

[image: image]





FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual articles in this ebook is the property of their respective authors or their respective institutions or funders. The copyright in graphics and images within each article may be subject to copyright of other parties. In both cases this is subject to a license granted to Frontiers. 

The compilation of articles constituting this ebook is the property of Frontiers. 

Each article within this ebook, and the ebook itself, are published under the most recent version of the Creative Commons CC-BY licence. The version current at the date of publication of this ebook is CC-BY 4.0. If the CC-BY licence is updated, the licence granted by Frontiers is automatically updated to the new version. 

When exercising any right under the CC-BY licence, Frontiers must be attributed as the original publisher of the article or ebook, as applicable. 

Authors have the responsibility of ensuring that any graphics or other materials which are the property of others may be included in the CC-BY licence, but this should be checked before relying on the CC-BY licence to reproduce those materials. Any copyright notices relating to those materials must be complied with. 

Copyright and source acknowledgement notices may not be removed and must be displayed in any copy, derivative work or partial copy which includes the elements in question. 

All copyright, and all rights therein, are protected by national and international copyright laws. The above represents a summary only. For further information please read Frontiers’ Conditions for Website Use and Copyright Statement, and the applicable CC-BY licence.



ISSN 1664-8714
ISBN 978-2-8325-4585-0
DOI 10.3389/978-2-8325-4585-0

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is a pioneering approach to the world of academia, radically improving the way scholarly research is managed. The grand vision of Frontiers is a world where all people have an equal opportunity to seek, share and generate knowledge. Frontiers provides immediate and permanent online open access to all its publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-access, online journals, promising a paradigm shift from the current review, selection and dissemination processes in academic publishing. All Frontiers journals are driven by researchers for researchers; therefore, they constitute a service to the scholarly community. At the same time, the Frontiers journal series operates on a revolutionary invention, the tiered publishing system, initially addressing specific communities of scholars, and gradually climbing up to broader public understanding, thus serving the interests of the lay society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely collaborative interactions between authors and review editors, who include some of the world’s best academicians. Research must be certified by peers before entering a stream of knowledge that may eventually reach the public - and shape society; therefore, Frontiers only applies the most rigorous and unbiased reviews. Frontiers revolutionizes research publishing by freely delivering the most outstanding research, evaluated with no bias from both the academic and social point of view. By applying the most advanced information technologies, Frontiers is catapulting scholarly publishing into a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers journals series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area.


Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers editorial office: frontiersin.org/about/contact





Global spread and prediction of COVID-19 pandemic

Topic editors

Jianping Huang – Lanzhou University, China

Bin Luo – Lanzhou University, China

Zhongwei Huang – Lanzhou University, China

Sheng Li – The City University of New York, United States

Teruya Maki – Kindai University, Japan

Kai Zhang – University at Albany, United States

Citation

Huang, J., Luo, B., Huang, Z., Li, S., Maki, T., Zhang, K., eds. (2024). Global spread and prediction of COVID-19 pandemic. Lausanne: Frontiers Media SA.  doi: 10.3389/978-2-8325-4585-0





Table of Contents




Is the Infection of the SARS-CoV-2 Delta Variant Associated With the Outcomes of COVID-19 Patients?

Gunadi, Mohamad Saifudin Hakim, Hendra Wibawa, Marcellus, Vivi Setiawaty, Slamet, Ika Trisnawati, Endah Supriyati, Riat El Khair, Kristy Iskandar, Afiahayati, Siswanto, Irene, Nungki Anggorowati, Edwin Widyanto Daniwijaya, Dwi Aris Agung Nugrahaningsih, Yunika Puspadewi, Dyah Ayu Puspitarani, Irene Tania, Khanza Adzkia Vujira, Muhammad Buston Ardlyamustaqim, Gita Christy Gabriela, Laudria Stella Eryvinka, Bunga Citta Nirmala, Esensi Tarian Geometri, Abirafdi Amajida Darutama, Anisa Adityarini Kuswandani, Lestari, Sri Handayani Irianingsih, Siti Khoiriyah, Ina Lestari, Nur Rahmi Ananda, Eggi Arguni, Titik Nuryastuti and Tri Wibawa on behalf of the Yogyakarta-Central Java COVID-19 Study Group

The Positive Rate of Nucleic Acid Testing and the Epidemiological Characteristics of COVID-19 in Chongqing

Xiaohua Liang, Yajun Sun, Lun Xiao, YanLing Ren and Xian Tang

Genetic Predisposition to Coronavirus Disease 2019 in Relation to Ten Cardiovascular Conditions: A Two-Sample Mendelian Randomization Study

Min Jia, He-Jia Chen, Ling-Mei Jia and Ya-Li Chen

Simulating Transmission Scenarios of the Delta Variant of SARS-CoV-2 in Australia

Sheryl L. Chang, Oliver M. Cliff, Cameron Zachreson and Mikhail Prokopenko

Epidemiological, Radiographical, and Laboratorial Characteristics of Chinese Asymptomatic Cases With COVID-19: A Systematic Review and Meta-Analysis

Haohao Yan, Yudan Ding and Wenbin Guo

Tweet Analysis for Enhancement of COVID-19 Epidemic Simulation: A Case Study in Japan

Vu Tran and Tomoko Matsui

A Robust Framework for Epidemic Analysis, Prediction and Detection of COVID-19

Farman Hassan, Saleh Albahli, Ali Javed and Aun Irtaza

The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern

Hikmet Akkız

Water Transmission Increases the Intensity of COVID-19 Outbreaks

Jianping Huang, Xinbo Lian, Yingjie Zhao, Danfeng Wang, Siyu Chen, Li Zhang, Xiaoyue Liu, Jinfeng Gao and Chuwei Liu

COVID-19 Testing: A Qualitative Study Exploring Enablers and Barriers in the Greater Accra Region, Ghana

Solip Ha, Sonam Yangchen and Abraham Assan

General Commentary: Whether Urbanization Has Intensified the Spread of Infectious Diseases—Renewed Question by the COVID-19 Pandemic

Ali Cheshmehzangi, Tong Zou, Zhaohui Su and Ayotunde Dawodu

Why does COVID-19 continue to spread despite mass vaccination?

Shuo Zhang, Zhen Yang, Zhen-Lin Chen, Shi-Jun Yue, Sai Zhang and Yu-Ping Tang

Automated artificial intelligence-enabled proactive preparedness real-time system for accurate prediction of COVID-19 infections— Performance evaluation

Leila Ismail, Huned Materwala, Yousef Al Hammadi, Farshad Firouzi, Gulfaraz Khan and Saaidal Razalli Bin Azzuhri

The effect of non-pharmaceutical policy interventions on COVID-19 transmission across three cities in Colombia

Adriana Poppe and Dina Maskileyson

Evolving trend change during the COVID-19 pandemic

Liping Gao, Canjun Zheng, Qi Shi, Kang Xiao, Lili Wang, Zhiguo Liu, Zhenjun Li and Xiaoping Dong

Causal association of epigenetic aging and COVID-19 severity and susceptibility: A bidirectional Mendelian randomization study

Wenchang Xu, Fengjun Zhang, Yingzhou Shi, Yuanzhen Chen, Bin Shi and Gongchang Yu

Lifestyle, course of COVID-19, and risk of Long-COVID in non-hospitalized patients

Magdalena Pływaczewska-Jakubowska, Michał Chudzik, Mateusz Babicki, Joanna Kapusta and Piotr Jankowski

Sex-differences in COVID-19 diagnosis, risk factors and disease comorbidities: A large US-based cohort study

Samer A. Kharroubi and Marwa Diab-El-Harake

Knowledge and practices toward COVID-19 among healthcare students: A cross-sectional study at the University of Zambia

Steward Mudenda, Nelly Ngalande, Moses Mukosha, Christabel Nang’andu Hikaambo, Victor Daka, Scott Kaba Matafwali, Michelo Banda, Ruth Lindizyani Mfune, Godfrey Mayoka and Bwalya Angel Witika

Detection of SARS-CoV-2 infection clusters: The useful combination of spatiotemporal clustering and genomic analyses

Yangji Choi, Anaïs Ladoy, David De Ridder, Damien Jacot, Séverine Vuilleumier, Claire Bertelli, Idris Guessous, Trestan Pillonel, Stéphane Joost and Gilbert Greub

From disgusting and complicated to simple and brilliant: Implementation perspectives and lessons learned from users and rejectors of mail-in SARS-CoV-2 gargle tests

Freda Röhr, Ferdinand Uellner, Andreas Deckert, Simon Anders, Robin Burk, Michael Knop, Lucia Brugnara, Till Bärnighausen, Albrecht Jahn, Shannon McMahon and Aurélia Souares

High SARS-CoV-2 infection rates and viral loads in community-dwelling individuals from rural indigenous and mestizo communities from the Andes during the first wave of the COVID-19 pandemic in Ecuador

Diana Morales-Jadán, Alexander Paolo Vallejo-Janeta, Vanessa Bastidas, Maria Belen Paredes-Espinosa, Byron Freire-Paspuel, Ismar Rivera-Olivero, Esteban Ortiz-Prado, Aquiles Rodrigo Henriquez-Trujillo, Tannya Lozada, the UDLA COVID-19 Team and Miguel Angel Garcia-Bereguiain

SARS-CoV-2 incidence, seroprevalence, and COVID-19 vaccination coverage in the homeless population: a systematic review and meta-analysis

Yuanhao Liang, Qian Sun, Quanxun Liu, Yulian Pang and Shixing Tang












	
	ORIGINAL RESEARCH
published: 09 December 2021
doi: 10.3389/fmed.2021.780611






[image: image2]

Is the Infection of the SARS-CoV-2 Delta Variant Associated With the Outcomes of COVID-19 Patients?

Gunadi1*, Mohamad Saifudin Hakim2, Hendra Wibawa3, Marcellus1, Vivi Setiawaty4, Slamet4, Ika Trisnawati5, Endah Supriyati6, Riat El Khair7, Kristy Iskandar8, Afiahayati9, Siswanto10, Irene11, Nungki Anggorowati12, Edwin Widyanto Daniwijaya2, Dwi Aris Agung Nugrahaningsih13, Yunika Puspadewi7, Dyah Ayu Puspitarani1, Irene Tania1, Khanza Adzkia Vujira1, Muhammad Buston Ardlyamustaqim1, Gita Christy Gabriela1, Laudria Stella Eryvinka1, Bunga Citta Nirmala1, Esensi Tarian Geometri1, Abirafdi Amajida Darutama1, Anisa Adityarini Kuswandani1, Lestari3, Sri Handayani Irianingsih3, Siti Khoiriyah14, Ina Lestari14, Nur Rahmi Ananda5, Eggi Arguni8, Titik Nuryastuti2 and Tri Wibawa2 on behalf of the Yogyakarta-Central Java COVID-19 Study Group


1Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

2Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

3Disease Investigation Center, Ministry of Agriculture Indonesia, Yogyakarta, Indonesia

4National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia

5Pulmonology Division, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia

6Centre of Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

7Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia

8Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

9Department of Computer Science and Electronics Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia

10Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia

11Balai Besar Teknik Kesehatan Lingkungan dan Pengendalian Penyakit, Yogyakarta, Indonesia

12Department of Anatomical Pathology/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

13Department of Pharmacology and Therapy/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

14RSUD Dr. Loekmono Hadi, Kudus, Indonesia

Edited by:
Bin Luo, Lanzhou University, China

Reviewed by:
Nur Izzah Ismail, The Chinese University of Hong Kong, China
 Zengliang Ruan, Southeast University, China

*Correspondence: Gunadi, drgunadi@ugm.ac.id

Specialty section: This article was submitted to Infectious Diseases - Surveillance, Prevention and Treatment, a section of the journal Frontiers in Medicine

Received: 21 September 2021
 Accepted: 09 November 2021
 Published: 09 December 2021

Citation: Gunadi, Hakim MS, Wibawa H, Marcellus, Setiawaty V, Slamet, Trisnawati I, Supriyati E, El Khair R, Iskandar K, Afiahayati, Siswanto, Irene, Anggorowati N, Daniwijaya EW, Nugrahaningsih DAA, Puspadewi Y, Puspitarani DA, Tania I, Vujira KA, Ardlyamustaqim MB, Gabriela GC, Eryvinka LS, Nirmala BC, Geometri ET, Darutama AA, Kuswandani AA, Lestari, Irianingsih SH, Khoiriyah S, Lestari I, Ananda NR, Arguni E, Nuryastuti T and Wibawa T (2021) Is the Infection of the SARS-CoV-2 Delta Variant Associated With the Outcomes of COVID-19 Patients? Front. Med. 8:780611. doi: 10.3389/fmed.2021.780611



Background: Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) has been responsible for the current increase in Coronavirus disease 2019 (COVID-19) infectivity rate worldwide. We compared the impact of the Delta variant and non-Delta variant on the COVID-19 outcomes in patients from Yogyakarta and Central Java provinces, Indonesia.

Methods: In this cross-sectional study, we ascertained 161 patients, 69 with the Delta variant and 92 with the non-Delta variant. The Illumina MiSeq next-generation sequencer was used to perform the whole-genome sequences of SARS-CoV-2.

Results: The mean age of patients with the Delta variant and the non-Delta variant was 27.3 ± 20.0 and 43.0 ± 20.9 (p = 3 × 10−6). The patients with Delta variant consisted of 23 males and 46 females, while the patients with the non-Delta variant involved 56 males and 36 females (p = 0.001). The Ct value of the Delta variant (18.4 ± 2.9) was significantly lower than that of the non-Delta variant (19.5 ± 3.8) (p = 0.043). There was no significant difference in the hospitalization and mortality of patients with Delta and non-Delta variants (p = 0.80 and 0.29, respectively). None of the prognostic factors were associated with the hospitalization, except diabetes with an OR of 3.6 (95% CI = 1.02–12.5; p = 0.036). Moreover, the patients with the following factors have been associated with higher mortality rate than the patients without the factors: age ≥65 years, obesity, diabetes, hypertension, and cardiovascular disease with the OR of 11 (95% CI = 3.4–36; p = 8 × 10−5), 27 (95% CI = 6.1–118; p = 1 × 10−5), 15.6 (95% CI = 5.3–46; p = 6 × 10−7), 12 (95% CI = 4–35.3; p = 1.2 × 10−5), and 6.8 (95% CI = 2.1–22.1; p = 0.003), respectively. Multivariate analysis showed that age ≥65 years, obesity, diabetes, and hypertension were the strong prognostic factors for the mortality of COVID-19 patients with the OR of 3.6 (95% CI = 0.58–21.9; p = 0.028), 16.6 (95% CI = 2.5–107.1; p = 0.003), 5.5 (95% CI = 1.3–23.7; p = 0.021), and 5.8 (95% CI = 1.02–32.8; p = 0.047), respectively.

Conclusions: We show that the patients infected by the SARS-CoV-2 Delta variant have a lower Ct value than the patients infected by the non-Delta variant, implying that the Delta variant has a higher viral load, which might cause a more transmissible virus among humans. However, the Delta variant does not affect the COVID-19 outcomes in our patients. Our study also confirms that older age and comorbidity increase the mortality rate of patients with COVID-19.

Keywords: comorbidity, Ct value, delta variant, hospitalization, mortality, SARS-CoV-2, viral load, whole genome sequencing


INTRODUCTION

The recent pandemic of Coronavirus disease 2019 (COVID-19) continuously causes a tremendous impact on both global health and the economy, with millions of people losing their lives. The causative agent, severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), is believed to emerge from bats as the natural reservoir of various strains of coronaviruses (CoV), including SARS-CoV-2 and the former SARS-CoV (1). Many SARS-CoV-2 infections in this ongoing pandemic have provided space and opportunity for continuous mutation and evolution, giving rise to novel variants with increased fitness and, thus, a significant impact on public health (2).

The SARS-CoV-2 variants of concern (VOC), including Alpha, Beta, Gamma, and Delta, have attracted public health authorities due to its capability on higher transmission; the possibility of affecting COVID-19 severity; and the impact of the effectiveness of public health measures, diagnosis, treatment, and vaccines (3–5). Among those VOC, the SARS-CoV-2 Delta variant (B.1.617.2) has been responsible for the current increase in COVID-19 infectivity rate worldwide, including Indonesia (6–10). The Delta variant is approximately two times more transmissible than the previous variants (11). The higher fitness and transmission capacity of the Delta variant is partly attributed to the notable mutations in the spike (S) region, including P681R and L452R, leading to a higher affinity of angiotensin-converting enzyme 2 (ACE-2) attachment (12, 13).

Currently, the Delta variant has been the most frequent variant circulating globally (14). Indeed, national genomic surveillance of SARS-CoV-2 variants has identified the Delta variant as the most dominant circulating variant in Indonesia (97.8%), followed by Alpha (1.7%) and Beta variants (0.5%) (10). Noteworthy, the Delta variant has been associated with a higher risk of hospitalization, more severe outcomes, admission of ICU, and mortality than other variants (15–17).

Several prognostic factors have been associated with COVID-19 illness (18–20). However, our knowledge about the role of the Delta variant on the COVID-19 outcomes is still very limited (15, 21). In this study, we compared the impact of the Delta variant and non-Delta variant infections on the COVID-19 outcomes, i.e., hospitalization and mortality, in patients from Yogyakarta and Central Java provinces, Indonesia.



MATERIALS AND METHODS


Patients

This cross-sectional study ascertained 161 patients with COVID-19 (79 men and 82 women) from Yogyakarta and Central Java provinces. The patients were ascertained in this study if the PCR's Ct value was ≤25 according to our previous studies (22–24). The diagnostic criteria of COVID-19 were determined using PCR. The PCR was performed for patients with clinical manifestations of COVID-19 or close contact with the confirmed COVID-19 case.

Moreover, some patients (45/69, 65.2%) infected by the Delta variant were confirmed in clusters, while others (24/69, 34.8%) were not. The outcomes of patients with COVID-19 were hospitalization and mortality.

The sample size was determined using the cross-sectional design formula: type I error rate (α) of 0.05, power of the study (1–β) of 0.63, the odds ratio of Delta patients for hospitalization of 1.85, and proportion of hospitalization for non-Delta patients of 0.19 (15). The calculated total sample size was 160.



Prognostic Factors

According to previous studies, we associated the following prognostic factors with the hospitalization and mortality of patients with COVID-19: sex; age; comorbidities, including obesity, diabetes, hypertension, cardiovascular disease, and chronic kidney disease; and smoking (18–20).



Sample Collection

All samples were collected from either outpatient or hospitalized patients with COVID-19 from May 2020 to June 2021 from Yogyakarta and Central Java provinces. We diagnosed the first patient infected with a non-Delta and Delta variant on May 16, 2020, and May 25, 2021, respectively. Samples were collected from nasopharyngeal swabs by using viral transport media. Subsequently, the samples were sent to our institution for PCR.



Severe Acute Respiratory Syndrome Coronavirus 2 Whole-Genome Sequencing

According to our previous studies, SARS-CoV-2 WGS was performed for all samples with PCR's Ct value of ≤25 (22–24). First, single-stranded cDNA was synthesized from RNA extracted from the viral transport medium of patients with COVID-19 using SuperScript™ III First-Strand Synthesis System (Thermo Fisher Scientific, MA, United States). Then, the second strand was synthesized using COVID-19 ARTIC v3 primer pool design by SARS-CoV-2 ARTIC Network using Phusion™ High-Fidelity DNA Polymerase (Thermo Fisher Scientific, MA, United States). The library preparations were performed using the Illumina DNA Prep (Illumina, California, United States). The Illumina MiSeq next-generation sequencer was used to perform the whole-genome sequences of SARS-CoV-2. The assembly of our sample genomes was mapped into the reference genome from Wuhan, China (hCoV-19/Wuhan/Hu-1/2019, GenBank accession number: NC_045512.2) using Burrow–Wheeler Aligner (BWA) algorithm embedded in UGENE v. 1.30 (25).



Phylogenetic Study

We used a dataset of 250 available SARS-CoV-2 genomes extracted from GISAID from our region and others (Acknowledgment Table is provided in Supplementary Table 1) to reconstruct the phylogenetic tree. Multiple nucleotide sequence alignment was performed using the MAFFT program (https://mafft.cbrc.jp/alignment/server/). We used the neighbor-joining statistical method with 1,000 bootstrap replications (26, 27) to construct a phylogenetic tree from 29.420 nucleotide length of the open reading frame (ORF) of SARS-CoV-2, followed by computation of the evolutionary distances, and model the rate variation among sites by the Kimura 2-parameter method and the gamma distribution with estimated shape parameter (α) for the dataset, respectively (28). We used the DAMBE version 7 (29) to calculate the estimation of the gamma distribution, MEGA version 10 (MEGA X) (30), for phylogenetic reconstruction, and FigTree to visualize the Newick tree output from MEGA X.



Statistical Analysis

We presented data as mean ± SD and frequency (percentage). The normality of the continuous variables was evaluated using the Kolmogorov–Smirnov test. Missing or incomplete data were excluded from the final analysis. Chi-square or Fisher's exact tests with 95% confidence interval (CI) were used to find any significant association between independent variables and COVID-19 outcomes. Next, multivariate analysis was performed directly using a logistic regression test. We included all variables in multivariate analysis because those prognostic factors have been associated with the outcomes of patients with COVID-19 (18–20). The p-value of <0.05 was considered significant. All statistical analyses were performed using the IBM Statistical Package for the Social Sciences (SPSS) version 21 (Chicago, United States).



Ethical Approval

The Ethics Committee of the Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital approved our study (KE/FK/0563/EC/2020).




RESULTS


Phylogenetic Analysis

Phylogenetic analysis showed that about 69 samples (43%) of SARS-CoV-2 collected from Central Java and Yogyakarta provinces belonged to B.1.617.2 lineage (Delta variant), while 92 samples (57%) clustered in 14 different lineages based on the Pango nomenclature. They were B (1), B.1 (7), B.1.1 (2), B.1.459 (26), B.1.456 (1), B.1.462 (6), B.1.466.2 (21), B.1.468 (3), B.1.470 (11), B.1.570 (1), B.1.1.236 (1), B.1.36.19 (1), B.1.1.398 (3), and B.6 (1), and seven virus samples were not belonging to any of Pango lineages (“none”) (Figure 1). Except for the Delta variant, none of the virus samples collected from our study belonged to any VOC or variant of interest according to WHO labels for naming SARS-CoV-2 variants, including Alpha variant (B.1.7.7 + Q.x), which was first detected in Indonesia in January 2021. Delta variant (B.1.617.2 + AY.x) seemed to be the major VOC circulating in Indonesia, including in the Central Java and Yogyakarta provinces, from May 2021 up to now. Interestingly, we found that about 13% of virus samples from Central Java and Yogyakarta provinces were clustered into B.1.466.2 lineage (Figure 1) that is currently designated by WHO as a variant of alert for further monitoring.


[image: Figure 1]
FIGURE 1. (A) The evolutionary history was inferred using the neighbor-joining method conducted in MEGA-X. The evolutionary distances were computed using the Kimura 2-parameter method with 1,000 bootstrap replication and are in the units of the number of base substitutions per site (0.0001) shown in the bottom tree. This analysis involved 250 nucleotide sequences with a total of 29,420 positions in the final dataset, and all ambiguous positions were removed for each sequence pair (pairwise deletion option). The Delta variant taxa are indicated in the blue line, whereas the non-Delta variant taxa appeared in the green line. (B) A pie chart illustrates the proportion of Delta variant and non-Delta samples detected in the present study.




Characteristics of Patients With COVID-19

Most Delta variants (65.2%) detected in our study were cluster cases. The mean age of patients with Delta and the non-Delta variant was 27.3 ± 20.0 and 43.0 ± 20.9 (p = 3x10−6), respectively. The patients with the Delta variant consisted of 23 men and 46 women, while the patients with the non-Delta variant involved 56 men and 36 women (p = 0.001). The Ct value of the Delta variant (18.4 ± 2.9) was significantly lower than that of the non-Delta variant (19.5 ± 3.8) (p = 0.043) (Table 1).


Table 1. Characteristics of patients with COVID-19 from Yogyakarta and Central Java provinces, Indonesia.
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Association Between Independent Variables and COVID-19 Patients' Outcomes

Next, we associated the independent variables with the COVID-19 outcomes, hospitalization, and mortality. There were no significant differences in the hospitalization and mortality of patients with Delta and non-Delta variants (p = 0.80 and 0.29, respectively) (Table 2). None of the prognostic factors were associated with the hospitalization, except comorbidity of diabetes with the OR of 3.6 (95% CI = 1.02–12.5; p = 0.036) (Table 2). Moreover, the patients with the following factors have been associated with higher mortality rate than the patients without these factors: age ≥65 years, obesity, diabetes, hypertension, and cardiovascular disease with OR of 11 (95% CI = 3.4–36; p = 8 × 10−5), 27 (95% CI = 6.1–118; p = 1 × 10−5), 15.6 (95% CI = 5.3–46; p = 6 × 10−7), 12 (95% CI = 4–35.3; p = 1.2 × 10−5), and 6.8 (95% CI = 2.1–22.1; p = 0.003), respectively (Table 2).


Table 2. Association between independent variables and COVID-19 patients' outcomes.
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Multivariate Analysis

Subsequently, we performed a multivariate analysis to find an independent factor affecting the COVID-19 outcomes. Multivariate analysis showed that age ≥65 years, obesity, diabetes, and hypertension were strong prognostic factors for the mortality of COVID-19 patients with the OR of 3.6 (95% CI = 0.58–21.9; p = 0.028), 16.6 (95% CI = 2.5–107.1; p = 0.003), 5.5 (95% CI=1.3–23.7; p = 0.021), and 5.8 (95% CI = 1.02–32.8; p = 0.047), respectively. In addition, no prognostic factors were associated with the hospitalization of patients with COVID-19 (Table 3).


Table 3. Multivariate analysis of the association between independent variables and COVID patients' outcomes.
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DISCUSSION

We are able to show that the patients infected by the SARS-CoV-2 Delta variant have a significantly lower Ct value than the patients infected by the non-Delta variant. Our finding is compatible with previous studies (17, 31, 32). Our finding supports that the higher viral load of the Delta variant results in its characteristic of being more transmissible among humans (31, 33). It is associated with a higher reproductive number (R0) of the Delta variant (R0 = 7) than the parental SARS-CoV-2 and the Alpha variant (34). In addition, the Delta variant also has a significantly longer duration (18 days) of Ct value ≤30 than the original strain (13 days) (17). Again, this evidence implies higher transmissibility of the Delta variant than that of other strains.

In addition, it seems that the replication of SARS-CoV-2 is increased in a time-dependent manner during the early stage of infection. However, our study did not consider the interval days between the dates of the first infection and sample collection for the SARS-CoV-2 WGS. The SARS-CoV-2 WGS in our study was performed only based on the PCR's Ct value of ≤25 (22–24). These facts should be considered during the interpretation of our findings.

We also show that the Delta variant is not associated with the mortality and hospitalization of patients with COVID-19. Our findings are different from previous reports (15–17). Sheikh et al. (15) showed that the risk of hospitalization is two times higher in patients with Delta variant than in patients with the Alpha variant. Fisman et al. (16) revealed that the risk of hospitalization, admission of ICU, and mortality are significantly higher in the Delta variant than in N501Y-positive variants. They suggested that the Delta variant is more virulent than previous VOCs (16). Ong et al. (17) showed that the patients with the Delta variant were more severely affected with COVID-19 than the original variant. These differences might be due to differences in the host's genetic background (35). They identified a novel susceptibility locus for severe COVID-19 at the 3p21.31 gene cluster, consisting of SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, and XCR1, and their functions are related to COVID-19 (35). Further study is necessary to identify the genetic susceptibility locus for severe COVID-19 in our patients. Another difference between our study and previous reports is that we compared the outcomes of the Delta variant and non-VOC, while other reports compared the Delta variant and other VOCs [9; 10->15, 16]. Moreover, we focused on the impact of the Delta variant on COVID-19 outcomes, regardless of whether the Delta variants were originated from independent cases or clusters.

Interestingly, ~50% of Delta variant infected children, higher than non-Delta variant (~15%). Similar findings were reported by a previous study showing that the frequency of the Delta variant is higher in children aged 5–9 years than that of the non-Delta variant (15). While the Delta variant infected more women than men, the non-Delta variant infected more men than women. However, multivariate analysis did not show an association between sex and COVID-19 outcomes. It is similar to a study by Ong et al. (17). It should be noted that the impact of sex on the COVID-19 outcomes is still controversial (17, 18, 36, 37). While some studies showed that male has a higher risk for severe COVID-19 (18, 36), other reports do not support the association (17, 37).

Our findings reveal that older age and comorbidities, including obesity, diabetes, and hypertension, are independent prognostic factors for the mortality of patients with COVID-19. Our findings were similar to previous studies (18, 30, 36). Several mechanisms have been proposed for the increased risk of COVID-19 in patients with diabetes, including an elevated level of ACE-2 receptors and furin, and dysregulated immune response, while the following factors contribute for the obesity to be associated with the worse prognosis of COVID-19: the compromised ventilation at the base of the lung and immune response (38). The use of the antihypertension drug, particularly ACE-2 inhibitors and angiotensin receptor blockers, is associated with the upregulated expression of the ACE-2 receptor, resulting in a higher possibility of respiratory failure (38). Unfortunately, we do not have complete data on the use of ACE-2 inhibitors and angiotensin receptor blockers in our patients. Therefore, it is challenging to conclude that the increased mortality of COVID-19 in patients with hypertension is due to antihypertension.

Several studies have shown that the vaccinated individuals might have significantly less severe outcomes of COVID-19 if infected with the Delta variant (15, 39, 40). Unfortunately, we did not have complete data on the vaccination status of patients with COVID-19. In addition, some studies showed that different prevention and control measures might have a different impact on the outcomes of patients with COVID-19 (41–43). The government of Indonesia has also applied public health measures, i.e., mitigation intervention, including compulsory mask-wearing, personal protective equipment, social distancing measures, travel and mass gathering restrictions, quarantine of travelers arriving from overseas, isolation of confirmed cases and close contacts, contact tracing and testing, and school closures. However, our study did not consider the role of those interventions on the outcomes of patients with COVID-19.

Our cross-sectional design that srestricts the ability of causal inference, the wide variation of the 95% CI of ORs, and the lack of demographic information (including occupation, income, education level, low power of the study, and small sample size) were the weaknesses of our study. Moreover, we only determined the impact of the Delta variant and some comorbidities on the COVID-19 outcomes by overall means without considering other variables affecting the data, including vaccination history and public health measures.



CONCLUSION

We show that the patients infected by the SARS-CoV-2 Delta variant have a lower Ct value than the patients infected by the non-Delta variant, implying that the Delta variant has a higher viral load, which might cause a more transmissible virus among humans. However, the Delta variant does not affect the COVID-19 outcomes in our patients. Our study also confirms that older age and comorbidity increase the mortality rate of patients with COVID-19.
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Objective: The purpose of this study is to analyze the positive rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid testing (NAT), cases of and deaths due to SARS-CoV-2, and the epidemiological characteristics of SARS-CoV-2 to identify high-risk populations.

Methods: A retrospective study in Jiulongpo district of Chongqing was conducted by performing continuous observations of the frequency of SARS-CoV-2 NAT, analyzing the data of close contacts of patients and asymptomatic carriers, and collecting epidemiological data. Data were collected from January 20, 2020, when the first case of SARS-CoV-2 infection was reported, to March 26, 2020. Descriptive statistical analysis and Cochrane–Mantel–Haenszel analysis were used to compare the positive detection rates and positive diagnostic rates of different exposure groups.

Results: A total of 7,118 people received 10,377 SARS-CoV-2 nucleic acid tests in one district, and the SARS-CoV-2 positive rates were 0.40% (18/4446) and 0.15% (4/2672) in people receiving one and ≥ two nucleic acid tests (p = 0.06), respectively. Those with suspected cases (12.35%) and close contacts (8%) had higher positive rates than people tested at fever clinics (0.39%) (p < 0.001). The median latency (range) of cases was 5 (2, 9) days, and the median time from diagnosis to recovery was 22 (14, 25) days. One recovered patient received a positive test result at 28 days after recovery when she attempted to donate blood. Six clustered cases, including one patient who died, indicated persistent human-to-human transmission. One patient who was diagnosed after death was found to have infected 13 close contacts. People working in catering and other public service departments (36.36%) and people who are unemployed and retirees (45.45%) have an increased risk of infection compared with technical staff (9.09%) and farmers (9.09%).

Conclusion: The total positive rate was low in the tested population, and more effective detection ranges should be defined to improve precise and differentiated epidemic control strategies. Moreover, in asymptomatic carriers, SARS-CoV-2 tests were positive after recovery, and patients with suspected SARS-CoV-2 infection who die may pose serious potential transmission threats.

Keywords: COVID-19, close contacts, suspected cases, asymptomatic carrier, positive rate


KEY NOTES

The total positive rate was low in the tested population, whereas the positive rates of suspected cases and close contacts were high. In asymptomatic carriers, SARS-CoV-2 tests were positive after recovery, and patients with suspected SARS-CoV-2 infection who die may pose serious challenges to the prevention and control of SARS-CoV-2.



INTRODUCTION

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. With the spread of SARS-CoV-2, causing the coronavirus disease 2019 (COVID-19) epidemic, cases were identified in other locations in China and many other countries worldwide. COVID-19 was declared a public health emergency of international concern by the World Health Organization, and it progressed to a pandemic associated with substantial morbidity and mortality (1). COVID-19 is highly contagious and transmitted mainly through the respiratory tract and close contact with infected individuals (2, 3). As SARS-CoV-2 is a new infectious agent, it spreads rapidly, and the rapid development of scientific prevention and control strategies has been challenging. As of March 26, 2020, there were 82,034 confirmed cases and a total of 3,293 deaths nationwide in China; 50,006 cases were from Wuhan, according to the official website of the National Health Commission of the People's Republic of China (http://www.nhc.gov.cn/). Chongqing, which has a population of 38 million people, borders Wuhan; however, initial cases were mainly imported from Wuhan. As of March 26, 2020, there were 578 confirmed cases (including two imported cases from abroad), with 6 (1.04%) deaths. At the end of February, the SARS-CoV-2 epidemic was successfully contained through public health interventions such as case detection, isolation, and movement restrictions (4); new cases have not been reported since February 26, 2020, according to the statistics of the Chongqing Municipal Health Commission (http://wsjkw.cq.gov.cn/). China's health service system has played an important role in epidemic prevention and control. In China, the health care system is comprised of two sections, medical institutions (hospitals, primary medical and health centers, such as township hospital, or community health center) and public health organizations, such as Centers for Disease Control (CDCs) and Centers of Health Supervision; these medical organizations are stratified into five levels: state, province, city, county/district, and town (5). After the start of the pandemic, the Chinese government released pandemic control policies under a “unanimous nationwide system” to joint defense and control by multiple departments (6).

Many studies on COVID-19 have focused on the pathogen (7), transmission routes, clinical diagnosis, and treatment methods (8). Various public health measures have been successfully implemented at different stages of the SARS-CoV-2 epidemic worldwide (9–12). China successfully contained the outbreak through strict lockdown measures (13, 14). High-income countries, such as New Zealand and Australia, eliminated community transmission for several months during 2020 through strict border control and extensive contact tracing (15). Despite recent advances in vaccine development, nonpharmaceutical interventions will remain paramount until the very end of the pandemic (9). A previous study comprehensively evaluated the association of various public health interventions implemented by the Chinese government (including but not limited to intensive intracity and intercity traffic restrictions, social distancing measures, home isolation and centralized quarantine, and medical resource improvements) with outbreak control within Wuhan city (13) and found that in the absence of either effective drugs or a vaccine, robust, multifaceted containment, mitigation, and suppression measures were temporally associated with improved epidemic control. A study that examined changes in infection rates in 15 states and the District of Columbia before and after mask mandates showed that rates were increasing before the mandates were implemented and slowed significantly after, with greater benefits over time (16); several other studies reported the same conclusion (17, 18). Recent studies have found that multilayer cloth mask use, increased social distancing, and eye protection use are associated with lower rates of infection (17, 19). In addition, nucleic acid testing (NAT) is an effective tool to identify positive cases and provide clues to the source of infection. At present, there are two diagnostic methods for SARS-CoV-2 detection: serological testing and NAT (20, 21). Serologic tests, which directly detect antibodies or antigenic viral proteins, can yield rapid results (22, 23), but they only accurately detect one-half to three-quarters of infections, with the possibility of false-negative results, especially among asymptomatic individuals (24). NAT includes quantitative reverse transcription polymerase chain reaction (qRT-PCR) (25), isothermal amplification, and clustered regularly interspaced short palindromic repeats (CRISPR) technology (26, 27) and is more accurate than serological testing. To enhance the efficiency of NAT in large-scale screening, researchers pool (or combine) samples for testing (28, 29). Sample pooling, a strategy used for early and comprehensive screening for influenza virus and human immunodeficiency virus (HIV) (30), and now SARS-CoV-2 (31–33), has been shown to be a cost-effective method for large-scale diagnostic testing and also community screening with good test accuracy; the assay relies on a Y-double probe modified on g-FET, targeting both the open reading frame 1ab (ORF1ab) and N genes of SARS-CoV-2 nucleic acids, enabling high recognition rates and detection limits (0.03 copy muL-1) that are 1–2 orders of magnitude lower than those of existing nucleic acid detection methods. This method achieves the fastest nucleic acid detection (1 min) and has allowed the first direct 5-in-1 pooled assay (34, 35). One study identified the group size of the pooled assay and subsequently compared the pooled assay with individual assays; the study established that the sensitivity of the pooled assay was similar to that of individual assays (36).

It is critical to identify the most effective public health interventions for different phases of the epidemic. In the beginning, expanding the scope of quarantine inspections increased the burdens of local Centers for Disease Prevention and Control (CDCs) and other medical institutions and reduced positive detection rates. In addition, many studies focused on the effects of various public health intervention strategies (i.e., public activity bans and internal movement restrictions), but limited studies explore the positive test rates of SARS-CoV-2 screening in different risk exposure populations. Moreover, no study has analyzed how to carry out epidemiological investigations of fatal cases. For the early stage of infectious disease outbreaks, effective prevention and control standards have not been established, so it is of great significance to allocate medical resources reasonably, as allocating medical resources with high efficiency can effect the prevention and control outcomes. In addition, it is important to focus on populations with the highest risk and ensure an appropriate epidemiological investigation scope for regular epidemic prevention and control in China, especially when addressing the challenges of SARS-CoV-2 variants in 2021. Accordingly, our study adds new evidence on how to effectively control the spread of emergent infectious diseases, including NAT and detecting the chain of transmission by decedents.



METHODS


Sampling the Target County

Three criteria were considered in selecting the survey district for this study. First, there were enough residents and cases in the target district; 1.2 million people permanently resided in the surveyed district and over 20 cases of COVID-19 were diagnosed. Second, the chosen district contained both urban and rural areas to eliminate the effects of urban–rural differences. Last, the hospitals in the district could afford the total medication demands for patients with COVID-19 and residents in isolation. Therefore, in Chongqing, the target county met al.l the three criteria, with good representation.



Epidemiological Data Collection

Epidemiological data on COVID-19 in Chongqing were collected from the official website of the Chongqing Municipal Health Commission (http://wsjkw.cq.gov.cn/) from January 20, 2020, when the first case of COVID-19 was reported, to March 26, 2020. The data included daily new cases, suspected cases, cumulative cases, hospitalized cases, severe cases, deaths, and discharged cases. Epidemiological follow-up survey and diagnostic detection test data were obtained from the CDC of Jiulongpo district in Chongqing. Policy materials on public health interventions for COVID-19 were collected from the official websites of both the Chongqing Municipal Health Commission and the Chongqing Municipal Government. The Institutional Review Board at the Children's Hospital of Chongqing Medical University provided approval for this study.



Diagnostic Criteria

The Protocol on Prevention and Control of Novel Coronavirus Pneumonia (Edition 6) (37) was used for the diagnosis of cases. The diagnostic criteria for suspected cases, confirmed cases, asymptomatic infections, case clusters, and close contacts were as follows (37). For suspected cases, at least one of the following epidemiological histories was required: (1) a history of travel to or residence in Wuhan or its surrounding areas, other communities in China where cases had been reported, or other countries or areas with severe outbreaks, within 14 days prior to the onset of the disease; (2) contact with a person infected with SARS-CoV-2 (with a positive NAT result) within 14 days prior to the onset of the disease; (3) contact with patients with fever or respiratory symptoms from Wuhan or its surrounding area, communities where confirmed cases had been reported, or other countries or areas with severe outbreaks within 14 days before the onset of the disease; or 4) part of a cluster (2 or more cases with fever and/or respiratory symptoms in a small population, such as family, office colleagues, classmates, workshop attendees, etc., within 14 days). Additionally, at least two of the following clinical manifestations were required: (1) fever and/or respiratory symptoms; (2) imaging characteristics of novel coronavirus pneumonia; or (3) a normal or decreased white blood cell (WBC) count and/or a normal or decreased lymphocyte count in the early stage of onset. A suspected case was defined as any one of the epidemiological history criteria plus any two clinical manifestations or all three clinical manifestations if there was no clear epidemiological history. Confirmed cases were defined as suspected cases with one of the following etiological or serological results: (1) real-time fluorescent RT-PCR positivity for SARS-CoV-2 nucleic acid; (2) detection of a viral gene sequence highly homologous to the known SARS-CoV-2 sequence; (3) SARS-CoV-2-specific Ig M and IgG detected in serum; or a SARS-CoV-2-specific IgG titer was at least 4-fold higher during convalescence than during the acute phase. Asymptomatic infections were defined as SARS-CoV-2 virus detected in respiratory specimens or IgM detected in serum. Asymptomatic cases were mainly found through close contact tracing, investigations of clusters, and infection source tracing. Case clusters were defined as two or more confirmed cases or asymptomatic patients within a small area, such as family homes, offices, schools, workshops, etc., within 14 days, with the possibility of human-to-human transmission or a common exposure source. Close contacts were defined as those who had unprotected close contact with a patient with a confirmed or suspected case within 2 days before illness onset or with an asymptomatic infected person within 2 days before sampling.

The presence of SARS-CoV-2 in respiratory specimens was detected by real-time RT-PCR amplification of SARS-CoV-2 ORF1ab and nucleocapsid protein (NP) gene fragments using kits provided by Beijing Zhuochenghuisheng Biotechnology Co., Ltd. and Da An Gene Co., Ltd. The conditions for amplification were 50°C for 15 min, 95°C for 3 min, and 45 cycles of 95°C for 15 s, and 60°C for 30 s. When the two targets (ORF1ab and NP) were amplified by specific real-time RT-PCR from the sample, the case was considered to be laboratory-confirmed.



Statistical Methods

Data were double entered into Microsoft Access by two people using a blinding method, and a consistency check was performed before analysis. Differences in anthropometric variables with a normal distribution between the two groups were assessed using Student's t-test. Continuous variables that did not have a normal distribution were expressed as X50% (X25%, X75%), and the Wilcoxon rank sum test was used for comparison between the two groups. All continuous variables are expressed as the mean ± standard deviation (SD) if they satisfied a normal distribution. The positive rates of SARS-CoV-2 are reported as numbers (n) and percentages of the total (%) and their 95% confidence intervals (CIs). The chi-squared test was used to detect differences, and the Bonferroni method was used for post hoc analyses among the three groups. Cochrane–Mantel–Haenszel analysis was used to compare the positive detection rates and the positive diagnostic rates of different exposure groups. A significant difference was determined at an α-level of 0.05. Data analysis in this study was conducted using SAS 9.4 software (Copyright©2016 SAS Institute Inc. Cary, NC, USA). A significant difference was defined by a two-sided α-level of 0.05.




RESULTS


SARS-CoV-2 Nucleic Acid Detection and Positive Rate

The surveyed county is located in southwestern Chongqing. It covers an area of 432 square km and contains eight streets and 11 towns. It has a permanent population of ~1.2 million people. As of March 27, 4,952 (0.41%) local people and 2,166 travelers had received SARS-CoV-2 NAT. In total, 7,118 people received 10, 377 SARS-CoV-2 tests; of them, 4,446 (62.46%), 2,334 (32.79%), 154 (2.16%), 133 (1.87%), and 51 (0.72%) people were tested one, two, three, four, and more than four times, respectively (Table 1). Five people received more than nine SARS-CoV-2 tests, and one person received 12 SARS-CoV-2 tests. Moreover, SARS-CoV-2 NAT was positive after death in one person.


Table 1. Time of SARS-CoV-2 NAT in Jiulongpo district of Chongqing.
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The positive rates of COVID-19 are shown in Table 2. The positive rate of COVID-19 was 0.31% (0.18%, 0.44%) in the total tested samples. The positive rates were different for different high-risk groups. The positive rates were 0.39% (11/2803), 8% (30/397), and 12.35% (21/170) in people who attended fever clinics, close contacts, and people with suspected cases, respectively (p < 0.05). The positive rates were 0.40% (18/4446) and 0.15% (4/2672) in people who received one and ≥ two nucleic acid tests, respectively (p = 0.06). In addition, the positive rates were 0.34% (17/4952) and 0.23% (5/2166) in local residents and travelers, respectively (p = 0.509). Moreover, the positive rates of COVID-19 were 0.20% (4/1974), 12.25% (1/8) and 0 for those with exposure to Hubei Province (p = 0.024), other provinces and abroad, respectively. Among the locally detected samples, the positive detection rates were 0.51% (17/3340) and 0 in samples from special institutes and other local samples, and the difference was significant (p < 0.01).


Table 2. The positive detection rate of COVID-2019 from different sources.
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Characteristics of 21 Local Cases and One Asymptomatic Case

Twenty-one patients with COVID-19 and one patient with asymptomatic COVID-19, with a median age of 51 (43, 57) years, were diagnosed in one district of Chongqing; 36.36% (8/22) of the patients were men (Table 3). Twenty patients experienced clinical symptoms between January 16 and February 4 and were diagnosed between January 22 and February 9 (Figure 1). Eighteen patients were diagnosed with one nucleic acid test, and four patients were diagnosed after two or three tests. Four and 12 patients were tested two and three times during the treatment period, respectively.


Table 3. The characteristics of 22 local cases in Jiulongpo district.

[image: Table 3]
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FIGURE 1. Diagnosis and recovery periods of 21 symptomatic patients.


Six cluster outbreaks were confirmed. One patient who was diagnosed after death infected 12 close contacts (Figure 2). The CDC surveyed 74 close contacts of the decedent, including 13 medical staff, three customers, one friend, seven people who rode the same bus, six family members, and 44 coworkers. One family member (husband of the decedent) and 11 coworkers were infected, and one coworker infected his son (asymptomatic carrier). The infection rates for all 74 close contacts and the 44 coworkers of the decedent were 17.57% (13/74) and 25% (11/44), respectively, which were both higher than the infection rate of all close contacts (8.00%, 30/397) (p = 0.01 and p < 0.001). Six (46.15%) infected patients were asymptomatic before diagnosis, and one close contact was diagnosed 32 days after contact.


[image: Figure 2]
FIGURE 2. Transmission by one decedent.


There were four patients from Wuhan, one patient from another province and 17 patients from Jiulongpo district. According to occupation, eight patients worked in catering or public services, two patients were technical staff, 10 patients were unemployed or retirees, and two patients were farmers. The recovery rate was 95.24% (1/21); one case was severe, and one patient died before diagnosis. The incubation period was five (interquartile range: 2, 9) days, and the duration from diagnosis to recovery was 22 (interquartile range 14, 25) days. A nucleic acid test was positive after 28 days (including 14 days of centralized isolation) in one patient (24 years old) who had recovered, and SARS-CoV-2 positivity was found when she donated blood. An anal swab was positive in an asymptomatic carrier (18 years old) at 41 days after diagnosis.



Epidemiological Survey and Close Contact Management


Close Contact and Suspected Case Management

Close contact management was reinforced during the SARS-CoV-2 pandemic. Before publication of the Protocol on Prevention and Control of Novel Coronavirus Pneumonia (Edition 6) (37), close contacts were defined as those who had close contact with patients with confirmed cases; after February 7, in the 6th edition, they were defined as those who had close contact with people with both suspected and confirmed cases.

A total of 360 close contacts were generated by the epidemiological investigation of diagnosed cases in Jiulongpo district (in Table 2). A total of 164 (45.56%) close contacts lived in Jiulongpo district, and 196 (54.44%) close contacts lived in other districts. A total of 8.33% (30/360) of close contacts were confirmed to be infected with SARS-CoV-2; 8.54% (14/164) of close contacts living in Jiulongpo district were diagnosed with SARS-CoV-2 infection, 8.16% (16/196) of close contacts living in other districts were diagnosed with SARS-CoV-2 infection, and one asymptomatic person (0.61%, 1/164) was positive for SARS-CoV-2 infection. The positive detection rate among suspected cases in the local county was 12.35% (21/170) (one positive carrier and all confirmed patients had suspected cases before diagnosis).



Public Security Monitoring of Close Contacts

Epidemiological investigation and public security technical analysis were used to monitor the patient's activity trajectory; the time was accurate to the exact minute, and the public transportation routes of people with suspected cases were announced after concealing personal information. To identify the close contacts of those with confirmed cases among the public, 5,450 bits of information of people who traveled on the same vehicle as those with confirmed cases were provided via the public security data. The CDC conducted a one-on-one survey of high-risk persons and identified close contacts. Centralized medical management was implemented for the high-risk close contacts, and general contacts were notified about their risk of SARS-CoV-2 infection through a service that delivered short messages.

Among the 638 registered close contacts (389 people with contact with local persons with confirmed or suspected cases, and 249 people with contact with people with confirmed or suspected cases from other districts) living in Jiulongpo district, 66 people were identified by public security data, and 360 and 212 people were found through epidemiological surveys performed by the Jiulongpo CDC and CDCs in other districts (Table 4). The discovery percentage for public security data was 10.3% (66/638); these data are an important supplement to CDC data.


Table 4. The relationships of close contacts in Jiulongpo district.
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The relationships between the close contacts and the patients were analyzed. Among the 638 close contacts registered in Jiulongpo district (including 389 close contacts of patients in Jiulongpo district and 249 close contacts of patients from other locations), 346 (54.23%) were relatives or friends, and 277 (43.42%) were strangers (accidental contacts). The relationships of 15 (2.35%) people could not be confirmed. In addition, among the 360 close contacts identified by epidemiological surveys, 236 (65.56%) were relatives or friends, and 124 (34.44%) were accidental contacts.





DISCUSSION

Effective public health interventions, such as the “Wuhan lockdown,” case detection, isolation, and movement restrictions, helped to control the SARS-CoV-2 pandemic. The positive rate of SARS-CoV-2 NAT (0.30%) in Jiulongpo district was low; the positive rate for ≥ two tests was lower than that for one test, and the positive rates of samples from close contacts and those with suspected cases were higher than that in samples from fever clinics. People working in catering or public services or people who are unemployed or retired have an increased risk of infection. The median incubation period was five (interquartile range: 2, 9) days, and the median time from diagnosis to recovery was 22 (interquartile range: 14, 25) days. Clustered cases indicated human-to-human transmission. Some patients who recovered became positive again according to NAT; these patients had asymptomatic cases and were considered asymptomatic carriers in the community. Moreover, one person with a suspected case died. These situations are key in the further control of the SARS-CoV-2 epidemic.

This study found that the positive rates of NAT were different among different high-risk populations. The positive rate was low for the total tested samples in Chongqing, whereas the positive rate was 12.35% in people with suspected cases in Chongqing. However, one study reported that the positive rate was 38% among a total of 4,880 specimens; 57% of patients visiting the fever clinic in a hospital in Wuhan were positive, and male and older populations had higher positive rates than female and younger populations, respectively (38). The different positive rates between Wuhan and Chongqing could be explained by the incidence rates in the two cities, as Wuhan was the epicenter of the epidemic. Moreover, the definition of close contacts in the Protocol on Prevention and Control of Novel Coronavirus Pneumonia (Edition 6) included close contacts of patients with suspected cases, which significantly decreased the NAT positive rate. The positive rate of close contacts was 8.00% in Chongqing, which was comparable to 6.15% in Ningbo (1). Neither Ningbo nor Chongqing were epidemic outbreak centers. In addition, the positive rate of NAT was 0% for 1,612 people in special institutes, such as prisons, pension agencies, and other institutions; therefore, NAT of samples from people associated with these institutes may be not as urgent as testing of samples from people in high-risk exposure groups. However, 81.82% (18/22) of cases were positive on the first nucleic acid test, and only four of 22 cases were diagnosed after two or three tests, which showed that NAT has good sensitivity for detecting SARS-CoV-2. Our results suggest that different detection ranges for NAT should be defined in the diagnostic guidelines according to the level of severity of the COVID-19 epidemic in each location to improve the positive detection rate and conserve and rationally allocate medical resources.

Variants of SARS-CoV-2 have imposed new challenges in disease control and further prove the importance of nucleic acid detection. The delta variant of SARS-CoV-2 has caused resurgence in COVID-19 epidemics in many countries. Accelerating the popularization of vaccination, improving the coverage rate, and implementing intervention measures are effective means to control the spread of SARS-CoV-2 variants. However, vaccination against SARS-CoV-2 alone without intervention measures may lead to continuous spread and the emergence of new variants (39). The delta and lambda variants exhibit changes in nonstructural proteins (NSPs) and the S protein compared to the original Wuhan strain. The lambda variant also has numerous amino acid substitutions in NSPs and S proteins, plus a deletion in the N-terminal domain (NTD) of the S protein, leading to partial escape from neutralizing antibodies (NAbs) in vaccinated individuals. The S protein is one of the most mutable parts of the SARS-CoV-2 genome. The investigation of alternative protein targets other than spike-based protein targets or treatments to stimulate an immune response is suggested (40). Three receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs), 58G6, 510A5, and 13G9, with high neutralizing potency against authentic SARS-CoV-2, have remarkable efficacy against authentic B.1.351 virus (41). During this pandemic, human behavior has strongly affected the adaptive process of SARS-CoV-2 through continuous iterations and changes to implemented control measures. Accurate detection is required for SARS-CoV-2 infection diagnosis throughout the whole epidemic period. Many nucleic acid tests based on RT-PCR have been developed, each with different techniques, specifications, and turnaround times. As local epidemics progressed to a pandemic, testing is more crucial. For surveillance, serologic testing was necessary (42), and the IgM-IgG antibody test was a useful adjunct to RT-PCR detection and improved the accuracy of COVID-19 diagnosis regardless of the severity of illness. The application of serological testing to assist in confirming SARS-CoV-2 infection detected by viral NAT is recommended, especially when COVID-19-related symptoms are present and viral nucleic acid test results are negative (9, 12, 43). The increase in COVID-19-associated waste (CAW) and its presence in the environment will result in easy access by other organisms, and there is a great demand for an efficient strategy to prevent further spread in the environment (44, 45).

The epidemiological characteristics of the 22 cases provide data for the prevention and control of COVID-19 in other countries worldwide affected by the pandemic. The incubation period of the 21 symptomatic cases was comparable to that in the study by Li Q et al. (46), the median recovery duration was 22 days, and the longest recovery duration was 37 days. There were more female patients than male patients in this study, which was inconsistent with the results from other studies (47). Five cases were imported from Wuhan, or patients had a travel history to Wuhan. The proportion of local secondary cases (77.27%) was higher than that in Gansu Province (48), as the population density in Gansu is less than that in Chongqing, suggesting that the transmission of secondary cases was serious in high population-density districts. In addition, 95.45% of the cases were part of a cluster, which indicate human-to-human transmission (49, 50). Moreover, one decedent who worked in catering transmitted COVID-19 to 13 people; this case was not diagnosed until after death, indicating that the decedent was highly infectious, making it difficult to interrupt the chain of transmission. People working in restaurants and supermarkets are part of the high-risk population (51), and quarantine should be carried out if there are suspected cases in this population. Moreover, NAT should be carried out for suspected cases, even if the patient has died. A SARS-CoV-2 nucleic acid test was positive after 28 days (including 14 days of centralized isolation) in one patient who had recovered, and the positive result was found when donating blood after recovery. In addition, an anal swab from an asymptomatic carrier was positive at 41 days after diagnosis, which was consistent with the results in children (52). The asymptomatic carrier was younger (18 years old) than the symptomatic patients (53). Therefore, it is necessary to be aware of the possibility of fecal-oral transmission of COVID-19, and increasing surveillance among asymptomatic carriers and recovered patients after discharge from the hospital will reduce community transmission of COVID-19.

SARS-CoV-2 may be transmitted through close contact with an infected person (54), droplets, and aerosols (55). Therefore, identifying close contacts of patients through epidemiological surveys is important in controlling the COVID-19 epidemic (56). Our results showed that close contacts were mainly family members, relatives, friends, and coworkers (53), whereas some were strangers who had contact with the patient by accident; the latter are difficult to track. Public security agencies have provided a substantial amount of data to track accidental close contacts.

Public health interventions for COVID-19 have some limitations. First, investigating the close contacts of people with suspected cases may increase the burden on the CDC, as suspected cases should be diagnosed within 3 days if they have been infected with SARS-CoV-2. Second, the positive rate of NAT was very low, as many people who had no contact history or clinical symptoms received NAT. The clinical guidelines for COVID-19 should consider the severity level of the COVID-19 epidemic.

In conclusion, effective public health interventions were implemented to constrain the spread of COVID-19 in China. The positive rate of SARS-CoV-2 NAT was very low for the total population, but it was higher in those with suspected cases and close contacts. Therefore, more effective detection ranges should be defined to increase the positive detection rate. Those who recover from COVID-19 may become positive asymptomatic carriers, as SARS-CoV-2 NAT was positive for an asymptomatic carrier at 41 days after diagnosis. One patient was diagnosed after death. Therefore, increasing surveillance of SARS-CoV-2 via NAT of asymptomatic carriers recovered individuals after discharge from the hospital and patients with suspected cases who die will reduce community transmission. Moreover, this study provides policy suggestions for how to quickly detect positive cases of acute respiratory infectious diseases at the beginning of an outbreak, what types of populations should be screened first, and how to effectively prevent missed diagnoses and reduce transmission by those who died from COVID-19.
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Background: The long-term health consequences of coronavirus disease 2019 (COVID-19) remain largely unclear. This study aimed to apply the Mendelian randomization (MR) design to estimate the causal associations between COVID-19 and ten cardiovascular conditions.

Methods: Single-nucleotide polymorphisms (SNPs) associated with COVID-19 were used as instrumental variables to estimate the causal effect of COVID-19 on ten cardiovascular conditions. The random-effects inverse-variance weighted (IVW) method was conducted for the main analyses with a complementary analysis of the weighted median and MR-Egger approaches.

Results: In the IVW analysis, genetically predicted COVID-19 was suggestively associated with major coronary heart disease events (OR 1.081; 95% CI 1.007–1.16; P = 0.045) and heart failure (OR 1.049; 95% CI 1.001–1.1; P = 0.045) with similar estimates in weighted median regressions. No directional pleiotropic effects were observed in both funnel plots and MR-Egger intercepts.

Conclusions: Our findings provide direct evidence that patients infected with COVID-19 are causally associated with increased risk of cardiovascular disease, especially for major coronary heart disease events and heart failure.

Keywords: COVID-19, cardiovascular disease, Mendelian randomization, two-sample, gene prediction


INTRODUCTION

The outbreak of the coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is rapidly evolving as a worldwide health crisis. As of October 3, 2021, this worldwide health crisis has directly resulted in more than 212 million confirmed cases with a mortality of 2.3%, which means more than 4.8 million people directly died of COVID-19. Up to now, a lot of studies have revealed a significant observational association between cardiovascular diseases and COVID-19 (1). More importantly, COVID-19 complicated by cardiovascular diseases is reported to associate with a higher risk of adverse outcomes, even mortality (2). However, all these findings are based on observational studies and several limitations existed. First, some confounding factors may affect the reliability of these results, including unmeasured risk factors or other potential uncertainties. Besides, it is not long since the discovery of COVID-19, the long-term effect of COVID-19 on cardiovascular diseases may not be reflected in the previous studies. Therefore, the causal association between COVID-19 and cardiovascular diseases is unclear. However, these pieces of evidence are necessary and important because they can reflect the subsequent social burden and contribute to the government policy on public health.

Mendelian randomization (MR) is a recently emerged technique and conceptually similar to prospective randomized controlled trials, which can be used to assess the causality between the risk factor and particular disease (3–5) due to its advantages in avoiding the potential bias (6). In the present study, we assessed whether COVID-19 is causally associated with increased risk of ten cardiovascular conditions using a two-sample summary MR.



METHODS


Overall Study Design

In our study, all the summary data was obtained from publicly published studies. Their institutional review committee has approved their design and data in respective studies. Therefore, no further sanction was required in the present study. Two-sample MR (7–9) was used to assess the causal effect of COVID-19 on the risk of ten cardiovascular diseases, the schematic view of the study design for two-sample MR analyses in this study is shown in Figure 1.


[image: Figure 1]
FIGURE 1. Schematic representation of a Mendelian randomization (MR) analysis. We selected single-nucleotide polymorphisms (SNPs) associated with coronavirus disease 2019 (COVID-19) and the corresponding effect for these SNPs was estimated based on the risk of 10 cardiovascular diseases.




Data Sources
 
Identification of SNPs Associated With COVID-19

Summary-level genetic data for COVID-19 were acquired from results of the Genetics of Mortality in Critical Care (GenOMICC) genome-wide association study (GWAS) (10), which included 2,244 critically ill COVID-19 patients from 208 UK intensive care units (ICUs) and 11,220 random controls matched by ancestry from UK Biobank. In total, eight single-nucleotide polymorphisms (SNPs) associated with COVID-19 were obtained as instrumental variables (Supplementary Table 1), identified from the primary meta-analysis of 13,464 individuals based on the genome-wide significant level (P < 5 × 10−8) (11). To identify relatively more independent genome-wide significant SNPs, we excluded SNPs in linkage disequilibrium with the other SNPs (r2 < 0.005), and only SNPs in both the exposure and outcome GWAS datasets were included in our analysis.



Study Outcome: Cardiovascular Disease

Corresponding data for cardiovascular diseases were obtained from the FinnGen project (FinnGen, Finland), which was used to extract the summary data set for GWAS of cardiovascular diseases. FinnGen study launched in Finland in the autumn of 2017 is a unique study that combines genome information with digital health care data. The FinnGen study is an unprecedented global research project representing one of the largest studies of this type. This data freeze consists of 176,899 individuals, almost 17,000,000 variants and 2,444 disease endpoints (https://www.finngen.fi/en/access_results). To be able to determine the differential cardiovascular risk associated with COVID-19, we analyzed a broad range of cardiovascular diseases, including aortic aneurysm, thrombo-embolic diseases (deep vein thrombosis and pulmonary embolism), and other cardiovascular diseases (major coronary heart disease event, atrial fibrillation, heart failure, peripheral artery disease, primary hypertensive diseases, rheumatic valve diseases, and non-rheumatic valve diseases). Due to no individual patient data being available, we used summary data for cardiovascular diseases.




Statistical Analysis

Since there is no individual-level GWAS data available, two-sample MR analyses were used to assess the causal association between COVID-19 and 10 cardiovascular diseases based on the summary-level genetic data.

In the principal analyses, an inverse-variance weighted meta-analysis with a random-effects model was used (12). As a first sensitivity analysis, potential outlier SNPs (P < 0.1) were excluded, identified by MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method (13). In a second sensitivity analysis, both weighted median (14) and MR-Egger methods (15) were used to ensure lower pleiotropy in the present study. Two-tailed was used in all statistical tests. To account for multiple testing in our primary analyses of COVID-19 in relation to the 10 outcomes, a Bonferroni-corrected threshold of P < 5 × 10−3 (a = 0.05/10 outcomes) was used in our analysis. Associations with P-values between 5 × 10−3 and 0.05 were considered suggestive evidence of associations, which required further confirmation.

To probe the total effect of COVID-19 on cardiovascular disease and cerebrovascular disease, a meta-analysis was made. All exposure-specific MR analyses were performed for each cardiovascular disease from the FinnGen project and then were meta-analyzed to generate the pooled estimates for COVID-19 on the risk of cardiovascular disease and cerebrovascular disease, separately. The I2 statistics and corresponding p-value derived from Cochran's Q test were used to quantify heterogeneity between estimates from different diseases. Random-effect model meta-analyses were used in our study to pool instrumental variable estimates in the effect of COVID-19 on different diseases. R-based “meta” package was used in all of our meta-analyses.

Based on a reasonable request, the related data and statistical coding can be obtained from the corresponding author. The MR software packages TwosampleMR (0.5.6) and R version 4.0.3 (2020-10-10) (Vienna, Austria) were used in our study (13, 16).




RESULTS


Participants and Genetic Instrumental Variables for COVID-19

The mean age of the 2,244 patients with COVID-19 included in the present analysis was 57.3 years and 69.74% were men. As shown in Supplementary Table 1, we presented all genetic instruments associated with COVID-19 on the genome-wide significant level (P < 5 × 10−8). None of the eight SNPs had previously been reported to play a part in any pathway.



MR Analysis

There was suggestive evidence of a positive association between genetically predicted COVID-19 and major coronary heart disease events (OR 1.081; 95% CI 1.007–1.16; P = 0.029; Figures 2, 3), heart failure (OR 1.049; 95% CI 1.001–1.1; P = 0.045; Figures 2, 4), separately. Whereas, no association was observed between COVID-19 and aortic aneurysms, peripheral artery disease, deep vein thrombosis, pulmonary embolism, rheumatic valve diseases, non-rheumatic valve diseases, and atrial fibrillation (Figure 2). The MR-PRESSO method identified one outlier SNP for major coronary heart disease events and two outlier SNPs for peripheral artery disease. Outlier correction did not materially change the OR estimates for major coronary heart disease events (1.053; 95% CI 0.998–1.11) or peripheral artery disease (1.11; 95% CI 0.958–1.286). There are no outlier SNPs identified using MR-PRESSO to analyze the other outcomes. The OR estimates of the weighted median analysis (Supplementary Table 2) were similar to those of the standard MR analysis (inverse variance weighted method) but of low precision. The MR-Egger analysis for most outcomes revealed consistent estimates but with lower precision, and without indication of directional pleiotropy (Supplementary Table 2).


[image: Figure 2]
FIGURE 2. Associations of genetically predicted COVID-19 with ten cardiovascular conditions in FinnGen project.
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FIGURE 3. Scatter plot to visualize the causal effect of COVID-19 on the risk of major coronary heart disease events. The slope of the straight line indicates the magnitude of the causal association. IVW, inverse-variance weighted.
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FIGURE 4. Scatter plot to visualize the causal effect of COVID-19 on the risk of heart failure. The slope of the straight line indicates the magnitude of the causal association.





DISCUSSION

In this present study, we assessed the causal effect of COVID-19 on a wide range of cardiovascular conditions and found evidence that COVID-19 is causally associated with an increased risk of major coronary heart disease events and heart failure.

Coronavirus disease 2019 (COVID-19) is characterized by a long incubation period, high transmission, and diverse clinical manifestations (17), which has rapidly evolved as a major threat to global health and has affected the lives of billions of individuals since it was first reported in December 2019. In addition to infecting the respiratory system, lots of studies have also revealed an observational association between COVID-19 and cardiovascular disease (1). Not only acute myocardial injuries (18) but also chronic damage to the cardiovascular system (19) may be caused by COVID-19 (17). However, all of these findings are based on observational studies and some confounding factors may potentially cause a limitation to generalizing these findings.

MR is a recently emerged technique, which is conceptually similar to prospective randomized controlled trials (RCT) because all the inherited genetic variants are determined prior to the disease onset. Our present MR analysis can provide a good solution to avoid potential confounding factors and assess the causal effect of COVID-19 on cardiovascular disease. Based on summary statistics from the newest GWAS studies for COVID-19 (n = 13,464) and cardiovascular conditions (up to n = 176,899 individuals), there is a causal effect of COVID-19 on the risk of major coronary heart disease event and heart failure, conferring 8.1 and 4.9% increased risk, respectively.

Despite a low level of scientific evidence on this subject, many studies had revealed an association between coronary heart disease and the infection by SARS-CoV-2 (20, 21). There are some hypotheses raised so far to clarify the relationship between infection of COVID-19 and the increased risk of ischemic events (22). Angiotensin-converting enzyme 2 (ACE2), which acts as a receptor for the virus, is mostly present in the lungs but also present in great amounts in the heart, resulting in cardiovascular (CV) complications (23). Besides, the systemic inflammation promoted by SARS-CoV-2 may further lead to a high risk of myocardial and vascular injury with an increase of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) and troponin, and consequently CV complications (22). The combination of exacerbated inflammation and other factors, including immobilization, hypoxemia, and in some cases DIC can eventually culminate in a prothrombotic state (24), which may play an important part in the occurrence and development of coronary heart disease (25, 26). In addition, a last adverse mechanism may have existed in the clinical practice. Patients previously submitted to angioplasty may have a higher risk of recurrent coronary heart disease, such as type-4b acute myocardial injury, due to the hypercoagulability state induced by the infection of SARS-CoV-2 (25, 26).

In the present study, genetically determined COVID-19 is causally associated with increased risk for heart failure, conferring a 67% increased risk. Heart failure has been reported as the major cause of death in patients with COVID-19. Several myocardial aggression mechanisms are involved in the development of heart failure in patients with COVID-19, such as viral direct myocardial injury, O2 supply-demand imbalance, indirect and direct inflammatory damage (21, 27). Moreover, the increase of serum troponin was associated with an increase of plasmatic NT-proBNP levels, which further contributed to higher mortality (21, 27).

Notably, our results revealed that there is a lifetime increased risk of cardiovascular disease due to the genetic predisposition of COVID-19 because the genetic variants of one person will not change over a whole lifetime once it occurred. Therefore, the present results may not recapitulate exactly the same as the previous observational effect, but rather provide evidence about the long-term effect of COVID-19 on cardiovascular diseases.

A chief strength of this study is that we assessed the causal associations between COVID-19 and a wide range of cardiovascular diseases in the same study population using the MR method. Another strength is that all of the summary data about cardiovascular diseases were extracted from European ancestry populations. Besides, the genetic variants of COVID-19 were also widely acknowledged by other researchers (5, 10) and more than 74.69% of patients have consisted of European ancestry patients. To further assure the reliability of our analysis, only SNPs that reached genome-wide significance in European ancestry populations were used in our study as recommended (5). Therefore, the potential confounder, which may influence our results, is small in the present study. Pleiotropy is an important limitation of MR analysis, which means a genetic variant may not only contribute to only one phenotype. Fortunately, there is no evidence of directional pleiotropy observed in the present MR. Of course, there are several limitations involved in our study. First, not all cardiovascular diseases were analyzed due to no availability of GWAS data. Besides, the sample size of some outcomes was small. Therefore, weak associations due to insufficient power may have been overlooked in the present study. Most importantly, this study was finished based on summary data of European ancestry populations, whether it is applicable in other ancestry populations needs further verification.

In conclusion, using MR analysis, we found potential evidence about the causal association between the genetic predisposition to COVID-19 and the increased risk of cardiovascular diseases, especially for major coronary heart disease events and heart failure.
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An outbreak of the Delta (B.1.617.2) variant of SARS-CoV-2 that began around mid-June 2021 in Sydney, Australia, quickly developed into a nation-wide epidemic. The ongoing epidemic is of major concern as the Delta variant is more infectious than previous variants that circulated in Australia in 2020. Using a re-calibrated agent-based model, we explored a feasible range of non-pharmaceutical interventions, including case isolation, home quarantine, school closures, and stay-at-home restrictions (i.e., “social distancing.”) Our modelling indicated that the levels of reduced interactions in workplaces and across communities attained in Sydney and other parts of the nation were inadequate for controlling the outbreak. A counter-factual analysis suggested that if 70% of the population followed tight stay-at-home restrictions, then at least 45 days would have been needed for new daily cases to fall from their peak to below ten per day. Our model predicted that, under a progressive vaccination rollout, if 40–50% of the Australian population follow stay-at-home restrictions, the incidence will peak by mid-October 2021: the peak in incidence across the nation was indeed observed in mid-October. We also quantified an expected burden on the healthcare system and potential fatalities across Australia.

Keywords: COVID-19, SARS-CoV-2, Delta (B.1.617.2) variant, computational epidemiology, agent-based model, social distancing, vaccination, healthcare burden


1. INTRODUCTION

Strict mitigation and suppression measures eliminated local transmission of SARS-CoV-2 during the initial pandemic wave in Australia (March–June 2020; peaked around 500 cases per day, i.e., around 20 daily cases per million) (1), as well as a second wave that developed in the south-eastern state of Victoria (June–September 2020; peaked around 700 cases per day, i.e., around 30 daily cases per million) (2, 3)1. Several subsequent outbreaks were also detected and managed quickly and efficiently by contact tracing and local lockdowns, e.g., a cluster in the Northern Beaches Council of Sydney, New South Wales (NSW) totalled 217 cases and was controlled in 32 days by locking down only the immediately affected suburbs (December 2020–January 2021) (5). Overall, successful pandemic response was facilitated by effective travel restrictions and stringent stay-at-home restrictions (i.e., “social distancing,”) underpinned by a high-intensity disease surveillance (6–10).

Unfortunately, the situation changed in mid-June 2021, when a highly transmissible variant of concern, B.1.617.2 (Delta), was detected. The first infection was recorded on June 16 in Sydney, and quickly spread through the Greater Sydney area. Within ten days, there were more than 100 locally acquired cumulative cases, triggering stay-at-home (social distancing) restrictions imposed in Greater Sydney and nearby areas (11). By July 9 (23 days later), the locally acquired cases reached 439 in total (5), and a tighter lockdown was announced (11). Further restrictions and business shut-downs, including construction and retail industries, were announced on 17 July (12). By then, the risk of a prolonged lockdown had become apparent (13), with the epidemic spreading to the other states and territories, most notably Victoria (VIC) and the Australian Capital Territory (ACT). The incidence peaked, around 2,750 daily cases, i.e., around 100 daily cases per million, only by mid-October 2021, and stabilised in November within the range between 1,200 and 1,600 daily cases, i.e., between 45 and 65 daily cases per million (5), before a new surge of infections in December 2021 due to the Omicron variant (B.1.1.529).

The difficulty of controlling the third epidemic wave (June–November 2021) is attributed to a high transmissibility of the B.1.617.2 (Delta) variant, which is known to increase the risk of household transmission by approximately 60% in comparison to the B.1.1.7 (Alpha) variant (14). This transmissibility was compounded by the initially low rate of vaccination in Australia, with around 6% of the adult population double vaccinated before the Sydney outbreak and only 7.92% of adult Australians double vaccinated by the end of June 2021 (15), with this fraction increasing to 67.24% by 15 October 2021 and 83.01% by 13 November 2021 (16).

Several additional factors make the Sydney outbreak and the third pandemic wave in Australia (June–November 2021) an important case study, in which the system complexity and the search space formed by possible interventions can be reduced. Because previous pandemic waves were eliminated in Australia, the Delta variant has not been competing with other variants. Secondly, the level of acquired immunity to SARS-CoV-2 in the Australian population was low at the onset of the outbreak, given that (a) the pre-existing natural immunity was limited by cumulative confirmed cases of around 0.12%, and (b) immunity acquired due to vaccination did not extend beyond 6% of the adult population. Furthermore, the school winter break in NSW (28 June–9 July) coincided with the period of social distancing restrictions announced on 26 June, with school premises remaining mostly closed beyond 9 July. Thus, the epidemic suppression policy of school closures is not a free variable, further reducing the search space of available control measures.

This study addresses several important questions. Firstly, we investigate a feasible range of key non-pharmaceutical interventions (NPIs): case isolation, home quarantine, school closures, and social distancing, available to control virus transmission within a population with a low immunity. Social distancing (SD) is interpreted and modelled in a broad sense of comprehensive stay-at-home restrictions, comprising several specific behavioural changes that reduce the intensity of interactions among individuals (and hence the virus transmission probability), including physical distancing, mobility reduction, mask wearing, and so on. Our primary focus is a “retrodictive” estimation of the average (unknown) SD level under which the modelled transmission and suppression dynamics can be best matched to the observed incidence data. An identification of the SD level helps to distinguish and evaluate the distinct and time-varying impacts of NPIs and vaccination campaigns.

Secondly, in a counter-factual mode, we quantify under what conditions the initial outbreak could have been suppressed, aiming to clarify the extent of required NPIs during an early outbreak phase with low vaccination coverage, in comparison to previous pandemic control measures successfully deployed in Australia. This analysis highlights the challenges associated with imposing very tight restrictions which would be required to suppress the high transmissible Delta variant.

Finally, we offer and validate a projection for the peak of case incidence across the nation, formed in response to a progressive vaccination campaign rolling out concurrently with the strict lockdown measures adopted in NSW, VIC, and ACT. In doing so, we predict the expected hospitalisations, intensive care unit (ICU) demand, and potential fatalities across Australia. Importantly, this analysis shows that a 10% increase in the average SD level reduces the clinical burden approximately 3-fold, and the potential fatalities approximately 2-fold.



2. METHODS

We utilised an agent-based model (ABM) for transmission and control of COVID-19 in Australia that has been developed in our previous work (1, 17) and implemented within a large-scale software simulator (AMTraC-19). The model was cross-validated with genomic surveillance data (6), and contributed to policy recommendations on social distancing that were broadly adopted by the World Health Organisation (18). The model separately simulates each individual as an agent within a surrogate population composed of about 23.4 million software agents. These agents are stochastically generated to match attributes of anonymous individuals (in terms of age, residence, gender, workplace, susceptibility, and immunity to diseases), informed by data from the Australian Census and the Australian Curriculum, Assessment and Reporting Authority. In addition, the simulation follows the known commuting patterns between the places of residence and work/study (19–21). Different contact rates specified within diverse social contexts (e.g., households, neighbourhoods, communities, and work/study environments) explicitly represent heterogeneous demographic and epidemic conditions (see Supplementary Material: Agent-based model). The model has previously been calibrated to produce characteristics of the COVID-19 pandemic corresponding to the ancestral lineage of SARS-CoV-2 (1, 17), using actual case data from the first and second waves in Australia, and re-calibrated for B.1.617.2 (Delta) variant using incidence data of the Sydney outbreak (see Supplementary Material: Model calibration).

Each epidemic scenario is simulated by updating agents' states in discrete time. In this work, we start from an initial distribution of infection, seeded by imported cases generated by the incoming international air traffic in Sydney's international airport (using data from the Australian Bureau of Infrastructure, Transport, and Regional Economics) (19, 20). At each time step during the seeding phase, this process probabilistically generates new infections within a 50 km radius of the airport (covering the area within Greater Sydney's boundaries), in proportion to the average daily number of incoming passengers (using a binomial distribution and data from the Australian Bureau of Infrastructure, Transport, and Regional Economics) (19).

A specific outbreak, originated in proximity to the airport, is traced over time by simulating the agents interactions within their social contexts, computed in 12-h cycles (“day” and “night.”) Once the outbreak size (cumulative incidence) exceeds a pre-defined threshold (e.g., 20 detected cases), the travel restrictions (TR) are imposed by the scenario, so that the rest of infections are driven by purely local transmissions, while no more overseas acquired cases are allowed (presumed to be in effective quarantine). Case-targeted non-pharmaceutical interventions (CTNPIs), such as case isolation (CI) and home quarantine (HQ), are applied from the outset. A scenario develops under some partial mass-vaccination coverage, implemented as either a progressive rollout, or a limited pre-pandemic coverage, as described in Supplementary Material: Vaccination modelling.

The outbreak-growth phase can then be interrupted by another, “suppression,” threshold (e.g., 100 or 400 cumulative detected cases) which triggers a set of general NPIs, such as social distancing (SD) and school closures (SC). Every intervention is specified via a macro-distancing level of compliance (i.e., SD = 0.8 means 80% of agents are socially distancing), and a set of micro-distancing parameters (quantifying context-specific interaction strengths, e.g., moderate or tight restrictions) that indicate the level of social distancing within a specific social context (households, communities, workplaces, etc.). For instance, for those agents that are compliant, contacts (and thus likelihood of infection) can be reduced during a lockdown to SDw = 0.1 within workplaces and SDc = 0.25 within communities, whilst maintaining contacts SDh = 1.0 within households. To re-iterate, “social distancing” modelled in this study comprises a range of restrictions that reduce the intensity of interactions among individuals, including mask wearing, physical distancing by several metres, mobility, and so on. We do not estimate a relative importance of these specific NPI approaches, each of which separately contributes to reducing SARS-CoV-2 transmission (22–27), focusing instead on a differentiation between the effects of NPIs and vaccination campaigns.



3. RESULTS

Using the ABM calibrated to the Delta (B.1.617.2) variant, we varied the macro- and micro-parameters (for CI, HQ, SC, and SD), aiming to match the incidence data recorded during the Sydney outbreak in a retrodiction mode. As shown in Figure 1, the modelling horizon was set to July 25 and assumed a progressive vaccination rollout in addition to a tighter lockdown being imposed at 400 cases (corresponding to July 9). Construction works were temporarily paused across Greater Sydney during 19–30 July 2021 (inclusive), with the temporary “construction ban” lifted on 28 July (28, 29). Within the considered timeline, the actual incidence growth rate has reduced from βI = 0.098 (17 June – 13 July), to βII = 0.076 (17 June – 25 July), to βIII = 0.037 (16–25 July), as detailed in Supplementary Material: Growth rates.


[image: Figure 1]
FIGURE 1. Moderate restrictions (NSW; progressive vaccination rollout; suppression threshold: 400 cases): a comparison between simulation scenarios and actual epidemic curves, under moderate interaction strengths (CIc = CIw = 0.25, HQc = HQw = 0.25, SDc = 0.25, SC = 0.5). A moving average of the actual time series up to 25 July for (A) (log-scale) incidence (crosses), and (B) cumulative incidence (circles); with an exponential fit of the incidence's moving average (black solid: βII, and black dotted: βIII). Vertical dashed marks align the simulated days with the outbreak start (17 June, day 9), initial restrictions (27 June, day 19), and tighter lockdown (9 July, day 31). Traces corresponding to each social distancing (SD) compliance level are shown as average over 10 runs (coloured profiles for SD varying in increments of 10%, i.e., between SD = 0.0 and SD = 1.0). 95% confidence intervals for incidence profiles, for SD∈{0.4, 0.5, 0.6}, are shown as shaded areas. Each SD intervention, coupled with school closures, begins with the start of tighter lockdown, when cumulative incidence exceeds 400 cases (B: inset). The alignment between simulated days and actual dates may slightly differ across separate runs. Case isolation and home quarantine are in place from the outset.


The closest match to the actual incidence data over the entire period was produced by a moderate macro-level of social distancing compliance, SD = 0.5, or even a lower level (SD = 0.4) for the period up to 13 July (see Figure 1 and Supplementary Material: Sensitivity of outcomes for moderate restrictions, Supplementary Figure 2; also see section 4 for a comparison of these SD levels with real-world mobility reductions). The match is not exact—with the actual incidence growth rate changing several times during this period—perhaps as a consequence of restrictions being imposed heterogeneously across different local government areas. Importantly, however, the growth in actual incidence during the period of the comprehensive lockdown restrictions (16–25 July) is best matched by a higher compliance level, SD = 0.6. This match is also reflected by proximity of the corresponding growth rate β0.6 = 0.029 to the incidence growth rate βIII = 0.037. The considered SD levels were based on moderately reduced interaction strengths within community, i.e., SDc = 0.25, see Table 1, which were inadequate for outbreak suppression even with high macro-distancing such as SD = 0.7.


Table 1. The macro-distancing parameters and interaction strengths: retrodiction (“moderate”) and counter-factual (“tight.”).
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Furthermore, we considered moderate-to-high macro-levels of social distancing, 0.5 ≤ SD ≤ 0.9, while maintaining CI = 0.7 and HQ = 0.5, in a counter-factual mode by reducing the micro-parameters (the interaction strengths for CI, HQ, SC, and SD) within their feasible bounds. Again, the control measures were triggered by cumulative incidence exceeding 400 cases (corresponding to a tighter lockdown imposed on July 9). An effective suppression of the outbreak within a reasonable timeframe is demonstrated for macro-distancing at SD≥0.7, coupled with the lowest feasible interaction strengths for most interventions, i.e., NPIc = 0.1 (where NPI is one of CI, HQ, SC, and SD), as shown in Figure 2 and summarised in Table 1. For SD = 0.8, new cases fall below 10 per day approximately a month (33 days) after the peak in incidence, while for SD = 0.7 this period reaches 45 days2. Social distancing at SD = 0.9 is probably infeasible (as this assumes that 90% of the population consistently stays at home), but would reduce the new cases to below 10 a day within four weeks (25 days) following the peak in incidence.


[image: Figure 2]
FIGURE 2. Tight restrictions (NSW; progressive vaccination rollout; suppression threshold: 400 cases): counter-factual simulation scenarios, under lowest feasible interaction strengths (CIc = CIw = 0.1, HQc = HQw = 0.1, SDc = 0.1, SC = 0.1), for (A) (log scale) incidence (crosses), and (B) cumulative incidence (circles). Traces corresponding to feasible social distancing (SD) compliance levels are shown as average over 10 runs (coloured profiles for SD varying in increments of 10%, i.e., between SD = 0.5 and SD = 0.9). Vertical lines mark the incidence peaks (dotted) and reductions below 10 daily cases (dashed). Each SD intervention, coupled with school closures, begins with the start of tighter lockdown, when cumulative incidence exceeds 400 cases (i.e., simulated day 31). The alignment between simulated days and actual dates may slightly differ across separate runs. Case isolation and home quarantine are in place from the outset.


Supplementary Material (Sensitivity of suppression outcomes for tight restrictions) presents results obtained for the scenarios which assume a limited pre-pandemic vaccination coverage (immunising 6% of the population). A positive impact of the partial progressive rollout which covers up to 40% of the population by mid-September is counterbalanced by a delayed start of the tighter lockdown, with the 12-day delay leading to a higher peak-incidence, as can be seen by comparing Figure 2 and Supplementary Figure 4. For example, for SD = 0.8, a scenario following the limited pre-pandemic vaccination, but imposing control measures earlier, demonstrates a reduction of incidence below 10 daily cases in four weeks after the peak in incidence (Supplementary Figure 4), rather than 33 days under progressive rollout (Figure 2). For SD = 0.9 the suppression periods differ by about one week: 17 days (Supplementary Figure 4) against 25 days (Figure 2). However, this balance is nonlinear, as shown in Table 2: for SD = 0.7, the suppression period under the pre-pandemic vaccination scenario approaches 55 days (Supplementary Figure 4), in contrast to the progressive rollout scenario achieving suppression earlier, in 45 days (Figure 2). This is, of course, explained by the longer suppression period under SD = 0.7, during which a progressive rollout makes a stronger impact.


Table 2. Comparison of control measures: projected lockdown duration after the incidence peak, until new cases fall below 10 per day.
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We then considered feasible scenarios tracing the epidemic spread at the national level for the period between mid-June and mid-November 2021, constrained by moderate levels of social distancing, SD∈{0.4, 0.5, 0.6}, under partial CTNPIs (CI = 0.7 and HQ = 0.5), see Supplementary Table 4. A progressive vaccination rollout was simulated concurrently with the continuing restrictions (see Supplementary Material: Vaccination modelling). Our Australia-wide model was calibrated by 31 August 2021, adopting a higher fraction of symptomatic children, σc = 0.268 (see Supplementary Material: Model calibration). The actual incidence curve is traced between the profiles formed by SD = 0.4 and SD = 0.5, with the latter providing the best match. The model projection for incidence peaking across the nation in the range between approximately 1,500 and 5,000 daily cases pointed to early to mid-October. This projection is validated by the actual profiles, as shown in Figure 3 and Supplementary Figure 11. The corresponding levels of simulated and actual vaccination coverage reached across Australia are shown in Supplementary Material: Vaccination modelling.


[image: Figure 3]
FIGURE 3. Moderate restrictions (Australia; progressive vaccination rollout; suppression threshold: 400 cases): a comparison between simulation scenarios and actual epidemic curves up to November 13, under moderate interaction strengths (CIc = CIw = 0.25, HQc = HQw = 0.25, SDc = 0.25, SC = 0.5). A moving average of the actual time series for (A) (log scale) incidence (crosses), and (B) cumulative incidence (circles). Traces corresponding to social distancing levels SD∈{0.4, 0.5, 0.6} are shown for the period between 16 June and 13 November, as averages over 10 runs (colored profiles). 95% confidence intervals are shown as shaded areas. For each SD level, minimal and maximal traces, per time point, are shown with dotted lines. Peaks formed during the suppression period for each SD profile are identified with coloured dashed lines. Each SD intervention, coupled with school closures, begins with the start of initial restrictions. The alignment between simulated days and actual dates may slightly differ across separate runs. Case isolation and home quarantine are in place from the outset.


