamber. The screen was
viewed by a mirror positioned∼8 cm above the subject’s face.

During fMRI, all subjects were shown depression and neutral
emotional pictures in a block design [See Figure 1A Examples
of depression pictures from the International Affective Picture
System (IAPS) chosen referring to previous study (19)]. The
task state contains two runs and six blocks. Each block had
neutral emotional pictures interspersed with emotional pictures
in a pseudo-random order. This ensured that emotional pictures
occurred unpredictably. Depression emotional picture stimulus
consisted of a 30-s presentation (each picture was presented for
5 s, six pictures in a block), followed by a 30-s presentation of
neutral pictures (each picture was presented for 5 s, six pictures in
a block). The subject saw 30 negative emotional pictures within
the emotional stimuli blocks in a predetermined random order.
The subject also saw 30 neutral emotional pictures within the
neutral picture blocks in a predetermined random order. Picture
stimuli were presented at a rate of one per echo-planar image
(EPI) sequence. Following each face block, a control period of 30

cross-hair stimuli fixation points (+) was presented at the same
rate as the emotional pictures (see Figure 1).

The presentation order of emotional pictures was identical
for all subjects across runs. The first run consisted of +

Negative emotion pictures (NEG) + Neutral emotion pictures
(NEU). The second run was + NEU + NEG. Each run lasted
6min. Each subject viewed two runs. Following the scan,
subjective reports of pictures evoking emotional effects were
evaluated using SDS. Higher scores indicated that subjects
experienced higher emotional strength. Subjects must carefully
choose while assessing emotional intensity, which may induce
different emotions.

Image Acquisition and Data Analysis
Functional magnetic resonance imaging images were obtained
on a 3.0-T MR scanner equipped with a prototype fast gradient
system for echo-planar imaging (EPI) at the Institute of Medical
Imaging of Shandong. Functional images were obtained using
an echo-planar imaging sequence with the following parameters:
TE = 35ms; TR = 2,000ms; slice thickness = 4mm; gap
= 1mm; flip angle = 90◦; FOV = 24 cm; and in-plane
resolution= 64× 64.

Functional MRI data were preprocessed using Statistical
Parametric Mapping (SPM8). We discarded data of subjects
whose head motions of more than 3.0mm maximum
displacement in X, Y, or Z directions or 2.5 degrees in any
angular direction. The first three volumes of functional images
were discarded due to signal equilibrium and participants’
adaptation to the scanning noise. For each participant, functional
images were realigned using least-squares minimization without
higher-order corrections for spin history and were normalized to
Montreal Neurological Institute (MNI) template from structural
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images. Images were re-sampled to 3× 3× 3mm3 and smoothed
with a 6-mm full-width at half maximum.

Statistical Analysis
Individual data were analyzed by creating a generalized linear
model (GLM) in SPM. First level analysis was performed using a
General Linear Model [GLM, (53)] applied to the time series, and
convolved with the canonical hemodynamic response function.

TABLE 1 | Demographics of PMS and HC groups.

Variables PMS (n = 13) HC (n = 15) P-value

Age (years) 24.421 ± 0.838 24.762 ± 1.338 0.346

Menophania (years) 13.737 ± 1.240 13.476 ± 0.981 0.463

Length of menstrual cycles

(days)

6.211 ± 1.228 5.714 ± 1.189 0.202

Menstruation (days) 31.053 ± 2.483 30.286 ± 2.077 0.294

All values are mean ± standard deviation (SD).

A high pass filter of 128 seconds was applied in order to
remove slow signal drifts and improve signal to noise ratio.
For each emotional condition, two conditions were defined:
depression emotional pictures and neutral emotional picture. In
GLM analysis, when setting the model matrix, NEG vs. NEU, the
block in NEG is set to 1, and the block in NEU is set to −1.
When looking at the main effect of NEG alone, the trail in NEG
is set to 1, and the rest are set to 0. Whole-brain voxel-based
activation analysis was used to calculate the activation strength
in each voxel in each subject and convert it into con-maps
(con-maps is a contrast file, which represents the comparison
operation of beta values under different conditions).Group-level
statistical analyses were performed using a random-effects model
in SPM8. Two-sample t-test was conducted on the individual
con-maps of the two groups with small volume correction for
the one sample results masks. The volume threshold for each
cluster was >389 consecutive voxels; the single voxel threshold
for brain regions was P < 0.05 (corrected). Multiple comparison
correction for the results was performed using simulation (see
program AlphaSim by B.D. Ward, http://afni.nimh.nih.gov/pub/

FIGURE 2 | Increased and decreased activation of PMS patients’ brain regions than healthy controls when processing depression vs. neutral pictures. (A) Depicts

overall activation of the brain area by negative emotional picture task in PMS patients. (B) Manifests bilateral temporal lobe. (C) Illustrates bilateral precuneus, posterior

cingulate, and cuneiform. (D) Demonstrates the brain areas activated in motor areas. Red indicates enhanced activation of brain regions in PMS patients, while blue

indicates that activation is decreased.
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TABLE 2 | Difference area of two sample t-test under the condition of subtracting neutral picture from negative emotion picture between PMS group and HC group in

BOLD-fMRI.