Using the Australia-wide model, we quantified the expected demand in terms of hospitalisations (occupancy) and the intensive care units (ICUs), and the number of potential fatalities across the nation. The estimation methods are described in Supplementary Material: Hospitalisations and fatalities. The projections obtained for the three feasible levels of social distancing, SD∈{0.4, 0.5, 0.6}, are shown in Supplementary Figures 8–10, and summarised in Table 3 and Supplementary Tables 9, 10. The scenario developing under SD = 0.5 offers the best match with the actual dynamics again. As expected, the unvaccinated cases form a vast majority among the hospitalisations, ICU occupancy and fatalities (cf. Supplementary Tables 9, 10). Importantly, a comparison across the three moderate levels of social distancing, SD∈{0.4, 0.5, 0.6} shows that with a 10% increase in the level of social distancing, the hospitalisations and ICU demand reduce approximately 3-fold, and the fatalities reduce at least two times. These effects of a 10% increase in the social distancing adherence on the clinical burden and the potential fatalities are robust with respect to changes in the vaccine efficacy against infectiousness, as shown in Supplementary Figure 12, and Tables 9, 10.


Table 3. Estimates (across Australia) of the peak demand in hospitalisations and ICUs; and cumulative fatalities (15 October 2021).
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4. DISCUSSION

Despite a relatively high computational cost, and the need to calibrate numerous internal parameters, ABMs capture the natural history of infectious diseases in a good agreement with the established estimates of incubation periods, serial/generation intervals, and other key epidemiological variables. Various ABMs have been successfully used for simulating actual and counter-factual epidemic scenarios based on different initial conditions and intervention policies (30–34).

Our early COVID-19 study (1) modelled transmission of the ancestral lineage of SARS-CoV-2 characterised by the basic reproduction number of R0≈3.0 (adjusted R0≈2.75). This study compared several NPIs and identified the minimal SD levels required to control the first wave in Australia. Specifically, a compliance at the 90% level, i.e., SD = 0.9 (with SDw = 0 and SDc = 0.5) was shown to control the disease within 13-14 weeks. This relatively high SD compliance was required in addition to other restrictions (TR, CI, HQ), set at moderate levels of both macro-distancing (CI = 0.7 and HQ = 0.5), and interaction strengths: CIw = HQw = CIc = HQc = 0.25, CIh = 1.0, and HQh = 2.0 (1).

The follow-up work (17) quantified possible effects of a mass-vaccination campaign in Australia, by varying the extents of pre-pandemic vaccination coverage with different vaccine efficacy combinations. This analysis considered hybrid vaccination scenarios using two vaccines adopted in Australia: BNT162b2 (Pfizer/BioNTech) and ChAdOx1 nCoV-19 (Oxford/AstraZeneca). Herd immunity was shown to be out of reach even when a large proportion (82%) of the Australian population is vaccinated under the hybrid approach, necessitating future partial NPIs for up to 40% of the population. The model was also calibrated to the basic reproduction number of the ancestral lineage (R0≈3.0, adjusted R0≈2.75), and used the same moderate interaction strengths as the initial study (1) (except SDc = 0.25, reduced to match the second wave in Melbourne in 2020).

In this work, we re-calibrated the ABM to incidence data from the ongoing third pandemic wave in Australia driven by the Delta variant. The reproductive number was calibrated to be at least twice as high (R0 = 5.97) as the one previously estimated for pandemic waves in Australia. We then explored effects of available NPIs on the outbreak suppression, under a progressive vaccination scenario. The retrodictive modelling identified that the current epidemic curves, which continued to grow (until mid-October 2021), can be closely matched by moderate social distancing coupled with moderate interaction strengths within community (SD in [0.4, 0.5], SDc = 0.25), as well as moderate compliance with case isolation (CI = 0.7, CIw = CIc = 0.25) and home quarantine (HQ = 0.5, HQw = HQc = 0.25). The estimate of compliance has briefly improved to SD≈0.6 during the period of comprehensive lockdown measures, announced on July 17, but returned to SD≈0.5 in early August.

We note that the workers delivering essential services are exempt from lockdown restrictions. The fraction of the exempt population can be inferred conservatively as 4% (strictly essential) (35), more comprehensively as approximately 19% (including health care and social assistance; public administration and safety; accommodation and food services; transport, postal and warehousing; electricity, gas, water and waste services; financial and insurance services), but can reach more significant levels, around 33%, if all construction, manufacturing, and trade (retail/wholesale) are included in addition (36). The latter, broad-range, case limits feasible social distancing levels to approximately SD≈0.7. However, even with these inclusions, there is a discrepancy between the level estimated by ABM (SD in [0.4, 0.5]) and the broad-range feasible level (SD≈0.7). This discrepancy would imply that approximately 20–25% of the population have not been consistently complying with the imposed restrictions, while 30–35% may have been engaged in services deemed broadly essential (other splits comprising 50–60% of the “non-distancing” population are possible as well).

The inferred levels of social distancing are supported by real-world mobility data (37). Specifically, when compared to baseline (i.e., the median value for the corresponding day of the week, during the 5-week period 3 January–6 February 2020, as set by data provider to represent the pre-pandemic levels), the reports for July 16 showed 31% reduction of mobility at workplaces, and 37% reduction of mobility in retail and recreation settings, with concurrent 65% reduction of mobility on public transport. On July 21, the mobility reductions were reported as 43% (workplaces), 41% (retail and recreation), and 72% (public transport). The extent of the mobility reduction in workplaces, as well as retail and recreation, closely matched the social distancing levels estimated by the model (approximately 40%). The partial reductions in mobility across workplaces, retail, and recreation have since been maintained around 40–50% on average (37). According to numerous reports (38–40), the infection spread among essential workers was substantial, and the interactions within workplaces and community contributed to the disease transmission stronger than contacts in public transport.

Moderate levels of compliance (SD in [0.4, 0.6]) would be inadequate for suppression of even less transmissible coronavirus variants (1). The Delta variant demands a stronger compliance and a reduction in the scope of essential services (especially, in a setting with low immunity). Specifically, our results indicate that an effective suppression within a reasonable timeframe can be demonstrated only for very high compliance with social distancing (SD≥0.7), supported by dramatically reduced, and practically infeasible, interaction strengths within the community and work/study environments (NPIc = NPIw = 0.1). Importantly, a significant fraction of local transmissions during the Sydney outbreak in NSW, as well as during the following outbreak in Melbourne, VIC [which started on 13 July 2021, was initially suppressed, but then resumed its growth on 4 August 2021 (5)], occurred in the suburbs characterised by socioeconomic disadvantage profiles, as defined by The Australian Bureau of Statistics' Index of Relative Socio-economic Advantage and Disadvantage (IRSAD) (38, 39, 41). To a large extent, the epidemic spread in these suburbs was driven by structural factors, such as higher concentrations of essential workers, high-density housing, shared and multi-generational households, etc. Thus, even a combination of government actions (e.g., a temporary inclusion of some services previously deemed essential under the lockdown restrictions (28, 29), while providing appropriate financial support to the affected businesses and employees), and a moderate community engagement with the suppression effort, proved to be insufficient for the outbreaks' suppression.

Obviously, the challenges of suppressing emerging variants of concern can be alleviated by a growing vaccination uptake. However, in Australia, the vaccination rollout was initially limited by various supply and logistics constraints. Furthermore, as our results demonstrate, a progressive vaccination rollout reaching up to 40% of the population (i.e., approximately 50% of adults) was counter-balanced by a delayed introduction of the tighter control measures. This balance indicated that a comprehensive mass-vaccination rollout plays a crucial role over a longer term and should preferably be carried out in a pre-outbreak phase (17). Ultimately, the epidemic peak in NSW during the lockdown period was reached only when about a half of the adults were double vaccinated by mid-September (i.e., 49.6% on 15 September 2021) (16). Across the nation, the peak in incidence was observed by mid-October (as predicted by the model), once approximately two thirds of adults were double vaccinated (16), also in concordance with the model (see Supplementary Material: Vaccination modelling).

A post-lockdown increase in infections is expected when the stay-at-home orders are lifted in recognition of immunising 70%, and then 80%, of adults (42). However, a detailed analysis of a possible post-lockdown surge in infections, the resultant increased demand on the healthcare system, and potential fatalities, is outside of the scope for this study.

While the model was not directly used to inform policy, it forms part of the information set available to health departments, and we hope that its policy relevance can contribute to rapid and comprehensive responses in jurisdictions within Australia and overseas. A failure in reducing the size of the initial outbreak, due to a delayed vaccination rollout, challenging socioeconomic profiles of the primarily affected areas, inadequate population compliance, and a desire to maintain and restart socioeconomic activities, has generated a substantial pandemic wave affecting the entire nation (43–45).


4.1. Study Limitations

In modelling the progressive vaccination rollout, we assumed a constant weekly uptake rate of 3%, while the rollout was accelerating. The rate of progressive vaccination is expected to vary, being influenced by numerous factors, such as access to national stockpiles, dynamics of social behaviour, and changing medical advice. In addition, we did not consider a diminishing vaccine efficacy, given that the temporal scope of the study was limited to a relatively short period of 6 months (June–November 2021) during which a progressive rollout was modelled. Thus, only a relatively small fraction of the population vaccinated during the very first few months would be experiencing a tangibly diminished vaccine efficacy (with respect to the Delta variant) (46). Nevertheless, the study included a sensitivity analysis of the vaccine efficacy across three static levels.

Another limitation is that the surrogate ABM population which corresponds to the latest available Australian Census data from 2016 (23.4M individuals, with 4.45M in Sydney) is smaller than the current Australian population (25.8M, with 4.99M in Sydney). We expect low sensitivity of our results to this discrepancy due to the outbreak size being three orders of magnitude smaller than Sydney population.

Finally, the model does not directly represent in-hotel quarantine and in-hospital transmissions. Since the frontline professionals (health care and quarantine workers) were vaccinated in a priority phase carried out in Australia in early 2021, i.e., before the Sydney outbreak, this limitation is expected to have a minor effect. Overall, as the epidemiology of the Delta variant continues to be refined with more data becoming available, our results may benefit from a retrospective analysis.
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FOOTNOTES

1In describing a “wave” we follow the definition based on two key features: (i) an epidemic wave comprises upward and/or downward periods; and (ii) the increase during an upward period, as well as the decrease during a downward period, must be substantial over a period of time (4).

2A post-peak period duration for each SD level is obtained using the incidence trajectory averaged over ten simulation runs.
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The comprehensive understanding of the characteristics of asymptomatic cases are helpful for the identification and management of patients with asymptomatic COVID-19 infection. Four electronic databases were searched from December 1, 2019 to February 8, 2022 for relevant articles. Data synthesis, subgroup analysis, and sensitivity analysis were performed on the included studies. I2 and Q tests were applied to evaluate heterogeneity across studies. The risk of publication bias was assessed and visualized using a funnel plot. A total of 45 studies consisting of 2,655 patients with no symptoms at the screening point were included. Pooled results showed that in China, 65% of initial no-symptoms COVID-19 patients did not present any COVID-19-related symptom during follow-up or by end of disease course (asymptomatic infections). High proportions of initial no-symptoms COVID-19 patients (76%) and patients with asymptomatic infection (55%) had abnormal CT features at the screening point. High proportion of patients with asymptomatic infection had been detected Ig G+ (72%) and/or Ig M+ (57%) at the screening point. The chest CT scan and SARS-CoV-2-specific antibody testing could serve as effective supplementary methods to identify asymptomatic cases in the early stage of SARS-CoV-2 infection. However, the chest CT scan and the SARS-CoV-2-specific IgM and IgG testing should not replace reverse transcription–polymerase chain reaction (RT-PCR) for screening in asymptomatic patients. The combination of repeated RT-PCR, chest CT scans, and the SARS-CoV-2-specific IgM and IgG testing should be performed for those highly suspected SARS-CoV-2 infections.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD 42021261130.
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INTRODUCTION

The rapid spread of the coronavirus disease 2019 (COVID-19) epidemic has caused an ongoing global pandemic due to the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the susceptibility of people. The diagnosis of COVID-19 is based on epidemiological history, symptoms, virus nucleic acid detection, imaging, and laboratory results according to the Chinese Guidelines for the Diagnosis and Treatment Plan of SARS-CoV-2 Infection by the National Health Commission (Trial Version 5) (1). At present, upper respiratory tract nasopharyngeal swabs are mostly used as nucleic acid detection samples in China, but the positive rate is low (2). Although multi-sample 2019-nCoV nucleic acid detection can improve the accuracy and reduce the false negative rate, the cost is high (2, 3). Given the high cost of nucleic acid testing, shortage of medical supplies, and rapid increase in the number of infections, some countries monitor the temperature to screen suspected infections for isolation and management. However, many asymptomatic cases have been reported. Studies showed that asymptomatic cases may account for about 60% of all patients with COVID-19, and viral replication in these cases was robust, and the virus was highly infectious (4–8). Asymptomatic cases have a similar viral load as symptomatic cases (9). A mathematical model incorporating asymptomatic cases indicates that asymptomatic cases are major drivers for the growth of the COVID-19 pandemic (10). Most asymptomatic patients do not seek medical assistance due to no obvious clinical symptoms and poor prevention awareness, which contribute to the rapid spread of COVID-19. Although secondary attack rate may be 3–25 times lower for asymptomatic patients than for those with symptoms, the high proportion in total infections and difficulty in identification make asymptomatic cases as major drivers for COVID-19 pandemic (11, 12). The early recognition of infections and cutting off the route of transmission are key points to control the COVID-19 pandemic. However, we can only rely on immunology testing, radiographical scan or nucleic acid detection technology to obtain information about asymptomatic infections. Therefore, this kind of infectious source cannot be effectively identified, making it very difficult to be controlled and prevented. Considering that asymptomatic cases are more difficult to identify than symptomatic cases, control interventions may be undermined. In China, the COVID-19 pandemic has been gradually controlled. At present, the identification and management of patients with asymptomatic infection has become an urgent problem that needs to be addressed. The comprehensive understanding of the epidemiological, radiographical, and laboratorial characteristics of asymptomatic cases are helpful for the identification and management of patients with asymptomatic infection. To comprehensive understanding of these characteristics of asymptomatic cases, the present systematic review and meta-analysis is performed.



MATERIALS AND METHODS

A meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) (13) and Meta-Analysis of Observational Studies in Epidemiology guidelines (14). The review protocol was registered at PROSPERO as CRD 42021261130.


Search Strategy

Two authors (YD and HY) independently identified relevant articles published in Embase, PubMed, China National Knowledge Infrastructure, and WANFANG DATA from December 1, 2019 to February 8, 2022. We applied the following terms in retrieving studies from the PubMed database: (COVID-19 OR SARS-CoV-2 OR 2019-nCoV Disease) AND (asymptomatic OR pre-symptomatic OR covert infection). Modifications were made as required to retrieve studies from other electronic databases. The search strategy had also been provided in PROSPERO. Besides, the reference lists of the included studies were hand-searched to acquire additional relevant articles.



Study Selection Criteria

Initially no-symptom patients were those with presymptomatic or asymptomatic infection at the screening point. Initial no-symptoms COVID-19 patients were defined as individuals who were positive for SARS-CoV-2, detected by reverse transcription–polymerase chain reaction (RT-PCR), but had no COVID-19-related clinical symptom at the screening point. Presymptomatic infections or patients with presymptomatic infection were defined as individuals who had no symptoms at the diagnosis time but presented COVID-19-related symptoms during follow-up. Asymptomatic infections or patients with asymptomatic infection were defined as individuals who did not present any COVID-19-related symptom during follow-up or by end of disease course but had a positive result of RT-PCR at the screening point.

The inclusion criteria were as follows: (i) the participants were Chinese who had asymptomatic COVID-19 infection at the screening point; (ii) studies that reported data about the number of patients with presymptomatic or asymptomatic infection and (iii) radiographical or laboratorial characteristics of asymptomatic patients.

The exclusion criteria were as follows: (i) duplicate publication data; (ii) case reports, reviews, commentaries, and conference abstracts; and (iii) studies in which the number of participants <10 were excluded.



Data Extraction and Quality Assessment

Two authors (YD and HY) independently extracted the following data from the included articles: name of the first author, participants, study design, location, time of data collection, sample size, age, number of males, method to determine an infection, time of performing a chest computerized tomography (CT) scan, duration of viral shedding, duration of symptoms developed, and radiographical and laboratorial results.

An 11-item checklist recommended by the Agency for Healthcare Research and Quality was applied to assess the quality of included studies (15, 16). If an item was answered “NO” or “UNCLEAR” it would be scored 0 and if it was answered “YES,” then the item scored 1. The studies were categorized into low (0–3), moderate (4–7) and high quality (8–11).

During data extraction and quality assessment, a third team member (WG) performed verification. All discrepancies were discussed and resolved by the three authors.



Data Analysis

Data analysis was performed using the Stata software version 14.0 (Stata Corp. LP, College Station, USA). For the anticipated clinical heterogeneity, the pooled proportions of patients with asymptomatic infection in the initially no-symptoms COVID-19 patients, individuals with abnormal CT features in the initially no-symptoms COVID-19 patients at the screening point, individuals with abnormal CT features in patients with asymptomatic infection at the screening point, bilateral lung involvement in the initially no-symptoms COVID-19 patients with abnormal CT features at the screening point, bilateral lung involvement in asymptomatic infections with abnormal CT features at the screening point, IgM+ or IgG+ in patients with asymptomatic infection at the screening point with 95% confidence interval (CI) were calculated using the random-effects model. The random-effects model was considered to be suitable for meta-analyses with substantial heterogeneity. We performed the Freeman–Tukey double arcsine transformation before data pooling due to some included studies that reported these proportions close to 1 or 0. I2 (significance level of I2 > 50 %) and Q tests (significance level of p < 0.05) were applied to evaluate heterogeneity across studies. A sensitivity analysis was conducted to evaluate the robustness and reliability of the pooled proportions. Subgroup analysis was performed according to location: Hubei Province or outside of Hubei Province (Wuhan is located in Hubei Province), and sample size (more than or not more than 30 participants) to explore the potential source of heterogeneity. The risk of publication bias was assessed and visualized using a funnel plot.




RESULTS


Literature Search

Our initial search identified 20 080 records (7,559, 11,025, 624, and 872 records in Pubmed, Embase, China National Knowledge Infrastructure, and WANFANG DATA, respectively). A total of 6,076 articles were duplicates. After duplicates were removed, 13,843 studies were excluded after reviewing titles and abstracts. A total of 161 potentially relevant records were retrieved for detailed full-text evaluation. Finally, 45 articles (17–61) met the selection criteria and were deemed to have relevant data to the meta-analysis. A PRISMA diagram detailing the process of article selection was shown in Figure 1.


[image: Figure 1]
FIGURE 1. PRISMA diagram of the article selection.




Characteristics of Included Studies

A total of 45 studies consisting of 2,655 patients with no symptoms at the screening point were included in the meta-analysis, among which 13 articles were Chinese articles (18–20, 24, 34, 35, 37, 41, 46, 53, 58–60) and 32 articles were English articles. Six studies (26, 48, 52, 56–58) were prospective studies and the rest were retrospective studies. The number of studies in which the participants came from Wuhan was the largest (11/41). The participants were initial no-symptoms COVID-19 patients in 22 studies. The other 23 studies involved participants with asymptomatic infection. All participants were children in two studies (55, 56). The proportion of males was 48.1%. The time of data collection of most studies (28/37) was between January and April 2020. Eight studies did not report the time of data collection. All studies applied nucleic acid testing to determine a diagnosis. In all included studies, the CT scan and laboratorial sampling were performed on admission or to determine a diagnosis (the asymptomatic phase). Ten studies reported the duration of viral shedding. Ten studies reported the duration of COVID-19-related symptoms developed. A summary of characteristics of 45 included studies was shown in Supplementary Table 1 in the supplementary materials.

The result of quality assessment was shown in Supplementary Table 2. All studies were of high (5/45) or moderate (40/45) quality.



Meta-Analysis Results
 
Proportion of Patients With Asymptomatic Infection in Initial No-Symptoms COVID-19 Patients

The proportion of patients with asymptomatic infection in initial no-symptoms COVID-19 patients was 65% (95% CI: 58–72%, I2 = 88.4%, k = 22, n = 1,769; Supplementary Figure 1) (18, 19, 22, 24, 26–30, 34, 35, 39, 41, 43, 44, 46, 48, 52–54, 57, 61). In the sensitivity analysis, we found no study that affected the proportion by over 3%.



Proportion of Individuals With Abnormal CT Features in Initial No-Symptoms COVID-19 Patients at the Screening Point

The proportion of individuals with abnormal CT features in initial no-symptoms COVID-19 patients at the screening point was 76% (95% CI: 61–88%, I2 = 93.1%, k = 12, n = 583; Figure 2) (22, 27–30, 39, 43, 52, 54, 55, 57, 61). In the sensitivity analysis, we found two studies that affected the proportion by over 3%.
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FIGURE 2. The proportion of individuals with abnormal CT features in initial no-symptoms COVID-19 patients at the screening point.




Proportion of Individuals With Abnormal CT Features in Patients With Asymptomatic Infection at the Screening Point

The proportion of individuals with abnormal CT features in patients with asymptomatic infection at the screening point was 55% (95% CI: 43–68%, I2 = 86.2%, k = 18, n = 491; Figure 3) (20–23, 31–33, 36, 38, 42, 44–47, 49, 50, 56, 59). In the sensitivity analysis, we found one study that affected the proportion by over 3%.
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FIGURE 3. The proportion of individuals with abnormal CT features in patients with asymptomatic infection at the screening point.




Proportion of Bilateral Lung Involvement in Initial No-Symptoms COVID-19 Patients With Abnormal CT Features at the Screening Point

The proportion of bilateral lung involvement in initial no-symptoms COVID-19 patients with abnormal CT features at the screening point was 56% (95% CI: 37–74%, I2 = 87.9%, k = 5, n = 243; Supplementary Figure 2) (30, 39, 43, 52, 54).



Proportion of Bilateral Lung Involvement in Asymptomatic Infections With Abnormal CT Features at the Screening Point

The proportion of bilateral lung involvement in asymptomatic infections with abnormal CT features at the screening point was 55% (95% CI: 41–69%, I2 = 36.2%, k = 7, n = 95; Supplementary Figure 3) (23, 33, 42, 45, 46, 49, 59).



Proportion of Ig G+ in Patients With Asymptomatic Infection at the Screening Point

The proportion of Ig G+ in patients with asymptomatic infection at the screening point was 72% (95% CI: 46–92%, I2 = 94.2%, k = 8, n = 268; Figure 4) (17, 25, 26, 40, 51, 56, 58, 60).


[image: Figure 4]
FIGURE 4. The proportion of Ig G+ in patients with asymptomatic infection at the screening point.




Proportion of Ig M+ in Patients With Asymptomatic Infection at the Screening Point

The proportion of Ig M+ in patients with asymptomatic infection at the screening point was 57% (95% CI: 30–82%, I2 = 94.5%, k = 8, n = 268; Figure 5) (17, 25, 26, 40, 51, 56, 58, 60).
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FIGURE 5. The proportion of Ig M+ in patients with asymptomatic infection at the screening point.





Subgroup Analysis Results
 
Hubei Province-Based Studies vs. Other Locations

The pooled proportion of patients with asymptomatic infection in initial no-symptoms COVID-19 patients in studies that used Hubei Province as a survey site (k = 5, total n = 257) was 60% (95% CI: 52–68%, I2 = 36.0%). The pooled proportion of patients with asymptomatic infection in initial no-symptoms COVID-19 patients in studies that used locations outside Hubei Province as survey sites (k = 16, total n = 1,486) was 67% (95% CI: 58–76%, I2 = 91.4%).

The proportion of individuals with abnormal CT features in initial no-symptoms COVID-19 patients at the screening point in studies that used Hubei Province as a survey site (k = 4, total n = 241) was 95% (95% CI: 89–100%, I2 = 71.0%). The proportion of individuals with abnormal CT features in initial no-symptoms COVID-19 patients at the screening point in studies that used locations outside Hubei Province as survey sites (k = 7, total n = 316) was 65% (95% CI: 56–74%, I2 = 60.3%).

The proportion of individuals with abnormal CT features in patients with asymptomatic infection at the screening point in studies that used Hubei Province as a survey site (k = 6, total n = 219) was 55% (95% CI: 24–84%, I2 = 95.2%). The proportion of individuals with abnormal CT features in patients with asymptomatic infection at the screening point in studies that used locations outside Hubei Province as survey sites (k = 12, total n = 272) was 55% (95% CI: 47–63%, I2 = 32.0%).



Studies Had More Than 30 Participants vs. Not More Than 30 Participants

The pooled proportion of patients with asymptomatic infection in initial no-symptoms COVID-19 patients in studies that had more than 30 participants (k = 15, total n = 1,625) was 64% (95% CI: 55–72%, I2 = 91.5%). The pooled proportion of patients with asymptomatic infection in initial no-symptoms COVID-19 patients in studies that had not more than 30 participants (k = 7, total n = 144) was 71% (95% CI: 59–82%, I2 = 51.3%).

The proportion of individuals with abnormal CT features in initial no-symptoms COVID-19 patients at the screening point in studies that had more than 30 participants (k = 7, total n = 475) was 79% (95% CI: 61–92%, I2 = 94.5%). The proportion of individuals with abnormal CT features in initial no-symptoms COVID-19 patients at the screening point in studies that had not more than 30 participants (k = 5, total n = 108) was 71% (95% CI: 39–95%, I2 = 91.0%).

The proportion of individuals with abnormal CT features in patients with asymptomatic infection at the screening point in studies that had more than 30 participants (k = 7, total n = 326) was 44% (95% CI: 25–63%, I2 = 92.2%). The proportion of individuals with abnormal CT features in patients with asymptomatic infection at the screening point in studies that had not more than 30 participants (k = 11, total n = 165) was 64% (95% CI: 49–78%, I2 = 70.7%).



Other Laboratorial Characteristics

Laboratorial characteristics were shown in Table 1. Eleven of the included studies reported abnormal lymphocyte count at the screening point. A total of 5 studies with 27 out of 177 (15.3%) initial no-symptoms COVID-19 patients and 5 studies with 21 out of 140 (15.0%) patients with asymptomatic infection reported lymphocytopenia. One study with patients with asymptomatic infection reported lymphocytosis (4/11, 36.4%). Sixteen of the included studies reported abnormal white blood cell count at the screening point. A total of 5 studies with 13 out of 138 (9.4%) initial no-symptoms COVID-19 patients and 5 studies with 15 out of 135 (11.1%) patients with asymptomatic infection reported leukopenia. A total of 4 studies with 11 out of 121 (9.1%) initial no-symptoms COVID-19 patients and 3 studies with 3 out of 41 (7.3%) asymptomatic infections reported leukocytosis. Elevated C-reactive protein (CRP) values (Six studies), procalcitonin (PCT) (2 studies), lactate dehydrogenase (LDH) (6 studies), alanine aminotransferase (ALT) (4 studies), Creatinine (Cr) (4 studies), D-dimer levels (4 studies), erythrocyte sedimentation rate (ESR) (5 studies), and reduced albumin (4 studies) and hemoglobin levels (1 study) were reported at the screening point. We did not pool the proportions of these laboratorial characteristics due to limited data.


Table 1. Laboratorial characteristics of Chinese asymptomatic cases with COVID-19.
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Other Features of Initial No-Symptoms COVID-19 Patients, Patients With Asymptomatic Infection, and Patients With Presymptomatic Infection

Patients with asymptomatic infection were significantly younger than patients with presymptomatic infection (26, 27, 35, 53). Initially no-symptom COVID-19 patients or patients with asymptomatic infection were significantly younger than symptomatic patients (44, 47). Asymptomatic infections with normal chest CT scans were significantly younger than asymptomatic infections with abnormal chest CT scans (21, 56).

The viral shedding time of asymptomatic infections was significantly shorter than that of patients with presymptomatic infection (22, 26, 27). The viral shedding time of asymptomatic infections with normal chest CT scans was significantly shorter than asymptomatic infections with abnormal chest CT scans (56). The viral shedding time of initially no-symptom patients with normal chest CT scans was significantly shorter than that of initially no-symptom patients with abnormal chest CT scans (54).

The levels of virus-specific IgG in the asymptomatic infections were significantly lower than those of the symptomatic patients in the acute phase (47). The positive rate of IgM antibody testing was significantly lower in asymptomatic infections than that in symptomatic patients during follow-up (25).

Some studies reported the improvement or further radiological progress of chest CT scans in initially no-symptom patients (27, 42, 47, 57). Other studies reported that in initially no-symptom patients (54, 57) or asymptomatic infections (27, 31, 42, 56) without any radiological findings at the time of diagnosis, no radiological findings were observed on the follow-up CT.

Liu, ZR et al. found that the second attack rate in patients with presymptomatic infection was 9.7% and the second attack rate in asymptomatic infections was 2.6% (48). Other included studies reported the asymptomatic infections were infectious (34, 53).



Publication Bias

The funnel plots of the proportion of patients with asymptomatic infection in initial no-symptoms COVID-19 patients, proportion of individuals with abnormal CT features in initial no-symptoms COVID-19 patients at the screening point, and proportion of individuals with abnormal CT features in patients with asymptomatic infection at the screening point were shown in Supplementary Figures 4–6, respectively. No evident publication bias was detected. The funnel plots of other domains were not exhibited due to limited data.





DISCUSSION

A total of 45 studies consisting of 2,655 patients with no symptoms at the screening point were included in the systematic review and meta-analysis. Pooled results showed that in China, 65% of initial no-symptoms COVID-19 patients did not present any COVID-19-related symptom during follow-up or by end of disease course (asymptomatic infections). High proportions of initial no-symptoms COVID-19 patients and patients with asymptomatic infection had abnormal CT features at the screening point. Near half of initial no-symptoms COVID-19 patients and asymptomatic infections with abnormal CT features had bilateral lung abnormality. High proportion of patients with asymptomatic infection had been detected Ig G+ and/or Ig M+ at the screening point.

We found that in most of the included studies, the median duration of viral shedding in patients with asymptomatic infection was shorter than 15 days, which was shorter than that of symptomatic patients (9, 62–64). A meta-analysis (65) also found the viral shedding time was significantly shorter in asymptomatic infections (10.9 days, 95% CI: 8.3–14.3) than in symptomatic patients (19.7 days, 95%CI: 17.2–22.7). Besides, three included studies reported that the viral shedding time of asymptomatic infections was significantly shorter than that of patients with presymptomatic infection (22, 26, 27). These results indicated that patients with asymptomatic infection might recovery faster than symptomatic patients. The presence of patients with asymptomatic infection implied that the body had special mechanisms to prevent the progression of COVID-19 (31). Two included studies reported that the duration of viral shedding of asymptomatic infections or initially no-symptom patients with normal chest CT scans was shorter than that of asymptomatic infections or initially no-symptom patients with abnormal chest CT scans (54, 56). Individuals with pneumonia or lung lesions in asymptomatic infections or presymptomatic infections were more sever and hard to treat than those without pneumonia or lung lesions. However, these speculations might not be reliable because all data about the duration of viral shedding were detected by RT-PCR and a RNA testing could not distinguish whether the virus was alive or dead (66). We found that in patients with presymptomatic infection, symptoms were developed in <13 days (from diagnosis time to symptoms developed), which was 22 days in one study (19). A long time to develop symptoms indicated difficulties in controlling the COVID-19 pandemic.

Studies have shown that patients with asymptomatic infection were more common in populations of young and middle-aged individuals without underlying diseases. Some included studies of the present review reported that patients with asymptomatic infection were significantly younger than patients with presymptomatic infection (26, 27, 35, 53) or symptomatic patients (44, 47). The included studies also reported that asymptomatic infections with normal chest CT scans were significantly younger than asymptomatic infections with abnormal chest CT scans (21, 56). A meta-analysis, which included 506 patients with asymptomatic infection from 34 studies, found that the patients with normal radiology were younger than patients with abnormal radiology (p = 0.013) (67).

We found 65% of initial no-symptoms COVID-19 patients did not present any COVID-19-related symptom during follow-up or by end of disease course. A meta-analysis, which included 41 studies, reported that the pooled percentage of patients with presymptomatic infection among patients with no symptoms at the screening point was 48.9% (95% CI: 31.6–66.2%) (16). A systematic review which included 14 longitudinal studies reported that the proportion of asymptomatic infections among initial no-symptoms COVID-19 patients was 72.3% (68). The high proportion of patients with asymptomatic infection in initially no-symptoms COVID-19 patients found in the present meta-analysis implied the tough job of China in the later COVID-19 pandemic control.

COVID-19 should be considered among individuals with CT abnormalities even when they did not show any clinical symptoms. COVID-19 could result in lung injury even in cases without any COVID-19-related symptom. We found that the proportions of individuals with abnormal CT features in initial no-symptoms COVID-19 patients or patients with asymptomatic infection at the screening point were considerably high. A meta-analysis reported that the proportion of individuals with abnormal CT features in initial no-symptoms COVID-19 patients was 63% (95% CI: 44–78%) and that the proportion of individuals with abnormal CT features in patients with asymptomatic infection was 62% (95% CI: 38–81%) (69). Another meta-analysis found that the proportion of participants with abnormal CT features in asymptomatic infections was 62% (67). A meta-analysis found that the proportion of individuals with abnormal CT features in patients with asymptomatic infection was 47.6% (31.1–72.9%) (15). We found nearly half of initial no-symptoms COVID-19 patients and asymptomatic infections with abnormal CT features had bilateral lung abnormality. A systematic review and meta-analysis found that 41.7% of asymptomatic infections had bilateral lung involvement in the chest CT results (16). Most of the included studies reported patients with asymptomatic infection had ground-glass opacities (GGO) in their lungs. Peripheral and bilateral GGO with or without consolidation or visible intralobular lines were a typical chest CT appearance in COVID-19. However, some included studies reported that in some asymptomatic infections or presymptomatic infections without any radiological findings at the time of diagnosis and on the follow-up CT (27, 42, 54, 56, 57), which would be missed if chest CT was the only screening method.

The adjusted immune system plays an important role in determining the progression of COVID-2019 (70). The SARS-CoV-2-specific IgM and IgG yield different responses during the disease course. IgM usually wanes rapidly (71), whereas IgG usually maintains a high level for a long period (72). This phenomenon might explain the higher proportion of IgG+ than IgM+ in patients with asymptomatic infection. A meta-analysis found that the accuracy rate, sensitivity, and specificity were: (a) 0.95 (95% CI: 0.93–0.97), 0.74 (95% CI: 0.65–0.81), and 0.99 (95% CI: 0.97–1.00), respectively, for IgM and (b) 0.99 (95% CI: 0.97–0.99), 0.85 (95% CI: 0.79–0.90), and 0.99 (95% CI: 0.98–1.00), respectively, for IgG in the diagnosis of COVID-19 (73). However, IgG and IgM were reported to be seronegative till the end of disease course in some patients with asymptomatic infection in the included studies, which would be missed if anti-SARS-CoV-2 IgG/IgM testing was the only screening method.

In the present review, lymphocytopenia; leukopenia; leukocytosis; elevated CRP, LDH, ALT, Cr, D-dimer, and PCT levels; elevated ESR; and reduced albumin and hemoglobin levels in asymptomatic cases were observed. Lymphocytopenia was associated with increased COVID-19 severity (73–75). The inflammatory cytokine storm, exhaustion of T cells, and the COVID-19 infection interfering with T cell expansion were likely key factors behind the observed lymphocytopenia (76, 77). A systematic review and meta-analysis found that leukocytosis and elevated CRP were associated with poor outcomes (OR [95% CI]: 4.51 [2.53–8.04] and 11.97 [4.97–28.8], respectively), whereas leukopenia was associated with a better prognosis (OR [95% CI]: 0.56 [0.40–0.78]) (78). A significant association between leukocytosis and mortality rate in patients with COVID-19 was observed (79). In the early stage of COVID-19, CRP and LDH levels were positively correlated with lung lesions and could reflect disease severity (80–82). Elevated ALT and Cr levels in patients with asymptomatic infection indicate liver and renal injuries, respectively. The presence of liver and renal injuries were associated with progression to severe pneumonia (83, 84). The D-dimer level was commonly elevated in patients with COVID-19. D-dimer level was correlated with disease severity and was a reliable prognostic marker for in-hospital mortality in patients with COVID-19 (85, 86). The incidence of deep vein thrombosis in patients with COVID-19 was correlated with elevated D-dimer level (87). Elevated ESR, elevated PCT level, and reduced albumin and hemoglobin levels were associated with severe COVID-19 and poor outcomes (88–91).

In China, the COVID-19 pandemic has been gradually controlled. At present, the identification and management of patients with asymptomatic infection has become an urgent problem that needs to be addressed. The most likely source of asymptomatic infections is close contacts of patients who have been diagnosed or suspected. Therefore, patients with asymptomatic infection should be detected by infection source tracking investigation, close contact screening, and active detection of the target population. RT-PCR is a gold standard in the diagnosis of COVID-19. However, the false-negative rate of RT-PCR results is up to 30% (92, 93). This may result from the inappropriate or insufficient sample, inaccurate conditions of sample storage and transportation, as well as collecting the specimen too late in the disease process. A high proportion of asymptomatic cases with abnormal chest CT and laboratorial features is found in the present systematic review and meta-analysis, implying that the chest CT scan and the SARS-CoV-2-specific IgM and IgG testing can serve as effective supplementary methods to identify asymptomatic cases in the early stage of SARS-CoV-2 infection. However, the chest CT scan and the SARS-CoV-2-specific IgM and IgG testing cannot replace RT-PCR for screening in asymptomatic patients, as there are a considerable part of asymptomatic patients without radiological findings or SARS-CoV-2-specific IgG and IgM seronegative, let alone the radiation exposure risk and the impact of vaccination on antibodies.

Several limitations of our study should be considered. First, considerable heterogeneity was observed in the study, which diminished the reliability of results. Although heterogeneity decreased in the subgroup analysis, it was still high. The substantial heterogeneity across studies might be related to sample sizes, study regions, study populations, and time of data collection. Second, the chest CT scan and blood laboratory sampling were performed at different time points of infection although most of the included studies reported conducting these testing on admission. Radiological features and laboratory characteristics could have changed along with the progression of COVID-19, thereby diminishing the reliability of results. Third, the impact of false negative PCR results was not considered, which might be more likely to occur in patients with asymptomatic (94) and would underestimate the proportion of patients with asymptomatic infection. Fourth, most of the included studies were retrospective studies which might result in bias in conclusions. Fifth, we only included the studies performed in China, which limited the generalization of findings to other regions of the world. Sixth, we did not use MeSH terms in retrieving studies which might miss some related studies. Seventh, all participants were children in two studies which might confound the results.



CONCLUSION

This manuscript reviewed the epidemiological, radiographical, and laboratorial characteristics of Chinese asymptomatic cases with COVID-19. We found a high proportion of asymptomatic cases with abnormal chest CT and laboratorial features. The chest CT scan and the SARS-CoV-2-specific IgM and IgG testing could serve as effective supplementary methods to identify asymptomatic cases in the early stage of SARS-CoV-2 infection. However, the chest CT scan and the SARS-CoV-2-specific IgM and IgG testing should not replace RT-PCR for screening in asymptomatic patients, because there were a considerable part of asymptomatic patients without radiological findings or SARS-CoV-2-specific IgG and IgM seronegative, let alone the radiation exposure risk and the impact of vaccination on antibodies. The combination of repeated RT-PCR, chest CT scans, and the SARS-CoV-2-specific IgM and IgG testing should be performed for those highly suspected SARS-CoV-2 infections. The specific characteristics of asymptomatic infections such as the infectiousness and outcomes of asymptomatic or presymptomatic infections with abnormal or normal findings in CT scan or laboratorial testing need to be further clarified. More longitudinal and prospective studies are needed.
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The COVID-19 pandemic, which began in December 2019, progressed in a complicated manner and thus caused problems worldwide. Seeking clues to the reasons for the complicated progression is necessary but challenging in the fight against the pandemic. We sought clues by investigating the relationship between reactions on social media and the COVID-19 epidemic in Japan. Twitter was selected as the social media platform for study because it has a large user base in Japan and because it quickly propagates short topic-focused messages (“tweets”). Analysis using Japanese Twitter data suggested that reactions on social media and the progression of the COVID-19 epidemic may have a close relationship. Analysis of the data for the past waves of COVID-19 in Japan revealed that the relevant reactions on Twitter and COVID-19 progression are related repetitive phenomena. We propose using observations of the reaction trend represented by tweet counts and the trend of COVID-19 epidemic progression in Japan and a deep neural network model to capture the relationship between social reactions and COVID-19 progression and to predict the future trend of COVID-19 progression. This trend prediction would then be used to set up a susceptible-exposed-infected-recovered model for simulating potential future COVID-19 cases. Experiments to evaluate the potential of using tweets to support the prediction of how an epidemic will progress demonstrated the value of using epidemic-related social media data. Our findings provide insights into the relationship between user reactions on social media, particularly Twitter, and epidemic progression, which can be used to fight pandemics.

Keywords: COVID-19, SEIR model, simulation, SNS, Twitter, emotion, emoji


1. INTRODUCTION

We investigated the potential of using data from social media to enhance the prediction and simulation of an epidemic's progression. A case study was carried out using Twitter data related to the COVID-19 epidemic in Japan. The COVID-19 pandemic has been causing global problems that have affected everyone for a lengthy period, and the end is not in sight. During the pandemic, people tend to seek information or clues for use in deciding their next actions through a variety of channels: newspapers, TV, and especially social media (1, 2). Neely et al. (1) showed that in a questionnaire survey of 1003 US-based adults, 76% of the respondents relied on social media at least “a little,” and 59% of the respondents read information about COVID-19 on social media at least once per week, 63.6% of the respondents were unlikely to do fact-checking with a healthcare professional. Dadaczynski et al. (2) found that, in a cross-sectional study among university students in Germany, 37.6% (5,302/14,092) of the respondents use social media sometime or frequently for searching information on COVID-19 and related issues.

Studies have shown that, even long before the COVID-19 pandemic, social media greatly affects society, and could reflect social mental states (3–5). Work by Settanni et al. (3) analyzing Facebook posts revealed that, overall, the expression of negative emotions positively correlated with anxiety, depression, and stress symptoms and negative emotion usage positively correlated with anxiety symptoms. Park et al. (4) found that the use of words related to negative emotions and anger significantly increased among Twitter users with major depressive symptoms compared to those otherwise. Wald et al. (5) showed that it is possible to predict the factors in Big 5 Personality Index (6) (Agreeableness, Conscientiousness, Extroversion, Neuroticism, and Openness) and those in the Dark Triad (7) (Psychopathy, Machiavellianism, Narcissism) by using user posts on Twitter with rather good accuracy (AUC of 0.736).

Twitter is an attractive data source for analysis for several reasons: it is one of the largest social media platforms worldwide, it greatly affects several aspects of society (daily conversations, news reports, event advertisements, etc.) in various domains (health, entertainment, economics, research, politics, etc.), it makes user posts accessible by everyone, and it enables a tremendous amount of information to be easily accessed and shared. During the COVID-19 pandemic especially, a large volume of information on Twitter regarding the infection situation, symptoms, treatment, vaccinations, restrictions, and so on is being continuously shared and discussed. Users can share their emotions and opinions regarding the information instantaneously without geographical limitations. The effects of these emotions and opinions can thus spread rapidly. As shown in the collected data in a later section, the average number of daily tweets containing selected COVID-19 related keywords has been more than 400,000 during the COVID-19 epidemic in Japan.

Research on predicting the progression of the COVID-19 pandemic has received much attention worldwide (8). Early prediction is important for implementing countermeasures against its spread. Epidemiological models, e.g., the susceptible-exposed-infected-recovered (SEIR) model, are commonly used for such prediction. The parameters are obtained from observed data or set on the basis of predefined scenarios. Complex problems, e.g., the emergence of new variants, diverging government policies (9, 10), and diverging public perceptions (11, 12), have arisen as the pandemic has lasted longer and longer. Many countries, including Japan, have already experienced more than four waves of the pandemic. To tackle the complicated progression of the COVID-19 pandemic and to deal with the challenge of obtaining parameters reflecting reality as conditions continue to change, recent research has focused on utilizing extra information to enhance the prediction model.

One way to obtain such information is to monitor social media: Twitter, Facebook, Reddit, etc. Social networking services, which were initially simply playgrounds for small communities of computer users, have evolved into large social media platforms connecting both online and offline social networks. Several epidemic-related behaviors can be observed on social media, for instance, health information seeking, even to a heavy reliance on social media which has been observed during the COVID-19 pandemic (1, 2, 13). Several studies on the formation of pandemic waves have revealed an association between non-pharmaceutical interventions and social behaviors (14–16). With the benefit of Twitter being one of the largest social media platforms and its public posting practice, tremendous Twitter data can be utilized for big data analysis, which is attractive for COVID-19 related researches including works on predicting of COVID-19 epidemic progression, for example, using tweet counts (with relevant keywords) (17) and tweet full-text analysis (18).

Van Bavel et al. (19) observed that, especially in the current COVID-19 pandemic, “Social networks can amplify the spread of behaviors that are both harmful and beneficial during an epidemic, and these effects may spread through the network to friends, friends' friends and even friends' friends' friends.” Social networks created by popular social media platforms such as Twitter are huge and feature instant connectivity without geographical limitations. This means that popular social media platforms can amplify the spread of behaviors to a magnitude much greater than offline social networks (e.g., neighborhoods).

Several studies have revealed the emotions of social media users toward COVID-19 progression (20–24). Wheaton et al. (20) showed that “time interacting with social media did predict symptoms of depression and stress, but not anxiety or OCD symptoms.” Arora et al. (21) showed that “people with a negative sentiment are more susceptible to addictive use of social media.” Kaur et al. (24) showed in their analysis of Twitter data for February, May, and June, (2020) that the highest percentage of tweets belonged in the “Negative” category. Toriumi et al. (22) also showed in their analysis using Twitter data in Japan that social emotions toward COVID-19 from February to April, 2020 are mainly influenced by “fear”. In the work of Dyer and Kolic (23), they found “evidence of psychophysical numbing: Twitter users increasingly fixate on mortality, but in a decreasingly emotional and increasingly analytic tone.”

Furthermore, social media users are exposed to massive information with overwhelming sharing of COVID-19 related news and intentional/unintentional misinformation, which can cause severe mental health problems including high level of stress, anxiety, and contagious fear (25, 26). Moreover, regulating fake news content is still challenging (27), while COVID-19 misinformation and fake news which can exaggerate perceived risk are at highly concerned proliferation (28). Especially in Japan, the residents are at a high level of exposure to information on social media platforms, especially Twitter. In Japan, Twitter is one of the top influential social media platform with the number of monthly active users of 45 million by October 20171.

Our review of previous work strongly suggests that social media platforms, including Twitter, are ideal places for monitoring, collecting, and analyzing clues that can lead to behavioral changes (29) which can help in predicting the progression of pandemics such as COVID-19. From this standpoint, we set out to design a system for predicting COVID-19 progression by utilizing Twitter data as indicators of social media reactions. We collected tweet counts related to COVID-19 as a measure of how the reactions on social media are shaped during each wave of the COVID-19 in Japan.

In addition to general tweets, we have investigated the utilization of emoji usage on Twitter to capture changes in the emotions of social media users for use in enhancing epidemiological models. Several studies have focused on capturing emotion from texts including posts on Twitter (“tweets”), for example, sentiment analysis (30) and emotion analysis (31). However, accurately understanding emotional tweets by using full-text analysis is a challenging task. Emoji analysis is an attractive approach because social media users tend to express emotions using non-verbal communication, and they share a common understanding of many emoji as several studies have shown that emojis are used on social media as non-verbal communication cues to assist communication (32–35). Emoji are digital images depicting simple illustrations including facial expressions (smiley face [image: yes], crying face [image: yes], scared face [image: yes], etc.). Emotional messages can be directly expressed through emoji. Because social media users share a common understanding of many emoji, emotions can be effectively and conveniently communicated through emoji. One one hand, this makes it convenient to use emoji for expressing emotional messages. One the other hand, this potentially exposes an user to a wide range of emotions with various shades of meaning, which could be overwhelming.

One crucial point when using social media data, particularly Twitter data, is that social media users may become less engaged, i.e., performing fewer actions such as “liking,” “commenting,” and “sharing,” as the pandemic lasts longer and longer (17). When engagement drops to a certain level, social media data becomes less representative of behavioral changes. The results of a study using Twitter data from the U.S. and Canada by (17) suggest that there will be less engagement through social media due to a feeling of exhaustion as waves of the pandemic continue. Therefore, in this study, we also took into consideration the results of previous studies using Japanese Twitter data.



2. MATERIALS AND METHODS


2.1. Data Collection

The data consisted of tweet counts and COVID-19 infection data from Japan.

The tweet count data were collected using the Twitter API (version 2) with academic research access. Several settings were considered, from the general COVID-19 related tweet count to more fine-grained target subsets of keywords. Three sets of keywords were used: COVID-19 related set, COVID-19 symptom related set2, and COVID-19 infection reporting related set. For each set, the collections were further filtered to retain only tweets containing emojis. The COVID-19 related set was the primary set used. The other sets were used for an ablation study and analysis of the characteristics of the tweets. The details of the settings are shown in Table 1. The collected data show that the number of COVID-19 related tweets has been correlated to some degree with the COVID-19 epidemic progression since the beginning of the epidemic (Figure 1). For analysis of tweets regarding the use of emoji, we count tweets in two categories: (g) general counting (without considering whether the tweets contain emoji or not), and (e) only count tweets containing emoji.


Table 1. Tweet count settings. Two categories for counting are considered: (g) general counting (of tweets whether containing emoji or not), and (e) counting of tweets containing emoji.
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FIGURE 1. Daily chart of tweet counts vs. reported COVID-19 infections in Japan (values were smoothed by 15-day moving average). T.R.T., Tweets related to. The vertical solid lines mark the peak of the number of reported daily infections. The vertical dashed lines mark the bottom of the number of reported daily infections. The spans separated by the vertical dashed lines contain each separate wave of COVID-19. The data suggest that the number of COVID-19 related tweets has been correlated to some degree with the progression of the epidemic in Japan since the beginning of the epidemic.


The COVID-19 infection reporting data for Japan were obtained from JX Press3 The dataset contains daily infection reports for all prefectures in Japan. It was used for training or calibrating two core models used by the epidemic simulation system described in Sections 2.2 and 2.3.



2.2. SNS Reaction Trend and COVID-19 Epidemic Progression Change Prediction

As seen in Figure 1, throughout the waves of COVID-19, there exists a phenomenon that the reactions on Twitter also form a wave shape and each wave of the reaction on Twitter also has a correspondence to each wave of COVID-19. Given that Twitter is an influential social media platform in Japan, it is not surprising that the news about a surge in COVID-19 cases immediately results in reactions on Twitter with certain key phrases, for example, “x higher than last week,” and “all time high,” which quickly catches the attention of Twitter users. Based on that, we hypothesize that when the number of COVID-19 cases increases (again), the reactions on Twitter also increase. On one hand, this increases the awareness of a possible high-risk situation, which should cause people to change their behaviors and be more careful with their decisions and actions, for example, by following preventative measures including staying home, and social distancing. This may lead to a down-trend in COVID-19 infections. However, on the other hand, the massive exposure to a large amount of negative information could increase mental health problems such as experiencing excessive fear, and stress (25, 26).

A down-trend of COVID-19 infection cases could cause people to perceive a low-risk situation. As can be seen in the change of mobility, according to the mobility trends reports from Apple4 (Figure 2), the mobility trends up when the number of COVID-19 cases decreases, which is what happened in Japan during each of the COVID-19 waves. This indicates a tendency to relaxing some restrictions when the COVID-19 situation is perceived to be improving.


[image: Figure 2]
FIGURE 2. Mobility trends reports for Tokyo (23 districts), Japan. Reports are published daily and reflect requests for directions in Apple Maps. The reports show a relative volume of directions requests per country/region, sub-region, or city compared to a baseline volume on 2020/01/13. The values were smoothed by 15-day moving average. The vertical solid lines mark the peak of the number of reported daily infections. The vertical dashed lines mark the bottom of the number of reported daily infections. It is seen that in all the waves of COVID-19, the mobility is in up-trend when each COVID-19 wave is in down-trend.


If a community remains infectious, or infectious outsiders enter into the community, the risk of another infection surge increases, and if the community perceives the situation as low-risk, another infection surge may appear, resulting in a cycle of surges and declines in the infection rate. This has been observed in the past waves of COVID-19 in Japan.

As additionally shown in Figure 3, the trend in reported infections or cases was similar to the trend in the reaction level on social media. This suggests a non-negligible correlation between the two signals. Predicting the trend of changes in the epidemic progression would help to set up appropriate scenarios for simulating the future epidemic state, which in turn would support policy makers, for example, in implementing restrictions. In this sense, given the suggestion of a potential relationship between the trends of the two signals, additional information from social media reactions may further support predicting changes in the epidemic progression.


[image: Figure 3]
FIGURE 3. Logarithm of increasing rate of the day of the week for reported infections and tweet counts calculated using Equation (1). T.R.T., Tweets related to. The vertical solid lines mark the change of the COVID-19 trend from up-trend to down-trend (peaked out). The vertical dashed lines mark the change of the COVID-19 trend from down-trend to up-trend (infection cases start rising again). The change timings mark the moments when the logarithm of increasing rate passes the zero line: negative-to-positive indicating up-trend and positive-to-negative indicating down-trend.


Here, the trend representations were estimated using the ratio of the signals for days t and t − 7, which were the same day of the week:
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where ot represents the two signals, the reactions on Twitter measured by tweet count and the epidemic state estimated from the reported number of new infections on day t, and st represents the trend measured as the 7-day change. This transformation absorbs the weekly effect observed in the Japanese data. The transformation was further smoothed by a 15-day moving average.

To model the relationship between the trend in social media reactions and the trend in epidemic progression, we utilized a long short-term memory (LSTM) neural network (36), a well-known and successful neural network architecture in time-series modeling, and the multivariate time-series of the two trends. LSTM neural networks have been used in various domains for modeling time-series and have achieved practical results. In previous studies of COVID-19 epidemic prediction systems, LSTM models were used as the core models (37–39).

To cope with the unknown complexity of the relationship between the two time-series, we use an ensemble system of multi-layer LSTM models with various hyperparameter (number of layers, number of neurons) settings and parameter initialization of the LSTM models5.

The LSTM system is optimized by minimizing the mean squared error:

[image: image]

where t marks the end of the observable or training data, d = 2 is the number of time-series (including the trend of reactions on Twitter and the trend of the epidemic progression), and s, s* are the observed data and the corresponding predictions.

The inference procedure has two phases. In the first phase, the LSTM ensemble system receives observed data {sk|k ∈ [1, t]} up to time t and uses them to create memory state ct+1 and prediction [image: image] (Equation 3). In the second phase, from input time-step t + 1, the prediction of the previous time-step is used as the input to predict the next time-step (Equation 4). The inference procedure is illustrated in the “LSTM” box at the top-left of Figure 4. In the training or optimization process, only the first phase is invoked, and predictions [image: image] are used for the aforementioned optimization.
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where k is the input time-step, t marks the end of the observable data, T is the length of the prediction period, c is the memory state of the LSTM, and s, s* are the observed data and corresponding predictions.


[image: Figure 4]
FIGURE 4. COVID-19 epidemic simulation system (t marks end timing of observable data).


The outputs of the change prediction model are used for setting up the COVID-19 simulation system described in the next subsection. The outputs of the change prediction model are processed to identify the timings when the predicted values change sign (illustrated in Figure 3):

• From positive to negative: the signal progression changes from increasing (up-trend) to decreasing (down-trend).

• From negative to positive: the signal progression changes from decreasing (down-trend) to increasing (up-trend).



2.3. COVID-19 Epidemic Simulation System

The COVID-19 epidemic simulation system consists of two stages: (1) change prediction, (2) simulation. The change prediction is executed as described in Section 2.3. The simulation is executed using SEIR, a common epidemic model. The overall flow of the system illustrated in Figure 4 is as follows.

1. Data collection: collect tweet count and COVID-19 epidemic state;

2. Data transformation: estimate trend representations for tweet count and COVID-19 epidemic progression;

3. Change prediction: predict trends and identify change timings;

4. SEIR model parameter setup: set SEIR model parameters in accordance with the identified change timings;

5. Simulation: perform epidemic simulation.

We used the simulation system proposed by (40) with a stochastic SEIR model to model the disease dynamics. The system supports multi-location epidemic modeling to estimate the force of infection (rate at which susceptible individuals are infected) by using inter-location mobility. The formulation of the SEIR model is described in the Appendix. We performed prefecture-wide multi-location setup. The SEIR model uses the following parameters: the latent period [image: image], which is the time interval between when an individual becomes infected and when he or she becomes infectious, the infectious period [image: image], which is the time interval during which an individual is infectious, and the effective reproduction number Ri(t) for each location i at time t, which is the number of cases generated in the current state of a population.

While the latent period [image: image] and infectious period [image: image] depend on the COVID-19 variant, the effective reproduction number Ri(t) depends not only on the variant but also on the contact rate in the community, which changes as the behaviors of the community members change. During one wave of the COVID-19 epidemic, the change in Ri(t) was greatly affected by behavioral changes due to perceived events, e.g., surging of cases and policy changes (emergency declarations), resulting in up trends and down trends in the epidemic progression. Hence, determining Ri(t) is the key to effective simulation.

A set Ri = {Ri(t)} was obtained using the calibration method used by (40) for the period from 2020/12/24 to 2021/01/21 (the 3rd wave in Japan) using the observed epidemic data. Two subsets of Ri(t) were established: up-trend set [image: image] (2020/12/24–2020/01/06) and down-trend set [image: image] (2021/01/07 – 2021/01/21).

In the simulation period from 2021/04/23 to 2021/06/30, for each trend (up or down) time span [ts, te], a set of {Ri(t)} for each location i was drawn from a uniform distribution:

[image: image]

where [image: image] are, respectively, the minimum and maximum values of a set of previously obtained reproduction numbers, which can be either [image: image] or [image: image] depending on whether time span p is trending up or down. If [ts, te] is an up-trend time span, [image: image] is selected, and if [ts, te] is a down-trend time span, [image: image] is selected. The change timings, ts and te, are determined in the change prediction stage, as described in Section 2.2.

For evaluation, we measure the errors in the change prediction and simulation stages against the observed data for the period from 2021/04/23 (in the up-trend of the 4th wave) to 2021/06/30 (ending of the 4th wave). We used data from 2020/12/24 to 2021/01/21 (in the 3rd wave) to obtain the SEIR model parameters and data from 2020/11/15 to 2021/04/22 (the end timing of observable data) for training the change prediction model. Two observed timings of trend changes were used for evaluation: ta = 2021/05/15 and tb = 2021/06/25, where ta marks the change from up-trend to down-trend, and tb marks the change from down-trend to up-trend in the epidemic progression as observed in the infection reports.

The evaluation metric for change prediction was the difference in days Δdays[t] between the predicted date t′ and the actual date t of the trend change (Equation 6).

[image: image]

The evaluation metric for simulation was the root-mean-square error (RMSE).




3. RESULTS

Table 2 shows the results for change prediction and simulation. Two baselines were used for reference.

• Baseline 1: Ri(t) was set for the entire simulation period using Ri in the up-trend and down-trend periods of the 3rd wave. Ri(t) were sampled for both the up-trend and down-trend periods without knowing the exact timing of the trend change.

• Baseline 2: Ri(t) was set for the entire simulation period using [image: image] in the up-trend period of the 3rd wave. Ri(t) were sampled for only the up-trend period.


Table 2. Evaluation results for change prediction (Equation 6) and simulation (RMSE) for 4th wave in Japan (2021/04/23–2021/06/30) with two epidemic progression trend changes: ta = 2021/05/15 and tb = 2021/06/25.

[image: Table 2]

For our approach, we used three system settings:

• +change prediction w/o using tweet data: the epidemic simulation system was setup withchange prediction using only the epidemic state data, not the tweet data.

• +change prediction using T.R.T. COVID-19 (g): the epidemic simulation system was setup with change prediction using both the epidemic state data and the COVID-19 related tweet count data.

• +change prediction using T.R.T. COVID-19 (e): similar to setting for (g) except that tweets were filtered to remove ones not containing emoji.

The additional use of the COVID-19 related tweet count (g) resulted in better prediction of the epidemic progression trend changes than without using the count: prediction was improved by 8.5 days for ta and 6.3 days for tb. This led to a reduction of 42.8% in the RMSE. Given that the daily tweet count of COVID-19 related tweets filtered for emoji (e) was 92.9% smaller than the more general count (g), the results are similar: the difference in change prediction was 0.2 days for ta and 2.4 days for tb, and the RMSE was 5.5% worse. In all results, the predicted trend changes preceded the observed changes. The baseline results show that without estimating the trending change, the RMSE were 7.6–18.5 times worse.



4. DISCUSSION

The relationship between user reactions on social media and the COVID-19 epidemic progression remains close for the long term. Social media engagements related to COVID-19 have remained fairly steady over the five waves of COVID-19 epidemic surges in Japan. They reached their highest level in the first wave, dropped a bit in the second wave, and then picked up in the following waves. The engagements peaked at around the peak of each wave. This demonstrates the value of using epidemic-related social media data, particularly Twitter data.

The 3rd and 4th waves in the period from 2020/11/15 to 2021/06/25 exhibited similar characteristics: the wave shapes were similar (Figure 1) and the vaccination rates were similar6. Despite the similar wave shapes, the reactions to non-pharmaceutical interventions and emergency declarations differed between the two waves. In the 3rd wave, an emergency declaration was issued on 2021/01/07, and a change in the epidemic progression trend (from increasing to decreasing) was observed on 2021/01/17 (10 days later). In contrast, in the 4th wave, an emergency declaration was issued on 2021/04/25, and a change in the epidemic progression trend was observed on 2021/05/15 (20 days later). The 10-day later response in the 4th wave may be attributed to reluctance to comply or exhaustion after already being subjected to two previous emergency declarations which imposed a great level of stress and anxiety (41, 42). The reluctance or exhaustion level can be somewhat correlated with the reactions on social media when users choose to share their emotional thoughts to others, which provides informative features to our change prediction model and resulted in more accurate prediction of the change in the epidemic progression trend compared with the setting of not using social media data.

As demonstrated in the results (Table 2), the ability to predict the change timings including both the down-trend and up-trend timings for the 4th waves shows that the change prediction model learns to indicate that there exists the repetitive phenomenon in the reactions on Twitter and the COVID-19 progression. With the prediction, the model indicates that the next progression will also come in a wave shape. The repetitive phenomenon, however, could disappear or become undetectable if the community is no longer infectious, or no more infectious outsiders enter the community or there is no more reporting of the epidemic situation. Reaching the peak of a wave early or late mainly depends on community members' perception of the epidemic situation. As one major information sharing channel, social media including Twitter plays an important role in amplifying the impact of information availability which directly affects the perception of the epidemic situation. As this continues, the model can be useful for predicting the appearance of the phenomenon in the form of change of reaction trends on social media and COVID-19 progression trends.

From the results, we can see the challenges in predicting the exact timings of these events of the trend changes. The accuracy reduces as the time is further in the future. the first timing is predicted with 7.8–8.0 days difference, but the next timing is predicted with 19.3–21.7 days difference from the observed timings. All predictions show earlier timings than the observed ones. The challenges can be attributed to the change of COVID-19 variants or the change of society's perception of COVID-19 situation. This could be considered by deeply analyzing the tweets in term of their contents and their networks of tens to hundreds of millions of tweets or even more if possible relevant aspects other than COVID-19 are necessary to collect.


 The 6th Wave of COVID-19 in Japan

Since the end of 2021 and the start of 2022, Japan has been facing the 6th wave of COVID-19 with the emerging of the Omicron variant7. It once again triggers another wave of reactions on Twitter (Figure 5). To illustrate the applicability of our method to this new situation, we evaluate the prediction of the change timing of the COVID-19 progression trend from up-trend to down-trend as actually observed on [image: image]. The results (Table 3) show that the additional use of the COVID-19 related tweet count (g) resulted in better prediction of the epidemic progression trend changes than without using the count: prediction was improved by 5.7 days. This led to a reduction of 37.4% in the RMSE of COVID-19 case simulation. The evaluation of the method is relatively similar in both the 4th and 6th waves. This suggests that the social media reactions still remain in an effective relationship with the COVID-19 progression in the recent situation.


[image: Figure 5]
FIGURE 5. Daily chart of tweet counts vs. reported COVID-19 infections in the 6th wave of COVID-19 in Japan (values were smoothed by 15-day moving average). T.R.T., Tweets related to.



Table 3. Evaluation results for change prediction (Equation 6) and simulation (RMSE) in the 6th wave in Japan (2022/01/01–2022/03/05) with the epidemic progression trend change observed on [image: image].

[image: Table 3]



 Future Direction

For further improvement in the simulation results, the method for setting the SEIR model parameters needs to be further improved, especially for the setting of Ri(t). In this study, the distribution from which the set of {Ri(t)} for each location i was drawn was assumed to be uniform, and the up- and down-trend parameter sets were manually established. The setting of the SEIR model parameters would be more challenging in periods in which the epidemic conditions greatly differed, e.g., the 5th and 6th waves in Japan with the dominance of the Delta and Omicron variants, respectively. Viable options include selecting values from the most recent wave with adjustment for the infectious power of newer variants and selecting from the period with the most similar social media reactions although measuring similarity would be a challenging task. Furthermore, it is necessary to consider the emergence of new COVID-19 variants and how they would affect the parameters as well as the social media reactions. These challenges will be addressed in future work.

As preparation for future work, we performed experiments on training the change prediction model using different fine-grained tweet counts:

• T.R.T. COVID-19 symptoms(g),

• T.R.T. COVID-19 symptoms(e),

• T.R.T. COVID-19 infection reporting (g),

• T.R.T. COVID-19 infection reporting (e).

The tweet counts are listed in Table 1, and the results of the additional experiments are shown in Table 4.


Table 4. Tweet counts for change prediction for 4th wave in Japan (2021/04/23–2021/06/30) with two epidemic progression trend changes: ta = 2021/05/15 and tb = 2021/06/25.

[image: Table 4]

Compared with using the general-topic COVID-19 related tweet counts, using more specific-topic tweet counts did not show improvement: the RMSE was 34.7–82.2% worse for the simulation period. This suggests that the relationship between reactions on social media and epidemic progression is complex. The general count, covering a broad range of topics, exhibited greater predictive power than the more specific counts. Manual topic design thus may not be an efficient approach. The development of automatic topic discovery techniques for finding relevant topics discussed on social media that can support epidemic progression prediction could be promising.

The results for tweet counts with emoji filtering (e) compared with the general tweet counts (g) showed that the emoji settings have similar representative value as the general settings: the RMSE difference was only 3.6–5.8% even with 87.5–96.4% fewer tweets. One advantage of using emoji settings is the ability to perform fine-grained analysis on specific emotions (fear, anger, etc.) represented by various emojis. Further studies on the specific emotions used by social media users for typical topics could help in discovering topics where changes in emotion could affect epidemic progression. This could be done by analyzing social media contents (emoji vs. topics) to identify emotions trending on topics relevant to epidemic progression. This is left for future work.

This work contributes its results to the demonstration of the necessity of big social media data analysis in crucial worldwide problems including dealing with pandemics. Together with medical big data and wearable Internet of Medical Things (43–45) which have the ability to monitor the physical conditions of patients, big social media data analysis can help with detecting mental health problems in the society. On one hand, real-time COVID-19 symptom data with smart data fusion can be gathered instantaneously by using wearable sensors potentially artificial intelligence-enabled placed on the patient's body. They could be powered with advanced deep learning and cloud computing for quick, early, and efficient treatment for individuals, thus in turn improving public health care. On the other hand, the similar technology of deep learning and cloud computing can also be utilized for processing big social media data including user interactions to not only detect the individual mental health problems but can also detect the change of social mental states.




5. CONCLUSION

We have presented an approach to predicting COVID-19 epidemic progression that utilizes data from Twitter, one of the most influential social media platforms worldwide. We demonstrated the effectiveness of this approach in a case study for Japan where Twitter is one of the most influential social media platforms. Preliminary revealed that the reaction trends on Twitter showed a repetitive phenomenon over all the waves of COVID-19 in Japan: the trends in social reactions matched those in the COVID-19 epidemic progression for the majority of the time. From that observation, we designed a system that utilizes neural networks for time-series modeling and exploits the reactions represented by tweet counts to predict changes in the trend of COVID-19 epidemic progression. Our experimental results show that it is possible to predict the trends in COVID-19 infections from the trends in the reactions on Twitter. This means that it is important to pay attention to the evolution of mass social media platforms and their effects on critical events including pandemics. However, it may be challenging to identify crucial factors from Twitter data that can be decisive clues to changes in the COVID-19 progression trend. We will address this problem by not simply focusing on the tweet count but rather by analyzing the massive amounts of Twitter data (tens to hundreds of millions of tweets), including the tweet contents and the network of tweets.
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FOOTNOTES

1https://twitter.com/TwitterJP/status/923671036758958080

2The symptom-related keywords were obtained from https://www.kansensho.or.jp/ref/d77.html and (17).

3https://jxpress.net/

4https://covid19.apple.com/mobility

5no. of layers ∈ {1, 2, 3, 4} × no. of neurons ∈ {4, 8, 16} × no. of initializations ∈ {128}.

6https://www.kantei.go.jp/jp/headline/kansensho/vaccine.html

7https://www.niid.go.jp/niid/en/2019-ncov-e.html
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APPENDIX

In this study, we used the simulation system proposed by (40) with a stochastic SEIR model used to model the disease dynamics. This system supports multi-location epidemic modeling to estimate the force of infection using inter-location mobility. For Japan, we performed prefecture-wide multi-location setup. Given the parameters, including the reproduction numbers Ri(t), latent period [image: image], and infectious period [image: image], the transitions between the compartments Susceptible, Exposed, Infected, and Recovered for each location i are
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where Mi,j represent the daily mobility from location i to location j, Hi is the population of location i, pa is the proportion of time that moving individuals spend away, and α is the mixing coefficient.
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Covid-19 has become a pandemic that affects lots of individuals daily, worldwide, and, particularly, the widespread disruption in numerous countries, namely, the US, Italy, India, Saudi Arabia. The timely detection of this infectious disease is mandatory to prevent the quick spread globally and locally. Moreover, the timely detection of COVID-19 in the coming time is significant to well cope with the disease control by Governments. The common symptoms of COVID are fever as well as dry cough, which is similar to the normal flu. The disease is devastating and spreads quickly, which affects individuals of all ages, particularly, aged people and those with feeble immune systems. There is a standard method employed to detect the COVID, namely, the real-time polymerase chain reaction (RT-PCR) test. But this method has shortcomings, i.e., it takes a long time and generates maximum false-positive cases. Consequently, we necessitate to propose a robust framework for the detection as well as for the estimation of COVID cases globally. To achieve the above goals, we proposed a novel technique to analyze, predict, and detect the COVID-19 infection. We made dependable estimates on significant pandemic parameters and made predictions of infection as well as potential washout time frames for numerous countries globally. We used a publicly available dataset composed by Johns Hopkins Center for estimation, analysis, and predictions of COVID cases during the time period of 21 April 2020 to 27 June 2020. We employed a simple circulation for fast as well as simple estimates of the COVID model and estimated the parameters of the Gaussian curve, utilizing a parameter, namely, the least-square parameter curve fitting for numerous countries in distinct areas. Forecasts of COVID depend upon the potential results of Gaussian time evolution with a central limit theorem of data the Covid prediction to be justified. For gaussian distribution, the parameters, namely, extreme time and thickness are regulated using a statistical Y2 fit for the aim of doubling times after 21 April 2020. Moreover, for the detection of COVID-19, we also proposed a novel technique, employing the two features, namely, Histogram of Oriented Gradients and Scale Invariant Feature Transform. We also designed a CNN-based architecture named COVIDDetectorNet for classification purposes. We fed the extracted features into the proposed COVIDDetectorNet to detect COVID-19, viral pneumonia, and other lung infections. Our method obtained an accuracy of 96.51, 92.62, and 86.53% for two, three, and four classes, respectively. Experimental outcomes illustrate that our method is reliable to be employed for the forecast and detection of COVID-19 disease.
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INTRODUCTION

In March 2020, the World Health Organization (WHO) confirmed a widespread of a novel Corona Virus called COVID-19, a pandemic. COVID-19 is caused by a virus named severe acute respiratory syndrome coronavirus 2 (SARS Cov2). Initially, the pandemic started in Wuhan, China; however, it spread quickly to a large part of the globe (1). COVID-19 spreads via breathing drops of the diseased individual, which are generated when the infected person sneezes or coughs. The droplets of an infected person can also contaminate large surfaces that increase the spread more quickly. The infected person may suffer respiratory illness either severe or mild; however, the severe may need the support of ventilation (2). People of old age and those having chronological illnesses are prone to COVID-19 infection. Therefore, many countries shut their international borders and imposed strict presentation measures to avoid a quick spread of the COVID-19 (3).

Researchers and scientists have developed different vaccines to combat the pandemic by sequencing ribonucleic acid (RNA) from COVID-19. The organizations of vaccines employed both conventional and leading-edge technology with six different platforms of vaccine, such as deoxyribonucleic acid (DNA), messenger RNA (mRNA), viral vector-based, subunit or protein, inactivated virus, and a live attenuated virus. However, the developed vaccines can significantly reduce the quick spread and enhance immunity by producing antibodies. The vaccines have shown 95% effectiveness; however, some issues were encountered while managing the vaccines, i.e., the hesitancy of vaccine, complacency, and logistical challenges of the supply chain. Most importantly, the vaccines are not to cure rather a prevention measure against COVID-19 (4). Although, vaccines are produced, however, detection is crucial as it assists in easily tracking the persons who were in touch with the infected person. The quick spread of the pandemic is significantly avoidable by tracing these people. In the initial stage, the infection manifests as an infection of the lungs; hence, the researchers utilized the lung's x-rays and computed tomography (CT) images to detect the lungs infection (5).

Numerous models have been designed to predict the infectious disease that quickly spread similar to the COVID-19. Recently, a model named susceptible-infected-removed (SIR) (6, 7) has been employed for estimating the spread and fatality rate of COVID. Distinct variations of these systems are either very simple so that they cannot accurately generate the predictions, or either very complex for understanding. The early forecasting of certain attributes for COVID-19, namely, the highest quantity of positive cases, the fatality rate per day, forecasting peak number, the exact time of new severe sick people per day (SSPs), is believed to be significant for each country, especially those that are expected to witness exponential growth. More specifically, the quick and dependable forecasting of COVID is significant for the policymakers to enhance the monitoring of pandemic drift and to take precautionary measures for avoiding the shortage of life-saving resources in medical centers as well as in emergency services. In this work, we present the development as well as utilization of the Gaussian model as a beneficial, simple, and effective description of fatalities due to COVID-19 with time and the recent works in the USA (8) and Germany (9). Distinct from the prior study, we chose to use a knowledgeable regular death rates algorithm (10) as evaluated input data. Moreover, we also presented the Gaussian doubling times principle as an amount of an increased rate (11) as an alternative to the growing infections. The Gaussian distribution function assessment has a significant role to resolve various problems in plasma kinetic theory named drift-Maxwellian (12) or counter streaming bi-Maxwellian (13) velocity distribution function. The above-mentioned terms are called plasma physics.

Accurate and timely detection of COVID-19 is important for controlling the quick spread of this disease among people. It has become more crucial to detect the COVID-19-infected people after the vaccination to quarantine the people and to prevent the spread. The PT-PCR is believed to be a standard detection method for COVID; however, PT-PCR generates a lot of false positives due to various reasons, namely, stages of the disease, technique of collecting specimens, disadvantages of methodology that sustainably delay the control and detection process. The sensitivity and specificity of the initial standard testing method have been dejected in these works (14–17). Hence, we required a unique automatic diagnostic method, which can assist to stop the quick spread of COVID-19 (18).

Medical experts, clinicians, technologists, and researchers are putting their efforts to early detect the patients with COVID-19. In 2019, more than 755 research articles were published as reported by PubMed (19), while, in the first 3 months of 2020, more than 1,245 articles were published. Deep learning (DL) and artificial intelligence methods are utilized by scientists for the detection of COVID-19 using CT and chest x-rays images (CXI). DL techniques (20–26) have shown extraordinary results in research applications and are commonly employed due to the enhanced performance comparative to the conventional techniques. Compared to machine learning and conventional techniques, features are not selected manually. On the other hand, the DL model can be trained by changing the configurations and parameters to learn the prominent features from the dataset. The research community has examined the DL techniques to explore the medical imaging field before the COVID-19 pandemic. DL attained maximum attention to detect COVID-19 using CXI. Researchers reported detailed methods (27, 28) to detect COVID-19 through computer vision and artificial intelligence.

For many papers, transfer learning-based techniques are the go-to methods. In transfer learning, the pre-trained models on the ImageNet dataset are employed for performing the transfer learning. Even though methods are the same, however, distinct architectures are employed in works (29). Distinct variants are employed even if the architectures are the same. Cross-validation is also considered in transfer learning. Additionally, techniques with novel CNN models are also employed that use the significance of transfer learning when the available data are small for training. In (30), a CNN-based architecture named COVID-Net was designed for the detection of COVID-infected patients through CXI. Authors also introduced a dataset COVIDx that has three classes, i.e., normal, COVID, and viral pneumonia (VP). COVID-Net is based on the two phases of projections, such as depth-wise representation, expansion, and extension. Initially, the CNN was trained on ImageNet as well as on the COVIDx dataset. In (31), a model that comprises three portions, such as a backbone, a classification head, and an anomaly detection head, was developed for the detection of COVID-infected people. The backbone part was used on ImageNet for extracting the high-level feature from CXI, and the extracted features were passed into other two parts of the network such as classification and anomaly heads to generate a score. A cumulative score of “one” was also used for every prediction. In (32), a capsule network-based model named COVID-CAPS was designed for the detection of COVID-19 through CT scans and CXI. It was reported that the benefit of employing a capsule network is it performs good, while the training data are small. The COVID-CAPS was trained using the dataset (33). In (34), a CNN-based model, namely, DeTraC was developed that comprises three stages, such as feature extraction, decomposition, and the third stage, a class composition. The backbone architecture was employed to obtain features from images, followed by using SGD optimizer and, finally, a class to categorize images into normal or COVID-19 infected. In (35), COVIDLite was developed that employed a depth-wise separable CNN to classify the CXI for the detection of COVID-19. Similarly, this (36) also employed depth-wise separable convolutional layers in the XceptionNet architecture (37) and named it a Fast COVID-19 detector. To improve the color fidelity, white balancing was used, while, to expand the visibility and optimize the white balance, preprocessing was executed. In (38), the CNN model was designed that comprises a block of convolutional layers, having 16 filters, a batch normalization layer, an activation function ReLU, two fully connected layers, followed by a SoftMax layer. In (39), a set of customized CNN models was employed for the prediction of an infection graph. Additionally, viral and bacterial pneumonia were also detected using the CNN-based model. In (40), a tailored CNN was employed that takes the fused set of features by employing two models, namely, Xception and ResNet50V2. A fused set of features was fed into the convolutional and classification layer for the classification purposes. Similarly, in (41), deep features were obtained by employing the MobileNet, and the deep features are fed into the global pooling and fully connected layer. The performance of the model was evaluated by transfer learning, training from the scratch, and fine-tuning the network. The CoroNet (41) was used to classify the x-ray images into four distinct classes, such as normal, viral and bacterial pneumonia, and COVID-19. Xception was used as a base model; however, the last two layers, such as dropout and two fully connected layers, were added. In (42), DarkCovidNet was designed for COVID-19 detection, which is based on the Darknet-19 (43). DarkCOVIDNet used a smaller number of layers than Darknet-19. Two layers, such as average pooling and SoftMax, were added for classification. In (44), a four-stage technique, namely, exemplar-based pyramid feature producing, relief, iterative principal component analysis, and classification, was developed to detect patients with COVID-19. The feature extraction was emphasized by the initial three stages, while, in the last stage, a deep neural network and artificial neural network were used for classification purposes. In (45), CovXNet with depth-wise convolutional layers was developed for binary as well as a multi-class classification problem. The model was trained from the scratch as well as used numerous modifications, such as fine-tuning, transfer learning.

In this work, we addressed the challenges that are associated with predicting and detecting COVID earlier by proposing a novel framework to reliably analyze, predict, and detect COVID-19. Moreover, the proposed framework is capable of effectively detecting VP, as well as extra lung infections.

Major contributions of the proposed study are given as follows:

• We used Gaussian doubling times for best analysis in addition to the prediction of COVID-19 globally.

• We developed an innovative COVID detector, which employs two features, namely, scale invariant feature transform (SIFT) and histogram of oriented gradients (HOG).

• We developed a novel CNN-based architecture called COVIDDetectorNet to effectively detect the patients with COVID-19 and patients suffering from VP, and other infections of the lungs.

• The proposed COVID detection technique has capability to detect normal, COVID, VP, as well as other lung infections.

• To detect COVID and other lungs abnormalities, we have performed rigorous experiments on the publicly available dataset, namely, the COVID Radiography dataset.

The rest of this manuscript is structured as follows: Section 2 Materials and Methods has a detailed explanation of our proposed working mechanism to detect the COVID-19 and estimate an infection rate. Section 3 Proposed Method gives an explanation of experimental outcomes, while, finally, Section 4 Results and Analysis has concluded the work.



MATERIALS AND METHODS

This section provides an in-depth summary of data and techniques for the COVID-19 infections, forecasting in Asian countries and globally. Moreover, the detailed discussion of the proposed CNN-based architecture, i.e., COVIDDetectorNet is presented to detect COVID-infected people, VP, and other lung infections.


Forecasting Data

For forecasting the infection rate, we collected the data through a real-time inquiry from Johns Hopkins University as well as additional suppliers, namely, WHO, to examine and make a forecast about the pandemic for worst-hit countries. Currently, the COVID data are gathered from numerous sources, such as media reports, online news, as well as official reports of governments, etc. It is significant to consider the data of all sources as it will be helpful to examine the diverse data to have a clear as well as a comprehensive image of an epidemic and its implications.



Scientific Simulation for Forecasting

The statistics and literature (46) demonstrate that there are three stages of a pandemic, namely, the total of infected people grows exponentially, the peak of an epidemic, and the quick decline in the infectious rate (9). Therefore, we employed a Gaussian curve to illustrate the progress of a pandemic. Kprepresents the amount of COVID-affected individuals' each day p, which is illustrated through a Gaussian curve as follows:

[image: image]

In the above Equation (1), P0 represents the highest amount of infectious cases each day D, while Δ shows a standard deviation of a curvature.

Change in the level of infection is computed through separating K(p) w.r.t p. Hence, change in relative rate R(p) is given the following Equation (2).

[image: image]
 

Doubling Time Expression

The number of cases per day can be computed by Equation (3) in terms of doubling time E.

[image: image]

Similarly, relative change can be computed by the Equation (4).

[image: image]

The doubling time in terms of D and Δ is computed by combining the equations (2) and (4) as follows;

[image: image]

when at p = 0,

[image: image]

We required calculation of doubling time so as to obtain two values, namely, D and Δ. It is computed, applying the Equation (4).

[image: image]

In the Equation (7), the E(Y) denotes the amount of COVID cases on Day Y, while P represents a rolling window. In this work, we used a rolling window of 7.



Doubling Time for Worldwide Cases

Figure 1 depicts doubling time for worldwide infection cases from 21 April 2020. We selected this date because the doubling rate was stabilized globally from the above-mentioned date, as every country started releasing the data publicly. Moreover, we analyzed the data till 27 June 2020 and the analyzed data assumingly it has an error of 20%. We used the data (9). In order to obtain the value of D, we analyzed the doubling rate at p = 0,

[image: image]

From Equations (5) and (8)

[image: image]


[image: Figure 1]
FIGURE 1. Worldwide cases doubling rate.


Figure 1 illustrates a Gaussian model worldwide, doubling the rate from the date 21 April 2020 to 27 June 2020, with an error of 20%.


Statistical Fit for Worldwide Cases

We computed the value of D for the Gaussian curve of worldwide cases by computing a Y2 fit using Equation (10).

[image: image]

The n(pl) in Equation (10) represents the analyzed doubling rate, C(D, pl) shows the estimated doubling rate, and δ(pl) represents an error for the analyzed rate with almost 20% and by employing the Equation (9); we got the following expression:

[image: image]

From the analysis till 27 June 2020, M = 67; hence, D is a single-free parameter, and the freedom degree is computed by M−1 = 66, while the lowest value of [image: image]is equal to 63.28 by using D equals to 109.5 days from p = 0 on 21 April 2020 as illustrated in Figure 2A.


[image: Figure 2]
FIGURE 2. (A) The best estimate of E. (B) The doubling rate of global cases with estimates.


Ratio [image: image] is equal to 0.96 that signifies that model is performing well on the data because the ratio is < Value 1. Figure 2B illustrates the analyzed doubling rates with modeled doubling rates.

The value of D is equal to 109.5 when p = 0 on 21 April 2020, comparable to 21 April 2020 + D, which is 08/08/2020. Then, the best fit Gaussian doubling time is given by,

[image: image]

The estimate of the doubling rate up to 14/07/2020 is illustrated in Figure 3A. We have the value of D, which is equal to 109.5, so we can compute the Δ by using Equation (8).

[image: image]


[image: Figure 3]
FIGURE 3. (A) The doubling rate of global cases with estimates. (B) Gaussian function for global cases.


For the worldwide infection cases, the Gaussian function in terms of the ratio of [image: image] is illustrated in Figure 3B.




Doubling Time in Asia for Infection Cases

The doubling time in Asia for infection cases from 21 April 2022 is illustrated in Figure 4. We have selected five different countries from Middle East, namely, Saudi Arabia, Pakistan, Turkey, Iran, and India, to make sure that all the observations are statistically related and within the same time frame from the start of the spread in various countries.


[image: Figure 4]
FIGURE 4. The doubling rate of cases in Asia.


As stated before, we analyzed the data up to 27 June 2022, having an error of 20% assumption using the data (9). We examined the analyzed doubling rate for the same Asian countries that are mentioned above when the value of p = 0, that is

[image: image]

Utilizing two Equations (5) and (14)

[image: image]

Figure 5 illustrates the doubling rate, starting from 21 April 2020 to 27 June 2020, with an error of 20% for the above-mentioned Asian countries.


[image: Figure 5]
FIGURE 5. The doubling rate of cases in Asia.



Statistical Fit for Cases in Asia

For the Gaussian curve of infection cases in Asian countries, we computed the value of D, and the Gaussian curve is determined by conducting a Y2 fit, and it is computed by using the Equation (16).

[image: image]

In the above Equation (16), n(pl) is the analyzed doubling rate, while C(D, pl) represents an estimated doubling rate, and δ(pl) shows an error term for the analyzed rate, particularly for the Asian countries. The error is 20%, and, by employing the Equation (14), we got the following Equation (17):

[image: image]

From the analysis till 27 June 2020, M = 67; hence, D is a single-free parameter, and the freedom degree is computer by M−1 = 66, while the lowest value of [image: image]is equal to 64.02 by using D equals to 127 days from p = 0 on 21 April 2020, as illustrated in Figure 6.


[image: Figure 6]
FIGURE 6. The best estimate of E.


Ratio [image: image] = 0.97 that signifies that model is performing well on the data because the ratio is smaller than Value 1. Figure 7 illustrates the analyzed doubling rates with modeled doubling rates for the Asian countries.


[image: Figure 7]
FIGURE 7. The doubling rate of cases in Asia with estimates.


The value of D is equal to 127 when p = 0 on 21/04/2020, comparable to 21/04/2020 + D, which is 08/08/2020. Then, for Asian countries, the best fit Gaussian doubling time is given by,

[image: image]

The estimate of doubling rate up to 14/07/2020 for the Asian countries is illustrated in Figure 8. We have the value of D, which is equal to 127, so we can compute the Δ by using Equation (8).

[image: image]


[image: Figure 8]
FIGURE 8. The doubling rate of cases in Asia with estimates.


For the Asian countries' infection cases, the Gaussian function in terms of the ratio of [image: image] is illustrated in Figure 9.


[image: Figure 9]
FIGURE 9. Gaussian function for cases in Asia.






PROPOSED METHOD

The major purpose of this working mechanism is to estimate the infection rate throughout the Asian countries as well as worldwide and to detect the COVID-19-infected people. The working mechanism comprises two stages, such as employing the two features, namely, histogram of oriented gradients (HOG) and the scale invariant feature transform (SIFT) on CXI and, next, passing the extracted features into the proposed CNN-based architecture named COVIDDetectorNet for further processing and prediction. The working of our method HOG-SIFT-COVIDDetectorNet is illustrated in Figure 10.


[image: Figure 10]
FIGURE 10. Proposed systems.



COVID-19 Detection


Dataset

We employed a public dataset COVID-19 CHEST X-RAY DATABASE1 to perform all the experiments, such as two classes (COVID and normal), tree classes (COVID, normal, and VP), and four classes (COVID- normal, VP, and other lung infections). A team of researchers belonging to different countries, namely, the University of Doha, Dhaka, Qatar, Pakistan, and Malaysia, has collaboratively developed the dataset with the help of medical experts. The dataset has four different classes, where 3.616 CXI are of COVID; 6,012 of the other lung infections; 1,345 viral cases of pneumonia; and 10,192 of normal people. Each image has a resolution of 299 × 299 and a PNG extension.




Features Extraction


Scale Invariant Feature Transform

In the initial stage, we employed the SIFT feature descriptor on the CXI to extract prominent features. SIFT captures the distinct characteristics based on the difference of a pixel gradient. Although the speeded-up robust features (47) have shown significant robustness as compared to the SIFT features, however, it has a high computational cost. The SIFT feature (48) was developed for extracting the unique invariant characteristics from the images, which can be utilized for performing dependable matching between the distinct views of a scene or an object. In order to extract SIFT features, we used a four-stage procedure, such as scale space and extreme detection, keypoint localization, orientation assignment, and keypoint descriptor. The detailed computation of the SIFT feature is as follows in the subsequent sections.



Scale-Space and Extreme Detection

In the initial phase of SIFT feature computation, we defined the scale space of the CXI as a function, F (a, b, σ), which is generated from the convolution of a variable-scale Gaussian kernel, K (a, b, σ) using the input CXII (a, b).

[image: image]

where the symbol * shows the convolution operation in a and b, and

[image: image]

For the efficient detection of the stable keypoint locations in the scale space, we used the scale-space extrema in the difference of the Gaussian function, followed by the convolution of CXI as follows;

[image: image]

The k in the Equation (22) shows the multiplicative factor.

For the detection of local maxima and minima of D (a, b, σ), we compared every sample point to its 8 neighbors in the CXI and the 9 neighbors in the scale upper and lower as shown in Figure 13.



Keypoint Localization

In the second stage of SIFT features computation, a candidate's key point that was detected in the initial stage is refined to a subpixel level, however, the unstable are eliminated. Moreover, non-edge points and noise-sensitive points are removed in keypoint localization for enhancing the stability of matching and enhancement of noise exemption. The extreme points of low contrast are eliminated by employing the Taylor series for expanding the scale-space function D (a, b, σ) at sampling point S (a, b, σ)T (49). The trace and determinant ratios of the Hessian matrix are to decrease the edge effect of the difference of the gaussian function.



Orientation Assignment

In the third stage of the computation of SIFT features, the local information from the key points is extracted with identified location and scale. Based on the local characteristics of CXI, it decrypts the feature point location information, which makes the SIFT features remain unchangeable for the rotation of the image. An orientation histogram is produced by using the gradient orientations of neighboring pixels of keypoints. The keypoints can be assigned according to the histogram orientation as given in Equation (23).

[image: image]

[image: image]

The above two Equations (23) and (24) provide the modulus and the direction of the gradient at pixel (a, b); scale of the F is the corresponding scale of every keypoint. In actual computations, we achieved the neighborhood gradient direction through the statistics histogram and sample in the vicinity window centered at the keypoint. The range of gradient histogram is 0–360 degrees and 36 columns. There are a total of 36 bins in gradient histogram that cover 360 degrees of orientation. The dominant direction of the neighborhood gradient is shown by the peak of the histogram.



Keypoint Descriptor

Figure 11 shows the feature point definition of the SIFT descriptor in a neighboring area, which maintains invariable to the angle of the view and brightness change. In order to make sure of the rotation invariance, the direction of axis is organized as the keypoint.


[image: Figure 11]
FIGURE 11. Keypoint descriptor and image gradient.


Next, we considered eight by eight windows around each keypoint. The central red highlighted part in Figure 11 is a current keypoint position. Every cell depicts a neighboring pixel in scale of the keypoint, while the arrow in each cell shows the gradient direction of each pixel. Moreover, the length of each arrow illustrates the mold value of the gradient, and the yellow circle illustrates the Gauss-weighting scope. The number of pixels close to the keypoint signifies the maximum contribution to gradient direction information.

Next, in each four by four sub-window, the gradient direction histogram is produced, having eight orientation bins, and it is called a seed point as illustrated in Figure 11. One keypoint has total two by two seed points as illustrated in Figure 11, each seed point has eight different pieces of vector information. This neighboring joint orientation information improves the capability of anti-noise algorithm.




Histogram of Oriented Gradients

HOG was originally developed (see footnote1) for characterizing images on gradient directions. This feature descriptor is employed in digital image processing as well as computer vision for classification and object detection. The major goal of the HOG algorithm is to analyze the histogram of an oriented gradient in areas of the neighboring images. Figure 12 illustrates the computation of HOG features. A given image is split up in numerous minors, as well as correlated zones named units. These units are again split up in groups of cells and different gradient directions. In this work, we extracted HOG features from the CXI as follows: in the initial stage, we split up an image portion of a sample having pixel size of (48 × 48) into minor cells of the same pixel size (8 × 8) and then calculated gradient histogram of each pixel in all cells through splitting up orientation into nine bins. The computation of nine-bin histogram for each cell creates an illustration significantly well and dense to an interference. Moreover, gradient sections of the CXI are calculated by employing the one-dimension balanced method in two different directions, namely, vertical and horizontal. Gradient sections are calculated by using the following Equations (25) and (26).


[image: Figure 12]
FIGURE 12. Histogram of oriented gradients.


Gradient sections of CXI are calculated through the one-dimension centered method in horizontal and vertical directions. Gradient sections are calculated by employing the below Equations.

[image: image]

[image: image]

The P (a, b) indicates the pixel value, while the Ga (a, b), as well as Gb(a, b), shows gradients in two directions of the pixels, i.e., horizontal and vertical, respectively. Moreover, we also calculated the magnitude and direction of the gradient, such as z (a, b) for each pixel (a, b) as below:

[image: image]

[image: image]

The orientation for gradients ranges from 1–180. We calculated both the orientation and magnitude for every pixel in each cell. Finally, we normalized the histogram for every cell and grouped the histograms of all the cells to illustrate a single block. The histograms block depicts the HOG features of the CXI. HOG features have advantage of preserving the spatial characteristics of images.



Convolutional Neural Networks

DL has a sub-branch called an artificial neural network that is inspired by the living organisms' natural visual perception working (50). The CNNs are multi-layered neural networks (NNs) stacked together that comprise mainly three types of layers, such as convolutional layers, pooling layers, and fully connected layers. The very first layer of each CNN model is an input layer; the depth, height, and width of input images are specified as input parameters. Instantly, after the initial layer, some stacked convolutional layers are defined with different configurations and parameters, such as hidden unit size, number of filters, padding, stride, and activation functions. The convolutional layers are responsible to extract significant feature maps from the inputs by computing the weighted sum (51, 52). The extracted feature maps are then passed through the activation functions, and a bias is added to obtain an output. Typically, the rectilinear unit (ReLU) is employed as an activation function (53). Moreover, the pooling layers are employed for reducing the size of the output from the lagging convolutional layers. The output dimensionality increases exponentially with the increase in the size of the model by increasing the number of input parameters to the convolutional layers, which is challenging for low computational cost machines. To avoid the above problem, pooling layers are employed to minimize the dimensions for simple and easy computation. The pooling layers are also used to suppress the noise as well. There are numerous pooling layers, such as max, avg, global, and spatial pooling layers; however, the researchers employ the max-pooling layer (54). Output is flattened to produce a single-array feature vector, which is then passed into the fully connected layer. Finally, a dense layer referred to as the classification layer is defined as having an activation function, such as SoftMax, tanh, sigmoid, etc. (55). The number of classes used for experimentation purposes is specified in the last layer, and the feature maps are combined into class scores. In the CNNs, there are batch normalization layers that are employed after the initial layer or just after an activation layer for standardizing the learning process and minimizing the time of training (56). Moreover, a significant parameter is a loss function that summarizes the error during the training time and validation time in the predictions. The loss of the model is backpropagated into the CNNs after every epoch to optimize the process of learning (57).


Proposed COVIDDetectorNet Architecture

In this work, we proposed a CNN-based architecture, namely, COVIDDetectorNet. The research community employs CNN-based architectures for image analysis due to the improved performance in the image processing field. The convolutional layers and numerous filters, i.e., 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, etc., assist to extract both the spatial and temporal features from images. The convolutional layers comprise the weight-sharing technique, which assists to reduce the computational costs (58, 59). We fed the fused features, such as HOG and SIFT, into the COVIDDetectorNet for classification purposes. The proposed COVIDDetectorNet consists of three sections, namely, blocks of convolutional layers, followed by the max-pooling layers, and, finally, a dense layer, followed by a SoftMax layer. The initial layers are utilized for extracting features from CXI; max-pooling layers are employed for sub-sampling purposes, which down-sample images and reduce the dimension, so they minimize the computation costs and efforts, while the dense layer classifies the images. Our COVIDDetectorNet architecture has three convolutional layers, and we employed a max-pooling layer after each convolutional layer. The first two convolutional layers used kernels of 5 × 5, and the last convolutional layer used a kernel of 3 × 3. Moreover, we employed three max-pooling layers, and all have the same sizes of 2 × 2 as well as a dropout layer of fives for reducing the overfitting problem. After all, we utilized the dense layer, followed by a SoftMax layer to classify the two classes (COVID and normal), tree classes (COVID, normal, and VP), and four classes (COVID- normal, VP, and other lungs infections). The architecture of the proposed COVIDDetectorNet is illustrated in Figure 13.


[image: Figure 13]
FIGURE 13. Proposed COVIDDetectorNet.






RESULTS AND ANALYSIS

In this portion, we discussed the experimental outcomes as well as the explanations of numerous experiments performed for measuring the performance of the proposed system.


Detection Performance of COVID-19

We developed a multiphases experiment for the detection of patients with COVID using CXI by employing the HOG and SIFT features and fed the extracted features into the proposed COVIDDetectorNet for classification. This experiment comprises three stages, namely, (detection of normal vs. COVID), (normal, COVID, and VP), and, finally, (normal, COVID, VP, and extra lungs infections).

In the very first phase of this experiment, we evaluated the performance of our method using two classes, namely, normal and COVID for the detection of COVID-infected persons. To achieve this goal, we utilized 10,192 and 3,616 CXI of normal and COVID-19 infected persons for the detection of COVID-19 individuals. Primarily, we split up all the CXI into 90 by 10, whereas, we used the 90% (12,431 CXI) to train the COVIDDetectorNet and 10% (1,377 CXI) to test the trained COVIDDetectorNet. Next, we employed HOG and SIFT to extract prominent characteristics from CXI. Finally, we fed the extracted HOG and SIFT features of both classes, i.e., normal and patients with COVID-19 into the proposed COVIDDetectorNet. The Table 1 shows the detailed results for the two classes. We obtained an accuracy, precision, recall, F1-score of 96.51, 97.67, 97.73, and 97.20%, respectively. The above experimental results show that our method (HOG-SIFT-COVIDDetectorNet) performs exceptionally well to detect the COVID-19-infected people and can be employed in real-time environments because the precision rate of our method is greater than the standard PT-PCR tests.


Table 1. Detection performance of COVID-19 on 2, 3, and 4 classes.
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Next, we evaluated the performance of our method (HOG-SIFT-COVIDDetectorNet) in the three-class scenario, namely, normal, COVID, and VP, to detect VP patients along with the patients with COVID-19. To accomplish this goal, we utilized 10,192 of normal, 1,345 of VP, and 3,616 CXI of COVID-19-infected people. Furthermore, we split up the data of three classes into 90/10 sizes and employed the 13,638 CXI for training the COVIDDetectorNet, while the 1,515 CXI for evaluating the trained COVIDDetectorNet. Again, we employed HOG and SIFT on CXI of three classes to extract the features. Next, the extracted features are fed into the proposed COVIDDetectorNet for detection purposes of normal, COVID-19, and VP patients. As illustrated in Table 1, our method obtained an accuracy, precision, recall, and F1-score of 92.62, 91.09, 91.95, and 91.52%, respectively, for the three classes. These results on the three classes show that fused sets of HOG and SIFT features have ability to preserve most crucial characteristics of an image and the proposed COVIDDetectorNet to effectively classify the normal, COVID-19, and VP patients.

In the final phase of this experiment, we evaluated the performance of HOG-SIFT-COVIDDetectorNet on four different classes, namely, normal, COVID-19-infected, VP patients, and other lung infections to demonstrate the robustness in the multi-class problem of our method. To achieve this goal, we added 6,012 x-ray images into the data of three classes (normal, COVID, and VP) that were utilized in the second phase of this experimentation. We again split up the data into 90% (19,039 x-ray images) and 10% (2,128 x-ray images). Moreover, we utilized 90% for training and 10% for evaluating the COVIDDetectorNet. We extracted the HOG and SIFT features from x-ray images of all the four classes and fed the fused set of features into the proposed COVIDDetectorNet for classification purposes. Table 1 illustrates the detailed results of our technique in a multi-class scenario. More specifically, we obtained an accuracy, precision, recall, and F1-score of 86.41, 87.19, 86.34s, and 86.22%, respectively. These experimental outcomes reveal that our technique is capable to accurately detect all the four classes.



Error Matrix Analysis

We developed an error matrix for representing the classification evaluation of our technique to determine the accurate and wrong prediction for all the four classes. Keeping in mind the fact that error matrix shows the performance of each class, we also developed three error matrices for three different experiments, namely, two classes, three classes, and four classes for advanced visualization of our technique.

In the first phase, we developed an error matrix to visualize performance of HOG-SIFT-COVIDDetectorNet on two classes, namely, normal and COVID, as illustrated in Table 2. We can examine from the Table 2 that our technique correctly detected 1,994 and 622 x-ray images as normal and COVID, respectively, while 64 and 74 x-ray images of normal as COVID and COVID as normal, respectively. The FP and FN rates are 3.37 and 3.85%, respectively. These lower FP and FN rates signify that our technique is much dependable than the standard PT-PCR tests because the precision rate of PT-PCR is about 80–85%.


Table 2. Error matrix for two classes.
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Next, we developed an error matrix for visualizing the performance of our technique in a multi-class scenario, i.e., for three classes, namely, normal, COVID, and VP, as illustrated in Table 3. As illustrated in Table 3, we can examine that our technique correctly detected 1,003, 283, and 122 x-ray images of normal, COVID, and VP, respectively. Moreover, our technique also incorrectly detected 128 x-ray images. The detailed classification results of each class are given in Table 3. The FP and FN rates are 2.67 and 4.93%, respectively. The experimental outcomes clearly signify the superiority of our technique to detect the presence of VP and COVID in people.


Table 3. Error matrix for three classes.
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In the final phase, we developed an error matrix for visualizing the performance of our technique on the four classes to detect COVID-infected people in a multi-class environment, as illustrated in Table 4. Table 4 reveals that our technique has correctly detected 478, 933, 319, and 119 x-ray images of normal, COVID, VP, and lung infection, respectively. The proposed method also incorrectly detected 279 x-ray images. The details of correct and incorrect classification for each class are given in Table 4.


Table 4. Error matrix for four classes.
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DISCUSSION AND CONCLUSION

The life-threatening novel COVID-19 has spread to more than 224 countries, and, by the end of February 2022, 439 million people are infected, and 5.96 million deaths are reported from all over the world; however, some counties, namely, USA, Asia, Europe, etc., are severely affected by this fatal virus. This work focuses on designing, examination, and the simulation of a novel robust technique to facilitate the in-depth assessment of quick spread as well as the prevention of COVID globally. The proposed technique comprises two tasks, such as infection forecasting and COVID detection. For the COVID forecasting, we proposed a Gaussian model that assists in unassuming predictions of COVID infections. Moreover, we developed a very first indication that the proposed forecasting model is smart to capture the daily time evolution of fatalities as well as the infections rate for each country. Appropriate simulations present the past data and the data of China. Our developed Gaussian model is very flexible, which can be simulated and performed short of prior information of epidemiologic, data, or any programs. Still, there are countries that are not badly exaggerated by the pandemic and will change in next coming weeks. Hence, our Gaussian model can be employed in the countries that are not badly affected as soon as enough data become available for forecasting. The monitoring authority of COVID can obtain forecast for the shape of the Gaussian curve for their own countries by employing the Gaussian model. Moreover, the public bodies, as well as the governments, can employ our forecasting model to calculate additional measures of interest, i.e., forecasting the maximum possible number of machines used for respiratory diseases and the deadline for the maximum requirement. The total amount and circulation of SSPs can let the health agencies and COVID administrative authority in countries to improve the administration of pandemic waves by taking drastic, effective, and time-limited measures. Furthermore, fortunately, our assessment signifies here that the peak time of each wave significantly varies from country to country. To predict the peak times and relevant time frames assists other countries to make an advantage from those who has witnessed the peak of the wave, expectable duration with respiratory diseases equipment, and medical experts at a marginally delayed time. In the COVID-detection framework, we employed two feature descriptors, such as HOG and SIFT, from the CXI. Moreover, we also designed a CNN-based architecture, namely, COVIDDetectorNet for the classification of two, three, and four classes. Our method has shown remarkable performance to detect COVID-infected people in binary classification, ternary classification, and quaternary classification problems. The remarkable results of all the classes show that HOG-SIFT-COVIDDetectorNet has performed exceptionally well, and this can be employed in emergency services, hospitals, airports for screening, and any other organizations for screening patients with COVID-19. In the near future, our aim is to perform experimentation on other variants as the data become available.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuing to evolve, emerging novel variants with spike protein mutations. Although most mutations emerged in the SARS-CoV-2 genome are neutral or mildly deleterious, a small number of mutations can affect virus phenotype that confers the virus a fitness advantage. These mutations can enhance viral replication, raise the risk of reinfection and blunt the potency of neutralizing antibodies triggered by previous infection and vaccination. Since December 2020, the SARS-CoV-2 has emerged five quickly spreading strains, designated variants of concern (VOCs), including the Alpha (B.1.1.7) variant, the Beta (B.1.351) variant, the Gamma (P.1) variant, the Delta (B.1.617.2) variant and the Omicron (B.1.1.529) variant. These variants have a high number of the mutations in the spike protein that promotes viral cell entry through the angiotensin-converting enzyme -2 (ACE2). Mutations that have arisen in the receptor binding domain (RBD) of the spike protein are of great concern due to their potential to evade neutralizing antibodies triggered by previous infection and vaccines. The Alpha variant emerged in the United Kingdom in the second half of 2020 that has spread quickly globally and acquired the E484K mutation in the United Kingdom and the United States. The Beta and Gamma variants emerged in South Africa and Brazil, respectively, that have additional mutations at positions E484 and K417 in the RBD. SARS-CoV-2 variants containing the combination of N501Y, E484K, and K417N/T mutations exhibit remarkably decreased sensitivity to neutralizing antibodies mediated by vaccination or previous infection. The Gamma variant may result in more severe disease than other variants do even in convalescent individuals. The Delta variant emerged in India in December 2020 and has spread to many countries including the United States and the United Kingdom. The Delta variant has 8 mutations in the spike protein, some of which can influence immune responses to the key antigenic regions of RBD. In early November 2021, the Omicron (B.1.1.529) variant was first detected in Botswana and South Africa. The Omicron variant harbors more than 30 mutations in the spike protein, many of which are located within the RBD, which have been associated with increased transmissibility and immune evasion after previous infection and vaccination. Additionally, the Omicron variant contains 3 deletions and one insertion in the spike protein. Recently, the Omicron variant has been classified into three sublineages, including BA.1, BA.2, and BA.3, with strikingly different genetic characteristics. The Omicron BA.2 sublineage has different virological landscapes, such as transmissibility, pathogenicity and resistance to the vaccine-induced immunity compared to BA.1 and BA.3 sublineages. Mutations emerged in the RBD of the spike protein of VOCs increase viral replication, making the virus more infectious and more transmissible and enable the virus to evade vaccine-elicited neutralizing antibodies. Unfortunately, the emergence of novel SARS-CoV-2 VOCs has tempered early optimism regarding the efficacy of COVID-19 vaccines. This review addresses the biological and clinical significance of SARS-CoV-2 VOCs and their impact on neutralizing antibodies mediated by existing COVID-19 vaccines.
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INTRODUCTION

Three coronaviruses have caused life-threating severe diseases in humans during the last two decades: severe acute respiratory syndrome coronavirus (SARS-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1–3). SARS-CoV emerged in China, in 2002 and caused a global pandemic in 2003 with an approximately 10% case fatality rate (CFR) (1). MERS-CoV was first reported in Saudi Arabia in 2012, where it continues a major public health problem, and has spread to many countries (2). SARS-CoV-2 has been detected in December 2019 in Wuhan, Hubei province of China and has spread quickly worldwide resulting in over million recorded patients of COVID-19 and over million deaths (3, 4). The SARS-CoV-2 is an envelope, positive-sense, single-stranded RNA virus which belongs to the betacoronaviridae family (5–7). The sequencing studies of three recently detected coronaviruses documented that SARS-CoV-2 exhibits 79 and 50% sequence similarity with SARS-CoV and MERS-CoV, respectively (6). Recognition of the receptor is the initial step of viral infection and is a key determinant of host cell and tissue tropism (5, 8, 9). The binding affinity of the spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor influences the SARS-CoV-2 replication fitness and disease severity in humans (5, 8, 10). The spike protein is a homotrimeric class I fusion glycoprotein that contains two functionally different parts, including S1 and S2 subunits (5, 6, 8, 11). The S1 subunit comprises the receptor-binding domain (RBD) that engaged the host cell receptor which may determine virus and host cell tropism (5, 8, 9). The RBD is the key player within the S1 subunit that contains a core structure and receptor binding motif (RBM), which is the most variable part of spike protein (5, 6, 10, 12). Transmembrane S2 subunit includes heptad repead regions and the fusion peptide, which mediate the fusion of viral and cellular membranes after conformational rearrangements (5, 10). It binds to ACE2 and mediates membrane fusion during viral entry (5, 9, 10). After the spike protein binds to ACE2, TMPRSS2, a host cell molecule, cleaves the spike protein and generates a range of hydrophobic amino acids that quickly degradates itself (8, 10). Mutations emerged in the RBD can increase viral replication, making the virus more contagious and enable the virus to evade vaccine-elicited neutralizing antibodies (10, 11).

The replication-dependent RNA polymerase in most RNA viruses does not exhibit a proofreading activity. However, coronaviruses express a 3′-to-5′ exoribonuclease in non-structurel protein 14 (nsp14-ExoN) that is main enzyme in RNA virus replication. All molecular studies have demonstrated that nsp-14-ExoN exhibits an RNA proofreading function that can partially correct mutation emerging during virus replication (13). Although coronaviruses contain a genetic proofreading mechanism to continue their RNA genomes, mutations constantly occur in the viruses, with approximately 9.8 × 10–4 substitution/site yearly (14, 15). As other viruses, SARS-CoV-2 adapts to novel environment through constantly emerging mutations generated by natural selection (10). Because the spike protein is a key player in binding to ACE2 during viral entry, the mutations emerged in the spike protein can make the SARS-CoV-2 more transmissible and more infectious and modulate tissue tropism and the clinical outcome (8–10, 16). For instance, the viruses carrying D614G mutation, identified by Korber et al. (17) have been demonstrated to be more contagious, spreading worldwide during 3 months. Although most mutations in the SARS-CoV-2 genome are considered to be either mildly deleterious or relatively neutral, a small number of mutations can affect virus phenotype that confers the virus a fitness advantage, leading to alterations in virus biology such as infectivity, transmissibility and antigenicity (8, 10, 16).

In late 2020 and throughout 2021, SARS-CoV-2 generated several new variants with spike mutations that affect the characteristics of the virus, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), B.1.1.529 (Omicron) (8–10, 16, 18–20). SARS-CoV-2 B.1.1.7 variant, which is also known as 501.Y.V1 in the GR clade, first emerged in September 2020 in Southest England and has rapidly become the dominant variant in the United Kingdom (10, 21). The Alpha variant contains eight mutations in the spike protein. In addition, Alpha variant has two deletions in the spike protein, one of which is located in an antibody supersite epitope (Y144) (18, 21). Although the other deletion in spike protein increases infectivity, it has a weaken impact on immune evasion (10, 20–24). The N501Y mutation in the RBD may increase binding affinity to the ACE2 (25). Epidemiological studies have demonstrated that the Alpha variant has spread about 50% faster than previously identified variants in the United Kingdom (26), so far, the strain has spread to more than 160 countries (6, 10, 25, 26). In February 2021, researchers have identified B.1.1.7 lineage with E484K mutation to be new VOC in the United Kingdom and then United States (6, 25). The sensitivity of the Alpha variant containing K484E mutation to immune sera from vaccinated individuals with the Pfizer/BioNTech has been found to be sixfold decreased (25, 27).

The Beta (B.1.351) variant, also known as 501Y.V2, has first been detectd in late 2020 in Eastern Cape, South Africa and has since become dominant locally (21, 22, 25). The Beta variant has three RBD mutations, including K417N, E484K and N501Y and five NTD mutations, including a deletion within the NTD supersite at positions 242–244 (10, 25). Epidemiological studies suggest that the Beta variant was found to be about 50% more transmissible than previously reported variants (22, 23). The Beta variant has been associated with reduced sensitivity to many monoclonal antibodies (mAbs), and significant immune evasion after natural infection and vaccination (28). The Gamma (P.1) variant emerged in Brazil in December 2020, which contains ten mutations in the spike protein (7, 23, 25). The Gamma variant has three RBD mutations, including N501Y, E484K, and K417T and five NTD mutations. NTD L18F mutation was demonstrated to prevent the binding of NTD-targeting neutralizing antibodies (28). Because many of these mutations are located in the antigenic supersite in the NTD or in the RBM, the mutations can affect the efficacy of existing monoclonal antibody therapies or vaccines (21). The SARS-CoV-2 variant with K417N, E484K and N501Y substitutions that affect key sites in the RBD may have functional importance (23). The variants containing the combination of N501Y, E484K, and K417N/T exhibit considerable decreased sensitivity to immune response induced by vaccines and convalescent sera (25). All studies suggest that D614G, B.1.1.7, B.351 and P.1 variants are more transmissible and cause more severe disease than original Wuhan SARS-CoV-2 lineages (17, 21, 26, 29).

The B.1.617 variant first emerged in the state of Maharastra in India in late 2020 (20, 30–33). In a few weeks, the B.1.617 variant has become the dominant lineage across India and has spread to more than 60 countries, including the United States, Singapore and the United Kingdom (20, 32). The B.1.617 variant contains three main subtypes, known as B.1.617.1 (the original B.1.617), B.1.617.2 and B.1.617.3 carrying diverse spike mutations in the NTD and the RBD which may increase their immune evasion potential (20, 33). The first two subtypes were identified in December 2020 and the third was detected in February 2021 in India (6, 20). Delta (B.1.617.2) variant accounts for 77% of viruses circulating in United Kingdom between June 2 and 9, 2021 (20). The World Health Organization (WHO) designated B.1.617.2 strain as variant of concern (VOC) (32). Delta variant spreads about 60% faster than the alpha variant (6, 20, 33). The Kappa (B.1.617.1) and the Delta variant harbors mutations in various regions of the SARS-CoV-2 genome, such as the RBD mutation L452R, S1-S2 cleavage site mutation P681R and mutations within orf3, orf7a and the nucleocapsid gene. While the Kappa variant has the RBD mutation E484Q, the Delta variant contains the RBD mutation T478K (28, 33). The strain with E484Q can evade immune responses induced by vaccine or convalescent sera. The Delta variant has 8 mutations in the spike protein, including T19R, D157–158, L452R, T478K, D614G, P681R, and D950N (23, 31). Several of these mutations may affect immune response to the key antigenic regions of the RBD and deletion of the NTD (34). The strain with P681R mutation may have increased replication ability, which causes higher viral load and enhanced transmission (35). The 452R and 478K mutations of delta variant may also increase transmissibility (25, 33). The B.1.617 variants can evade the immune response triggered by vaccine, or by convalescent sera (25, 33). The 452R and 478K mutations may play a role in evading of the virus from immune responses (20, 27). The researchers suggested that B.1.617.1 variant carrying E484Q has been observed to be more associated with vaccine escape (20, 27). This mutation is not found in Delta variant (27). The subtypes of the B.1.617 lineage have decreased sensitivity to some monoclonal and polyclonal antibodies (33).

In early November 2021, the B.1.1.529 variant has first been identified in Botswana and South Africa (18, 19). Since then, the variant has rapidly become dominant variant in South Africa and dozens of countries worldwide have reported Omicron cases. On November 26, the WHO designed the strain as a VoC and named it as Omicron (18, 19). The Omicron variant contains a larger number of mutations in the spike protein, about 32 mutations, several of which (such as 69–70 del, K417N, T478K, N501Y, and P681R) are shared with the other VOCs, including the Alpha, Beta, Gamma, and Delta variants (18, 19). Additionally, the Omicron variant harbors three deletions and one insertion in the spike protein (19). These genetic alterations enhance viral binding affinity, increase viral replication and viral load, and induce immune escape (18, 19, 36, 37). Mutations in the RBD of the spike protein have been found to be associated with increased viral replication, viral load, transmissibility and immune evasion after previous infection and vaccination (19). Mutations near the furin cleavage site are expected to increase transmissibility (38). Both N501Y and D614G mutations increase viral replication, making the virus more contagious (18, 19). So far, collected data regarding the impact of Omicron variant on clinical presentation are insufficient. However, early reports from the South African clinicians indicate that the rate of hospitalization due to Omicron infections is lower than that for Delta variant-related infections. The South African clinicians also demonstrate that patients with Omicron variant are usually younger people who have clinical symtoms and findings similar to that of previous variants (18, 19). The Omicron variant has a larger number of mutations in the spike protein than previous VoCs and some of the mutations, such as K417N and T478K mutations can confer the virus to avade immune responses triggered by vaccines (18, 19, 36, 37, 39). Given that these features of Omicron variant, Omicron may have an impact on the clinical efficacy of COVID-19 vaccines (18, 19). The Omicron variant contains three subvariants, including BA.1, BA.2, and BA.3, with extremely different genetic landscapes (40, 41). Preliminary studies showed that Omicron BA.2 is remarkably more transmissible than BA.1 subvariant (40, 42). BA.2 subvariant has become the prevalent Omicron subvariant in Denmark, the Philippines, and South Africa in the past few weeks (40, 42). Recently, researchers found BA.2 sublineage to be associated with an increased susceptibility of infection for unvaccinated individuals, vaccinated individuals and booster vaccinated individuals, compared to BA.1 sublineages (42).



ANTIGENIC FEATURES OF THE SARS-CoV-2 SPIKE GLYCOPROTEIN

Understanding the functions of the spike glycoprotein and its interaction with the immune system requires information of the structures, conformations and distributions of S trimers within virions (8, 9, 11, 19). The SARS-CoV-2 is an envelope, positive-sense, single-stranded RNA virus which belongs to the betacoronaviridae family, which has largest genome, genome lenght ∼ about 30,000 nucleotide, among single-stranded RNA viruses (5–7, 12, 14). The genome consists of a 5′-untranslated region (UTR), non-structurel genes (ORF1a and ORF1b), which encode polyproteins pp1a and pp1b, structurel genes which encode spike (S), envelope (E), membrane (M), nucleocapside (N) proteins, and several open reading frames (ORFs) that encode accessory proteins, 3′-UTR with poly A tail (5, 6, 43, 44). Polyproteins pp1a and pp1ab are cleaved with autoproteolytic enzyme into 16 non-structural proteins (nsp1–16) that play significant roles in viral replication, transcription, immunomodulation, gene transactivation, and resistance to innate antiviral response (6.44). SARS-CoV-2 genome encodes spike proteins, protruding from the surface of mature virions and provide specificity for cellular entry receptor (45). Envelope protein plays a pivotal role in the pathogenesis of COVID-19 infection (5, 6). The nucleocapsid binds to viral RNA and affects the replication ability of SARS-CoV-2 (5, 6). The M protein has three domains, including C terminal, transmembrane and N terminal-domain, and it is required for the assembly and budding of virions (6). Accessory proteins play an important role in evading the innate immune response by interfering with the synthesis of IFN and blocking critical signaling pathways within the cell (46). NSPs are functional proteins that exhibit significant roles in viral replication and methylation and can promote immune responses to infection (5).

The spike protein plays critical roles in viral infection and pathogenesis of COVID-19 infection (45). The spike is a transmembrane glycoprotein that forms homotrimers protruding from the viral surface. SARS-CoV-2 entry into host cells is mediated by the spike glycoprotein (8, 9, 11, 47). The SARS-CoV-2 spike protein is produced in the rough endoplasmic reticulum of infected cells (45). The spike protein is a glycoprotein which comprises two functional subunits, including S1 and S2 (5, 9, 12). The S1 subunit is composed of 672 amino acids (residues 14–685) and harbors an N-terminal domain (NTD), a RBD, and two subdomains (SD1 and SD2) (5, 45). The RBD specifically engages the host cell ACE2 receptor (5). The SARS-CoV-2 virus uses different domains within the S1 subunit to recognize an entry receptor (9). The S2 subunit contains 588 amino acids (residues 686–1273) and harbors an N-terminal hydrophobic fusion peptide (FP), two heptad repeats (HR1 and HR2), a transmembrane domain (TM), and a cytoplasmic tail (CT) (45). S2 subunit is responsible for fusion the membranes of viruses and host cells (5, 9). The cleavage site at the boundry between the S1 and S2 subunits is called as S1/S2 protease cleavage site (5, 7). Host proteases cleave the spike protein at the S2’ cleavage site to activate the proteins which is critical to fuse the membranes of viruses and host cells through irreversible conformational change (9). The RBD in the spike protein is the most variable part of the coronavirus genome (12). Six RBD amino acids were found to be pivotal for binding to ACE2 receptors and for determining the host range of SARS-CoV-2-like viruses. Five of six residues differ between SARS-CoV-2 and SARS-CoV (5, 12). The spike protein is reqiured to initiate infection (9). It binds to the ACE2 to mediate viral entry. The spike protein also determines tissue and cell tropism (5, 10). Mutations in the spike protein may alter the host range of the virus and enable the virus to cross species barriers (9, 10, 16). Membrane fusion is mediated by the large type I transmembrane spike protein on the viral envelope and the cognate receptor on the surface of host cells (8, 11). Surface location of the spike protein confers it a direct target for host immune responses, making it the main target of neutralizing antibodies (45). Spike glycoprotein is a key target for vaccine, antibodies and diagnostics (47).

The RBD is a key player within the S1 unit. It contains a core structure and receptor binding motif (RBM), which is the most variable part of spike protein that is important for binding to the outer surface of ACE2 (9). The spike protein binds to ACE2 receptor and host proteases such as transmembrane proteases serine 2 (TMPRSS2) promote viral uptake and fusion (5, 7, 9, 45). ACE2 and TMPRSS2 are intensively expressed in airways, lung, nasal/oral mucosa, and the intestine (7, 48). SARS-CoV-2 uses either of two host protease enzymes to break in: TMPRSS2 or cathepsin L (5, 9). SARS-CoV-2 efficiently uses TMPRSS enzyme. Priming of the S glycoprotein by host proteases is another critical proceses modulating tropism and pathogenicity (5, 8, 9). First, TMPRSS2 cuts a site on the S2 subunit (5). This cut generates a range of hydrophobic aminoacids in the spike that quickly hide themselves into the nearest membrain -that of host cell (8, 9). Next, the extended spike folds back onto itself and promotes the viral and cell membranes to fuse (8). The virus then releases its genome into the cell (5, 8). Besides receptor binding, the proteolitic cleavage of coranavirus spike proteins via host-derived proteases is a pivotal process for fusion (5, 8, 9). SARS-CoV was demonsxtrated to use the cell surface serine proteases, such as TMPRSS2 for priming and entry, although the endosomal cysteine proteases cathepsin B (CatB) and CatL, can also assit this process (5). Virus and host membranes fuse after the TMPRSS2 enzymes cuts a SARS-CoV-2 spike protein (5, 8, 9). The SARS-CoV-2 spike glycoprotein contains a furin cleavage site at the boundry between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs (9). The SARS-CoV-2 spike glycoprotein may be thought a conformational machine that mediates viral entry by rearranging from an unliganded stage through prehairpin intermediate state (45).

SARS-CoV-2 uses conformational masking and glycan shielding to hide itself from the immune response (8). SARS-CoV-2 spike protein is surrounded by sugar molecules, which hide it from the host immune system (8, 9). The spike glycoprotein on the virion is a glycosylated trimer, each protomer of which contains 1260 amino acids (42). Each SARS-CoV-2 virion has an outer surface which contains 24–40 randomly located spike proteins (8, 11). SARS-CoV-2 S trimers bind to the ACE2 receptor and mediate entry of virions into the cells. SARS-CoV-2 spike proteins are extremely flexible which can hinge at three points on the stalk (8, 11, 47, 49). That confers the spike proteins to flop around, sway and rotate, making it easier for them to scan the cell surface and for multiple spikes to bind to a human cell (8, 49). Receptor binding impairs the stabization of the prefusion primer and results in shedding of the S1 subunit and transition of the S2 subunit to a postfusion conformation (47, 49). Spike protein undergoes an remarkable structural changes from the prefusion form to the postfusion form (49). Overall structures of both prefusion and postfusion forms are highly conserved among coronaviruses (8, 47, 49). In the prefusion conformation, the RBD sits at the top of abroad, trimeric spike above the fusion core (47, 49). Three copies of the RBD are surrounded by three copies of the NTD which exhibit some mobility (9, 44, 46, 47). In the closed prefusion form, all three copies of the RBD are found to be flat on the spike surface, that largely occlude the receptor binding site (11). However, in the open prefusion form, one or multiple RBDs lift to expose the receptor binding site (Figure 1) (9, 47, 49, 50). The surface of the trimer is extensively glycosylated with 22 potential N-linked glycosylation sites per monomer (9, 47, 49, 51). After receptor binding, structural transition of the prefusion conformation to the postfusion conformation brings the fusion peptid and the transmembrane domain together at one end of a long, needle like structure centered around three-helix bundle (49, 51). Five N-linked glycans are spaced along the length of postfusion spike (49, 52). To engage a host cell receptor, the RBD of S1 undergoes hing-like conformational movement that transiently hide or expose the determinants of receptor binding (8, 9). While “down” conformation is an receptor-inaccessible state, “up” form is the receptor accessible state, which is considered to be less stable (9, 47, 49, 50). Because of the indispensable function of the S glycoprotein, it is a key target for antibody-mediated neutralization, vaccines and diagnostics (47, 49). Explanation of molecular and biological characteristics of the prefusion S structure would confer atomic-level information to guide vaccine design and development (47). Compared with SARS-CoV, SARS-CoV-2 binds to ACE2 an estimated 2–4 times more strongly, because several changes in the RBD stabilize its virus-binding hot spots (8). SARS-CoV-2 variants of concern tend to emerge mutations in the S1 unit of the spike protein, which includes the RBDs and is responsible for binding to the ACE2 receptor. The alpha variant has ten alterations in the spike-protein sequence, which results in RBDs being more likely to stay in the “up” position, helping the virus to enter into the cell more easly (8). The Delta variant contains multiple mutations in the S1 unit, including three in RBD that improve the binding ability of RBD to ACE2 and evade the immune system (8).
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FIGURE 1. Structure of the SARS-CoV-2 Spike Protein in the Prefusion Conformation. (A) Structures of the SARS-CoV-2 Spike Protein. SS, signal sequence; S2’, S2’ protease cleavage site; FP, fusion peptide; HR1, heptad repeat 1; CH, central helix; CD, connector domain; HR2, heptad repead 2; TM, transmembrane domain; CT, cytoplasmic tail; NTD, N-terminal domain. Arrows indicate protease cleavage sites; RBD, receptor binding domain. (B) The Prefusion Conformation of the SARS-CoV-2 Spike Protein. To engage a host cell receptor, the RBD undergoes hinge-like conformational movement. Down conformation corresponds to the receptor-inaccessible state and up corresponds to the receptor accessible state. Modified from Wrapp et al. (47).


Although the RBD is immunodominant, the other spike regions, particularly the NTD play significant roles in antigenicity (10, 49, 53, 54). Researchers have identified four deleted regions (RDRs) within the NTD, modulating NTD antigenicity (10, 54). Structural studies on NTD-specific antibodies 4A8 and 4–8 delineated similar epitop locations toward the upper side the most prominently protruding area the NTD (10). N3 loop is considered to be the most immunogenic regions of the spike protein (10, 25). Six antigenic sites, one of which is recognized by all known NTD-specific neutralizing antibodies and was named the “NTD supersite” have been identified by epitope binning of 41 NTD-specific mAbs (55). Deletions in the NTD were identified repeatedly during the evolution of SARS-CoV-2 and were found to be changing antigenicity (56, 57). The researchers have detected four recurrently deleted regions (RDRs) in the NTD. RDR1, RDR2, and RDR4 are located in NTD loops N2, N3 and N5, whereas RDR3 is found between N4 and N5 in another accessible loop (57). RDR2 and RDR4 deletions can abolish binding of 4A8 (57). RDR2 deletions may play a role in immune escape (10). The 242 base-pair deletion in B.1.351 and H69/V70 and Y144 deletions in B.1.1.7 lineage have been detected. L18F mutation in the NTD has also been identified both in alpha and Beta lineage (25). These NTD mutations decrease sensitivity to neutralizing antibodies. Deletions at H69/V70 do not confer antibody evasion, however the deletion makes SARS-CoV-2 more susceptible to deleterious escape mutation in the RBD, such as Y453F (10, 25).



KEY SPIKE MUTATIONS AFFECTING THE BIOLOGICAL FUNCTIONS OF SARS-CoV-2

The novel SARS-CoV-2 variants are continuing to emerge globally throughout the COVID-19 pandemic. The RNA-dependent RNA polymerase (RdRp) and recombination can generate the replication errors, causing genetic diversity of SARS-CoV-2. The recombination capacity of coronaviruses depends on the strand switching ability of RdRp, and it may have a relevant role in the evoluation of the virus (10, 13). Coronaviruses emerge mutations at slower speed compare to other RNA viruses because they contain proofreading 3′-to-5′ exoribonuclease (nsp14). However most studies have demonstrated that SARS-CoV-2 accumulates two-single nucleotide mutations per month in its genome (15). Mutations emerged in the spike protein can affect the transmission of the virus, cell tropism, and viral pathogenicty (5, 7, 10, 45). Mutations can also affect neutralization triggered by existing COVID-19 vaccines and diagnostic assays (7, 28, 43). Recent studies have demonstrated that only the variants carrying mutations with relevant biological functions showed high transmissibility (9, 23). These key mutations can influence clinical outcomes of COVID-19 infection, viral transmission and evaiding ability of the virus to neutalizing antibodies elicited by vaccines (9, 23, 25). Fallowing RBD of spike protein binds to ACE2 receptor, the SARS-CoV-2 infects cells (5, 6, 8). Therefore, these key mutations may have an impact on the binding ability to ACE2, for example the N501Y mutation in the spike protein may enhance the binding capacity to ACE2 (23).

In late 2020 and early 2021, variants with mutations affecting the biological functions of the virus, including Alpha (B.1.1.7), Beta (B.1.351) and Gamma (P.1) have been identified (6, 7, 9, 10). Korber and colleagues have identified the earliest spike D614G mutation constituted by adenine (A) to guanine (G) nucleotide mutation at position 23.403 in the original Wuhan reference strain in January 2020, in Germany (17). They showed that SARS-CoV-2 variant with D614G mutation has spread quickly through Europe and North America and following 1 month the variant with D614G muatation became dominant strain worldwide (17). The mutation confers fitness advantage to the authentic Wuhan lineage and increases viral infectivity. Several trials suggested that SARS-CoV-2 variant with the D614G mutation have increased transmissibility (17, 22). Spike protein D614G mutation alters SARS-CoV-2 fitness that enhances viral replication through enhancing the infectivity and stability of virions (17, 22). However, viruses with D614G mutation alone do not exhibit antigenic difference (21). Fallowing the emergence of D614G mutation, the B.1.258 variant with N439K mutation in the RBM emerged and spread in European countries (58). N439K mutation increases the binding affinity for the ACE2 receptor and weakens the immune response triggered by monoclonal and polyclonal antibodies in convalescent sera (58). The B.1.1.298 lineage containing Y453F mutation within the RBM has been identified in Denmark, that enhances ACE2-binding affinity (56). The B.1.1.298 variant also contains D69–70 which is an amino-terminal domain (NTD) deletion (59). D69–70 may alter the conformation and generate NTD loop, increasing infectivity (10, 60).

So far, five SARS-CoV-2 variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.1.529) variant have been identified (Figure 2) (10, 18, 19, 28). Recently, Alpha variant with E484K in the United Kingdom and the US-Epsilon (B.1.427/29) variants have been reported as VOCs (6, 25). These variants have emerged multiple changes in their genomes, including mutations and deletions in the spike protein (61). The first Alpha variant genomes have been sequenced in the United Kingdom from a sample obtained in October 2020 (10, 25). The Alpha variant has 23 mutations (6, 10, 15). The Alpha variant contains six amino acid mutations in the spike protein, including N501Y, A570D, P681H, T716I, S982A, and D1118H, and two NTD deletions at positions 69–70 and 144 (10, 21, 23, 25). The Alpha variant also contains non-spike mutations including nsp6: D106–108 and the nucleocapsid mutations D3L, R203K, and G204R (25, 52, 62). Phylogenetic analyses have demonstrated that the Alpha variant has been found to be associated with higher growth rate than that of other lineages (25). The Alpha variant was also associated with a higher viral load, particularly in upper-airway (10). Epidemiological studies demontrate that Alpha variant is nearly 50% more transmissible than previously reported United Kingdom lineages. In addition to N501Y that may reduce neutralization by some mAbs, DY144 may exhibit an antigenic effect (10). This deletion may alter the conformation of the N3 NTD loop and was showed to abolish mAbs-mediated neutralization (10, 25). NTD-specific neutralizing antibodies may play dominant role in diminishing neutralization in COVID-19 patients with Alpha variant (10). The D 69–70 prevents the amplification of one of three genomic segments, precluding PCR from giving correct results (59). The Alpha variant is sensitive to immune response mediated by mAbs. The variant rarely weakens immune response to convalescent plasma from previously infected individuals. The combination of DY144 and E484K affect polyclonal antibody response (10, 23). N3 loop, which AY144 changes, is thought to be one of the most immunogenic region of the spike protein and mutations at position 484 weaken neutralization by monoclonal antibodies (10). The Alpha variant contains an N501Y mutation, at the 501st amino-acid position of the spike protein, the amino acid N asparagine is replaced by the amino acid tyrosin. The Alpha N501Y mutation is located within the RBD and may enhance ACE2 receptor affinity (14). P681H mutation in the RBD has biological significance (10, 23). D69–70 in the spike protein was associated with immune evasion (10). In February 2021, the Alpha variant with E484K mutation has been reported as a new VOC (VOC-202102/02) by Public Health England (PHE). The Alpha variant was not reported in the United Kingdom since March 2021, however, sequencing data have demostrated that the variant has been continuing to spread other countries (6). Epidemiological studies showed that the Alpha variant is more contagious than original Wuhan SARS-CoV-2 strains.
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FIGURE 2. Timeline of the SARS-CoV-2 variant of concern.


SARS-CoV-2 Beta (B.1.351) variant has been identified in late 2020 in Eastern Cape, South Africa (10, 21, 22). The Beta variant contains nine mutations in the spike protein, of which K417N, E484K and N501Y mutations in its RBD have functionally significant (22). This variant has also five mutations in the NTD, including a deletion within the NTD supersite at positions 242–244 (10, 21, 22, 25). NTD deletion, D243–244, breaks binding by the antibody 4A8 and L18F (57). The R246I mutation also emerges within the NTD supersite and may influence antibody binding (10, 54). The combination of K417N, E484K with the NTD mutations which are found in the Beta variant genome can weaken immune response through reducing neutralization induced by RBD-specific and NTD-specific antibodies (10). Many of these mutations emerged in the NTD or in the RBM which is major target of potent virus neutralizing antibodies can affect the effectiveness of current monoclonal antibodies or vaccines (21, 22). Wibmer and colleagues demonstrate that pseudovirus expressing the Beta variant spike protein completely escape three classes of therapeutacillay relevant antibodies (62). Recently, a study using pseudotyped viruses indicated that the Beta variants do not confer an increased infectivity in multiple cells except for murine cells that overexpress ACE2 receptors (63). Chen et al. (64) showed that the Beta variant escapes monoclonal antibody-elicited neutralization.

Both SARS-CoV-2 Alpha and Beta variants have an increased transmissibility and high number of mutations in the spike protein that can cause antigenic alterations that influence immune response to monoclonal antibodies and existing vaccines (23, 25). The E484K mutation interacts with the hotspot of ACE2 and may increase the immunological resistance to neutralization elicited by monoclonal and human serum antibodies (23). Chen and collegues observed that many neutralizing mAbs engaging the RBD or NTD and immune sera triggered by mRNA vaccine demonstrated reduced inhibitory activity against viruses carrying an E484K mutation (64). Greaney and colleagues have also showed that viruses containing an E484K mutation could avade neutralization by polyclonal human serum antibodies (65). Given that existing data, E484K mutation may have altered the antigenic properties of SARS-CoV-2 (23, 65). Therefore, the Beta variant containing E484K mutation can evade immune response (23). Sequencing studies have demonstrated that K417N/T mutation exhibits a weakened impact on binding ability (66). However, MASCp6 mouse models containing both N501Y and K417N mutations have been found to be 100% fatal in aged male mice (67). L452R mutation has been demonstrated to decreases the binding ability of antibodies to spike protein obtaining from convalescent sera (23, 64). Although the Q677 mutation was identified at seven SARS-CoV-2 variants so far, its effect on the infectivity of the variants has not been determined (68).

The Gamma variant (P.1) has first been identified in Japan in early 2021, in travelers from Brazil to Japan (23). The variant contains total 21 mutations, ten of which are located in the spike protein, including L18E, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, H655Y and T1027I (10). In addition to the RBD mutations, including K417T, E484K and N501Y, the Gamma variant contains some mutations close to the identified antigenic regions of the NTD, such as L18F, that modulates the binding affinity of NTD-targeting neutralizing antibodies (54). The T20N and P26S mutations also emerge in or near the NTD supersite (54). T20N has a potential glycosylation site which can cause glycan shielding of part of the supersite (10). The Alpha, the Beta and the Gamma variants contain N501Y mutations (21, 23). Some studies suggested that the Gamma variant can infect and cause disease in convalescent individuals infected with other variants (55). Epidemiological studies have demonstrated that the Gamma variant has been determined to be nearly 2.4 fold more contagious than precedingly detected variants (69). Preceding infection with non-P1 SARS-CoV-2 confers the protection against P.1 infection compared with non-P.1 lineages (69). So far, P.1 lineage has spread to 64 countries (10). N501Y mutation enhances ACE2 affinity and increases viral replication in human upper airway cells, making the virus more contagious (62). Viruses containing N501Y mutation alone do not have a significant impact on the neutralizing activity triggered by vaccine and convalescent plasma (21). Recently, novel SARS-CoV-2 variants were identified in the United States (23, 67). A new variant, named 20C-US, which contains Q677 and Q173 mutations in the spike protein emerged in the United States in 2020 (70). The Q617H mutation located near the protease cleavage site of the spike protein can influence the stability of the spike protein (23, 70). Researchers have identified a novel variant, named CAL20C, in Southern California (71). The CAL20C strain has five unique mutations, including one in ORF1a:I4205V, one in ORF1b:D1183Y, three in spike protein: S13I, W152C, and L452R (23, 70). The novel strain is responsible for more than 50% of COVID-19 patients in Los Angeles (23). The new SARS-CoV-2 variant, known as B.1.526 was detected by Columbia University (23, 69). The strain is characterized by multiple mutations in the spike protein, including L5F, T95I, D253G, E484K, D614G, and A701V (72, 73). The new variant has rapidly spread and the variant has accounted for more than 20% of COVID-19 cases in New York (72). B.1.525 lineage emerged in the United Kingdom, on December 2020 and became dominant variant in Nigeria (10). The variant has four mutations in the spike protein, including Q52R, E484K, Q677, and F888I, and a deletion mutation, DH69/DV70, similar to Alpha variant (10). B.1.429 variant which has four spike mutations and B.1.427 variant that contains two spike mutations have first been identified in California (6).

The SARS-CoV-2 B.1.617 variant emerged in the state of Maharashtra, India in late 2020/early 2021 (8, 20, 32). The B.1.617 variant has spread rapidly across India and become the dominant strain in a few weeks. To date, the variant has been detected in many countries, such as the United States, Singapore, and the United Kingdom (20, 31, 32). Given that genomic data, before the B.1.617 lineage emerged, the Alpha variant was dominant strain in Delhi and the state of Punjab (20, 31). In the same period, the B.1.618 strain has been dominant strain in West Bengal (31). However, in a few weeks, B.1.617 variant overtaken B.1.618 in West Bengal and became dominant variant in many states (20, 31). The B.1.617 variant comprises three subtypes, including B.1.617.1 (the “original” B.1.617), B.1.617.2, and B.1.617.3, each exhibits slightly difference on genetic basis (20). Both B.1.617.1 and B.1.617.2 variant carry the L452R mutation in the spike protein, P681R mutation in the S1-S2 cleavage site and some mutations in orf3, orf7a and the nucleocapsid gene (6). WHO designed B.1.617.2 a “variant of concern.” The delta variant is characterized by the spike protein mutations, including T19R, D157–158, L452R, T478K, D614G, P681R, and D950G (40). Some of these mutations can influence immune responses to the key antigenic regions of RBD and deletion of part of the NTD (35). The P681R mutation can confer replication fitness to the virus, causing higher viral load and more transmissibility (38). The B.1.617.2 (delta) variant has two mutations E484Q (glutamic acid E substituted by glutamine Q) and L452R leucine L, altered by arginine R) (14). In addition to two mutations, delta also contains a unique mutation, T478K (threonine T replaced by lysine K) (14). Epidemiological studies have demonstrated that the only B.1.617.2 variant is associated with greater public health risk (6). The B.1.617.1 variant has been reclassified to a VOI (Kappa variant) that its global prevalance appears to be declining. The prevalance of B.1.617.3 is low and it is no longer classified as either a VOC or VOI (6). Epidemiological data indicate that the variant is highly transmissible (20, 31).

In early November 2021, the B.1.1.529 lineage has been identified in Gauteng Province, South Africa (18, 19). The variant contains about 30 mutations, 3 deletions and one insertion in the spike protein and some mutations outside of the spike protein (18, 19, 36, 37, 39). Several of the mutations, such as 69–70 del, K417N, T478K, N501Y, and P681R, are shared with the other VOCs, including the Alpha, Beta, Gamma, and Delta variants (18, 19). On 26 November, the WHO designated the B.1.1.529 lineage as a variant of concern and named it as Omicron (18, 19). In a few weeks, the variant has spread quickly and become dominant variant in South Africa. So far, dozens of countries worldwide have reported Omicron variant-related COVID-19 cases. The extremely rapid increase in the number of the Omicron variant-related COVID-19 patients in South Africa indicates that the variant has fitness advantage over Delta variant (19, 74). The Omicron variant seems to be more contagious than other VOCs (19). Although, the data are scarce and incomplete, preliminary reports indicate that the Omicron variant is associated with less severe COVID-19 infection than the infection caused by Delta variant (19, 36, 74, 75). The Omicron variant-related mild COVID-19 infection in South Africa can be related the fact that the country has young population, many of whom have already been exposed to SARS-CoV-2 (19). Epidemiological studies demonstrated that about one-quarter of South Africans are vaccinated with existing COVID-19 vaccines and a large proportion of the population is estimated to have been infected with SARS-CoV-2 in previous waves (19). Mutations in the RBD of the spike protein weaken the ability of neutralizing antibodies to recognize the virus and block infection (18, 19). K417N and T478K mutations can confer the virus to avade immune responses triggered by vaccines (19). Preliminary studies investigating the ability of Omicron variant to evade immune responses indicate that the variant can weaken the potency of neutralizing antibody mediated by vaccination and prior infection (18, 19). Epidemiological studies documented that the Omicron variant has been associated with an increased risk of reinfection (19, 39). However, it is not clear whether the variant can cause more severe diseases than other VOCs (18, 37). Researchers are working intensively to determine potential impact of the Omicron variant on vaccine effectiveness. Preliminary experimental data demonstrate reduced neutralizing antibody response to Omicron variant compared to the Delta variant (76)

The Omicron variant has three subvariants, including BA.1, BA.2, and BA.3 sublineages. Virological landscapes of Omicron BA.2 subvariant, such as transmissibility, pathogenicity, and resistance to the vaccine-induced immunity and antiviral drugs differ from BA.1 and BA.3 subvariant (77). Current data suggest that the BA.2 sublineage has a growth advantages over other circulating variants (42). Preliminary studies showed that Omicron BA.2 subvariant spreads faster and substantially more transmissible than BA.1 subvariant (40–42). The Omicron BA.2 subvariant has spread rapidly in countries including Denmark, the Philippines and South Africa in the past few weeks (40). BA.1 and BA.2 differ by approximately 40 mutations, in addition to a key deletion of position 69–70 in spike region of BA.1 compared to BA.2 (40). BA.1 and BA.2 lineages have 51 mutations in their genome, 32 of which are common to both lineage, whereas each lineage has 19 unique mutations (40, 41). Among 32 mutations, 21 are located in the spike protein and the rest 11 mutations are present in the other four coding regions (41). BA.2 sublineage has been found to be associated with an incerased susceptibility of infection for unvaccinated and vaccinated individuals (Figure 3) (42).
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FIGURE 3. Mutation of amino acids of the SARS-CoV-2 variants of concern.




CAN SARS-CoV-2 VOCS BLUNT NEUTRALIZATION TRIGGERED BY VACCINES?

The remarkably quick development of safe and effective vaccines which limit the burden of COVID-19 infection is a historical success (74). However, fundamental questions regarding the existing vaccines, including the impact of VOCs on vaccine effectiveness, the mechanisms of protection against the COVID-19, the timing between vaccine doses, the effect of vaccines on asymptomatic infection and the duration of vaccine-elicited immunity, remain unanswered (73, 74). The first vaccine development studies have been started in March 2020 and progressed at unprecedented speed throughout 2020 (25, 74–76). Data from several phase III vaccine efficacy studies have been reported at the end of 2020 and have clearly been demonstrated vaccine efficacy (75, 78). These data provided the approval and rollout of these vaccines (75, 78). mRNA vaccines which were developed by Moderna and Pfizer/BioNTech and the viral-vectored AstraZeneca vaccine have been approved (25). To date, WHO has authorized two inactivated vaccines (BBIBP-CorV, CoronaVac), two viral vector vaccines (AZD1222, Ad26COV2-S) and two mRNA vaccines (mRNA1273, BNT162b2) to prevent COVID-19 infection (79). With the succesfully deployment of higly effective vaccines in several countries, researchers and clinicians thought that the global effort in vaccination would control pandemic (74). Unfortunately, the emergence of VOCs temper our initial optimism (25, 74). VOCs have been emerging since the beginning of the Covid-19 pandemic, which are generally more transmissible variants (19). SARS-CoV-2 VOCs can exihibit resistance to the vaccine-elicited immunity (75). Additionally, because some of VOCs have increased transmissibility or virulence, the vaccination programs will become increasingly significant (76). Sequencing studies investigating novel mutations and variants are ongoing intensively. The main goal of these studies is to identify new mutations rapidly and to determine their impacts on viral replication, transmissibility, clinical presentation and effectiveness of the current vaccines (76). Many researche groups are sharing their sequence findings with GISAID (Global Initiative on Sharing All Influenza Data) (76). It is clear that the global efforts against VOCs must be both timely and scientific approaches (25, 76).

Although some vaccines have been approved and rollout succesfully in many countries, individuals who have been vaccinated so far represent a small fraction of the global population (10). It is a great concern that emerging VOCs can evade neutralizing antibodies elicited by previous infection or vaccines through the spike protein mutations. Laboratory neutralization experiments have shown that many of VOCs have reduced sensitivity to vaccine-elicited immunity (25). So far, Alpha variant has been reported to have no significant impact on vaccine efficacy (28). Using an infectious complementary DNA (cDNA) clone of SARS-CoV-2, Xie and colleagues engineered three SARS-CoV-2 viruses containing key spike mutations from the Alpha and the Beta variants and investigated the impact of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants on neutralization triggered by BNT162b2 vaccine (80). The researchers also observed that these mutations have weak effects on virus neutralization induced by two BNT162b2 doses (80). In another study, Tregoning et al. investigated SARS-CoV-2 spike pseudovirus generating either the original Wuhan strain or the Alpha variant spike protein with sera of 40 individuals who were vaccinated with BNT162b2 (81). They found that the immune sera has decreased neutralizing activity against the Alpha variant pseudovirus (81). These data show that the Alpha variant does not evade BNT162b2-mediated immune response (81). Wang and colleagues show that the Alpha variant is resistant to neutralizing activity mediated by most of monoclonal antibodies targeting the NTD of the spike protein and is relatively refractory to a few monoclonal antibodies against the RBD. The Alpha variant does not seem to be more resistant to convalescent plasma or sera from vaccinated individuas (21).

N501Y mutation that is detected in Alpha, Beta and Gamma variant genome, does not affect vaccine-elicited and mAbs-induced neutralization (19, 21, 25). However, variants containing E484K mutation, such as Beta and Gamma variant, can evade neutralizing antibodies mediated by vaccines or previous infection (82). The Beta variant has K417N and E484K mutations that significantly affect the mAbs- and convalescent plasma-induced neutralization (74). Wang and colleagues reported that Beta variant is resistant to most of monoclonal antibodies against the RBM of the RBD (21). The researchers revealed that Beta variant is 6.5 fold more resistant than wild-type pseudovirus to neutralization triggered by BTN162b2 vaccine (21). Same findings have been observed in sera from vaccinated individuals with mRNA-1273 (78). Wibmer and colleagues indicate that pseudovirus containing Alpha variant spike protein completely evades three classes of therapeutically significant antibodies (62). This pseudovirus also escapes convalescent plasma-mediated neutralization (62). The E484K mutation reduces sensitivity to neutralization by 100-fold in some individuals (68, 69). Individuals vaccinated with mRNA-1273 or BNT162b2 show reduced neutralization activity against SARS-CoV-2 viruses carrying E484K and N501Y mutations or the triple combination of K417N, E484K and N501Y (63). Although the Gamma variant has a higher number of mutations in the spike protein than other three VOCs, in vitro neutralization experiments with pseudotyped virus showed that the neutralizing activity of BNT162b2-mediated antibodies to B.1.1.7-spike virus and P.1-spike virus is nearly equivalant (83). Recently, experiments using pseudo viruses demonstrate that the Beta variant exhibits resistance to mAbs-induced and vaccine-mediated neutralization (64). Several studies investigated the neutralizing activity of pseudoviruses of 501Y.V1, 501Y.V2 and P.1, by using convalescent sera, vaccine-elicited sera (mRNA-1272 and NVX-CoV2373) and monoclonal antibody (63–65). In all studies, the neutralizing activity was found to be decreased (63–65). However, engineered pseudovirus does not contain all biological properties of the original SARS-CoV-2 virus. Jangra and colleagues showed that the spike protein E484K mutation reduces but does not remove neutralizing activity elicited by convalescent and post-vaccination sera (82).

There are conflicting reports on the efficacy of current COVID-19 vaccines against Delta variant. The Delta variant does not contain N501Y and E484K mutations in its RBD that confer the variant to evade neutralizing antibodies (NAbs) (20, 43). Xie et al. conducted a study investigating the effectiveness of existing Covid-19 vaccines against the Delta variant in England (83). In the study, while the effectiveness of two doses BNT162b2 vaccine against Delta variant-associated symptomatic disease has been found to be 88%, this efficacy was detected to be 67% with two doses AZD1222 vaccine (83). An important reduction in neutralizing antibody level was observed for Delta variant compared with Alpha lineage using sera from individuals who have been vaccinated with BTN162b2 (16). Delta variant exhibits higher binding affinity and infectivity (34). The 156–157 deletion and G158R, I452R, T478K mutations of Delta variant may lead to the reduction of antibody neutralization (63). Before the Omicron variant was identified, Delta variant has been considered to be most transmissible variant (57). The neutralization activity of BNT162b2 vaccine-mediated sera has been investigated by using engineered mutant viruses and three variants, including N501Y variant, 69/70 deletions + N501Y + D614G variant and E484K + N501Y + D614G variant, have exhibited slight effect on neutralization of BNT162b2 vaccine-elicited sera (16). Additionally, Wang and co-workers have studied the immunity, including neutralizing antibody titre and memory B cell responses mediated by mRNA vaccines (mRNA-1273 or BNT162b2 vaccines) in 20 individuals (84). The neutralizing activity of vaccine-elicited sera against pseudoviruses carrying E484K, N501Y, and K417N/E484K/N501Y cluster has been found to be decreased (85).

Frieman et al. from PHE published a non-randomized trial investigating the effecacy of the BNT162b2 and ChAdOx1 vaccines against alpha and delta variants (46). The researchers have used a test-negative design to determine vaccine effectiveness in PHE study (46). The study showed that vaccine effectiveness after one dose was lower by about 12–19% points against delta variant than against alpha variant (46). Vaccine effectiveness after two doses of the BNT162b2 vaccine has been determined to be 94% against the Alpha variant and 88% against the delta variant (43). The corresponding percentages with the ChAdOx1 nCoV-19 vaccine were determined to be 74 and 67% (43).

Abu-Raddad and colleagues have investigated the effectiveness of the BNT162b2 vaccine against the B.1.17 and B.1.351 variant (86). The researchers have demonstrated that the BNT162b2 vaccine was effective against both the B.1.1.7 and B.1.351 lineage-related infection and disease (87). However, vaccine effectiveness against the B.1.351 has been found to be lower than the effectiveness reported by prevous studies (84, 88). The effectiveness against the Beta variant – related Covid-19 infection has been found to be 75.0% (95% CI, 70.5–78.9) (87). Vaccine effectiveness against severe, critical, or fatal disease caused by any SARS-CoV-2 variant has been detected to be 97.4% (95% CI, 92.2–99.5) (81). This finding was consistent with previously reported clinical trial finding (86, 89). The number of patients and follow-up periods are not sufficient to determine vaccine effectiveness against severe disease. Recently, Yadav and colleagues from India have reported that immune sera triggered by BBV152 (Covaxin) vaccination and previous infection have been able to neutralize B.1.617 sublineages (90).

Zhou and colleagues have published a study searching a structure-function analysis of the Beta variant using a serum samples from individuals who received vaccine (61). The researchers have demonstrated that mutations in the RBD enhance ACE2 binding affinity and confer the virus to evade monoclonal antibody-mediated neutralization (61). The Oxford-AstraZeneca- and Pfizer vaccines-elicited antibodies to the Beta variant has been found to be reduced by 9 and 7.6-fold, respectively (61). Novavax vaccine demonstrated 95.6% efficacy against previous SARS-CoV-2 strains and 85.6% against B.1.1.7 variant, However, Novavax showed decreased effectiveness of 60% in South Africa. Wang and colleagues demonstrated that B.1.1.7 is resistant to the NTD mAbs-induced neutralization and relativelly refractory to a few mAbs targeting the RBD (21). The researchers suggested that Alpha variant is not more refractory to convalescent and vaccine sera (21). The key findings of the study were (a) The Beta variant has been detected to be refractory the most mAbs targeting NTD-induced neutralization (b) the Beta variant was also found to be resistant to multible individual mAbs targeting the RBM-induced neutralizaiton (21). Additionaly, the Beta variant was remarkable more resistant to immune response to convalescent plasma (9.4 fold) and vaccinee sera (10.3–12.4 fold) (21). Recently, Planas and colleagues have examined Delta lineage sensitivity to mAbs and to antibodies in sera from Covid-19 convalescent individuals or vaccinated persons (34). Sera from individuals who have received one dose of BioNTech/Pfizer or AstraZeneca vaccines showed minimal inhibition of Delta variant (34). Serum samples collected after first dose of BNT162b2 and AZD1222 vaccines did not significantly neutralize Alpha, Beta, and Delta variants. After the second dose of BNT162b2 and AZD1222 vaccines, sera neutralized 94 and 95% of the Delta variant, respectively. The researchers suggest that Delta variant evades neutralizing antibodies triggered by vaccines or previous infection (34). Omicron variant contains a larger number of the mutations in the spike protein than prior variants and the potential impact of these mutations on effectiveness of existing vaccines is not clear (18, 19). The epidemiological studies searching the impact of Omicron variant on the efficacy of existing COVID-19 vaccines has been ongoing intensively. Preliminary studies documented the Omicron variant blunts the potency of neutralizing antibodies triggered by prior infection and vaccination (19). The variant has some capacity to evade immunity. The Omicron mutations affect immune system less than antibody responses (19, 36, 37). Preliminary laboratory data have documented substantially declined neutralizing activity to Omicron compared to the authontic Wuhan virus or the Delta variant in vaccinated individuals. Neutralizing antibody was detected to correlate with protection against reinfection and vaccine effectiveness against infection (91, 92). Andrews and colleagues have documented that vaccine effectiveness against symptomatic COVID-19 infection caused by the Omicron variant is substantially lower than with the Delta variant (93). The researchers documented that two doses vaccination with BNT162b2 or ChAdOx1 do not provide suffecient neutralizing antibody levels to infection and mild disease with the Omicron variant (93, 94). However, booster vaccination, with BNT162b2 confers a substantial protection against mild disease, and can provide a stronger protection against severe and fatal disease. These data are consistent with preliminary neutralization levels for the Omicron variant published by South African and Germany studies (76, 78). Studies investigating antigenic characterization of the Omicron BA.1 and BA.2 sublineages indicated that polyclonal sera obtained from patients with COVID-19 infection or vaccinated individuals demonstrated a significant loss in neutralizing activity to BA.1 and BA.2 (77, 95–98).



CONCLUSION

SARS-CoV-2 is evolving, emerging novel variants with spike protein mutations. In this setting, we have to expect the emergence of novel SARS-CoV-2 variants. So far, five VOCs have been identified, including the Alpha, the Beta, the Gamma, the Delta and the Omicron variant, that have a high number of mutations in their spike protein. Some mutations emerged in the spike protein can confer the virus a fitness advantage that increases viral replication and viral load, making the virus more infectious and more contagious. Epidemiological studies have demonstrated that Delta variant has spread about 60% faster than Alpha variant. the Omicron variant has fitness advantage over the Delta variant and it is more transmissible than Delta variant. Some of the spike protein mutations, particularly mutations emerged in the RBD, can blunt the potency of neutralizing antibodies triggered by existing vaccines and prior infection. Additionally, these mutations confer the VOCs the ability to evade immunity mediated by vaccines. Preliminary laboratory experiments demonstrate substantially declined neutralizing activity to the Omicron variant compared to the authentic Wuhan virus or the Delta variant in vaccinated people. However, booster doses enhance neutralizing antibody response to the Omicron variant. Neutralization elicited by two BNT162b2 or ChAdOx1 doses confers mitigated protection against symptomatic disease with the Omicron variant.
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India suffered from a devastating 2021 spring outbreak of coronavirus disease 2019 (COVID-19), surpassing any other outbreaks before. However, the reason for the acceleration of the outbreak in India is still unknown. We describe the statistical characteristics of infected patients from the first case in India to June 2021, and trace the causes of the two outbreaks in a complete way, combined with data on natural disasters, environmental pollution and population movements etc. We found that water-to-human transmission accelerates COVID-19 spreading. The transmission rate is 382% higher than the human-to-human transmission rate during the 2020 summer outbreak in India. When syndrome coronavirus 2 (SARS-CoV-2) enters the human body directly through the water-oral transmission pathway, virus particles and nitrogen salt in the water accelerate viral infection and mutation rates in the gastrointestinal tract. Based on the results of the attribution analysis, without the current effective interventions, India could have experienced a third outbreak during the monsoon season this year, which would have increased the severity of the disaster and led to a South Asian economic crisis.

Keywords: COVID-19, water transmission, ecological security, SEIR, natural disasters


INTRODUCTION

Coronavirus disease 2019 (COVID-19) has inflicted great harm to human life worldwide and has posed an extreme threat in many countries (1). As the 2nd most populous country with a developing urban economy, India is still suffering disproportionately from COVID-19 (2). A high population density, health inequity, growing economic and social disparities, and unique cultural values pose challenges to the response to the epidemic by the Indian government (3). In the spring of 2021, India suffered a severe outbreak with the highest number of daily new cases in the world at the time, peaking at over 410,000. As of 1 June 2021, the cumulative number of confirmed cases reached 28,000,000. However, the reasons for such a rapid and unprecedented regional outbreak remain unclear.

The primary mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission are respiratory droplet and contact transmission, including airborne transmission, fecal transmission, maternal-fetal transmission, etc, and it can survive for long periods outside of their host organism (4–7). Hospital air was shown to have SARS-CoV-2 levels of 9-219 COVID-19 viruses/m3, mediating long-range human-to-human transmission via air movement (8). SARS-CoV-2 can survive in stool samples for 1–2 days (9). Studies have also shown that the times for 90% reduction (T90) of viable SARS-CoV-2 in wastewater and tap water at room temperature were 1.5 and 1.7 days, respectively. In high-starting titer experiments, infectious virus persisted for the entire 7-day sampling time course (10). Contaminated water is likely to be a potential source of human exposure if aerosols are generated. The traditional disinfection method is expected to eradicate SARS-CoV-2 in sewage (11). However, overcrowded living conditions and poor sewage treatment practices in India may allow the virus to survive for prolonged periods of time (12), adding another potential transmission route.

To provide a basis for future global preparedness, we did a retrospective study on a huge data set of more than hundred million cases of COVID-19 worldwide. Attribution analysis of the dynamics data of cases was performed in India's two outbreaks. Combined with the simulation results, the triggers and mainly transmission routes of the epidemic in the 2021 spring severe outbreak in India was identified. We also simulated the development of epidemic situation without lockdown based on the findings, which served as an early warning.



MATERIALS AND METHODS


Data Source

In this study, we used statistical dynamics and epidemiological modeling methods to identify the possible mechanisms of the outbreak. The results of attribution analysis are helpful for developing epidemic prevention plans to allow for the rational allocation of medical resources, especially in areas with more severe outbreaks. Data on global COVID-19 confirmed cases are from the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (https://github.com/CSSEGISandData/COVID-19). Data sources for COVID-19 confirmed cases in the Indian states are given by: https://www.covid19india.org/. Data on rainfall in India's states and the number of flood victims come from the National Disaster Management Authority Government of India (https://ndmindia.mha.gov.in/reports#). The time, place and the coordinates of the bathing ghat of the Indian Kumbh Mela event in 2021 are given by: https://www.kumbhamela.net/. Water quality data of Ganges River in Uttar Pradesh were obtained from Uttar Pradesh Pollution Control Board (UPPCB): http://www.uppcb.com/river_quality.htm.



EEMD Method

The ensemble empirical mode decomposition (EEMD) method was used to analyze the influence of the number of flooding victims on the number of COVID-19 cases. EEMD is a time series analysis method based on empirical mode decomposition (EMD) (13). EEMD decomposes complex data series into finite quasiperiodic components at different frequencies and is suitable for adaptive analysis of nonlinear and nonstationary time series. EMD/EEMD methods have been used to analyze and process nonlinear and nonstationary climate and ocean data, biomedical signals, financial signals, and COVID-19 simulation predictions. The decomposition process of the EEMD method can be shown as follows: First, white noise series w(t)x(t) is added, and then EMD method is used to decompose the new time series into Intrinsic Mode Functions (IMFs) terms. In the third step, different white noise series are used to repeat the first and second steps, and the results are added to the original time series each time. Finally, the set of IMF items in the EMD method is averaged (14).



Model Simulation

Here, the second version of Global Prediction System for the COVID-19 Pandemic (GPCP) developed by Lanzhou University (http://covid-19.lzu.edu.cn/) was used for epidemiological simulations (15). The GPCP system was used to simulate and predict the trend of the epidemic in India, based on a modified version of the suspected, exposed, infectious, recovered (SEIR) epidemiological model. The theoretical framework is based on the division of the human host population into categories containing susceptible, infected but not yet infectious (exposed), infectious, and recovered individuals (16). These susceptible-exposed-infectious-recovered models are usually expressed as a system of differential equations.

The original model can be described by the following ordinary differential equations:
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The susceptible (S) refer to people who are not sick but lack immunity and are vulnerable to infection after coming into contact with the infected. In the absence of effective pharmaceutical treatments and vaccines, all populations are at risk of infection when they are exposed to the virus. The exposed (E) refer to people who have been in contact with an infected person but are not contagious. Such people can play a big role in the spread of infectious diseases with long incubation periods. They may also have the potential to spread the virus. The infective (I) represent the infective people with infectious capacity. The infective can spread virus to the susceptible, turning them into the exposed or the infective. The recovered (R) are those who recover or die of the disease. If it is a lifelong immune infectious disease, R cannot be changed into S, E or I again. If the immune period is limited, R can be changed into S again, and then be infected. In this paper, our modifications to the epidemiological model are based on the model of Peng et al. (17). The modified SEIR model defines seven states of disease: susceptible cases (S), protected cases (P), potentially infected cases (E, infected cases in a latent period), infected cases (I, infected cases that have not been quarantined), quarantined cases (Q, confirmed and quarantined cases), recovered cases (R), and cases of mortality (D). The sum of the seven categories is equal to the total population (N) at any time. The model contains the following equations:
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In the traditional epidemiological model, the parameters are determined by natural history of the disease. In the GPCP system, the parameters of the model are obtained from the actual epidemic data inversion. The dynamics of each population group are governed by the parameters β, γ, λ, and κ (unit: day−1). β is the infection rate, which represents the average number of susceptible persons in effective contact with each sick person per day. 1/γ is the average latent time (the time between getting infected and onset of symptoms). λ and κ are the recovery rate and death rate, respectively. α is the parameter of social distancing. When α > 0, individuals are passed from group S to group P, indicating the implementation of social distancing measures. The infectious will then spread the virus to others before admitted to the hospital at the rate of δ (entering the quarantined stage, Q). The influence of temperature and humidity has been included in the improved SEIR [see Huang et al. (18) for details], and the influence of mass gatherings on the epidemic situation is mainly considered here. The number of asymptomatic infections was calculated considering the number of mass gatherings. About 15.6% people are asymptomatic infections among confirmed cases (95% CI, 10.1–23.0%) (19). Therefore, we calculated the number of asymptomatic infections among mass gatherings using the following formula:
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where Pot(i) is the daily number of flood victims reported by the National Disaster Management Authority Government of India for the 2020 summer outbreak (hereinafter referred to as the first outbreak). For 2021 spring outbreak (hereinafter referred to as the second outbreak) in India, Pot(i) is the number of religious congregations reported by news published online. Con(i) is the number of cumulative confirmed cases on day I, and Npop is the population of India.




RESULTS


The Timeline of Development of Global COVID-19

According to previous studies, the COVID-19 pandemic was characterized by oscillatory outbreak patterns, with anthropogenic factors, natural disaster-related factors, and seasonal temperature changes as triggers (18). Therefore, we attempt to find possible trigger factors of the outbreaks in India based on the timeline of development of COVID-19 (Figure 1). Two COVID-19 waves have affected India since its first patient was identified on 30 January 2020 (Figure 1A). India experienced the first (2020 summer) outbreak when the global situation was relatively stable. After March 2021, when the trend of the global epidemic was declining, India had another outbreak, with the daily new confirmed cases peaked at 57.1% of the global total.


[image: Figure 1]
FIGURE 1. Time series of the number of newly confirmed cases. (A) Time series curve of newly confirmed cases globally and in India. To facilitate the comparative analysis, the data were normalized. The red line represents newly confirmed cases in India, and the blue line represents global new cases. (B) Time series curve of newly confirmed cases in countries mainly affected by flooding during the first outbreak in India. The dotted line represents when the flood started. (C) Time series curve of newly confirmed cases in India and Bangladesh during the second outbreak in India. The dotted line represents the time when the crowd gathered.


Based on the timing, the potential trigger for the first outbreak in India could be the effects of a natural disaster. As of 1st June 2020, the number of cumulative confirmed cases in India was <200,000, but more than 3 million new cases were reported within 3 months after the start of the monsoon season. Since the super-cyclone “Amphan,” the number of confirmed cases in India, Bangladesh and Nepal also increased by 335.5, 337.3 and 2967.2%, respectively, in 40 days (Figure 1B). The second outbreak in India was caused by human factors. Since 11th March 2021, nearly 3,000,000 people have bathed in the Ganges River for Kumbh Mela, providing an ideal situation for the transmission of the virus. After Kumbh Mela, the number of confirmed cases in India increased by 665.5% within 1 month. Meanwhile, the time series of COVID-19 pandemic development in Bangladesh, downstream of India, was consistent with that in India. The number of daily new cases was over two times higher than the previous highest record (Figure 1C).



Causes of the 2020 Summer Outbreak in India

The cause of the first outbreak in India was further traced systematically (Figure 2). During the first outbreak, the numbers of COVID-19 confirmed cases are closely related to monsoon season precipitation. In Assam, Bihar, Kerala and Uttar Pradesh, the correlation coefficients between precipitation and the number of confirmed cases during floods were 0.87, 0.84, 0.95 and 0.87, respectively (Figure 2A). There is a lag correlation between the increases of confirmed cases and the number of flood victims (correlation coefficient = 0.87) (Figure 2B). During flood, while rescue procedures or refugee camping, it is almost impossible to follow COVID-19 protocols, so protective mask and social distancing is limited. Population densities and intensity of social contacts are the main drivers for propagation and amplification of this novel respiratory virus SARS-CoV-2 (20). In addition, as environmental changes occur, vector breeding sites increase, and access to healthcare services is limited, etc, the after-effects of flooding may contribute to the occurrence and the spread of infectious diseases (21) (Supplementary Figure S1).
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FIGURE 2. Analysis of the causes of the first outbreak in India. (A) Temporal variations in precipitation and newly confirmed cases in Indian states. The purple column represents precipitation, and the blue symbol line represents the 5-day increase in the number of newly confirmed cases. (B) Relationship between number of flood victims and newly confirmed cases. The second and third components of the EEMD were extracted as detrending items, and all data were normalized. (C) Influences of different boat carrying capacities on the number of cases. Curves in different colors represent the simulation results of newly confirmed cases under different carrying numbers of each rescue boats. (D) Impacts of different shelter populations on the epidemic. The curves in different colors represent the simulation results of newly confirmed cases with different numbers of shelters.


Unplanned and overcrowded shelters, limited rescue personnel and equipment all contribute to large crowd gatherings and facilitate the spread of viruses. Simulation results show that more than 5, 10 and 20 people on each boat without personal protection would increase the number of new confirmed cases by 68.2, 97.1, and 129.6%, respectively (Figure 2C). Shelters housing 3,000 victims would lead to a four-fold increase in the peak number of new confirmed cases if anti-epidemic measures were not taken (Figure 2D). Therefore, human-to-human transmission among dense populations during natural disaster events was the main reason why India was one of the most COVID-19-affected countries in the summer of 2020.



Causes of the 2021 Spring Outbreak in India

Close physical contact facilitates easy and rapid spread of respiratory pathogens at gatherings. Upper respiratory tract infection (URTI) has been reported as the main cause of illness among Kumbh Mela pilgrims in 2013, accounting for 70% of the illness among the pilgrims (22). However, the super outbreak in India in 2021 spring was probably not only caused by the high density of human-to-human transmission. While COVID-19 cases have increased significantly in all Indian states since the start of Kumbh Mela, the increase has been even more rapid in the Ganges Basin (Figure 3A). The percentage of the number of new cases in the states along the Ganges River basin to the total number of new cases in India increased by about threefold within 40 days (Figures 3B,C). This is not significantly related to the movement of people among the states during Kumbh Mela (Supplementary Figure S2). In Uttar Pradesh, the state closest to the holy bathing sites, the proportion has increased six-fold than that before Kumbh Mela. Cities that run through the Ganges contributed 92.5% of newly confirmed cases in the state, including the five cities with the worst outbreaks (account for 48.8%) (Supplementary Figure S3).
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FIGURE 3. Analysis of the causes of the second outbreak in India. (A) Spatial distribution of the growth rate of the number of cases at 40 days since Kumbh Mela in India. (B) Time series curve of newly confirmed cases in five states along the Ganges River basin in India. The light blue shaded area represents the incubation period of SARS-CoV-2. (C) Change in the number of new cases as a percentage of India's total in the five states in the Ganges basin. The columns represents the proportion of newly confirmed cases at 40 days before and after Kumbh Mela. Blue is pre-Kumbh Mela and red is post-Kumbh Mela. (D) Time series of water quality and new confirmed cases in Uttar Pradesh. The red line represents the number of new confirmed cases and the other three dotted lines represent DO, BOD, and Total coliforms organism. To facilitate the comparative analysis, the data were normalized.


Previous studies on the impact of sewage discharge on groundwater pollution have found e. coli in groundwater samples exceeding the permissible limit of WHO, forcing the belief that if it can contaminate and present in a significant amount, then concerning COVID can also penetrate to groundwater (23). Therefore, to further trace the reasons for the rapid development of the epidemic in the Ganges basin, a comparative assessment of dissolved oxygen (DO), biochemical oxygen demand (BOD) and total coliforms organism of river Ganga in Uttar Pradesh was conducted (Figure 3D). The results demonstrate an increase of microbiological contamination of surface water during the COVID-19 outbreak. The average value of BOD and total coliforms organism increased from 3.8 mg/L to 4.5 mg/L and 17652.3 MPN/100 ml to 18767.6 MPN/100 ml, respectively, while the average DO decrease from 8.7 to 7.7 mg/L, indicating the higher load of organic pollution in the river system during Kumbh Mela. The slight decrease in DO observed during the two outbreaks which may also be due to the increased levels of suspended solids and turbidity in the river water because of heavy rains and holy bathing (24).

The increase of microbiological contamination of surface water is likely to warn of future biological pandemics, including COVID-19. Studies have reported that SARS-CoV-2 RNA in an Italian and a Japanese river (25, 26). Sewage samples from Gujarat state, India also showed presence of SARS-CoV-2 RNA (27). If SARS-CoV-2 RNA is detected on water or sewage, infectivity cannot be ruled out (28). The emergence of human pathogenic viruses in aquatic ecosystems needs to raise concerns about environmental and human health-related impacts.



Simulation of the Two Outbreaks in India

According to the simulation results, India should not have experienced such a severe outbreak. Flood-triggered high-density human-to-human transmission during the first outbreak doubled the number of COVID-19 cases in India (Figure 4A, Supplementary Figure S4). The combination of human-to-human and water-to-human transmission during the second outbreak resulted in a six-fold increase in newly confirmed cases (Figure 4B). Human-to-human transmission increased Uttar Pradesh's share of the total number of cases in India by 0.5%. After adding to the impact of water-to-human transmission, the proportion increased by 6.3% (Supplementary Figure S5). Same size of Massive gathering event (MGE) in India has led to a three-time increase rate of the confirmed cases compared to the US (18). Therefore, it is quite possible that water-to-human transmission amplified the epidemic and caused the most severe outbreak worldwide.
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FIGURE 4. Simulated analysis of COVID-19 human-to-human and water-to-human transmission. (A) Epidemic simulation of newly confirmed cases without floods. The red line represents the actual number of cases, and the blue line shows the number of newly confirmed cases simulated without floods. (B) Epidemic simulation of newly confirmed cases without holding Kumbh Mela. The red line represents the actual number of cases, and the blue line shows the number of newly confirmed cases simulated without religious gatherings. (C) The COVID-19 human-to-human and water-to-human transmission processes.