Brain region Peak MNI coordinate BA T-Value Sub-brain region

Clusters peak voxel Cluster voxels X Y Z Sub-cluster Sub-cluster voxels

Putamen_L 1,418 −12 6 −9 BA 25 −4.3294 Orbit part of superior frontal gyrus 105

Middle temporal gyrus 67

Orbit part of inferior frontal gyrus 57

Rectal gyrus 73

Sub-lobar 289

Sub-Gyral 124

Extra-nuclear 113

Right insula 22

Amygdala hippocampus 142

Anterior and adjacent cingulate gyrus 47

Caudate 107

Caudate head 78

Putamen 126

Caudate 45

Globus pallidus 23

Cerebelum_Crus1_R 642 39 −75 −18 BA 19 3.7694 Cerebelum_Crus1_R 123

Cerebelum_6_R 60

Culmen 54

Cerebellum anterior lobe 54

Tuber 35

Cerebellar tonsil 29

Right inferior occipital gyrus 111

Lingual gyrus 12

Right fusiform gyrus 104

Fusiform gyrus 32

Inferior temporal gyrus 28

BA, Brodmann’s areas.

dist/doc/manual/AlphaSim.pdf), with a statistically significant
difference. A double-sample t-test was used to analyze the case
and control groups.

RESULTS

Demographics
This study included 13 women with PMS and 15 matched
HC. The sample size was determined prospectively and was
bigger than existing published studies evaluating brain activity in
PMDD women (20–22). The groups did not differ significantly
in age (years), menophania (years), length of menstrual cycles
(days), menstruation (days), all ps > 0.1 (see Table 1).

Degree of Depression
After the subjects completed the experiment, they were asked
to identify depression severity using SDS. Depression degree in
PMS patients was significantly higher than that in the HC group
(P < 0.001; Figure 1B).

Group Differences in BOLD-FMRI
Compared with HC group, PMS patients exhibit increased
activation in the following brain regions: right inferior

occipital gyrus, right middle occipital gyrus, right lingual
gyrus, right fusiform gyrus, right inferior temporal gyrus,
cerebelum_crus1_R, cerebelum_6_R, culmen, cerebellum
anterior lobe, tuber, and cerebellar tonsil. Simultaneously,
PMS patients have decreased activation of the following brain
areas: sub-lobar, sub-gyral, extra-nuclear, right orbit part of
superior frontal gyrus, right middle temporal gyrus, right
orbit part of inferior frontal gyrus, limbic lobe, right insula,
bilateral anterior and adjacent cingulate gyrus, bilateral caudate,
caudate head, bilateral putamen and left globus pallidus,
(Figure 2 and Table 1).

DISCUSSION

According to established research, women with PMS appear to
experience emotional dysregulation throughout the menstrual
cycle (23). Additionally, students experienced more emotional
regulation deficits (24). Among premenstrual symptoms,
depression was the most prominent feature of PMS diagnosis
and should be properly evaluated and treated (10). Our findings
indicated that the depression degree in PMS patients was
significantly higher than in the HC group (Figure 1B), which
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is consistent with our findings in PMDD (19). Women with
PMS/PMDD show significant depression, which is a response
to abnormal changes in the brain. When PMS patients are
exposed to emotional stimuli, the function of the spindle gyrus
in occipital and temporal lobes, as well as activation of the right
infratemporal gyrus and cerebellum, are enhanced, while sub
lobar, sub gyral, extra nucleus, frontal, marginal, and basal nuclei
are weakened (Table 2 and Figure 2). It demonstrates that the
above-mentioned brain area function regulation is abnormal
before menstruation, followed by emotional, cognitive, and
attention distribution changes, all of which are associated with
PMS pathogenesis.

Our findings corroborate other research conducted both
domestically and internationally. The frontal lobe is involved
in spiritual activities associated with an individual’s emotions
(25). The prefrontal cortex (PFC) plays a critical role in
emotion generation and regulation (26). Furthermore, the
prefrontal cortex edge, especially the orbitofrontal cortex,
influenced decision-making and emotional regulation (27).
When untreated depression patients viewed negative emotional
stimuli, the right orbitofrontal cortex (28) (middle frontal gyrus)
oxygen-dependent reaction weakened, which may be linked to
depression emotion.

Besides, insular is involved in emotional processing and
influences individual decisions (29). In the task state, insula and
insular cortex activity of PMDD patients significantly increased
during the luteal phase (29). Our findings revealed that right
insula activation decreased in task state, which is a new discovery
in PMS research that is not identical to PMDD (19). Additionally,
there were changes in the hippocampus cortex of PMDD
patients (30). Amygdala, hippocampus, and anterior cingulate
belong to the limbic lobe, which is intimately connected to
emotional, functional activities (31). Cerebellum was linked to
cognitive function (32). PMDD subjects had greater cerebral
gray-matter volume than controls in the posterior cerebellum
(33). The cerebellar activity of PMDD patients increased from
follicular phase to late luteal phase (34), especially cerebellar
vermis, which was correlated with emotional deterioration, as
confirmed by our study. Additionally, our findings indicated that
culmen, cerebellum anterior lobe, tuber, and cerebellar tonsil
were intimately associated with PMS.

Limitations
For now, our findings in college students with PMS in China have
suggested their basic neural mechanism, and we need to aim at
the deeper mechanism of PMS/PMDD and explore correlation
between BOLD fMRI and SDS in the future study. Besides, the
physiological components induced by heart rate and respiration
were not considered in our study. We will pay more attention to
the analysis of influencing factors such as heart rate.

CONCLUSIONS

In summary, PMS’s abnormal brain regions were localized
using BOLD-fMRI in college students, indicating pathological
brain changes. However, these new findings must be confirmed

and replicated in the future using larger sample size and
animal models.
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