The course of SARS-CoV-2 infection in pulmonary and gastrointestinal (GI) tissues is presented in Figure 4C. A large number of viral-containing particles can be inhaled by people who are exposed to a high number of human-generated aerosols for a long duration; thus, the chance of becoming infected and the disease severity is high (29). Greater inhalation expands the alveolar area exposed to virus-containing aerosols, which may affect viral processing and the immune response (30). Similar to fecal-oral transmission, SARS-CoV-2 can enter human body directly through water-oral transmission route. Previous research has shown that GI symptoms affect up to 26% of patients in some populations, with some patients experiencing only digestive symptoms (31). The virus-specific RNA and protein synthesis processes can form virions in the cytoplasm and then release them to the GI tract. Moreover, other contaminants in water may promote virus mutation (32). Based on previous research, the nitrate and nitrite levels in the Ganges River transect exceed the standard level (33). Excess nitrate and nitrite are further converted into nitric oxide with the help of oral bacteria, enzymes and acid in the stomach (34). Oxidative stress induced by the overproduction of nitric oxide can trigger virus mutation; for example, it can cause heterogeneity among variants of RNA viruses, such as HIV and influenza, and accelerate viral evolution (Figure 4C).




DISCUSSION

The presence of multiple transmission mechanisms for COVID-19 is one of the reasons for the rapid spread of the pandemic. Fecal-oral transmission as a potential transmission mechanism has attracted a lot of attention in recent years, but there is still a lack of epidemiological evidence to confirm this hypothesis. Replication of the virus in the intestinal tract is highly likely (35). The unsuccessful isolation of infective SARS-CoV-2 from stool and wastewater samples may be due to the difficulty of isolating intact enveloped virions, rather than the absence of infective virions (36). During the March 2003 outbreak of SARS in Hong Kong, evidence of fecal-aerosol transmission route was reported due to aerosol diffusion from inadequate wastewater management (37). Thus, wastewater should be alert to contain a considerable number of infective virions. To date, there is no clear evidence regarding SARS-CoV-2 survival in water or sewage. However, due to the presence of virus fragments in excreta, as well as other potential infectious disease risks in excreta, wastewater should be treated in a well-designed and well-managed central sewage treatment plant (38).

COVID-19 water-to-human transmission route is a warning of water security issues during an epidemic. Especially the biological treatment of medical wastewater and domestic sewage. To reduce the risk of river-borne infection, it is necessary to strengthen the management of water supply and drainage systems, and formulate reasonable policies to limit the flow of people along the river. In countries with highly developed water supply systems, it is difficult for the virus to overcome the existing stages of filtration and disinfection. In contrast, the presence of the virus is unknown in countries where water treatment technology does not have the equipment to remove it (39). According to the United Nations' 2017 World Water Development Report, 80% of global wastewater (>95% in some developing countries) is released to the environment without adequate treatment (40). However, in the context of the COVID-19 pandemic, there is little information on the presence of SARS-CoV-2 in sewage and natural waters in countries with poor sanitation. Extensive research on the detection of infectious SARS-CoV-2 in wastewater is urgently needed. A large population in India is affected by water security issues and climate-induced disasters, such as floods and droughts (41, 42). Transient populations, urbanization and traditional and contemporary recreational activities result in a high pollution load and increase future environmental risk. Therefore, it is essential to deepen the understanding of the effect of ecological safety and human health and to develop corresponding risk management and environmental modification plans, especially during the high-incidence infectious disease season. Currently, wastewater epidemiology should be brought to the forefront of disease research. However, low coverage (one-third of all towns) of sewer networks in India makes conducting such research challenging.

This study provides a new perspective that virus mutations are largely related to human activities. This indicates that strict social distancing can not only break the transmission chain and prevent infection but also prevent virus mutation. Global mass infection, vaccination, and interventions are changing SARS-CoV-2's evolutionary landscape. Since the first outbreak period in India, effective global medical interventions have been developed. However, the vaccination coverage rate is still too low to allow pandemic control (43, 44). At the same time, viruses keep evolving to become more infectious and overcome a host's immune responses (45). The omicron variant, for example, is currently causing a global super-outbreak, evades the immune protection offered by vaccines and natural infections (46). Therefore, strict non-pharmaceutical interventions should remain the first line of defense against the virus.

In addition, based on the results of the attribution analysis of the first outbreak in India, we model that without rigorous interventions, the cumulative number of cases in India's 2021 monsoon season could reach 50 million by the end of July, resulting in many lives lost (Supplementary Figure S6). It is a substantial challenge to the society, requiring relevant departments to make complex, highly compromised, hierarchical decisions to address the pandemic. Accelerating vaccination, expanding viral genome testing and implementing strict distance restrictions to prevent transmission and save lives should be regarded as priorities.
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Introduction: The COVID-19 pandemic is a global crisis and has reaffirmed that extensive testing along with effective tracing is still crucial to slowing transmission of the COVID-19 virus despite the rolling out of vaccines. This study explored enablers and barriers to COVID-19 testing in the Greater Accra region of Ghana. We envision lessons learned from this study could serve as a road map to strengthen the current response to COVID-19 and preparedness for future outbreaks, particularly in low- and middle-income countries.

Methods: A qualitative design was undertaken to explore the phenomenon. Data collection methods included in-depth interviews with key informants with a purposively selected sample of 20 participants. Interviews were conducted using flexible semi-structured interview guides. Depending on the participant's position and involvement in COVID-19 testing, the guides were modified, and key elements were drawn from a tailored version of the WHO Health System Framework, incorporating the Essential Public Health Functions (EPHF). The interview findings were augmented by reviewing published literature.

Results: Better health governance through political leadership, community participation, multisectoral collaboration, effective resource management, and information systems played a crucial role in catalyzing COVID-19 testing. The primary barriers to testing were mainly COVID-19 infodemic, inadequacy of material resources to meet growing health needs, and a lack of opportunities to have equal and easy access to testing services. Furthermore, although human resources were adequate, they were unevenly distributed across settings.

Conclusion: Despite rolling out vaccines against COVID-19, testing remains an important measure to control the virus. To effectively be prepared for extensive COVID-19 testing and respond to future outbreaks, the following are recommended: there should be improved political commitments, coordination, and communication with diverse actors to ensure even distribution of all resources across the country; empowerment of community members should be encouraged to develop community-oriented pandemic preparedness and management of COVID-19 infodemic; investment in strengthening capacity of Good Manufacturing Practice (GMP); incorporation of health policy and systems research (HPSR) into the post-COVID-19 pandemic recovery process and future pandemic preparedness.

Keywords: COVID-19 testing, barriers, facilitators, qualitative study approach, pandemic preparedness, Ghana


INTRODUCTION

The Coronavirus Disease 2019 (COVID-19) pandemic has dominated headlines worldwide since first reported in 2019, and the most recent emergence of a new COVID-19 virus variant (omicron) has exacerbated the global health crisis. According to the World Health Organization (WHO), there have been 396 million confirmed cases of COVID-19, including 5.7 million deaths, and 10 billion vaccine doses have been administered as of 8 February 2022 (1). Although vaccines are rolled out in many countries to help reduce the risk of contracting the virus and infecting others, they continue to experience second and third waves, and, thus, extensive testing strategies still remain essential to slowing transmission (2). Besides, COVID-19 testing could be a potentially less disruptive management strategy, particularly where vaccine access is limited (2). Increasing testing capacity enables resource-poor countries experiencing slow rollout of vaccines due to poor supply chains to break disease transmission and reform the architecture for future pandemic preparedness efficiently (3).

Several countries adopted strict measures at the beginning of the pandemic to contain the spread of the virus. Ghana, a lower-middle-income country in West Africa with a population of about 30 million, recorded its first case on 12 March 2020 (4). But even before that, the country had already implemented early preventive strategies, such as the 3T approach (tracing, testing, and treating) in response to the pandemic (4). Efforts were geared toward the adoption of multisectoral actions with wide control measures to prevent, detect, and contain the disease. The private sector, civil societies, and faith-based organizations all played a key role in this regard. For example, through the private sector, the government is putting up a 100-bed hospital to be completed within 6 weeks for the isolation and treatment of patients with COVID-19 (5, 6). Moreover, Ghana's longstanding efforts to strengthen Primary Health Care (PHC) through the Community-Based Health Planning and Services (CHPS) program, and its National Health Insurance Scheme (NHIS) (7) altogether contributed to the success of extensive testing of which the WHO is even studying some of the techniques (8).

Ghanah is one of the highest testing rates in sub-Saharan Africa (4, 9). Comparing tests conducted as per the million population in sub-Saharan Africa, Ghana has made huge progress in testing a large number of the population (4, 9). Its daily tests per million are 100, which is the second-largest test performed as of 2 March 2022 (4, 6, 9). This might be the result of the president's early policy decision to enhance the capacity to test and expand the numbers of testing, treatment, and isolation centers (10). Furthermore, Ghana used the overarching contact tracing approach, which has now become a model for managing COVID-19 (10), and the approach worked well within the Ghanaian context. However, it has also been constrained by the issue of resources, infrastructure, and the COVID-19 infodemic.

Despite the importance of scaling up COVID-19 testing as cost-effective prevention, isolation, and detective measure, there is very little literature, including some articles, commentaries, and opinions exploring the effect of factors influencing the testing in the context. Previous research and its findings on COVID-19 testing have generally prioritized biomedical and clinical aspects of the testing. For instance, Lopes-Júnior et al. conducted a systematic review to synthesize and critically evaluate the scientific evidence on the influence of the testing capacity to control COVID-19. This study found a reproducible strategy to query the scientific literature on the effectiveness of mass testing for the control of COVID-19 in a clinical context (11). Other qualitative research on perspectives on COVID-19 testing policies and practices highlighted tensions between communications and implementation of testing developments and uncertainties about the responsibility for testing and its implications focusing on the different health actors (12–14).

These studies have concentrated on assessing the effectiveness of COVID-19 testing in biomedical and clinical aspects and identifying challenges primarily focused on health professionals and practitioners for mass testing, but there has not previously been an attempt to identify influencing factors to scaling up COVID-19 testing, considering all different aspects. Overall, current research on COVID-19 testing provides little evidence on how to expand testing to contain the virus, particularly in resource-poor settings. Understanding the reasons behind COVID-19 testing challenges may inform better strategies to address them. This qualitative study examines facilitators and barriers to scaling up COVID-19 testing in Ghana, focusing on the capital city region, Greater Accra, by investigating the country's response. The different narrative perspectives enabled this study to acknowledge diverse experiences from interview participants to identify multifaceted, complex, but not observable factors. This study aims to fill a knowledge gap in understanding key drivers to increase COVID-19 testing and identify what challenges have influenced Ghana's multi-leveled and cross-sectoral responses to the pandemic. The lessons from Ghana's case can benefit other resource-poor settings to contain emerging pandemics and strategize future prevention of infectious diseases.



METHODS


Study Design, Sampling, and Data Collection

A qualitative design was undertaken to explore the barriers and facilitators to scaling up COVID-19 testing implementation in Greater Accra, Ghana. It is the capital city of the country, with a population of about 2.6 million (15, 16). A purposive sampling approach was used to recruit 20 key informants for interviews from September to October 2021. The participants had provided written consent before being interviewed. All interviews were conducted virtually through a Zoom platform by authors SH and SY. The study participants comprised policymakers, implementers, frontline workers, and community members. The policymaker and implementer groups were selected, considering their positions and influence in decision-making, implementation, and evaluation of COVID-19 testing in Ghana (Table 1). The interviews lasted between 40 and 60 min and were audio-recorded.


Table 1. Characteristics of participants.
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The interviews were conducted using flexible semi-structured interview guides. Depending on the participant's position and involvement in COVID-19 testing, the guides were modified, and key elements were drawn from the WHO Health System Framework, incorporating the Essential Public Health Functions (EPHF) (17).

The sample size reached data saturation, where no more new information was discovered in data analysis. All researchers agreed on four general principles and concepts regarding data saturation: no new data, no new themes, no new coding, and the ability to replicate the study (18). The researchers were confident that the collected data were sufficient, consistent, and qualified enough to meet the objectives. All the interviews were conducted in English. In addition, a desk review of the existing literature about Ghana's national health policies and systems, governance, and national COVID-19 preparedness and response plan was conducted to triangulate interview data and understand the context to conceptualize key themes from the collected data (Table 2).


Table 2. Reviewed documents and data analyzed.
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Data Processing and Analysis

The interviews were audio-recorded. To accurately capture the detail of fully recorded data, SH and SY independently transcribed all the audio recordings verbatim. We combined both inductive and deductive approaches to coding. We employed the framework by following these steps: (a) familiarization; (b) identifying initial codes; (c) indexing; (d) generating main, sub-themes, and codes; and (e) defining and interpreting themes. In addition, we remained open to accommodate other themes. Coding was conducted manually, and a codebook was developed to identify and document all existing thematic categories. The selected core categorical themes were analyzed and compared with existing literature to ensure our findings' reliability, validity, and comprehensiveness (18). It is important to note that the thematic categories were formed based on previously conducted qualitative research on COVID-19 and acute respiratory illness (12–14).




RESULTS

Characteristics of the participants are shown in Table 1. The participants comprised policymakers, implementers, frontline workers, and community members. Most of the participants were implementers (75%) working in COVID-19 testing facilities and medical research institutions.

A total of 6 themes related to facilitators and barriers to scaling up COVID-19 testing, 12 sub-themes, and 26 codes were derived from the analysis and coding process (Table 3). The results of the study are structured and presented in sections according to the main thematic areas and supported with quotes.


Table 3. Main, sub-themes, and codes derived from the coding process.
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FACILITATORS OF COVID-19 TESTING


Health Governance and Leadership for Navigating COVID-19
 
Political Leadership

The study revealed how effective leadership from the Government of Ghana positively influenced efforts to foster COVID-19 response strategy. Many participants confirmed the important role of political leadership in enhancing the general understanding of the Ghanaian population about the COVID-19 pandemic and response mechanisms, such as adhering to health regulations and getting tested. They reported that the president's guidance strongly influenced a sense of collective responsibility and encouraged people to adhere to response strategies, particularly on being tested against the virus. More importantly, the participants emphasized that leadership and coordination between the government and the local authorities fostered a sense of collective responsibility and timely responses to the threats posed by the pandemic.

“We received lots of hope from the government and the president. Our president was really keen on tackling the pandemic, and, with a lot of support from other governmental entities, such as the Ghana Health Service and the National Commission for Civic Education (NCCE), we could respond to the COVID-19 pandemic timely. We were highly encouraged to get tested by the president, and his leadership uplifted the motivation of getting tested.”- A researcher from medical research institute 1.



Community Leadership

The majority of the participants agreed that strong community leadership played an important role in distributing personal protective equipment (PPE), sensitizing health protocols and encouraging vulnerable groups to actively engage in the community to fight against COVID-19. According to our findings, community leaders and members played a critical role in successfully managing the pandemic through close collaboration with the Ghana government, health institutions, non-governmental organizations (NGOs), and other faith-based organizations. Furthermore, community leaders, including religious leaders, helped provide public health education for members of their community using their local languages. This enabled community members, especially the illiterate, to understand the COVID-19 burden and the consequences of not adhering to health protocols.

“Many religious leaders from the churches are currently educating people to follow all COVID-19 protocols, such as wearing masks, washing hands, and getting tested on the virus. We are doing our best to educate our members to follow the protocols and get tested timely. We also help them to disseminate identified information related to availing testing”- Community Leader 1.



Multisectoral Partnerships and Collaboration

Our findings revealed a high level of multisectoral partnership and engagements of diverse stakeholders, such as intergovernmental organizations, religious institutions, civil society, and the private sectors. The study participants recounted how engagement with the private sectors for financial and material support enhanced COVID-19 testing capabilities, including setting up major testing centers across the country and ensuring testing kits and supplies. For example, Nyaho Medical Center and Frontiers Health Care Services are major private testing centers in the country. The development partners also assisted with the provision of laboratory equipment and the logistics for testing.

“… we have been supported by various private companies, NGOs, and ministries. The private companies and some NGOs helped some vulnerable groups with health supplies and funds for COVID-19 testing. My institution was also given some financial and material support from them, such as reagents for COVID testing.”—Laboratory Manager 1.




Resource Management
 
Human Resources

The study participants indicated that there are sufficient health professionals, training programs, and platforms to enhance the capacity of the health workforce to meet up to tasks fully. Also, the interviews highlighted that there were several incentive packages for health workers, including insurance packages and tax relief (19). According to the opinions of some participants, this enabled them to exhibit a positive attitude at work. Also, the training improved the confidence level and interpersonal relationships between health professionals and their clients.

“We have been provided extensive training and go through a series of training for 3 weeks or 1 month. We learn everything from whole processes of sample collecting to how to make patients calm down to make sure that they are comfortable when taking a nasal pharyngeal swab.” - Laboratory Scientist 1.



Financial and Material Resources

Provision of financial resources is the key to ensuring adequate health supplies to foster a timely response to COVID-19. The participants mentioned the commitments of the Ministry of Health (MoH) to ensuring adequate financial and material resources in upscaling testing. They further emphasized that support from individual donors, international organizations, and NGOs enabled the government to achieve this goal.

“We did not have enough testing centers and PPE at the beginning of the pandemic. But, now, we have enough facilities, adequate PPE, and other consumables supported by the Ghana government, international organizations, and other donors for COVID-19 testing. For example, the Ghana airport testing center has been recently established and offers COVID testing at the Kotoka International Airport.”—Laboratory Manager 2

Furthermore, most of the participants emphasized that the availability of more testing centers, infectious disease centers, sustainable funding initiatives, such as the establishment of the COVID-19 National Trust Fund (CNTF), and funding programs for enterprises all contributed to successful COVID-19 responses in Ghana, including testing. A senior official at MoH mentioned that “We established COVID-19 Alleviation and Revitalization of Enterprises Support (CARES) program to mitigate the impact of the pandemic on the livelihoods of Ghanaians and support businesses and workers, and introduced a package of economic stimulus measures called the Coronavirus Alleviation Programme (CAP) to formulate and implement the COVID-19 preparedness and response plan, tracing, testing, and treatment.”




Information System
 
Surveillance Systems

The participants revealed the establishment of a central procurement system, and a surveillance system was vital to COVID-19 preparedness and response, and provision of essential services. A senior officer at MoH said, “We have a good surveillance system to rapidly detect, test, and manage cases to monitor the virus, and Ghana Health Service can see all available data at one glance using it. We also have a good, systemized procurement system through procurement agencies.”

Furthermore, real-time surveillance of reported COVID-19 infections has been the key to the global pandemic response. Many tools, devices, and apps have supported surveillance in Ghana (20). The participants emphasized the role of the centralized data reporting system in Ghana called Surveillance Outbreak and Response Management and Analysis System (SORMAS). According to interviewees, the system enabled health professionals to identify defaulters and get them tested. They also pointed out that it helped monitor stock to avoid shortages of materials for testing, such as test kits and PPE.

“The Ghana Health Service traces all positive cases based on collected data. It helped connect all labs across districts to access to it, also, helped detect, investigate, and control the virus in the long run.”—Laboratory Manager 3



Health Communications

Public health communication plays an important role in protecting public health during pandemics. According to the interviews, the government of Ghana effectively provided information through various public media for the people, particularly by educating them on measures that need to be undertaken to contain the spread of the virus. The participants asserted that mass media campaigns on adherence to health protocols and regular updates on COVID-19 by the president and health authorities positively influenced community members to adhere to health directives. A researcher from the University pointed out, “There are several TV and radio advertisements, and they are compelled to educate people. The advertisements ensured that concepts and materials on COVID-19 testing are seen as culturally relevant and well understood by people.”





BARRIERS TO COVID-19 TESTING


Resources
 
Inadequacy of Human Resources (Testers) to Respond to Growing Needs

Interestingly, 55% of the participants agreed that the government's effective interventions in the health sector helped bridge the gap between demand and supply of human resources, while the same proportion of the participants (55%) complained that, despite the government's effort, there is still an issue of limited human resources, especially in COVID-19 testing centers. A laboratory manager recounted, “We have only one person at the lab who runs the test. Despite our support, he ran samples until late. I also feel too exhausted and tired when testing many people. The human personnel is fewer. One of the reasons is that some people think it is too dangerous, and, maybe, they can use the same expertise to bring more changes in the science field, Ghana.”

Some health professionals also revealed that they experience high stress and burnout due to a heavy workload during the prolonged pandemic. A nurse said, “I think we have been demotivated for the past years. We are risking our lives during the pandemic, and, sometimes, it makes us miserable and stressful despite our passion for patients.”



Financial and Material Resources Barrier to Testing

According to findings of the study, poor infrastructures, such as low internet connectivity and an inadequate transportation system, posed a challenge to effective delivery of collected blood samples, thereby delaying test results and data loss. Again, there was difficulty in transporting tools and equipment due to the poor roads.

“The main issue is logistics and transport to deliver blood samples to national labs in Accra (the capital city and where testing labs are located). When we were supposed to leave to take samples outside from the community, the car wasn't ready. This was the challenge during the collection of samples and taking samples to Accra.”—Laboratory Manager 4

The Ghana government received COVID-19 medical supplies from international organizations to be given to hospitals and clinics to scale up the COVID-19 response effort in 2021 (21, 22). However, the majority of the participants asserted that the cost of being tested was high for most people, thereby deterring people from being tested. A laboratory scientist mentioned, “The government should do something about COVID-19 tests by reducing the price or making it free for the ordinary people because most people who do not have a prescription from doctors are reluctant to pay expensive testing fees and get tested.”

Also, the participants indicated that the high dependency on imported reagents and consumables from other countries poses a challenge to an effective response to the growing threats, especially whenever such products become scarce in the donors countries. According to the participants, this contributed to the occasional shortages of material resources, such as reagents and testing kits. A researcher at the medical research institute reported, “There is, currently, a shortage of health supplies for testing. This occasionally happens when more people want to get tested and know their status. So, securing enough testing kits and reagents is very important.”




COVID-19 Infodemic
 
Sociocultural Perspectives and Practices

This study revealed a salient aspect of how a sociocultural perspective of the members of the Ghanaian community influenced testing and general response to COVID-19. The participants expressed a dilemma as to how people are impacted by Ghanaian culture positively and negatively. The participants mentioned some positive cultural impacts on COVID-19, such as practice of hand hygiene (23). On the other hand, the majority of the study participants mentioned other negative sociocultural influences on people's behavior and beliefs toward adherence to COVID-19 protocols, for example, a high dependency on neighbors' negative personal experiences about COVID-19 testing rather than accurate information from the health experts. Thus, people would like to be tested based on shared experiences of their close friends and relatives. A laboratory scientist mentioned, “Ghanaians are particular about maintaining relationships with family and friends. So, when the pandemic occurred, people shared their uncomfortable experience with nasal swabs for testing, and some of them have a fear of getting tested.”



Misconceptions About COVID-19 and Testing

Almost all the participants pointed out misconceptions about COVID-19. They emphasized that some people hesitate to get tested because they consider COVID-19 as just common flu. Furthermore, some people believe in rumors that coronavirus does not exist. According to our findings, these factors influenced the decision of community members to be tested for COVID-19.

“Some people believe in fake news and misinformation that the virus is not real, so vaccination and testing are unnecessary. Also, they think COVID-19 is just like flu, and big countries are using it for political purposes”—A Community Leader 1.

“I have a patient who strongly believes that the virus does not exist. So, I think educating them to adhere to health protocols using TV and radio is essential.”—A Nurse 1

Furthermore, the participants narrated that most women in the community do not have the same level of knowledge or information about the virus as men and how to adhere to health protocols. A senior officer at MoH cited, for example, that the level of educated men is higher compared to women, “Education will make a lot of difference in the heart of people concerning the COVID-19 and its right information. However, at the same time, I feel that illiteracy among women can be a barrier, especially in rural areas. Unfortunately, they (women) have fewer opportunities to be educated than men.”



Fear of Stigmatization for Testing Positive

Some participants also shared their experiences with patients and community members. According to them, most people were afraid of being isolated and stigmatized by their members of the public, including their workplaces and community. The respondents highlighted the feeling of guilt and shame for people testing positive, which deters others from coming for testing. These findings support studies showing that healthcare workers, COVID-19 recovered patients, and suspected persons of COVID-19 have faced various forms of COVID-19-related stigma and discrimination, such as stereotyping, social exclusion, mockery, finger-pointing, and insults in Ghana (24, 25).

“If you are diagnosed as COVID-19 positive, people will not even allow you to go to this particular neighborhood; for example, as a COVID-19 worker, people think I will also be infected by the virus one day. So they try not to be close to me.”—Laboratory Scientist 2




Service Delivery

Ghana's health care structure is regarded as well developed compared to other countries in sub-Saharan Africa (4). There are five levels of providers, including health posts, health centers and clinics, district hospitals, regional hospitals, and tertiary hospitals, to improve accountability to local population, efficiency in service provision, equity in access and resource distribution, and increased resource mobilization (26). However, this decentralized system and its functions have not been as effective as they could have been in the outskirts of Accra. A nurse working at a remote hospital from Greater Accra said, “Like mining town, everybody says they do not have equal opportunities to access good healthcare services compared to the capital city, Accra. Full attention and support for the people in rural areas is really needed.”




DISCUSSION

The findings from this study illuminate the facilitators and barriers to scaling up COVID-19 testing in Ghana. A combination of leadership from the community level to the high level and multisectoral partnerships contributed to achieving a good health governance system for timely response to the pandemic in Ghana. Also, this strong leadership, efficient management of all resources, and a well-established information system were considered the facilitators for effective mass COVID-19 testing. These findings support studies showing that collective effort from diverse sectors to build a mass testing capacity by increasing the availability of health workers, establishing more testing centers, and reporting consistent data has a positive impact on encouraging more people to get tested and steer its scale-up strategies (8, 27, 28). Taken together, the findings also highlight why and how these factors influence people's behaviors to get tested and public and private actions to cut the COVID-19 transmission.

In contrast, uneven human resources distribution in COVID-19 testing centers, inadequate financial and material resources in a certain context, diffusion of COVID-19 infodemic, and fewer educational opportunities for vulnerable populations were highlighted as the participants complained about barriers against extensive COVID-19 testing. These findings have reminded us of the persistent inequitable health workforce distribution problem, and there is an urgent need to start addressing it now by redistributing existing critical health professions. The findings are consistent with the literature that shortage of supplies/PPE, human resources, and space constraints limit the expansion of COVID-19 testing capacity. Furthermore, scarce resources pose a challenge to ensuring adequate access to testing, especially for vulnerable populations (28). According to Roger et al. (29), the diffusion of misconceptions on COVID-19 that is considered one of the challenges many countries are experiencing is founded on falsehood fabrications around transmission, and infection has generated fearful perceptions about infected people. In addition, fake information about COVID-19 has misled people into low adherence to health protocols (29, 30). The findings on the necessity of education for women in suburban regions support studies addressing consistent community sensitization on major infectious disease risks, including active community engagement, such as providing education for the vulnerable (30, 31).

Even though this study was conducted right before the omicron variant was first reported to WHO, findings from the study would be a foundational basis for developing pandemic preparedness strategies for emerging pandemics. For example, South Korea experienced the largest outbreak, notably the Middle East Respiratory Syndrome (MERS) in 2015, which caused anxiety and confusion in public and significantly impacted the nationwide perception of emergency preparedness. This triggered the reinforcement and strengthening of the country's infectious disease response system. It was extensively restructured together with human resources strengthening with institutional and regulatory change, such as the introduction of special legislation and overarching support from all different sectors (32, 33). It enabled South Korea to successfully control the virus, COVID-19, without lockdowns and business closures. In this context, identified enablers and barriers to COVID-19 testing in Ghana are keys to preparedness, targeting infectious disease prevention. According to the National Institute of Allergy and Infectious Disease(NIH) (34), the pivotal factors of pandemic preparedness strategies are effective communication with the public about prevention practices, aggressive testing and contact tracing, and a strict quarantine policy accompanied by collective support from communities. Those significant factors are clearly drawn up from our findings, and lessons from Ghana may be relevant to all countries with similar contextual settings. This study provides policy implications and insights into how challenges toward COVID-19 testing expansion can be overcome and how multi-and cross-sectoral engagement can strengthen health systems and policies to respond to emerging infections and upscaling testing collaboratively.


Implications for Policy and Practice

Preliminary policy implications were drawn from data analysis. We anticipate the following recommendations could help stimulate strategies for scaling up COVID-19 testing and developing a pandemic preparedness plan:

• Strong multilateral political commitment is required to ensure adequacy and even distribution of resources to strengthen testing capacity at all levels of health care delivery across Ghana.

• Effective coordination and communication with internal and external partners in Ghana, other countries, international organizations, and private sectors, including biomedical research-oriented philanthropies, are central to ensuring all national pandemic preparedness efforts.

• Empowerment of community members is required to develop and implement community-led pandemic preparedness and management of COVID-19 infodemic to help reduce its impact on negative health behaviors during health emergencies.

• More investment in capacity for process development and Good Manufacturing Practice (GMP), allowing for adaptation when unexpected outbreaks arise, is needed to stimulate the diversification into higher value-added health supplies and products manufactured by local producers in Ghana.

• Incorporating health policy and systems research (HPSR) into the post-COVID-19 pandemic recovery process and future pandemic preparedness is needed to stimulate the engagement of relevant stakeholders to help create stronger health systems responding to emerging pandemics 2.



Strengths and Limitations of the Study

This study has strengths and limitations. To the best of available literature, COVID-19 testing strategies have not been thoroughly studied yet. This is the first study of its kind to explore facilitators and barriers of COVID-19 testing in Ghana. We were able to explore information from different stakeholders with diverse backgrounds and experiences, thereby enhancing the comprehensiveness and rigor of our findings relevant to decision-making.

Regarding the limitation, the interviews were conducted virtually. This limited us from performing field observation and Focus Group Discussions (FGDs), which we believe could have enhancedstudy rigor. Nevertheless, this does not limit the credibility of our findings as data were compared with existing literature to enhance data triangulation. This study included participants only based in Greater Accra and peripheral of Accra. We, therefore, encourage further studies to be conducted beyond the boundaries of Accra.




CONCLUSION

As vaccines are rolled out, testing will continue to play a vital role in controlling COVID-19. The main reason is that testing, followed by contact tracing and isolation of those with positive test results, will promptly allow health professionals to monitor the dynamics of the pandemic. Moreover, according to our findings, COVID-19 testing is still of particular importance to effectively controlling the transmission of the virus in Ghana. Most of the participants confirmed that testing, as an important prevention measure, should be secured with adequate resources and stable health systems. Also, good health governance and leadership, effective resource management, and digitalized information system are successful factors influencing extensive COVID-19 testing. However, upscaling testing capabilities and facilities is faced with several bottlenecks, such as uneven resource distribution, COVID-19 infodemic, and constraints to service delivery. From the analysis, multilateral cooperation and joint partnerships with diverse stakeholders will play a critical role in facilitating active community participation, investment in GMP, and multilateral political commitment in taking bold actions to build strategies to respond to emerging pandemics. Also, a new research area, HPSR, will be a stimulus for many countries to restructure and develop stronger health systems for future pandemics.



DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ghana Health Service Ethics Review Committee (No: GHC-ERC 05/07/2021). The patients/participants provided their written informed consent to participate in this study.



AUTHOR CONTRIBUTIONS

SH, SY, and AA conceived the study, performed data collection and analysis, and developed the manuscript. The final manuscript was approved by all the authors.



ACKNOWLEDGMENTS

The authors are grateful to the study participants. We gratefully acknowledge Dr. Aku Kwamie for her technical contribution and the members of the Alliance for Health Policy and Systems Research for their support.



ABBREVIATIONS

CARES, COVID-19 Alleviation and Revitalization of Enterprises Support; CHPS, Community-Based Health Planning and Services; CNTF, COVID-19 National Trust Fund; EPHF, Essential Public Health Functions; FGDs, Focus Group Discussions; HPSR, Health Policy and Systems Research; MERS, the Middle East Respiratory Syndrome; NCCE, National Commission for Civic Education; NHIS, National Health Insurance Scheme; PHC, Primary Health Care; PPE, Personal Protective Equipment; SDGs, Sustainable Development Goals; SORMAS, Surveillance Outbreak and Response Management and Analysis System; UHC, Universal Health Coverage; WHO, World Health Organization.



REFERENCES

 1. World Health Organization (WHO) Website. Available at: https://Covid19.who.int/ (accessed February 9, 2022).

 2. Howerton E, Ferrari MJ, Bjørnstad ON, Bogich TL, Borchering RK, Jewell CP, et al. Synergistic interventions to control COVID-19: mass testing and isolation mitigates reliance on distancing. PLoS Comput Biol. (2021) 17:E1009518. doi: 10.1371/Journal.Pcbi.1009518

 3. The Lancet Respiratory Medicine. Future pandemics: failing to prepare means preparing to fail. Lancet Respir Med. (2022)10:221–2. doi: 10.1016/S2213-2600(22)00056-X

 4. Antwi-Boasiako J, Othniel AAC, Ogbey P, Ofori RA. Policy Responses to Fight COVID-19; The Case of Ghana. Brazil J Public Adm. (2021) 55:122–39. doi: 10.1590/0034-761220200507

 5. Quakyi NK, Agyemang Asante NA, Nartey YA, Bediako Y, Sam Agudu NA. Ghana's COVID-19 response: the black star can do even better. BMJ Global Health. (2021) 6:E005569. doi: 10.1136/Bmjgh-2021-005569

 6. Sibiri H, Prah D, Zankawah SM. Containing the Impact of COVID-19: Review of Ghana's Response Approach. Health Policy Technol. (2021)10:13–15. doi: 10.1016/j.Hlpt.2020.10.015

 7. Assan A, Takian A, Aikins M, Akbarisari A. Universal health coverage necessitates a system approach: an analysis of Community-Based Health Planning and Services (CHPS) Initiative in Ghana. Global Health. (2018)14:107. doi: 10.1186/S12992-018-0426-X

 8. Jiaqi Z, Justice N. Wenhui M. How well Is Ghana with one of the best testing capacities in Africa-responding to COVID-19? Brookings. Available at: https://www.Brookings.edu/Blog/Future-Development/2020/07/28/how-Well-Is-Ghana-With-One-of-the-Best-Testing-Capacities-in-Africa-Responding-to-Covid-19/ (accessed February 17, 2022)

 9. Coronavirus (COVID-19) Testing. Our World in Data. Available at: https://ourworldindata.org/coronavirus-testing (Accessed February 10, 2022).

 10. Bate F. 'Test and Trace' Has Worked for Us, Ghana's President Says. Canary Wharf, London: Reuters (2020). Available at: https://www.reuters.com/article/us-health-coronavirus-ghana/test-and-trace-has-worked-for-us-ghanas-president-says-idUSKBN22B2OE (accessed February 10, 2022).

 11. Lopes-Júnior LC, Bomfim E, Silveira DSCD, Pessanha RM, Schuab SIPC, Lima RAG. Effectiveness of Mass Testing for Control of COVID-19: A Systematic Review Protocol. BMJ Open. (2020)10:E040413. doi: 10.1136/Bmjopen-2020-040413

 12. Martindale AM, Pilbeam C, Mableson H, Tonkin-Crine S, Atkinson P, Borek A, et al. Perspectives on COVID-19 testing policies and practices: a qualitative study with scientific advisors and NHS health care workers in England. BMC Public Health. (2021) 21:1216. doi: 10.21203/rs.3.rs-454781/v1

 13. Siu JY. Qualitative Study on the Shifting Socio-Cultural Meanings of the Facemask in Hong Kong Since the Severe Acute Respiratory Syndrome (SARS) Outbreak: Implications for Infection Control in the Post-SARS era. Int J Equity Health. (2016)15:73. doi: 10.1186/S12939-016-0358-0

 14. Rambaldini G, Wilson K, Rath D, Lin Y, Gold WL, Kapral MK, et al. The impact of severe acute respiratory syndrome on medical house staff: a qualitative study. J Gen Intern Med. (2005) 20:381–5. doi: 10.1111/j.1525-1497.2005.0099.x

 15. World Bank Webpage. Available at: https://datatopics.worldbank.org/world-development-indicators/ (accessed March 22, 2022).

 16. World Population Review. Available at: https://worldpopulationreview.com/countries/ghana-population (accessed March 22, 2022).

 17. World Health Organization (WHO). The Essential Public Health Functions, Health Systems, and Health Security-Developing Conceptual Clarity and a WHO Roadmap for Action. Geneva, Switzerland: WHO (2018).

 18. Saunders B, Sim J, Kingstone T, Baker S, Waterfield J, Bartlam B, et al. Saturation in qualitative research: exploring its conceptualization and operationalization. Qual Quant. (2018) 52:1893–907. doi: 10.1007/S11135-017-0574-8

 19. Kwaku AM. Covid-19 Response; Ghana's Experience. Ministry of Health. (2020). Available at: https://apps.who.int/gb/COVID-19/pdf_files/07_05/Ghana.pdf (accessed January 26, 2022).

 20. Michael H, Kwabena N, Laud B. How Digital Technology Helped Support Ghana's COVID Response. The Conversation, vol. 9. (2021). Available at: https://theconversation.com/how-digital-technology-helped-support-ghanas-covid-response-171060 (Accessed January 26, 2022).

 21. World Health Organization (WHO). Ministry of Health Receives Medical Equipment to Support Ghana's COVID Response Efforts. Available at: https://www.Afro.who.int/News/Ministry-Health-Receives-Medical-Equipment-Support-Ghanas-Covid-Response-Efforts (Accessed January 17, 2022).

 22. United Nations Development Programme (UNDP). Ghana Receives Critical COVID-19 Medical Supplies, vol. 9. (2021). Available at: https://www.gh.undp.org/content/ghana/en/home/presscenter/pressreleases/2021/ghana-receives-critical-covid-19-medical-supplies-.html (accessed January 27, 2022).

 23. World Health Organization (WHO). WHO Guidelines on Hand Hygiene in Health Care: First Global Patient Safety Challenge Clean Care Is Safer Care- Chapter17, Religious and Cultural Aspects of Hand Hygiene. Geneva: World Health Organization (2009). Available at: https://www.ncbi.nlm.nih.gov/books/NBK143998/ (accessed January 27, 2022).

 24. Atinga R, Alhassan N, Ayawine A. Recovered but constrained: narratives of Ghanaian COVID-19 survivors experiences and coping pathways of stigma, discrimination, social exclusion and their sequels. Int J Health Policy Manage. (2021) 1–13. doi: 10.34172/Ijhpm.2021.81

 25. Adom D, Mensah JA, Osei M. The psychological distress and mental health disorders from COVID-19 stigmatization in Ghana. Soc Sci Humanit Open. (2021) 4:100186. doi: 10.1016/j.Ssaho.2021.100186

 26. Couttolenc, Bernard F. Decentralization Governance in the Ghana Health Sector. A World Bank Study. Washington, DC: World Bank (2012). Available at: https://openknowledge.worldbank.org/handle/10986/9376 (accessed March 5, 2022).

 27. Bhojwani N, Gawande A. A Better Way to Scale COVID-19 Testing. Harvard Business Review. (2020). Available at: https://hbr.org/2020/07/a-better-way-to-scale-covid-19-testing&nbsp (accessed February 17, 2022).

 28. Anupindi R, Schroeder L, Dewar R, Rajaram S, Edkins E. COVID-19 Testing Scale up-Key Issues Considertions for Michigan Policymakers. Institute for Healthcare Policy& Innovation, University of Michigan. (2020). Available at: https://ihpi.umich.edu/COVIDtesting (accessed February 17, 2022).

 29. Roger AA, Nafisa MIA, Alice A. Recovered but constrained: narratives of Ghanaian COVID-19 survivors experiences and coping pathways of stigma, discrimination, social exclusion and their sequels. Int J Health Policy Manag. (2021) 1–13. doi: 10.34172/IJHPM.2021.81

 30. Megnin-Viggars O, Carter P, Melendez-Torres GJ, Weston D, Rubin J. Facilitators and barriers to engagement with contact tracing during infectious disease outbreaks: a rapid review of the evidence. PLoS ONE. (2020) 15:E0241473. doi: 10.1371/Journal.Pone.0241473

 31. Department of Health and Social Care, the UK. Coronavirus (COVID-19) Scaling up Our Testing Programmes. (2020). Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/878121/coronavirus-covid-19-testing-strategy.pdf

 32. Kim JH, An JAR, Oh SJJ, Oh J, Lee JK. Emerging COVID-19 Success Story: South Korea Learned the Lessons of MERS. Our World in Data. (2021). Available at: https://ourworldindata.org/covid-exemplar-south-korea (accessed February 17, 2022).

 33. Asian Development Bank (ADB). The Republic of Korea's Coronavirus Disease Pandemic Response Health System Preparedness. (2021). Available at: https://www.adb.org/sites/default/files/publication/730201/republic-korea-coronavirus-disease-pandemic-response.pdf (accessed February 17, 2022).

 34. National Institute of Health (NIH). NIAID Pandemic Preparedness Plan Targets ‘Prototype’ and Priority Pathogens. (2022). Available at: https://www.nih.gov/news-events/news-releases/niaid-pandemic-preparedness-plan-targets-prototype-priority-pathogens (accessed February 17, 2022).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Ha, Yangchen and Assan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.












	
	GENERAL COMMENTARY
published: 13 July 2022
doi: 10.3389/fpubh.2022.917350






[image: image2]

General Commentary: Whether Urbanization Has Intensified the Spread of Infectious Diseases—Renewed Question by the COVID-19 Pandemic
Urban Density and COVID-19: Correlation Between Densification, Unhealthy Urban Conditions, and the Spread of Infectious Diseases

Ali Cheshmehzangi1,2*, Tong Zou2, Zhaohui Su3 and Ayotunde Dawodu2


1Network for Education and Research on Peace and Sustainability (NERPS), Hiroshima University, Hiroshima, Japan

2Department of Architecture and Built Environment, University of Nottingham Ningbo China, Ningbo, China

3School of Public Health, Southeast University, Nanjing, China

Edited by:
Juarez Antonio Simões Quaresma, Universidade Do Estado Do Pará, Brazil

Reviewed by:
Marta Jankowska, Beckman Research Institute, City of Hope, United States

*Correspondence: Ali Cheshmehzangi, Ali.Cheshmehzangi@nottingham.edu.cn

Specialty section: This article was submitted to Infectious Diseases - Surveillance, Prevention and Treatment, a section of the journal Frontiers in Public Health

Received: 11 April 2022
 Accepted: 23 June 2022
 Published: 13 July 2022

Citation: Cheshmehzangi A, Zou T, Su Z and Dawodu A (2022) General Commentary: Whether Urbanization Has Intensified the Spread of Infectious Diseases—Renewed Question by the COVID-19 Pandemic. Front. Public Health 10:917350. doi: 10.3389/fpubh.2022.917350



Keywords: urban density, COVID-19, densification trend, unhealthy urban conditions, disease spread, public health, cities


A Commentary on
 Whether Urbanization Has Intensified the Spread of Infectious Diseases—Renewed Question by the COVID-19 Pandemic

by Yu, D., Li, X., Yu, J., Shi, X., Liu, P., and Tian, P. (2021). Front. Public Health 9:699710. doi: 10.3389/fpubh.2021.699710



The ongoing COVID-19 pandemic attracts numerous research interests across various fields and disciplines. Since most populations live in the cities, research in public health and urban studies regarding pandemic prevention and control in higher-density areas has become one of the top priorities in this new pandemic era. Studies revealed that population urbanization-introduced density growth does not increase the spread of infectious disease, while land urbanization-introduced building density growth can increase the risks of spreading infectious diseases (1). Moreover, regional heterogeneity is found in the distribution of impacts of urbanization on the spread of infectious diseases (ibid). Yu et al. (1) found that greater population urbanization can reduce the morbidity, mortality, and spread of class A and B infectious diseases, while greater land urbanization has the opposite impact. In China, Class A only contains plague and cholera, and class B includes SARS, AIDS, anthrax, tuberculosis, typhoid, etc. (2). Coronavirus pneumonia belongs to class B infectious disease in China. It has been treated as class A due to its high risks of spreading strong infectivity and wide range of spreading. Thus, those findings may also be applied to the scenarios of COVID-19 outbreaks in China's urban areas to some extent.

In Yu's et al. (1) study, population urbanization is determined by the proportion of the urban population, while the density of urban buildings measures land urbanization. Such consideration may not fully reflect the actual level and degree of the two types of urbanization. Also, another critical determining factor of spreading infectious diseases related to population density should be considered as people's mobility. This factor is related to the infectious source and/or virus needed to be transmitted in the first place to increase the risk of infecting others and spreading widely. However, China has adopted stringent and different COVID-19 pandemic control and prevention policies, different from other countries. This approach is widely known as the zero-COVID approach or zero-tolerance concept (3). As a consequence of this zero-COVID policy, people living in areas with higher urban density may be required to stay at home for quarantine and do regular testing during a specific time. In some cases, like in Shanghai's recent outbreak in March 2022, some people are relocated to local government-assigned quarantine locations (e.g., cabin hospitals and hotels) once one or multiple infected cases are found, or lockdown is imposed.

Moreover, regarding context specificity, not only do countries have different pandemic control and prevention policies and protocols, but also provinces and cities in China have different interpretations and implementations of the central government policies. Such a decentralized approach varies in making regional guidelines and governance. For instance, we noticed differences in the case of Shanghai in April 2022 and Wuhan in January 2020. Regarding those points, the conclusion drawn from China's provincial and city-level data without consideration of mobility may need more consideration and comprehensive investigations covering the factors related to people's mobility under different unique pandemic control and prevention strategies such as city-wide lockdown, health code illustrating health code, and durations of home quarantines.

To date, scholarly research studies that only focus on the correlation between density and COVID-19 spread do not address the main issues related to urban density. They often neglect the combined effect between density and other negativities (4), such as hygiene or sanitation issues, socio-economic disparities, overcrowding, higher connectivity, higher mobility, spatial conditions, poverty, etc. Density is often entangled with other urban geographies, suggesting how it can couple with other factors and become a major urban problem (5). Therefore, it is not accurate to jump to immediate conclusions that “population density has no obvious impact on the spread of infectious diseases” (1). In fact, any disease spread could be intensified with higher population density, arguing in favor of the point that unplanned urban densification could lead to unhealthy urban conditions; and hence, faster spread of infectious diseases. This viewpoint cannot be supported when density alone is studied, and spatio-temporal studies are not accurate.

We urge ongoing research to pay more attention to negativities associated with urban density. Such studies should consider multiple factors for the correlation analysis of density issues. Scholarly research must not only explore a linear correlation between two factors of density and disease spread and should instead understand the other contextual factors and urban characteristics that may be influential in intensifying the negative impacts of high-density urban patterns.

Here, we provide a few examples of how the correlation between population density and influential negativities (4, 6, 7) matters more than just density alone. When it comes to poorer communities, there are issues related to intergenerational living, higher occupation risks, potential unsanitary issues, and lower socio-economic levels (8–10). Hence, a dense poor community could contain many risks for disease spread. Concerning land-use planning issues, a balance is needed between mixed-use development, density, and compactness of the urban environments. There are higher risks of population density and unnecessary mobility in the mono-functional compact urban layouts, which could also relate to urban morphologies (i.e., urban form and configuration). Another example is related to overcrowding issues, often linked with less efficient critical infrastructures in dense urban environments (11–13). Poorer urban services could lead to lower-level urban public health and safety, which means dense urban areas may have little room for diverse and efficient urban services, such as good quality healthcare services, public transportation networks, food delivery and distribution systems, etc. Lastly, we refer to small-scale matters or details of the built environments, such as micro-level factors like ventilation, waste management, housing quality, provisions, and attributes, social services, etc. These factors often perform lower or are minimized in dense urban areas.

In sum, we urge researchers to refrain from singular correlation analysis between density and disease spread. Scholarly research in this area must be accurate and comprehensive to ensure the right data is used, analysis is conducted flawlessly, and correlations are complex and valid. Therefore, density mattes, in combination with negativities and disease spread. We suggest future research include and evaluate context-specific factors. This should be done more carefully to avoid one-size-fits-all solutions and/or suggestions. More importantly, we anticipate future policies and reforms to respond to density matters. Future urban planning and design paradigms should be aligned with healthy city indicators and consider urban public health as a significant driver to creating better living and working environments.
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Introduction

COVID-19 is a severe respiratory disease that broke out in late 2019 (1), It is highly infectious and pathogenic which caused by SARS-CoV-2 infection (2). Since the outbreak, COVID-19 has spread almost rapidly around the world, the rapid increase in the number of patients has raised the alarm of the World Health Organization and has been classified as a public health emergency of international concern by the World Health Organization. As of 24 June 2022, COVID-19 has caused 546,550,738 confirmed infections and 6,347,660 deaths worldwide. Beyond the health impact, the COVID-19 pandemic has caused social, economic and political damage. At present, the overall situation of the epidemic is still serious, and mask wearing, social distancing, isolation and symptomatic support treatment are still the main priorities. With the rapid development of the COVID-19 epidemic, the emergence of mutant strains, and the lack of specific and effective treatments, there is growing expectation for a COVID-19 vaccine, and most people believe that vaccination essentially protects people from SARS-CoV-2 infection, preventing further spread of COVID-19, and that herd immunity following mass vaccination can further prevent outbreaks (3). However, COVID-19 vaccines have been mass administered in most countries at present, COVID-19 has not gone away. Outbreaks and epidemics continue from time to time, and the number of confirmed cases and deaths from it continues to rise. Why does COVID-19 persist despite mass vaccination, causing huge confusion among health care workers.



Current situation of COVID-19 vaccines development and injection in the world

According to the data released by World Health Organization (WHO), 182 COVID-19 vaccines have entered the pre-clinical trial stage, of which 73 have entered the clinical research stage, and 21 have entered the clinical phase III or phase I II/III (4). Depending on the target and the technology used in preparation, vaccines can be divided into the following categories: inactivated vaccines, recombinant spike vaccines, viral vector vaccines, RNA vaccines, live attenuated vaccines, virus-like particles vaccines, and so on (5–7). Vaccinating as many people as possible against effective COVID-19 vaccines to achieve herd immunity as quickly as possible to prevent the pandemic. COVID-19 vaccines are now available in most countries around the world, with mass vaccination plans approved for the vaccine in the population.

The Medicines and Healthcare Products Agency in the United Kingdom has approved the COVID-19 BNT162B2 developed by Pfizer (USA) and Bio N-Tech (Germany), the COVID-19 vaccine developed by AstraZeneca, and the COVID-19 mRNA 1,273 developed by Moderna for emergency use (8–10). The FDA of the United States has approved Pfizer COVID-19 vaccine, Moderna COVID-19 vaccine and Janssen COVID-19 vaccine for emergency use (11, 12). In addition to Estonia, Malta and Norway, at least 26 countries were using a combination of AstraZeneca, Moderna and Pfizer COVID-19 vaccine (13). And countries including Pakistan, Morocco, Hungary, Bolivia, Nepal and Argentina had approved the emergency use of the COVID-19 vaccine developed by China Biotech Corporation. Indonesia, Brazil, Turkey and Chile are among the countries that have approved emergency use of the COVID-19 vaccine from Beijing Kexing Biotech Co. Ltd (14). At present, the top 5 countries for total doses of COVID-19 vaccine were the United States (6.129 million), China (4.052 million), the European Union (2.66 million), the United Kingdom (1.82 million) and India (1.084 million) (15).



Immunogenicity and safety of existing COVID-19 vaccines

These vaccines have different action mechanisms against COVID-19, leading to different injection procedures, timing and dosages. Most existing COVID-19 vaccines have good immunogenicity and safety, and are widely tolerated by the population. Injection can improve the seroconversion rates (SR) and geometric mean titer (GMT) in vivo, which can significantly enhance human immunity against COVID-19 (16, 17). The most common adverse reaction at the injection site were pain, and the most systemic adverse reactions were fatigue and fever. The vast majority of adverse reactions in the vaccinated subjects were mild to moderate and resolved within 48 h of vaccination (18–20). The immunogenicity of the vaccines may increase with increasing dose and its adverse reactions may increase accordingly. At the same time, the injection procedure and age will also affect the effectiveness and safety of the vaccine. The most widely used vaccine is inactivated vaccine, which is the first vaccine in the world to have the results of animal tests made public. After injection of inactivated vaccine, SR is higher than 90%, and the incidence of adverse reactions is <30%. In addition, SR and GMT will increase with the increase of vaccine dose with good immunogenicity and no grade 3 adverse reactions, indicating reliable safety (21). Adenovirus vector vaccine elicits humoral and cellular immune responses to SARS-CoV-2, and enhanced immunity enhances the titer of neutralizing antibodies, achieving a 70.4% response rate in clinical trials with a 0.15% incidence of serious adverse reactions (22). Double dose of RNA vaccine produced a stronger immune response than single dose, and studies showed that 64.5% of participants had at least one or more symptoms after vaccination, 79.7% of them were able to continue their daily life, 12.33% even required temporary leave of absence, and 3.36% required hospitalization. The incidence of adverse reactions in the elderly was lower than that in the young (23). After injection of recombinant spike protein nanoparticles vaccine, SR exceeded 95% and the incidence of serious adverse reactions was about 1.96%. GMT and adverse reactions increased with the increase of vaccine dose (24). Most adverse reactions after vaccination are common and not life-threatening, suggesting that the body's immune system is building protection (25). The current approved COVID-19 vaccines have been proven to be safe and there is some comfort in getting vaccinated. However, long-term observation and more trials are needed to confirm the safety of COVID-19 vaccines due to the current short follow-up period.



The main reasons why vaccination did not apparently stop transmission of the SARS-CoV-2


Phase III clinical trials are few and inconclusive

It usually takes at least 8 or even more than 20 years for a vaccine to go from development to market, including pre-clinical studies and clinical trials. Pre-clinical studies usually take 5–10 years for strain screening, strain attenuating, strain adaptation to cultured cell matrix and stability study during subculture. Clinical trials are divided into three stages, phase I, II and III. Different countries have different strict regulations on human clinical trials of vaccines. Phase I clinical trials preliminatively investigate human safety and generally involve dozens to 100 subjects. The phase II trial will focus on dose exploration, preliminary efficacy evaluation and safety in a larger population, which involve several hundred to thousand cases. Phase III clinical trial is randomized, blind, placebo-controlled designs that comprehensively evaluate the efficacy and safety of vaccines, typically involving thousands to tens of thousands of participants. All clinical trials typically take at least 3 to 8 years, and some even more than 10 years. Phase III clinical trials are the basis for registration and approval of vaccines. However, most types of COVID-19 vaccines have not yet undergone or are still undergoing phase III clinical trials, and the available clinical information is not conclusive enough to represent the true situation after vaccination. The main trial stages and basic information of COVID-19 vaccines showed in Table 1. Although some vaccines have undergone phase III trials and have been approved in several countries, the small number of participants in previous trials cannot accurately reflect the specific clinical protective effect and safety of mass injection. In addition, the sample size and indicators of most clinical trials were not comprehensive enough, and only using SR and GMT to measure efficacy. Although they can reflect the immunogenicity of vaccines to a certain extent, there is insufficient evidence to evaluate their effectiveness. In addition, these indicators are temporary which cannot fully reflect the long-term effects of the vaccines. We believed that the positive rate of SARS-CoV-2 nucleic acid is the most powerful indicator of vaccine efficacy, but no vaccine study has reported this so far. And the debate about the fairness of COVID-19 vaccines has been going on for a long time, with many third world countries still struggling to get a vaccine and global vaccination rates low (26). The phase III clinical trials were carried out in a small number of countries, with incomplete population and ethnicity, small sample size and short observation period, so the research results could only serve as a reference to some extent. And according to the current results and experience, vaccination may not completely prevent SARS-CoV-2 infection, it is unlikely that it will stop the transmission. It can only avoid the occurrence of post-infection disease or reduce the severity of the disease. Therefore, although the existing vaccines have good immunogenicity and safety, we still do not know whether vaccination can significantly reduce the positive rate of SARS-CoV-2 infection, protect against COVID-19, and how long the protection will last.


TABLE 1 Current commonly used COVID-19 vaccines.
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The pertinence of COVID-19 vaccines development lags behind the rate of virus mutation

SARS-CoV-2 is a single-stranded plus stranded RNA virus with a genome length of about 30kb, which is the virus with the longest nucleic acid chain among the known RNA viruses, it is easy to mutate with the spread of the virus and its mutation may have the potential to affect the pathogenicity of the virus. Whether the COVID-19 vaccines are still effective in SARS-CoV-2 mutation is an important question for vaccine injection. At present, multiple SARS-CoV-2 variants have emerged, Alpha, Beta, Delta, Gamma and Omicron have been reported as variants of concern by WHO, and Epsilon, Eta, Iota, Kappa, Theta and Zeta as variants of interest (Figure 1). These mutations greatly increase the infectivity and infection rate of SARS-CoV-2, and the more the virus spreads, the greater the chance of mutation. Studies have shown that in addition to enhancing viral transmisability, Alpha and Beta also cause widespread mutations in spike genes that are insensitive to neutralization by vaccine-induced and infection-induced antibodies, which is very detrimental to the protection offered by monoclonal antibody therapies and vaccines (27), And the neutralization activity of plasma pair to Beta and Gamma variant strains in convalescent COVID-19 patients at the early stage of the epidemic was significantly reduced, which put patients at risk of reinfection with these variants once they recover. The Delta variant is thought to spread faster than other variants, and serum from individuals who received a single dose of Pfizer or Astrazeneca vaccine had little discernible inhibition of the Delta subtype. With two doses of vaccine, 95% of individuals responded neutrally but had a titer 3 to 5 times lower for Delta than for Alpha (28), and a large number of breakthrough infections were reported after mRNA and adenovirus vector vaccines were administered (29). The rapidly spreading Omicron variant is highly likely to compromise some of the vaccine's protection by affecting the ability of antibodies to recognize the virus and block infection, making the vaccine less effective at preventing infection. The variant is highly contagious, spreading several times faster than the Delta virus and potentially infecting people who are immune to other variants. Recently, preliminary studies suggested that while the protection provided by existing COVID-19 vaccines will not be completely eliminated by Omicron, continuous booster shots were needed to increase immunity to Omicron (30). So the mutated virus may develop resistance to the existing vaccines, weakening the effectiveness of them. The original vaccine does not have antibodies to the mutated virus, reducing the protection of the vaccines to the human body, and the vaccine needs to be improved over time.
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FIGURE 1
 The time and place of discovery of SARS-CoV-2 variants.


Although some clinical trials showed that the serum antibody level after vaccination remain at a high level, scientific research also found that the body antibody could be reduced in different degrees after vaccination 6 months. So, constantly strengthen injection of vaccination are needed to maintain the body antibody levels, and it also can not completely prevent COVID-19 after vaccination (31). Thus, the current vaccines do not provide permanent protection, and repeated booster shots do not guarantee zero risk of SARS-CoV-2 infection. With the spread of COVID-19, more and more animals besides humans have been found to be susceptible to the disease, and the host of the disease has been expanding, increasing the types and number of susceptible animals. A variety of mammals have been infected as COVID-19 hosts through contact with COVID-19 patients and can be passed back to humans, leading to further transmission. In addition, the “wild” host expansion of COVID-19 is also under way, and frequent human wildlife research will increase the risk of people contracting COVID-19. We do not yet know how many host animals are susceptible to COVID-19, which makes screening difficult. The continuous expansion of COVID-19 hosts accelerates the mutation and spread of COVID-19 in silence, which poses an unknown threat to humans (32). Currently, vaccine development is struggling to keep up with the rate of virus mutating, and new strains may appear just as an effective vaccine against the latest variant is developed. The constant mutation of the virus is not only a key factor in the current COVID-19 pandemic, but also poses a huge challenge to vaccine development. SARS-CoV-2 variants are still evolving constantly that could ultimately render our current therapeutic and preventive interventions for COVID-19 ineffective. These require us to stop transmission of the virus as quickly as possible, rapidly develop new vaccines and accelerate vaccine application. It is better to develop a universal effective vaccine against all novel coronavirus strains to prevent the virus from mutating and spreading.



The long-term adverse reactions after injection of COVID-19 vaccines are unknown and the injection hesitation phenomenon exists

Some serious adverse reactions and side effects associated with the vaccine may occur long after the vaccine has been put into use. A common toxic adverse reaction of vaccines is the anti-dependent enhancement (ADE), which is the significant increase in the ability of certain viruses to replicate or infect with the help of existing non-neutralizing or poorly neutralizing antibodies. However, the time between the discovery of SARS-CoV-2 and the development of a COVID-19 vaccine has not been long enough, and the vaccine has not been available for use for <1 year. The role of ADE in SARS-CoV-2 is unclear, but it has been reported in other coronavirus vaccines (33, 34). There had also been some clinical reports of serious adverse events after vaccination, although the researchers believed that these were not obviously related to the COVID-19 vaccine itself, it were due to comorbidities of the participants (35). The potential adverse reactions caused by the vaccines are still unclear, and the long-term adverse reactions are even more unpredictable. So many people are reluctant or delayed to get vaccinated against COVID-19, and there is a phenomenon of vaccine hesitation in society (36), which reduce vaccine coverage rate, make it difficult to achieve herd immunity, so the COVID-19 vaccine cannot play the desired role.



The antibodies of the elderly decrease rapidly after vaccination and the vaccines have little protective effect on them

Aging is an independent risk factor for COVID-19 death and severe case, the majority of COVID-19 deaths and severe cases are in the elderly, and patients over 60 years of age with severe comorbidities are shown to have a higher risk of death (37), As populations age, older people are growing rapidly in all countries, which makes it even more important for them to be vaccinated against COVID-19. However, due to various reasons such as immune aging, the antibodies in the elderly decreases rapidly or even disappears after vaccination, which limits the protective effect of the vaccine on them, so they are still at high risk of COVID-19 and severe illness (38). Studies have shown that the effectiveness, immunogenicity and antibody duration of vaccination in the elderly are lower than those in the young (39, 40). And vaccination priority for adults 20 to 49 years of age minimizes cumulative morbidity, but when vaccination priority is given to adults over 60 years of age, mortality and life loss are minimized in most cases (41). Because most vaccines evaluated in early clinical trials have been administered in healthy young people, immunization programs that work well in healthy people may not be appropriate for older people. In addition, the elderly mostly have comorbidities, so most vaccines are not classified as suitable for vaccination due to these uncertain factors, which brings certain difficulties to the protective effect of vaccination on the elderly.



Injections in children may cause some diseases to worsen but children are more likely to spread the infection

In terms of the development of the global epidemic, the proportion of cases in children has increased significantly, the age of infected children is also decreasing. Although the incidence and severity of COVID-19 remains lower than in adults, the child population may play an important role in the spread of the virus. Studies have shown that the SARS-CoV-2 load in the nasopharynx of children patients is equal to or even greater than that of adult patients, and the children have more aggregation activities, which makes the infection more easily spread (42). This showed that children should be a priority target for vaccination and need greater protection. If not vaccinated, almost everyone, including young children, is at risk of contracting SARS-CoV-2 at some point in their lives. While most children with COVID-19 experience asymptomatic or mild symptoms, some become severe and a small percentage die. But it found that children after injection of COVID-19 vaccines may aggravate their original diseases, or produce adverse reactions, such as tic disorder, attention deficit hyperactivity disorder and so on, so some parents are hesitant to vaccinate their children (43). In addition, the recommended age of vaccination for most vaccines is still 18 years and older. We believe that the reason why children are not recommended to be vaccinated is related to the uncertain safety. Vaccines go through multiple stages of research including safety evaluation and phase I/II/III clinical trials before they can be registered on the market. It usually takes years to decades from development to marketing. Because there is no clear safe and reliable vaccine, ensuring the safety of children is the top priority. The vaccine research is still in the experimental stage, and even the common vaccine is tested in adults first. The immune response caused by the COVID-19 vaccine is complex, and due to the different immune responses of children and adults, there must be many differences from a few months of infants to teenagers. These differences lead to the different doses and times of vaccination of some vaccines, which brings some challenges to the research, development and accurate application of COVID-19 vaccines. But at the current rate of development, the prospects for COVID-19 vaccine development look very promising. We look forward to the early development of a vaccine suitable for children to protect their health and normal life.




Conclusions and prospects

With the continuous expansion of vaccination coverage, COVID-19 prevention and control has gradually shifted to a strategy based on vaccination and supplemented by drug intervention. At present, there is a cautious and positive trend in global vaccine development for COVID-19. Vaccination plays a part in preventing and controlling COVID-19, which puts us in a good position to combat SARS-CoV-2 infections. While the majority of COVID-19 vaccines have shown good immunogenicity and safety, many uncertainties remain for the future. Due to the short time on the market of COVID-19 vaccines and the lack of observational data, adverse reactions after a long time are still unknown. At present, there are many kinds of vaccines in clinic, with different injection doses and procedures, uncertain tolerance of people of different ages, and vaccine hesitancy and uneven global injection make it difficult to achieve herd immunity in a period of time. COVID-19 vaccines are time-sensitive and protective for a period of time, booster shots are needed to maintain the efficacy of the vaccine over time, but the risk of infection and possible adverse reactions after repeated booster shots remain unclear.

COVID-19 vaccine research and development should be greatly strengthened in the future. In the process of vaccine development, attention should be paid to long-term possible adverse reactions, the specific situation of children and the elderly should be fully considered, so as to develop more safe and effective COVID-19 vaccines with longer protection period and stronger universality, making it more effective at preventing infection and can induce a broad, strong and long-lasting immune response to reduce the need for continuous booster shots. At the same time, in order to prevent SARS-CoV-2 from mutating, genetic changes of the virus should be continuously monitored, efforts should be made to reduce the rate of virus transmission, and vaccines updating should be accelerated to respond to future mutated strains to ensure that the protection level recommended by WHO continues to be provided against infections and diseases caused by other mutated strains that may arise in the future. A comprehensive vaccine safety monitoring system should be established, and large-sample, multi-center, multi-indicator, long-term follow-up clinical trials should be conducted to explore the exact efficacy and safety of COVID-19 vaccines. Accelerating vaccine production and population immunization process, improving vaccination willingness, overcoming vaccination hesitation, and improving fairness and scientific vaccine distribution are the main strategies for controlling the epidemic in the future. In addition, the advanced development concept of universal COVID-19 vaccine can be put forward and implemented, and a class of effective vaccines for all coronaviruses can be found to prevent the continuous mutation and spread of coronaviruses. As most countries are currently only busy stabilizing their own epidemics, which may be another reason for the spread. In order to prevent the outbreak of COVID-19 in a faster and better way, countries should take a global perspective, ensure a synchronized response, constantly narrow the gap, and take the same measures to jointly fight the pandemic. Whether COVID-19 outbreaks again will depend on the vaccination coverage, protective efficacy, safety and durability of COVID-19 vaccines, as well as the rapid response to virus mutations. At present, people around the world are paying attention and actively responding to the epidemic, we believe that victory over COVID-19 will come soon.
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COVID-19 is a contagious disease that has infected over half a billion people worldwide. Due to the rapid spread of the virus, countries are facing challenges to cope with the infection growth. In particular, healthcare organizations face difficulties efficiently provisioning medical staff, equipment, hospital beds, and quarantine centers. Machine and deep learning models have been used to predict infections, but the selection of the model is challenging for a data analyst. This paper proposes an automated Artificial Intelligence-enabled proactive preparedness real-time system that selects a learning model based on the temporal distribution of the evolution of infection. The proposed system integrates a novel methodology in determining the suitable learning model, producing an accurate forecasting algorithm with no human intervention. Numerical experiments and comparative analysis were carried out between our proposed and state-of-the-art approaches. The results show that the proposed system predicts infections with 72.1% less Mean Absolute Percentage Error (MAPE) and 65.2% lower Root Mean Square Error (RMSE) on average than state-of-the-art approaches.
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Introduction

More than 2 years after the outbreak of the COVID-19 disease, the containment of this virus still represents a serious challenge to the world community.1 Over half a billion people have been infected worldwide, including more than 6.27 million deaths as of 20 May 2022.2 Studies have revealed that COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), not only affects the lungs of the infected person but also negatively impacts other vital organs such as the brain, heart, liver, pancreas, and kidney (1–3). Effect on the brain can lead to muscular pain and headaches in individuals with a mild infection, whereas in severe cases it could lead to stroke (2). Heart complications due to SARS-CoV-2 include inflammation and dysfunction of muscles and may cause the death of patients suffering from cardiovascular diseases (2). Furthermore, the SARS-CoV-2 virus could lead to pancreatic islet-cell dysfunction (3) causing diabetes (4–6). In addition, it causes liver impairment and acute kidney injury (2). To reduce the spread of the virus, countries have imposed several strict policies and practices, such as travel bans, home confinement, and business closures. These measures showed to be effective in reducing the infection and death rates during this pandemic (7–9). However, too strict measures may lead to income loss, anxiety, and depression on an individual scale, and cause longer-term economic and social hardship on the national scale (10–12). A survey conducted in the United States of America among 5,412 adults showed that 31% of the respondents suffered from anxiety/depression symptoms, 26% from stressor-related disorder symptoms, and 11% considered suicide during the COVID-19 pandemic (13). Strict confinement measures have also shown an adverse effect on students’ mental health. A survey conducted on 69,054 university students during the lockdown in France revealed that 27.5 and 24.7% of the respondents had a high level of anxiety and stress, respectively, 16.1% had severe depression, and 11.4% had suicidal thoughts (14). In addition, individuals often miss routine medical checkups and tests due to confinement, leading to severe health issues, especially in patients suffering from chronic diseases (15). Discontinued daily exercises have been leading to obesity and associated health risks (16). Consequently, it becomes crucial to predict infections to gain a better understanding of the growth of the infection curve, and deeper insight into when to enact, relax or terminate these strategies. In addition, infection forecasting allows healthcare organizations to effectively plan the required medical resources enabling smart healthcare (17, 18).

Artificial Intelligence (AI) algorithms have been widely adopted in the medical sector to enable smarter, effective, and efficient healthcare (19). Different AI-based algorithms are used for screening, diagnosing, and monitoring COVID-19 (20–22) as well as for predicting the number of infections (23–29). Recent studies have used machine/deep learning time series models to predict the spread of COVID-19 infections, based on previous infections, in a few countries. These studies use different prediction models (30). However, considering the difference in the geographical characteristics and social behaviors of the countries under study, we argue that the use of a single prediction model becomes questionable (31). This is because the model is not capable to capture the infection evolution, leading to inaccurate prediction. Such a failure may lead to greater distress and more deaths. Furthermore, these models need to be constantly updated and fail to capture the evolving COVID-19 variants such as omicron.

To address these shortcomings, in this paper, we propose an automated AI-enabled proactive preparedness system for accurate prediction of COVID-19 infection growth in real-time, with no human intervention. The proposed system incorporates an intelligent agent that analyses the temporal distribution of the infection evolution for a city/state/country and maps the prediction model to the corresponding trend using a novel trend-to-model mapping approach. The prediction results by the system aid government and healthcare organizations to be well prepared and proactively tackle the chaotic pandemic situation. For instance, the measures can be relaxed if the prediction shows a decrease in COVID-19 infections, whereas they can be made stricter if an increase in the number of infections is predicted. A detailed real-time infection data acquisition, preprocessing framework, and request-response flow are presented. The performance of the proposed system is compared with state-of-the-art approaches to predict COVID-19 infections in fifteen countries based on the literature.



Related work

Time series prediction is a useful method that considers the influence of previous infection data to predict future data (31). Different machine learning algorithms have been used to analyze the data of epidemic and pandemic diseases such as influenzas A (H1N1),3 B,4 measles childhood disease (32), SARS, MERS, and COVID-19 outbreaks, at the country, regional or global level (31). Though any machine learning algorithm can produce reliable results at some level, time series algorithms are the most accurate approaches to studying epidemic and pandemic diseases because of their dynamic and temporal nature (33). Several studies in the literature have proposed the use of different time series machine learning and deep learning algorithms for the prediction of COVID-19 infections in different countries (23–29).

As shown in Table 1, the selection of machine learning algorithms is either not justified (23–26), or based on the popularity of the prediction algorithm (27, 28), or the performance of the algorithm when implemented for some other country (29). However, given the significant difference in the geographical characteristics and social behaviors of the countries, the use of a single algorithm to predict disease spread becomes questionable, as it is highly likely that the algorithm fails to generate accurate predictions (31). Consequently, an algorithm should be selected based on the temporal distribution of the infection evolution data for a country. In this paper, we propose an intelligent agent, integrated within an automated AI system, that will analyze the trend of infection growth in a country, and selects the most accurate learning algorithm. This algorithm predicts COVID-19 infections with the least error for that country than other state-of-the-art algorithms. We compare the performance of our selected algorithm for each country in Table 1 with the outperforming algorithm(s) for that country in the literature.


TABLE 1    Summary of COVID-19 infection prediction using time series machine learning and deep learning algorithms.
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Materials and methods


Automated artificial intelligence-enabled proactive preparedness real-time system for accurate COVID-19 infection prediction

This section presents the workflow of our proposed system for predicting COVID-19 infections along with the steps involved. It explains the method used to select the most accurate model for prediction based on the infection’s trend. The use of a systematic workflow for the problem of infection prediction is the most important for the accurate infection prediction for a given country. Figure 1A shows the seven stages involved in the proposed system. In the following, we explain each stage in detail.


[image: image]

FIGURE 1
(A) Workflow of the proposed automated artificial intelligence-enabled system for infection prediction, (B) architecture of long short-term memory (LSTM) cell and Bidirectional-LSTM network used in the proposed system for infection prediction, and (C) request-response workflow in the proposed system.



Infection data collection

The city-level, state-level, and/or country-level infection data can be collected from a data source that can be either an online repository (such as Johns Hopkins), healthcare organizations, and/or specialized national/international agencies for public health such as World Health Organization (WHO). In this study, we used the Johns Hopkins dataset which includes COVID-19 infections, recoveries, and deaths data from different provinces/states and countries/regions since 22 January 2020. The data fetcher module in our framework sends an HTTP request to a data source for accessing the infection data. A request contains information regarding the city/state/country and the period for which the data is required. In response to the request, the source sends the queried infection data to the fetcher module. The data is fetched at a periodic interval, which can be seconds, minutes, hours, or days depending on the frequency the data is updated in the data source and is stored in a cloud database (34–38).



Data preprocessing

The retrieved infection data is preprocessed to make it ready for the machine/deep learning algorithm. This is done by removing irrelevant attributes. As our system predicts the number of infections, the deaths and recoveries data are removed. In addition, preprocessing involves the identification and removal of outliers if any, as well as the identification and handling of missing values. The identification of outliers in infection prediction is important as the learning algorithms are sensitive to outliers and could produce unexpected results (39). The outliers, if present, can be removed using visualization of the infection data plot and/or machine learning approaches based on bagging, boosting, and local outlier factor algorithm (39). The missing values in infection data, if any, can be handled either by removing the corresponding timestamp from the dataset or adding synthetic values. The synthetic values can be generated using statistical methods such as mean, median, and mode, or machine learning approaches such as kNN imputation and rpart (39).



Infection trend-to-model mapping

The trend of the preprocessed infection data is analyzed to select the most accurate prediction model that is adaptive to the dynamicity of the evolution of the infection spread. The most accurate model predicts the infections with the least error compared to other models. To analyze the distribution of the infection spread, the infection data is first divided into intervals of equal length as shown in Figure 1A. The slope between each interval is then determined by constructing a linear model between the interval endpoints. If all the data points between the interval endpoints lie below the data points on the linear model, then the slope between the interval endpoints is convex. On the other hand, if all the points between the interval endpoints lie above the points on the linear model, then the slope between the endpoints is concave. The slope is straight if the data points between the interval points lie on the constructed linear model. The distribution of the infection’s trend is then determined based on the slopes, and a corresponding prediction model is selected. ARIMA model is selected to model the infection data following an exponential trend with a constant rate. This is because ARIMA is best suited to capture the exponential behavior of the infection growth (31). For the infection’s data having an exponential trend with varying rates, the Long Short-Term Memory (LSTM) and Bidirectional-LSTM (Bi-LSTM) models are selected as it is capable of capturing the variability in the data (31). The infection data that increase linearly over time are modeled using the Linear Trend (LT) model. For data evolving in a polynomial fashion, the Quadratic Trend (QT) model is selected. HLT model is selected for exponential + linear infection trend. This is because the HLT model is a linear function of trend and slope that captures well the linearity in an exponential trend over time. For the infection’s data with an exponential + damping trend, Damped Trend (DT) model is selected as the damping parameter used by the model provides an accurate prediction of infections for a trend that dampens over time. Figure 1B represents the architectures for the LSTM cell and Bi-LSTM network. The main components of LSTM are the cell state and gates. The cell state transfers the significant previous infection data to the chain of LSTM cells. Gates in LSTM are responsible for storing relevant and removing irrelevant infection data. LSTM consists of three gates: forget, input, and output. All the gates have a sigmoid activation function except the input gate which utilizes a hyperbolic tangent activation function. In LSTM, the forget gate is responsible for removing irrelevant infection data based on the prediction output of the previous cell. The input gate adds the new infection data to the memory cell state. Finally, the output gate generates the output of the cell, i.e., the predicted infections for the next time step based on the current infections and cell state. Bi-LSTM is a recurrent neural network that consists of two LSTM networks, one in the forward direction and another in the backward.



Model calibration

The selected prediction model is calibrated for hyperparameter tuning. It is an important stage as non-optimal parameters’ values may increase the resource utilization and execution time for model development and can degrade the model’s convergence and prediction performance.



Model development

The dataset is split into training and validation. The most common approach is splitting the dataset into 70 and 30% for training and validation, respectively. The selected algorithm, with the optimal values of the parameters, is then developed using the training dataset.



Model validation

The developed model is validated using the validation dataset in terms of Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE).



Model implementation

The model is implemented in real-time for predicting infections for a city, state, and/or country. The infections trend-to-model mapping, model calibration, and model development are iterative stages. These stages are repeated based on updated and/or new data.

Figure 1C shows the request-response workflow used in the proposed system. The healthcare organizations and the government users interact with the front-end interface of the system. They are authorized based on their Access Control List (ACL) or Role-Based Access Control (RBAC) which is defined by policy. The Certificate Authority (CA) (40–42) generates a pair of public-private keys (43) for all the users. We suggest to use asymmetric cryptosystem such as Elliptic Curve Cryptography (ECC) (44) with the key length of at least 384 bit,5 which is equivalent to 7,680 bit RSA (45), for exchanging the key and then 256 bit key of Advanced Encryption Standard (AES), recommended by National Security Agency (NSA), for encryption and decryption ensuring secure communication. In addition, to ensure the integrity of data received from an external source, the SHA3-256 algorithm is used which guarantees that the data has not been modified.

The front-end runs on the user’s premises and communicates with the back-end that consists of our proposed intelligent agent. The prediction request from a user, i.e., the country for which the prediction is required, the prediction period, and the certificate, are sent to the encryptor. The encryptor encrypts the prediction request using the user’s private key. The encrypted request is sent to the intelligent agent in the back-end. The agent decrypts the request using the public key of the request initiator. Once successfully decrypted, the agent analyzes the trend of the infection data for the country and selects the most accurate prediction model. The results of the prediction model are then encrypted by the agent using the initiator’s public key. The encrypted prediction response is sent to the user at the front-end. The response is then decrypted using the user’s private key.




Implementation of the proposed automated artificial intelligence-enabled system for real-time infection prediction

In this section, the implementation of the real-time system is discussed. The suggested implemented diagram is shown in Figure 2. The infection data is collected from different data sources Dsrc such as the Ministry of Health, Hospitals, and public health agencies (for example WHO). The infection data Inf is stored using the data storage component. The raw infection data is stored as a data frame dfinfis fed as an input to the data transformation component. The preprocessed data frame [image: image] is again stored. The transformed data is constantly updated in the storage in real-time using a data update feedback loop. The preprocessed data is then divided into training [image: image] and validation [image: image] datasets. A model is selected by the intelligent agent based on the temporal distribution of the infection data evolution. The selected model f(inf)is developed using[image: image]. The performance of the model is evaluated using[image: image]. The model development is a feedback control process where the model is tuned using hyperparameter tuning unless the desired performance is obtained. The infection prediction error einfobtained from the evaluation is fed back to tune the hyperparameters. The tuned model f*(inf) is deployed for predicting infections accurately. The deployed model is updated in real-time using the model feedback loop when the infection data is updated. The healthcare organizations and the government then use the deployed model to predict the infections. This is by providing the input arguments, country for which the prediction is required, and the duration of prediction C, t. The number of infections for the prediction period Inft is sent to the healthcare organizations and the government.


[image: image]

FIGURE 2
Implementation of the proposed real-time prediction system.




Dataset

To evaluate the performance of our proposed system, we developed the prediction models for fifteen countries based on the literature (Table 1). We used the Johns Hopkins COVID-19 dataset that is updated daily.6 Table 2 presents the countries for which the prediction models are developed, the features of the dataset, data update frequency, and the period for which the COVID-19 infections data are extracted for the countries under study. The dataset has no outliers and missing values. We used the number of confirmed cases for each country to develop the models. Figure 3 shows the infection trend for the considered countries. As shown in the figure, the distribution of the infection growth for each country is different. In this paper, we use country-level data for the evaluation as the dataset does not include city-level or state-level data for the countries under study. However, the system can be used for city-level or state-level infection data as well.


TABLE 2    Characteristics of the COVID-19 dataset used in the experiments.
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FIGURE 3
COVID-19 infections’ data trend for the countries under study.




Experiments and evaluation metrics

To predict the COVID-19 infections for the countries under study, we used our proposed system that selected the most accurate machine/deep learning model based on the temporal distribution of the infection evolution for a country (31) as stated in Figure 1. For each country under study, we compared the performance of the model selected using our proposed system with the outperforming model(s) in the literature for that country (Table 1). Table 3 presents the selected model and the models used for the comparison for each country. The description and the parameters for the models are listed in Table 4.


TABLE 3    Prediction models used for the countries under study.
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TABLE 4    Description and parameters of the prediction models used in the experiments.

[image: Table 4]

To develop the prediction models, we create a separate dataset for each considered country. We use 70% of the dataset (i.e., 22/01/2020—06/06/2021) for training (develop) the model and 30% of the dataset (i.e., 07/06/2021–08/01/2022) for validating the developed model. We first developed a model for each country using the training dataset for that country. We then validated the developed model by predicting the number of infections for the validation period, i.e., 07/06/2021–08/01/2022, and comparing the predicted values with the actual ones. In addition, we developed the outperforming model(s) for each country under study based on the literature (Table 1) and predicted the infections using the developed model(s). We evaluate the performance of the models in terms of RMSE and MAPE that are computed using Equations (1) and (2), respectively.
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where n is the total number of days for which the infections are predicted

To tune the hyperparameters for the considered models, we implement each model with varying parameters’ values and select the values that result in the least MAPE. In particular, to obtain the values of α and β parameters for HLT model, we implement the model with varying values of the parameters between [0, 1] at an interval of 0.1, i.e., (α = 0, β = 0), (α = 0, β = 0.1), …, (α = 0.2, β = 0), (α = 0.2, β = 0.1),… (α = 1, β = 1). The combination of values that return the minimum MAPE is selected. For QT, we implement the model for varying degrees of polynomial between [1, 10] and selected the degree resulting in the least MAPE value. To obtain the values of α, β, Ø parameters for the DT model, we implement the model with varying values of the parameters between [0, 1] at an interval of 0.1 and selected the combination of values that return the minimum MAPE. To obtain the values of input size, number of neurons, epochs, activation function, and optimizer for LSTM, Bi-LSTM, and Bi-GRU models, we first determine the values of input size, number of neurons, and epochs by brute-force method while using Rectified Linear Unit (ReLU) activation function and Adaptive Movement Estimation (Adam) optimizer. We then vary the activation function and optimizer by keeping other parameters constant at their optimal values. The input sizes of 10, 50, 100, 200, and 250 are considered for the experiments. The different values used for epochs are 100, 200, 300, 400, and 500. However, for Italy, 1500 epochs are used as the model did not converge with 500 epochs. The number of neurons is varied from 100 to 1,000 at an interval of 100. The different activation functions used are ReLU, Softplus, Softmax, Softsign, Scaled Exponential Linear Unit (SELU), Linear, Hard_sigmoid, Sigmoid, Hyperbolic Tangent (Tanh), and Exponential Linear Unit (ELU). The optimizers used for tuning are Adam, Adadelta, Adaptive Gradient (AdaGrad), Adamax, Nesterov-accelerated Adaptive Moment Estimation (Nadam), Stochastic Gradient Descent (SGD), and Root Mean Square Propagation (RMSprop). The Mean Squared Error (MSE) loss function is used for LSTM, Bi-LSTM, and Bi-GRU models. To yield parameters’ values for the ARIMA and SutteARIMA models, we first check the stationarity of the infection data and determine the value of d. This is by performing the statistical augmented Dickey-Fuller (ADF) test (33, 46) that checks the null hypothesis that the data is non-stationary and returns a probability score (p-value). A p-value < 0.05 indicates that the time series is stationary. If the p-value ≥ 0.05 (non-stationary time series), then the time series is differenced and the ADF test is performed again. This is repeated until the time series becomes stationary. The value of d is then equal to the number of times the series is differenced. After determining the value of d, we plot the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots for the differenced time series to determine the values of q and p, respectively. The number of lags for which the ACF is outside the significant threshold represents the value of the parameter “q” value and the number of lags for which the PACF is outside the significant threshold represents the value of “p.”




Results


Hyperparameter tuning

Figure 4 shows the MAPE obtained by the HLT models, for different values of α and β, when developed for the infection data of China, France, Germany, Italy, and Malaysia. It shows that the minimum MAPE is obtained for (α, β) values of (0.1, 1.0), (0.3, 0.9), (1.0, 0.1), (1.0, 0.1), and (0.1, 0.4) for China, France, Germany, Italy, and Malaysia, respectively. We use these values to develop the prediction model for the corresponding countries. Figure 5 shows the MAPE obtained by the DT model, for different values of α and β, when developed for the infection data in Brazil, India, and Saudi Arabia. It shows that the minimum MAPE is obtained for (α, β) values of (1.0, 0.2), (1.0, 0.1), and (0.5, 0.1) for Brazil, India, and Saudi Arabia, respectively. We use these values to develop the prediction model. Figure 6 shows the training and validation losses over epochs for LSTM, Bi-LSTM, and Bi-GRU models for China, Germany, Italy, Australia, Iran, Russia, Spain, the United Kingdom, the United States, Israel, Brazil, and India. As shown in the figure, both training and validation losses converge, indicating a good fit. However, for Australia (Figure 6D), there is a gap between the training and validation losses indicating unrepresentative training dataset. This is because the number of infections for Australia increased rapidly during the validation period, as shown in Figure 3, which is not captured by the model develop using the training dataset. For the ARIMA model, we first perform the ADF test to check the stationarity of time series data for France, Italy, Malaysia, Spain, the United States, and Saudi Arabia. The p-values obtained for Malaysia, Spain, the United States, and Saudi Arabia after the second-order are 0.000000, 0.000000, 0.000092, and 0.000117, respectively. The p-values < 0.05 for these countries indicate that the time series becomes stationary after second-order differencing. Consequently, the value of d is set to 2 for these countries. For France and Italy, p-values < 0.05, i.e., 0.003894 and 0.048181, respectively, are obtained after first order differencing. However, the ACF plots for the first ordered differenced infection data of France and Italy do not converge to zero. Consequently, we differenced the time series for these countries one more time and select d = 2 for France and Italy after obtaining a p-value of 0.000000 and 0.001730, respectively. Figure 7 shows the ACF and PACF plots for the stationary infection data, i.e., after second-order differencing, for France, Italy, Malaysia, Spain, the United States, and Saudi Arabia. As depicted in Figure 7A, 1 lag value is outside the significant threshold in the ACF plot for France indicating q = 1. Moreover, 10 values in the PACF plot are outside the threshold indicating p = 10. Similarly, (p, q) values for Italy, Malaysia, Spain, the United States, and Saudi Arabia are (5, 7), (5, 2), (6, 8), (9, 1), and (3, 1) as shown in Figures 7B–F), respectively. Table 5 shows the optimal values of parameters for the developed models.


[image: image]

FIGURE 4
Performance of Holt’s linear trend (HLT) model with varying parameters’ values for the infection data in (A) China, (B) France, (C) Germany, (D) Italy, and (E) Malaysia.



[image: image]

FIGURE 5
Performance of damped trend (DT) model with varying parameters’ values for the infection data in (A) Brazil, (B) India, and (C) Saudi Arabia.
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FIGURE 6
Training and validation loss vs. epochs for long short-term memory (LSTM), bidirectional-LSTM (Bi-LSTM), and bidirectional gated recurrent unit (Bi-GRU) models after hyperparameter tuning for infection data in (A) China (Bi-LSTM), (B) Germany (Bi-LSTM), (C) Italy (Bi-LSTM), (D) Australia (LSTM), (E) Iran (B-GRU), (F) Russia (Bi-LSTM), (G) Spain (Bi-LSTM), (H) United Kingdom (Bi-LSTM), (I) United States (Bi-LSTM), (J) Israel (Bi-LSTM), (K) Brazil (Bi-LSTM), and (L) India (Bi-LSTM).
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FIGURE 7
Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots for the stationary infection data in (A) France, (B) Italy, (C) Malaysia, (D) Spain, (E) United States, and (F) Saudi Arabia.



TABLE 5    Optimal values of parameters obtained after hyperparameter tuning for the models used in the experiments.
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COVID-19 predictions

Figure 8A shows COVID-19 confirmed cases for the training and validation datasets for China. In addition, it indicates the number of infections forecasted by the HLT model selected using the proposed automated AI system and the Bi-LSTM model from the literature (25). It shows that HLT model predicts the infections with more accuracy compared to Bi-LSTM. This is because HLT fits well the exponential + linear infection trend for China. The (MAPE, RMSE) values using HLT and Bi-LSTM models for China are (1.29, 1934.36) and (11.39, 13331.86), respectively. Figure 8B shows the predicted infections for France using the proposed automated AI-selected HLT model and state-of-the-art ARIMA model (27). It shows that HLT outperforms ARIMA. As depicted in Figure 8B, HLT model predicts with lower error for the validation period where the infection’s trend is linear than where the trend is exponential. The prediction error for HLT increases as the infection grows exponentially toward the end of the validation period, which is not captured by the model. The (MAPE, RMSE) values using HLT and ARIMA models for France are (3.87, 702931.85) and (9.39, 1155417.17), respectively. The prediction for Germany using automated AI-selected HLT and state-of-the-art Bi-LSTM (25) is shown in Figure 8C. HLT outperforms Bi-LSTM as it can capture the exponential + linear infection trend for Germany. However, similar to Figure 8B, the prediction error by HLT for Germany (Figure 8C) increases when the validation infection data exhibits an exponential trend. The (MAPE, RMSE) values using HLT and Bi-LSTM models for Germany are (9.37, 967916.97) and (28.01, 1321353.74), respectively. Figure 8D shows COVID-19 prediction for Italy using automated AI-selected HLT and state-of-the-art ARIMA (24, 27) and Bi-LSTM (25) models. The HLT model outperforms ARIMA and Bi-LSTM models. The (MAPE, RMSE) values using HLT, ARIMA, and Bi-LSTM models for Italy are (2.84, 389747.98), (6.56, 581053.16), and (12.41, 837410.43), respectively. The prediction results for Malaysia using our automated AI-selected HLT model and state-of-the-art ARIMA model (28) are presented in Figure 8E. HLT captures the infection trend for Malaysia and outperforms ARIMA in predicting COVID-19 infections. The (MAPE, RMSE) values using HLT and ARIMA models for Malaysia are (16.37, 412523.95) and (23.23, 617834.31), respectively.
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FIGURE 8
(A) Forecasting of COVID-19 infections in China using automated artificial intelligence-enabled system selected Holt’s linear trend (HLT) and state-of-the-art Bidirectional long short-term Memory (Bi-LSTM) models. (B) Forecasting of COVID-19 infections in France using Automated Artificial Intelligence-enabled system selected HLT and state-of-the-art Autoregressive Integrated Moving Average (ARIMA) models. (C) Forecasting of COVID-19 infections in Germany using Automated Artificial Intelligence-enabled system selected HLT and state-of-the-art Bi-LSTM models. (D) Forecasting of COVID-19 infections in Italy using Automated Artificial Intelligence-enabled system selected HLT and state-of-the-art ARIMA and Bi-LSTM models. (E) Forecasting of COVID-19 infections in Malaysia using Automated Artificial Intelligence-enabled system selected HLT and state-of-the-art ARIMA models. (F) Forecasting of COVID-19 infections in Australia using Automated Artificial Intelligence-enabled system selected QT and state-of-the-art LSTM models. (G) Forecasting of COVID-19 infections in Iran using Automated Artificial Intelligence-enabled system selected QT and state-of-the-art Bi-GRU models. (H) Forecasting of COVID-19 infections in Russia using Automated Artificial Intelligence- enabled system selected Quadratic Trend (QT) and state-of-the-art Bi-LSTM models. (I) Forecasting of COVID-19 infections in Spain using Automated Artificial Intelligence-enabled system selected QT and state-of-the-art ARIMA, SutteARIMA, and Bi-LSTM models. (J) Forecasting of COVID-19 infections in the United Kingdom using Automated Artificial Intelligence-enabled system selected QT and state-of-the-art Bi-LSTM models. (K) Forecasting of COVID-19 infections in the United States using Automated Artificial Intelligence-enabled system selected Linear Trend (LT) and state-of-the-art ARIMA and Bi-LSTM models. (L) Forecasting of COVID-19 infections in Israel using Automated Artificial Intelligence-enabled system selected LT and state-of-the-art Bi-LSTM models. (M) Forecasting of COVID-19 infections in Brazil using Automated Artificial Intelligence-enabled system selected Damped Trend (DT) and state-of-the-art Bi-LSTM models. (N) Forecasting of COVID-19 infections in India using Automated Artificial Intelligence-enabled system selected DT and state-of-the-art Bi-LSTM models, and (O) forecasting of COVID-19 infections in Saudi Arabia using Automated Artificial Intelligence-enabled system selected DT and state-of-the-art ARIMA models.


Figure 8F shows the prediction results for Australia using automated AI-selected QT and state-of-the-art LSTM (26). The (MAPE, RMSE) values using QT and LSTM models for Australia are (20.64, 80417.79), and (68.60, 181145.56), respectively. Figure 8G shows the prediction results for Iran using automated AI-selected QT and Bi-GRU (26). The (MAPE, RMSE) values using QT and Bi-GRU models for Iran are (8.54, 579794.14) and (31.90, 2086139.84), respectively. Figure 8H shows COVID-19 predictions for Russia using automated AI-selected QT and Bi-LSTM (25). It depicts that QT outperforms Bi-LSTM as it can capture the polynomial trend of the infection data in Russia. The (MAPE, RMSE) values using QT and Bi-LSTM models for Russia are (12.87, 941065.72) and (23.58, 2536117.98), respectively. Figure 8I shows the prediction results for Spain using automated AI-selected QT and state-of-the-art ARIMA (27), SutteARIMA (23), and Bi-LSTM (25). The (MAPE, RMSE) values using QT, ARIMA, SutteARIMA, and Bi-LSTM models for Spain are (5.77, 497155.75), (13.26, 825509.28), (56.48, 2804433.84), and (16.48, 1047913.19), respectively. Figure 8J shows the prediction results for the United Kingdom using automated AI-selected QT and Bi-LSTM (25). The (MAPE, RMSE) values using QT and Bi-LSTM models for the United Kingdom are (16.57, 1167306.58) and (27.40, 3450595.03), respectively. Figure 8K shows the COVID19 infection prediction for the United States using LT, ARIMA (24), and Bi-LSTM (25). The (MAPE, RMSE) values using LT, ARIMA, and Bi-LSTM models for the United States are (3.79, 2197376.04), (15.5, 9450564.22), and (10.99, 6337067.40) respectively. Figure 8L shows the prediction results for Israel using automated selected LT and Bi-LSTM (25). The (MAPE, RMSE) values using LT and Bi-LSTM models for Israel are (9.06, 119886.19) and (20.91, 335433.23), respectively. Figures 8M,N) show the prediction results for Brazil and India, respectively, using automated AI-selected DT models and Bi-LSTM models (25). They show that DT outperforms Bi-LSTM for both Brazil and India as it can accurately DT capture the exponential + damping trend of infection growth. The (MAPE, RMSE) values using DT and Bi-LSTM models for Brazil are (0.73, 175627.67) and (14.02, 3313775.77), respectively. The (MAPE, RMSE) values using DT and Bi-LSTM models for India are (4.79, 1732187.64) and (36.89, 12906730.59), respectively. Figure 8O shows the prediction results for Saudi Arabia using automated AI selected DT and ARIMA (29). The (MAPE, RMSE) values using DT and ARIMA models for Saudi Arabia are (1.54, 9909.39) and (6.37, 47768.10), respectively. Figure 9 show the MAPE and RMSE obtained by the model selected using the proposed system and state-of-the-art approaches for each country under study. It shows that the selected models outperform the approaches in the literature for each country. In summary, the proposed system predicts COVID-19 infections with an average MAPE and RMSE of 7.87 and 665052.14, respectively. The average MAPE values for state-of-the-art Bi-LSTM, ARIMA, LSTM, Bi-GRU, and SutteARIMA models are 20.21, 12.38, 68.60, 31.90, and 56.48, respectively, whereas the average RMSE values are 3209972.92, 2113024.38, 181145.57, 2086139.84, and 2804433.85, respectively.
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FIGURE 9
Mean absolute percentage error (MAPE) and normalized root mean squared error (RMSE) of the Automated Artificial Intelligence-enabled system selected and state-of-the-art models for the countries under study.





Discussion

Time series prediction is a useful method to predict the dynamics of future infection data by using the influence of the trends, seasonality, and randomness of the historical data (31). Different machine learning algorithms have been used to analyze the data of epidemic and pandemic diseases such as influenzas A (H1N1), B, measles childhood disease (32), SARS, MERS, and COVID-19 outbreaks, at the country, regional or global level (31). Though any machine learning algorithm can produce reliable results at some level, time series algorithms are the most accurate approaches to studying epidemic and pandemic diseases because of their dynamic and temporal nature (33). Several machine learning and deep learning time series algorithms have been used in the literature to predict COVID-19 infections (23–29). The dominant concern in predicting infections for a country is the prediction’s accuracy, optimal resource management, and effective development of strategies. Our main goals are to (1) decide on an accurate time series learning algorithm for predictions, and (2) hyperparameter tuning for the selected algorithm. These algorithms are data-driven and are only suitable for a particular trend of the infection’s growth. Consequently, a single algorithm cannot be applied to predict infections’ spread in different countries. For instance, Autoregressive Integrated Moving Average (ARIMA) (29) cannot be used for prediction when the trend of infection’s growth linearizes/dampens over time. Furthermore, Holt’s Linear Trend (HLT) (47) model gives inaccurate prediction results if there exists a seasonality behavior in the infection’s growth. Table 6 presents the limitations of the models used in the literature (Table 1). In summary, Table 6 shows that no single algorithm can be used to accurately predict infections for all the countries in the world. This is because the infection trend is different from one country to another. Our proposed automated AI-enabled proactive preparedness real-time system analyzes a country’s infection trend and selects a time-series model which captures that particular trend. Our numerical experiments and comparative analysis show that the proposed system outperforms the state-of-the-art approaches for COVID-19 prediction. In particular, the proposed system predicts the number of infections with 68.60, 58.79, 69.90, 73.21, and 89.78% less MAPE, and 65.8150.18, 55.60, 72.20, and 82.27% lower RMSE than Bi-LSTM, ARIMA, LSTM, Bi-GRU, and SutteARIMA used in the literature, respectively.


TABLE 6    Limitations of time series algorithms.
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Conclusion

Considering the dynamicity in the temporal distribution of infections over time among different countries, a single machine learning infection prediction algorithm cannot solely yield high accuracy for all the countries, and hence different models should be adopted for predicting infections in different countries. The selection of the model for a country is the main challenge as evaluating the performance of all the algorithms for a country and then selecting the most accurate model is a complex and inefficient process. For selecting the most accurate model the trend of the infection’s evolution for a country should be taken into consideration. Incorporating all these factors, a novel automated artificial intelligence-enabled proactive preparedness real-time system for accurate prediction of COVID-19 infection is proposed. We present the design, development, and implementation of the system. The proposed system selects the most accurate model based on the infection trend for a country, whereas the models in the literature are selected based on the popularity of the model or based on the performance of a models when used for other countries. The developed system performs efficiently, with an average reduction of 72.1% in MAPE and 65.2% in RMSE compared to state-of-the-art approaches. Consequently, the system will aid governments to tailor the precautionary measures in place to tackle a pandemic, such as COVID-19, and develop an effective plan to manage the medical resources efficiently. For future research work, a large spectrum of countries will be considered to evaluate the proposed system. In addition, efficient methods for models’ calibrations will be investigated.
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Footnotes

1     https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (last accessed on May 23, 2022).

2     https://covid19.who.int/ (last accessed on May 23, 2022).

3     https://www.cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html (last accessed on May 16, 2022).

4     https://www.cdc.gov/flu/pandemic-resources/pandemic-timeline-1930-and-beyond.htm (last accessed on May 16, 2022).

5     https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm (last accessed on May 16, 2022).

6     https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases (last accessed on May 16, 2022).
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Governments across the globe have implemented different strategies to handle the COVID-19 pandemic. A national mandatory quarantine was the most applied policy tool. While there are studies that tested the effectiveness of a national mandatory quarantine, the question about the effectiveness of additional quarantine policies is not yet answered. In this study we focus on three large cities in Colombia (Bogota, Medellin and Cali) with similar socio-economic conditions but made use of different COVID-19 prevention measures. We examine whether different non-pharmaceutical policy interventions (NPIs) conducted in these three cities are effective against the spread of the COVID-19 pandemic. We inspect the effect of the quarantine policies restricting exit from home by sex, ID number, whereby only Bogota implemented the restriction to leave the home according to sex followed by a restriction according to ID number, and Medellin and Cali implemented a restriction by ID number only. Data for the analysis are obtained from the National Administrative Department of Statistics of Colombia [Departamento Administrativo Nacional de Estadística (DANE)]. The data on pandemic severity is measured by the number of confirmed COVID-19 cases per city. We conduct single-group interrupted time series analysis (ITSA) to examine differences in the extent of the pandemic severity in Bogota, Medellin and Cali. We found that NPIs in all three Colombian cities had a positive effect on slowing the spread of the pandemic.
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  COVID-19, non-pharmaceutical policy interventions (NPIs), single-group interrupted time series analysis (ITSA), Colombia, policy evaluation


Introduction

A new coronavirus (COVID-19) emerged on December 12, 2019, in Wuhan, China (1). The first confirmed case of COVID-19 was diagnosed in Colombia on March 6, 2020, in the capital city of Bogota. In the following weeks, the virus has spread very quickly around the country. In response to this and in addition to measures implemented by the national government, regional governments have introduced different non-pharmaceutical policy interventions (NPIs) to lower the infection incidence curve (2). Specifically, these NPIs included pico y cédula (ID) and pico y género (sex) and defined days on which people are allowed to do errands and buy necessities. Pico y cédula (ID) NPI divided days according to even and odd dates and even and odd final digit of identification documents (IDs). Pico y género (sex) NPI allowed people to leave their home based on their sex (e.g., women were allowed to go out on even and men on odd date).

To date, empirical evidence of the effectiveness of different NPI types in terms of the morbidity and mortality due to COVID-19 remains inconsistent (3–8). Furthermore, to the best of our knowledge, no one has yet investigated whether the effect of the implemented NPIs on COVID-19 spread differs among different cities in the same county in the Latin American context. Therefore, this study aims to close this research gap by analyzing the influence of city-specific NPIs on the distribution of COVID-19 cases. We specifically evaluate the success of the implemented policies in the Colombian cities of Bogota, Cali, and Medellin.

The analysis enables us to provide a 2 fold contribution to the literature. First, we expand the knowledge on the policy effectiveness during the COVID-19 pandemic in the context of Colombia in particular as well as in the Latin American and the global context in general. To the best of our knowledge, this is the first study that examines the effectiveness of pandemic prevention policies such as pico y cédula (ID) and pico y género (sex). The knowledge obtained from this study might be helpful for understanding and planning future prevention and control measures to combat epidemics and pandemics not only in Colombia. The results can and should be applied to populations with socioeconomic characteristics similar to the population of Colombia.

Policy makers tend to rely on the knowledge gained during the course of previous epidemics and pandemics to implement effective measures designed to stop the spread of the virus (9, 10). In the case of a new virus, references to similar viruses, such as severe acute respiratory syndrome (SARS), are made in order to evaluate possible NPIs aiming to flatten the curve (9). During the SARS outbreak, social distancing and hand hygiene were implemented as measures for reducing the virus spread with the objective to narrow the gap between medical need and available supply of treatments (9, 11). In addition, measures such as isolation, quarantine and social distancing were implemented in the most affected countries to control the person-to-person transmission of SARS (9).

There is an emerging body of studies that examine the efficiency of different measures to stop the spread of COVID-19 [for details see systematic review by Perra (12)]. For example, Liu et al. (8) have investigated impact of NPIs on COVID-19 transmission across 130 countries and territories. They used longitudinal regression to estimate the effectiveness of 13 categories of NPIs in reducing COVID-19 transmission using data from January to June 2020. The authors concluded that understanding the impact that specific NPIs have had on COVID-19 transmission is complicated by temporal clustering, time-dependent variation in effects, and differences in NPI intensity. However, the effectiveness of school closure and internal movement restrictions appeared robust across different model specifications, with some evidence that other NPIs may also be effective under particular conditions. Therefore, Liu et al. (8) argue that many, although not all, actions policymakers are taking to respond to the COVID-19 pandemic are effective. Another study by Yang et al. (13) tested the effectiveness of two major NPIs—lockdown-like measures that reduce contact rates and universal masking in New York City. Using data from the 2020 spring pandemic wave, they found that face covering can substantially reduce transmission when lockdown-like measures are lifted but by itself may be insufficient to control COVID-19 transmission (13).

Díaz-Castro et al. (14) recently examined the impact of policies that have been implemented in response to the COVID-19 pandemic on the velocity of viral transmission, as reflected by the doubling time, considering the mobility and sociodemographic characteristics across the 32 Mexican states. Their results revealed that health policies had an effect on slowing the pandemic's propagation, but population density and mobility played a fundamental role (14). Another study by de Figueiredo et al. (3) focused on the Hubei and Guangdong provinces in China using the number of COVID-19 cases per 10,000 inhabitants to estimate the pandemic spread between January 23, 2020, and March 12, 2020 (3). The longitudinal effects of an intervention on a were outcome are analyzed using the Interrupted time series analysis (ITSA) (3). The absence of the intervention (contractual) and the trend found after the intervention are considered (3). The authors have shown that the social distancing measures in the two provinces were effective in reducing incidences and mortality rates of COVID-19 (3). Castex et al. (15) examined the effectiveness of lockdown policies in 132 countries using data provided by the Oxford COVID-19 Government Response Tracker. They demonstrated that the effectiveness of lockdown policies declines with GDP per capita, population density and surface area of the country and increases with health expenditure and lower physician-to-population ratio (15). In the context of Latin America, the impact of the implementation of a general mandatory quarantine and the implementation of mask obligation in public spaces has been tested in Colombia, Costa Rica, Peru, Ecuador, Mexico and Chile using ITSA (7). A curve-flattening effect of the general mandatory quarantine was found in Colombia but not in Ecuador or Peru. Using a similar methodological approach, Silva et al. tested the effectiveness of implemented social distancing policies in four Brazilian cities. The results indicated a statistically significant decrease in new confirmed cases in all cities tested after the implementation of a lockdown (16). González-Bustamante (17) has examined non-pharmaceutical interventions related with measures of social distancing, closure of schools, workplaces, public transport and restrictions on meetings and national and international travel in eight South American countries: Argentina, Bolivia, Brazil, Chile, Colombia, Paraguay, Peru, and Uruguay. His results revealed that only Uruguay and Paraguay have managed to control the pandemic by mid-May, while Brazil and Peru have faced very adverse scenarios. The author has emphasized that the effectiveness of the NPIs needs to be studied in greater depth, considering diverse institutional and sociocultural factors. This article therefore aims to expand the knowledge on the effectiveness of the NPIs that were not yet studied: pico y cédula (ID) and pico y género (sex).

The policy pico y cédula (ID) was implemented in Medellin on April 2, in Cali on April 6 and in Bogota on June 16. Pico y cédula determines, according to an individual's ID number, on which day a person is allowed to leave the house for errands. Persons who have an odd number as their final ID digit are only allowed to leave the house on odd-numbered days, persons with even numbers are only allowed to leave on even-numbered days. This rule was not applicable for people leaving their homes for working purposes. Notably, of the three large cities investigated here, Bogota is the only one that introduced the policy pico y género (sex). This policy determines who is allowed to leave the house for shopping or similar activities according to sex (e.g., women were allowed to go out on even and men on odd dates1). This policy was introduced on April 10 and expired on May 11, 2020. Both policies have been implemented as an extension to the general mandatory quarantine implemented by the government.



Materials and methods


Data

The data on the confirmed COVID-19 cases used in this study are obtained from the National Administrative Department of Statistics of Colombia—DANE. Specifically, COVID-19 data is reported directly to the National Institute of Health of Colombia, which reports the number of new positive cases to DANE, by the laboratory which processes the polymerase chain reaction (PCR) tests on a daily basis. The data is provided by the Colombian Ministry of Health and is separated by the 32 departments that make up the country (19). Based on the population size as well as implemented policies three cities have been selected for analysis. Hence, sample for this study includes the three Colombian cities with the highest population and similar socio-economic conditions (20). The city of Bogota is part of the department Bogota D.C., Cali is the capital of Valle de Cauca and Medellin is the capital of Antioquia. No data on the number of PCR tests that were administered on the city-level could be found (see Table 1 for the number of administered PCR tests in the three departments included in this study).


TABLE 1 Number of COVID-19 PCR tests per 100,000 inhabitants, by department.
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These are, following the 2018 census, Bogota as the capital district with 7,149,540 inhabitants, Medellin with 2,359,801 inhabitants and Cali with 1,811,385 inhabitants (20).



Variables

The dependent variable is the number of confirmed COVID-19 cases per day per 1,000 inhabitants in each city. The number of new confirmed COVID-19 cases is based on the reported day of diagnose by positive PCR tests by laboratories to DANE. Missing data have been found in 408 cases. In 407 cases, the first day when symptoms appeared has been used as proxy for the day of the diagnosis. In one case, the day of the beginning of the symptoms was not available, and therefore, the day the case was reported to the web/online report was used. The analysis of the cases without missing data showed that there were only a negligible date differences between the diagnosis date and the date reported to the web/online report. In order to control for the exponential growth in the daily confirmed cases, we transformed this variable as a natural logarithm. The time elapsed since the start of the pandemic is measured in days. We analyzed the time period of 155 days after the first confirmed case in each city. Hence, the starting time point of the analyses varies among the cities, but the length of time is set equal among the cities. The date of the first included case for Bogota was March 6, for Cali—March 13, and for Medellin—March 9. Due to expected delay in the effect of the implemented policy on the distribution of confirmed COVID-19 cases, the interruption time-point of the analyses is 14 days after the actual implementation of the policy in order to control for an expected delay between implementation of the policy and the effect on the number of the new cases (7).



Methods

We conducted ITSA to examine whether the implementation of a certain policy has exerted a decreasing effect on the distribution of the cases in each city. ITSA has often been used to estimate, for instance, policy impacts (4, 21) or the effects of health care interventions (22). This method allowed us to evaluate the policy impact before and after the implementation without having a control group. That is, a single-group ITSA is designed without a comparable control group, it rather projects the pre-intervention trend into the treatment period, which serves as the counterfactual (23). The model is based on the following equation (23, 24):
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The outcome variable measured at each time point is represented by Yt. The starting level (intercept) of the outcome variable is represented by β0. β1 is the slope of the trend of new cases before the start of the intervention, the immediately occurring change in the level of the outcome after the start of the intervention is represented by β2. β3 is the difference between pre-intervention and post-intervention slopes of the trend of confirmed cases per 1,000 inhabitants. Using single-group ITSA, the pre-intervention trend is projected into the treatment period which serves as counterfactual (23). Based on an expected incubation time (25) this study focuses mainly on the difference between pre-intervention and post-intervention slopes (β3) rather than the immediate occurring change in the level of the new cases per day (β2).

All analyses are conducted using STATA 15.1. The ITSA was conducted using the STATA command itsa (23). To account for autocorrelation and heteroscedasticity in the error terms, Newey-West estimators were used (26). The lags of the serial correlation in the data were specified with the STATA command actest (27). The command performs a Cumby-Huizinga general test for autocorrelation in time series data, with the null hypothesis that serial correlation exists in the time series, but it dies out at a known finite lag (q > 0) (27). The lag in which the series correlation dies out was included into the ITSA model to control for it.




Results


Descriptive overview

The cumulative number of PCR tests per 100,000 inhabitants per department under investigation are displayed in Table 1. The table show that the difference between the proportion of tests performed in the departments and the proportion of the population living in them varies. Thus, when considering the results of the analysis, the different percentages of tests performed must be taken into account.

Figure 1 demonstrates the distribution of the confirmed COVID-19 cases per 1,000 inhabitants by city. It includes the day of the first confirmed case per city and the ensuing 155 days. By the end of the observation, Bogota had the highest number of confirmed cases per 1,000 inhabitants. Cali was the city with the second highest number of confirmed cases per 1,000 inhabitants by the end of the observation period.
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FIGURE 1
 Distribution of the COVID-19 confirmed cases per 1,000 inhabitants by city.




Testing the effect of pico y género (sex) and pico y cédula (ID) across the three cities

We conducted single ITSA to examine whether and to what extent the city-specific NPIs pico y género (sex) and pico y cédula (ID) have a decreasing effect on the distribution of confirmed COVID-19 cases.

The results of the analyses are displayed in Table 2. As Bogota was the only city to implement both the pico y género (sex) and pico y cédula (ID) NPIs two models for Bogota [Model 1a for pico y género (sex) and Model 1b for pico y cédula (ID)] and one model for each Cali (Model 2) and Medellin (Model 3) have been estimated.


TABLE 2 Single ITSA predicting the effect of peak and sex/peak and id on the COVID-19 infection rate, by city; the interruption time-point of the analysis is 14 days after the actual implementation of the policy.
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Model 1a tested the effect of the policy pico y género (sex) on the number of confirmed cases reported by the PCR -test laboratory to DANE 14 days after its implementation [F(3, 151): 11676.9, p ≤ 0.000]. The 14 days delay was selected to control for an estimated delay of the policy based on the COVID-19 incubation period. Both the pre-intervention intercept [ß = −7.311, exp(ß) = 0.550, p = ≤ 0.001] and pre-intervention slope [ß = 0.163, exp(ß) = 1.17, p = ≤ 0.001] indicate a statistically significant increase in the prevalence of COVID-19 cases before the implementation of the policy. The post-intervention intercept is negative and statistically significant [ß = −1.164, exp(ß) = 0.512, p = ≤ 0.05]. Moreover, difference between pre- and post-intervention slopes is negative and statistically significant [ß = −0.109, exp(ß) = 0.018, p = ≤0.001], indicating a decrease in the COVID-19 prevalence rate over time. Thus, a curve-flattening effect of the policy pico y género (sex) implemented in Bogota is verified by the analysis 14 days after the implementation and over time. The visual verification of these results is presented in Figure 2A.
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FIGURE 2
 (A) Single ITSA predicting the effect of peak and sex/peak and id on the COVID-19 infection rate, by city; the interruption time-point of the analysis is 14 days after the actual implementation of the policy. (B) Single ITSA predicting the effect of peak and ID on the COVID-19 infection rate in Bogota; the interruption time-point of the analysis is 14 days after the actual implementation of the policy.


Model 1b presented in Table 2 shows the results of the examination of the pico y cédula (ID) policy effect with the interruption time-point set at 120 days (i.e., 14 days after the policy implementation) [F(3, 151): 2333.44; p ≤ 0.000]. Figure 2B displays the visualization of the model. The results reveal a similar trend in the pico y cédula (ID) policy effect as compared to the pico y género (sex) policy effect described above. Therefore, it will not be discussed in detail. Both policy interventions in Bogota had curve-flattening effects on the distribution of COVID-19 case numbers as demonstrated by the ITSA coefficients for Models 1a and 1b (see Table 2).

The results for Model 2, the pico y cédula (ID) policy effect implemented in Cali, are provided in Table 2 [F(3, 151): 865.34; p ≤ 0.000]. We found a decreasing statistically significant change in the post-intervention intercept [ß = −0.837, exp(ß) = 0.324, p ≥ 0.05]. Similar to the results for Bogota, we also fund a statistically significant difference between pre- and post-intervention slopes [ß = −0.124, exp(ß) = 0.175, p ≤ 0.001], signifying a statistically significant decrease in COVID-19 cases throughout the duration of the observation period. Therefore, the results demonstrate a curve-flattening effect of the pico y cédula (ID) NPI. Figure 3 illustrates the lower number of COVID-19 cases in Cali at the end of the observation period than was predicted by the analysis.


[image: Figure 3]
FIGURE 3
 Single ITSA predicting the effect of peak and ID on the COVID-19 infection rate in Cali; the interruption time-point of the analysis is 14 days after the actual implementation of the policy.


As the results provided in both the regression Model 3 (Table 2) and Figure 4 indicate, the effect of the pico y cédula (ID) policy in Medellin is similar to the effect of the pico y género (sex) policy introduced in Bogota (Model 1a, Table 2) [F(3, 151): 226.06, p ≤ 0.000]. Therefore, it will not be discussed in detail.
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FIGURE 4
 Single ITSA predicting the effect of peak and ID on the COVID-19 infection rate in Medellin; the interruption time-point of the analysis is 14 days after the actual implementation of the policy.





Discussion and conclusions

Latin America has been severely affected by the COVID-19 outbreak. The government response to COVID-19 in this region has been diverse in nature and mixed in terms of the effectiveness [(e.g., (28, 29)]. Colombia is a typical third-most-populous country in Latin American whose population is 50 million inhabitants. Colombia's response to the COVID-19 emergency displays an interesting case study of unitary but decentralized administrative approach (30). Namely, Colombian government has been taking measures simultaneously on the national, state, and local levels to prevent transmission of the virus. In this study, we have focused on the political response to the COVID-19 pandemic on the local level in Colombia and focused on the period between the occurrence of the first case in March 2020 until August 2020 (155 days after the first case in each city).

Many policy analyses of the COVID-19 outbreak have focused on the measures implemented to contain the spread of the disease and on how effective these measures are in reducing the number of new infections and deaths. These studies, however, are largely limited to high income countries (e.g., (31)) with a few exceptions in middle income countries [e.g., Castex et al. (15) and Silva et al. (16)] that are restricted by the lack of data. Real-time analysis of epidemiological data as well as estimations of the preventative measures in Latin America are very limited and lacking the level of detail required to increase situational awareness and to guide policy decisions in this region. Previous studies on middle income countries have mainly examined the effect of the most common confinement policies (e.g., general mandatory quarantine, social distancing) [see for example, González-Bustamante (17)—for Argentina see; Poppe (7), Castex et al. (15)—for Colombia, Costa Rica, Peru, Ecuador, Mexico, Chile, and Silva et al. (16)—for Brazil]. This study investigated the impacts of two different NPIs adopted by the Colombian government on the city level to contain the COVID-19 spread. Specifically, we evaluated the policies implemented in the three largest cities in Colombia: Bogota, Cali and Medellin. Notably, all three cities had similar pre-conditions regarding the restrictions to leave the house because in addition to NPIs the government of Colombia has implemented general mandatory quarantine across the country. Examining locally implemented policies in the three largest cities of this country allowed us to test administrative efforts on the local level (i.e., city level) and not only on the national and state levels. By doing so, we conducted single ITSA using the data on confirmed COVID-19 case numbers per 1,000 inhabitants in each city available from DANE. We tested the city-specific quarantine policies regulating exit from home by sex and ID number. Specifically, we estimated the models for the pico y género (sex) and the pico y cédula (ID) restrictive policies for the city of Bogota, and the pico y cédula (ID) policy for both Medellin and Cali.

Therefore, current study expands the knowledge on the effectiveness of the NPIs that were not yet studied: pico y cédula (ID) and pico y género (sex). The results of the previous studies on the national level policies outcomes are somewhat inconsistent. Some of these studies revealed that the common confinement measures were effective in reducing the spread of the COVID-19 pandemic. For example, Poppe (7) showed a curve-flattening effect of the general mandatory quarantine in Colombia. Silva et al. (16) revealed that a lockdown led to a statistically significant decrease in new confirmed cases in four Brazilian cities. Other studies found only partial support for this evidence. In his study on South American countries, González-Bustamante (17) found, for example, that general confinement measures were effective only in two (Uruguay and Paraguay) out of eight countries. In line with previous studies demonstrating positive outcomes of the general confinement measures, our results reveal that pico y género (sex) and the pico y cédula (ID) were effective in three Colombian cities. Specifically, the results for Bogota revealed that both versions of the policy have a curve-flattening effect over time. We found statistically significant differences between the pre- and post-intervention intercept, as well as statistically significant decrease in the difference between pre-and post-intervention slope. In other words, in the long term, both NPI policies implemented in Bogota helped to decrease the COVID-19 case numbers compared to what would have happened had they not been implemented. The analytical results for Cali and Medellin were similar to those of Bogota. We did not find any differences in the infection rates by sex.

The findings presented in this study make two distinct contributions to the COVID-19 policy literature. On the empirical side, the present research provides insights into the effectiveness of the local level policies—pico y género (sex) and the pico y cédula (ID). From the theoretical perspective, this study contributes to understanding of the importance of the combination of national policies and local decisions to mitigate the impacts of the COVID-19 pandemic. Colombian response to the COVID-19 pandemic demonstrates that the dual system might work to build a coordinated and effective intergovernmental strategy. The knowledge resulting from this study may be beneficial for formulating new COVID-19 policy in other countries of Latin America. The results can be applied to populations with socioeconomic characteristics similar to the study population. Policymakers in both low- and middle-income countries with limited budged as well high-income countries with low COVID-19 vaccination level should consider a complex multilevel governance structure. Local level policies can be beneficial as the basis of public health interventions due to their high cost-effectiveness and high speed of implementation, and can help to be better prepared for potential future pandemics.

Several limitations must be borne in mind when interpreting the findings of this study. Firstly, only reported and confirmed cases could be included in the analysis. Thus, this paper only refers to reported cases of COVID-19 published for the respective cities. In this sense, the number of unreported cases, which is estimated differently depending on the reproductive value, cannot be included (32). The possibility of a bias due to a high number of unreported cases exists, depending on the testing frequency of the cities. As data on number of performed PCR tests by city are currently lacking, it was not possible to control for this possible bias [cf. (33)]. It must also be noted that some segments of the population might be underrepresented in the data. For example, people of lower socio-economic status might have difficulties with access to testing (6), which may be explained by general difficulties in access to healthcare. In an attempt to overcome this limitation, in this study we focused only on the cities with similar socio-economic conditions and similar population size and density. In addition, the impact of other policies can only be monitored to a limited extent in the present analysis.

Notwithstanding these limitations, the current study was one of the first to assess the effectiveness of underexamined local policy measures implemented during the COVID-19 pandemic, focusing on outbreak in a developing country in a systematic way and using state of the art empirical methods. Our results confirm the effectiveness of the implemented NPI policies. All of them without exception were successful in reducing the COVID-19 growth rate. Understanding the effectiveness of anti-COVID-19 specific policies provides policy-makers with the necessary knowledge to enable them to better understand the policies and act accordingly.

Although this research succeeded in reaching its aims, future investigations of the COVID-19 policy would benefit from evaluating their impact on the social inequalities. It is necessary to consider the multiple consequences of this NPIs, especially in low- and middle-income countries with higher poverty and unemployment rates. The knowledge obtained from these studies may help to prepare the population for the future COVID-19 waves and for the future potential pandemics.
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SUPPLEMENTARY FIGURE 1
 Distribution of COVID-19 confirmed cases by sex in Bogota.

SUPPLEMENTARY FIGURE 2
 Distribution of the COVID-19 confirmed cases by sex in Cali.

SUPPLEMENTARY FIGURE 3
 Distribution of the COVID-19 confirmed cases by sex in Medellin.



Footnotes

1Non-binary persons and people who do not identify with their sex assigned at birth were supposed to choose one day to go out (18). Transgender individuals were expected to choose the day assigned to their identified sex (18).
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Coronavirus disease (COVID-19) has caused unimaginable damage to public health and socio-economic structures worldwide; thus, an epidemiological depiction of the global evolving trends of this disease is necessary. As of March 31, 2022, the number of cases increased gradually over the four waves of the COVID-19 pandemic, indicating the need for continuous countermeasures. The highest total cases per million and total deaths per million were observed in Europe (240,656.542) and South America (2,912.229), despite these developed countries having higher vaccination rates than other continents, such as Africa. In contrast, the lowest of the above two indices were found in undeveloped African countries, which had the lowest number of vaccinations. These data indicate that the COVID-19 pandemic is positively related to the socio-economic development level; meanwhile, the data suggest that the vaccine currently used in these continents cannot completely prevent the spread of COVID-19. Thus, rethinking the feasibility of a single vaccine to control the disease is needed. Although the number of cases in the fourth wave increased exponentially compared to those of the first wave, ~43.1% of deaths were observed during the first wave. This was not only closely linked to multiple factors, including the inadequate preparation for the initial response to the COVID-19 pandemic, the gradual reduction in the severity of additional variants, and the protection conferred by prior infection and/or vaccination, but this also indicated the change in the main driving dynamic in the fourth wave. Moreover, at least 12 variants were observed globally, showing a clear spatiotemporal profile, which provides the best explanation for the presence of the four waves of the pandemic. Furthermore, there was a clear shift in the trend from multiple variants driving the spread of disease in the early stage of the pandemic to a single Omicron lineage predominating in the fourth wave. These data suggest that the Omicron variant has an advantage in transmissibility over other contemporary co-circulating variants, demonstrating that monitoring new variants is key to reducing further spread. We recommend that public health measures, along with vaccination and testing, are continually implemented to stop the COVID-19 pandemic.

KEYWORDS
 COVID-19, epidemics evolve, geographic distribution, variants, vaccine


Introduction

Coronavirus disease (COVID-19), which is caused by infection with severe acute respiratory syndrome coronavirus (SARS-CoV-2), has had a devastating impact on global health, security, and economies, including forcing people to find alternative ways of working, traveling, and communicating (1). COVID-19 was first reported in East Asia, and then rapidly spread to Europe, North America, South America, Africa, and Oceania, causing several waves of pandemics in different regions (2, 3). Despite no strict definition for a pandemic wave, a pandemic wave is considered to consist of an increasing number of sick individuals, a clearly defined peak in this number, and finally a decline (4, 5). Moreover, a previous predictive model for COVID-19 explored the behavior of a pandemic wave, which can provide vital clues for policymakers to design tailored action plans (6).

When the World Health Organization (WHO) first declared the COVID-19 pandemic a Public Health Emergency of International Concern on January 1, 2020, all nations worldwide began to take action (7). Despite the adoption of similar containment measures, the number of confirmed cases and mortality rates largely differed among countries (8). As of March 31, 2022, COVID-19 has affected 225 countries and territories, and 490,071,097 cases of COVID-19 have been recorded, with 6,158,664 deaths. Viruses mutate or change their genetic material following replication, which serves to create variants (9). In the case of SARS-CoV-2, the same mutation has emerged independently in different countries, indicating its potential benefit for viral fitness (10, 11). The variants of SARS-CoV-2 are categorized as variants of interest (VOI) or as variants of concern (VOC) by the WHO Virus Evolution Working Group. VOCs have increased transmissibility compared to that of the original virus and have the potential to increase disease severity (12). SARS-CoV-2 infections remain a leading cause of morbidity and mortality and have triggered an unprecedented number of global health researchers and scientists to work to develop safe and effective vaccines to reduce the spread and severity of infection (13). Today, multiple highly effective vaccines have been developed and are being administered in countries worldwide, providing several clinically evaluated and approved therapeutic options (14). As of March 31, 2022, 64.6% of the global population has received at least one dose of the COVID-19 vaccine; 11.33 billion doses have been administered globally, and 15.55 million are now administered daily. However, only 14.7% of people in low-income countries have received at least one vaccine dose (https://ourworldindata.org/covid-vaccinations). In this study, we aimed to use the open and freely available data related to COVID-19 published online from around the world to explore changes in pandemic trends across six continents, and to provide valuable insight to better understand the epidemiological evolution of COVID-19. This will help decision-makers implement tailored strategies to contain further spread of the disease.



Methods


Ethics statement

This study was supported by the China–Sierra Leone Biosafety Laboratory Technical Cooperation Project (III Phase) and was approved by the Commission of Ethics and Science Censor of the Sierra Leone Ministry of Health and Sanitation. Our survey adhered to the medical ethics of domestic laws and regulations.



Data source, process, and definition of a wave

In our study, data relating to epidemiological indexes (e.g., cases and deaths) and related social factors, as well as SARS-CoV-2 variants from each country worldwide, were extracted from global public COVID-19 surveillance websites, including OurWorldInData.org (https://ourworldindata.org/), and Gisaid.org (https://www.gisaid.org/). Subsequently, all of the epidemic indices and available items were extracted and processed by month, including the number of cases, number of deaths, total cases per million, total deaths per million, and diversity profile of SARS-CoV-2 globally and across six continents; these items had been originally processed by day in the abovementioned databases. All of the data were cross-checked by two trained qualified health workers. The acquired data were then cleaned and analyzed using Microsoft Excel (Microsoft Office 2016, Microsoft Corporation, Redmond, WA, US). Furthermore, the death rate was calculated as follows: death rate = deaths /confirmed cases × 100%. In this study, we used the study variable “pandemic wave” (hereafter referred to as wave), which was defined as the time from the start of a peak (first month with increasing numbers of cases) to the end of a peak (month with a nadir of cases before the next rise). The waves were classified as follows: the first wave (wave 1), July 2020 to February 2021, and Pre-wave 1, January to June 2020; the second wave (wave 2), March 2021 to June 2021; the third wave (wave 3), July 2021 to October 2021; and the fourth wave (wave 4), November 2021 to March 2022.




Results


Epidemiology profile of COVID-19 worldwide

By March 31, 2022, a total of 490,071,097 cases of COVID-19 had been recorded, with 6,158,664 deaths globally (Figures 1A and 2A) (WHO). The total cases per million and total deaths per million were 61,876.916 and 775.723, respectively (Figure 1B). The COVID-19 pandemic comprises four notable global waves during this period: the first, from January 2020 to February 2021; the second, from March 2021 to June 2021; the third, from July 2021 to October 2021; and the fourth, from November 2021 to March 2022 (Figure 1A). The number of confirmed cases was 116,657,428 in the first wave, 68,577,450 in the second wave, 64,667,001 in the third wave, and 240,169,218 in the fourth wave. The fourth wave was the highest, accounting for 49.01% (240,169, 218/490, 071,097), which was approximately four-fold greater than that of the lowest wave (the third wave). Based on the month, the highest case numbers (n = 89,374,078) were reported in January 2022, while the lowest was recorded in January 2020 (n = 9,370), with approximately 18,150,781 cases per month on average (Figure 1A). The confirmed cases in Europe and North America were much higher in the first wave; those in Asia were much higher in the second and third waves; those in Europe and Asia were much higher in the fourth wave. Although the number of cases in the fourth wave increased exponentially compared to the first three waves, the number of deaths experienced an increasing trend in the first wave and a declining trend in the fourth wave (Figure 1B). The number of deaths in waves 1–4 was 2,655,110, 1,330,041, 1,042,864, and 1,130,649, respectively, with the highest number of deaths observed in the first wave and the lowest in the third wave. Additionally, the highest death number (n = 417,837) was noted in January 2021, while the lowest was observed in January 2020 (n = 196) (Figure 2A).
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FIGURE 1
 Epidemiology profile of COVID-19 in the six continents. (A) Epidemiological trends in the six continents. (B) Evolution of cases and deaths per million in the six continents over time.
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FIGURE 2
 Geographic distribution features of deaths and Rt value. (A) Evolution of COVID-19-related deaths in the six continents over time. (B) Dynamic fluctuation of the Rt value in the six continents among the four waves of the COVID-19 pandemic.




Geographic distribution features of cases and deaths in six continents

Both confirmed and fatal cases were reported in six continents, all of which experienced a four-wave COVID-19 pandemic. The numbers of confirmed COVID-19 cases from low to high were 5,547,963 in Oceania, 11,541,119 in Africa, 55,959,246 in South America, 94,616,144 in North America, 142,163,779 in Asia, and 180,242,846 in Europe. Accordingly, the number of deaths from low to high was 8,925 in Oceania, 251,740 in Africa, 1,264,662 in South America, 1,410,089 in North America, 1,450,615 in Asia, and 1,772,633 in Europe (Figure 2A).

The highest number of positive and fatal cases were recorded in Europe, whereas the lowest incidence was reported in Oceania (Figure 2A). As of March 31, 2022, the crude fatal rate (CRF) worldwide was 1.25%, with a rate of 2.18% in Africa, 1.00% in Asia, 0.98% in Europe, 0.16% in Oceania, 1.50% in North America, and 2.30% in South America. As time progressed, the CRF was reduced, except for in South America, where it increased by 11% (Supplementary Table S1).

The highest incidence rate based on the cases per million was observed in Europe (n = 240,656.542), and the highest death rate based on the deaths per million was observed in South America (n = 2,912.229), while the lowest incidence and death rates were reported in Africa (8,402.799 and 183.269). The incidence rate in other regions, from high to low, was 158,597.247 in North America, 128,861.1 in South America, 128,365.784 in Oceania, and 30,386.972 in Asia. Furthermore, the total deaths per million in other regions, from high to low, was 2,366.794 in Europe, 2,363.603 in North America, 310.065 in Asia, and 206.492 in Oceania (Figure 2B). The reproduction rate (Rt) of COVID-19 reduced sharply in April 2020, then tended to be stable, and finally showed a fluctuating decrease during the fourth wave (Supplementary Figure S1).



Diversity and distribution profile of SARS-CoV-2 variants

By March 31, 2022, 8,358,642 SARS-CoV-2 genomes had been submitted to the GISAID database from six continents worldwide (https://www.gisaid.org/). Furthermore, 12 SARS-CoV-2 variants were observed in six continents which included VOC Omicron, VOC Delta, VOC Alpha, VOC Beta, VOC Gamma, VOI Epsilon, VOI Zeta, VOI Eta, VOI Theta, VOI Iota, VOI Kappa, and VOI Lambda in Africa, Asia, Europe, North America, and Oceania; 11 variants, except VOI Theta, were observed in South America (Figure 3A; https://www.gisaid.org/). Among these, VOC Delta and VOC Omicron variants were the most frequently identified lineages in the six continents, while VOC Gamma was the most frequently identified lineage in South America (Figure 3A; https://www.gisaid.org/). The distributions of SARS-CoV-2 variants showed an obvious spatiotemporal change in the four pandemic waves. In the first wave, the main VOCs were Alpha, Delta, Epsilon, and Beta. VOC Alpha and VOI Epsilon were the dominant lineages in the second wave, while VOC Alpha and VOC Delta variants were mainly recorded in the third wave. In the fourth wave, Delta and Omicron were the predominant variants (Figure 3B). As the COVID-19 pandemic continues, the types of SARS-CoV-2 variants shift from multiple variants driving spread to a single lineage fueling spread.
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FIGURE 3
 Diversity and distribution profile of SARS-CoV-2 variants. (A) Diversity profile of SARS-CoV-2 variants in the six continents. (B) Spatiotemporal distribution characteristics of the 12 SARS-CoV-2 variants among the four waves of the pandemics. Note: The Variants marked by blue rectangular boxes represent the predominate variants.




COVID-19 vaccinations worldwide

As of March 31, 2022, 64.6% of the global population had received at least one dose of the COVID-19 vaccine, with 11.33 billion doses administered globally, and 15.55 million administered daily. Only 14.7% of people in low-income countries had received at least one dose. By April 13, 2022, the cumulative COVID-19 vaccinations per 100 people were 145.07 doses worldwide, 33.89 doses in Africa, 167.47 doses in Asia, 167.15 doses in Oceania, 190.08 doses in South America, 161.94 doses in North America, and 168.24 doses in Europe. From December 13, 2020, to April 13, 2022, the total number of people who received all doses prescribed by the initial vaccination protocol reached 4.60 billion globally, 3.18 billion in Asia, 489.66 million in Europe, 374.53 million in North America, 319.04 million in South America, 211.21 million in Africa, and 27.30 million in Oceania. The percentage of people who received at least one vaccine dose, divided by the total population of each continent was 64.80%, while that in Africa, Asia Europe, North America, Oceania, and South America were 20.50, 74.70, 68.30, 71.60, 66.30, and 83.70%, respectively (Supplementary Figure S2).




Discussion

In this study, we conducted a preliminary summary to examine the positive COVID-19 cases, deaths, VOC diversity, and vaccinations at the global level. Our analysis shows that there was a substantial difference in the evolving trend of COVID-19 in the six continents. Our analysis showed that the highest total cases per million and total deaths per million were observed in Europe and South America, respectively, despite these developed countries having higher rates of vaccination compared to other continents, such as Africa. However, both the total cases and deaths per million in Africa were the lowest. These data revealed that the vaccine currently used in these continents cannot completely prevent the spread of COVID-19. Similarly, a recent report suggested that vaccination may not completely prevent SARS-CoV-2 infection and stop its transmission, but it can prevent the occurrence of post-infection disease or reduce the severity of the disease (15). Meanwhile, high income levels likely increase the mobility and number of contacts, which increases the rate of new cases and deaths (16). In addition, traveling and population dispersal can aggravate the spread of disease in each region (17, 18). Although air travel has clearly been a major driver of the pandemic, intercontinental travel restrictions were less effective between Europe and the USA (19). Certainly, this is one of the most reasonable explanations for the highest number of cases and deaths reported in these continents. In addition, these continents had robust COVID-19 testing capacities and effective public surveillance systems, which are crucial to preventing a high infection rate. Approximately 3.4 billion tests were performed globally from December 2019 to August 2021, most of which were restricted to high-income countries, which conducted more SARS-CoV-2 testing (i.e., USA: 192%, Australia: 146%, Switzerland: 124%, and Canada: 113%) compared to that undertaken in low-income countries (LICs; i.e., Bangladesh: 6%, Uganda: 4% and Nigeria: 1%) (20). Furthermore, several other factors, such as the fragile healthcare system, relatively low population density, low obesity or diabetes burden, younger population, climate, genetics, and lessons from the public health response to other deadly infectious diseases (e.g., Ebola virus) are correlated with the lower case and death rates observed in Africa (21–23). Given the selective advantage offered by malaria through a wide distribution of blood group O in Africa, the enormous spread of the angiotensin-converting enzyme II (ACE2) deletion among many African ethnic groups might have reduced COVID-19 susceptibility in Africans (24). Likewise, countries with very low GDPs were less affected by the COVID-19 pandemic (16). This may be because low incomes limit the mobility of the population, thereby reducing the number of contacts with infected people. Additionally, there is a clear underreporting of the total burden of COVID-19 in Africa due to the undetected and insufficient death registration capacities (8). Finally, because of limited test capacity, the focus is on the observation of symptoms in individuals; however, there is a limited capacity for control when targeting symptomatic individuals, especially given that 65%−85% of COVID-19 cases in Africa do not present any symptoms (25). International efforts to assist undeveloped countries (such as Africa) are needed to support the global COVID-19 response (26), which should be followed by increasing the test per case ratio to gain an accurate understanding of the COVID-19 situation in this continent.

Our analysis showed that there were at least four waves of the COVID-19 pandemic globally, as well as in each continent, during the period examined. Although the number of cases in the fourth wave exponentially increased compared to those in the first wave, approximately 43.1% of deaths were in the first wave; this was due to multiple factors, including the health emergency in the initial stage, gradual reduction in the severity of novel variants, and the protection conferred by prior infection and/or vaccination. At the initial stage of the pandemic, when confronting COVID-19, there was less experience, a lack of relative knowledge, and no preparedness to fight against it. These factors led to a delayed response which then prolonged the pandemic period. With the prolongation of the pandemic, global governments pursued proactive measures, including the use of facemasks, hand sanitizers, lockdowns, increasing testing, contact tracing, and the roll-out of vaccines, which may explain why the second and third waves were shorter than the first wave. Although many developed countries have high rates of vaccination, the number of cases surged suddenly in the fourth wave, implicating that the driving factors of COVID-19 have the potential to induce significant changes; furthermore, the current vaccines used in these continents cannot completely prevent the spread of disease.

Meanwhile, since the pandemic, SARS-CoV-2 has dramatically evolved into numerous variants with an increase in transmissibility characteristics (27, 28). There have been at least 12 variants observed among the six continents, which showed a clear spatiotemporal profile. Likewise, multiple genetic lineages have been shown to co-circulate, although four were predominant at different periods in Barcelona city (Catalonia, Spain). Moreover, while B.1.5 (50.68%) and B.1.1 (32.88%) were the major lineages during the first pandemic wave, B.1.177 (66.85%) and B.1.1.7 (83.80%) were predominant during the second, third, and fourth waves (29). In the first wave, the main VOCs were Alpha, Delta, Epsilon, and Beta, while VOC Alpha and VOI Epsilon were the dominant lineages in the second wave. Alpha is not only more transmissible than pre-existing SARS-CoV-2 variants, but may also cause more severe illness (30). Furthermore, the Beta and Delta variants have a higher risk of spreading than the Alpha and Gamma variants (31). Generally, viruses mutate to adapt and sustain themselves in the environment, and the mutation causes an increase in transmissibility and the neutralizing capacity of the virus (32). The Delta variant was diagnosed in 51%−67% more cases than the Alpha variant and was also associated with higher hospital admission and emergency care attendance risk for patients with COVID-19 (33). In Qatar, a study showed that infection with the SARS-CoV-2 Delta variant was associated with more severe disease than infection with the Beta variant (34). From April 27, 2021, to September 12, 2021, 601,349 cases and 15,018 deaths were reported in Vietnam caused by the Delta variant, which was confirmed as the most complicated and dangerous variant, with the most deaths recorded (35). This may explain the highest number of deaths observed in the first two waves. Although VOC Alpha and VOC Delta variants were mainly recorded in the third wave, the lowest number of deaths in the third wave was considered to be mostly due to the protection conferred by prior infection and/or vaccination. For example, the SARS-CoV-2 seroprevalence in Slovenia increased four-fold from late April to October/November in 2020, mainly due to the emergence of a devastating second wave (36). In the fourth wave, Delta and Omicron were predominant, followed later by only Omicron, which subsequently caused the infection to increase sharply. The VOCs, Alpha, Beta, Gamma, and Delta, have a closer genetic relationship among themselves and a more distant genetic relationship with the Omicron variant (37). Omicron has greater transmissibility and infectivity, as well as an improved ability to evade immunity established by natural infections or vaccination (38). When a new variant with higher transmissibility and lower vaccine efficiency emerges, it becomes the dominant circulating variant. At present, Omicron has a significant growth advantage over the Delta variant, and also spreads more rapidly; indeed, in countries with known community transmission, it has a doubling period of 1.5–3 days (39). According to month, the highest case numbers (n = 89,374,078) were reported in January 2022. Similar pandemic waves caused by the Omicron were registered in January 2022 in the highly vaccinated UK, USA, and EU, potentially due to the lifting of quarantine restrictions for vaccinated people in these countries (40). Record numbers of new cases registered in late 2021 and early 2022 once again proved that existing vaccines cannot prevent new infections, and that vaccinated people can spread the infection as intensively as non-vaccinated ones (41). However, the prevalence of symptoms that characterize an Omicron infection differs from those of the Delta SARS-CoV-2 variant, which appears to be associated with reduced involvement of the lower respiratory tract and reduced probability of hospital admission (42). Although Omicron spreads significantly faster than the Delta variant (and other variants), it causes less severe disease (43–45). This result is in line with our analysis that surge and numerical cases were caused by Omicron but associated with fewer deaths (46, 47). Similarly, the trend of increasing cases and admissions across South Africa's first three waves shifted in the Omicron wave, with a higher and more rapid peak, but with fewer hospital admissions, less clinically severe illness, and a lower case-fatality ratio than the three preceding waves (48). Although the COVID-19 case peak growth was 18.6% higher than that during the Delta outbreak period in South Africa, the growth in death trends in the Omicron outbreak period was low, possibly due to the low mortality rate and case fatality proportion (49). Therefore, mild infectious groups account for most of the infected individuals, and prompt immunization results in weaker pandemic waves across all levels of infection, as well as a lower number of disease-caused deaths (50). Our analysis confirmed that the driving dynamic in the COVID-19 pandemic has changed and that the shift from multiple SARS-CoV-2 variants to a single lineage is responsible for driving the global pattern of multiple waves. Thus, there is an urgent need for continuous surveillance of variants of circulating lineages to reduce the further spread and to better understand the pandemic dynamics (51).

Currently, SARS-CoV-2 pandemics remain a global issue; two new Omicron variants were identified recently in South Africa, driving a surge in COVID-19 cases (52, 53). Furthermore, Omicron subvariants BA.4 and BA.5 have together become dominant variants in the USA (54). Importantly, both BA.4 and BA.5 are spreading faster than other Omicron lineages and can circumvent some immune protection conferred by previous infection and vaccination (55, 56). Local, national, and international health agencies have advocated multi-pronged public health strategies to limit infections and prevent deaths (57). Although the number of fully vaccinated people per 100 in six continents is not balanced across the six continents studied (58), mitigation measures such as masking and social distancing will not fully prevent transmission of the Omicron variant but will reduce the pressure on health systems worldwide. Moreover, vaccinations can significantly reduce the likelihood of deaths, and the increase in the number of tests per case ratio diminishes the number of infections (41). Furthermore, based on public strategies, restoring quarantine restriction populations (both vaccinated and non-vaccinated) and increasing the number of tests per case ratio is the optimal strategy for controlling the COVID-19 pandemic (40).

The current study has several limitations that warrant discussion. First, a simple definition of “pandemic wave” based on the number of increasing and decreasing cases may not fully reflect the dynamic profile of the pandemic. For instance, if the changes in the pandemic dynamics can be called “waves,” then there were five global waves predicted in 2020 alone (59). Second, our study focused on conducting statistical analyses without empirical models; however, a dynamic model analysis for quantitative interpretation of the relationships between variables could better grab the dynamic and epidemiological profile of the COVID-19 pandemic (60, 61) and assist in implementing measures to reverse pandemic trends.
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Observational data from China, the United States, France, and Italy suggest that chronological age is an adverse COVID-19 outcome risk factor, with older patients having a higher severity and mortality rate than younger patients. Most studies have gotten the same view. However, the role of aging in COVID-19 adverse effects is unclear. To more accurately assess the effect of aging on adverse COVID-19, we conducted this bidirectional Mendelian randomization (MR) study. Epigenetic clocks and telomere length were used as biological indicators of aging. Data on epigenetic age (PhenoAge, GrimAge, Intrinsic HorvathAge, and HannumAge) were derived from an analysis of biological aging based on genome-wide association studies (GWAS) data. The telomere length data are derived from GWAS and the susceptibility and severity data are derived from the COVID-19 Host Genetics Initiative (HGI). Firstly, epigenetic age and telomere length were used as exposures, and following a screen for appropriate instrumental variables, we used random-effects inverse variance weighting (IVW) for the main analysis, and combined it with other analysis methods (e.g., MR Egger, Weighted median, simple mode, Weighted mode) and multiple sensitivity analysis (heterogeneity analysis, horizontal multiplicity analysis, “leave-one-out” analysis). For reducing false-positive rates, Bonferroni corrected significance thresholds were used. A reverse Mendelian randomization analysis was subsequently performed with COVID-19 susceptibility and severity as the exposure. The results of the MR analysis showed no significant differences in susceptibility to aging and COVID-19. It might suggest that aging is not a risk factor for COVID-19 infection (P-values are in the range of 0.05–0.94). According to the results of our analysis, we found that aging was not a risk factor for the increased severity of COVID-19 (P > 0.05). However, severe COVID-19 can cause telomere lengths to become shorter (beta = −0.01; se = 0.01; P = 0.02779). In addition to this, severe COVID-19 infection can slow the acceleration of the epigenetic clock “GrimAge” (beta = −0.24, se = 0.07, P = 0.00122), which may be related to the closely correlation of rs35081325 and COVID-19 severity. Our study provides partial evidence for the causal effects of aging on the susceptibility and severity of COVID-19.
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Introduction

SARS-CoV-2 caused the Coronavirus Disease 2019 (COVID-19) pandemic, which has evolved into a major global health threat. Globally, more than 517 million COVID-19 cases were confirmed by May 2022. According to the World Health Organization (1), the COVID-19 death toll has reached 6.26 million worldwide. Thus, to protect high-risk groups against COVID-19, risk factors associated with increased susceptibility to the disease must be identified (2). In COVID-19, age is an important risk factor, and the older you get, the more severe and mortality you become (3–6). Italy’s COVID-19 mortality data (CFR) shows that age has a significant impact (7), with case fatality rates ranging from less than 0.4% or less in patients in their 40 s, 1% in 50 s, 3.5% in 60 s, 12.8% in 70 s, and 20.2% in 80 s and older; the total case fatality rate was 7.2%. Other countries such as China (8), the United States (9), and France (10) have achieved similar results, with older COVID-19 case fatality rates being higher than among younger patients. Not only that, but the data tested in Italy show that the total case fatality rate in Italy is higher than that in China (7.2% and 2.3%, respectively), which may be related to the fact that the proportion of elderly people in Italy is higher than that in China.

Aging-related biological processes are reflected in molecular hallmarks such as epigenetic modifications and telomere attrition (11–13). Epigenetic age has recently emerged as a promising indicator of cellular senescence and may be more strongly correlated with mortality than earlier indicators of biological age (14). Different from chronological age, epigenetic age is a heritable indicator of biological aging derived from DNA methylation (DNAm) data. Each indicator (epigenetic clock) is based on the unique characteristics of DNAm levels reflecting biological aging, as measured at a specific set of cytosine-phosphate-guanine (CpG) loci (15). “First-generation” epigenetic clocks such as HannumAge (16) and Intrinsic HorvathAge (17) are calculated from DNAm levels at CpG loci that are closely associated with chronological age, and better predict chronological age than other clocks. There are 71 age-related CpG in the blood, and HannumAge results from training on these loci. The HorvathAge is trained on the 353 age-related CpG species found in human tissues and cells, and then further adjusts for the blood cell count. “Second-generation” epigenetic clocks, like PhenoAge (18) and GrimAge (19), integrate data from nine clinical biomarkers (e. g., white blood cell count, C-reactive protein, lymphocyte percentage, albumin, creatinine, etc.) and 513 CpG associated with mortality. The CpG component site of GrimAge is a surrogate for disease-related and health-related proteins and smoking history, it shows a high association with all-cause mortality and age-related health conditions and has a good ability to predict both morbidity rates and mortality (20). SARS-CoV-2 has been discovered to induce changes in DNA methylation, which affects the expression of immune response suppression genes. Studies have shown that severe COVID-19 infection accelerates epigenetic age aging, but this was not absolute, and epigenetic age reversal occurred in the later stages of infection (21). Besides, leukocyte telomere depletion, another hallmark of aging, is associated with increased human lifespan and risk of age-related diseases (22–24), leading to the development of DNA age reversal-based telomere length estimators (25). Most mammals lack the ability to fully replicate the ends of linear DNA molecules when cells proliferation expressing telomerase, and telomere-protective sequences at chromosome ends are gradually consumed and lost with DNA replication. This feature makes telomere length one of the indicators that can predict biological age. The epigenetic clock and telomere length measure the different characteristics of biological aging, and the Marioni studies showed no correlation between telomere length and epigenetic age (26).

Epigenetic age is greater than chronological age in various disease contexts and lowers in long-lived humans, providing strong evidence that epigenetic age reflects biological age. In short, epigenetic age can reflect chronological age but they are not identical. Although lots of studies have shown that chronological age is related to the severity of COVID, no studies have been able to prove a causal link between epigenetic age and COVID -19. In this study, we used the MR analysis approach to account for the causal relationship between COVID-19 and aging, whereas the MR study used genetic variants that are reliably associated with modifiable risk factors. Therefore, confusion can be minimized and reverse causality ruled out since variation is randomly assigned from parent to offspring at conception.



Research design and methods


Research design

Here, we use epigenetic age (PhenoAge, GrimAge, Hannum, HorvathAge) and telomere length as “exposure,” respectively, and COVID-19 severity and susceptibility as “outcome,” to screen out the instrumental variables for bidirectional Mendelian randomization analysis, significance thresholds were corrected using Bonferroni to reduce the probability of false positives and assess heterogeneity using the Cochran Q analysis, and finally perform sensitivity analysis (Horizontal pleiotropy analysis and “leave-one-out” analysis) to verify the reliability of causal results. We then performed reverse MR with COVID-19 severity and susceptibility as “exposure” and epigenetic age and telomere length as “outcomes.” MR studies need to meet the following three key assumptions: (1) Instrumental variables must be closely associated with exposure factors; (2) The instrumental variables are not be associated with any confounding factors associated with exposure factors and outcome factors; (3) Instrumental variables do not affect the results unless they may be associated with exposure (Figure 1). In this study, bidirectional Mendelian randomization was used to evaluate the causal connection between age aging and susceptibility and severity of COVID-19.
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FIGURE 1
BidirectionalMendelian randomization paradigm and assumptions of aging and COVID-19. Mendelian randomization assumptions: (1)the instrument variants must be closely related to the exposure, (2) the instrument variants must be independent of any confounder of the exposure-outcome association, (3) the instrument variants must be associated with the outcome only viathe exposure.




Data sources

Recent genome-wide association studies based on a meta-analysis of European ancestry of 34,710 participants from 28 cohorts, identify 137 loci for DNA biomarkers related to aging1 (Table 1). From this study, we obtained summary genetic association estimates for epigenetic age acceleration measures of HannumAge (16), Intrinsic HorvathAge (17), PhenoAge (18), and GrimAge (19). The analysis included 28 European ancestry studies with 57.3% female participants. For more information and a detailed description of the methods, see the latest meta-analysis of biological aging by GWAS (27).


TABLE 1    Description of contributing studies.
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We obtained the genetic associations of COVID-19 susceptibility and severity from the 5th round of the COVID19-hg GWAS meta-analysis, released on January 18,2021, which provides publicly accessible summary statistics available about several COVID-19 outcomes from different studies that are publicly accessible (e.g., United Kingdom Biobank, FinnGen) (Table 1) (28). Documentation on the COVID-19 Host Genetics Initiative identified COVID-19 susceptibility and severity phenotypes as C2 (COVID-19 patients vs. population which were defined as any individuals who never had COVID-19, which included 38,984 COVID-19-positive cases and 1,644,784 controls) and A2 (hospitalized individuals with COVID-19 who died or required respiratory support vs. individuals without severe COVID-19 including those without COVID-19, which included 5,101 COVID-19 patients with severe symptoms and 1,383,241 controls). Support for the respiratory system is characterized by intubation-ventilator-assisted breathing or high-flow nasal cannulas. However, neither the age nor sex of this cohort was reported (Table 1). Further new releases and information can be obtained from the COVID-19 HGI homepage: https://www.covid19hg.org/results/r5/.

Genome-wide association study data for telomere length are obtained by https://gwas.mrcieu.ac.uk/. 472174 gender-insensitive Europeans were used as data sources. GWAS ID: ieu-b-4879, obtained from the uk/datasets website, whose brief information is shown in Table 1.



Selection of instrumental variables

Referring to the whole genome, SNPs with significant (P < 5.0 × 10–8), set the parameter r2 threshold of 0.001 and kilobase pair (kb) to 10,000, and the LD_clumping function were pooled to exclude interference in linkage disequilibrium. Missing SNPs from the outcome database were removed. Analysis was performed using the R software package TwoSampleMR V.4.0 (29, 30). Finally, valid SNPs significantly associated with exposure were obtained as instrumental variables (IV). If the correlation between IV and exposure factors is weak, it is prone to a weak instrumental variable bias. To avoid weak instrumental variable bias, F values were calculated in this study. The F value is the ratio of the variance to the residual variance explained by the first stage model of Mendelian randomization. It is generally assumed that there is no weak instrumental variable bias (31) at F > 10. The proportion of trait variance explained by genetic tools (R2) and tool strength (F-statistics) was calculated using R2 =(2*MAF*(1−MAF)*β2)/(SE2*N) and F = R2(N−k−1)/(k*(−1−R2)) (MAF = minor allele frequency, β = effect size, SE = standard error, N = sample size, k = number of instrumental variables) (32). Finally, data were extracted from the outcome database and collated and merged in order to correspond the same effect allele with the effect values of exposure and outcome.



Statistical analysis

The effect of exposure on outcome was analyzed by Wald ratio for each SNP. The effect of each SNP is given at the normalized log-transformed exposure level. The primary MR analysis was performed using the inverse variance weighted (IVW) method, where the SNP to outcome estimate is regressed on the SNP to exposure estimate. Then we calculated the causal effect estimates (equivalent to beta coefficients) and converted them to odds ratios (OR). This approach will provide the highest statistical power if three of MR’s key assumptions (described in the research design) are satisfied. Considering different patterns of violations, we performed a series of sensitivity analyses to assess and validate these assumptions.

First, we used the MR–Egger method, which allowed for an additional intercept (alpha) term that also provided an estimate of directional horizontal pleiotropy. This method relied upon the assumption that the size of a genetic variant’s direct effect on the outcome that did not operate through the exposure is independent of the variant’s effect on the exposure. In addition, we used four other meta-analysis methods that were known to be more reliable for the existence of horizontal pleiotropy: weighted median, simple mode, penalized weighted median, and weighted mode (33). We calculated the global Q-statistics and analyzed the MR-Egger intercept term to assess substantial heterogeneity and directional pleiotropy. In addition, we performed “leave-one-out” analyses for each SNP to examine whether there were high-impact instrumental variables that might have a disproportionate impact on MR results. Analyses were performed using primarily the TwoSampleMR package of the statistical software R (version: 4.0.0).




Results


Instrumental variable

Epigenetic age (numbers of instruments: PhenoAge = 11, R2 = 0.44%, F-statistic = 152.2; GrimAge = 4, R2 = 0.20%, F-statistic = 70.3; Hannum = 9, R2 = 1.13%, F-statistic = 155.4 and HorvathAge = 24, R2 = 1.26%, F-statistic = 442.4; total study populations = 34,710 cases) (Supplementary Table 1) and telomere length (numbers of instruments = 154, R2 = 1.18%, F-statistic = 36.63) had sufficient genome-wide loci (≥ 2) for MR analyses (Supplementary Table 2). Conversely, two COVID-19 phenotypes (numbers of instruments: severity = 4, R2 = 0.0037%, F-statistic = 51.2; susceptibility = 6, R2 = 0.0056%, F-statistic = 94.5; total study populations: severity = 1,388,342; susceptibility = 1683768) had sufficient genome-wide loci for reverse MR analyses (Supplementary Table 3). In Mendelian randomization, the index to evaluate the strength of an instrument variable is the F-statistic, and when the F value is greater than 10, it is a strong instrumental variable (34). In our analysis, the instrument strength was strong (F-statistic in bidirectional MR analyses range from 51.2 to 442.4), so we found no evidence of weak instrumental variable bias. Therefore, these instrumental variables are good estimates of the causal effect of exposure on the outcome.



The Mendelian randomization results did not reveal a causal relationship between epigenetic age and COVID-19 susceptibility

We observed no causal relationship between epigenetic age and COVID-19 susceptibility from Mendelian randomization. The OR value and 95%CI calculated by inverse variance weighting are phenoAge and susceptibility: 1.01 (95%CI 0.98–1.04), P = 0.41; GrimAge and susceptibility: 0.97 (0.86–1.09), P = 0.62; Hannum and susceptibility: 0.98 (0.94–1.01), P = 0.19 and HorvathAge and susceptibility: 1.01 (0.99–1.03), P = 0.34. That is, there is no statistical significance (Figure 2) (Supplementary Figure 1). Mendelian randomization effect forest plot for a single SNP (Supplementary Figure 2). In reverse MR (exposure: COVID-19 susceptibility, outcome: epigenetic age), no significantly different values were also found (susceptibility and PhenoAge: beta = 0.31, se = 0.41, P = 0.44; susceptibility and GrimAge: beta = 0.21, se = 0.18, P = 0.25; susceptibility and Hannum: beta = 0.28, se = 0.18, P = 0.11 and susceptibility and HorvathAge: beta = 0.16, se = 0.19, P = 0.39). The results of the other analysis methods are visible in Supplementary Figure 3. Mendelian randomization effect forest plot for a single SNP (Supplementary Figure 4). Then we performed heterogeneity analysis and intercept term analysis of MR-Egger regression, with no significant heterogeneity and pleiotropy. The results are shown in Table 2.
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FIGURE 2
Inverse variance weighted (IVW) method was used as the main method to analyze the causal association between aging and susceptibility and severity of COVID-19. Aging is based on epigenetic age (PhenoAge, GrimAge, Hannum, HorvathAge) and telomere length as biological indicators. Beta: risk index; Se: standard error; OR (95% CI): odds ratio (95% confidence interval); Forest plot: Visualize the causal effect of exposure on the risk of outcome by IVW method [The standard line is the line of “X = 1” (red dashed line)], The blue marker dot is a positive result of P < 0.05).



TABLE 2    Heterogeneity and pleiotropic analysis for epigenetic age and susceptibility and severity of COVID-19.
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Age has no significant effect on infection with severe COVID-19; severe COVID-19 can slow GrimAge acceleration

In forwarding MR with epigenetic age as “exposure” and COVID-19 severity as “outcome,” the IVW meta-analysis showed that OR and 95%CI [PhenoAge and severity: 1.06 (0.91–1.23), P = 0.49; GrimAge and severity: 0.87 (0.72–1.05), P = 0.15; HorvathAge and severity: 0.97 (0.91–1.04), P = 0.36], the results were all of no significance. This suggests that epigenetic age doesn’t lead to increased severity of COVID-19 (Supplementary Figure 1). However, when performing the reverse causality assessment, COVID-19 severity had a negative causal relationship with GrimAge in the epigenetic age (severity and GrimAge: beta = −0.24, se = 0.07, p = 0.0012). The results remained statistically significant after the Bonferroni correction (P < 0.0125) (Supplementary Figure 3). This suggested that severe COVID-19 can slow GrimAge acceleration (Figure 3). The Cochran Q test for IVW (P = 0.46) and MR-Egger regression (P = 0.34) showed that there was no heterogeneity in SNPs. There was no significant statistical difference in egger_intercept and 0 of MR-Egger (P = 0.60), so we can assume that SNPs have no horizontal pleiotropy (Table 2). Mendelian randomization effect forest plot for a single SNP (Supplementary Figure 4).
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FIGURE 3
MR “leave-one-out” sensitivity analysis “COVID-19 severity” on “GrimAge.” “Leave-one-out” plot to visualize the causal effect of COVID-19 severity on the risk of GrimAge when leaving one SNP out.




Telomeres do not affect susceptibility and severity of COVID-19

When the telomere length is the exposure factor, susceptibility and severity of COVID-19 are “outcome.” The IVW results of the random effect model show no causal relationship between telomere length and COVID-19 susceptibility risk [OR (95%CI): 1.00 (0.91–1.11), P = 0.93) and severity risk (OR (95%CI): 0.97 (0.66–1.42), P = 0.86] (Figures 2, 4) (Supplementary Figure 5). Mendelian randomization effect forest plot for a single SNP (Supplementary Figure 6). The results of the MR-Egger regression of telomere length and COVID-19 susceptibility and severity showed that this result is unlikely to be affected by genetic pleiotropy (susceptibility: egger intercept = −0.0019, se = 0.0024, P = 0.42; severity: egger intercept = 0.0050, se = 0.0093, P = 0.59). Further, we observed no obvious heterogeneity between telomere length and COVID-19 severity (Q = 36.23, P = 0.87). Yet, there was heterogeneity between telomere length and COVID-19 susceptibility (Q = 125.76, P = 0.048), which might result from different genetic mechanisms (Table 3).
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FIGURE 4
Scatter plots of aging and COVID-19 susceptibility and severity. Horizontal ordinate: SNP effect on “exposure”; Vertical coordinates: SNP effect on “outcome.” (A) Exposure: PhenoAge, outcome: severity; (B) exposure: PhenoAge, outcome: susceptibility; (C) exposure: GrimAge, outcome: severity; (D) exposure: GrimAge, outcome: susceptibility; (E) exposure: HorvathAge, outcome: severity; (F) exposure: HannumAge, outcome: susceptibility; (G) exposure: telomere length, outcome: severity; (H) exposure: HorvathAge, outcome: susceptibility; (I) exposure: telomere length, outcome: susceptibility.



TABLE 3    Heterogeneity and pleiotropic tests for telomere length and susceptibility and severity of COVID-19.
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Infection with severe COVID-19 can shorten telomere lengths

In reverse MR, the IVW results of the random-effect model showed a negative causal relationship between COVID-19 severity and telomere length [beta and 95%CI: −0.01 (−0.02, −0.001); se = 0.01; P = 0.02779], that is, infection with severe COVID-19 accelerates telomere wear and shortens telomere length (Figure 5). The Weighted median also showed similar results [beta and 95%CI: −0.01 (−0.02, −0.0006); se = 0.01; P = 0.03857] (Supplementary Figure 7). Then we performed heterogeneity analysis and intercept term analysis of MR-Egger regression, with no significant heterogeneity (Q = 0.33, P = 0.85) and pleiotropy (egger intercept = 0.00059, se = 0.0053, P = 0.93) (Table 3). Finally, we performed the “leave-one-out” analysis of the data using the IVW method, we removed one SNP in turn and analyzed the remaining SNP. We found that there was no SNP with a great impact on the results, and the results have important credibility (Supplementary Figure 8).
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FIGURE 5
Scatter plots of COVID-19 susceptibility and severity and aging. Horizontal ordinate: SNP effect on “exposure”; Vertical coordinates: SNP effect on “outcome.” (J) Exposure: severity, outcome: PhenoAge; (K) exposure: susceptibility, outcome: PhenoAge; (L) exposure: severity, outcome: GrimAge; (M) exposure: susceptibility, outcome: GrimAge; (N) exposure: severity, outcome: HannumAge; (O) exposure: susceptibility, outcome: HannumAge; (P) exposure: severity, outcome: HorvathAge; (Q) exposure: susceptibility, outcome: HorvathAge; (R) exposure: severity, outcome: telomere length; (S) exposure: susceptibility, outcome: telomere length.





Discussion

The link between aging, aging, and COVID-19 disease is a very novel area of research that has not yet been extensively studied. To some extent, epigenetic age and telomere length can be used as metrics of aging. When we looked at epigenetic age and telomere length versus susceptibility to COVID-19, there was insufficient evidence that aging was a predisposing factor for COVID-19, and there is no direct causal relationship between age stratification and COVID-19 infection. If aging has a causal effect on susceptibility to COVID-19, then its effect may be too small to be detected with our current sample size and a significance threshold of P = 0.05.

In our study, there is no forward causal relationship between aging and severe COVID-19 infection, i.e., the higher the risk of severe COVID-19 infection at age is debatable. But, the severity of COVID-19 has a negative causal relationship with the GrimAge clock of epigenetic age. That is, people with very severe respiratory symptoms of COVID-19 infection can delay the acceleration of epigenetic age (GrimAge) to some extent. Although only Grimage is significant out of the 4 clocks in epigenetic age and none of the rest is significant, however, this does not mean that our results are invalid. They may simply reflect differences in the way clocks were trained (e.g., training for different outcomes, tissues, and populations). Different clocks can provide insight into different biological mechanisms of aging (15). For example, GrimAge was trained on mortality and smoking (factors that are closely related to the risk of respiratory diseases), which may explain why it is superior to other epigenetic indicators of aging in studying respiratory diseases.

We analyze the reasons that severe COVID-19 may delay the epigenetic age GrimAge: (1) A longitudinal DNA methylation analysis showed that (21) while COVID-19 can have an impact on the epigenetic clock and telomere wear and tear and accelerate epigenetic aging, epigenetic age reversal occurs in some patients late in COVID-19 infection. In our “leave-one-out” analysis, we found that rs35081325 had a much greater impact on the results than other SNPs. Rs35081325 is located in the chr3p21 LZTFL1 intron sub-region, and studies have shown that (34–36) the chr3p21 region where rs35081325 is located is closely related to COVID severity. The secondary allele (allele “T”) of this gene has a protective effect. Epigenetic age reversal may occur because the population with the allele “A” decreases faster than the population with the protective allele “T” as the severity increases, resulting in a lower frequency of having the allele “A” in the surviving population. However, the data we used did not stratify the risk of severity in patients with COVID-19, and unfortunately, there are no biomarkers associated with aging that can be identified today as a risk stratification of severity in patients with COVID-19. (2) This may reflect that the association between aging and COVID-19 may be confounded by factors that are difficult to control for even with advanced statistical adjustments, like socioeconomic status, institutionalization, or various sub-health conditions of the body, or caused by insufficient statistical potency. (3) Epigenetic age and telomere length are not necessarily fully representative of aging. Studies have shown that p21CIP1, Ki-67, SA β-gal staining, p16INK4a, etc., can be used as biomarkers of aging. We must combine various biomarkers [e.g., morphological features, SA β-gal staining, p21CIP1, p16INK4a, heterochromatin markers (SAHFs and SADSs) and proliferation (Ki-67)] to accurately identify and confirm aging in cells (37). Using epigenetic age and telomere length alone to indicate aging is more limited.

When analyzing telomere length and COVID-19 severity, our results are similar to most observational studies (7–10), i.e., having severe COVID-19 infection can lead to accelerated telomere wear and shorter telomere length. Raul Sanchez-Vazquez et al. measured telomere length in 89 patients with COVID-19 and found that telomere length decreased with age, with patients with more severe COVID-19 having shorter telomere lengths compared to patients with milder COVID-19 (38). As we age, the accumulation of DNA damage affects the genome and chromosomal regions, with telomeres particularly vulnerable to age-related factors (39), and most mammalian somatic cells do not express telomerase, most types of somatic cells have limited ability to proliferate, a phenomenon known as replication senescence or “The Hayflick limit” (40, 41), which means that the telomere protective sequence that causes the ends of chromosomes is gradually lost as the number of replicates increases. The SARS-CoV-2 virus infects different cell types in the organism, and individuals with short telomeres suffer from impaired regeneration after infection with SARS-CoV-2, and these studies indirectly explain our findings (42).



Conclusion

Our findings suggest that there is may no clear association between aging and susceptibility to COVID-19, and that COVID-19 severity is may not be associated with changes in age. Severe COVID-19 could lead to accelerated telomere wear and shorter telomere lengths. At the same time, severe COVID-19 could also slow the acceleration of GrimAge clocks, which is not significantly related to other epigenetic clocks. The fly in the ointment is that our study lacks observational studies, and existing observational studies differ from some of our findings. We conclude the above possible arguments through the Mendelian randomization approach. More research is needed to demonstrate the link between aging and adverse COVID-19 and the underlying mechanism by which this genetic predictive effect occurs.
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Introduction: The coronavirus disease (COVID) 2019 pandemic remains a great challenge for the healthcare system. The widely reported prolonged signs and symptoms resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (Long-COVID) require medical care. The aim of the study was to assess factors, including lifestyle variables, related to the course of COVID-19 infection and to assess their impact on prolonged symptoms in non-hospitalized patients with COVID-19.

Methods: A total of 1,847 (637 men and 1,210 women) non-hospitalized participants of the STOP-COVID registry of the PoLoCOV-Study who, following the COVID-19, underwent check-up examinations at the cardiology outpatient clinic were included in the analysis.

Results: The study participants (median age 51 [41–62] years) were evaluated at 13.4 (8.4–23.6) weeks following the diagnosis of COVID-19. Female sex (odds ratio [OR] 1.46 [95% CI 1.19–1.78]), body mass index (BMI; per 1 kg/m2: 1.02 [1.00–1.04]), hypertension (1.39 [1.07–1.81]), asthma (1.55 [1.06–2.27]), stress or overworking (1.54 [1.25–1.90]), and nightshift work (1.51 [1.06–2.14]) were independently related to the severity of symptoms during acute phase of the COVID-19 infection. The Long-COVID syndrome was independently related to the female sex (1.42 [1.13–1.79]), history of myocardial infarction (2.57 [1.04–6.32]), asthma (1.56 [1.01–2.41]), and severe course of the acute phase of the COVID-19 infection (2.27 [1.82–2.83]).

Conclusion: Female sex, BMI, asthma, hypertension, nightshifts, and stress or overworking are significantly related to the severity of the acute phase of the COVID-19 infection, while female sex, asthma, history of myocardial infarction, and the severity of symptoms in the acute phase of COVID-19 are the predictors of Long-COVID in non-hospitalized patients. We did not find an independent relation between Long-COVID and the studied lifestyle factors.
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Introduction

The global coronavirus disease 2019 (COVID-19) pandemic remains a great challenge for the healthcare systems, despite the fact that the case fatality rate is decreasing (1). The vast majority of patients following a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (Long-COVID) reported prolonged symptoms (2, 3). The disease is still not well understood. The Long-COVID syndrome is defined by the National Institute for Health and Care Excellence as “signs and symptoms that develop during or after an infection consistent with COVID-19 which continue for more than 12 weeks and are not explained by an alternative diagnosis” (4). The severity of the COVID-19 course is the most important variable for persistent signs and symptoms in the post-discharge period (5, 6). However, 60–80% of patients have a mild or asymptomatic SARS-CoV-2 infection (7, 8). Some individuals are more prone to have a severe course or even develop respiratory failure quickly (9). These studies have shown that comorbidities, especially cardiovascular and pulmonary diseases, are associated with a risk of hospitalization and worse outcomes (10, 11). Furthermore, not only comorbidities influence COVID-19. A growing number of scientific reports concern lifestyle variables as the severity of SARS-CoV-2 infection, such as improper eating habits and a lack of physical activity (10, 12, 13).

Most of the in-depth analyses focused on hospitalized patients who were accurately diagnosed and obtained appropriate treatment and rehabilitation during the acute phase of illness, even though the majority of individuals infected with SARS-CoV-2 were patients isolated and treated at home. However, the epidemiological data indicate that the vast majority of COVID-19 patients are treated at home (8). The factors related to the course of the COVID-19 disease and the development of the Long-COVID syndrome in this population are not well understood. Therefore, the aim of this study was to determine factors, including lifestyle variables, related to the course of SARS-CoV-2 infection and to determine their impact on prolonged symptoms in non-hospitalized patients with COVID-19.



Materials and methods

We analyzed the data of participants of the STOP-COVID registry of the PoLoCOV-Study (ClinicalTrials.gov identifier: NCT05018052) who, following COVID-19, underwent check-up examinations at an outpatient cardiac clinic and were at least 18 years of age. The patient follow-up period spanned from May 2020 to January 2022. The SARS-CoV-2 infection was confirmed by the RT-PCR test or antigen test in each study participant. We excluded patients who were hospitalized for COVID-19. Using standardized data collection forms, demographic and clinical details were collected, including the course of the disease, post-COVID-19 complaints, comorbidities, and lifestyle.

The subjective level of the COVID-19 symptoms was evaluated using a three-point scale: each patient was asked to indicate the severity of symptoms, with 1 point indicating no severe symptoms, 2 points indicating severe symptoms, and 3 points indicating very severe symptoms. Combining this scale with the duration of symptoms, maximal body temperature, dyspnoea, and blood-oxygen saturation, the severity of the COVID-19 infection was assessed. We defined asymptomatic or mild course as no symptoms or symptoms lasting up to 7 days and ranked by a participant as “1,” without temperature >38°C; moderate course as symptoms ranked as “2” or “3” with fever >38°C or dyspnoea lasting 1–3 days or symptoms of any severity lasting 7–14 days; and severe course as symptoms lasting more than 14 days or oxygen saturation below 94 with fever 38°C or dyspnoea lasting more than 3 days.

We analyzed the following lifestyle factors: physical activity (regular physical activity was defined as at least 150–300 min per week of moderate-intensity activity or 75–150 min per week of high-intensity activity during at least 3 months preceding COVID-19), stress, and overworking (anxious, on edge, not being able to stop or control worrying more than half a day) during 4 weeks preceding COVID-19, insomnia (defined as a difficulty falling asleep and maintaining sleep continuity during 4 weeks before COVID-19; falling asleep after midnight and nightshift work), and smoking (defined as using any tobacco products within the last 12 months).

Long-COVID-19 was defined as new or ongoing signs or symptoms associated with a SARS-CoV-2 infection persisting for more than 12 weeks (4).

The study was carried out in conformance with the Declaration of Helsinki and was approved by the Bioethics Committee of Lodz Regional Medical Chamber No. 0115/2021. All patients gave their informed consent.


Statistical analysis

Continuous variables are presented as medians with first and third quartiles, while categorical values are presented as proportions with 95% confidence intervals (CIs), when appropriate. The Shapiro–Wilk test was used to assess the normality. Continuous variables were compared using the Mann–Whitney U test or the Kruskal–Wallis test. The Fisher's exact test or the Pearson χ2 test was applied to all categorical variables, when appropriate. Multivariate logistic analysis was used to assess factors independently related to the severity of the COVID-19 infection and the Long-COVID-19. A P < 0.05 was considered statistically significant. The statistics were calculated using the STATISTICA 13 software (TIBCO Software, Palo Alto, CA, USA).




Results

A total of 1,847 (637 men and 1,210 women) patients (median age 51 [41–62] years; range: 16–85 years) were analyzed. Patients were evaluated at 13.4 [8.4–23.6] weeks following the diagnosis of COVID-19. Overall, 796 (43.1%) patients had an asymptomatic or mild course of the acute phase of the COVID-19 infection, 571 (30.9%) had a moderate course, and 480 (26.0%) suffered from a severe course. Patients with the asymptomatic or mild course of the acute phase of COVID-19 were younger compared to participants with more severe symptoms (Table 1). The proportion of women was higher among patients with mild, moderate, as well as severe courses of the COVID-19 disease, although the difference was significantly higher in groups with more severe courses of the disease. Overall, 1,148 (62.2%) patients had at least one comorbidity. The most common comorbidity was hypertension (33.4%), while 532 (28.8%) patients were obese. The results of the multivariate analysis are presented in Table 2. Sex, body mass index (BMI), hypertension, asthma, stress/overworking, going to bed after midnight, and nightshift work were the predictors of the severity of symptoms in the acute phase of COVID-19 after multivariable adjustments.


TABLE 1 The study group characteristics with regard to the course of the acute phase of the COVID-19 infection.

[image: Table 1]


TABLE 2 Multivariate analysis of predictors for a moderate or severe COVID-19 clinical course.
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In total, 92% of patients reported symptoms within the first 3 months following the COVID-19 infection. Overall, 1,517 patients were interviewed at least 3 months following the COVID-19 infection. Among them, 1,013 (66.8%) patients fulfilled the criteria for the Long-COVID syndrome (symptoms lasting over 12 weeks). Patients suffering from Long-COVID syndrome significantly more often were women and more often reported the presence of asthma (Table 3). The Long-COVID syndrome was significantly more often found in participants with severe course of the acute phase of COVID-19 (n = 315; 79.5%), compared to those with moderate (n = 341; 70.8%) and mild (n = 357; 56.9%) course of COVID-19 (P < 0.001). The results of the multivariate analysis are presented in Table 4. Sex, asthma, history of myocardial infarction, and the severity of symptoms in the acute phase of COVID-19 occurred to be significantly related to the Long-COVID after multivariable adjustments.


TABLE 3 Comparison of patients with and without the Long-COVID syndrome.
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TABLE 4 Multivariate analysis of predictors of Long-COVID signs and symptoms.
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Discussion

Long-COVID disease is still not well understood. The risk factors, course, and treatment of the disease are still not clear. In addition, most of the data are based on patients who have been hospitalized with COVID-19. Therefore, the purpose of this study was to evaluate risk factors, including selected aspects of lifestyle, chronic conditions, and the course of COVID-19, on the risk of developing Long-COVID.

According to research data, a dysregulated immune response, immunothrombosis, endothelial dysfunction, and multiple organ damage have an impact on the occurrence of Long-COVID-19 syndrome (14, 15). Our study demonstrated that the severity of signs and symptoms during the acute phase of infection is the strongest risk factor for Long-COVID-19. Sudre et al. reported that out of more than 4,000 patients who suffered from COVID-19, Long-COVID-19 occurred three times more often in individuals who had more than 5 signs and symptoms during the first week of SARS-CoV-2 infection (odds ratio [OR] 3.53, 95% CI 2.76–4.50) (14). In the PHOSP-COVID study, only 29% of 1,077 patients discharged following COVID-19, felt fully recovered during the second to the seventh month. Female sex, middle age (40–59 years), two or more comorbidities, and more severe signs and symptoms during acute illness were the factors associated with a non-recovery (16). Augustin et al. observed 958 non-hospitalized patients with COVID-19 after 4 and 7 months from the acute phase. A lower baseline anti-SARS-CoV-2 IgG level, anosmia, and diarrhea during acute SARS-CoV-2 infection were associated with a higher risk of developing long-lasting signs and symptoms (17). Prolonged signs and symptoms had a significant impact on the quality of life. In the meta-analysis of 12 studies with 4,828 patients with post-acute COVID-19, the pooled prevalence of poor quality of life was 59% (95% CI 42%−75%) (18). Patients reported pain/discomfort (41.5%), anxiety/depression (37.5%), and difficulty with mobility (36%) or with usual activities (28%). The results of the research show the scale of the problem and the challenge of caring for patients with Long-COVID-19.

Important differences in the course of COVID-19 were already observed. The epidemiological data indicate that men experience more severe signs and symptoms and suffer higher mortality from COVID-19 than women (19, 20). Scully et al. showed that the average male COVID-19 fatal rate was 1.7 times greater than that of the female fatal rate in 37 European countries (21). The causes of this phenomenon are genetic factors and sex hormones that influence immune system regulation (22, 23). However, in our study, women more often reported moderate to severe signs and symptoms of COVID-19, which accounted for almost 70% of signs and symptoms in both groups. Due to the higher male mortality and the higher risk of severe courses, including hospitalization, women were more likely to be home-isolated patients. It should also be underlined that our definition of the COVID-19 course severity was based partly on subjective symptom reports. We observed that women have a 40% higher risk of Long-COVID-19. Some immunological differences such as the lower production of pro-inflammatory interleukin-6 (IL-6) after viral infection in women (24), the potentially protective role of estrogen and progesterone (25), and the higher expression of angiotensin-converting enzyme-2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) receptors in men and women (24) could explain the higher occurrence of post-COVID-19 signs and symptoms. Moreover, according to research, higher levels of depression, poor sleep quality, and the presence of anxiety are more vulnerable in women, promoting Long-COVID-19 (26, 27). Similarly, in the course of cardiovascular diseases, the female sex is associated with lower mortality and also with a worse quality of life (28). This problem was also observed in our study group and an assessment of the life quality, following COVID-19, should be the subject of further analysis.

Many studies show that obesity and impaired metabolic health contribute to impaired immune responses (29–31). Phung et al. performed a meta-analysis of obesity and influenza-related pneumonia (32). They found that the risk of pneumonia among individuals with obesity (BMI ≥30 kg/m2) was increased by 1.33 times (95% CI 1.05–1.63) and 4.6 times (95% CI 2.2–9.8) among patients with morbid obesity (BMI ≥40 kg/m2). Such often association was observed among patients with COVID-19 (33). Obesity promotes a severe course of SARS-CoV-2 infection and increases the risk of respiratory failure (34–37). In our study, we have also observed an association between higher values of BMI and a symptomatic course of COVID-19. Furthermore, it seems that obesity-related chronic inflammations and processes of immunometabolism not only promote a severe clinical course of acute SARS-CoV-2 infection but also contribute to a Long-COVID-19 syndrome (38). However, we did not confirm this in our study group. Obesity and metabolic disorders as modifiable risk factors should be a subject of concern in patients during acute infections and follow-up examinations.

In connection with obesity as a risk factor for a severe course of SARS-CoV-2 infection, low-grade systemic inflammations are associated with the development of insulin resistance, dyslipidaemia, atherosclerosis, type 2 diabetes, hypertension, and asthma (39), i.e., comorbidities adversely affect the outcomes of patients with COVID-19 (11, 40). Meta-analyses of many studies demonstrated that arterial hypertension is the most common comorbidity that correlates with a severe course of COVID-19 (41, 42). Moreover, according to the same meta-analyses, diabetes was more prevalent among fatal cases and, likewise, respiratory diseases (41). Chronic diseases may also have an impact on the occurrence of Long-COVID-19; but according to research results, the relationship between cardiometabolic diseases and Long-COVID-19 is not clear as in the case of COVID-19 alone (43). Halpin et al. found that a pre-existing respiratory disease; a higher BMI; an older age; Black, Asian, and Minority Ethnic (BAME); and dyspnoea at the 4th−8th week of follow-up are associated with prolonged COVID-19 signs and symptoms (44). A pre-existing asthma is significantly associated with Long-COVID-19 (14).

In the course of many chronic diseases, lifestyle risk factors are associated with morbidity, mortality, and the loss of disease-free years of life (45–47). According to the results of our study, stress and overworking before the infection, and sleeping disturbances are associated with the course of COVID-19. Hamer et al. demonstrated, in a large-scale general population study, a dose-dependent association between the risk of COVID-19 and worsening lifestyle scores. The following factors, i.e., physical inactivity (OR 1.32, 95% CI 1.10–1.58), smoking (OR 1.42, 95% CI 1.12–1.79), and obesity (OR 2.05, 95% CI 1.68–2.49) had a higher risk (48). In the results of the analyses of hospitalized patients in Iran, approximately 82% of patients had insufficient physical activity, and 67.3% of patients were reported to have an unfavorable nutritional status. There was also a significant correlation between ICU admissions and unhealthy lifestyles (OR 0.40, P = 0.015) (49). The results of studies demonstrate an association between physical activity behaviors and viral defense responses (11, 50). Li et al. showed in a Mendelian study with randomization that BMI and smoking increase and physical activity might decrease the risk of severe course of COVID-19 (13). However, Rowlands et al. found among 2,009 patients with COVID-19 that the physical activity level was not significantly associated with the risk of testing positive for SARS-CoV-2 or of developing severe COVID-19. Furthermore, a worse balance between activity and sleep/rest with irregular sleeping hours was predictive (11). In contrast, prolonged stress impairs the immune system (51). In the meta-analysis of 23 studies, the presence of any mental disorder was associated with an increased risk of COVID-19 mortality (OR 2.00, 95% CI 1.58–2.54) (52). A small number of studies on the impact of lifestyle parameters on the occurrence of Long-COVID-19 have been performed so far. Although we did not find in our study a direct correlation between lifestyle parameters and the occurrence of prolonged signs and symptoms, indirectly through their impact on the severity of signs and symptoms of acute infections, which are a predictor of Long-COVID-19, one can suppose that such a relationship exists.


Limitations

Besides the design of the study that precluded any consideration of causality, the present analysis has several other limitations. First, our study participants were not representative of all patients with COVID-19 as we excluded from the analysis all participants hospitalized for COVID-19. In contrast, our data provide a unique possibility to assess the factors related to the course of COVID-19 in non-hospitalized patients. The reliability of the data gathered relies on the credibility of the information provided by the study participants. Conversely, an important advantage of our analysis is that our results are not only based on abstracted medical record data but also involved face-to-face interviews and examinations using the same protocol and standardized methods and instruments. We could not analyse vaccination status. In addition, we were not able to identify the variants of SARS-CoV-2. The lack of evaluation of laboratory results should also be mentioned as a methodological limitation. Previous studies have shown that higher eosinophilia, higher neutrophil-to-lymphocyte ratios, lower platelet counts, higher serum ferritin levels, and higher serum bilirubin levels are associated with a higher risk of severe COVID-19 (53, 54). Finally, we could not analyse the data on COVID-19 treatment in the acute phase of the disease.

In summary, despite the limitations of our study, it provides reliable information on risk factors for the development of Long-COVID, including selected aspects of lifestyle, disease course, and chronic conditions. However, the present topic calls for further knowledge in this area. Therefore, further observations on representative groups based on standardized tools also assessing vaccination status and COVID-19 treatment are essential.




Conclusion

Among non-hospitalized patients with confirmed SARS-CoV-2 infection, age, female sex, BMI, asthma, hypertension, stress or overworking, and night shifts are significantly related to the severity of the acute phase of the COVID-19, while female sex, asthma, history of myocardial infarction, and the severity of symptoms in the acute phase of COVID-19 are the predictors of Long-COVID. We did not find any independent relation between Long-COVID and the studied lifestyle factors.
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Introduction: Morbidity and mortality from COVID-19 are higher among men, however, underlying pathways remain controversial. We aim to investigate sex-gender differences in COVID-19 in a large US-based cohort, namely COVID-19 Research Database. More specifically, the objectives are to explore the socio-economic characteristics of COVID-19 male and female patients and to examine potential sex differences in lifestyle factors and disease comorbidities among diagnosed patients.

Methods: This is a retrospective cohort study contrasting male vs. female patients with test-confirmed COVID-19. The study used Healthjump electronic medical records (e.g., demographics, encounters, medical history, and vitals) extracted from January 2020 to December 2021 (N = 62,310).

Results: Significant sociodemographic and comorbidity differences were observed between males and females (p < 0.05). For example, a significantly higher proportion of males (vs. females) were aged ≥70-year-old (17.04 vs. 15.01%) and smokers (11.04 vs. 9.24%, p < 0.0001). In addition, multiple logistic regression showed that hypertension and diabetes were significantly more frequent in males [adjusted odds ratio (ORa) = 66.19 and ORa = 22.90].

Conclusions: Understanding the differences in outcomes between male and female patients will inform gender equity responsive approach to COVID-19 and enhance the effectiveness of clinical practice, health policy and interventions.

KEYWORDS
 sex differences, COVID-19, Healthjump data, SARS-CoV-2, comorbidities


Introduction

The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly accelerated worldwide and, on March 2020, it was declared as a global pandemic by the World Health Organization. As of May 2022, a total of 524,339,768 confirmed COVID-19 cases has been revealed globally including 6,281,260 deaths (1). The United States (US) was mostly hit by the pandemic in terms of number of cases (over 82 million people) and deaths (over 900,000 individuals) (1).

Emerging evidence indicates that male sex is becoming a potential risk factor for COVID-19 death and more severe disease. Nearly all countries with known sex-disaggregated data show a male bias in COVID-19 mortality and the risk of death is almost 1.7 times greater in males than in females (2). Many theoretically grounded hypotheses may explain the potential male bias in Covid-19 outcomes, such as gender-related social factors including gender-linked health behaviors and occupational exposures, that overlap with other socioeconomic factors like employment and race/ethnicity (3).

Recent studies suggest gender disparities in the COVID-19 clinical outcomes, see for example (4–7). Emerging evidence suggests sex-based or gendered differences potentially due to immunological factors (8–10). Some mechanisms underline the influence of hormonal factors (11), expression of the angiotensin converting enzyme 2 (ACE-2) receptors in the lungs (9), smoking (12), among others (12–14). Further evidence shows an early sign of gender-specific patterns in diseases worldwide. As of May 20, 2021 and based on available sex-disaggregated data from the Global Health 50/50 investigators, the infection fatality rate (IFR) in males vs. females showed higher fatality rates in men, and this was also the case in other countries like Brazil, Yemen, Mexico, Scotland, and Guatemala. In total, men had significant higher odds of death from COVID-19 disease in 49 countries, when compared to women (15). As of May 2022, the latest data from the US showed a higher proportion of deceased male patients from COVID-19 vs. females (55% males and 45% females). Researchers has become increasingly concerned about significant sex and gender disparities in the prevalence, incidence and prognosis of patients with COVID-19.

In addition, various research studies showed that males had higher rates of mortality, hospitalization, and clinical complications from COVID-19 compared to females (16–18). For instance, male sex was independently correlated with in-hospital mortality of COVID-19 patients in China (4). Males were shown to have significantly greater rates of hospitalization, ICU transfer, vasopressor support, and endotracheal intubation in a multicenter retrospective cohort study comparing male vs. female COVID-19 patients in the Rush University System, Chicago, USA. Male sex and mortality were also significantly correlated in the entire sample of US patients after controlling for age and illness comorbidities (17).

Using a large US-based cohort, we aim in this research to investigate sex-differences in COVID-19. In particular, the objectives are (16) to describe temporal trends in COVID-19 prevalence over time and to summarize age-and sex-distribution of cases among male and female patients, (1) to explore the demographic and socio-economic characteristics of COVID-19 male and female patients, and (2) to examine potential sex differences in lifestyle behaviors, risk factors and disease comorbidities among diagnosed patients. Findings from the present study could be beneficial for policy decision makers and global health organizations, as it informs them to consider the sex and gender effects of the COVID-19 pandemic, thereby enhancing the effectiveness of clinical practice, health policy and interventions. Sex-disaggregated data will also help clinicians and researchers to consider sex as a biological variable as well as sex-related social and behavioral factors (including risk factors, lifestyle behaviors, disease comorbidities, etc.) when planning medical treatments and interventions.



Methods


Study design and data source

This is a retrospective cohort study contrasting male vs. female patients with test-confirmed COVID-19 (polymerase chain reaction [PCR] + as well as IgG/IgM+) from January 2020 to December 2021. The study used Healthjump electronic medical records (EMR) available from the COVID-19 Research Database consortium (https://covid19researchdatabase.org). Data were extricated by SQL using Snowflake (Snowflake Inc., San Mateo, CA, USA) and were also retrieved from all departments in every hospital enrolled, including inpatient and outpatient hospital along with emergency room. The study is also in accordance with relevant guidelines and regulations.



The Healthjump database

The Healthjump, available through the COVID19 Research Database, extracts the EMR data and contains demographics, appointments, encounters, medications, procedures, allergies, immunizations, labs, provider, social history, and vitals. For the present research, we focus on appointments, encounters, medical history, diagnosis, procedures, immunizations, reason for visit, social history, and vitals, all specifically for COVID-19 care. Here, the Healthjump EMR sample includes data from inpatient physicians, urgent care and emergency room visits including reason for visits, procedures performed, and laboratory test. The patient's date of birth, race, sex, ethnicity, state and the 3-digit zip code of residence were also included in a demographic file.



Data analysis

Regarding data analysis, the research team selected key variables to assess sociodemographic and lifestyle factors among COVID-19 patients. Data on social history (e.g., education, ethnicity, and language), demographic (e.g., age and sex), appointment, immunization (type of vaccine), vitals (e.g., oxygen saturation, BP etc.) and diagnoses (e.g., hypertension, diabetes etc.) were all extracted from the Healthjump. Data was all exported to the statistical software STATA for conducting data analysis and performing some descriptive statistics. Frequency tables were generated to present data for disease comorbidities, symptoms, and other categorical variables. Chi-square tests were used to assess statistically significant differences in sociodemographic (e.g., age, education, and ethnicity) and lifestyle (smoking, alcohol, and BMI) between males and females. Simple logistic regression was conducted to examine sex-differences in demographic and social characteristics, laboratory parameters, vaccination, comorbidities/risk factors/pre-existing conditions as well as primary reason for visit (ICD10) among diagnosed patients. Variables that were found to be significantly associated by sex were all added to the final logistic model. Multiple logistic regression was conducted to examine sex-differences in socioeconomic characteristics, lifestyle factors and disease comorbidities (e.g., obesity, smoking, and influenza) among diagnosed patients. To summarize results from the logistic regression models, crude odds ratio (ORc) and adjusted odds ratio (ORa) along with their respective 95% confidence intervals (CI) were used. All reported p-values were compared at a significance threshold of 5% and were based on two-sided tests.




Results

Figure 1 displays the overall daily infection counts of COVID-19 cases for both male and female patients within the study period. Figure 1 shows for both genders that the temporal evolution of the daily infection counts of COVID-19 cases has followed an increasing trend and reached a peak at the end of December 2020, which was then followed by a slow decrease and then by a rapid decline until the end of June 2021, where confirmed cases were close to nearly zero levels. After then, the number of diagnosed patients noticeably increase reaching another peak early September 2021. By the end of the study period, the proportion of COVID-19 cases decreased to few cases in December 2021. Figure 2 depicts an increase with age in COVID-19 cases for both male and female patients, affecting the most those with advanced age (50–59 years), with a total of 3,628 male cases and 6,418 female cases.


[image: Figure 1]
FIGURE 1
 Histogram for daily counts of COVID-19 infections for both male (blue) and female (red) patients, 2020–2021 (N = 62,310).
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FIGURE 2
 Age distribution of COVID-19 incident cases for both females (left) and males (right), 2020–2021 (N = 62,310).


Figure 3 presents the count of COVID-19 cases among patients with diseases comorbidities by age and sex. A significantly higher proportion of males aged 20–29, 60–69, and >70 years had diabetes compared to females in the same age group (66.7 vs. 33.33, 50.30 vs. 49.70, and 50.37 vs. 49.63%, p < 0.05, see Figure 3A). A higher percentage of females aged 30–39, 40–49, and 50–59 years had diabetes compared to males, however, this difference was not statistically significant (64.58 vs. 35.42, 65.57 vs. 34.43, and 59.29 vs. 40.71%, p > 0.05). There is an age-dependent increase in metabolic disorders among female patients aged 40–49 (44.05%), 50–59 (46.82%), 60–69 years (48.73%) (Figure 3B). On the other hand, the percentage of males with metabolic disorders decreased by age (55.95, 53.18, 51.27% for males aged 40–49, 50–59, and 60–69 years respectively). A significantly higher percentage of males aged 40–49, 50–59, 60–69, and >70 years had metabolic disorder compared to females (55.95 vs. 44.05, 53.18 vs. 46.82, 51.27 vs. 48.73, and 52.78 vs. 47.2215%, p < 0.05, see Figure 3B). However, more females aged 30–39 years had metabolic disorders compared to males aged 30–39 years (51.8515 vs. 48.15%, p < 0.05). As shown in Figure 3C, significantly more females had hypertension within 40–49 years old age group (56.99 vs. 43.01%). No significant differences were observed in abnormal clinical and lab findings between male and female patients by age groups (p > 0.05, see Figure 3D).
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FIGURE 3
 Number of COVID-19 cases among patients with diseases comorbidities by age and sex, 2020–2021 (*p < 0.05). (A) Diabetes, (B) Metabolic disorders, (C) Hypertension, and (D) Abnormal clinical and lab findings.


Table 1 presents socio-demographic characteristics differences between male and female patients, 2020–2021. A total of 62,310 confirmed COVID-19 patients were included in the analysis of the present study. Overall, 13% of COVID-19 patients in our sample were below 20 years, 9.39% 20–29 years, 12.32% were 30–39 years, 15.46% were 40–49 years, 17.66 were 50–59 years, 16.33 % were 60–69 years and 15.85% were above 70 years. Slightly more than half of study sample were white (54.76%) and non-Hispanic (53.08%). With respect to education, 19.63% of study sample had graduate or post-graduate degree, 15.52% had general education or college, 64.16% had high school or below and remaining unknown (0.74%). Majority had transportation (99.40%) and 11.50% lived with family. Significant sex-differences were found in demographic and social characteristics of patients tested for COVID-19, 2020–2021 (p < 0.05). Males (vs. females) had significantly higher proportion in the 60–69-year-old interval (17.35 vs. 15.60%) and > 70-years (17.04 vs. 15.01%), and predominantly white (56.10 vs. 53.81%, χ2 = 132.2041, p < 0.0001). Consequently, among males (vs. females) there was a higher percentage of individuals of Hispanic ethnicity (23.03 vs. 22.17%, χ2 = 9.5205, p < 0.0001). Slightly higher percentage of male patients had better education level with graduate or post-graduate degree (20.23 vs. 19.31%, χ2 = 22.9419, p < 0.0001).


TABLE 1 Demographic and social characteristics differences between male and female individuals tested for SARS-CoV-2, 2020–2021 (N = 62,310).
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As shown in Table 2, most of COVID-19 patients had normal oxygen saturation (91.98%) and 8.01% with hypoxemia. In terms of vaccination, few patients had Moderna, US, Inc. (4.34%), Pfizer-BioNTech (2.82%), or other vaccines (e.g., AstraZeneca Pharmaceuticals LP, Novavax, Janssen Products, LP.) (1.29%). Majority of the study sample (90.33%) had routine vaccinations (e.g., Hepatitis B, Human Papilloma Virus (HPV), Influenza, Measles, mumps, and Rubella etc.) (Table 2). With regards to comorbidities, 76.53% of COVID-19 patients in the present study were caffeine users, 36.26% do not exercise, 25.67% were alcohol users, 9.98% were smokers, and 5.72% were drug users. More than half of study participants were obese (54.62%), 27.96% were overweight and 15.87% had normal weight. Significant sex-differences were found in laboratory, vaccination, and comorbidities of individuals tested for COVID-19 (p < 0.05, Table 2). Slightly greater proportion of male patients had mild hypoxemia (9.31 vs. 7.12%, χ2 = 42.9096, p < 0.0001). In terms of risk factors, a higher proportion of males were smokers (11.04 vs. 9.24%, p < 0.0001), caffeine users (77.44 vs. 75.97%, p = 0.045), alcohol users (30.72 vs. 22.36%, p < 0.0001) and drug users (6.60 vs. 5.17%, p < 0.0001) compared to females. A higher percentage of females had normal weight (12.48 vs. 18.14%) whereas a higher percentage of male patients were overweight (30.96 vs. 25.95%) or obese (55.13 vs. 54.29%, χ2 = 298.4379, p < 0.0001). No significant sex-differences were obtained in transportation (p = 0.819), living arrangement (p = 0.409), exercise (p = 0.814), vaccine (p = 0.334).


TABLE 2 Laboratory, vaccination, and comorbidities differences between male and female individuals tested for SARS-CoV-2, 2020–2021 (N = 62,310).

[image: Table 2]

In terms of primary reason for visit, and according to the 10th revision of the International Classification of Disease (ICD-10) (Table 3), 14.29% were primary diagnosed for factors affecting health status and contact with health services, such as individuals confronting health services for examinations, genetic susceptibility to disease) (n = 3,972), 9.34% for abnormal clinical and lab findings (n = 2,597), 7.41% for diabetes mellitus (n = 2,059), 5.23% for metabolic disorders (n = 1,453), 4.99% for COVID-19 (1,388), 4.16% for Hypertensive diseases (n = 1,156), 3.97% for certain infectious and parasitic diseases (e.g., HIV, TB, etc.) (n = 1,103), 3.61% for diseases of thyroid gland (n = 1,004), 2.50% for anxiety, associative, stress-related and other nonpsychotic mental disorders (n = 696), 2.47% for overweight, obesity and other hyperalimentation (n = 687), 2.29% for diseases of the blood and blood-forming organs and other conditions encompassing the immune system (n = 637), 1.46% for injury, poisoning and other external causes (n = 405), 0.85% for mental disorders (e.g., disorders of adult personality and behavior, intellectual disabilities; n = 237), and 0.76% for influenza and pneumonia (n = 212).


TABLE 3 Primary reason for visit [international classification of diseases 10th revision (ICD-10)] differences between male and female individuals tested for SARS-CoV-2, 2020–2021 (N = 62,310).
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Significant sex-differences were found in primary reason for visit (ICD-10) of individuals tested for SARS-CoV-2 (p < 0.05, Table 3). A higher proportion of male patients had abnormal clinical and lab findings (9.73 vs. 9.08%), hypertensive diseases (4.40 vs. 3.99%) and diabetes (8.82 vs. 6.45%) compared to female patients (χ2 = 600.9711, p = 0.017, Table 3). Whereas a higher proportion of female patients had factors affecting health status and contact with health services (14.58 vs. 13.85%), diseases of thyroid gland (4.37 vs. 2.49%) in addition to anxiety, dissociative, stress-related, and other nonpsychotic mental disorders (2.88 vs. 1.94%) (p = 0.017).

Simple logistic regression showed significant sex-differences for age, race, ethnicity, education, laboratory parameters, smoking status, BMI status, caffeine user, drug user, alcohol user, primary reason for visit (except certain infectious and parasitic diseases) (Tables 1–3). For example, a greater proportion of males identifying with Asian race (ORc = 1.51; 95% CI: 1.28, 1.78), White race (ORc = 1.40; 95% CI: 1.31, 1.46) and Hispanic or Latino ethnicity (ORc = 1.06; 95% CI: 1.02, 1.11) compared to females (Table 1). As compared to females, a lower proportion of males had general or college education (ORc = 0.62; 95% CI: 0.48, 0.81). Hypoxemia was 32% more likely among male patients in comparison to female patients (ORc = 1.32; 95% CI: 1.21, 1.45, see Table 2). Male patients had a significantly higher likelihood of smoking as compared to females (ORc = 1.36; 95% CI: 1.27, 1.45). Male COVID-19 patients were 40% more likely to be obese and 70% more likely to be overweight compared to females. In addition, males had significantly higher risk of drug and alcohol use (ORc = 1.30; 95% CI: 1.14, 1.47 and ORc = 1.54; 95% CI: 1.46, 1.62, Table 2). Furthermore, males had significantly higher odds of diseases and related health problems such as abnormal clinical and lab findings (ORc = 2.45; 95% CI: 2.02, 2.96), hypertensive diseases (ORc = 2.52; 95% CI: 2.04, 3.11) and metabolic disorders (ORc = 3.45; 95% CI: 2.82, 4.22) (Table 3).

Findings from multiple logistic regression showed sex-differences in COVID-19 for alcohol use and primary reason for visit (ICD10). Abnormal clinical and lab findings were significantly more frequent in males (ORa = 13.82; 95% CI: 1.19, 159.92) (Table 3). Influenza and pneumonia were more likely among male patients in comparison to female patients (ORa = 66.19; 95% CI: 1.02, 288.9). Men significantly suffered more from mental disorders (e.g., disorders of adult personality and behavior, intellectual disabilities) than women (ORa = 89.72; 95% CI: 3.34, 24,113.21, Table 3). Male COVID-19 patients showed high frequency of underlying comorbidities including hypertensive diseases (ORa = 22.90; 95% CI: 2.17, 241.09) and diabetes (ORa = 66.19; 95% CI: 1.02, 4,228.9), even after adjusting for significant covariates such as age, education and ethnicity.



Discussion

Using a large US-based cohort, we have observed important sex-dependent disparities in risk factors and disease comorbidities associated with COVID-19. In particular, male patients showed high frequency of underlying comorbidities including abnormal clinical and lab findings, hypertensive diseases, diabetes, whilst adjusting for significant covariates such as age, education and ethnicity.

The results in the present study are in line with other COVID-19 studies conducted globally including US, Europe and China, all which showed that men and women are disproportionally affected. Initial data revealed that males tend to suffer from more severe disease than females, resulting in higher mortality of males vs. females (19–21). Findings from a US-based cohort study of male and female patients revealed a strong independent relationship between male sex and higher COVID-19 susceptibility, bigger chance of ICU admission, use of mechanical ventilation along with longer length of stay—all clinical signs for higher severity of the COVID-19 disease (22). According to a recent meta-analysis of 229 case studies involving more than 10 million individuals, men were found to have a higher risk of contracting COVID-19 than women, and when contracted, they tended to have a higher risk of hospitalization, a higher risk of developing severe COVID-19, a higher need for intensive care, and a higher risk of dying from the infection (23). Another study in China showed that while males and females had equal prevalence of COVID-19, men were 2.4 times more prone to death (24). On the other hand, some evidence showed that women had higher infection risks than males; at older ages, the converse is true (25). Of note, the higher contact intensity of women and their employment in healthcare professions may have contributed to a higher rate of PCR tests being performed and a consequent decrease in the number of undiagnosed cases, which may explain the gender-specific diagnosis in favor of women. Women are also more concerned about their health than males are. Despite the general scarcity of information regarding COVID-19, there exist some gender differences in the search for health information, with females surpassing males. Additionally, men frequently underestimate their health risks, which in turn may lead them to ignore health education messaging (25).

In our study population, a greater proportion of male COVID-19 patients were alcohol users and had multiple comorbidities such as diabetes, hypertension, and metabolic disorders in the adjusted model. The existence of comorbidities tends to increase the risk of adverse COVID-19 outcomes, and more men than women have the usual comorbidities of COVID-19. For instance, hypertension is frequently mentioned as the most prevalent comorbidity in hospitalized COVID-19 patients, and initial data indicated that males had higher levels of hypertension than females for those below 65 years of age (26).

Sex disparities in severity and mortality were also attributed to a higher rate of risky-behaviors and higher existence of comorbidities (i.e., cardiovascular disease, diabetes, etc.) in males than females (4, 19). For example, males are more involved in a lot of risky-behaviors, like smoking and alcohol consumption (4, 19, 27). Smoking has also been associated to adverse COVID-19 outcomes. As an example, smokers were 1.4 times more likely to experience severe COVID-19 symptoms than non-smokers (5, 28). The possible causes include systemic problems (mostly cardiovascular) that are more frequent in smokers than non-smokers. Smoking has been linked to higher COVID-19 severity, as well as premature cardiovascular disease and chronic obstructive pulmonary disease (29). Innate immune cells, such as the respiratory epithelium, macrophages and lymphocytes, are suppressed by tobacco smoke. Tobacco contains elements that interfere with the respiratory system's natural epithelial lining, increasing oxidative damage and impairing mucociliary clearance. Smokers may be more prone to pneumonia since smoking also reduces the ability of the body to produce surfactant, which impacts host immunity and leucocyte performance. Smoking also has a considerable negative impact on alveolar macrophage activity, which results in less efficient removal of debris and inflammatory cells from the lungs. Additionally, smoking can change T-cell reactions, which can increase vulnerability to respiratory tract infections. This can be specifically harmful for people who already have COVID-19 (30). Nevertheless, probable biologic mechanisms by which smoking may be protective in COVID-19 contain an anti-inflammatory effect of nicotine, a blunted immune response in smokers and increased nitric oxide in the respiratory tract.

Further, emerging evidence showed that smoking tend to increase the expression of the COVID-19 receptor, ACE2, in the lungs, which could explain why this subset of patients has a higher prevalence of COVID-19 (31). Trends from the most affected countries including US, Italy and China, revealed that males smoke more than females (27, 32). Additionally, this trend is also shown globally, which may further support for the gender disparities in COVID-19 outcomes. Additionally, the aforementioned behavioral factors, like smoking and alcohol intake, predispose men to comorbid conditions including respiratory condition, hypertension and cardiovascular disease, all of which are risk factors for dying (33). This could also explain why men have a greater overall death rate (27, 34, 35).

Social gender roles and sex differences are linked and both have an impact on the incidence and outcomes of the COVID-19. Even during the containment period, males are frequently employed in basic industries and professions that demand them to be active and engaged in social interactions (e.g., food or pharmacy manufacturing and sales, agriculture, transportation, security, etc…). As a results, the majority of men leave their homes and go out with other people, drinking and smoking while taking off their masks. This in turn leads to a higher risk for infection with COVID-19. In the US for instance, men account for most agricultural workers (76%) and for construction, maintenance, and repair workforce (96%) (36), whereas US women tend to hold more administrative, secretarial, and teaching jobs all of which were switched remotely during the pandemic. However, women are more likely to perform paid/unpaid domestic and caregiving roles which also leads to a high risk of contracting COVID-19 (36, 37). Research studies showed that women and girls are more likely to report using masks, washing their hands, and following other public health and social distancing advice (3, 38). Additionally, there are many social norms that demotivate men from obtaining medical care or consulting a doctor, which in turn could increase the likelihood of negative outcomes following infection with COVID-19 (26).

The severity of COVID-19 may also be influenced by additional biological mechanisms of male sex bias, notably with regard to immunological responses. Additionally, it is well-known that men and women react to self-antigens and foreign antigens differently, and gender disparities in the immune response are well-established (39, 40). The fact that male patients had greater plasma levels of innate immune cytokines including IL-8 and IL-18 as well as more robust activation of non-classical monocytes could be possible justification for the actual sex biases (39, 40). Contrarily, during COVID-19 infection, female patients had more robust T cell activation (40). Of note, research studies have shown that a poor T cell response was associated with worse disease outcome in males, and that this association was negatively correlated with patients' age (39). Further studies have demonstrated that estrogen increases endothelial nitric oxide synthase transcriptional activity, which in turn increases nitric oxide (NO) production (41). Females typically experience less serious COVID-19 infection outcomes, which may be related to the effect of estrogen on NO in females, as well as the function of NO as a virus replication inhibitor (42). Emerging evidence has found that some comorbidities, such as obesity and obstructive sleep apnea, may reduce plasma level of testosterone and these comorbidities are common in COVID-19 patients (43, 44). Here, the higher cases observed in male vs. female patients may also be due to greater number of male patients being diabetic, obese and had hypertension, especially older age males (>50 years).

Age could also partially explain the stark differences in risk of COVID-19 reported in the present study. Males (vs. females) patients in our study sample were significantly older with higher proportion aged 60–69, and >70-years. Previously, it was found that mortality and fatality rates, which increase with age, are paramount in men over 50 years old (5, 15). Most COVID-19 deaths occurred in patients over the age of 50, and the sex-dependent risk of poor outcomes increased with age. In addition, the risk of mortality was also higher in patients over the age of 50 in comparison to an equaled group of females of same age (19).

On the contrary, only few studies showed that female patients were at a higher risk for generating long term post-COVID symptoms, such as anxiety, depression, or poor sleep quality, than male patients (45, 46). Other factors like increased psychological stress could also trigger the generation of post-COVID symptoms. Previous studies revealed that COVID-19 pandemic surrounding factors like sleep deprivation, isolation and stress, could also be a risk for generating more post-COVID symptoms in female patients.


Strength and limitations

This is the first study to examine sex-differences in COVID-19, underlying risk factors and health conditions in a large and consistent sample covering U.S. population. The main strengths of our proposed study include big data approach and straight access to empirical evidence. Additionally, our methodology ensures that there is no bias in patient screening process. However, there are some limitations to our present study. Electronic health record (EHR) may be subject to a possible bias in data recording due to variations between EHR system functionalities and lay-out, coding systems, knowledge and education of the use of EHR system, data extraction tools and data processing. In our study, the number of diagnosed female patients are higher compared to males while the comorbid conditions that increase severity of disease and complications are higher among males compared to females. The gender-specific diagnosis in favor of females may be explained by the higher contact intensity of women and their employment in health-care professions, which could have contributed to a higher proportion of PCR tests being performed and a consequent increase in the number of diagnosed cases. Case determination relies on the sensitivity and specificity of the used PCR testing; a little percentage of people who underwent several tests may have been incorrectly diagnosed in the first encounter. Our study also looked at the comorbidities that might contribute to the observed sex disparities. Even though there is compelling evidence supporting the importance of biological pathways, further research is still needed to investigate how socio-behavioral factors might affect health outcomes.




Conclusion

In conclusion, sex-based differences exist in high-risk behavior and comorbidities among a large, US-based cohort. In advanced age, the gender-specific risk is mainly more noticeable. According to this study, sex should be given more consideration when interpreting COVID-19 data. Clinicians will be able to make suitable patient-tailored medical decisions with the use of sex-disaggregated data. Understanding the differences in outcomes between male and female patients will inform gender equity responsive approach to COVID-19 outbreak and enhance the effectiveness of clinical practice, health policy and interventions. Future research is required to understand the causes of the gender difference and may also be of potential interest for public health decision-makers.
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Background: The COVID-19 pandemic led to the disruption of physical classes for university students globally, as large gatherings fuelled the transmission of the virus. In the efforts to mitigate its transmission and return to normality, prevention measures, including vaccination, have been encouraged. Therefore, it is critical to understand the knowledge and practices of students regarding COVID-19. This study assessed the knowledge and practices toward COVID-19 among healthcare students at the University of Zambia.

Materials and methods: This questionnaire-based cross-sectional study was carried out from August 2021 to October 2021 among 478 healthcare students (pharmacy, physiotherapy, nursing, biomedical, medicine, and radiography). We used a previously validated questionnaire to measure knowledge and practice. The predictors of knowledge and practices were assessed using logistic regression with robust estimation of standard errors. Statistical analysis was conducted using Stata/BE version 17.0.

Results: Of the 478 respondents, 243 (50.8%) were females. A larger proportion, 175 (36.6%) were in Pharmacy training, and 156 (32.6%) were in their fifth year of study. The overall mean knowledge score of the participants was 87.9 (SD = 16.1), being higher at 89.6 (SD = 14.3) among medical students and the lowest at 86.7 (SD = 17.1) among Pharmacy students, although this was statistically non-significant (p = 0.488). The overall mean practice score was 60.0 (SD = 24.7), being significantly higher at 63.5 (23.4) among nursing, physiotherapy and environmental students compared to other students (p = 0.048). In multivariable analysis, the participant training program was non-significantly associated with knowledge and practice toward COVID-19. However, increased age (AOR = 1.09, 95% CI: 1.01–1.117) and residing in urban areas (AOR = 1.79, 95% CI: 1.07–3.01) than in rural areas were associated with higher odds of good practice toward COVID-19.

Conclusion: The healthcare students generally showed good knowledge levels and poor practices toward COVID-19. Further, there was no evidence of a difference in knowledge of COVID-19 among healthcare students. These findings suggest the need for implementation strategies to be centered on improving the practices of students toward COVID-19.

KEYWORDS
 COVID-19, healthcare students, knowledge, practices, Zambia


Introduction

Pandemics like the coronavirus disease 2019 (COVID-19) can potentially disrupt university education activities (1–3). This may eventually affect students' academic performance and social life (4–6). In addition, evidence has suggested that COVID-19 affected many people's mental health, including university students (7–10). This could be attributed to increased transmission and spread of the disease among students (11–14). Therefore, to curb disease transmission, face-to-face learning was suspended in many learning institutions globally (15–19).

The knowledge of individuals concerning COVID-19, its transmission, spread, and clinical features is significant in developing prevention strategies (20–22). Critical aspects of COVID-19-related knowledge required to illicit good practices have been postulated, including spread, symptoms, transmission, protective measures and vaccines (23). As future health care service providers and disease prevention specialists, students of health-related disciplines are expected to demonstrate appreciable knowledge in COVID-19 etiology, transmission, treatment, prevention and control (20). Variable findings have been reported, including high knowledge among students in India (24, 25) and Vietnam (26). Conversely, low knowledge levels were observed in Poland and China (27, 28). A study in sub-Saharan Africa reported good knowledge among students in selected institutions (29).

Evidence has demonstrated that individuals who adhere to preventive measures such as wearing face masks tend to have lower risks of contracting COVID-19 (30). In addition, practicing adequate hand hygiene has also been reported to reduce the transmission of the virus (31–33). Most people frequently touch their eyes, nose, and mouth when such acts may cause much harm. The practice of handwashing with running water and using alcohol-based handsanitisers can significantly reduce microbial contamination (32, 34). Moreover, studies have indicated that social distancing, avoiding crowded places, wearing masks, and hand hygiene reduce the probability of contracting COVID-19 and other respiratory diseases (35, 36). Thus, good practices toward COVID-19 prevention measures may help reduce the transmission of the virus and the spread of the disease (21, 22, 37, 38).

A milestone in the fight against COVID-19 has been developing, deploying and administering vaccines (39–42). Vaccines are critical in promoting the immune system to fight against infections (39). However, due to their accelerated development, there have been inconsistencies in the acceptance of the vaccine across populations (43–45). For instance, among the general population, vaccine acceptance was 83% in Denmark (46), 64.5% in Malaysia (47), 63.4% in Lebanon (48), 47% in France and Hungary (46), and 33.4% in Zambia (49). Similarly, inconsistencies in vaccine acceptance have been reported among healthcare workers (HCWs) including94.9% in Singapore (50), 89.2% in the United Arab Emirates (51), 74.5% in Ethiopia (52), 63.8% in Sudan (53), and 45.6% in Egypt (54). Acceptance of COVID-19 vaccine among students was 87.4% in China (55), 55.8% in Sudan (56), 54% in the United States, 27.1% in Ethiopia (57), and 24.5% in Zambia (58). These variations in vaccine acceptance have been due to concerns regarding the safety and effectiveness of vaccines (44, 59–61). Vaccine beliefs, myths and misinformation have also contributed to increased vaccine hesitancy (62, 63). Alongside this, vaccines' high cost and availability reduce their overall uptake (44). Therefore, targeted interventions must tackle vaccine hesitancy and improve acceptance and uptake across all populations (61–63).

In Zambia, COVID-19 led to increased morbidity and mortality with some deaths being reported as brought in dead (64–66). Alongside this, there has been low adherence to the COVID-19 prevention measures which could promote spread of the disease (20, 67). Additionally, many factors have been reported to affect the adherence to the COVID-19 prevention measure viz a viz limited information on COVID-19, travel patterns and social movements, negative attitudes toward COVID-19 guidelines, structural and socioeconomic factors (67). Therefore, addressing these factors is critical in reducing the spread of the disease.

The fight against COVID-19 requires a collaborative approach among all healthcare providers, including healthcare students, to provide optimum patient care (26). Furthermore, healthcare students are the future healthcare workers and will be responsible for providing disease prevention strategies to the public. Consequently, it is crucial to determine health-related students' level of knowledge about COVID-19 and associated prevention practices. Unfortunately, in many countries, including Zambia, there is a dearth of information regarding the knowledge and practices of university students concerning COVID-19. As such, this study assessed the knowledge and attitudes of healthcare students regarding COVID-19 at the University of Zambia in Lusaka, Zambia.



Materials and methods


Study design, setting and population

This cross-sectional study was conducted among healthcare students (biomedical sciences, medicine, nursing, pharmacy, physiotherapy, and radiography) from August 2021 to October 2021. The students were enrolled at the University of Zambia, Ridgeway medical campus in Lusaka. As the leading university in training healthcare professionals in Zambia; it was a good starting point to understand the knowledge and practices of students regarding COVID-19. To be part of the study, a student had to be enrolled in human healthcare programs at the University of Zambia and willing to respond to the questionnaire after giving consent.



Sample size and sampling technique

The sample size was estimated using Cochrane's formula;
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With no previous study done in this setting based on the literature search, a conservative expected proportion of 50%, 95% confidence level, 5% margin of error, 10% non-response or incomplete response, and desired design effect of 1.2 was used to determine the sample size. A minimum of 423 sample size was determined to achieve a minimum power of 80% to detect the difference in knowledge by the program of study. The sampling procedure had three steps. Firstly, we grouped the students into blocks based on their program of study (biomedical sciences, medicine, nursing, pharmacy, physiotherapy, and radiography). Secondly, we stratified the students according to their year of study. All potential participants were identified using the class registered for all registered students. Finally, a simple random sampling technique (using computer-generated random numbers without replacement) was used to select a random sample of students from each program of study.



Data collection tool

Data collection was conducted using previously validated questionnaire from a similar study (68). The questionnaire was reviewed by two experts from the University of Zambia. The resultant questionnaire had three sections comprising seven questions on socio-demographics of participants, six questions on knowledge and four questions on practices toward COVID-19. Each correct knowledge question was assigned a score of one and a wrong response was assigned a zero. The questions on practice were assigned a score of one for good practices, otherwise, a zero was assigned. A Cronbach's alpha score of >0.7 was acceptable and used to determine the internal consistency of the questions. The self-administered questionnaire was piloted using 30 undergraduate healthcare students, but the pilot study findings were not part of the analyzed data in the main survey. The piloting of the data collection tool revealed that each participant would take between 10 and 20 min to respond to the questions. Data collection was conducted by three data collectors trained in the data collection process. To increase the chances of meeting the desired sample size and fears of non-response due to the COVID-19 spread, we distributed 600 questionnaires to the potential participants.



Study measures

The main outcome measures were knowledge and practice measured on a binary scale (coded as yes = 1, no = 0). For each scale (knowledge and attitude scales) the item scores were summed to create a percentage score. The continuous scores for knowledge and practice were categorized based on Bloom's cut-off value (60% or less as poor knowledge and practice, >60% as good knowledge and practice). The primary predictor was the student's training program (pharmacy, medicine, biomedical sciences, nursing, environmental health, radiography). Other variables measured were age (years), sex (male, female), residence (urban, rural), marital status (married, unmarried) year of study, and religion.



Statistical analysis

All analyses took into account the clustering of students within programs of study through the robust estimation of standard errors, which also accounted for the stratification by year of study. We used both descriptive and analytical statistical methods. The Q-Q plots were used to assess the normality of continuous data. The Analysis of Variance (ANOVA) test was used to evaluate the differences in the overall scores among the healthcare students. To assess pairwise comparison, ANOVA was followed by the Bonferroni post-hoc test where appropriate.

Separate logistic regression models with robust estimation of standard errors were fitted with knowledge and practice as outcome variables. The adjustment variables were chosen based on p-values from the univariable logistic regression models with knowledge and practice as outcomes, respectively, using a significance level of 20%. The main estimates were the training program's unadjusted odds ratios (UOR) and adjusted odds ratios (AOR). While adjusting for potential confounders, adjusted odds ratios and 95% confidence intervals were estimated to evaluate the type of training program with a report of good knowledge and practice toward COVID-19. Interactions between the training program and significant modifying variables were assessed, and none reached any statistical significance. We used Stata/BE version 17.0 (Stata Corp., College Station, Texas, USA) for analysis, and significance level was set at 5%.



Ethical considerations

This study was approved by the University of Zambia Health Sciences Research Ethics Committee (UNZAHSREC) with protocol ID of 202112030049. Participation was voluntarily and confidentiality was observed.




Results


Socio-demographic characteristics of the study participants

We enrolled 478 respondents with a median age of 24 years (IQR, 23–26), of whom 243(50.8%) were females. Approximately two-in-five 175(36.6%) of the respondents were in Pharmacy training and 156(32.6%) were in the fifth year of study. Nearly all 466(97.5%) were of Christian faith, and 430(90.0%) were not married. Furthermore, the majority, 405(84.7%), resided in the urban parts of Zambia. There was no evidence suggesting that knowledge (p = 0.919) and practice (0.247) toward COVID-19 differed among the students. However, there was a statistically significant difference in median age, residential area and marital status between those respondents who reported a good attitude toward COVID-19 and those who did not (Table 1).


Table 1. Socio-demographic characteristics of study participants, N = 478.
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Knowledge of COVID-19 among healthcare students

The knowledge statements and percentage of correct responses from the participating healthcare students are shown in Table 2. Overall, the mean knowledge score of the participants was 87.9 (SD = 16.1), the highest score 89.6 (SD = 14.3) arising from medical students and the lowest 86.7 (SD = 17.1) from Pharmacy students, although this was statistically non-significant (p = 0.488). The most correctly answered question among the participants was on the clinical symptoms of COVID-19 infection (96%), and the least was on whether eating or contacting wild animals would result in infection with COVID-19 (77.8%). When different questions on knowledge of COVID-19 were compared among the participating healthcare students, a significant difference was found with a question on the clinical symptoms of COVID-19 (p = 0.009).


Table 2. Percentage of correct responses to knowledge statements.

[image: Table 2]



Practice toward COVID-19 among healthcare students

The practice statements and percentage of correct responses from the participating healthcare students are shown in Table 3. Overall, the mean practice score of the participants was 60.0 (SD = 24.7), being significantly higher at 63.5 (SD = 23.4) among other students (nursing, physiotherapy and environmental health students) compared to biomedical, medicine and pharmacy students (p = 0.048). Most 409 (85.6%) students reported wearing facial masks often when in public. On the other hand, the majority, 303 (63.4%) reported that they did not avoid visiting crowded places. When study programs were compared, a statistically significant difference was observed across all practice questions. When different questions on practice toward COVID-19 were compared among the participating healthcare students, a significant difference was found with all the questions.


Table 3. Percentage of correct responses to practice statements.
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Factors associated with knowledge and practice toward COVID-19

The univariable and multivariable results from a logistic regression analysis are depicted in Table 4. The univariable analysis showed no association between participants' training program, practice, and knowledge of COVID-19. Multivariable analysis was further used to evaluate participants' training program while adjusting for potential confounders. In multivariable analysis, the participant training program remained non-significantly associated with knowledge and practice toward COVID-19. However, age and residence (Urban compared to Rural) were positively associated with practice toward COVID-19. A unit increase in the participant's age was associated with higher odds of good practice toward COVID-19 (AOR = 1.09, 95% CI: 1.01–1.117). In addition, participants who resided in urban areas were more likely to have good practices toward COVID-19 (AOR = 1.79, 95% CI: 1.07–3.01) than those who resided in rural areas.


Table 4. Simple and multiple logistic regression models.
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Discussion

We believe this is the first comprehensive study on knowledge and practices among healthcare students in Zambia to provide baseline data regarding COVID-19 in tertiary learning institutions. In addition, provide key areas to inform future quality improvement efforts and capacity development of COVID-19 response and preventive measures in Zambia. The latter is important as there have been concerns with knowledge and practices regarding COVID-19 among healthcare students in Zambia (20). In the present, overall, we found an average knowledge and attitude score of 89.6 and 60% among healthcare students. Medical students were more knowledgeable about COVID-19 causes, spread, and prevention than other students, while nursing, physiotherapy, and environmental health students reported good practices toward COVID-19 prevention measures than other students. Even though the students' training program was not independently associated with knowledge and practice toward COVID-19, increased age and residing in urban areas (compared to rural) predicted higher odds of good practice toward COVID-19.

The overall healthcare students' knowledge of COVID-19 is consistent with the extant literature (69, 70). For instance, a study in Vietnam found that most students had good knowledge (86.6%) about COVID-19 and the prevention measures (26), similar to findings from Ethiopia (70). However, our findings suggest that the level of knowledge of COVID-19 was not independently associated with students' programs of study, which is contrary to findings from a study done in Poland where significant differences were observed between students of different training programs (27). Although no significant difference was reported regarding knowledge of COVID-19 across study programs in our study, medical students scored higher compared to other study programs. This is similar to what was found in Poland in which medical students had better knowledge of COVID-19 compared to other students from other programs (27). These findings could be attributed to the fact that medical students are exposed to clinical practice early and attend several hospital meetings. Nevertheless, the findings are encouraging as they indicate that future healthcare workers have sufficient knowledge of COVID-19 which is key in developing preventive measures for this pandemic.

The participants in this study were knowledgeable about the spread of the disease, clinical features, treatment, predisposed individuals to severe disease, and wearing face masks. These findings corroborate reports from Iran in which students had good knowledge regarding COVID-19 transmission and spread, symptoms, and wearing face masks (71). This knowledge, however, should be enhanced by providing students with information regarding the proper use and different types of facemasks.

The current study highlighted the poor practices of students regarding COVID-19, similar to findings reported in studies conducted among university students (13, 69, 70, 72). For instance, a study in Indonesia reported an overall practice of 51.5% among university students (69), in line with findings from Ethiopia (70). Most participants reported wearing facemasks in public, which corroborate findings from other studies (69, 73). However, the current findings are higher than those reported by Kateule and others in an observational study where 24% of the participants wore masks in Lusaka district and 27% wore masks in Mansa district of Zambia (74). These differences could be attributed to differences in study designs and socio-demographic characteristics of study participants. Therefore, wearing face masks during outbreaks of respiratory infections should be promoted as a public health disease prevention and control strategy.

Overall, most participants in this study reported handwashing and sanitizing regularly. However, the percentage of compliance was lower than those reported in 10 countries in Africa through a multinational survey (75). While avoiding crowded places is a key COVID-19 intervention strategy, it was observed in our study that there was less inclination to avoid crowded places than what was reported in a similar study done in the Netherlands (76). The majority (82.5%) of participants in this study were willing to receive the COVID-19 vaccine, which was identical to observations reported in Lebanon (77), Bangladesh (78), China (55), and the Philippines (79). It is envisaged that increased vaccine acceptance may help increase vaccinations across the globe (80). An earlier study conducted immediately after vaccine deployment in Zambia reported a very low vaccine acceptance (24.5%) among pharmacy students (58). This could have been due to inadequate and negative information about the vaccines. Other studies have reported low vaccine acceptance among students with low vaccine acceptance attributed to misinformation, myths, and concerns about the adverse effects and effectiveness of vaccines (56, 57, 81–83).

Our study found that older participants observed COVID-19 prevention practices much better than younger participants, despite both groups displaying comparable levels of knowledge. These findings contrasts those from a study that was conducted among healthcare students in Vietnam whereby the pattern and extent of COVID-19 practices could not be distinguished along the age of the study participants (26). While it is unclear why age might have contributed to the discrepancy in the students' COVID-19-related safe practices, we posit that older age is generally associated with more responsible health behaviors. Moreover, those students who resided in urban areas tended to uphold safe hygiene and other preventive practices toward controlling possible COVID-19 transmission, compared to those who identified themselves as living in rural areas. Similar observations were reported in a survey among students in Japan where students who lived in the capital city scored highly compared to others, in following national and international measures recommended to mitigate against the spread of COVID-19 (68). It is conceivable that public health outreach programs that rely heavily on social media and other digital communication platforms are central to the observed differences. There is generally better penetration and access to information among the urban dwelling residents than rural residents. Also, in most cases, initial and severe cases of COVID-19 were reported in urban areas. This could have made the urban residents much more aware and conscious of the public health implications of the uncontrolled spread of the disease. Interestingly, rural-dwelling students in another African set-up in Ethiopia were twice as likely to comply with recommended public health measures to avert COVID-19 transmission, compared to their urban counterparts (84). Potential socioeconomic differences, the impact of the public health campaign strategies, and outreach that the two countries may have mounted, could be contributing factors to this observation.

Surprisingly, the reported good knowledge regarding COVID-19 across all students in our survey was at variance with the practices. Similar findings were reported from Ethiopia in which good knowledge did not translate into good practices toward COVID-19 (70). These findings may require multiple strategies to be implemented when disseminating COVID-19 information to college and university students. Conversely, a study in the Kingdom of Bhutan among college students found good knowledge that translated into good practices toward COVID-19 (85). Similarly, a recent study in Ethiopia reported good knowledge and good practices regarding COVID-19 (86). The good knowledge and practices reported in other studies could be due to the increased dissemination of educational information regarding COVID-19 by the governments and related stakeholders. Our findings and those from similar surveys may be used to develop strategies that limit disease spread.

This study had some limitations. First, it was conducted at one institution of higher learning, therefore, the findings may not be generalized to all the universities across the country. Secondly, the study focused on healthcare students, hence, the findings may not be generalized to non-healthcare students.



Conclusion

The study found good knowledge of COVID-19 among university students. However, the overall poor practices are of much concern and require urgent attention from authorities. Despite the students having good knowledge, the poor practices in some infection prevention measures call for improved dissemination of COVID-19 information in universities and across the youth population. The findings from the study are hypothesis-generating and can guide implementation strategies aimed at improving the practices toward COVID-19.
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Background: The need for effective public health surveillance systems to track virus spread for targeted interventions was highlighted during the COVID-19 pandemic. It spurred an interest in the use of spatiotemporal clustering and genomic analyses to identify high-risk areas and track the spread of the SARS-CoV-2 virus. However, these two approaches are rarely combined in surveillance systems to complement each one's limitations; spatiotemporal clustering approaches usually consider only one source of virus transmission (i.e., the residential setting) to detect case clusters, while genomic studies require significant resources and processing time that can delay decision-making. Here, we clarify the differences and possible synergies of these two approaches in the context of infectious disease surveillance systems by investigating to what extent geographically-defined clusters are confirmed as transmission clusters based on genome sequences, and how genomic-based analyses can improve the epidemiological investigations associated with spatiotemporal cluster detection.

Methods: For this purpose, we sequenced the SARS-CoV-2 genomes of 172 cases that were part of a collection of spatiotemporal clusters found in a Swiss state (Vaud) during the first epidemic wave. We subsequently examined intra-cluster genetic similarities and spatiotemporal distributions across virus genotypes.

Results: Our results suggest that the congruence between the two approaches might depend on geographic features of the area (rural/urban) and epidemic context (e.g., lockdown). We also identified two potential superspreading events that started from cases in the main urban area of the state, leading to smaller spreading events in neighboring regions, as well as a large spreading in a geographically-isolated area. These superspreading events were characterized by specific mutations assumed to originate from Mulhouse and Milan, respectively. Our analyses propose synergistic benefits of using two complementary approaches in public health surveillance, saving resources and improving surveillance efficiency.

KEYWORDS
 SARS-CoV-2, COVID-19, epidemiology, spatiotemporal cluster, genomics, public health surveillance, superspreading, genetic similarities


Introduction

The extreme rapidity of the COVID-19 pandemic revealed the importance of developing, and strengthening, public health surveillance systems at both international, national, and regional levels (1). Defined as “the ongoing, systematic collection, analysis, and interpretation of health data essential to the planning, implementation and evaluation of public health practice” (2), an effective public health surveillance system must be able to monitor the spatial and temporal spread of a disease in a timely manner, to quickly detect emerging clusters of infection and cut chains of transmission (3).

In this context, spatiotemporal approaches that investigate disease clustering, such as prospective space-time scan statistics (4), can constitute an integral part of such surveillance systems by systematically detecting emerging clusters of disease that require further investigations. Fundamentally, space-time scan statistics test whether the number of temporally close cases observed in a defined area exceeds the expected number according to the underlying at-risk population. In the context of the COVID-19 pandemic, several studies investigated how prospective space-time scan statistics could contribute to the ongoing surveillance of the pandemic at different spatial levels including a country-wide investigation using publicly available data across the United States of America (5), as well as investigations at higher spatio-temporal resolutions using laboratory test results to detect COVID-19 clusters in a Swiss state (6) and in New York City (7). A drawback of using these approaches is that they rely on health data that are usually geocoded to a patient's residential location, which constitutes only one part virus transmission. Therefore, it may limit the ability of these scan statistics to depict epidemic trajectories and break the infection transmission chain. Some studies have investigated the interplay between geographical and transmission clusters in the context of sexually transmitted diseases (8, 9), but this research question has not been studied, to our knowledge, in the context of COVID-19.

At the same time, the role of genomics has become critical in the public health domain during the SARS-CoV-2 pandemic. The first SARS-CoV-2 genome sequences allowed the scientific community to characterize the virus and understand its zoonotic origin, infection and transmission mechanisms, as well as COVID-19 pathogenesis (10, 11). Sequencing data also enabled biotechnology companies and pharmaceutical companies to quickly develop molecular diagnostic assays and vaccines. Virus genomes from infected individuals were constantly sequenced and submitted to public national (12) and international (13) databases (e.g., GISAID database), forming hubs for SARS-CoV-2 genomic data sharing that assisted worldwide collaborations and standardized lineages definition (14). In parallel, many open-source bioinformatic tools were actively developed, to compare virus genomes, define and assign lineages, facilitating epidemiological investigations. Based on the plentiful open data and bioinformatic tools, numerous SARS-CoV-2 genome-based studies identified new variants of concern (15–17) and tracked geographic transmission of the virus (18–23) in different countries. Although we found numerous studies tracing the origin and evolution dynamics of the COVID-19 pandemic, very few studies examined how genomic sequencing could be used for informed-decision making within an actionable time frame (24, 25).

In this context, our study aimed to investigate: (i) to what extent clusters identified by space-time scan analysis are confirmed as transmission clusters based on SARS-CoV-2 genome sequences, (ii) how genomic-based approaches can improve the epidemiological investigation associated with spatiotemporal clusters, and (iii) how can a combination of both complementary approaches be used in the context of infectious disease surveillance systems. To answer these questions, we sequenced the SARS-CoV-2 genomes of 172 cases contained in a set of spatiotemporal clusters identified in the Swiss state of Vaud during the first epidemic wave in Switzerland (6). We then analyzed genetic similarity among cases within spatiotemporal clusters and spatiotemporal distribution across virus genotypes using different bioinformatic tools to better understand discrepancies and possible synergies between genomic-based and spatiotemporal clustering approaches.



Methods


Study design

We previously described the spatiotemporal spread of COVID-19 during the first wave of the pandemic for the state of Vaud, Switzerland, using a prospective space-time scan analysis (6). Briefly, the analysis was performed on 3,317 individuals who were tested (RT-PCR) positive for SARS-CoV-2 between March 2 and June 30, 2020, geocoded to their residential address. The study was approved by the Commission cantonale d'éthique de la recherche sur l'être humain (CER-VD), Switzerland (n°2020-01302). Spatiotemporal clusters were detected daily by comparing the number of observed cases to the expected number within and outside a circular window of varying sizes. Expected cases were estimated with a Poisson model adjusting for population size at the inhabited hectare level, and the analytical window was defined to contain a maximum of 0.5% of the population at-risk and last a maximum of 14 days.

Of the 1,784 spatiotemporal clusters identified (454 with a p-value < 0.05), we selected 17 clusters for further investigation (Figure 1). This small number of clusters is partly explained by the many overlapping clusters due to analysis frequency. The selected clusters were chosen to be representatives of the spatial footprint and temporal variations obtained during the first wave of the pandemic, to allow for the comparison of different settings. We chose clusters from different geographical settings (urban vs. rural), of different sizes in terms of geographical coverage and number of cases, as well as some with unique particularities. Additionally, for clusters that were detected several days in a row (i.e., overlapping clusters), we selected the last appearance in order to increase the time span of analysis, even if the last occurrence was not necessarily significant (clusters #3, #6, #15 in Figure 1). The cluster selection process is depicted in Supplementary Figure 1.
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FIGURE 1
 Spatial distribution (A) and characteristics (B) of the 17 spatiotemporal clusters considered for genomic data analysis. These clusters were identified using a space-time scan statistic run daily from March 2 to June 30 and implemented with SaTScan version 9.6.1 (43). Characteristics include each cluster identifier with its corresponding geographical region, cluster period, relative risk of becoming infected to COVID-19 within the cluster compared to outside, significance evaluated with 999 Monte-Carlo permutations, and the proportion of sequenced cases within cluster. Clusters are colored according to the geographical region to which they belong.




SARS-CoV-2 genome sequencing

We sequenced the SARS-CoV-2 genome of all cases presenting over 10,000 cp/ml from the 17 clusters to investigate the genetic similarity within spatiotemporal clusters. SARS-CoV-2 RNA was extracted from nasopharyngeal swabs (COPAN UTM medium, 3.5 ml) using the MagNA Pure 96 system (Roche, Basel, Switzerland). The viral genomes were amplified by the CleanPlex SARS-CoV-2 panel (Paragon Genomics, SKU 918011) following the manufacturer's instructions (26). The quality of amplified products was assessed by Fragment Analyzer standard-sensitivity NGS (DNF-473; AATI) and quantified using Qubit standard-sensitivity double-stranded DNA (dsDNA) kit (Q32853; Invitrogen). The amplicons were sequenced by 150 bp paired-end reads on a MiSeq (Illumina, San Diego, CA). To evaluate sequencing quality, negative and positive internal controls were included in each run.



Reads processing and quality control

Reads were processed with GENCOV pipeline (https://github.com/metagenlab/GENCOV), modified from CoVpipe (https://gitlab.com/RKIBioinformaticsPipelines/ncov_minipipe), in order to perform sequence filtering with fastp (27), primer trimming with fgbio (28), mapping to the reference genome NC_045512.2 with bwa (29), alignment evaluation with Qualimap (30), and variant calling with Freebayes (relative number of variant supporting reads = 0.1, minimal depth = 10, absolute number of variant supporting reads = 9) (31). Variants were further filtered by bcftools (32), determining the consensus based on the variants supported by more than 70% of mapped reads, whereas positions covered by fewer than 10 reads were masked with Ns. The consensus sequence was assigned to SARS-CoV-2 lineages using Pangolin (33). The quality of SARS-CoV-2 genome sequences was then manually evaluated according to quality criteria as described by Jacot et al. (34), including mutations supported by 10–70% of mapped reads termed “low-frequency variants”. Genome sequences that did not pass quality criteria were repeated.



Genomic analyses

Pairwise single nucleotide variant (SNV) distances were computed from quality-checked sequences using Nextstrain SARS-CoV-2 multiple sequence alignment (https://github.com/nextstrain/ncov) (35) and pairsnp (https://github.com/gtonkinhill/pairsnp). Based on the pairwise SNV matrix, we computed the Jaccard similarity index (36) to quantify genetic similarity within spatiotemporal clusters, by calculating the size of the intersection divided by the size of the union of SNVs. Jaccard similarity index was computed for each pair of genomes within the same cluster. Sets of samples with identical SARS-CoV-2 genome sequence (0 SNV distance) were defined as “genomic groups”.



Genomic and geographic visualization

Phylogenetic analysis and visualization were conducted with Augur and Auspice, respectively, which are parts of Nextstrain that allows for customization and interactive web visualization (35). The relationships among genomic groups and samples with unique genome sequences were visualized as minimum spanning trees (MST) on Cytoscape (37), as demonstrated in Supplementary Figure 2. The network was computed with the optrees package in R (https://github.com/cran/optrees) adopting Prim's algorithm, which finds the shortest path by selecting a subset of the edge such that a spanning tree is formed with the minimal total weight of the edges (38). Each node represents either a genomic group or an individual sequence and the weight of the undirected edges reflects SNVs. The mapping of genomic groups within clusters was done using QGIS 3.22 (QGIS.org, 2022. QGIS Geographic Information System. QGIS Association. http://www.qgis.org).




Results


Description of selected spatiotemporal clusters

We investigated the genetic similarity within a set of 17 spatiotemporal clusters selected from a previous study (6). Clusters were detected from March 7 to March 30, 2020, and lasted from 2 to 14 days, corresponding to the lower and upper bound values of the temporal window used in the analysis. The clusters' geographic location and characteristics are shown in Figure 1, where clusters are labeled according to their chronological occurrence. Forty percent of clusters (n = 7) were in rural areas or intermediate-size cities, but the first cluster detected (#1) occurred in the Lausanne region, the capital of Vaud state. Cases of COVID-19 had already been declared in Vaud state a few days before the commencement of the study (the first case occurred on March 3), but this did not form any cluster. Their locations are starred in Figure 1A.

While the clusters included 264 lab-confirmed RT-PCR positive cases, only those with a viral load above 10,000 copies/ml (N = 172, 65.4%) could be sequenced (see the proportion by cluster in Figure 1B), though this did not affect characterization of the affected populations. The number of cases within clusters varied from 3 to 38 (cluster #7), where individuals were 52.3% female, with a mean age of 57.2 years (σ = 20.2). Detailed characteristics per cluster are provided in Supplementary Table 1. Infected individuals in rural areas tended to be older (median age 73 vs. 54 years, p-value < 0.001, Wilcoxon) with a lower mean viral load (230 vs. 590 million copies/ml, p-value = 0.04, Wilcoxon) when compared to individuals in urban areas.

The nine clusters within Lausanne metropolitan area (#1, #2, #4, #6, #8, #9, #10, #13, #16, a total of 94 cases) were labeled uniformly as the “Lausanne region” to reduce the complexity of representation. This choice was reinforced by the distinct patterns observed between these urban clusters and the rest of the state.



Genetic similarity within spatiotemporal clusters

In order to verify whether space-time clusters were transmission clusters based on SARS-CoV-2 genome sequences, we explored the genetic heterogeneity among 172 cases, within and between space-time clusters. The evolutionary relationships among SARS-CoV-2 genomes included in different spatiotemporal clusters were first examined using a phylogenetic tree (Figure 2A). Overall, most spatiotemporal clusters did not appear as a monophyletic group on the phylogenetic tree. However, most cases in cluster #7 appeared on the same branch together, as did all cases in cluster #3 and cluster #5 that appeared at the very beginning of the outbreak, seven days or more before the peak of the epidemic curve (March 18) (Figure 2B). Similarly, the sub-clusters within the Lausanne region did not show any clear clustering on the phylogenetic tree, except for the last Lausanne cluster (cluster #16), which occurred after the lockdown (March 16).
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FIGURE 2
 Genetic distance between and within spatiotemporal clusters. (A) Phylogenetic tree with 172 sequences and 2 Wuhan reference genomes. (B) Timeline of cases appearing in geographical regions. (C) Jaccard similarity within geographical regions. Jaccard distance was calculated between all pairs of samples in the same region. The overall median is indicated as a dotted line. The geographical regions were ordered based on the date of the first case in the region.


We compared the genetic homogeneity among spatiotemporal clusters, where the genetic similarity between pairs of samples was quantified with the Jaccard similarity index. In general, intra-cluster genetic similarity was higher in rural regions than in urban areas (p-value < 22e-16, Wilcoxon). The genetic similarity was greater than the median in four clusters (clusters #3, #5, #7, #17) (Figure 2C). Cluster #3, #5 and #7 are early-appearing clusters that aggregated in the phylogenetic tree and showed the highest Jaccard genetic similarities. They were followed by cluster #17, which occurred in the second largest city of Vaud at the end of the first epidemic wave, after the lockdown (March 16). Clusters #11, #12 and #15 with the lowest genetic similarity appeared after March 11 (close to the peak; <7 days).

The Lausanne region, the largest urban area of Vaud, showed low similarity among cases compared to the median (Figure 2C). Although the genetic similarity of the nine clusters forming the Lausanne region remained relatively constant at low levels throughout the timeline, the genetic similarity varied over time, showing a similar pattern as other clusters with a decrease in similarity toward the peak of contaminations, and an increase back the lockdown (Supplementary Figure 3). Interestingly, Lausanne cluster #8 exhibited a significantly lower Jaccard similarity compared to cluster #7, located in the mountainous areas in the north-west of the state, even though they appeared on the same day (p-value < 22e-16, Wilcoxon) (Figure 2C).



Comparison of spatiotemporal clusters and genomic groups

We further investigated the genetic divergence of geographical clusters at single nucleotide variant (SNV) level (Figure 3A). The distance in SNVs compared to the Wuhan reference genome varied between 2 to 13 mutations. The first cases in the Lausanne region (in cluster #1) harbored 5 SNVs, while some later cases showed fewer mutations (2 or 4 SNVs). Among the 172 SARS-CoV-2 genomes, we identified 20 sets of cases carrying identical genomes, hereafter referred to as “genomic groups” (Figure 3B), in order to avoid confusion with geographical clusters. These 20 genomic groups include 101 of the 172 cases (group1: 37; group2: 12; group3: 6; group4 and group5: 5 each; group6 and group7: 4 each; group8 and group9: 3 each; group10-group20: 2 each). The other 71 genomes did not belong to any genomic group as they exhibited unique sequences (“singletons”). The genetic relationships among the 20 genomic groups and the 71 singletons were visualized on a minimum spanning tree network (Figure 4). This can be visualized with Figure 5, which shows the distribution of genomic groups within spatiotemporal clusters.


[image: Figure 3]
FIGURE 3
 Comparison between spatiotemporal clusters and genomic groups in phylogenetic trees. (A) Divergence of cases in different geographical regions at SNV level. (B) Definition of genomic groups. Cases with identical genome sequences were assigned to a genomic group. Overall 20 genomic groups were identified with varying numbers of cases within each group. The rest of the cases have unique sequences named singletons.
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FIGURE 4
 Genetic relationship among genomic groups and singletons in minimum spanning tree. Nodes and edges indicate unique sequences and SNV distance. The number of cases in genomic groups is represented by the size of the pie. Genomic groups consist of cases in different geographical regions. The triangles are single cases with their size proportional to the log value of viral load detected by qPCR. They are represented in squares according to their occurrence in time.
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FIGURE 5
 Distribution of genomic groups within clusters. The size of the circle is proportional to the number of cases.


We identified 12 genomic groups of the 20 that were restricted to a single area (Lausanne region: 6, cluster #5: 2, cluster #7: 2, cluster #11: 2) and eight genomic groups that consisted of individuals living in two to seven different regions that always included at least one individual from the Lausanne region (Figure 4). For four spatiotemporal clusters, all cases were attributed to the same genomic group (clusters #1, #3, #15, #17) (Figure 5). We observed spatial heterogeneity within clusters, yet, unsurprisingly, cases that occurred in the same building usually shared the same genomic group (Supplementary Figure 4). The size of these multi-regional genomic groups varied between two to 37 cases. Group1 and group2 were the largest groups, with 37 and 12 cases, respectively. We investigated these groups further as there may have been superspreading events in each group. Group1 cases were split into seven geographical regions, connected to cases in the same cluster by one or two SNVs distance (Figure 4). Three of the Lausanne region cases in group1 and one case with 1 SNV distance from group1, which occurred on day 0, could represent the origin of the superspreading event that formed group1 cases. Group2 likely started with one case in the Lausanne region that was diagnosed on day 4, followed by 11 cases in spatiotemporal cluster #7 (in the mountainous north-west region). Although both group1 and group2 were identified as lineage B.1, sharing four nucleotide mutations (C241T, C3037T, C14408T, A23403G), each group was characterized by a specific mutation (Supplementary Table 2). The mutation C15324T characterized exclusively group1 and all group1-associated cases (or groups), except for group4. Likewise, the mutation A26530G featured only group2 and its neighbors (Figure 4).




Discussion


Congruence between two approaches in different contexts

Although the distinct use of spatiotemporal clustering and genomic-based approaches for COVID-19 management is recognized in the literature, we did not find any study investigating how the combined use of these two methods could compensate for their respective shortcomings in a surveillance context. By investigating the extent to which spatiotemporal clusters were confirmed as transmission clusters based on SARS-CoV-2 genome sequences, our results suggest that the consistency across the two methods might vary according to geographic characteristics of the area (rural/urban) and the epidemic context.

We often found less genetic similarity within clusters in urban areas compared to rural areas (p-value <2.2e-16, Wilcoxon). This could be explained by differences in social activities and population mobility. In rural areas, we expect many close contacts to occur among a few people from the same village, where a single introduction event might spread quickly with fewer opportunities to acquire new variants. As infected individuals in rural clusters were significantly older (p-value < 0.001, Wilcoxon), the genetic similarity within spatiotemporal clusters could also possibly be associated with restricted mobility of elderly people. In contrast, urban areas have numerous factors that could multiply the risk of simultaneous circulations of multiple variants, such as more frequent use of public transportation and larger places of gathering (39). Within spatiotemporal clusters, cases located in the same building were generally epidemiologically linked, as they often stemmed from within-household transmission events. Transmission in densely inhabited structures, such as cluster #16 that occurred in a migrant center after lockdown, resulted in significantly higher genetic similarity than other clusters in the Lausanne region (Supplementary Figure 3).

Moreover, the congruence between spatiotemporal and transmission clusters appeared to vary along the epidemic curve. The genetic similarity was typically higher during the lockdown and at the very beginning of the pandemic, where only a few cases were detected, than during the epidemic peak. As no study to our knowledge has examined the congruence of space-time scan and genetic clustering for SARS-CoV-2, it is difficult to interpret our findings in light of other publications. However, several studies have investigated similar research questions in the context of sexually-transmitted diseases. For example, authors found that space-time scan clustering was less successful than genetic clustering in identifying HIV-transmission patterns in small or urban HIV-endemic areas of Los Angeles County (8), while a study in the Netherlands observed a higher incidence of Hepatitis B associated with higher genetic clustering in rural areas (40). However, even if similar patterns were observed in our study, the marked differences in disease characteristics do not permit a direct comparison.

In both genomic group1 and group2, the first cases from the Lausanne region seemed to spread in many neighboring areas, including a geographically isolated area (cluster #7), showing the significant impact of urban areas and superspreading events. Genomic group1 and group2, assigned to B.1 lineage, were differentially characterized by the mutations C15324T and A26530G, respectively. First, the mutation C15324T was suspected to originate from Mulhouse (France) according to Stange et al. (23), where the first case with an identified source of infection was from a religious gathering in Mulhouse. This mutation was the main feature of that local cluster (“Basel-city”) in the early period of the first wave. Moreover, the mutation C15324T was found in other countries, mostly France and Luxembourg at considerable proportions (18.70% and 20.69% of population sequenced, respectively), but not in Italy (until 23rd March 2020). Second, the mutation A26530G was mentioned by Alteri et al. (41) as a key feature of the early Lombardy (Italy) cluster, with >90% of intra-patient prevalence circulating mid-February. It was assumed to be the origin of the subsequent transmission chain in the Lombardy region based on its small number of foreign sequences at the bases of the transmission chain. Thus, we hypothesize that superspreading events in genomic group1 and group2 might stem from secondary cases of Mulhouse and Milan outbreaks, respectively.

The major strength of the present study lies in the fine-scale resolution of the analysis, and the high-quality dataset used to investigate the interplay between genomic and spatiotemporal clustering approaches. At the beginning of the pandemic, the Institute of Microbiology of Lausanne University Hospital received all samples from Vaud state ensuring a comprehensive coverage of all cases in the area within the time frame studied here. This was rarely achieved in most other regions that commonly had multiple testing and sequencing centers, which makes it difficult to obtain an in-depth overview of the local epidemiology. However, the sampling of individuals could be biased due to untested individuals, likely leading to underestimates of superspreading events. Indeed, at the beginning of the pandemic, only symptomatic individuals were tested, although asymptomatic but contagious individuals could have contributed to the spread of the virus. Furthermore, only a portion (n = 172; 8%) of total positive cases were sequenced in the present study, which could affect the generalization of our results. In comparison, Bruningk et al. (42) sequenced 40% (n = 247) of the positive cases in the city of Basel, providing a much higher resolution but limited to a single town. As a tradeoff between the size of the study area and the sequencing density, our choice was partly dictated by the objective of comparing transmission within rural and urban settings, which is rarely done. In addition, the mobility restrictions (e.g., lockdown, homeworking, restaurants closure) and the limited genomic distances observed during the early pandemic could inflate the genetic similarity observed within spatiotemporal clusters. Novel analyses using data from successive waves might refine our findings.



Combining genomic and spatiotemporal clustering approaches in infectious disease surveillance

Timing is a crucial factor in any surveillance system. Space-time scan statistics can be run automatically as soon as new data arrive and in near real-time using the SaTScan software (43) in batch mode. It constitutes, therefore, a powerful exploratory approach to detect high-incidence areas where authorities could prioritize cases for genome sequencing and contact tracing. The New York City Department of Health and Mental Hygiene already adopted this approach to prioritize interviews of patients and develop targeted actions for testing and prevention (7, 44). Our results suggest that one could restrict investigations to a smaller number of cases for clusters in rural areas or within the same building due to the high probability of epidemiological linkage, but also that during peak period, spatiotemporal clusters do not necessarily indicate transmission clusters. Because there are now multiple providers for COVID-19 testing, the space-time scan analysis should use newly reported infectious disease cases to regional authorities, a mandatory procedure in Switzerland. The input parameters should be fine-tuned following the recommendations from Greene et al. (7), for example, by considering the number of tests rather than the total population as the underlying at-risk population to consider changes in testing rates.

An optimal framework for infectious disease surveillance may also be complemented by other approaches. Wastewater monitoring can give a reasonable estimate of infection level and circulating variants taking into account asymptomatic patients (45), while epidemiological models can make projections about epidemic trajectories and healthcare capacity and estimate intervention scenarios (46). Incorporating data from mobility patterns using, for example, aggregated mobile phone data (21), could also improve the spatiotemporal analysis of COVID-19 dynamics, allowing for the detection of infections outside the residential neighborhood, such as at work or activity sites. Even though our study was limited to SARS-CoV-2, we could imagine a similar framework for the Monkeypox virus surveillance, where space-time scan statistics (47) and phylogeographic investigation (48) were already used to disentangle disease dynamics.




Conclusion

Spatiotemporal clustering and genomic approaches have been extensively used during the COVID-19 pandemic. The former approach was mainly used to identify high-incidence areas to target immediate interventions and to draw hypotheses about vulnerable populations, while the latter allowed for tracking of the origin, transmission, and evolution of the SARS-CoV-2 virus globally, and to understand host susceptibility, response, disease severity, and outcomes. In addition to the silos existing between researchers mastering each approach, spatiotemporal methods are limited by the fact that they usually consider only one source of virus transmission (i.e., the residential setting), while genomic studies require significant resources and processing time, which could delay decision-making (Supplementary Table 3). Our genomic investigation of spatiotemporal clusters showed that the clusters identified by space-time scan statistics were more likely to be epidemiologically linked in rural areas and outside the epidemic peak. In addition, we identified two potential superspreading events, characterized by specific mutations indicating their respective origins from two major outbreaks in Europe at the beginning of the pandemic. These findings suggest that we could save considerable resources and improve the efficiency of the public health surveillance system by synergizing both approaches, and prioritizing genome sequencing and contact tracing in high-incidence areas detected using spatiotemporal clustering approaches (Figure 6).
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FIGURE 6
 Graphical representation of findings and conclusion.


Recently, SARS-CoV-2 genomic surveillance has gradually reduced (49). Without the ability to track the virus, and while much of the world remains unvaccinated, we are unlikely to make targeted public health decisions in the face of potentially threatening new variants. We must remember the lessons from the first wave of the pandemic, when lack of data and knowledge caused societal distress, and avoid returning to such a situation by maintaining genomic-based surveillance efforts, conjointly with spatiotemporal surveillance.



Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repositories and accession numbers can be found in the article/Supplementary material.



Ethics statement

The studies involving human participants were reviewed and approved by La Commission cantonale d'éthique de la recherche sur l'être humain (CER-VD). Written informed consent from the participants' legal guardian/next of kin was not required to participate in this study in accordance with the national legislation and the institutional requirements.



Author contributions

SJ, SV, DJ, CB, and GG contributed to the study design. DJ and GG prepared the documentation to obtain agreement from the local ethical committee and provided the PCR data. GG obtained the funding for the study and organized with CB the SARS-CoV-2 genomes sequencing of selected samples. YC and AL analyzed all the data with the help of DD and TP. YC and AL wrote the first draft of the article. All the authors helped to improve and deepen the data analysis and all corrected the manuscript in order to obtain its final version.



Funding

This work was supported by an unrestricted research grant in the field of diagnosis of SARS-CoV-2 infection and epidemiology of the COVID-19 pandemic from the Ferring International Center, Saint-Prex, Switzerland. Moreover, the project was partially supported by the R&D Program, Institute of Microbiology, CHUV (Center Hospitalier Universitaire Vaudois), Lausanne, Switzerland. This work was supported as a part of NCCR Microbiomes, a National Centre of Competence in Research, funded by the Swiss National Science Foundation (grant number 180575). Open access funding was provided by the University of Lausanne.



Acknowledgments

We would like to thank Sébastien Aeby, Micaël Margot, and Anne-Laure Chanson for their dedication in sequencing SARS-CoV-2 in the early phase of the pandemic, as well as Annie Guillaume for proofreading the manuscript.



Conflict of interest

GG has a research agreement with Becton-Dickinson on automation using the BD-Kiestra automated system as well as a research agreement with Resistell on nanotechnology to determine the antibiotic susceptibility of bacteria. In addition, Gilbert Greub is co-director of JeuPRO, a start-up distributing the card games Mykrobs and Krobs, which are two games on microbes. All these relationships with industry does not represent a direct conflict of interest on the present epidemiological work on SARS-CoV-2.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.



Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpubh.2022.1016169/full#supplementary-material



References

 1. Krieger N, Gonsalves G, Bassett MT, Hanage W, Krumholz HM. The fierce urgency of now: closing glaring gaps in US surveillance data on COVID-19. Health Affairs Blog. (2020) 14:6.

 2. Thacker SB, Berkelman RL. Public health surveillance in the United States. Epidemiol Rev. (1988) 10:164–90. doi: 10.1093/oxfordjournals.epirev.a036021

 3. Budd J, Miller BS, Manning EM, Lampos V, Zhuang M, Edelstein M, et al. Digital technologies in the public-health response to COVID-19. Nat Med. (2020) 26:1183–92. doi: 10.1038/s41591-020-1011-4

 4. Kulldorff M. Prospective time periodic geographical disease surveillance using a scan statistic. J R Stat Soc Ser A. (2001) 16:61–72. doi: 10.1111/1467-985X.00186

 5. Desjardins MR, Hohl A, Delmelle EM. Rapid surveillance of COVID-19 in the United States using a prospective space-time scan statistic: detecting and evaluating emerging clusters. Appl Geogr. (2020) 118:102202. doi: 10.1016/j.apgeog.2020.102202

 6. Ladoy A, Opota O, Carron PN, Guessous I, Vuilleumier S, Joost S, et al. Size and duration of COVID-19 clusters go along with a high SARS-CoV-2 viral load: a spatio-temporal investigation in Vaud state, Switzerland. Sci Total Environ. (2021) 787:147483. doi: 10.1016/j.scitotenv.2021.147483

 7. Greene SK, Peterson ER, Balan D, Jones L, Culp GM, Fine AD, et al. Detecting COVID-19 clusters at high spatiotemporal resolution, New York City, New York, USA, June–July 2020. Emerg Infect Dis. (2021) 27:1500. doi: 10.3201/eid2705.203583

 8. Skaathun B, Ragonnet-Cronin M, Poortinga K, Sheng Z, Hu YW, Wertheim JO. “Interplay between geography and HIV transmission clusters in Los Angeles County,” in Open Forum Infectious Diseases Oxford, NY: Oxford University Press (2021). Vol. 8, p. ofab211. doi: 10.1093/ofid/ofab211

 9. Lubelchek RJ, Hoehnen SC, Hotton AL, Kincaid SL, Barker DE, French AL. Transmission clustering among newly diagnosed HIV patients in Chicago, 2008 to 2011: using phylogenetics to expand knowledge of regional HIV transmission patterns. J Acquir Immune Defic Syndr. (2015) 68:46–54. doi: 10.1097/QAI.0000000000000404

 10. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. (2020) 41:1100–15. doi: 10.1016/j.it.2020.10.004

 11. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. (2020) 579:265–9. doi: 10.1038/s41586-020-2008-3

 12. COVID-19 Genomics UK (COG-UK) consortiumcontact@cogconsortium.uk. An integrated national scale SARS-CoV-2 genomic surveillance network. Lancet Microbe. (2020) 1:e99–100. doi: 10.1016/S2666-5247(20)30054-9

 13. Maxmen A. One million coronavirus sequences: popular genome site hits mega milestone. Nature. (2021) 593:21. doi: 10.1038/d41586-021-01069-w

 14. Lo SW, Jamrozy D. Author correction: genomics and epidemiological surveillance. Nat Rev Microbiol. (2020) 18:539. doi: 10.1038/s41579-020-0428-6

 15. Geoghegan JL, Douglas J, Ren X, Storey M, Hadfield J, Silander OK, et al. Use of genomics to track coronavirus disease outbreaks, New Zealand. Emerg Infect Dis. (2021) 27:1317–22. doi: 10.3201/eid2705.204579

 16. Di Giallonardo F, Duchene S, Puglia I, Curini V, Profeta F, Cammà C, et al. Genomic epidemiology of the first wave of SARS-CoV-2 in Italy. Viruses. (2020) 12:1438. doi: 10.3390/v12121438

 17. Qutob N, Salah Z, Richard D, Darwish H, Sallam H, Shtayeh I, et al. Genomic epidemiology of the first epidemic wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Palestine. Microb Genom. (2021) 7:000584. doi: 10.1099/mgen.0.000584

 18. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. (2021) 592:438–43. doi: 10.1038/s41586-021-03402-9

 19. Zeller M, Gangavarapu K, Anderson C, Smither AR, Vanchiere JA, Rose R, et al. Emergence of an early SARS-CoV-2 epidemic in the United States. medRxiv. (2021) 184:4939–52. doi: 10.1016/j.cell.2021.07.030

 20. Yi B, Poetsch AR, Stadtmüller M, Rost F, Winkler S, Dalpke AH. Phylogenetic analysis of SARS-CoV-2 lineage development across the first and second waves in Eastern Germany in 2020: insights into the cause of the second wave. Epidemiol Infect. (2021) 149:e177. doi: 10.1017/S0950268821001461

 21. Kraemer MUG, Hill V, Ruis C, Dellicour S, Bajaj S, McCrone JT, et al. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Science. (2021) 373:889–95. doi: 10.1126/science.abj0113

 22. Lai A, Bergna A, Toppo S, Morganti M, Menzo S, Ghisetti V, et al. Phylogeography and genomic epidemiology of SARS-CoV-2 in Italy and Europe with newly characterized Italian genomes between February–June 2020. Sci Rep. (2022) 12:1–12. doi: 10.21203/rs.3.rs-763359/v1

 23. Stange M, Mari A, Roloff T, Seth-Smith HMB, Schweitzer M, Brunner M, et al. SARS-CoV-2 outbreak in a tri-national urban area is dominated by a B.1 lineage variant linked to a mass gathering event. PLOS Pathogens. (2021) 17:e1009374. doi: 10.1371/journal.ppat.1009374

 24. Meredith LW, Hamilton WL, Warne B, Houldcroft CJ, Hosmillo M, Jahun AS, et al. Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic surveillance study. Lancet Infect Dis. (2020) 20:1263–72. doi: 10.1016/S1473-3099(20)30562-4

 25. Lane CR, Sherry NL, Porter AF, Duchene S, Horan K, Andersson P, et al. Genomics-informed responses in the elimination of COVID-19 in Victoria, Australia: an observational, genomic epidemiological study. Lancet Public Health. (2021) 6:e547–56. doi: 10.1016/S2468-2667(21)00133-X

 26. Kubik S, Marques AC, Xing X, Silvery J, Bertelli C, De Maio F, et al. Recommendations for accurate genotyping of SARS-CoV-2 using amplicon-based sequencing of clinical samples. Clin Microbiol Infect. (2021) 27:1036.e1–1036.e8. doi: 10.1016/j.cmi.2021.03.029

 27. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. (2018) 34:i884–90. doi: 10.1093/bioinformatics/bty560

 28. Fennel T, Homer N, Genomics F. Fgbio: tools for working with genomic and high throughput sequencing data. Available online at: https://githubcom/fulcrumgenomics/fgbio.

 29. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [q-bioGN]. (2013).

 30. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. (2016) 32:292–4. doi: 10.1093/bioinformatics/btv566

 31. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv [q-bioGN]. (2012).

 32. Westgard JO, Barry PL, Hunt MR, Groth T. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin Chem. (1981) 27:493–501. doi: 10.1093/clinchem/27.3.493

 33. O'Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evolut. (2021) 7:veab064. doi: 10.1093/ve/veab064

 34. Jacot D, Pillonel T, Greub G, Bertelli C. Assessment of SARS-CoV-2 genome sequencing: quality criteria and low-frequency variants. J Clin Microbiol. (2021) 59:e0094421. doi: 10.1128/JCM.00944-21

 35. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. (2018) 34:4121–3. doi: 10.1093/bioinformatics/bty407

 36. Jaccard P. The distribution of the flora in the alpine zone 1. New Phytol. (1912) 11:37–50. doi: 10.1111/j.1469-8137.1912.tb05611.x

 37. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. (2003) 13:2498–504. doi: 10.1101/gr.1239303

 38. Kalpanadevi D. Effective searching shortest path in graph using Prim's Algorithm. Int J Comput Organ Trends. (2013) 3:310–3.

 39. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature. (2021) 589:82–7. doi: 10.1038/s41586-020-2923-3

 40. Soetens LC, van Benthem BHB, Urbanus A, Cremer J, Benschop KSM, Rietveld A, et al. Ongoing transmission of hepatitis B virus in rural parts of the Netherlands, 2009–2013. PLoS ONE. (2015) 10:e0117703. doi: 10.1371/journal.pone.0117703

 41. Alteri C, Cento V, Piralla A, Costabile V, Tallarita M, Colagrossi L, et al. Genomic epidemiology of SARS-CoV-2 reveals multiple lineages and early spread of SARS-CoV-2 infections in Lombardy, Italy. Nat Commun. (2021) 12:434. doi: 10.1038/s41467-020-20688-x

 42. Brüningk SC, Klatt J, Stange M, Mari A, Brunner M, Roloff TC, et al. Determinants of SARS-CoV-2 transmission to guide vaccination strategy in an urban area. Virus Evol. (2022) 8:veac002. doi: 10.1093/ve/veac002

 43. Kulldorff. SaTScanTM user guide for version 9.6. (2018– 03– 28) [2018–05–25]. Available online at: https://www.satscan.org/ (2018).

 44. Arnold C. Spurred by Covid, public health gets precise. (2022). Available online at: https://media.nature.com › magazine-assets https://media.nature.com › magazine-assets (accessed Jul 11, 2022).

 45. Jahn K, Dreifuss D, Topolsky I, Kull A, Ganesanandamoorthy P, Fernandez-Cassi X, et al. Early detection and surveillance of SARS-CoV-2 genomic variants in wastewater using COJAC. Nat. Microbiol. (2022) 7:1151–60. doi: 10.1038/s41564-022-01185-x

 46. Lemaitre JC, Grantz KH, Kaminsky J, Meredith HR, Truelove SA, Lauer SA, et al. A scenario modeling pipeline for COVID-19 emergency planning. Sci Rep. (2021) 11:7534. doi: 10.1038/s41598-021-86811-0

 47. Mandja BAM, Brembilla A, Handschumacher P, Bompangue D, Gonzalez JP, Muyembe JJ, et al. Temporal and spatial dynamics of Monkeypox in democratic Republic of Congo, 2000–2015. Ecohealth. (2019) 16:476–87. doi: 10.1007/s10393-019-01435-1

 48. Nakazawa Y, Mauldin MR, Emerson GL, Reynolds MG, Lash RR, Gao J, et al. A phylogeographic investigation of African monkeypox. Viruses. (2015) 7:2168–84. doi: 10.3390/v7042168

 49. This is no time to stop tracking COVID-19. Nature. (2022) 603:550. doi: 10.1038/d41586-022-00788-y














	
	TYPE Original Research
PUBLISHED 05 January 2023
DOI 10.3389/fpubh.2022.1024525






From disgusting and complicated to simple and brilliant: Implementation perspectives and lessons learned from users and rejectors of mail-in SARS-CoV-2 gargle tests

Freda Röhr1*, Ferdinand Uellner1, Andreas Deckert1, Simon Anders2,3, Robin Burk2, Michael Knop2,4, Lucia Brugnara5, Till Bärnighausen1, Albrecht Jahn1, Shannon McMahon1,6† and Aurélia Souares1,7†


1Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, University of Heidelberg, Heidelberg, Germany

2Center for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, Heidelberg, Germany

3Bioquant Center, University of Heidelberg, Heidelberg, Germany

4German Cancer Research Center (DKFZ)-ZMBH Alliance, Heidelberg, Germany

5Evaplan Ltd. at the University Hospital Heidelberg, Heidelberg, Germany

6International Health Department, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States

7German Center for Infection Research Heidelberg Site, Heidelberg, Germany

[image: image2]

OPEN ACCESS

EDITED BY
Kai Zhang, University at Albany, United States

REVIEWED BY
Attapon Cheepsattayakorn, Western University, Thailand
 Sang Gede Purnama, Udayana University, Indonesia
 Sonam Yangchen, Institute of Health Partners, Bhutan

*CORRESPONDENCE
 Freda Röhr, freda.roehr@uni-heidelberg.de

†These authors share last authorship

SPECIALTY SECTION
 This article was submitted to Infectious Diseases: Epidemiology and Prevention, a section of the journal Frontiers in Public Health

RECEIVED 21 August 2022
 ACCEPTED 17 November 2022
 PUBLISHED 05 January 2023

CITATION
 Röhr F, Uellner F, Deckert A, Anders S, Burk R, Knop M, Brugnara L, Bärnighausen T, Jahn A, McMahon S and Souares A (2023) From disgusting and complicated to simple and brilliant: Implementation perspectives and lessons learned from users and rejectors of mail-in SARS-CoV-2 gargle tests. Front. Public Health 10:1024525. doi: 10.3389/fpubh.2022.1024525

COPYRIGHT
 © 2023 Röhr, Uellner, Deckert, Anders, Burk, Knop, Brugnara, Bärnighausen, Jahn, McMahon and Souares. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.



Background: Despite the important role of testing as a measure against the COVID-19 pandemic, user perspectives on SARS-CoV-2 tests remain scarce, inhibiting an improvement of testing approaches. As the world enters the third year of the pandemic, more nuanced perspectives of testing, and opportunities to expand testing in a feasible and affordable manner merit consideration.

Methods: Conducted amid the second pandemic wave (late 2020–early 2021) during and after a multi-arm trial evaluating SARS-CoV-2 surveillance strategies in the federal state Baden-Württemberg, Germany, this qualitative sub-study aimed to gain a deeper understanding of how test users and test rejectors perceived mail-in SARS-CoV-2 gargle tests. We conducted 67 semi-structured in-depth interviews (mean duration: 60 min) via telephone or video call. Interviews were audio-recorded, transcribed verbatim and analyzed inductively using thematic analysis. The Consolidated Framework for Implementation Research guided the findings' presentation.

Results: Respondents generally described gargle sampling as simple and comfortable. However, individual perceptions of the testing method and its feasibility varied widely from disgusting and complicated to simple and brilliant. Self-sampling was appreciated for lowering infection risks during testing, but also considered more complex. Gargle-sampling increased participants' self-efficacy to sample correctly. Communication (first contact, quantity and content of information, reminders, support system) and trust (in the study, its institutional affiliation and test method) decisively influenced the intervention's acceptability.

Conclusion: User-driven insights on how to streamline testing include: consider communication, first impressions of tests and information as key for successful mail-in testing; pay attention to the role of mutual trust between those taking and administering tests; implement gargle self-sampling as a pleasant alternative to swab testing; offer multiple test methods to increase test up-take.

KEYWORDS
 SARS-CoV-2, mail-in tests, gargle test, self-sampling, COVID-19, test user perspectives, test rejector perspectives, implementation study


Introduction

Testing is one of the key strategies against the SARS-CoV-2 pandemic as it enables timely detection and treatment of infections and facilitates the interruption of infection chains (1). Meanwhile, vaccines have become widely available and have proven to be effective at preventing symptomatic diseases and COVID-19 related hospitalizations and mortality (2). Nevertheless, in light of unsatisfying vaccination rates, breakthrough infections, the limited duration of vaccination protection and the need to identify and monitor variants of concern, testing remains indispensable (1, 3). There is, at present, relatively limited evidence to guide countries on how to broach testing, and, partly due to this, testing approaches vary widely across countries. Recent data demonstrates a variety of testing strategies around the world, and highly variable testing rates (4). Since June 2021, the WHO recommends testing individuals that are suspected of having COVID-19, regardless of vaccination status or disease history (1). According to the WHO, asymptomatic testing should only focus on specific groups including individuals frequently exposed to SARS-CoV-2 (1). Many countries including China, Vietnam, Iceland, Germany, and Slovakia have, nonetheless, expanded their testing to widespread screening of asymptomatic individuals to shorten quarantine, protect people in high-risk settings, enable cluster response testing or increase social and economic activity (5). Some countries such as the UK introduced SARS-CoV-2 active surveillance strategies that aim at testing sufficient individuals to monitor outbreaks of disease and characterize the SARS-CoV-2 prevalence (6). Such active surveillance strategies rely on high response rates to estimate a representative prevalence and, hence, on testing being convenient and adapted to user preferences.

The first diagnostic tests, which became the gold-standard to affirm SARS-CoV-2 infections, were based on (naso-)pharyngeal swab sampling and the detection of viral nucleic acids (reverse transcription-polymerase chain reaction, RT-PCR) (1). Further analysis methods were developed including reverse transcription loop-mediated isothermal amplification (RT-LAMP) and rapid diagnostic tests (RDTs) detecting host antibodies and viral antigens (7). Sampling was supplemented by nasal and mouth swabs, gargling, or collecting saliva via drooling or spitting (8).

The development of innovative test methods including self-testing and self-sampling was encouraged to reduce infection risks of testing and costs by requiring fewer material and staff resources, to scale up testing efficiency and accessibility (9, 10). Critics contend that self-testing via RDTs came at the expense of lower and varying test accuracies and point to partly poor qualities of test centers administering RDTs (11, 12). Self-sampling has been used successfully related to HIV and other sexually transmitted infections where it has shown to be efficacious while requiring fewer resources (testing facilities, medical staff, protective equipment), lowering infection risks, and lessening transport and privacy barriers, that often inhibit in-person testing approaches (9, 13, 14). Unlike self-testing, where individuals check results themselves, self-sampling allows samples to be shipped and analyzed in a laboratory, resulting in longer “time-to-result,” but also higher test accuracies. This approach may also mitigate concerns that self-testing could facilitate underreporting of SARS-CoV-2 infections as self-testers can decide not to report the results (13). In comparison to nasal and (naso-)pharyngeal swab sampling, gargle sampling is often assumed to be more comfortable and has proven to be a reliable tool to detect SARS-CoV-2 (8, 15). However, as the success of testing relies on people's willingness to be tested, it is crucial to assess users' test preferences, test methods' usability, their implementation, and how to best provide potentially needed support (9, 16).

Quantitative studies in the U.S. have found a high (hypothetical) acceptability of home self-sampling with saliva and throat swabs of participants without testing experience (14, 16). However, discrepancies exist between an expressed willingness to use and actual uptake of at-home sampling options (14, 16, 17). Mixed-method studies looking at the post-collection acceptability of sampling in the UK and US among university students and staff or participants, who self-sampled with telehealth guidance, underpinned a high acceptability of self-sampling with saliva and throat swabs without consensus of a preferred method (18, 19). However, these results may show higher acceptances of self-sampling as these studies included telemedicine support and involved specific academic populations. While the latter studies compared swab tests to saliva tests, quantitative studies at schools in Germany and among contact cases or SARS-CoV-2 positive individuals in Canada and India showed that users preferred gargle sampling over saliva, nasopharyngeal or nasal swab tests (20–22).

Qualitative studies in relation to SARS-CoV-2 testing largely focused on barriers and facilitators to testing, the experiences of awaiting and receiving a test result, and implementation experiences in specific study settings such as hospitals, schools, universities and homeless-shelters in Germany, the UK and Denmark (18, 23–28).

While studies have outlined provider perspectives of testing sites, gaps exist about how users experience testing interventions, how test rejectors perceive testing methods and how individuals respond to mail in SARS-CoV-2 tests (29). Studies examined how to improve the implementation of SARS-CoV-2 tests in Germany among specific settings such as homeless shelters and schools (22, 30, 31). This study aims to gain a deeper understanding of how test users and test rejectors perceived SARS-CoV-2 gargle tests and their implementation as mail-in tests with self-sampling and laboratory-based sample analysis. To our knowledge, this is the first study to qualitatively evaluate experiences with SARS-CoV-2 self-sampling among the general population in Germany. The evaluation of both, test takers' and rejectors' perspectives, provides a comprehensive understanding of user preferences. Proceeding from this, we provide evidence and recommendations for healthcare providers, as well as policy and decision makers on how to streamline SARS-CoV-2 gargle and further testing approaches to increase response rates and tests' ease of use.



Methods


Study setting

The study took place in southwest Germany in the federal state of Baden-Württemberg, namely Heidelberg town and the surrounding Rhine-Neckar district. In 2020, Heidelberg counted about 158,700 and the Rhein-Neckar district about 548,200 inhabitants (32). Heidelberg has one of the highest life expectancies in Germany and about 70% of its population is of employable age (33, 34). The study region belongs to one of the most prosperous regions in Germany and the economic success is closely linked to an extensive science and research landscape (35, 36). In 2019, Heidelberg had a GDP per capita of 58,209 € and the Rhein-Neckar district of 36,935€ (37).

At the outset of this study in December 2020, (naso)-pharyngeal swab PCR tests were the formally employed test method. Such tests were available at either a high cost or free of charge for a restricted group of people: individuals with COVID-19 symptoms, contact cases, patients or residents prior to admission to health facilities (or facilities with shared housing), as well as staff, visitors and patients/residents of said facilities following a SARS-CoV-2 outbreak (38). Meanwhile, Germany was amidst its second wave that eventually led to the second lock-down on December 16, 2020, and first vaccines against SARS-CoV-2 were authorized by the European Union on December 21, 2020 (39). Over-the-counter self-tests only became available in pharmacies in February 2021, and free RDTs performed by trained staff were introduced in March 2021 (40). In the context of this study, participants were thus confronted with three new aspects: testing for free without meeting test criteria, self-sampling at home, gargling instead of (naso-)pharyngeal swab sampling.



Study description

This qualitative study was embedded in the “CoV-Surv Study,” a two-factorial randomized controlled multi-arm trial with cluster sampling, that evaluated different SARS-CoV-2 surveillance strategies for their acceptability and cost-effectiveness in November and December 2020. Trial details can be found in the study protocol (41). Participants (age ≥7) were selected via civil registration services and received either directly a self-sampling kit for themselves or their whole household (arm A) or a pre-screening questionnaire by mail (arm B). If the latter indicated COVID-19 specific symptoms (analyzed by a trained random forest algorithm), they also received self-sampling material by mail. In addition to a photo of the self-sampling material (Figure 1) and the package received by participants (Figure 2), a description of the testing process can be found in Table 1. For the qualitative sub-study, participants were selected from the “CoV-Surv Study” population to share their implementation perspectives of the gargle tests. The results' presentation aligns with COREQ guidelines (Table 2).


[image: Figure 1]
FIGURE 1
 Self-sampling material: Small bottle containing saline solution, straw, test tube.



[image: Figure 2]
FIGURE 2
 Package received by participants: Shipping carton; protective plastic cover with yellow, liquid-absorbing fleece; plastic bag with testing material.



TABLE 1 Testing process, study information, and media presence.
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TABLE 2 Consolidated criteria for reporting qualitative studies: 32-item checklist (42).
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Theoretical underpinnings

We drew from aspects of the “Consolidated Framework for Implementation Research” (CFIR) to gain an in-depth understanding of the mechanisms impacting a tests' implementation and to formulate recommendations for future implementers (43). The CFIR comprises five major domains to guide formative evaluations of interventions' implementation (implementation process, characteristics of individuals involved, intervention characteristics, outer and inner setting). We emphasized CFIR components that are relevant to user experiences (excluding components at provider and organizational levels as this was not the focus of our study).



Sampling procedure

We purposively sampled participants to maximize variation of ages, sex, educational backgrounds, study arms and test/questionnaire up-take or rejection. We included test rejectors' perspectives as they still experienced the tests' implementation and could provide insight into their impressions of the sampling method. Recruitment started on December 16, 2020, a month after self-sampling kits were first mailed. We contacted test up-takers via mail and e-mail, and test rejectors exclusively via mail due to limited available contact information. After no test rejector accepted the interview invitation following the first letters, we changed the procedure, searching instead for online listed telephone numbers and calling participants. The response rate was higher among test takers (~43%) than test rejectors (~4%). Reasons for interview rejection were inability to participate (language barrier, health reasons, death, no memory of study), study-related factors (distrust in data security, online interview) and disinterest. Ultimately, 67 individuals (37 takers; 29 rejectors) agreed to be interviewed and recruitment stopped on February 12, 2021, after data saturation was reached within each respondent group.



Data generation

Interviews were conducted using a semi-structured in-depth interview guide that we pretested with individuals external to the study (n = 19) of different ages, education, and professions. The interview guide covered reasons for or against self-sampling; perception of the gargle test before and, if applicable, after sampling; perception of the implementation and suggestions for improvement; and implications of test results, if applicable. The slightly different interview guides for test takers, rejectors and positively tested are attached as Supplementary Data 1. Depending on interviewee's choice, the 67 interviews were conducted by phone or video calls in German, English or French. Although participants were asked to be alone, twice participants' partners or legal guardians were present. Rarely, interviews were interrupted due to bad internet connection or empty phone batteries, but all interviews were completed. We summarized essential aspects of the interview at the end to allow for feedback or clarification from the interviewees.



Reflexivity

FU (cis-male) and FR (cis-female) conducted the interviews as their first research project. Both are studying medicine and experienced the pandemic in Germany. They had undertaken training in qualitative research and interviewing skills before and during data generation. Their professional background and solidarity-based approach to the pandemic led them to welcome testing as a measure against the pandemic.



Data analysis

FR or FU interviewed all participants once. Interviews were audio recorded and interviewers took field notes during and after interviews. Interviews took on average 1 h (shortest 26 min; longest 110 min). The research team, including senior authors, debriefed regularly after interviews (44). One interview was excluded from analysis because the audio recording failed, and the study group was thus reduced to 66 participants. Audio recordings were transcribed verbatim, with 30 recordings pre-transcribed using “f4transkript” software and manually corrected afterwards, while the remaining audio recordings were transcribed entirely manually (45). Impressions of the test method from participants' acquaintances or relatives mentioned during the interviews were included in the analysis. We used investigator triangulation with two researchers generating and analyzing data (coded the same interviews at the beginning to validate and finalize the codebook and constant discussion during the coding), in close collaboration with senior researchers via regular debriefings after and in between interviews. Analytical categories were derived inductively from the data drawing from principles of grounded theory (46). The data were analyzed sequentially during and after data collection using thematic analysis (47). Closely accompanied by senior authors, FR and FU created a codebook with codes that derived during data collection, debriefings, and analysis of first, especially rich transcripts. FR and FU continued coding together using “NVivo 12 Pro” (RRID:SCR_014802) and later separately while regularly consulting and mutually checking for (dis-)agreement. No member checking was done. Once we had identified an emerging phenomenon, we looked for disconfirming cases and data that could disprove a theory. We identified the following implementation related themes: first reaction of recipients, trust in the study, self-efficacy, communication (provided information, reminders, support system, and test result), perception of the self-sampling method and its diagnostic accuracy, and timing of the study. To present the results in a way that is particularly valuable for future test implementations, we arranged identified themes according to appropriate CFIR components: “intervention process” (divided into “intervention engaging” and “intervention execution”), “characteristics of individuals involved,” “intervention characteristics” and “outer setting.” Where deemed necessary, subdomains were added to the CIFR components such as “first reaction of recipients” and “reminders.”




Results

The study group consisted of 66 participants with the following characteristics: 37 (56.1% of all participants) test takers and 29 (43.9% of all participants) test rejectors, 31 (83.8% of test takers) negative and 6 (16.2% of test takers) positive test results, 36 (54.5% of all participants) women and 30 (45.5% of all participants) men of different age groups and school leaving qualifications (Table 3).


TABLE 3 Characteristics of participants.
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Implementation process—intervention engaging
 
First reaction of recipients

The first reaction of both, test takers and rejectors, upon receiving test material was often surprise, followed by responses that ranged from delight (“like Christmas presents” [male, 22, uptake]) to confusion (“Why me of all people?” [female, 65, rejection]) to senselessness (“This is nonsense” [female, 62, rejection]). Respondents, including test rejectors, generally expressed gratitude because the tests enabled knowing one's status at a time with very limited access to tests and, more broadly, the study enabled to support broader efforts to address the pandemic at no personal financial cost. However, tests were also perceived as burdensome as they came at a busy time of the year (around Christmas) and at a time when pandemic fatigue was propagating. Rarely, respondents wrongly associated the study with SARS-CoV-2 vaccinations and rejected the study without knowing what it entailed.

Both test takers and rejectors intuitively trusted the study because they were contacted by letter instead of by phone; the university of Heidelberg organized the study and material showed official logos. “I found it very, very reliable. Which I think is just super important in the beginning when you get that.” [male, 23, uptake]. Furthermore, participants verified information online and understood that the municipality provided personal data. However, misinterpretations arose too, and some respondents believed they were contacted due to previous hospital stays, participation in other studies, former or up-comping SARS-CoV-2 tests or acquaintances in quarantine. “But I've only just been tested, I'm negative.” [male, 60, rejection]. For a few respondents, the study invitation triggered a fear of being infected or “Oh, God, I thought the notification was coming, that we have to go into quarantine.” [female, 24, uptake].

Some respondents explained that being contacted without prior notification, triggered distrust. Moreover, distrust was fueled by not understanding how personal data was accessed or fear of data fraud and of analyses of saliva samples for other purposes. “I don't know what kind of shenanigans they might be up to.” [male, 46, rejection]. Distrust was further increased by more individual factors such as being uninformed about test capabilities or being “always a bit anxious” [male, 83, uptake].



Perception of provided information

Across sexes and ages, test takers and rejectors stated the brochure contained “good explanations” [female, 24, uptake], and facilitated to understand subject-specific vocabulary. Participants appreciated that the brochure contained wording for several target groups, including simplified summaries. However, the amount of information was considered too much by both test takers and rejectors. “At first, I saw the 60 [brochure's pages] and was shocked!” [male, 62, uptake]. Participants estimated “[…] this takes a while […] to read that.” [male, 60, rejection]. Participants appreciated pictures depicting the sampling steps to better understand the sampling procedure. A video on the website facilitated sampling and increased self-efficacy. Furthermore, participants emphasized the importance of multilingual online options.

Despite provided information, misunderstandings arose about the study duration and the consequences of participation. “And then I thought, three weeks,” one participant [female, 46, rejection] said, in reference to the frequency of having to test for the study (limited to a single test) “I'm not going to be able to do that.” [female, 46, rejection]. Participants criticized a lack of information regarding when samples must be returned and whether testing could be postponed to a more convenient time. “[...] if I get the test kit today, I should preferably send it off tomorrow. I didn't find that anywhere, otherwise I would have hurried a bit.” [female, 63, uptake]. Often information on the study's timeframe was only received via media or reminders. Additionally, participants asked for more information about the saline solution (for example storage life, implications of swallowing). At least a few male test takers and rejectors described feeling “a bit scared” [male, 24, rejection] because the sample packaging included symbols indicating biological substances, a requirement to send samples of bodily fluids via mail. A biohazard symbol raised concerns about the saline solution's potential harmfulness in case of swallowing and compelled questions such as “[...] how dangerous is it to put that then in the waste?” [male, 23, uptake].




Implementation process—intervention execution
 
Support system—hotline

Participants deemed the possibility to call a hotline during the intervention reassuring and helpful as a contact option for respondents without internet, to receive their test result, correct mistakes or clarify questions about the sampling.



Reminders

Reminder letters surprised and prompted many respondents to test. “When the second letter came, I said: I'll do it, then […] I'm not guilty then for it [the study] not working.” [male, 62, uptake]. Others felt pressured, or questioned why a letter would come almost immediately after the test arrived. “I was incredibly annoyed that a letter came two days later” [female, 55, rejection]. Participants described sensing that communication within the study team was “weird” [female, 56, uptake], noting that reminders arrived after samples had been submitted or after respondents had confirmed their study participation via the hotline. For respondents who had already submitted samples, the reminder letter triggered uncertainty about a possible loss of samples in the mail. Moreover, respondents criticized the letter's use of “pressurizing” [male, 62, uptake] wording, which called into question the voluntary nature of study participation.



Characteristics of individuals involved

How confident respondents felt to self-sample was closely intertwined with their perception of the test method and the information provided. Overall, respondents who took up the test intuitively felt capable to sample or were reinforced in their ability to perform the test once they: trusted the study team to sort out samples that were sampled incorrectly by participants, watched others test first, were professionally trained to develop, or use similar tests, and could draw from testing experience. Others felt unable to sample correctly because they felt incompetent with tasks deemed medically complex; wanted more personalized instructions; feared making mistakes that could jeopardize a study; or were physically unable to perform self-sampling due to advanced age, injured oral mucosa or an “extreme gag reflex” [female, 56, uptake]. Furthermore, participants worried self-sampling may not be feasible for individuals with disabilities or young children. However, participants whose children (age ≥7) self-sampled perceived the method as child friendly.

Moreover, participants with a scientific background or who generally supported measures against the pandemic tended to be more appreciative of the test method. In contrast, participants distrusting measures expressed “This is all exaggerated! […] I don't think much of [tests] myself ” [male, 79, rejection] and questioned the general meaning of testing.




Perception of intervention characteristics
 
Relative advantage

At first glance, test takers and rejectors were surprised by the test method and its perceived simplicity. “I wasn't aware that there was such a possibility to do such a test and I was amazed and eager to see how it works.” [female, 32, uptake]. Partly, test rejectors were irritated and wondered “where the swab was. […] I thought, well, they probably forgot it.” [female, 65, rejection]. While some test takers were relieved to sample without swabs, other test takers and rejectors imagined the test to be too complicated or unfeasible. Few test takers feared to be unable to gargle per se or for a long duration.

After self-sampling, test takers generally found the test “really easy to carry out” [female, 32, uptake] and “uncomplicated” [female, 72, uptake] and participants, who had initially deemed the test too complex, often changed their minds. However, some test takers struggled especially with gargling which they found “strenuous” [female, 56, uptake], the dispensing of an aliquot or clearing secretions from throat and nose which they considered “disgusting” [male, 55, uptake] and difficult causing insecurity about correct test execution. “[…] To, uh, kind of bring the inside of the nose into the throat and get that out through the mouth. I didn't manage that, [...] I really tried hard [...].” [female, 43, uptake] Although only few respondents considered the saline solution disgusting and reported an aftertaste lasting for hours, for those affected this became a decisive factor in the choice against the gargling test as a preferred method.

In comparison to (naso-)pharyngeal swab tests, many test takers and rejectors across sexes and ages appreciated gargling as being more “pleasant” [female, 20, uptake] and “MUCH more comfortable” [female, 20, uptake]. “This swab in the nose, [...] the idea alone is not so good.” [female, 32, uptake] Still others deemed the gargling as unpleasant or more complicated than swab tests, preferring “[…] a swab in the throat, move it around for 30 seconds [...] um, that would make it [...] easier […].” [male, 30, rejection]. Most test takers felt more confident to self-sample correctly by gargling than using a (naso-)pharyngeal swab test: “I don't think I would have the courage to ram it so far into my brain [...].” [female, 57, uptake]. “I just think that ordinary people [...] are not thorough enough. That's why I thought the idea of the spit test was a brilliant one, because you can't do too much wrong.” [female, 58, uptake].

Mostly younger test takers appreciated the aspect of self-sampling at home as less time-consuming or strenuous, more flexible than testing on the spot. Respondents emphasized particularly the “advantage of not being at risk of infection” [male, 29, uptake]. Furthermore, self-sampling was hoped to “relieve the burden on the health system” [female, 33, uptake] by requiring fewer resources. Both test rejectors and up-takers, especially over 45 also saw disadvantages of self-sampling such as higher test complexity, perceived higher skill and time requirements, having to trigger discomfort oneself and higher uncertainty about correct test execution. “[…] I would prefer to […] go somewhere. I don't have to read brochures. I don't have to be uncertain.” [male, 58, uptake]. Participants worried because they only had one attempt to sample correctly, as they only had one bottle of saline solution. While a laboratory-based analysis was generally appreciated, some respondents wished for “a test where you could evaluate yourself at home.” [female, 44, rejection] to receive faster results with less effort. While many trusted trained staff more than themselves to sample correctly, a few trusted their test result mainly due to self-sampling.



Time of sampling

Sampling in the morning, on an empty stomach was considered “making [testing] difficult” [female, 18, rejection] and “disgusting” [female, 58, uptake]. Participants felt that they did not have enough saliva, or they delayed sampling due stressful mornings, struggles to change morning routines, accidentally brushing teeth, eating or drinking.



Packaging and shipping

While some respondents appreciated the overall layout, others criticized the test's packaging because it contained “a bunch of plastic” [male, 29, uptake], raising environmental concerns. Test-rejectors demanded the option to opt out before receiving material to reduce waste. The inclusion of plastic straws, which had been banned half a year prior in Germany, sparked questions such as “Shouldn't these not even exist anymore?” [female, 42, uptake].

Some respondents highlighted the good manageability and preparation of postage-paid, pre-addressed envelopes. Families that were sent several tests to facilitate pooled testing, described wanting several return envelopes to return individual samples immediately. At times, participants wondered how to best protect samples for shipping and improvised covers because they did not know how to use the enclosed protective covering. While some respondents praised shipping via mail as convenient, others worried tests could get lost, or they found being asked to go to a post box or office stressful (of note: outgoing postage in Germany is not usually sent from residential addresses).



Communication of test results

Generally, receiving test results online was considered fast and convenient. While participants noted that relying on the internet inhibited engagement from those who lack connectivity, test takers who lack connectivity (typically older participants) described the ease of calling the hotline. Test takers described unclear communication regarding how to retrieve test results; and having waited for results to arrive, not knowing that they had to check results themselves. Participants, that took the test, wished for active feedback on test results or at least a notification that results could be checked online. Others found it unnecessary to retrieve results, as they assumed a positive result would entail outreach from the study team or health authorities.

Some found the waiting time for results short, while other test takers, especially those who (voluntarily) quarantined themselves, found it too long, causing discomfort and anger. “It took ages to get the results. I was a bit annoyed […] and then I didn't look at all anymore.” [female, 72, uptake]. Based on other health-care experiences, test takers usually considered longer waiting periods for test results as an indication of a negative test result, while to a lesser extent, participants described being more attentive regarding potential symptoms as they increasingly feared a positive result. Test takers and rejectors highlighted that receiving results several days after sampling undermined the test's purpose because contact tracing became less feasible, and infection could have occurred in the interim. Participants described a desire to include test results in the official SARS-CoV-2 contact tracing app used in Germany.



Evidence strength and quality—test accuracy

Test takers described trusting the tests' accuracy because results met personal expectations “[...] feel fine. Then it's [test result] right.” [female, 63, uptake] and participants trusted broader study aspects (type of test, option for follow-up PCR testing of same sample, study's institutional affiliation).

Although participants who tested positive trusted their test result overall, doubts arose because participants did not understand the double analysis process of the same sample via RT-LAMP and RT-PCR and expected to receive a confirmatory PCR test that included renewed sampling. Few test rejectors distrusted gargle liquid tests due to an alleged generally low accuracy or believing that viral loads are lower in saliva. A few test rejectors generally distrusted test accuracies, among other things due to media reports about poor test qualities such as that rapid diagnostic tests were false positive through the addition of soft drinks. “I can't believe it [quality of tests] anymore. [...] They dribbled a little Coca-Cola onto a test strip and then it was positive!” [male, 70, rejection] Comparing our study test to other testing methods, participants generally believed “rapid diagnostic test is less reliable anyway.” [male, 71, uptake], while swab tests with PCR evaluation were often described as a benchmark for accurate tests and considered to have comparable or higher diagnostic accuracy. “If I'm honest, I think only PCR tests are accurate.” [female, 44, rejection].




Outer setting—timing of the study

Participants described how receiving tests in the mail around the holiday season sparked conflicting emotions: on one hand, a negative result could facilitate participation in social events, on the other hand, a positive result would hinder important events or awaited reunions. Among other things, this led to testing being postponed to convenient times such as right before social events without participants realizing that the samples may arrive too late for the study and could thus not be analyzed anymore.




Discussion

This study uniquely demonstrates in-depth how test takers and rejectors perceived mail-in SARS-CoV-2 gargle tests and their implementation as an active surveillance strategy. The identified implementation recommendations further apply to other SARS-CoV-2 tests and testing strategies such as diagnostic and screening testing. While the perception of gargle sampling ranged individually from disgusting and overly complicated to simple and brilliant, the method was generally well-accepted and appreciated as a more pleasant alternative to (naso-)pharyngeal swabs. Communication (first contact; quantity and content of information; reminders; support system; timeframe of when to return samples, receive results and study duration) and trust (in study and test method) served as key factors influencing the intervention's acceptability. While the amount of information and perceived test complexity initially overwhelmed many, illustrations and a video of test steps were helpful to complete sampling.

Participants considered self-sampling convenient and important to reduce infection risks during testing, but at times more effortful and causing uncertainty about correct test performances. Although participants mostly of higher age felt overchallenged by self-sampling, self-efficacy was high for many respondents and accurate self-sampling was found more feasible with gargling than swab tests.

Consistent with studies and commentaries assuming saliva and gargling sample tests are as or more accepted than (naso-)pharyngeal swabs, our results show that gargle sampling was generally positively perceived (18, 20–22). Furthermore, our results show that the perception of the gargle test varied widely, complementing findings of a quantitative study in Canada in which individual test preferences caused a variability of discomfort levels of both, (naso-) pharyngeal swabs and saliva tests, that ranged from minimal to extreme (49). Consistent with findings of Granger et al. (50), evaluating saliva sampling, which resembles gargling sampling, inter-individual differences in sampling abilities underscored that gargle sampling can be difficult for old individuals or depending on gag reflex, disease states and cognitive status. After testing participants often considered the method less complicated than anticipated, which underscores that test acceptability can change considerably after a testing experience (51). To our knowledge respondents' impression to feel more confident to self-sample correctly with gargling than (naso-)pharyngeal swab testing has not been shown in other studies.

The fact that self-sampling at home was perceived as beneficial complements findings of a US survey that more people are willing to self-test at home, which includes self-sampling, than be tested elsewhere (14). The appreciation of lower infection risks with home self-sampling is consistent with qualitative findings on SARS-CoV-2 testing showing increased fear of infection risk at testing facilities (28). However, to our knowledge, no other studies have shown that some participants found self-sampling more strenuous than being tested at a testing site.

Although gargle self-sampling itself increased participants' self-efficacy and some participants trusted the test results mainly due to having self-sampled, our results emphasize the need to empower testing confidence, especially as success of self-sampling depends on users' belief to be able to self-sample. In contrast, quantitative and mixed-method studies in the US and UK found a more homogenous picture of high self-efficacy and self-sampling feasibilities of saliva tests (18, 19). However, these studies may show higher self-efficacy as participants only sampled saliva, received support by telemedicine or belonged to specific study groups (university staff, students) (18, 19). To increase self-efficacy, Conserve et al. suggest using strategies proven successful in HIV self-testing such as online, real-time instructions (9).

In contrast to results of a mixed-methods study at a UK university, which identified no significant concerns about saliva tests (without gargling), our participants expressed distrust of a sample analysis for other purposes and a potential harmfulness of the saline solution (18). This discrepancy may be explained by differing study populations (university setting vs. general population) or by the fact that in our study, participants were contacted at home without prior notice and had to gargle with an additional liquid solution.

The negative impact of too much information (deterring and less information being absorbed) is consistent with qualitative findings on unspecified swab and saliva sample testing in a university setting in the UK (18). Studies about bowel cancer screening kits also highlighted the negative impact of complicated instructions and a mixed-method study about SARS-CoV-2 testing demonstrated the need for detailed and clear diagrams, especially for a method similar to gargling, saliva sampling, because it was most frequently described as unfamiliar and complex (19, 52). In the context of our study, extensive information material was requested by the ethics committee and may be reduced or made available online and via various information channels in routine SARS-CoV-2 surveillance systems. We further suggest informing users about the key aspects of correct sampling, such as that the aim of gargling is to collect virus-containing mucus cells from the throat regardless of the amount of saliva, allowing to gargle with a dry mouth. Reminders have proven effective in increasing immunization rates and should be implemented as a valuable tool (53). However, our results indicate that attention must be paid to appropriate timing and polite wording of such reminders. Regarding the communication of test results, longer waiting time reassured some to be negative, but also caused anxiety in alignment with study findings indicating that awaiting SARS-CoV-2 test results triggers anxiety of positive results (18). Waiting times in this study were mainly caused by postal delivery delays, which high-lights how mail, as a potentially more convenient delivery method, depends on external factors such as the postal volume in a pre-Christmas period. Postal delivery delays may, for example, be avoided by community collection points to drop off samples. Participants wished for timely results and preferred having results delivered (electronically or by phone) rather than undertaking a search for results.

While gargling has been promoted as the least invasive sampling method, it has hardly been implemented at large scale. Projects that we know of are for instance: “Alles gurgelt” in Vienna, Austria, that uses a screening testing strategy aiming at testing many individuals with gargle test kits available for free at supermarkets, sample drop-off at collection points and PCR results available within 24 h; and the study “WICOVIR” that uses at-home gargle testing and pool PCR testing in German schools (30, 54). While we are not aware of any published research on the implementation and user experience of “Alles gurgelt,” Kheiroddin et al. (30) have evaluated and published how to efficiently implement SARS-CoV-2 gargle-based pool PCR testing, but focus on schools and not the general population. Our findings may inform the implementation of according testing approaches and further active surveillance strategies, while at the same time evaluations of mentioned projects may reveal complementary insights.


Limitations

This study provides in-depth qualitative data about the implementation experiences of both test users and rejectors of SARS-CoV-2 gargle tests. The study population consists of participants with varying characteristics, allowing insight into diverse perspectives, in a rural and urban study setting. However, this study also has limitations. Due to the rapidly changing nature of the pandemic, referring policies and increasing testing opportunities, opinions on SARS-CoV-2 testing may have changed in the meantime. However, lessons learned from this study are still useful to understand the communities view on testing and improve testing strategies and the implementation of new interventions. Although we purposively sampled to maximize diversity among participants, sampling may have been biased as participants appreciating the study aim and gargle sampling may have been more willing to be interviewed. We balanced this potential bias by also sampling test rejectors. Since the study took place in a region of Germany with high socio-economic status, we sampled people with different socio-economic status to avoid the bias of only talking to highly educated and high earners. Courtesy and social desirability bias may affect our data if participants did not express dissatisfaction or gave responses perceived to satisfy interviewer. We tried to minimize these biases by building rapport, probing and reflexivity.




Conclusion

Our findings suggest that SARS-CoV-2 active surveillance strategies should integrate in advance of an intervention implementation: large-scale information campaigns; diverse information and communication channels (e.g., radio, newspapers, health authorities); support systems for participants (e.g., hotlines, online contact forms); official support from policy makers and health authorities. Communication and trust are key elements to focus on while implementing (new) testing interventions. Provided information on testing strategies and test steps must be minimized in its quantity, while conveying essential aspects including the rationale of testing and time frames and should include visualizations such as videos of sampling and retrieval of results. A summary of key recommendations for implementing SARS-CoV-2 tests can be found in Table 4. Mail-in gargle self-sampling proved successful in our study. The method was perceived as pleasant and convenient and increased individuals' confidence to correctly sample, while enabling high test accuracies through a laboratory-based analysis. However, it is important to consider user limitations of gargle self-sampling and to offer a range of possibilities to get tested to adapt to the needs and preferences of users. Considering diverse user opinions found in this study, further exploration is needed regarding users' sampling preferences. Given the lack of data involving SARS-CoV-2 test rejectors, we encourage researchers to include this perspective as well to effectively improve testing interventions. Further research is needed of how to increase self-efficacy and trust in testing methods.


TABLE 4 Key recommendations for implementing SARS-CoV-2 tests.
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Background: Neglected indigenous groups and underserved rural populations in Latin America are highly vulnerable to COVID-19 due to poor health infrastructure and limited access to SARS-CoV-2 diagnosis. The Andean region in Ecuador includes a large number of isolated rural mestizo and indigenous communities living under poverty conditions.

Objective: We herein present a retrospective analysis of the surveillance SARS-CoV-2 testing in community-dwelling populations from four provinces in the Ecuadorian Andes, carried out during the first weeks after the national lockdown was lifted in June 2020.

Results: A total number of 1,021 people were tested for SARS-CoV-2 by RT-qPCR, resulting in an overall high infection rate of 26.2% (268/1,021, 95% CI: 23.6–29%), which was over 50% in several communities. Interestingly, community-dwelling super spreaders with viral loads over 108 copies/mL represented 7.46% (20/268, 95% CI: 4.8–11.1%) of the SARS-CoV-2 infected population.

Conclusion: These results support that COVID-19 community transmission in rural communities from the Andean region was happening at the early stages of the COVID-19 pandemic in Ecuador and point out the weakness of the COVID-19 control program. Community-dwelling individuals in neglected rural and indigenous communities should be considered for a successful control and surveillance program in future pandemics in low- and middle-income countries.

KEYWORDS
 SARS-CoV-2, indigenous people, COVID-19, Ecuador, Andean region


Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first reported in China in December 2019 and spread worldwide, causing the COVID-19 pandemic (1). A few weeks after the initial outbreaks, the first COVID-19 cases were reported in Latin America that has since then been deeply affected. For instance, the first case of COVID-19 was confirmed on 29 February 2020 in Ecuador (2), and during the first year of the COVID-19 pandemic, more than 400,000 COVID-19 cases and 20,000 COVID-19-related deaths have been reported by Ecuadorian public health authorities (3).

Vulnerable groups infected with COVID-19 include not only the elderly and individuals with comorbidities but also historically neglected indigenous populations (4–9). There are more than 476 million indigenous people in the world, highly represented and traditionally neglected in Latin America (10, 11). In Ecuador, indigenous people represent more than 7% of the total population and are mainly associated with underserved rural communities (10–13). Those communities are usually isolated or poorly communicated and have poor access to health services. In many cases, such health services have little capacity and limited coverage, which may delay seeking medical attention, complicating early management, and therefore leading to greater risks of complications and mortality under a scenario such as the COVID-19 pandemic (7–9, 13).

From the early stages of the COVID-19 pandemic, there was a call for action to protect indigenous people from the Americas (7–9). In Ecuador, The National Council for the Equality of Peoples and Nationalities has demanded the protection of indigenous people, reporting COVID-19 outbreaks among their communities and claiming support from public health authorities to contain the pandemic in their communities (8, 11). Moreover, several reports have already shown dramatic SARS-CoV-2 outbreaks leading to community transmission in rural and indigenous populations from the Amazonian and Coastal regions of Ecuador (7, 8, 14–19). Under this scenario, following the request from community leaders, we carried out a SARS-CoV-2 surveillance testing among community-dwelling indigenous and mestizo people in the Ecuadorian Andes few weeks after the population lockdown was lifted in June 2020.

This study aimed to carry out a retrospective analysis of the results of our SARS-CoV-2 testing surveillance in mestizo and indigenous communities from the Ecuadorian Andes to show that COVID-19 community transmission had been happening since the early stages of the pandemic.



Materials and methods


Study design and setting

We carried out a retrospective analysis of the data collected from this cross-sectional surveillance to describe the attack rates of SARS-CoV-2 infection among rural indigenous and mestizo communities from the Andean region of Ecuador from June to August 2020. The communities were selected by local public health authorities and community leaders at convenience, using the inclusion criteria of an individual for each household. No random selection of individuals was carried out, so potential bias associated with the sampling cannot be ruled out.

A total of 1,021 community-dwelling individuals were recruited. The communities included in this study belong to the provinces of Chimborazo (communities Lizarzaburu, San Juan, and San Luis at canton Riobamba; community Columbe at canton Colta; and community Penipe at canton Penipe), Tungurahua (communities Benitez, Huambaló, Pelileo, and Salasaca at canton Pelileo), Bolivar (communities Facundo Vela, San Luis, Simiatug, Guaranda, and Veintimilla at canton Guaranda), and Napo (community Oyacachi at canton El Chaco); although Napo is included in the Amazonian provinces of Ecuador, the communities included in this study belong to the highlands area of this province.

In addition, the sociodemographic information was obtained from the official epidemiological record that is mandatory to submit to the local health authority and the Minister of Public Health (MoH) for each sample collected.



Sample collection, RNA extraction, and RT-qPCR for SARS-CoV-2 diagnosis using the CDC protocol

The samples were processed in the BSL2-certified molecular biology laboratory at Universidad de Las Americas. Nasopharyngeal swabs were collected on a 0.5-mL TE pH 8 buffer for SARS-CoV-2 diagnosis by RT-qPCR, following an adapted version of the CDC protocol as it has been previously described by our laboratory. In brief, the CDC RT-qPCR protocol is based on N1 and N2 probes to detect SARS-CoV-2 and RNase P as an RNA extraction quality control (20–28). In addition, negative controls (TE pH 8 buffer) were included as a control for carryover contamination, one for each set of RNA extractions, to guarantee that only true positives were reported. For viral loads calculation, the 2019-nCoV N positive control (IDT, USA) was used, provided at 200.000 genome equivalents/μL, and a factor of 200 was applied to convert the viral loads to genome equivalents/mL and then converted to a logarithmic scale.



Statistical analysis

For the statistical analysis of data, infection rates were calculated for each community and province, and also for sex and age group. To assess differences in the infection rates among communities, provinces, sex, or age group, a chi-square test for comparison of proportions was applied. All statistical analyses were carried out using SPSS Statistics 28 software.




Results


SARS-CoV-2 infection rates

A total of 1,021 indigenous and mestizo individuals from 15 rural communities distributed along four different provinces of the Ecuadorian Andes were tested for SARS-CoV-2 infection (Figure 1A). For Bolivar province, 334 individuals were recruited, distributed in five locations: Facundo Vela, San Luis, Simiatug, Guaranda, and Veintimilla. For Chimborazo province, 322 individuals were recruited, distributed in five locations: Lizarzaburu, San Juan, San Luis, Columbe, and Penipe. For Tungurahua province, 213 individuals were recruited, distributed in four locations: Benitez, Huambaló, Pelileo, and Salasaca. For Napo province, 152 individuals were recruited from the Oyacachi community. The distribution according to sex was 52.1% (532/1,021) male and 47.9% (489/1,021) female participants. The age distribution for the study population is presented in Figure 1B.


[image: Figure 1]
FIGURE 1
 Study population. (A) Location of the provinces; the gray area indicates the Ecuadorian Andean region. (B) Distribution of tests according to the age of participants.


The overall SARS-CoV-2 infection rate was 26.2% (268/1,021, 95% CI: 23.6–29%), with 268 out of 1,021 participants testing positive. The distribution according to sex and age for the individuals infected with SARS-CoV-2 is presented in Table 1. There are no significant differences in the average SARS-CoV-2 infection rate between male and female participants (p > 0.05). However, there are significant differences between age groups (p < 0.05).


TABLE 1 SARS-CoV-2 infection rates (%) distribution according to sex and age.
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The SARS-CoV-2 infection rates for each province, canton, and community are presented in Table 2. Tungurahua had the highest infection rate value of 139/213, 65.3% (95% IC 58.7–71.4%); followed by Napo with 58/152, 38.2% (95% IC: 30.7–46%); Chimborazo with 54/322, 16.77% (95% IC: 12–21.6%); and Bolivar with 17/334, 5.1% (95% IC: 3.1–7.8%). The SARS-CoV-2 infection rates for cantons comprised Guaranda 5.09% (17/334), Colta 12% (4/33), Penipe 20.6% (13/63), Riobamba 16.4% (37/226), El Chaco 38.2% (58/152), and Pelileo 65.3% (139/213). The SARS-CoV-2 infection rates for communities comprised Simiatug 7.9% (3/38), Veintimilla 7.4% (5/68), Guaranda 4.6% (8/175), San Luis 3.7% (1/27), Facundo 0% (0/26), Columbe 12% (4/33), Penipe 21% (13/63), San Juan 19 % (26/136), San Luis 13% (9/68), Lizarzaburu 9% (2/22), Oyacachi 38% (58/152), Huambaló 74% (58/78), Salasaca 68% (46/68), Benitez 64% (18/28), and Pelileo 44% (17/39). Significant differences were found between those values (p < 0.01).


TABLE 2 SARS-CoV-2 infection rates for each province, canton, and community included in this study.
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SARS-CoV-2 viral loads

The distribution of SARS-CoV-2 viral loads according to sex and age is presented in Figure 2. No significant differences were found (p > 0.05). In addition, 20 individuals had viral SARS-CoV-2 load values of above 108 copies/mL belonging to the cantons of Penipe (3), Riobamba (5), El Chaco (7), and Pelileo (5). Those individuals represented 7.46% (20/268, 95% CI: 4.8–11.1%) of the individuals infected with SARS-CoV-2.
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FIGURE 2
 Distribution of SARS-CoV-2 viral loads according to sex and age in the study population. Viral load is represented in a log scale.





Discussion

Due to the retrospective nature of this study, there was not a randomized sample collection to include a statistically representative population sampling for these provinces in the Andean region. This is a strong limitation in our study, as the bias on sample collection could mean that the results obtained were not truly representative of the COVID-19 epidemiological context in this region but were limited to the communities selected. However, as the average SARS-CoV-2 infection rate was over 26% (peaking over 50% in several communities) and outbreaks were found at 14 out of 15 communities visited, our results would suggest that non-control COVID-19 community transmission had been happening among rural indigenous communities in the Andes just a few weeks since the national lockdown was lifted. It has been reported that the current health crisis caused by COVID-19 has further aggravated the conditions of vulnerability and social exclusion of indigenous populations in Latin America, and the Andean region would not be an exception (29–33). Similarly, severe COVID-19 outbreaks have been described for Amazonian indigenous people in Brazil and Ecuador (7–9) despite the supposed isolation of those ethnic groups, pointing out the high vulnerability to COVID-19 of those traditionally neglected communities (29–36). In addition, rural communities from the Coastal Region of Ecuador in the provinces of Esmeraldas, Manabí, and Santa Elena were deeply affected by COVID-19 outbreaks during the first wave of the pandemic (14–16, 19). Although widespread, the COVID-19 pandemic has burdened neglected rural and indigenous populations more than others due to limited access to water, poor sanitation of households, lack of information in indigenous languages, and limited access to the healthcare system (32–36).

Interestingly, this study included only community-dwelling non-hospitalized individuals, so either no symptoms or mild symptoms were reported among the individuals infected with SARS-CoV-2. Moreover, 20 individuals from four different cantons had viral loads over 108 viral copies/mL and could be considered SARS-CoV-2 super spreaders, representing a 7.46% of the infected population (37). Although there are limitations associated with the calculated viral load based on Ct values representing all the viral genomic material on the sample, and infection of cell cultures is used for sample infectivity confirmation, it is a clear association between low Ct values (that indicates high viral loads based on genomic material quantification) and infectivity (37). As the COVID-19 control and surveillance program in Ecuador was mainly limited to hospitalized individuals, our results clearly endorsed that the strategy was not sufficient to control COVID-19 outbreaks (14–19). Nevertheless, the SARS-CoV-2 testing capacity for the public health system in Ecuador was very limited for a 17-million population (38–40). In addition, no resources were allocated to most of the rural provinces of the country, and the SARS-CoV-2 diagnosis was centralized in the three laboratories from the “Instituto Nacional de Salud Publica e Investigación” located in the three main cities of Ecuador (18). Together with studies carried out in Afro-Ecuadorian communities (19), rural villages from the Manabi province (14, 15), Amazonian indigenous communities (7, 8), women victims of gender-based violence (41), food riders, or funeral home workers (42, 43) from Ecuador, those results highlight the need for active COVID-19 monitoring in community-dwelling individuals from vulnerable groups and neglected communities.

In conclusion, our findings support that COVID-19 community transmission and super-spreading events were happening among rural mestizo and indigenous communities from the Andean region in Ecuador during the first wave of the COVID-19 pandemic. For the still ongoing COVID-19 pandemic and future ones, our results endorse that control and prevention strategies have to focus not only on hospitalized and symptomatic individuals but also on community-dwelling individuals at locations where outbreaks are suspected.



Author's note

In this study, we described COVID-19 outbreaks in rural indigenous population from the Andean Region of Ecuador. Although several studies regarding COVID-19 and indigenous people have been published from Latin America, this is the first one addressing the situation in the Andean region during the early stages of the pandemics. With a sample over 1,000 community dwelling individuals, high infection rates were found endorsing community transmission during the first wave of COVID-19 pandemic in these neglected population in Ecuador.
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Objectives: SARS-CoV-2 infection and COVID-19 vaccination of homeless people are a serious public health concern during COVID-19 pandemic. We aimed to systematically assess SARS-CoV-2 incidence, seroprevalence, and COVID-19 vaccination coverage in homeless people, which are important to inform resource allocation and policy adjustment for the prevention and control of COVID-19.

Methods: We searched PubMed, Web of Science, and the World Health Organization COVID-19 database for the studies of SARS-CoV-2 incidence, seroprevalence, and COVID-19 vaccination coverage in the homeless population. Subgroup analyses were conducted to pool SARS-CoV-2 incidence and seroprevalence in sheltered homeless, unsheltered homeless, and mixed population, respectively. Potential sources of heterogeneity in the estimates were explored by meta-regression analysis.

Results: Forty-nine eligible studies with a total of 75,402 homeless individuals and 5,000 shelter staff were included in the meta-analysis. The pooled incidence of SARS-CoV-2 infection was 10% (95% CI: 7 to 12%) in the homeless population and 8% (5 to 12%) for shelter staff. In addition, the overall estimated SARS-CoV-2 specific seroprevalence was 19% (8 to 33%) for homeless populations and 22% (3 to 52%) for shelter staff, respectively. Moreover, for the homeless subjects, the pooled incidence was 10% (4 to 23%) for asymptomatic SARS-CoV-2 infections, 6% (1 to 12%) for symptomatic SARS-CoV-2 infections, 3% (1 to 4%) for hospitalization for COVID-19, and 1% (0 to 2%) for severe COVID-19 cases, respectively while no COVID-19-related death was reported. Furthermore, the data derived from 12 included studies involving 225,448 homeless individuals revealed that the pooled proportion of one dose COVID-19 vaccination was 41% (35 to 47%), which was significantly lower than those in the general population.

Conclusion: Our study results indicate that the homeless people remain highly susceptible to SARS-CoV-2 infection, but COVID-19 vaccination coverage was lower than the general population, underscoring the need for prioritizing vaccine deployment and implementing enhanced preventive measures targeting this vulnerable group.
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1. Introduction

As of March 10, 2023, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 670 million infections and approximately 6.9 million deaths with a mortality of ~1.0% (1). Within less than 12 months since the initial outbreak of SARS-CoV-2 infection in late December 2019 (2), a large amount of vaccines against the coronavirus disease 2019 (COVID-19) had been developed based on several different technologies and platforms, and authorized for use around the world (3). Till now, 70.3% of the world population have been vaccinated with at least one dose of COVID-19 vaccine (4). However, SARS-CoV-2 variants are continuously emerging and spreading across the world. SARS-CoV-2 variants of concern including Alpha, Beta, Gamma, Delta, and Omicron show specific biological feature, such as enhanced resistance to immunity protection induced by COVID-19 vaccine (5–10). In addition, waning protection over time against the infection of SARS-CoV-2 and COVID-19 has been documented (11–14). Therefore, the ongoing pandemic of COVID-19 has not yet subsided. It is necessary to timely monitor and track SARS-CoV-2 circulation especially in the marginalized population such as homeless people who might move or travel easily from place to place, and make the tracking and prevention of SARS-CoV-2 transmission more difficult (15).

Homelessness is recognized as a serious issue and challenge of global concern due to the possible unprecedented outbreaks of COVID-19 among these people (16). In general, homeless people staying in shelters (sheltered homeless), or on the streets and other similar settings (unsheltered homeless) are denoted as homelessness (17). In 2019, there were about 700,000 homeless people on a single night in the European Union while the number increased by 70% in a decade (18). According to the 2021 annual homeless assessment report released by the U.S. Department of housing and urban development, there were 326,126 sheltered homeless people on any given night in January of 2021 in the United States (19). Homeless people usually possess increased susceptibility to infectious disease and mental disorders (20, 21), and show poor adherence to public health recommendations and limited access to testing, vaccine, or medical service (17, 22–24). Therefore, the containment of SARS-CoV-2 transmission among homeless people may be difficult and complicated. Specht et al. (25) proposes to enhance health communication with homeless people by bridging the “digital gap” and mitigate the structural marginalization of them. In order to interrupt the spread of SARS-CoV-2 among this vulnerable group and further from them into the general population, a comprehensive analysis to clarify SARS-CoV-2 incidence, seroprevalence, and COVID-19 vaccination coverage in homeless people is important for planning and deploying health services tailored to them (20).

One meta-analysis reported the pooled prevalence of 2.3% at baseline and 31.6% in the situation of SARS-CoV-2 outbreak among homeless people between January 2020 and October 2020 (26). In addition, another study identified a prevalence of symptomatic COVID-19 infection of 35% in the homeless and a higher rate of vaccine hesitancy than the general population during the first year of the pandemic (27). However, since 2021, the global COVID-19 pandemic has changed including the emergence of more transmissible SARS-CoV-2 Omicron variant, and worldwide massive vaccination (28). Furthermore, quite different COVID-19 vaccination rates have been reported in the homeless population (24, 29–39). In this study, we conducted an updated meta-analysis and systematic review on SARS-CoV-2 incidence, seroprevalence, and COVID-19 vaccination coverage in homeless individuals.



2. Methods


2.1. Search strategy and selection criteria

We searched PubMed, Web of Science, and the World Health Organization COVID-19 database by using the combinations of terms relating to SARS-CoV-2 infection (2019-nCoV OR SARS-CoV-2 OR COVID-19) and being homelessness (homeless* OR roofless OR shelter*) for studies of SARS-CoV-2 incidence and seroprevalence in the homeless population published from December 1, 2019 to July 31, 2022. We also screened the reference lists of all the eligible primary studies as well as the relevant review articles to identify other related studies. The meta-analysis was conducted following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (40) (Supplementary Checklist S1). Studies on the COVID-19 vaccination coverage in homeless people were identified through searches PubMed, Web of science, the World Health Organization COVID-19 database up to August 10, 2022 using the following search strategy: ((((SARS-CoV-2) OR (Covid-19)) OR (2019-nCoV)) AND (((homeless*) OR (roofless)) OR (shelter*))) AND (vaccine*).

The included studies met the following criteria: (1) study subjects were homeless people; (2) diagnosis of SARS-CoV-2 infection was based on the specific testing assays, such as nucleic acid amplification tests (NAATs), antigen tests, or serological tests (41) (3) anti-SARS-CoV-2 seropositivity was not the immunological response induced by COVID-19 vaccination; (4) the data to determine SARS-CoV-2 incidence or seroprevalence were available. We excluded the studies or papers if: (1) they were reviews, editorial, opinions, case reports or animal studies; (2) the number of homeless individuals was not reported or could not be obtained from the authors.



2.2. Data extraction

Three authors (QS, QL, and YP) independently extracted the following information, i.e., the first author, year of publication, study period, country, study subjects, number of the investigated homeless individuals, gender, age, category of homelessness, diagnostic method/criteria and number of homeless people diagnosed with SARS-CoV-2 infection, number of vaccinated people, number of asymptomatic SARS-CoV-2 infections, number of symptomatic SARS-CoV-2 infections, number of COVID-19-related hospitalization, number of severe COVID-19 cases, and COVID-19-related mortality. The severity of illness was assessed according to the seventh version guideline for the diagnosis and treatment of COVID-19 published by the National Health Commission of China (42) and classified into: (1) a symptomatic carriers present with no clinical symptom but with a positive result of the pathogens tests of SARS-CoV-2 in respiratory tract specimens and so on; (2) mild patients have mild clinical symptoms and no pneumonia on chest imaging; (3) moderate patients have clinical symptoms (i.e., fever and respiratory tract symptoms) and pneumonia on chest imaging. (4) Severe patients who meet any one of the following criteria: respiratory rate ≥30 breaths/min; resting oxygen saturation ≤93%; arterial partial pressure of oxygen (PaO2)/oxygen concentration (FiO2) ≤300 mmHg; disease progression within 24 to 48 h on chest image. Any disagreement between the three authors was resolved by discussing with the corresponding author YL or ST to reach a consensus.



2.3. Quality assessment

The methodological quality of the included studies was assessed using an 11-item checklist which was recommended by Agency for Healthcare Research and Quality (AHRQ). The total score is the sum of the scores for each item, with a score of “yes” giving 1 point, a score of “no” giving −1 point, and a score of “unclear” giving 0 point (Table 1).



TABLE 1 Quality of the included studies.
[image: Table1]



2.4. Statistical analysis

The SARS-CoV-2 incidence or seroprevalence estimated by individual study was transformed with the Freeman–Tukey double arcsine function before pooling the incidence or seroprevalence to decrease the effect of studies with extremely low frequency on the overall estimate (92). Since the asymptotic method produces intervals that may extend below zero, the 95% confidence intervals (CIs) around these estimates were calculated by the Wilson method (93, 94). Moreover, both Cochran’s Q (reported as χ2 value and p-value) and the I2 statistic were applied to estimate the inter-studies heterogeneity. A p < 0.05 from Cochrane’s chi-square (χ2) test or I2 statistic value >75% indicated substantial heterogeneity (95, 96). A random effect model was used in the situations with substantial inter-studies heterogeneity; otherwise, a fixed effect model was adapted (95). Publication bias was assessed by using Egger and Begg tests (97, 98). Furthermore, subgroup analyses were conducted to explore the SARS-CoV-2 incidence and seroprevalence according to homelessness category (sheltered, unsheltered, and mixed population). If repeat testing was performed in the given shelter for the homeless, the screening with the largest sample size was included in quantitative synthesis. We have also conducted an additional analysis that compared the incidence of SARS-CoV-2 infection in homeless people with the estimated cumulative incidence of SARS-CoV-2 in the total general population during corresponding period to calculate incidence ratios. Information about the cumulative incidence of SARS-CoV-2 in the total general population by country or region was obtained from Our World in Data.1 All the analyses were done by using the Package “meta” in R software (version 4.2.1, R Foundation for Statistical Computing). A two-sided p < 0.05 was considered statistically significant.




3. Results


3.1. Study selection

Our literature search yielded a total of 4,696 records, of which 1,230 were retrieved from PubMed, 1,425 from Web of Science, and 2,041 from WHO COVID-19 database. An additional 4 reports were identified from the reference lists of the relevant review articles. After removing the duplicates, 1,525 titles and abstracts were eligible for screening. Of these, 1,461 studies were discarded after reviewing the titles and abstracts. Furthermore, 15 studies were discarded after full-text screening. Finally, 49 studies (43–91) involving 75,402 homeless individuals met the eligibility criteria and were included in the meta-analysis (Figure 1).
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FIGURE 1
 Flow-chart depicting the systematic search conducted to identify eligible studies.




3.2. Characteristics of the included studies

Out of the 49 included studies (Supplementary Table S1), 20 eligible studies (N = 29,513) were conducted in the United States (43–45, 47–50, 52, 53, 56, 57, 60, 63, 73, 74, 82, 83, 86, 88, 89), 7 (N = 25,074) in Canada (46, 54, 59, 62, 64, 69, 84), 7 (N = 3,957) in France (65–68, 70, 72, 85), 2 (N = 4,870) in the United Kingdom (78, 81), 2 (N = 757) in Denmark (58, 91), 2 (N = 181) in Germany (76, 79), 2 (N = 6,641) in Italy (55, 90), and one each from Belgium (N = 1,985) (71), Brazil (N = 203) (75), Iran (N = 234) (80), Mexico (N = 481) (87), Slovakia (N = 331) (51), Switzerland (N = 215) (61) and Vatican (N = 960) (77), respectively. The estimated pooled median age of 45.0 (95% CI, 42.9, 47.1) years was reported in 33 articles, and 37 publications reported gender of homeless people whose majority was male.

The majority (83.7%, 41/49) of the included studies was cross-sectional study. Thirty-two studies reported the SARS-CoV-2 incidence or seroprevalence in sheltered homeless and their median sample size was 331 (QTR 51-11,463) (43, 44, 46–51, 53, 54, 56–60, 63, 66–69, 71, 73, 75, 79, 82, 83, 86–89, 91) while 15 studies also simultaneously investigated SARS-CoV-2 incidence or seroprevalence among the shelter staff (N = 5,000) (43, 46, 47, 49, 53, 56, 63, 66, 67, 75, 77, 83, 88, 89, 91) (Supplementary Tables S1, S2). Four studies (N = 1,351) (53, 65, 80, 86) were conducted in the unsheltered homeless people while 15 (N = 31,232) (44, 52, 55, 61, 62, 70, 72, 74, 76–78, 81, 84, 85, 90) in the mixed population comprising sheltered and unsheltered homeless subjects whose SARS-CoV-2 incidence or seroprevalence was not separately reported. For the diagnosis of active SARS-CoV-2 infection in homeless people, 40 studies were based on NAATs alone, 1 study was based on antigen tests alone, and 1 investigation was based on the combination of NAAT and antigen tests. Moreover, the seroprevalence of SARS-CoV-2 was evaluated in the homeless population in 11 surveys (51, 55, 58, 66, 70, 72, 75, 85–87, 91) (Supplementary Table S1).



3.3. SARS-CoV-2 incidence and seroprevalence in the homeless population

SARS-CoV-2 incidence ranged from 0 to 67% with very high heterogeneity among the studies (I2 = 99%, p = 0) (Figure 2). The random-effect pooled incidence of SARS-CoV-2 infection was 10% (95% CI, 7, 12%) whereas 11% (8, 15%) for sheltered homeless, 4% (0, 11%) for unsheltered homeless, and 8% (5, 12%) for the mixed population, respectively (Figure 2). Moreover, the random-effect pooled incidence was 10% (4, 23%) for asymptomatic SARS-CoV-2 infections (Figure 3A), 6% (1, 12%) for symptomatic SARS-CoV-2 infections (Figure 3B), 3% (1, 4%) for the COVID-19-related hospitalization (Figure 4A), 1% (0, 2%) for severe COVID-19 (Figure 4B), respectively although no COVID-19-related death was reported (Figure 4C). Of note, the random-effect pooled incidence of SARS-CoV-2 infection remained 10% (8, 12%) with substantial heterogeneity (I2 = 99%, p = 0) when SARS-CoV-2 infection was diagnosed by NAATs alone in homeless people (Supplementary Figure S1).
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FIGURE 2
 Forest plots of the estimated incidence of SARS-CoV-2 infection in homeless people according to the category of homeless.
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FIGURE 3
 Forest plots of the estimated incidence of asymptomatic SARS-CoV-2 infection (A) and symptomatic infection (B) in homeless people according to the category of homeless.


[image: Figure 4]

FIGURE 4
 Forest plots of the estimated prevalence of hospitalization (A), sever cases (B), and death (C) caused by SARS-CoV-2 infection in homeless people according to the category of homeless.


Interestingly, in 2020, all the studies showed higher SARS-CoV-2 incidence in homeless people than in the general population and the SARS-CoV-2 incidence ratio between homeless people and general population was 1.8–94.6 (Table 2). However, 4 studies in the United Kingdom, Italy and Mexico showed a reversed SARS-CoV-2 incidence ratio, which ranged from 0.5 to 0.8 between homeless people and general population (Table 2).



TABLE 2 Comparison of incidence of SARS-CoV-2 infection between homeless people and general population.
[image: Table2]

Furthermore, the seroprevalence of SARS-CoV-2 ranged between 0 and 67% with a random-effect pooled estimate of 19% (8, 33%) and substantial heterogeneity (I2 = 99%, p = 0) in the homeless group (Figure 5A). Moreover, there are 4 and 5 articles reported the number of anti-SARS-CoV-2 IgM and IgG positive subjects, respectively. The random effect pooled seropositivity was 2% (1, 3%) for anti-SARS-CoV-2 IgM, and 11% (2, 28%) for anti-SARS-CoV-2 IgG, respectively (Figures 5B,C).

[image: Figure 5]

FIGURE 5
 Forest plots of the estimated seroprevalence of anti-SARS-CoV-2 antibodies (A), SARS-CoV-2 specific IgG antibody (B), and SARS-CoV-2 specific IgM antibody (C) in homeless people according to the category of homeless.




3.4. Factors associated with the SARS-CoV-2 incidence or seroprevalence in the homeless population

Substantial heterogeneity was observed between the primary studies; therefore, we explored the potential sources of variations through multivariable meta-regression analysis. Our results indicated that both the incidence and seroprevalence of SARS-CoV-2 infection were not significantly associated with the factors of study period (2021 vs. 2020), study region (Europe vs. America), study design (non-cross-sectional vs. cross-sectional), category of homelessness (unsheltered vs. sheltered; mixed population vs. sheltered), sample size, and mean/median age (Table 3).



TABLE 3 Multivariable meta-regression analysis for SARS-CoV-2 incidence and seroprevalence in homeless people.
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3.5. SARS-CoV-2 incidence and seroprevalence among shelter staff

Out of the 15 studies that investigated SARS-CoV-2 incidence or seroprevalence among the shelter staff (Supplementary Table S2), there were 12 and 1 investigation diagnosed SARS-CoV-2 infection by NAATs and antigen tests, respectively. The random-effect pooled incidence of SARS-CoV-2 infection was 8% (5, 12%) for diagnosis by NAATs alone and 2% (0, 4%) for antigen tests, respectively (Figure 6). The seroprevalence of SARS-CoV-2 was reported in 3 studies with an estimated pooled seroprevalence of 22% (3, 52%) (Figure 6).

[image: Figure 6]

FIGURE 6
 Forest plots of the estimated SARS-CoV-2 incidence and seroprevalence in shelter staff according to the diagnostic method.




3.6. COVID-19 vaccination coverage in the homeless population

A total of 12 reports (24, 29–39) involving 225,448 homeless individuals were selected to assess COVID-19 vaccination and the median sample size of the eligible studies was 2,839 (IQR: 106-83,528) (Supplementary Table S3). All the included studies were conducted in North America (7 in United States and 2 in Canada) and Europe (one each from Denmark, Italy, and United Kingdom, respectively). Out of the 12 studies, 5 reported the proportion of homeless people who had received two doses of COVID-19 vaccine (24, 32, 33, 35, 37). Overall, the pooled proportion of homeless people received at least one dose vaccine was 41% (95% CI: 35, 47%, Figure 7A). The results from 5 studies that reported two doses vaccination coverage showed that 58% (45, 71%) and 43% (32, 54%) of homeless people received one dose and two doses vaccine, respectively (Figures 7B,C). In addition, COVID-19 vaccination coverage in the general population was obtained from 9 studies (24, 29–36) or the global database of COVID-19 vaccinations (4) while one study reported COVID-19 vaccination coverage in the general population aged 18–39 years (99). The proportion ratio between homeless people and the general population was 0.04–2.57 for one dose vaccination and 0.58–1.88 for two doses vaccination, respectively (Table 4).
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FIGURE 7
 Forest plots of the estimated proportion of vaccinated homeless people. (A) One dose vaccination coverage derived from all studies. (B) One dose vaccination coverage derived from 5 studies that reported both one dose and two dose vaccination coverage. (C) Two dose vaccination coverage derived from 5 studies that reported both one and two dose vaccination coverage.




TABLE 4 Comparison of proportion of COVID-19 vaccination between homeless people and general population during 2020 and 2021.
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3.7. Publication bias

Potential publication bias was assessed by Egger and Begg tests. Overall, no evidence of significant publication bias was obtained for the surveys that investigated SARS-CoV-2 incidence (Egger test, p = 0.065; Begg test, p = 0.093) and seroprevalence (Egger test, p = 0.585; Begg test, p = 0.411) among homeless people. In addition, the result of Egger test (p = 0.036) and Begg test (p = 0.131) suggested that the possibility of publication bias was less in the estimated incidence of SARS-CoV-2 infection in shelter staff. Moreover, no significant publication bias was observed for the studies on COVID-19 vaccination coverage of homeless people (Egger test, p = 0.963; Begg test, p = 0.784).




4. Discussion

People experiencing homelessness (PEH) are susceptible to infections including SARS-CoV-2 infection because of inadequate access to safe housing, personal protective equipment, vaccine or healthcare and fragile psychiatric conditions due to social marginalization (100). The current meta-analysis confirmed relatively high risk of SARS-CoV-2 infection in homeless people since the pooled incidence and seroprevalence of SARS-CoV-2 infection was 10 and 19% for the homeless population, higher than in the general population (Table 2). Moreover, the global pooled SARS-CoV-2 specific seroprevalence was less than 10% in the general population (101, 102); however, our estimated seroprevalence was 19% for homeless populations and 22% for shelter staff. Therefore, both homeless people and shelter staff are at higher risk of SARS-CoV-2 infection than the general population. Interestingly, our results indicated that the random-effects pooled incidence of SARS-CoV-2 infection was 11% for the sheltered homeless, 4% for the unsheltered homeless, and 8% for the mixed population, respectively (Figure 1), suggesting that sheltered homeless people may be at greater risk of infecting SARS-CoV-2 probably because the sheltered homeless people are often crowded, and difficult to keep social distance. It is worth mentioning that very few of deaths of homeless population caused by COVID-19 were estimated in the current study (Figure 4C). It was hypothesized that implementation of preventive and control interventions for the pandemic, e.g., lockdown and increased infection control, might have reduced large numbers of deaths in homeless people during the pandemic (103).

Of note, no significant difference of SARS-CoV-2 incidence and seroprevalence was observed in our study between shelter staff (Figure 6) and sheltered homeless people (Supplementary Figure S1; Figure 5). Rao et al. (104) reported that 24% of the shelter staff did not use masks all of the time during the interactions with the homeless while 43% of shelter staff had not received training on cleaning surfaces for SARS-CoV-2, which may put shelter staff at increased risk of exposure to SARS-CoV-2 while very limited hygiene resources in the homeless shelter and poor protection awareness for both homeless people and shelter staff may aggravate the mutual transmission of SARS-CoV-2 (104, 105). In addition, some former homeless residents are employed as shelter staff, which may have narrowed the difference between the two groups (104). Furthermore, most of shelter worker have experienced a decline in their mental health and increase of depression, anxiety, stress and fatigue during the COVID-19 pandemic (106). Similarly, homeless people are susceptible to mental disorders which in turn may increase their vulnerability to the infection of SARS-CoV-2 (21).

Incidence ratios suggested that active SARS-CoV-2 infection is at least about 6.6 times more common in homeless people than in total populations in the United States during 2020 (Table 2). However, when the cumulative incidence of general population in the same country during the same study period was used as reference, the incidence ratio might be underestimated. Moreover, during 2020 the SARS-CoV-2 incidence of homeless people is higher than that of general population across various countries or region, whereas the analysis of studies data involving 2021 showed different results (Table 2). The higher SARS-CoV-2 incidence of general population than homeless people in 2021 may be attributed to loosen travel and gathering restriction (107).

Our results confirmed the lower COVID-19 vaccination coverage rate in homeless people than the general population (Table 4) although some contradictive results were reported by Meehan et al. (32) in Detroit (Table 4) (4). However, another study conducted by Rogers and colleagues found that during November 2020 and February 2021, only 0.6% sheltered homeless people in Washington had been vaccinated (38). In addition, 88.3% of the investigated homeless people were Black or African American in Meehan’s report (32) while 37.4% in Rogers’s one (38). However, according to one meta-analysis of COVID-19 vaccine attitudes in the United States, Black American showed the lowest vaccine acceptance (108). Other studies also showed that the proportion of vaccinated Black American was lower than that of White or Hispanic American (36, 109). Therefore, the lower vaccination rate among the homeless may be partially attributed to reduced willingness to be vaccinated (110). Moreover, our results indicated that one dose vaccination was higher than two doses vaccination (58% vs. 43%, Figures 7B,C).

There are some limitations in the current study. First, since only 5 included studies collected data in 2021, and almost none of them involved vaccinated homeless populations; therefore, we were unable to compare the incidence of SARS-COV-2 infection among homeless people between the pre-vaccination period versus post-vaccination period. Moreover, the number of SARS-COV-2 Delta variant-infected cases reached peak in August 2021 (111) and the Omicron variant outcompeted other counterparts and predominantly circulates globally since its emergence around the end of 2021. However, we did not perform a comparison of the SARS-CoV-2 incidence in homelessness between different pandemic periods that experienced the shifting of predominant variants from Delta to Omicron due to the lack of available data. Furthermore, due to the distribution of latent period, i.e., the time interval between infection (dates of exposure) and becoming infectious (dates of first positive PCR test), the SARS-CoV-2 incidence diagnosed by NAATs might be underestimated. Similarly, the incidence of symptomatic infection would also be underestimated because of the existence of incubation period (the time interval from infection through symptom onset). Given that, further research is needed to better understand the incidence and risk factors of SARS-CoV-2 infection in the homeless populations.

Our study has important implications for public health. Firstly, it highlights the need for targeted interventions to address the high incidence and low vaccination rates among homeless individuals. This could involve strategies such as increasing access to testing, vaccines, healthcare services, as well as personal protective equipment to reduce transmission. Secondly, the study underscores the necessity of addressing health disparities in vulnerable populations and promoting health equity and social justice, particularly during public health crises such as the COVID-19 pandemic. Overall, the study provides important information that will be useful in developing effective policies to protect homeless individuals and the broader public from COVID-19.



5. Conclusion

The current study suggests that the homeless people remain highly susceptible to SARS-CoV-2 infection, but their COVID-19 vaccination coverage is lower than general population. These results underscore the need for prioritizing vaccine deployment and implementing enhanced preventive measures targeting this vulnerable group.
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Age [years]
Sex
Males
Females
BMI [kg/m?]
Any comorbidity
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Dyslipidemia
Coronary artery disease
Myocardial infarction in the history
Venous thromboembolism in the history
COPD

Asthma

Lifestyle

Stress/overworking
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Falling aslecp after midnight

Nightshifts

Insomnia or falling asleep after midnight or nightshifts

Smoking

Regular physical activity

Severe course of the acute COVID-19 phase

ic obstructive pulmonary di

No Long-COVID syndrome
N =504
51[41-61)

200 (39.7%)
304 (60.3%)
266 (23.5-30.5]
304
603%
173
343%
52
103%

86
17.1%

17
34%

12%
10%

1.8%
31
62%

159
316%
93
18.5%
62
123%
49
9.7%
162
321%
43
8.5%
266
52.8%
2
44.1%

Long-COVID
syndrome
N=1,013

52 [42-62]

324/(32.0%)
689 (68.0%)
27.1(24.1-309)
633
62.5%

340
33.6%
87
8.6%
212
209%

5.6%
28
28%
14
14%
23
23%
96
95%

337
333%
218
215%
135
13.3%
80
79%
340
33.6%
91
9.0%
123
12.1%
656
64.8%

p-value

022
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041

077
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007

0.055
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0.16
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Variable

Age per 10 years

Females

BMI per 1 kg/m?

Any comorbidity

Hypertension

Diabetes

Dyslipidemia

Coronary artery disease

Myocardial infarction in the history

COPD

Asthma

Stress/overworking

Insomnia

Falling asleep after midnight

Nightshifts

Insomnia or falling asleep after midnight or nightshifts

Smoking

Regular physical activity

BMI, Body mass index; COPD, chronic obstructive pulmonary disease.
*Adjusted for sex.

Adjusted for age

Model 1 - Adjusted for age and sex.

Model 2 - Adjusted for age, sex, and body mass index.

Model 3 - Adjusted for age, sex, body mass index, and comorbiditi

Univariable

110 (1.03-1.18)
P=0007
142 (117-1.72)
P <0001
103 (1.01-1.04)
P=0004
1.48 (1.22-1.79)
P <0001
107 (0.88-1.30)
P=049
115 (0.83-1.59)
P=040
1.24(098-1.57)
P=007
1.20(0.77-1.88)

P=
147 (0.79-2.71)
P=022
1.14(0.57-2.26)

P=
167 (1.18-2.38)
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1.50 (1.23-1.83)
P <0001
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.42

.71

.34

Model 1
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P <0001
1.03 (1.01-1.05)
P=0.003
1.39 (L13-1.71)
P=0002
0.97 (0.78-1.21)
P=081
1.08 (0.77-1.53)
P=065
118 (093-1.51)

P=
1.16 (0.73-1.85)
P
140 (0.75-2.65)
P=029
110 (0.54-2.23)
P=079
1.59(1.11-2.28)
P=001
157 (1.28-1.94)
P <0001
1.22 (0.96-1.54)
P=009
121 (0.91-1.60)
P=019
1.52(1.08-2.15)
P=0017
122 (1.0-1.49)
P=0047
1.13 (0.81-1.57)
P=047
0.85 (0.69-1.06)
P=014

17

.54

Multivariable

Model 2

107 (1.02-1.17)
P=0.58
147 (1.20-1.80)
P <0001

1.29 (1.04-1.61)
P=002
0.87 (0.67-1.09)
P=022
1.02 (0.71-1.45)
P=093
116 (090-1.49)
P=024
122 (0.75-1.97)
P=043
1.40 (0.74-2.63)
P=030
107 (052-2.17)
P=0386
1.68 (1.16-2.43)
P=0.006
151 (1,22-1.87)
P <0.001
120 (0.95-1.52)
P=o012
119 (0.89-1.59)
P=023
1.48 (1.04-2.10)
P=0029
122 (1.00-1.49)
P=0044
1.08 (0.77-1.51)
P=0.67
0.89 (0.71-1.10)
P=028

Model 3

103 (0.96-1.12)
P=032
146 (1.19-1.78)
P <0001
102 (1.00-1.04)
P=002

139 (107-1.81)
P=001
1.04 (0.72-1.5)
P=082
1.06 (0.81-1.38)
P=068
1.15 (0.71-1.86)
P=057
149 (0.79-2.82)
P=022
053-1.92)
P=098
1.5 (1.06-2.27)
P=0023
1.54 (1.25-1.90)
P <0001
1.18 (093-1.49)
P=017
1.18 (0.88-1.57)
P=027
151 (1.06-2.14)
P=0022
1.21(0.99-147)
P=0063
1.08 (0.77-1.52)
P=064
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Age [years]
Sex

Males

Females
BMI [kg/m?]
Post-COVID-19 sigy

nd symptoms lasting <3 months

Post-COVID-19 signs and symptoms lasting >3 months

Any comorbidity

Hypertension

Diabetes

Dyslipidemia

Coronary artery disease

Myocardial infarction in the history

Venous thromboembolism

CcopPD

Asthma

Life style

Stress/overworking during

Insomnia

Falling asleep after midnight

Nightshifts

Insomnia or falling asleep after midnight or nightshifts

Smoking

Regular physical activity

BMI, body mass index; COPD, chronic obstructive pulmonary disease.

Course of COVID-19

Asymptomatic or mild Moderate
N =79 N=571
50 [40-62] 52[42-61)
312,39.2% 178,31.2%
484,60.8% 393,68.8%

26.5(23.3-30.4] 267 [23.8-31]
682 554
85.7% 97.0%
357 341
55.9% 70.8%
453 374
56.9% 65.5%
259 181
32.5% 317%
66 54
8.3% 9.5%
140 122
17.6% 21.4%
3 2
42% 42%
2 9
2.8% 16%
11 7
14% 1.2%
1 7
1.8% 1.2%
49 46
6.2% 8.1%
2 194
29.0% 357%
145 124
182% 217%
95 67
12.3% 123%
60 52
7.8% 9.6%
25 198
30.8% 347%
76 53
9.6% 9.3%
231 131
299% 24.1%

Severe
N =480

52(43-62)

147, 30.6%
333,69.4%
27.6[24.3-31]
469
97.7%
315
79.6%
321
66.9%
177
36.8%
45
9.4%
9
204%
28
5.8%

11
23%

021%
14
2.9%
58
12.1%

188
40.6%
12
233%
77
16.6%
52
11.2%
179
373%

7.1%
128
27.7%

p-value

0019
0.002

0015
<0.001
<0.001
<0.001

0.16
07
018
032
034
022
012

<0.001

0.001
0.067
0.063
011
0.048
029

007
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pval

0.59236
0.4188337
0.9292872
0.7044932
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Exposure

severity
severity
severity
severity
susceptibility
susceptibility
susceptibility
susceptibility
PhenoAge
PhenoAge
GrimAge
GrimAge
Hannum
Hannum
HorvathAge
HorvathAge

Outcome

PhenoAge
GrimAge
Hannum
HorvathAge
PhenoAge
GrimAge
Hannum
HorvathAge
severity
susceptibility
severity
susceptibility
severity
susceptibility
severity

susceptibility

Q-statistics

MR Egger

Q=3.732769 P = 0.15468194
Q=2.164249 P = 0.3388748
Q =5.522722 P = 6.769419
Q =5.999045 P = 0.04981084
Q=11.42739 P =0.02215828
Q=4.090812 P =0.3938553
Q=3.541134P =0.4716515
Q=1.118961 P = 0.8912523
Q =5.498383 P =0.06397958
Q =6.542816 P = 0.2569210
NA
Q =0.1546549 P = 0.9255867
NA
Q=0.1054338 P = 0.9911775
Q=15.77730 P = 0.2613651
Q =18.18951 P = 0.4432353

IVW

Q =6.295249 P = 0.09809672
Q =2.572849 P = 0.4622694
Q =6.769419 P = 0.07962183
Q =8.551572 P = 0.03588715
Q =14.92942 P = 0.01066820
Q =4.147770 P = 0.5283430
Q =4.114188 P = 0.5330956
Q=1.798353 P = 0.8762834
Q =5.540632 P = 0.13622847
Q =6.951553 P = 0.3253508
Q=0.1205111 P = 0.7284808
Q =15.8688032 P = 0.0012064
NA
Q=0.1103816 P = 0.9985319
Q=15.92194 P = 0.3181648
Q =18.18961 P = 0.5098077

Pleiotropic test

egger_intercept

0.1253222
0.03953384
0.06785559
—0.1001956
—0.126466

—0.01238793
—0.03829989
—0.04313577

0.0130317

—0.01010271
NA
0.3218178
NA
—0.001418437
0.007999366
—6.61E-05

pval

0.3619954
0.6014878
0.5708542
0.453661
0.3303144
0.825028
0.4911899
0.456077
0.9126766
0.6003429
NA
0.05814232
NA
0.9483488
0.7354521
0.9921911
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Type

COVID-19 severity

COVID-19 susceptibility

Epigenctic age

Telomere length

Phenotype

Very severe respiratory
confirmed COVID vs.
population

COVID vs. population

PhenoAge GrimAge
Hannum Horvathage

telomere length

Population

Europeans

Europeans

Europeans

Europeans

SNP

1225986

7090490

PhenoAge(7567585)
GrimAge(7567701)
Hannum(7565045)
HorvathAge(7567532)

20134421

Simple
size

1388342
1683768

34710

a7

n_cases

5101

33984

n_controls

1383241

1644784

Release
Date

18-Jan-21

18-an-21

1-Jul-20

24-Mar21

Access address

hitps//www.covid19hg org/

result/ss

hitps//sscovidiShgorg/
result/s5/
hutpsy/datashare ed.ac.uk/
handle/ 102833645

hitps//gwas.mrcieu.ac.uk/
datasets/ieu-b- 1879/

Dbor

hitps//doi.org/10.1038/
$41431-020-0636-6

hitps/doi org/10.1038/
SA1131-020-0636-6
hups:
Iidoiorg/10.7488/d5/2834

hitps://doi.org/10.1101/2021.
032321253516
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Variable

Age per 10 years

Females

BMI per 1 kg/m?

Any comorbidity

Hypertension

Diabetes

Dyslipidemia

Coronary artery discase

Myocardial infarction in the history

copD

Asthma

Stress/overworking during 4 weeks preceding COVID-19

Insomnia

Falling asleeP after midnight

Nightshifts

Insomnia or falling asleeP after midnight or nightshifts

Smoking

Regular physical activity

Severe course of the acute phase of the infection

BMI, Body mass index; COPD, chronic obstructive pulmonary disease.

*Adjusted for sex.
Adjusted for age.

Model 1 - Adjusted for age and sex.

Model 2 - Adjusted for age, sex, and body mass index.

Model 3 - Adjusted for age, sex, body mass index, and comorbidi

Univariable

105 (0.97-1.14)
P=026
139 (1.12-1.74)
P=0003
101 (0.99-1.03)
P=024
1.10 (0.88-1.37)

P=
103 (0.82-131)
P=
122 (0.85-1.76)
P=027
129 (0.98-1.70)
P=0075
171 (0.98-2.97)

.42

.78

2.36 (0.97-5.74)
P=0058
1.28 (0.59-2.78)
P=054
1.60 (1.05-2.43)
P=0029
109 (0.86-1.37)
P=048
1.21 (0.92-1.59)
P=016
1.10 (0.80-1.52)
P=056
1.25 (0.86-1.82)
P=024
107 (085-1.34)
P=058
1.06 (0.72-1.55)
P=077
0.90 (0.70-1.16)

P=
233 (1.88-2.90)
P <0.001

.42

Model 1

105 (097-1.14)
P=038"
139 (1.11-31)
P=0004
1,02 (0.99-1.04)
P=0.15
1.05 (0.83-1.34)

P=

.68
1.08 (0.84-1.38)
P=
1.28 (0.88-1.86)
P=02
128 (096-1.70)
P=0091
174 (099-3.08)
P=0056
2.51 (1.02-6.16)
P=0045
119 (054-2.62)
P=067
1.54 (1.01-2.35)
P=0045
110 (0.87-1.40)
P=041
1.15 (0.88-1.52)
P=030
113 (082-1.57)
P=045
1.18 (0.78-1.77)
P=043
1.06 (0.84-1.33)
P=062
110 (075-1.62)
P=

.56

.61

0.86 (0.67-1.11)
P=

228 (1.83-2.84)
P <0.001

.25

Multivariable

Model 2

104 (0.95-1.13)
P=038
142 (1.13-1.79)
P=0.003

0.99(0.77-1.28)
P=095
113 (0.88-1.46)
P=034
1.36 (0.92-1.99)
P=o0.12
126 (0.95-1.68)
P=0.11
176 (0.99-3.12)
P=0053
2.55(1.04-6.28)
P=0038
1.18 (0.54-2.60)
P=068
1.53 (1.00-2.33)
P=0049
110 (0.87-1.40)
P=041
1.15 (0.87-1.51)
P=03
1.17(0.84-1.63)
P=035
1.19 (0.81-1.74)
P=038
1.08 (0.86-1.36)
P=051
107 (0.73-1.59)
P=072
0.86 (0.67-1.11)
P=024
227 (1.82-2.82)
P <0.001

Model 3

1.04 (0.95-1.14)
P=040
142 (1.13-1.79)
P=0.003
1.02(0.99-1.04)
P=0.16

117 (0.88-1.56)
P=028
1.36 (0.93-2.01)
P=012
1.30 (0.96-1.76)
P=0088
177 (0.99-3.14)
P=0052
2.57(1.04-6.32)
P=004
1.18 (0.54-2.60)
P=069
156 (1.01-2.41)
P=0043
1.10 (0.87-1.40)
P=041
115 (0.87-1.51)
P=032
117 (0.84-1.63)
P=035
1.19 (0.81-1.74)
P=038
1.08 (0.86-1.37)
P=051
1.08(0.73
P=072
0.86 (0.66-1.11)
P=024
227 (1.82-283)
P <0001

.59)
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Characteristic

Program
Other®
Biomedical
Medicine
Pharmacy
Age (years) median (IQR)
Sex

Female

Male

Year of study
Second

Third

Fourth

Fifth

Above fifth
Marital status
Unmarried
Married
Residence
Rural

Urban
Religion
Other*

Christian

UOR (95% CI)

1.00
106 (0.300-3.73)
129 (0.32-5.13)
0.78 (0.29-2.06)
1.01(0.90-1.14)

1.00
0.75 (0.33-1.68)

1.00
2.52(0.41-15.53)
095 (0.24-3.81)
064 (0.17-2.36)
188 (0.19-18.74)

1.00
0.81(0.23-2.81)

1.00
228 (092)

1.00
1.67 (0.21-13.51)

Knowledge

AOR (95% CI)

1.00
1.05 (0.30-3.73)
1.22(0.31-4.89)
0.79 (0.30-2.10)

2,05 (0.84-5.00)

1.00
2.23(0.89-5.56)%

UOR (95% CI)

1.00
1.16 (0.66-2.05)
0.72 (0.46-1.12)
(0.58-1.74)
1.09 (1.03-1.15)®

1.00
0.84 (0.58-1.20)

1.00
079 (0.41-1.51)
0.88 (0.47-1.63)
0.99 (0.54-1.82)"
135 (0.42-432)

1.00
1.91 (1.01-3.62)

1.00
1.82 (1.10-3.01)"

1.00
1.74 (0.54-5.55)

Practice

AOR (95% CI)

1.00
115 (0.66-2.01)
0.90 (0.44-1.83)
0.75 (0.47-1.19)
109 (1.01-1.17)*

1.00
059 (0.29-1.18)
0.67 (0.34-1.34)
0.71(0.35-1.42)

1.00

1.13(0.51-2.53)

1.00
1.79 (1.07-3.01)

UOR, unadjusted odds ratio; AOR, Adjusted odds ratio, &borderline evidence, *minor religions in Zambia (Hindu, Islam, Buddhist, etc.), “health sciences students (nursing, environmental
health, radiography), *significant at p < 0.05, Psignificant at p < 0.2, in the model for knowledge, program was retained as a priori variable.
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Knowledge statements

COVID-19 spreads via respiratory droplets from infected
individuals

The clinical symptoms of COVID-19 include headache, sore
throat, fever, fatigue, dry cough, and myalgia

Currently, there is no effective cure for COVID-2019, but
early symptomatic and supportive treatment can help most
patients recover from infection

Notall persons with COVID-2019 will develop severe cases.
Though the elderly and those with chronic illnesses are more
likely to be in severe cases

Wild animals are sources of COVID-19 infections

Wearing face masks can prevent COVID-19

Overall mean (SD)

Total n = 478 (%)

454 (95.0)

459 (96.0)

418 (87.5)

375 (78.5)

372(77.8)
442 (92.5)
87.9(16.1)

Biomedical n = 85 (%)

79 (92.9)

84 (98.8)

76 (89.4)

64(75.3)

63 (74.1)
79 (92.9)
87.3(15.8)

Medicine n = 77(%)

76 (98.7)

69 (89.6)

70 (90.9)

63 (81.8)

62 (80.5)
74(%6.1)
89.6 (14.3)

Pharmacy n = 175(%)

162 (92.6)
172 (98.3)

148 (84.6)

138 (78.9)

129 (73.7)
161 (92.0)
86.7 (17.1)

2Fishers exact test, ®Pearson Chi-square test, “One-way analysis of variance (ANOVA), *health sciences students (nursing, environmental health, radiography), all values are mean and standard deviations.

Other*n = 141(%)

137 (97.2)

134 (95.0)

124 (87.9)

110 (78.0)

118 (83.7)
128 (90.8)
88.8 (16.0)

P-value

0.087%

0.009*

0.477°

0.789"

0.137°
0.548"
0.488°¢
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Characteristic

Program
Other®
Biomedical
Medicine
Pharmacy
Age (years) median (IQR)
Sex

Female

Male

Year of study
Second

Third

Fourth

Fifth

Above fifth
Marital status
Unmarried
Married
Residence
Rural

Urban
Religion
Other*

Christian

2Pearson Cl
health, radiography).

Total population 1 (%)

141 (29.5)
85 (17.8)
77 (16.1)
175 (36.6)
24 (23-26)

243 (50.8)
235 (49.2)

59 (12.3)
96 (20.1)
131 (27.4)
156 (32.6)
36/(7.5)

430 (90.0)
48 (10.0)

73(153)
405 (84.7)

12(25)
466 (97.5)

Knowledge
Poorn =25 Goodn=>543
() ()
7 (28.0) 134 (29.6)
4(16.0) 81(17.9)
3(12.0) 74(16.3)
11 (44.0) 164 (36.2)
24(23-25) 24(23-26)
11 (44.0) 232(512)
14 (56.0) 221 (48.8)
3(12.0) 56 (12.4)
2(8.0) 94/(20.8)
7 (28.0) 124 (27.4)
12 (48.0) 144 (31.8)
1(4.0) 35(7.7)
22 (88.0) 408 (90.1)
3(12.0) 15 (9.9)
7 (28.0) 66 (14.6)
18 (72.0) 387 (85.4)
1(4.0) 11(2.4)
24 (96.0) 1442 (97.6)

P-value

0.919°

0.939¢

0.482%

0.400°

0.730°

0.084°

0.479°

Poorn =215 Goodn =263

(%)

27.9)
16.7)
14.0)
41.4)
24 (22-25)

60 (
36 (
30 (
89

104 (48.4)
111 (51.6)

26 (12.1)
48 (223)
62 (28.8)
69 (32.1)
10 (4.7)

200 (93.0)
15 (7.0)

42(19.5)
173 (80.5)

7(33)
208 (96.7)

Practice

(%)

81 (30.8)
49 (18.6)
47 (17.9)
86 (32.7)
24 (23-27)

139 (52.9)
124 (47.2)

33(126)
48 (18.3)
69 (26.2)
87 (33.1)
26 (9.9)

230 (87.5)
33(126)

31(11.8)
232(88.2)

5(1.9)
258 (263)

P-value

0.247*

0.006¢

0.330"

0.229*

0.044*

0.019*

0.346"

-square test, ®Fishers exact test, Wilcoxon rank sum test, *minor religions in Zambia (Hindu, Islam, Buddhist, etc.), *health sciences students (nursing, environmental
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Total Female Male Significance Simple logistic Multiple logistic

regression regression
ORc (95% CI) ORa (95% CI)
Primary reason for visit (ICD10) 6009711,
p=0017
COVID-19 1388(199)  775(4.69) 613 (5.44) 265 (2.16,3.25) 2.23(0.06,86.36)
Abnormal clinical and lab findings 2597(9.34)  1,501(9.08) 1,096 (9.73) 245 (2.02,2.96) 13.82 (119, 159.92)

Mental, Behavioral and
Neurodevelopmental disorders
Anxiety, dissociative, stress-related, and 696(250)  477(288)  219(194) 154 (121, 1.95) 5.51(0.03,902.75)
other nonpsychotic mental disorders

Mental disorders (e.g., disorders of adult 237085 112068 125(L1) 3.74 (2.74,5.09) 89.72(3.34,2,413.21)
personality and behavior, intellectual
disabilities)

Diseases of the blood and blood-forming

4320261 205(182) 1,59 (1.25,2.02) 4.42(0.29,68.07)
organs and certain disorders involving the

immune mechanism

Diseases of the circulatory system

Hypertensive diseases LI56(416)  660(3.99) 496 (4.40) 252 (2,04, 3.11) 22.90 (2.17, 241.09)
Endocrine

Diabetes Mellitus 2059 (741)  1066(645) 993 (8.82) 312(257,3.79) 19.97 (196, 203.84)
Metabolic disorders 1453(523)  716(433) 737 (654) 345 (282,4.22) 4.65(029,73.54)
Disorders of thyroid gland 1,004 (3.61) 723 (4.37) 281(2.49) 1.30 (1.04, 1.63) 21.40 (0.81, 2,871,079)
Overweight, obesity and other 687(247)  409247) 409 (247) 2.28 (1.80, 2.87) 23.51(1.26,439.98)

hyperalimentation

Certain infectious and parasitic

(e.g., HIV, TB, etc.)

1103(3.97) 674 (4.08) 429 (3.81) 0.94 (084, 1.05) 1.12 (0.05,26.75)

Diseases of the respiratory system

Influenza and pneumonia 212 (076) 108 (0.65) 104 (0.92) 1.16 (091, 1.40) 66.19 (1,02, 4,288.9)
Factors influencing health status and 3972(1429)  2,412(1458) 1,560 (13.85) 217 (1.80, 2.61) 3.5 (0, 36.9734)
contact with health services (e.g. persons

encountering health services for

examinations, genetic susceptibility to

disease)

Injury, poisoning, and other external causes 405 (1.46) 231 (1.40) 174 (1.54) 252 (1.94,3.28)

Shown in bold are those that are statis

tically significant at p < 0.05.
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Laboratory, vaccination, and
es, 1 (%)

comorbi
Laboratory

Oxygen saturation

Normal
Hypoxemia (mild, moderate, severe)
Vaccination

CVX_code

Other vaccines (e.g, AstraZeneca
Pharmaceuticals LB, Novavax, Janssen
Products, LP.)

Moderna, US, Inc.

Phzer-BioNTech

Routine vaccinations (e.g., Hepatitis A,
Hepatitis B, Influenza, etc.)

Unknown

Comorbidities

factors/pre-existing
conditions, n (%)

Smoking status

Non-smoker
Smoker
Unknown

Body mass index (BMI) status

Normal
Overweight
Obese

Caffeine user

No
Yes

Drug user

No
Yes

Alcohol user

No
Yes

Exercise

bold are those that are statistic

Total

23,433 (91.98)
2,043 (8.01)

700 (1.29)

2,359 (434)
1,532 (2.82)
49,078 (90.33)

660 (1.21)

17,174 (38.56)
4,445 (9.98)
22,923 (51.46)

6,846 (15.87)
12,066 (27.96)
23,570 (54.62)

3,271 (23.47)
10,667 (76.53)

17,723 (94.28)
1,075 (5.72)

21,694 (74.33)
7,493 (25.67)

487 (36.26)
856 (63.74)

ignificant at p < 0.05.

Female

13,936 (92.88)
1,069 (7.12)

389(1.22)

1,370 (4.33)
879 (2.78)
28,633 (90.42)

398 (1.26)

10,639 (40.58)
2422 (924)
13,154 (50.18)

4,684 (18.14)
6,703 (25.95)
14,021 (54.29)

2,066 (24.03)
6,530 (75.97)

10,970 (94.83)
598 (5.17)

13,676 (77.64)
3,938 (22.36)

317 (37.60)
526 (62.40)

Male

9,497 (90.70)
974(931)

314(139)

989 (4.36)
653 (2:88)
20,445 (90.21)

262 (1.16)

6,535 (35.66)
2,023 (11.04)
9,769 (53.30)

2,162 (12.48)
5,363 (30.96)
9,549 (55.13)

1,205 (22.56)
4,137 (77.44)

6,753 (93.40)
477 (6.60)

8,018 (69.28)
3,555 (30.72)

170 (34.00)
330 (66.00)

Significance Simple logistic

X% = 42,909,
P <0.0001

Xx2=123.3616,
P <0.0001

X*=298.4379,
P <0.0001

X2 =16.8293,
p<0.0001

Xx*=255.8570,
P <0.0001

regression

ORe (95% CI)

1.0
1.32(1.21, 1.45)

10

0.89 (0.75,1.05)
0.91(0.76, 1.09)
0.88 (0.76,1.02)

081 (0.65, 1.004)

1.0
1.36 (1.27, 1.45)
121 (1.16, 1.26)

10
1.70 (1.60, 1.80)
1.44 (137, 1.52)

10
1.09 (1.00, 1.18)

10
1.30 (1.14, 1.47)

10
1.54 (146, 1.62)

10
1.17 (0.93, 1.58)

Multiple logistic
regression

ORa (95% CI)

10
221 (0.32,4.50)

10
144 (046, 4.54)
2.88(0.70, 11.88)

1.0
155 (0.34,7.08)
063 (0.16,2.53)

10
1.30 (0.27,66.23)

10
4.89 (1.81,13.23)
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Demographic and social

characteristics, n (%)

Age

<20 years
20-29
30-39
40-49
50-59
60-69
>70

Race

Black or African American
Asian
White
U

known

Ethnicity

Not Hispanic or Latino
Hispanic or Latino
Unknown

Education

Graduate/post-graduate degree
High school or below

General Education/college
Unknown

Transportation

No
Yes

Living arrangement

Alone

Family
Institution
Friend/roommate
Relative

Spouse

Unknown

Shown in bold are those that are statis

Total

8,099 (13.0)
5,852 (9.39)
7,674 (12.32)
9,629 (15.46)
11,003 (17.66)
10,171 (16.33)
9,875 (15.85)

6,389 (10.30)
618 (1.00)
33,947 (54.76)
21,038 (33.94)

32,492 (53.08)
13,791 (22.53)
14,936 (24.40)

640 (19.63)
2,091 (64.13)
506 (15.52)
24(074)

4(0.60)
659 (99.40)

510 (38)
1,544 (11.50)
23(017)
103 (0.77)
57 (0.42)
931 (6.93)
10,258 (76.40)

Female

4,160 (11.40)
3,756 (10.29)
4,991 (13.68)
6,001 (16.44)
6,418 (17.59)
5,694 (15.60)
5477 (15.01)

4,162 (11.46)
342(0.94)
19,541 (53.81)
12,267 (33.78)

19,214 (53.57)
7,953 (22.17)
8,700 (24.26)

412(19.31)

1,334 (62.51)
376(17.62)
12(0.56)

2(054)
367 (99.46)

294 (3.74)
915 (11.63)
14(0.18)
65(083)
26(0.33)
558 (7.09)
5,993 (76.20)

tically significant at p < 0.05.

Male

3,939 (15.26)
2,096 (8.12)
2,683 (10.40)
3,628 (14.06)
4,585 (17.77)
4477 (17.35)
4,398 (17.04)

2,224 (8.66)
276 (1.07)
14,406 (56.10)
8771 (34.16)

13,278 (52.37)
5,838 (23.03)
6,236 (24.60)

228(20.23)

757 (67.17)

130 (11.54)
12(1.06)

2(0.68)
292 (99.32)

216 (3.88)
629 (11.31)
9(0.16)
38 (0.68)
31(0.56)
373(6.71)
4,265 (76.69)

Significance

X*=505.0737,
P <0.0001

132.2041,
P <0.0001

5205,

P <0.0001

00522,
p=0819

x

K =61572,
p=0409

Simple logistic
regression

Ore (95% CI)

10
0.59 (0.5, 0.63)
0.57(0.53,0.61)
0.64(0.60, 0.68)
0.75 (0.71,0.80)
0.83 (0.78, 0.88)
0.85 (0.80,0.90)

10
1.51(1.28, 1.78)
1.40 (1.31, 1.46)
1.34(1.26, 1.42)

10
1.06 (1.02, 1.11)
0.98 (093, 1.02)

10
1.03 (085, 1.23)
0.62 (0.48,0.81)
1.81 (080, 4.10)

10
0.80 (0.11, 5.68)

10
0.94(0.76, 1.15)
0.88 (0.37,2.06)
079(051,1.23)
1.62 (0.94,2.81)
091(0.73,1.13)
0.97 (0.81,1.16)

Multiple logistic
regression

ORa (95% CI)

10
022 (0.006, 8.11)
117 (0.05,2633)
2,07 (0.09, 49.32)
115 (0.05,25.90)
351 (0.15, 81.68)
3.00 (0.1, 79.10)

10
2.19(0.25, 18.91)
1.05 (0.13, 8.70)

10
035 (0.09, 1.38)
0.6 (023, 1.89)

10
057 (0.06,5.79)
0.12(0.01, 1.40)
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Practice statements Total n =478 (%) Biomedical n = 85 (%) Medicine n = 77(%) Pharmacy n = 175(%) Other? n = 141(%) P-value

I often wear facial masks when in public 409 (85.6) 69 (81.2) 69 (89.6) 141 (80.6) 130 (92.2) 0012
I practice hand washing and hand sanitizing regularly 352 (73.6) 61(71.8) 62(80.5) 116 (66.3) 113 (80.1) 0019
1 avoid visiting crowded places 303 (63.4) 64(75.3) 42(54.6) 112 (64.0) 85(60.3) 0.038
T am willing to receive the COVID-19 vaccine to 394 (82.4) 75 (88.2) 57 (74.0) 151(86.3) 111(78.7) 0031

protect myself from the disease

Overall mean (SD) 60.0 (24.7) 60.0 (24.8) 62.7(23.9) 56.1 (25.9) 63.5(23.4) 0048

All values are mean and Standard Deviation (SD) and p-value from Pearson Chi-square te:

therwise, One-way Analysis of Variance (ANOVA) was used, *health sciences students (nursing, environmental health, radiography).
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A
Study

Events
Usa

Balut et al, 2021 38256
Tucker et al, 2021 37
Montgomery et al, 2021 37223
Rosen et al, 2022 2008
Shearer et al, 2022 4461
Meehan et al, 2022 46

Rogers et al, 2022 4
Random effects model
Heterogeneity: /2 = 100%, P = 0

Canada
Sharif et al, 2022 14271
Richard et al, 2022 585

Random effects model
Heterogeneity: /2= 99%  p < 0.01

Denmark
Nilsson et al, 2022
Random effects model
Heterogeneity: not applicable

4063

Italy
Bentivegna et al, 2022
Random effects model
Heterogeneity: not applicable

36

UK
Berrou et al, 2022
Random effects model
Heterogeneity: not applicable

94

Random effects model
Heterogeneity: /2 = 100%, p = 0

B
Study Events
Montgomery et al, 2021 37223
Meehan et al, 2022 46
Sharif et al, 2022 14271
Richard et al, 2022 585
Nilsson et al, 2022 4063

Random effects model
Heterogeneity: /2= 100% p =0

c

Study Events
Montgomery et al, 2021 29738
Meehan et al, 2022 18
Sharif et al, 2022 11082
Richard et al, 2022 463
Nilsson et al, 2022 3706
Random effects model

Heterogeneity: /2= 100%, p =0

95%-Cl Weight

[0.45;0.46)
[0.22;0.37)
[0.40;0.41]
[0.39;0.42]
[0.33;0.35]
[0.34;0.53]
[0.00;0.02]
[0.26; 0.36]

[0.61;0.62)
[0.77;0.83]
[0.51;0.88]

[0.60; 0.62]
[0.60; 0.62]

[0.17;0.30]
[0.16; 0.29]

0.47 [0.40;0.54]
0.47 [0.40; 0.54]

8.8%

8.8%
8.5%
17.3%

8.8%
8.8%

7.7%
7.7%

7.9%
7.9%

0.41 [0.35; 0.47] 100.0%

Total Proportion
83528 046
128 = 029
91906 041
4949 041
13236 0.34
106 043
672 001
194525 < 031
23247 061
728 = 0.80
23975 —~— 071
6689 061
6689 ° 0.61
160 = 022
160 - 0.22
199
199
225548
— T T
02 04 06 08
Total Proportion
91906 041
106 —@— 043
23247 061
728 = 080
6689 061
122676 058
— T
04 05 06 07 08
Total Proportion
91906 i 032
106 —=2— i 017
23247 I 048
728 I = 064
6689 i 055
122676 —

02 03 04 05 06

95%-Cl Weight

[0.40;0.41]
0.34; 0.53]
0.61;0.62]
[0.77;0.83)
0.60; 0.62]

20.5%
18.5%
20.5%
20.2%
20.4%

[0.45; 0.71] 100.0%

[95% CI] Weight

0.32,0.33]
[0.11;0.25]
[0.47;0.48]
0.60; 0.67)
[0.54; 0.57]

20.6%
18.0%
20.6%
20.2%
20.6%

0.43 [0.32; 0.54] 100.0%
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Study Events Total

Detected by NAATs

Tobolowsky et al, 2020 8 38

O'Shea et al, 2020 7147 =
Imbert et al, 2020 10 60 =
Mosites et al, 2020 33 313 =
Yoon et al, 2020 7 549 i
Ghinai et al, 2020 4 282
Rogers et al, 2021 4 159 = |
Husain et al, 2021 7 8 =
Ly et al, 2021 12 152
Ralli et al, 2021 4 92 =t
Chang et al, 2022 17 62 i
Bemner et al, 2022 101 2553 [ |
Random effects model 4490 <>

Heterogeneity: /2= 92%, p < 0.01

Detected by Serological tests

Husain et al, 2021 15 83
Couto et al, 2021 43 87

Eriksen et al, 2022 12 191 &+
361 —————

Random effects model
Heterogeneity: /2 = 97%, p < 0.01

Detected by Antigen tests
Aranda-Diaz et al, 2022 4 232
Random effects model 2320
Heterogeneity: not applicable

Random effects model 5083
Heterogeneity: /2= 94%, p < 0.01

<
T T 1

0.1 02 03 04 05

Prevalence [95% CI] Weight

021 [0.11;0.36]
0.05 [0.02;0.10]
0.17 [0.09;0.28]
0.1 [0.08;0.14]
0.01 [0.01;0.03]
0.15 [0.11;0.19]
0.03 [0.01;0.06]
0.08 [0.04;0.16]
0.08 [0.05;0.13]
0.04 [0.02;0.11]
027 [0.18;0.40]
0.04 [0.03;0.05]
0.08 [0.05;0.12]

0.18 [0.11;0.28]
0.49 [0.39; 0.60]
0.06 [0.04;0.11]
0.22 [0.03; 0.52]

0.02 [0.01;0.04]
.04]

5.1%
6.4%
5.6%
6.7%
6.9%
6.7%
6.4%
6.0%
6.4%
6.1%
5.7%
7.0%
74.9%

6.0%
6.0%
6.5%
18.5%

6.6%
6.6%

.14] 100.0%
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B

Study Events Total Seroprevalence[95% CI] Weight
Sheltered homeless
Gombita et al, 2020 1 331 0.00 [0.00;0.02]  8.4%
Storgaard et al, 2020 6 129 0.05 [0.02;0.10]  8.3%
Husain et al, 2021 67 100 —am— 0.67 [0.57;0.75]  8.2%
Couto et al, 2021 111203 0.55 [0.48;0.61] 8.3%
Rowan et al, 2022 31 144 0.22 [0.16;0.29] 8.3%
Bojorquez-Chapela et al, 2022 252 481 0.52 [0.48,0.57] 8.4%
Eriksen et al, 2022 43 628 0.07 [0.05;0.09] 8.4%
Random effects model 2016 0.25 [0.06; 0.49] 58.2%

Heterogeneity: /2 = 99%, p < 0.01
Mixed population

Ralli et al, 2020 3 173 0.02
Roederer et al, 2021 426 818 0.52
Loubiere et al, 2021 65 1156 0.06
Allibert et al, 2022 74 1231 0.06
Random effects model 3378 0.12

Heterogeneity: /2= 100%, p < 0.01

Unsheltered homeless
Rowan et al, 2022 1127
Random effects model 127

0.09 [0.05; 0.15} 8.3%
Heterogeneily: not applicable

0.09 [0.04;0.14] 8.3%

Random effects model 5521 0.19 [0.08; 0.33] 100.0%
Heterogeneity: /2 = 99%, p = 0 =T—f=T T T 1
0.10.2 0.3 0.4 0506 0.7
Study Events Total Seroprevalence [95% CI] Weight
Mixed population

Ralli et al, 2020 2 173 0.01 [0.00;0.04] 15.3%
Loubiere et al, 2021 24 1156 0.02 [0.01;0.03] 55.3%
Random effects model 1329 0.02 [0.01;0.03] 70.6%

Heterogeneity: /2 = 0%, p = 0.52

Sheltered homeless
Storgaard et al, 2020 6 129 — 0.05
Couto et al, 2021 5 203
Random effects model 332
Heterogeneity: /2 = 14%, p =028

11.9%
0.02 [0.01;0. 17.5%
0.03 [0.01;0.06] 29.4%

Random effects model 1661
Heterogeneity: /2 =21%, p =028

0.02 [0.01;0.03] 100.0%

0.02 004 0.06 0.08

Study Events Total Seroprevalence [95% CI] Weight
Mixed population

Ralli et al, 2020 1 173 0.01 [0.00;0.03] 16.7%

Loubiere et al, 2021 58 1156 0.05 [0.04;0.06] 17.0%

Random effects model 1329 0.03 [0.00;0.08] 33.6%

Heterogeneity: /2 = 91%, p <0.01

Sheltered homeless

Storgaard et al, 2020 2 129 0.02 [0.00;0.05] 16.5%
Couto et al, 2021 111 203 0.55 [0.48,0.61] 16.7%
Rowan et al, 2022 31 144 0.22 [0.16;0.29] 16.6%
Random effects model 476 0.22 [0.00;0.60] 49.8%

Heterogeneity: /2 = 99%, p <0.01

Unsheltered homeless
Rowan et al, 2022 1" 127
Random effects model 127
Heterogeneity: not applicable

009 [0.050.15] 16.5%
0.09 [0.04;0.14] 16.5%

Random effects model 1932
Heterogeneity: /2 = 98%, p <0.01

0.11 [0.02;0.28] 100.0%

01 02 03 04 05 06
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A
Study Events Total

Sheltered homeless

Tobolowsky et al, 2020 7 195 2 (T —
Imbert et al, 2020 8 150
Ghinai et al, 2020 57 1435
Random effects model 1780

Heterogeneity: 2 = 0%, p = 0.66

Mixed population

Baggio et al, 2021 [ e —
Richard et al, 2021 104 8451
Song et al, 2021 16 1717 =

Random effects model
Heterogeneily: /2 = 68%, p = 0.05

10383 <=

Random effects model
Heterogeneity: 12 = 92%, p < 0.01

12163 i

Prevalence  [95% CI] Weight

0.04 [0.02,0.07) 13.6%
005 [0.03;0.10] 12.3%
0.04 [0.03;0.05] 19.6%
0.04 [0.03;0.05] 45.4%

0.03 [0.02;0.07] 14.0%
0.01 [0.01;0.01] 20.7%
001 [0.01;0.02] 19.8%
0.01 [0.01;0.02] 54.6%

0.03 [0.01;0.04] 100.0%

0.02 0.04 006 0.08 0.1

B
Study Events Total

Sheltered homeless
Ghinai et al, 2020 19 1435
Random effects model 1435
Heterogeneity: not applicable

Mixed population
Richard et al, 2021 15 8451 5=
Random effects model 8451 &
Heterogeneity: not applicable

Random effects model
Heterogeneity: /2 = 96%, p < 0.01

9386:*
[ e —

Prevalence  [95% CI] Weight

0.01 [0.01;0.02] 48.7%
0.01 [0.01;0.02] 48.7%

0.00 [0.00;0.00] 51.3%
0.00 [0.00;0.00] 51.3%

0.01 [0.00; 0.02] 100.0%

Prevalence [95% CI] Weight

0.00 [0;0.02] 4.1%
001 [0;004] 33%
0.00 [0;0.00] 29.2%
0.00 [0;0.01] 16.8%

0005 001 0015 002
c
Study Events Total
Sheltered homeless
Tobolowsky et al, 2020 0 1950
Imbert et al, 2020 1150 f—e——————————
Wanget al, 2020 310588/
Ghinai et al, 2020 2 1435 =—
Random effects model

12368 b
Heterogeneity: /2 = 54%, p = 0.09 i

Mixed population
Richard et al, 2021 10 8451
Song et al, 2021 5 1717 {&—
Random effects model 10168 &
Heterogeneity: /2 = 61%, p = 0.1

Random effects model 22536 &

Heterogeneity: /2 = 67%, p < 0.01

0.00 [0;0.00] 53.4%

0.00 [0;0.00] 28.3%
0.00 [0;0.01] 18.3%
0.00 [ 0;0.00] 46.6%

0.00 [ 0; 0.00] 100.0%

0 0.005 0.015 0.025 0.035
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A

Study Events Total Prevalence [95% CI] Weight
Sheltered homeless

Baggett et al, 2020 129 408 0.32 [0.27,0.36] 12.6%

Karb et al, 2020 28 299 0.09 [0.07;0.13] 12.5%

Imbert et al, 2020 52 150 0.35 [0.28;0.43] 12.2%

Ghinai et al, 2020 293 1435 0.20 [0.18;0.23] 12.7%

Roland et al, 2021 83 1985 0.04 [0.03;0.05] 12.8%

Aranda-Diaz et al, 2022 1393
Random effects model 4670
Heterogeneity: /2 = 99%, p < 0.01

0.00 [0.00;0.01] 12.6%
0.14 [0.05;0.26] 75.4%

Mixed population
Oette et al, 2021 4 130
Random effects model 130
Heterogeneity: not applicable

0.03 [0.01;0.08] 12.2%
0.03 [0.01;0.07] 12.2%

Unsheltered homeless
Fini et al, 2021 6 234
Random effects model 234
Heterogeneity: not applicable

0.03 [0.01;0.05] 12.4%
0.03 [0.01;0.05] 12.4%

Random effects model 5034 0.10 [0.04; 0.20] 100.0%

Heterogeneity: /2= 99% p <0.01

B
Study Events Total Prevalence  [95% CI] Weight
Sheltered homeless H
Baggett et al, 2020 18 408 = 0.04 [0.03;0.07] 14.7%
Karb et al, 2020 7 299 =i 0.02 [0.01;0.05] 14.6%
Imbert et al, 2020 48 150 i — 0.32 [0.25;0.40] 14.1%
Ghinai et al, 2020 113 1435 i 0.08 [0.07;0.09] 15.0%
Redditt et al, 2020 5 60 ' 0.08 [0.04;0.18] 12.9%
Roland et al, 2021 6 1985 0.00 [0.00;0.01] 15.0%
Random effects model 4337 —~m— 0.07 [0.02;0.15] 86.2%

Heterogeneity: /2= 98%, p < 0.01

Unsheltered homeless
Bihan et al, 2021 1 15—
Random effects model 15 &
Heterogeneity: not applicable

0.01 [0.00;0.05] 13.8%
0.01 [0.00;0.04] 13.8%

Random effects model 4452 0.06 [0.01; 0.12] 100.0%
Heterogeneity: /2 = 98%, p < 0.01

0 (K | 0.2 0.3
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Study Events Total Prevalence [95%-Cl] Weight

Sheltered homeless

Tobolowsky et al, 2020 35 195 0.18 [0.13;0.24]  2.2%
Baggett et al, 2020 147 408 0.36 [0.32,0.41] 2.3%
O'Shea et al, 2020 1104 0.01 [0.00;0.05]  2.1%
Mosites et al, 2020 203 1192 025 [022,0.27]  2.4%
Karb et al, 2020 35 209 0.12 23%
Imbert et al, 2020 101 150 0.67 [0.59;0.74]  2.2%
Kelly et al, 2020 2 281 0.01 [0.00;0.03]  2.3%
Gombita et al, 2020 0 331 0.00 [0.00;0.01]  2.3%
Yoon et al, 2020 36 1690 002 [002,0.03] 24%
Wanget al, 2020 372 10588 0.04 [0.03;0.04] 2.4%
Ghinai et al, 2020 431 1435 0.30 [0.28;0.32]  2.4%
Marquez et al, 2020 22 2456 0.01 [0.01,0.01]  24%
Redditt et al, 2020 25 60 042 [030;0.54]  1.9%
Jatt et al, 2020 0 121 0.00 21%
Rogers et al, 2021 25 1275 002 [0.01;0.03] 24%
Kiran et al, 2021 33 214 0.15 [0.11;0.21]  2.2%
Husain et al, 2021 29 100 0.29 [0.21;0.39]  2.1%
Lyetal, 2021 26 126 021 [0.14;0.29]  2.1%
Lyetal, 2021 37 411 0.09 [0.07,0.12]  2.3%
Kiran et al, 2021 80 1000 0.08 [0.06;0.10]  2.4%
Roland et al, 2021 91 1985 0.05 [0.04;0.06]  2.4%
Hsu et al, 2021 47 318 0.15 [0.11;0.19]  2.3%
Lindner et al, 2021 0 51 0.00 [0.00;0.07]  1.9%
Huggett et al, 2021 502 3657 0.14 [0.13;0.15]  2.4%
Chang et al, 2022 193 322 0.60 [0.54;0.65]  2.3%
Rowan et al, 2022 44 509 0.09 [0.07;0.11]  2.3%
Bojorquez-Chapela et al, 2022 7 481 0.01 [0.01;0.03]  2.3%
Aranda-Diaz et al, 2022 10 3930 | 0.03 [0.01;0.05]  2.3%
Berner et al, 2022 903 11563 1! 0.08 [0.07,0.08]  2.4%
Random effects model 41715 0.11 [0.08;0.15]  65.6%
2

Mixed population

Baggett et al, 2020 429 1297 = 0.33 [0.31;0.36]  2.4%
Seballos et al, 2020 3 94 E 0.03 [0.01;0.09]  2.1%
Baggio et al, 2021 69 215 = 032 [0.26,0.39] 22%
Richard et al, 2021 274 8451 0.03 [0.03;0.04]  2.4%
Keller et al, 2021 39 712 005 23%
Oette et al, 2021 4 130 &} 003 [0.01;0.08] 2.2%
Ralli et al, 2021 82 960 0.09 [0.07,0.10] 2.4%
Song et al, 2021 54 1717 0.03 24%
Thomas et al, 2021 159 3153 [} 0.05 24%
Luong et al, 2022 394 4657 0.08 2.4%
Morrone et al, 2022 242 6468 [ | 004 [0.03,0.04] 24%
Random effects model 27854 0.08 [0.05;0.12] 25.4%

Heterogeneity: /2= 99% p <0.01

Unsheltered homeless

Yoon et al, 2020 3 636 0.00 [0.00;0.01]  2.3%
Bihan et al, 2021 21 115 e 0.18 [0.12;0.26]  2.1%
Fini et al, 2021 6 234 = 0.03 [0.01;0.05] 2.3%
Rowan et al, 2022 6 239 = 0.03 [0.01;0.05] 2.3%
Random effects model 1224 =+ 0.04 [0.00;0.11]  9.0%

Heterogeneity: /2= 95% p <0.01

Random effects model 70793 & 0.10 [0.07;0.12] 100.0%
Heterogeneity: /2= 99% p =0
0 0.1 020304050607
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Province Canton Community Positive/ Overall
total; infection
infection rate (%)
rate (%)

Bolivar Guaranda | Facundo 0/26; 0% 17/334;5.1%
(95% IC:
3.1-7.8%)

Guaranda 8/175; 4.6%
San Luis 1/27:3.7%
Simiatug 3/38;7.9%
Veintimilla 5/68; 7.4%

Chimborazo | Colta Columbe 4/33121% | 54/322;16.77%
(95% IC:
12-21.6%)

Penipe Penipe 13/63;21%

Riobamba | Lizarzaburu 2/22;9%
San Juan 26/136; 19%
San Luis R 9/68; 13%

Napo ElChaco | Oyacachi 58/152 58/152; 38.2%
(95% IC:
30.7-46%)

Tungurahua | Pelileo Benitez. 18/28; 64.3% 139/213; 65.3%
(95% IC
58.7-71.4%)

Huambalé 58/78; 74%
Pelileo 17/39, 44%
Salasaca 46/68; 68%
Overall 268/1021;

26.2%
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Sex

Age category years Female

Infancy: 0-11 0 1(0.7%) 1(0.4%)
Adolescence: 10-18 2(16%) 8(5.7%) 10 (3.7%)
Youth: 19-26 19(14.8%) | 20 (143%) | 39 (14.6%)
Adulthood: 27-59 86(67.2%) | 92(65.7%) | 178(66.4%)
Elderly: more 60 21(16.4%) 19 (13.6%) 40 (14.9%)
Total 128 (47.8%) 140 (52.2%) | 268 (26.2%)






OPS/images/fpubh-10-805086/math_24.gif
=tan” ((F(a.b+1)—F(a.b—1))/(F(a+ 1.b) - F(a—Lb))
(24)





OPS/images/fpubh-10-805086/math_23.gif
m (a.b)

= F(a+1.5)— Fa— 1O + (F(ab+1)— Fab— D)
8 (ab) (23)





OPS/images/fmed-10-1001679/fmed-10-1001679-i001.gif





OPS/images/fpubh-10-805086/math_22.gif
D (a,b,0) = (K (a,b, ko) — G(a,b,0))" I (a,b)
— F(a,b,ko) — F(a,b,0) (22)





OPS/images/fmed-10-1001679/fmed-10-1001679-g002.gif





OPS/images/fpubh-10-805086/math_21.gif
@





OPS/images/fmed-10-1001679/fmed-10-1001679-g001.gif





OPS/images/fpubh-10-805086/math_20.gif





OPS/images/fmed-10-1001679/crossmark.jpg
(®) Check for updates





OPS/images/fpubh-10-805086/math_2.gif
T _ k)
k

_20-p)
A





OPS/images/fpubh-10-1024525/fpubh-10-1024525-t004.jpg
Stages

Intervention engaging

Communication

Intervention itself

Relative advantage

Design quality

Packaging/shipment

Evidence strength

Outer setting

Political/epidemiological context

Socio-cultural factors

Recommendations

First contact: Establish trust by contacting people with prior notice and media presence

Access to information:

- Provide large-scale promotion and information campaigns about the testing strategy/project via diverse information channels

- Arrange information on sampling steps with depictions visible at first glance and provide a webpage with video instructions on
self-sampling (in languages commonly spoken in a region of interest)

- Integrate general information about:
O how personal data was obtained

how data security is ensured

timeframe of testing project; time (limit) to return samples

in case of a new test method: emphasis of method’s novelty and difference to established methods

information about kit components: composition, risks, preservability

ooooo

key aspects for correct sampling
O how sample is analyzed; what sample components are analyzed
Limit use of unknown signs (e.g., biohazard symbol)
Reminders: Implement reminders. Pay attention to polite phrasing and timing
Support system: Offer personal contact (phone hotline, online contact form, telehealth session for first sampling). Ensure link between
support system and executing project parts to respond to peoples’ concerns

Test result: Ensure timely, online accessible results. Inform about availability of results

Test characteristics: Consider the characteristics of available test methods including tests’ complexity, discomfort, feasibility, and user
preferences. Consider addressing inter-individual differences in method preferences by offering a choice of multiple test methods
Test execution: Adapt choice of test method to age, physical and cognitive abilities of a target group. Consider benefits of
self-sampling (reduced infection risk, less travel and time spent, lower costs for health system, high test accuracy due to
laboratory-based analysis) vs. challenges (self-efficacy) before deciding on a method

Minimize test steps, material, and limitations (e.g., testing on empty stomach/in the morning). Take environmental aspects into
account when choosing kit material

Avoid unnecessary material. Provide packaging with clear instructions for use. Consider dependencies of shipment methods on
external factors. If tests are sent via mail: provide updates on samples’ shipping status and consider potential delivery delays (e.g., in
a pre-Christmas period)

Provide clear information about test method's accuracy compared to other methods. Consider participants with a positive

SARS-CoV-2 test value further confirmation of result with reference methods

Official support from policy makers and health authorities is key

Assess local need of self-sampling and testing for SARS-CoV-2 before implementation

Define passive or active surveillance system

Adapt interventions to the epidemiological context and local policies

Counteract that receiving mail-in tests during high incidences period may trigger fear of quarantine and being infected by a
clear communication

Consider that users expect test methods commonly used at the time of an intervention. If applicable, highlight the novelty/positive
aspects of an intervention

Include sociocultural factors (holidays, religious celebrations, etc.) in the timing and communication of an intervention
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Sample characteristics

Decision to test
Test uptake
Test rejection
Sex

Female

Male

Age

<18

18-29

30-44

45-59

60-80

>80

School leaving qualification

No school leaving qualification

Low education level (9 years of schooling)
Middle education level (10 years of schooling)
High education level (11-13 years of schooling)

Missing
Test result
Positive

Negative

Job classification®

1) Managers

Production and specialized services managers

2) Professionals

Science and engineering professionals

Health professionals

Teaching professionals

Business and administration professionals
Information and communication technology professionals
Legal, social and cultural professionals

3) Technicians and associate professionals

4) Clerical support workers

5) Services and sales workers

6) Skilled agricultural, forestry and fishery workers
7) Craft and related trades workers

8) Plant and machine operators and assemblers

Students/pupil
Missing

n (%)

37 (56.1%)
29 (43.9%)

36 (54.5%)
30 (45.5%)

1(1.5%)
14 (21.29%)
10 (15.29%)
21 (31.8%)
18 (27.3%)
2(3.0%)
1(1.5%)
11 (16.79%)
17 (25.8%)
31(47%)
6(9.1%)

6 (16.2% of test takers)
31 (83.8% of test takers)

1(1.5%)
1(1.5%)
6(9.1%)
3 (4.6%)
7 (10.6%)
2(3%)
8 (12.1%)
1(1.5%)
8 (12.1%)
5(7.6%)

*According to “International Standard Classification of Occupations 2008” (48).
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Item No.

Guide questions/description

Domain 1: Research team and reflexivity personal characteristics

Interviewer/facilitator 1.
Credentials 2.
Occupation 3.
Gender 4.
Experience and training 5.

Relationship with participants

Relationship established 6.
Participant knowledge of the interviewer 7.
Interviewer characteristics 8.

Domain 2: Study design theoretical framework
Methodological orientation and theory 9.

Participant selection

Sampling 10.
Method of approach 1L
Sample size 12.
Non-participation 13.
Setting

Setting of data collection 14.
Presence of non-participants 15.
Description of sample 16.

Data collection

Interview guide 17.
Repeat interviews 18.
Audio/visual recording 19.
Field notes 20.
Duration 21.
Data saturation 22.
Transcripts returned 23

Domain 3: Analysis and findings data analysis

Number of data coders 24.
Description of coding tree 254
Derivation of themes 26.
Software 27.
Participant checking 28.
Reporting

Quotations presented 29.
Data and findings consistent 30.
Clarity of major themes 31

Clarity of minor themes 32.

Which author/s conducted the interview or focus group?
What were the researcher’s credentials?

What was their occupation at the time of the study?

Was the researcher male or female?

What experience or training did the researcher have?

Was a relationship established prior to study commencement?
What did the participants know about the researcher?

What characteristics were reported about interviewer/facilitator?

What methodological orientation was stated to underpin the study?

How were participants selected?
How were participants approached?
How many participants were in the study?

How many people refused to participate or dropped out? Why?

Where was the data collected?
Was anyone else present besides participants and researchers?

What are the important characteristics of the sample?

Were questions provided by authors? Was it pilot tested?
Were repeat interviews carried out? If yes, how many?

Did the research use audio or visual recording to collect data?
Were field notes made during and/or after the interview?
What was the duration of the interviews or focus group?

Was data saturation discussed?

Were transcripts returned to participants for correction?

How many data coders coded the data?

Did authors provide a description of the coding tree?

Were themes identified in advance or derived from the data?
What software was used to manage the data?

Did participants provide feedback on the findings?

Were participant quotations presented to illustrate the themes/findings? Was each quotation identified?

Was there consistency between the data presented and findings?
Were major themes clearly presented in the findings?

Is there a description of diverse cases or minor themes?

Page

[PV

No

4-6

4-5
4-5
4-6
4-5

5-6
5-6
5-6

No

5-6

5-6

5-6

Yes, 5-11
Yes, 5-11
Yes, 5-11
Yes, 5-11
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Testing process

Prerequisite: Sampling in the morning on empty stomach (has proven unnecessary since then); participants were given one sampling kit and asked to test once

1) Gargling with a saline solution (for at least 30s)

2) Spitting the mouth’s content back into the small bottle using a straw

3) Clearing throat and nose through coughing and sniffling (for 30-60s)

4) Spitting loosened secrete into same small bottle using a straw

5) Dispensing an aliquot into a test tube, using the small bottle’s dropping cap

6) Placing the sample with a fleece (as an absorbent material) in a return bag

7) Sending sample to a laboratory via mail on the same day

8) Laboratory analyzes sample for SARS CoV-2 using RT-LAMP; in case of a positive test result, same sample is reanalyzed using RT-PCR

9) Participants can check results online from the day after sample arrives at the laboratory and receive help if needed via the telephone hotline

Provided information

o Cover letters with a website link to further multilingual explanations (in German, English, Russian, Italian, Turkish) and a video showing the self-sampling procedure

© Brochure (comprising 58 pages with different segments prepared for various target groups including adults, minors, kids, parents; written and pictorial instructions
of the self-sampling, and general study information)

Media presence

o The study was publicly referred to in social media (¢.g., Twitter, Facebook), local radio and newspapers
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Detection sources

High-risk population
Fever clinics

Close contacts

Suspected cases

Local close contacts

Living in Jiulongpo district

Living in other places

Number of tests before diagnosis
One time

>Two times

Different sources

Local samples

Imported samples.

Imported samples

From Hubei province

From other places in mainland China
From abroad

Local samples

Other local samples

Special institutes in local area

*Included cases in other counties.

Total

2,803
397
170
360
164
196

4,446
2672

4,952
2,166

1,974
8
184

3,340
1612

Negative cases

2,792
367
149
330
150
180

4,428
2,656

4,935
2,161

1,970
7
184

3,323
1,612

Positive cases

1

21
30
14
16

#Correctional officers and prisoners, people in pension agencies and other institutions; NAT, nucleic acid testing.

@Represent a significant difference compared with cases from “Fever clir

Positive rate (95% Cl)

0.39% (0.16%, 0.62%)
8.00% (4.96%, 10.16%)*
12.35% (7.41%, 17.30%)"
8.33% (5.48%, 11.19%)
8.54% (4.26%, 12.81%)
8.16% (4.33%, 12.00%)

0.40% (0.22%, 0.59%)
0.15% (0.00%, 0.30%)

0.34% (0.18%, 0.51%)
0.23% (0.08%, 0.43%)

0.20% (0.00%, 0.4%)
12.5% (0.00%, 35.42%)
0%

0.51% (0.27%, 0.75%)
0%

<0.001

0.898

0.062

0.509

0024

0.004
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Variables

Sex

Male

Female

Number of tests before diagnosis
One

Two or three

Total number of tests per person
Two

Three

Four

Five or six

Clustered cases

No

Yes

Cluster with one

Cluster with two

Cluster with three

Cluster with four*

Cluster with five*

Cluster with six*

Case sources

Local cases

Wuhan

Other places

Diagnosis sources

CDC epidemiological survey
Fever clinic

Occupation

Catering or public services
Technical staff

Unemployed, retiree

Farmer

Rehabilitation status”
Recovered

Recovery from mild and common cases
Recovery from severe cases
Death

*Transferred 2, 1, and 1 cases from other districts, respectively.

#Excluded one asymptomatic carrier.
The bold values represent the total samples.

10
12

20
19
1
o

Percentage

36.36%
63.64%

81.82%
18.18%

18.18%
54.65%
13.64%
13.64%

4.56%
95.45%
9.09%
18.18%
9.09%
50.0%
4.55%
4.55%

77.21%
18.18%
4.55%

45.45%
54.55%

36.36%
9.09%
45.45%
9.09%

95.24%
95%
5%
4.76%
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Variables Total close contacts* Close contacts of local patients

Total 638 360
Relatives or friends 346 (54.23%) 236 (65.56%)
Strangers with contact by accident 277 (43.42%) 124 (34.44%)
Unconfirmed relationship 15 (2.35%) 0(0%)

*Close contacts of local patients or local patients with suspected cases and patients from other locations.

Close contacts of patients from other places

278

110(39.57%)

153 (65.04%)
15 (5.40%)

<0.001
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Variables

Delta variant
o Yes (N = 69)

oNo(N=92)

Age

o <65 (N =98)
°265(N=17)

o <18(N =46)

Sex

o Male (N = 79)

« Female (N = 82)
Comorbidity

a. Obesity

Yes (V = 10)

No (N = 151)

b. Diabetes

Yes (V = 26)

No (N = 135)

c. Hypertension

Yes (V= 22)

No (N = 139)

d. Cardiovascular disease
Yes (V = 16)

No (N = 146)

e. Chronic kidney disease
Yes (V=2)

No (N = 159)

Smoking

oYes(N=5)

o No (N = 156)

Hospitalized (N, %)

50 (72.5)
65 (70.7)

73(74.5)
15(83.2)
27 (68.7)

56 (70.9)

59(72)

10 (100)

105 (69.5)

23(88.5)
92 (68.1)

21(95.5)
94 (67.6)

14(93.9)
101 (69.2)

2(100)
113 (71.1)

2(40)
113 (72.4)

“Significant (o < 0.05); Cl, confidence interval; OR, odds ratio.

p-value

0.80

Ref
035
0.05

0.88

0.06

0.036"

0.007*

0.07

0.14

OR (95% CI)

1.1(056-2.2)

25(05-12)
049 (0.23-1.02)

0.94 (0.47-1.8)

9.26 (0.53-161.3)

3.6(1.02-12.5)

10 (1.3-77)

6.23(0.79-48)

2.05 (0.1-43.49)

0.25 (0.41-1.6)

Mortality (N, %)

6@.7)
13(14.1)

9(9.2)
9(52.9)
1.2

18(16.5)

6(7.3)

7(70)

12(7.9)

12 (46.2)
762)

10(45.5)
9(65)

6(40)
13(8.9)

1(50)
18(11.3)

1(20)
18(11.5)

p-value

0.29

Ref
8x 107
0.17

0.07

1x10°%

6x 1077

1.2 x 1075

0.003"

0.22

0.47

OR (95% Cl)

057 (0.21-1.6)

11(3.4-36)
0.22 (0.02-1.78)

25(0.9-6.9)

27 (6.1-118)

15.6 (5.3-46)

12(4-35.9)

68 (2.1-22.1)

7.8 (0.46-130)

1.9(0.2-18)
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Variables

Delta variant
Age (265 years)

Sex (male)

Comorbidity

« Obesity

« Diabetes

« Hypertension

o Cardiovascular disease
« Chronic kidney disease
Smoking

“Significant (o < 0.05); Cl, confidence interval; OR, odds ratio; -, not applicable.

Hospitalized
OR (95% Cl)

13(06-2.8)
0.7 (0.1-6.1)
09(0.46-2.1)

1.68 (0.41-6.8)
104 (0.92-118)
3(0.3-28.8)

0.11(0.008-1.4)

p-value

0.47
0.79
0.98

0.99
0.46
0.058
032
0.99
0.09

Mortality
OR (95% Cl)

36(0.58-21.9)
11.5 (1.3-102.6)
3.2(0.65-16)

16,6 (2.5-107.1)
55(1.3-23.7)
5.8(1.02-82.8)
0.7 (0.08-6.2)
1.2 (0.015-96.6)
0.5(0.003-74.4)

p-value

0.167
0.028"
0.15

0.003*

0.021*

0.047%
0.75
0.92
0.78
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Characteristics

Ctvalue
Age (years)

©265

18-<65

o<i8

Sex

o Male

o Female
Comorbidities

« Obesity

o Diabetes

« Hypertension

« Cardiovascular disease
« Chronic kidney disease
Smoking

“Significant (o < 0.05); SD, standard deviation.

Total (N = 161)
N (%);
mean  SD

19.1£85

36.3£21.9
17 (106)
98(609)
46 (28.6)

79(49.1)
82(509)

10(62)

26(16.1)

22(13.7)
1593)
2(12)
5@.1)

Delta variant
(N = 69) N (%);
mean & SD

18429
27.3£200
1(1.4)
35 (50.7)
33(47.8)

23(333)
46 (66.7)

3(43)
7(10.1)
468
468
0
1(1.4)

Non-Delta variant
(N=292)
N (%); mean & SD

19538
4304209
16 (17.4)
63 (68.5)
13 (14.1)

56 (60.9)
36(39.1)

)
19 (20.7)
18 (19.6)
11(12)
2(22)
4(4.3)

p-value

0.043
3x 107
1x107%

0.001"

051
0.07
0.012%
0.18
0.50
0.39
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Variable Total samples

Total 7,118
Detection numbers

First detection 7,118
Second detection 2,672
Third detection 338
Fourth detection 184
More than four times

Fifth detection 51
Sixth detection

=

Seventh detection
Eighth detection
Ninth detection
Tenth detection
Eleventh detection

)

Twelfth detection

Population sources
Fever clinic -
Close contacts -
Suspected cases® -
From Hubei** -
From other provinces -
From abroad” -

Correctional officers and -
prisoner

People in pension agency -
Other sources -

Detected
samples

7,118

4,446 (62.46%)
2,334 (32.79%)
154 (2.16%)
133 (1.87%)
51 (0.72%)
37 (0.52%)
8(0.11%)
1(0.014%)
0(0%)
1(0.014%)
2(0.028%)
1(0.014%)
1(0.014%)

2,803 (39.38%)
397 (5.58%)
144 (2.029%)

1,971 (27.69%)

7(0.10%)
184 (2.58%)
1,249 (17.65%)

82(1.15%)
281 (3.95%)

Time of
detection

10,377

4,446 (42.84%)
4,668 (44.98%)
462 (4.45%)
532 (5.13%)
202 (2.81%)
185 (1.78%)
48(0.46%)
7(0.067%)
0(0%)
9(0.087%)
20(0.19%)
11(0.11%)
12/0.12%)

“From Hubei after February 20, Wuhan is the capital city of Hubei Province.
#Diagnosed cases were not included if they were included in other categories.

The bold values represent the total samples.
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Gamma
(P.1)
Mutation of
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Delta
(B.1.617.2)
Mutation of
amino acids

Omicron
BA.1
Subvariant
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Omicron
BA.2
Subvariant
Mutation of
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ALPHA VARIANT Lineage: B.1.1.7

First documented samples: September 2020
Country first detected: United Kingdom

%MA VARIANT Lineage: P:1

First documented samples: December 2020
Country first detected: Brasil

DELTA VARIANT Lineage: B.1.617.2

First documented samples: December 2020
Country first detected: India

_ OMICRON VARIANT Linage: B.1.1.529

Sub-lineages: BA.1,BA.2,BA3
First documented samples: November 2021
Country first detected: South Africa, Botswana

BETA VARIANT | Lineage: B.1.351

First documented samples: September 2020
Country first detected: South Africa
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Country  Study Proportion of one dose vaccination Proportion of two doses vaccination

eriod - B
& Homeless ~ General  Proportion Homeless ~ General  Proportion
people population ratio people population ratio

Balut etal. (29) UsA 2020112~ 458% 643% 0.71 (05910 0.82) NA NA NA
2021/08

Tucker etal. (39) UsA 2021/03- 289% 340% 0.85(0.7010 0.95) NA NA NA
2021710

Rosenetal. (34) UsA 2021/05- 0.6% 73.0% 0.56(0.44 10 0.68) NA NA NA
2021110

Shearer etal. (36) UsA 2021 32.7% 64.0% 0.53(0.40 10 0.66) NA NA NA

Rogers etal. (35) UsA 202011 06% 169% 0.04(0100.18) NA NA NA
2021/02

Berrouetal. (31) UK 202012~ 47.3% 844% 0.56(0.45 10 0.67) NA NA NA
2021/05

Bentivegna etal. (30) Ttaly 2021106~ 225% 79.1% 0.28(0.19 10 0.40) NA NA NA
2021/09

Montgomery et al. UsA 2020112~ 405% 60.7% 0,67 (05410 0.79) 32.4% 53.8% 0,60 0.45 10 0.72)

e} 2021/08

Mechan etal. (32) UsA 2021.02 3.4% 169% 257 (18010 4.00) 17.0% 9.0% 188 (1.30 10 3.60)

Sharif et al. (35) Canada 202012~ 61.4% 86.6% 0.71(0:60100.79) 47.7% 8L6% 058 (0.47 10 0.69)
2021/09

Richard etal. (37) Canada 2021106~ 80.4% 843% 0.95 (0.88 10 0.99) 463% 709% 0.65(0.53100.76)
2021/09

Nilsson etal. (33) Denmark 2020712 60.7% 86.7% 0.70 (05910 0.79) 55.4% 85.1% 065 (0.54100.75)
2021710

NA, not available.
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Characteristic SARS-CoV-2 incidence Anti-SARS-CoV-2 seroprevalence

Meta-regression p-value Meta-regression p-value

coefficient [95% Cl] coefficient [95% Cl]
Study period
2021 v5. 2020 ~0.189 (0375 10.0.155) 0.281 0.286 (1244 10 1.816] 0715
Study region
Europe vs. America ~0.069 [~0290 10 0.152] 0512 0.156 [~0.687 10 0999] 0716
Study design
Non-cross-sectional vs. Cross-
ectional ~0.221[~0529 10 0.087) 016 0.362 [~0.484 10 1.209)] 0402
Category of homeless
Unsheltered vs. sheltered ~0.179 [~0.466 10 0.109] 0224 ~0.317(-1.265 0 0.630] 0512
Mixed population vs. sheltered 0.168 [~0.138 t0.0.475) 0.282 ~0.167 [~1.427 t0 1.092] 0.795
Sample size 0 0.185 ~0001 [~0.002t0 0] 0.102

Mean/median age ~0.004 [~0.020t0 0.011] 0584 ~0.018 [<0.109 10 0.073] 07
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Country Homeless population General population Incidence

tio of
No.of  Study  Random-  Study  Total General  Cumulative poregoof

study period effect period cases population incidence (%) general

inpc(i)doeliie population

(95% ClI)

Studies data collected in 2020

2020/01- 2020/01-

UsA 18 143 (8:81021.0) 7,240,030 332915074 22 66
2020109 2020/09
2020/01- 2020/01-

Canada 7 79(521011.0) 116,886 38,067,913 03 257
2020007 2020007
2020103~ 2020/01-

France 4 183(9.71028.8) 320559 67,422,000 05 385
2020008 2020/08
2020/05- 2020/01-

Germany 2 14(0t056) 194,259 83,900.471 02 60
2020106 2020106
Belgium 2020/04- 2020/01-

1 46(371055) 61,427 11,632,334 05 87
2020106 2020106
2020/01-

Tran 1 2020 26(09t05.1) 1225142 85,028,760 14 18
202012
2020103~ 2020/01-

Switzerland 1 321(2601038.5) 29,586 8,715,494 03 946
2020/04 2020/04
2020/03- 2020/01-

Slovakia 1 0(0100.5) 1,667 5,449,270 00 NA
2020106 202006

Studies data collected from 2020 to 2021

2020/03- 2020/01-

UK 2 41(24106.1) 4,349,834 68,207,114 64 06
2021/03 2021/03
2020/11- 2020/01-

Mexico 1 15(061028) 2,344,755 130,262,220 L8 08
2021/04 2021/04
2020/10~ 2020/01-

Vatican 1 85(6.910104) 27 812 33 26
2021/06 2021/06
2020/03- 2020/01-

Ttaly 1 37(331042) 4771965 60,367471 79 05
2021/10 2021/10

NA, not applicable.
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Epidemic simulation system Change prediction (Adays(t,}/ Adays(ts]) Simulation (RMSE) Daily no. of tweets
Baseline 1 n/a 18,0039 n/a
Baseline 2 na 25,2160 n/a
+change prediction /o sing tweet data ~16.3/-28.0 23779 n/a
+change prediction using TR.T. COVID-19 (g) —7.8/-217 1,360.4 414,576
-8.0/-193 1,435.1 29,484

+change prediction using TR.T. COVID-19 (¢)

Data from 2020/12/24 to 2021/01/21 were used to obtain SEIR model parameters for up-trend and down-trend periodis of COVID-19 epidemic progression. Data from 2020/11/15 to
2021/04/22 were used for training change prediction model. T.R.T,, Twests related to.
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Change prediction (Adays[t®]) Simulation (RMSE)

Epidemic simulation system

Baseline 1 na 322,075.6

Baseline 2 na 5238150

“+change prediction w/o using tweet data —17.1 53,849.5

+change prediction using T-R.T. COVID-19 (g) 114 33,782.1
—119 33,864.9

+change prediction using T.R.T. COVID-19 (¢)

Data from 2020/12/24 to 2021/01/21 were used to obtain SEIR model parameters for up-trend and down-trend periods of COVID-19 epidemic progression with an adjustment of the
basic reproduction number for the infectious power of the Omicron variant using observed data from 2022/01/01 to 2022/01/14. Simulation RMSE was evaluated during the period

from 2022/01/15 to 2022/03/05. Data from 2020/11/15 to 2021/12/22 were used for training change prediction model. (T.R.T., Tweets related to).
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Tweet count for change prediction Change prediction (Adaysit,] / Adays[t,]) Simulation (RMSE) Daily no. of tweets

TR.T. COVID-19 (g) —78/-21.7 1,860.4 414,576
T.R.T. COVID-19 (¢) -8.0/-19.3 1,436.1 29,484
TR.T. COVID-19 symptoms (g) —17.4/-27.7 24789 28,814
TR.T. COVID-19 symptoms (¢) ~16.2/-29.4 23896 3,507
TR.T. COVID-19 infection reporting (g) —18.4/-26.4 20512 6518
TR.T. COVID-19 infection reporting (¢) —12.4/-23.4 1,982.7 232

Data from 2020/12/24 to 2021/01/21 were used to obtain SEIR model paramefers for up-trend and down-trend periodis of COVID-19 epicemic progression. Data from 2020/11/15 to
2021/04/22 were used for training change prediction model. (TR.T, Tweets related to).
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Tweets Related Only Tweets with Query Keywords Daily No. of Tweets
To Emoji
COVID-19 (g) No WMATF, 30T, 307, A0S T 0 F Y, RAKEE S, 24 414,576

HERF AL, iRHeH

(translation: [new-variant corona, corona infection, corona disaster, corona

vaccine, emergency declaration, spread prevention, infected

person/people])
COVID-19 (e) Yes same as above 29,484
COVID-19 No Feab, B, RSO, ULHK, WS SRS, DRBEIEE, BT, 1%, O ¥ DS, W 28,814
symptoms (g) DA, GRS, WREERE,

excluding (U5, 1 ¥ 7 VX W, BRI, <9V 7, P RF—FA b

T4 =N, WY, 72 IE T, 7 LV R =, T LV F)

(translation: [fever, nasal discharge, sore throat, cough, dysosmia,

dysgeusia, shortness of breath, cough, sore throat, sore throat, dysosmia,

dysgeusial,

excluding: {cold, influenza, diabetes, malaria, Saturday night fever (a

movie-related reference to the risk of going out dancing), smoking, tobacco,

alergies, allergies J)
COVID-19 Yes same as above 3597
symptoms (e)
COVID-19 No KRR, B 6518
infection reporting (translation: [number of infected people, number of confirmed positive
@ cases])
COVID-19 Yes same as above 232

infection reporting
©
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Vaccine name

CoronaVac

BBIBP-CorV

BNT16b2

mMRNA-1273

NVX-CoV2373

ChAdOxI nCoV-19

(AZD1222)

Ad26.CoV2S

Ads-nCoV

Sputnik V.

Vaccine type

Inactivated vaccine
Inactivated vaccine

mRNA vaccine

mRNA vaccine

Recombinant
protein vaccine
Adenovirus vector

vaccine

Adenovirus vector
vaccine
Adenovirus vector
vaccine
Adenovirus vector

vaccine

Research and
development
company

SinoVac-China
SinoPharm-China

Plizer-the USA

+BioNTech-Germany

Moderna-the USA

Novavax-the USA

AstraZeneca-the UK

Janssen-the USA

CanSinoBIO-China

Gamaleya Center-Russia

Current Participants Approved

clinical stage number  time

Phase I11 (being 600 (Phase 1) February 5, 2021

conducted)

Phase I 31,000 April 29, 2021

Phase Il 43,448 December 2, 2020

Phase Il 30,000 November 19,
2021

Phase 111 (being 131 December 20,

conducted) 2021

Phase I 11,636 February 22,2021

Phase I11 (being 796 (Phase  March 1,2021

conducted) /1)

Phase III (being 508 (Phase II) ~ September 16,

conducted) 2021

Phase 111 18,794 February 3,2021

Approved countries

China, Brazil, Ukraine

China, United Arab Emirates,
Bahrain, Egypt, Australian
the UK, Canada, the USA,
Bahrain, Saudi Arabia,
Mexico, European Union,
Japan

the UK, European Union,
Israel, Canada, the USA,
Japan

Put on an emergency use list

India, Argentina, the
Dominican Republic,
Salvador, Mexico, Morocco,
the UK, Japan

Puton an emergency use lst

China, Ecuador, Argentina,
Brazil, Malaysia

Russia, Algeria, Argentina,
Bolivia, Serbia, Republic of

Belarus
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Facilitators

Barriers

Themes

Health governance
and leadership for
navigating COVID-19

Resource
management

Information system

Resources

COVID-19 infodemic

Senvice delivery

Sub-themes

Political leadership

Community leadership

Multisectoral partnerships and
collaboration

Human resources

Financial and material resources

Surveillance systems

Health communications

Inadequate human resources to
respond to growing needs.
Financial and Material resources
bariers to testing

Socio-cultural perspectives and
practices

Misconceptions about
COVID-19 and testing

Fear of stigmatization for testing
positive

Codes

High political commitment to increase testing
High involvement of the President of Ghana to tackle the pandemic by
increasing testing

High governmental effort for understanding the implementation of health regulations
Community leaders and organizations’ commitments to enhancing adherence to
COVID-19 protocols and testing

Religious leader's high commitment to educating commurity members to adhere
to health regulations and get tested

High involvement of diverse entiies from different sectors for financial support and
distribution of health supplies

Training programs to strengthen health workers’ capacity and ensure an adequate
number of health workers

Availabilty of incentive packages for health workers

Positive attitude and behaviors of health workers toward work

High financial commitments on the part of the government to ensure adequate
financial and material resources

Availabity of testing centers

Existence and use of a centralized data reporting system

Well-managed procurement and surveilance system

Successful advocacy campaigns to ensure adherence to health protocols

Provision of regular updates on COVID-19 by the governmental authorities and
health institutions

Inadequate human resources in COVID-19 testing centers leading to a heavy
workload and its related consequences such as anxiety

Low internet connection to manage data

Poor transportation infrastructure to deliver test samples

High price of COVID-19 testing

High dependency on reagents and consumables from other countries
Occasional shortage of reagents and testing kits

Strong refiance on negative experiences of people about COVID-19 testing to
refuse testing

Misinformation about COVID-19

Low level of knowiedge about COVID-19 leading to misconceptions, especially
among rural residents and women

Fear, anxiety and isolation associated with testing positive in the community

Lack of opportunities for all community members to have equal and easy access to
testing services
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Documents selected

Policy responses to fight COVID-19; the
case of Ghana (4)

Ghana's COVID-19 response: the Black
Star can do even better (5)

Containing the impact of COVID-19:
Review of Ghana’s response approach
©)

How well is Ghana with one of the best
testing capacities in Africa-responding
to COVID-19? (8)

“Test and trace’ has worked for us,
Ghana's President says (10)

Saturation in qualitative research:
exploring its conceptualization and
operationalization (14)

How digital technology helped support
Ghana's COVID response (16)

Ghana receives criical COVID-19
medical supplies (18)

Data analyzed

Ghana's national health policies and
systems, governance

Health systems and governance for
COVID-19 response.

National COVID-19 preparedness and
response plan and Ghana's health
systems

National COVID-19 preparedness and
response plan and testing capacities

Importance of 8Ts (test, tracing and
treating) in Ghana

Conceptualization of key themes from
qualitatively collected data

Health systems and surveilance using
digital technology

Health suppiies and resource
distribution
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Key Participants
Policymakers

Implementers

Frontline workers
Community members
Total

Characteristic

Senior officials at Policy, Planning, Monitoring
and Evaluation unit at the Ministry of Health (2)

Laboratory managers from medical research
institutions (6)

Laboratory scientists from COVID-19 testing
centers (4)

Researchers from medical research institutions
and Universities (5)

Nurses from hospitals (2)
Community leader in Greater Accra (1)

Total

15
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Population  May June July August September October ~ November December

total 10th 10th 10th 10th 10th 10th 10th 10th
(2018)
Bogota D.C. 7,149,540 647.26 181153 4017.84 8545.92 13313.57 16574.33 2050365 2428092
Valle de Cauca 3,762,229 103851 2908.33 3953.69 5660.58 6838.90 8464.88 10183.70
Antioquia 5,931,492 356.76 923.80 133663 4350.19 6137.76 768436 9929.07 11657.71

Total (Colombia) 43,835,324 345.37 101501 2209.33 4431.88 6543.33 8240.58 10273.77 12279.89
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Algorithm

Autoregressive Integrated Moving Average (ARIMA)
SutteARIMA
Holt’s linear trend

Trigonometric Exponential smoothing state-space model with Box-Cox
transformation

Cubic smoothing spline

Support vector regression

Long short-term memory (LSTM), Bi-LSTM, gated recurrent unit (GRU), and
Bi-GRU

Autoregressive and Autoregressive Moving Average

Moving average

Limitation

Not suitable for infection’s trend that becomes linear or dampens over time
Not suitable for infection’s trend that increases exponentially
Not suitable for infection’s trend with seasonality

Not suitable for infection’s trend that increases exponentially

Not suitable for infection’s trend having a high difference in the number of infections
between consecutive time intervals

Not suitable for infection’s trend with randomness

Time consuming, memory-intensive and the performance is sensitive to the initial
values of hyperparameters

Not suitable for infection’s trend whose average varies over time

Can only predict a consistent change in infections over time
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Model

HLT

LSTM

Bi-LSTM

Bi-GRU
ARIMA

Country

China
France
Germany
Ttaly
Malaysia
Australia
Iran
Russia
Spain
United Kingdom
Brazil
India
Saudi Arabia
Australia
China
Germany
Ttaly
Russia, Spain, United States, and Brazil
United Kingdom
Israel
India
Iran
France
Ttaly
Malaysia
Spain
United States
Saudi Arabia

Optimal parameters’ values

a=0.1,=1.0
a=0.3,=0.9
a=1.0,=0.1
a=1.0,=0.1
a=0.1,=04
Degree = 5
Degree =2
Degree =2
Degree =3
Degree =2

a=1.0,p=02, ®=0.99
a=1.0,p=0.1, ®=0.99
a=0.5B=0.1, ®=0.99
Input size = 250, neurons = 100, epochs =500, activation function = ReLU, optimizer = SGD
Input size = 250, neurons = 100, epochs = 500, activation function = SELU, optimizer = Adamax
Input size = 250, neurons = 100, epochs = 500, activation function = SELU, optimizer = Adadelta
Input size = 250, neurons = 100, epochs = 1,500, activation function = ReLU, optimizer = SGD
Input size = 250, neurons = 100, epochs = 500, activation function = ReLU, optimizer = Adadelta
Input size = 250, neurons = 100, epochs = 500, activation function = Softsign, optimizer = Adadelta
Input size = 250, neurons = 100, epochs = 500, activation function = ReLU, optimizer = Adam
Input size = 250, neurons = 100, epochs =500, activation function = ReLU, optimizer = Nadam
Input size = 250, neurons = 100, epochs = 500, activation function = ReLU, optimizer = Adam
p=10,q=2,d=1
p=5g=2d=7
p=549=2d=2
p=69=2,d=8
p=9%q=2,d=1
P=3q=2%d=1
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Scenario

SD=04
SD=05
SD=06
Actual

Peak hospitalisations:

mean and 95% CI

4805 (4282, 5257)
1604 [1358, 1844)
533 (476, 579]
1551 (28 September)

Peak ICU demand:

mean and 95% CI

812 (731, 885)
272 (230, 312)
9180, 99)
308 (12 October)

Cumulative fatalities:
mean and 95% CI

1201 (1057, 1326)
539 479, 624)
235 (209, 256]

596 (15 October)
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WANFANG DATA (n-20 030)

l_
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Studies after duplicates
removed (n=14 004)

Fulltext articles assessed

13 843 of studies removed
after screening title and
abstract

for elgibility (n=161)

l_

116 of studies excluded:
“Without related data (n=88)
~Commentary (n=5)
“Review (n=3)

~Case report (n=4)
~Participants < 10 (n=15)
“Not Chinese (n=1)

Included articles
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Vaccination Vaccination Lockdown trigger Post-peak duration (days)

scenario uptake (cumulative cases) sD=07 sD=08 SD=09

Pre-pandemic 6% 100 56 28 17
Progressive — 40% 400 45 33 25
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Country Infection’s Automated AI Model(s) used

trend selected model for comparison
China Exponential + linear HLT Bi-LSTM (25)
France ARIMA (27)
Germany Bi-LSTM (25)
Italy ARIMA (24, 27) and
Bi-LSTM (25)
Malaysia ARIMA (28)
Australia Polynomial QT LSTM (26)
Iran Bi-GRU (26)
Russia Bi-LSTM (25)
Spain SutteARIMA (23),
Bi-LSTM (25) and
ARIMA (27)
UK Bi-LSTM (25)
0N Linear LT ARIMA (24) and
Bi-LSTM (25)
Israel Bi-LSTM (25)
Brazil Exponential + DT Bi-LSTM (25)
damping
India Bi-LSTM (25)

Saudi Arabia ARIMA (29)
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Countries

Australia, Brazil, China, France, Germany, India, Iran,
Israel, Italy, Malaysia, Russia, Saudi Arabia, Spain,
United Kingdom, and United States

Features Update
frequency
Province/state, country/region, last update, Daily

number of confirmed cases, number of recovered
cases, and number of deaths

Considered period for
the Covid-19 infections

22/01/2020-08/01/2022
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Work

Ahmar and Del
Val (23)

Gecili et al. (24)

Shahid et al. (25)

Ayoobi et al.
(26)

Ceylan (27)

Singh et al. (28)

Alzahrani et al.
(29)

Considered
countries

Spain

United States and
Ttaly
Brazil, Germany,
Italy, Spain,
United Kingdom,
China, India, Israel,
Russia, and

United States

Australia and Iran

Italy, Spain, and
France

Malaysia
Saudi Arabia

Considered
algorithms

ARIMA and SutteARIMA

HLT, ARIMA, TBATS, and

cubic smoothing spline

ARIMA, SVR, LSTM,
Bi-LSTM, GRU

LSTM, Bi-LSTM,
Convolutional LSTM,
Bi-Convolutional LSTM,
GRU, Bi-GRU

ARIMA

ARIMA
AR, MA, ARMA, ARIMA

Justification for

algorithm
selection

NR

Widely used in
literature

Accurate for other

countries

Considered  Considered period for

period for

developing the

algorithm
02/12-04/02 2020
02/22-04/29 2020

01/22-05/10 2020

(Australia)
01/25-05/20 2020
(Iran)
01/03-06/06 2020

02/21-04/15 2020

01/22-03/31 2020
03/02-04/20 2020

validating the
algorithm

04/03-04/09 2020
02/22-04/29 2020

05/11-06/27 2020

(Australia)
05/21-06/18 2020
(validation)
06/19-08/19 2020 (testing)
(Iran)
06/07-07/15 2020
(validation)
07/16-10/06 2020 (testing)

NA

04/01-04/17 2020
NA

Outperforming
algorithm

SutteARIMA
ARIMA

Bi-LSTM

LSTM (Australia)
Bi-GRU (Iran)

ARIMA

ARIMA
ARIMA

AR, AutoRegressive; ARIMA, AutoRegressive Integrated Moving Average; ARMA, AutoRegressive Moving Average; Bi-LSTM, Bidirectional Long Short-Term Memory; GRU, Gated
Recurrent Unit; HLT, Holt’s Linear Trend; LSTM, Long Short-Term Memory; MA, Moving Average; NR, Not Reported; NA, Not Applicable; SVR, Support Vector Regression; TBATS,
Trigonometric Exponential smoothing state-space model with Box-Cox transformation.
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Model

HLT
QT

LT

DT

LSTM

Bi-LSTM

Bi-GRU

ARIMA

SutteARIMA

Description

Allows forecasting of data with a trend. It is exponential smoothing applied to both
the average value in the series (level) as well as the trend (47).

Develops a polynomial relationship between time and the infection data (31).

Develops a linear relationship between time and the infection data (31). It is suitable
for the time series where the local mean is increasing gradually over time at a
constant rate.

Extends the HLT model by adding a damping parameter that dampens the steep
increasing forecast of HLT to a flat trend in the future (46).

LSTM is a recurrent neural network that is capable of learning long-term
dependencies. The main concepts of LSTM are the cell state and the gates. The cell
state acts as a data transmission channel that transfers relative information to the
chain of neural networks. Gates are the way to decide on what information to keep or
forget based on the relevance during the training.

A recurrent neural network model consisting of two LSTM networks, one in forward
direction (previous timestamp to future) and backward direction (future to previous
timestamps).

A neural network model consisting of two GRU networks, one taking input in
forward direction and the other in backward direction. It is a bidirectional recurrent
neural network consisting of input and forget gates. GRU are similar to LSTM cells
but do not maintain an internal cell state

Combines the autoregressive (AR) and the moving average (MA) models (29). AR
develops a linear regression model with lagged infections as the independent
variables and the MA develops a linear regression model using lagged prediction
errors as the independent variables. A non-stationary time series data trend should
be transformed into a stationary one, using differencing, to apply ARIMA.

Averages alpha-Sutte and ARIMA prediction models (23). Alpha-Sutte is based on
the moving average method and uses the infection’s data for the past 4 timestamps to
predict infection for the next timestamp.

Parameter

Smoothing

parameters for level (o) and trend (B)

Degree of polynomial

Not applical

Smoothing
parameter (

ble

parameters for level (a), trend (B), and damping
@)

input size, number of neurons, epochs, activation function, and

optimizer

Orders of lag observations (p), differencing (d), and moving

average (q)

Orders of lag observations (p), differencing (d), and moving

average (q)
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Laboratorial characteristics

4 lymphocytel, 4 WBCY, 4 CRP4, 5 PCT#, 4 LDH?, 2 ALT#, 2 Crt, 4 D-dimert
NA

18IgG* and IgM*

19 PCT+,12 lymphocyte)

NA

41gGand IgM-, 36 IgG* and IgM-, 23 IgG* and IgM*

6ESRT

NA

NA

3 lymphooyted, 1PLTY, 6 ALTY, 11 CRP

3WBC,4 lymphocytet

NA

NA

2WBCJ, 1 WBCH, 4 PLTY, 4 D-dimert, 3 albuminy, 2 Crt, 3 LDH, 1 CKt

1 WBCH, 1 Neutrophilt, 2 ymphocytel, 3 CRP1, 2 LDH1, 3 D-dimert, 10 IgG* and IgM=, 2 IgG* and IgM+
4WBCJ, 8 lymphooyte)

4WBC, 4 WBCH, 6 lymphocyte

10 ESRY, 8 albumin}

1 lymphocytel, 2 CRP4, 1 Neutrophil], 1 PLT}, 3 ALT%, 6 LDH4, 2 albumin],, 1 Crt, 1 D-dimert
1 WBCH, 1 WBCY, 1 Neutrophilt, 1 Neutrophily, 1 CRPt, 2 ESRY

NA

NA

21gM* and IgG*, 12 IgM* and IgG~

NA

2WBC|, 10 ESRt

NA

NA

NA

NA

NA

NA

5WBCt, 2 ymphocytel, 3 ESRY, 7LDH?, 4 lactatet

NA

NA

NA

7 WBCH, 2 Lymphopenia, 3 IgM*, 3 IgG*

C:51gM*, B: 19 IgM*, C: 91gG*, B: 29 IgG+

NA

1 WBCH, 1 WBCL, 3 CRP1, 5 serum amyloid At, 6 CD4* T cell |, 3 CD8*T celll, 6 NK celll
NA

6 WBCJ, 2 Neutrophit, 3 lymphocytel

56 IgM*, 38 1gG*

1 WBCt, 1 WBCY, 7 Neutrophilt, 7 lymphocytel,, 10 hemoglobiny, 5 ALT$, 7 LDH?, 2 Crl,, 12 albumin}
23IgM*, 33 1gG*

A, Initial no-symptoms COVID-19 patients; B, Patients with asymptomatic infection; C, Patients with pre-symptomatic infection; NA, Not available; /, Not applicable; WBC, White blood
cell: CAR C reactive protein; PCT, Procalcitonin; LDH, Lactate dehydrogenase; ALT, Alanine aminotransferase; Cr, Creatinine; PLT, platelot; CK, Creatine kinase; ESR, Erythrocyte
'sedimentation rate; NK cell, natural killer cell. 1, elevated; |, declined.
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